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Abstract

In 1801, Gauss found an explicit description, in the language of binary quadratic
forms, for the 2-torsion of the narrow class group and dual narrow class group of a
quadratic number field. This is now known as Gauss’s genus theory. In this paper
we extend Gauss’s work to the setting of multi-quadratic number fields. To this end,
we introduce and parametrize the categories of expansion groups and expansion Lie
algebras, giving an explicit description for the universal objects of these categories.
This description is inspired by the ideas of Smith [16] in his recent breakthrough on
Goldfeld’s conjecture and the Cohen–Lenstra conjectures.

Our main result shows that the maximal unramified multi-quadratic extension
L of a multi-quadratic number field K can be reconstructed from the set of gener-
alized governing expansions supported in the set of primes that ramify in K. This
provides a recursive description for the group Gal(L/Q) and a systematic procedure
to construct the field L. A special case of our main result gives an upper bound for
the size of Cl+(K)[2].

1 Introduction

The narrow class group of a number field K, which we denote by Cl+(K), is one of
the most fundamental and, yet mysterious, objects in arithmetic. Its study, initiated
by Gauss [8] in the language of binary quadratic forms, has triggered a substantial part
of the developments of algebraic number theory since 1801. In his dissertation Gauss
reported what still is one of the very few explicit results about the class group. Namely,
for a quadratic number field K, Gauss provided an explicit description for the 2-torsion
of Cl+(K) and of Cl+(K)∨, the dual of the narrow class group. This description is
given in terms of the primes dividing the discriminant ∆K/Q. In particular from such a
description Gauss was able to conclude that

dimF2Cl
+(K)[2] = ω(∆K/Q)− 1

for a quadratic number field K. Here ω(m) denotes the number of distinct prime factors
of an integer m. It is not difficult to generalize this work to the case where K is a cyclic
prime degree extension of Q. For that case, Gauss’s work provides an explicit description
for the Gal(K/Q)-invariants of Cl+(K) and Cl+(K)∨. This is now known as Gauss’s
genus theory. For a historical overview and a function field version, see respectively the
work of Lemmermeyer [12] and Cornelissen [4].

When no such explicit description is available, subsequent research has attempted to
show that the class group behaves as “randomly” as possible as K varies in the family
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of quadratic number fields (or more general families). A precise notion of randomness
was proposed by Cohen and Lenstra [3] in their conjectures for the class group. These
conjectures were later refined by Gerth [9] in order to include the case of the 2-Sylow
of the class group. Here the issue was precisely to isolate the “random part” from the
“explicit part”, that is Cl+(K)[2], where Gauss’s genus theory applies.

Spectacular progress on these conjectures has recently been made by Smith [16],
where he proved Gerth’s extension of the Cohen–Lenstra conjectures for Cl+(K)[2∞].
A crucial ingredient of Smith’s work is the notion of a governing expansion. These are
rather explicit objects that naturally provide elements of Cl+(K)∨[2] when K is a multi-
quadratic number field. This brings us to the main topic of this paper.

Questions : Let K be a multi-quadratic number field:
(1) Is there a description of Cl+(K)∨[2]?
(2) Do Smith’s governing expansions provide a set of generators for such a space?
(3) How large can such a space be in terms of the primes ramifying in K?

The present work provides an affirmative answer to the first two questions and an-
swers the third question by means of an upper bound. We call the ensemble of such
results higher genus theory, a terminology that will be explained later in this introduc-
tion. We shall begin by explaining our first three main results, which address the third
question. They form the crudest manifestation of higher genus theory. Recall that for a
positive integer m we denote by ω(m) the number of distinct prime factors of m.

Theorem 1.1. Let n be a positive integer and let a1, . . . , an be square-free numbers in
Z≥2 that are pairwise coprime and that have only prime factors congruent to 1 modulo
4. Then

dimF2Cl
+(Q(

√
a1, . . . ,

√
an))[2] ≤ ω(a1 · . . . · an) · 2n−1 − 2n + 1.

To the best of our knowledge, this is the first non-trivial upper bound for the group

Cl+(Q(
√
a1, . . . ,

√
an))[2] appearing in the literature. A trivial upper bound is≪ǫ ∆

1/2+ǫ
K/Q

by the Brauer–Siegel theorem. If n = 1, we see that our upper bound is in concordance
with Gauss’s genus theory. In contrast, for n ≥ 2 one can show that merely prescribing
the values of ω(a1), . . . , ω(an) does not force dimF2Cl

+(Q(
√
a1, . . . ,

√
an))[2] to attain a

unique value. We hope to show in future work that the upper bound in Theorem 1.1 is
actually sharp in a wide number of cases.

We say that a vector (a1, . . . , an) is acceptable if a1, . . . , an are square-free numbers
in Z≥2 that are pairwise coprime and have only prime factors congruent to 1 modulo
4. This condition can be partly relaxed in all our theorems. It is possible to remove
the restriction on the prime factors of ai with only minor modifications and some case
distinctions, but the coprimality condition among the ai may be more difficult to remove.

We say that an acceptable vector is maximal if the bound of Theorem 1.1 is attained.
Our next result provides the following neat recursive characterization of maximal vec-
tors. For a number field K, we denote by H+

2 (K) the maximal elementary exponent 2
extension of K that is unramified at all finite places; this is the field corresponding to
Cl+(K)∨[2] by class field theory. For a positive integer m we denote by [m] the set of
positive integers no larger than m.

Theorem 1.2. Let n be a positive integer and let (a1, . . . , an) be an acceptable vector.
Then the following are equivalent.
(a) The vector (a1, . . . , an) is maximal, i.e.

dimF2Cl
+(Q(

√
a1, . . . ,

√
an))[2] = ω(a1 · . . . · an) · 2n−1 − 2n + 1.
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(b) For every j ∈ [n], the vector (ah)h 6=j is maximal and every prime divisor p of aj
splits completely in H+

2 (Q({√am}m∈[n]−{j})).
(c) For every j ∈ [n], the vector (ah)h 6=j is maximal and for every prime divisor p of
aj , one (or equivalently any) prime above p in the field Q({√am}m∈[n]−{j}) belongs to
2Cl+(Q({√am}m∈[n]−{j})).

We remark that condition (b) is emptily satisfied when n = 1, so that Theorem 1.1
and Theorem 1.2 together recover the usual Gauss’s genus theory. We also observe that
the equivalence between conditions (b) and (c) in Theorem 1.2 follows directly from class
field theory. Hence the non-trivial assertion is the equivalence between condition (a) and
(b) (or equivalently between (a) and (c)).

Fröhlich [7] systematically investigated a certain subspace of Cl+(K)∨[2] for multi-
quadratic fields. To explain which subspace, we recall that elements of Cl+(K)∨[2] have
a natural notion of complexity, leading to a filtration

{0} = Gn(K, 0) ⊆ Gn(K, 1) ⊆ Gn(K, 2) ⊆ · · · ⊆ Gn(K, j) ⊆ · · · ,
exhausting the space Cl+(K)∨[2]. Intuitively, the index j in the filtration measures the
extent to which the corresponding Galois groups over Q are non-commutative. The
precise definition is as follows. For j ∈ Z≥1, a character χ ∈ Cl+(K)∨[2] belongs to
the j-th term of the filtration if it vanishes on all (j + 1)-th nested commutators1 with
entries in GQ. Here we view the character χ as a homomorphism GK → F2 by class field
theory, where GK denotes the absolute Galois group of a number field K. If an element
is in the j-th but not in the (j − 1)-th term of the filtration, then we say that it has
nilpotency j.

The goal of higher genus theory is to describe all the spaces Gn(K, j). Gauss’s genus
theory handles the case j = 1. The work of Fröhlich extends this to j = 2. The present
paper handles all j ∈ Z≥1.

The jump from nilpotency j ∈ {1, 2} to nilpotency j ∈ Z≥1 has a parallel in the
recent dramatic developments on the Cohen–Lenstra conjectures: this is no coincidence.
Using the work of Rédei [14], it is possible to prove that the 4-rank and the 8-rank of
class groups of quadratic number fields follow the Cohen–Lenstra conjectures. For the
former, see the work of Fouvry–Klüners [5, 6] and for the latter see Smith’s work [15]
under GRH predating his major breakthrough [16]. There has also been recent interest in
non-abelian generalizations of the Cohen–Lenstra conjectures studied from a heuristical
standpoint by [1, 2, 13, 18] and from a statistical viewpoint by [10].

For the 4-rank, Gauss’s genus theory is enough to obtain Rédei’s criterion employed
by Fouvry and Klüners. For the 8-rank, Rédei found a criterion in terms of certain
extensions of nilpotency class 2, which we shall label Rédei fields; for a modern exposi-
tion on Rédei fields and their connection with the 8-rank, see the work of Stevenhagen
[17]. On the one hand, Rédei fields are precisely the fields that Fröhlich uses to analyze
Gn(K, 1). On the other hand Smith’s notion of governing expansions provides a gener-
alization of Rédei fields for any nilpotency class. As we shall now explain, the present
work completes this picture and shows that these fields do indeed provide a complete
description for Gn(K, j) for all j.

From now on we shall use the notation H+
2 (a1, . . . , an) := H+

2 (Q(
√
a1, . . . ,

√
an)) for

an acceptable vector (a1, . . . , an). Let (a1, . . . , an) be an acceptable vector and denote
ki := ω(ai). We abstract the most fundamental features of Gal(H+

2 (a1, . . . , an)/Q) in
the notion of a [(k1, . . . , kn)]-expansion group in Section 3. This is an algebraic structure,
consisting of a group with certain extra data.

Our crucial step is to show that the Lie algebra attached, by means of the descending
central series, to a [(k1, . . . , kn)]-expansion group is a highly constrained one: this leads

1Observe that this is well defined since K/Q is abelian and j ≥ 1.
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us to the notion of a [(k1, . . . , kn)]-expansion Lie algebra. We use these constraints to
show that the dimension of a [(k1, . . . , kn)]-expansion Lie algebra is always bounded by

(k1 + · · ·+ kn) · 2n−1 − 2n + 1 + n.

This is obtained by bounding the dimension of certain tensor spaces encoding all the
constraints shared by a [(k1, . . . , kn)]-expansion Lie algebra. This calculation is done in
Section 2. Owing to this step we deduce the same bound for a [(k1, . . . , kn)]-expansion
group. Already at this stage we are able to establish the following inequality.

Theorem 1.3. Let (a1, . . . , an) be an acceptable vector. Then

dimF2

Gn(Q(
√
a1, . . . ,

√
an), j)

Gn(Q(
√
a1, . . . ,

√
an), j − 1)

≤ ω(a1 · . . . · an) ·
(
n− 1

j − 1

)
−
(
n

j

)
,

for all j ∈ Z≥1.

Theorem 1.3 sharpens the conclusion of Theorem 1.1. To upgrade these inequalities
to a full description of all [(k1, . . . , kn)]-expansion groups, so in particular of the Galois
group Gal(H+

2 (a1, . . . , an)/Q), we proceed as follows. We use an abstracted version
of Smith’s governing expansions to construct a [(k1, . . . , kn)]-expansion group and a
[(k1, . . . , kn)]-expansion Lie algebra of the maximal possible size 2m where m equals

(k1 + · · ·+ kn) · 2n−1 − 2n + 1 + n.

Part of this data is a pair (G̃([(k1, . . . , kn)]), (g1, . . . , gk1+···+kn)), where G̃([(k1, . . . , kn)])
is a certain finite 2-group and {g1, . . . , gk1+···+kn} is a set of generating involutions of
G̃([(k1, . . . , kn)]). A similar construction is carried out in the case of Lie algebras. We
shall refer to these two structures as the governing group and governing algebra.

In parallel, we first show that in these two categories the set of morphisms between
two objects always has at most 1 element, and a morphism is always a surjective group
or Lie algebra homomorphism. Second we show that there exists a universal object,
namely one that maps (uniquely and surjectively) to any other of them: this fact is
proved in a soft manner in two different ways. In particular these soft arguments give
no clue on the shape of this universal object and no a priori control on its size, apart
from the above mentioned upper bound.

But the governing group and the governing algebra reach precisely that upper bound.
Therefore we obtain the non-trivial conclusion that the governing group and the gov-
erning Lie algebra must be the universal objects among [(k1, . . . , kn)]-expansion groups
and Lie algebras respectively. Altogether, this culminates in the following considerable
refinement of Theorem 1.1.

Theorem 1.4. Let (k1, . . . , kn) be in Zn
≥1. Let (a1, . . . , an) be an acceptable vector with

ω(ai) = ki for every i ∈ [n]. List the prime factors of a1 · . . . · an as {p1, . . . , pk1+···+kn}
in such a way that the prime factors of ai are {p1+∑

1≤j≤i−1 kj
, . . . , p∑

1≤j≤i kj
} and for

each pi make a choice σi of an inertia element in Gal(H+
2 (a1, . . . , an)/Q).

Then the assignment gi 7→ σi extends uniquely to a group epimorphism

ϕ : G̃([(k1, . . . , kn)]) ։ Gal(H+
2 (a1, . . . , an)/Q).

Furthermore, the map ϕ is an isomorphism if and only if

dimF2Cl
+(Q(

√
a1, . . . ,

√
an))[2] = ω(a1 · . . . · an) · 2n−1 − 2n + 1.
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Our final result provides a recursive description of each of the spaces

Gn(Q(
√
a1, . . . ,

√
an), j),

for each (a1, . . . , an) and j ∈ Z≥1. In particular it gives a substantial generalization of
Theorem 1.2. Let (a1, . . . , an) be an acceptable vector. For each T ⊆ [n] denote by KT

the field Q((
√
ah)h∈T ). Let j be in Z≥1. Then the material of Section 3.4 gives, for each

T ⊆ [n] and j ∈ [|T |], a certain finite dimensional vector space

Φj(ah)h∈T ⊆ Cont-Map(GQ,F2),

where Cont-Map(GQ,F2) denotes the space of continuous 1-cochains from GQ to F2.
2

The space Φj(ah)h∈T has the property that the restriction to GKT
yields a surjective

homomorphism
Φj(ah)h∈T ։ Gn(KT , j).

Furthermore, the spaces Φj(ah)h∈T , as j and T vary, are linked together with the fol-
lowing additional data. Namely, whenever j ≥ 2 and i ∈ T , it turns out that one has a
natural map

Pi : Φj(ah)h∈T → Φj−1(ah)h∈T−{i},

which, after applying restriction to GKT
and GKT−{i}

respectively, becomes the natural
norm map between character groups. The operators Pi commute and this allows us to
define an operator PS for each S ⊆ [n]. These operators reduce the complexity of a map
in two ways: they lower the nilpotency degree and the degree of the multi-quadratic
fields. However, despite each of the operators PS individually simplifies a map Φ, when
considered altogether they encode the map Φ with the following universal recipe. Namely
one has the key equation

(dΦ)(σ, τ) =
∑

∅6=S⊆[n]

χS(σ)PS(Φ)(τ). (1.1)

Here χS =
∏

i∈S χai , where the product is done in F2.
3 Observe that equation (1.1)

determines the coset of Φ with respect to the space spanned by the set of characters
{χp}p|a1·...·an .

Equation (1.1) is a universal version of Smith’s governing expansion equation (see
[16, eq. (2.2)]), which is a special case. Incidentally, we provide an alternative way
to think about the notion of a governing expansion. Namely we show that to give a
governing expansion is tantamount to giving an epimorphism from GQ to the group

F2[Fm
2 ]⋊ Fm

2 .

This dictionary is established in Section 3.3, which provides the direct link between
governing expansions and expansion groups.

Our final theorem provides an inverse to equation (1.1), which allows us to construct
the space Φj(a1, . . . , an) out of the (lower complexity) spaces (Φj−1((ah)h 6=i))i∈[n], for
each j ∈ Z≥2. We define Comm-Vectj(a1, . . . , an) to be the set of vectors (Φ1, . . . ,Φn)
with Φi ∈ Φj−1((ah)h 6=i) and with the property that

Pi(Φk) = Pk(Φi),

for each distinct i, k ∈ [n]. Then one writes down

θ((Φi)i∈[n]) :=
∑

i∈[n]

χ{i}(σ)Φi(τ) +
∑

B⊆[n]
#B≥2

χB(σ)PB((Φi)1≤i≤n)(τ),

2These spaces will be reinterpreted, via Shapiro’s Lemma, as certain 1-cocycles in F2[Fn
2 ].

3Here χa denotes the quadratic character corresponding to the extension Q(
√
a)/Q.
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where we can unambiguously define PB((Φi)1≤i≤n) as the composition of the maps Pi as
i varies in B. From equation (1.1) it follows that θ((Φi)i∈[n]) is a 2-cocycle. Denote by
Comm-Vect◦j(a1, . . . , an) the subspace of Comm-Vectj(a1, . . . , an) yielding trivial classes
in H2(GQ,F2). We have the following.

Theorem 1.5. For every (Φ1, . . . ,Φn) in Comm-Vect◦j (a1, . . . , an) there exists Φ inside
Φj(a1, . . . , an) such that

dΦ = θ((Φi)i∈[n]).

Furthermore such a Φ must satisfy also

(P1(Φ), . . . , Pn(Φ)) = (Φ1, . . . ,Φn).

Conversely, for each Φ ∈ Φj(a1, . . . , an), we have that

dΦ = θ(Pi(Φ)i∈[n]),

and so (P1(Φ), . . . , Pn(Φ)) ∈ Comm-Vect◦j (a1, . . . , an).

Theorem 1.5 gives a procedure to access each of the spaces Gn(K[n], j) inductively.
Indeed, starting from the spaces Φj−1((ah)h∈[n]−{i}), for each i in [n], one determines
which v ∈ Comm-Vectj(a1, . . . , an) yield an unobstructed class θ(v) ∈ H2(GQ,F2). This
gives the space Comm-Vect◦j(a1, . . . , an). Then Theorem 1.5 guarantees that each of the
embedding problems in Comm-Vect◦j(a1, . . . , an) admits as a solution an 1-cochain that
yields an element of Φj(a1, . . . , an). Furthermore Theorem 1.5 tells us that all elements
of Φj(a1, . . . , an) arise in this way. Finally, restricting Φj(a1, . . . , an) to GK[n]

yields
Gn(K[n], j).

The space Φ1(a1, . . . , an) simply consists of the span of the functions {χA}∅6=A⊆[n]

and all characters {χp}p|a1·...·an . Hence this procedure gives a recursive description of
Gn(K[n], j) purely in terms of the arithmetic of the ground field Q.
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2 Auxiliary tensor spaces

In this section we define certain tensor spaces and carry out a crucial combinatorial
calculation contained in Proposition 2.4 and Proposition 2.7. This calculation forms the

6



foundation of the algebraic material of Section 3 and therefore of our main arithmetical
applications, which are given in Section 4.

For any positive integer m we recall that [m] denotes the set of positive integers that

are no bigger than m. For a set S, we denote by VS the vector space F(S)
2 of formal

F2-linear combinations of the elements of S. In this way each element s ∈ S gives a
vector es ∈ VS and the collection {es}s∈S gives a basis for VS. We denote by {χs}s∈S
the unique linear functional from VS to F2 defined by the equation χs(es′) = δs,s′ for
each s, s′ ∈ S. Let n, i ∈ Z≥0 and define

Multi(V[n], i) := {b : V i
[n] → F2 | b multi-linear}.

Observe that a basis for Multi(V[n], i) is {χh1⊗· · ·⊗χhi
}(h1,...,hi)∈[n]i , where χh1⊗· · ·⊗χhi

is short for the map (σ1, . . . , σi) 7→ χh1(σ1) · . . . · χhi
(σi). Here the product on the right

hand side is the usual product in F2. If i ≥ 2, then we put for every A ⊆ [n] with #A = i
and x ∈ A

ϕ(A,x) :=
∑

τ∈IsomSet([i],A)
τ(i−1)=x or τ(i)=x

χτ(1) ⊗ · · · ⊗ χτ(i) ∈ Multi(V[n], i). (2.1)

If i = 1 and A = {x}, then we put ϕ(A,x) := χx. We shall refer to such tensors as
governing tensors. We denote by

Gov(V[n], i) := 〈{ϕ(A,x)}A⊆[n],#A=i,x∈A〉.

We have the following elementary fact.

Proposition 2.1. Let i be in Z≥2. Then we have that

dimF2Gov(V[n], i) = (i− 1) ·
(
n

i

)
.

Proof. We can assume that i ≤ n, otherwise both sides of the equality are 0. For each
A ⊆ [n] with #A = i we deduce from equation (2.1) the identity

∑

x∈A

ϕ(A,x) = 0.

From this it follows that

dimF2Gov(V[n], i) ≤ (i− 1) ·
(
n

i

)
.

Since {χh1 ⊗· · ·⊗χhi
}(h1,...,hi)∈[n]i is a basis for Multi(V[n], i), it is transparent that there

are no further relations among the elements of the set {ϕA,x}A⊆[n],#A=i,x∈A. This gives
the desired equality.

For i ∈ Z≥0, we introduce the subspace M̃ulti(V[n], i) of Multi(V[n], i), defined as

M̃ulti(V[n], i) := 〈{χτ(1) ⊗ · · · ⊗ χτ(i)}τ∈Inj([i],[n])〉,

where Inj([i], [n]) denotes the set of injective maps from [i] to [n]. We can alternatively

characterize M̃ulti(V[n], i) as the space of multi-linear maps from V i to F2 that vanish
if we put the same element eh in two distinct coordinates for some h ∈ [n]. Recall that
for any subset B of [n], the symbol VB denotes the subspace of V[n] spanned by {ej}j∈B
and we put

M̃ulti(VB , i) := 〈{χτ(1) ⊗ · · · ⊗ χτ(i)}τ∈Inj([i],B)〉.

7



Observe that if i ∈ Z≥1 and b ∈ M̃ulti(VB , i), then b can be reconstructed from the

#B maps (b(ej ,−))j∈B with each b(ej ,−) ∈ M̃ulti(VB−{j}, i− 1). Conversely, given any

such collection of maps (bj)j∈B ∈ ∏j∈B M̃ulti(VB−{j}, i − 1), there exists a unique b in

M̃ulti(VB , i) with b(ej ,−) = bj(−) for each j ∈ B. In other words we have a natural
identification

P (VB , i) : M̃ulti(VB , i) →
∏

j∈B

M̃ulti(VB−{j}, i− 1),

i.e. the map P (VB , i) is an isomorphism of vector spaces. The following calculation will
often be helpful.

Proposition 2.2. Let i be in Z≥3 and A ⊆ B ⊆ [n] with #A = i. Let x ∈ A. Then

P (VB , i)(ϕ(A,x)) = (0)j 6∈A × (ϕ(A−{j},x))j∈A−{x} × (0)j=x.

Proof. This follows directly from the definition and equation (2.1).

Let B ⊆ [n] and i ∈ Z≥1. We are going to define a subspace

Cons(VB , i) ⊆ M̃ulti(VB , i)

that will be used in the arithmetical Section 4 by means of the intermediate notion of
n-expansion explored in Section 3. This will handle the case of multi-quadratic fields
obtained from quadratic fields with prime discriminant. Since its definition treats asym-
metrically the cases i = 2 and i = 3 with respect to the other cases we will reserve
special notation for these cases. The nomenclature used in these cases shall become
clear in Section 3. For i = 1 we put Cons(VB , 1) := Gov(VB , 1) and for i = 2 we put

Cons(VB , 2) := Sym(VB , 2),

where Sym(VB , 2) is defined to be the subspace of b in M̃ulti(VB , 2) such that

b(σ1, σ2) + b(σ2, σ1) = 0 (Symmetry).

For i = 3 we put
Cons(VB , 3) := Hall–Witt(VB , 3),

where Hall–Witt(VB , 3) is defined to be the subspace of M̃ulti(VB , 3) consisting of those
b such that P (VB , 3)(b) ∈

∏
j∈B Sym(VB−{j}, 2) and

b(σ1, σ2, σ3) + b(σ3, σ1, σ2) + b(σ2, σ3, σ1) = 0 (Hall–Witt equation)

for all σ1, σ2, σ3 ∈ {ej}j∈[n]. We make the important observation that each set of three
distinct elements σ1, σ2, σ3 ∈ {ej}j∈[n] gives a unique Hall–Witt equation thanks to the
requirement that P (VB , 3)(b) ∈ ∏

j∈B Sym(VB−{j}, 2); as one permutes σ1, σ2, σ3 and
uses that P (VB , 3)(b) ∈

∏
j∈B Sym(VB−{j}, 2), one gets literally the same equation.

Finally let i ≥ 4. Then we put Cons(VB , i) to be the subspace of M̃ulti(VB , i)
consisting of those b such that P (VB , i)(b) ∈

∏
j∈B Cons(VB−{j}, i− 1) and

πj1◦P (VB−{j2}, i− 1) ◦ πj2 ◦ P (VB , i)(b) =
πj2 ◦ P (VB−{j1}, i− 1) ◦ πj1 ◦ P (VB , i)(b) (Commutativity)

for all distinct j1, j2 ∈ B. Here πj denotes the projection on the j-th component.
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Remark 2.3. For i = 2 the Commutativity equation

πj1 ◦ P (VB−{j2}, 1) ◦ πj2 ◦ P (VB , 2)(b) = πj2 ◦ P (VB−{j1}, 1) ◦ πj1 ◦ P (VB , 2)(b)

is equivalent to the Symmetry equation. For i = 3 the Commutativity equation is
however, in general, not satisfied by the elements of Hall–Witt(VB , 3). For instance we
have the identity ϕ({1,2,3},1)(e1, e2, e3) = 0, while ϕ({1,2,3},1)(e2, e1, e3) = 1. On the other
hand we have that ϕ({1,2,3,4},1)(e1, e2, e3, e4) = ϕ({1,2,3,4},1)(e2, e1, e3, e4) = 0.

For B ⊆ [n], we define Gov(VB , i) to be the space

Gov(VB , i) = 〈{ϕ(A,x)}A⊆B,#A=i,x∈A〉.

The following fact will be crucial for us. We shall give two different proofs for it.

Proposition 2.4. Let i be in Z≥1 and let B be a subset of [n]. Then we have that

Cons(VB , i) = Gov(VB , i).

Proof. For i = 1 this is by definition, so from on we assume that i ≥ 2. We firstly show
that Gov(VB , i) ⊆ Cons(VB , i). For i = 2 this is clear, since

ϕ({j1,j2},j1) = χj1 ⊗ χj2 + χj2 ⊗ χj1 ,

hence ϕ({j1,j2},j1) ∈ Sym(VB , 2). Next we consider the case i = 3. Suppose that A ⊆ B
with #A = 3 and let x ∈ A. We have to show that ϕ(A,x) is in Hall–Witt(VB , 3). Thanks
to Proposition 2.2 we see that P (VB , 3)(ϕ(A,x)) ∈

∏
j∈B Sym(VB−{j}, 2). We next show

that ϕ(A,x) satisfies the Hall-Witt equation. Write A := {y, z, x}. Equation (2.1) shows

ϕ(A,x)(ey, ez, ex) + ϕ(A,x)(ez, ex, ey) + ϕ(A,x)(ex, ey, ez) = 1 + 1 + 0 = 0.

Because P (VB , 3)(ϕ(A,x)) ∈
∏

j∈B Sym(VB−{j}, 2), this proves that

ϕ(A,x)(eσ(y), eσ(z), eσ(x)) + ϕ(A,x)(eσ(z), eσ(x), eσ(y)) + ϕ(A,x)(eσ(x), eσ(y), eσ(z)) = 0

for any permutation σ of {x, y, z}. Finally observe that if j 6∈ A, then

ϕ(A,x)(ej ,−,−) = ϕ(A,x)(−, ej ,−) = ϕ(A,x)(−,−, ej) = 0.

Therefore we have verified that ϕ(A,x) satisfies all Hall–Witt equations.
We now turn to the case i ≥ 4. Let A ⊆ B with #A = i and let x ∈ A. We

want to show that ϕ(A,x) ∈ Cons(VB , i). Due to Proposition 2.2 and the inductive step
we have that P (VB , i)(ϕ(A,x)) ∈ ∏j∈B Cons(VB−{j}, i − 1). Next we show that ϕ(A,x)

satisfies the Commutativity equations. Let j1, j2 ∈ A be distinct. We distinguish two
cases. Firstly suppose that x ∈ {j1, j2}. Then, precisely due to the fact that i ≥ 4, we
see that ϕ(A,x)(ej1 , ej2 ,−) = ϕ(A,x)(ej2 , ej1 ,−) = 0 (see also Remark 2.3). Next suppose
that x 6∈ {j1, j2}. Then, thanks to Proposition 2.2 applied twice (which is possible since
i ≥ 4), we have that

(πj1◦P (VB−{j1}, i− 1) ◦ πj2 ◦ P (VB , i))(ϕ(A,x)) = ϕ(A−{j1,j2},x)

= (πj2 ◦ P (VB−{j2}, i− 1) ◦ πj1 ◦ P (VB , i))(ϕ(A,x)).

Altogether we have established our claim that Gov(VB , i) ⊆ Cons(VB , i). We next show
that Cons(VB , i) ⊆ Gov(B , i). Thanks to the previous step and Proposition 2.1 it suffices
to show that

dimF2Cons(VB , i) ≤ (i− 1) ·
(
#B

i

)
. (2.2)
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We claim that b ∈ Cons(VB , i) is completely determined by its behavior on the set of
tuples (ej1 , . . . , eji) with jh 6= jk for distinct h, k ∈ [i], jh ≤ ji for each h ∈ [i], and for
every 1 ≤ h < k ≤ i−2 we have jh < jk. Observe that every subset of B with cardinality
i gives precisely i − 1 such tuples. We conclude that there are precisely (i − 1) ·

(#B
i

)

such vectors. Hence the claim implies the desired inequality (2.2). Therefore our proof
is complete once we establish the claim.

To prove the claim, we observe that since b is in M̃ulti(VB , i), b is certainly determined
by the tuples (ei1 , . . . , eij ) with jh 6= jk for distinct h, k ∈ [i]. Let (ej1 , . . . , eji) be such
a tuple. Thanks to the Commutativity equation applied repeatedly, and the fact that b
is in Cons(VB , i), we find that we can always assume that for every 1 ≤ h < k ≤ i − 2
we have jh < jk; this does not change the value of b.

Furthermore due to the Symmetry equation we can assume that ji−1 < ji. Therefore
we have established the claim in the case i = 2, so from now on we assume that i ≥ 3.
Now there are two possibilities. If ji−2 < ji, then our tuple is of the desired form and we
are done. Suppose that instead ji−2 > ji. The Hall–Witt and Symmetry equation yield

b(−, eji−2 , eji−1 , eji) = b(−, eji , eji−1 , eji−2) + b(−, eji−1 , eji , eji−2).

Finally we use the commutativity equation once more to rearrange, if needed, the first i−
2 entries in b(−, eji−1 , eji , eji−2) to guarantee that the corresponding indices are arranged
in monotonic order. Once that is done we have that both summands on the right hand
side are evaluations of b in tuples of the desired shape. It follows that b is completely
determined by its behavior on such tuples and therefore inequality (2.2) holds. This
concludes the argument.

Let (k1, . . . , kn) be in Zn
≥1. We denote by V[k1,...,kn] the vector space V[k1] × · · · ×

V[kn]. We have a natural surjective homomorphism π(k1,...,kn) : V[k1,...,kn] ։ V[n] obtained
by summing each block of ki coordinates for i in [n]. In what follows, wherever the
notation suggests so, we are identifying the space V[k1,...,kn] with the space Vk1+···+kn by
concatenation of coordinates.

We next define a subspace

C̃ons(V[k1,...,kn], i) ⊆ Cons(Vk1+···+kn , i),

that will be used in the arithmetical Section 4 by means of the intermediate notion
of (k1, . . . , kn)-expansion explored in Section 3. This will deal with the case of multi-
quadratic fields obtained from quadratic fields with composite discriminant.

Definition 2.5. Let i ∈ Z≥2 be given. We set C̃ons(V[k1,...,kn], i) to be the subgroup of
Cons(Vk1+···+kn , i) consisting of those β in Cons(Vk1+···+kn , i) such that

β(σ1, . . . , σi−1, σi) = 0

whenever we are in one of the following three cases
(1) there is 1 ≤ h ≤ i− 2 with σh ∈ ker(π(k1,...,kn));
(2) both σi−1, σi are in ker(π(k1,...,kn));
(3) there exist two distinct h1, h2 ∈ [i] and k ∈ [n] such that

π(k1,...,kn)(σh1) = π(k1,...,kn)(σh2) = ek.

Recall that Proposition 2.4 tells us that Cons(Vk1+···+kn , i) is generated by governing
tensors. Our final step is to show that something analogous is true for the subspace
C̃ons(V[k1,...,kn], i). To do so we begin by pinpointing the generalized governing tensors.
We define a map from f from [n] to the power set of [k1 + · · ·+ kn] by

f(i) := [k1 + · · ·+ ki]− [k1 + · · ·+ ki−1]. (2.3)
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We say that j1, j2 ∈ [k1 + · · · + kn] are in the same block if there is some integer i
such that j1, j2 ∈ f(i). If T ⊆ [k1 + · · · + kn], we extend f by defining f(T ) = T . We
warn the reader that with this notation we have that f(i) need not equal f({i}). For
A ⊆ [n],#A = i ≥ 2, x ∈ A and T ⊆ f(x) we put

ϕ̃(A,T ) :=
∑

τ∈IsomSet([i],(A−{x})∪{T})
τ(i−1)=T or τ(i)=T

(
∑

x1∈f(τ(1))

χx1

)
⊗ · · · ⊗

(
∑

xi∈f(τ(i))

χxi

)
,

while for i = 1 we put ϕ̃(A,T ) :=
∑

xi∈T
χxi

. We denote for i ∈ Z≥1

G̃ov(V[k1,...,kn], i) := 〈{ϕ̃(A,T )}A⊆[n] with #A=i, x∈A, T⊆[f(x)]〉

and C̃ons(V[k1,...,kn], 1) := G̃ov(V[k1,...,kn], 1). We have the following elementary fact which
generalizes Proposition 2.1.

Proposition 2.6. Let i be in Z≥2. Then we have that

dimF2G̃ov(V[k1,...,kn], i) = (k1 + · · ·+ kn) ·
(
n− 1

i− 1

)
−
(
n

i

)
.

Proof. It is clear that the space is spanned already by ϕ̃(A,T ) with #T = 1. Hence for
each choice of A we have

∑
s∈A ks choices of T . Among these tensors, obtained from

a choice of A, there is precisely one relation for the same argument as outlined in the
proof of Proposition 2.1. Furthermore the various spaces obtained as A varies are jointly
in direct sum. Therefore we get that

dimF2G̃ov(V[k1,...,kn], i) =
∑

A⊆[n],#A=i

((
∑

s∈A

ks

)
− 1

)
.

In the total sum each ks appears
(n−1
i−1

)
many times and the −1 appears

(n
i

)
times.

Therefore we get the desired equality.

The following fact provides a generalization of Proposition 2.4. At this point, it can
be proved in three different manners. A first way is to use Proposition 2.4 in an essential
manner; one can show explicitly that the subspace of Gov(Vk1+···+kn , i) cut out by the

additional requirements of C̃ons(V[k1,...,kn], i) is precisely G̃ov(V[k1,...,kn], i). The second
and third way are to directly transfer the steps of respectively the first and the second
proof of Proposition 2.4 to the present context. We shall only give the third proof.

Proposition 2.7. Let i be in Z≥1. Then we have that

C̃ons(V[k1,...,kn], i) = G̃ov(V[k1,...,kn], i).

Proof. For i = 1 this is by definition. Henceforth we shall assume i ≥ 2. We start off by
proving that

G̃ov(V[k1,...,kn], i) ⊆ C̃ons(V[k1,...,kn], i). (2.4)

Thanks to Proposition 2.4 we already know that G̃ov(V[k1,...,kn], i) ⊆ Cons(Vk1+···+kn , i).
We still need to verify that for each set A with #A = i, ϕ̃(A,T ) vanishes on all tuples
(σ1, . . . , σi) satisfying at least one of the three conditions listed in Definition 2.5. In all
three cases one finds as a result of a direct inspection that the desired vanishing takes
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place even termwise for the right hand side of the defining equation of ϕ̃(A,T ). This
establishes equation (2.4).

Due to Proposition 2.6 it remains to prove that

dimF2C̃ons(V[k1,...,kn], i) ≤ (k1 + · · ·+ kn) ·
(
n− 1

i− 1

)
−
(
n

i

)
(2.5)

To this end, let g : [n] → [k1 + . . . kn] be the function g(s) := k1 + · · · + ks−1 + 1. Let

b ∈ C̃ons(V[k1,...,kn], i). We claim that b is determined by its value on the set of tuples
(er1 , . . . , eri) with the following properties

(a) r1, . . . , ri are pairwise in different blocks;

(b) every rh with h not in {i− 1, i} is in the image of g;

(c) at least one among ri−1 and ri is in the image of g;

(d) the first i− 2 values of the indices are ordered in a strictly increasing manner and
furthermore rj < ri for every j with 1 ≤ j ≤ i− 1;

(e) in case ri is not in the image of g then rj < ri−1 for every j with 1 ≤ j ≤ i− 2.

Observe that each subset A ⊆ [n] with #A = i gives a collection of (
∑

s∈A ks) − 1
such tuples, by demanding that for each j ∈ [i], the value rj belongs to a block whose
index is in A. Indeed, one has

∑
s<max(A) ks choices when the i-th entry is in the image

of g and kmax(A) − 1 when the last entry is not in the image of g, thanks to the last
requirement. Therefore the claim implies inequality (2.5) by the same argument as in
Proposition 2.6, and hence the proposition.

We now prove the claim. Thanks to rule (3) of Definition 2.5 we can assume that

each of the indices rj belongs to a different block. Next, since C̃ons(V[k1,...,kn], i) is in
particular a subspace of Cons(Vk1+···+kn , i), we can always assume that the first i − 2
values of rj are given in a strictly increasing fashion. Furthermore, thanks to rule (1) of
Definition 2.5, we can assume that for each of the first i − 2 values of j the element rj
is in the image of g.

We claim that at least one of ri−1 and ri can be assumed to be in the image of g.
Indeed suppose that is not the case. Let vi−1 and vi be respectively the unique basis
vectors in the block of ri−1 and ri that is in the image of g. Now thanks to rule (2) of
Definition 2.5 we see that b(. . . , eri−1 + vi−1, eri + vi) = 0. After expanding this, we get
that the desired value of b can be expressed as the sum of 3 values with the property
that at least one between the i−1-th and the i-th entry is in the image of g. This shows
the claim.

Summarizing, we have shown that the vector can be taken with indices belonging
to all different blocks, the first i− 2 entries with indices ordered in a strictly increasing
fashion, all in the image of g, and the last two entries having at least one of the two
indices in the image of g. Now applying the Symmetry equation we can also assume
that ri−1 < ri. We next reduce to the case where ri > rj for each j ∈ [i − 1]. For this
we can assume assume that i ≥ 3, otherwise we are already done. Since the first i − 2
are ordered, we only need to ensure that ri > ri−2. Suppose not, then applying the
Hall–Witt equation yields

b(. . . , eri−2 , eri−1 , eri) = b(. . . , eri , eri−2 , eri−1) + b(. . . , eri−1 , eri , eri−2).

Now observe that in both summands the largest entry, ri−2, is among the last two
coordinates, and hence as an application of the Symmetry equation can be assumed to
be the last entry. Also one of the two terms b(. . . , eri , eri−2 , eri−1) or b(. . . , eri−1 , eri , eri−2)
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might have the i − 2-th entry not in the image of g. However we can apply rule (1) of
Definition 2.5 to fix this. Finally we can reapply the Commutativity equation, to get ri
and ri−1 in their proper placement among the first i− 2 indices in the respective terms
b(. . . , eri , eri−2 , eri−1) and b(. . . , eri−1 , eri , eri−2).

Summarizing once more, we have shown that the vector can be taken with indices
belonging to all different blocks, the first i− 2 entries with indices ordered in a strictly
increasing fashion, all in the image of g, the last two entries having one of the two indices
in the image of g and the index ri is larger than rj for all j in [i− 1]. Now in case ri is
in the image of g this becomes one of the listed vectors and hence we are done.

So assume that ri is not in the image of g. Then ri−1 must be in the image of g,
since we know that at least one of the two is in the image of g. Then in case ri−1 is
larger than rj for each j in [i− 2] we are also dealing with one of the listed vectors and
hence we are done. Therefore we can assume that ri−1 is not maximal among the first
i− 1 indices. Since the first i − 2 indices are ordered, this amounts to ri−1 < ri−2. We
apply again the Hall–Witt equation to obtain that

b(. . . , eri−2 , eri−1 , eri) = b(. . . , eri , eri−2 , eri−1) + b(. . . , eri−1 , eri , eri−2).

We see that b(. . . , eri−1 , eri , eri−2) is an evaluation at a vector with the desired shape
after we apply the Symmetry equation to fix the order of the last two indices and the
Commutativity equation to get ri−1 in the right placement among the first i− 2 indices.
We now focus on the first term. We can apply rule (1) from Definition 2.5 to rewrite the
evaluation b(. . . , eri , eri−2 , eri−1) = b(. . . , er′i , eri−2 , eri−1), where r

′
i is the unique index in

the same block of ri and in the image of g. We now only need to handle the fact that
the largest term is in position i− 2. To do so we apply one more time on this last term
the Hall–Witt equation to obtain

b(. . . , er′i
, eri−2 , eri−1) = b(. . . , eri−2 , eri−1 , er′i

) + b(. . . , eri−1 , er′i
, eri−2).

Now the first term is one of the listed evaluations, so we need to only focus on the
last term. We can apply the Symmetry equation to swap the last two entries and the
Commutativity equation to put ri−1 in its proper placement among the first i−2 indices.
The resulting evaluation is among the listed ones. This completes the proof.

3 Expansion groups and expansion Lie algebras

For the remainder of this section let n be a positive integer and let (k1, . . . , kn) be a vector
in Zn

≥1. The goal of this section is to analyze the category of n-expansion groups and
more generally [(k1, . . . , kn)]-expansion groups. To do so, we will introduce and analyze
the category of n-expansion Lie algebras and more generally [(k1, . . . , kn)]-expansion Lie
algebras. As we shall see in Section 4, these are algebraic structures that capture the
essential properties satisfied by the Galois groups that occur in higher genus theory.

The central results of this section are classification theorems for these categories in
terms of universal objects, which are naturally built using the tensors spaces of Section
2: the main step of the classification theorems will be an application of Proposition 2.4
for n-expansions and Proposition 2.7 for [(k1, . . . , kn)]-expansions, which, therefore, form
the technical heart behind the proofs of the classification theorems.

The spaces Cons(V[n], j) will be crucial to handle n-expansions while the more general

spaces C̃ons(V[k1,...,kn], j) will be crucial to handle [(k1, . . . , kn)]-expansions. Recall that

C̃ons(V[k1,...,kn], j) is a special subspace of Cons(V[k1,...,kn], j). Similarly, a [(k1, . . . , kn)]-
expansion is by definition a (k1 + · · · + kn)-expansion with extra conditions. For this
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reason we firstly deal with the more fundamental notion of n-expansion and we then
explain how to handle the slightly refined notion of [(k1, . . . , kn)]-expansion.

When we apply the material of this section to the arithmetical Section 4, this way
of proceeding, once unwrapped, boils down to first establishing higher genus theory for
multi-quadratic number fields obtained as the compositum of quadratic number fields of
prime discriminant and then proceed with the general case by means of a reduction to
the prime case.

3.1 n-expansion groups and n-expansion Lie algebras

We begin with the definition of an n-expansion group. Recall from the beginning of
Section 2 the definition of V[n] and of {ei}i∈[n].
Definition 3.1. We call a triple (G,ϕ, (g1, . . . , gn)) an n-expansion group if the following
properties hold

1. G is a group, ϕ is a homomorphism from G to V[n], gi ∈ G and ϕ(gi) = ei;

2. ker(ϕ) is a vector space over F2;

3. we have that [G,G] = ker(ϕ);

4. we have that g2i = id for each i ∈ [n].

To examine n-expansion groups it is convenient to first introduce and examine n-
expansion Lie algebras. Recall the following well-known procedure to attach a graded
Lie algebra to a group G. For each m ∈ Z≥1 we set

Lm(G) :=
G(m)

G(m+1)
,

where for every positive integer i the group G(i) denotes the i-th term of the descending
central series of G defined recursively as G(1) = G and G(i+1) = [G,G(i)] for every
positive integer i. Taking commutators in G induces a bi-linear operator [−,−]G on

L•(G) :=
⊕

m∈Z≥1

Lm(G).

It is easy to verify that the operator is alternating and the content of the Hall-Witt
identity is translated in the Jacobi identity, i.e. (L•(G), [, ]G) is a Lie algebra. Fur-
thermore the algebra L•(G) is graded, meaning that [Lh(G), Lk(G)]G ⊆ Lh+k(G) for
each h, k ∈ Z≥1. For each group homomorphism f : G1 → G2 we denote the naturally
corresponding graded Lie algebra homomorphism with L(f) : L•(G1) → L•(G2). We
conclude that the assignment G 7→ L•(G) is a functor.

We call a graded Lie algebra4 (L•, [, ]) a graded Lie algebra over F2 in case L• is
a vector space over F2. We view the vector space V[n] as a graded abelian Lie algebra
completely concentrated in degree 1 by equipping it with the zero map as Lie bracket.

If L is a Lie algebra, then we can define the descending central series for L to be the
sequence of L(i), defined for each i ∈ Z≥1, in the following recursive manner. We put
L(1) = L and [L,L(i)] = L(i+1) for every positive integer i. For a positive integer m we
say that L is m-nilpotent if L(m) = 0. Furthermore we say that L is ω-nilpotent in case⋂

m∈Z≥1
L(m) = {0}. Observe that, since our gradings always start with 1, any graded

Lie algebra is automatically ω-nilpotent. As we shall see in Proposition 3.3, Definition
3.1 has the following Lie algebra analogue.

4The notation L• will always stand for a graded Lie algebra and will implicitly give the notation Lm,
where for a positive integer m the group Lm is the m-th piece of the grading and L• =

⊕
m∈Z≥1

Lm.
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Definition 3.2. We call a pair ((L•, [, ]), ψ) an n-expansion Lie algebra if the following
properties hold

1. (L•, [, ]) is a graded Lie algebra over F2 and ψ is a surjective homomorphism of
graded Lie algebras from L• to V[n];

2. (ker(ψ), [, ]) is an abelian sub-algebra;

3. [L•, L•] = ker(ψ);

4. for each i ∈ Z≥4 and for each σ1, . . . , σi in L1 the commutator

[σ1, [σ2, [. . . , [σi−1, σi] . . . ]]]

does not depend on the order of the first i−2 entries and vanishes as soon as there
are distinct s, t ∈ [i− 2] with σs = σt. Furthermore if τ1, τ2, are in L1 and ψ(τ1) is
in {e1, . . . , en}, then [τ1, [τ1, τ2]] = 0.

The following fact explains the connection between Definition 3.1 and Definition 3.2.

Proposition 3.3. Suppose that an n-expansion group (G,ϕ, (g1, . . . , gn)) is given. Then
((L•(G), [, ]G), L•(ϕ)) is an n-expansion Lie algebra.

Proof. We claim that (L•(G), [, ]G) is a graded Lie algebra over F2 and L•(ϕ) an epimor-
phism of graded Lie algebras. Indeed, [G,G] = G(2) is a vector space over F2 thanks to
axiom (2) and (3) of Definition 3.1 and L1(G) =

G
G(2) is also a vector space over F2 due

to axiom (1) of Definition 3.1. Finally observe that the map L•(ϕ) is an isomorphism
between L1(G) and V[n], which sends every other graded piece to 0. Hence L•(ϕ) is an
epimorphism of graded Lie algebras, thus establishing our claim.

Next, thanks to axiom (2) of Definition 3.1, we have that every commutator in G(2)

vanishes. Therefore ⊕i∈Z≥2
Li is an abelian subalgebra, which is also the kernel of L•(ϕ).

Therefore axiom (2) is verified. Similarly, axiom (3) is an immediate reformulation of
axiom (3) of Definition 3.1.

We finally show that axiom (4) is satisfied for ((L•(G), [, ]G), L•(ϕ)). To do so, let
τ̃1, τ̃2 ∈ {g1, . . . , gn} be the involutions given by axiom (4) of Definition 3.1. Observe
that [τ̃1, τ̃2]

2 = id thanks to axiom (2) and (3) of Definition 3.1. Furthermore we know
that τ̃1

2 = τ̃2
2 = id. It follows that

[τ̃1, [τ̃1, τ̃2]] = τ̃1[τ̃1, τ̃2]τ̃1[τ̃1, τ̃2] = τ̃1τ̃1τ̃2τ̃1τ̃2τ̃1τ̃1τ̃2τ̃1τ̃2

= τ̃2τ̃1τ̃2τ̃2τ̃1τ̃2 = τ̃2τ̃1τ̃1τ̃2 = τ̃2τ̃2 = id.

Now suppose firstly that τ1, τ2 ∈ L1(G) with ψ(τ1), ψ(τ2) ∈ {e1, . . . , en}. We can find
in the set {g1, . . . , gn} lifts τ̃1, τ̃2 of τ1 and τ2, so that τ̃1, τ̃2 are involutions. Hence the
calculation above shows

[τ1, [τ1, τ2]] = 0. (3.1)

We claim that this implies the last part of axiom (4) from Definition 3.2. Indeed, on the
one hand the assignment σ 7→ [τ1, [τ1, σ]] is a linear functional from L1(G) to L3(G). On
the other hand we have shown that it vanishes for any choice of σ := τ2 in the classes
of {g1, . . . , gn}. However such classes form a basis of L1(G), as we can see combining
axioms (1), (2) and (3) from Definition 3.1. Therefore the functional [τ1, [τ1,−]] is the
trivial one and the validity of the last part of axiom (4) for (L•(G), L•(ϕ)) is established.

Next observe that since ker(ϕ) = [G,G] is abelian, the action of G on [G,G] factors
completely modulo [G,G]. Since [G,G] is a F2-vector space, it naturally becomes a
module over the group ring F2[

G
[G,G] ]. Therefore we have for all σ̃1, . . . , σ̃i ∈ G

[σ̃1, [σ̃2, [. . . , [σ̃i−1, σ̃i] . . . ]]] = (1 + σ̃1) · . . . · (1 + σ̃i−2)([σ̃i−1, σ̃i]).
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Here the elements 1+ σ̃1, . . . , 1+ σ̃i are taken in the group ring F2[
G

[G,G] ]. This group ring

is commutative and isomorphic to F2[Fn
2 ]. In this ring every element that is not a unit

has square equal to 0. Now let σ1, . . . , σi be in L1(G). We can lift σ1, . . . , σi to elements
σ̃1, . . . , σ̃i in G. Then, by the calculation we have just done, we see that the value of the
bracket is independent of the order of the first i− 2 elements thanks to commutativity
of the group ring.

Furthermore, we see that if two entries are equal, we can rearrange the order in such
a way that (1+ σ̃1) · . . . · (1+ σ̃i−2) contains a square of an element in the augmentation
ideal (hence not a unit), so the product is 0. This concludes the proof.

We shall need the following fact, which will guarantee that an n-expansion can be
completely recovered from a naturally attached multi-linear structure on V[n]. From now
on we will frequently abbreviate (L•, [, ]) simply as L•.

Proposition 3.4. Let (L•, ψ) be an n-expansion Lie algebra. Then for each i ∈ Z≥1

we have that Li is the span of [σ1, [σ2, [. . . , [σi−1, σi] . . . ]]] with σ1, . . . , σi varying in L1.
Furthermore, the map ψ induces an isomorphism between L1 and V[n].

Proof. We show this by induction on i. For i = 1 the statement is vacuously true.
Assuming that the statement holds for i, we shall prove it for i + 1. Firstly, we claim
that Li+1 is spanned by commutators of the form [σ, τ ] with both σ and τ homogeneous
elements.

Indeed, since L• is an n-expansion it follows that Li+1 is in [L•, L•]. Hence every
element of Li+1 will be in the span of commutators. We now expand every entry of every
commutator in its homogeneous components. In this way we obtain, after using the bi-
linearity of [−,−], a linear combination of commutators with homogeneous entries. By
definition of a grading, the terms with total degree different from i + 1 must sum to 0
in order to land in Li+1.

Next, since L•, is an n-expansion, it follows from axiom (2) and axiom (3) that at
least one of the elements σ, τ above can be assumed to be in L1; otherwise [σ, τ ] is 0.
Since L• is a vector space over F2, we have

[σ, τ ] = [τ, σ],

so we can assume that σ is of degree 1. Therefore τ has degree precisely equal to
i, since the sum of the degrees is i + 1. Hence by the inductive assumption we can
rewrite τ as linear combination of nested commutators with entries purely of degree
1. After expanding with multi-linearity, we obtain that [σ, τ ] can be rewritten as linear
combination of nested commutators with all entries purely of degree 1. We conclude that
Li+1 is spanned by such elements, which gives precisely the first part of the proposition.

We next observe that the homomorphism ψ preserves the grading. Therefore it
must send, by definition, all the Li with i ≥ 2 to 0. Since ψ is surjective, ψ|L1 is also
surjective. We claim that it is also injective. Indeed thanks to axiom (3) we know in
particular that ker(ψ) ⊆ [L•, L•]. But, since our gradings start from the index 1, we
must have [L•, L•] ⊆ ⊕i∈Z≥2

Li. This tells us that ψ restricted to L1 is an injective map.
In total we have shown that ψ|L1 is an isomorphism.

Due to Proposition 3.4 we see that an n-expansion Lie algebra (L•, ψ) naturally
comes with a surjective homomorphism

ψi : (V[n])
⊗i → Li

for every i ∈ Z≥1 defined by

v1 ⊗ . . . .⊗ vi 7→ [ψ|−1
L1

(v1), [ψ|−1
L1

(v2), [. . . , [ψ|−1
L1

(vi−1), ψ|−1
L1

(vi)] . . . ]]].
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For i = 1 this is the identification ψ|−1
L1

between V[n] and L1. Therefore we have a natural
injective map for each i in Z≥1

ψ∨
i : L∨

i → Multi(V[n], i).

Proposition 3.5. We have the inclusion

Im(ψ∨
i ) ⊆ Cons(V[n], i).

Proof. Axiom (4) shows that the nested commutator will vanish if there is some i ∈ [n]
such that two entries are equal to ei. We deduce that

Im(ψ∨
i ) ⊆ M̃ulti(V[n], i).

Next observe that the Symmetry equation and the Hall–Witt equation are automatically
guaranteed by the fact that the bracket is symmetric (we have algebras over F2) and
that the bracket satisfies the Jacobi identity. Finally, the Commutativity equation is
guaranteed precisely by the first part of axiom (4).

For every i ∈ Z≥1 we put

C([n], i) := Cons(V[n], i)
∨.

We put

C([n], •) :=
⊕

i∈Z≥1

C([n], i),

and we next turn C([n], •) into a graded Lie algebra. Firstly, we declare the bracket of
any two graded pieces of degree at least 2 to be 0. So we need to define only the bracket
between C([n], 1) = V[n] and C([n], i) for each i ∈ Z≥1. Let ρ ∈ C([n], i), j ∈ [n] and
ϕ ∈ Cons(V[n], i+ 1). Recall that ϕ(ej ,−) is in Cons(V[n]−{j}, i) and hence we can view
it as an element of Cons(V[n], i) by composing with the natural projection map. We then
define

[ej , ρ][n](ϕ) := ρ(ϕ(ej ,−)).

This defines [, ][n] by linearity. Altogether we have a natural map of graded vector spaces

ψ• : C([n], •) → L•.

Also we have a natural projection map c[n] : C([n], •) ։ V[n]. Before stating the next
proposition we need a definition. Let ((L•, [, ]), ψ) and ((L′

•, [, ]), ψ
′) be two n-expansion

Lie algebras. A homomorphism of n-expansion Lie algebras

f : L• → L′
•,

is a homomorphism of graded Lie algebras such that ψ′◦f = ψ. Observe that Proposition
3.4 easily implies that there is at most one homomorphism between any two n-expansion
Lie algebras. Furthermore, if there is a homomorphism, then it must be an epimorphism.
However, we shall add the adjective surjective precisely to stress this information. The
following proposition shows that all n-expansion Lie algebras are canonically a quotient
of ((C([n], •), [, ][n]), c[n]).
Proposition 3.6. (a) The graded vector space C([n], •) equipped with [, ][n] is an n +
1-nilpotent graded Lie algebra. The pair ((C([n], •), [, ][n]), c[n]) is an n-expansion Lie
algebra.
(b) For every n-expansion Lie algebra ((L•, []), ψ) we have that

ψ• : C([n], •) ։ L•

is a surjective homomorphism of n-expansion Lie algebras.
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Proof. Part (a) is straightforward. Part (b) follows from Proposition 3.5.

Our next goal is to turn Proposition 2.4 into a more explicit presentation of the
algebra ((C([n], •), [, ][n]), c[n]) and hence of every other n-expansion Lie algebra, by
applying Proposition 3.6. Indeed observe that Proposition 2.4 already provides us with
the non-trivial result that

dimF2C([n], •) = n2n−1 − 2n + n+ 1.

In particular it gives us an upper bound for the size of any n-expansion Lie algebra and
furthermore it shows that its nilpotency class is always at most n + 1, while a priori
the definition trivially guarantees only nilpotency class ω. Such a bound follows from

the fact that it is very easy to count the dimension of the spaces Gov(F[n]
2 , i): the work,

done in the proof of Proposition 2.4, is in proving that this subspace of Cons(F[n]
2 , i) is

the full space. Hence, our next step will be to put a natural structure of n-expansion
Lie algebra on the graded vector space over F2 given by

G([n], •) :=
⊕

i∈Z≥1

G([n], i),

where G([n], i) := Gov(F[n]
2 , i)∨. We see that G([n], 1) can naturally be identified with

V[n] and for i ≥ 2 we have that G([n], i) can naturally be identified as a subspace

G([n], i) ⊆ F
(A,x)A⊆[n],#A=i,x∈A

2

of the space of formal F2-linear combinations of pointed subsets of [n] with cardinality
i, defined as follows

G([n], i) :=





∑

(A,x)
A⊆[n],#A=i,x∈A

λ(A,x)e(A,x) :
∑

x∈A

λ(A,x) = 0 for all A ⊆ [n] with #A = i




.

For each non-empty A ⊆ [n] and for each x, y in A, we have that e(A,x) + e(A,y) is
in G([n],#A). Furthermore, such elements together with the ej , with j ∈ [n] form a
generating set for G([n], •). In other words we see that we can rewrite

G([n], •) =
⊕

∅6=A⊆[n]

W ([n], A),

where W ([n], A) is the span of the elements e(A,x) + e(A,y) with x, y in A in case
#A ≥ 2. To extract a basis of W ([n], A) it is enough to choose #A − 1 subsets
C1(A), . . . , C#A−1(A) of A with size 2 whose union is the whole A. Then a basis is
given by the elements e(A,x) + e(A,y) with x, y in Ci(A). Instead W ([n], {x}) is the span
of ex, for each x ∈ [n]. In what follows we shall also use the notation e({x},x) := ex for
each x ∈ [n].

We define a bracket on G([n], •) in the following manner. Firstly, we declare that
the bracket of a graded piece of degree at least 2 must be 0, so that we need to define
only the bracket between G([n], 1) = V[n] and G([n], i) for any i in Z≥1. For j ∈ [n] and
A containing j, we put [ej ,W ([n], A)] = 0. Suppose instead j 6∈ A and A not empty.
Then there is an operator Tj from W ([n], A) to W ([n], A∪ {j}) defined by the following
assignment ∑

x∈B

e(A,x) 7→
∑

x∈B

e(A∪{j},x),
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given for each fixed B ⊆ A with #B even. We put [ej , ]|W ([n],A) = Tj . Observe that we
have a natural projection map

g[n] : G([n], •) ։ V[n].

Theorem 3.7. (a) The graded vector space G([n], •) equipped with [, ][n] is a graded Lie
algebra. The pair ((G([n], •), [, ][n]), g[n]) is an n-expansion Lie algebra.
(b) The surjective homomorphism (g[n])• induces an isomorphism

((C([n], •), [, ][n]), c[n]) ≃n-exp. Lie-alg ((G([n], •), [, ][n]), g[n]).

Every n-expansion Lie algebra ((L•, []), ψ) admits a natural epimorphism

ψ• : ((G([n], •), [, ][n]), c[n]) ։ ((L•, []), ψ).

In particular dimF2(L•) ≤ n2n−1 − 2n + 1 + n and one has equality if and only if ψ• is
an isomorphism.

Proof. Part (a) is a straightforward verification. Part (b) directly follows upon combining
Proposition 2.4 and Proposition 3.6.

We remark that the abuse of notation for the bracket [, ][n] and for the map ψ• shall
cause no confusion since ((C([n], •), [, ][n]), c[n]) and ((G([n], •), [, ][n]), g[n]) are canonically
identified. We call this algebra the n-governing Lie algebra.

We shall see that Theorem 3.7 is the crucial tool to establish the analoguous result
for n-expansion groups. There is a universal n-expansion group of size 2n2

n−1−2n+1+n. In
our reduction to Lie algebras it will be useful to know in advance that any n-expansion
group is finite with size equal to the size of its Lie algebra. In order to achieve that
we firstly prove the following proposition. Recall that if (G,ϕ, (g1 , . . . , gn)) is an n-
expansion group, then axioms (1), (2) and (3) of Definition 3.1 imply that [G,G] is a
module over the ring F2[

G
[G,G] ], and so is any vector sub-space of [G,G] that is normal

in G. We denote by I G
[G,G]

the augmentation ideal of F2[
G

[G,G] ].

Proposition 3.8. Let (G,ϕ, (g1, . . . , gn)) be an n-expansion group and let i ∈ Z≥2.
Then

Ii−2
G

[G,G]

·G(2) = G(i).

Proof. For i = 2 this is trivial. We proceed by induction on i, so suppose that the
statement holds for a given i ∈ Z≥2. By definition we have that G(i+1) = [G,G(i)]. Hence
it is spanned by elements of the form [g1, g2] with g2 ∈ G(i). Note that [g1, g2] = (1+g1)g2,
since g2 is in particular in [G,G]. Therefore by the inductive assumption we get that
[g1, g2] equals (1 + g1)v where v is a general element of Ii−2

G
[G,G]

· [G,G]. As g1 and v vary

this set spans precisely Ii−1
G

[G,G]

· [G,G].

Proposition 3.9. Let (G,ϕ, (g1 , . . . , gn)) be an n-expansion group. Then

#G = #L•(G) ≤ 2n2
n−1−2n+n+1.

In particular, {g1, . . . , gn} is a generating set for G.

Proof. Thanks to Proposition 3.3 and Theorem 3.7 we get that #L•(G) is indeed finite
and satisfies the claimed upper bound. In particular there exists a positive integer i such
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that Li(G) = 0, which is equivalent to G(i) = G(i+1). Observe that i > 1 because n is at
least 1. Hence we can apply Proposition 3.8 twice to conclude that

I G
[G,G]

·G(i) = Ii−1
G

[G,G]

·G(2) = G(i+1) = G(i).

This implies that for any positive integer h we have

IhG
[G,G]

·G(i) = G(i).

On the other hand, by axiom (1) and axiom (3) from Definition 3.1 we obtain that

In+1
G

[G,G]

= 0.

Therefore we conclude that G(i) is the trivial group and #G = #L•(G). In particular
it follows that G is a finite 2-group and the set {g1, . . . , gn} is a generating set, modulo
[G,G], by axioms (1) and axioms (3) of Definition 3.1. It follows that {g1, . . . , gn}
generates G.

We next proceed to show that a universal expansion group must exist. Let F[n]

be the free group on n letters, which we denote as x1, . . . , xn. We denote by N the
subgroup generated by the squares of all elements in [F[n], F[n]]; this is a normal (actually

characteristic) subgroup. We denote by Ñ the largest normal subgroup containing N
and {x21, . . . , x2n}. We put

C([n]) :=
F[n]

Ñ
.

The map xi 7→ ei extends uniquely to a surjective epimorphism F[n] ։ V[n], which clearly

factors through Ñ , yielding a surjective epimorphism

c
¯[n]

: C([n]) → V[n].

We define a homomorphism of n-expansion groups

f : (G,ϕ1, (g1, . . . , gn)) → (G′, ϕ2, (g
′
1, . . . , g

′
n))

to be a group homomorphism from G to G′ such that f(gi) = g′i. We observe that thanks
to Proposition 3.9 it follows that among two n-expansion groups there is always at most
one homomorphism, and if there is one then it must automatically be an epimorphism.

Proposition 3.10. (C([n]), c
¯ [n], (x1, . . . , xn)) is an n-expansion group. Furthermore,

the unique homomorphism ϕ• : F[n] → G sending xi to gi yields an epimorphism of
n-expansion groups

ϕ• : (C([n]), c
¯ [n], (x1, . . . , xn)) ։ (G,ϕ, (g1 , . . . , gn)).

Proof. Firstly, we verify that (C([n]), c
¯[n]

, (x1, . . . , xn)) is an n-expansion group. Clearly

the classes of xi are involutions in C([n]) by definition of Ñ . Therefore the group C([n]) is
generated by n involutions and therefore any of its abelian quotients will be. It follows
that its abelianization is a vector space of dimension at most n. On the other hand
c
¯[n]

is a surjective homomorphism onto V[n]. It follows that ker(c
¯[n]

) must be equal to
[C([n]), C([n])].

We claim that ([a1, b1] · . . . · [am, bm])2 is the identity if aj, bj ∈ C([n]) for 1 ≤ j ≤ m.

Indeed, fix for every j ∈ [m] elements ãj, b̃j of F[n] that reduce respectively to aj and bj.

Then the product ([ã1, b̃1] · . . . · [ãm, b̃m])2 has class in C([n]) equal to

([a1, b1] · . . . · [am, bm])2,
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and at the same time is in Ñ , by definition of Ñ . Therefore the claim holds and we have
shown that the triple (C([n]), c

¯[n]
, (x1, . . . , xn)) is an n-expansion group.

The assignment xi 7→ gi for i ∈ [n] certainly extends uniquely to a homomorphism
from Fn to G thanks to the universal property of a free group. On the other hand since G
is an n-expansion group, it is clear that the kernel of such a homomorphism must contain
Ñ . Hence it induces a homomorphism from C([n]) to G. It clearly respects the structure
of an n-expansion group. Therefore (as we explained above) it must automatically be
surjective thanks to Proposition 3.9.

To state the main results of this section we first introduce the analogues of G([n], •)
for n-expansion groups. It will be convenient to introduce for every i ∈ [n] a different
structure of n-expansion group for the abstract group

F2[V[n−1]]⋊ V[n−1]

in the following way. We let V[n]−{i} act on V{A⊆[n]:i∈A} by setting

ej · eA :=

{
eA + eA∪{j} if j 6∈ A

eA if j ∈ A.

Define
Gi([n]) := V{A⊆[n]:i∈A} ⋊ V[n]−{i}.

Define gi,j := (id, ej) for j ∈ [n] − {i} and gi,i := ({i}, id). The group Gi([n]) has a
natural projection map ϕi([n]) onto V[n], which sends gi,j to ej .

Proposition 3.11. For every i ∈ [n] we have that (Gi([n]), ϕi([n]), (gi,1, . . . , gi,n)) is an
n-expansion group.

Proof. Recall that if G is a group and A is a G-module, then [A⋊G,A⋊G] = IG ·A⋊G(2).
This general fact gives us readily that axiom (1) and axiom (3) are respected. Axioms
(2) and (4) are clearly satisfied.

We next introduce a general construction (a similar construction could have been
introduced for Lie algebras).

Definition 3.12. Let (G,ϕ, (g1 , . . . , gn)), (G
′, ϕ′, (g′1, . . . , g

′
n)) be n-expansion groups.

We denote by (G,ϕ, (g1, . . . , gn)) × (G′, ϕ′, (g′1, . . . , g
′
n)) the triple (G′′, ϕ′′, (g′′1 , . . . , g

′′
n))

defined in the following manner. The symbol G′′ stands for the subgroup of G × G′

generated by the pairs (gi, g
′
i). This is a subgroup of the fibered product over V[n] (with

respect to ϕ,ϕ′). Then ϕ′′ denotes the restriction to G′′ of the natural map from the
fibered product to V[n]. Finally g

′′
i denotes the element (gi, g

′
i) of G

′′.

Proposition 3.13. Let (G,ϕ, (g1, . . . , gn)) and (G′, ϕ′, (g′1, . . . , g
′
n)) be two n-expansion

groups. Then (G,ϕ, (g1, . . . , gn))× (G′, ϕ′, (g′1, . . . , g
′
n)) is an n-expansion group.

Proof. Axiom (1) and axiom (4) of Definition 3.1 hold because the elements g′′i = (gi, g
′
i)

are coordinatewise involutions mapping to ei. Axiom (2) holds because the commutator
subgroup of G′′ will certainly be a subgroup of [G,G]× [G′, G′]. But by definition of an
n-expansion both of them are vector spaces over F2 and therefore so is any subgroup of
it. Hence axioms (1), (2) and (4) have been established.

We now check axiom (3). We observe that the group G′′ is, by construction, generated
by n involutions, namely by the set {g′′i }i∈[n], therefore every abelian quotient of it is also
generated by n involutions and therefore must be a vector space over F2 of dimension
at most n. Since, as we have shown, axiom (1) holds and ϕ′′ is surjective, it follows that
ker(ϕ′′) must be the commutator subgroup of G′′, since the quotient by this group is a
vector space of dimension precisely equal to n.
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Let us notice that the above product of n-expansion groups does also satisfy the
categorical property of a product. Namely, if an n-expansion group surjects (as expansion
group) on both factors (with then a necessarily unique map of n-expansion groups) then
it surjects (as expansion group) on the product (with then a necessarily unique map of
n-expansion groups that necessarily commutes with the projections on the two factors,
again by uniqueness).

We now define

(G([n]), g
¯[n]

, (e1, . . . , en)) :=
∏

i∈[n]

(Gi([n]), ϕi([n]), (gi,1, . . . , gi,n)).

Thanks to Proposition 3.11 and Proposition 3.13 this is an n-expansion group. It is a
simple verification that the Lie algebra attached to

∏
i∈[n](Gi([n]), ϕi([n]), (gi,1, . . . , gi,n))

is precisely ((G([n], •), [, ][n]), c[n]). One can see this quite easily by a direct calculation
with nested commutators.

Alternatively, one can set up fibered product also for n-expansion Lie algebras and
find that ((G([n], •), [, ][n]), c[n]) is the fibered product of the Lie algebras of the various
(Gi([n]), ϕi([n]), (gi,1, . . . , gi,n)). Then one concludes by using the general fact that the
Lie algebra of a product of two n-expansion groups is the product of the Lie algebras,
where each product is taken in the respective categories.

Recall that Proposition 3.10 provides for any n-expansion group the unique epimor-
phism of n-expansion groups ϕ• : (C([n]), c

¯[n]
, (x1, . . . , xn)) ։ (G,ϕ, (g1, . . . , gn)).

Theorem 3.14. (G([n]), g
¯ [n]

, (e1, . . . , en)) is an n-expansion group and (g
¯ [n]

)• induces an

isomorphism of n-expansion groups. Every n-expansion group (G,ϕ, (g1 , . . . , gn)) admits
a unique epimorphism of n-expansion groups

ϕ• ◦ (g
¯ [n]

)−1
• : (G([n]), g

¯ [n]
, (e1, . . . , en)) ։ (G,ϕ, (g1 , . . . , gn)).

In particular, #G ≤ 2n2
n−1−2n+n+1 with equality if and only if the map ϕ• ◦ (g

¯ [n]
)−1
• is

an isomorphism.

Proof. The first part follows immediately from Theorem 3.7 and Proposition 3.9. Hence
the second part follows from Proposition 3.10. Finally, the third part follows from the
first part, Proposition 2.1 and Proposition 3.9.

Remark 3.15. The existence of a universal object, i.e. G([n]) or the isomorphic C([n]),
follows, for a purely formal reason, already from the existence of a universal bound on
the cardinality as for instance the one given in Proposition 3.9. Indeed, such a bound
implies that there are only finitely many isomorphism classes of n-expansion groups and
thus the product (as n-expansion groups) of the finitely many isomorphism classes will
be the sought universal object.

Similar comments apply in the case of an n-expansion Lie algebra and the algebra
C([n], •). This gives a slightly alternative approach to the a priori proof that the univer-
sal objects exists, i.e. of Proposition 3.10. Note that the existence of a universal object
is a vital input for the proof of Theorem 3.14, namely when one applies Proposition 3.10.

This point of view shows that G([n]) is naturally defined as a product of a few
explicit n-expansion groups. The meaning of Theorem 3.14 is then that from the trivial
universal object, gotten by multiplying out all n-expansions, one can extract a simple
explicit presentation, namely the definition of G([n]).
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3.2 [(k1, . . . , kn)]-expansion groups and [(k1, . . . , kn)]-expansion Lie alge-

bras

Let (k1, . . . , kn) ∈ Zn
≥1. We systematically identified the spaces V[(k1,...,kn)] and V[k1+···+kn]

by concatenation of coordinates in Section 2, and we shall continue to do so. Let us now
define a [(k1, . . . , kn)]-expansion group.

Definition 3.16. We call a k1 + . . . + kn-expansion group (G,ϕ, (g1 , . . . , gk1+···+kn)) a
[(k1, . . . , kn)]-expansion group in case ϕ−1(ker(π(k1,...,kn))) is a F2-vector space.

Observe that a (1, . . . , 1)-expansion group, i.e. ki = 1 for each i ∈ [n], is precisely an
n-expansion group. We similarly define a (k1, . . . , kn)-expansion Lie algebra.

Definition 3.17. We call a k1 + · · ·+ kn-expansion Lie algebra (L•, ψ) a [(k1, . . . , kn)]-
expansion Lie algebra in case the following two conditions are satisfied:
(1) The bracket restricted to the space ψ−1(ker(π(k1,...,kn))) is trivial. In other words,
ψ−1(ker(π(k1,...,kn))) is an abelian sub-algebra of L•.
(2) Let j be in Z≥2 and let (i1, . . . , ij) be a vector in [k1 + · · · + kn]

j with two distinct
entries belonging to the same (k1, . . . , kn)-block. Then the nested commutator

[ψ|−1
L1

(ei1), [ψ|−1
L1

(ei2), [. . . , [ψ|−1
L1

(eij−1), ψ|−1
L1

(eij )] . . . ]]].

vanishes.

The following fact explains the connection between Definition 3.16 and Definition
3.17.

Proposition 3.18. Let (G,ϕ, (g1, . . . , gk1+···+kn)) be a [(k1, . . . , kn)]-expansion group.
Then ((L•(G), [, ]G), L•(ϕ)) is a [(k1, . . . , kn)]-expansion Lie algebra.

Proof. We deduce from Proposition 3.3 that ((L•(G), [, ]G), L•(ϕ)) is a k1 + · · · + kn-
expansion Lie algebra. The Lie algebra ((L•(G), [, ]G), L•(ϕ)) also satisfies axiom (1)
from Definition 3.17. Indeed, this follows from our assumption that ϕ−1(ker(π(k1,...,kn)))
is abelian.

Since ϕ−1(ker(π(k1,...,kn))) is a F2-vector space, we have for all h1, h2 in the same
[(k1, . . . , kn)]-block of k1 + · · · + kn that gh1gh2 is an involution. But since gh1 , gh2 are
themselves involutions, we get the identity

[gh1 , gh2 ] = (gh1gh2)
2 = id.

This already shows axiom (2) for j = 2. Now let us consider the case j ≥ 3. We shall
distinguish three cases. First suppose that the repetition happens in the first j−2 blocks.
Then observe that

[ψ|−1
L1

(ei1), [ψ|−1
L1

(ei2), [. . . , [ψ|−1
L1

(eij−1), ψ|−1
L1

(eij )] . . . ]]] =
∏

1≤h≤j−2

(1 + gih)[gij−1 , gij ],

where, thanks to the fact that ϕ−1(ker(π(k1,...,kn))) is abelian, the action factors com-
pletely through ϕ−1(ker(π(k1,...,kn))). Therefore such a repetition would imply that we
get the square of 1 + gih for some 1 ≤ h ≤ j − 2 and thus we get 0.

Since we already settled the case j = 2, we are certainly done if the repetition occurs
in the last two indices. Therefore we are left with the case that one index is smaller
than j − 1 and the other one is in the set {j − 1, j}. By symmetry of the bracket (we
are over F2) we may assume that the index in {j − 1, j} is actually j − 1. Furthermore,
since ((L•(G), [, ]G), L•(ϕ)) is a k1 + · · ·+ kn-expansion Lie algebra, we may assume by

23



symmetry in the first j − 2 entries of nested commutators coming from axiom (4) that
the index before j − 1 is j − 2.

Hence we have to analyze the commutator

[gij−2 , [gij−1 , gij ]]

under the condition that ij−2 and ij−1 are in the same block. We claim that

[gij−2 , [gij−1 , gij ]] = [gij−1 , [gij−1 , gij ]].

Indeed, because ij−2 and ij−1 are in the same block, it follows that gij−2gij−1 is an
element of ϕ−1(ker(π(k1,...,kn))), which therefore commutes with ϕ−1(ker(π(k1,...,kn))). In
particular, gij−2gij−1 commutes with any commutator, so it certainly commutes with
[gij−1 , gij ]. Therefore

[gij−2 , [gij−1 , gij ]] = [gij−2(gij−2gij−1), [gij−1 , gij ]] = [gij−1 , [gij−1 , gij ]]

as we claimed. The last term vanishes by the same computation following equation (3.1),
which completes the proof.

Let now ((L•, []), ψ) be a [(k1, . . . , kn)]-expansion Lie algebra. From Proposition 3.5
we get for every i ∈ Z≥1 a natural multi-linear map

ψi : (V[(k1,...,kn)])
⊗i → Li

by taking nested commutators of length i. The dual of ψi satisfies

Im(ψ∨
i ) ⊆ Cons(V[(k1,...,kn)], i).

So far we have only used that ((L•, [, ]), ψ) is a k1+ · · ·+kn-expansion Lie algebra. How-
ever we see that axiom (1) and (2) of Definition 3.17 immediately give us the following
additional constraint.

Proposition 3.19. We have that

Im(ψ∨
i ) ⊆ C̃ons(V[(k1,...,kn)], i).

The inclusions C̃ons(V[(k1,...,kn)], i) ⊆ Cons(V[(k1,...,kn)], i) for each i ∈ Z≥1 naturally give
rise to surjections

Cons(V[(k1,...,kn)], i)
∨
։ C̃ons(V[(k1,...,kn)], i)

∨.

When we bunch these surjections together, we get an epimorphism of (k1 + · · · + kn)-
expansion Lie algebras

((C([k1+· · ·+kn], •), [, ][k1+···+kn]), c[k1+···+kn]) ։ ((C̃([(k1, . . . , kn)], •), [, ][n]), c̃[(k1,...,kn)]).

By construction the algebra on the right hand side is the universal [(k1, . . . , kn)]-expansion
Lie algebra; it is a quotient of the universal k1 + . . .+ kn-expansion Lie algebra. Thanks
to Proposition 2.6 and Proposition 2.7 we have

#C̃([(k1, . . . , kn)], •) = 2(k1+···+kn)·2n−1−2n+1+n.

Next, in the same spirit of Proposition 3.7, one can refine this counting into a presentation
of the universal algebra in terms of governing tensors. This can simply be done by
dualizing the inclusions

G̃ov(V[(k1,...,kn)], i) ⊆ Gov(V[(k1,...,kn)], i).
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Bunching together the natural surjections then yields an epimorphism

((G([k1 + · · ·+ kn], •), [, ][n]), g[k1+···+kn]) ։ ((G̃([n], •), [, ][k1+···+kn]), g̃[k1+···+kn]),

which gives an explicit presentation of the universal [(k1, . . . , kn)]-expansion Lie algebra
in terms of governing tensors.

Now we consider the case of [(k1, . . . , kn)]-expansion groups. Since these are in par-
ticular (k1 + · · · + kn)-expansion groups, we know, thanks to Proposition 3.9 that they
are finite with size equal to the size of their Lie algebra. Next, thanks to Proposi-
tion 3.19, we conclude that the size of each such group is at most 2m, where m equals
(k1 + · · · + kn) · 2n−1 − 2n + 1 + n.

Now, let i ∈ [n] and let x be any element of the i-th block of k1 + · · · + kn, i.e.
an element of {∑1≤j≤i−1 ki + 1, . . . ,

∑
1≤j≤i ki}. Then we have a unique surjection of

abstract groups

ϕx : G([k1 + · · ·+ kn]) ։ F2[F
[n]−{i}
2 ]⋊ F[n]−{i}

2

that extends the following assignment. For j ∈ [k1 + · · · + kn] in the h-th block, with
h 6= i, we send gj to eh, where the notation eh follows our conventions for

{0} ⋊ F[n]−{i}
2 ⊆ F2[F

[n]−{i}
2 ]⋊ F[n]−{i}

2 .

Instead, the elements of the i-th block are sent to the 1-dimensional subspace

F2 · {(0, . . . , 0)} ⊆ F2[F
[n]−{i}
2 ]

through the character χx. The intersection of ker(ϕx) as x varies in [k1 + · · ·+ kn] gives
a quotient of G([k1+ · · ·+kn]) that is a [(k1, . . . , kn)]-expansion group by using the same

generators as G([k1 + · · ·+ kn]) and the same projection map to F[k1+···+kn]
2 . We denote

this object by G̃([k1 + · · ·+ kn]).
A direct verification with nested commutators shows that it has size precisely equal

to 2m, where m is (k1 + · · · + kn) · 2n−1 − 2n + 1 + n. At this stage there are several
ways to conclude this. A neat argument is given at the end of Section 3.3. Therefore it
must be the universal [(k1, . . . , kn)]-expansion group. We summarize this analysis in the
following.

Theorem 3.20. The triple

(G̃([k1 + · · ·+ kn]), g
¯ [k1+···+kn]

, (e1, . . . , ek1+···+kn))

is a [(k1, . . . , kn)]-expansion group. If (G,ϕ, (g1, . . . , gk1+···+kn)) is any [(k1, . . . , kn)]-
expansion group, then there is a unique epimorphism of [(k1, . . . , kn)]-expansion groups

(G̃([k1 + · · ·+ kn]), g
¯ [n]

, (e1, . . . , ek1+···+kn)) ։ (G,ϕ, (g1, . . . , gk1+···+kn)).

In particular, #G ≤ 2(k1+···+kn)·2n−1−2n+n+1 and one has equality if and only if the above
map is an isomorphism.

3.3 Intermezzo: expansion maps as coordinates of monomials

Expansion maps were introduced by Smith in [16, eq. (2.2)]. In this section we provide
an alternative definition of an expansion map, one that will make clear the connection
between expansion maps and expansion groups. A simple computation will show that
the present definition is equivalent to the one in Smith.

Let m ∈ Z≥1. Let G be a profinite group and let A be a linearly independent finite
set of continuous characters from G to F2, containing at least two elements. Let χ0 be
in A.
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Definition 3.21. An expansion map for G, with support A and pointer χ0, is a contin-
uous group homomorphism

ψ : G→ F2[F
A−{χ0}
2 ]⋊ FA−{χ0}

2

such that for every χ ∈ A − {χ0} we have that the natural projection on the χ-th

coordinate of F2[F
A−{χ0}
2 ] ⋊ FA−{χ0}

2 composed with ψ equals χ; while the unique non-

trivial character F2[F
A−{χ0}
2 ]⋊FA−{χ0}

2 → F2 that sends the subgroup {0}⋊FA−{χ0}
2 to

{0} composed with ψ equals χ0.

Observe that F2[F
A−{χ0}
2 ] is a polynomial ring with a basis given by the set of square-

free monomials tB :=
∏

j∈B tj for any B ⊆ A − {χ0}. Hence, projection on monomials
gives a collection of functions

ϕB(ψ) : G→ F2

that allows us to reconstruct ψ via the simple formula

ψ(g) =


 ∑

B⊆A−{χ0}

ϕB(ψ)(g)tB , (χ(g))χ∈A−{χ0}


 .

Define χS :=
∏

χ∈S χ. Using the composition law in a semi-direct product and expanding
the product we obtain the equation

(dϕB(ψ))(g1, g2) := ϕB(ψ)(g1g2) + ϕB(g1) + ϕB(g2)

=
∑

∅(S⊆B

χS(g1)ϕB−S(ψ)(g2), (3.2)

and conversely any collection of maps {ϕB}B⊆A−{χ0} satisfying equation (3.2) and ϕ∅ =
χ0 gives rise to an expansion map with support A and pointer χ0. Indeed, we can define
our expansion map by

g 7→


 ∑

B⊆A−{χ0}

ϕB(ψ)(g)tB , (χ(g))χ∈A−{χ0}


 .

This shows that Definition 3.21 and Definition [16, eq. (2.2)] are equivalent. We will
now prove an important lemma for the coming section.

Lemma 3.22. Let G be a profinite group and let ψ be an expansion map for G with
support A and pointer χ0. Then we have for all σ1, . . . , σ#A ∈ G

ϕA(ψ)([σ1, [σ2, [. . . , [σ#A−1, σ#A] . . . ]]]]) = ϕ(A,χ0)(σ1, . . . , σ#A),

where we define

ϕ(A,χ0) :=
∑

f∈IsomSet([#A],A)
f(#A−1)=χ0 or f(#A)=χ0

f(1)⊗ · · · ⊗ f(#A).

Proof. Since the commutator group of F2[F
A−{χ0}
2 ]⋊ FA−{χ0}

2 is a vector space over F2,
we immediately see that

ψ([σ1, [σ2, [. . . , [σ#A−1, σ#A] . . . ]]]]) =
 ∏

i∈[#A−2]


 ∑

χ∈A−{χ0}

χ(σi)t{χ}




 · [ψ(σ#A−1), ψ(σ#A)].
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Observe that the element [ψ(σ#A−1), ψ(σ#A)] will admit an expansion of the form

∑

∅6=B⊆A−{χ0}

λBtB,

as any commutator of the group F2[F
A−{χ0}
2 ]⋊ FA−{χ0}

2 does. Clearly the operator

∏

i∈[#A−2]


 ∑

χ∈A−{χ0}

χ(σi)t{χ}




will kill all monomials of degree at least 2. On the other hand, for each χ ∈ A − {χ0},
we have that

λ{χ} = χ(σ#A−1)χ0(σ#A) + χ(σ#A)χ0(σ#A−1).

Therefore, expanding the product


 ∏

i∈[#A−2]


 ∑

χ∈A−{χ0}

χ(σi)t{χ}




 ·

∑

χ∈A−{χ0}

(χ(σ#A−1)χ0(σ#A)+χ(σ#A)χ0(σ#A−1))t{χ},

using ordinary multiplication of polynomials, and recalling that the square of each vari-
able is 0, yields the desired result.

We finish this section with a simple argument that the group G̃([k1+· · ·+kn]) has size
2m, where m = (k1 + · · ·+ kn) · 2n−1 − 2n+1+n. We claim that the collection of nested
commutators [gr1 , [gr2 , [. . . , [gri−1 , gri ] . . . ]]]], with 2 ≤ i ≤ n and (r1, . . . , ri) satisfying
requirements (a) to (e) as in the proof of Proposition 2.7, form a linearly independent
set of vectors in [G̃([k1 + · · ·+ kn]), G̃([k1 + · · ·+ kn])]. Note that this is indeed a vector
space over F2 by definition of a k1 + · · · + kn-expansion. Clearly, the claim implies the
desired conclusion by counting, with the same argument as in Proposition 2.6.

To see the claim, we simply argue as follows. By construction, for each (r1, . . . , ri) as
above, we can construct an expansion for G̃([k1 + · · ·+ kn]), with pointer χri if ri is not
in the image of g and with pointer χri−1 if ri is in the image of g. From this, we get a

corresponding map ϕ(r1,...,ri) : G̃([k1 + · · ·+ kn]) → F2. These functions are all quadratic

characters on [G̃([k1 + · · · + kn]), G̃([k1 + · · · + kn])] and thanks to Proposition 3.22 we
see that it takes value 1 on the nested commutator [gr1 , [gr2 , [. . . , [gri−1 , gri ] . . . ]]]].

Furthermore, Proposition 3.22 also implies that it vanishes at all other commutators
of length i. It certainly vanishes at nested commutators of length larger than i, because
it factors through a group where nested commutators of length i + 1 vanish. One can
also show that, by construction, it vanishes on the nested commutators of length smaller
than i among the ones listed above (making use of the fact that they are among the
privileged generators).

3.4 Reconstructing an expansion group from its corners

Let n be a positive integer and let (k1, . . . , kn) ∈ Zn
≥1. Let (G,ϕ, (g1, . . . , gk1+···+kn))

be a [(k1, . . . , kn)]-expansion group. For i ∈ [n], let Ni be the normal subgroup of G
generated by all the gj with j in the i-th block. We have in this way a natural structure
of [(kh)h 6=i]-expansion group on G/Ni by using the remaining generators and composing
the map ϕ with the projection on the coordinates outside the i-th block.

We call this [(kh)h 6=i]-expansion group the i-th corner of (G,ϕ, (g1, . . . , gk1+···+kn))
and denote it with (G,ϕ, (g1, . . . , gk1+···+kn))i. The goal of this section is to examine
which extra data permits to reconstruct (G,ϕ, (g1, . . . , gk1+···+kn)) from the collection of
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its corners {(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n]. As we shall see, the answer is roughly: an
explicit collection of 2-cocycles obtained from linear combinations of expansion maps as
introduced in Section 3.3.

We remind the reader that we defined a function f in equation (2.3). We begin by
defining a space of functions

Φ[(k1, . . . , kn)] ⊆ Map(G̃([k1, . . . , kn]),F2)

in the following manner. Thanks to the material of Section 3.3 and the definition of
G̃([k1, . . . , kn]) we see that we naturally obtain a map for each A ⊆ [n], i ∈ A and
x ∈ f(i)

Φ(A,x) : G̃([k1, . . . , kn]) → F2,

which furthermore satisfies the equation

(dΦ(A,x))(σ, τ) =
∑

∅6=B⊆A−{i}

χB(σ)Φ(A−B,x)(τ).

Here χB equals
∏

j∈B χj for B 6= ∅, where χj is the character obtained by summing all
projections in the j-th block. We also put χ∅ := 0. Observe that in case |A| = 1, the
map Φ(A,x) coincides with the character χx.

Proposition 3.23. For each A ⊆ [n] we have that

∑

i∈A

∑

x∈f(i)

Φ(A,x) = χA.

Proof. We shall proceed by strong induction on the size of A. If #A ≤ 1 the statement is
a complete triviality. We assume henceforth that #A ≥ 2 and that the claimed relation
holds for any B ⊆ [n] with #B < #A. Applying d to the left hand side we get

∑

∅6=B(A

χB(σ)


 ∑

i∈A−B

∑

x∈f(i)

Φ(A−B,x)(τ)


 =

∑

∅6=B(A

χB(σ)χA−B(τ) = (dχA)(σ, τ),

where we use the inductive assumption in the first equality and a simple calculation in
the second equality.

We conclude that
∑

i∈A

∑
x∈f(i)Φ(A,x) and χA differ by a character of G̃([k1, . . . , kn]).

However, since |A| ≥ 2, we have that each
∑

x∈f(i)Φ(A,x) vanishes on the distinguished

generators of the [k1, . . . , kn]-expansion group G̃([k1, . . . , kn]). The same applies to χA,
again because |A| ≥ 2. We conclude that

∑
i∈A

∑
x∈f(i)Φ(A,x) and χA differ by the

trivial character, which is precisely the desired conclusion.

When A changes, the corresponding set of functions generate spaces in direct sum
by Lemma 3.22. Altogether we see that the colllection {Φ(A,x)}A⊆[n],#A≥2 with x vary-
ing in a block inside A, is a collection of linearly independent functions. We define
Φ[(k1, . . . , kn)] to be the space they generate (as a basis) together with all the characters
of G̃([k1, . . . , kn]).

For i ∈ [n] we have a natural cornering operator Pi. Namely for i ∈ [n], we set

Pi(Φ(A,x)) :=

{
Φ(A−{i},x) if i ∈ A and x 6∈ f(i)

0 otherwise.

We put the value of Pi on a character to always be 0. In this way the assignment extends
to a surjective linear operator

Pi : Φ[(k1, . . . , kn)] ։ Φ[(kh)h 6=i].
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One obtains after two applications of Proposition 3.23 that for any i ∈ [n]

Pi(χA) :=

{
χA−{i} if i ∈ A

0 if i 6∈ A,

One can compose such operators Pi, and it is a simple observation that the order of
composition does not affect the result. Hence for any subset T ⊆ [n] we have an operator

PT : Φ[(k1, . . . , kn)] ։ Φ[(kh)h 6∈T ].

We can now rewrite equation (3.2) as

(dΦ(A,x))(σ, τ) =
∑

∅6=B⊆[n]

χB(σ)PB(Φ(A,x))(τ). (3.3)

From equation (3.3), it is transparent that the restriction of Φ[(k1, . . . , kn)] to the com-
mutator subgroup consists of a space of quadratic characters.5 We actually have the
following stronger statement.

Proposition 3.24. The restriction to [G̃([k1, . . . , kn]), G̃([k1, . . . , kn])] induces a surjec-
tive homomorphism

Φ[(k1, . . . , kn)] ։ [G̃([k1, . . . , kn]), G̃([k1, . . . , kn])]∨.

Furthermore the kernel is given precisely by the span of V ∨
[(k1,...,kn)]

and the functions χA

with A ⊆ [n].

Proof. The surjectivity follows immediately from Theorem 3.20. We next show the claim
on the kernel. Recall that spaces of governing tensors with different supports are in direct
sum and that, within one support A, the only relation is

∑

i∈A

∑

x∈f(i)

ϕ(A,x) = 0.

Therefore we deduce from Lemma 3.22 that an element of the kernel must be a sum of
characters and maps of the form

∑

i∈A

∑

x∈f(i)

Φ(A,x).

But this last expression, thanks to Proposition 3.23, is precisely the function χA. This
gives the desired conclusion.

Observe that the right hand side of equation (3.3) now has an expression that is
a universal function applied to Φ(A,x). From this we deduce, by linearity, that for all
Φ ∈ Φ[(k1, . . . , kn)] we must have

(dΦ)(σ, τ) =
∑

∅6=B⊆[n]

χB(σ)PB(Φ)(τ). (3.4)

Observe that from the right hand side of equation (3.4), we can reconstruct each Pi(Φ)
by plugging in an involution gx with x ∈ f(i). Indeed such a choice will detect precisely
the set B = {i}, giving in this way Pi(Φ)(τ). We now consider the inverse problem.
Suppose that for each i ∈ [n] we are given an element Φi ∈ Φ[(kh)h 6=i].

5If one looks at the way we have constructed such functions, in Section 3.3, then this fact is immedi-
ately clear even without invoking the more informative equation (3.3).
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Question: Under which conditions do we have an element Φ ∈ Φ[(k1, . . . , kn)] such
that Pi(Φ) = Φi for each i ∈ [n]?

An obvious necessary condition is that Pj(Φi) = Pi(Φj) for every i, j ∈ [n]. It turns
out to also be sufficient. We first call commuting a vector (Φi)1≤i≤n with Φi ∈ Φ[(kh)h 6=i]
and Pj(Φi) = Pi(Φj) for every i, j ∈ [n]. Thanks to the fact that the vector is commuting
one sees that for every subset ∅ 6= B ⊆ [n] we can unambiguously define PB((Φi)1≤i≤n)
by composing the operators Pi in any order. With that in mind, we proceed, as a second
step, to attach to any such commuting vector a 2-cocycle

θ((Φi)1≤i≤n) :=
∑

i∈[n]

χi(σ)Φi(τ) +
∑

B⊆[n]
#B≥2

χB(σ)PB((Φi)1≤i≤n)(τ).

This is a 2-cocycle because each Φi satisfies the equation

(dΦi)(σ, τ) =
∑

∅6=B⊆[n]

χB(σ)PB(Φi)(τ),

and the vector (Φi)1≤i≤n is commutative. We denote by Comm-Vect(k1, . . . , kn) the
space of all such commutative vectors. We stress that the space Comm-Vect(k1, . . . , kn)
is constructed using only the collection of spaces {Φ[(kh)h 6=i]}i∈[n].

For every j ∈ Z≥1 we have a natural subspace of Φ[(k1, . . . , kn)], which we denote
Φj[(k1, . . . , kn)], consisting of functions vanishing on all nested commutators of length
at least j + 1. This induces a filtration of subspaces

{0} =: Φ0[(k1, . . . , kn)] ⊆ Φ1[(k1, . . . , kn)] ⊆ · · · ⊆ Φj[(k1, . . . , kn)] ⊆ · · · ,

exhausting the space Φ[(k1, . . . , kn)], which is actually equal to the space Φn[(k1, . . . , kn)].
It is a simple consequence of Proposition 3.24 that Φ1[(k1, . . . , kn)] coincides with the
span of the characters and the maps χA for A ⊆ [n].

We now briefly reinterpret in cohomological terms the spaces of functions obtained,
together with the maps among them and the basic properties so far established.6 For a
[(k1, . . . , kn)]-expansion group (G,ϕ, (g1 , . . . , gk1+...kn)) let us denote by N the subgroup
ϕ−1(ker(π(k1,...,kn))). Through π(k1,...,kn) ◦ ϕ we identify G/N and V[n].

Recall that N is a vector space over F2, thanks to the definition of a [(k1, . . . , kn)]-
expansion group. Hence H1(N,F2) is just the set of characters from N to F2. Thanks to
Shapiro’s Lemma we can identify this space with H1(G,F2[V[n]]). Observe that to give
a 1-cocycle from G to F2[V[n]] amounts to giving a system of 1-cochains {ϕB}B⊆[n] with
ϕB : G→ F2 satisfying the recursive equation

ϕB(στ) + ϕB(σ) + ϕB(τ) =
∑

∅6=B′⊆B

χB′(σ)ϕB−B′ (τ)

for each B ⊆ [n]. Such an identification follows again using the monomial coordinates of
Section 3.3. We denote by Cocy(G,F2[V[n]]) the space of 1-cocycles. Thanks to equation
(1.1) we now see that the assignment7

Φ 7→ {PB(Φ)}B⊆[n]

induces a group homomorphism

Φ[(k1, . . . , kn)] → Cocy(G̃([k1, . . . , kn]),F2[V[n]]).

We can now easily deduce the following.

6Many thanks to Adam Morgan for pointing this out to us.
7We extend the notation for PB by defining it to be the identity for B = ∅.

30



Proposition 3.25. The homomorphism

Φ[(k1, . . . , kn)] → Cocy(G̃([k1, . . . , kn]),F2[V[n]])

is an isomorphism.

Proof. The map is clearly injective. We want to show that it is surjective. Both sides
naturally map in N∨: the left hand side simply by restriction, the right hand side by
mapping onto H1(G,F2[V[n]]) and then applying Shapiro’s Lemma. One can check that
the resulting square is commutative. But then thanks to Shapiro’s Lemma (giving an
isomorphism between the two H1’s) and Proposition 3.24, we conclude that we only need
to show that the space of coboundaries is in the image. Since the monomials {tB}B⊆[n]

span the group ring, we find that the space of coboundaries is spanned by the functions

σ 7→
∑

B(B′⊆[n]

χB′−B(σ)tB′ .

Thanks to Proposition 3.23 we get that these are in the image, and we are done.

For Φ ∈ Φ[(k1, . . . , kn)] we denote by nil-deg(Φ) the largest integer j such that
Φ ∈ Φj[(k1, . . . , kn)].

Proposition 3.26. Let (Φi)1≤i≤n be in Comm-Vect(k1, . . . , kn). Then there exists Φ ∈
Φ[(k1, . . . , kn)] such that Pi(Φ) = Φi for every i ∈ [n]. Such Φ satisfies

dΦ = θ((Φi)1≤i≤n).

Furthermore

max({nil-deg(Φi)}i∈[n]) ≤ nil-deg(Φ) ≤ max({nil-deg(Φi)}i∈[n]) + 1,

with the upper bound reached in case there is at least one i ∈ [n] with nil-deg(Φi) ≥ 2.

Proof. When we inflate to the free group Fk1+···+kn , the 2-cocycle θ((Φi)1≤i≤n) becomes a
coboundary, since evidently H2(Fk1+···+kn ,F2) = {0}. Indeed, any central F2-extension
of Fk1+···+kn is split: by definition of a free group, one can create a group theoretic
section simply extending any set-theoretic sections on the set of privileged generators in
the unique possible way. Therefore we obtain a system of maps {ϕB}B⊆[n] corresponding
to the group homomorphism

Fk1+···+kn → F2[V[n]]⋊ V[n]

with ϕB = PB((Φi)i∈[n]) for B ⊆ [n] of size less than n − 1 and ϕ[n]−{i} = Φi for each i

in [n]. Now we verify that this homomorphism factors through G̃([k1, . . . , kn]). This is a
routine verification. For instance it is clear that the square of every commutator vanishes,
from the shape of the 2-cocycle θ((Φi)1≤i≤n). Similarly we see that the square of each
privileged generator vanishes as does the square of the product of two generators in the
same block. Therefore the collection {ϕB}B⊆[n] lands in Cocy(G̃([k1, . . . , kn]),F2[V[n]]).
Now we conclude immediately by Proposition 3.25.

Let us now prove the last claim. If τ ∈ [G̃([k1, . . . , kn]), G̃([k1, . . . , kn])] and i ∈ [n],
then

([gh, τ ]) = Pi(Φ)(τ) (3.5)

for every h ∈ f(i). It follows that for every i ∈ [n] with nil-deg(Φi) ≥ 2 we can find a
nested commutator of length nil-deg(Φi) + 1 on which Φ does not vanish. Hence we see
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that max({nil-deg(Φi)}i∈[n]) ≤ nil-deg(Φ) in general and as soon as there is at least one
i0 ∈ [n] with nil-deg(Φi0) ≥ 2 then equation (3.5) proves that

nil-deg(Φ) ≥ max({nil-deg(Φi)}i∈[n]) + 1.

We deduce from equation (3.5) that Φ vanishes on any nested commutator of length
at least c := max({nil-deg(Φi)}i∈[n]) + 1 and of the form [gh, τ ] for some h. On the

other hand these span the F2-vector space G̃([k1, . . . , kn])(c+1) thanks to Proposition 3.8.
Hence we obtain

nil-deg(Φ) ≤ max({nil-deg(Φi)}i∈[n]) + 1,

which yields the full proposition.

Let now (G,ϕ, (g1 , . . . , gk1+···+kn)) be a [(k1, . . . , kn)]-expansion group. Recall that
by Theorem 3.20, we have that (G,ϕ, (g1, . . . , gk1+···+kn)) is (uniquely) a quotient of the
[(k1, . . . , kn)]-expansion group G̃([k1, . . . , kn]). This gives us a subspace of Φ[(k1, . . . , kn)]
consisting of the functions that are well defined modulo the projection onto G. We
denote it as Φ(G,ϕ, (g1, . . . , gk1+···+kn)). Observe that this space uniquely determines
the [(k1, . . . , kn)]-expansion group (G,ϕ, (g1, . . . , gk1+···+kn)). Indeed the restriction map

Φ[(k1, . . . , kn)] ։ [G̃([k1, . . . , kn]), G̃([k1, . . . , kn])]∨

is surjective. Then the group kernel of the projection from G̃([k1, . . . , kn]) to G, which
must be a linear subspace of [G̃([k1, . . . , kn]), G̃([k1, . . . , kn])], is equal to the maximal nor-
mal subgroup N of G̃([k1, . . . , kn]) such that all elements of Φ(G,ϕ, (g1, . . . , gk1+···+kn))
factor through N . So determining (G,ϕ, (g1, . . . , gk1+···+kn)) amounts to determining
the space Φ(G,ϕ, (g1, . . . , gk1+···+kn)). Now consider the space of commuting vectors
(Φi)1≤i≤n such that Φi ∈ Φ(G,ϕ, (g1, . . . , gk1+···+kn)i). We denote it with

Comm-Vect({(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n]).

We stress that this space is constructed merely invoking the set of n corners of the
[(k1, . . . , kn)]-expansion group (G,ϕ, (g1, . . . , gk1+···+kn)). We denote by

2− Cocy({Φ(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n])

the corresponding set of 2-cocycles constructed as explained above, but this time only
using elements of Comm-Vect({(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n]). Again, we stress that
this space of 2-cocycles is constructed using only the set of n-corners of the [(k1, . . . , kn)]-
expansion group (G,ϕ, (g1, . . . , gk1+···+kn)).

Intersecting Φ(G,ϕ, (g1, . . . , gk1+···+kn)) with the nilpotency filtration induces a fil-
tration of spaces

{0} = Φ0(G,ϕ, (g1 , . . . , gk1+···+kn)) ⊆ · · · ⊆ Φj(G,ϕ, (g1, . . . , gk1+···+kn)) ⊆ . . .

exhausting the space Φ(G,ϕ, (g1, . . . , gk1+···+kn)), which is actually equal to

Φc(G)(G,ϕ, (g1 , . . . , gk1+···+kn)),

where c(G) is the nilpotency class of G. We denote by

Comm-Vectj({(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n])

the subspace of Comm-Vect({(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n]), where all the coordinates
have nil-deg at most j − 1.
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Now combining Proposition 3.24, equation (3.4) and Proposition 3.26, we can answer
the question at the beginning of this section. Namely if j ∈ Z≥2, to obtain the space

Φj(G,ϕ, (g1, . . . , gk1+···+kn))

one needs to do four steps.8

Step 1 : Obtain the spaces Φj−1(G,ϕ, (g1, . . . , gk1+···+kn))i for every i ∈ [n].
Step 2 : Check which of the 2-cocycles obtained from

Comm-Vectj({(G,ϕ, (g1 , . . . , gk1+···+kn))i}i∈[n])

is trivial in H2(G,F2).
Step 3 : For each of the elements obtained in Step 2, any corresponding 1-cochain
factors through G and hence yields an element of Φj(G,ϕ, (g1 , . . . , gk1+···+kn)).
Step 4 : The collection of all the elements of Φj(G,ϕ, (g1, . . . , gk1+···+kn)) obtained in
Step 3 span the space Φj(G,ϕ, (g1, . . . , gk1+···+kn)).

Note that it is not at all obvious how to perform Step 2, since the unknown group
G occurs in this step. Fortunately, there will be a simple universal criterion to perform
Step 2 in our arithmetical application. Namely, the cohomology classes will vanish
if and only if their inflation to GQ does. This fact relies on the special form of the 2-
cocycles appearing on the right hand side of equation (3.4). Therefore the above abstract
procedure will boil down to an effective iterative procedure to construct the j-th higher
genus space of a multi-quadratic field K out of the (j − 1)-th higher genus spaces of the
fields {K[n]−{i}}i∈[n].

4 Proofs of main theorems

4.1 Proof of Theorems 1.1, 1.3 and 1.4

Let (a1, . . . , an) be an acceptable vector and denote ki := ω(ai). Recall that if i ∈ [n] and
p is a prime dividing ai, then p has ramification degree equal to 2 in H+

2 (a1, . . . , an)/Q.
Therefore any inertia subgroups at p is a subgroup of size equal to 2. So each of them
has precisely one non-trivial element, and by a choice of inertia at p we mean the choice
of such an involution in Gal(H+

2 (a1, . . . , an)/Q). Now write

ai := phi+1 · . . . · phi+ki ,

where hi :=
∑

1≤j≤i−1 kj. In this way there is a bijection between [k1+ · · ·+ kn] and the
prime factors of a1·. . .·an. The following clarifies the relevance of [(k1, . . . , kn)]-expansion
groups when looking at Gal(H+

2 (a1, . . . , an)/Q).

Proposition 4.1. Choose for every j ∈ [k1+ · · ·+kn] an inertia element σj at pj. Then

(Gal(H+
2 (a1, . . . , an)/Q), (χp1 , . . . , χpk1+···+kn

), (σ1, . . . , σk1+···+kn)),

is a [(k1, . . . , kn)]-expansion group.

Proof. As we explained at the beginning of this section, the inertia elements are invo-
lutions. Furthermore, they form a dual basis of {χp1 , . . . , χpk1+···+kn

}, since the ai are

pairwise coprime. The largest abelian subextension of Q contained in H+
2 (a1, . . . , an)/Q

is the multi-quadratic number field obtained by adjoining all the square roots of the
prime factors of the various ai, thanks to the fact that each of them is 1 modulo 4.

This means that the commutator subgroup is the kernel of (χp1 , . . . , χpk1+···+kn
).

Finally, by definition, the group Gal(H+
2 (a1, . . . , an)/Q(

√
a1, . . . ,

√
an)) is a F2-vector

space. This concludes the proof.

8The case j = 1, as remarked above, equals the span of the characters and the maps χA so it is given.
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Now Theorem 1.4 follows immediately upon combining Theorem 3.20 and Proposi-
tion 4.1. Hence Theorem 1.1 falls as a consequence of Theorem 1.4.

To prove Theorem 1.3, we recall that a character χ ∈ Cl+(Q(
√
a1, . . . ,

√
an))

∨[2]
belongs to Gn(K, j) if it vanishes on all (j + 1)-th nested commutators with entries in
GQ. We can turn Gal(H+

2 (a1, . . . , an)/Q) in an n-expansion group G by Proposition 4.1
and then attach to it its Lie algebra L•. The case j = 1 is classical, so suppose that
j > 1. Then there is a natural map Gn(K, j) → L∨

j by restricting χ to G(j), which is

well-defined since χ vanishes on G(j+1) and j > 1. Since Gn(K, j − 1) is contained in
the kernel of this map, Theorem 1.3 then follows from Proposition 2.6, Proposition 2.7
and Proposition 3.19.

4.2 Proof of Theorem 1.2

We say that (a1, . . . , an) is strongly quadratically consistent if every prime divisor of ai
is a square modulo every prime divisor of aj for distinct i, j ∈ [n].

Proposition 4.2. Suppose that (a1, . . . , an) is maximal. Then (a1, . . . , an) is strongly
quadratically consistent.

Proof. Indeed, we must have an expansion map with support {χai , χq} and pointer χq

for every prime q dividing aj , sine (a1, . . . , an) is maximal. The existence of such an
expansion map is equivalent to χai ∪ χq being trivial in H2(GQ,F2). Going locally at a
prime divisor p of ai, we see that χq must then become locally trivial, i.e. q is a square
modulo p.

We can now complete the proof of Theorem 1.2. Thanks to Theorem 3.20, we know
that (a1, . . . , an) is maximal if and only if for every i0 ∈ [n], every b dividing ai0 and
every A ⊆ [n]−{i0}, we can find an expansion map for GQ with support {χai}i∈A∪{χb}
and pointer χb inducing an unramified extension of Q({√ai}i∈A,

√
b). From this it is

transparent that if (a1, . . . , an) is maximal then, for each j in [n], the vector (ah)h 6=j is
maximal.

Furthermore, thanks to Proposition 4.2 we see that for every j ∈ A and each prime
divisor p of aj the right hand side of equation (3.2) is trivial in H2(GQp ,F2) if and only if
p splits completely in the field corresponding to the expansion map ϕA−{j} with pointer

χb. Since this holds for all A and b, we conclude that p splits completely in H+
2 ((ah)h 6=j).

Hence we have shown that if (a1, . . . , an) is maximal, then for every j ∈ [n], the vector
(ah)h 6=j is maximal and each prime divisor of aj splits completely in H+

2 ((ah)h 6=j).
To obtain the converse one inverts the logic above and obtains that if for every

j ∈ [n] it is given that (ah)h 6=j is maximal and each prime divisor of aj splits completely
in H+

2 ((ah)h 6=j), then the 2-cocycles appearing on the right hand side of equation (3.2)
are all everywhere locally trivial and hence trivial in H2(GQ,F2). Hence, to conclude, in
virtue of Theorem 3.20 one needs to show that each of the corresponding twist families
of F2-central extensions admits an unramified representative. This can be obtained with
a straightforward adaptation to l = 2 of [11, Proposition 4.10].

4.3 Obtaining Gn(K[n], j) from (Gn(K[n]−{i}, j − 1))i∈[n]

We begin with the elementary observation that for all acceptable vectors (a1, . . . , an) ∈
Zn
≥1, all i ∈ [n], and for any choice of inertia elements in Gal(H+

2 (a1, . . . , an)/Q), we

have that the i-th corner of Gal(H+
2 (a1, . . . , an)/Q) is Gal(H+

2 ((ah)h∈[n]:h 6=i)/Q), where
we view this last Galois group as an [(ω(ah))h∈[n]:h 6=i]-expansion group with the choice

of inertia elements induced by the choices made for Gal(H+
2 (a1, . . . , an)/Q).
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Hence to show Theorem 1.5, all that we need to prove is that Step 2 in the procedure
at the end of Section 3.4 can be replaced by the definition of Comm-Vect◦j(a1, . . . , an)
given in the introduction. In other words we have to show that as soon as we have a
commutative vector v ∈ Comm-Vect◦j(a1, . . . , an), then there is a continuous 1-cochain
Φ : GQ → F2 such that

(dΦ) = θ(v),

and the smallest Galois extension of Q through which Φ factors, called the field of
definition of Φ and denoted L(Φ), yields an unramified central F2-extension of the field
L(v), where L(v) denotes the compositum of the fields of definitions of the coordinates
of v. By definition, we certainly have a continuous 1-cochain Φ0 : GQ → F2 such that

(dΦ0) = θ(v).

So we have to find a character χ : GQ → F2 such that Φ := Φ0 + χ has the ramification
condition just explained. Following the same argument provided in [11, Proposition
4.10], it is enough to check that the cocycle θ(v) splits locally at inertia for every prime
p dividing a1 · . . . · an. Pick such a prime p, and let i be the corresponding element of
[n] such that p divides ai (recall that a1, . . . , an are pairwise coprime). Pick an inertia
element σp in Gal(L(v)/Q).

We claim that in the sum of the 2n− 1 terms defining θ(v)(σ, τ), each of these terms
will vanish when we plug in σ := σp and τ := σp. Indeed, if a non-empty subset B ⊆ [n]
does not contain i, then certainly χB(σp) = 0. Assume now that i ∈ B. Then the
PB−{i}(vi) has field of definition contained in L(vi), where vi is the i-th coordinate of v.
These maps are in particular in Φj−1((ah)h 6=i), so the field L(vi)/Q is unramified at p.
It follows that the image of σp in Gal(L(vi)/Q) equals the trivial element id. But now,
by construction, the map PB−{i}(vi) vanishes on the identity element. Hence our claim
follows.

Therefore it follows that in the central extension defined by θ(v) the inertia element
σp must necessarily lift to an involution. Hence the extension does not ramify, since any
potential ramification (recalling that p is odd) would be necessarily tame and thus with
cyclic inertia, and therefore it should yield that σp lifts to an element of order 4, which
we have just disproved.9 This ends the proof of Theorem 1.5.

Remark 4.3. We say that an acceptable vector (a1, . . . , an) is quadratically consistent
in case for each distinct h, k ∈ [n] and every prime factor p of ah one has that ak is a
square modulo p. We remark that in case (a1, . . . , an) is quadratically consistent then,
by the same calculation done in the proof of Theorem 1.2, one has a rather convenient
criterion to decide whether an element (Φ1, . . . ,Φn) ∈ Comm-Vectj(a1, . . . , an) actually
belongs to Comm-Vect◦j(a1, . . . , an). Namely that happens if and only if every prime
factor p of ah splits completely in L(Φh)/Q for every h ∈ [n].
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