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Marlin B. Schäfer ,1,2 Ondřej Zelenka ,3,4 Alexander H. Nitz ,1,2 Frank Ohme ,1,2 and Bernd Brügmann 3,4

1Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-30167 Hannover, Germany
2Leibniz Universität Hannover, D-30167 Hannover, Germany
3Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

4Michael Stifel Center Jena, D-07743 Jena, Germany

(Received 16 June 2021; accepted 2 December 2021; published 8 February 2022; corrected 24 February 2022)

Compact binary systems emit gravitational radiation which is potentially detectable by current Earth
bound detectors. Extracting these signals from the instruments’ background noise is a complex problem
and the computational cost of most current searches depends on the complexity of the source model. Deep
learning may be capable of finding signals where current algorithms hit computational limits. Here we
restrict our analysis to signals from nonspinning binary black holes and systematically test different
strategies by which training data is presented to the networks. To assess the impact of the training strategies,
we reanalyze the first published networks and directly compare them to an equivalent matched-filter search.
We find that the deep learning algorithms can generalize low signal-to-noise ratio (SNR) signals to high
SNR ones but not vice versa. As such, it is not beneficial to provide high SNR signals during training, and
fastest convergence is achieved when low SNR samples are provided early on. During testing we found that
the networks are sometimes unable to recover any signals when a false alarm probability<10−3 is required.
We resolve this restriction by applying a modification we call unbounded Softmax replacement (USR) after
training. With this alteration we find that the machine learning search retains ≥91.5% of the sensitivity of
the matched-filter search down to a false-alarm rate of 1 per month.
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I. INTRODUCTION

The direct detection of a gravitational wave (GW) on
September 14, 2015 [1] started the era of GW astronomy.
After the analysis of two and a half observing runs, tens of
GWs have been confirmed [2,3]. GW170817 [4] was the
first GW event also seen in the electromagnetic spectrum
[5–8].
The latency between a GWand its reported detection is a

vital aspect of multimessenger missions. Lowering the
delay between data aggregation and signal detection allows
to maximize electromagnetic observation time and reduces
the risk that early emissions are being missed.
To extract GW signals from the instrument data, a well-

established technique known as matched filtering is used
in many search algorithms. It convolves templates, i.e.,
precalculated models of the expected signals, with the
measured data [9–13]. When one of these templates
matches the data to a given degree and the data quality
is high enough, these searches report a candidate detection.
Matched filtering is known to be optimal in stationary

Gaussian noise when accurate models of the waveform

exist [14]. However, it can be computationally limiting
when many templates are required. This is the case when
effects such as higher-order modes [15], precession [16], or
eccentricity [17] are considered. Furthermore, signals
which are not covered by the filter bank may be missed
entirely. While there are unmodeled searches that detect
coincident excess power in different detectors [18–20], they
are less sensitive in regions where accurate models exist.
Recently, new deep learning based searches have started

to be explored [21–26]. Summaries of the current state of
the field are given in [27,28]. The pioneering works by
George et al. [21] and Gabbard et al. [23] demonstrated that
deep neural networks are capable of detecting GWs from
two merging black holes (BBH). The networks have also
proven to generalize to signals with previously unseen
parameters [21,29]. It was shown that these algorithms can
distinguish data containing a GW from pure noise as well
as matched filtering with a false-alarm probability (FAP)
down to 10−3. That means, the networks were tested down
to a level at which about 1 in 1000 pure noise samples was
falsely classified as containing a signal.
The authors of [30] find that the FAPs determined by the

original studies do not directly translate to false-alarm rates
(FARs) on continuous data streams. For FARs, the appro-
priate question to ask is how many false signals does the
network identify per time interval of continuous data, as
opposed to how many uncorrelated data chunks are falsely
identified as containing a signal. The effects of clustering
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subsequent outputs when the network is applied via a
sliding window have to be accounted for. Comparing deep
learning searches to traditional matched-filter searches is,
therefore, not trivial because matched-filter searches typ-
ically operate at FARs that are orders of magnitude smaller
than what has been tested for early neural networks. In [26]
we suggested a standardized testing procedure which
produces statistics which are comparable to traditional
search algorithms to resolve these issues.
In this paper we reanalyze and extend the results given in

the initial papers [21,23]. Our motivation is twofold. First,
we want to verify and test the performance of the networks
quoted in those papers. Specifically, we apply the testing
procedure outlined in [26]. Second, we discuss how the
GW data is prepared for and presented to the network.
The form of data preparation is often taken as a given, while
comparatively more work is invested in finding a network
structure that suits the problem. We carefully examine the
influence of different choices of data presentation and
training strategies on the ability to detect signals given a
fixed network.
Here we focus on signal detection. The problem of deep

learning parameter estimation is another vital and active
area of research. Multiple groups have made advancements
in this field [21,31–35].
We use the network presented by Gabbard et al. [23] for

most of our studies. It is trained on simulated data
containing GWs from BBHs with individual black hole
masses ranging from 10 M⊙ to 50 M⊙. The search is
restricted to a single detector. This restriction reduces
the parameter space to the two component masses, the
orbital phase, the distance to the source and the time of
coalescence.
The network classifies segments of 1 s duration sampled

at 2048 Hz into the two categories “noiseþ signal” and
“noise” by returning a value between 0 and 1 we call
“p-score.” A larger p-score corresponds to a higher con-
fidence of the network that the input contains a signal.
To optimize the training strategy, we focus on the

difference between curriculum learning [36] and fixed
interval training. Fixed interval training uses a single
training set, i.e., a single, fixed range of signal-to-noise
ratios (SNRs). Curriculum learning lowers the SNR of the
training signals progressively, thus increasing the complex-
ity with time. We evaluate different variants of both
strategies. In total 15 different approaches are tested.
Each strategy is applied to 50 randomly initialized

networks. We do this to guard against favorable initializa-
tions. All tests are done with two different implementations,
to further increase robustness of our results. The different
implementations use the two core libraries Tensorflow [37]
and PyTorch [38], respectively.
We find that most training strategies are capable of

closely reproducing the results given in [23]. We do not see
a significant difference in performance between curriculum

learning and fixed interval training strategies. However,
networks that had access to lower SNR signals during
training generally outperformed those that only saw high
SNR signals. We find that networks trained on fainter
signals can generalize to loud ones, while the opposite is
not the case.
Further analysis of the networks showed that the effi-

ciency, which is the fraction of correctly classified input
samples containing a signal at a given FAP, drops to zero
beyond a FAP of 10−3 when the training is carried out for
long enough. This drop is caused by numerical instabilities
in the final activation and the comparatively low penalty of
false positives. We propose a simple modification that
does not require retraining of the network to push this
problem to significantly lower FAPs. We call this modi-
fication unbounded Softmax replacement (USR).
We evaluate 3 different networks of each training

strategy on a month of simulated data. The networks are
applied using a sliding window with step size of 0.1 s. We
follow the procedure outlined in [26] to analyze the results.
Our evaluation of the base line network is limited by
Oð103Þ false alarms estimated with perfect confidence to
contain a signal. By applying the USR modification we are
able to eliminate this restriction and can calculate sensi-
tivities down to a FAR of 1 per month. For comparison, we
construct a template bank and use it to do a matched-filter
search on the same data used to evaluate the networks. We
find that the machine learning search retains at least 91.5%
of the sensitivity of a matched-filter search for all tested
FARs and most strategies.
All code required to reproduce our analysis is public and

can be found at [39].
The contents of this paper are structured as follows. In

Sec. II we describe the architecture, datasets, training
strategies, and evaluation methods. We apply these in
Sec. III and describe our findings. In particular we describe
the USR modification which allows the networks to be
tested at low FAPs. We conclude in Sec. IV.

II. METHODS

A. General setup

We focus our studies on the network presented by
Gabbard et al. in [23]. They used a convolutional neural
network with 6 stacked convolutional layers followed by 3
fully connected layers. All but the last layer use an
exponential linear unit (ELU) as activation function.
The architecture is altered in two details compared to the

original version of [23]. We added a batch normalization
layer before the first convolutional layer to take care of
input normalization. Input normalization scales all inputs to
have a mean-value of 0 and a variance of 1. This is standard
practice in contemporary deep learning and has been
proven to help the network train efficiently [40]. The
second modification is a reduction of the pool sizes.
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This change was required because we lowered the sample
rate of the data from 8192 Hz to 2048 Hz. We decided to
lower the sample rate for multiple reasons. First of all, the
detector sensitivity drops sharply above 1 kHz. Thus little
to no SNR is lost by disregarding higher frequencies. For
this reason current searches are often limited to the same
frequency band as well [12,41,42]. Second, signals within
our training set merge at much lower frequencies and do not
exceed 1 kHz. Finally, as we will show in Sec. III, our
training converged to the same state as previous works. We
are thus confident that this reduction in the sample rate has
no negative impact on the network’s ability to detect
signals. A reduction of the size of the input to a neural
network usually also helps with training. The resulting
network setup is depicted in Table I.
All studies presented in Sec. II B and Sec. II C were

carried out using the network from George et al.1 [21] as
well. However, with our particular training setup, every
metric showed performance similar to the network from
[23]. We present only results using the network based on
the work of Gabbard et al.
Each GW signal is defined by the component massesm1,

m2 and a phase ϕ0. Two masses are drawn independently
from a uniform distribution between 10 M⊙ and 50 M⊙
and the higher and lower values are assigned to m1 and m2,
respectively, to enforce the condition m1 ≥ m2. Phases are
uniformly drawn from the interval ½0; 2π�. We generate
signals with 5 different phases for each pair of masses

ðm1; m2Þ. The amplitude, and therefore the distance of the
source, is determined by the target SNR we have chosen.
We fix the sky position to be overhead the LIGO Hanford
detector [43] and the inclination as well as the polarization
to 0, because in the case of nonprecessing signals and
assuming a single detector, any variation in those param-
eters can be fully absorbed by modifications of the
amplitude and phase of the signal.
The waveforms are generated with a sample-rate of

2048 Hz, a lower-frequency cutoff of 20 Hz, and using the
model SEOBNRv4_opt [44] (optimized version of
SEOBNRv4 [45]). It is common practice to shift the
location of the maximum amplitude by some small time
within each training sample. This procedure allows the
network to be less sensitive to the exact alignment of the
waveform within its input. To achieve this behavior, we
shift the position of the merger by a time uniformly drawn
from −0.1 s to 0.1 s before projecting onto the Hanford
detector. After the projection the signals are whitened using
the analytic model of LIGO’s design sensitivity at its zero
detuned high power configuration [46], i.e., we divide the
Fourier transformed signal by the square root of the power
spectral density (PSD) associated with the power of the
background noise at different frequencies, and transform
back to the time domain. Whitening the data reduces the
power at frequencies where the detector is known to be less
sensitive. Next, the waveforms are scaled to an optimal
SNR of 1. The optimal SNR ρopt is defined by

ρopt
2 ¼ 4Re

�Z
df

h̃ðfÞh̃�ðfÞ
SnðfÞ

�
; ð1Þ

where h̃ is the Fourier transform of the time domain signal,
before it was whitened, h̃� is its complex conjugate, Sn is
the PSD and Re extracts the real part of the complex
number. Finally, we extract a time slice such that the
original, not shifted merger time is located 0.7 s from the
start of the window.
All noise is simulated from the same PSD used to whiten

the signals. After generation, the noise is whitened by the
PSD used to create it in the same way the signals are
whitened. We choose to explicitly whiten the colored noise
to take into account any artifacts the process may introduce.
This also eliminates sources of errors and is in principle
extendable to real noise.
The whitened signals and noise samples are combined

during training. This allows us to rescale the signals at
runtime to a desired strength. Since during generation all
signals are scaled to SNR 1, rescaling is achieved by a
multiplication of the signal with the target SNR.
We have briefly tested training on frequency domain

data. This was motivated by studies such as [24,47]. While
these studies analyze longer duration signals, there is no
conceptual problem to using the frequency representation
of short BBH waveforms. To accommodate the complex
valued frequency representation we changed the input layer

TABLE I. The modified neural network from [23] as used in
this study. The given shapes correspond to the tensor shapes in the
TensorFlow version of the code, i.e., data length × number of
channels. PyTorch swaps these dimensions. The order of the
layers is given by reading the column “layer type” from top to
bottom and left to right. Layers are grouped by their influence on
the output shape and by trainable weights.

Layer type Kernel size Output shape

Inputþ BatchNorm1d 2048 × 1
Conv1Dþ ELU 64 1985 × 8
Conv1D 32 1954 × 8
MaxPool1Dþ ELU 4 488 × 8
Conv1Dþ ELU 32 457 × 16
Conv1D 16 442 × 16
MaxPool1Dþ ELU 3 147 × 16
Conv1Dþ ELU 16 132 × 32
Conv1D 16 117 × 32
MaxPool1Dþ ELU 2 58 × 32
Flatten 1856
Denseþ Dropoutþ ELU 64
Denseþ Dropoutþ ELU 64
Denseþ Softmax 2

1We adjusted the network from George et al. too, by using
batch normalization for input normalization and reducing the
sample rate of the input to 2048 Hz.
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in Table I to a shape of 1025 × 2 and inserted the real and
imaginary parts as different channels. With this being our
only modification to the architecture, the network was able
to differentiate data containing a signal from pure noise but
found up to 65% fewer signals at low SNR. We suspect that
with greater effort in finding an optimized architecture, one
could regain the performance of the network on time
domain data.
We have also explored training on raw data, i.e., data

where the computationally expensive whitening is skipped.
Even after several hundred epochs the network was not able
to distinguish data containing signals from pure noise,
irrespective of using the time or frequency domain repre-
sentation of the data.
Our training set contains 20 000 unique combinations of

component masses each of which is used to generate 5
waveforms with random coalescence phases. Therefore, it
contains 100 000 individual signals. We generate 200 000
independent noise samples, 100 000 of which are used in
combination with the signals. The remaining 100 000 noise
samples are used as pure noise. Our training set, therefore,
contains 200 000 independent samples.
The validation set is assembled in the same way as the

training set. It too contains 100 000 samples of the “signal”-
class and 100 000 samples of the “noise”-class for a total of
200 000 samples. The validation set was chosen to be of
equal size to the training set due to its influence when
curriculum training strategies are used. The conditions for
when the complexity of the training set is increased are
evaluated on this set.
We use a third dataset to calculate relevant metrics of the

network during training. This third set is required, as the
validation set directly influences the training for curriculum
strategies. Metrics determined on the validation set may,
therefore, be biased. We call this third set the efficiency set
and describe its usage in Sec. II B. It contains 10 000
unique signals and 400 000 independent noise samples.
Finally, we evaluate the performance of the network on a

test set. This test set contains a month of simulated
Gaussian noise with injections separated by a time uni-
formly distributed in the interval [16, 22] s. The injection
parameters are drawn from the distributions shown in
Table II. Noise is generated using the same PSD used

for the training set. A month of data corresponds to
∼26 million correlated samples.
Each network is trained for 200 epochs, i.e., 200 full

passes on the training set. We found this to be a sufficient
number of training cycles for most of the networks to
converge to a stable performance on the validation set. We
use the default implementations of the Adam optimizer
with a learning rate of 10−5, β1 ¼ 0.9, β2 ¼ 0.999 and
ε ¼ 10−8 [48]. As loss we use a variant of the binary
cross-entropy that is designed to stay finite,

Lðyt; ypÞ ¼ −
1

Nb

XNb

i¼1

yt;i · logðϵþ ð1 − 2ϵÞyp;iÞ: ð2Þ

Here yt is either ð1; 0ÞT for data containing a signal or
ð0; 1ÞT for pure noise, yp is the prediction of the network,
Nb ¼ 32 is the minibatch size, and ϵ ¼ 10−6.

B. Network performance

A common metric when training neural networks is the
accuracy, which is the ratio of correctly classified samples
over the total number of samples. This approach weighs
false-negatives and false-positives equally.
GW searches assign a statistical significance to each

event. This is usually given as the FAR of the search at the
ranking statistic threshold associated with the candidate
event. For the network we use the p-score as ranking
statistic. The more false positives a search produces at a
given ranking statistic, the less significant each event
becomes. Therefore, false-positives severely limit the
ability of the search to recover true events. Low latency
searches do not distribute any event candidates publicly
with a FAR greater than ∼1 per month [12]. For searches
which operate on archival data, low FARs are needed to
assign a probability for the signal to be of astrophysical
origin, based on the expected astrophysical rate of com-
parable events [2,3].
For these reasons we monitor the efficiency of the

network rather than the accuracy. The efficiency is the
true-positive probability at a fixed false-positive probabil-
ity, i.e., a fixed FAP. To do so, we sort the p-score outputs of
the network on the noise from the efficiency set and use the
xth largest as a threshold, where we choose

x ¼ bNn · FAPc ð3Þ

Here, Nn is the total number of noise samples used and b·c
denotes the flooring operation. We then evaluate the signals
from the efficiency set scaled to SNRs 3,6,9,12,15,18,
21,24,27 and 30 and count the samples that exceed the
threshold. The efficiency is then given by

efficiency ¼ Ns>t

Ns
; ð4Þ

TABLE II. Injection parameters for the dataset used to deter-
mine the FAR and sensitive volume of the different networks.

Parameter Uniform distribution

Component masses m1; m2 ∈ ð10; 50Þ M⊙
Spins 0
Coalescence phase Φ0 ∈ ð0; 2πÞ
Polarization Ψ ∈ ð0; 2πÞ
Inclination cos ι ∈ ð−1; 1Þ
Declination sin θ ∈ ð−1; 1Þ
Right ascension φ ∈ ð−π; πÞ
Distance d2 ∈ ð5002; 70002Þ Mpc2
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with Ns>t being the number of signals assigned a p-score
larger than the threshold andNs the total number of signals.
To get a better understanding of the efficiency as a function
of the signal strength, we also calculate the efficiencies at
each of the SNRs individually. In this work, a FAP of 10−4

is used for all efficiency calculations.
For each of the strategies we discuss in Sec. II C the

network is trained 50 times from scratch. The parameters of
the networks are initially random for each run. The final
performance of a single network may depend on these
initial values. Training each network-strategy combination
multiple times and averaging over their efficiencies reduces
the influence of the network initialization, thus yielding
greater insight into the impact of the training strategy.
After training has completed for all 50 networks, we

choose 3 networks for which we calculate the sensitive
volume and the false-alarm rate on a month of simulated
data. The networks are chosen by the following scheme.
We select the epoch of the maximum efficiency of all
networks. At this epoch we pick the best and the worst
performing networks, where ranking is based on the
efficiency. The last network is chosen to be the one which
has the efficiency closest to the average efficiency over all
50 runs at the chosen epoch.
The sensitivity and FAR calculation follows the pro-

cedure outlined in [26]. As suggested in [21,23], the
network is applied to time series data of duration longer
than the input window via a sliding window. We choose a
step size of 0.1 s to ensure the correct alignment of the
merger time within the input window for at least one step.
Each window is whitened individually using the same
method and noise model applied to the training set.
To reduce the computational cost, the data are sliced into

the input windows and preprocessed only once. We store
this sliced data and apply the different networks to it. This
allows us to evaluate the entire month of data in about 1 h
on a single NVIDIA RTX 2070 SUPER.
The network outputs a value between 0 and 1 for every

slice. A value of 1 corresponds to the network being
confident that it has seen a signal. We use this output as
ranking statistic. Outputs that exceed a threshold, which we
call trigger-threshold, are clustered by their time. Within
each cluster the first time where the output becomes
maximal is picked. The combination of this time and the
corresponding network output is called an event.
The list of events is compared to the known injection

times. If the event is separated from the closest injection by
more than some maximum time it is called a false positive.
Otherwise we consider it a true positive. From these we can
calculate the FAR as well as the sensitive volume as
detailed in [26]. The FAR is given by

FAR ¼ Nf

To
; ð5Þ

where Nf is the number of false positives and To is the
duration of the analyzed data. When the injections are
distributed uniformly in volume the sensitive volume of the
search is given by

VðFARÞ ¼ VðdmaxÞ
NtðFARÞ

Ni
; ð6Þ

where dmax is the maximum distance at which sources are
injected, VðdmaxÞ is the volume of a sphere with radius
dmax, Ni is the total number of injections and NtðFARÞ is
the number of true positives at a given FAR. The FAR can
be adjusted by considering only events above a given
threshold. To convert the sensitive volume to a distance we
calculate the radius of a sphere of the given volume.
We use a p-score of 0.1 as our trigger-threshold. Triggers

are said to belong to a cluster if they are within 0.2 s of the
cluster bounds. An event is called a true-positive if there
was an injection within 0.3 s of the reported event time.
Otherwise it is a false-positive. We chose the cluster
boundary time as twice the step size to allow for modest
smoothing of the network output, while keeping it short
compared to the average duration of a signal [Oð1 sÞ]. The
maximum separation between an event and the correspond-
ing injection was chosen to be larger than the cluster
boundaries but still small compared to the average signal
duration. None of these parameters were optimized.
Figure 1 shows example output from one of the net-

works. The top panel shows the raw input with the injected
waveform overlayed in black. The injection time is marked
with a red vertical line and the grey lines highlight �0.3 s
where events are true positives. The bottom panel shows the
network output for the corresponding time. The black
vertical lines show the events returned by the search.

C. Training strategies

The two initial publications by George et al. [21] and
Gabbard et al. [23] disagree on the usefulness of curriculum
learning. Whereas George et al. find a noticeable improve-
ment by using curriculum learning, Gabbard et al. find no
difference in the final performance of the network.
We aim to determine the impact curriculum learning has

on the final performance and speed of convergence of these
networks. By doing so we optimize the sensitivity of the
networks tested here and hope that our findings generalize
also to state-of-the-art machine learning search algorithms
[25,26,32,49].
Our study contains 10 curriculum learning and 5 fixed

interval training strategies. An overview can be found in
Table III. The minimum SNR allowed in any of these
strategies is ≥5. We choose SNR 5 as a lower bound as this
is roughly the lowest single detector SNR at which signals
seen in multiple detectors can be confidently distinguished
from noise [2,3].
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We test 5 different conditions for the optimal SNR
contained in the training data for both types of strategies.
For curriculum strategies, these conditions prescribe when
the SNR of the training data is lowered. For fixed interval
strategies the conditions are the interval from which the
SNR for each sample is drawn.
Curriculum strategies use either the validation loss, the

validation accuracy, or the number of epochs since the last
step as conditions. For validation loss and validation
accuracy we choose either a threshold or wait until the
values stabilize and do not improve anymore. The latter are
labeled by a prefix “plateau” throughout this paper. We
choose a threshold of 0.95 for the validation accuracy and
0.2 for the validation loss. These values are arbitrary but
proved to work well. When using the plateau conditions we
lower the training range when the validation loss or
validation accuracy, respectively, do not improve by more
than 0.01% for 6 consecutive epochs. Finally, we also test

lowering the training SNR irrespective of any of the
metrics, by waiting 5 epochs between steps. We choose
to wait 5 epochs to allow the network enough time at each
signal strength while ensuring we reach the minimum SNR.
No extensive studies testing different values were made.
We test two different approaches to lowering the training

SNR. All curriculum strategies start with SNRs which are
uniformly drawn from the interval [90, 100]. Strategies that
are given the postfix “relative” lower the bounds of this
interval by 10% at each step. The ranges are not lowered
further when the lower bound of the interval reaches
SNR 5. Strategies without the postfix “relative” lower
the bounds of the interval by a fixed value of 5 at each step.
This procedure is also continued down to a minimum
bound of SNR 5.
For fixed interval training strategies we test training on a

single SNR as well as a fixed size interval of SNRs. We
choose to train on fixed single SNRs 8, 15 and 30 to cover
the low, mid and high SNRs respectively. Training on a
single SNR allows us to test how well the network
generalizes to lower and higher SNRs than it has seen
during training. By drawing the SNR from an interval we
aim to reduce the dependence on a specific signal strength.
We choose two strategies that draw SNRs from a fixed

FIG. 1. A sample output from the network on long duration
data. The top panel shows the whitened input data. The injected
signal is overlayed in black. The red vertical line signifies the
time of the injection, i.e., the time that would ideally be returned
by the search algorithm. The vertical grey lines mark the interval
within which a returned event is classified as a true positive. The
bottom panel shows the output of the network corresponding to
the input. The vertical red and grey lines, again, show the true
injection time and the allowed interval for true positives respec-
tively. The black vertical lines mark the events returned by the
search. Their height is the p-score attributed to the event. While
the first event is a true positive, the second event is a false-positive
originating from noise.

TABLE III. An overview of the different training strategies
tested in this work. The “curriculum” type strategies lower the
SNR of the training samples whenever the condition in the last
column is fulfilled. All of them start with SNR ∈ ½90; 100�.
Curriculum strategies with the postfix relative in their name lower
the boundaries of the interval by 10% at each step, until the lower
limit falls below SNR 5. The other curriculum strategies lower the
bounds by a fixed value of 5, until the lower limit reaches SNR 5.
A metric fulfills the plateau condition when it has not improved
by more than 0.01% for 6 consecutive epochs. The “fixed
interval” type strategies use a single SNR range for the entire
training. Their interval is given in the last column.

Type Name Condition

Curriculum

Accuracy When validation
accuracy ≥0.95Accuracy relative

Epochs
Every 5 epochs

Epochs relative
Loss

When validation loss ≤0.2
Loss relative

Plateau accuracy
6 epochs validation

accuracy plateau
Plateau accuracy

relative
Plateau loss 6 epochs validation

loss plateauPlateau loss relative

Fixed
interval

SNR 30 SNR ¼ 30
SNR 15 SNR ¼ 15
SNR 8 SNR ¼ 8
Low SNR ∈ ½5; 15�
Full SNR ∈ ½5; 100�
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range. One covers only the lowest range used by any of the
nonrelative curriculum strategies, i.e., it draws the signal
SNRs from the interval SNR ∈ ½5; 15�. The other draws the
SNRs from the entire range of SNRs seen by the curriculum
strategies, SNR ∈ ½5; 100�.

D. Matched-filter baseline

In order to assess how sensitive the trained networks are
in relation to conventional searches, we perform a matched-
filter analysis of the test set described in Sec. II A. To do so,
we utilize the PyCBC analysis toolkit [50].
The template bank covers component masses from

10 M⊙ to 50 M⊙ and is constructed to lose no more than
3% of the SNR of any signal due to its discreteness.
The templates are placed stochastically. In total, the bank
contains 598 templates.
The search is implemented by pycbc_inspiral. We

configured it to output a set of times where any template of
the bank convolved with the data exceeds a matched-filter
SNR of 5. Unlike the optimal SNR, the matched-filter SNR
is the match of a detector data segment with a template, and
so it varies based on the noise realization, while the optimal
SNR assumes a noise realization that is constant zero.
Combining the times where the threshold is exceeded with
the corresponding matched-filter SNR and by using this
SNR as ranking statistic, we obtain a set of triggers. We
then process these triggers as described in Sec. II B to find
events and calculate FARs and sensitive distances.
The configuration files are included in the data

release [39].

III. RESULTS

A. Sensitivities

We are able to reproduce or in some cases even improve
on the results given in [23]. The top panel of Fig. 2 shows
the efficiency of one network as a function of the SNR at
fixed FAPs calculated on the efficiency set. We compare
our findings to theirs and find excellent agreement with the
results shown in Fig. 3 of [23], which closely reproduced
efficiencies of matched filtering. The efficiencies at FAPs
down to 10−3 for most other training strategies also closely
follow the findings of Gabbard et al.We are, therefore, able
to robustly reproduce the findings of [23].
In Fig. 3 we show the evolution of the efficiency of the

50 networks trained on the fixed interval SNR ∈ ½5; 15� as
the number of training epochs is increased at a FAP of 10−4.
Each panel of the plot shows the efficiency for a chosen
SNR which allows us to observe how well the networks
perform during different stages of the training at different
signal strengths. This is especially interesting for curricu-
lum strategies, where the SNR in the training set is adjusted
as the network trains. The grey lines show the evolution of
the efficiency for the different network initializations.
The black, dashed line is the average of the grey lines.

We highlight the evolution of a single network in dark grey.
The red, dashed, vertical line signifies the epoch of
maximum efficiency over all 50 networks and 200 epochs.
All networks in Fig. 3 converge to similar efficiencies

during the first ∼100 epochs. However, as training con-
tinues sudden drops to zero efficiency occur which become
more frequent at later epochs. As a result the average
efficiency drops continuously after some time. All net-
works show this behavior and thus the influence of an
unlucky initialization can be ruled out. Furthermore, the
drops are observed at all SNRs simultaneously and, there-
fore, do not depend on the signal strength.
The same effect can be seen in the top panel of Fig. 2.

For FAPs ≥ 10−3 the curves behave as expected. As one
lowers the FAP the efficiency at any given SNR is expected
to drop. Visually this manifests in a shift of the efficiency
curves toward higher SNRs. Ideally, this behavior would

FIG. 2. The efficiency as a function of optimal SNR at different
FAPs. The network was trained on SNRs drawn from the fixed
interval [5, 15]. We used epoch 186 of the network with the
lowest efficiency at that epoch to produce this figure. The top
panel shows the efficiency when the last layer uses a Softmax
activation, the bottom panel shows the same network with the
USR modification. We determine the threshold on the network
output using a set of 400 000 pure noise samples. Any of the
10 000 signals at each SNR exceeding this threshold are counted
as detected. We compare our findings to Fig. 3 of Ref. [23] which
closely reproduces efficiencies of matched filtering.
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be true for any FAP. However, at a FAP of 10−4 the
efficiency collapses and becomes a constant 0.
The drops to zero efficiency are caused by noise samples

which are attributed a p-score of 1. Since the Softmax
activation on the last layer restricts outputs to the interval
[0, 1], no signal samples can achieve a p-score larger
than the threshold and thus they cannot be distinguished
from noise.
Many of the noise samples attributed a p-score of 1 are

caused by numerical rounding errors in the Softmax
activation

SoftmaxðxÞi ¼
expðxiÞP
N
j¼0 expðxjÞ

; ð7Þ

where x ¼ ðx0; x1;…; xNÞ is the vector of outputs of the
previous layer in the network, and N þ 1 is the number of
neurons in the layer.
The networks operate with single precision (32-bit)

floating point numbers. Therefore, small changes in the
values of x may cause a roundoff error due to the rapid
change in scale of the exponential functions. When this
occurs, the fraction may evaluate to 1 even when math-
ematically (7) may never be 1.
We removed the final activation of the pre-trained

network in an attempt to avoid the rounding errors. To
do so, we recast (7) for N ¼ 1 into

expðx0Þ
expðx0Þ þ expðx1Þ

¼ 1

1þ exp ðx1 − x0Þ
; ð8Þ

and impose thresholds for the efficiency calculation on the
difference x0 − x1 directly rather than SoftmaxðxÞ0. Since
(8) is bijective, there exists a direct relation between
thresholds in x0 − x1 and the thresholds on SoftmaxðxÞ0.
We use x0 − x1 rather than x1 − x0 as our ranking statistic
since x0 − x1 > x̂0 − x̂1 ⇔ SoftmaxðxÞ0 > Softmaxðx̂Þ0.
We call this modification unbounded Softmax replacement.
The resulting efficiency is depicted in the bottom panel

of Fig. 2. Figure 4 shows the efficiency evolution at
different optimal SNRs. We find that the drops to zero
efficiency vanish when we apply USR. This is the case for
all training strategies we explored and more examples are
shown in the Appendix (see Fig. 9–12).
One could also try to resolve the rounding issue by using

double precision (64-bit) floating point numbers instead of
single precision when applying the Softmax layer. We have
tested a numerically safe implementation of the Softmax
and found that its first output is rounded up to one even
for quadruple (128-bit) precision when the difference
x0 − x1 > 45. This is a relatively low value that indeed
occurs for some noise realizations in our experiments.
Although using higher precision for the Softmax layer
increases the range of values it can operate on, the USR still
solves roundoff issues more robustly.

FIG. 3. The evolution of the efficiency as a function of the epochs at different optimal SNRs. Training used the fixed SNR interval
[5, 15]. The individual evolutions of all 50 runs are included as grey curves that form overlapping grey bands when plotted together. The
dashed black line is the average of those. In dark grey we highlight the evolution of the efficiency for a single network. At the epoch
marked by the red, dashed, vertical line we select the network with the highest, lowest and closest to average efficiency for further
testing. The curves are computed at a FAP of 10−4.
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The efficiency is a metric that is easy to calculate and
physically more relevant than the accuracy of the network.
However, it does not deal with samples where waveforms
are misaligned in the data or take into account longer
stretches of time. It is, therefore, only an approximation to
the true statistic we want to calculate: the sensitive volume.
To assess if the efficiency is a good approximation to this

statistic, we calculate the sensitive volume of three chosen
networks for every training strategy as described in
Sec. II B. The networks are chosen from the 50 different
initializations based on their efficiency at a selected epoch.
We pick the networks with the highest, lowest and closest
to average efficiency and denote them with “High,” “Low,”
and “Mean,” respectively, from here on out. If the efficiency
at a fixed FAP is a good indicator of the networks
sensitivity we expect the sensitive volume to scale with
the efficiency.
Figure 5 shows the sensitive distance as a function of the

FAR computed for the three networks trained on the fixed,
low SNR interval. It compares the networks with (dashed)
and without (continuous) the final Softmax activation and
shows an equivalent matched-filter search in purple as
reference. We find that the network is sensitive to sources
up to a distance of 2150 Mpc with 1 false alarm per month.
The sensitive radii of all converged deep learning

searches lie within 3.4% of each other for FARs where
all of them are nonzero. However, the sensitivity of the

FIG. 4. The evolution of the efficiency as a function of the epochs at different optimal SNRs. Training used the fixed SNR interval
[5, 15]. The individual evolutions of all 50 runs are included as grey curves that form an overlapping grey band when plotted together.
The dashed black line is the average of those. In dark grey we highlight the evolution of the efficiency for a single network. At the epoch
marked by the red, dashed, vertical line we select the network with the highest, lowest and closest to average efficiency for further
testing. The curves are computed at a FAP of 10−4. This figure shows the same networks as Fig. 3 after applying USR. This prevents the
efficiency to drop to 0.

FIG. 5. The sensitive distance as a function of the FAR (bottom
horizontal axis) for different search algorithms. We compare
differently initialized networks trained on data containing signals
with SNR ∈ ½5; 15� to an equivalent matched-filter search. The
dashed lines show the original networks, the filled lines show the
corresponding network when USR is applied. The labels “High”
(green), “Mean” (yellow) and “Low” (red) correspond to the
networks with the highest, closest to average and lowest
efficiency at epoch 186, respectively. In purple we show the
equivalent matched-filter search that operates with a template
bank containing 598 templates. The top horizontal axis shows the
SNR threshold for the matched-filter search corresponding to the
FAR on the bottom axis.
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networks with the final Softmax activation drops to zero for
FARs ≤ Oð103Þ per month. This drop is caused byOð103Þ
false alarms with a p-score of 1. This saturation of the final
activation can be alleviated by applying the USR modifi-
cation and using the new output as a ranking statistic.
All tested networks have also been reevaluated using

higher precision floating point data types for the final
activation function evaluation (example shown in Fig. 6).
This resulted in the networks remaining sensitive at FARs
down to 3 per month. However, applying the USR
modification allowed us to test the network down to a
FAR of 1 per month. Additionally, casting to a higher
precision considerably increases computation time in the
network due to hardware optimizations of GPUs for single
precision floating point operations. In our view, the
effectiveness of the USR outweighs the benefits of using
higher precision, hence we only report results obtained with
the USR modification.
We had expected to find networks with higher efficien-

cies to be more sensitive, even within different initializa-
tions of the same training strategy. As such in Figure 5 we
expected to find the sensitivity curve labeled “High” to be
above the one labeled “Mean” above the one labeled
“Low”. While this is true in the example shown in
Figure 5 in some regions, for other training strategies
the order is arbitrary. All initializations converge to
basically the same sensitivity. Sensitivity plots for all
training strategies are provided in the data release [39].
The machine learning algorithms are compared to an

equivalent matched-filter search, shown in purple in Fig. 5.
All searches perform equally well for FARs ≥ 105 per
month. For smaller FARs the matched-filter search is
sensitive to sources which are up to 200 Mpc farther away.
The deep learning search retains at least 91.5% of the

sensitivity compared to the matched-filter search at
all FARs.
This result shows that with minimal modification to the

architecture the original network from [23] achieves a
sensitivity comparable to matched filtering for short BBH
signals in simulated Gaussian noise even at FARs pre-
viously untested for this particular network architecture.
All results above were obtained on data generated and

whitened by the exact same PSD used during training. For
realistic searches, this assumption does not hold as the PSD
in the detectors drifts over time [51]. To assert that the
network does not depend strongly on the exact PSD used
during training, we also evaluated the sensitivity using a
version of the training-PSD scaled by a constant factor of
1.05 in all frequency bins. This reduced the sensitive
distance at all FARs by roughly 1=

ffiffiffiffiffiffiffiffiffi
1.05

p
, in agreement

with the theoretical expectation.
We also tested the effects of using a realistic variation of

the PSD. To determine the variation, we used 20 PSDs
derived on real data from the O3a observing run [52], chose
one as reference, and divided it by all the others. We then
determined the PSD ratio that had the largest mean
deviation from unity and multiplied it with the training
PSD to obtain a realistically varied PSD. Generating and
whitening the data by this varied PSD reduces the sensi-
tivity at FARs below 100 per month to around the same
level as is observed for the scaled PSD.
Finally, we tested whitening by a different PSD than the

one used for generating the data. For this purpose we used a
second PSD variation to whiten the data generated by the
first PSD variation described above. To obtain the second
PSD, we used the PSD ratio that had the smallest, instead of
the largest, mean deviation from unity. This simulates a
worst-case scenario for realistic PSD variations. We find
that the sensitivity drops by as much as 20% compared to
using the correct PSD for whitening. This analysis shows
that the network is robust against differences between the
training PSD and the PSD of the analyzed data, as long as
the correct PSD is used for whitening.

B. Training strategies

We trained 50 networks for every training strategy
discussed in Sec. II C. Figure 7 shows the evolution of
the efficiency at SNR 9 for every training strategy. The
networks use a Softmax activation on the final layer.
While we also monitor different SNRs, it is this region
we are most interested in for three reasons. The first is
practical in nature. Above an SNR of 9 networks trained
with almost all training strategies recover close to 100% of
the signals. It is, therefore, impossible to separate them by
efficiency. Second, most GWs are expected to be detected
at low SNRs [53]. Hence, efficiency at low SNRs is most
important. Lastly, SNR 8 is often used as a threshold above
which matched-filter searches can comfortably detect most
signals (compare Fig. 5). By probing the efficiency close to

FIG. 6. Sensitivity of the “mean” run of the “fixed low” strategy
using the Softmax layer of various floating point precisions as
well as the USR. A similar behavior of USR performing at least
as well as the Softmax with all precisions was observed in all 45
evaluated runs.
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FIG. 7. The efficiency for all 15 tested training strategies as a function of the training epochs at SNR 9 and a FAP of 10−4. The light
grey curves show the efficiency for the 50 independent initialized training runs. The black dashed line shows the average over these
individual runs. We highlight the evolution of a single run in dark grey. The vertical, red, dashed line signifies the epoch with the largest
efficiency. We choose 3 networks at this epoch for which to calculate the sensitive volume.
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FIG. 8. The efficiency for all 15 tested training strategies as a function of the training epochs at SNR 9 and a FAP of 10−4. The light
grey curves show the efficiency for the 50 independent initialized training runs. The black dashed line shows the average over these
individual runs. We highlight the evolution of a single run in dark grey. The vertical, red, dashed line signifies the epoch with the largest
efficiency. We choose 3 networks at this epoch for which to calculate the sensitive volume. This figure shows the same networks as
Fig. 7 with the USR modification applied. With this modification the efficiency stays >0 at all times.
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this threshold we can get a sense of how well the search is
doing overall.
Most training strategies do not have a major impact on

the maximum efficiency. With the exception of training
with a fixed SNR 15 and 30 all converged networks reach
efficiencies of 90% (“Fixed full range”) to 94% (“Fixed
8”). At SNR 6 the efficiency consistently drops to 24%
(“Fixed full range”) to 33% (“Loss relative”) for all
converged networks other than the above mentioned
exceptions. Above an SNR of 12 the efficiencies reach
100% for all networks except “Fixed 15” and “Fixed 30.”
Those only achieve 100% efficiency at SNR 15 and 21
respectively.
The relative plateau strategies did not manage to con-

verge within the first 200 epochs. For these, we have
extended the training length to 400 epochs, which has
allowed these runs to converge. They have reached com-
parable efficiencies to those mentioned above.
The main difference between all runs is the number of

epochs required to reach a converged state. One can see that
strategies which supply low SNR signals earlier reach their
maximal efficiency earlier. This is especially emphasized
with the runs “Fixed 8,” “Fixed full range,” and “Fixed low
range.” The curriculum strategies that use the accuracy or
loss as their condition also converge quickly. They too
supply low SNR samples very early on, as the respective
condition is fulfilled at each of the first few epochs. Waiting
for a set number of epochs to pass hinders the ability of the
network to see low SNR signals early on and, therefore,
takes more time to converge. The slowest converging
strategies wait for the loss or accuracy to stop improving.
They effectively have to wait at least 6 epochs before
lowering the training range. Using a relative approach to
lowering the SNR range further decreases the speed at
which low SNRs are explored. In the most extreme cases
the networks do not converge within the given number of
epochs.
Finally, some training strategies become unstable toward

the end. All of these unstable strategies converge relatively
fast. This suggests that the longer one trains a converged
network the more likely the efficiency is to collapse. We,
therefore, expect that strategies where the efficiency did not
collapse during the first 200 epochs would see a similar
problem during later epochs.
The breakdown of the efficiency was resolved by the

USR modification in Sec. III A. Figure 8 shows the
evolution of the efficiency at SNR 9 when this fix is
applied. We find that the drops to zero efficiency are
removed but the qualitative features of the efficiency curves
stay the same.
All efficiency plots were generated from the TensorFlow

version of the networks. When training with PyTorch we
found the results virtually indistinguishable from the
TensorFlow version.
We repeated our tests on networks with different

capacities, although this was not the main focus of the

present work, to ensure that our findings are robust against
a few specific architecture changes. We found no signifi-
cant differences in the final efficiency, although the speed
of training convergence varied. Such studies are left to
future work.

IV. CONCLUSIONS

In this paper, we revisited the first deep learning GW
search algorithms and compared them directly to a
matched-filter search. We showed that for the considered
parameter space and for a single detector the networks
retain performance closely following matched filtering
even on long duration continuous datasets and when
considering FAR thresholds down to once per month.
While there are now more sophisticated deep learning
algorithms available that enhance the capabilities of the
first proofs of concept, we think that there is still a lot to be
learned from these first steps.
Our initial focus was the optimization of the data

presentation to these networks. Two kinds of training
strategies were previously explored; curriculum learning,
where training samples become more difficult to classify as
training continues, and fixed interval training, where the
complexity of the training set stays constant.
We found that the particular strategy is of little impor-

tance to the eventual performance of the network. It
depends a lot more on the presence of sufficiently complex
samples in the training set. In particular, we found that the
networks are able to generalize low SNR signals to high
SNR ones but not vice versa.
On the other hand, the training strategy does have an

impact on the time it takes the network to converge. Since
high SNR examples are not as important to the performance
of the network, strategies that provide low SNR samples
earlier converge faster. In conclusion, we recommend
training deep learning search algorithms on a fixed range
of low SNR signals.
We use efficiency as our metric of performance during

training. As this statistic has been used in previous
publications, it allows us to verify that we have converged
to the expected performance.
The efficiency at FAPs ≤ 10−4 dropped to zero when

networks were trained for extended periods of time. This
was unexpected and limited our ability to test the search.
We found the drops in efficiency to be caused by

numerical instabilities in the final activation function of
the networks. By removing the Softmax activation on the
final layer and imposing thresholds directly on the linear
output of the network, we were able to lift the limitations on
the testable FAPs. This USR modification has proven to be
simple and effective, as no retraining of the networks is
required and virtually unlimited low FAPs can be tested.
To compare the deep learning based searches to an

equivalent matched-filter search we calculated the sensitive
volumes as functions of the FARs on a month of simulated
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data. We found that the machine learning algorithm is able
to closely follow the performance of the traditional algo-
rithm even down to FARs of 1 per month, when USR
is used.
The results given here are limited to a single detector,

Gaussian noise and signals from BBHs, which are rela-
tively short in duration and comparatively simple to detect
with existing methods. Parts of the parameter space, like the
inclusion of higher-order modes [15], eccentricity [17], or
precession [16], where current searches are computation-
ally limited, are not yet included. However, it is expected
that neural networks may generalize efficiently to these
more difficult signals. Deep learning detection algorithms
for spinning black holes with precession were recently
explored for the first time by [49]. There is also ongoing
work to construct neural network searches targeting long
duration signals [25,26,47,54]. Considering real noise may
enable deep learning algorithms to outperform matched
filtering, which is only known to be optimal for stationary
Gaussian noise. Multiple studies have shown that neural

networks adapt well to nonstationary noise contaminated
with glitches [22,47,49,55].
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APPENDIX: EFFICIENCY CURVE EXAMPLES

This appendix provides examples of the usefulness of
USR for various training strategies explored in this paper.
The plots show the efficiency as a function of training
epochs at 4 distinct SNRs with and without the application
of the USR. For both shown examples the USR manages to
remove the efficiency breakdown entirely.

FIG. 9. Efficiency evolution of the “Accuracy relative” strategy using the Softmax output as a ranking statistic.
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FIG. 10. Efficiency evolution of the “Accuracy relative” strategy using the USR modification.

FIG. 11. Efficiency evolution of the “Fixed 30” strategy using the Softmax output as a ranking statistic.
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