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Abstract

A new method for integrated ionic liquid (IL) and absorption process design is pro-

posed where a rigorous rate-based process model is used to incorporate absorption

thermodynamics and kinetics. Different types of models including group contribution

models and thermodynamic models are employed to predict the process-relevant

physical, kinetic, and thermodynamic (gas solubility) properties of ILs. Combining the

property models with process models, the integrated IL and process design problem

is formulated as an MINLP optimization problem. Unfortunately, due to the model

complexity, the problem is prone to convergence failure. To lower the computational

difficulty, tractable surrogate models are used to replace the complex thermodynamic

models while maintaining the prediction accuracy. This provides an opportunity to

find the global optimum for the integrated design problem. A pre-combustion carbon

capture case study is provided to demonstrate the applicability of the method. The

obtained global optimum saves 14.8% cost compared with the Selexol process.
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1 | INTRODUCTION

Gas separation is an inevitable process in many industries. Several tech-

nologies such as absorption, adsorption, and membrane separation are

available for gas separation. Among these existing technologies, solvent-

based absorption is a mature and easy-to-operate one. Its industrial appli-

cations include carbon capture, natural gas sweetening, dehydration, and

so on.1 It is known that the core for employing absorption processes lies

in the use of high-performing solvents, the search for new advanced sol-

vents is essential to enhance the performance of absorption processes.2

Ionic liquids (ILs) are regarded as potential alternatives to

organic solvents for gas separation due to their superior gas

solubility, low volatility as well as chemical and thermal stability.3,4

However, the number of ILs is almost infinite when considering the

large number of anions, cations, and substituent groups. Clearly,

using the traditional trial-and-error method is inefficient for

selecting optimal ILs.5 So far, many efforts have been made on com-

putational IL screening. For the purpose of IL absorbent screening,

various predictive models such as ab initio calculations, equations of

state (EOS), and activity coefficient models (e.g., COSMO-RS) have

been utilized to estimate the thermodynamic properties of ILs

(mainly gas solubility).5–9 Although these approaches can efficiently

screen ILs with desired properties, they are limited by the number

of available IL candidates in the databases. To further expand the
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search space and find new promising ILs, a systematic approach for

IL design is highly necessary.

Computer-aided design methods have been developed and suc-

cessfully applied for both organic solvent design10–13 and IL solvent

design.14–17 For computer-aided ionic liquid design (CAILD), an IL

molecule is decomposed into different structural groups and its prop-

erties are calculated using quantitative structure–property relation-

ship models (e.g., group contribution models). With these, the IL

molecular structure is optimized to achieve desired properties through

the formulation and solution of a mixed-integer optimization prob-

lem.17 For predicting IL physical properties (e.g., melting point and

boiling point), simple linear group contribution (GC) models are suit-

able and can be easily applied.18–20 Besides, for predicting thermody-

namic properties (e.g., activity coefficient and solubility) of IL systems,

the nonlinear GC-based UNIFAC models are often used.21,22 In order

to make accurate predictions, the involved UNIFAC model parameters

for IL systems have been extensively fitted from experimental

data.23,24

No matter which type of solvent (organic or IL) is used, it ulti-

mately serves a specific process and the process performance

depends on the solvent selection and process operations.25 Given the

strong interdependency between these two issues, integrated solvent

and process design is always preferred for enhancing the overall pro-

cess efficiency.26–28 For absorption processes, the left of Figure 1

shows that such an integrated design problem needs to consider the

variations at the interlinked molecular, phase, and process levels. In

the literature, a few efforts have been made on the integrated solvent

and absorption process design.28–31 However, the existing studies

only considered the absorption thermodynamics in the phase level so

that relatively simple absorption process models can be applied. In

fact, absorption kinetics can dominate over the thermodynamics. For

instance, the key role of absorption kinetics over thermodynamics in

IL selection for CO2 capture has been revealed.32–34 Ignoring kinetics

can lead to sub-optimal or even poor solutions for absorption process

development. To identify truly optimal solvent and absorption pro-

cess, a rigorous rate-based absorption process model that incorpo-

rates absorption thermodynamics and kinetics should be used. In this

work, a new computer-aided IL and process design (CAILPD) method

is developed based on the rigorous rate-based absorption process

model where the effects of ILs on absorption thermodynamics and

kinetics are simultaneously considered. This approach can theoreti-

cally provide a better and more comprehensive design on gas absorp-

tion processes.

Note that for a given solvent, the optimization of rigorous rate-

based absorption processes has been studied.35 However, no one has

used the rate-based process model for integrated solvent and absorp-

tion process design. The main reason is that such design problems

usually lead to challenging mixed-integer nonlinear programming

(MINLP) problems, especially when complex thermodynamic models

are used.25,36 Thus, an efficient solution strategy is highly desired to

solve the complex integrated design problems. Recently, surrogate

models that are constructed from reliable data to substitute compli-

cated physical models have been widely adopted in process optimiza-

tion.37,38 This can effectively lower the computational difficulty while

maintaining the model reliability. Although surrogate modeling is not a

new technique for process design, it is still not clear whether and how

surrogate models should be used to solve integrated solvent and pro-

cess design problems, particularly when multiple models can be

substituted. Thus, it motivates us to properly incorporate surrogate

model into the proposed CAILPD framework for achieving a conver-

gence to global optimality that usually cannot be obtained otherwise.

The article is organized as follows. First, the general CAILPD method-

ology and framework are introduced. Afterward, the CAILPD

approach is applied and demonstrated on a pre-combustion carbon

capture case study.

2 | COMPUTER-AIDED IONIC LIQUID AND
PROCESS DESIGN METHODOLOGY BASED
ON HYBRID MODELS

The proposed CAILPD methodology is illustrated in Figure 1. The

absorption system contains three interlinked levels: molecular, phase,

and process. The design variables consist of IL molecular structures

and process operating conditions which together affect the absorp-

tion kinetics and thermodynamics. The rate-based absorption process

F IGURE 1 The General CAILPD methodology based on hybrid models
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model is used to capture both effects. In addition, the equipment sizes

and process costs can be calculated. Such a multilevel design problem

is formulated as an MINLP problem. The objective is to minimize the

process cost while fulfilling multiple constraints. Traditionally, the

thermodynamic property (i.e., equilibrium gas solubility) is calculated

by GC-based predictive models such as UNIFAC-IL and Peng–

Robinson (PR).9,39 Our idea is to construct a mathematically simple

but reliable surrogate model for predicting the gas solubility based on

existing experimental data. Along with other physical models, a hybrid

model-based design formulation is formed. This enables us to pursue

global optimization of the resulting MINLP problem, which can pro-

vide a better and more comprehensive absorption process design. The

detailed modeling framework is described below. Note that both the

two treatments of thermodynamics are included for better compari-

son and demonstration of the advances of our proposed method.

3 | COMPUTER-AIDED IONIC LIQUID AND
PROCESS DESIGN MODELING FRAMEWORK

Figure 2 shows the modeling framework for computer-aided ionic liq-

uid and rate-based absorption process design. The design problem

can be decomposed into two main steps, a forward prediction or sim-

ulation step (blue solid lines) and a reverse design or optimization step

(red dash lines). The forward step relates IL molecular structure and

process operating conditions with the final process performance via

different types of models. As illustrated, the effects of ILs on the mass

transfer coefficient of absorption are quantified by employing QSPR

or group contribution (GC) models and certain correlation equations.

On the other hand, gas fugacity and activity coefficients in the vapor

and liquid phases can be predicted by traditional thermodynamic

models and the equilibrium gas solubility is then calculated through

the solution of the vapor–liquid equilibrium (VLE) equation. Alterna-

tively, the thermodynamic equilibrium solubility can be directly

predicted by surrogate models. Substituting the mass transfer coeffi-

cient and thermodynamic driving force into the rate-based absorption

model, the corresponding process performance can thus be evaluated

for a given IL and process condition. After completing the forward

step, the best IL structure and optimal process conditions can be

reversely identified by solving an MINLP problem where the process

performance is optimized considering all the models or equations as

well as IL structural constraints. The proposed method and framework

are illustrated using a pre-combustion carbon capture example.

4 | COMPUTER-AIDED IONIC LIQUID AND
PROCESS DESIGN FOR PRE-COMBUSTION
CARBON CAPTURE

4.1 | Representation of ionic liquids

The first step for designing ILs is to decompose them into different

building blocks. ILs can be represented in different ways. In this work,

an IL is decomposed into an anion, a cation core, and substituents

linked to the cation core. This representation can provide large design

space and flexibility.40 Taking 1-propyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)imide [C3mim][Tf2N] as an example (see

Figure 3), this IL is constituted by an anion “Tf2N,” a cation core

“MIm,” and 3 substituent groups including 1 “aN_CH2,” 1 “CH2,”
and 1 “CH3.”

In the present work, 23 anions, 12 cation cores, and 17 cation

substituent groups are considered for the IL design, as listed in

Table 1. Each generated IL is denoted by a vector n¼ n1,…,ni ,…,nN½ �
where N = 52 and the element ni represents the number of the ith

building group presented in the IL molecule. Note that only the

F IGURE 2 Systematic
modeling framework for
computer-aided ionic liquid and
rate-based absorption process
design

F IGURE 3 Representation of building groups of ionic liquids
exemplified for [C3mim][Tf2N]
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abbreviations of groups are given and their molecular structures are

shown in Table S1. In addition, their contributions to properties

(e.g., molecular weight, melting point, etc.) and the upper bounds in

the CAILPD program are listed in Table S1 as well. These contribu-

tions are considered as parameters in the following sections. Note

that the nomenclature is presented at the end of the Appendix S1.

4.2 | Ionic liquids structural constraints

To generate a feasible IL, certain structural constraints must be satis-

fied. A feasible IL consists of only one anion and one cation

(Equations 1 and 2). Equation (3) shows that the number of each con-

stituent group should be non-negative and less than its upper bound

nuppi . The total number of constituent groups including cation, anion,

and substituent groups is between 2 and 8.

X
i � Ganion

ni ¼1 ð1Þ

X
i � Gcation

ni ¼1 ð2Þ

0≤ ni ≤ n
upp
i 8i�Gtot ð3Þ

2≤
X
i � Gtot

ni ≤8, Gtot ¼ Gcation,Ganion,Gsubf g ð4Þ

Since cation substituents in a normal IL are acyclic, the simple octet rule in

Equation (5) ensures that an IL has zero valency. PVAi is the valency of

the ith constituent group. Note that when monocyclic or bicyclic cat-

ion substituents are open for consideration, a more general formula-

tion can be derived from Ref. 41. The modified bonding rule in

Equation (6) ensures that two adjacent groups in an IL are not linked

by more than one bond.

X
i � Gcation[Gsub

ni � 2�PVAið Þ¼2 �q, q¼1 for acyclic cation substituents

ð5Þ

ni � PVAi�1ð Þþ2≤
X

j � Gcation[ Gsub

nj, 8i� Gcation,Gsubf g ð6Þ

Based on the chemical intuitions, two functional groups are generally

not linked to one single carbon atom. Thus, Equation (7) means that

the total number of functional substituent groups is no more than

that of the alkyl substituent groups. Gfg and Gag are the sets of func-

tional and alkyl substituent groups, respectively. The detailed classifi-

cation of cation substituent groups are given in Table 2.

X
i � Gfg

ni ≤
X
j � Gag

nj ð7Þ

Considering the structural characteristics of normal ILs, the structural

complexity of ILs is refined using Equations (8)–(11). Equations (8) and

(9) ensure that the total number of ether and hydroxyl groups (Geh ) is

less than 2 and less than the total number of non-CH3 alkyl groups

(GnCH3
), respectively. In addition, the total number of fluorized alkyl

groups (Gfag ) is less than 2 (Equation 10). Ether and hydroxyl groups

and fluorized alkyl groups cannot exist simultaneously (Equation 11).

X
i � Geh

ni ≤2 ð8Þ

X
i � Geh

ni ≤
X

j � GnCH3

nj ð9Þ

X
i � Gfag

ni ≤2 ð10Þ

TABLE 1 Anions, cations, and cation substituent groups
considered for IL design

Anions

(Ganion)

BF4, Cl, DCA, NO3, PF6, SCN, C(CN)3, HSO4, Tf2N,

BETA, FOR, TFA, C3F7CO2, MeSO4, EtSO4,

MDEGSO4, MeSO3, TfO, NfO, TDfO, TOS,

C12H25PhSO3, methide

Cations

(Gcation)

Im13, MIm, MMIM, Py, MPyrro, MPy, MPip, NH3,

NH2, NH, N, P

Substituents

(Gsub)

CH3, N_CH3, P_CH3, aN_CH3, cycN_CH3, CH2,

N_CH2, P_CH2, aN_CH2, cycN_CH2, CH, N_CH,

OCH2, OCH3, CF2, CF3, OH

TABLE 2 Classification of cation substituent groups

Alkyl group (Gag) CH3, N_CH3, P_CH3, aN_CH3, cycN_CH3,

CH2, N_CH2, P_CH2, aN_CH2,

cycN_CH2, CH, N_CH

Non-CH3 alkyl group

(GnCH3 )

CH2, N_CH2, P_CH2, aN_CH2, cycN_CH2,

CH, N_CH

Functional group Gfg

� �
OCH2, OCH3, OH, CF2, CF3

Ether and hydroxyl

group (Geh)

OCH2, OCH3, OH

Fluorized alkyl group

(Gfag )

CF2, CF3

Alkyl group linked to

aromatic nitrogen

(GaN)

aN_CH3, aN_CH2

Alkyl group linked to

cyclic nitrogen (GcycN)

cycN_CH3, cycN_CH2

Alkyl group linked to

acyclic nitrogen (GN)

N_CH3, N_CH2, N_CH

Alkyl group linked

to acyclic

phosphorous (GP)

P_CH3, P_CH2

CH3 group directly

linked to cation

(GDCH3
)

N_CH3, P_CH3, aN_CH3, cycN_CH3

Group not directly

linked to cation (GNDC)

CH3, CH2, CH, OCH2, OCH3, CF2, CF3,

OH
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X
i � Geh

ni �
X

j � Gfag

nj ¼0 ð11Þ

Equations (12)–(16) ensure that the cation is properly linked to the

corresponding substituent groups. GaN and GcycN are the sets of alkyl

groups linked to the aromatic and cyclic nitrogen, respectively. GN and

GP are the alkyl groups linked to acyclic nitrogen and acyclic phos-

phorous, respectively. Based on the cation structures (Table S1),

any alkyl group linked to Im13, MIm, MMIM, Py, or MPy is directly

linked to an aromatic nitrogen. With this, the set GaN is defined. In

addition, the first part of Equation (12) ensures that if any of these

cations is selected, some alkyl groups in GaN should be selected and

the number of the selected GaN groups must match the cation

valency. Meanwhile, Equation (13) ensures that the alkyl groups in the

other sets (i.e., GcycN , GN , and GP ) are not selected. On a similar man-

ner, the other parts of Equation (12) and Equations (14)–(16) are

proposed.

nIm13

2
þnMImþnMMIMþnPyþnMPy

� �
�
X
i∈GaN

niþ nMPyrroþnMPip

� � � X
i∈GcycN

ni

þ nN
4
þnNH

3
þnNH2

2
þnNH3

� �
�
X
i∈GN

niþ
nP
4
�
X
i∈GP

ni ¼1

ð12Þ

nIm13þnMImþnMMIMþnPyþnMPyð Þ �
X

i � GcycN

niþ
X
i � GN

niþ
X
i � GP

ni

0
@

1
A¼0 ð13Þ

nMPyrroþnMPip

� � � X
i � GaN

niþ
X
i � GN

niþ
X
i � GP

ni

 !
¼0 ð14Þ

nNþnNHþnNH2 þnNH3ð Þ �
X

i � GcycN

niþ
X
i � GaN

niþ
X
i � GP

ni

0
@

1
A¼0 ð15Þ

nP �
X

i � GcycN

niþ
X
i � GaN

niþ
X
i � GN

ni

0
@

1
A¼0 ð16Þ

Equations (17)–(20) ensure that if the cation is only linked to CH3, no

other substituent groups can exist. GDCH3
and GNDC are the sets of CH3

group directly linked to cation and group not directly linked to cation,

respectively. For instance, the valency of MIm, MMIM, Py, MPy,

MPyrro, MPip, and NH3 are equal to 1. Clearly, at most one CH3

group can directly be linked to these cations and no other groups from

the set GNDC can exist. This rule is formulated as Equation (17). Simi-

larly, Equations (18)–(20) are developed for the cations with a valency

of 2, 3, and 4, respectively.

nMImþnMMIMþnPyþnMPyþnMPyrroþnMPipþnNH3

� � � 0�
X

i∈GDCH3

ni

0
@

1
A �

X
j∈GNDC

nj ≥0

ð17Þ

nIm13þnNH2ð Þ � 1�
X

i � GDCH3

ni

0
@

1
A �

X
j � GNDC

nj ≥0 ð18Þ

nNH � 2�
X

i � GDCH3

ni

0
@

1
A �

X
j � GNDC

nj ≥0 ð19Þ

nNþnPð Þ � 3�
X

i � GDCH3

ni

0
@

1
A �

X
j � GNDC

nj ≥0 ð20Þ

4.3 | Ionic liquid physical and kinetic property
prediction

Physical and kinetic properties of ILs are required for the rate-based

process modeling. Figure 4 summarizes different models for predicting

the physical and kinetic properties of ILs. The detailed model descrip-

tions are elaborated below.

4.3.1 | Group contribution models to physical
properties

The molecular weight (MW), melting point (Tm ), and boiling point (Tb )

of ILs are calculated using the GC methods in Equations (21)–(23).42,43

PMWi , PTmi , and PTbi are the contributions of the ith group to the

corresponding properties (see Table S1).

F IGURE 4 Models for
predicting the physical and kinetic
properties of ionic liquids
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MW¼
X
i � Gtot

ni �PMWi ð21Þ

Tm ¼288:7þ
X
i � Gtot

ni �PTmi ð22Þ

Tb ¼198:2þ
X
i � Gtot

ni �PTbi ð23Þ

IL molar volume (MV) depends on the temperature (T) and pressure (P)

in Equation (24). The molar volume MV0ð Þ at T0 ¼298:15K and P0 ¼
1:0bar is calculated using the GC approach in Equation (25). PMVi is

the ith group's contribution to molar volume (see Table S1).44

MV¼MV0 � 1þ6:439 T�T0ð Þ
10,000

� �

� 1�0:081� ln 1þ 1þ0:00497 T�T0½ �ð Þ P�P0ð Þ
1950

� 	� �
ð24Þ

MV0 ¼
X
i � Gtot

ni �PMVi ð25Þ

An artificial neural network (ANN) based GC model has been devel-

oped to predict IL viscosity.45 The model consists of three layers

(i.e., input layer, hidden layer, and output layer). Based on the ANN-

GC model, the viscosity (μ) of ILs can be expressed as

μ¼ fANN�GC ni,T,Pð Þ ð26Þ

The detailed model equations are given in Appendix S2.

4.3.2 | Correlation models to physical and kinetic
properties

The density (ρ ) and heat capacity (Cp ) of ILs are calculated using the

following correlation functions.43,46

ρ¼1000�MW
MV

ð27Þ

Cp ¼7:7þ0:226 T�298:15ð Þþ1:918MV
MW

ð28Þ

Moreover, when ILs are used for CO2 absorption in a packed column,

it can be assumed that mass transfer resistance occurs in the vicinity

of gas–liquid interface. With this, the mass transfer coefficient (k) can

be estimated using the Onda' correlation.47,48

k
ρ

1000�μ �g
� 	1

3

¼0:000051�Re
2
3
w � ap �dpð Þ0:4 �Sc�0:5 ð29Þ

where, g is the gravity constant. ap and dp are the specific packing sur-

face area and diameter, respectively. Sc and Dmass are the Schmidt

number and the mass diffusivity coefficient, respectively. The

detailed models to calculate these two variables are given in

Appendix S2.

4.4 | CO2 solubility in ionic liquids

4.4.1 | Rigorous thermodynamic model

Based on thermodynamics, the vapor–liquid equilibrium (VLE) of CO2

determines its solubility in ILs. At equilibrium, the molar fraction of

CO2 in ILs (xeqCO2
) can be expressed as

xeqCO2
¼ φCO2

�yCO2
�P

γCO2
�PsatCO2

ð30Þ

PsatCO2 ¼10�e 12:3312� 4759:46
Tþ156:462ð Þ ð31Þ

φCO2
¼ fPR yj ,T,P

� � ð32Þ

γCO2
¼ fUNIFAC�IL ni ,x

eq
j ,T

� �
ð33Þ

where, yCO2
is the molar fraction of CO2 in the gas phase. PsatCO2 is

the saturated pressure of CO2 (in bar), estimated by the extrapo-

lated Antoine equation in Equation (31). The fugacity coefficient

φCO2
can be predicted using the PR model and the activity coefficient

γCO2
can be calculated by the UNIFAC-IL model.22 xeqj and yj are the

molar fraction of jth component in the liquid and gas phase,

respectively.

4.4.2 | Artificial neural network-based
solubility model

Alternatively, the CO2 equilibrium solubility in ILs can be predicted by

surrogate models. By using ANN and support vector machine algo-

rithms, Song et al.49 recently built two GC-based machine learning

models to predict CO2 equilibrium solubility in ILs. These two models

were developed from a comprehensive database containing more

than 10,000 CO2 solubility data in various ILs at different tempera-

tures and pressures. The mean absolute error and R2 of the two

models are less than 0.03 and larger than 0.97, respectively. These

statistics indicate that the models can give reliable predictions on CO2

equilibrium solubility. Moreover, according to the reported model

errors, the ANN model is slightly better and thus is applied here. The

ANN-GC model consists of a three-layer feed forward network. The

input layer receives IL structure information and temperature and

pressure. The hidden layer comprising of seven neurons transfers the

input to the output layer where the CO2 solubility is finally predicted.

Specifically, the CO2 equilibrium molar fraction xeqCO2
is calculated by

the following equations.

ZHANG ET AL. 6 of 13



NN1
t ¼

X
i

NW1
t,i �niþTW1

t �TþPW1
t �P �yCO2

þbW1
t ,t¼1,…,7 ð34Þ

NN2
t ¼1� 2

1þe2�NN1
t

ð35Þ

xeqCO2
¼
X7

t¼1
NW2

t �NN2
t þbW2 ð36Þ

where, the superscripts 1 and 2 denote the hidden layer and output

layer, respectively. Subscripts t and i are the neuron and IL group indi-

ces, respectively. NW, TW, and PW are weighting factors to IL group

numbers, temperature, and pressure, respectively. bW represents the

bias. All these parameters can be found in Ref. 49.

4.5 | Ionic liquid-based absorption process model

Figure 5 illustrates the schematic diagram of IL-based absorption pro-

cess for CO2 capture. The feed gas is first compressed and cooled

(if necessary) since high pressure and low temperature are favored for

dissolving CO2. Then, the compressed gas is fed to an absorber where

it counter-currently contacts with the ILs. Meanwhile, CO2 goes into

the IL phase while other gases remain in the gas phase. The CO2-rich

ILs leave from the bottom of the absorber while the clean gas is col-

lected from the top. Afterward, the CO2-loaded ILs are heated and

enter a flash tank which has a lower pressure than the absorber. In

the flash tank, the captured CO2 is released and collected. Later, the

recovered ILs are cooled and sent back to the absorber. In addition,

makeup ILs are added to the absorber in case of IL losses. The specific

process models used for CAILPD are presented below. Note that only

the models of absorber and flash tank that accounts for absorption

and desorption, respectively are elaborated here. The models for com-

pressor, heat exchangers, and pump are given in Appendix S2.

4.5.1 | Absorber

The rate-based model is used in the absorber. The column is presum-

ably isothermal and TAB should be larger than the melting temperature

to ensure that the ILs are in liquid. In addition, the column is divided

into NT¼20 sections. In each section, the amount of CO2 absorbed

from gas to ILs (pern) is equal and decided from the mass balance.

Tm ≤ TAB ð37Þ

pern¼Mfeed �yfeedCO2
�θ

NT
ð38Þ

where, yfeedCO2
and θ are the CO2 molar fraction in the feed gas and the

percentage of CO2 to be absorbed, respectively. If the solubility of other

gases in ILs is negligible, the liquid and vapor molar fractions of CO2 in

the nth section (n¼1,…,NT from the bottom up) can be calculated by

xn,CO2 ¼
MILxFTout,CO2

þ NT�nð Þpern
MILþ NT�nð Þpern ð39Þ

yn,CO2
¼MfeedyfeedCO2

�n�pern

Mfeed�n�pern
ð40Þ

where, xFTout,CO2
is the molar fraction of CO2 in the ILs regenerated

from the flash tank (FT). In addition, the following summation equa-

tions must be satisfied for each section.

X
c

xn,c ¼1 ð41Þ

X
c

yn,c ¼1 ð42Þ

where, the subscript c denotes the gas and liquid components. More-

over, the height of the nth section (hn ) is calculated in Equation (43)

and the height of the absorber HAB is obtained by Equation (44).48

pern �MVIL

106 ¼Voidp �aw �CSA �k �hn �
xeqn,CO2

1�xeqn,CO2

� xn,CO2

1�xn,CO2

 !
ð43Þ

HAB ¼
XNT

n¼1
hn ð44Þ

F IGURE 5 Schematic diagram
of IL-based absorption process
for carbon capture
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where, MVIL denotes the molar volume of IL in the absorber (see

Equations 24 and 25). Voidp is the void fraction of packing. xeqn,CO2
rep-

resents the equilibrium CO2 solubility in the nth column section. If rig-

orous thermodynamic models are used, it is calculated using

Equations (30)–(33) with known yn,CO2
. Alternatively, this equilibrium

solubility can be directly calculated by Equations (34)–(36) if the

ANN-based surrogate model is applied. In addition, Equation (45)

ensures a positive driving force for CO2 absorption.

xeqn,CO2
≥ xn,CO2 ð45Þ

4.5.2 | Flash tank

The heated CO2-loaded ILs are fed into the flash tank for solvent regen-

eration. The temperature in the flash tank cannot exceed the boiling

point of IL to prevent its vaporization. The CO2 molar fraction in the lean

ILs xFTout,CO2
is estimated by the short-cut model in Equation (47).50

TFT < Tb ð46Þ

xFTout,CO2
¼1� 1

1þ PFT �MW

104exp 6:8591�2004:3
TFT

� � ð47Þ

In order to facilitate the computation in the absorber, xFTout,CO2
is fixed

to 0.02. In this case, the operating pressure of the flash tank PFT

depends on the temperature TFT . Moreover, the flash tank is presum-

ably operated on a half-full basis and the total volume of ILs in the

flash tank is equal to the volume of 5 min IL flows.51 Thus, the volume

of the flash tank (VFT) is expressed as

VFT ¼2�300�MIL �MVFT

106 ð48Þ

where, MVFT is the IL molar volume at TFT and PFT.

4.5.3 | Process economics

The performance of the IL-based carbon capture process is evaluated

using the total annualized cost (TAC).

TAC¼CRF �CcapþCope ð49Þ

Ccap ¼CCOMPþCGCþCHEþCCOþCPUMPþCABþCFT ð50Þ

Cope ¼CsteamþCeleþCwaterþCml ð51Þ

where, CRF is the capital recovery factor. Ccap is the summation of the

capital costs of all the equipment. Cope is the annual operating cost

that accounts for the consumption of utilities (i.e., steam, electricity,

and cooling water) and other operating costs including labor, mainte-

nance, and IL losses. The detailed calculation of the capital and oper-

ating costs is presented in Appendix S2.

5 | RESULTS AND DISCUSSION

As a major CO2 emission resource, the pre-combustion flue gas is usu-

ally produced in an integrated gasification combined cycle (IGCC)

based power plant. The feedstock such as natural gas is reacted with

oxygen under high temperature and pressure to produce synthesis

gas consisting of CO, H2, and CO2. Through a water-gas shift reaction,

the CO is converted into CO2 and the pre-combustion flue gas com-

prising mainly H2 and CO2 is formed. The CO2 must be removed from

the H2 before power generation. In this work, the CAILPD framework

is applied for pre-combustion carbon capture. The flue gas is assumed

to be at 313.15 K and 20 bar with a molar flowrate of 10 kmol/s. The

compositions of CO2 and H2 are set to 0.4 and 0.6, respectively. With

an assumption that H2 is not soluble in the ILs, the goal is to design a

cost-effective IL-based absorption process for capturing no less than

90% CO2 from the flue gas.

5.1 | First trail using rigorous
thermodynamic model

In the first trial, the CAILPD problem is formulated using the classic

thermodynamic models (i.e., UNIFAC and PR models) to predict the

CO2 equilibrium solubility. An MINLP problem is formed and summa-

rized below. The objective is to minimize the process TAC while fulfill-

ing the carbon capture requirement stated above. The design

variables (degrees of freedom) consist of the discrete variable ni and

the continuous variables PAB and TFT . Equality constraints include IL

structural constraints, property and process models as well as process

economics. The specific feed gas conditions as well as process and

costing parameters are listed in Table 3. The UNIFAC model parame-

ters for the CO2-IL systems can be found in Zhou et al.24

min
ni,P

AB,TFT
TAC

s.t. Equations (1)–(20) IL structural constraints

Equations (21)–(33), (SA1)–(SA12) IL property models

Equations (37)–(45) Absorption model

Equations (46)–(48), (SB1)–(SB12) Other process models

Equations (49)–(51), (SB13)–(SB27) Process economics

The optimization problem is coded in GAMS 24.2 and solved

using the deterministic global optimization solver BARON version

19.3.24.52 The computational statistics are listed in the second col-

umn of Table 4. As shown, in total 52 discrete variables, 3086 single

variables, 3121 equations, and 58,032 nonlinear matrix entries are

involved. Clearly, this is a very complicated optimization problem.
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Different initial estimates and different ways of formulating equations

are considered. However, it cannot converge within 24 h on a stan-

dard computer.

5.2 | Second trail using artificial neural network-
based solubility model

In order to mitigate the computational difficulties, the highly complex

thermodynamic models are replaced by the relatively simple ANN-

based surrogate model. Furthermore, Equation (52) serves as an upper

bound that limits the CO2 equilibrium solubility at a specific absorp-

tion condition lower than 0.5. This absorption condition corresponds

to the case where the feed gas is cooled and directly fed into the

absorber. This constraint ensures that the ANN model does not

extrapolate to unreasonable predictions.

xeq�CO2
¼ FANN ni,T¼ TAB,P¼20bar,yCO2

¼0:4
� �

≤ 0:5 ð52Þ

FANN represents Equations (34)–(36). Replacing Equations (30)–(33) in the

previous MINLP problem with Equations (34)–(36) and adding Equa-

tion (52) as an extra constraint, we can formulate another MINLP problem.

The new optimization problem is solved with the global solver BARON as

well. The third column of Table 4 lists the corresponding computational sta-

tistics. It consists of 52 discrete variables, 439 single variables, 456 equa-

tions, and 574 nonlinear matrix entries. It is clear that the problem size and

nonlinearity are much less than those of the previous problem. It takes

around 1.5 h for BARON to converge to the global optimality.

The obtained optimal IL and its properties as well as the

operating conditions and process specifications are summarized in

TABLE 3 Input parameters for the pre-combustion carbon capture process

Input parameters for pre-combustion flue gas

Gas composition

CO2 0.4 Temperature (K) 313.15

H2 0.6 Pressure (bar) 20

Input molar flowrate (kmol/s) 10 Molar volume (L/mol) 1.28

Density (kg/m3) 16.92 Heat capacity (kJ/kg/K) 1.72

Input parameters for the rate-based absorption process

Inlet water temperature (K) 287 Hot steam temperature (K) 393.15

Outlet water temperature (K) 297 Steam latent heat (kJ/kg) 2201.6

Water heat capacity (kJ/kg/K) 4.18 Molar flowrate of IL (kmol/s) 3.75

Absorber temperature (K) 300 IL surface tension (N/m) 0.05

Absorber diameter (m) 5 IL association factor 0.14

Absorber thickness (m) 0.02 Packing surface area (m2/m3) 102

Packing diameter (m) 0.05 Packing void fraction 0.98

Flash tank thickness (m) 0.02 Packing critical surface tension (N/m) 0.075

CO2 molar fraction in lean ILs 0.02 Flash tank diameter (m) 2.5

Isentropic coefficient 1.37 Partial molar volume of CO2 in IL

solutions (cm3/mol)

34

Input parameters for process costing

Capital recovery factor 0.1102 Reference cost of compressor (k$) 4714

Density of steel (kg/m3) 7870 Reference work of compressor (kW) 22,371

Cooling water price ($/ton) 0.0316 Reference cost of heat exchanger (k$) 438

Steam price ($/kg) 0.0042 Reference area of heat exchanger (m2) 1115

Electricity price ($/kWh) 0.0775 Reference cost of pump (k$) 420.1

IL price ($/kg) 10 Reference work of pump (m3/s) 8.2

TABLE 4 Computational statistics for the deterministic global
optimization of the CAILPD problem

UNIFAC-PR based
models

ANN-based
hybrid models

Solver BARON BARON

Number of discrete

variables

52 52

Number of single

variables

3086 439

Number of equations 3121 456

Number of nonlinear

matrix entries

58,032 574

Computational time No convergence

within 24 h

5216 s
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Table 5. The corresponding minimized process TAC is 11.44 M

$/year. The optimal IL found is N-ethyl-N-ethoxymethyl-ammonium

bis(pentafluoroethanesulfonyl)amide [EEOMA][BETA] or N-ethyl-N-

methoxyethyl-ammonium bis(pentafluoroethanesulfonyl)amide

[EMOEA][BETA] that consists of the anion BETA, the cation core

NH2, and five substituent groups (2 N_CH2, 2 CH3, and 1 OCH2).

The operating pressure in the absorber is 21.5 bar and the tempera-

ture in the flash tank is 334.9 K. The averaged CO2 equilibrium solu-

bility (molar fraction) in the absorber is as high as 0.458. In addition,

the IL viscosity in the absorber is 10.3 mPa s. Comparing with most

of the known ILs,45 this value is quite small, resulting in a high CO2

mass transfer coefficient.

In addition to the global optimal solution, the other top two ILs

with their corresponding TACs are generated in Table 6. The three IL

structures are similar. The anion and cation core in the three top ILs

are BETA and NH2, respectively. The involved two groups –OCH2

and –OH are known to favor CO2 absorption. With these top-ranked

ILs, experimental verifications can be performed. This provides a

larger probability of obtaining a reliable and optimal IL design in case

that uncertainty is not considered.

The DEPG-based Selexol process is widely used for pre-combustion

carbon capture. As a benchmark, the economic performance of the Sele-

xol process is evaluated. The flowsheet of the Selexol process is shown

in Figure S1. It is simulated in Aspen Plus V8.8 according to literature

reports53,54 and the detailed process specifications are listed in

Table S2. For consistency, the process economics is assessed with the

same cost models used in this work. Figure 6 compares the cost break-

down of the two processes. As indicated, although a much larger

amount of steam and cooling water are consumed in the IL-based

TABLE 5 Global optimization results
of the studied CAILPD problem

Optimal IL group combination 2 CH3, 2 N_CH2, 1 OCH2, 1 NH2, 1 BETA
Optimal IL structure

NH2

CH2CH2OCH3

+

CH2CH3
C2F5 C2F5

N
SS

O O O O

− NH2

CH2OCH2CH3

+

CH2CH3
C2F5 C2F5

N
SS

O O O O

−

[EMOEA][BETA][EEOMA][BETA]

or

Flash tank temperature (K) 334.9

Absorber pressure (bar) 21.5

Absorber height (m) 19.4

CO2 average solubility in the absorber 0.458

IL heat capacity in the absorber (J/g/K) 1.29

IL viscosity in the absorber (mPa s) 10.3

CO2 mass transfer coefficient (m/s) 1.23 � 10�4

Gas-cooling heat exchanger area (m2) 2090.0

IL-heating heat exchanger area (m2) 1187.7

IL-cooling heat exchanger area (m2) 3790.8

Cooling water consumption (ton/s) 2.17

Steam consumption (kg/s) 37.9

Compressor workload (kW) 1862.1

Pump workload (kW) 2530.3

Electricity consumption (kWh/s) 1.22

TAC (M$/year) 11.44

TABLE 6 Top three ILs with their minimal total annualized cost

No. IL group combination TAC (m$/year)

1 2 CH3, 2 N_CH2, 1 OCH2, 1NH2, 1 BETA 11.44

2 1 CH3, 2 N_CH2, 1 OH, 1NH2, 1 BETA 12.42

3 1 N_CH3, 1 CH2, 1 N_CH2, 1 OCH2, 1 OH,

1 NH2, 1 BETA

13.20

F IGURE 6 Cost breakdown of the optimal IL-based and DEPG-
based absorption processes
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process, the electricity cost of the Selexol process is much higher than

that of the IL-based process. This is because a higher pressure (30 bar)

is needed in the absorber of the Selexol process to meet the CO2 cap-

ture requirement, which leads to a larger electricity consumption for gas

compressing. In contrast, our designed IL has a higher CO2 solubility

than DEPG, making the absorption operable at a lower pressure

(21.5 bar). In total, the IL-based process can achieve 14.8% total cost

reduction compared with the benchmark Selexol process for pre-

combustion carbon capture, which demonstrates the significance and

large benefit of integrated IL and process design.

6 | CONCLUSION

This article presents a new integrated IL and absorption process

design approach for gas separation. The physical, kinetic, and thermo-

dynamic properties of ILs are predicted by different types of methods

(e.g., GC methods, empirical correlations, rigorous thermodynamic and

data-driven models). In order to improve the reliability of the results, a

rigorous rate-based absorption model, where both absorption thermo-

dynamics and kinetics are incorporated, is used. With these, the inte-

grated IL and process design task is formulated and solved as an

MINLP optimization problem. The IL structure and process operating

conditions are simultaneously optimized to minimize the total annual-

ized cost. The proposed approach is demonstrated on a pre-

combustion carbon capture example. In the case study, rigorous ther-

modynamic models (UNIFAC and PR) are first applied to predict the

CO2 equilibrium solubility in ILs, which results in a convergence failure

of the MINLP problem. To tackle the problem, an ANN-based surro-

gate model is used to replace the thermodynamic models. Based on

this, the integrated design problem is successfully solved to the global

optimality. The result shows that compared with the DEPG-based

Selexol process, the optimal IL-based process can achieve a better

economic performance for the investigated carbon capture task.

To the best of our knowledge, this work is the first attempt in the

global optimization of an integrated IL and process design problem

where rigorous rate-based process model is employed. This study can

be extended in several ways. For instance, the method can be applied to

handle different CO2 emission sources. In addition, the IL-based absorp-

tion process can be compared with other processes (e.g., adsorption and

membrane) to identify the most efficient technology for gas separation

problems. Despite the large progress, limitations should not be

neglected. First, a simple inequality constraint is added to prevent

unreasonable extrapolation of the ANN-based solubility model. In the

future work, more advanced methods (e.g., convex hull55 and topological

data analysis56) can be used to confine the results into the validity

region. Second, the current work cannot distinguish between structural

isomers. To do so, higher-order GC models incorporating the group con-

nectivity information are required, which may significantly increase the

computational demand. A more realistic strategy is to investigate the

practical performance of isomers in a post-design step, for example, by

experimental studies. Thirdly, the uncertainty associated with property

prediction can directly affect the quality of the optimal design. This issue

is worth to be explicitly considered in the computer-aided design stage

for better reliability. Efforts in these directions are underway.
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