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Abstract: The theory of elliptic modular forms has gained significant momentum from the discovery

of relaxed yet well-behaved notions of modularity, such as mock modular forms, higher order modular

forms, and iterated Eichler-Shimura integrals. Applications beyond number theory range from com-

binatorics, geometry, and representation theory to string theory and conformal field theory. We unify

these relaxed notions in the framework of vector-valued modular forms by introducing a new class

of SL2(Z)-representations: virtually real-arithmetic types. The key point of the paper is that virtually

real-arithmetic types are in general not completely reducible. We obtain a rationality result for Fourier

and Taylor coefficients of associated modular forms.
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RELAXED notions of elliptic modular forms have developed into at least three distinct re-
search branches: Mixed mock modular forms, higher order modular forms, and iterated

Eichler-Shimura integrals. Till now, they have been flourishing largely independently from
one another, with exception of some connections among them summarized in the remarks
following Theorem II. The raison d’être of the present paper is to bring them together under
the umbrella of vector-valued modular forms. This, in particular, allows us to transfer insight
from one of them to the others.

There are dozens of papers on mock modular forms and mixed mock modular forms, whose
modern theory has been developed since 2002 [7, 9, 13, 19, 58, 60]. The range of covered top-
ics includes combinatorics, geometry, representation theory, and string theory [3, 50]. Higher
order modular forms, first introduced with this name by Chinta, Diamantis, and O’Sullivan
[18] and Kleban and Zagier [37], have served as a handle on the distribution of modular sym-
bols [52, 53] and their connection to the ABC-conjecture [31], and made appearance in con-
formal field theory [22, 37]. Recently, iterated Eichler-Shimura integrals have received a mod-
ular interpretation analogous to the one of mock modular forms [10], and at the same time
were equipped with a motivic-geometric interpretation [2, 11].

Elliptic modular form are associated to a discrete subgroupΓ⊆ SL2(R) with finite co-volume.
For simplicity, we focus on the case Γ ⊆ SL2(Z). Vector-valued elliptic modular forms are
functions on the Poincaré upper half plane H that transform according to a given finite-
dimensional, complex representation of Γ. Such a representation ρ is called an arithmetic
type. A modular form f of weight k and type ρ for Γ⊆ SL2(Z) satisfies

f
(aτ+b

cτ+d

)= (cτ+d)kρ(γ) f (τ) for all γ= (
a b
c d

) ∈ Γ and τ ∈H.
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We define a specific class of arithmetic types, called “virtually real-arithmetic” types—vra types
for short. Modular forms of vra type subsume the relaxed notions of modular forms that we
listed above in a sense that we make precise in Theorem II. Before explaining this connection
to vector-valued modular forms in more detail and justify the name of vra types, we present
Theorem I to illustrate its bifurcations. To avoid confusion at this point, let us remark that
despite the similarity in name virtually real-arithmetic types are actual representations as
opposed to virtual representations.

The theory of vector-valued modular forms supplies several new tools to examine mixed
mock modular forms, higher order modular forms, and iterated Eichler-Shimura integrals.
Two of the more recent papers in that direction, which are a good starting point, are [15, 30].
We can, for example, describe vector-valued modular forms as sections of suitable holomor-
phic vector bundles that carry a connection. This allows us to deduce the next rationality and
recursion result. We need the following notation:

(1) Given k ∈ Z, we write Mk (Γ), M!
k (Γ), and Mk (Γ) for the space of weight k modular

forms, weakly holomorphic modular forms, and mock modular forms with shadow of mod-
erate growth for the group Γ⊆ SL2(Z). Then Ml (Γ)⊗Mk (Γ) is a space of mixed mock modular
forms for every l ∈Z. Section 1.13 contains the definitions.

(2) Given k ∈Z and d ∈Z≥0, we write M[d]
k (Γ) for the space of order d modular forms of

weight k for Γ. Section 3.3 contains the definition.

(3) Given d ∈ Z≥0 and k = (k1, . . . ,kd) ∈ (2Z)d, we write IMk for the space of iterated
Eichler-Shimura integrals of level 1 modular forms of weights k1, . . .kd. Section 3.4 contains
the definition.

Theorem I. Let f be

(1) a mixed mock modular form f ∈ Ml (Γ)⊗Mk (Γ) with l ∈Z and k ∈Z≤0,

(2) a higher order modular form f ∈ M[d]
k (Γ) with k ∈Z and d ∈Z≥0, or

(3) an iterated Eichler-Shimura integral f ∈ IMk with k ∈ (2Z)d and d ∈Z≥0.

Write c( f ; n), n ∈Q≥0 for its Fourier coefficients at some cusp or its Taylor coefficients at some
point in the Poincaré upper half plane. Then the c( f ; n) satisfy a family of recursions with
coefficients that span a finite-dimensionalQ vector space. In particular, we have

dimQ spanQ
{
c( f ; n) : n ∈Q≥0

}<∞.

Remark. (1) A more detailed statement that applies to all modular forms of vra type is given
in Theorem 2.5. In conjunction with Theorem II, it implies Theorem I.
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(2) The statement of Theorem I for Fourier coefficients of mock modular forms of non-
positive weight can also be inferred from Theorem 1.1 of [34].

(3) As for Fourier coefficients, Theorem I stands in stark contrast to the case of positive
weight mock modular forms [26, 27] and half-integral weight mock modular forms that are
not mock theta functions [12, 14]. For mock theta functions, rationality of Fourier coefficients
follows, for example, from their description in terms of indefinite theta series [60].

(4) Values at CM-points of mock modular forms in some cases not covered by Theorem I
were investigated in [1, 25].

(5) The recursions for Fourier coefficients of mock theta series in [35] were also obtained by
employing vector-valued modular forms. The methods used to establish them are of spectral
as opposed to geometric nature.

Before proceeding to our discussion of vra types, we mention one more aspect that we
otherwise skip over in this paper. Namely, the theory of vector-valued modular forms has
recently received attention from harmonic analysis. Müller established a trace formula for
non-unitary twists [47], which includes modular forms for our notion of vra types except that
Müller restricts to co-compact subgroups of SL2(R). Extensions of this trace formula and the
associated continuous spectrum have since then been investigated in several papers [20, 21,
29]. Theorem II can be viewed as a partial description of the holomorphic discrete spectrum
for vra types. Holomorphic modular forms have profited from a combination of geometric
and spectral perspectives on them. It is desirable to employ Müller’s trace formula in order
to achieve the same in the case of mixed mock modular forms and iterated Eichler-Shimura
integrals. Substantiating such hopes will require a serious effort, which we do not pursue in
the present paper.

Consider the connection between classical modular forms for Γ⊆ SL2(Z) and vector-valued
modular forms for SL2(Z). Starting with a scalar-valued modular form f ∈ Mk (Γ), one con-
structs a function whose components are f |k γ with γ running through a system of represen-
tatives of Γ\SL2(Z). The resulting modular form Ind f transforms as the induced representa-
tion IndSL2(Z)

Γ 1, where 1 denotes the trivial arithmetic type for Γ. This concept was explained
in detail in [57]. It allows us to establish a bijection

Ind : Mk (Γ) −→ Mk
(
IndSL2(Z)

Γ 1
)
, f 7−→ Ind f . (0.1)

The fact that the inverse map from Mk (IndSL2(Z)
Γ 1) to Mk (Γ) is merely the projection to one of

the coordinates of IndSL2(Z)
Γ 1 means that vector-valued modular forms recover the theory of

scalar-valued modular forms, but potentially expose more properties.
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The bijection in (0.1) generalizes straightforwardly to the case of modular forms for Dirich-
let characters χ (mod N ). We can view χ as a one-dimensional representation of the con-
gruence subgroup Γ0(N ) = {

(
a b
c d

) ∈ SL2(Z) : c ≡ 0 (mod N )}. The associated arithmetic type
is IndSL2(Z)

Γ0(N ) χ. Observe that the restrictions, if Γ for instance is normal,

ResSL2(Z)
Γ IndSL2(Z)

Γ 1 ∼=
⊕

Γ\SL2(Z)
1, ResSL2(Z)

Γ(N ) IndSL2(Z)
Γ0(N ) χ

∼=
⊕

Γ0(N )\SL2(Z)
1

are isotrivial, that is, they are copies of the trivial representation of Γ. Recall the terminology
from, say, group theory that a property is said to hold virtually if it holds after passing to a
finite index subgroup. We can therefore rephrase the bijection in (0.1): The classical theory of
modular forms is recovered by vector-valued modular forms of virtually isotrivial arithmetic
type for SL2(Z).

To clarify the particular use of vector-valued modular forms as opposed to mere scalar val-
ued ones, we reexamine (0.1) from the perspective of Fourier expansions. Given the Fourier
expansion of a modular form on the right-hand side of (0.1), it is easy to pass to the left-hand
side by picking the component of Ind f that corresponds to the trivial coset in Γ\SL2(Z). Pas-
sage from the left to the right-hand side is intricate, if the Fourier expansion of f is only given
at the cusp ∞, as is commonly the case. Indeed, the Fourier expansion at ∞ of all f

∣∣
k γ de-

pends on Fourier expansions of f at all cusps. They are generally difficult to determine from
the one at infinity. In [57], one of the authors illustrated how to obtain them by employing the
vector-valued point of view on modular forms. Other applications, in which the vector-valued
point of view is decisive can, for instance, be found in [17, 54].

When examining vector-valued modular forms, it is natural to consider the standard rep-
resentation std of SL2(Z) and its symmetric powers symd. They are the only irreducible arith-
metic types that extend to SL2(R). Kuga and Shimura [40] studied this case and offered a
description of modular forms of type symd. They concluded under certain assumptions on k
and d that

Mk (symd) ∼=
d⊕

j=−d
j≡d (mod2)

Mk+ j
(
SL2(Z)

)
.

The isomorphism is given by a linear holomorphic differential operator that is compatible
with induction from subgroups. We can therefore extend our previous statement from vir-
tually isotrivial arithmetic types to arithmetic types that virtually extend to SL2(R). Modular
forms of such type can be described in terms of classical ones.

Induction from finite index subgroups and the isomorphism due to Kuga-Shimura together
exhaust the available connections between scalar- and vector-valued modular forms. Note
that all arithmetic types discussed until now are completely reducible. The key point of this
paper is to consider vector-valued modular forms of types that are not completely reducible.
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We say that an arithmetic type is real-arithmetic if its semi-simplification extends to SL2(R).
It is virtually real-arithmetic (vra) if its restriction to some finite index subgroup of SL2(Z) is
real-arithmetic. An explicit non-trivial example of a vra type can be found in Examples 2.2
and 3.10.

Our main theorem states that mixed mock modular forms, higher order modular forms,
and iterated Eichler-Shimura integrals are components of modular forms of vra type. We use
the notation established before Theorem I.

Theorem II. We have the following injections into spaces of modular forms of virtually real-
arithmetic type:

(1) For l ∈Z and k ∈Z≤0, there is an injection

M!
l (Γ)⊗Mk (Γ) ,−→ M!

k+l (ρ)

for a vra type ρ that only depends on k and Γ. There is a retract that is a coordinate projection.
Details are given in Theorem 3.7 and Corollaries 3.9 and 3.11.

(2) Given d ∈Z≥0, there is an injection

M[d]
k (Γ) ,−→ Mk (ρ)

for a vra type ρ that only depends on d and Γ. There is a retract that is a coordinate projection.
Details are given in Proposition 3.15.

(3) Given d ∈Z≥0 and k ∈Zd there is an injection

IMk ,−→ M0(ρ)

for a vra type ρ that only depends on k. Details, including a substitute for the retracts in case (1)
and (2), are given in Proposition 3.17.

Remark. (1) The representations ρ in Theorem II are not necessarily unique. For example,
for mixed mock modular forms we provide a whole family of embeddings.

(2) The restriction to non-positive, integral weight in part (1) of Theorem II excludes all
mock theta functions, treated in [60]. It is possible to subsume them under a formally similar
notion. This, however, would require the use of infinite-dimensional representations, namely
holomorphic representations for the metaplectic double cover of SL2(R).

(3) Case (1) in conjunction with case (2) of Theorem II suggests that there is a relation be-
tween second order modular forms and mixed mock mock modular forms whose mock-part
has weight 0. Such a connection has been previously revealed in [5].
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(4) Connections between mock modular forms and classical Eichler integrals are well-es-
tablished [4, 33]. These, however, are of a somewhat different flavor than the one suggested
by Cases (1) and (3) of Theorem II.

(5) Case (2) in conjunction with case (3) of Theorem II suggests that there is a relation be-
tween higher order modular forms and iterated integrals. Such a connection has been previ-
ously revealed in [23].

(6) Apparently unaware of either [5] or its rephrasing in terms of vector-valued modular
forms, the authors of [16] reproduce [5] in their Theorem 1.4. It is also a special case of our
Proposition 3.15.

(7) Indecomposability for “analytic types” has been previously observed, studied, and em-
ployed in [6, 55, 56] in the context of harmonic weak Maaß forms. Since mock modular forms
are tied to harmonic weak Maaß forms via a procedure called modular completion, Theo-
rem II may be interpreted as evidence that analytic and arithmetic indecomposability are
connected to each other.

The proof of Theorem II is contained in Section 3. It is preceded by a general treatment
of vra types in Section 2. We then proceed to Section 4, in which we establish existence of
modular forms of vra type if the weight is sufficiently large. We first give a cohomological
argument in complete analogy with the one in [13], which concerned harmonic weak Maaß
forms. Second, in Section 4.2, we give an argument via Poincaré series and provide an explicit
lower bound on the weight required for their convergence.

In the forthcoming part II of this work, we plan to focus on computational applications of
our results, in particular exploiting the module structure of modular forms of vra type.

Acknowledgment The second author is grateful to Steve Kudla for mentioning to him the
Kuga-Shimura paper at the 2016 Oberwolfach conference on modular forms, which later in-
spired the notion of vra types. Both authors are grateful to Morten Risager for his comments
on an earlier version of the manuscript. They also wish to express their gratitude to the Max-
Planck-Institute for Mathematics in Bonn. The authors thank the referee for a thorough read-
ing which uncovered some glitches in an earlier version of the manuscript.

1 Preliminaries
We summarize notation and preliminaries on the modular group, arithmetic types, and

modular transformations. We also revisit required terminology from representation theory
and the theory of harmonic weak Maaß forms.

– 7 –



Modular forms of virtually real-arithmetic type I M. H. Mertens, M. Raum

1.1 Upper half space and modular group The set

H := {
τ ∈C : y = Imτ> 0

}
is called the Poincaré upper half space. It carries an action of SL2(R) via Möbius transforma-
tions

gτ= aτ+b

cτ+d
, g = (

a b
c d

)
.

We let S = (
0 −1
1 0

)
and T = (

1 1
0 1

)
. Throughout, we use the notation

Γ∞ := {(
a b
0 d

) ∈ SL2(Z)
}
, Γ(N ) := {(

a b
c d

) ∈ SL2(Z) : a,d ≡ 1 (mod N ), b,c ≡ 0 (mod N )
}
.

1.2 Weights and slash actions For the purpose of this paper, we identify weights k ∈Zwith
one-dimensional representations

σk (g ) := g k , g ∈ GL1(C).

For any weight k, we obtain a slash action(
f
∣∣
k g

)
(τ) :=σk

(
(cτ+d)−1) f (gτ) = (cτ+d)−k f (gτ), g ∈ SL2(R) (1.1)

on functions f : H→C.

1.3 Arithmetic types We call a finite-dimensional, complex representation of some finite
index subgroup Γ ⊆ SL2(Z) an arithmetic type. Given an arithmetic type ρ, we typically de-
note its representation space by V (ρ). In special cases we identify a representation and its
representation space.

Arithmetic types ρ in conjunction with weights k yield further slash actions on functions
f :H→V (ρ), (

f
∣∣
k,ρ γ

)
(τ) := ρ(γ−1)σk

(
(cτ+d)−1) f (γτ), γ ∈ Γ. (1.2)

Observe that we have to restrict to γ ∈ Γ, since ρ(γ−1) is not defined for more general γ.
We write 1 for the trivial arithmetic type. The dual of an arithmetic type ρ is denoted by ρ∨.

The evaluation w∨(v) of v ∈V (ρ) and w∨ ∈V (ρ∨) will occasionally be written as 〈v, w∨〉.

1.4 Symmetric powers Complex, irreducible, finite-dimensional representations of SL2(R)
are exhausted by the symmetric powers symd of the standard representation std. Models for
symd are provided by the spaces Poly(X ,d) of polynomials in X of degree at most d with com-
plex coefficients via

symd(γ)p(X ) := p(X )
∣∣−dγ

−1 = (−c X +a)d p
( d X −b

−c X +a

)
. (1.3)

– 8 –
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Observe that using this model, the slash action of type symd takes the simple form:(
f
∣∣
k,symd γ

)
(X ;τ) = (c X +d)d(cτ+d)−k f

(aX +b

c X +d
,

aτ+b

cτ+d

)
.

We record that the trivial subrepresentation of Poly(X ,d)⊗Poly(Y ,d) is spanned by

(X −Y )d =
d∑

i=0

(d
i

)
X i (−Y )d−i .

In particular, we obtain an isomorphism

Poly(X ,d)∨ −→ Poly(Y ,d), X i ∨ 7−→ (d
i

)
(−Y )d−i . (1.4)

It can be used to define the SL2(R)-invariant pairing

〈 · , · 〉 : Poly(X ,d)⊗Poly(Y ,d) −→C, 〈X i ,Y j 〉 :=
{

(−1) j
/(d

i

)
, if i + j = d;

0, otherwise.
(1.5)

We will identify Poly(X ,d) and its dual via this isomorphism without further mentioning it.
Note also that for p ∈ Poly(X ,d), we have〈

p(X ), (Z −Y )d〉= p(Z ). (1.6)

The Clebsch-Gordan rules assert that there is an embedding

Poly(Z ,d+d′) ,−→ Poly(X ,d)⊗Poly(Y ,d′), Z n 7−→ ∑
0≤i≤d
0≤ j≤d′
i+ j=n

(d
i

)(d′
j

)(d+d′
n

)−1
X i Y j . (1.7)

The formula can be found by starting with the canonical projection from Poly(X ,d)⊗Poly(Y ,d′)
onto Poly(Z ,d+d′), mapping both X and Y to Z . Dualizing this surjection and applying the
self-duality isomorphism in (1.4) yields (1.7).

1.5 Restriction and induction of arithmetic types The restriction of an arithmetic type
from Γ to Γ′ ⊆ Γ is denoted by ResΓ

Γ′ ρ.
Induction of arithmetic types allows us to focus on the case Γ= SL2(Z), if we wish. A short

exposition is contained in Section 2 of [57]. We fix Γ′ ⊆ Γ ⊆ SL2(Z) and an arithmetic type ρ
for Γ′. Then for a fixed set B of representatives of Γ′\Γ we set

V
(
IndΓΓ′ ρ

)
:=V (ρ)⊗C[B ], Indρ(γ)(v ⊗ eβ) := ρ(

I−1
β (γ−1)

)
v ⊗ e

βγ−1 ,

where Iβ(γ)βγ = βγ with Iβ(γ) ∈ Γ′ and βγ ∈ B . The space of modular forms for ρ and Γ′ is
isomorphic to the space of modular forms for Indρ and Γ.

Recall that there is a canonical inclusion

ρ ,−→ IndΓΓ′ ResΓΓ′ ρ (1.8)

for all finite index subgroups Γ′ ⊆ Γ and arithmetic types ρ for Γ.

– 9 –
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1.6 Socle series Recall that the socle soc(ρ) of a representation ρ is the intersection of its
essential submodules. The socle series of a representation is soc0(ρ) ⊂ ·· · ⊂ soc j (ρ), where j
is called the socle length of ρ, and

(i) soc0(ρ) = {0},

(ii) soci (ρ)
/

soci−1(ρ) = soc
(
ρ
/

soci−1(ρ)
)

for all 1 ≤ i ≤ j .

We call

soci−1(ρ) ,−→ soci (ρ) −� soci (ρ)
/

soci−1(ρ)

the i -th socle extension of ρ. The semi-simplification of ρ is denoted by

ρss :=
j⊕

i=1
soci (ρ)

/
soci−1(ρ).

Aligning with the common notion of depth and order for mock modular forms and higher
order modular forms, respectively, we say that ρ has depth j −1 if it has socle length j .

By slight abuse of terminology, we say that the vector space homomorphism ρ(γ) has socle
length j , i.e. depth j −1, if the Z-representation i 7→ ρ(γ)i has socle length j . Similarly, we say
that ρ(γ) is unitarizable if i 7→ ρ(γ)i is unitarizable, i.e. ρ(γ) is diagonizable with eigenvalues
of absolute value 1.

1.7 Extensions of arithmetic types Given arithmetic typesρ andρ′ forΓ⊆ SL2(Z), the space
of extension classes for exact sequences

ρ ,−→ ρ′′ −� ρ′

is denoted by Ext1(ρ′,ρ), suppressing Γ from the notation. The set of parabolic extension
classes is denoted by Ext1

pb(ρ′,ρ) ⊆ Ext1(ρ′,ρ). Observe that we have

Ext1(ρ′,ρ
) ∼= H1(Γ, ρ′∨⊗ρ)

and Ext1
pb

(
ρ′,ρ

) ∼= H1
pb

(
Γ, ρ′∨⊗ρ)

.

In particular, parabolic extension classes correspond to parabolic cocycles in the first isomor-
phism, which can be computed using modular forms [51].

Given ϕ ∈ Ext1(ρ′,ρ) , we denote by ρ�ϕρ′ the extension that corresponds to ϕ, fitting into
the short exact sequence

ρ ,−→ ρ�ϕ ρ
′ −� ρ′.

Specifically, we have (
ρ�ϕ ρ

′)(γ)
(
v� v ′)= (

ρ(γ)v +ϕ(γ)v ′)� ρ′(γ)v ′.

– 10 –
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An arithmetic type is called parabolic if all its socle extensions are parabolic. Given a cocycle
ϕ ∈ H1(Γ,ρ) or an extension class ϕ ∈ Ext1(ρ′,ρ), we let

pxs(ϕ) :=
{

0, if ϕ is parabolic;

1, otherwise;
(1.9)

be its parabolic excess. I.e. the parabolic excess of the socle extension classes of a parabolic
arithmetic type is 0.

1.8 Function spaces with slash actions We write C ∞(H) for the space of smooth functions
on H that takes values in C. Generalizing this notation, we write C ∞(H→ V ) for the space
of smooth functions on H that take values in a complex, finite-dimensional vector space V .
Given a weight k ∈ Z and an arithmetic type ρ, we let C ∞

k (ρ) := C ∞(H→ V (ρ)) and equip it
with the Γ-slash action of weight k and type ρ.

We say that f ∈ C ∞
k (ρ) has moderate growth if there is some a ∈ R such that for every γ ∈

SL2(Z) we have (
f
∣∣
k γ

)
(τ) =O (y a) as y →∞.

The space of such functions is denoted by C ∞
k (ρ)md. As we restrict to finite-dimensional

arithmetic types, this definition is independent of a choice of norm on V (ρ).
The spaces C ∞

k (ρ)ex and C ∞
k (ρ)cusp of smooth functions of at most exponential growth and

smooth cuspidal functions are defined analogously by the conditions(
f
∣∣
k γ

)
(τ) =O (exp(ay)) as y →∞

and (
f
∣∣
k γ

)
(τ) −→ 0 as y →∞,

respectively.
We write Hk (ρ), Hk (ρ)md, Hk (ρ)ex, and Hk (ρ)cusp for the corresponding spaces of holo-

morphic functions.

1.9 Cocycles attached to functions Given f ∈C ∞
k (ρ) for k ∈Z and an arithmetic type ρ, the

function

ϕ f (γ) := f
∣∣
k (γ−1), γ ∈ SL2(Z) (1.10)

is a 1-cocycle, which a priori takes values in C ∞
k (ρ).
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1.10 Modular forms Let k ∈ Z and fix an arithmetic type ρ for Γ ⊆ SL2(Z). A function f ∈
Hk (ρ)ex is called a weakly holomorphic modular form of weight k and (arithmetic) type ρ if
f
∣∣
k,ρ γ= f for all γ ∈ Γ. If f ∈Hk (ρ)md it is called a modular form. If f ∈Hk (ρ)cusp it is called

a cusp form.
The spaces of such weakly holomorphic modular forms, modular forms, and cusp forms

are denoted by M!
k (ρ), Mk (ρ), and Sk (ρ), respectively. If ρ is the trivial type 1, we occasionally

suppress it from the notation or replace it by Γ.
We write

M!
•(ρ) :=⊕

k

M!
k (ρ) and M•(ρ) :=⊕

k

Mk (ρ) (1.11)

for the graded module of (weakly holomorphic) modular forms. In the case of ρ = 1 it is the
graded ring of (weakly holomorphic) modular forms for Γ.

Let k ∈ Z and fix an arithmetic type ρ for Γ ⊆ SL2(Z). We define quasimodular forms of
depth 0 as modular forms in the usual sense. A function f ∈Hk (ρ)md is called a quasimodular
form of weight k, (arithmetic) type ρ, and depth d> 0 if

ϕ f
((

a b
c d

))= d∑
t=1

c t ft (τ)

(cτ+d)t

for quasimodular forms ft of depth t . The space of such functions is denoted by QM[d]
k (ρ).

Note that the definition of quasimodular forms is recursive.

Remark 1.1. We will later introduce the space M[d]
k (ρ) of modular forms of order d, which

should not be confused with QM[d]
k (ρ).

An almost holomorphic modular form is a function f ∈Hk (ρ)md[y−1] that transforms like
a modular form. Quasimodular forms are linked to almost holomorphic modular forms via
modular completions: Every quasimodular forms appears as the constant term with respect
with respect to y−1 of an almost holomorphic modular form, and vice versa the constant term
with respect to y−1 of an almost holomorphic modular form is a quasimodular form.

1.11 Fourier and Taylor expansions Given an arithmetic type ρ with unitarizable ρ(T ), any
f ∈ M!

k (ρ) admits a Fourier expansion of the form

f (τ) = ∑
n∈Q

c( f ; n)e(nτ), c( f ; n) ∈V (ρ), (1.12)

where here and throughout we use the notation e(x) = exp(2πi x). For general ρ, f ∈ M!
k (ρ)

has a Fourier expansion of the form

f (τ) = ∑
n∈Q

c( f ; n; τ)e(nτ), c( f ; n; τ) ∈V (ρ)⊗Poly(d,τ), (1.13)

where d is the depth of ρ(T ).
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Remark 1.2. To see that c( f ; n; τ) is indeed a polynomial, it suffices to identify the finite-
dimensional, indecomposable subrepresentations σ ⊂ H 	 T • = {T n : n ∈ Z}. We may as-
sume that c0(τ), . . . ,cd(τ) is a basis of V (σ) on which T acts in Jordan normal form. The char-
acters of T • are T 7→ e(m) for m ∈ R, realized by e(mτ) ∈ Hk (1). Twisting by a suitable char-
acter, we can assume that c0(τ)|T = c0(τ). So c0(τ) is periodic, and hence has a usual Fourier
series expansion. Induction on 0 < i ≤ d shows that ci (τ+1) = ci (τ)|T = ci (τ)+ ci−1(τ). The
solution of this difference equation is unique up to addition of a periodic function. It is a
polynomial in τ of degree i whose coefficients are periodic functions. Observe that this also
reveals that the c( f ; n; τ) are determined by their constant coefficients with respect to τ.

Given τ0 ∈H, we write the Taylor expansion of f ∈ M!
k (ρ) as

f (τ) =
∞∑

n=0

cτ0 ( f ; n)

n! (2πi )n

(
τ−τ0

)n , cτ0 ( f ; n) := (2πi )n dn f

dτn
(τ0) ∈V (ρ).

1.12 Harmonic weak Maaß forms Recall the Maaß lowering and raising operators

Lk := L :=−2i y2∂τ, Rk := 2i∂τ+k y−1.

Their composition ∆k :=−Rk−2Lk is the weight k hyperbolic Laplace operator.
Let k ∈ Z and fix an arithmetic type ρ for Γ ⊆ SL2(Z). A function f ∈ C ∞

k (ρ)ex is called a
harmonic weak Maaß form of weight k and (arithmetic) type ρ if ∆k f = 0 and f

∣∣
k,ρ γ= f for

all γ ∈ Γ. In this paper, we restrict to mock modular forms that arise from harmonic weak
Maaß form in the sense of [13], i.e. harmonic weak Maaß forms f for which Lk f ∈C ∞

k−2(ρ)md

has moderate growth.
Every harmonic weak Maaß form f admits a decomposition as the sum of a holomorphic

part f + and a non-holomorphic part f −: We have f = f ++ f −. If k ≤ 0, ρ(T ) is unitarizable,
and Lk f has moderate growth, then

f +(τ) = ∑
n∈Q

c+( f ; n)e(nτ) and

f −(τ) = c−( f ; 0)y1−k + ∑
n∈Q<0

c−( f ; n)Γ(1−k,4π|n|y)e(nτ),
(1.14)

where Γ(s, y) denotes the upper incomplete gamma function.

1.13 Mixed mock modular forms Let k ∈ Z and fix an arithmetic type ρ for Γ ⊆ SL2(Z). A
function f ∈ Hk (ρ)ex is called a mock modular form of weight k and (arithmetic) type ρ if
there is a harmonic weak Maaß form f̃ of weight k and type ρ such that f = f̃ +. The space of
such mock modular forms is denoted by Mk (ρ). As in the case of modular forms, if ρ is the
trivial type 1, we occasionally suppress it from the notation or replace it by Γ.
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Given another l ∈Z and another arithmetic type ρ′, we call

M!
l (ρ′)⊗Mk (ρ) (1.15)

the space of mixed mock modular forms of weight (k, l ) and type ρ′⊗ρ. This coincides with
the notion in [19].

If k ∈ 2Z≤0 and ρ has finite index kernel, then by Fay [28] and Bruinier-Funke [13], the co-
cycleϕ f attached to a mock modular form of weight k and type ρ takes values in Poly(|k|,τ)⊗
V (ρ). Consequentially, the cocyclesϕ f for mixed mock modular forms f in (1.15) take values
in Ml (ρ′)⊗Poly(|k|,τ)⊗V (ρ).

2 Virtually real-arithmetic types
The notion of virtually real-arithemetic types in the next definition is central to our paper.

Definition 2.1. An arithmetic type ρ is called real-arithmetic if its semi-simplification ρss ex-
tends to SL2(R). An arithmetic type ρ is called virtually real-arithmetic if the restriction ResΓ

Γ′ ρ

to a finite index subgroup Γ′ ⊆ Γ is real-arithmetic.

Throughout the paper, we will refer to virtually real-arithmetic types as vra types. Note that
our definition of real-arithmetic types does not require that ρ extends to SL2(R), but only ρss.

Example 2.2. (1) Real-arithmetic types of depth 0 (cf. Section 1.6 for the notion of depth)
are direct sums of symmetric powers. Specifically, each of them is isomorphic to

∞⊕
d=0

ad symd, ad ∈Z≥0

for some ad such that
∑

ad <∞. In particular, any number of copies of the trivial representa-
tion is a real-arithmetic type.

(2) Arithmetic types with finite index kernel are virtually real-arithmetic. Indeed, the re-
striction to their kernel is isotrivial, i.e. a direct sum of trivial types 1∼= sym0. It thus extends
to SL2(R) as required.

(3) Real-arithmetic types of depth 1 are extensions of two depth 0 representations ρ and ρ′:
∞⊕

d=0

ad symd ,−→ ρ −�
∞⊕

d=0

a′
d symd.

Since sym∨d ∼= symd, we can use the Clebsch-Gordan rules to compute the possible exten-
sions:

Ext1(ρ′, ρ
) ∼= H1(Γ, ρ′∨⊗ρ)= ∞⊕

d,d′=0

d+d′⊕
d′′=|d−d′|

ada′
d′ H1(Γ, symd′′)

Parabolic extensions can thus be determined by the Eichler-Shimura theorem.
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(4) Finite index induction preserves virtually real-arithmetic types—see Section 1.5. Inclu-
sion (1.8) allows us to focus on modular forms for the induction of real-arithmetic types, if we
wish.

(5) Vector-valued Hecke operators [57] map modular forms of vra type to modular forms of
vra type.

2.1 Some invariants of vra types Let ρ be a vra type of depth 0 and Γ′ ⊆ Γ such that ResΓ
Γ′ ρ

is isomorphic to
⊕

ad symd. Then we define the (weight) shift of ρ as

shift(ρ) := max
{
d : ad 6= 0

}
. (2.1)

For general vra types ρ of socle length j , we let

shift(ρ) :=
j∑

i=1
shift

(
soci (ρ)/soci−1(ρ)

)
and (2.2)

pxs(ρ) := #
{
1 ≤ i ≤ j : soci−1(ρ) ⊂ soci (ρ) is not parabolic

}
(2.3)

be the (weight) shift and the parabolic excess of ρ.

2.2 Universal and co-universal extensions of arithmetic types Given arithmetic types ρ
and ρ′, we let ρ�ρ′ and ρ�pbρ

′ be the representations that fit into the short exact sequences

ρ ,−→ ρ�ρ′ −� ρ′⊗Ext1(ρ′, ρ) and ρ ,−→ ρ�pbρ
′ −� ρ′⊗Ext1

pb(ρ′, ρ)

such that for each nonzero ϕ ∈ Ext1(ρ′,ρ) or ϕ ∈ Ext1
pb(ρ′,ρ) we have a direct summand

ρ�ϕ ρ
′⊗ϕ⊆ ρ�ρ′ and ρ�ϕ ρ

′⊗ϕ⊆ ρ�pbρ
′, (2.4)

respectively. These extensions are called the universal (parabolic) extension of ρ and ρ′. The
co-universal (parabolic) extension is analogously given by

ρ⊗Ext1(ρ′, ρ) ,−→ ρ�
∨
ρ′ −� ρ′ and ρ⊗Ext1

pb(ρ′, ρ) ,−→ ρ�
∨
pbρ

′ −� ρ′.

We clearly have the inclusions

ρ�pbρ
′ ,−→ ρ�ρ′ and ρ�

∨
pbρ

′ ,−→ ρ�
∨
ρ′.

We record that if ρ and ρ′ are vra types, then so are ρ�ρ′ and ρ�
∨
ρ′.

The projections ρ�ρ′� ρ′⊗Ext1(ρ′,ρ) and ρ�
∨
ρ′� ρ′ yield maps

Mk
(
ρ�ρ′)−→ Mk

(
ρ′⊗Ext1(ρ′, ρ)

)
and Mk

(
ρ�

∨
ρ′)−→ Mk

(
ρ′).
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In general, they are not surjective (cf. Section 4). We also obtain maps

Mk
(
ρ
)−→ Mk

(
ρ�ρ′) and Mk

(
ρ⊗Ext1(ρ′, ρ)

)−→ Mk
(
ρ�

∨
ρ′)

from the inclusions ρ ,→ ρ�ρ′ and ρ⊗Ext1(ρ′, ρ) ,→ ρ�
∨
ρ′. Less obviously, there is a map

from modular forms of co-universal to universal type.

Proposition 2.3. Fix arithmetic types ρ and ρ′ and a basis {ϕi } of Ext1(ρ′,ρ). There is a map

ρ�
∨
ρ′ −→ ρ�ρ′,

∑
i

vi ⊗ϕi � v ′ 7−→∑
i

vi � v ′⊗ϕi .

Proof. Observe that for every decomposition U1 ⊕U2 of Ext1(ρ′,ρ) there is a projection

ρ�
∨
ρ′ −� (

ρ�
∨
ρ′ )/(

ρ⊗U2
) ∼= ρ⊗U1�ρ

′

When fixing a basis {ϕi } of Ext1(ρ′,ρ), this provides us with a map

ρ�
∨
ρ′ −→⊕

i
ρ⊗Cϕi �ρ

′.

Furthermore, for every ϕ ∈ Ext1(ρ′,ρ), we have

ρ⊗Cϕ�ρ′ ∼= ρ�ϕ ρ′ ∼= ρ�ρ′⊗Cϕ.

We obtain the proposition on combining this with the inclusion

ρ�ρ′⊗Cϕ ,−→ ρ�ρ′

from (2.4).

Proposition 2.4. Given k ∈Z, the map

Mk
(
ρ�

∨
ρ′)−→ Mk

(
ρ�ρ′),

∑
i

fi ⊗ϕi � f ′ 7−→∑
i

fi � f ′⊗ϕi (2.5)

arising from the homomorphism in Proposition 2.3 has kernel

Mk (ρ)⊗{∑
ciϕi ∈ Ext1(ρ′,ρ) :

∑
ci = 0

}
.

Proof. Suppose that
∑

i fi ⊗ϕi � f ′ lies in the kernel of (2.5). Then we immediately see that
f ′ = 0. This implies that fi ∈ Mk (ρ) ⊆ Mk (ρ�

∨
ρ′). The kernel of (2.5) therefore is{∑

fiϕi ∈ Mk (ρ)⊗Ext1(ρ,ρ′) :
∑

fi = 0
}
.

This implies the desired statement, since Mk (ρ) is finite-dimensional by Proposition 3.5, which
we will prove independently of Proposition 2.4.
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2.3 Differential recursions for vector-valued modular forms In this section we will prove
the foundation to Theorem I: A rationality statement for Fourier series coefficients and Taylor
coefficients of vector-valued modular forms. For the proof we combine two ingredients: A
differential equation that can be deduced for vector-valued modular forms of any type [38,
44], and a rationality argument that is equally general and can be found, for example, in [24].
In particular, Theorem 2.5 does not require vra types, and is certainly known to experts.

For simplicity, we will assume in this section that Γ= SL2(Z), implying that M•(ρ) is free of
rank dim ρ as a module over M• by [38, 43]. This assumption can be easily satisfied by passing
from ρ for arbitrary Γ to IndSL2(Z)

Γ ρ without impacting the statement of Theorem 2.5. Fix an
M•-basis fi ∈ Mki (ρ), 1 ≤ i ≤ dim ρ of M•(ρ) with increasing weights ki .

Recall the Serre derivative on modular forms of weight k:

D f := Dk f := ∂τ

2πi
f − k

12
E2(τ) f ,

where

E2(τ) = 1−24
∑

n≥1
σ1(n)e(nτ) ∈ QM[1]

2 .

is the quasi-modular Eisenstein series of weight 2 and level 1. The Serre derivative is covariant
with respect to SL2(Z) from weight k to weight k +2. In particular, for any arithmetic type ρ,
we obtain a holomorphic differential operator

Dk : Mk (ρ) −→ Mk+2(ρ).

When suppressing the subscript of D acting on modular forms, we assume that it acts with k
matching the weight. In particular, we use the notation Dn = Dn

k = Dk+2n−2 ◦ . . .Dk+2 ◦Dk for
the iterated Serre derivative.

We employ the Serre derivative to derive modular linear differential equations for f ∈ Mk (ρ).
Let ρ f ,→ ρ be the subrepresentation that is generated by the component functions of f :

V (ρ f ) =Cspan
{

f (τ) : τ ∈H}
.

By Equation (44) of [38], we arrive at the assertion that f satisfies a differential equation

dim ρ f∑
j=0

g f , j ·D j f = 0 (2.6)

for modular forms g f , j ∈ Ml−2 j , l ∈ Z≥0 with nonzero g f ,0. We may assume that l is minimal
with this property. Then g f ,0 is unique up to scalar multiples by Theorem 3.14 of [38]. We can
rewrite (2.6) by expanding the definition of the Serre deriviative and obtain

dim ρ f∑
j=0

h f , j ·
( ∂τ

2πi

) j
f = 0 (2.7)

for quasimodular forms h f , j of level 1 and weight l −2 j .
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Theorem 2.5. Fix k ∈ Z and an arithmetic type ρ. Given f ∈ Mk (ρ), the following are finite-
dimensional asQ vector spaces:

spanQ
{
c( f ;n;τ) : n ∈Q≥0

}⊂V (ρ)⊗Poly(τ) and

spanQ
{
cτ0 ( f ;n) : n ∈Q≥0

} ⊂V (ρ).

More precisely, there are quasimodular forms h f , j , 0 ≤ j ≤ dim ρ f of level 1 and weight l−2 j ,
l ∈Z such that the Fourier coefficients of f satisfy the differential recursion∑

i , j∈Z≥0
i+ j≤dim ρ f

∑
m∈Z≥0

m≤n

c(h f ,i+ j ;n −m)mi ∂
j
τ c( f ;m;τ) = 0

for all n ∈Q≥0, and the Taylor coefficients of f at τ0 satisfy the recursion

n∑
m=0

dim ρ f∑
j=0

(n
m

)
cτ0 (h f , j ;n −m)cτ0 ( f ;m) = 0

for all n ∈Z≥0.

Remark 2.6. In the case of vra types the recursion in Theorem 2.5 is effectively computable.
This can be employed to compute Fourier or Taylor expansions up to order n of modular
forms of vra type in TIME(n2 log(n)).

Instead of the Taylor expansion of a modular form f at τ0 one may equally well consider
the Taylor expansion of f ◦ g at 0 for a transformation g ∈ SL2(C) that maps H to the Poincaré
disc and τ0 to 0. If g ∈ SL2(Q(τ0)) and τ0 is algebraic, then the Taylor coefficients of f ◦ g at 0
satisfy the same rationality statement as in Theorem 2.5.

Proof of Theorem 2.5. The recursions hold by (2.7). To deduce the first statement from this, it
suffices to show that c(h f , j ;0) 6= 0 for some j and that cτ0 (h f , j ; 0) 6= 0 for some j . The former
has literally been established by Knopp and Mason in their proof of Theorem 3.14 of [38]. The
latter follows along the same lines when considering that for every τ0 ∈H there is a modular
form of level 1 and weight at most 12 that vanishes at SL2(Z)τ to order 1 and nowhere else.

3 Connection to other notions of modular forms
In this section, we show that several classical constructions can be connected to modu-

lar forms of virtually real-arithmetic type. Classical modular forms appear for all symmetric
powers symd. Mock modular forms yield modular forms for real-arithmetic types of depth 1.
Higher order modular forms yield modular forms of virtually real-arithmetic types whose
semi-simplification is isotrivial. Iterated integrals yield modular forms for virtually real-arith-
metic types whose socle extension classes are connected to iterated Eichler-Shimura integrals
themselves. None of these constructions, however, exhausts modular forms of virtually real-
arithmetic type.
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3.1 Classical modular forms and arithmetic types symd The goal of this section is to re-
formulate and extend results of [40] on the spaces Mk (symd). The main result is recorded in
Proposition 3.4. We base the whole section on two observations: The covariance of the vector-
valued raising operator in Equation (3.1) and the SL2(R)-invariance of the vector-valued poly-
nomial in Equation (3.5).

We start by defining a vector-valued raising operator. We could extract it in essence from
either [40] or [59], but prefer to give a clean and short proof of its covariance. Recall that
Poly(X ,1) with the slash action of weight −1 is isomorphic to std = sym1 as an SL2(R)-repres-
entation. Set

R̃k := (X −τ)∂τ−k : C ∞
k (ρ) −→C ∞

k+1(std⊗ρ), (3.1)

Throughout the paper, we use the notation R̃d
k := R̃k+d−1 ◦ · · · ◦ R̃k .

It is possible to give a closed formula for the action of R̃d
k :

Lemma 3.1. For any smooth f we have that

R̃d
k f =

d∑
j=0

(
d
j

)
(k +d−1)d− j (−1)d− j (X −τ) j ∂

j
τ f ,

where (a)n := a(a −1) . . . (a −n +1) denotes the falling factorial.

Proof. This can be verified by induction on d.

Observe that R̃k is a derivation on the graded modules C ∞• (ρ) =⊕
C ∞

k (ρ). That is, we have

R̃k+l ( f ⊗ g ) = (R̃k f )⊗ g + f ⊗ (R̃l g ) (3.2)

for f ∈C ∞
k (ρ f ) and g ∈C ∞

l (ρg ).
The following covariance property of R̃k confirms that it is a (weight) raising operator. As

opposed to all other raising operators for elliptic modular forms that the authors are aware
of, it intertwines two different arithmetic types.

Proposition 3.2. Let ρ be an arithmetic type and k ∈ Z. The map R̃k is covariant with respect
to SL2(Z) from C ∞

k (ρ) to C ∞
k+1(std⊗ρ). If ρ extends to an SL2(R)-representation, it is covariant

with respect to SL2(R).

Proof. We check covariance with respect to generators
(

1 b
0 1

)
and S of SL2(Z) (i.e. b ∈ Z) and

SL2(R) (i.e. b ∈R). The first case is(
R̃k f

)∣∣
k+1,std⊗ρ

(
1 b
0 1

)= ((
(X −τ)∂τ−k

)
f
)∣∣

k+1,std⊗ρ
(

1 b
0 1

)
= (

((X +b)− (τ+b))∂τ−k
)(

f
∣∣
k,ρ

(
1 b
0 1

))= R̃k
(

f
∣∣
k,ρ

(
1 b
0 1

))
.
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Covariance with respect to S follows along the same lines when using

∂τ

(
τ−k f

(−1
τ

))=−kτ−k−1 f
(−1
τ

)+τ−k−2(∂τ f )
(−1
τ

)
.

Indeed, we have(
R̃k f

)∣∣
k+1,std⊗ρ S

=
((

(X −τ)∂τ−k
)

f
)∣∣

k+1,std⊗ρ S

= ρ(−S) τ−k−1
((

(−1−τX )∂τ−k X
)

f
)(−1

τ

)
= ρ(−S)

((−1− −1
τ

X
)
τ−k−1(∂τ f )

(−1
τ

)−k Xτ−k−1 f
(−1
τ

))
= ρ(−S)

((−1− −1
τ

X
)
τ
(
∂τ( f

∣∣
k S)+kτ−1( f

∣∣
k S)

)−k Xτ−1( f
∣∣
k S)

)
= R̃k

(
fk,ρ S

)
.

We let

πstdd : stdd −→ symd, p(X1, . . . , Xd) 7−→ p(X , . . . , X )

be the symmetrization map. Iterating the raising operator R̃ and then applying πstdd , we ob-
tain covariant maps

πstdd ◦ R̃d
k : C ∞

k (ρ) −→C ∞
k+d(symd⊗ρ). (3.3)

Lemma 3.3. If k 6= 0 then R̃k is injective. Specifically, it has a left inverse

(X −τ)∂X −1

k
.

Suppose that k > 0. Then

πstdd ◦ R̃d
k : C ∞

k (ρ) −→C ∞
k+d(symd⊗ρ) (3.4)

is injective on polynomials.

Proof. The first part is an easy computation. The second part follows when considering the
constant coefficient of (3.4) with respect to X . It equals

(−1)d (τ∂τ+k +d−1) · · · (τ∂τ+k).

Observe that for integers κ≥ 0 the polynomial

(Y −τ)κ ∈C ∞
−κ

(
Poly(Y ,κ)

)
(3.5)
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is invariant with respect to SL2(R). The polynomial in Equation (3.5) in conjunction with the
raising operator in (3.3) allows us to obtain SL2(R)-covariant operators

pκR̃d
k : C ∞

k (ρ) −→C ∞
k+d−κ

(
symd+κ⊗ρ)

, f 7−→ (X −τ)κ R̃d
k f . (3.6)

Note that here p is part of the symbol p•R̃••, and we explicitly do not let p be the Polyno-
mial (3.5).

In analogy with the results in the work of Kuga-Shimura [40] and Zemel [59], we obtain the
next result.

Proposition 3.4. Suppose that k +d is odd, k > d, or k < −d. Then for any arithmetic type ρ
with finite index kernel, the following map is an isomorphism:

d⊕
j=−d

j≡d (mod2)

Mk+ j (ρ) −→ Mk (symd⊗ρ)

(
f−d, . . . , fd

) 7−→ d∑
j=−d

j≡d (mod2)

p d+ j
2

R̃
d− j

2
k+ j f j .

(3.7)

Proof. We view elements of Mk (symd⊗ρ) as polynomials in X−τ. To show that the map (3.7) is
injective, it evidently suffices to show that the constant term (with respect to X−τ) of R̃(d− j )/2

k+ j f
is nonzero for any f ∈ Mk+ j (ρ). The defining formula (3.1) in conjunction with the assump-
tions on k, already implies this.

To obtain surjectivity of (3.7), we employ the same argument as Kuga-Shimura in [40]: The
lowest nonvanishing term (with respect to X −τ) of any modular form in Mk (symd⊗ρ) yields
a modular form of type ρ.

Based on Proposition 3.4, we can now prove that spaces of modular forms of vra type are
finite-dimensional.

Proposition 3.5. Let k ∈Z and let ρ be a virtually real-arithmetic type. Then

dim Mk (ρ) <∞.

Proof. Passing to a sufficiently small subgroup Γ ⊆ SL2(Z), we can assume that ρ is real-
arithmetic. If ρ has depth 0, it then suffices to prove that dim Mk (symd) < ∞ for all inte-
gers d ≥ 0. To this end, we can use the same argument as at the end of the proof of Propo-
sition 3.4: The lowest nonvanishing term of any modular in Mk (symd) is a classical modular
form. Using induction, we obtain a bound

dim Mk (symd) ≤
d∑

j=−d
j≡d (mod2)

dim Mk+ j <∞.
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We next induce on the depth of ρ. Given a general real-arithmetic type ρ of depth d, we
have an exact sequence

socd(ρ) ,−→ ρ −� ρ/socd(ρ).

Observe that socd(ρ) is real-arithmetic of depth d−1 and that the quotient of ρ by socd(ρ) is
real-arithmetic of depth 0. Employing the induction hypothesis, we find that

dim Mk
(
socd(ρ)

)<∞ and dim Mk
(
ρ/socd(ρ)

)<∞.

We have an exact sequence (the right arrow is not necessarily a surjection: cf. Theorem 4.1)

Mk
(
socd(ρ)

)
,−→ Mk (ρ) −→ Mk

(
ρ/socd(ρ)

)
.

Combining it with the previous dimension bounds we finish the proof.

A coarser variant of Proposition 3.4 that connects Mk (symd ⊗ρ) with almost holomorphic
modular forms (and hence quasimodular forms) can be deduced from the operator:

W : Hk (ρ)
[

y−1]−→Hk−1(std⊗ρ)
[

y−1], f0(τ)+ y−1 f1(τ) 7−→ (X −τ) f0(τ)−2i f1(τ), (3.8)

where f0 is holomorphic and f1 is almost holomorphic. By iterating W and symmetrizing, we
obtain

πstdd ◦Wd : Hk (ρ)+·· ·+ y−dHk (ρ) −→Hk−1(symd⊗ρ),

f0(τ)+·· ·+ yd fd(τ) 7−→ (X −τ)d f0(τ)−2i (X −τ)d−1 f1(τ)+·· ·+ (−2i )d fd(τ). (3.9)

It is clear that W is invertible, and so Lemma 3.6 establishes a correspondence of almost holo-
morphic forms of depth at most d and modular forms of type symd. Observe that [59] rests on
this idea, but W is not spelled out in the same way as here.

Lemma 3.6. The operator W in (3.8) is covariant with respect to SL2(Z). If ρ extends to an
SL2(R)-representation, it is covariant with respect to SL2(R).

Proof. It is clearly invariant with respect to the action of
(

1 b
0 1

)
with b ∈Z or b ∈R, respectively.

Invariance with respect to S follows by a direct computation (using that y−1 ◦ S = y−1τ(τ−
2i y)): (

f0 + y−1 f1
)∣∣

k S = (
f0

∣∣
k S −2i f1

∣∣
k−1 S

) + y−1 f1
∣∣
k−2 S,(

(X −τ) f0 −2i f1
)∣∣

k−1 S = (X −τ)
(

f0
∣∣
k S −2i f1

∣∣
k−1 S

) − 2i f1
∣∣
k−2 S.
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3.2 Mixed mock modular forms The goal of this section is to show that mixed mock modu-
lar forms are components of specific modular forms of virtually real-arithmetic type. Indeed,
we recognize mixed mock modular forms as components of modular forms of vra type that
have depth as most 1.

Recall the universal and co-universal parabolic extensions from Section 2.2.

Theorem 3.7. Given k ∈Z≤0, an arithmetic type ρ with finite index kernel, and a sum decom-
position |k| = d+d′ with d,d′ ∈Z≥0, there is an inclusion

Mk (ρ) ,−→ M!
k+d

(
ρ⊗ symd �

∨
pb symd′)

, f 7−→ (
(d+d′)−1

d R̃d
k f

)⊗ϕ f � (−1)(X −τ)d′
, (3.10)

whereϕ f ∈ H1
pb(Γ, sym|k|) is mapped into H1

pb(Γ, symd⊗sym∨d′
) via the embedding in (1.7) and

the pairing in (1.5).

Remark 3.8. The most straightforward instance of Theorem 3.7 that does not require the use
of (1.7) and (1.5) is the case of d= |k| and d′ = 0.

Combining the statement of Theorem 3.7 with Proposition 2.3, we obtain embeddings into
spaces of modular forms of universal type.

Corollary 3.9. Given k ∈ Z≤0, an arithmetic types ρ with finite index kernel, and a sum de-
composition |k| = d+d′ with d,d′ ∈Z≥0, there is an inclusion

Mk (ρ) ,−→ M!
k+d

(
ρ⊗ symd �pb symd′)

, f 7−→ (
(d+d′)−1

d R̃d
k f

)
� (−1)(X −τ)d′ ⊗ϕ f . (3.11)

Example 3.10. The first case of a mock modular form f∆ in level 1 that is not an Eisenstein se-
ries can be observed in weight −10. Its shadow is a scalar multiple of Ramanujan’s∆-function.
We can extract the cocycle ϕ = ϕ f∆ attached to f∆ from the introduction of [39]. It is a linear
combination ϕ=−iω+ϕ++ω−ϕ− with ω+ ≈ 0.021446 and ω− ≈ 0.000048, and

ϕ+(S) = 192

691
− 16

3
X 2 +16X 4 −16X 6 + 16

3
X 8 − 192

691
X 10,

ϕ−(S) = 768X −4800X 3 +8064X 5 −4800X 7 +768X 9.

Observe that every cocycle is a linear combination of ϕ± and the cohomologically trivial one
given by ϕ0(S) = 1− X 10. The universal extension 1�pb sym10 can be realized by the matrix
representation with usual ρ(T ) = diag(1,sym10(T ),sym10(T )) and

ρ(S) =

1 192
691 0 − 16

3 0 16 0 −16 0 16
3 0 − 192

691 0 768 0 −4800 0 8064 0 −4800 0 768 0

sym10(S)
sym10(S)

 .

We now obtain f∆ as a component of

t
(

f∆ iω+(X −τ)10 −ω−(X −τ)10
)

, where

(X −τ)10 =̂ ( 1 −10τ 45τ2 −120τ3 210τ4 −252τ5 210τ6 −120τ7 45τ8 −10τ9 τ10 ) .
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The range of (3.11) consists of holomorphic modular forms. It is therefore compatible in
a natural way with the tensor product that appears in the definition of mixed mock modular
forms (cf. Section 1.13). We thus obtain the next statement:

Corollary 3.11. Given k ∈Z≤0, l ∈Z, an arithmetic types ρ with finite index kernel, and a sum
decomposition |k| = d+d′ with d,d′ ∈Z≥0, there are inclusions

Ml (ρ′)⊗Mk (ρ) ,−→ M!
k+d+l

(
ρ′⊗ρ⊗ symd �

∨
pb ρ

′⊗ symd′)
,

g ⊗ f 7−→ g ⊗ (
(d+d′)−1

d R̃d
k f

)⊗ϕ f � g ⊗ (−1)(X −τ)d′
,

(3.12)

and

Ml (ρ′)⊗Mk (ρ) ,−→ M!
k+d+l

(
ρ′⊗ρ⊗ symd �pb ρ

′⊗ symd′)
,

g ⊗ f 7−→ g ⊗ (
(d+d′)−1

d R̃d
k f

)
� g ⊗ (−1)(X −τ)d′ ⊗ϕ f .

(3.13)

Remark 3.12. For simplicity, we have restricted our statements to l ∈Z. The statement holds
for l ∈ 1

2Z if we consider representations ρ′ of the metaplectic cover Mp2(Z) of SL2(Z). Ob-
serve however that passage from k ∈ Z≤0 to k ∈ 1

2Z requires infinite-dimensional represen-
tations of Mp2(Z), and therefore incurs specific issues concerning convergence and approxi-
mate units.

The proof of Theorem 3.7 occupies the remainder of this section. It requires the next fact
about the raising operator of Section 3.1.

Lemma 3.13. Fix d,d′ ∈Z≥0. Given p ∈ Poly(τ,d+d′), then

R̃d
−d−d′ p ∈ Poly(X ,d)⊗Poly(τ,d′)

equals the image of p under the map (1.7) up to a constant factor:

τn 7−→ (d+d′)d
∑

i+ j=n

(d
i

)(d′
j

)(d+d′
n

)−1
X iτ j , 0 ≤ i ≤ d, 0 ≤ j ≤ d′,

where (a)n = a(a −1) . . . (a −n +1) denotes the falling factorial.

Proof. Since every polynomial p(τ) can be factored completely over C, we can view p as an
element of the (d+d′)-th tensor power of Poly(τ,1). This implies that R̃d

−d−d′ p ∈ Poly(X ,d)⊗
Poly(τ,d′) when using (3.2). Note that we could have used Lemma 3.1 together with a short
computation, instead.

By the Clebsch-Gordan rules there is a unique copy of symd+d′
in the tensor product of

Poly(X ,d) and Poly(τ,d′). In conjunction with the covariance of R̃, it suffices to check the
image of 1 ∈ Poly(τ,d+d′) under R̃d

−d−d′ using Lemma 3.1. It equals (−d′−1)d(−1)d = (d+d′)d,
matching the image of 1 under (1.7).
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Proof of Theorem 3.7. Fixing f ∈Mk (ρ), we have to show that(
(d+d′)−1

d R̃d
k f

)
� (−1)(X −τ)d′ ∈ M!

k+d
(
ρ⊗ symd �ϕ f symd′)

.

It is clear that R̃d
k f is holomorphic and has at most exponential growth.

Using k +d=−d′, it follows from Section 1.4 that

(X −τ)d′ ∈ Mk+d
(
symd′)

.

It remains to check the transformation behavior of the first component. For this, we have
to examine how the isomorphism between Poly(X ,d′) and its dual interacts with the raising
operator. By definition of ϕ f in Section 1.9 and the corvariance of R̃ from Proposition 3.2, we
have (

R̃d f
)∣∣

k+d,symd⊗ρ γ= R̃d(
f
∣∣
k,ρ γ

)= R̃d(
f +ϕ f (γ)

)= R̃d f + R̃dϕ f (γ), γ ∈ Γ.

The contribution of the second component to the first one, when γ acts, is given by

−〈
ϕ f (γ), (X −τ)d′〉

.

The proof is hence reduced to showing that

(d+d′)−1
d R̃dϕ f (γ) = 〈

ϕ f (γ), (X −τ)d′〉
.

On the right-hand side, we view ϕ f (γ) ∈ Poly(τ,d+d′) as an element of Poly(τ,d)⊗Poly(τ,d′)
by the Embedding (1.7). Lemma 3.13, which computes the left-hand side, in conjunction
with (1.6) confirms the previous equation. This concludes the proof.

3.3 Higher order modular forms The definition of second order modular forms goes back
to Goldfeld [32], who considered Eisenstein series twisted by modular symbols. The notion
was systematized by Chinta, Diamantis, and O’Sullivan in [18], which includes the definition
of higher order modular forms. Some of the ideas in this section can also be found in [36];
However, they were not pursued in a systematic manner.

Observe that higher order modular forms for the full modular group are modular (i.e. mod-
ular of order 0 in the terminology of higher order modular forms), since H1

pb(SL2(Z),1) = {0}.
For this reason, we need the freedom to let Γ be any finite index subgroup of SL2(Z). In par-
ticular, Γ may be any congruence subgroup of SL2(Z).

The goal of this section is to show that higher order modular forms are instances of modu-
lar forms for real-arithmetic types. When combining this statement with induction of mod-
ular forms as explained in [57], then higher order modular forms can be recognized as com-
ponents of modular forms of virtually real-arithmetic types whose socle factors are virtually
isotrivial.

We start by giving the (recursive) definition of higher order modular forms, which has its
origins in [18, 23].
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Definition 3.14. Modular forms of order d = 0 are defined as modular forms in the usual
sense. We call f ∈ H md

k a modular form of order d > 0 and of weight k ∈ Z if for all γ ∈ Γ
the function f

∣∣
k (γ−1) is a modular form of order d−1 and weight k.

We denote the space of order d modular forms that have weight k by M[d]
k = M[d]

k (Γ).
For the purpose of this section, set 1[0] =1, and for d> 0 let 1[d] be defined by

1 ,−→1[d]�1[d−1] ⊗H1(Γ, 1), (3.14)

where

H1(Γ, 1) ,−→ H1(Γ, 1[d−1])∼= Ext1
Γ

(
1, 1[d−1]).

Clearly, 1[d] is real-arithmetic and its socle factors are isotrivial.
The next result yields case (2) of Theorem I.

Proposition 3.15. Let d≥ 0 and k ∈Z. Then the map

Mk
(
1[d])−→ M[d]

k , f �∗ 7−→ f (3.15)

is surjective. In particular, we have

Mk
(
1[d]) ∼=

d⊕
j=0

M[ j ]
k ⊗H1(Γ,1)⊗(d− j ).

Proof. The second statement in the proposition follows from the first one in a straightforward
way. We therefore focus on establishing surjectivity of the first map.

If d = 0, the statement is vacuous. We use induction to establish the statement if d > 0.
Assume that

Mk
(
1[d−1])−→ M[d−1]

k , f �∗ 7−→ f

is surjective, and fix h ∈ M[d]
k . By definition of higher order modular forms we have

ϕh(γ) = h
∣∣
k (γ−1), ϕh ∈ H1(Γ, M[d−1]

k

) ∼= M[d−1]
k ⊗H1(Γ,1).

Employing surjectivity of the map from Mk (1[d−1]) onto M[d−1]
k , we obtain a tensor

ϕh ∈ Mk
(
1[d−1])⊗H1(Γ,1).

In particular, for any f ∈ M [d]
k , we get(

f � ϕh
)∣∣

kγ=
(

f +ϕh(γ)
)
� ϕh =1[d](γ)

(
f � ϕh

)
.

This provides an inclusion of M[d]
k into Mk (1[d]) that is a right inverse to the map in (3.15), i.e.

a section to (3.15).
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3.4 Iterated Eichler-Shimura integrals and multiple modular values The study of iterated
integrals of modular forms was suggested by Manin in the context of non-commutative mod-
ular symbols [41, 42]. Brown developed a theory of multi modular values in [11] that features
such iterated integrals and connects them to some hypothetical category of motives. The goal
of this section is to show that iterated integrals of modular forms are components of vector-
valued modular forms of virtually real-arithmetic types. We revisit Brown’s regularization of
iterated integrals, and then reinterpret Lemma 5.1 of [11]. In fact, the whole section is based
on the exposition in [11].

Manin in his articles referred to iterated integrals of modular forms as iterated Shimura in-
tegrals, and Brown follows this convention. Since they generalize Eichler integrals, we prefer
to refer to them as iterated Eichler-Shimura integrals.

We focus throughout on the case of iterated integrals of level 1 modular forms. This is by
no means an essential restriction, but [11] covers only this case. The parts of [11] that we use
can apparently be generalized to arbitrary arithmetic types. We have, however, not checked
any details.

To begin with, recall that iterated Eichler-Shimura integrals can be attached to a tuple f =
( f1, . . . , fd), d ∈Z≥0 of modular forms of weights k = (k1, . . . ,kd) if fd is cuspidal. We then set

I f (τ) :=
∫ i∞

τ

∫ i∞

z1

· · ·
∫ i∞

zd−1

f1(z1) · · · fd(zd) (X − z)k−2 dzd · · ·dz1 ∈ Poly
(
X ,k −2

)
,

abbreviating

(X − z)k−2 := (X1 − z1)k1−2 · · · (Xd− zd)kd−2 and

Poly
(
X ,k −2

)
:= Poly

(
X1,k1 −2

)⊗·· ·⊗Poly
(
Xd,kd−2

)
.

(3.16)

Given k ∈Zd, we let

IMk := spanC
{

I reg
f : f1 ∈ Mk1 , . . . , fd ∈ Mkd

}
, (3.17)

where I reg
f is a regularized variant of I f , defined below in (3.18), that allows us to subsume all

f ∈ Mkd . The case of fd ∈ Mkd \ Skd will be treated in the following discussion.
In his definition, Brown found a method to regularize iterated Eichler-Shimura integrals of

general modular forms in a way that is arithmetically meaningful. It amounts to a separate
integration of the constant term. Details are explained in [11]. Fix f1 ∈ Mk1 , . . . , fd ∈ Mkd as
before, and write

∞∑
n=0

c( fi ;n)e(nτ), 1 ≤ i ≤ d
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for their Fourier expansions. We define

I reg
f (τ) :=

d∑
j=0

∫ i∞

τ
· · ·

∫ i∞

z j−1

∫ 0

z j

· · ·
∫ 0

zd−1

f1(z1) · · · f j−1(z j−1) · ( f j (z j )− c( f j ;0)
)

· c( f j+1;0) · · ·c( fd;0) (X − z)k−2 dzd · · ·dz1, (3.18)

where in the cases j ∈ {0,1} we set z−1 = i∞ and z0 = τ in order to unify notation. Observe
that this integral converges absolutely and locally uniformly, since f j (z j )− c( f j ;0) decays ex-
ponentially as z j → i∞.

Brown employs a generating function of iterated Eichler-Shimura integrals. In order to re-
late it to (3.18), we have to decode his defining formula. Our notation differs slightly from his
so that it matches the present paper’s style.

We let C〈〈M∨• [sym•]〉〉 be the non-commutative algebra

∞∏
d=0

∏
k1,...,kd

HomC

(
Mk1 ⊗·· ·⊗Mkd , Poly(X1,k1 −2)⊗·· ·⊗Poly(Xd,kd−2)

)
. (3.19)

Its product structure is given by the outer tensor product in both components of the hom-
space. It carries a right action of SL2(R) that arises from the actions on Poly(Xi ,ki − 2). We
will later amend it to obtain another action of SL2(Z), whose semisimplification equals the
one given here. We have a grading on C〈〈M∨• [sym•]〉〉 by the monoid of integer tuples (with
concatenation as their multiplication and the length 0 tuple as the neutral element). The
graded pieces are denoted by C〈〈M∨• [sym•]〉〉k .

Given tuples k and k ′ of length d and d′, we define the partial ordering k ′ > k by d′ > d and
(k ′

1, . . . ,k ′
d) = k. The relation k ′ 6≡ k is defined by (k ′

1, . . . ,k ′
d) 6= k if d′ ≥ d and k ′ 6= (k1, . . . ,kd′) if

d′ ≤ d. We obtain families of right-ideals

C〈〈M∨
• [sym•]〉〉>k := ∏

d′Z≥0,k ′∈Zd′
≥0

k ′>k

C〈〈M∨
• [sym•]〉〉k ′ ,

C〈〈M∨
• [sym•]〉〉6≡k := ∏

d′Z≥0,k ′∈Zd′
≥0

k ′ 6≡k

C〈〈M∨
• [sym•]〉〉k ′ .

(3.20)

In Definition 4.4 of [11], Brown defines a formal generating series I (τ;∞) of regularized
iterated Eichler-Shimura integrals, which takes values in C〈〈M∨• [sym•]〉〉. We denote it by

I reg
Brown : H−→C〈〈M∨

• [sym•]〉〉.

In what follows we write f ∨ for the dual of a modular form f viewed merely as an element
of the C-vector space Mk , where k is the weight of f .
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Lemma 3.16. Fix k and f as above. Let π f be the projection of (3.19) to

f ∨
1 ⊗·· ·⊗ f ∨

d ⊗ Poly(X1,k1 −2)⊗·· ·⊗Poly(Xd,kd−2).

Then we have π f ◦ I reg
Brown = I reg

f .

Proof. We have to identify the components of I reg
Brown in Definition 4.4 of [10]. Brown sets

I reg
Brown := lim

z→i∞
(
IBrown(τ; z) · I∞Brown(z;0)

)
, (3.21)

where the product is taken with respect to the algebra structure on C〈〈M∨• [sym•]〉〉. The defi-
nitions of IBrown and I∞Brown can be found in (4.3) and (3.5) of [11]:

IBrown(τ; z) := 1 +
∞∑

d=1

∫ z

τ
· · ·

∫ z

zd−1

Ω(z1) · · ·Ω(zd) and

I∞Brown(z;0) := 1 +
∞∑

d=1

∫ 0

z
· · ·

∫ 0

zd−1

Ω∞(z1) · · ·Ω∞(zd),

where

Ω(τ) :=
∞∑

k=0

∑
f ∈Bk

f ∨ f (τ) (X −τ)k−2 dτ and Ω∞(τ) :=
∞∑

k=0

∑
f ∈Bk

f ∨ c( f ;0)(X −τ)k−2 dτ.

Here, B =⋃
k Bk is a graded basis of M• =⊕

k Mk whose elements have rational Fourier coef-
ficients.

Both (3.18) and the projection π in Lemma 3.16 are linear in f . In particular, we can and
will assume that fi ∈B for all 1 ≤ i ≤ d. Then the proof of Lemma 3.16 amounts to simplifying
π
(
I reg

Brown(τ)
)

in such a way that it equals (3.18). Expanding π
(
I reg

Brown(τ)
)

we get

lim
z→i∞

d∑
j=0

∫ z

τ
· · ·

∫ z

z j−1

f1(z1)(X1 − z1)k1−2 · · · f j (z j )(X j − z j )k j−2dz j · · ·dz1

·
∫ 0

z
· · ·

∫ 0

zd−1

c( f j+1;0)(X j+1 − z j+1)k j+1−2 · · ·c( fd;0)(Xd− zd)kd−2 dzd · · ·dz j+1.

Rewriting f j (z j ) = ( f j (z j )− c( f j ;0))+ c( f j ;0) and then combining the appropriate integrals
from z j−1 to z and from z to 0, we see that if j ≥ 1, then

∫ z

τ
· · ·

∫ z

z j−1

∫ 0

z j

· · ·
∫ 0

zd−1

f1(z1) · · · f j (z j )c( f j+1;0) · · ·c( fd;0) dzd · · ·dz1

+
∫ z

τ
· · ·

∫ z

z j−2

∫ 0

z

∫ 0

z j

· · ·
∫ 0

zd−1

f1(z1) · · · f j−1(z j−1)c( f j ;0) · · ·c( fd;0) dzd · · ·dz1
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equals∫ z

τ
· · ·

∫ z

z j−1

∫ 0

z j

· · ·
∫ 0

zd−1

f1(z1) · · · f j−1(z j−1)
(

f j (z j )− c( f j ;0)
)

c( f j+1;0) · · ·c( fd;0) dz1 · · ·dzd

+
∫ z

τ
· · ·

∫ z

z j−2

∫ 0

z j−1

· · ·
∫ 0

zd−1

f1(z1) · · · f j−1(z j−1)c( f j ;0) · · ·c( fd;0) dz1 · · ·dzd

for 0 ≤ j ≤ d. Using this relation inductively, and then taking the limit z → i∞ we obtain
Lemma 3.16.

We next study the transformation behavior of iterated Eichler-Shimura integrals. The trans-
formation behavior of Brown’s generating series is stated in Lemma 5.1 of [11], which says that
there is a cocycle

ϕ ∈ H1(SL2(Z), C〈〈M∨
• [sym•]〉〉×)

such that

I reg
Brown(τ) = I reg

Brown(γτ)γ ·ϕ(γ) for all γ ∈ SL2(Z). (3.22)

Observe that we obtain an (infinite dimensional) representation of SL2(Z) by

SL2(Z)�C〈〈M∨
• [sym•]〉〉, γv := vγ−1 ·ϕ(

γ−1). (3.23)

We emphasize that this is not the same as the right action (v,γ) 7→ vγ that we described af-
ter (3.19), but rather extends it. We further record for later use that the semisimplification
of (3.23) equals (γ, v) 7→ vγ−1. To see this, observe that the term with grading (), the empty tu-
ple, ofϕ(γ−1) equals 1. It can be computed from the action on the “lowest piece” Hom(C,C) ⊂
C〈〈M∨• [sym•]〉〉.
Proposition 3.17. Given k = (k1, . . . ,kd) ∈ Zd, there is a real-arithmetic type ρ of depth d such
that

IMk ,−→ M0(ρ).

There is a projection V (ρ) → Poly(X ,k −2) such that the associated map M0(ρ) → C∞(H→
Poly(X ,k −2)) makes the following diagram commutative:

IMk M0(ρ)

C∞(
H→ Poly(X ,k −2)

)
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Remark 3.18. As opposed to the case of mixed mock modular forms and higher order mod-
ular forms, we do not state the existence of a retract that is a coordinate projection. This is
connected to the following question: Is every function that transforms like an iterated Eichler-
Shimura integral actually an iterated Eichler-Shimura integral? It is solved only in the case of
usual Eichler integrals.

Proof of Proposition 3.17. Our first step is to extract from the representation in (3.23) a fi-
nite dimensional one, i.e., an arithmetic type. To this end, recall the ideals C〈〈M∨• [sym•]〉〉>k

and C〈〈M∨• [sym•]〉〉6≡k introduced in (3.20), which are compatible with the SL2(Z) action on τ

in (3.23). Indeed, this action only affects the symmetric powers in each factor of (3.19). In
particular, we can define an SL2(Z) representation ρ̃ as the quotient of C〈〈M∨• [sym•]〉〉 by

C〈〈M∨
• [sym•]〉〉>k + C〈〈M∨

• [sym•]〉〉6≡k .

We obtain a representation space

V (ρ̃) := C ⊕ HomC

(
Mk1 , Poly(X1,k1 −2)

)⊕
·· · ⊕ HomC

(
Mk1 ⊗·· ·⊗Mkd , Poly(X1,k1 −2)⊗·· ·⊗Poly(Xd,kd−2)

)
. (3.24)

Observe that a priori this is merely a graded direct sum of vector spaces, since multiplication
by ϕ(γ−1) in (3.23) does not respect the direct sum structure. We have given the semisimplifi-
cation of C〈〈M∨• [sym•]〉〉 before, from which we see that the semisimplification of ρ̃ is isomor-
phic to a direct sum of tensor products of symmetric powers symk1−2⊗·· ·⊗symk j−2, since we
regard the Mki as trivial SL2(Z) representations. In particular, each of them is real-arithmetic
as an arithmetic type. We conclude that ρ̃ is also real-arithmetic.

By means of the projection from C〈〈M∨• [sym•]〉〉 to (3.24), we obtain from I reg
Brown a func-

tion I
reg
Brown : H→V (ρ̃). The invariance in (3.22) implies that I

reg
Brown ∈ M0(ρ̃). To match Brown’s

construction in [11], fix bases fki , j with 1 ≤ j ≤ dim Mki of each space of modular form Mki .
We obtain from the projections π f in Lemma 3.16 a linear map defined by

π : CI
reg
Brown ⊗Mk1 ⊗·· ·⊗Mkd −� IMk ,

I
reg
Brown ⊗ fk1, j1 ⊗·· ·⊗ fkd, jd 7−→π f ◦ I

reg
Brown, f = (

fk1, j1 , . . . , fkd, jd

)
.

Since the regularized iterated integral is linear in f , Lemma 3.16 implies that π is surjective.

We wish to extract the “top component” of I
reg
Brown, corresponding to the last direct sum-

mand in (3.24), in order to obtain iterated integrals in the sense of (3.17). Consider the follow-
ing diagram of vector space homomorphisms.
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Mk1 ⊗·· ·⊗Mkd CI
reg
Brown ⊗Mk1 ⊗·· ·⊗Mkd M0(ρ̃)⊗Mk1 ⊗·· ·⊗Mkd

IMk C∞(
H→ Poly(X ,k −2)

)
M0

(
ρ̃⊗Mk1 ⊗·· ·⊗Mkd

)

I
reg
Brown⊗

π

σ

The left vertical arrow represents the map f 7→ I reg
f , which is surjective by the definition of

IMk —it is in general not an isomorphism, since there might be relations among iterated
Eichler-Shimura integrals. The horizontal arrow on the top left is an isomorphism. From
the definition of π and Lemma 3.16, we see that the left triangle is commutative. Since π is
surjective, there is a section σ to π. This amounts to choosing preimages for each iterated
integral in IMk .

The right horizontal arrow on the top arises from the containment I
reg
Brown ∈ M0(ρ̃). The ver-

tical map on the right-hand side is an isomorphism, that arises from viewing each of the Mki

as an isotrivial arithmetic type. Now, the first part of the proposition follows when choosing
for ρ the representation

ρ̃⊗M0(ρ̃)⊗Mk1 ⊗·· ·⊗Mkd
∼= ρ̃⊗M0

(
ρ̃⊗Mk1 ⊗·· ·⊗Mkd

)
.

To prove the second part of the proposition, it remains to understand the bottom line. The
bottom left arrow corresponds to the fact that iterated integrals are smooth. The bottom right
arrow arises from the projection

V (ρ̃)⊗Mk1 ⊗·· ·⊗Mkd

=
(
C ⊕ HomC

(
Mk1 , Poly(X1,k1 −2)

) ⊕ ·· · ⊕ HomC

(
Mk1 ⊗·· ·⊗Mkd , Poly(X ,k −2)

))
⊗Mk1 ⊗·· ·⊗Mkd

−� HomC

(
Mk1 ⊗·· ·⊗Mkd , Poly(X ,k −2)

)⊗Mk1 ⊗·· ·⊗Mkd

−� Poly(X ,k −2).

When applying this construction to the image of σ, we recognize the definition of π. In par-
ticular, the commutativity of the diagram in Proposition 3.17 follows from Lemma 3.16.

4 Existence of modular forms
Existence of modular forms is typically established via cohomological arguments or via

Poincaré series constructions. In the case of mock modular forms cohomological arguments
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can be found in [13], and the Poincaré series construction (without analytic continuation)
was used in [8] recasting results of [48].

4.1 A cohomological argument Consider an arithmetic type ρ that is an extension ρι ,→
ρ� ρπ. Then there are natural maps

Mk (ρ) −→ Mk (ρπ) and M!
k (ρ) −→ M!

k (ρπ).

It is natural to ask whether or not these maps are surjective. The first one in general is not, but
the second one is. Obstructions to surjectivity are given by suitable first cohomology groups,
which by Serre duality are related to modular forms of sufficiently high vanishing order. The
proof of the next theorem exploits this connection.

Theorem 4.1. Let

ρι ,−→ ρ −� ρπ

be an exact sequence of arithmetic types. Then the map

M!
k (ρ) −→ M!

k (ρπ)

is surjective. The map

Mk (ρ) −→ Mk (ρπ)

is surjective if and only if dim M2−k (ρ∨
ι ) = 0.

Remark 4.2. Before we prove Theorem 4.1, we elaborate briefly on the relation to Bruinier-
Funke’s existence theorem for harmonic weak Maaß forms. Recall from the theory of har-
monic weak Maaß forms the ξ-operators ξk f := −2i yk∂τ f . It maps harmonic weak Maaß
forms f of weight k to (weakly) holomorphic modular forms of weight 2− k. Theorem 3.7
of [13] says that ξk is surjective for every k onto modular forms of weight 2−k when allow-
ing meromorphic singularities at the cusp of the preimage. Bruinier-Funke’s method of proof
is parallel to the one that we employ to establish Theorem 4.1, but it seems worthwhile to
emphasize the difference between the statements. Recall from Corollary 3.9 the map

M−d(ρ) −→ M!
−d(ρ�pb symd), f 7−→ f � (X −τ)d⊗ϕ f .

is injective. By definition of ρ�pb symd, there is an exact sequence

ρ ,−→ ρ�pb symd −� symd⊗Ext1
pb(ρ,1).
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Composing the above embedding of mock modular forms with the second map in this se-
quence, we obtain a map

M−d(ρ) −→ M!
−d(ρ�pb symd) −→ M!

−d(symd)⊗Ext1
pb(ρ,1),

which sends f to (X −τ)d⊗ϕ f . Proposition 3.4 informs us about modular forms of symmetric
power type. In particular, we have a projection M!

−d(symd)�M!
0. When composing it with

the above map, we obtain

M−d(ρ) −→ M!
−d(ρ�pb symd) −→ M!

−d(symd)⊗Ext1
pb(ρ,1)�M!

0 ⊗Ext1
pb(ρ,1).

The image of f under this map is 1⊗ϕ f =ϕ f . The shadow of f is encoded as a cocycle ϕ f via
the Eichler-Shimura theorem, but not as a modular form as in the theory of Bruinier-Funke.
Theorem 4.1 suggests that we study modular forms of virtually real-arithmetic beyond the
image of the maps in (3.13) and (3.12).

Proof of Theorem 4.1. Without loss of generality, we can pass from Γ to a torsion-free sub-
group of finite index (cf. [45, 46]). In particular, we can and will assume that Γ\H is a mani-
fold. Adding cusps to Γ\H, we obtain a compactification Γ\H. The structure sheaf O of Γ\H
extends to Γ\H. We let O (m) := O (m∂(Γ\H)) be the twist of O by a multiple of the boundary
divisor ∂(Γ\H) of Γ\H. Any compatible choice of logarithms of ρ(T ) for parabolic T ∈ Γ yields
local systems Vk (ρ) on Γ\H attached to weight k and arithmetic type ρ. We fix the choice of
log ρ(T ) that corresponds to holomorphic components of local sections. Details are conve-
niently given in the context of Proposition 3.2 of [15].

Observe that the exact sequence of types ρι ,→ ρ� ρπ corresponds to an exact sequence of
local systems

Vk (ρι) ,−→ Vk (ρ) −� Vk (ρπ).

Twisting Vk (ρ) by O (m) we find that

M!
k (ρ) ∼= inj lim

m→∞
H0(Γ\H, Vk (ρ)⊗O (m)

)
.

The analogue holds for weakly holomorphic modular forms of arithmetic type ρπ. In order to
establish the first claim, it therefore suffices to show that

H0(Γ\H, Vk (ρ)⊗O (m)
)−→ H0(Γ\H, Vk (ρπ)⊗O (m)

)
is surjective, if m is large enough.

We have an exact sequence of holomorphic sheaves on Γ\H:

Vk (ρι)⊗O (m) ,−→ Vk (ρ)⊗O (m) −� Vk (ρπ)⊗O (m). (4.1)
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In the following sequence, we suppress Γ\H from the notation. The first four terms of the long
exact sequence in de Rham cohomology associated to (4.1) are

0 −→ H0(Vk (ρι)⊗O (m)
)−→ H0(Vk (ρ)⊗O (m)

)−→ H0(Vk (ρπ)⊗O (m)
)−→ H1(Vk (ρι)⊗O (m)

)
.

By Serre duality, we have

H1(Vk (ρι)⊗O (m)
) ∼= H0(V2−k (ρ∨

ι )⊗O (−m)
)∨,

since the canonical sheaf on Γ\H is isomorphic to V2. The right-hand side vanishes, if m is
sufficiently large. This implies the first claim. The second claim follows when considering the
case of m = 0.

4.2 Eisenstein series and Poincaré series We prove that holomorphic Eisenstein series and
Poincaré series of sufficiently large weight converge and span the space of modular forms. We
also give an explicit bound on the weight of convergence. Both [38] and [29] contain a proof
of convergence for much more general types. A bound on the weight of convergence in terms
of geodesics is given in [29]. A meromorphic continuation for Eisenstein series of vra type has
not yet been delivered to the authors’ knowledge. Already for arithmetic types of socle length
greater than 1, the theory becomes more complicated. Evidence that these additional com-
plications are substantial can be extracted from O’Sullivan’s analytic continuation of second
order Eisenstein series [49] in conjunction with Section 3.3 of the present paper. O’Sullivan
found infinitely many poles of the weight 0 second order Eisenstein series, whose location is
determined by the discrete spectrum of the Laplacian on L2(Γ\H).

For simplicity, we work with vra types ρ of Γ= SL2(Z). Letψ ∈ Poly(τ)⊗V (ρ) and m ∈Q such
that ψe(m · )|k,ρ T =ψe(m · ). We define the associated Poincaré series as

Pk,ρ
(
ψe(m · )) := ∑

Γ∞\Γ
ψe(m · )∣∣k,ρ γ. (4.2)

For simplicity, we write

Pk,ρ
(
ψe(m · ); τ

)
:= Pk,ρ

(
ψe(m · ))(τ). (4.3)

If m = 0, Poincaré series are Eisenstein series, and we set Ek,ρ(ψ; τ) := Pk,ρ(ψe(0 · ); τ). For
convenience, we let Pk,ρ

(
ψe(m · ))= 0 if ψe(m · )|k,ρ T 6=ψe(m · ).

Remark 4.3. The Jordan normal form for matrices over C implies that twists of Poly(τ) by
characters of the group T • = {T n : n ∈ Z} ⊂ SL2(Z) exhaust all indecomposable, finite-di-
mensional, complex representations of T •. We will see in Proposition 4.5 that this can be
employed to obtain a generating set of Mk (ρ) in complete analogy to holomorphic Poincaré
series that span Mk for large enough k.
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Proposition 4.4. For k ≥ 5+shift(ρ)+pxs(ρ), the right-hand side of (4.2) converges absolutely
and locally uniformly.

Before we establish Proposition 4.4, we give the statement of main interest:

Proposition 4.5. Suppose that k ≥ 5+ shift(ρ)+pxs(ρ). Then

Mk (ρ) = spanC
{
Pk,ρ

(
ψe(m · ); τ

)
: 0 ≤ m ∈Q,ψ ∈ Poly(τ)⊗V (ρ),ψe(m · )|k,ρ T =ψe(m · )}

Proof of Proposition 4.5. Using induction on the socle length we can focus on semisimple
arithmetic types. In other words, we can assume thatρ = syml . Then Proposition 3.4 withρ 
1 shows that the statement is implied by the case of trivial ρ, i.e., l = 0. The proof is hence re-
duced to the classical statement that Poincaré series span the space of scalar-valued modular
forms.

The proof of Proposition 4.4 is standard, except for bounds on the operator norm of real-
arithmetic types. They are stated in the next lemma, whose proof requires the following no-
tation: Any rational number α can be expanded as a minus continued fraction

α=α0 − 1

α1 −
1

α2 − ·· · −
1

αl (α)
=: ((α0,α1,α2, . . . ,αl (α))). (4.4)

As in the case of the usual continued fraction expansion, the length of the minus continued
fraction expansion of α= d

c grows at most logarithmically: l (α) ¿ log(|c|+ |d |).
Given γ= (

a b
c d

) ∈ SL2(Z) with c 6= 0, then

γ=±T m(γ)STαl · · ·STα0 for d
c = ((α0, . . . ,αl )) and some m(γ) ∈Z.

Lemma 4.6. Let ρi , 1 ≤ i ≤ i0 be vra types of SL2(Z), and set ρ = ⊗
ρi . Let ϕ ∈ H1(SL2(Z),ρ),

and fix some norm ‖ · ‖ on V (ρ). Denote the associated operator norms by ‖ · ‖, too. There is
κ> 3 such that for every γ ∈ SL2(Z), we have

‖ρ(T −m(γ)γ)‖¿ρ

(|c|+ |d |)i0κ+∑
shift(ρi )+∑

pxs(ρi ) and (4.5)

‖ϕ(T −m(γ)γ)‖¿ρ

(|c|+ |d |)i0κ+∑
shift(ρi )+∑

pxs(ρi )+pxs(ϕ), (4.6)

uniformly in γ.

Proof. We prove the lemma by induction on the socle length. In the case that all ρi have socle
length 1, it suffices to treat a single irreducible representation ρ = sym j , since

⊗
ρi is a direct

sum of symmetric powers whose weight shifts are bounded by shift(ρ) =∑
shift(ρi ).
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To establish the base case with respect to the induction on the socle length, we employ
induction on the length of the minus continued fraction expansion (4.4) of d/c. If c = 0, then
γ=±T m(γ). In case that ϕ is parabolic, we have ϕ(T m) = 0. For general ϕ and m > 0, we find
that ∥∥∥ϕ(

T m)∥∥∥=
m−1∑
n=0

∥∥∥sym j (T −n)
ϕ(T )

∥∥∥¿ρ

m−1∑
n=0

(1+n) j ¿ρ (1+m) j+1.

An analogous estimate holds if m < 0. The following thus holds for all m ∈Z:∥∥∥ϕ(
T m)∥∥∥¿ρ (1+|m|) j+pxs(ϕ).

In conjunction with ϕ(±1) ¿ρ 1, this settles the base case of the second induction.
Still restricting to the case of ρ = sym j , we assume that (4.6) holds for all γ such that c 6= 0

and d/c has a minus continued fraction expansion of length at most l −1. Write d = nc + f
with | f | < |c|. Then γ = γ′ST n for some γ′ that satisfies the induction hypothesis. We have
that∥∥∥ϕ(

γ′ST n)∥∥∥≤
∥∥∥sym j (T −nS−1)ϕ(γ′)

∥∥∥+∥∥∥ϕ(
ST n)∥∥∥¿ρ (1+|n|) j

∥∥ϕ(γ′)
∥∥+ (1+|n|) j+pxs(ϕ)

¿ρ (1+|n|) j (|c|+ | f |) j+pxs(ϕ) + (1+|n|) j+pxs(ϕ) ≤ 4
(|c|+ |d |) j+pxs(ϕ).

We therefore find that

4l (d/c) (|c|+ |d |) j+pxs(ϕ) ¿ρ

(|c|+ |d |)κ+ j+pxs(ϕ)

for suitable κ > log(
p

5+1)/2(4) ≈ 2.88. This establishes (4.6) if ρ = syml . The estimate (4.5) for
‖ρ(γ)‖ follows along the same lines.

Now consider real-arithmetic types ρi of socle lengths s1 ≥ ·· · ≥ s j , and assume that we
have established the lemma for types of socle lengths s1 −1, s2, . . . , s j . Writing s = s1, let ρ1,1 ⊂
·· · ⊂ ρ1,s = ρ1 be the socle series of ρ1. The highest socle factor ρ1/ρ1,s−1 will be denoted by
ρ1. Then ρ1 is an extension of ρ1 by ρ1,s−1, and we write

ϕ1 ∈ H1(SL2(Z), ρ1,s−1 ⊗ρ∨
1

)∼= Ext1
SL2(Z)

(
ρ1,s−1,ρ1

)
for the associated cocycle. For any v = (v1,s−1, v1)⊗ v2 ⊗·· ·⊗ v j ∈V (ρ), we find that∥∥ρ(γ)v

∥∥ ¿ ∥∥ρ1(γ)v1 +ϕ1(γ)v1,s−1 +ρ1,s−1(γ)v1,s−1
∥∥ ∥∥ρ2(γ)v2

∥∥ · · ·∥∥ρ j (γ)v j
∥∥

¿
((|c|+ |d |)κ+shift(ρ1) + (|c|+ |d |)κ+shift(ρ1)+shift(ρ1,s−1)+pxs(ρ1,s−1)+pxs(ϕ1)

+ (|c|+ |d |)κ+shift(ρ1,s−1)+pxs(ρ1,s−1)
)
· (|c|+ |d |)κ+∑

i≥2 shift(ρi )+∑
i≥2 pxs(ρi ).

We obtain the estimate for ρ(γ) after simplifying the right-hand side. The estimate for ϕ(γ)
follows similarly.
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