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Darboux evaluations for hypergeometric functions
with the projective monodromy PSL(2, F7)

Raimundas Vidunas*

Abstract

Algebraic hypergeometric functions can be compactly expressed as
radical functions on pull-back curves where the monodromy group is
simpler, say, a finite cyclic group. These so-called Darboux evaluations
were already considered for algebraic 2Fi-functions. This article presents
Darboux evaluations for the classical case of 3F>-functions with the
projective monodromy group PSL(2,F7). As an application, appealing
modular evaluations of the same 3F>-functions are derived.

1 Introduction

One way to obtain workable expressions for algebraic hypergeometric functions
is to pull-back them to algebraic curves where the (finite) monodromy group
would be simpler, say, a finite cyclic group [Vid13]. For example, we have
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around x = 0. Here the 5F;-functions have the tetrahedral group = A, as the
projective monodromy group (of the hypergeometric differential equation). The
rational arguments of degree 4 reduce the monodromy to small cyclic groups,
as evidenced by the radical (i.e., algebraic power) functions on the right-hand
sides of these identities.

If a Fuchsian differential equation E on the Riemann sphere CP' has a finite
monodromy group, then E can be transformed by a pull-back transformation
with respect to an algebraic covering ¢ : B — CP! to a Fuchsian equation
on the curve B with a cyclic monodromy. This is a special case of a Darboux
covering as defined in [Vid13]. The transformed equation on the Darbouz curve
B has a basis of radical solutions (and hence, a completely reducible monodromy
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representation). Explicit expressions for solutions of E in terms of radical
functions on B are called Darbouz evaluations. In [Vid13], all tetrahedral,
octahedral and icosahedral Schwarz types [Sch73] of algebraic 3F;-functions are
exemplified by Darboux evaluations. The simplest Darboux curves for most
icosahedral Schwarz types have genus 1 rather than 0.

Algebraic generalized hypergeometric functions ,F,_; are classified by
Beukers and Heckman [BH89]. One particularly interesting case [Katll],
[vdPU0Q] is algebraic sF>-functions such that the projective monodromy group
(of their third order Fuchsian equations) is the simple group

A = PSL(2,F;) = GL(3,F>) (1.3)

with 168 elements. This is the group of holomorphic symmetries of the Klein
quartic curve
XY +Y*Z+ 723X =0. (1.4)

Let us denote this curve in CP? by K. It has the genus ¢ = 3. It is the
simplest Hurwitz curve [Mac98] as it achieves the Hurwitz [Hur93] upper bound
84(g — 1) for the number of holomorphic symmetries for complex projective
curves of genus g > 1.

Third order Fuchsian equations with the projective monodromy group A
were first constructed by Halphen [Hal84] and Hurwitz [Hur86]. The Hurwitz
equation is satisfied by

z) . (1.5)

In [BH89, Table 8.3], classes of 3Fy-functions with the projective monodromy
group A are labelled by the numbers 2, 3, 4. The differential Galois group of
their Fuchsian equations is the complex reflection group ST24 in the Shephard—
Todd classification [STH4], isomorphic to the central extension A x (Z/27Z).
That is also the customary monodromy group inside GL(3,C). Theorem [Z1]
here gives a classification up to contiguous relations of (Fuchsian equations for)
sFy-functions with the projective monodromy group A.

Pull-back coverings for transformations to Fuchsian equations with smaller
projective monodromy groups correspond to subfields of C(f2/ f1, f3/f1), where
f1, fo, 1é3 is a linear basis of solutions of the original Fuchsian equation. The
largestl] cyclic subgroup of A is isomorphic to Z/7Z; see the character table
[EIK98| (1.1)]. By the Galois correspondence, there are pull-back coverings of
degree (#A)/7 = 24 that reduce the projective monodromy group to Z/7Z. The
smallest degree for pull-back coverings to Darboux evaluations of the considered
sFy-functions is thus 24. These pull-back coverings can be found in these ways:

LCorrespondingly, (#A)/7 = 24 is the smallest degree of Darboux coverings that reduce the
projective monodromy A to a cyclic group. But smaller degree Darboux coverings exist that
give pull-back transformations to reducible monodromy representations. In [Vid18], Darboux
coverings of degree 21 of the considered Fuchsian equations are given. They transform the
projective monodromy A to a dihedral group.



(4) Start with a special case where a basis f1, fa2, f3 of solutions projectively
generates the function field of Klein’s curve . The equations of Halphen
[Hal84] and Hurwitz [Hur86] are suitable. The subfield of index 7 has
genus 0 and is easily computable [EIk98| p. 67], as we recall in §2.31

(i) Alternatively, the modular curve X'(7) is isomorphic to K and gives a
suitable special Fuchsian equation over the j-line, while the modular curve
X1 (7) gives the subfield of index 7. This is shown in [EIk98] §4], or §lhere.
The j-covering &;(7) — CP! is a Belyi map with the branching pattern
[7313 /38 /212]; see [Hos10).

(iii) Alternatively, [7313/38/2'2] is the only feasible degree 24 branching
pattern for the monodromy reduction to Z/7Z; see Proposition [Z71 The
only Belyi map with this branching was computed as such in [Vid09].

(4v) Use cubic and quadratic transformations of 3F»-functions [Kat08] to derive
the degree 24 pull-back coverings for the other cases of hypergeometric
functions with A as the projective monodromy group. They turn out
to be genus 1 Belyi maps with the branching patterns [7313/4%/2'2] or
[7313 /7313 /212].

The main result of this article are the degree 24 Darboux coverings ®3, ®7, @4
exhibited 3] §5l 6 (respectively), and representative samples of Darboux
evaluations. The starting map @3 is already known by (7)—(4).

As an application of computed Darboux evaluations, we prove in 4] the
following modular evaluations of considered 3F»-functions:

1 13 9
, L 189798
Ki(r) = j(r)/*2 gFy 4212 1 =2 (1.6)
7 7 J(7)

r 1
_ —1/42
q H (1 — ¢g™F1)(1 — ¢™F2)(1 — ¢ F5)(1 — ¢™+6)’ (1.7)

n=0

19 11
s 19 14| 1728
KQ(T) 7](7,)—5/42 3F 427 427 14 i (1 8)
5.8 i)
- 1
_ 5/42
q , 1.9
71;[0 (1 — ¢ ) (1 — g7 3)(1 — g7 H4) (1 — g7n+o) (1.9)
17 31 15
- 5 190 11| 1728
K3(7) i=j(r) /2 5By | 20 M == (1.10)
7y 7 ](T)
- 1
= ¢'7/%2 . (L1l
q nl;[o (1 — ¢ 2)(1 — g™ 3)(1 — g7 4) (1 — g7nto) (1.11)
Here ¢ = exp(2mit), and
1
§(7) = = + 744 + 196884q + 214937604 + . .. (1.12)
q



is the famous modular j-invariant. Considering j(7) as a function of ¢, the
three identities hold as g¢-series identities. They are analogues of known
hypergeometric expressions [SE14], [Brol7, p. 476] for the Rogers-Ramanujan
g-series [BCKHSS99):
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The right-hand sides of ([LI3)—(TI4) and (EI:EI)*(EDEI) amount to the famous

Rogers-Ramanujan identities [RR19]. These g-series define modular functions
related to the modular curve X(5). Similarly, the g¢-series in (), (),
(CII) define modular functions related to the modular curve X(7). They
can be recognized in [Duk05, p. 157]. The sFs-expressions in (L6), (LS),
(CIQ) are considered in [FMI6l Example 29]. We have the following projective
parametrization of Klein’s curve K:

(X:Y:2Z)=(—Ks(1) : Ka(1) : K1(7)); (1.17)
see [EMI6l Proposition 30], [Kat1l §5.1.1].
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2 Preliminaries

Section2.Ilrecalls basic knowledge about differential equations for 3F»-functions,
their pull-back transformations, and contiguous relations. Section classifies
sFy-functions with the projective monodromy A = PSL(2,F7) up to the
contiguity equivalence. Section 23] describes invariants and basic morphisms
of Klein’s curve K. Section [Z4] introduces Darboux coverings following [Vid13].
Section 2.5 presents the branching patterns of the considered Darboux coverings,
algebraic relations between them, and the Darboux curves of genus 1.

2.1 Hypergeometric functions
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The hypergeometric function 3F2(

z) satisfies the differential equation



minding the commutativity rule dizz = zdiz + 1. This is a third order Fucshian
equation with three singular points z = 0, z = 1, z = co. The singularities and
local exponents at them are encoded by the generalized Riemann’s P-symbol:
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with v = a3 + ag + a3 — 51 — B2. Generically, a basis of local solutions at z = 0
and z = oo can be written in terms of sFy-series. Let M = (m; ;) denote the
matrix
ay oy —fPo+1 a1 —pF1+1
M= a ay—pP2+1 as—pF1+1 |. (2.3)
a3 az3—fP2+1 az—p1+1

A generic basis of local solutions at z = 0 is
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with j € {1,2,3} and {k, ¢} = {1,2,3}\ {j}. We refer to the set of 6 functions
formed by 3 local hypergeometric solutions (disregarding a power factor) at
z = 0 and 3 such local solutions at z = oo of the same third order Fuchsian
equation as companion hypergeometric functions to each other.

Let B denote an algebraic curve. Let ¢(...) denote a rational function on
B; it defines an algebraic covering ¢ : B — CP'. A pull-back transformation
with respect to ¢ of a differential equation for y(z) in d/dz has the form

z— (...), y(z)— Y (.)=0(..)yle(...)), (2.6)

where 6(...) is a radical function on B. The equations that differ by a pull-
back transformation with respect to the trivial covering ¢(...) = z are called
projectively equivalent.

There are several algebraic transformations for 3Fy-functions [Kat08]. Here
are quadratic and cubic transformations:
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They can be understood as pull-back transformations between Fuchsian equa-
tions (particularly, (2.1))) for hypergeometric functions [Vid09], [Kat08]. The
involved equations have the local exponent ¢ = 1/2 at z = 1, and the quadratic
or cubic arguments (z) on the left-hand sides have properly branching points
in the fiber ¢ = 1. This helps the number of singularities of the pulled-back
equation to equal merely 3.

Two sF>-functions whose parameters o, as, as, 51, 82 differ respectively by
integers are called contiguous to each other. This defines a contiguity equivalence
relation on the sFy-functions. For example, differentiating a sF>-function gives
a contiguous function, generically:

d (0417042,043 Z>041042043 P (0414-170424-1,0434—1‘2) (2.10)
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Fuchsian equations of contiguous functions have the same monodromy, gener-

ically. For a generic set of four contiguous sFp-functions there is a linear

contiguous relation between them [Raid5]. For example, differential equation
a1+n, az+n, az+n

Bi+n, B2t+n Z)
with n € {0,1,2,3}. Consequently, a contiguous function to a generic sF>-

function F' can be expressed linearly in terms of F' and its first and second
derivatives (thus, as a gauge transformation). In particular, we have
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By linear combination, we can derive expressions like
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2.2 Fuchsian equations with the Kleinian monodromy

Let E denote a 3rd order Fuchsian equation on the Riemann sphere CP!.
Suppose that f1, fo, f3 is a basis of its solutions. If either the (conventional)
monodromy group or the differential Galois group [vdPUQ0| of E are finite, those
two groups coincide with the classical Galois group of the finite field extension
C(z, f1, f2, f3) D C. In that case, the projective monodromy group refers to
the the Galois group of the finite extension C(z, f2/f1, f3/f1) D C(z). Both
extensions of C(z) are Galois extensions, because the monodromy representation
gives linear transformations of fi, fa, f3 (in GL(3,C)) or fractional-linear
transformations of fa/f1, f3/f1 (in PGL(3,C)).

The following proposition gives a classification of 3F>-functions with the pro-
jective monodromy group A, up to the contiguity and projective equivalences,
and up to the symmetries of companion sFs-functions.

Proposition 2.1. Up to the contiguity and projective equivalences, there are six
classes of third order hypergeometric equations with the projective monodromy
group A. Here is our notation for these classes, together with representative
sFy-solutions:

3 1 9 _1 3 5
(BA): 3k 1417 1‘2’ Wiz (3B): 3F 1417 lé’ iz
37 3 37 3
3 1 9 _1 3 5
(4A) : 3B 141 1‘; izl (4B): 3F 141 lé iz
47 4 47 4
1 1 5 1 1 9
7T 7T

Proof. The classification in [BH89. §7] is up to the following transformations
that preserve a finite primitive monodromy group:

(4) up to the contiguity equivalence, as integer shifts of a1, ag, as, 51,02 are
discarded by considering the parameters

a1 = c exp(2mia), az = c exp(2miag), az = c exp(2miag),
by = c exp(2mify), be =cexp(2mifs), bsz=c, (2.14)
of a hypergeometric group [BH89 Definition 3.1];

(i) up to scalar shifts |BH89, Definition 5.5] affecting ¢; they amount to
projective equivalence;

(#) up to interchange of the sets {a1, ag, as}, {b1, bz, b3} reflecting a symmetry
of companion 3F>-functions; see [BH89, Theorem 7.1];

(i) assuming that the parameters in (ZI4]) generate a cyclotomic field

Q(exp(2mi/n)), up to raising those parameters to the kth power, with
k € Z coprime to n.



We drop the equivalence (). It amounts to multiplying the parameters
a1, Qa, a3, f1, B2 by an integer coprime to their denominators (and to denomi-
nators of the powers in a projective equivalence factor (. ..), strictly speaking).

In [BH89, Table 8.3], there are 3 cases of 3Fy-functions with the projective
monodromy A, numbered 2, 3, 4. Their indicated parameters o, as, as, 51, B2
represent our cases (3B), (4B), (7B), as the sFy-representatives given here
differ by the integer shift 13/14 — —1/14, or by shifting all parameters of
the (7B)-representative by —2/7 modulo integers. The types (3A), (4A), (7TA)
are obtained by multiplying the parameters by —1 and making integer shifts
such as —5/14 — 9/14, —1/3 — 2/3, etc. To see that equivalences (7)-(iii) do
not give the same transformation, one can check the M-matrices (2Z3]) of the
starting representatives:

11 2 105 19 119

14 42 42 14 28 28 14 14 14

3 23 37 3 13 27 1 3 11
7B B | i1 28 58 | T 1 (2.15)

5 20 43 5 17 31 9 1 19

14 42 42 14 28 28 14 14 14

To check that there are no other types, one observes that multiplication of the
parameters a1, ag, as, 01, f2 by other odd integers modulo 14 (and coprime to 3
in the case (3B)) leads to the displayed cases modulo integer shifts. This check
is easy in the cases (3B) and (4B), as the set {1 mod Z, 32 mod Z} stays
the same, and each set of companion 3F>-functions contains only one equation
where the denominators of aj, a9, a3 all equal to 14. In the case (7B), the
multiplications by —3 or —5 permute (up to the contiguity equivalence) the
sFy-functions in this basis of local solutions at z = 0:

z) (2.16)

119 103 1 9 11 19

14° 140 14 1/7 147 140 1 5/7 147 140 1

3F2 2 6 2, % / 3F2 3 8 2, % / 3F2 11 12
T T

The multiplications by 3 and 5 then automatically give hypergeometric functions
of type (TA). O

It is instructive to observe the interlacing condition [BH89, Theorem 4.8] on
the 6 representative sF>-functions.

2.3 Invariants for Klein’s curve

The s3F>-functions of type (3A) are closely related to Klein’s curve K and to
modular functions on X (7) = K. In particular, the hypergeometric identity



[FM16], Proposition 30]
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realizes a parametrization of IC by solutions of a third order Fuchsian equation
that was anticipated by Klein [Kle79l a footnote in §9], and constructed by
Halphen [Hal84], Hurwitz [Hur86]. We indicated this parametrization in (II7).
The symmetry group A = PSL(2,F7) of K is realized by a 3-dimensional
representation of A acting linearly on the coordinates X,Y, Z in (4. Here we
remind invariants of this 3-dimensional representation, present the degree 168
Galois covering K — CP!, and present the quotient map of this covering by the
largest cyclic subgroup Z/7Z of A. This gives the degree 24 = 168/7 Belyi map
for Darboux evaluations of 3F-functions of type (3A), and prepares us for the
modular application of Darboux evaluations in §4.2
The 3-dimensional representation (over C) of A = PSL(2,F7) has these
invariants in a convenient basis [Kle79, §6], [EIk98, §1.2]:

\IIS

Ry =XY +Y*Z + 7*X, (2.18)
Re=XY®+YZ°+ZX® - 5X?Y?Z?, (2.19)
Rug= X" Y™ 4 71 4375 (X8Y*22 + X1Y?2Z8 + X?Y87*) (2.20)

+I8(XYT+ XTZT+Y"Z7) — 126 (X®Y3Z5 + X5YSZ3 + X3Y52°)
—34(XMY?2Z + XYHZ? + X2YZM) — 250(X°YZ* + XYOZ + XY*Z9).
The polynomial ring C[Ry, Rs, R14] is the ring of invariants for the extended

representation of complex reflection group A x (Z/27Z) (which is ST24 in [ST54]).
The representation of A has another invariant

OR./0X OR.JOY OR./dZ

1
Rgl = ﬂ det 8R6/6X 6R6/8Y 6R6/8Z y (221)
OR14/0X 0OR14/0Y OR14/0Z
and there is a polynomial relation [EIk98, (1.17)]
R} =R}, — 1728 R mod Ry. (2.22)

As Klein’s quartic curve K is defined by R4 = 0, this functional congruence
means [EIk98| (2.13)] that the map

1728 Ry R}
Pyp=—70 =12 (2.23)
R, R,



defines a Galois covering C — CP! with the Galois group A. The covering is a
Belyi map with the passport [724/356/284] of genus 3 indeed.
The quotient covering of X — CP! by Z/7Z is given by the map [EIk98|

(2.1)]
(X:Y:Z)—(a:b:c)=(X3Y:Y3Z: Z3X) (2.24)

onto the line a + b + ¢ = 0 in CP2. The quotient curve is of genus 0, therefore.
Klein’s curve K is birational to the cyclic covering (Y/Z)" = ab?/c?. If we taked

a X2y Y
= —-—— = —— = — — 2.25
TETL 7z YTy (2.25)
then the degree 7 cyclic covering is
Yy = (x—1)>2 (2.26)

2.4 Darboux coverings

The notions of Darbouz curves, Darbouz coverings and Darboux evaluations
are introduced in [Vid13]. The terminology is motivated by integration
theory of vector fields [LZ09], where Darbouz polynomials determine invariant
hypersurfaces. In differential Galois theory [Wei95], Darboux polynomials are
specified by algebraic solutions of an associated Riccati equation. Here is a
formulation of [Vid13l Definition 3.1].

Definition 2.2. Consider a linear homogeneous differential equation

dn dn— 1

vy + an-1 (Z) —dz"—l

- +...+ al(z)i +ap(z) =0 (2.27)

dz

on CP, thus with a;(z) € C(z). We say that an algebraic covering ¢ : B — CP!
is a Darboux covering for 2.27) if a pull-back transformation [2.6]) of it with
respect to @ has a solution Y such that:

(a) the logarithmic derivative u =Y'/Y is a rational function on the algebraic
curve B;

(b) the algebraic degree of u over C(z) equals the degree of ¢.
The algebraic curve B is then called a Darboux curve.

Condition (a) means that the monodromy representation of the pulled-
back equation has a one-dimensional invariant subspace (generated by Y). In
contrast, cyclic monodromy implies a completely reducible monodromy repre-
sentation, thus a basis of n radical solutions (whose logarithmic derivatives solve
the Riccati equation). This article emphasizes reduction to a cyclic projective
monodromy. As shown in [Vidi8], reduction of A to a dihedral monodromy

2 We choose a different parametrization than in [EIk98| p. 67] in order to have z7(7) = O(q)
in ([@23) with consistency.
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group leads to a reducible 3-dimensional monodromy representation, hence a
Darboux evaluation.

Determination of Darboux coverings is made easier by their basic properties.
The following lemma underlines that Darboux coverings are “invariant” under
transformations of hypergeometric equations that preserve the monodromy.

Lemma 2.3. Let FEy denote a hypergeometric equation ([2ZI) with a finite
primitive monodromy group. Suppose that other hypergeometric equation Es
is related to Ey by transformations described in (i), (iv) within the proof of
Proposition 21l If ¢ : B — CP! is a Darboux covering for Ey, then ¢ is a
Darbouz covering for Eo as well.

Proof. The transformations (i), (iv) do not affect the primitive monodromy
group, thus equations F1, Eo have isomorphic monodromies. Let E}, E5 denote
the Fuchsian equations obtained from Fy, Fs, respectively, by applying the same
pull-back transformation with respect to ¢. The monodromies of Ej, E3 are
isomorphic. Therefore, if one has a radical solution so does the other.
(Compare with [Vid13l Lemmas 3.2 and 3.7]. Projective equivalence (i)
allows the same Darboux covering ¢ trivially. It affects the monodromy group
by a cyclic direct factor. Transformation (i) offers 1/¢ for the respective
Darboux covering.) O

Corollary 2.4. The same degree 24 Darbouz coverings ¢ or 1/¢ for reduction
of the projective monodromy A = PSL(2,F7) of hypergeometric equation (2.1
to Z/TZ apply to all hypergeometric functions of the types (3A) and (3B); or to
all sFa-functions of the types (4A) and (4B); or to all sFy-functions of the types
(TA) and (7B).

Proof. Each of the six types describes an equivalence class under the contiguity
equivalence. The pairs of types (3A), (3B); or (4A), (4B); or (7A), (7B) are
related by transformation (i) within the proof of Proposition 211 O

To match hypergeometric functions with radical solutions of a pulled-back
Fuchsian equation for Darboux evaluations, the next lemma is useful. It applies
to equations obtained by the considered degree 24 pull-back transformations.

Lemma 2.5. Suppose that differential equation (Z27) has a finite cyclic
monodromy group. If the local exponents A\i,..., A\, at a point P € CP! are
all different modulo Z, then for each local exponent \; (i € {1,...,n}) there
is exactly one (up to scalar multiplication) radical solution with the vanishing
order A at P.

Proof. (Compare with [Vid13] Lemma 3.6].) A monodromy representation of
the finite cyclic group is completely reducible. Therefore, the solution space is
generated by n radical solutions (that give the direct decomposition into n one-
dimensional spaces). If two radical solutions had the same local exponent A* at
P, their linear combination would have the vanishing order \* + k with integer
k > 0. Hence there is a radical solution for each of the n local exponents. [
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A divisor (with coefficients in Q) of a radical function f on an algebraic
curve B is well defined, because an integer power of f is a rational function
on B. Conversely, a divisor with Q-coefficients on B determines a radical
function up to scalar multiplication. To compute Darboux evaluations, we
usually first determine possible divisors of radical solutions (of a pulled-back
Fuchsian equation) on a Darboux curve.

Remark 2.6. The simplest Darboux evaluations are reductions of a dihedral
monodromy group to a cyclic monodromy group by a quadratic transformation
[Vid11]. The Darboux covering is z = z? in this well-known formula:

m(a’a;% ) - AR (2.25)

2
The monodromy group of the hypergeometric equation is finite when a € Q\ {0}.
Less known are these variations of dihedral formulas:

a, —a x? 1 1+ 2\ 1—z\*
F ’ == 2.29
w () =) (=) ) e
g (FTes el et ) _VIZaE ((Lra)T (1) g g
1 2?2 —1 2 1—z 14z ’ ’

2F1<%+a’3%—“ 2 )_m<<1+x>"_(1_ )) oo

2 x?—1 dax 1—x 1+
By Corollary 2.4] there are separate sets of Darboux coverings for the type
pairs (3A), (3B), or (4A), (4B), or (7A), (7B). Here we show that these
sets consist of single Belyi coverings (up to holomorphic symmetries of the
Darboux curves). The three Belyi maps are related to each other by algebraic
correspondences induced by quadratic and cubic transformations 2.7), (2.9)
between sFs-functions of the different types. The Darboux curves for the types
(4A), (4B) and (7A), (7B) have genus 1. Their Weierstrafl forms are presented

in formulas (Z32)), [235).

Proposition 2.7. Darboux coverings that reduce the projective monodromy
group A = PSL(2,F7) of a third order hypergeometric equation 1) to Z/7Z
are Belyi maps with the following branching patterns (and genus g):

8

8

2.5 Three Darboux coverings

for the types (3A) and (3B): [7313/38 /212] (9 =0);
for the types (4A) and (4B): [7313 /45 /212] (g=1);
for the types (TA) and (7B): [7313 /7313 /212 (g=1).

Proof. (Compare with [Vid13, Lemma 3.4].) Let E denote the third order
hypergeometric equation. Suppose that fi, fa, f3 is a basis of its solutions.

12



The field extension C(z, f2/f1, f3/f1) D C(z) defines a Galois covering ®; of
CP! of degree #A = 168. (It is also a Darboux covering that reduces the
projective monodromy to a trivial group.) Its possible branching patterns
are [7%4/356/284] [724/442 /284 or [7%4/724/234] (of genus g = 3,10 or 19,
respectively); see [vdPUOQ0, §8.2]. By the Galois correspondence, a Darboux
covering that reduces the monodromy to Z/7Z is a subcovering of ®; of degree
168/7 = 24. The fibers where local exponent differences of E have denominators
with the least common multiple & < 4 should have only points branching with
order k. The only immediate uncertainty are those fibers with the branching
7213. Only branching orders 7, 1 can be present there for subcoverings of ®;. If
there are fewer (than 3) points with the branching order 7, the Riemann-Hurwitz
formula [Hur93| p. 404] gives a negative genus for the covering. O

The only Belyi map (up to Mébius transformations on either side of P* — P!)
with the genus g = 0 branching pattern was computed as such following [Vid05]
§3], and presented in [Vid09, p. 178]. We refer to this Belyi covering as ®3. Its
expression is given in B]).

It is less practical to compute (from scratch) Belyi functions with the
two branching patterns of genus ¢ = 1. Instead, we follow their algebraic
correspondence relations to ®3 that are consequences of quadratic and cubic
transformations of sF>-functions [Kat08]. In particular, representative 3Fs-
functions of types (3A) and (7A) are related by cubic transformation (23).
For example, consider ([2.9) with a = —1/42, b = 1/14. Hence, there exists only
one covering ®; : E; — P! (up to holomorphic symmetries of both curves) with
the branching pattern [7313 /7312 /212]. Tt can be constructed by considering the
fiber product of ®3 and the cubic covering 272%/(4 — z)3, as described in [Vid13]
Lemma 3.5]. This gives the Darboux curve E7 isomorphic to

v? = u (1 — 11u + 32u?), (2.32)
as computed here in §5.I1 On the fiber product curve E;, we have
2792
Py=— T 2.33
T = ®0)3 (2.33)

Further, representative gFa-functions of types (4B) and (7B) are related by
quadratic transformation ([2.7)). For example, consider [2.7) with a = —1/28,
b = 1/28. Hence, there is one covering ®; : Ey — P! (up to holomorphic
symmetries of both curves) with the branching pattern [7313/45/2'2]. The fiber
product curve is the same Fr, where we have

4 Py

R

(2.34)

The degree 24 covering ®4 is obtained by dividing out its symmetry &7 — 1/P7.
Consequently, the Darboux curve Ej is a genus 1 curve that is 2-isogenous FEr;
see §0l It is isomorphic to

w? = p(1+22p — 7p?). (2.35)
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3 The cases (3A) and (3B)

The 3Fp-functions in ([2ZI7) are companion solutions (up to a power factor)
of the same Fuchsian equation with the projective monodromy A. They are
of type (3A), and directly parametrize Klein’s curve K. The degree 24 pull-
back covering that reduces the projective monodromy group to Z/7Z can be
computed from the degree 168 Galois covering @y in ([2.23) and the degree 7
projection (2.28). The degree 24 rational function is

1728x(17 — 1)F17
(1)3 = G3 G3 )
oY1
where

Fy =1+5z— 822 + 22,
Go=1—2z+ 22, (3.2)
Gy =1 — 235z + 143022 — 16952 + 2702* + 2292° + 25.

This is a Belyi function with the branching pattern [7313/38/2'2]. As recounted
in §2.5 this is a unique Belyi map (up to Mdobius transformations) with this
branching pattern. The same Belyi function appears in the hypergeometric

formula [Vid09l (76)]
<1>3> . (3.3)

2 3

T
ol Ty
7

This is not surprising, as branching requirements for pull-back transformations
between hypergeometric equations are similar [Vid09l §3]. The Belyi function
O3 is presented in [Hosl0] as well.

12
z | = Gal/28 G;1/28 2F1 R4’ 84

o

3.1 Evaluations of type (3A)

The following Darboux evaluations are used in §4.2 to prove modular identities
(LE)- (1D
Theorem 3.1. We have

q>3> =1 -a)7 G M e, (3.4)

w

e
/N

|
&l

N[N
|>—- >J>|H
© Jio e
o Ele

By | = (1—2)¥7 B Gy G, (3.5)

w
ez
VR

Clen
Ny
[\v]
—
=l

o B 17/14 ~17/14
3F2( 12 42; 14 (1,3) =(1- :c)_3/7 ng Gh / ek / (3.6)
in a neighborhood of x = 0.
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Proof. A hypergeometric differential equation has the following basis of local
solutions around z = 0:
z) (3.7)

113 9 5 19 11 17 31 1
o 42§7 N PR AN N (AR T Y TR 2
After the pullback z = ®3(z), the local exponents at = 0 will be 0,1/7,3/7
as well. The generalized Riemann’s P-symbol

7T
=0 z=1 z=o00 Fi(x)=0 Go(z)=0 Gi(2)=0 |

5
T

9
7T

0 0 0 0 —1/14  —1/14
Py oaur o o 1 13/14 13/14 (3:8)
37 3)7 37 3 27/14 27/14

describes all singularities of the pulled-back equation, and the local exponents
at them. The pulled-back equation has a cyclic monodromy, as we established
that (projectively) the function field C(®3) corresponds to Z/7Z by the Galois
correspondence in the projective parametrization (217 of Klein’s curve K by
hypergeometric solutions. Hence there is a basis of radical solutions. Candidates
for radical solutions are constructed by picking up a local exponent at each
singular point, so that their sum s is either zero or a negative integer. If s < 0,
then a presumed solution vanishes (with order 1 or 2) at some regular points,
making the total sum of local exponents at all points equal to zero. Negative
exponents come only from the roots of GoGG1. We have to pick up the exponent
—1/14 at those 8 roots, because a positive exponent in that locus would lead
to s > 0. Up to scalar multiplication, the candidate radical solutions for ([3.4])
with the local exponent 0 at x = O:

Uy = (1 . x)1/7 G61/14 G;1/147 Wo = (1 . x)3/7 G61/14 G;l/M. (3'9)

The local exponents at © = oo equal to 3/7,1/7, respectively. By checking a few
initial terms of their power series at x = 0 we see that 17 is the actual radical
solution. The candidate solutions with the local exponent 1/7 at = = 0 are:

by =21 =) TG M M g =T M e M (3.0)
The actual radical solution is 12, with the local exponent at x = oo differing
from 3/7 by Lemma This gives formula (BX). Similarly, the candidate
solutions with the local exponent 3/7 at x = 0 are:

vy =T GG g =T — )T G M G, (3.1
The correct radical solution is 13, leading to formula (3. O

Contiguous relations of 3Fs functions can be used to derive Darboux
evaluations for other hypergeometric functions in the (3A) class. For example,

applying (2.13) to ([B.6) gives

3/14 ~3/14
o) (=06 MGY
7

52, ,43.2 16,3 | 1,4
(1 oL+ 3T 3‘T+9I)'
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This hypergeometric solution vanishes at 4 regular points of its Fuchsian
equation, namely at the roots of the degree 4 polynomial.
The other three companion solutions to [B.7) are
1
2 )
1
-] 3.12
: ) (312)

13 19 31

R RN oY 42é 14
The rational argument in their Darboux evaluations can be 1/®3, but the
evaluation then holds in a neighborhood of a root of GoG; = 0. The roots of

_1 5 17
1/42 120 120 14
z / 3F2 2
303
Gy can be moved to x = 0, z = oo by the inverse of the Mobius transformation

3’ 3
9 1
—9/14 147 14
z / 3F2 4
3

)

IS

15

1

wlot ~

r+w+1
— = —, 3.13
v (o) = T (313)
where w = exp(27i/3). The point z = 0 is then a regular point (up to projective
equivalence) after a pull-back transformation. Accordingly, the Darboux
evaluations in the next theorem express 3Fs-functions as linear combinations
of radical solutions. They are reminiscent to dihedral evaluations (2.29)-231).

Theorem 3.2. The rational function ®5(x) = 1/Ps(u(zx)) has the expression

. (24w +8)2*G3
Pr =X T2 T2 3.14
ST F] (3.14)
with
39w — 16
F2:1+w479:c3, (3.15)
Go_ 1. 435w+ 745 o 18357w+ 14632
27 392 16807

The following formulas hold around x = 0:

16 _1l 5 Ir
7/ 3F2( e (I)%i) = (3.16)
33
1
g (1 _ I)71/42 (1 _ wx)5/42 (1 _ w2$)17/42
1
+ 2 (1= 21— wr) (1 — wPz) "2

1
+ § (1 _ 517)17/42(1 _ wx)—1/42(1 _ w2x)5/42,

16



@;) - (3.17)

(1 _ I)13/42 (1 _ wx)19/42 (1 _ w2$)31/42

(1 _ $)19/42(1 _ wx)31/42(1 _ w2$)13/42

1
3
+ = (1 _ 517)11/14(1 _ wx)15/14(1 _ w2x)9/14
+

(1 _ $)15/14(1 _ wx)9/14(1 _ CUQZE)H/M.

Proof. Up to constant multiples, substitution (3I3) transforms the solutions
1, ¥a, 13 of the previous proof to

U= (1 =2)*T (1 =W T MG,

Vi = (1 —wz)/7 (1 — w?e)3/7 g1/ G;l/M, (3.19)

vy =(1- x)1/7 (1- wx)3/7 x4 G;l/M.
By considering the first few terms of Poisson power series in x, we express each
local solution in (312) with z = 1/®% as linear combinations of ¢, 95, 15. The
claimed hypergeometric identities are then obtained after simplifying the powers

of 2, G5 and bringing the linear factors of 1 — 23 = (1 — 2)(1 — wx)(1 — w?z) to
the right-hand side. O

Evidently, ®%(x) is a compositions of a degree 8 covering with the cyclic
x +— 23 covering. The Mobius-equivalent function ®3(x) is a composition of
degree 8 and 3 coverings as well. This is noted in [Vid09, §9], [Hos10, §4].

3.2 Evaluations of type (3B)

The simplest representative evaluations of this type involve polynomial parts
vanishing at some regular points of the hypergeometric equation.
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Theorem 3.3. We have

_1 11 2
3F2< e (1-3z)(1—2)*7" G M e, (3.20)

77

3 23 a7
3F2 14 §42 42
77
0

5
7

1 -= (1 —x) TR GGV, (3.21)

~j©

— — 15/14 ~15/14
220 (1—a) VT F3 ey ey (3.22)

T

5 20 43
140 120 12
3

in a neighborhood of © =

Proof. A hypergeometric differential equation has the following basis of local

solutions around z = 0:
3 23 37 5 29 43
2/7 14> 420 42 3/7 14> 420 42
zZ|,Z / 3F2 6 9 , 2 / 3F2 8 10 z (323)
77 7T

The pullback with respect to z = ®5(x) gives a Fuchsian equation with the
generalized Riemann’s P-symbol

1 11 25

140 427 42
3 4
77

=0 z=1 z=o00 Fi(x)=0 Go(x)=0 Gi(2)=0 |
0 0 0 —3/14  —3/14

0
P 2/7 2/7 2/7 2 11/14 11/14 |z (3.24)
3/7 3/7 3/7 3 25/14 25/14
Candidate radical solutions with the local exponent 0 at x = 0 are:
by =(1—crz) (1 —2)*7 Gy M a?, (3.25)

Wi = (1 —eom) (1= )7 G M G,
where the coefficients ¢1,c2 € C\ {0,1} are undetermined yet. A priori, ¢; or
co could be a root of GoG; = 0, so that the local exponent at that root equals

11/14. The correct solution is ¢; with ¢ = 3, leading to ([B:20). The other two
identities are proved similarly. O

q);> |

@;) , (3.26)

Application of Mobius transformation (B13) gives identities for

60 G 123 20
<I>§> : x7 2 Fy 11/6 3F2< 20 120 12

2 4
37 3

14w—7""2 4,8

212 25 37 43
32°G3 F—25/6 3 120 120 12
)3

similar to those in Theorem
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4 Modular relations

The formulas of Theorem[3.Ilcan be used to prove the modular product identities
for K1(7), K2(7), K3(7) in (LO)-(II). This is demonstrated in 421 Recalling
Dedekind’s eta-function [Zag08| p. 29]

oo

o 2
nr) =g/ [Ja-q") = > ¢+, (4.1)
n=1

n=—oo

the functions 7(7)* K1(7), n(7)* Ko(7), n(7)* K3(7) are known to be modular
forms of weight 2 on the modular curve X(7); see [FM16, Example 29].
Therefore we refer to the formulas in (L8)-(II) as level 7 evaluations.

As a warm-up, we prove in §4.1] hypergeometric expressions (LI3]), (LI3)
for the (slightly modified) Rogers-Ramanujan series. Because of ubiquitous
relation [Duk05] to the modular curve X (5), we refer to those formulas as level 5
evaluations. Multiplied by n(7)%/®, the functions in (LI3)(LI6) are considered
in [Kan06] as modular forms of weight 1/5 on X'(5). In §4.3]we show a few more
similar modular evaluations of 5F;-functions.

For an introduction to modular curves and functions, we refer to [DS05].
For a positive integer N, the modular curves X(N), X1 (N), Xyo(N) are defined
by the congruence subgroups I'(N), 'y (N), T'o(V), respectively, of SL(2,Z). If
a moduli curve has genus 0, then a generator of its field of moduli functions is
called a Hauptmodul. For example, the j-invariant (L.I2) is a Hauptmodul of
X (1), and

() 1= 200 f_i ()™ (12)
hafr) = 2L - ﬁ L@ )2 (1) 3)
i) = 22 = f[ G+ ) 1ee ™ )

n=1

are Hauptmoduln of Xp(N) for N = 2,3,4,5,7, respectively [Mai07, Table 1].
The genus of modular curves and branching patterns of maps between them can
be easily derived the tables of Cummins and Pauli [CP03].

Existence of Fuchsian equations for modular forms with differentiation with
respect to a modular function is well-known [Zag08| §5.4]. They are commonly
known as Picard-Fuchs equations.
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4.1 A proof of the level 5 evaluations

This proof of formulas ([LI3]), (I5) follows the argument in [SE14], though
we seek to prepare a contextual template for the proof in §4.21 We start with
presenting Darboux evaluations [Vid13| §2.3] for the involved hypergeometric
functions .

The hypergeometric functions in ([LI3]), (LIH) are standard oF;-functions
with the icosahedral projective monodromy group [Vidi3]. The projective
monodromy group can be reduced to Z/5Z by a pull-back transformation with
respect to this degree 12 covering:

1728 x (1 — 11a — 22)®
(1 + 228x + 49422 — 22823 + 24)3°

o5 () = (4.7

This differs from [Vid13| (2.9)] by the transformations z — —z or x +— 1/x. We
rewrite the Darboux evaluations in [Vid13l (2.9)-(2.10)] as follows:

—1/60
Q05(£L') / F _6_10’ %
1728 2
@5(.’[]) 11/60 F %’ %
1728 e

The modular curves X'(5), X1(5), Xy(5), X(1) have genus 0, as is well-known.
The maps between them have the degrees indicated in this diagram:

905(96)) =27/ (1 — 11z —2?)7V12 (4.8)

905(96)) =M/ (1 — 11z — 22)7Y12. (4.9)

X(5) = X1(5) = Xo(5) - x(1). (4.10)
A Hauptmodul of &7 (5) is
o0 5n+1) (1 _ q5n+4)5

H 1 _ q5n+2 (1 _ q5n+3)5'

(4.11)

A Hauptmodul of X (5) is y5(7) = x5(7)'/°. It has this nice expression as a
continuous fraction due to Ramanujan [Duk05]:

ys(7) = .
[
1+q7q3

1
+1—|—...

A Hauptmodul of Xy(5) is given in [@H). As a function on X;(5), it is identified

hs(r) = fm S 11— (7). (4.12)
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The covering X;(5) — X(1) is
1728

j(r) = —22 413
@5 (w5(7)) ( )
and the covering X(5) — X(1) is Klein’s icosahedral Galois covering
1728
j(r) = —2 414
(1) 2 () (4.14)
The identification 2 = z5(7) in ([@7) establishes
1728 9
ws5(x) = ——, 1—11z — x2* = z5(7)hs5(7). 4.15
@)= 55 (1)hs () (4.15)
This evaluates the right-hand sides of [@.8)—-(@.9) to, respectively,
as(r) O hs(r) T2 and as(m) 10 by (r) T2, (4.16)

Formulas (LI3), (LI5) follow from (@A) and (@II]) now.

Remark 4.1. The Darboux evaluations [{8)—(#3) with z = y5(7)> imply that
the two functions are defined on the Galois covering

212 =y (1 —11y° — y'%) (4.17)

of X(5). This is the minimal curve where the modular functions in (ILI3)), (I13)
are defined. The genus of the covering equals 55 = 1+ 1 (12 (0—2)+12(12—1))
by the Riemann-Hurwitz formula. The composition with X'(5) — X(1) gives
a Belyi covering with the branching pattern [60'2/3%40/2360]. The covering
X(60) — X(1) has a similar branching pattern but of degree 69120; see [DS05|
p. 101]. The modular curve X (60) ought to be an unramified covering of (4.17)
of degree 96 = 69120/720.

4.2 A proof of the level 7 evaluations
This proof of formulas (LO)-(Il) follows the same pattern as in &Il We

observe that Hauptmoduln or generating functions of relevant modular curves
have nice g-factorizations. The Darboux evaluations of Theorem Bl can be
rewritten in a way where each factor can be recognized in terms of those nice
modular functions. In particular, we rewrite ([B.4)—(B6) as follows:

—1/42
®3 / _57%7% _(_oN—1/42 (4 _  \5/42 [p—1/6
3F2 4 6 ‘1)3 —( I) (1 I) Fl 5 (418)
1728 2, 2
9

P 5/42 5 19
3 3F2 429 420
1728 % %

q)g 17/42 17 31 e
3F2 2’9 21’0 @3 — (—I)17/42 (1 _ I)71/42 Fl ) (420)
1728 2,0

—
—

—
N

@3> = (—a) 2 (1 - ) 2 Y (4.19)

e
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Recall that F} = 23 — 822 + 5z + 1.
The following coverings hold between modular curves, of indicated degrees:

X(7) -5 x0(7) =5 X (7) 5 x(1). (4.21)

The modular curve X(7) has the genus g = 3, and is isomorphic to Klein’s
quartic curve K defined by (L4). Elkies [EIk98, (4.4)—(4.6)] gives this
parametrization of }C by modular formdd on (7):

X=—g""J[-q¢")?Q=q™0 - )1 -q™ "),
n=1
Y=¢" [ =g —¢™)0—q" )1 —¢™?), (4.22)
n=1

Z=q"" ﬁ(l —¢")? 1 —g™A =g (1 —¢"?).
n=1

The curves & (7) and Xp(7) have genus 0. A Hauptmodul for X;(7) is
X%y

73
=—q+2¢° = 5¢" + 4¢° + O(¢"),

1'7(7') = — (423)

consistent with (Z:28). A Hauptmodul for Ay(7) is given in ([@6]). As a function
on X1 (7), it is identified in [EIk98, (4.24)]:
z? —8z? + bay + 1

h(r) = i (4.24)
X7 T

The covering Xp(7) — X(1) is given in [EIk98| (4.20)]:

. h? + 13h7 + 49)(h? + 245hy 4+ 71)3
jry = P 7 )]577 T (4.25)
7

Consequently, the covering X;(7) — X(1) is given by
1728

i(7) = . 4.26
10 = 5@ (4.26)
The identification x = z7(7) establishes
1728
d = — i =(—2)(1—-2)h 4.27
3(7) i) 1= (=2)(1 = 2)h(7), (4.27)
and X2y v3
=) 7 l—gp=—— 4.2
x I x X 2 (4.28)

3These are essentially the modular forms mentioned right after formula (@IJ); see [FM16,
Example 29]. Specifically, X = —n(7)* K3(7), Y = n(1)* Ka2(7), Z = n(7)* K1(7).
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This evaluates the right-hand sides of ([I8)-#20) to, respectively,

(~X) W3y Y3 728 by () V0,
(—X)2/3 Y_1/3 Z_1/3 h7(7')_1/6.

Formulas (7)), (L9), (LII) for, respectively, K1(7), K2(7), K3(7) follow from
the parametrization [@.22) now.

Remark 4.2. Correctedd formula [EIK98], (4.19)] states

RG (X7 K Z)
W) = eyage
where Rg(X,Y, Z) is the invariant in (2I9). Hence the functions in (£29) are

equal to ZRg Y 6, YR Y 6, XRg Y 6, respectively. It follows that the functions
K1(7), K2(1), K3(7) are defined on the Galois covering

(4.30)

Wl =XY5+YZ° 4+ ZX° - 5X%Y?7? (4.31)

of X(7). There are 24 branching points on W = 0, thus the genus of the covering
equals 73 =14 1(6(2-3 —2) +24(6 — 1)) by the Riemann-Hurwitz formula.
The composition with X(7) — X (1) gives a Belyi covering with the branching
pattern [4224/3336 /2504] " The covering X(42) — X(1) has a similar branching
pattern but of degree 24192; see [DS05], p. 101]. The modular curve X (42) ought
to be an unramified covering of ([@31)) of degree 24 = 24192/1008.

Remark 4.3. One may naturally ask about expressing Ki(7), Kao(7), K3(7)
as sums similar to the Rogers-Ramanujan summations in (LI4), (TI6). Duke
[Duk05] refers to the work [Sel36] of Selberg and indicates these expressions:

—1/42 & 2
_ q n Indn 6n+3
Ki(r) = -1 7 (1- ,
17/42 & 2
_ q } : q\n IEETR L p __6n+6
5/42 2 x 2
q q n 7n“+13n n
Kal) = TR+ it S G )
n=0

where C,, = (1 — ¢"™1)(1 — ¢"*?). If Klein’s parametrization [Kle79, (44)] of
K is adjusted by ¢ — /g (and some summation shifts), it gives these beautiful

4There are these typos in [EIk98|: Formula (4.19) is actually for j;l, not for j7. In
formula (4.23), a minus sign is missing before y2z/x3. Formula (1.18) should be adjusted by
4002d6(302, + 100804 P4 + 560206 P14 — 8320702 — 256@7). In formula (4.35), the factor
5¢2 — 15¢ — 7 should be 5¢2 — 14¢ — 7.
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identities:

Ka(r) _ Vi vt oV (1.3
Ka(r) 52 (—1yng™5 4 30 (~1)ng |
Ka(r) _ RAD D G (4.34)
Kir) 5 (g5 Y (g |
G B v e 435)
Ka(r) — 5 (~)ng® 5 4 10X (gt |

The numerator sums are equal to [[7—,(1 — ¢™) by (@I)). Consequently, the
denominators can be expressed as nice g-products as well. Those expressions are
special cases (with s = ¢7, y € {¢7%,¢72,¢3}) of this version of the quintuple
product identity:

oo

1_ P n)(l _ —2 n—l) -
H 1 _ ys") (1 —y S" 1) - (436)

oo

Z (_1)n(y3n71 +y73n)8

n=—oo

n=1

3n2—n
2

Compared with Watson’s formula [SVT0, (1.3)], we have z = /s, a = —y\/s,
and a partial change of the summation index.

4.3 Other similar evaluations

Here we relate hypergeometric functions with a dihedral, tetrahedral, or
octahedral projective monodromy groups with modular curves of level N = 2, 3
or 4. Correspondingly, the following full coverings X'(N) — X(1) have exactly
those monodromy groups:

adihedral S5:  X(2) = X1(2) = Xp(2) =5 X(1);
the tetrahedral Ay 1  X(3) == X1(3) = Xo(3) —= X(1); (4.37)
the octahedral Sy : X(4) — X1(4) 2 X4) — X(1).

To obtain Darboux evaluations [Vid13] of standard Gauss hypergeometric
functions with the tetrahedral or octahedral projective monodromies, the
following pull-back transformations reduce the projective monodromy to Z/37Z
or Z/4Z, respectively:

x(z+4)3

p3(r) = m7

108z (x — 1)*

@) = E T IR (4.38)

As we will see, these coverings are algebraically equivalent to the modular
coverings Xp(3) — X(1), Ap(4) — X (1), respectively. We will use the Darboux
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evaluations [Vid13l (2.1)—(2.2),(2.5)—(2.6)] in this form:

—1/12 1 1 _
@3 (2) ~130 1 -1/12 ( I) 1/4
F 1+ 4,
<1728> 2 1( 2 108 7 , (4:39)

x

108 1/4 (HZ)%M’ (4.40)

—1/24

—x)71/8, (4.41)

_ (116)5/24 (1- x)_l/ﬁ' (4.42)

7 N
— 6
\]Jk
3=
x|&
~_
L
~
[\v]
'y
[\v]
=
N
|
[\v]
s S
ﬁw
vvvv
||

5/24 5 13
pa() 210 21
( 1728 ) 2F ( 50 | eal®)

Formula ([{40) is equivalent to (II]), in particular.

We can reduce the dihedral projective monodromy group to Z/27Z using
identities like ([2:29)-(2.31]), but that is not consistent with the cubic modular
covering Xp(2) — AX(1). Instead, we apply standard cubic transformation
[Vid09l (21)] of oFy-functions (with a € {1/2,—1}) and get

() () - G e

1/3 102
2 () 33 z \1/3 ~1/3

F == 1-— 4.44
(29, ( Jlew) = (5) a-at

with 7a( 2

27zx(1 — =
pa(z) = N (4.45)
In terms of Hauptmoduln, the map X;(2) — X' (1) is given by

h 256)3

j(r) = L2(T) + 256)7 (4.46)

hg(T)2

In [Mai07, Appendix| for a reference, x5 = 212 /hy(7) and j(7) = (w2 + 16)3 /5.
To match 1728/4(7) with ¢2(z), we identify

64
=T 4.4
ha(r) + 64 (4.47)
Then 1 — a = ho(7)/(ha(7) + 64), and formulas ([@43)—@44) become
11
—1 1179 B
G RAEI Y AL 1728 _ hy(r) "/ /() + 64, (4.48)
3 (1)
12
37 3 172 _
Jr) R BB 128 _ ()12, (4.49)
3 J(T)
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The function hg(T)_l/ 3 is invariant under the congruence subgroup 6D° in
the tables of Cummins and Paule [CP03], as it gives the branching pattern
[6-3/33/2313] over the j-line. The quotient \/ha(T) + 64 of the two functions is
a Hauptmodul of X(2). Apparently it has no nice ¢g-factorization. The standard
Hauptmodul of X(2) is Legendre’s modular function [Zag08| p. 63]

_ 16n(7/2)% n(27)' 7 (1+4¢")
A1) = gt \anO Gt Vi (4.50)

By solving algebraic relations and checking the series, we indeed have

ha (1) = 256 1;(7:;;) ha(T) +64 =8 (% — 1) . (4.51)

The function in ([#4]) is invariant under the subgroup 6C' in [CP03], as it
contains both T'(2) and 6DY. It has the branching pattern [63/35/2%]. The
covering over X(2) can be obtained after substituting z = 64y? into (£43),
giving 2% = y (1 — 64y?). Here z,y represent Hauptmoduln of X;(2), X(2)
(respectively), like in Remark F.T1

Now we consider the tetrahedral case similarly. With a Hauptmodul of T'g(3)
given in (A3)), the map Xp(3) — X(1) is

(ha(7) +27) (ha(7) + 243)°

(1) = 4.52
J(7) hs(7)? (4.52)
To match 1728/5(7) with ¢3(z), we identify
108
= 4.53
U7 Tha(r) + 21 (4.53)
Then 1+ 2 = hs(7)/(hs(7) 4 27), and formulas (@39)-(E40) become
11
—15,7 | 1728 _
i) F( 250 ) = ha(r) "V (ha(r) +27) ", (4.54)
3
17
49 12 172 _
§) R [ T T2 s, (4:55)
3 3(7)

The function h3(7’)_1/ 4 is invariant under the congruence subgroup 12B°
n [CP03|, with the branching pattern [12-4/3%1%/28] over the j-line. The
quotient (hz(7)+27)"/? is a Hauptmodul of X (3), without a nice ¢-factorization
apparently. The function in ([@54) is invariant under the subgroup 12A3 in
[CPO03], because it contains both T'(3) and 12B°. Its branching pattern is
[124/316/224]. The covering over X'(2) is obtained after substituting = = —108y>
into @39), giving 2* = y(1 — 27y®). An intermediate congruence group
between12A® and T'(3) is 6D!, with the branching [64/3%/212].
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In the octahedral case, the map Xp(4) — X(1) is

(ha(7T)2 + 256h4(7) + 4096)3

i(1) = 4.56
i) ha()* (ha() + 16) (4.56)
To match 1728/5(7) with ¢4(z), we identify
16

=—". 4.57
T ha(r) + 16 (457)

A well-known classical identity [Zag08| (72)] implies

B (27)24 17 =

(In terms of [Duk05} §9], this function equals 16 /u(7)8.) Formulas ([Z41)—@.42)
become

[()1/24 24 24 1728 _ 77(27')5
o F( : jm) wanE () 59
q*1/24 lo‘o[ (1 + q2n71)3 (1 + qzn)7
n=1
i(7)5/24 24 24 1728 77(47)2
J(7) 2F1< : j(ﬂ) T2 n0) (4.60)

= g5/ H 1+q2n 1 1+q2n)3'

These functions are defined on the covering 2¢ = y (1 — 16y*) of X (4), obtained
by substituting z = 16y* in (@4I). The branching over X(1) is [245/348/272],
of genus 10. There are 5 congruence subgroups with this branching in [CP03].
The correct one is 24A'0, because it has intermediate supergroups with the
branching patterns [86/316/224] and [126/324/236], namely, 8A2 and 12A%.

It is fitting to mention here this classical identity [ZagO08| (74)]:

1 5
120 12

o
< 1

1728
3(7)

where E4(7) = 1 + 240q + 2160¢? + . .. is an Eisenstein series.

) = By = )2, (4.61)

5 The cases (7A) and (7B)

As explained in §2.5] the Darboux covering ®7 : E; — CP! with the branching
pattern [7313/7313/212] can be computed from ®3 using cubic transformation

@3).

27



5.1 Degree 24 map

The Darboux curve FEy; is determined as the fiber product

2722
(4—2)%
To parametrize this curve by a simple equation, we substitute z = 82/(22 + 3)

so that the right-hand side becomes 22(22 + 3). After the next substitution
2 = 2F}/(GoG1) we get the equation

P3(x) = (5.1)

1728z (x — 1)Fy = 22(22F2 + 3GoGh) (5.2)

of degree 12 in z, Z. The curve defined by this equation can be straightforwardly
analyzed with Maple’s standard package algcurves. The curve has genus 1 and
is isomorphic to (2:32). Eventually, we can find this parametrization of (51 by
the elliptic curve (Z32):

4(u +v)?

chalyyicTr ) LI A (5:3)

where
~128(1 — 4u)(—v — 3u + 4uv 4 20u?)?

oo —

"7 w31 = 8u)(1 — 4v — 20u + 64u2)7
This is a Belyi map with the anticipated branching pattern [7313/7313/212].
Note that ®7 vanishes at (u,v) = (0,0) € E7 despite the factor u? in the
denominator. The divisor of ®7 is

div(®7) =(0,0) + (%, 1) + (%, - 1) + U + TU + TU3

—0— (54—, -3 TV —TVa —TV5. (5.5)

(5.4)

Here the u-coordinates of Uy, Us, Us satisfy 4u(4u — 1)(4u — 5) = 1, and the
u-coordinates of Vi, Va, V3 satisfy 16u(4u — 1)(8u — 3) = 1. Table [I] presents
several straightforward rational functions on E7 and their divisors. We use
them to present rational and power functions on E7. For example,

128(1 — 4u)GY  128u(1 — 4u)GY

@ = = =
TS —swG] (1-8uC]

(5.6)

5.2 Evaluations of type (TA)

Computation of Darboux evaluations on a genus 1 curve (such as E7) is less
straightforward than on P!, because divisors of rational or radical functions are
restricted by the Picard group [Sil09, p. 28], or the group law on an elliptic
curve such as ([2.32). Consequently, radical factors have to be routinely chosen
with extraneous zeroes or poles, and compensatory factors are often needed. A
practical demonstration of involved combinatorial calculations is given in [Vid13],
§4]. The obtained Darboux evaluations can be checked by expanding the power
series in y/u on both sides.

28



1d Function Divisor

— " 2(0,0) — 20

— 1—4u (L H+(3,-1)-20

— 1—8u O+ -5 -20

— v—u (0,0)‘1‘(%,%)"'(%7%)_30
— v+ u (0,0) + (1, —7) + (5, —3) — 30
F3 1—4v—4u 3(%7%)_30

Fy 1+ 4v —4u 3(g,—5) — 30

E 1— 20— 6u 2(;,—1) +(3,3) —30

Fy 14 20 — 6u 2(7. 1)+ (5,—5) =30

Gs | 14 20— 10u+ 16u2 Uy + U+ Us + (3, 1) — 40
Gy | 1—4v - 20u + 6402 Vi+Va+Vs+(3,—3) —40
63 v+ 3u — duv — 20u32 U1+U2+U3+(00)+(% _%)_50
Ga | v—5u—8uv+24u? | Vi+Vo+Vs+ (0, 0)+ (5, 3) — 50

Table 1: Divisors on the curve v? = u(1 — 11u + 32u?)

Theorem 5.1. With reference to Table[dl, we have
- _1_147 ﬁv % o) F31/14 F41/7 543/7 (5'7)
77 VG
R Y g oy
3F2 3 9 (1)7 = =4/7 y (58)
5 Fy' G
11 13 17 F5/14 51172
T T T4 (1—-8u)Fy' "G,
gy | 14714 1P | = . (5.9)
< %, g ul6/7 (v—u)1/14 (v+u)8/7GS

Proof. Preliminary expressions of the sFo-functions in terms of (complicated)
radical functions on E7 can be obtained by applying cubic transformation (2.9])
to the functions in Theorem 3.0l Then we compute fractional divisors of the

sFo-functions in (7)1, respectively:

B0+ 3D+ BG D+ HO - B -) - Vi - V- 1% (.10

1(3,-1)—2(3.3) — 201 — 20U, — 2Us (5.11)
+ 50+ 45 —8) T {15 8) + 3V + 3Va + 314,

—4d hy 8l 1y _6U, - 6U, — 6U;s (5.12)
+ G -H+ B H+ Lo+ Y+ L+ Ly

The radical expressions on the right-hand sides of (E1)-(5.9) have the same

divisors, and evaluate to 1 at (u, (0,0

v) =

29
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For a constructive proof, we seek to combine (multiplicatively) the functions
in Table[Ilto obtain the required divisors. The routine is demonstrated in [Vid13],
84.2-4.3]. One strategy could be: to produce the required vanishing orders of
the U;’s and V;’s by using G, G4; then use 1 —4u, 1 —8u, Z?'4, ﬁg consequently to
account for the vanishing orders of (%, —i), (%, %), (i, i), (%, —%), respectively.
For example, this produces

Gilﬂ (1— 8u)13/14 ﬁ422/7
GS (1 — 4u)o/7 F2O/M

(5.13)

for divisor (5.12). The powers of F3, Fy are rather awkward. We can modify
this expression by the identities

(v—u)Gy = (1 — 8u)Gy, (1 —4u)(v — u)F5 = (1 — 8u) (v + u)Fy,
(v+u)Gs = (1 — 4u)Gs, (1 —4u)(v+u)F3 = (1 —8u)(v—u)Fy, (5.14)
FyFy=(1—4u)(1—8u), (v—u)(v+u)=u(l —4u)(1 — 8u)

)G
)G

to get a more polished formula like ([G9]). O

The companion hypergeometric solutions at ®7 = co are

-

3

114 1t 3 1
14> 140 14
o7 312 6
7

—5/14 2, 21
(1)7 / 3F2( 14

147 1

o (5.15)
7

\ullm ~
=5
>9<| —_
g
N——

Apart from the power factors and the argument 1/®7, they are contiguous to
the 3Fy-functions in (B.7)—(E9). The functions ®7 and 1/®7 can be interchanged
by this automorphism of Fr:

(u,v) — (5 _é) . (5.16)

Theorem 5.2. With reference to Table [, we have

1 3 1 _ 1/7 3/14 7=1/7
) 1-4 F. F
F< i qﬂ>—( LN (517)

(1—8u)l/1 /Gy

1/14 72/7
o T T | | 0 —4w¥Ta s TR EN G
32 5 8 7 - GS 3 ( . )
7T
T i 11 (1—8u) (v —u)¥MGJ”
st g T | 7 ) = 7 S g (5.19)
7y 7T ud/T(v+uw)¥TF TGS

Proof. We compute preliminary algebraic expressions on FE; for the 3Fs-
functions by either of these two ways:
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e by using the mentioned contiguous relations;

e or by applying cubic transformation (Z8) with z = 1/®7 to the functions
in Theorem ] and subsequently interchanging 1/® — ®; by (&.14).

Then we compute their fractional divisors, respectively:

S L4t~y o4 3L L Ll L1y, 1y, 1y (5.20)

2 -LH -1 H - -0 -Us (5.21)
+ D) S ) F 0+ Vi Ve + 3V,

=30~ 3G, —1) — 301 — 302~ 3Us (5.22)
+ 4GS+ H0+ G —8) Vi Ve + 3Va.

The radical expressions on the right-hand sides of (GI7)—(EI9) have the same
divisors, and evaluate to 1 at (u,v) = (0,0). O

5.3 Evaluations of type (7B)

Similarly, we can apply cubic transformation (2.9) to the formulas of Theorem
3.3l and eventually obtain formulas like

o (1 — 4u)*7 BN (1 4 20 — 2u + 32uv) (5.23)
7] = = , .
(1 — 8u)t/14 F33/14 GZ/2

with a few zeroes at regular points of the pulled-back Fuchsian equation. In this
example, the u-coordinates of those regular points satisfy Su(64u?+2u—1) = 1.
But there are sFo-functions of type (7B) that do not vanish at regular points.

-3 1 3

147 14> 14
3F2 1 3
T

Theorem 5.3. With reference to Table[ll, we have

2/7
. _ﬁ7 ﬁ7 % o _(1—4u)1/71—8u)4/7F4/ (5 24)
32 2 6 7 - F1/14 \/G_ ) .
7T 3 4
—6/7
3F2< T T (1)7> O et ARV e? (5.25)
3 8 o ’ ’
77 (1 — du)V/7 B Gy
o (T c] P N . ) il i (5.26)
TR | T Tl (o — w1 o+ )T G |

Proof. Preliminary expressions on F7 for a set of contiguous 3Fe-functions (such
as (5.23))) can be obtained by applying cubic transformation ([2:9) to the formulas
of Theorem By using contiguous relations we then compute preliminary
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expressions for the target functions. Their fractional divisors are

Ho-D 40D B D+ AL D 50 % - 1% - 1%, 620

% %,%)—%(%,—%)—Ul—Uz—Ug (5.28)
F R+ 5O+ D+ IV B

—%(%,—%)—%(%,%)—5U1—5U2—5U3 (5.29)

S0+ B D+ &G -D+ I P e

The radical expressions on the right-hand sides of (5.24)-(E20) have the same
divisors, and evaluate to 1 at (u,v) = (0,0).

Alternatively, we can follow the strategy in the proof of Theorem Bl In
([2186) we see a basis of local solutions at z = 0 of a hypergeometric equation
of type (7B). For a radical solution with the local exponent 0 at (u,v) = (0,0),
we have 12 candidate fractional divisors in total: apart from (B27) we can
permute the exponents to (%, —i) and (i, i), and the exponents to O, (%, %),
(%, —%). Starting from a preliminary expression of one candidate solution,
preliminary expressions for other candidates can be obtained by using the factor
F42/7Fv4_2/7F;2/21ﬁ32/21 to permute the exponents of (§,—%) and (4, 1), and
so on. By checking all 12 candidates we find the right solution with the divisor
E20). By Lemma [2Z5] we have two candidates for the transformed second
solution in (ZI6) with the exponent 1/7 at (u,v) = (0,0). Their divisors
differ by a cyclic permutation of the exponents to O, (3,3), (3,—35). The
right solution leads to formula (5:25). For the third solution, we have just one
candidate. O

The companion hypergeometric solutions at ®7 = co are

v o (T T 1| L 1/14 1 i1 11| L
Q.0 sk 0 6 — | O, sk L — )
o7 | O o7 |7
079/ gy ( 10 1T 11| L 5.30
7 312 11 12 37 : ( )
77

The parameters of the 3F;-solutions are the same as in Theorem [5.3] and the
argument can be transformed to ®7 by (.16]). There is thus no need for separate
formulas. The symmetry of parameters is reflected by the symmetric matrix in
(ZI3). The symmetry is a characteristic of 3F>-functions on the right hand-side
of the quadratic transformation (2Z34]).

6 The cases (4A) and (4B)

As explained in §2.5] the Darboux covering ®,4 : E4 — CP! with the branching
pattern [7313/4¢/212] can be computed from ®7 using quadratic transformation
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234). The covering ®4 is given by formula ([Z34]), but the curve Ej is defined
by the involution of (EI6]) of E7. The involution-invariant functions

1 v
7] p— —_— 1 pu— _— -1
Pty UTU T g0 (6.1)

satisfy 8@% = (32p — 11)(85% — 1). Taking
1 U

_ S 6.2
P= 30511 1—1lu+32u2’ (6.2)

324 1 - 3202
we B0 w(l-32) (6.3)

(325 —11)2 (1 — 11lu+ 32u?)?

we get the elliptic curve ([232)). The functions (p,w) define a 2-isogeny [Sil09]
§II1.4] between E4 and E7 as elliptic curves.
The divisor of &4 on E4 is computed to be

(0,0)+ (1,4) + (1,—4) + 751 + 752 + 7553
AT, — ATy — ATy — AT, — 4T — AT (6.4)
Here the p-coordinates of Si,Ss,S3 satisfy 7p(7p? — 21p + 5) = 1, while the
p-coordinates of 11, ..., Ty satisfy

1
(49p? — 29)(49p® + 98p? — 188p — 10) + 435p = = (6.5)

Table 2] presents several rational functions on E; and their divisors. We use
them to present rational and power functions on Ej. In particular,

512 (w — 4p) F5

oy=—-.
T O+w+3p GE

(6.6)

It is more straightforward to compute representative Darboux evaluations
of type (4B), because of a direct relation to type (7B) evaluations by quadratic
transformation (Z.34)).

Theorem 6.1. With reference to Table Bl we have

Gy’

~3/14 ~3/7
@4> _(Feiez ©8)

w
e
/N

|
8=
~o -
-
M|)—A
o] 19%

M|)—A
|~

1 —p)5/7 F5’

19 13 33 ~5/14 19/7
<_81__8(1)>_F6/ a,”
4

— W. (6.9)
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1d function divisor
— P 2(0,0) — 20
— 1—p (1,4) + (1,—4) — 20
— w — 4p (0,0) + (1,4) + (-%,-2) - 30
— w + 5p — p? (0,0) + 3(1, —4) — 40
— 1—w+3p 2(1,4)+ (-1,3) - 30
— 1+w+3p 2(1,-4) + (-%,-2)-30
— 1+ 7w + 35p 3(-1,2)-30
— 1 — 7w + 35p 3(—%,—%) =30
Fs 1 — 2w —16p + 7p? (1,—4) + S1 + Sz + S3 — 40
Fs | 1 = 10w + 47p + 2wp — 17p% + p3 6(1,4) — 60
Fg | 1410w+ 47p — 2wp — 17p? + p? 6(1,—4) — 60
Gs | 1+ 47w + 89p — 14wp

+91p? — 49wp? — 245p> 1L,-4)+T+..+T-70

Table 2: Divisors on the curve w? = p(1 + 22p — 7p?)

Proof. Preliminary expressions of the 3Fa-functions in terms of radical functions
on E; can be obtained by applying quadratic transformation (Z34) to the
functions in Theorem 5.3l Their fractional divisors, respectively:

2(L4)+L(1,-4) - 2T +... +T), (6.10)
2(1,-4)—2(1,4) = S1 — S — S3+ 2(Ty + ... + Tg), (6.11)
—2(1,4) — 2(1,—4) — 581 — 582 — 555 + 2(T1 + ... + Tg). (6.12)

The radical expressions on the right-hand sides of ([E2)-(63) have the same
divisors, and evaluate to 1 at (p,w) = (0, 0). O

The companion hypergeometric solutions at &, = co are

1 3 3
31 |4 T
13/28 <% 7% 35| 1
o, Fy ’5 ;} — . (6.13)
13 | P4
Their Darboux evaluations would hold around one of the points 77,...,Tg,

defined by (6.5) and G5 = 0. All those points are defined over Q(sin %). Handy
Darboux evaluations of degree 21 for type (4B) are given in [Vid18| §4.4].

Darboux evaluations of type (4A) always have zeroes at some regular points,
apparently. Determining those zeroes can be tricky.
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Theorem 6.2. With reference to Table Bl we have

3 1 9 —Tw — - )
9 9 1 7 21 1 F
Nt _ (1= Tw—21p) ( p)3/7 6 (6.14)
48 (1—w+3p)G;
Lo 1_7 1_ 2/7ﬁ1/14G1/7
3F2< 287 281 (;) = (L-5p) (1 -p) ‘ —, (6.15)
T
F <% 2 1 <1>> (+7w-21p) AP ETGT
3k 9 10 4= ’ ' |
9710 (¢ —4p) Fy

Proof. We can apply quadratic transformation ([2.34)) to these hypergeometric
functions and obtain sF>-functions that are contiguous to the formulas of
Theorem [5.1 This allows us to derive preliminary expressions of (G.I4)—(G.14)
as radical functions on Ey, and their fractional divisors (with known points
Rl, RQ, etc):

3(1,-4) 4+ 2(1,4)+ R+ Ro — 2(Th + ... + T¢), (6.17)
2(1,4) = 1(1,~4) + Ry + Ry — S1 — S2 — S + 3(T1 + ... + Tp), (6.18)

—2(1,-4) — 2(1,4) + Ry + Ry — 351 — 35 — 383 + (T4 + ...+ Ts). (6.19)

The radical expressions on the right-hand sides of (G.I4)—(6.16) have the same
divisors, and evaluate to 1 at (p, w) = (0, 0).

Alternatively, we can follow the strategy in the proofs of Theorems [3.] and
For the sFs-function in (6I4)), the points R;, Ro in the divisor (G.IT) are
unknown a priori, and besides, there is other possible divisor shape with the
Q-coefficients to (1,—4) and (1,4) interchanged. In both cases, the line in CP?
through R;, R, intersects F4 at the third point that must be a torsion point
defined over Q. We see the point (p,w) = (1,4) of order 6, and there is only
one 2-torsion point (0,0). By Mazur’s theorem [Sil09, Theorem 7.5], the torsion
subgroup is then either Z/6Z or Z/127Z. Existence of rational 4-torsion points
distinguishes these two cases. The tangent lines to F4 at the 4-torsion points
have the form y = ax. The tangent lines of this form satisfy a*—44a%+512 = 0.
Hence there are no rational 4-torsion points, and the Q-rational torsion is Z/6Z.
The line through undetermined R;, Ro is a line through one of the 6 torsion
points. Among the possibilities (adjusted by a compensatory factor vanishing
only at the supposed torsion point), we find the radical function expressed in
(eq:dedal). For the other two hypergeometric functions, the divisors have the
shapes ([GIR) and (61J) by Lemma (Z5). The points Ry, Ry or Ry, Ry are
determined by trying out lines through the 6 torsion points. o
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