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Darboux evaluations for hypergeometric functions

with the projective monodromy PSL(2,F7)

Raimundas Vidunas
∗

Abstract

Algebraic hypergeometric functions can be compactly expressed as

radical functions on pull-back curves where the monodromy group is
simpler, say, a finite cyclic group. These so-called Darboux evaluations
were already considered for algebraic 2F1-functions. This article presents
Darboux evaluations for the classical case of 3F2-functions with the
projective monodromy group PSL(2,F7). As an application, appealing
modular evaluations of the same 3F2-functions are derived.

1 Introduction

One way to obtain workable expressions for algebraic hypergeometric functions
is to pull-back them to algebraic curves where the (finite) monodromy group
would be simpler, say, a finite cyclic group [Vid13]. For example, we have

2F1

(
1/4, 7/12

4/3

∣∣∣∣
x (x+ 4)3

4(2x− 1)3

)
=

1

1 + 1
4x

(1− 2x)
3/4

, (1.1)

2F1

(
1/2, 5/6

2/3

∣∣∣∣
x (x+ 2)3

(2x+ 1)3

)
=

1

(1− x)2
(
1 + 2x

)3/2
(1.2)

around x = 0. Here the 2F1-functions have the tetrahedral group ∼= A4 as the
projective monodromy group (of the hypergeometric differential equation). The
rational arguments of degree 4 reduce the monodromy to small cyclic groups,
as evidenced by the radical (i.e., algebraic power) functions on the right-hand
sides of these identities.

If a Fuchsian differential equation E on the Riemann sphere CP1 has a finite
monodromy group, then E can be transformed by a pull-back transformation
with respect to an algebraic covering ϕ : B → CP1 to a Fuchsian equation
on the curve B with a cyclic monodromy. This is a special case of a Darboux
covering as defined in [Vid13]. The transformed equation on the Darboux curve
B has a basis of radical solutions (and hence, a completely reducible monodromy
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representation). Explicit expressions for solutions of E in terms of radical
functions on B are called Darboux evaluations. In [Vid13], all tetrahedral,
octahedral and icosahedral Schwarz types [Sch73] of algebraic 2F1-functions are
exemplified by Darboux evaluations. The simplest Darboux curves for most
icosahedral Schwarz types have genus 1 rather than 0.

Algebraic generalized hypergeometric functions pFp−1 are classified by
Beukers and Heckman [BH89]. One particularly interesting case [Kat11],
[vdPU00] is algebraic 3F2-functions such that the projective monodromy group
(of their third order Fuchsian equations) is the simple group

Λ = PSL(2,F7) ∼= GL(3,F2) (1.3)

with 168 elements. This is the group of holomorphic symmetries of the Klein
quartic curve

X3Y + Y 3Z + Z3X = 0. (1.4)

Let us denote this curve in CP2 by K. It has the genus g = 3. It is the
simplest Hurwitz curve [Mac98] as it achieves the Hurwitz [Hur93] upper bound
84(g − 1) for the number of holomorphic symmetries for complex projective
curves of genus g > 1.

Third order Fuchsian equations with the projective monodromy group Λ
were first constructed by Halphen [Hal84] and Hurwitz [Hur86]. The Hurwitz
equation is satisfied by

1√
1− z

3F2

(
9
14 ,

11
14 ,

15
14

4
3 ,

5
3

∣∣∣∣∣ z
)
. (1.5)

In [BH89, Table 8.3], classes of 3F2-functions with the projective monodromy
group Λ are labelled by the numbers 2, 3, 4. The differential Galois group of
their Fuchsian equations is the complex reflection group ST24 in the Shephard–
Todd classification [ST54], isomorphic to the central extension Λ × (Z/2Z).
That is also the customary monodromy group inside GL(3,C). Theorem 2.1
here gives a classification up to contiguous relations of (Fuchsian equations for)

3F2-functions with the projective monodromy group Λ.
Pull-back coverings for transformations to Fuchsian equations with smaller

projective monodromy groups correspond to subfields of C(f2/f1, f3/f1), where
f1, f2, f3 is a linear basis of solutions of the original Fuchsian equation. The
largest1 cyclic subgroup of Λ is isomorphic to Z/7Z; see the character table
[Elk98, (1.1)]. By the Galois correspondence, there are pull-back coverings of
degree (#Λ)/7 = 24 that reduce the projective monodromy group to Z/7Z. The
smallest degree for pull-back coverings to Darboux evaluations of the considered

3F2-functions is thus 24. These pull-back coverings can be found in these ways:

1Correspondingly, (#Λ)/7 = 24 is the smallest degree of Darboux coverings that reduce the
projective monodromy Λ to a cyclic group. But smaller degree Darboux coverings exist that
give pull-back transformations to reducible monodromy representations. In [Vid18], Darboux
coverings of degree 21 of the considered Fuchsian equations are given. They transform the
projective monodromy Λ to a dihedral group.
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(i) Start with a special case where a basis f1, f2, f3 of solutions projectively
generates the function field of Klein’s curve K. The equations of Halphen
[Hal84] and Hurwitz [Hur86] are suitable. The subfield of index 7 has
genus 0 and is easily computable [Elk98, p. 67], as we recall in §2.3.

(ii) Alternatively, the modular curve X (7) is isomorphic to K and gives a
suitable special Fuchsian equation over the j-line, while the modular curve
X1(7) gives the subfield of index 7. This is shown in [Elk98, §4], or §4 here.
The j-covering X1(7) → CP1 is a Belyi map with the branching pattern
[7313/38/212]; see [Hos10].

(iii) Alternatively, [7313/38/212] is the only feasible degree 24 branching
pattern for the monodromy reduction to Z/7Z; see Proposition 2.7. The
only Belyi map with this branching was computed as such in [Vid09].

(iv) Use cubic and quadratic transformations of 3F2-functions [Kat08] to derive
the degree 24 pull-back coverings for the other cases of hypergeometric
functions with Λ as the projective monodromy group. They turn out
to be genus 1 Belyi maps with the branching patterns [7313/46/212] or
[7313/7313/212].

The main result of this article are the degree 24 Darboux coverings Φ3,Φ7,Φ4

exhibited §3, §5, §6 (respectively), and representative samples of Darboux
evaluations. The starting map Φ3 is already known by (i)–(iii).

As an application of computed Darboux evaluations, we prove in §4 the
following modular evaluations of considered 3F2-functions:

K1(τ) := j(τ)1/42 3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣
1728

j(τ)

)
(1.6)

= q−1/42
∞∏

n=0

1

(1− q7n+1)(1 − q7n+2)(1 − q7n+5)(1 − q7n+6)
, (1.7)

K2(τ) := j(τ)−5/42
3F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣
1728

j(τ)

)
(1.8)

= q5/42
∞∏

n=0

1

(1− q7n+1)(1 − q7n+3)(1 − q7n+4)(1 − q7n+6)
, (1.9)

K3(τ) := j(τ)−17/42
3F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣
1728

j(τ)

)
(1.10)

= q17/42
∞∏

n=0

1

(1− q7n+2)(1− q7n+3)(1− q7n+4)(1 − q7n+5)
. (1.11)

Here q = exp(2πiτ), and

j(τ) =
1

q
+ 744 + 196884q+ 21493760q2 + . . . (1.12)
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is the famous modular j-invariant. Considering j(τ) as a function of q, the
three identities hold as q-series identities. They are analogues of known
hypergeometric expressions [SE14], [Bro17, p. 476] for the Rogers-Ramanujan
q-series [BCKHSS99]:

j(τ)1/60 2F1

(
− 1

60 ,
19
60

4
5

∣∣∣∣∣
1728

j(τ)

)
= q−1/60

∞∏

n=0

1

(1− q5n+1)(1− q5n+4)
(1.13)

= q−1/60
∞∑

n=0

qn
2

(1− q) · · · (1− qn)
, (1.14)

j(τ)−11/60
2F1

(
11
60 ,

31
60

6
5

∣∣∣∣∣
1728

j(τ)

)
= q11/60

∞∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
(1.15)

= q11/60
∞∑

n=0

qn
2+n

(1− q) · · · (1 − qn)
. (1.16)

The right-hand sides of (1.13)–(1.14) and (1.15)–(1.16) amount to the famous
Rogers-Ramanujan identities [RR19]. These q-series define modular functions
related to the modular curve X (5). Similarly, the q-series in (1.7), (1.9),
(1.11) define modular functions related to the modular curve X (7). They
can be recognized in [Duk05, p. 157]. The 3F2-expressions in (1.6), (1.8),
(1.10) are considered in [FM16, Example 29]. We have the following projective
parametrization of Klein’s curve K:

(X : Y : Z) = (−K3(τ) : K2(τ) : K1(τ)); (1.17)

see [FM16, Proposition 30], [Kat11, §5.1.1].

2 Preliminaries

Section 2.1 recalls basic knowledge about differential equations for 3F2-functions,
their pull-back transformations, and contiguous relations. Section 2.2 classifies

3F2-functions with the projective monodromy Λ = PSL(2,F7) up to the
contiguity equivalence. Section 2.3 describes invariants and basic morphisms
of Klein’s curve K. Section 2.4 introduces Darboux coverings following [Vid13].
Section 2.5 presents the branching patterns of the considered Darboux coverings,
algebraic relations between them, and the Darboux curves of genus 1.

2.1 Hypergeometric functions

The hypergeometric function 3F2

(
α1, α2, α3

β1, β2

∣∣∣ z
)
satisfies the differential equation

(
z
d

dz
+ α1

)(
z
d

dz
+ α2

)(
z
d

dz
+ α3

)
Y (z) (2.1)

=
d

dz

(
z
d

dz
+ β1 − 1

)(
z
d

dz
+ β2 − 1

)
Y (z),
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minding the commutativity rule d
dzz = z d

dz + 1. This is a third order Fucshian
equation with three singular points z = 0, z = 1, z = ∞. The singularities and
local exponents at them are encoded by the generalized Riemann’s P -symbol:

P




z = 0 z = 1 z = ∞
0 0 α1

1− β1 1 α2 z
1− β2 γ α3


 (2.2)

with γ = α1 +α2 +α3 − β1 − β2. Generically, a basis of local solutions at z = 0
and z = ∞ can be written in terms of 3F2-series. Let M = (mi,j) denote the
matrix

M =




α1 α1 − β2 + 1 α1 − β1 + 1
α2 α2 − β2 + 1 α2 − β1 + 1
α3 α3 − β2 + 1 α3 − β1 + 1


 . (2.3)

A generic basis of local solutions at z = 0 is

3F2

(
m1,1 , m2,1 , m3,1

β1, β2

∣∣∣∣ z
)
, z1−β2

3F2

(
m1,2 , m2,2 , m3,2

2− β2, β1 − β2 + 1

∣∣∣∣ z
)
,

z1−β1
3F2

(
m1,3 , m2,3 , m3,3

2− β1, β2 − β1 + 1

∣∣∣∣ z
)
, (2.4)

while a generic basis of local solutions at z = ∞ is

z−αj
3F2

(
mj,1 , mj,2 , mj,3

αj − αk + 1, αj − αℓ + 1

∣∣∣∣ z
)

(2.5)

with j ∈ {1, 2, 3} and {k, ℓ} = {1, 2, 3} \ {j}. We refer to the set of 6 functions
formed by 3 local hypergeometric solutions (disregarding a power factor) at
z = 0 and 3 such local solutions at z = ∞ of the same third order Fuchsian
equation as companion hypergeometric functions to each other.

Let B denote an algebraic curve. Let ϕ(. . .) denote a rational function on
B; it defines an algebraic covering ϕ : B → CP1. A pull-back transformation
with respect to ϕ of a differential equation for y(z) in d/dz has the form

z 7−→ ϕ(. . .), y(z) 7−→ Y (. . .) = θ(. . .) y(ϕ(. . .)), (2.6)

where θ(. . .) is a radical function on B. The equations that differ by a pull-
back transformation with respect to the trivial covering ϕ(. . .) = z are called
projectively equivalent.

There are several algebraic transformations for 3F2-functions [Kat08]. Here
are quadratic and cubic transformations:

3F2

(
a, a+ 1

4 , a+
1
2

b+ 1
4 , 3a− b+ 1

∣∣∣∣∣−
4z

(z − 1)2

)
(2.7)

= (1− z)2a 3F2

(
2a, 2a− b+ 3

4 , b− a

b+ 1
4 , 3a− b+ 1

∣∣∣∣∣ z
)
,
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3F2

(
a, a+ 1

3 , a+
2
3

b+ 1
2 , 3a− b+ 1

∣∣∣∣∣
27z

(4z − 1)3

)
(2.8)

= (1− 4z)3a 3F2

(
3a, 2b− 3a, 3a− 2b+ 1

b+ 1
2 , 3a− b+ 1

∣∣∣∣ z
)
,

3F2

(
a, a+ 1

3 , a+
2
3

b+ 1
2 , 3a− b + 1

∣∣∣∣∣
27z2

(4 − z)3

)
(2.9)

=
(
1− z

4

)3a
3F2

(
3a, b, 3a− b+ 1

2

2b, 6a− 2b+ 1

∣∣∣∣ z
)
.

They can be understood as pull-back transformations between Fuchsian equa-
tions (particularly, (2.1)) for hypergeometric functions [Vid09], [Kat08]. The
involved equations have the local exponent c = 1/2 at z = 1, and the quadratic
or cubic arguments ϕ(z) on the left-hand sides have properly branching points
in the fiber ϕ = 1. This helps the number of singularities of the pulled-back
equation to equal merely 3.

Two 3F2-functions whose parameters α1, α2, α3, β1, β2 differ respectively by
integers are called contiguous to each other. This defines a contiguity equivalence
relation on the 3F2-functions. For example, differentiating a 3F2-function gives
a contiguous function, generically:

d

dz
3F2

(
α1, α2, α3

β1, β2

∣∣∣∣ z
)

=
α1α2α3

β1β2
3F2

(
α1 + 1, α2 + 1, α3 + 1

β1 + 1, β2 + 1

∣∣∣∣ z
)
, (2.10)

Fuchsian equations of contiguous functions have the same monodromy, gener-
ically. For a generic set of four contiguous 3F2-functions there is a linear
contiguous relation between them [Rai45]. For example, differential equation

(2.1) can be rewritten as a contiguous relation between 3F2

(
α1+n, α2+n, α3+n

β1+n, β2+n

∣∣∣ z
)

with n ∈ {0, 1, 2, 3}. Consequently, a contiguous function to a generic 3F2-
function F can be expressed linearly in terms of F and its first and second
derivatives (thus, as a gauge transformation). In particular, we have

3F2

(
α1 + 1, α2, α3

β1, β2

∣∣∣∣ z
)
=

(
1 +

z

α1

d

dz

)
3F2

(
α1, α2, α3

β1, β2

∣∣∣∣ z
)
, (2.11)

3F2

(
α1, α2, α3

β1 − 1, β2

∣∣∣∣ z
)
=

(
1 +

z

β1 − 1

d

dz

)
3F2

(
α1, α2, α3

β1, β2

∣∣∣∣ z
)
, (2.12)

By linear combination, we can derive expressions like

(β1−1)(α1−β2)3F2
(
α1− 1, α2, α3

β1− 1, β2

∣∣∣∣ z
)
=
(
α2α3z + (β1−1)(α1−β2) (2.13)

+
(
(α2+α3+1)z + α1−β1−β2

)
z
d

dz
+ z2(z−1)

d2

dz2

)
3F2

(
α1, α2, α3

β1, β2

∣∣∣∣ z
)
.
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2.2 Fuchsian equations with the Kleinian monodromy

Let E denote a 3rd order Fuchsian equation on the Riemann sphere CP1.
Suppose that f1, f2, f3 is a basis of its solutions. If either the (conventional)
monodromy group or the differential Galois group [vdPU00] of E are finite, those
two groups coincide with the classical Galois group of the finite field extension
C(z, f1, f2, f3) ⊃ C. In that case, the projective monodromy group refers to
the the Galois group of the finite extension C(z, f2/f1, f3/f1) ⊃ C(z). Both
extensions of C(z) are Galois extensions, because the monodromy representation
gives linear transformations of f1, f2, f3 (in GL(3,C)) or fractional-linear
transformations of f2/f1, f3/f1 (in PGL(3,C)).

The following proposition gives a classification of 3F2-functions with the pro-
jective monodromy group Λ, up to the contiguity and projective equivalences,
and up to the symmetries of companion 3F2-functions.

Proposition 2.1. Up to the contiguity and projective equivalences, there are six
classes of third order hypergeometric equations with the projective monodromy
group Λ. Here is our notation for these classes, together with representative

3F2-solutions:

(3A) : 3F2

(
− 3

14 ,
1
14 ,

9
14

1
3 ,

2
3

∣∣∣∣∣ z
)
; (3B) : 3F2

(
− 1

14 ,
3
14 ,

5
14

1
3 ,

2
3

∣∣∣∣∣ z
)
;

(4A) : 3F2

(
− 3

14 ,
1
14 ,

9
14

1
4 ,

3
4

∣∣∣∣∣ z
)
; (4B) : 3F2

(
− 1

14 ,
3
14 ,

5
14

1
4 ,

3
4

∣∣∣∣∣ z
)
;

(7A) : 3F2

(
− 1

14 ,
1
14 ,

5
14

1
7 ,

5
7

∣∣∣∣∣ z
)
; (7B) : 3F2

(
− 1

14 ,
1
14 ,

9
14

2
7 ,

6
7

∣∣∣∣∣ z
)
.

Proof. The classification in [BH89, §7] is up to the following transformations
that preserve a finite primitive monodromy group:

(i) up to the contiguity equivalence, as integer shifts of α1, α2, α3, β1, β2 are
discarded by considering the parameters

a1 = c exp(2πiα1), a2 = c exp(2πiα2), a3 = c exp(2πiα3),

b1 = c exp(2πiβ1), b2 = c exp(2πiβ2), b3 = c, (2.14)

of a hypergeometric group [BH89, Definition 3.1];

(ii) up to scalar shifts [BH89, Definition 5.5] affecting c; they amount to
projective equivalence;

(iii) up to interchange of the sets {a1, a2, a3}, {b1, b2, b3} reflecting a symmetry
of companion 3F2-functions; see [BH89, Theorem 7.1];

(iv) assuming that the parameters in (2.14) generate a cyclotomic field
Q(exp(2πi/n)), up to raising those parameters to the kth power, with
k ∈ Z coprime to n.

7



We drop the equivalence (iv). It amounts to multiplying the parameters
α1, α2, α3, β1, β2 by an integer coprime to their denominators (and to denomi-
nators of the powers in a projective equivalence factor θ(. . .), strictly speaking).

In [BH89, Table 8.3], there are 3 cases of 3F2-functions with the projective
monodromy Λ, numbered 2, 3, 4. Their indicated parameters α1, α2, α3, β1, β2
represent our cases (3B), (4B), (7B), as the 3F2-representatives given here
differ by the integer shift 13/14 7→ −1/14, or by shifting all parameters of
the (7B)-representative by −2/7 modulo integers. The types (3A), (4A), (7A)
are obtained by multiplying the parameters by −1 and making integer shifts
such as −5/14 7→ 9/14, −1/3 7→ 2/3, etc. To see that equivalences (i)–(iii) do
not give the same transformation, one can check the M -matrices (2.3) of the
starting representatives:




− 1
14

11
42

25
42

3
14

23
42

37
42

5
14

29
42

43
42


,




− 1
14

5
28

19
28

3
14

13
28

27
28

5
14

17
28

31
28


,




− 1
14

1
14

9
14

1
14

3
14

11
14

9
14

11
14

19
14


. (2.15)

To check that there are no other types, one observes that multiplication of the
parameters α1, α2, α3, β1, β2 by other odd integers modulo 14 (and coprime to 3
in the case (3B)) leads to the displayed cases modulo integer shifts. This check
is easy in the cases (3B) and (4B), as the set {β1 mod Z, β2 mod Z} stays
the same, and each set of companion 3F2-functions contains only one equation
where the denominators of α1, α2, α3 all equal to 14. In the case (7B), the
multiplications by −3 or −5 permute (up to the contiguity equivalence) the

3F2-functions in this basis of local solutions at z = 0:

3F2

(
− 1

14 ,
1
14 ,

9
14

2
7 ,

6
7

∣∣∣∣∣ z
)
, z1/73F2

(
1
14 ,

3
14 ,

11
14

3
7 ,

8
7

∣∣∣∣∣ z
)
, z5/73F2

(
9
14 ,

11
14 ,

19
14

11
7 ,

12
7

∣∣∣∣∣ z
)
. (2.16)

The multiplications by 3 and 5 then automatically give hypergeometric functions
of type (7A).

It is instructive to observe the interlacing condition [BH89, Theorem 4.8] on
the 6 representative 3F2-functions.

2.3 Invariants for Klein’s curve

The 3F2-functions of type (3A) are closely related to Klein’s curve K and to
modular functions on X (7) ∼= K. In particular, the hypergeometric identity

8



[FM16, Proposition 30]

3F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣x
)3

3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣x
)

= (2.17)

3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣ x
)3

3F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣x
)

+
x

1728
3F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣x
)3

3F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣ x
)

realizes a parametrization of K by solutions of a third order Fuchsian equation
that was anticipated by Klein [Kle79, a footnote in §9], and constructed by
Halphen [Hal84], Hurwitz [Hur86]. We indicated this parametrization in (1.17).

The symmetry group Λ = PSL(2,F7) of K is realized by a 3-dimensional
representation of Λ acting linearly on the coordinates X,Y, Z in (1.4). Here we
remind invariants of this 3-dimensional representation, present the degree 168
Galois covering K → CP1, and present the quotient map of this covering by the
largest cyclic subgroup Z/7Z of Λ. This gives the degree 24 = 168/7 Belyi map
for Darboux evaluations of 3F2-functions of type (3A), and prepares us for the
modular application of Darboux evaluations in §4.2.

The 3-dimensional representation (over C) of Λ = PSL(2,F7) has these
invariants in a convenient basis [Kle79, §6], [Elk98, §1.2]:

R4 =X3Y + Y 3Z + Z3X, (2.18)

R6 =XY 5 + Y Z5 + ZX5 − 5X2Y 2Z2, (2.19)

R14=X14 + Y 14 + Z14 + 375 (X8Y 4Z2 +X4Y 2Z8 +X2Y 8Z4) (2.20)

+ 18 (X7Y 7 +X7Z7 + Y 7Z7)− 126 (X8Y 3Z5 +X5Y 6Z3 +X3Y 5Z6)

− 34(X11Y 2Z +XY 11Z2 +X2YZ11)− 250(X9YZ4 +X4Y 9Z +XY 4Z9).

The polynomial ring C[R4, R6, R14] is the ring of invariants for the extended
representation of complex reflection group Λ×(Z/2Z) (which is ST24 in [ST54]).
The representation of Λ has another invariant

R21 =
1

14
det




∂R4/∂X ∂R4/∂Y ∂R4/∂Z
∂R6/∂X ∂R6/∂Y ∂R6/∂Z
∂R14/∂X ∂R14/∂Y ∂R14/∂Z


 , (2.21)

and there is a polynomial relation [Elk98, (1.17)]

R 2
21 ≡ R 3

14 − 1728R 7
6 mod R4. (2.22)

As Klein’s quartic curve K is defined by R4 = 0, this functional congruence
means [Elk98, (2.13)] that the map

Φ0 =
1728R 7

6

R 3
14

= 1− R 2
21

R 3
14

(2.23)
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defines a Galois covering K → CP1 with the Galois group Λ. The covering is a
Belyi map with the passport [724/356/284], of genus 3 indeed.

The quotient covering of K → CP1 by Z/7Z is given by the map [Elk98,
(2.1)]

(X : Y : Z) 7→ (a : b : c) = (X3Y : Y 3Z : Z3X) (2.24)

onto the line a+ b + c = 0 in CP2. The quotient curve is of genus 0, therefore.
Klein’s curve K is birational to the cyclic covering (Y/Z)7 = ab2/c3. If we take2

x = −a
c
= −X

2Y

Z3
, y = −Y

Z
, (2.25)

then the degree 7 cyclic covering is

y7 = x (x − 1)2. (2.26)

2.4 Darboux coverings

The notions of Darboux curves, Darboux coverings and Darboux evaluations
are introduced in [Vid13]. The terminology is motivated by integration
theory of vector fields [LZ09], where Darboux polynomials determine invariant
hypersurfaces. In differential Galois theory [Wei95], Darboux polynomials are
specified by algebraic solutions of an associated Riccati equation. Here is a
formulation of [Vid13, Definition 3.1].

Definition 2.2. Consider a linear homogeneous differential equation

dn

dzn
+ an−1(z)

dn−1

dzn−1
+ . . .+ a1(z)

d

dz
+ a0(z) = 0 (2.27)

on CP1, thus with ai(z) ∈ C(z). We say that an algebraic covering ϕ : B → CP1

is a Darboux covering for (2.27) if a pull-back transformation (2.6) of it with
respect to ϕ has a solution Y such that:

(a) the logarithmic derivative u = Y ′/Y is a rational function on the algebraic
curve B;

(b) the algebraic degree of u over C(z) equals the degree of ϕ.

The algebraic curve B is then called a Darboux curve.

Condition (a) means that the monodromy representation of the pulled-
back equation has a one-dimensional invariant subspace (generated by Y ). In
contrast, cyclic monodromy implies a completely reducible monodromy repre-
sentation, thus a basis of n radical solutions (whose logarithmic derivatives solve
the Riccati equation). This article emphasizes reduction to a cyclic projective
monodromy. As shown in [Vid18], reduction of Λ to a dihedral monodromy

2 We choose a different parametrization than in [Elk98, p. 67] in order to have x7(τ) = O(q)
in (4.23) with consistency.
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group leads to a reducible 3-dimensional monodromy representation, hence a
Darboux evaluation.

Determination of Darboux coverings is made easier by their basic properties.
The following lemma underlines that Darboux coverings are “invariant” under
transformations of hypergeometric equations that preserve the monodromy.

Lemma 2.3. Let E1 denote a hypergeometric equation (2.1) with a finite
primitive monodromy group. Suppose that other hypergeometric equation E2

is related to E1 by transformations described in (i), (iv) within the proof of
Proposition 2.1. If ϕ : B → CP1 is a Darboux covering for E1, then ϕ is a
Darboux covering for E2 as well.

Proof. The transformations (i), (iv) do not affect the primitive monodromy
group, thus equations E1, E2 have isomorphic monodromies. Let E∗

1 , E
∗

2 denote
the Fuchsian equations obtained from E1, E2, respectively, by applying the same
pull-back transformation with respect to ϕ. The monodromies of E∗

1 , E
∗

2 are
isomorphic. Therefore, if one has a radical solution so does the other.

(Compare with [Vid13, Lemmas 3.2 and 3.7]. Projective equivalence (ii)
allows the same Darboux covering ϕ trivially. It affects the monodromy group
by a cyclic direct factor. Transformation (iii) offers 1/ϕ for the respective
Darboux covering.)

Corollary 2.4. The same degree 24 Darboux coverings ϕ or 1/ϕ for reduction
of the projective monodromy Λ = PSL(2,F7) of hypergeometric equation (2.1)
to Z/7Z apply to all hypergeometric functions of the types (3A) and (3B); or to
all 3F2-functions of the types (4A) and (4B); or to all 3F2-functions of the types
(7A) and (7B).

Proof. Each of the six types describes an equivalence class under the contiguity
equivalence. The pairs of types (3A), (3B); or (4A), (4B); or (7A), (7B) are
related by transformation (iv) within the proof of Proposition 2.1.

To match hypergeometric functions with radical solutions of a pulled-back
Fuchsian equation for Darboux evaluations, the next lemma is useful. It applies
to equations obtained by the considered degree 24 pull-back transformations.

Lemma 2.5. Suppose that differential equation (2.27) has a finite cyclic
monodromy group. If the local exponents λ1, . . . , λn at a point P ∈ CP1 are
all different modulo Z, then for each local exponent λi (i ∈ {1, . . . , n}) there
is exactly one (up to scalar multiplication) radical solution with the vanishing
order λ at P .

Proof. (Compare with [Vid13, Lemma 3.6].) A monodromy representation of
the finite cyclic group is completely reducible. Therefore, the solution space is
generated by n radical solutions (that give the direct decomposition into n one-
dimensional spaces). If two radical solutions had the same local exponent λ∗ at
P , their linear combination would have the vanishing order λ∗ + k with integer
k > 0. Hence there is a radical solution for each of the n local exponents.

11



A divisor (with coefficients in Q) of a radical function f on an algebraic
curve B is well defined, because an integer power of f is a rational function
on B. Conversely, a divisor with Q-coefficients on B determines a radical
function up to scalar multiplication. To compute Darboux evaluations, we
usually first determine possible divisors of radical solutions (of a pulled-back
Fuchsian equation) on a Darboux curve.

Remark 2.6. The simplest Darboux evaluations are reductions of a dihedral
monodromy group to a cyclic monodromy group by a quadratic transformation
[Vid11]. The Darboux covering is z = x2 in this well-known formula:

2F1

(
a, a+ 1

2
1
2

∣∣∣∣∣ z
)

=
(1−√

z)−2a + (1 +
√
z)−2a

2
. (2.28)

The monodromy group of the hypergeometric equation is finite when a ∈ Q\{0}.
Less known are these variations of dihedral formulas:

2F1

(
a, −a

1
2

∣∣∣∣
x2

x2 − 1

)
=

1

2

((
1 + x

1− x

)a
+

(
1− x

1 + x

)a)
, (2.29)

2F1

(
1
2 + a, 12 − a

1
2

∣∣∣∣∣
x2

x2 − 1

)
=

√
1− x2

2

((
1 + x

1− x

)a
+

(
1− x

1 + x

)a)
, (2.30)

2F1

(
1
2 + a, 12 − a

3
2

∣∣∣∣∣
x2

x2 − 1

)
=

√
1− x2

4ax

((
1 + x

1− x

)a
−
(
1− x

1 + x

)a)
. (2.31)

2.5 Three Darboux coverings

By Corollary 2.4, there are separate sets of Darboux coverings for the type
pairs (3A), (3B), or (4A), (4B), or (7A), (7B). Here we show that these
sets consist of single Belyi coverings (up to holomorphic symmetries of the
Darboux curves). The three Belyi maps are related to each other by algebraic
correspondences induced by quadratic and cubic transformations (2.7), (2.9)
between 3F2-functions of the different types. The Darboux curves for the types
(4A), (4B) and (7A), (7B) have genus 1. Their Weierstraß forms are presented
in formulas (2.32), (2.35).

Proposition 2.7. Darboux coverings that reduce the projective monodromy
group Λ = PSL(2,F7) of a third order hypergeometric equation (2.1) to Z/7Z
are Belyi maps with the following branching patterns (and genus g):

for the types (3A) and (3B): [7313/38/212] (g = 0);

for the types (4A) and (4B): [7313/46/212] (g = 1);

for the types (7A) and (7B): [7313/7313/212] (g = 1).

Proof. (Compare with [Vid13, Lemma 3.4].) Let E denote the third order
hypergeometric equation. Suppose that f1, f2, f3 is a basis of its solutions.

12



The field extension C(z, f2/f1, f3/f1) ⊃ C(z) defines a Galois covering Φ1 of
CP1 of degree #Λ = 168. (It is also a Darboux covering that reduces the
projective monodromy to a trivial group.) Its possible branching patterns
are [724/356/284], [724/442/284] or [724/724/284] (of genus g = 3, 10 or 19,
respectively); see [vdPU00, §8.2]. By the Galois correspondence, a Darboux
covering that reduces the monodromy to Z/7Z is a subcovering of Φ1 of degree
168/7 = 24. The fibers where local exponent differences of E have denominators
with the least common multiple k ≤ 4 should have only points branching with
order k. The only immediate uncertainty are those fibers with the branching
7313. Only branching orders 7, 1 can be present there for subcoverings of Φ1. If
there are fewer (than 3) points with the branching order 7, the Riemann-Hurwitz
formula [Hur93, p. 404] gives a negative genus for the covering.

The only Belyi map (up to Möbius transformations on either side of P1 → P1)
with the genus g = 0 branching pattern was computed as such following [Vid05,
§3], and presented in [Vid09, p. 178]. We refer to this Belyi covering as Φ3. Its
expression is given in (3.1).

It is less practical to compute (from scratch) Belyi functions with the
two branching patterns of genus g = 1. Instead, we follow their algebraic
correspondence relations to Φ3 that are consequences of quadratic and cubic
transformations of 3F2-functions [Kat08]. In particular, representative 3F2-
functions of types (3A) and (7A) are related by cubic transformation (2.9).
For example, consider (2.9) with a = −1/42, b = 1/14. Hence, there exists only
one covering Φ7 : E7 → P1 (up to holomorphic symmetries of both curves) with
the branching pattern [7313/7313/212]. It can be constructed by considering the
fiber product of Φ3 and the cubic covering 27z2/(4−z)3, as described in [Vid13,
Lemma 3.5]. This gives the Darboux curve E7 isomorphic to

v2 = u (1− 11u+ 32u2), (2.32)

as computed here in §5.1. On the fiber product curve E7, we have

Φ3 =
27Φ 2

7

(4 − Φ7)3
. (2.33)

Further, representative 3F2-functions of types (4B) and (7B) are related by
quadratic transformation (2.7). For example, consider (2.7) with a = −1/28,
b = 1/28. Hence, there is one covering Φ4 : E4 → P1 (up to holomorphic
symmetries of both curves) with the branching pattern [7313/46/212]. The fiber
product curve is the same E7, where we have

Φ4 = − 4Φ7

(Φ7 − 1)2
. (2.34)

The degree 24 covering Φ4 is obtained by dividing out its symmetry Φ7 7→ 1/Φ7.
Consequently, the Darboux curve E4 is a genus 1 curve that is 2-isogenous E7;
see §6. It is isomorphic to

w2 = p (1 + 22p− 7p2). (2.35)
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3 The cases (3A) and (3B)

The 3F2-functions in (2.17) are companion solutions (up to a power factor)
of the same Fuchsian equation with the projective monodromy Λ. They are
of type (3A), and directly parametrize Klein’s curve K. The degree 24 pull-
back covering that reduces the projective monodromy group to Z/7Z can be
computed from the degree 168 Galois covering Φ0 in (2.23) and the degree 7
projection (2.25). The degree 24 rational function is

Φ3 =
1728x(x− 1)F 7

1

G3
0G

3
1

, (3.1)

where

F1 = 1 + 5x− 8x2 + x3,

G0 = 1− x+ x2, (3.2)

G1 = 1− 235x+ 1430x2 − 1695x3 + 270x4 + 229x5 + x6.

This is a Belyi function with the branching pattern [7313/38/212]. As recounted
in §2.5, this is a unique Belyi map (up to Möbius transformations) with this
branching pattern. The same Belyi function appears in the hypergeometric
formula [Vid09, (76)]

2F1

(
2
7 ,

3
7

6
7

∣∣∣∣∣x
)

= G
−1/28
0 G

−1/28
1 2F1

(
1
84 ,

29
84

6
7

∣∣∣∣∣Φ3

)
. (3.3)

This is not surprising, as branching requirements for pull-back transformations
between hypergeometric equations are similar [Vid09, §3]. The Belyi function
Φ3 is presented in [Hos10] as well.

3.1 Evaluations of type (3A)

The following Darboux evaluations are used in §4.2 to prove modular identities
(1.6)–(1.11).

Theorem 3.1. We have

3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣Φ3

)
= (1− x)1/7G

−1/14
0 G

−1/14
1 , (3.4)

3F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣Φ3

)
= (1− x)2/7 F−1

1 G
5/14
0 G

5/14
1 , (3.5)

3F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣Φ3

)
= (1− x)−3/7 F−3

1 G
17/14
0 G

17/14
1 (3.6)

in a neighborhood of x = 0.
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Proof. A hypergeometric differential equation has the following basis of local
solutions around z = 0:

3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣ z
)
, z1/73F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣ z
)
, z3/73F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣ z
)
. (3.7)

After the pullback z = Φ3(x), the local exponents at x = 0 will be 0, 1/7, 3/7
as well. The generalized Riemann’s P -symbol

P





x = 0 x = 1 x = ∞ F1(x)=0 G0(x)=0 G1(x)=0

0 0 0 0 −1/14 −1/14
1/7 1/7 1/7 1 13/14 13/14 x
3/7 3/7 3/7 3 27/14 27/14





(3.8)

describes all singularities of the pulled-back equation, and the local exponents
at them. The pulled-back equation has a cyclic monodromy, as we established
that (projectively) the function field C(Φ3) corresponds to Z/7Z by the Galois
correspondence in the projective parametrization (2.17) of Klein’s curve K by
hypergeometric solutions. Hence there is a basis of radical solutions. Candidates
for radical solutions are constructed by picking up a local exponent at each
singular point, so that their sum s is either zero or a negative integer. If s < 0,
then a presumed solution vanishes (with order 1 or 2) at some regular points,
making the total sum of local exponents at all points equal to zero. Negative
exponents come only from the roots of G0G1. We have to pick up the exponent
−1/14 at those 8 roots, because a positive exponent in that locus would lead
to s > 0. Up to scalar multiplication, the candidate radical solutions for (3.4)
with the local exponent 0 at x = 0:

ψ1 = (1− x)1/7G
−1/14
0 G

−1/14
1 , ψo

1 = (1− x)3/7G
−1/14
0 G

−1/14
1 . (3.9)

The local exponents at x = ∞ equal to 3/7, 1/7, respectively. By checking a few
initial terms of their power series at x = 0 we see that ψ1 is the actual radical
solution. The candidate solutions with the local exponent 1/7 at x = 0 are:

ψ2 = x1/7(1− x)3/7G
−1/14
0 G

−1/14
1 , ψo

2 = x1/7G
−1/14
0 G

−1/14
1 . (3.10)

The actual radical solution is ψ2, with the local exponent at x = ∞ differing
from 3/7 by Lemma 2.5. This gives formula (3.5). Similarly, the candidate
solutions with the local exponent 3/7 at x = 0 are:

ψ3 = x3/7G
−1/14
0 G

−1/14
1 , ψo

3 = x3/7(1− x)1/7G
−1/14
0 G

−1/14
1 , (3.11)

The correct radical solution is ψ3, leading to formula (3.6).

Contiguous relations of 3F2 functions can be used to derive Darboux
evaluations for other hypergeometric functions in the (3A) class. For example,
applying (2.13) to (3.6) gives

3F2

(
1
14 ,

17
42 ,

31
42

3
7 ,

9
7

∣∣∣∣∣Φ3

)
=

(1−x)4/7G3/14
0 G

3/14
1

F 2
1

(
1− 52

9 x+ 43
3 x

2 − 16
3 x

3 + 1
9x

4
)
.
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This hypergeometric solution vanishes at 4 regular points of its Fuchsian
equation, namely at the roots of the degree 4 polynomial.

The other three companion solutions to (3.7) are

z1/42 3F2

(
− 1

42 ,
5
42 ,

17
14

1
3 ,

2
3

∣∣∣∣∣
1

z

)
, z−13/42

3F2

(
13
42 ,

19
42 ,

31
14

2
3 ,

4
3

∣∣∣∣∣
1

z

)
,

z−9/14
3F2

(
9
14 ,

11
14 ,

15
14

4
3 ,

5
3

∣∣∣∣∣
1

z

)
. (3.12)

The rational argument in their Darboux evaluations can be 1/Φ3, but the
evaluation then holds in a neighborhood of a root of G0G1 = 0. The roots of
G0 can be moved to x = 0, x = ∞ by the inverse of the Möbius transformation

x 7→ µ(x) =
x+ ω + 1

ω(1− x)
, (3.13)

where ω = exp(2πi/3). The point x = 0 is then a regular point (up to projective
equivalence) after a pull-back transformation. Accordingly, the Darboux
evaluations in the next theorem express 3F2-functions as linear combinations
of radical solutions. They are reminiscent to dihedral evaluations (2.29)–(2.31).

Theorem 3.2. The rational function Φ∗

3(x) = 1/Φ3(µ(x)) has the expression

Φ∗

3 =
(24ω + 8)x3G3

2

(1− x3)F 7
2

(3.14)

with

F2 = 1 +
39ω − 16

49
x3, (3.15)

G2 = 1− 435ω + 745

392
x3 +

18357ω + 14632

16807
x6.

The following formulas hold around x = 0:

F
1/6
2 3F2

(
− 1

42 ,
5
42 ,

17
42

1
3 ,

2
3

∣∣∣∣∣Φ
∗

3

)
= (3.16)

1

3
(1− x)−1/42 (1− ωx)5/42 (1− ω2x)17/42

+
1

3
(1− x)5/42(1− ωx)17/42(1− ω2x)−1/42

+
1

3
(1− x)17/42(1− ωx)−1/42(1− ω2x)5/42,
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xG2

1− 2ω
F

−13/6
2 3F2

(
13
42 ,

19
42 ,

31
42

2
3 ,

4
3

∣∣∣∣∣Φ
∗

3

)
= (3.17)

1

3
(1− x)13/42 (1− ωx)19/42 (1− ω2x)31/42

+
ω

3
(1 − x)19/42(1− ωx)31/42(1− ω2x)13/42

+
ω2

3
(1− x)31/42(1− ωx)13/42(1 − ω2x)19/42,

3x2G2
2

21 + 7ω
F

−9/2
2 3F2

(
9
14 ,

11
14 ,

15
14

4
3 ,

5
3

∣∣∣∣∣Φ
∗

3

)
= (3.18)

1

3
(1− x)9/14 (1− ωx)11/14 (1− ω2x)15/14

+
ω2

3
(1− x)11/14(1− ωx)15/14(1 − ω2x)9/14

+
ω

3
(1 − x)15/14(1− ωx)9/14(1− ω2x)11/14.

Proof. Up to constant multiples, substitution (3.13) transforms the solutions
ψ1, ψ2, ψ3 of the previous proof to

ψ∗

1 = (1− x)3/7 (1 − ω2x)1/7 x−1/14G
−1/14
2 ,

ψ∗

2 = (1− ωx)1/7 (1− ω2x)3/7 x−1/14G
−1/14
2 , (3.19)

ψ∗

3 = (1− x)1/7 (1 − ωx)3/7 x−1/14G
−1/14
2 .

By considering the first few terms of Poisson power series in x, we express each
local solution in (3.12) with z = 1/Φ∗

3 as linear combinations of ψ∗

1 , ψ
∗

2 , ψ
∗

3 . The
claimed hypergeometric identities are then obtained after simplifying the powers
of x,G2 and bringing the linear factors of 1− x3 = (1− x)(1− ωx)(1− ω2x) to
the right-hand side.

Evidently, Φ∗

3(x) is a compositions of a degree 8 covering with the cyclic
x 7→ x3 covering. The Möbius-equivalent function Φ3(x) is a composition of
degree 8 and 3 coverings as well. This is noted in [Vid09, §9], [Hos10, §4].

3.2 Evaluations of type (3B)

The simplest representative evaluations of this type involve polynomial parts
vanishing at some regular points of the hypergeometric equation.
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Theorem 3.3. We have

3F2

(
− 1

14 ,
11
42 ,

25
42

4
7 ,

5
7

∣∣∣∣∣Φ3

)
= (1− 3x) (1− x)3/7G

−3/14
0 G

−3/14
1 , (3.20)

3F2

(
3
14 ,

23
42 ,

37
42

6
7 ,

9
7

∣∣∣∣∣Φ3

)
=

(
1− 2x

3

)
(1 − x)−2/7 F−2

1 G
9/14
0 G

9/14
1 , (3.21)

3F2

(
5
14 ,

29
42 ,

43
42

8
7 ,

10
7

∣∣∣∣∣Φ3

)
=
(
1 +

x

2

)
(1− x)−1/7 F−3

1 G
15/14
0 G

15/14
1 (3.22)

in a neighborhood of x = 0.

Proof. A hypergeometric differential equation has the following basis of local
solutions around z = 0:

3F2

(
− 1

14 ,
11
42 ,

25
42

4
7 ,

5
7

∣∣∣∣∣ z
)
, z2/73F2

(
3
14 ,

23
42 ,

37
42

6
7 ,

9
7

∣∣∣∣∣ z
)
, z3/73F2

(
5
14 ,

29
42 ,

43
42

8
7 ,

10
7

∣∣∣∣∣ z
)
. (3.23)

The pullback with respect to z = Φ3(x) gives a Fuchsian equation with the
generalized Riemann’s P -symbol

P





x = 0 x = 1 x = ∞ F1(x)=0 G0(x)=0 G1(x)=0

0 0 0 0 −3/14 −3/14
2/7 2/7 2/7 2 11/14 11/14 x
3/7 3/7 3/7 3 25/14 25/14




. (3.24)

Candidate radical solutions with the local exponent 0 at x = 0 are:

ψ4 = (1− c1x) (1− x)2/7G
−3/14
0 G

−3/14
1 , (3.25)

ψ⋆
4 = (1− c2x) (1− x)3/7G

−3/14
0 G

−3/14
1 ,

where the coefficients c1, c2 ∈ C \ {0, 1} are undetermined yet. A priori, c1 or
c2 could be a root of G0G1 = 0, so that the local exponent at that root equals
11/14. The correct solution is ψ⋆

4 with c = 3, leading to (3.20). The other two
identities are proved similarly.

Application of Möbius transformation (3.13) gives identities for

√
F2 3F2

(
− 1

14 ,
3
14 ,

5
14

1
3 ,

2
3

∣∣∣∣∣Φ
∗

3

)
,

6xG2

7
F

−11/6
2 3F2

(
11
42 ,

23
42 ,

29
42

2
3 ,

4
3

∣∣∣∣∣Φ
∗

3

)
,

3x2G2
2

14ω−7
F

−25/6
2 3F2

(
25
42 ,

37
42 ,

43
42

4
3 ,

5
3

∣∣∣∣∣Φ
∗

3

)
, (3.26)

similar to those in Theorem 3.2.
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4 Modular relations

The formulas of Theorem 3.1 can be used to prove the modular product identities
for K1(τ),K2(τ),K3(τ) in (1.6)–(1.11). This is demonstrated in §4.2. Recalling
Dedekind’s eta-function [Zag08, p. 29]

η(τ) = q1/24
∞∏

n=1

(1− qn) =
∞∑

n=−∞

q
1
24

(6n+1)2 , (4.1)

the functions η(τ)4K1(τ), η(τ)
4K2(τ), η(τ)

4K3(τ) are known to be modular
forms of weight 2 on the modular curve X (7); see [FM16, Example 29].
Therefore we refer to the formulas in (1.6)–(1.11) as level 7 evaluations.

As a warm-up, we prove in §4.1 hypergeometric expressions (1.13), (1.15)
for the (slightly modified) Rogers-Ramanujan series. Because of ubiquitous
relation [Duk05] to the modular curve X (5), we refer to those formulas as level 5
evaluations. Multiplied by η(τ)2/5, the functions in (1.13)–(1.16) are considered
in [Kan06] as modular forms of weight 1/5 on X (5). In §4.3 we show a few more
similar modular evaluations of 2F1-functions.

For an introduction to modular curves and functions, we refer to [DS05].
For a positive integer N , the modular curves X (N), X1(N), X0(N) are defined
by the congruence subgroups Γ(N), Γ1(N), Γ0(N), respectively, of SL(2,Z). If
a moduli curve has genus 0, then a generator of its field of moduli functions is
called a Hauptmodul. For example, the j-invariant (1.12) is a Hauptmodul of
X (1), and

h2(τ) :=
η(τ)24

η(2τ)24
=

1

q

∞∏

n=1

(
1 + qn

)
−24

, (4.2)

h3(τ) :=
η(τ)12

η(3τ)12
=

1

q

∞∏

n=0

(
1− q3n+1

)12 (
1− q3n+2

)12
, (4.3)

h4(τ) :=
η(τ)8

η(4τ)8
=

1

q

∞∏

n=1

(
1 + q2n−1

)
−8 (

1 + q2n
)
−16

, (4.4)

h5(τ) :=
η(τ)6

η(5τ)6
=

1

q

∞∏

n=1

(1 − qn)6

(1− q5n)6
, (4.5)

h7(τ) :=
η(τ)4

η(7τ)4
=

1

q

∞∏

n=1

(1 − qn)4

(1− q7n)4
(4.6)

are Hauptmoduln of X0(N) for N = 2, 3, 4, 5, 7, respectively [Mai07, Table 1].
The genus of modular curves and branching patterns of maps between them can
be easily derived the tables of Cummins and Pauli [CP03].

Existence of Fuchsian equations for modular forms with differentiation with
respect to a modular function is well-known [Zag08, §5.4]. They are commonly
known as Picard-Fuchs equations.

19



4.1 A proof of the level 5 evaluations

This proof of formulas (1.13), (1.15) follows the argument in [SE14], though
we seek to prepare a contextual template for the proof in §4.2. We start with
presenting Darboux evaluations [Vid13, §2.3] for the involved hypergeometric
functions .

The hypergeometric functions in (1.13), (1.15) are standard 2F1-functions
with the icosahedral projective monodromy group [Vid13]. The projective
monodromy group can be reduced to Z/5Z by a pull-back transformation with
respect to this degree 12 covering:

ϕ5(x) =
1728 x (1− 11x− x2)5

(1 + 228x+ 494x2 − 228x3 + x4)3
. (4.7)

This differs from [Vid13, (2.9)] by the transformations x 7→ −x or x 7→ 1/x. We
rewrite the Darboux evaluations in [Vid13, (2.9)–(2.10)] as follows:

(
ϕ5(x)

1728

)
−1/60

2F1

(
− 1

60 ,
19
60

4
5

∣∣∣∣∣ϕ5(x)

)
= x−1/60 (1 − 11x− x2)−1/12, (4.8)

(
Φ5(x)

1728

)11/60

2F1

(
11
60 ,

31
60

6
5

∣∣∣∣∣ϕ5(x)

)
= x11/60 (1− 11x− x2)−1/12. (4.9)

The modular curves X (5), X1(5), X0(5), X (1) have genus 0, as is well-known.
The maps between them have the degrees indicated in this diagram:

X (5)
5−→ X1(5)

2−→ X0(5)
6−→ X (1). (4.10)

A Hauptmodul of X1(5) is

x5(τ) = q
∞∏

n=0

(1− q5n+1)5 (1− q5n+4)5

(1− q5n+2)5 (1− q5n+3)5
. (4.11)

A Hauptmodul of X (5) is y5(τ) = x5(τ)
1/5. It has this nice expression as a

continuous fraction due to Ramanujan [Duk05]:

y5(τ) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + . . .

.

A Hauptmodul of X0(5) is given in (4.5). As a function on X1(5), it is identified
as

h5(τ) =
1

x5(τ)
− 11− x5(τ). (4.12)
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The covering X1(5) → X (1) is

j(τ) =
1728

ϕ5(x5(τ))
, (4.13)

and the covering X (5) → X (1) is Klein’s icosahedral Galois covering

j(τ) =
1728

ϕ5(y5(τ)5)
. (4.14)

The identification x = x5(τ) in (4.7) establishes

ϕ5(x) =
1728

j(τ)
, 1− 11x− x2 = x5(τ)h5(τ). (4.15)

This evaluates the right-hand sides of (4.8)–(4.9) to, respectively,

x5(τ)
−1/10 h5(τ)

−1/12 and x5(τ)
1/10 h5(τ)

−1/12. (4.16)

Formulas (1.13), (1.15) follow from (4.5) and (4.11) now.

Remark 4.1. The Darboux evaluations (4.8)–(4.9) with x = y5(τ)
5 imply that

the two functions are defined on the Galois covering

z12 = y (1− 11y5 − y10) (4.17)

of X (5). This is the minimal curve where the modular functions in (1.13), (1.15)
are defined. The genus of the covering equals 55 = 1+ 1

2 (12 (0−2)+12 (12−1))
by the Riemann-Hurwitz formula. The composition with X (5) → X (1) gives
a Belyi covering with the branching pattern [6012/3240/2360]. The covering
X (60) → X (1) has a similar branching pattern but of degree 69120; see [DS05,
p. 101]. The modular curve X (60) ought to be an unramified covering of (4.17)
of degree 96 = 69120/720.

4.2 A proof of the level 7 evaluations

This proof of formulas (1.6)–(1.11) follows the same pattern as in §4.1. We
observe that Hauptmoduln or generating functions of relevant modular curves
have nice q-factorizations. The Darboux evaluations of Theorem 3.1 can be
rewritten in a way where each factor can be recognized in terms of those nice
modular functions. In particular, we rewrite (3.4)–(3.6) as follows:

(
Φ3

1728

)
−1/42

3F2

(
− 1

42 ,
13
42 ,

9
14

4
7 ,

6
7

∣∣∣∣∣Φ3

)
= (−x)−1/42 (1− x)5/42 F

−1/6
1 , (4.18)

(
Φ3

1728

)5/42

3F2

(
5
42 ,

19
42 ,

11
14

5
7 ,

8
7

∣∣∣∣∣Φ3

)
= (−x)5/42 (1 − x)17/42 F

−1/6
1 , (4.19)

(
Φ3

1728

)17/42

3F2

(
17
42 ,

31
42 ,

15
14

9
7 ,

10
7

∣∣∣∣∣Φ3

)
= (−x)17/42 (1 − x)−1/42 F

−1/6
1 . (4.20)
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Recall that F1 = x3 − 8x2 + 5x+ 1.
The following coverings hold between modular curves, of indicated degrees:

X (7)
7−→ X1(7)

3−→ X0(7)
8−→ X (1). (4.21)

The modular curve X (7) has the genus g = 3, and is isomorphic to Klein’s
quartic curve K defined by (1.4). Elkies [Elk98, (4.4)–(4.6)] gives this
parametrization of K by modular forms3 on X (7):

X =− q4/7
∞∏

n=1

(1− qn)3 (1− q7n)(1 − q7n−6)(1 − q7n−1),

Y = q2/7
∞∏

n=1

(1 − qn)3 (1 − q7n)(1− q7n−5)(1− q7n−2), (4.22)

Z = q1/7
∞∏

n=1

(1 − qn)3 (1 − q7n)(1− q7n−4)(1− q7n−3).

The curves X1(7) and X0(7) have genus 0. A Hauptmodul for X1(7) is

x7(τ) =− X2Y

Z3
(4.23)

=− q + 2q2 − 5q4 + 4q5 +O(q6),

consistent with (2.25). A Hauptmodul for X0(7) is given in (4.6). As a function
on X1(7), it is identified in [Elk98, (4.24)]:

h7(τ) =
x 3
7 − 8x 2

7 + 5x7 + 1

x 2
7 − x7

. (4.24)

The covering X0(7) → X (1) is given in [Elk98, (4.20)]:

j(τ) =
(h 2

7 + 13h7 + 49)(h 2
7 + 245h7 + 74)3

h 7
7

. (4.25)

Consequently, the covering X1(7) → X (1) is given by

j(τ) =
1728

Φ3(x7)
. (4.26)

The identification x = x7(τ) establishes

Φ3(x) =
1728

j(τ)
, F1 = (−x)(1 − x)h7(τ), (4.27)

and

− x =
(−X)2 Y

Z3
, 1− x =

Y 3

(−X)Z2
. (4.28)

3These are essentially the modular forms mentioned right after formula (4.1); see [FM16,
Example 29]. Specifically, X = −η(τ)4 K3(τ), Y = η(τ)4 K2(τ), Z = η(τ)4 K1(τ).
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This evaluates the right-hand sides of (4.18)–(4.20) to, respectively,

(−X)−1/3 Y −1/3 Z2/3 h7(τ)
−1/6,

(−X)−1/3 Y 2/3 Z−1/3 h7(τ)
−1/6, (4.29)

(−X)2/3 Y −1/3 Z−1/3 h7(τ)
−1/6.

Formulas (1.7), (1.9), (1.11) for, respectively, K1(τ),K2(τ),K3(τ) follow from
the parametrization (4.22) now.

Remark 4.2. Corrected4 formula [Elk98, (4.19)] states

h7(τ) =
R6(X,Y, Z)

X2Y 2Z2
, (4.30)

where R6(X,Y, Z) is the invariant in (2.19). Hence the functions in (4.29) are

equal to ZR
−1/6
6 , Y R

−1/6
6 , XR

−1/6
6 , respectively. It follows that the functions

K1(τ),K2(τ),K3(τ) are defined on the Galois covering

W 6 = XY 5 + Y Z5 + ZX5 − 5X2Y 2Z2 (4.31)

of X (7). There are 24 branching points onW = 0, thus the genus of the covering
equals 73 = 1 + 1

2 (6 (2 · 3 − 2) + 24 (6 − 1)) by the Riemann-Hurwitz formula.
The composition with X (7) → X (1) gives a Belyi covering with the branching
pattern [4224/3336/2504]. The covering X (42) → X (1) has a similar branching
pattern but of degree 24192; see [DS05, p. 101]. The modular curve X (42) ought
to be an unramified covering of (4.31) of degree 24 = 24192/1008.

Remark 4.3. One may naturally ask about expressing K1(τ),K2(τ),K3(τ)
as sums similar to the Rogers-Ramanujan summations in (1.14), (1.16). Duke
[Duk05] refers to the work [Sel36] of Selberg and indicates these expressions:

K1(τ) =
q−1/42

(1− q)(1 − q2) · · ·

∞∑

n=0

(−1)n q
7n2+n

2 (1 − q6n+3),

K3(τ) =
q17/42

(1− q)(1 − q2) · · ·

∞∑

n=0

(−1)n q
7n2+7n

2 (1− qn+1) (1 − q6n+6), (4.32)

K2(τ) = q1/7F1 +
q5/42 q2

(1− q)(1 − q2) · · ·

∞∑

n=0

(−1)n q
7n2+13n

2 Cn (1− q6n+9),

where Cn = (1 − qn+1)(1 − qn+2). If Klein’s parametrization [Kle79, (44)] of
K is adjusted by q 7→ √

q (and some summation shifts), it gives these beautiful

4There are these typos in [Elk98]: Formula (4.19) is actually for j−1

7
, not for j7. In

formula (4.23), a minus sign is missing before y2z/x3. Formula (1.18) should be adjusted by
40Φ2

4
Φ6(3Φ2

14
+ 1008Φ4Φ4

6
+ 56Φ2

4
Φ6Φ14 − 832Φ4

4
Φ2

6
− 256Φ7

4
). In formula (4.35), the factor

5φ2
− 15φ− 7 should be 5φ2

− 14φ − 7.
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identities:

K3(τ)

K2(τ)
=

q2/7
∑

∞

−∞
(−1)nq

21n2+7n

2

∑
∞

−∞
(−1)nq

21n2+n

2 +
∑

∞

−∞
(−1)nq

21n2+13n+2

2

, (4.33)

K2(τ)

K1(τ)
=

q1/7
∑

∞

−∞
(−1)nq

21n2+7n

2

∑
∞

−∞
(−1)nq

21n2
−5n

2 +
∑

∞

−∞
(−1)nq

21n2+19n+4

2

, (4.34)

K1(τ)

K3(τ)
=

q−3/7
∑

∞

−∞
(−1)nq

21n2+7n

2

∑
∞

−∞
(−1)nq

21n2
−11n

2 +
∑

∞

−∞
(−1)nq

21n2+25n+6

2

. (4.35)

The numerator sums are equal to
∏

∞

n=1(1 − q7n) by (4.1). Consequently, the
denominators can be expressed as nice q-products as well. Those expressions are
special cases (with s = q7, y ∈ {q−1, q−2, q−3}) of this version of the quintuple
product identity:

∞∏

n=1

(1− sn)(1− y2sn)(1 − y−2sn−1)

(1− ysn) (1− y−1sn−1)
= (4.36)

∞∑

n=−∞

(−1)n(y3n−1 + y−3n) s
3n2

−n
2 .

Compared with Watson’s formula [SV70, (1.3)], we have x =
√
s, a = −y√s,

and a partial change of the summation index.

4.3 Other similar evaluations

Here we relate hypergeometric functions with a dihedral, tetrahedral, or
octahedral projective monodromy groups with modular curves of level N = 2, 3
or 4. Correspondingly, the following full coverings X (N) → X (1) have exactly
those monodromy groups:

a dihedral S3 : X (2)
2−→ X1(2) ∼= X0(2)

3−→ X (1);

the tetrahedral A4 : X (3)
3−→ X1(3) ∼= X0(3)

4−→ X (1); (4.37)

the octahedral S4 : X (4)
4−→ X1(4) ∼= X0(4)

6−→ X (1).

To obtain Darboux evaluations [Vid13] of standard Gauss hypergeometric
functions with the tetrahedral or octahedral projective monodromies, the
following pull-back transformations reduce the projective monodromy to Z/3Z
or Z/4Z, respectively:

ϕ3(x) =
x (x + 4)3

4(2x− 1)3
, ϕ4(x) =

108x (x− 1)4

(x2 + 14x+ 1)3
. (4.38)

As we will see, these coverings are algebraically equivalent to the modular
coverings X0(3) → X (1), X0(4) → X (1), respectively. We will use the Darboux

24



evaluations [Vid13, (2.1)–(2.2),(2.5)–(2.6)] in this form:

(
ϕ3(x)

1728

)
−1/12

2F1

(
− 1

12 ,
1
4

2
3

∣∣∣∣∣ϕ3(x)

)
=
(
− x

108

)
−1/12 (

1 +
x

4

)
−1/4

, (4.39)

(
ϕ3(x)

1728

)1/4
2F1

(
1
4 ,

7
12

4
3

∣∣∣∣∣ϕ3(x)

)
=
(
− x

108

)1/4 (
1 +

x

4

)
−1/4

, (4.40)

(
ϕ4(x)

1728

)
−1/24

2F1

(
− 1

24 ,
7
24

3
4

∣∣∣∣∣ϕ4(x)

)
=
( x
16

)
−1/24

(1− x)−1/6, (4.41)

(
ϕ4(x)

1728

)5/24

2F1

(
5
24 ,

13
24

5
4

∣∣∣∣∣ϕ4(x)

)
=
( x
16

)5/24
(1− x)−1/6. (4.42)

Formula (4.40) is equivalent to (1.1), in particular.
We can reduce the dihedral projective monodromy group to Z/2Z using

identities like (2.29)–(2.31), but that is not consistent with the cubic modular
covering X0(2) → X (1). Instead, we apply standard cubic transformation
[Vid09, (21)] of 2F1-functions (with a ∈ {1/2,−1}) and get

(
ϕ2(x)

1728

)
−1/6

2F1

(
− 1

6 ,
1
6

1
2

∣∣∣∣∣ϕ2(x)

)
=
( x
64

)
−1/6

(1− x)
−1/3

, (4.43)

(
ϕ2(x)

1728

)1/3
2F1

(
1
3 ,

2
3

3
2

∣∣∣∣∣ϕ2(x)

)
=
( x
64

)1/3
(1− x)−1/3 , (4.44)

with

ϕ2(x) =
27x(1− x)2

(1 + 3x)3
. (4.45)

In terms of Hauptmoduln, the map X0(2) → X (1) is given by

j(τ) =
(h2(τ) + 256)3

h2(τ)2
. (4.46)

In [Mai07, Appendix] for a reference, x2 = 212/h2(τ) and j(τ) = (x2 +16)3/x2.
To match 1728/j(τ) with ϕ2(x), we identify

x =
64

h2(τ) + 64
. (4.47)

Then 1− x = h2(τ)/(h2(τ) + 64), and formulas (4.43)–(4.44) become

j(τ)1/6 2F1

(
− 1

6 ,
1
6

1
2

∣∣∣∣∣
1728

j(τ)

)
= h2(τ)

−1/3
√
h2(τ) + 64, (4.48)

j(τ)−1/3
2F1

(
1
3 ,

2
3

3
2

∣∣∣∣∣
1728

j(τ)

)
= h2(τ)

−1/3. (4.49)
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The function h2(τ)
−1/3 is invariant under the congruence subgroup 6D0 in

the tables of Cummins and Paule [CP03], as it gives the branching pattern
[6·3/33/2313] over the j-line. The quotient

√
h2(τ) + 64 of the two functions is

a Hauptmodul of X (2). Apparently it has no nice q-factorization. The standard
Hauptmodul of X (2) is Legendre’s modular function [Zag08, p. 63]

λ(τ) =
16 η(τ/2)8 η(2τ)16

η(τ)24
= 16

√
q

∞∏

n=0

(
1 + qn

)8
(
1 +

√
q qn

)8 . (4.50)

By solving algebraic relations and checking the series, we indeed have

h2(τ) = 256
1− λ(τ)

λ(τ)2
,

√
h2(τ) + 64 = 8

(
2

λ(τ)
− 1

)
. (4.51)

The function in (4.48) is invariant under the subgroup 6C1 in [CP03], as it
contains both Γ(2) and 6D0. It has the branching pattern [63/36/29]. The
covering over X (2) can be obtained after substituting x = 64y2 into (4.43),
giving z3 = y (1 − 64y2). Here x, y represent Hauptmoduln of X1(2), X (2)
(respectively), like in Remark 4.1.

Now we consider the tetrahedral case similarly. With a Hauptmodul of Γ0(3)
given in (4.3), the map X0(3) → X (1) is

j(τ) =
(h3(τ) + 27) (h3(τ) + 243)3

h3(τ)3
. (4.52)

To match 1728/j(τ) with ϕ3(x), we identify

x = − 108

h3(τ) + 27
. (4.53)

Then 1 + 1
4x = h3(τ)/(h3(τ) + 27), and formulas (4.39)–(4.40) become

j(τ)1/12 2F1

(
− 1

12 ,
1
4

2
3

∣∣∣∣∣
1728

j(τ)

)
= h3(τ)

−1/4
(
h3(τ) + 27

)1/3
, (4.54)

j(τ)−1/4
2F1

(
1
4 ,

7
12

4
3

∣∣∣∣∣
1728

j(τ)

)
= h3(τ)

−1/4. (4.55)

The function h3(τ)
−1/4 is invariant under the congruence subgroup 12B0

in [CP03], with the branching pattern [12·4/3414/28] over the j-line. The
quotient (h3(τ)+27)1/3 is a Hauptmodul of X (3), without a nice q-factorization
apparently. The function in (4.54) is invariant under the subgroup 12A3 in
[CP03], because it contains both Γ(3) and 12B0. Its branching pattern is
[124/316/224]. The covering over X (2) is obtained after substituting x = −108y3

into (4.39), giving z4 = y (1 − 27y3). An intermediate congruence group
between12A3 and Γ(3) is 6D1, with the branching [64/38/212].
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In the octahedral case, the map X0(4) → X (1) is

j(τ) =
(h4(τ)

2 + 256h4(τ) + 4096)3

h4(τ)4 (h4(τ) + 16)
. (4.56)

To match 1728/j(τ) with ϕ4(x), we identify

x =
16

h4(τ) + 16
. (4.57)

A well-known classical identity [Zag08, (72)] implies

h4(τ) + 16 =
η(2τ)24

η(4τ)16η(τ)8
=

1

q

∞∏

n=1

(
1 + qn

)
−8(−1)n

. (4.58)

(In terms of [Duk05, §9], this function equals 16/u(τ)8.) Formulas (4.41)–(4.42)
become

j(τ)1/24 2F1

(
− 1

24 ,
7
24

3
4

∣∣∣∣∣
1728

j(τ)

)
=

η(2τ)5

η(4τ)2 η(τ)3
, (4.59)

= q−1/24
∞∏

n=1

(
1 + q2n−1

)3 (
1 + q2n

)
,

j(τ)−5/24
2F1

(
5
24 ,

13
24

5
4

∣∣∣∣∣
1728

j(τ)

)
=

η(4τ)2

η(2τ) η(τ)
(4.60)

= q5/24
∞∏

n=1

(
1 + q2n−1

) (
1 + q2n

)3
.

These functions are defined on the covering z6 = y (1− 16y4) of X (4), obtained
by substituting x = 16y4 in (4.41). The branching over X (1) is [246/348/272],
of genus 10. There are 5 congruence subgroups with this branching in [CP03].
The correct one is 24A10, because it has intermediate supergroups with the
branching patterns [86/316/224] and [126/324/236], namely, 8A2 and 12A4.

It is fitting to mention here this classical identity [Zag08, (74)]:

2F1

( 1
12 ,

5
12

1

∣∣∣∣
1728

j(τ)

)
= E4(τ)

1/4 = j(τ)1/12 η(τ)2, (4.61)

where E4(τ) = 1 + 240q + 2160q2 + . . . is an Eisenstein series.

5 The cases (7A) and (7B)

As explained in §2.5 the Darboux covering Φ7 : E7 → CP1 with the branching
pattern [7313/7313/212] can be computed from Φ3 using cubic transformation
(2.9).
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5.1 Degree 24 map

The Darboux curve E7 is determined as the fiber product

Φ3(x) =
27z2

(4− z)3
. (5.1)

To parametrize this curve by a simple equation, we substitute z = 8ẑ/(2ẑ + 3)
so that the right-hand side becomes ẑ 2(2ẑ + 3). After the next substitution
ẑ = z̃F 3

1 /(G0G1) we get the equation

1728x(x− 1)F1 = z̃2(2z̃F 3
1 + 3G0G1) (5.2)

of degree 12 in x, z̃. The curve defined by this equation can be straightforwardly
analyzed with Maple’s standard package algcurves. The curve has genus 1 and
is isomorphic to (2.32). Eventually, we can find this parametrization of (5.1) by
the elliptic curve (2.32):

x =
4(u+ v)2

(4u− 1)2(8u− 1)
, z = Φ7, (5.3)

where

Φ7 =
128(1− 4u)(−v − 3u+ 4uv + 20u2)7

u3(1− 8u)(1− 4v − 20u+ 64u2)7
. (5.4)

This is a Belyi map with the anticipated branching pattern [7313/7313/212].
Note that Φ7 vanishes at (u, v) = (0, 0) ∈ E7 despite the factor u3 in the
denominator. The divisor of Φ7 is

div(Φ7) = (0, 0) + (14 ,
1
4 ) + (14 ,− 1

4 ) + 7U1 + 7U2 + 7U3

−O − (18 ,
1
8 )− (18 ,− 1

8 )− 7V1 − 7V2 − 7V3. (5.5)

Here the u-coordinates of U1, U2, U3 satisfy 4u(4u − 1)(4u − 5) = 1, and the
u-coordinates of V1, V2, V3 satisfy 16u(4u − 1)(8u − 3) = 1. Table 1 presents
several straightforward rational functions on E7 and their divisors. We use
them to present rational and power functions on E7. For example,

Φ7 = −128(1− 4u)Ĝ 7
3

u3(1 − 8u)G 7
4

= −128u4(1− 4u)G 7
3

(1 − 8u)Ĝ 7
4

. (5.6)

5.2 Evaluations of type (7A)

Computation of Darboux evaluations on a genus 1 curve (such as E7) is less
straightforward than on P1, because divisors of rational or radical functions are
restricted by the Picard group [Sil09, p. 28], or the group law on an elliptic
curve such as (2.32). Consequently, radical factors have to be routinely chosen
with extraneous zeroes or poles, and compensatory factors are often needed. A
practical demonstration of involved combinatorial calculations is given in [Vid13,
§4]. The obtained Darboux evaluations can be checked by expanding the power
series in

√
u on both sides.
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Id Function Divisor

— u 2(0, 0)− 2O
— 1− 4u (14 ,

1
4 ) + (14 ,− 1

4 )− 2O
— 1− 8u (18 ,

1
8 ) + (18 ,− 1

8 )− 2O
— v − u (0, 0) + (14 ,

1
4 ) + (18 ,

1
8 )− 3O

— v + u (0, 0) + (14 ,− 1
4 ) + (18 ,− 1

8 )− 3O
F3 1− 4v − 4u 3(18 ,

1
8 )− 3O

F̃3 1 + 4v − 4u 3(18 ,− 1
8 )− 3O

F4 1− 2v − 6u 2(14 ,− 1
4 ) + (18 ,

1
8 )− 3O

F̃4 1 + 2v − 6u 2(14 ,
1
4 ) + (18 ,− 1

8 )− 3O
G3 1 + 2v − 10u+ 16u2 U1 + U2 + U3 + (14 ,

1
4 )− 4O

G4 1− 4v − 20u+ 64u2 V1 + V2 + V3 + (18 ,− 1
8 )− 4O

Ĝ3 v + 3u− 4uv − 20u2 U1 + U2 + U3 + (0, 0) + (18 ,− 1
8 )− 5O

Ĝ4 v − 5u− 8uv + 24u2 V1 + V2 + V3 + (0, 0) + (14 ,
1
4 )− 5O

Table 1: Divisors on the curve v2 = u(1− 11u+ 32u2)

Theorem 5.1. With reference to Table 1, we have

3F2

(
− 1

14 ,
1
14 ,

5
14

1
7 ,

5
7

∣∣∣∣∣Φ7

)
=
F

1/14
3 F

1/7
4 F̃

3/7
4√

G4

, (5.7)

3F2

(
3
14 ,

5
14 ,

9
14

3
7 ,

9
7

∣∣∣∣∣Φ7

)
=

(1− 4u)4/7 F
1/14
3 F̃

4/7
4 G

3/2
4

F̃
4/7
3 G 2

3

, (5.8)

3F2

(
11
14 ,

13
14 ,

17
14

11
7 ,

13
7

∣∣∣∣∣Φ7

)
=

(1− 8u) F̃
5/14
3 Ĝ

11/2
4

u16/7 (v − u)1/14 (v + u)6/7G 6
3

. (5.9)

Proof. Preliminary expressions of the 3F2-functions in terms of (complicated)
radical functions on E7 can be obtained by applying cubic transformation (2.9)
to the functions in Theorem 3.1. Then we compute fractional divisors of the

3F2-functions in (5.7)–(5.9), respectively:

6
7 (

1
4 ,

1
4 ) +

2
7 (

1
4 ,− 1

4 ) +
5
14 (

1
8 ,

1
8 ) +

1
14O − 1

14 (
1
8 ,− 1

8 )− 1
2V1 − 1

2V2 − 1
2V3, (5.10)

4
7 (

1
4 ,− 1

4 )− 2
7 (

1
4 ,

1
4 )− 2U1 − 2U2 − 2U3 (5.11)

+ 9
14O + 5

14 (
1
8 ,− 1

8 ) +
3
14 (

1
8 ,

1
8 ) +

3
2V1 +

3
2V2 +

3
2V3,

− 4
7 (

1
4 ,

1
4 )− 6

7 (
1
4 ,− 1

4 )− 6U1 − 6U2 − 6U3 (5.12)

+ 17
14 (

1
8 ,− 1

8 ) +
13
14 (

1
8 ,

1
8 ) +

11
14O + 11

2 V1 +
11
2 V2 +

11
2 V3.

The radical expressions on the right-hand sides of (5.7)–(5.9) have the same
divisors, and evaluate to 1 at (u, v) = (0, 0).
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For a constructive proof, we seek to combine (multiplicatively) the functions
in Table 1 to obtain the required divisors. The routine is demonstrated in [Vid13,
§4.2–4.3]. One strategy could be: to produce the required vanishing orders of

the Ui’s and Vi’s by using G3, G4; then use 1−4u, 1−8u, F̃4, F̃3 consequently to
account for the vanishing orders of (14 ,− 1

4 ), (
1
8 ,

1
8 ), (

1
4 ,

1
4 ), (

1
8 ,− 1

8 ), respectively.
For example, this produces

G
11/2
4 (1− 8u)13/14 F̃

22/7
4

G 6
3 (1− 4u)6/7 F̃

39/14
3

(5.13)

for divisor (5.12). The powers of F̃3, F̃4 are rather awkward. We can modify
this expression by the identities

(v − u)G4 = (1− 8u)Ĝ4, (1− 4u)(v − u)F̃3 = (1− 8u)(v + u)F̃4,

(v + u)G3 = (1− 4u)Ĝ3, (1− 4u)(v + u)F3 = (1− 8u)(v − u)F4, (5.14)

F4F̃4 = (1− 4u)2(1− 8u), (v − u)(v + u) = u(1− 4u)(1− 8u)

to get a more polished formula like (5.9).

The companion hypergeometric solutions at Φ7 = ∞ are

Φ
1/14
7 3F2

(
− 1

14 ,
3
14 ,

11
14

4
7 ,

6
7

∣∣∣∣∣
1

Φ7

)
, Φ

−1/14
7 3F2

(
1
14 ,

5
14 ,

13
14

5
7 ,

8
7

∣∣∣∣∣
1

Φ7

)
,

Φ
−5/14
7 3F2

(
5
14 ,

9
14 ,

17
14

9
7 ,

10
7

∣∣∣∣∣
1

Φ7

)
. (5.15)

Apart from the power factors and the argument 1/Φ7, they are contiguous to
the 3F2-functions in (5.7)–(5.9). The functions Φ7 and 1/Φ7 can be interchanged
by this automorphism of E7:

(u, v) 7→
(

1

32u
,− v

32u2

)
. (5.16)

Theorem 5.2. With reference to Table 1, we have

3F2

(
− 1

14 ,
3
14 ,

11
14

4
7 ,

6
7

∣∣∣∣∣Φ7

)
=

(1− 4u)1/7 F̃
3/14
3 F̃

1/7
4

(1− 8u)1/14
√
G4

, (5.17)

3F2

(
1
14 ,

5
14 ,

13
14

5
7 ,

8
7

∣∣∣∣∣Φ7

)
=

(1− 4u)2/7(1− 8u)1/7 F
1/14
3 F̃

2/7
4

√
G4

G3
, (5.18)

3F2

(
5
14 ,

9
14 ,

17
14

9
7 ,

10
7

∣∣∣∣∣Φ7

)
=

(1− 8u) (v − u)3/14 Ĝ
5/2
4

u8/7 (v + u)3/7 F̃
1/14
3 G 3

3

. (5.19)

Proof. We compute preliminary algebraic expressions on E7 for the 3F2-
functions by either of these two ways:
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• by using the mentioned contiguous relations;

• or by applying cubic transformation (2.8) with z = 1/Φ7 to the functions
in Theorem 3.1, and subsequently interchanging 1/Φ7 7→ Φ7 by (5.16).

Then we compute their fractional divisors, respectively:

3
7 (

1
4 ,

1
4 ) +

1
7 (

1
4 ,− 1

4 ) +
11
14O + 3

14 (
1
8 ,− 1

8 )− 1
14 (

1
8 ,

1
8 )− 1

2V1 − 1
2V2 − 1

2V3, (5.20)
2
7 (

1
4 ,− 1

4 )− 1
7 (

1
4 ,

1
4 )− U1 − U2 − U3 (5.21)

+ 13
14 (

1
8 ,− 1

8 ) +
5
14 (

1
8 ,

1
8 ) +

1
14O + 1

2V1 +
1
2V2 +

1
2V3,

− 2
7 (

1
4 ,

1
4 )− 3

7 (
1
4 ,− 1

4 )− 3U1 − 3U2 − 3U3 (5.22)

+ 17
14 (

1
8 ,

1
8 ) +

9
14O + 5

14 (
1
8 ,− 1

8 ) +
5
2V1 +

5
2V2 +

5
2V3.

The radical expressions on the right-hand sides of (5.17)–(5.19) have the same
divisors, and evaluate to 1 at (u, v) = (0, 0).

5.3 Evaluations of type (7B)

Similarly, we can apply cubic transformation (2.9) to the formulas of Theorem
3.3 and eventually obtain formulas like

3F2

(
− 3

14 ,
1
14 ,

3
14

1
7 ,

3
7

∣∣∣∣∣Φ7

)
=

(1 − 4u)4/7 F
1/7
4 (1 + 2v − 2u+ 32uv)

(1 − 8u)1/14 F̃
3/14
3 G

3/2
4

, (5.23)

with a few zeroes at regular points of the pulled-back Fuchsian equation. In this
example, the u-coordinates of those regular points satisfy 8u(64u2+2u−1) = 1.
But there are 3F2-functions of type (7B) that do not vanish at regular points.

Theorem 5.3. With reference to Table 1, we have

3F2

(
− 1

14 ,
1
14 ,

9
14

2
7 ,

6
7

∣∣∣∣∣Φ7

)
=

(1− 4u)1/7 1− 8u)4/7 F
2/7
4

F
1/14
3

√
G4

, (5.24)

3F2

(
1
14 ,

3
14 ,

11
14

3
7 ,

8
7

∣∣∣∣∣Φ7

)
=

(1− 8u)1/14 F̃
6/7
4

√
G4

(1− 4u)1/7 F̃
3/14
3 G3

, (5.25)

3F2

(
9
14 ,

11
14 ,

19
14

11
7 ,

12
7

∣∣∣∣∣Φ7

)
=

(1 − 8u) F̃
1/14
3 Ĝ

9/2
4

u13/7 (v − u)3/14 (v + u)4/7G 5
3

. (5.26)

Proof. Preliminary expressions on E7 for a set of contiguous 3F2-functions (such
as (5.23)) can be obtained by applying cubic transformation (2.9) to the formulas
of Theorem 3.3. By using contiguous relations we then compute preliminary
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expressions for the target functions. Their fractional divisors are

5
7 (

1
4 ,− 1

4 ) +
1
7 (

1
4 ,

1
4 ) +

9
14 (

1
8 ,

1
8 ) +

1
14 (

1
8 ,− 1

8 )− 1
14O − 1

2V1 − 1
2V2 − 1

2V3, (5.27)
4
7 (

1
4 ,

1
4 )− 1

7 (
1
4 ,− 1

4 )− U1 − U2 − U3 (5.28)

+ 11
14 (

1
8 ,− 1

8 ) +
3
14O + 1

14 (
1
8 ,

1
8 ) +

1
2V1 +

1
2V2 +

1
2V3,

− 4
7 (

1
4 ,− 1

4 )− 5
7 (

1
4 ,

1
4 )− 5U1 − 5U2 − 5U3 (5.29)

+ 19
14O + 11

14 (
1
8 ,

1
8 ) +

9
14 (

1
8 ,− 1

8 ) +
9
2V1 +

9
2V2 +

9
2V3.

The radical expressions on the right-hand sides of (5.24)–(5.26) have the same
divisors, and evaluate to 1 at (u, v) = (0, 0).

Alternatively, we can follow the strategy in the proof of Theorem 3.1. In
(2.16) we see a basis of local solutions at z = 0 of a hypergeometric equation
of type (7B). For a radical solution with the local exponent 0 at (u, v) = (0, 0),
we have 12 candidate fractional divisors in total: apart from (5.27) we can
permute the exponents to (14 ,− 1

4 ) and (14 ,
1
4 ), and the exponents to O, (18 ,

1
8 ),

(18 ,− 1
8 ). Starting from a preliminary expression of one candidate solution,

preliminary expressions for other candidates can be obtained by using the factor

F
2/7
4 F̃

−2/7
4 F

−2/21
3 F̃

2/21
3 to permute the exponents of (14 ,− 1

4 ) and (14 ,
1
4 ), and

so on. By checking all 12 candidates we find the right solution with the divisor
(5.27). By Lemma 2.5, we have two candidates for the transformed second
solution in (2.16) with the exponent 1/7 at (u, v) = (0, 0). Their divisors
differ by a cyclic permutation of the exponents to O, (18 ,

1
8 ), (18 ,− 1

8 ). The
right solution leads to formula (5.25). For the third solution, we have just one
candidate.

The companion hypergeometric solutions at Φ7 = ∞ are

Φ
1/14
7 3F2

(
− 1

14 ,
1
14 ,

9
14

2
7 ,

6
7

∣∣∣∣∣
1

Φ7

)
, Φ

−1/14
7 3F2

(
1
14 ,

3
14 ,

11
14

3
7 ,

8
7

∣∣∣∣∣
1

Φ7

)
,

Φ
−9/14
7 3F2

(
9
14 ,

11
14 ,

19
14

11
7 ,

12
7

∣∣∣∣∣
1

Φ7

)
. (5.30)

The parameters of the 3F2-solutions are the same as in Theorem 5.3, and the
argument can be transformed to Φ7 by (5.16). There is thus no need for separate
formulas. The symmetry of parameters is reflected by the symmetric matrix in
(2.15). The symmetry is a characteristic of 3F2-functions on the right hand-side
of the quadratic transformation (2.34).

6 The cases (4A) and (4B)

As explained in §2.5, the Darboux covering Φ4 : E4 → CP1 with the branching
pattern [7313/46/212] can be computed from Φ7 using quadratic transformation
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(2.34). The covering Φ4 is given by formula (2.34), but the curve E4 is defined
by the involution of (5.16) of E7. The involution-invariant functions

p̃ = u+
1

32u
, w̃ = v − v

32u2
(6.1)

satisfy 8w̃2 = (32p̃− 11)(8p̃2 − 1). Taking

p =
1

32p̃− 11
=

u

1− 11u+ 32u2
, (6.2)

w =
32w̃

(32p̃− 11)2
=

v (1− 32u2)

(1− 11u+ 32u2)2
(6.3)

we get the elliptic curve (2.32). The functions (p, w) define a 2-isogeny [Sil09,
§III.4] between E4 and E7 as elliptic curves.

The divisor of Φ4 on E4 is computed to be

(0, 0) + (1, 4) + (1,−4) + 7S1 + 7S2 + 7S3

−4T1 − 4T2 − 4T3 − 4T4 − 4T5 − 4T6. (6.4)

Here the p-coordinates of S1, S2, S3 satisfy 7p(7p2 − 21p + 5) = 1, while the
p-coordinates of T1, . . . , T6 satisfy

(49p2 − 29)(49p3 + 98p2 − 188p− 10) + 435p =
1

7p
. (6.5)

Table 2 presents several rational functions on E4 and their divisors. We use
them to present rational and power functions on E4. In particular,

Φ4 =
512 (w − 4p)F 7

5

(1 + w + 3p)G 4
5

. (6.6)

It is more straightforward to compute representative Darboux evaluations
of type (4B), because of a direct relation to type (7B) evaluations by quadratic
transformation (2.34).

Theorem 6.1. With reference to Table 2, we have

3F2

(
− 1

28 ,
3
14 ,

13
28

2
7 ,

6
7

∣∣∣∣∣Φ4

)
=

(1 − p)2/7 F
1/14
6

G
1/7
5

, (6.7)

3F2

(
3
28 ,

5
14 ,

17
28

3
7 ,

8
7

∣∣∣∣∣Φ4

)
=

F̃
3/14
6 G

3/7
5

(1 − p)5/7 F5
, (6.8)

3F2

(
19
28 ,

13
14 ,

33
28

11
7 ,

12
7

∣∣∣∣∣Φ4

)
=
F̃

5/14
6 G

19/7
5

(1 − p)4/7 F 5
5

. (6.9)
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Id function divisor

— p 2(0, 0)− 2O
— 1− p (1, 4) + (1,−4)− 2O
— w − 4p (0, 0) + (1, 4) + (− 1

7 ,− 4
7 )− 3O

— w + 5p− p2 (0, 0) + 3(1,−4)− 4O
— 1− w + 3p 2(1, 4) + (− 1

7 ,
4
7 )− 3O

— 1+ w + 3p 2(1,−4) + (− 1
7 ,− 4

7 )− 3O
— 1+ 7w + 35p 3(− 1

7 ,
4
7 )− 3O

— 1− 7w + 35p 3(− 1
7 ,− 4

7 )− 3O
F5 1− 2w − 16p+ 7p2 (1,−4) + S1 + S2 + S3 − 4O
F6 1− 10w + 47p+ 2wp− 17p2 + p3 6(1, 4)− 6O
F̃6 1 + 10w + 47p− 2wp− 17p2 + p3 6(1,−4)− 6O
G5 1 + 47w + 89p− 14wp

+91p2 − 49wp2 − 245p3 (1,−4) + T1 + . . .+ T6 − 7O

Table 2: Divisors on the curve w2 = p(1 + 22p− 7p2)

Proof. Preliminary expressions of the 3F2-functions in terms of radical functions
on E4 can be obtained by applying quadratic transformation (2.34) to the
functions in Theorem 5.3. Their fractional divisors, respectively:

5
7 (1, 4) +

1
7 (1,−4)− 1

7 (T1 + . . .+ T6), (6.10)
4
7 (1,−4)− 1

7 (1, 4)− S1 − S2 − S3 +
3
7 (T1 + . . .+ T6), (6.11)

− 4
7 (1, 4)− 5

7 (1,−4)− 5S1 − 5S2 − 5S3 +
19
7 (T1 + . . .+ T6). (6.12)

The radical expressions on the right-hand sides of (6.7)–(6.9) have the same
divisors, and evaluate to 1 at (p, w) = (0, 0).

The companion hypergeometric solutions at Φ4 = ∞ are

Φ
1/28
4 3F2

(
− 1

28 ,
3
28 ,

19
28

1
2 ,

3
4

∣∣∣∣∣
1

Φ4

)
, Φ

−3/14
4 3F2

(
3
14 ,

5
14 ,

13
14

3
4 ,

5
4

∣∣∣∣∣
1

Φ4

)
,

Φ
−13/28
4 3F2

(
13
28 ,

17
28 ,

33
28

5
4 ,

3
2

∣∣∣∣∣
1

Φ4

)
. (6.13)

Their Darboux evaluations would hold around one of the points T1, . . . , T6,
defined by (6.5) and G5 = 0. All those points are defined over Q(sin π

7 ). Handy
Darboux evaluations of degree 21 for type (4B) are given in [Vid18, §4.4].

Darboux evaluations of type (4A) always have zeroes at some regular points,
apparently. Determining those zeroes can be tricky.
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Theorem 6.2. With reference to Table 2, we have

3F2

(
− 3

28 ,
11
28 ,

9
14

4
7 ,

6
7

∣∣∣∣∣Φ4

)
=

(1− 7w − 21p) (1− p)6/7 F
3/14
6

(1− w + 3p)G
3/7
5

, (6.14)

3F2

(
1
28 ,

15
28 ,

11
14

5
7 ,

8
7

∣∣∣∣∣Φ4

)
=

(
1− 7

3p
)
(1− p)2/7 F̃

1/14
6 G

1/7
5

F5
, (6.15)

3F2

(
9
28 ,

23
28 ,

15
14

9
7 ,

10
7

∣∣∣∣∣Φ4

)
=

(1 + 7w − 21p)
√
p (1− p)4/7 F̃

1/7
6 G

9/7
5

(q − 4p)F 3
5

. (6.16)

Proof. We can apply quadratic transformation (2.34) to these hypergeometric
functions and obtain 3F2-functions that are contiguous to the formulas of
Theorem 5.1. This allows us to derive preliminary expressions of (6.14)–(6.16)
as radical functions on E4, and their fractional divisors (with known points
R1, R2, etc):

3
7 (1,−4) + 1

7 (1, 4) +R1 +R2 − 3
7 (T1 + . . .+ T6), (6.17)

2
7 (1, 4)− 1

7 (1,−4) + R̃1 + R̃2 − S1 − S2 − S3 +
1
7 (T1 + . . .+ T6), (6.18)

− 2
7 (1,−4)− 3

7 (1, 4) + R̂1 + R̂2 − 3S1 − 3S2 − 3S3 +
9
7 (T1 + . . .+ T6). (6.19)

The radical expressions on the right-hand sides of (6.14)–(6.16) have the same
divisors, and evaluate to 1 at (p, w) = (0, 0).

Alternatively, we can follow the strategy in the proofs of Theorems 3.1 and
5.3. For the 3F2-function in (6.14), the points R1, R2 in the divisor (6.17) are
unknown a priori, and besides, there is other possible divisor shape with the
Q-coefficients to (1,−4) and (1, 4) interchanged. In both cases, the line in CP2

through R1, R2 intersects E4 at the third point that must be a torsion point
defined over Q. We see the point (p, w) = (1, 4) of order 6, and there is only
one 2-torsion point (0, 0). By Mazur’s theorem [Sil09, Theorem 7.5], the torsion
subgroup is then either Z/6Z or Z/12Z. Existence of rational 4-torsion points
distinguishes these two cases. The tangent lines to E4 at the 4-torsion points
have the form y = αx. The tangent lines of this form satisfy α4−44α2+512 = 0.
Hence there are no rational 4-torsion points, and the Q-rational torsion is Z/6Z.
The line through undetermined R1, R2 is a line through one of the 6 torsion
points. Among the possibilities (adjusted by a compensatory factor vanishing
only at the supposed torsion point), we find the radical function expressed in
(eq:de4a1). For the other two hypergeometric functions, the divisors have the

shapes (6.18) and (6.19) by Lemma (2.5). The points R̃1, R̃2 or R̂1, R̂2 are
determined by trying out lines through the 6 torsion points.
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