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Abstract

In many practical scenarios, a population is divided into
disjoint groups for better administration, e.g., electorates
into political districts, employees into departments, stu-
dents into school districts, and so on. However, group-
ing people arbitrarily may lead to biased partitions, rais-
ing concerns of gerrymandering in political districting,
racial segregation in schools, etc. To counter such issues,
in this paper, we conceptualize such problems in a voting
scenario, and propose FAIR DISTRICTING problem to
divide a given set of people having preference over can-
didates into & groups such that the maximum margin of
victory of any group is minimized. We also propose the
FAIR CONNECTED DISTRICTING problem which addi-
tionally requires each group to be connected. We show
that the FAIR DISTRICTING problem is NP-complete
for plurality voting even if we have only 3 candidates but
admits polynomial time algorithms if we assume & to be
some constant or everyone can be moved to any group.
In contrast, we show that the FAIR CONNECTED DIs-
TRICTING problem is NP-complete for plurality voting
even if we have only 2 candidates and k£ = 2. Finally,
we propose heuristic algorithms for both the problems
and show their effectiveness in UK political districting
and in lowering racial segregation in public schools in
the US.

Introduction

Dividing a population into smaller groups is often a
practical necessity for better administration. For ex-
ample, in many democratic countries (most notably,
the countries who follow the Westminster System e.g.,
UK, Canada, India, Australia, or the Presidential Sys-
teme.g., US, Brazil, Mexico, Indonesia), electorates are
divided into electoral districts; in many organizations,
employees are divided into administrative units like de-
partments; students enrolled in public schools in the US
are divided into school districts; and so on. However,
the population is not homogeneous, it consists of people
with different attributes — gender, race, religion, ideol-
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ogy, etc. Dividing people arbitrarily may lead to biased
grouping, manifested differently in different contexts.

In electoral districting, given the voting pattern of
the electorate, political parties in power may draw the
district boundaries that favor them — a practice termed
as gerrymandering (Lewenberg, Lev, and Rosenschein
2017). For example, majority of the opposition support-
ers may be assigned to a few districts, such that the
opponents become minority in other districts. Alterna-
tively, the ruling party may want to ensure that it enjoys
a healthy lead over its opponents in many districts, so
that if a handful of its supporters change sides, it does
not hamper the winnability. There have been several in-
stances of such manipulations in electoral (re)districting
in the US, starting as early as in 1812, by then Mas-
sachusetts governor Elbridge Gerry (the term gerry-
mandering originated after him) (Issacharoff 2002).

Public schools in the US are governed by school
boards representing local communities, and are largely
funded from local property taxes (Corsi-Bunker 2015}
Chakraborty et al. 2019). Most of the students go to
a school in the district they live, proximity playing an
important role in the school choice (Douglas N. Harris
2015). Thus, the way schools are distributed determines
racial composition of their students and the revenue
they earn. Several reports claim that wealthier, whiter
communities have pushed policies so that white fami-
lies can live in white-majority areas and attend white-
majority schools (Richards 2014; |Chang 2018). De-
spite the desegregating efforts following the landmark
Supreme Court verdict in Brown v. Board of Education
case in 1954 (which ruled racial segregation of children
in public schools to be unconstitutional), 63% of class-
mates of a white student are whites, compared to 48%
of all students being whites; similarly, 40% of black and
Hispanic students attend schools where over 90% stu-
dents are people of color (Frankenberg 2019)). As a con-
sequence, a recent report by an educational non-profit
EdBuild claimed that “Non-white school districts get
$23 Billion less than white districts, despite serving the
same number of students” (EdBuild 2019).



To counter such unfairness issues while dividing peo-
ple into groups, in this paper, we conceptualize such
problems in a voting scenario: the goal is to divide a
set of n people, each having a preference over a set of
candidates, into k& groups. While the mapping of elec-
toral districting into voting is direct and utilizes peo-
ple’s ideological preferences, we can think of context-
specific mapping in other scenarios. For example, in
school districting, we can think of students having pref-
erence according to their sensitive attributes (e.g., gen-
der, race, etc.). Once the mapping is done, we propose
the FAIR DISTRICTING problem to create k£ groups such
that the maximum margin of victory of any group is
minimized, where margin of victory is defined as the
number of people who need to change their preference
to change the winner. We also propose the FAIR CON-
NECTED DISTRICTING problem which additionally re-
quires each group to be connected. Reducing margin of
victory would lead to everyone’s opinion within a group
to be valuable, since the consensus of the group can be
changed even if a small number of people change their
preferences. In practical applications, it would lead to
higher accountability from the elected candidate in po-
litical districting, lower racial segregation in schools,
increase inter-discipline exchange in academic depart-
ments, and so on.

Contribution
We make the following contributions in this paper.

> We show that the FAIR DISTRICTING problem is NP-
complete for the plurality voting rule even when we
have only 3 alternatives and there is no constraint
on the size of individual groups [??]. We comple-
ment this intractability result by proving existence
of polynomial time algorithms, when (i) every voter
can be moved to any group (which we term as the
FAIR PARTITIONING problem) [??], and (ii) we have
a constant number of groups [??] for the plurality vot-
ing rule.

> We show that the FAIR CONNECTED DISTRICTING
problem is NP-complete for the plurality voting rule
even when there is only 2 alternatives, 2 districts,
the maximum degree of any vertex in the under-
lying graph is 5, and no constraint on the size of
districts [??]. This shows that, although both FAIR
DISTRICTING and FAIR CONNECTED DISTRICTING
problems are NP-complete, FAIR CONNECTED DIs-
TRICTING problem is computationally harder than
the FAIR DISTRICTING problem.

> We propose heuristic algorithms for both FAIR Dis-
TRICTING and FAIR CONNECTED DISTRICTING
problems and show their effectiveness in reducing
margin of victory in electoral districts in the UK,
as well as in lowering racial segregation in public
schools in the US.

Related Work

Voting mechanisms have been at the center of historical,
political, and sociological studies (Barbara and Garcia-
Molina 1987} Barbera et al. 1991};|Lublin 1999; [Erdélyi,
Hemaspaandra, and Hemaspaandra 2015)), due to their
impact on local communities and society at large. The
problem of unfair distribution of voters into districts,
otherwise known as gerrymandering, has received sig-
nificant attention from academic researchers (Butler
1992; |Johnston, Rossiter, and Pattie 2006; [Issacharoff]
2002; [Bachrach et al. 2016), and in particular from
the computational social choice theorists, setting ge-
ographical (Lewenberg, Lev, and Rosenschein 2017)
and social constraints (Cohen-Zemach, Lewenberg, and
Rosenschein 2018; [Ito et al. 2019; [Borodin et al. 2018))
to population mobility.

Central to the problem of gerrymandering is the con-
cept of representation: does a collective represent the
choices or attributes of those comprising it? In other
words, does a district represent its voters? While re-
cent papers conceptualize different measures of rep-
resentation in voting scenarios (Bachrach et al. 2016;
Johnston, Rossiter, and Pattie 2006; [Feix et al. 2008}
Gelman, Katz, and Tuerlinckx 2002} [Felsenthal and
Miller 20135)), to our knowledge, we are the first to use
the concept of margin of victory for re-districting vot-
ers to achieve better representation. While minimizing
margin of victory does not ensure proportional repre-
sentation of all voter choices in each district, it at least
ensures that the voices present are not lost in the crowd.
Intuitively, lowering margin of victory across districts
would ensure a strong opposition to each majority win-
ner, safeguarding against district monopolies, as well as
against diluting voter power across many districts.

Computing the margin of victory for different voting
rules has been studied in (Xia 2012), while (Dey and!
Narahari 2015) and (Blom, Stuckey, and Teague 2018))
estimate it in real elections. However, to our knowledge,
the problem of minimizing margin of victory has not at-
tracted much attention. In this paper, we characterize
the complexity of this problem for plurality voting, one
of the most common voting rules, and give practical al-
gorithms to solve it in real and synthetic datasets.

Preliminaries
Voting Setting

For a positive integer k, we denote the set {1,2,...,k}
by [k]. Let A = {a; : ¢ € [m]} be a set of m
alternatives. A complete order over the set A of al-
ternatives is called a preference. We denote the set
of all possible preferences over A by L£(A). A tuple
(=i)iem) € L(A)"™ of n preferences is called a pro-
file. An election & is a tuple (>~,.A) where > is a pro-
file over a set A of alternatives. If not mentioned oth-
erwise, we denote the number of alternatives and the



number of preferences by m and n respectively. A map
P Wy, ajen+ L(A)" — 24\ {0} is called a voting
rule. In this paper we consider the plurality voting rule
where the set of winners is the set of alternatives who
appear at the first position of a highest number of alter-
natives. We say that a voter votes for an alternative if the
voter prefers that alternative most. The number of pref-
erences where an alternative appears at the first place is
called her plurality score.

Margin of Victory

Let r be any voting rule. The margin of victory of an
election ((>;)ic[n], A) is the minimum number of votes
that needs to be changed to change the election out-
come. It easily follows that the margin of victory of a
plurality election is the ceiling of half the difference
between the plurality score of the two highest plural-
ity scores of the alternatives. For ease of notation, we
assume that the margin of victory of an empty election
(no voters) is oo.

Problem Definition

We now define our basic problem which we call FAIR
DISTRICTING.

Definition 1 (FAIR DISTRICTING). Given a set A of m
alternatives, a set V of n voters along with their corre-
sponding preferences, a set of k groups H = {H;,i €
[k]} along with the set V; of voters corresponding to
each group H; for i € [k] such that (V;);cpy) forms a
partition of V, a function @ : V — 2%\ {0} denot-
ing the set of groups where each voter can be part of,
minimum Size Spin and maximum size Spyq. Of every
group, and a target t of maximum margin of victory of
any group, compute if there exists a partition (V;);e[x)
of V into these k groups such that the following holds.

(i) Foreveryi € [k] and v € V|, we have H; € 7w(v)
(ii) For everyi € [k], we have Smin < |V!| < Smax
(iii) The margin of victory in the group H; is at most t

for every i € [k]

We denote an arbitrary instance of this problem by
(A> V7 ka H = (Hz)ze[k]a (Vz)ze[k] s Ty Smins Smaz» t)

An important special case of FAIR DISTRICTING
is when every voter can be moved to every district;
that is m(v) = H for every voter v € V. We call
this problem FAIR PARTITIONING. We denote an arbi-
trary instance of FAIR PARTITIONING by (A, V, k, H =
(Hi)ie[k]a (Vz)ze[k] y Smin, Smazx, t)

The FAIR DISTRICTING problem is generalized to
define the FAIR CONNECTED DISTRICTING prob-
lem where the input also have a graph defined on
the set of voters, the given districts are all con-
nected, and we require the new districts to be con-
nected as well. We denote an arbitrary instance of
FAIR CONNECTED DISTRICTING by (A, V, G, k,H =

(Hi)ie[k] , (Vi)ie[k] s Ty Smins Smax, t). In this paper, we
study the above problems only for the plurality voting
rule and thus omit specifying it every time.

The following observation is immediate from problem
definitions itself.

Observation 1. FAIR PARTITIONING many to one re-
duces to FAIR DISTRICTING which many to one re-
duces to FAIR CONNECTED DISTRICTING.

Results: Intractability

In this section, we present our hardness results. Our first
result shows that FAIR DISTRICTING is NP-complete
even with 3 alternatives. For that we reduce from the
well known SAT problem which is known to be NP-
complete.

Theorem 1. The FAIR DISTRICTING problem is NP-
complete even if we have only 3 alternatives and there
is no constraint on the size of any district.

Proof. FAIR DISTRICTING clearly belongs to NP. To
prove NP-hardness, we reduce from the SAT problem.
Let(X ={x;:i € [n]},C={C,:j€[m]}) beanar-
bitrary instance of SAT. Let us consider the following
instance (A, V,k,H =, Vi)ici], T Smin = 0, Smaz =
00, t = 2) of FAIR DISTRICTING.

A ={a,b,c}
H={X,X,Z;:i€n}u{Y;:je[ml}
Vi € [n], Votes in X; : m + 2 votes for a
m votes for b, m — 1 votes for ¢
Vi € [n], Votes in X; : m + 2 votes for a
m votes for b, m — 1 votes for ¢
Vi € [n], Votes in Z; : m + 2 votes for a
m + 1 votes for ¢
Vj € [m], Votes in J; : m + 3 votes for a
m votes for b
t=2

Let f be a function defined on the set of literals as
f(z;) = X; and f(z;) = A for every i € [n]. We now
describe the 7 function. For ¢ € [n], no voter in Z; can
move to any other district except one voter who votes
for the alternative ¢ and she can move to X; and X;. For
i € [n], no voter voting for the alternatives a or c in both
X; and X; leave their current districts; a voter in X; (X}
respectively) who votes for the alternative b can move
to the district ); for some j € [m] if the variable x; (;
respectively) appears in the clause C;. Finally no voter
in the district Y;,j € [m] leave their current district.
This finishes the description of 7 and the description of
the instance of FAIR DISTRICTING. We claim that the
two instances are equivalent.



In one direction, let us assume that the SAT instance
is a YES instance. Let g : X — {0, 1} be a satisfy-
ing assignment for the SAT instance. Let us consider
the following movement of the voters — for ¢ € [n], if
g(x;) = 1, then one voter in the district Z; which votes
for the alternative ¢ moves to the district X;; otherwise
one voter in the district Z; which votes for the alter-
native ¢ moves to the district X;. For j € [m], let the
clause C; be £1 V €3 V {3 and g sets the literal £; to be
1 (we can assume this without loss of generality). Then
one voter from the district f(¢;) who votes for b moves
to the district ;. Since the assignment g satisfies all the
clauses, the margin of victory in the district ); is 2 for
every j € [m]. Fori € [n], if g(z;) = 0 (g(z;) = 1 re-
spectively), then the margin of victory in the district X;
(& respectively) is 2 since it receives a voter voting for
the alternative c. The rest of the districts (for ¢ € [n], &;
if g(z;) = 0 and A& if g(xz;) = 1) remain same and
their margin of victory remains to be 2. Hence the FAIR
PARTITIONING instance is also a YES instance.

In the other direction, let us assume that the FAIR
PARTITIONING instance is a YES instance. We define
an assignment g : X — {0, 1} to the variables in the
SAT instance as follows. For ¢ € [n], if a voter in the
district Z; who votes for ¢ moves to X;, then we define
g(x;) = 1; otherwise we define g(z;) = 0. We claim
that g is a satisfying assignment for the SAT instance.
Suppose not, then there exists a clause Cj = £1V {aV {3
for some j € [m] which g does not satisfy. To make the
margin of victory of the district ); at most 2, one voter
who votes for b must move into ); either from the dis-
trict f(¢1) or from the district f(¢s) or from the district
f(¢3). However, since g does not set any of ¢1, {s, or {3
to 1, none of these districts receive any voter who votes
for the alternative c. Consequently, none of the district
can send a voter who votes for the alternative b to the
district ); since otherwise the margin of victory of dis-
trict which sends a voter who votes for the alternative b
becomes at least 3 contradicting our assumption that the
FAIR PARTITIONING instance is a YES instance. Hence
the SAT instance is a YES instance. 0

Due to Observation 1, it follows immediately from
Theorem 1 that the FAIR CONNECTED DISTRICTING
problem for plurality voting rule is also NP-complete.
We next show that FAIR CONNECTED DISTRICTING
is NP-complete even if we simultaneously have 2 al-
ternatives and 2 districts. For that, we reduce from 2-
DISJOINT CONNECTED PARTITIONING which is de-
fined as follows.

Definition 2 (2-DI1SJOINT CONNECTED PARTITION-
ING). Given a connected graph G = (V, &) and two
disjoint nonempty sets Z1, Zo C V), compute if there ex-
ists a partition (V1,Vs) of V such that Z; C Vi, Z5 C
Vs, G[V1] and G[Vs] are both connected. We denote an
arbitrary instance of 2-DISJOINT CONNECTED PARTI-

TIONING by (G, Z1, Z5).

It is already known that the 2-DISJOINT
CONNECTED PARTITIONING problem is NP-
complete (van 't Hof, Paulusma, and Woeginger
2009, Theorem 1). However the proof of Theorem 1
in (van 't Hof, Paulusma, and Woeginger 2009) can be
imitated as a reduction from the version of SAT where
every literal appears in exactly two clauses; this version
is also known to be NP-complete (Berman, Karpinski,
and Scott 2003). This proves the following.

Proposition 1. The 2-DiSJOINT CONNECTED PARTI-
TIONING problem is NP-complete even if the maximum
degree of the input graph is 5.

Theorem 2. The FAIR CONNECTED DISTRICTING
problem is NP-complete even if we have only 2 alter-
natives, 2 districts, the maximum degree of any vertex
in the underlying graph is 5, and we do not have any
constraint on the size of districts.

Proof. The FAIR CONNECTED DISTRICTING prob-
lem is clearly in NP. To prove NP-hardness, we
reduce from 2-DISJIOINT CONNECTED PARTITION-
ING to FAIR CONNECTED DISTRICTING. Let (G’ =
(U,E"), 21, Z5) be an arbitrary instance of FAIR CON-
NECTED DISTRICTING. Without loss of generality, let
us assume that the degree of every vertex in 23 is 2;
zo be any arbitrary (fixed) vertex of Z5. Let us consider
the following instance (A, V,G = (V, ),k = 2,H =
(Hi)ierz, Viiei2) T Smin = 0, Smae = 00,t = 1) of
FAIR CONNECTED DISTRICTING.

A= {z,y}
V={v,:z€ 2y}
U {0y, wy :u € V\ 23}
UD,D={d;:i€lZ|+1]}
E={{va,vp} : {a,b} € &'}
U {{vu,wy} 1 u € V[G']\ 22}
Uf{di,d;}2ij e (|22 +1],5 =i+ 1}

U{{z2,d1}}
Ho ={d; : i €[|Z2] +1]}
Hy = V\ Ho

Vote of v, u €V :x >y
Vote of wy,u € V\ Zo:y > x
Vote of d;,i € [| 22| +1] 1y >z

w(v,) = {H1},z € 2,

mw(d;) = {Hza},i € [| Z2] + 1]

m(v) = {H1, Hz} for every other vertex v

This finishes the description of the instance of FAIR
CONNECTED DISTRICTING. We now claim that the
FAIR CONNECTED DISTRICTING instance is equiva-
lent to the 2-DISJOINT CONNECTED PARTITIONING
instance.



In one direction, let us assume that the 2-DISJOINT
CONNECTED PARTITIONING instance iS a YES in-
stance. Let ()1, Vs) be a partition of ¢/ such that Z; C
Vi, 25 C Vo, G'[V1] and G'[Vs] are both connected. We
consider the following new partition of the voters.

Voters of Hy : {vy, w, : u € V1 }; voters of Hs : others

Since G'[V1] is connected, it follows that G[H;] is
also connected. Similarly, since G'[V,] is connected,
G[D] is connected, and {z2,d; } € £[G], it follows that
G[Ho] is also connected. In H1, both the alternatives x
and y receive the same number of votes and thus the
margin of victory of H; is 1. In Ha, the alternatives
x receives 1 less vote than the alternatives y and thus
the margin of victory of Hs is 1. Thus the FAIR CON-
NECTED DISTRICTING instance is also a YES instance.

In the other direction, let us assume that there exists
a valid partition (H},H5) of the voters such that both
G[H] and G[H}] are connected and the margin of vic-
tory of both 7} and H/ are 1. Let us define V; = {u €
VIG'] : v, € Hi} and Vo = V[G'] \ V1. It follows
from the function 7 that we have 2, C V], 2 C V).
Also G'[V]] is connected since the voters in ] are con-
nected. We also have G'[V3] is connected since the vot-
ers in H/ are connected, the vertices in D forms a path,
and there exists a pendant vertex in D. We also have
Zy € V4 since the voters in {v, :€ Z5} belongs to
Ho; otherwise the margin of victory of Hs would be
strictly more than 1. Hence (1, V) is a solution of the
2-DISJOINT CONNECTED PARTITIONING instance and
thus the instance is a YES instance. O

Results: Polynomial Time Algorithms

We now present out polynomial time algorithms. We
first show that FAIR PARTITIONING is polynomial time
solvable.

Theorem 3. The FAIR PARTITIONING problem is poly-
nomial time solvable if the number of alternatives is a
constant.

Proof. An arbitrary instance of FAIR PARTITIONING
be (A7 Va kv H = (H2)7€[k] 9 (Vz)qg[k] s Smins Smax, t)
For an alternative a € A, let n, be the num-
ber of vote that a receives. We present a dynamic
programming based algorithm for the FAIR PARTI-
TIONING problem. The dynamic programming table
T ((ia € {0,1,...,na}) gea - £ € [K]) is defined as fol-
lows — T ((ia) ye 4 - £) is the minimum integer A such
that the voting profile consisting ¢, number of voters
voting for the alternative a can be partitioned into ¢ dis-
tricts such that the margin of victory of any district is at
most \. For every i, € {0,1,...,n,},a € A, we ini-
tialize 7 ((iq) 4e 4 - 1) to be the margin of victory of the
voting profile which consists of ¢, number of voters vot-
ing for the alternative a for a € A. We update the entries

in the table 7T as follows for every £ € {2,3,..., k}.
T ((Z.a')ae.A ’ 6)

—_ : mv ((i;)aGA) ’
= min max
(i)acA,i, >0 Ya€A T ((ia —if) gen £ —1)

-
Smin gEaGA Ta <Smaz

In the above expression mv ((i},),c 4) denotes the

plurality margin of victory of the profile which con-
sists of 4/, number of voters voting for the alter-
native a for a € A. Updating each entry of the
table takes O (I],c4ma) poly(m,n) time. The ta-
ble has k]],. 4 na entries. Hence the running time
of our algorithm is O ([],cn2)poly(m,n) =
O (n*™poly(m, n)) which is n®) when we have m =
o). O

We next present a polynomial time algorithm for
FAIR DISTRICTING if we have a constant number of
districts.

Theorem 4. The FAIR DISTRICTING problem is poly-
nomial time solvable if the number of districts is a con-
stant.

Proof. An arbitrary instance of FAIR DISTRICTING be
(-Av Va k, H = (Hz)le[k] ) (Vz)ye[k] » Ty Smin, Smax t)
We guess a winner and a runner up of every district —

there are (g’)k = O(m?*) possibilities. We also guess
the plurality score of a winner of every district — there
are O(n*) possibilities. Given a guess of a winner, its
plurality score, and a runner up alternative of every dis-
trict, we reduce the problem of computing if there exists
a partition of V (respecting the given guesses) which
achieves the maximum margin of victory of at most ¢ to
a s’ tot’ flow problem (with demand on edges) instance
(G=WUE),c:E— R d:E — RY) as follows.

U=U, UUy UUr U{s',t'} where
U, = {u, :v eV}
Uy = {uaﬂ' ra € Aji e [k}}
Ur = {u; :i € [k]}
E={(s,uy) : v eV}
U {(ty,uq;) 1 v €V, i€ K],
v'svoteisa > --- ,H; € m(v)}
U {(ua,i,wi):a € Ai € [k]}
O {(usrt') i € (K]}

The capacity c of every edge from s’ to Uy, and from
Uy, to Uy is 1. For every ¢ € [k], if « and y are re-
spectively the (guessed) winner and runner up of H;
and n; is the (guessed) plurality score of a winner in
‘H., then we define the capacity and demand of the edge
(ug,i,u;) to be n; and the capacity and demand of the

}



edge (uy;,u;) to be (n; — t); if (n; — t) is not positive,
then we discard the current guess. We define the capac-
ity of the edge (u. ;, u;) to be n; for every alternative z
who is not the guessed winner in #; for ¢ € [k]. Finally
we define the capacity and demand of every edge from
Ugr to ' to be Syaz and sy, respectively. We claim
that the given FAIR DISTRICTING instance is a YES in-
stance if and only if there exists a guess of a winner, its
plurality score, and a runner up alternative of every dis-
trict whose corresponding flow instance has an s’ to ¢/
flow of value n.

In one direction, suppose the FAIR DISTRICTING in-
stance is a YES instance. Let x; and y; be a winner and
a runner up respectively in H; and n; be the plurality
score of a winner in H; for i € [k]. For the guess cor-
responding to the solution of FAIR DISTRICTING, we
send 1 unit of flow from s’ to u,,, v € V, from u, to uq ;
if the voter v belongs to H; in the solution and v votes
for a. Since every vertex in U/); has exactly one outgo-
ing neighbor, all the incoming flow at every vertex in
Uys move to their corresponding neighbor in Ug. Simi-
larly, the outgoing neighbor of every vertex in Ug, is t/,
all the incoming flow at every vertex in Uz move to ¢'.
Obviously the flow conservation property is satisfied at
every vertex. Also capacity and demand constraints are
also satisfied at every edge since the guess corresponds
to a solution of the FAIR DISTRICTING instance. Fi-
nally since the total outgoing flow at s’ is n, the total
flow value is also n.

In the other direction, assuming x; and y; being a
guessed winner and a runner up respectively in H; and
n; being the plurality score of a winner in H,; fori € [k],
the corresponding flow network has a flow value of n,
we claim that the FAIR DISTRICTING instance is a YES
instance. We can assume without loss of generality that
the flow value on every edge in a maximum flow is an
integer since the demand and capacity of every edge are
integers. We define a voter v € V to be in the district
Hi,i € [k] if there exists an alternative a such that
there is one unit of flow in the edge (uy, 4 ;). It follows
from the construction of the maximum flow instance
that the above partitioning the voters into the districts
‘H; is valid (that is, it respects 7, Syin, and Syq,) and
the maximum margin of victory of any district is at most
t. Hence the FAIR DISTRICTING instance is also a YES
instance. O

Experimental Evaluation
Greedy Algorithms

Given the high complexities of FAIR PARTITION-
ING, FAIR DISTRICTING, and FAIR CONNECTED DIs-
TRICTING problems, we propose a set of fast greedy
heuristics to minimize the margin of victory by mov-
ing voters between districts, while respecting the con-
straints on mobility of the users, and connectedness. We

describe the algorithms below, given an initial partition
as input.

> GREEDY PARTITIONING minimizes the maximum
margin of victory of all districts by greedily moving
voters between districts (starting from voters in the
district having highest margin of victory in the initial
partition), allowing voters to move to any district.

> GREEDY DISTRICTING minimizes the maximum
margin of victory of all districts by greedily moving
voters between districts, where every voter has a con-
straint on where they can move.

> GREEDY CONNECTED DISTRICTING minimizes the
maximum margin of victory of all districts by greed-
ily moving voters between districts such that no dis-
trict becomes a disconnected subgraph.

Data

We collected three main datasets, two real datasets
and one synthetic dataset using graph models. The real
datasets consist of the general parliament elections in
the U.K. from 2017 and demographic information of
students in public schools of Detroit, MI. We evaluate
all three greedy algorithms on the synthetic dataset, but
only evaluate GREEDY PARTITIONING and GREEDY
DISTRICTING on the real dataset as we lack the (social)
network information in them.

UK General Elections: We collected data regarding
UK Parliament elections in 2017 from The Electoral
Commission (electoralcommission.org.uk),
using constituencies as districts and parties as
alternatives. Though the votes are cast for individu-
als, yet in the Parliament number of seats for each party
is the number that counts, we are interested in the ef-
fect of districting on the distribution of votes over par-
ties rather than over individuals. Knowing the number
of votes each party got in each constituency, we simu-
lated the preferences of the voters.

We tested our algorithm on 10 neighboring con-
stituencies out of the 650 in the region of Scotland bor-
dering Edinburgh, which represents a very diverse area
in terms of voting preferences. Indeed, these neighbor-
ing constituencies voted very differently, each having
a clear majority. For example, the distribution of votes
in East Lothian was 36.3% Labour, 29.8% Conserva-
tive, 30.7 Scottish National Party (SNP), and 3.1% Lib-
eral Democrats, while in Edinburgh East it was 34.6%
Labour, 18.5% Conservative, 42.5% SNP, and 4.2%
Liberal DemocratsE] We subsampled this dataset, work-
ing with a randomized sample of approximately 50, 000

'The 10 constituencies we sampled are: Dumfriesshire,
Clydesdale and Tweeddale, Berwickshire, Roxburgh and
Selkirk, East Lothian, Midlothian, Edinburgh South, Edin-
burgh East, Edinburgh North and Leith, Edinburgh South
West, Edinburgh West, and Livingston, for which an in-
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before and after applying GREEDY DISTRICTING.

people and we recorded the location of each constituen-
cies (represented by its center), enforcing in GREEDY
DISTRICTING that voters can be incentivized to move
or to vote only in their closest two constituencies.

Figure [T(a) shows that both GREEDY DISTRICTING
and GREEDY PARTITIONING are able to reduce the
maximum margin of victory of this dataset by approxi-
mately 91—92% percent, from 776 to 67 and 55, respec-
tively. Figure[Ifc) shows the effect greedy had on min-
imizing the overall margin of victory, showing an even
larger decrease by almost 95%, from 2652 to 148 and
135, respectively. Since GREEDY DISTRICTING repre-
sents the more realistic application, we show in Figure 2]
its effect on the voters’ distribution in East Lothian and
Edinburgh East, showing that it created a stronger oppo-
sition for the leading parties (for Labour in East Lothian
and for SNP in Edinburgh East).

US Public School Districting: Neighborhood racial
segregation is still widespread in many places in US,
trickling down to segregation in schools
2019; [Richards 2014). One of the main consequences

of that is white-majority schools receiving substantially
more funding than schools with mostly students of

color (EdBuild 2019). In this paper, we attempt to show

teractive map with the vote distribution can be found at
https://www.bbc.com/news/election-2017-40176349.

that our algorithms can be used to increase racial diver-
sity (and lower segregation) in schools, if accompanied
by government policies that facilitate movement of stu-
dents between schools (Montgomery III 1970).

We collected school data from the National Center
for Education Statistics (NCES: nces.ed.gov/ccd)
about public schools in Detroit, MI, which is still
one of the cities with highest rates of segregation and
most economic and social struggles encountered by mi-
norities (Institute 2018; |[Kent and Thomas C. Frohlich|

2015). We gathered data from 61 schools in Detroit,

each containing between 40 and 5000 students, sum-
ming up to 41, 834 students and their reported race. We
modeled this data in the form of an election, where the
voters are the students and the alternatives are their
reported race (NCES data has 7 reported races: Asian,
Native American, Hispanic, Black, White, Hawaiian,
and Mixed-race). Given each student’s race, we mod-
eled this ‘election’ as a plurality voting scenario, where
each student only ‘votes’ for their reported race. Fur-
thermore, we recorded the location of each school, en-
forcing in GREEDY DISTRICTING that students can
only go to their closest 5 schools.

Figure [T(a) shows that both GREEDY DISTRICTING
and GREEDY PARTITIONING decrease the total margin
of victory by 11—12% on average, from 2, 501 to 2,213
and 2, 311, respectively. Again, Figure [T{c) shows the
overall decrease in margin of victory by the greedy
algorithms, showing a larger decrease of 18 — 24%,
from 18,870 to 15,360 and 14, 376, respectively. As
GREEDY DISTRICTING represents the more realistic
scenario, we present in Figure [3]its effect on the racial
distribution of students in a selection of three schools.
we observe that schools containing students from one
predominant racial group become more equilibrated:
Dove Academy goes from having 98% Black students
and 2% White to having 80% Black, 14.5% White,
and 5.5% Hispanic students, Universal Academy goes
from having 95% White students, 3.5% Hispanic, and
2.5% Black to having 50.15% White and 49.7% His-
panic, while Cesar Chavez Academy goes from having
88% Hispanic students, 8% Black, and 3% White to
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Figure 3: Racial distribution of students in selected schools before and after applying GREEDY DISTRICTING.

having 48% Hispanic, 48% Black, and 3% White stu-
dents. Given the discrepancy between White-majority
schools with other schools, we hope that such demo-
graphic changes can help in equalizing funding for all
students.

Of course, since minimizing margin of victory only
considers the most predominant two races, we may need
to enforce an additional diversity constraint to preserve
a minimum fraction of students from other races in
a school (e.g., the 2.5% Black students in Universal
Academy may need to stay). We leave exploring this
direction for future work.

Graph Simulations: To further understand the re-
lationship between margin of victory and population
structure, we simulated a set of graphs based on the
Erdos-Renyi (ER) graph model, varying the level of
connectivity between people with similar political lean-
ings. Unable to vary such a parameter in the real data,
we turn to classical graph models to do so. Following
the methodology in (Cohen-Zemach, Lewenberg, and
Rosenschein 2018)), we used the line model to simu-
late voters, alternatives, and voters’ political affil-
iation. We then created 50 instances of the ER graph
model, where each node represents a voter and the
edges are formed according to the model with an added
homophily factor based on the distance between nodes
(as simulated by the line model). For every node, we
generated the list of preferences over the candidates ac-
cording to the distance between the voter and the can-
didates. The inputs to each such graph are the number
of voters N (100), the number of candidates C (5), the
number of districts K (5), and a homophily parameter.
Such models capture the network and clustering ef-
fects exhibited by voter districts in real world (Keegan
2016; I Adamic and Glance 2005; |Conover et al. 2011).
We then test all three greedy algorithms in minimizing
the maximum margin of victory by re-districting the
population in these graphs. We further add a baseline
algorithm that computes the optimal partition of vot-

ers into districts given a network, the districts’ size con-
straints, and mobility of voters. While GREEDY PAR-
TITIONING and GREEDY DISTRICTING come as natu-
ral formulations, we argue the need for GREEDY CON-
NECTED DISTRICTING as well, since re-districting can-
not be done arbitrarily and will be more effective if the
population remain connected. Thus, in our simulations,
the graph models aim to mimic the natural connections
individuals make.

We simulated the greedy algorithm for each graph in-
stance, averaging over 10 iterations the minimal maxi-
mum margin of victory that it can reach and compared
that to the baseline value. Figure[I{b) shows the effect of
these algorithms in improving the maximum margin of
victory aggregated for all graph instances, varying the
homophily factor and allowing districts to change up to
20% in size. We observe that no matter how homophilic
the initial graph is, greedy is able to successfully reduce
the margin of victory for all three algorithms: GREEDY
PARTITIONING performs the best as it contains no con-
straints on mobility of voters, being evaluated close to
the baseline value and reducing maximum margin of
victory from 10 to 6 — 7 on average, GREEDY DIS-
TRICTING performs second-best, reducing it from 10 to
8 on average, while GREEDY CONNECTED DISTRICT-
ING reduces it from 10 to 9 on average, performing
worse than the other two due to a tighter connectiv-
ity constraint. Figure[T(d) shows the overall decrease in
margin of victory, where the effect is more significant:
GREEDY PARTITIONING and GREEDY DISTRICTING
achieve a result close to the baseline, while GREEDY
CONNECTED DISTRICTING performs slightly worse,
reducing the total margin of victory of 46% on aver-
age. The results are qualitatively similar for varying the
district size constraints, which we omit due to lack of
space.

Conclusion and Future Directions

In this paper, we tackled the problem of fairly dividing
people into groups by conceptualizing the problem in a



voting scenario. By modeling the preferences of people
over different candidates, we set the goal to minimize
the maximum margin of victory in any group. In doing
0, we provide a rigorous framework to reason about the
complexity of the problem, showing that dividing peo-
ple with constraints on their neighborhood or their con-
nections is NP-complete in the most general case, and
admit polynomial time algorithms for particular cases.

Furthermore, we develop and evaluate fast greedy
heuristics to minimize the maximum margin of victory
in practical scenarios. Indeed, our results show signifi-
cant improvement of the margin of victory in the case
of elections and school choice, as well as in synthetic
experiments. In the case of elections, minimizing mar-
gin of victory leads to better representation of oppos-
ing parties in electoral districts, where we notice that
the opposing parties in the UK can gain more power
through re-districting. In the case of school choice, we
model students demographic information as an election,
where each student ’votes’ (or prefers) their own demo-
graphic attribute, and show that our greedy algorithms
are able to provide more diversity in highly segregated
schools. While government policies are ultimately cru-
cial in reducing segregation, we hope that this quantita-
tive analysis can motivate them and show their potential
efficacy.

Multiple directions remain open for future work. We
plan to (i) include an analysis of the social connec-
tions in real datasets that may further constrain people’s
mobility, and (ii) extend synthetic experiments to other
graph models as well. Finally, it would be interesting
to (iii) measure the effect of minimizing the margin of
victory on different gerrymandering metrics, and (iv)
investigate whether lowering racial segregation would
lead more equitable distribution of revenues to public
schools.
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