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Abstract: We develop a new heat kernel method that is suited for a systematic study

of the renormalization group flow in Hořava gravity (and in Lifshitz field theories in

general). This method maintains covariance at all stages of the calculation, which is

achieved by introducing a generalized Fourier transform covariant with respect to the

nonrelativistic background spacetime. As a first test, we apply this method to compute

the anisotropic Weyl anomaly for a (2 + 1)-dimensional scalar field theory around a

z = 2 Lifshitz point and corroborate the previously found result. We then proceed to

general scalar operators and evaluate their one-loop effective action. The covariant heat

kernel method that we develop also directly applies to operators with spin structures

in arbitrary dimensions.
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1. Introduction

Hořava gravity has attracted much attention over the years since its original proposal

in 2009 [1]. Allowing that Lorentz invariance be absent at high energies, higher spa-

tial derivative terms are introduced in Hořava gravity in such a way that the theory

exhibits an anisotropic scaling of space and time. This construction results in a class

of unitary and power-counting renormalizable quantum theories of gravity, which are

fundamentally nonrelativistic. It is then hoped that the theory is driven to a relativis-

tic fixed point at low energies by classical renormalization group (RG) flow. Moreover,

due to the existence of a preferred time direction in Hořava gravity, it admits a rigid

notion of causality and its Hamiltonian and diffeomorphism constraints form a closed

algebra, at least for some versions of the theory. 1 This is in contrast to the situation

in General Relativity, where these constraints fail to form a Lie algebra, leading to

intrinsic conceptual and technical difficulties in defining a relativistic quantum gravity

nonperturbatively.

Despite the desirable features of Hořava gravity, it nevertheless still faces the chal-

lenge of explaining the vast catalogue of experimental data that highly constrains

Lorentz violation [4]. For example, it would require a great deal of fine-tuning to

match the speeds of light for different species of low energy probes [5]. Different mech-

anisms for the emergence of low-energy Lorentz invariance have been discussed in the

literature (see, e.g., [6] and references therein). One mechanism is to impose super-

symmetry at high energies [7]. Another promising mechanism relies on the existence

of a strongly-coupled fixed point, in which case it is possible for the strong dynamics

to drive the theory sufficiently quickly towards the Lorentzian fixed point [8, 9].

Regardless of whether or not Hořava gravity is phenomenologically viable for de-

scribing our universe in 3+1 dimensions, it still has a plethora of important applications

in the context of the AdS/CFT correspondence for nonrelativistic systems [10–14], the

Causal Dynamical Triangulation approach to quantum gravity [15, 16], the formulation

of membranes at quantum criticality [2], the geometric theory of Ricci flow on Rieman-

nian manifolds [17], and so on. For both phenomenological and formal interests, it is

important to understand the quantum structure of Hořava gravity.

In recent years, there has been some intriguing progress made in mapping out the

RG flow of the so-called “projectable” Hořava gravity, in which the lapse function is

independent of space [18–22]. First, the perturbative renormalizability of projectable

Hořava gravity has been proven in [18]. Then, it was shown in [19] that there is an

1This has been demonstrated for the projectable case [2], where an extra degree of freedom is

present in addition to the ones in General Relativity. For the nonprojectable case, the situation is

more intricate (see, e.g., [3]).
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asymptotically free ultraviolet (UV) fixed point in 2 + 1 dimensions.2 In addition, the

anomalous dimension of the cosmological constant in the same theory was evaluated in

[20]. Finally, partial results of the RG flow in 3+1 dimensions were later obtained in [21].

Nevertheless, knowledge of the RG flow in Hořava gravity without the projectability

condition remains rather limited. To reveal this more general quantum structure, which

is essential for many phenomenological and formal applications of Hořava gravity, it is

urgent to look for more efficient methods.

One powerful technique for evaluating the one-loop effective action for quantum

field theories (QFTs) on a curved background spacetime is the heat kernel method.

Different heat kernel methods have been applied in the past to evaluate quantum cor-

rections in QFTs around a Lifshitz fixed point [11, 23–26]. These heat kernel meth-

ods rely heavily on the Zassenhaus formula, which is the inverse companion of the

Baker-Campbell-Hausdorff formula, and in general involves a rather tedious procedure

of evaluating nested commutators of covariant time and space derivatives. In some

special cases, various simplifications are available. However, when the projectability

condition is lacking, the calculation of the full effective action can be inefficient and

even computationally impractical.3

We therefore devote this paper to the formulation of a new heat kernel method,

which we find better suited to non-projectable cases. We aim to use this new method

to systematically study the RG flow in Hořava gravity. In general, this method can be

applied to evaluate the one-loop effective action in Lifshitz QFTs on a nonrelativistic

background geometry.

The method we develop in this paper generalizes the algorithm for relativistic the-

ories introduced by Gusynin in [27, 28] (also see [29–33]) to nonrelativistic models. In

Gusynin’s approach, general covariance is maintained at all stages of the calculation

by introducing a generalized Fourier transform that is covariant with respect to the

background geometry. This type of covariant Fourier transforms has been studied ex-

tensively by mathematicians in the symbolic calculus for pseudodifferential operators

2Unlike General Relativity, which is topological in 2 + 1 dimensions, Hořava gravity in 2 + 1

dimensions has one propagating degree of freedom.
3For example, [25] utilizes a clever inverse Laplace transform method to express heat kernel co-

efficients of anisotropic operators, whose spatial derivative term is just a power of the isotropic one,

in terms of the heat kernel coefficients of the isotropic operator. However, as a consequence, in this

method, one has to perform the Zassenhaus expansion twice: once before the inverse Laplace trans-

form and again afterwards, essentially to undo the expansion in the first place. Except in the case

when temporal and spatial covariant derivatives can be chosen to commute, for example if one is

interested only in spatial curvature terms in the effective action, this method is technically challenging

to implement. Furthermore, it does not apply to anisotropic operators which are not simply powers

of isotropic ones, such as the case we study in §4.
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[34, 35], which replaces the phase factor in the usual Fourier transform with a phase

function that resembles the world function in the Schwinger-DeWitt technique (see

§2.3). The world function is introduced in the original Schwinger-DeWitt technique

to construct an ansatz for the asymptotic expansion of the heat kernel. However, this

ansatz is rather special to the minimal second-order differential operator, which com-

plicates its application to more general operators. Nevertheless, Gusynin’s approach

avoids this intrinsic drawback and has the advantage of being algorithmic for com-

puter programs. In this paper we show that there exists a natural generalization of

the covariant Fourier transform used in [27] to background geometries equipped with a

foliation structure. Using this, we develop a general algorithm for calculating one-loop

quantum corrections in Lifshitz theories.

This paper is organized as follows. In §2, we give a detailed review of the heat

kernel method of Gusynin [27, 28], which is designed for relativistic QFTs. In §3, we

generalize Gusynin’s method to Lifshitz field theories. In §4, we apply the new heat

kernel method developed in §3 to calculate the one-loop effective action for the most

general z = 2 Lifshitz scalars on a curved background geometry in 2 + 1 dimensions,

as a first step towards the evaluation of RG flows in nonprojectable Hořava gravity

in 2 + 1 dimensions. The full result of this calculation is recorded in Appendix B.

We conclude our paper in §5. In Appendix A, we show a procedural example that

details the evaluation of heat kernel coefficients. In Appendix C, we clarify some of the

different sign conventions used in the literature to clear up any potential confusion.

2. Covariant Heat Kernel Method on Riemannian Manifolds

We start with a review of Gusynin’s covariant heat kernel method for quantum field

theories on a Riemannian manifold, following closely [27, 28].

2.1. Effective Action and the Heat Kernel Representation

Consider a QFT on a d-dimensional Riemannian manifold M equipped with a metric

gµν for a field configuration ΦA(x), where xµ, µ = 0, · · · , d − 1 denotes a set of coor-

dinates on M.4 We take the time to be imaginary. The field ΦA can have a general

tensor structure and A denotes collectively its indices. Splitting ΦA into its background

value ΦA
0 and the fluctuation ξA around this background value, we have the following

expansion:

ΦA = ΦA
0 +
√
~ ξA +O(~) . (2.1)

4More precisely, coordinates on a patch of M as part of an atlas on M.
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We assume that the QFT is described by an action principle S[Φ], which expands as

S[Φ] = S[Φ0] +
√
~
∫
ddx
√
g S

(1)
A (x) ξA(x)

+ 1
2
~
∫
ddx
√
g ξA(x)OAB ξB(x) +O(~3/2) , (2.2)

where g = det gµν and

√
g S

(1)
A (x) =

δS[Φ]

δΦA(x)
,

√
gOAB δ(d)(x− x′) =

δ2S[Φ]

δΦA(x) δΦB(x′)
. (2.3)

To be specific, we assume that ΦA is bosonic. However, the derivation works similarly

for fermionic fields. For concreteness, we set OAB to be

OAB =
∆∑
k=1

αµ1···µk
AB (x)∇µ1 · · · ∇µk + αAB(x) , (2.4)

where ∆ is a positive even integer and is the order of the differential operator and ∇µ
is the covariant derivative compatible with the metric gµν (i.e., ∇µ gνρ = 0).

The associated (Euclidean) path integral with a source JA(x) is

Z =

∫
dξ exp

{
−~−1

[
S[Φ]−

∫
ddx
√
g JA(x) ξA(x)

]}
. (2.5)

Choosing the background value ΦA
0 such that S

(1)
A = JA , we obtain that, in the semi-

classical limit ~→ 0 , the path integral is approximated by

Z ∝ e−~
−1S[Φ0]

(
detOAB

)−1/2
. (2.6)

We will drop the internal indices A and B in OAB in the following. We therefore read

off the quantum effective action,

Γ[Φ] = S[Φ] + ~Γ1 +O
(
~2
)
. (2.7)

We take the standard heat kernel representation [36] of the effective action

Γ1 =
1

2
tr log

(
O/µ2

)
= −1

2

d

ds

∣∣∣
s=0

µ2s

Γ(s)

∫
ddx
√
g

∫ ∞
0

dτ τ s−1KO(x, x | τ) . (2.8)
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Note that (2.8) is defined after analytically continuing the domain of s to include s = 0 .

We have introduced the heat kernel for the operator O in (2.8),

KO(x, x0 | τ) = 〈x|e−τ O|x0〉 , (2.9)

which satisfies the heat kernel equation
(
∂τ +O

)
KO = 0 .

Note that the symbol KO without arguments and the name “heat kernel” will

be used interchangeably to refer to the operator e−τ O in general or to the specific

coordinate space representation of this operator, KO(x, x0 | τ) .

2.2. The Heat Kernel Coefficients

The coefficients in the asymptotic expansion of the heat kernel KO in the high energy

regime τ → 0+ encodes important physical data such as the renormalization group

flow in the associated QFT. There exist different methods in the literature for ex-

tracting these heat kernel coefficients. 5 One most widely used method was developed

by Schwinger and DeWitt, where an ansatz called the Schwinger-DeWitt expansion is

taken for the heat kernel [38, 39]. The DeWitt expansion ensures the covariance of

the calculation of the heat kernel coefficients. The original method of Schwinger and

DeWitt is valid for second-order minimal operators, i.e. O = −∇µ∇µ + V (x) . This

method was then generalized to higher-order nonminimal operators, for example in [40].

However, this generalization was achieved at the cost of involving nonlocal operators

in the intermediate steps of the calculations.6

On the other hand, the Seeley-Gilkey method [43, 44] for calculating the heat kernel

coefficients uses techniques developed in the theory of pseudodifferential operators,

which avoids introducing nonlocal operators. A pseudodifferential operator O is defined

by its symbol σO(x , k) via

〈x|O|x0〉 =

∫
ddk

(2π)d
√
g(x0)

eik·(x−x0) σO(x , k) . (2.10)

5The asymptotic expansions of the heat kernel were first introduced by DeWitt, which resembles

Hadamard’s expansion for the retarded Green’s function. It was also noted in [37] that the Hadamard-

DeWitt expansion is closely related to an expansion given by Minakshisundaram in the study of elliptic

operators. Therefore, Gibbons proposed the name Hamidew (Hadamard-Minakshisundaram-DeWitt)

for the heat kernel coefficients. The same type of heat kernel expansion was also developed by Seeley

and Gilkey in the study of pseudodifferential operators, which we will primarily follow in this paper.

To avoid possible confusion regarding the terminology, we will stick to the neutral term “heat kernel

coefficient” in this paper.
6While the Schwinger-DeWitt method keeps covariance at all stages and invokes recursive methods

for solving the heat kernel coefficients, sometimes it is also useful to evaluate the heat kernel in a

non-covariant but more direct way, without relying on the recursive methods. This is usually done

by using the ordinary plane waves as in Fujikawa’s method of calculating the chiral anomaly. See, for

example, [41, 42].

– 6 –



We defined k · x = kµx
µ . The heat kernel (2.9) is likewise defined by its symbol σKO .

We write the heat kernel in terms of its resolvent as

e−τ O = i

∫
C

dλ

2π
e−τ λ

(
O − λ

)−1
, (2.11)

where C is a contour that bounds the spectrum of the operator O in the complex

plane and is traversed in the counter-clockwise direction. Then, the symbol σKO can

be exchanged with the symbol σ(O−λ)−1 of the resolvent (O − λ)−1:

KO(x , x0 | τ) = i

∫
C

dλ

2π
e−τλG(x , x0 |λ) , (2.12)

where

G(x , x0 |λ) ≡
〈
x
∣∣(O − λ)−1∣∣x0

〉
=

∫
ddk

(2π)d
√
g(x0)

eik·(x−x0) σ(x , k |λ) . (2.13)

Here, we have written σ(O−λ)−1(x, k) as σ(x, k |λ) for ease of notation because this is

the only symbol that we will actually care about. Further note that[
O(x ,∇)− λ

]
G(x, x0 |λ) =

1√
g(x0)

δ(d)(x− x0) . (2.14)

Using (2.13) and (2.14), we find

e−ik·(x−x0) [O(x ,∇)− λ] eik·(x−x0) σ(x , k |λ) = 1 . (2.15)

It is well known that the part of the heat kernel diagonal in x has the following

asymptotic expansion around τ → 0+ [43, 44]:

KO(x0 , x0 | τ) =
∞∑
m=0

E(m)(x0) τ
m−d

∆ . (2.16)

The coefficients E(n)(x0) are the heat kernel coefficients. Recall that ∆ denotes the

order of the operator O and is taken to be a positive even integer. To compute the

heat kernel coefficients, we expand the symbol σ(x0 , k |λ) as

σ =
∞∑
m=0

σ(m), (2.17)

where σ(m) is a homogeneous function of λ and kµ , i.e.,

σ(m)(x0 , b k | b∆λ) = b−m−∆ σ(m)(x0 , k |λ) . (2.18)
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Plugging (2.17) into (2.15) and then taking the rescalings λ→ b∆ λ and kµ → b kµ , the

coefficients σ(m) can be determined recursively by matching terms of different orders in

b in the resulting equation.

Finally, we take the coincidence limit x0 → x in (2.12), followed by the rescalings

λ→ τ−1λ , kµ → τ−
1
∆kµ . (2.19)

Then, plugging in the expansions (2.16) and (2.17) into (2.12) and matching the powers

in τ on both sides of the resulting equation, the heat kernel coefficients are computed

to be

E(m)(x0) =

∫
ddk

(2π)d
√
g(x0)

∫
C

i dλ

2π
e−λ σ(m)(x0 , k |λ) . (2.20)

When m is odd, σ(m) is odd in kµ , and the corresponding E(m) vanishes. Therefore,

E(m) is only nonzero when m is even, and

KO(x0 , x0 | τ) =
∞∑
r=0

E(2r)(x0) τ
2r−d

∆ . (2.21)

Note that the phase factor k · (x − x0) in (2.13) is not invariant with respect to

general coordinate transformations. Therefore, while the heat kernel coefficients are

covariant with respect to general coordinate transformations in x, the definition of the

symbol σ in (2.13) is not. We will now describe Widom’s solution [34, 35], which leads

to a covariant definition of the symbol σ, and its application by Gusynin in [27] to the

computation of heat kernel coefficients.

2.3. Covariant Fourier Transform

As pointed out by Gusynin in [27], there is a covariant generalization of the Seeley-

Gilkey method by applying the covariant Fourier transform as in [34, 35]. The idea is

to generalize the phase factor k · (x− x0) to a real-valued phase function

` :M× T ∗(M)→ R , (2.22)

such that `(x ;x0 , k) is linear in k ≡ kµ dx
µ ∈ T ∗x0

(M) for any fixed x0 , x ∈ M . In

contrast, there is no canonical meaning to linearity in the variable x ∈ M . Widom

proposed in [34, 35] the following definition for linearity of ` in xµ in the vicinity of the

point x0 : for each k ∈ T ∗x0
(M) , the symmetrized n-th covariant derivative vanishes at

x0 for n 6= 1 , namely,

∇µ`(x ;x0 , k)
∣∣
x=x0

= kµ , (2.23a)
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∇(µ1 · · · ∇µn)`(x ;x0 , k)
∣∣
x=x0

= 0 , n = 0 , 2 , 3 , · · · . (2.23b)

It is understood that ∇µ acts on x . Here, ∇(µ1 · · · ∇µn) has all the indices symmetrized.

For example, T(µν) = 1
2

(
Tµν +Tνµ

)
for any tensor Tµν . Using (2.23), higher derivatives

of the phase function `(x;x0, k) with respect to x can be expressed in terms of fewer

derivatives at x = x0 and thus all covariant derivatives of ` are also determined in the

coincidence limit x→ x0 . Such an ` ∈ C∞(M) always exists in a neighborhood of x0

due to Borel’s theorem [35].

The above definition of the phase function is designed such that a covariant gen-

eralization of the Taylor series can be constructed. Since `(x ;x0 , k) is linear in k for

fixed x0 and x , we have

`(x ;x0 , k) = kµ `
µ(x , x0) , (2.24)

where `µ(x , x0) defines a tangent vector. It is then straightforward to show by using

(2.23) that, for a given function f(x) ∈ C∞(M) [35],

f(x) =
∞∑
n=0

1

n!
∇µ1 · · · ∇µnf(x0) `µ1(x , x0) · · · `µn(x , x0) . (2.25)

for x in a neighborhood of x0 .7 This generalizes the usual Taylor theorem, replacing

∂µ with the covariant derivative ∇µ .

With the phase function ` in hand, we are able to replace the expressions in §2.2

with their covariant counterparts, following [27]. First, a pseudodifferential operator O
is now related to its symbol σO(k , x0 ;x) via

〈x|O|x0〉 =

∫
ddk

(2π)d
√
g(x0)

ei `(k, x0;x) σO(x ;x0 , k) , (2.26)

which replaces (2.10) and defines a covariant Fourier transform. It then follows that

the matrix element of the operator O resolvent introduced in (2.13) is replaced with

G(x , x0 |λ) ≡
〈
x
∣∣(O − λ)−1∣∣x0

〉
=

∫
ddk

(2π)d
√
g(x0)

ei `(x;x0, k) σ(x ;x0 , k |λ) . (2.27)

We defined σ(x ;x0 , k |λ) ≡ σ(O−λ)−1(x ;x0 , k) . The heat kernel KO takes the same

form as in (2.12), i.e.,

KO(x , x0 | τ) = i

∫
C

dλ

2π
e−τλG(x , x0 |λ) . (2.28)

7More precisely, (2.25) holds for the analytic germ of the function f(x) . We take this for granted

throughout this paper.
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Identical to (2.14), we have[
O(x ,∇)− λ

]
G(x, x0 |λ) =

1√
g(x0)

δ(d)(x− x0) , (2.29)

but with G represented as in (2.27). For (2.29) to be satisfied, we require the following

analogue of (2.15): [
O(x ,∇+ i∇`)− λ

]
σ(x ;x0 , k |λ) = I(x , x0) , (2.30)

where the biscalar I(x , x0) satisfies∫
ddk

(2π)d
ei `(x;x0, k) I(x , x0) = δ(d)(x− x0) . (2.31)

There are a couple of things to keep in mind. Firstly, O may depend on the fields

and their derivatives. The derivatives acting on fields are not shifted by ∇ → ∇+ i∇`
as in (2.30). Only the derivatives which act on G are shifted in this way; these are

shifted for the simple reason that when a derivative acts on G, it acts on the symbol σ

as well as the phase factor ei` and pulls down a factor of i∇` from ei`.

A second point to keep in mind is that O implicitly carries the bundle space index

structure and should be written as OAB . Therefore, I also carries the index structure

IAB(x , x0) . The covariant derivative ∇µ then also picks up the bundle space indices

and reads
(
∇µ
)
A
B. For example, when Yang-Mills theory on a curved background is

under consideration, the index A contains both a spacetime index µ (the vector index

of the gauge field) and a gauge group index a . We have(
∇ρ

)
µa
νb = δνµ

[
δba∇ρ − i (tc)a

bAcρ
]
, (2.32)

where ta are generators in the gauge group and Aaµ the gauge field. From (2.31) and in

analogue of (2.23), as in [27], we require that IAB satisfy

IAB(x0 , x0) = 1AB , (2.33a)(
∇(µ1

)
A1

B1 · · ·
(
∇µn)

)
An
Bn IBnC(x , x0)

∣∣
x=x0

= 0 , n ≥ 1 . (2.33b)

Here, 1AB consists of Kronecker symbols with the bundle index A . The covariant

derivatives only act on the first bundle index in IAB . The equations in (2.33) fully

determine the coincidence limit x → x0 of any number of covariant derivatives acting

on I .

Finally, we take the expansion of σ as in (2.17),

σ(x ;x0 , k |λ) =
∞∑
m=0

σ(m)(x ;x0 , k |λ) , (2.34)

where the coincidence limit of σ(m) satisfies (2.18) and can be determined recursively.

The heat kernel coefficients are then determined as in (2.20).
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3. Covariant Heat Kernel Method on Foliated Spacetimes

We will formulate a generalization of the covariant Fourier transform as well as the

algorithm for calculating heat kernel coefficients in cases when the spacetime carries

a foliation structure. Here, we will consider a foliation structure in which the leaves

of the foliation have codimension one, but the discussion can be naturally generalized

to other cases. We start with introducing a few essential ingredients about foliated

spacetimes that will be useful for subsequent discussion.

3.1. Geometry of Foliated Spacetimes

• Metric Decomposition

Consider the geometry of a (D + 1)-dimensional spacetime manifold M . Let M
be foliated by leaves Σ of codimension one, which means that M is equipped with an

atlas of coordinate systems xµ = (t , xi) , i = 1 , · · · , D . The transition functions are

restricted to be foliation preserving, such that

t̃ = t̃(t) , x̃i = x̃i(t ,x) . (3.1)

This foliated spacetime is naturally described by a rank D degenerate symmetric tensor

hµν together with a choice of a vector nµ such that hµνn
ν = 0 . Given this data, there

exist unique objects hµν and nµ that satisfy the relations 8

nµn
µ = 1 , hµνnν = 0 , hµρhρν + nµnν = δµν . (3.2)

It is important to keep in mind that nµ is not retrieved from nµ by “lowering” with

respect to any metric. For one thing, there is no actual metric, and secondly, if we were

to “lower” the index on nµ using hµν , the result would be zero. Instead, hµν and nµ
are simply objects which are defined by the above relations. Define a two-tensor field

gµν and its inverse gµν over M as follows:

gµν = nµnν + hµν , gµν = nµnν + hµν . (3.3)

Note that gµν does not always qualify as a metric field.9

Frequently, it is convenient to refer to these objects without reference to a coordi-

nate system. For this purpose, we introduce the tensor notation

h = hµν ∂µ ⊗ ∂ν , n = nµ ∂µ , (3.4a)

8Here, we choose an “all positive” convention. However, note that another common convention is

to choose nµn
µ = −1 , in which case hµρhρν − nµnν = δµν .

9One famous example in which gµν , assembled in this way from nµ and hµν , does not form a bona

fide metric field is realized in Newton-Cartan theory [45].
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h = hµν dx
µ ⊗ dxν , n = nµ dx

µ , (3.4b)

where ∂µ ∈ Tx(M) and dxµ ∈ T ∗x (M) . Moreover, ∂µ(dxν) = dxν(∂µ) = δνµ . The

overline (underline) indicates that the object is a (n, 0)-tensor ((0, n)-tensor) living in

the tensor product of n tangent (cotangent) spaces. In this notation, the “givens” are

h and n with relation h(. , n) = 0 . The “derived quantities” are h and n , satisfying

the relations

n(n) = 1 , h(. , n) = 0 , h(. , h) + n⊗ n = 11,1 , (3.5)

where in h(. , h) only the first cotangent space over which the tensor product in h takes

is acted on. Moreover, the (1,1)-tensor 11,1 is ∂µ ⊗ dxµ when a coordinate system

is chosen. Similarly, the two-tensor gµν and its inverse gµν are associated with the

quantities g and with its inverse g , respectively, satisfying g(. , g) = 11,1 . Then, we

have (3.3) cast in the coordinate independent form

g = n⊗ n+ h , g = n⊗ n+ h . (3.6)

Finally, n is assumed to be orthogonal to the hypersurface Σ , which means that there

exists an acceleration vector field a ∈ T ∗(M) with a(n) = 0 such that

dn+ a ∧ n = 0 . (3.7)

Now, let us pick a convenient set of coordinates adapted to the foliation structure.

Choose a holonomic basis {ei} for Tx(Σ) ⊂ Tx(M) , satisfying

[ei, ej] = 0 , n(ei) = 0 . (3.8)

Note that the index i is a label that runs from 1 to D and it does not denote the

coordinate components of each basis element. The dual basis {ωi} (generally non-

holonomic) is defined by the relations

ωi(ej) = δij , ωi(n) = 0 . (3.9)

The spatial metric in this basis is

hij ≡ h(ei, ej) . (3.10)

Then, {eµ} = {n, ei} and {ωµ} = {n, ωi} serve as bases for T (M) and T ∗(M) , respec-

tively. In coordinates (t, xi) adapted to this basis, we have

ωi = dxi +N idt n = N dt , h = hij ω
i ⊗ ωj , (3.11a)
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ei = ∂i n =
1

N
(∂t −N i∂i) , h = hij ei ⊗ ej , (3.11b)

where hikhkj = δij and where N and N i are quantities defined by the above equations.

In the case when g is a bona fide metric field, N and N i are, respectively, the lapse

function and shift vector of the ADM metric decomposition and it is customary, even

in the Newton-Cartan literature, to continue referring to these quantities as the lapse

and shift.

• Covariant Derivatives

We introduce the Levi-Civita connection D with respect to the two-tensor g . We

also require that the manifold is torsionless: for any vector fields X , Y ∈ T (M) , the

torsion tensor DX Y −DY X − [X , Y ] is set to zero. Define the Christoffel symbols via

Deµeν = eλ Γλµν . The Christoffel coefficients can be computed by noting the identity

2 g
(
DXY , Z

)
= X

(
g(Y , Z)

)
+ Y

(
g(X,Z)

)
− Z

(
g(X,Y )

)
+ g
(
[X,Y ] , Z

)
+ g
(
[Z,X] , Y

)
+ g
(
[Z, Y ] , X

)
, (3.12)

where the vector fields X,Y , Z can run through {n , ei} . This yields, in components,

Γkij ≡ γkij , Γijn = Ki
j , Γinj = Ki

j + Lij , Γinn = ai ,

Γnij = −Kij , Γnjn = 0 Γnnj = −aj , Γnnn = 0 ,
(3.13)

where γkij denotes the Levi-Civita connection of hij on T (Σ), the Latin indices are

raised and lowered by hij and hij, and

Kij =
1

2N
(ḣij −∇iNj −∇jNi) , Lij =

∂jN
i

N
, ai = −∂iN

N
, (3.14)

are the extrinsic curvature of Σ in M, the shift variation, and the acceleration vector,

respectively. Here, ∇i is the covariant derivative with respect to hij . The spatial

Riemann curvature tensor is defined as usual:

Ri
jk` = ∂kΓ

i
`j − ∂`Γikj + ΓikmΓm`j − Γi`mΓmkj. (3.15)

The Ricci tensor is defined as Rij = Rk
ikj and the Ricci scalar is R = Ri

i.

We spare a few words on the geometrical meaning of Lij . First note that the

torsionless condition 0 = ∇n ei−∇ein− [n, ei] implies [n, ei] = ejL
j
i−n ai . Therefore,

eiL
i
j = Π([n, ej]) , (3.16)

where Π is the projection operator from T (M) to T (Σ) that distributes over tensor

products, with Π(eµ) = δiµ ei . This implies that Lij encodes the action of infinitesimal

diffeomorphisms by n on T (Σ).
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Now, we define covariant derivatives adapted to the foliation. We have already

introduced the “covariant spatial derivative” ∇i , which is related to D acting onM as

∇iT ≡ Π(DeiT ) , (3.17)

for an arbitrary tensor field T . On a C∞ function, ∇i acts as ∂i . We also need a

notion of “covariant time derivative,” which we denote by dn . For a C∞ function f ,

we simply take

dn(f) ≡ n(f) = nµ∂µf ; (3.18)

for a given spatial tensor field T , it is convenient to define its covariant time derivative

to be the Lie derivative with respect to n , projected onto Σ , i.e.,

dnT ≡ Π
(
LnT

)
= Π

(
[n , T ]

)
. (3.19)

• Expressions in Components

For practical calculations, we will eventually need to write various derivatives acting

on tensor fields in component form. To facilitate such calculations, we note that dn
and ∇i act on the (co)tangent space basis as

∇i ej = γkij ek , dnei = Lj i ej , (3.20a)

∇i ωj = −γj ik ωk , dnω
i = −Lij ωj . (3.20b)

Furthermore, the commutator [dn ,∇i] acts on the same bases as

[dn , ω
j∇j] ei =

(
−aj dnei +Mk

ij ek
)
⊗ ωj , (3.21a)

[dn , ω
j∇j]ωk=

(
−aj dnωi −Mk

ij ω
i
)
⊗ ωj , (3.21b)

where the (1,2)-tensor M is defined for any vector fields X and Y as

M(X , Y ) ≡ [n ,∇X ]Y −∇dnXY + a(X) dnY . (3.22)

In components, we find

Mkij = (∇i − ai)Kjk + (∇j − aj)Kik − (∇k − ak)Kij , (3.23)

where we have lowered the first index on M using hij for neatness.

Using (3.20) and (3.21), it follows that, in components,10

∇kT i1···imj1···jn = ∂kT i1···imj1···jn +
m∑
r=1

Γirk` T i1···ir−1`ir+1···im
j1···jn

10For examples of (3.24b), we have dnhij = 2Kij and dnh
ij = −2Kij .
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−
n∑
r=1

Γ`kjr T i1···imj1···jr−1`jr+1···jn , (3.24a)

dnT i1···imj1···jn = nµ∂µT i1···imj1···jn +
m∑
r=1

Lir ` T i1···ir−1`ir+1···im
j1···jn

−
n∑
r=1

L`jr T i1···imj1···jr−1`jr+1···jn , (3.24b)

[dn,∇k]T i1···imj1···jn = −ak dnT i1···imj1···jn +
m∑
r=1

M ir
k` T

i1···ir−1`ir+1···im
j1···jn

−
n∑
r=1

M `
kjr T

i1···im
j1···jr−1`jr+1···jn . (3.24c)

3.2. Covariant Fourier Transform of Anisotropic Operators

We have learned from §2 that it is key to introduce a covariant Fourier transform if one

desires to compute the heat kernel coefficients in a fully covariant way. To construct a

covariant Fourier transform that is natural on a foliated spacetime background, we first

need to find a phase function that generalizes the phase factor kµ(xµ − xµ0) and that is

adapted to the foliation. The phase function ` defined in (2.22) does not qualify as an

appropriate choice since it treats all coordinates equally, leading to differential symbols

that do not naturally decompose with respect to the foliation. A phase function that is

designed to already take into account the foliation structure will significantly simplify

the computation of heat kernel coefficients.

Recall that xµ = (t , xi) , i = 1 , · · · , D . In the following, we use x to denote xµ

and x to denote xi . We start with defining a temporal phase function χ(x ;x0 , ν) ∈ R
that generalizes the flat limit phase factor ν (t− t0) , with ν the frequency. We defined

ν = ν n ∈ T ∗x0
(M) . (3.25)

Note that in the coordinates (t, xi) adapted to the foliation, n = N dt, and so the

coefficient of dt in ν is Nν, not just ν. We have to be careful in dealing with this fact

in the derivations that follow. We will mention this again at crucial points.

We require that χ(x ;x0 , ν) be linear in ν for fixed x0 , x ∈ M . It is natural to

require χ to be constant on each spatial slice, which implies that all spatial derivatives

vanish identically, i.e.,

∇i1 · · · ∇ikχ(x ;x0 , ν) = 0 , k ≥ 1 . (3.26)

It then follows that

d`n∇i1 · · · ∇ikχ(x ;x0 , ν) = 0 , k ≥ 1 , ` ≥ 0 . (3.27)
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Together with (3.24c), these relations imply that D∇i χ = 0 for any operator D built

out of dn’s and ∇j’s, which constitutes a significant simplification.

Moreover, we require that χ satisfy

dnχ(x ;x0 , ν)
∣∣
x=x0

= ν , (3.28a)

dknχ(x ;x0 , ν)
∣∣
x=x0

= 0 , k = 0 , 2 , 3 , · · · , (3.28b)

such that χ reduces to ν(x− x0) in the flat limit. The conditions in (3.26) and (3.28)

determine all dn and ∇i derivatives of χ in the coincidence limit x→ x0 . The existence

of such a function χ in a neighborhood of x0 is ensured by Borel’s theorem.

Next, we define a spatial phase function ψ(x ;x0 , q) ∈ R that generalizes the flat

limit phase factor qi(x
i − xi0) , with qi the spatial momentum. We define

q = qi ω
i ∈ T ∗x0

(M) . (3.29)

We require that ψ(x ;x0 , q) be linear in q for fixed x0 , x ∈M . On the spatial slice, we

can take the same conditions as in (2.23) for ` , with

∇iψ(x ;x0 , q)
∣∣
x=x0

= qi , (3.30a)

∇(i1 · · · ∇ik)ψ(x ;x0 , q)
∣∣
x=x0

= 0 , k = 0 , 2 , 3 , · · · . (3.30b)

We further require that these conditions on ψ be trivially covariantly transported from

one leaf of the foliation to the next (i.e., by dn), by demanding that

d`n∇(i1 · · · ∇ik)ψ(x ;x0 , q)
∣∣
x=x0

= 0 , ` ≥ 1 , k ≥ 0 . (3.31)

Again, the above conditions determine all dn and ∇i derivatives of ψ in the coincidence

limit x→ x0 , and such a ψ exists in a neighborhood of x0 by Borel’s theorem.

A covariant generalization of the Taylor series can be constructed. Since χ(x ;x0 , ν)

is linear in ν and ψ(x ;x0 , q) is linear in qi , we have

χ(x ;x0 , ν) = ν Φ0(x , x0) , ψ(x ;x0 , q) = qi Φ
i(x , x0) , (3.32)

where Φµ(x , x0) defines a tangent vector. We then find, for a given function f(x) ∈
C∞(M) and for x in a neighborhood of x0 ,

f(x) =
∞∑

k, `=0

1

`!
dkn∇i1 · · · ∇i`f(x0)

[
Φ0(x , x0)

]k
Φi1(x , x0) · · ·Φi`(x , x0) . (3.33)

We write the pseudodifferential operator O using a covariant Fourier transform as

〈x|O|x0〉 =

∫
dν

2π

dDq

(2π)D
√
h(x0)

eiΦ(x;x0, {ν, q}) σO(x ;x0 , {ν, q}) , (3.34)
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where σO defines the symbol of O and

Φ(x ;x0 , {ν , q}) ≡ χ(x ;x0 , ν) + ψ(x ;x0 , q) , (3.35)

which reduces to the phase factor ν(t− t0) + qi(x
i− xi0) in the flat limit. Note that the

frequency integral in (3.34) is over ν, not the coefficient of dt in ν, which is Nν, as per

the discussion immediately following (3.25). Had it been the latter, then the frequency

integral in (3.34) would have had the customary factor of N(x0) in the denominator.

The matrix element of the operator O resolvent is

G(x , x0 |λ) ≡ 〈x|(O − λ)−1|x0〉

=

∫
dν

2π

dDq

(2π)D
√
h(x0)

eiΦ(x;x0, {ν, q}) σ(x ;x0 , {ν, q} |λ) , (3.36)

where σ(x ;x0 , {ν, q} |λ) ≡ σ(O−λ)−1(x ;x0 , {ν, q}) . As in (2.29), (3.36) implies that[
O(x ; dn ,∇)− λ

]
G(x, x0 |λ) =

1

N(x0)
√
h(x0)

δ(D+1)(x− x0) . (3.37)

Therefore, [
O(x ; dn + idnΦ ,∇+ i∇ψ)− λ

]
σ(x ;x0 , {ν, q}) = I(x , x0) , (3.38)

where I(x , x0) satisfies∫
dν

2π

dDq

(2π)D
eiΦ(x;x0, {ν, q}) I(x , x0) =

1

N(x0)
δ(D+1)(x− x0) . (3.39)

Again, had the integral been over the coefficient of dt in ν, which is Nν as per (3.25),

then the right hand side would just be the delta function. However, because we are

integrating over ν and not Nν, there is a factor of N−1 on the right hand side. Using this

convention, we can avoid carrying around factors of N through the actual calculations

in the following sections.

Using the conditions on the phase functions χ and ψ introduced earlier in this

subsection, we find from (3.39) that

IAB(x0 , x0) = 1AB , (3.40)

and (
dn
)
A1

B1 · · ·
(
dn
)
A`
B`
(
∇(i1

)
C1

D1 · · ·
(
∇ik)

)
Ck
DkIDkE(x , x0)

∣∣
x=x0

= 0 , (3.41)

where ` + k ≥ 1 . We recovered the bundle indices in I and the covariant derivatives.

For the scalar case without internal gauge symmetries, we simply have I(x0 , x0) = 1 .

The above conditions on I determine all derivatives of I .
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3.3. Heat Kernel Coefficients for Anisotropic Operators

Finally, we discuss how to compute the heat kernel

KO(x , x0 | τ) = 〈x|e−τO|x0〉 = i

∫
C

dλ

2π
e−τλG(x , x0 |λ) (3.42)

for an operator O in the coincidence limit x0 = x , defined over a foliated spacetime.

Here, C is a contour that bounds the spectrum of the operator O in the complex plane

and is traversed in the counter-clockwise direction. In the following, we require that

O have an anisotropic scaling exponent z at high energies, i.e. the UV fixed point is

invariant under the rescaling of the spacetime coordinates

t→ b−z t , x→ b−1 x . (3.43)

Typically, we consider O taking the form

O = −d2
n − (−1)z ζ2∇2z + · · · , (3.44)

where we omitted the index structure of the spatial covariant derivatives and we note

that there can be different terms that involve the same number of ∇’s. Moreover,

“ · · · ” denotes terms that contain fewer derivatives. We define the order of O to be the

dimension of its highest order term measured in the dimension of ∇ . For example, the

order of O in (3.44) is ∆ = 2z .

We start with expanding the symbol σ
(
x ;x0 , {ν , q}

∣∣λ) as

σ
(
x ;x0 , {ν , q}

∣∣λ) =
∞∑
m=0

σ(m)
(
x ;x0 , {ν , q}

∣∣λ) , (3.45)

where σ(m) is a homogeneous function of λ , ν , and qi in the coincidence limit, satisfying

σ(m)
(
x0 ;x0 , {bz ν , b q}

∣∣ b∆λ
)

= b−m−∆σ(m)
(
x0 ;x0 , {ν , q}

∣∣λ) . (3.46)

This motivates us to consider the rescalings λ → b∆ λ , ν → bzν , qi → b qi , and

σ(m) → b−m−∆σ(m) in (3.38), supplemented with χ→ bzχ and ψ → b ψ . We find

∞∑
m=0

b−m−∆ Db σ
(m)(x ;x0 , {ν , q} |λ) = I(x , x0) , (3.47)

where

Db ≡ O
(
x ; dn + i bzdnχ+ i b dnψ ,∇+ i b∇ψ

)
− b∆λ . (3.48)
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The above expansion with respect to b is taken such that in the coincidence limit the

relation (3.46) is recovered. Expand Db with respect to b , such that

Db =
∆∑
`=0

b∆−`D (`)
(
x ; dn ,∇

)
. (3.49)

Plugging (3.49) back into (3.47), we find

∞∑
m=0

∆∑
`=0

b−m−`D (`)σ(m) = I . (3.50)

Matching the order in b on both sides of (3.50) gives rise to a series of recursion relations

that can be used to determine σ(m) in the coincidence limit. We will demonstrate how

this works in explicit detail when we apply this method to the case of a Lifshitz operator

on a foliated spacetime (see, e.g., (4.16)).

Next, plugging (3.36) into (3.42), and taking the rescalings

λ→ τ−1λ , ν → τ−z/∆ν , qi → τ−1/∆ qi , (3.51)

we find

KO(x0 , x0 | τ) =
∞∑
m=0

E(m)(x0) τ
m−(D+z)

∆ , (3.52)

where E(m)(x0) are the heat kernel coefficients generalized to anisotropic operators,

which are given by

E(m)(x0) =

∫
dν

2π

dDq

(2π)D
√
h(x0)

∫
C

i dλ

2π
e−λ σ(m)

(
x0 ;x0 , {ν , q}

∣∣λ) . (3.53)

Again, if m is odd, then either the number of frequency factors or the number of

momentum factors in the integrand of E(m) is odd. Thus, E(m) = 0 when m is odd and

the heat kernel can be written as

KO(x0 , x0 | τ) =
∞∑
r=0

E(2r)(x0) τ
2r−(D+z)

∆ . (3.54)

Note that, when z = 1 , the asymptotic expansion (3.52) around τ → 0+ reduces to

(2.16). This concludes our formal discussion on the covariant heat kernel method for

operators that involve both dn and ∇.
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4. Lifshitz Scalar Field Theories in 2 + 1 Dimensions

In this section, we will use the simplest examples of scalars on an anisotropic grav-

itational background in 2 + 1 dimensions to illustrate how the covariant heat kernel

method proceeds in practice. However, the method developed in this paper is applicable

to general dimensions as well as gauge vector fields and more general tensor fields.

4.1. Anisotropic Weyl Anomaly for Lifshitz Scalar

We first consider a single real scalar field at a z = 2 Lifshitz fixed point in 2 + 1

dimensions. We take the time to be imaginary. We focus on the following action:

S =
1

2

∫
dt d2xN

√
h
[(
dnφ
)2

+
(
�φ
)2
]

=
1

2

∫
dt d2xN

√
hφOφ , (4.1)

where � ≡ ∇i∇i and

O(x ; dn ,∇) = −d2
n −K dn +

1

N(x)
�N(x)�

= −d2
n −K dn + �2 − 2 ai∇i� +

(
ai ai −∇iai

)
� . (4.2)

Here, x = (t ,x) . As we remarked previously, the operator O can depend on the fields

and their derivatives. Here, for example, O depends on time and spatial derivatives of

the spatial metric, lapse, and shift, in the form of the extrinsic curvature K, acceleration

vector ai, and the derivative of the acceleration vector, ∇iai. The derivatives in those

expressions do not continue on to act on the scalar field φ. Therefore, when the latter is

covariantly Fourier-transformed, only the derivatives that actually act on φ get shifted,

not the derivatives acting on the background fields.

Take the engineering dimensions for space and time as

[t] = −2 , [xi] = −1 . (4.3)

The scaling dimensions of the derivatives, background, and scalar fields, and the oper-

ator O then follow:

[dn] = 2 , [∇i] = 1 , [N ] = [Ni] = [hij] = [φ] = 0 , ∆ = [O] = 4 . (4.4)

Note that the action (4.1) is classically invariant under the local anisotropic Weyl

transformation,

N → e−zΩ(x) N , Ni → e−2 Ω(x) Ni , hij → e−2 Ω(x) hij , φ→ φ . (4.5)
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The infinitesimal anisotropic Weyl transformation of the effective action Γ as introduced

in (2.7) can be anomalous, with

Ω(x)

(
z N

δ

δN
+ 2Ni

δ

δNi

+ 2hij
δ

δhij

)
Γ(x) = A(x) , (4.6)

where A denotes the Weyl anomaly [10]. To determine the form of the anomaly, we

introduce a ghost field c and the nilpotent BRST operator

s = c

(
z N

δ

δN
+ 2Ni

δ

δNi

+ 2hij
δ

δhij

)
, (4.7)

which acts on c trivially. Then, the Wess-Zumino consistency condition [46] requires

that

s

∫
dt d2xN

√
hA c = 0 . (4.8)

If an anomaly term is BRST exact, i.e., this term can be expressed as a BRST variation

of a local operator, then it can be subtracted from the action, thus canceling the

associated anomaly. As a result, the possible anomalies of interest are those in the

cohomology of the BRST differential s . It turns out that all terms in this cohomology

group are linear combinations of the following two terms [10, 11]:

KijKij −
1

2
K2 ,

(
R +∇iai

)2
, (4.9)

which are of dimension ∆ = 4 , measured in spatial momentum. In higher than (2+1)-

dimensions, other terms can show up depending on the Riemann or Ricci tensors [47],

but in the case of a two-dimensional leaf, the Riemann and Ricci tensors are related to

the Ricci scalar as

Rijk` =
1

2
R
(
hik hj` − hi` hjk

)
, Rij =

1

2
Rhij . (4.10)

In [11, 47], it is shown that there is one time-derivative term that is BRST exact,

K2 + dnK =
1

N
√
h

[
∂t
(√

hK
)
− ∂i

(√
hN iK

)]
. (4.11)

This is a total derivative term. It has also been shown in [10, 11, 47] that there are five

independent BRST exact terms with only spatial derivatives, which are total derivatives

that take the form
1

N
√
h
∂i
(√

hF i
I

)
, I = 1 , · · · , 5 , (4.12)
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where, in the basis chosen in [10],

F i
1 = ∇i

[
N(R−∇i ai)

]
, (4.13a)

F i
2 = −N(R−∇jaj) a

i , (4.13b)

F i
3 = −∇i

(
N ∇j aj

)
, (4.13c)

F i
4 = N (1

2
a2 +∇j aj − aj∇j) ai , (4.13d)

F i
5 = −N a2 ai . (4.13e)

We are interested in the heat kernel coefficient associated with the anisotropic Weyl

anomalies (4.9) and the total derivative terms (4.11) and (4.12), and reproducing the

result in [10, 11] using the new method developed here. All such terms have scaling

dimension four and are thus marginal. Therefore, the heat kernel coefficient of interest

is E(4). In fact, it is shown in [11] that A(x) = −2E(4)(x) .

In the following, we compute E(4) using the covariant heat kernel method. We

start by plugging (4.2) into (3.49), and setting z = 2 and ∆ = 4 , which gives

Db = O(x ; dn + i bz dnχ+ i b dnψ ,∇+ i b∇ψ)− b∆λ

= −(dn + i b2 dnχ+ i b dnψ)2 −K (dn + i b2 dnχ+ i b dnψ)

+
[(
∇i + i b ψi

)(
∇i + i b ψi

)]2
−
[
2 ai
(
∇i + i b ψi

)
− ai ai +∇iai

] (
∇j + i b ψj

)(
∇j + i b ψj

)
− b4λ

=
4∑
`=0

b4−`D (`)(x ; dn ,∇) , (4.14)

where

D (0) = (dnχ)2 +
(
ψiψ

i
)2 − λ , (4.15a)

D (1) = 2 dnχdnψ − 2 i
[
2ψiψjψij + ψiψi

(
2ψj∇j + �ψ

)]
+ 2 i ai ψi ψj ψ

j, (4.15b)

D (2) = −2 i dnχdn − 2
[
2ψi ψj∇i∇j + ψi ψ

i� + 2
(
ψiψj

j + 2ψj ψ
ij
)
∇i
]
−
(
ψi
i
)2

− i
(
d2
nχ+Kdnχ+ i dnψ dnψ

)
− 2
[
ψijψ

ij + ψi
(
ψjji + ψij

j
)]

+ 2 ai
[
ψi ψ

j
j + ψj

(
2ψij + 2ψi∇j + ψj∇i

)]
+
(
∇j aj − a2

)
ψi ψ

i , (4.15c)

D (3) = −i
(
2 dnψ dn + d2

nψ +K dnψ
)

+ i ψi
i
j
j

+ 2 i
[
ψi (∇i� + �∇i) +

(
ψjji + ψij

j
)
∇i + ψi

i� + 2ψij∇i∇j
]
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− 2 i ai
(
ψi
j
j + ψjj∇i + 2ψj∇i∇j + 2ψi

j∇j + ψi�
)

− i
(
∇j aj − a2

)(
ψii + 2ψi∇i

)
, (4.15d)

D (4) = − (dn +K) dn + �2 −
(
2 ai∇i − ai ai +∇iai

)
� . (4.15e)

We introduced the notation ψi1···ik ≡ ∇i1 · · · ∇ikψ .11

Plugging (4.15) into (3.50), we find the following recursion relations:

D (0) σ(0) = I , (4.16a)

D (0) σ(1) + D (1) σ(0) = 0 , (4.16b)

D (0) σ(2) + D (1) σ(1) + D (2) σ(0) = 0 , (4.16c)

D (0) σ(3) + D (1) σ(2) + D (2) σ(1) + D (3) σ(0) = 0 , (4.16d)

D (0) σ(k) + D (1) σ(k−1) + D (2) σ(k−2) + D (3) σ(k−3) + D (4) σ(k−4) = 0 , (4.16e)

for k ≥ 4. From this set of recursion relations, we solve for σ(0), · · · , σ(4) and calculate

the associated heat kernel coefficients. Clearly, to calculate σ(m), we must also calculate

various derivatives acting on σ(0) up to σ(m−1). Generically, we will need up to m

derivatives on σ(0), m − 1 on σ(1), and so on up to one derivative on σ(m−1) (with

time derivatives counting as z spatial derivatives). To compute these, we simply take

derivatives of the appropriate recursion relation. For example, to calculate σ(1), we will

need ∇i σ(0), which we compute by taking ∇i of (4.16a). We detail this procedure as

follows:

Coincidence Limit of σ(0) . From (4.16a), using the coincidence limits of derivatives

of χ , ψ and I given in §3.2, namely,

dnχ
∣∣
x=x0

= ν , ∇iψ
∣∣
x=x0

= qi , I
∣∣
x=x0

= 1 , (4.17)

we find

σ(0)(x0 ;x0 , {ν , q} |λ) =
1

ν2 + |q|4 − λ
≡ G . (4.18)

This is essentially the propagator of the theory.

From (3.53), we find that the heat kernel coefficient E(0) is given by

E(0)(x0) =

∫
dν

2π

d2q

(2π)2
√
h(x0)

∫
C

i dλ

2π
e−λ σ(0)

(
x0 ;x0 , {ν , q}

∣∣λ) =
1

16π
. (4.19)

11Covariant derivatives are sometimes denoted in the literature by a semicolon preceding the in-

dices of the derivatives. In this case, the order of the indices reads left-to-right the order in which

the covariant derivatives actually act, not the order in which they would be written left-to-right:

∇i1 · · · ∇ikψ = ψ;ik···i1 . This is, for example, the convention used in [44].
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Coincidence Limit of σ(1) . Since ψ is a scalar, the two derivatives in ∇i∇j ψ com-

mute. Therefore, the defining relation ∇(i∇j)ψ
∣∣
x=x0

in (3.30b) implies

∇i∇j ψ
∣∣
x=x0

= 0 . (4.20)

The defining relation (3.31), with the number of time derivatives set to ` = 1 and the

number of spatial derivatives set to k = 0, reads

dnψ
∣∣
x=x0

= 0 . (4.21)

Then, from (4.16b), we obtain

σ(1)
∣∣
x=x0

= −GD (1)σ(0)
∣∣
x=x0

= 4 i G |q|2 qi∇i σ(0)
∣∣
x=x0
− 2 i G2 ai qi |q|2 . (4.22)

To derive the coincidence limit of ∇i σ(0) in (4.22), we act ∇i on both sides of (4.16a)

and then take the coincidence limit. When ∇i acts on the phase functions in D (0),

it will produce factors involving ∇i dnχ , whose coincidence limit can be derived from

(3.27) by commuting ∇i past dn using (3.24c). The result is

∇i dnχ
∣∣
x=x0

= ν ai . (4.23)

Moreover, ∇iI
∣∣
x=x0

= 0 by (3.41), so the right hand side vanishes. In the end, we find

∇i σ(0)
∣∣
x=x0

= −2G2 ν2 ai . (4.24)

Plugging (4.24) back into (4.22) gives

σ(1)
∣∣
x=x0

= −2 i G2 ai qi |q|2
(
1 + 4Gν2

)
. (4.25)

As expected, σ(1) is odd in qi and will vanish upon integration over momentum. Thus,

the associated heat kernel coefficient vanishes:

E(1)(x0) = 0 . (4.26)

Coincidence Limit of σ(2) . From the conditions given in §3.2,

dn∇i∇jχ = dn∇ψ
∣∣
x=x0

= ψ(ijk)

∣∣
x=x0

= 0 , (4.27)

we find the following coincidence limits:

∇i∇j dnχ
∣∣
x=x0

= ν
(
ai aj +∇i aj

)
, ∇i dnψ

∣∣
x=x0

= 0 , (4.28a)
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ψijk
∣∣
x=x0

=
1

6
R
(
hij qk + hik qj − 2 qi hjk

)
, (4.28b)

Using (4.16a) and (4.16b) and the above coincidence limits of χ and ψ , we derive

dnσ
(0)
∣∣
x=x0

= 4G2|q|2 qi qjKij,

∇i∇j σ(0)
∣∣
x=x0

=
2

3
G2 |q|2

(
qi qj − |q|2 hij

)
R

− 2G2 ν2
[
∇i aj + 2 ai aj

(
1− 2Gν2

)]
,

∇i σ(1)
∣∣
x=x0

= −2 i

3
G2 |q|2 qiR

− 2 i G2 |q|2 qj
[
4 ai aj Gν

2
(
1− 6Gν2

)
+∇i aj

(
1 + 4Gν2

)]
.

Finally, plugging the coincidence limits that we have derived so far into (4.16c), we find

σ(2)
∣∣
x=x0

= −1

3
G2 |q|2 (1− 4G |q|4)R + i G2 ν

(
hij + 8Gqi qj |q|2

)
Kij

−G2∇i ai |q|2
(
1 + 4Gν2

)
+ 8G3∇i aj qi qj

[
|q|4 − (1− 4G |q|4) ν2

]
− 4G3 (a · q)2

[
|q|4 + 2

(
1− 2G |q|4

)
ν2 − 8G(1− 6G |q|4) ν4

]
+G2 a2 |q|2

[
1− 4Gν2

(
1− 4Gν2

)]
. (4.29)

We also give a step-by-step derivation of σ(2) in Appendix A. From (3.53), we obtain

the heat kernel coefficient E(2) ,

E(2)(x0) =

∫
dν

2π

∫
d2q

(2π)2
√
h(x0)

∫
C

i dλ

2π
e−λ σ(2)

(
x0 ;x0 , {ν , q}

∣∣λ)
=

1

48 π3/2

(
R +∇i ai − ai ai

)
, (4.30)

where we used the integral

Iz,D, j, k, ` ≡
∫

dν

2π
ν2j

∫
dDq

(2π)D
√
h
qi1 · · · qi2k

∫
C

i dλ

2π

e−λ

(ν2 + |q|2z − λ)`

=
21−k

(4π)
D
2

+1

1

z

Γ
(
j + 1

2

)
Γ
(
k
z

+ D
2z

)
Γ
(
k + D

2

)
Γ
(
`
) hi1···i2k . (4.31)

This is a straightforward integral, which is essentially Gaussian once the integral over

λ is performed using the residue theorem. It does require us to convert a product of
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momenta with free indices to a product of pairwise-contracted momenta. Provided that

the rest of the integral is rotationally invariant in momentum space or, in other words,

is a function only of |q|2, then we can perform the following replacement:

qi1 · · · qi2k →
Γ
(
D
2

)
2k Γ

(
k + D

2

) q2khi1···i2k , (4.32)

where hi1···i2k is the symmetrized combination of hij’s. For example,

hijk` ≡ hij hk` + hik hj` + hi` hjk . (4.33)

In the relativistic case, the appropriate integral is the same, but without the ν integral

in (4.31) and setting z = 1. Notice that setting z = 1, the factor of Γ
(
k
z

+ D
2z

)
in the

numerator of (4.31) cancels the factor of Γ
(
k+ D

2

)
in the denominator and, besides the

overall power of 4π, the dependence on D completely drops out of this integral. This

is why the heat kernel coefficients in the relativistic case do not explicitly depend on

the dimension besides the overall power of 4π. For other values of z, however, the heat

kernel coefficients will explicitly depend on the spacetime dimension in addition to the

overall power of 4π . Of course, we will not expose this extra dimension-dependence in

this work because our calculations are performed specifically in D = 2.

Looking back at E(2) in (4.30), note that the combination N
√
h (∇i ai − ai ai) is

a total derivative and, in two dimensions, the term N
√
hR is also a total derivative.

Therefore, E(2) vanishes once integrated over a spacetime with no boundaries. Our

results for E(0) and E(2) agree with the ones in Appendix D of [11].

Heat Kernel Coefficient E(4) . Similarly, a more involved process that we imple-

mented using xAct [48] on Mathematica leads to the results E(3) = 0 and

E(4) = − 1

64π

(
KijK

ij − 1

2
K2

)
− 1

48π

(
dnK +K2

)
+

1

N
√
h
∂if

i , (4.34)

where

f i =
1

960π

√
h
{
N
[
5 (R + 2�)− 4∇j aj − 16 aj∇j

]
ai
}

= − 1

480

√
h
(
5F i

2 + 5F i
3 − 8F i

4 − 4F i
5

)
, (4.35)

and F i
I , I = 2, · · · , 5 are defined in (4.12). We used the identity

∇i aj = −∇i∇j lnN = ∇j ai . (4.36)

The combinations KijK
ij − 1

2
K2 and dnK + K2 are BRST-invariant terms classified

in (4.9) and (4.11). In particular, as indicated in (4.11), dnK +K2 is a total derivative
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term. Therefore, E(4) in (4.34) is a linear combination of the BRST-invariant terms in

(4.9) ∼ (4.12), exactly reproducing the result in [10, 11]. This matching provides us

with a rather strong check of our method.

The contribution to the diagonal heat kernel in (3.54) is

KO(x0 , x0 | τ) = E(0)(x0) τ−1 + E(2)(x0) τ−1/2 + E(4)(x0) +O(τ 1/2) . (4.37)

While E(0) and E(2) contribute power law divergences to the one-loop effective action

(2.8) that can be set to zero by adding in appropriate counterterms, E(4) contributes a

log divergence. The one-loop effective action defined in (2.8) gives

Γ1 = −1

2

d

ds

∣∣∣
s=0

µ2s

Γ(s)

∫
dt dDxN

√
h

∫ 1/M2

0

dτ τ s−1E(4)(t,x) + finite

= − 1

128π

(
log

M2

µ2
− γE

)∫
dt d2xN

√
h

(
KijK

ij − 1

2
K2

)
+ finite , (4.38)

where γE is the Euler-Mascheroni constant. We have introduced a cutoff for the τ -

integral, with M effectively acting as a UV cutoff, while µ acts as an infrared regulator.

The theory exhibits an anomaly under the local anisotropic scale transformation (in

momentum),

A =
1

32π

(
KijK

ij − 1

2
K2

)
. (4.39)

The fact that the second term in (4.9) does not show up in the anomaly at this one-

loop order can be explained by the detailed balance condition [10]. This corroborates

previous results which were computed using the (non-covariant) plane wave method

for evaluating the heat kernel [11] and also from the holographic renormalization cal-

culation [10–12]. In contrast to the previous heat kernel calculation in [11], however,

our method is fully covariant and does not assume any special ansatz for the spacetime

metric, which may prove useful for a systematic study of more complicated scenarios.

Note that E(2) contributes a power-law divergence to the effective action. The

Wess-Zumino consistency condition then requires E(2) to be zero up to total derivatives.

There are four terms that can show up in E(2) : K, R, ai a
i and ∇i ai, which all have

scaling dimension 2. It will be convenient to choose K, R, ∇i ai − ai ai and ai a
i as the

basis elements instead. The reason for this is that NK is a total time derivative and

the combination N
√
h (∇i ai − ai a

i) is a total space derivative and can be dropped.

In two spatial dimensions, N
√
hR also happens to be a total derivative and can be

dropped as well. The only coefficient left is that of ai a
i, which is forced to vanish by

the Wess-Zumino consistency condition (once part of it is combined with ∇i ai in the

form of ∇i ai − ai ai). Indeed, our result for E(2) in (4.30) bears this out.
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Table 1 in [25] reports some heat kernel coefficients for Lifshitz scalars with z = 2

and z = 3 in D = 2 and D = 3 . In particular, for z = D = 2, they report that the

coefficient of aia
i is −13

12
. However, the operator studied in [25] is not the same as the

one we have just studied here and which was studied previously in [10, 11]. The spatial

derivative part of the classically Weyl-invariant operator is N−1�N�. In contrast, the

operator studied in [25] is ∆z
x , where

∆x = − 1

N
√
h
∂iN
√
hhij∂j = N−1∇iN∇i . (4.40)

For z = 2, the operator ∆2
x is equal to N−1∇iN∇iN

−1∇jN∇j , which is not the same

as N−1�N�. However, in the next subsection, we will study the most general z = 2

scalar operator in 2 + 1 dimensions and this will obviously include the one considered

in [25]. Thus, we will return to the question of their ai a
i coefficient at the end of the

next subsection.

4.2. General Scalar Operators Around a z = 2 Lifshitz Point

We have tested our method in the last subsection for a well-known example. Now, we

take one step forward and consider the most general scalar operator in 2+1 dimensions,

around a z = 2 Lifshitz fixed point.12 The associated action principle is

S =
1

2

∫
dt d2xN

√
hφ Õ φ , (4.41)

where

Õ = O + U dn + W̃ ijk∇i∇j∇k +X ij∇i∇j + Ỹ i∇i + Z . (4.42)

Here, O is defined in (4.2), which we record here:

O = −d2
n −K dn +

1

N
�N �

= −d2
n −K dn + �2 − 2 ai∇i� +

(
ai ai −∇iai

)
� . (4.43)

Note that W̃ ijk = W̃ ikj and X ij = Xji. Under the condition

U = W̃ ijk = X ij = Ỹ i = Z = 0 , (4.44)

the operator in (4.42) reduces to the one in (4.2). Note that the action in (4.41) typi-

cally breaks the anisotropic Weyl invariance and thus we expect more general operators

12However, we will impose the condition that the operator does not mix time and space derivatives.
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to appear in the one-loop effective action. One may also introduce a more general op-

erator V ijk`∇i∇j∇k∇` that replaces �2 in the operator Õ defined in (4.42). However,

since the coefficeint V ijk` is dimensionless and should be covariant under the foliation

preserving diffeomorphisms, the operator V ijk`∇i∇j∇k∇` can be reduced to the ones

already included in Õ . In more complicated theories, a richer structure may arise and

require introducing a general V ijk`.

We further note that

W̃ ijk∇i∇j∇kφ = W̃ (ijk)∇i∇j∇kφ−
1

3

(
W̃ ij

j − W̃j
ji
)
R∇iφ . (4.45)

It is therefore convenient to define

W ijk ≡ W̃ (ijk) , Y i ≡ Ỹ i − 1

3

(
W̃ ij

j − W̃j
ji
)
R . (4.46)

Using (4.46), we rewrite Õ in (4.42) as

Õ = O + U dn +W ijk∇i∇j∇k +X ij∇i∇j + Y i∇i + Z . (4.47)

This change of basis allows us to have a much more succinct result for the heat kernel

coefficients.

Following the same procedure described in §4.1, we find Ẽ(0) = E(0) and

Ẽ(2) = E(2) +
1

512π3/2

(
16Xi

i − 3Wij
jW ik

k − 2WijkW
ijk
)

+
1

N
√
h
∂if

i, (4.48)

where E(2) is given in (4.30) and

f i = − 3

64π3/2
N W ij

j . (4.49)

A detailed derivation of Ẽ(2) can be found in Appendix A. We also find, using xAct [48],

the result for Ẽ(4) in Figure 1. We will transcribe this result in Appendix B. Under the

condition (4.44), the result in Figure 1 reduces to Ẽ(4) = E(4). The one-loop effective

action is related to Ẽ(4) similarly as in (4.38), with

Γ1 =
1

2

(
log

M2

µ2
− γE

)∫
dt d2xN

√
h Ẽ(4) + finite. (4.50)

One particularly useful case is when

W ijk =
w

3

(
ai hjk + aj hki + ak hij

)
, (4.51)
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Figure 1. Expression of Ẽ(4) copied from Mathematica.

where w is a constant number. Let us write

Ẽ(4) = E(4) +
4∑
p=0

bp , (4.52)

where E(4) is given in (4.34) and bp contains terms of p-th order inW , with p = 0 , · · · , 4 .

In this case, the results for b1 , · · · , b4 simplify significantly. The expressions for bp ,

p = 0 , · · · , 4 are given below,

b0 =
1

256π

(
Xij X

ij + 1
2
X i

iX
j
j

)
− 1

64π

(
U2 + 4Z

)
+

1

N
√
h

(
∂tf

t
0 + ∂if

i
0

)
,

b1 = − w

256π

[
4∇jXij + 3Xj

j

(
∇i − ai

)
+ 2Xij

(
∇j − 3 aj

)
− 4Yi

]
ai +

w

N
√
h
∂if

i
1 ,

b2 =
w2 ai

3072π

[(
19R− 9Xj

j + 48 a2 − 24∇jaj
)
ai − 18

(
Xij a

j + � ai
)]

+
w2

N
√
h
∂if

i
2 ,

b3 =
3w3 a2

512π

(
∇iai − 2 a2

)
+

w3

N
√
h
∂if

i
3 ,
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b4 =
15w4 a4

8192π
, (4.53)

where

f t0 =

√
h

32π
U , (4.54a)

f i0 =

√
h

32π

{
−N i U +N

[
Y i + 1

12

(
8 aj X

ij − 6∇jX ij + 3∇iXj
j

)]}
, (4.54b)

f i1 =

√
h

384π
N
[(
R + 6 a2 − 4∇j aj

)
ai − 3∇i∇jaj + 4 aj∇iaj

]
, (4.54c)

f i2 = −
√
h

512π
N
[(

2 aj∇j − 7∇j aj + 9 a2
)
ai
]
, (4.54d)

f i3 =
3
√
h

1024π
N a2ai . (4.54e)

Let us now return to the discussion of the coefficient of ai a
i reported in [25]. As

we noted at the end of the previous subsection, the operator that they are studying is

not the classically Weyl-invariant one. In the language of this subsection, we can write

the operator considered in [25] as the Weyl-invariant one plus terms parametrized by

U , W , X, Y and Z as

U = W ijk = Z = 0 , (4.55a)

X ij = (∇i ai − ai ai)hij + aiaj − 2∇iaj , (4.55b)

Y i = aj∇jai −� ai − 1

2
Rai . (4.55c)

It is easy to see that the trace of X ij is Xi
i = −aiai and, therefore, the second heat

kernel coefficient in (4.48) simplifies to

Ẽ(2) = E(2) − 1

32π3/2
ai a

i. (4.56)

The coefficients reported in Table 1 of [25] factors out a factor of (4π)−(D+1)/2. Thus,

we would expect the coefficient of ai a
i, which they denote by c1, to be

c1 = − 1

32π3/2
(4π)3/2 = −1

4
. (4.57)

Instead, [25] gets −13
12

. Given the concerns voiced in [26] regarding the method used in

[25], a resolution of this discrepancy would be most welcome.
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5. Conclusions

In this paper we develop a new heat kernel method for calculating the one-loop effective

action in Lifshitz theories on a curved background geometry with anisotropic scaling.

We tested this method by applying it to the computation of the anisotropic Weyl

anomaly for a (2 + 1)-dimensional scalar field theory around a z = 2 Lifshitz point,

and corroborated the results previously found by other heat kernel methods and also

by holographic renormalizaiton. In addition, since the form of the anisotropic Weyl

anomaly is highly constrained by the Wess-Zumino consistency condition, it serves as

a strong check that our method applies to field theories on nonrelativistic background

geometries without the projectability condition. We then took one step further and

computed the effective action for the most general scalar operators around a z = 2

fixed point in 2 + 1 dimensions.

One interesting next step is to evaluate the effective action for the most general

(3 + 1)-dimensional scalar operator around a z = 3 fixed point. In particular, the

complete cohomologies for anisotropic Weyl anomalies in spacetime dimensions d ≤ 4

and for dynamical critical exponents z ≤ 3 are classified in [47], and some of the

anisotropic Weyl anomalies have essentially been computed in [25, 26]. This can provide

us with further checks of our new method, including the terms dependent on ai (i.e.,

terms dependent on the spatial variation of the lapse function).

Another interesting topic is the study of the Weyl anomalies of Hořava gravity with

a U(1) extension [49]. This type of theory was formulated covariantly using torsional

Newton-Cartan geometry in [50]. In [13, 14], boundary Weyl anomalies that take the

form of Hořava gravity for bulk torsional Newton-Cartan gravity are derived using

the Fefferman-Graham expansion. It will be intriguing to reproduce and extend these

results using our new method.

We emphasize that our method directly applies to operators with spin structures,

simply by turning on the bundle structure on the Lifshitz scalar field. This promises

many applications to Yang-Mills theory and Hořava gravity. For example, it will be

fascinating to generalize the RG flow results in [19] to non-projectable Hořava gravity

in 2 + 1 dimensions, which are essential ingredients for understanding the quantum

membrane theory at quantum criticality proposed in [2].
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A. Procedural Example: Second Heat Kernel Coefficient

Let us show how our method proceeds in complete detail for the calculation of E(2).

We first introduce some notation. We will use the standard semicolon notation for

covariant derivatives. However, keep in mind that because we are using the standard

notation, we will also adopt the standard way of ordering the indices: the indices are

ordered left-to-right in the order in which the derivatives act on the field, which is

right-to-left. This is in contrast to the notation that we introduced for derivatives

acting on ψ: for example, ψijk = ∇i∇j∇kψ, which can also be written as ψ;kji. We

also extend the notation we introduced for spatial derivatives to time derivatives: for

example, ψni ≡ dn∇iψ. So as to reduce the clutter, let us introduce some notation.

Firstly, note that the recursion relation for σ(2) involves only the operators D (0), D (1)

and D (2), but not D (3) or D (4) , where D (I), I = 0 , · · · , 4 are defined in (A.6). Let us

denote D (0) by

A ≡ D (0) . (A.1)

This will never contain any dangling derivatives that act on the scalar field. On the

other hand, D (1) contains up to one derivative acting on the scalar field. So, we write

it as

D (1) = B + Bi∇i . (A.2)

We will try to be as general as possible until the end, so we will not yet plug in specific

expressions for B and Bi, but one can easily do so for the Weyl-invariant case or even

the general case.
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Next, D (2) contains up to two spatial derivatives or one time derivative acting on

the scalar field. So, we write it as

D (2) = C + C i∇i + C ij∇i∇j + Cndn , (A.3)

Again, we will not yet plug in specific expressions for the coefficient functions C , C i,

C ij, and Cn, but one could certainly do so for whichever operator is of interest.

The σ(2) recursion relation now reads

0 = A σ(2) + Biσ
(1)
;i + Bσ(1) + C ijσ

(0)
;ji + Cnσ

(0)
;n + C iσ

(0)
;i + C σ(0) . (A.4)

From this equation, subtract the contraction of A −1Bi with the derivative of the σ(1)

recursion relation:

0 = A σ
(1)
;i + A;iσ

(1) + Bjσ
(0)
;ji + B σ

(0)
;i + Bj

;i σ
(0)
;j + B;i σ

(0) . (A.5)

This will get rid of the σ
(1)
;i term, leaving us with

0 = A σ(2) +
(
B −A −1A;i B

i
)
σ(1) +

(
C ij −A −1BiBj

)
σ

(0)
;ji + Cnσ

(0)
;n

+
[
C i −A −1

(
BBi + BjBi

;j

)]
σ

(0)
;i +

(
C −A −1BiB;i

)
σ(0) . (A.6)

We just keep doing this repeatedly, each time getting rid of the term with the largest

number of derivatives acting on σ(0), keeping mindful of the fact that σ(m) itself contains

up to m derivatives acting on σ(0) by the recursion relations. For example, next, we

would subtract the contraction of A −1(C ij − A −1BiBj) with the derivatives ∇i∇j
acting on the σ(0) defining equation:

I;ji = A σ
(0)
;ji + 2A;(j σ

(0)
;i) + A;ji σ

(0) . (A.7)

We can simultaneously subtract A −1Cn multiplied by the time derivative of the σ(0)

defining equation:

I;n = A σ(0)
;n + A;nσ

(0) . (A.8)

This will remove the terms σ
(0)
;ji and σ

(0)
;n in (A.6) and leaves us with

0 = A σ2 + A −1(C ij −A −1BiBj)I;ji + A −1CnI;n +
(
B −A −1A;iB

i
)
σ(1)

+
[
C i −A −1

(
BBi + BjBi

;j + 2A;jC
ij
)

+ 2A −2A;jB
jBi

]
σ

(0)
;i

+
[
C −A −1

(
BiB;i + A;jiC

ij + A;nCn

)
+ A −2A;jiB

iBj
]
σ(0) . (A.9)

Next, subtract A −1
(
B −A −1A;iBi

)
multiplied by the σ(1) recursion relation

0 = A σ(1) + Biσ
(0)
;i + Bσ(0) , (A.10)
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which leaves us with

0 = A σ(2) + A −1(C ij −A −1BiBj)I;ji + A −1CnI;n

+
[
C i −A −1

(
2BBi + BjBi

;j + 2A;jC
ij
)

+ 3A −2A;jB
jBi

]
σ

(0)
;i

+
[
C −A −1

(
B2 + BiB;i + A;jiC

ij + A;nCn

)
+ A −2

(
A;iB

iB + A;jiB
iBj

)]
σ(0) . (A.11)

Now, we subtract the appropriate term involving∇i acting on the σ(0) defining equation

to finally get an expression for σ(2) that depends only on σ(0). Finally, we can replace

σ(0) with A −1I:

0 = A σ2 + A −1(C ij −A −1BiBj)I;ji + A −1CnI;n

+ A −1
[
C i −A −1

(
2BBi + BjBi

;j + 2A;jC
ij
)

+ 2A −2A;jB
jBi

]
I;i

+ A −1
[
C −A −1

(
B2 + BiB;i + A;iC

i + A;jiC
ij + A;nCn

)
+ A −2

(
3A;iB

iB + A;jiB
iBj + A;iB

jBi
;j + 2A;iA;jC

ij
)

− 3A −3(A;iB
i)2
]
I . (A.12)

Once we take the coincidence limit, all the terms with derivatives acting on I vanish,

I just turns into unity, and A −1 turns into G, the propagator of the theory.13 Thus,

the final expression for the coincidence limit of σ(2) is

σ(2)
∣∣
x=x0

= −G2
[
C −G

(
B2 + BiB;i + A;iC

i + A;jiC
ij + A;nCn

)
+G2

(
3A;iB

iB + A;jiB
iBj + A;iB

jBi
;j + 2A;iA;jC

ij
)

− 2G3(A;iB
i)2
]∣∣
x=x0

. (A.13)

We emphasize that this is the general expression for the coincidence limit of σ(2) for

any z = 2 differential operator acting on a scalar field. For a specific operator, we can

compute the coincidence limits of the operator coefficients remaining above.

Explicit expressions for the operator coefficients for the general z = 2 operator

written in the specific form in (4.47), with the Weyl-invariant operator defined in (4.2),

are

A = (χn)2 + (ψiψ
i)2 − λ , (A.14a)

B = 2χnψn − 2iψiψiψj
j − 4iψiψjψij + 2iaiψiψjψ

j − iW ijkψiψjψk , (A.14b)

Bi = −4iψjψ
jψi , (A.14c)

13The coincidence limits of I;n and I;i vanish by definition. The term I;ji is contracted with either

C ij or BiBj , both of which are symmetric. Thus, we can symmetrize the derivatives and write I;(ji)
the coincidence limit of which also vanishes by definition.
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C = −i(χnn +Kχn) + (ψn)2 − (ψi
i)2 − 2ψijψ

ij − 2ψi
(
ψjji + ψij

j
)

+ (∇ · a− a2)ψiψ
i + 2ai(2ψijψ

j + ψiψj
j)

+ iUχn − 3W ijkψiψjk −X ijψiψj , (A.14d)

C i = −4(2ψijψj + ψiψj
j) + 2(2ajψ

jψi + aiψjψ
j)− 3W ijkψjψk , (A.14e)

C ij = −2(2ψiψj + ψkψ
khij) , (A.14f)

Cn = −2iχn . (A.14g)

Taking one derivative of A gives

A;i = 2χnχin + 4ψkψ
kψjψij . (A.15)

Since ψ is a scalar, ∇i∇j ψ = ∇j∇i ψ, and thus the defining relation ∇(i∇j)ψ
∣∣
x=x0

= 0

implies

ψij
∣∣
x=x0

= 0 . (A.16)

Using the commutation relation [dn,∇i]χ = −aiχn and the defining relation χn
∣∣
x=x0

= ν

and χni
∣∣
x=x0

= 0, we find

χin
∣∣
x=x0

= νai . (A.17)

Therefore,

A;i

∣∣
x=x0

= 2ν2ai . (A.18)

Taking another derivative we can immediately ignore any terms with two spatial deriva-

tives acting on ψ, which we denote by . . .:

A;ji = 2χnχijn + 2χinχjn + 4ψ`ψ
`ψkψijk + . . . . (A.19)

Using the commutation relations,

χijn = χinj −∇i[dn,∇j]χ
= χnij − [dn,∇i]χj + (aj χn);i

= χnij + ai χnj +Mk
ij χk + aj χin + aj;i χn . (A.20)

The first three terms vanish in the coincidence limit and the rest give

χijn
∣∣
x=x0

= ν(aiaj + aj;i) . (A.21)

Thus,

A;ji

∣∣
x=x0

= 2ν2(2aiaj + aj;i) . (A.22)

Next, let us take coincidence limit of B and Bi:

B
∣∣
x=x0

= iqiqjqk(2aihjk −Wijk) , (A.23a)
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Bi
∣∣
x=x0

= −4i|q|2qi . (A.23b)

Next, we take one derivative of B. We will denote any terms containing one time or

two space derivatives on ψ by . . . since we know that these vanish in the coincidence

limit:

B;i = 2χnψin − 2iψkψ
kψij

j − 4iψjψkψijk + i(2aj;ihk` −Wjk`;i)ψ
jψkψ` + . . . . (A.24)

Again, using the commutation relations, we have

ψin
∣∣
x=x0

=
(
ψni + aiψn

)∣∣
x=x0

= 0 . (A.25)

Using the commutator of two covariant spatial derivatives, we can write

1

2
ψ(ijk) = ψijk + ψjki + ψkij = 3ψijk + 2R`

(k|i|j)ψ` . (A.26)

In the coincidence limit, the left hand side vanishes by definition, and we find

ψijk
∣∣
x=x0

= −2

3
q`R`(k|i|j) . (A.27)

In 2 dimensions, this simplifies to

ψijk
∣∣
x=x0

=
1

3
R(hi(jqk) − hjkqi) . (A.28)

Plugging these back in B;i gives

B;i

∣∣
x=x0

=
2i

3
R|q|2qi + iqjqkq`

(
2aj;ihk` −Wjk`;i

)
. (A.29)

Since Bi contains only single derivatives on ψ, the coincidence limit of Bj
;i simply

vanishes:

Bj
;i

∣∣
x=x0

= 0 . (A.30)

Next, we must take coincidence limits of the C operators:

C
∣∣
x=x0

= iν(U −K) +

(
∇ · a− a2 − 2

3
R

)
|q|2 − kikjX ij , (A.31a)

C i
∣∣
x=x0

= 2
(
2ajq

jqi + ai|q|2
)
− 3W ijkqjqk , (A.31b)

C ij
∣∣
x=x0

= −2
(
2qiqj + |q|2hij

)
, (A.31c)

Cn

∣∣
x=x0

= −2iν . (A.31d)
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All that is left is to plug in these coincidence limits into the general expression for σ(2)

in (A.13). For example, setting U = W ijk = X ij = 0 gives the expression for σ(2) in

the case of the Weyl-invariant operator, which we write out in (4.29). This is then

integrated over frequency and momentum to get the heat kernel coefficien E(2). The

result in the Weyl-invariant case is in (4.30) and the result in the general case is in

(4.48).

The process is exactly the same for the higher-order heat kernel coefficients. The

computation will clearly get much more tedious, but is simple in principle and amenable

to automation.

B. Expression of Ẽ(4) for General Scalar Operators

In this appendix, we present the general results for Ẽ(4) in (4.50), transcribing from

Figure 1. We write

Ẽ(4) = E(4) +
4∑
p=0

bp , (B.1)

where E(4) is given in (4.34) and bp , p = 0 , · · · , 4 contain terms of p-th order in W .

We collect the results for b0 , · · · , b4 below:

Terms Constant in W : Coefficient b0 . This result already appears in (4.53), which

we write below again for completeness:

b0 =
1

256π

(
Xij X

ij + 1
2
X i

iX
j
j

)
− 1

64π

(
U2 + 4Z

)
+

1

N
√
h

(
∂tf

t + ∂if
i
)
, (B.2)

where

f t =
1

32π

√
hU , (B.3a)

f i =
1

32π

{
−
√
hN i U +N

[
Y i + 1

12

(
8 aj X

ij − 6∇jX ij + 3∇iXj
j

)]}
. (B.3b)

Terms Linear in W : Coefficient b1 . We write b1 as

b1 =
3∑
q=0

b1,q , (B.4)

where b1, q includes all terms that are linear in W and that contain q derivatives acting

on W . We find that

b1,0 = − 1

256π

[(
4 aj ak − 10∇j ak − 3Xjk + 2∇j∇k

)
ai

]
W ijk
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+
1

512π

[(
2�−R

)
ai − 2

(
3 ak∇i − 2∇i∇k

)
ak

+ 3 aiX
k
k + 6

(
ak −∇k

)
Xi

k + 6Yi

]
W ij

j , (B.5a)

b1,1 =
1

512π

[
6
(
2∇iaj − ai aj

)
∇iWjk

k − 3X i
i∇jW jk

k

+ 2
(
10 ai aj − 8∇iaj − 3X ij

)
∇kWij

k
]
, (B.5b)

b1,2 =
1

256π
ai
(
3∇k∇iWj

jk − 8∇j∇kWi
jk + 3�Wij

j
)
, (B.5c)

b1,3 =
1

256π

(
2∇i∇j∇kW ijk − 3�∇iW ij

j

)
. (B.5d)

Terms Quadratic in W : Coefficient b2 . We start with a classification of possible

terms that are quadratic in W , containing no derivatives acting on any of the W ’s.

The result of b2 will be given later in (B.9). We will need the scalars (in which all

six indices in the two factors of W combined are contracted into three pairs) and the

matrices (the ones with two free, un-conctracted, indices). It will also be convenient to

define the multiplicity of a particular term. The multiplicity of a term is determined

by all possible ways of contracting the six indices in the pair of W ’s to produce the

term. The full classification of all scalars and matrices with their multiplicity numbers

are listed as follows:

S(1) = Wik
kW i`

` multiplicity = 9 , (B.6a)

S(2) = Wik`W
ik` multiplicity = 6 , (B.6b)

M
(1)
ij = Wik

kWj
`
` multiplicity = 9 , (B.6c)

M
(2)
ij = Wik`Wj

k` multiplicity = 18 , (B.6d)

M
(3)
ij = W k`

`Wijk multiplicity = 36 , (B.6e)

We can then define the sum of all possible scalars (counting multiplicity):

P = 3
(
3S(1) + 2S(2)

)
. (B.7)

Similarly, the sum of all possible matrices (counting multiplicity) is

Q = 9
(
M (1) + 2M (2) + 4M (3)

)
. (B.8)

Using the notation introduced above, we write

b2 =
2∑
q=0

b2,q , (B.9)
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where b2, q includes all terms that are quadratic in W and that contain q derivatives

acting on W ’s. We have

b2,0 =
2−14

3π

[(
10R− 4 a2 + 4∇iai − 3X i

i

)
P + 2

(
16 ai aj − 4∇iaj − 3X ij

)
Qij

− 36
(
2Rhij + 20 ai aj + 4∇iaj − 3X ij

)
M

(3)
ij

]
, (B.10a)

b2,1 =
2−12

π
ai
[
2W jk`

(
5∇iWjk` + 3∇jWik`

)
− 2Wijk

(
33∇`W jk` + 9∇jW k`

`

)
− 33Wik

k∇jW j`
` + 3W jk

k

(
5∇iWj`

` +∇jWi`
` − 30∇`Wij`

)]
, (B.10b)

b2,2 = −2−12

π

[
3W i

ij

(
5�W jk

k + 2∇k∇jW k`
` − 14∇k∇`W jk`

)
+ 2W ijk

(
5�Wijk + 6∇`∇kWij

` − 9∇j∇kWi`
`
)]

+
2−13

π

[
33
(
2∇iW ik`∇jWjk` +∇iW ik

k∇jW j`
`

)
− 3∇iW jk

k

(
5∇iWj`

` + 5∇jWi`
` − 12∇`W `

ij

)
− 10∇`W ijk

(
3∇kWij` +∇`Wijk

)]
. (B.10c)

Terms Cubic in W : Coefficient b3 . We start with a classification of possible terms

that are cubic in W , containing no derivatives acting on any of the W ’s. The result of

b3 will be given later in (B.13). We only need the vectors:

V
(1)
i = S(1) Wi

`
` multiplicity = 81 , (B.11a)

V
(2)
i = S(2) Wi

`
` multiplicity = 54 , (B.11b)

V
(3)
i = M

(1)
k` Wi

k` multiplicity = 162 , (B.11c)

V
(4)
i = M

(2)
k` Wi

k` multiplicity = 324 , (B.11d)

V
(5)
i = M

(3)
k` Wi

k` multiplicity = 648 . (B.11e)

Here, the multiplicity of a term is determined by all possible ways of contracting the

eight indices in the three W ’s to produce the term. Let V be the weighted sum of all

of the above terms (including multiplicity):

V = 3
(
27V (1) + 18V (2) + 54V (3) + 108V (4) + 216V (5)

)
. (B.12)

Using the notation introduced above, we write

b3 = b3, 0 + b3, 1 , (B.13)
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where b3, q , q = 0 , 1 includes all terms that are cubic in W and that contain q derivatives

acting on W ’s. We have

b3,0 = −2−15

3π
ai
(
V i − 324M

(3)
jk W

ijk
)
, (B.14a)

b3,1 =
3

215π

(
P hij + 2Qij − 36M

(3)
ij

)
∇kW

ijk. (B.14b)

Terms Quartic in W : Coefficient b4 . We start with a classification of possible

terms that are quartic in W , containing no derivatives acting on any of the W ’s:

W(1) = S(1) S(1) multiplicity = 81 , (B.15a)

W(2) = S(1) S(2) multiplicity = 108 , (B.15b)

W(3) = S(2) S(2) multiplicity = 36 , (B.15c)

W(4) = tr
(
M (1) M (2)

)
multiplicity = 648 , (B.15d)

W(5) = tr
(
M (1) M (3)

)
multiplicity = 216 , (B.15e)

W(6) = tr
(
M (2) M (2)

)
multiplicity = 648 , (B.15f)

W(7) = tr
(
M (2) M (3)

)
multiplicity = 1296 , (B.15g)

W(8) = WijkW
i`
mW

j
`nW

kmn multiplicity = 432 . (B.15h)

Here, the multiplicity of a term is determined by all possible ways of contracting the

twelve indices in the four W ’s to produce the term. Let W be the weighted sum of all

of the above terms (including multiplicity):

W = 9
(
9W(1) + 12W(2) + 4W(3) + 72 W(4) + 24W(5)

+ 72W(6) + 144W(7) + 48W(8)
)
. (B.16)

In terms of W in (B.16), we find

b4 =
2−20

3π
W . (B.17)

Note that there is an interesting relation between b3 and b4 ,

b4

(
Wijk → wWijk − 2

3

(
ai hjk + aj hki + ak hij

))
= w4 b4(W ) + w3 b3,0(a ,W ) +O(w2) , (B.18)

where b3 and b4 are given in (B.14a) and (B.17), respectively.
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C. Sign Conventions in the Literature

As pointed out in [25], the heat kernel coefficient of the monomials built out of the

spatial curvature in a Lifshitz theory in which the spatial derivative part of the operator

is essentially just the z-th power of the isotropic (z = 1) case can be expressed as some

number (a Mellin integral of some sort) times the z = 1 result. In the case of z = D = 2,

for the R3 monomial, which shows up in E(6), the appropriate Mellin integral evaluates

to −2, which is the number reported in the R3 entry of the z = D = 2 column of

their Table 1 (they denote the number of spatial dimensions by d). The number 1
756

to the left of that, in the a2n column, is supposed to be the z = 1 coefficient of R3

in two spacetime dimensions and the z = 2 coefficient is simply the product of these

two numbers: −2 × 1
756

= − 1
378

. However, the result we get using our method is

− 1
315

= −2× 1
630

. We agree with the Mellin integral result of −2, but we disagree with

the z = 1 coefficient of R3: we get 1
630

instead of 1
756

.

Due to this discrepancy, we were led to examine the relativistic heat kernel lit-

erature. There are numerous different sign conventions being used in the literature,

which can easily cause confusion. We will clarify some of these conventions, which we

encountered in the course of verifying the heat kernel coefficients in the relativistic case.

Firstly, we can confirm the correctness of the coefficients calculated by Gilkey

[44] in arbitrary dimensions for the terms that contain only Riemann curvatures and

their covariant derivatives. We reproduced these coefficients using Gusynin’s method

reviewed in Section 2. One just needs to be mindful of the fact that Gilkey’s definition

of the Riemann tensor is negative of the one we use here in (3.15). The coefficients

E0, E2, and E4 are reported on page 610, just after Theorem 2.2, and E6 is given in

Theorem 4.1 on page 613. Once evaluated in two dimensions with constant curvature,

with the Ricci and Riemann tensors related to the Ricci scalar as in (4.10), and where

the conventional sign for curvature is used (instead of the one used by Gilkey), one

derives the result (4π)E6 = 1
630
R3. This factor of 1

630
is precisely the same one as we

get from our aforementioned z = 2 computation.

In [36], Vassilevich calls these coefficients a0 to a6 and reports them in Eqns. (4.26-

29). Here, one has to be careful keeping track of the sign conventions as well. Vassilevich

defines the Riemann tensor in his Eqn. (2.6), which is negative of the one we use here in

(3.15). However, his definition of the Ricci tensor and Ricci scalar coincide with ours.

Keeping these sign conventions in mind, the coefficients in Vassilevich are consistent

with those in Gilkey. The same results are found in App. B and C of [51] by independent

calculation by Gustavsson using the same sign conventions as in Vassilevich.14

14We are grateful to Andreas Gustavsson for personal communications that led us to realize our

earlier misunderstanding of their sign conventions.
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In [52], the authors independently computed E6, though they denote the result by

A3 in their Eqn. (2.16) (the overline indicates the coincidence limit because this work

studies the so-called “off-diagonal” heat kernel in which the coincidence limit x → x0

may or may not be taken). We focus on the pieces that depend only on the spatial

curvature and its derivatives (not on the endomorphism E or the field strength Fµν of

the vector bundle describing the non-metric field content of the field theory). Note that

their definitions of the Riemann tensor, Ricci tensor, and Ricci scalar have the same

sign as ours. The comparison with Gilkey is complicated slightly by the fact that the

authors chose to use a slightly different basis for the terms involving two derivatives

and two factors of curvature: where Gilkey uses the term Rµν∇ρ∇µRρν , the authors

of [52] instead use Rµν∇µ∇νR. However, we can use the commutator of two covariant

derivatives acting on a tensor as well as the second Bianchi identity and the symmetries

of the Riemann tensor to write

Rµν∇ρ∇µRρν =
1

2
Rµν∇µ∇νR−RµνR

µλRν
λ +RµνRρλRµρνλ . (C.1)

Thus, we can convert Gilkey’s result to the basis used in [52], remembering to switch

the sign of any terms that are linear or cubic in curvature. We must also keep in mind

that ∆ is defined in [52] with a minus sign: ∆ = −gµν∇µ∇ν . Doing so, we find just

one discrepancy in the expression A3 in Eqn. (2.16) of [52]: the coefficient of R(∆R)

should be − 1
180

, not − 1
280

, which may just be a misprint.

The coefficients of the terms cubic in curvature contain slight differences (in ad-

dition to the overall sign difference) between [44] and [52] because of the change of

basis (C.1), but they are consistent. In particular, in two dimensions with constant

curvature, one again gets the result (4π)E6 = 1
630
R3.

More recently, Kluth and Litim [53] computed up to the R3, R4, and R5 coefficients

in E6, E8, and E10, respectively, in 2 to 6 dimensions for a sphere (actually for any

maximally symmetric space). This is done using quite a different method, which lever-

ages simplifications specific to maximal symmetry from the beginning. Sure enough,

the coefficient of 1
4π
R3 in two dimensions is 1

630
.
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actions in Hořava-Lifshitz gravity, JHEP 10 (2015) 126, [arXiv:1508.00590].

[26] A. O. Barvinsky, D. Blas, M. Herrero-Valea, D. V. Nesterov, G. Pérez-Nadal and C. F.
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