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Gaussian state entanglement witnessing through lossy compression
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We propose a method to witness entanglement between two continuous-variable systems in a
Gaussian state. Its key ingredient is a local lossy state transfer from the original spatially separated
systems onto two spatially separated qubits. The qubits are initially in a pure product state,
therefore by detecting entanglement between the qubits we witness entanglement between the two
original systems. This method greatly simplifies entanglement witnessing in complex systems.

I. INTRODUCTION

Entanglement is considered one of the key resources in
quantum information science [1]. It naturally emerges in
the majority of many-body systems [2] and can be engi-
neered on various experimental platforms [3–8]. How-
ever, despite the fact that entanglement seems to be
all around us, its detection is challenging, especially in
high-dimensional and continuous-variable systems. De-
tection of entanglement often requires a partial tomog-
raphy of the system’s state [9], whose full description is
determined by a number of measurements which grows
exponentially with the dimension (and is infinite in the
continuous case).

In this work we focus on the problem how to extract
information about entanglement in the state of a com-
plex bipartite system A. The main idea is to pair A
with a simple system B [10]. A is assumed to be diffi-
cult to analyze, whereas B allows full analysis. In other
words, we limit the interaction with A to the minimum,
whereas we are allowed to perform full tomography on B.
The goal is to learn whether A is entangled by studying
solely B. At this point we stress that the two subsys-
tems A and B can be defined as separate particles, or
as different degrees of freedom of a single particle (e.g.,
path/polarization, time/polarization, etc., see [8]).

In particular, we propose a method to detect entan-
glement between two continuous-variable systems in a
Gaussian state by transferring their state onto a state of
two qubits and then by analyzing the resulting two-qubit
state. In order to develop some intuition, we first show
how to design a protocol to detect entanglement between
two qudits and then we generalize it to the continuous-
variable case. The qubits are initially prepared in a sep-
arable state. Hence, any entanglement arising between
them must stem from the initial entanglement between
the more complex systems.

It is clear that such a state transfer cannot be perfect
since the dimension of the system onto which the trans-
fer is made is lower than the dimension of the original
system. Therefore, the above process can be considered

a lossy compression, which aims to preserve only the rel-
evant information. In this case, we want to keep the in-
formation about entanglement and discard anything else.

II. d-LEVEL SYSTEMS

Before we analyze entanglement and continuous-
variable systems, let us first discuss a single qudit (A)
and a single qubit (B). We will introduce a unitary cou-
pling operation which allows to transfer some properties
of the system A to the system B. Later we will generalize
the scheme to a pair: two qudits – two qubits.

A. Single system

As coupling operator we use a controlled rotation
(CROT), i.e., a rotation of the qubit controlled by the
state of the qudit. More precisely, CROT is defined for
a bipartite system AB composed of a controlling d-level
qudit state A, and a target qubit B, the state of which
is rotated along the y-axis, by

UCROT =

d−1
∑

j=0

|j〉〈j| ⊗ exp (−iσyξj) (1)

=
d−1
∑

j=0

|j〉〈j| ⊗ (cos ξj11 − i sin ξjσy) ,

where the rotation parameter ξj depends on the original

state of the qudit, ξj = jπ
2(d−1) . After the coupling we

ignore the subsystem A by tracing it out, and perform
analysis on the qubit B.

The above operation resembles the von Neumann mea-
surement apparatus [11], with the exception that the
pointer is not a continuous-variable system, but a single
qubit. As a result, the measurement of the observable (in
this case A =

∑

j j|j〉〈j|) cannot be perfect due to the
fact that one can encode at most a single bit of classical
information on a single qubit. Nevertheless, we are going
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to show that after the CROT operation some important
information about the qudit’s state can be decoded from
the qubit’s state.

As an example let us consider a d-level system being
in the state

|ψ(p)〉A =

d−1
∑

k=0

√

(

d− 1

k

)

pk(1 − p)d−1−k |k〉 (2)

parametrized by a single unknown parameter p. The
probability amplitudes are given by the Bernoulli dis-
tribution. Applying the coupling operation (1) on the
qudit–qubit pair |ψ(p)〉A ⊗ |0〉B, we get

|Ψ〉AB = UCROT (|ψ(p)〉A ⊗ |0〉B)

=

d−1
∑

j=0

√

(

d− 1

j

)

pj(1 − p)d−1−j |j〉A (3)

⊗ (cos ξj |0〉B + sin ξj |1〉B) .

The reduced density matrix of the system B is given by

ρB = TrA|Ψ〉AB〈Ψ| =
d−1
∑

j=0

(

d− 1

j

)

pj(1 − p)d−1−j ×
(

cos2 ξj
1
2 sin 2ξj

1
2 sin 2ξj sin2 ξj

)

, (4)

allowing to extract information about the parameter p
by, for example, a measurement along σz, Tr(ρBσz). In
the limit of infinite dimensions d,

ρB
d→∞

=

(

cos2
(

πp
2

)

1
2 sin(πp)

1
2 sin(πp) sin2

(

πp
2

)

)

, (5)

ρB becomes a pure state |Ψ〉B = cos
(

πp
2

)

|0〉 +

sin
(

πp
2

)

|1〉. Hence, p = (1/π) arccos Tr(ρBσz).

B. Entangled systems

Let us now suppose the system A is composed of a pair

of d-dimensional qudits in the state |ψ〉A =
∑d−1

j,l=0 ajl|jl〉,
which we want to couple with a pair of qubits B. In order
to do this, we use the coupling operator U⊗2

CROT for each
pair of subsystems, such that the CROT operator couples
the first (second) qudit to its respective qubit.

If both qubits are initially in the state |0〉, then ap-
plication of U⊗2

CROT to the total system |ψ〉A|00〉B results
in

|Ψ〉AB = U⊗2
CROT(|ψ〉A ⊗ |00〉B)

=

d−1
∑

j,l=0

ajl |jl〉A ⊗
[

cos ξj cos ξl|00〉B

+ cos ξj sin ξl|01〉B + sin ξj cos ξl|10〉B
+ sin ξj sin ξl|11〉B

]

. (6)

In general, the state |Ψ〉AB can be highly four-partite en-
tangled, which results in separable subsystems. There-
fore, if we want to transfer entanglement from the system
A to B, we are obligated to do a conditional (projective)
measurement on the system A. One of the good candi-
dates is the local projection onto the state |++〉A = |+〉|+〉
with |+〉 = 1/

√
d
∑d−1

k=0 |k〉. After successful projection,
the resulting state reads

N| + +〉A
d−1
∑

j,l=0

ajl

[

cos ξj cos ξl|00〉B

+ cos ξj sin ξl|01〉B + sin ξj cos ξl|10〉B
+ sin ξj sin ξl|11〉B

]

, (7)

where (1/N )2 is the probability of projecting the system
A of two qudits onto |+〉|+〉.

At this point it is worth to consider an example. Let
A be in the maximally entangled state corresponding
to ajl = δjl/

√
d. Then, after the coupling operation,

the overlap of the resulting state |Ψ〉B with the maxi-
mally entangled state 1√

2
(|00〉 + |11〉) decreases with d,

but asymptotically approaches π2/(π2 + 4) ≈ 0.712 as
d→ ∞.

Notice that in the special case of d = 2, the operation
swaps the state of the system A to the system B,

|Ψ〉B d=2
= N−1

1
∑

j,l=0

ajl

[

cos

(

jπ

2

)

cos

(

lπ

2

)

|00〉

+ cos

(

jπ

2

)

sin

(

lπ

2

)

|01〉 + sin

(

jπ

2

)

cos

(

lπ

2

)

|10〉

+ sin

(

jπ

2

)

sin

(

lπ

2

)

|11〉
]

= a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (8)

For a general d the resulting state |Ψ〉B is separable if
the input state |ψ〉A is separable. This is because a fac-
torization of the amplitudes ajl = a′ja

′′
l allows to factorize

the resulting state |Ψ〉B,

|Ψ〉B
|ψprod〉A

=
d−1
∑

j=0

a′j(cos ξj |0〉 + sin ξj |1〉)

⊗
d−1
∑

l=0

a′′l (cos ξl|0〉 + sin ξl|1〉). (9)

Let us now consider a general mixed state of two

qudits, i.e., ρA =
∑d−1

i,j,k,l=0 ρij,kl|i〉〈j| ⊗ |k〉〈l|. If we
denote ρAB as the state of the total system after the
coupling,

ρAB = U⊗2
CROT(ρA ⊗ |00〉B〈00|)(U⊗2

CROT)†, (10)

projecting the subsystem A onto |++〉 results in subsys-
tem B becoming

ρB =

d−1
∑

i,j,k,l=0

1
∑

m,n,p,q=0

ρij,kl a
m
i a

n
ka

p
ja
q
l |m〉〈p| ⊗ |n〉〈q|,

(11)
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where

aαβ =

{

cos βπ
2(d−1) , for α = 0,

sin βπ
2(d−1) , for α = 1.

(12)

Note that for d = 2, we have ρB = ρA, the same as in
the case of pure states.

Additionally, we also show that a separable state of
two qudits is mapped onto a separable state of two
qubits. Consider the separable state of two qudits ρsepA =
∑

λ pλρ
λ
1 ⊗ ρλ2 , where

ρλ1 =

d−1
∑

i,j=0

ρλ1,ij |i〉〈j|, (13)

ρλ2 =

d−1
∑

k,l=0

ρλ2,kl|k〉〈l|, (14)

and hence

ρsepA =
∑

λ

pλ

d−1
∑

i,j,k,l=0

ρλ1,ijρ
λ
2,kl|i〉〈j| ⊗ |k〉〈l|. (15)

Performing analogous calculations as in the general case
for mixed states and taking into account the linearity of
all operations, we get a separable state:

ρB
ρsep
A=

∑

λ

pλ

×
d−1
∑

i,j,k,l=0

1
∑

m,n,p,q=0

ρλ1,ijρ
λ
2,kl a

m
i a

n
ka

p
ja
q
l |m〉〈p| ⊗ |n〉〈q|

=
∑

λ

pλ





d−1
∑

i,j=0

1
∑

m,p=0

ρλ1,ij a
m
i a

p
j |m〉〈p|





⊗





d−1
∑

k,l=0

1
∑

n,q=0

ρλ2,kl a
n
ka

q
l |n〉〈q|



 . (16)

Please note that the condition for ρA to be separable so
that the resulting ρB is also separable is only sufficient,
not necessary. There are instances of entangled states
ρA which are not mapped into entangled ρB, hence the
scheme effectively works as an entanglement witness.

III. CONTINOUS-VARIABLE SYSTEMS

We will now generalize our scheme to the case in which
the system A is being described by a continuous-variable
state. In this regard we limit our considerations to the
broad family of Gaussian states.

A. Single system

If the first subsystem has a continuous spectrum, the
coupling operator reads

UCROT =

∫ ∞

−∞
dx|x〉〈x| ⊗ (cosx11 − i sinxσy). (17)

Next, consider a Gaussian state

|ψ(σ,m)〉A =

∫

dx
1

(2πσ2)1/4
e−

(x−m)2

4σ2 |x〉 (18)

specified by two parameters (σ,m). After applying the
coupling operation to |ψ(σ,m)〉A ⊗ |0〉B, we get

UCROT (|ψ(σ,m)〉A ⊗ |0〉B) (19)

=

∫

dx
1

(2πσ2)1/4
e−

(x−m)2

4σ2 |x〉 ⊗ (cosx |0〉 + sinx |1〉).

The reduced state of the qubit B is

ρB =
1

2

(

11 + e−2σ2

(

cos 2m sin 2m
sin 2m − cos 2m

))

(20)

and can be visualized by a Bloch vector ~b lying in the xz-

plane. The vector ~b makes an angle 2m with the z-axis

and its norm is e−2σ2

. The parameters of the original
Gaussian state can be recovered from a tomography on

the qubit. In particular, σ2 = −(1/4) ln ||~b||2 and m =
acot(bz/bx)/2.

B. Entangled systems

Now, we consider the lossy entanglement transfer from
the bipartite Gaussian state onto the two-qubit state. In
order to do this, we use the coupling operator of (17)
for each respective pair of subsystems, U⊗2

CROT, such that
the first (second) complicated subsystem interacts with
its respective qubit.

After the coupling operation, we project the system A
of the two particles onto a product of Gaussian states

|x+1 x+2 (Γ)〉 =

∫

dx1

∫

dx2
1

(2πΓ2)1/2
e−

(x2
1+x

2
2)

4Γ2 |x1〉|x2〉.
(21)

This is an analogy to the projection onto a uniform su-
perposition that we used in the two-qudit case. This
time the projection is parametrized by a single parame-
ter Γ, which corresponds to the standard deviation. Note
that in the limit Γ → ∞ the Gaussian function becomes
a uniform superposition over the whole space, akin to
what was considered in the qudit case. Such a projection
can be interpreted as a projection onto a ground state of
a harmonic oscillator, for which the parameter Γ can be
manipulated by the oscillator’s frequency.
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As an example we consider two particles in an entan-
gled Gaussian state

|ψ(σ,Σ)〉A = (22)
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

1

(2πσΣ)1/2
e−

(x1+x2)2

8σ2 e−
(x1−x2)2

8Σ2 |x1〉|x2〉.

This state is entangled whenever σ 6= Σ. Since it is a pure
state, its entanglement can be measured by the purity of
a subsystem, which in this case is given by [12]

P =
2σΣ

σ2 + Σ2
. (23)

After the coupling operation, the state |ψ(σ,Σ)〉A ⊗
|00〉B becomes

U⊗2
CROT(|ψ(σ,Σ)〉 ⊗ |00〉) (24)

=

∫

dx1

∫

dx2
1

(2πσΣ)1/2
e−

(x1+x2)2

8σ2 e−
(x1−x2)2

8Σ2 |x1〉|x2〉

⊗
[

cosx1 cosx2|00〉 + cosx1 sinx2|01〉

+ sinx1 cosx2|10〉 + sinx1 sinx2|11〉
]

.

After projecting the system A onto |x+1 x+2 (Γ)〉, the state
of system B becomes

N (a+|00〉 + a−|11〉), (25)

where

a± =
±e−

2σ2Γ2

σ2+Γ2 + e
− 2Σ2Γ2

Σ2+Γ2

√

(σ2+Γ2)(Σ2+Γ2)
σΣΓ2

. (26)

The purity of the qubit subsystem B is

Pq =
1

2

(

sech2

(

2Γ4(σ − Σ)(σ + Σ)

(σ2 + Γ2) (Σ2 + Γ2)

)

+ 1

)

, (27)

which becomes in the limit of Γ → ∞

lim
Γ→∞

Pq =
1

2

(

sech2(2(σ − Σ)(σ + Σ)) + 1
)

. (28)

Comparing (23) and (28), we see that in both cases the
states are entangled for Σ 6= σ. Also, in both cases the
situation σ − Σ → ∞ corresponds to the maximally en-
tangled states (see Fig. 1).

In Fig. 2 we present how the purity of a subsystem
depends on Γ. We analyze the extreme case (σ−Σ) → ∞.
In this case the purity is 1

2 (sech2(2Γ2) + 1) and decreases
with Γ. Already for Γ above 1, the purity is close to 1/2.

C. Possible realization

Here, we give examples for possible implementations
of the above scheme. The first concept is in a sense
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FIG. 1. The purity of a subsystem in a function of σ and Σ
for (a) the original and (b) resulting state.
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FIG. 2. The purity of a subsystem for the resulting state with
σ − Σ → ∞ in a function of the projection parameter Γ.

an inverted Stern-Gerlach scenario. We focus on a sin-
gle system, since the entangled case is a straight-forward
generalization.

Consider a spin-1/2 particle, say a silver atom, propa-
gating along the z-axis. The continuous-variable state of
interest is encoded in the transversal degree of freedom,
say, a spatial state along the x-axis |ψ(x)〉. The spin
of the particle is initially pointing up along the z-axis.
In addition, consider a region in which there is nonzero

magnetic field ~B = B(x)ŷ pointing along the y-axis with
a gradient along the x-axis. We assume that in the region
in which |ψ(x)〉 is supported one can use the approxima-
tion B(x) ≈ B0x. This magnetic field region starts at
z = z0 and ends at z = z1 (0 < z0 < z1). Outside of
this region there is no magnetic field. The particle starts
at z = 0 and moves towards the magnetic field region
with velocity v. It spends the time t = (z1−z0)/v within
the magnetic field region. The magnetic field causes a
position dependent rotation of spin about the y-axis

| ↑z〉 → cosα(x)| ↑z〉 + sinα(x)| ↓z〉, (29)

where α(x) ∝ B0x(z1 − z0)/v. This conditional rotation
can be associated with the CROT operation. This way
the state |ψ(x)〉 is lossy transferred onto the spin state.

Another possible implementation is the interaction of
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different degrees of freedom of photons. A natural choice
for the degree of freedom of the d-level system is using
path-encoding as it easily allows to manipulate, say, the
polarization state of the photon depending on the path
state using waveplates for building up the CROT op-
eration as given in Eq. (1). This general concept can
be combined with a plethora of different degrees of free-
dom. Wavelength division multiplexers allow coupling
frequency-bin encoded qudits to qubits using this scheme.
Similarly, when using, e.g., orbital angular momentum
(OAM) for the qudit-system, the OAM-encoding can first
be translated to path-encoding using a mode sorter [13].

Recently, a controlled-X̂ gate between the radial degree
of freedom of light and its OAM has been shown [14],
providing another perfect testbed for our coupling.

In a recent work, a high-finesse cavity has been used
to couple a 87Rb atom to the coherent state of a light
field reflected at the cavity for creating Schrödinger cat
states [15]. This technique may also allow to couple the
state of the light field to the atom using the CROT op-
eration as given in Eq. (17). Our proposal could hence
facilitate probing for entanglement of two light fields.

Furthermore, our proposal can also be used if both
systems A and B are actually qudits. For example, en-
tanglement of a system of two high-dimensional trapped
ions could be probed by properly designing the interac-
tion with two other ions using a suitable modified CROT
operation such that the qudits of system B make use of
only a two-level submanifold of the ion. This greatly
simplifies their read-out as they can now be treated as
qubits. This procedure is applicable also to other high-
dimensional systems such as, say, superconducting trans-
mon qudits.

Finally, we would like to mention that our approach
also works for multiqubit systems, in which the entan-
glement between two specific subsets of particles is to be
analyzed. The entanglement between a set A1 of qubits
and a set A2 of qubits can be studied by first compressing
the multiqubit states ρA1 and ρA2 into the single qubits

B1 and B2, respectively, using a CROT operation. Af-
terwards, the verification of entanglement of those two
single qubit systems implies entanglement between the
initial multiqubit systems.

IV. CONCLUSIONS

In this paper we address the problem of detecting en-
tanglement properties of a complex system by analyzing
an auxiliary system coupled to the original one. In order
to do this we define a coupling operator which transforms
the auxiliary system so that after the operation the mea-
sured properties of the coupled system provide relevant
information about the nature of the original one. Since
the auxiliary system is chosen to be of lower dimension-
ality than the original one, the transfer of information
through the coupling operator cannot be exact, hence we
can consider the operation a lossy compression. In the
process, however, we are being offset by the reduction
of the number of measurements required to analyze the
entanglement properties of the measured system. More-
over, the scheme works also when we intend to detect
entanglement between two continuous-variable systems
in a Gaussian state, which in principle can be partially
encoded in a simple two-qubit state.
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