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The electronic defect states resulting from doping ?°Th in CaF; offer a unique opportunity to
excite the nuclear isomeric state 22 Th at approximately 8 eV via electronic bridge mechanisms. We
consider bridge schemes involving stimulated emission and absorption using an optical laser. The role
of different multipole contributions, both for the emitted or absorbed photon and nuclear transition,
to the total bridge rates are investigated theoretically. We show that the electric dipole component
is dominant for the electronic bridge photon. In contradistinction, the electric quadrupole channel of
the ?2°Th isomeric transition plays the dominant role for the bridge processes presented. The driven
bridge rates are discussed in the context of background signals in the crystal environment and of
implementation methods. We show that inverse electronic bridge processes quenching the isomeric
state population can improve the performance of a solid-state nuclear clock based on 22 Th.

I. INTRODUCTION

The nuclear isomer 22"Th is our most compelling
candidate for the development of the first nuclear clock.
With an energy of just 8 eV [1, 2], it is more comparable
to transitions of valence electrons in the atomic shell than
anything expected in all of the currently known isotopes
[3]. Most importantly, the 22 Th isomer could be acce-
sible by narrow-band vacuum ultraviolet (VUV) lasers,
which is the key to designing a frequency standard based
on a nuclear transition [4, 5]. A practical implementa-
tion will require development of such lasers and a more
precise knowledge of the isomer energy. At present, the
isomer energy was reported as F,, = 8.28(17) eV using
a direct measurement of internal conversion electrons [1],
E,, = 830(92) eV [6] from determining the transition
rates and energies from the above level at 29.2 keV in
a calorimetric experiment, or E,, = 8.10(17) eV from
state-of-the-art gamma spectroscopy measurements us-
ing a dedicated cryogenic magnetic microcalorimeter [2].

Substantial experimental progress has been made in
the study of thorium ions in beams and traps, with the
first direct proof of isomer decay [3, 7], an updated en-
ergy determination [1] and the measurement of isomer
nuclear moments [8]. A solid-state thorium oxide target
has also been studied recently with x-ray nuclear reso-
nance scattering pumping schemes for improved isomer
production [9]. Here we are interested in an alternate
experimental approach making use of VUV-transparent
crystals doped with thorium ions. The crystal environ-
ment allows for dopant densities many orders of magni-
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tude larger than would be possible for trapped ions [10-
13]. Concentrations in the range of 106 — 108 cm™3 are
easily reached [14], which make a significant impact on
the stability of the potential clock proportionally to v/ N
[15], where N is the number of interrogated nuclei. Along
with the relative ease with which the doped crystals can
be manufactured and transported, this makes thorium-
doped VUV transparent crystals a promising candidate
for the nuclear clock implementation.

Despite the apparent upsides, significant effort has
gone into attempts of direct isomer excitation within the
VUV-transparent crystal environment so far without suc-
cess [11, 16-21]. Allegedly, theoretical models show that
the radiative transition is weak [22-24], and also the ex-
plored energy range around the previously used energy
value of 7.8 eV [25] might have been disadvantageous. In
addition, a variety of crystal defects induced by radioac-
tivity and laser irradiation led to reported background in
the UV and VUV range along with a reduction in VUV
transmission. Background sources include phosphores-
cence of crystal defects both intrinsic and laser-induced,
and Cherenkov radiation stemming from (-radioactive
daughter nuclei in the ??Th decay chain [11, 17-21].

Here we outline excitation methods that make use of
a specific set of electronic defect states in the crystal to
increase both the rate of excitation and the total excited
population of the nuclear isomeric state. These defect
states are predicted by density functional theory (DFT)
to exist in the vicinity of the 22°Th nucleus as a direct
consequence of the crystal doping. Their energies lie in
the band gap of CaF5 close to the nuclear transition en-
ergy [19]. In Ref. [26] we have put forward how these
states can be used to drive an electronic bridge (EB)
scheme for excitation of the isomer in the crystal environ-
ment. The EB process can enable nuclear excitation and
decay via electromagnetic coupling to the atomic shell
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in a third-order perturbation theory process, without re-
quiring a perfect energetic match between the atomic and
nuclear transitions. The energy mismatch is covered by
the emission or absorption of a photon. In the context of
229Th, several EB scenarios for Th ions have been inves-
tigated theoretically [27-33].

In this work we build up on the original proposal [26]
with a twofold purpose. First, we further investigate the
role of different multipolarities, both for the emitted or
absorbed photon (referred to here in general as the bridge
photon) and the nuclear transition itself. In Ref. [26] we
focused on EB processes where the optical bridge photon
had electric dipole (£1) multipolarity which was assumed
to be the dominant channel. To have a better under-
standing of the competing processes, here we analyze EB
rates where the bridge photon has E1, magnetic dipole
(M1) or electric quadrupole (E2) multipolarity respec-
tively. Since the crystal wave functions are not eigen-
functions of angular momentum and parity, one cannot
rule out a priori the effect of the M1 and E2 multipole
operators. Nevertheless, these processes are shown to be
orders of magnitude slower than the corresponding F'1
process and therefore negligible here. Details regarding
the density functional calculations which are crucial to
the results presented here are also covered.

The convergence criteria for the EB rates are studied
and broken down into contributions from M1 and E2 nu-
clear transition multipolarities, respectively. Tradition-
ally, earlier discussions of the potential decay pathways
for the nuclear isomer focused on the M1 channel. How-
ever, it was shown in Ref. [34] that the E2 channel can
have a significant and even dominant contribution for in-
ternal conversion and EB transitions for thorium ions.
Here we confirm these results in the crystal environment
and show that for the dominant EB processes, the nu-
clear E2 pathway accounts for upwards of 85% to the
final transition rate.

The second purpose of this work is to discuss the
prospect of experimental implementation for the defect-
state-based EB processes and the resulting solid-state
nuclear clock performance. The starting point here is
the precise identification of the defect state energy and
width, which could be performed in VUV fluorescence or
absorption measurements. For defect energies approach-
ing the band gap, the direct spectroscopic detection is
mainly limited by the doped crystal transparency. In
addition, it is compulsory to investigate possible broad-
ening mechanisms of the defect states otherwise difficult
to model theoretically. Finally, the nuclear clock per-
formance based on quenching of the isomer population
via driven EB channels is investigated theoretically. Our
results show that the quenching can improve the short-
term stability of the clock by more than one order of
magnitude.

The paper is structured as follows. In Sec. II the for-
malism of both spontaneous and driven EB processes
in the crystal environment are presented in the non-
relativistic limit. Details regarding state parity and al-

lowed transitions are discussed for E'1, M1 and E2 bridge
processes. The density functional theory methods used
for the calculation of electronic defect states are pre-
sented in Sec. IIB. Numerical results are presented in
Sec. I1I, including a discussion of convergence criteria for
the EB calculations in Sec. IIT A. The impact of the nu-
clear M1 and E2 channels are discussed in the context of
EB processes showing their relative strength. Section IV
discusses experimental approaches for the precise mea-
surement of the electronic defect states in the crystal,
along with potential difficulties. Section IV A investi-
gates the potential impact of driven EB schemes as means
of isomer population quenching on the performance of a
solid-state nuclear clock. Concluding remarks are given
in the final Sec. V.

II. ELECTRONIC BRIDGE IN THE CRYSTAL
ENVIRONMENT

The term EB is used in the literature for both nuclear
excitation and nuclear decay facilitated by the coupling
to the atomic shell. While electronic and nuclear transi-
tions happen simultaneously, their energy does not have
to match exactly; the difference in energy is carried away
by or supplied by an emitted or absorbed photon, re-
spectively. In the context of VUV-transparent crystals,
possible EB excitation schemes involving the excitation
of the 22°Th nucleus from the ground state |g) to the iso-
meric state |m) are illustrated in Fig. 1 [26]. The VUV-
transparent CaFs crystal presents a band gap of approx.
11.5 eV between the ground state |o) and the conduction
band |c). Due to thorium doping, electronic defect states
|d) located in the range of the nuclear isomer appear in
the crystal bandgap. The precision of DFT calculations
is not sufficient to be confident whether the defect states
are slightly above or slightly below the isomer. We there-
fore consider both possibilities in the following.

A spontaneous EB exciting the nuclear isomer can oc-
cur when the defect states |d) are initially populated and
lie higher in energy than the isomeric state. This situa-
tion is illustrated in the left-most panel of Fig. 1. The
initially populated electronic defect states can decay to
the ground state |o) by transferring the excitation energy
to the nucleus. The process proceeds via a virtual elec-
tronic state |v) and the surplus of energy is emitted in
the form of a photon. One can additionally stimulate the
spontaneous process by shining a laser with the same fre-
quency and polarization as the one of the outgoing pho-
ton. Should the defect states lie below the isomer, the
spontaneous process is not possible. However, by pro-
viding the system with the missing energy in the form
of a laser photon, absorption can render the EB energy
transfer possible. In this case, the simultaneous decay of
the defect state and absorption of the laser photon will
lead to nuclear excitation and population of the isomer.

The allowed transitions in the electronic shell, together
with the nuclear transition multipolarity determine the



multipolarity of the emitted photon. In 22Th, the nu-
clear transition from the ground state |g) with angu-
lar momentum 5/2% and positive parity to the isomeric
state 3/2% can proceed via M1 and E2 multipole mix-
ing. Thus, typically an allowed E1 transition between
the initial and final electronic states will convert to an
E1 multipolarity of the emitted photon. When selection
rules forbid the F'1 channel for the EB photon, the much
slower magnetic dipole or electric quadrupole channels
should be considered. In the crystal environment, how-
ever, all electronic states are no true eigenstates of an-
gular momentum or parity, and thus no selection rules
can be directly applied. In the following we present the
application of the EB theoretical formalism to the crys-
tal environment and discuss our knowledge of the defect
states.
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FIG. 1: EB process for the excitation of ?**Th from the
ground state |g) to the isomeric state |m) (right graph) [26].
The initially populated electronic defect states |d) lie in the
crystal band gap above or below the isomer energy. The EB
process occurs either spontaneously (left graph) or assisted
by an optical laser in the stimulated or absorption schemes
(middle graphs). In all cases, EB proceeds via a virtual elec-
tronic state |v) and ends in the ground state |o), where the
conduction band states are given by the set |c).

Spontaneous Absorption

A. EB theoretical formalism

As introduced in [26] and presented in Fig. 1, EB pro-
cesses can be assisted by an optical laser which couples
the initial or final electronic state with the virtual state
causing stimulation or absorption and faster EB rates.
For this we note once again here that the rate I'**(a — b)
of a laser-stimulated generic process |a) — |b) can be re-
lated to the rate of the corresponding spontaneous pro-
cess I'*P(a — 1) as [35, 36]

2 252
(g > b) = DP(q — b)”ECifz, (1)
where the spectral intensity of the laser source I is given
in SI units as W/(m?s~1). The required photon energy
is denoted by E = hw,p = M(w, — wyp), and ¢ stands for

the speed of light. Via detailed balance, the stimulated
rate ['**(a — b) can be related to the inverse absorption
process rate as I'**(b — a) = I'*'(a — b)d(a — b), with
d(a — b) = N, /N, the ratio of multiplicities of sets {|a)}
versus {|b)}. Hence, as an input we must first calcu-
late the spontaneous EB process of interest. Referring to
Fig. 1, for the Absorption case we can connect the spon-
taneous and laser-assisted processes by considering the
time-reversed picture, i.e., by reversing the initial and
final states of the electron and nucleus along with the
direction of flow of the photon and transition arrows.

For the expression of the spontaneous EB rates, we
switch to atomic units (A = m. = e = 1). Depending
on the multipolarity of the emitted photon, we can write
the expressions for F1, M1 and E2 bridge rates as,
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States are denoted for example by |g,d) = |g)|d) where
g represents the quantum numbers of the nuclear ground
state and d that of the defect state. The ground state |o)
is taken as the highest energy valence band state. The
sums over d and o are performed over the spin degenerate
sublevels of each respective state. The frequency of the
emitted photon is denoted by w, = wgo — Wmg, and the
degeneracies of the nuclear ground and defect state are
given by N, and Ng, respectively. The bridge operators
62# 1, are spherical tensor operators of type p (electric E
or magnetic M), multipolarity L and have 2L + 1 spher-
ical components. The bridge operator matrix elements
can be written as

(m.0|Q,lg.d) = 3 (~1)°

AK,q
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Here, AK represent the multipolarities of the coupling op-
erators Tk, and nuclear transition operators Mg, _q
where g = (—K,—K+1,..., K—1, K) are their spherical
components [37, 38]. The summations are performed over
all unoccupied intermediate electronic states denoted by
[n) and |k). The spherical tensor operator Q,,;, describes
the emitted photon of multipolarity uL. Please note that
depending on pL, these operators have different dimen-
sion, corresponding to the different multiplication factors
in Egs. (2-4), and also a different number of spherical
components. In the case of an E1 bridge, Qz, = —7,
where 7 is the position relative to the thorium nucleus



which is considered the origin. In a similar fashion we
have @y = ~3(L+ ) and Qy = —\/4Er2Y 5 for M1
and E2 EB processes, respectively. Here, I is the orbital
angular momentum of the electron, o are the Pauli ma-
trices and we use the notation Y (Y2,,) for the spherical
harmonics.

The nuclear isomeric transition in 22°Th is a mixture of
magnetic dipole and electric quadrupole which restricts
the sum over AK to these two multipolarities. This is not
to be confused with the multipolarity puL of the bridge
photon which is either emitted or absorbed. In the non-
relativistic limit, the magnetic-dipole coupling operator
reads [39]

rqolo-r 47
r3 23 3 q(2r5 )—|—§0q§(r) > (6)

where I ({;) is the orbital angular momentum of the elec-
tron, o (o4) are the Pauli matrices (in spherical basis)
and §(r) denotes the Dirac delta function. The electric-
quadrupole coupling operator is given by [38]

1 /4
Tizq = — 5\ = Y2a(0.9). (7)

An important ingredient for calculating the electronic
matrix elements of @, and T\k 4 are the crystal wave
functions for the valence, defect and conduction band
states. These are obtained from DFT calculations, to-
gether with the corresponding energies wg, and wyg.
Our DFT approach and its limitations are presented in
Sec. IIB. The sums over intermediate states require a
good knowledge of a large number of states in the con-
duction band. Our results on the convergence of the EB
rates will be discussed in Sec. IIT A.

Returning to the EB rate expression in Eq. (5), the
last term on the right-hand side (m| Mk, —q|g) stands for
the matrix elements of the nuclear transition operators.
These are connected via the the Wigner-Eckart theorem
[40] to the reduced transition probabilities B for which
we use theoretical values predicted in Ref. [22].

B. Defect states in Th:CaF»

CaF3y has an experimentally measured band gap in
the region of 11-12 eV [41-43]. DFT calculations us-
ing the Vienna Ab initio Simulation Package VASP at
the Gamma-point [44, 45] show that upon doping with
thorium, there are eight spin-degenerate defect states
{|d)} = {|d1),...,|ds)} appearing within the band gap
of undoped CaFs. These states are localized on the
Th dopant and its 5f orbital, while the transition from
the valence band |o) to the set {|d)} is reminiscent of
a 2p orbital electron of an interstitial fluorine ion mi-
grating to the Th ion. For the DFT calculations we use
the Heyd-Scuseria-Ernzerhof hybrid functional (HSE)
[46, 47] which is an improvement to other generalized

gradient approximations for the description of various
physical properties, especially for the band gap [48]. De-
pending on the case under investigation, HSE is other-
wise at least en-par in terms of performance and quality
to other hybrid methods [49, 50].

DFT provides one-electron wave functions and ener-
gies for the defect states and for the valence and conduc-
tion bands of the crystal. Figure 2 displays the electron
density of the eight defect states localized around the
thorium nucleus in the crystal unit cell. Our DFT cal-
culations underestimated the band gap of undoped CaFq
by approx. 17% as compared to experimentally measured
values. In order to match this calculated band gap with
the experimentally measured value of 11.5 eV, a scaling
procedure via the scissors operator is applied in the calcu-
lation [51, 52]. As aresult, the (scaled) defect states lie in
the region of 10.5 eV. The obtained energy values are pre-
sented in Sec. III in Table I. We emphasize here that we
cannot undoubtedly assign the defect states’ energy with-
out further experimental investigation. As such, energies
given by DFT&S(cissor) should only be understood as an
estimate, and will be used along with energy scalings em-
ployed to better understand the EB choices in the energy
region around 8 eV.
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FIG. 2: Electron density illustrations for the defect states
labeled {|d)} = {|d1),...,|ds)}-

Since VASP uses the Projector Augmented Wave
(PAW) method [53], the all-electron Kohn-Sham (AE-
KS) wave function |¥) near the nucleus is augmented in
order to increase numerical performance. This augmen-
tation applies a linear operator O to the so-called pseudo
wave function |¥) such that |¥) = O|¥). The linear

operator O is defined as O =1+ 5, (|¢z> — |q~51>) (pil,

where |¢;) and |¢;) are the AE- and pseudo partial waves
respectively and (p;| are the projectors.

In this work we compute the matrix elements in Eq. (5)
in the basis of one-electron states using a real space rep-
resentation of |¥). This representation was obtained
by extracting the projectors, partial waves and pseudo
wave functions from VASP and carrying out the lin-
ear transformation O : |¥) — |¥). We estimate the
accuracy of the resulting AE-KS wave function |¥) by
calculating its norm, which is related to the pseudo



wave function via (U|¥) = (U|S|¥). Here, S = 1 +
53 150) ({04165) = (6:165)) (1. We find for the differ-
ence ‘(\Iﬂ@) - (li/|5|\i/>‘ < 3%, suggesting that our pro-
cedure has only minor numerical errors.

Due to the Hohenberg-Kohn theorem [54], DFT is only
valid for the ground state. When an electron is ex-
cited into a defect state or beyond, the energy of those
states is subject to change due to dynamic effects such
as the electron-hole interaction. An estimation of the
strength of this effect would require a calculation which
includes these correlations, such as the GW-method [55]
(Green’s function G and screened Coulomb interaction
W), where the exchange correlation potential is replaced
by the many-body self energy [56], or other approaches
of quantum chemistry. Such an investigation will be re-
served for future efforts once more information is known
experimentally about the thorium defect states in ques-
tion.

The last term in the M1 coupling operator in Eq. (6),
requires the value of the electronic wave functions at the
position of the 22Th nucleus. VASP uses a radial grid
on exponentially spaced grid points excluding the atom
center. To obtain the value of the wave function at the
229Th nucleus, the one-electron wave functions are fit us-
ing the function Wgi(r) = Woexp(—rb), where ¥ and b
are the fit parameters. This ansatz is well justified for
non-relativistic s-like orbitals at small r values. With in-
creasing radial distance the wave function becomes less
dominantly s-like. To account for this we define a max-
imum distance to the nucleus for further considerations.
We choose this length to be half the distance of the first
extreme value of the wave function in each radial direc-
tion, since only states with [ £ 0 can produce such points.
For each pair of spherical coordinates ¢ and 6, we con-
struct a fit with parameters ¥y and b. All ¥, param-
eters for these fits in radial direction must converge for
the wave function to be well defined. The final value for
U(r = 0) is then the mean of all ¥ values.

IIT. NUMERICAL RESULTS

In the following we present our numerical results for
the EB rates, investigating both different bridge pho-
ton multipolarity channels, as well as the individual con-
tributions of the nuclear M1 and E2 decays. For the
DFT&S calculation we have used a unit cell of 66 flu-
orine, 31 calcium and a single thorium atom. Since
the wave functions of electrons in the crystal environ-
ment are not eigenstates of either angular momentum
or parity, the spatial parts of the wave functions are
only defined by their energy. Wave functions were cal-
culated on a spherical grid with the number of points
(N, No, Ny) = (353,29, 60), considering constant spac-
ing in angular components and the spacing in the radial
component followed 7, = ro €™/ with rg = 1.35x10"*aq
and k = 31.25. Spherical grids as large as (N,, Ng, Ng) =

(353,44, 90) were tested but did not improve the accuracy
of the result significantly. The calculated and scaled (via
the scissor operator procedure) defect state energies Ey
are presented in the second column of Table I.

AP(d = 0) [s7!]

Ed [GV}
E1 M1 E2
|d1) 9.90 7.84 x 10*  5.04 x 10> 9.26 x 10
dz 10.43 4.35 x 10° 251 x 10" 2.57 x 10°
|
|d3) 10.50 1.99 x 10°  7.09 x 10'  5.95 x 10*
|da) 10.51 6.16 x 10°  4.81 x 10 5.69 x 10°
|ds) 10.59  7.27x 105 6.64 x 10'  3.03 x 10"
de 10.63 1.12 x 10°  2.20 x 10*  1.82 x 10°
|
|d7) 10.68 1.19 x 107 1.24 x 10" 1.56 x 10*
dg 11.01 2.16 x 10°  2.18 x 10'  2.74 x 10?
|

TABLE I. HSE defect state energies E,; obtained from
DFT&S and electronic transition rates A°?(d — o) from the
defect state to the ground state calculated using the F1, M1
and E2 multipole operators, respectively.

All EB schemes under investigation (see Fig. 1) con-
sider as initial state one of the defect states. The latter
can be reached by VUV excitation. It is therefore use-
ful to start by calculating the matrix elements (0|Q,, ,|d)
for uL = F1, M1 and E2. The corresponding electronic
decay rates A}f (d — o) are presented in Table I, and
calculated by the corresponding equations (2), (3), (4),
where |(m,0|Qlg,d)| — |(0|Q|d)|. It is this rate which
also determines which of the defect states is most likely
to be excited by our initial excitation, and the favoured
multipolarity. For most of the defect states, the E1 decay
is dominant, and |d;) has the largest decay rate. Corre-
spondingly, we expect that |d7) is the easiest level to
excite from the ground state |o) via VUV laser pumping.
In the case of |d2) and |d4) the M1 and E2 contributions
are the same order or larger than the E1 one; however,
these states should be seldomly populated by the initial
excitation in favour of the faster rates of other states such
as |dr).

In order to estimate the population of the initial elec-
tronic state, i.e., of the defect states, we obtain the steady
state solution of the Bloch equation

Pa = poARy (0 = d) — pa [A(d — o) + A%y (d — N
8

where A% (0 — d) and A3, (d — o) are the absorption
and stimulated decay rates for the transition o — d in
the presence of a VUV laser field with intensity I, fol-
lowing the recipe of Eq. (1). The equation above is used
in the following to derive the population pg4, of individ-
ual defect states |d;). In addition, for a crude approx-
imation, we calculate also average EB rates which con-
sider the complete set of defect states {|d)} as quasi-



degenerate levels. In this case, the rates A% (o — {d}),
AP ({d} = o) and A3, ({d} — o) in Eq. (8) are calcu-
lated according to Egs. (2), (3), (4) with the substitution
[(m,0|Q|g,{d})| — [{o|QI{d})|, allowing the sum over
d to run over all defect states d; € {|d)} and further
considering the photon energy w, factor, in this case d;-
dependent, under this summation. As a result, Eq. (8)
delivers in this case an average defect state population,
which we then use to obtain approximate average EB
rates.

The total EB rate achieved in the crystal is given by
multiplication with the population of the initial state pg,
and the number of nuclei in the crystal exposed to the
excitation process N, giving (once more in SI units)

diFSt(|g>d> —>|m70>) ~
N Ng(mch)* s
J\IOT’E;’IMF ?(lg,d) — |m,0)),
9)

diFab(|gad> —>|m70>) ~
NN, (mch)* s
Wldlpr P(Im,0) — |g,d)),

(10)

where for simplicity we have assumed Iy < %ﬁ;ﬁ and
po = 1 for the start of the excitation process.

The two laser intensities appear as multiplication fac-
tors in the two equations above. We recall that I refers
to the source used to excite the electronic shell to the
defect state |o) — |d), while I, is the intensity of the
optical source used to drive the desired electronic bridge
process |g,d) — |m, o) by coupling with the virtual state
|d) — |v). The notation E,, is used for the photon energy
of the optical laser driving the bridge scheme. Further-
more, N, and N, are the degeneracies of the electronic
ground and nuclear isomeric states, respectively.

A. Convergence

As seen in Eq. (5) the final rate requires a summation
over all unoccupied intermediate states. The conduction
band {|c)} offers an infinite set of possible intermediate
states, and the denominators in Eq. (5) are only slowly
suppressing their contributions. Increasing the number
of intermediate states should therefore be continued un-
til convergence is reached. As an example, we will con-
sider such convergence using the system energies given
by DFT&S. All the defect state energies (see Table I) lie
in this case above the isomer energy.

We start by calculating the spontaneous E'1 bridge rate
I'? (lg, {d}) — |m,0)), where the initial electronic state
is taken as the set of eight spin-degenerate defect states.
The nuclear matrix element in Eq. (5) is calculated us-
ing the theoretically predicted values (in Weisskopf units,
W.u.) By (M1,m — g) = 0.0076 W.u., By (E2,m —

g) = 27.04 W.u. [22] for the reduced transition proba-
bilities. The rate T2, (|g,{d}) — |m,0)) is plotted in
Fig. 3 as a function of the maximum energy of the in-
cluded states with respect to the highest energy valence
band, i.e., the electronic ground state |0). Convergence
is achieved with 'Y, (g, {d}) — |m,0)) ~ 2.5 x 1078 s~}
and the order of magnitude of the rate is stable through-
out the entire range. With increasing energy the conduc-
tion band states become less accurate as electron-hole
interactions are neglected. However, due to the conver-
gence within the order of magnitude, we expect this error
to be to be inconsequential for our purposes.
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FIG. 3: Average spontaneous EB rate I'}}} as a function of
the maximum energy of the included states measured with
respect to the electronic ground state |o).

Additionally, T'}?, (|9, {d}) — |m, o)) is plotted in Fig. 4
as a function of number of conduction states included
in the sum over the intermediate states |n) and |k) in
Eq. (5). We use lines instead of points in the graph to
more clearly illustrate the contribution of the £E2 nuclear
decay channel as discussed in Sec. IIIB. Note that each
conduction band state |¢) is spin degenerate such that
the total number of states accounting for degeneracy is
twice as much as that shown on the z-axis of Fig. 4. The
maximum number of spin-degenerate states considered
in the set {|c)} is 232.

Few comments are appropriate at this point. By ex-
amining equation (5) it is clear that as the energy dif-
ference between the intermediate states and the initial
and final electronic states increases, the contribution to
the rate decreases. The sum of the denominator alone is
simply the harmonic series which cannot result in con-
vergence. As such, the numerator must also plummet to
zero. When considering transitions in a single atom, it is
expected that with increasing energy difference the wave
function overlap will typically decrease, resulting in an
ever smaller numerator. However, the different shapes of
atomic orbitals would prevent a completely smooth con-
vergence of the summation. This is even more so in the
crystal environment. Although the general trend of de-
creasing wave function overlap with increasing transition
energy holds, this is not necessarily smooth. At partic-
ular energies, electronic transitions between states with
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FIG. 4: Average spontaneous EB rate I';}} as a function of
number of conduction band states included in the intermedi-
ate summation of |n) and |k) seen in (5). Solid line is the
total rate, while the dotted line shows the T g2 contribution
alone.

more localized wave functions on neighbouring ions may
occur. Such transitions can have larger overlap and bring
(large) positive or negative contributions, resulting in a
visible upwards or sometimes downwards step in the total
rate.

This step-like behaviour can be observed at several
conduction band state energies, in particular around 11.7
eV, 12.3 eV, or 15 eV. The steps become even more ob-
vious in gaps in between conduction band energies (as
calculated for the Gamma-point). This is the case, for
example, for the three conspicuous data points around
15 eV in Fig. 3 resulting in an upwards step in the rate,
also seen at conduction band number 115 in Fig. 4. The
three points correspond to three conduction band states
which are particularly localized around the impurity con-
sisting of the Th and interstitial F ions. Transitions be-
tween these and the set {|d)} result in large contributions
via matrix elements of the operators T \x and Q,,p, i.e.,
large numerators in the respective summation terms and
therefore a visible increase of the EB rate. Before con-
cluding this part we should point out once more the lim-
itations in our calculation, which is not independent of
the chosen crystal cell size. Once states in the conduction
band region are populated, electron-hole interactions not
included in the calculation might qualitatively change the
interpretation presented above.

B. Dominant nuclear F2 channel

For the calculation in Fig. 4 we have considered sep-
arately the two possible multipolarities for the nuclear
transition, M1 and E2. For radiative decay of the iso-
meric state, the M1 component dominates by many or-
ders of magnitude. However, for transitions mediated by
the electronic shell, cases have been found where the E2
component is not negligible [34]. For the present calcu-
lation, the nuclear E2 component turns out to be domi-

nant. The contributions to '} due to Mgs (and T g2)
are shown in Fig. 4 as a dotted line. Throughout the
entire range used to test convergence, the nuclear transi-
tion multipolarity AK = E2 component made up = 85%
of the total rate. The difference of approx. 15% is made
up for by AK = M1.
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FIG. 5: Normalized average driven EB rate paT'S;, (|9, {d}) —
|m,0))/(IaI,) [in units of m*/(W?s®)] with ¢ = ab/st as a
function of average defect state energy. Solid line is the to-
tal EB rate, whereas the dotted line is the contribution from
MEg2. The blue vertical line shows the isomer energy con-
sidered here, E,, = 8.28 eV. Left (right) of this line, { = ab

(C = st).

We now proceed to investigate the nuclear multipole
contributions for the two laser-assisted schemes discussed
in Fig. 1. To this end we no longer use the fixed DFT&S
defect state energies given in Table I, but allow the av-
erage energy of the set {|d)} to vary in the range 5 — 11
eV by subtracting the same constant from each state en-
ergy. Also here we consider the initial electronic state
as the average over the set of eight defect states. We
calculate the E1 EB rate T'%,(|g, {d}) — |m,0)), with
¢ = st (¢ = ab) for the range of average defect energy
above (below) E,,. Figure 5 shows the total driven EB
rates normalized to the intensities of the two lasers Iy
and I, as a function of average defect state energy along
with the separate nuclear E2 coupling contribution to
the rate. Once again, throughout the entire resonance
energy range the nuclear F2 coupling component M pgo
is dominant with £ 85%. As such we confirm that the
nuclear quadrupole channel is dominant when consider-
ing EB processes in 22°Th:CaF; crystals. Further under-
standing of the nuclear processes in the crystal environ-
ment is expected once experiments confirm the energy
and nature of the defect states.

C. Comparison of bridge multipolarities

So far we have only considered bridge rates where the
emitted or absorbed photon multipolarity was E'1, given
by F%l with ¢ = sp,ab, st. Let us now focus on the M1
and E2 bridge multipolarities which can be calculated
starting from Eqgs. (3) and (4). Figure 6 shows the rates
I‘gm and F%z for the laser-diven EB processes for an ini-



tial averaged population of the defect states {|d)}. These
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FIG. 6: Normalized average driven EB rates deiL(|g, {d}) —
|m,0))/(IaIp) [in units of m*/(W3s®)], with ¢ = ab/st, as a
function of average defect state energy where (a) uL = M1
and (b) pL = E2. The blue vertical lines mark the isomer
energy E,, = 8.28 eV.

rates can be directly compared to I',, in Fig. 5. As ex-
pected a similar resonant structure is seen, however with
rates that are easily negligible in comparison to those
seen with I‘%l.

More precisely, we can consider the rate resulting from
a specific initial defect state. Referring to Table I, |d3),
|ds) and |d7) are the most easily populated via E1 exci-
tation. Thus in Fig. 7 we plot the EB rate F%1(|g, d;) —
|m, 0)) where each of these states is individually taken
as the initial electronic state. Each displayed resonance
corresponds to alignment in energy of one of the eight
spin-degenerate defect states with the nuclear isomer.

Figure 8 shows the M1 and E2 bridge rates for the
highest occupied state |d7). Beyond the overall reduction
in magnitude of the rates, we can also see how the relative
widths of the individual resonances are affected by the
change in allowed electronic transitions. Considering the
orders of magnitude difference between the EB rates of
different bridge photon multipolarity, we conclude that
the M1 and E2 bridge rates can be safely neglected in
this work.

IV. PROSPECTS OF EXPERIMENTAL
IMPLEMENTATION

The crystal environment offers a unique opportunity to
investigate thorium at high densities. This system does,
however, come with its own set of challenges including
sources of background, laser damage, and the crystal’s
exciton spectrum.
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FIG. 7: Normalized E1 bridge rates pal'%,(lg,di) —
|m,0))/(IaI,) [in units of m*/(W?s®)] as a function of ini-
tial defect state |d;) energy considering (a) i = 3, (b) i = 5,
(¢) i = 7. The blue vertical lines mark the isomer energy
E,, =8.28 eV, with ¢ = ab (¢ = st) left (right) thereof.

Sources of background can be broadly categorized un-
der the labels of photoluminescence and radiolumines-
cence. Several of these sources have been studied specifi-
cally in Th:CaF5 in Refs. [11, 18, 19, 21]. Photolumines-
cence occurs from the excitation of unintended pathways
in the crystal environment. These spurious excitations
are the result of a variety of impurities introduced dur-
ing the growth of the crystals as well as surface impurities
introduced during storage and handling [57, 58]. Intrin-
sic to 229Th is the radioactive component of the back-
ground. 22°Th undergoes a-decay where the a particle
and the 2?°Ra daugther nucleus have kinetic energies of
5.1 MeV and 90 keV, respectively. This energy release
is then seen in the form of emitted photons as the par-
ticles crash through the crystal lattice up to distances of
30,000 and 30 lattice constants, respectively [18]. Beyond
the emitted photons forming a significant background to
deal with, the damage caused by the high energy parti-
cles changes the structure of the crystal itself. Defects
are left in the wake of the decay paths which change the
available electronic transitions in their vicinity. The -
decay of thorium daughter products also contribute by
causing Cherenkov radiation below 200 nm [59].

Laser damage is an unavoidable consequence of deal-
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left (right) thereof.

ing with VUV wavelengths. The exposure alone can
cause damage to the crystal, which in some cases is re-
versible via annealing and tempering methods but can
also cause an irreversible decrease in transparency by al-
tering the crystal structure [20]. The impending laser
damage usually occurs for exposure times ranging from
minutes to months, however this is heavily dependent on
the wavelength and intensity of irradiation, and also the
prevalence and type of existing impurities in the crystal
[20, 60].

The above mentioned sources of background and laser
damage and impurities aside, one still has to work with
the ideal transmission region of the CaFsy crystal. This
most important transmission region results from a com-
bination of the traditional band gap and the exciton ab-
sorption spectrum [43, 57, 61, 62]. Pure CaFy exhibits
absorption leading to exciton formation in the region
above 10 eV (< 125 nm) which causes a sharp drop
in transmission before the band gap energy is reached
[41, 63, 64]. This impacts the experimental search for
the Th-doping-induced defect states {|d)}. Currently the
DFT&S scaling places the thorium defect states outside
this transparency region, thus competing with the exci-
ton spectrum which would pose issues for detection. To
this end, the assignment of the thorium defect states in
energy has yet to be studied experimentally. If the en-
ergies of the defect states lie in the transparency region
of the Th:CaF5 then various VUV spectroscopic meth-
ods can be used to detect and characterize them. Due
to the small electronic transition rates AP, we propose
VUV fluorescence spectroscopy for this search. The de-
fect states will be excited either directly using VUV light

[65] or indirectly using x-ray [66] or « excitation [67],
as explored for the similar doped crystal Nd:CaF5. Af-
ter excitation, the time- and spectrally- resolved emis-
sion spectrum can be recorded. Another interesting fac-
tor is the potential broadening mechanisms of the elec-
tronic states, including those of the defect states under
consideration here, which could lead to faster EB exci-
tation and decay rates than the ones calculated based
on DFT predictions. If a broadening mechanism beyond
the DFT model causes the defect states to decay faster
than fluorescence can be recorded, then VUV absorption
spectroscopy could be used [66]. The scaling procedure
applied in Figs. 5-8 will no longer be necessary once the
energy of these states is known. At that point, the res-
onant structure of the system can be studied more pre-
cisely both experimentally and theoretically.

A. EB quenching scheme and nuclear clock
performance

Once the thorium defect states are characterized, the
focus then shifts to implementation of the available EB
schemes and their impact on potential nuclear clock per-
formance. For nuclear excitation, we have shown in
Ref. [26] that using a VUV lamp [11] with N ~ 3
photons/(s-Hz), a focus of f = 0.5 mm? which corre-
sponds to I = Nhwg,/(27f) ~ 1.6 x 10712 W/(m? s71)
and a FWHM linewidth of = 0.5 eV, the EB rate is more
than 2 orders of magnitude faster than direct photoex-
citation. We now turn to inverse EB processes, sponta-
neous or optical-laser stimulated, which can be used to
quench the previously excited isomeric population [26].
These processes are illustrated in Fig. 9. With the nu-
cleus initially in the isomeric state, a defect state situ-
ated lower in energy than F,, can then be used for a
spontaneous EB scheme that depletes the isomer. This
happens via excitation of the electronic states and popu-
lation of |d), where the energy mismatch is carried away
by an emitted photon. In turn, the EB process can be
stimulated by shining a laser with the frequency of this
emitted photon. Should the defect states lie higher in
energy than the isomer, a scheme using absorption of an
optical laser photon can be envisaged, as illustrated in
the left-most panel of Fig. 9. After the excitation of the
defect states, these may decay radiatively, as depicted in
Fig. 9 by the blue wiggled arrow. These isomer decay
schemes can have much higher rates than the sponta-
neous radiative decay of the isomeric state, and may be
used as “managed quenching” for preparation of clock
states in a solid-state nuclear clock [10]. Instead of emis-
sion of the isomer transition photon, this laser-assisted
quenching is accompanied by the photon from fast sub-
sequent decay of the defect state, which may be used for
detection of nuclear de-excitation.

As an example, we can consider the fixed energy case
given by the DFT&S defect state energies. The rate
of the laser-assisted absorption quenching for this case



was previously estimated as approx. I‘ab = 0.07 s ! in
Ref. [26], which is 3 orders of magmtude larger than
the spontaneous radiative decay rate I' ~ 1074 s~! [22].
This value was obtained using an optical laser intensity
of I, =1 W/(m?s™1). The quenching rate also follows
equation (1) and is thus linearly dependent on the in-
tensity of the driving laser. The largest variation in the
quenching rate is likely to come from the experimental
determination of the defect state energies which could
place the quenching scheme closer to a resonance as dis-
cussed in earlier sections.
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FIG. 9: Quenching processes for the de-excitation of *2"Th
[m) — |g). The electronic defect states |d) can be thereby
excited via a spontaneous (or additionally stimulated) EB
scheme provided they lie below the isomer energy. If the de-
fect states lie higher in energy than the isomer, absorption of
a laser photon is required. Wiggly arrows in red depict the
EB photons related to the quenching of the isomeric state,
either spontaneously emitted or externally pumped by a laser
for the stimulated or absorption schemes. Photons in blue
result from the subsequent spontaneous decay of the defect
state |d) — |o).

Continuing with this example, let us estimate how the
use of the laser-assisted EB quenching might improve the
short-term stability of the solid-state optical clocks. Note
that neither Rabi nor Ramsey interrogation schemes are
applicable to such a clock, because of a huge difference
between the short coherence time between the ground
and the isomeric states (milliseconds) due to crystal lat-
tice effects [10], and much longer time necessary to bring
the nuclei back into the ground state (tens of seconds
even with laser-assisted EB de-excitation). Therefore,
we consider the scheme based on counting the sponta-
neous (or laser-assisted) nuclear decay fluorescence pho-
tons after illuminating of the quantum discriminator with
the VUV narrow-band laser. The excitation scheme as
well as interrogation protocol considered below follows
Ref. [10], up to replacement of the counting of nuclear
fluorescence photons by counting of the photons from the
decay of the defect state |d) — |o).

Consider first the excitation of the isomer transition
in the crystal lattice environment under the action of
a narrow-band VUV laser. This step is paramount
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for any nuclear clock, whether using trapped Th ions
or Th-doped crystals. In the crystal environment, the
229Th nuclei are subject to electric field gradients caus-
ing quadrupole splitting of the order of few hundred MHz
[19, 68]. In the absence of any external magnetic field, the
quadrupole structure is degenerate with respect to the
sign of projection of the nuclear angular momentum. To
this end we consider stabilization of the laser on the pair
of transitions between the states |gi2) = [?*%Th,I =
5/2,+3/2) and |m o) = [***™Th, I = 3/2,m = +1/2).
Averaging over possible spatial orientations of the elec-
tric field gradient, one may obtain the equation for the
total population pey. of both the excited states |m;) and
|ms) as

R

L 5 R
Pexc = 1+A2/72

s+ 20—
S pyey

Pexcy (11)
where v is the relaxation rate of the nuclear transition
coherences, primarily determined by the interaction with
fluctuating fields inside of crystal, particularly, random
magnetic field generated by the fluorine spins surround-
ing the thorium nucleus [10]. The spontaneous radiative
decay rate of the isomer is I' = 107* s~ (calculated us-
ing By (M1,m — g) = 0.0076 W.u. [22]), where n is
the refractive index for the isomer photon, with the fac-
tor n3 caused by enhancement of the M1 spontaneous
decay in refractive media due to higher density of states
of emitted photons [69]. We consider here n® = 4 for
simplicity. Furthermore, A is the detuning of the driving
VUV laser to the nuclear transition energy, and R the ex-
citation rate. The latter can be expressed via the matrix
elements Vi, 4, and Vj,,4, of the interaction Hamiltonian
averaged over orientations of the electric field gradient as

(Vi + Vinasa ) _ 20 2y T
3y 15 hw3, v

R = (12)
Here angular brackets denote averaging over spatial ori-
entations of the electric field gradient, and I is the inten-
sity of the VUV clock driving radiation with frequency
Wi«

A single interrogation cycle consists of 4 time intervals:
in the first and in the third of them (both have duration
6) the sample is illuminated by the narrow-band VUV
laser radiation whose frequency is detuned by 4, to the
blue and to the red side from the nominal frequency of
the local oscillator respectively. The frequency offset f
(i.e., the difference between the nominal frequency of the
local oscillator and the frequency of the isomer transi-
tion) is determined from the difference in the numbers
N,, and N, ;1 of photons counted during the second and
the fourth time intervals (both have duration ') respec-
tively.

Mean numbers of photons counted in the second and
fourth intervals can be expressed as

w=a(f+0m) +0(f+0m)Nu 1,  (13)
= a(f - 5771) + b(f - 6m) ns (14)




where N,,_; is a mean number of photons measured in the
fourth time interval of the previous interrogation cycle,

and
2N, fF ¢ g an
A) = Ze (1_ —rue) 1— (1_ —G(A)a)
a(A) 3 e a G e
(15)
b(A) = e GAI-TL0" (16)
Here, 1"C is the EB decay rate of the isomer state in the
presence of quenching optical laser field, Neg = Ny, - ’Zg

is the “effective” number of thorium nuclei (k is quantum
efficiency of the photodetector and €2 is the solid angle
covered by this detector; we take Nog = 102, as in [10]),
and

5R/2

A)=Tn* + —L-—.
G(A) n+1+A2/72

(17)

For the relaxation rate of the nuclear transition coher-
ences we use the value v = 27 x 150 Hz [10].

If the offset f of the local oscillator frequency from the
clock transition frequency is small, we can express it as

Nn+1 *Nin - bO(Nin* Nn—l)
2(11 — bl(Nn — Nn—l)

f= ; (18)
where a(f £+ 0,,) = ag Farf; b(f £ 0m) =bo £ b1 f.

Supposing that the numbers of photons N,,11 (as well
as N,_1) and N,, counted in the fourth and second time
interval are Poissonian random numbers with means (13)
and (14), one may estimate the error ¢ f of determination
of the frequency offset f as

\/ao bo 1+b0+b2)
V2[a1 (1 —bo) — brag]

This expression represents a fundamental lower limit of
the error offset for a single interrogation cycle.

To evaluate the possible improvement of the nuclear
clock performance that may be obtained with the help
of laser-assisted quenching, one may consider the short-
term instability defined as [10]

oV
w7

where t is the time of single interrogation cycle, and 7 is
the total measurement time. In order to reduce o, one
has to minimize 6 fv/t/w = oy/T by the proper choice
of the intervals # and 6’ for the different phases of the
interrogation cycle, and the working point d,,. Figure 10
presents an optimized og**(7),/7 as a function of the ex-
citation rate R which enters via Egs. (15), (16) and (17)
the expression of §f. We compare the cases with and
without including the optical laser-driven quenching of
the isomeric state during the measurement phases. For
the latter case we replace the EB quenching rate Fgu in
Egs. (15) and (16) by the spontaneous radiative decay

of =

(19)

oy(T) = (20)
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FIG. 10: Ultimate clock fractional instability oy+/7

dfv/t/w as a function of excitation rate R for an optimized
interrogation cycle with (black solid curve) and without (red
dotted curve) laser-enhanced quenching during measurement
phases. See text for further explanations and used parame-
ters.

rate of the isomer. The parameters used in the calcula-
tions are Neg = 102, ' = 1074 s~ !, E,, = 8.2 eV, and
Fgu = 0.07 s~!. We suppose here that the local oscilla-
tor is perfectly stable, and the only detection noise is the
shot noise of the detection of the isomer photons. The
results in Fig. 10 show that for strong enough excitation
rates, the short-term stability may be improved by more
than one order of magnitude using the quenching scheme.
This makes the future experimental implementation of
the quenching scheme very desirable. In order to achieve
such high rates R/FC > 10, direct laser excitation of
the isomer would require intensity Iy = 3.6 W/cm? via
Eq. (12).

V. CONCLUSION

We have investigated driven EB processes in the
229Th:CaF 5, solid state environment making use of defect
states in the crystal electronic structure. These states
are predicted by DFT within the crystal band gap, not
far from the nuclear isomer energy, and would at first
sight be considered a nuisance for laser driving of the
nuclear transition. Surprisingly, the defect states allow
an efficient nuclear excitation via EB, up to two orders
of magnitude stronger than photoexcitation. The rate
of the EB excitation is dependent on the characteristics
of the electronic defect states as well as the surrounding
intermediate electronic states. Questions still remain re-
garding the exact location of these defect states in energy,
which we hope will be soon pinned down by experiments.
Our calculations have mitigated this point by discussing
a larger resonance region to illuminate how the system
would change in the case of shifting electronic state en-
ergy. The nuclear transition was shown to proceed up-
wards of 85% via E2 multipolarity, while for the EB pho-
ton emission or absorption, the E'1 bridge processes were
dominant. Quenching of the isomeric state via the inverse



bridge process was shown to significantly impact the po-
tential stability of a solid state clock, with an increase by
more than one order of magnitude. Our theoretical mod-
els can be easily adjusted as more information regarding
the crystal environment becomes known experimentally.
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