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Abstract: The dynamics of forest recovery after windthrows (i.e., broken or uprooted trees by
wind) are poorly understood in tropical forests. The Northwestern Amazon (NWA) is characterized
by a higher occurrence of windthrows, greater rainfall, and higher annual tree mortality rates
(~2%) than the Central Amazon (CA). We combined forest inventory data from three sites in the
Iquitos region of Peru, with recovery periods spanning 2, 12, and 22 years following windthrow
events. Study sites and sampling areas were selected by assessing the windthrow severity using
remote sensing. At each site, we recorded all trees with a diameter at breast height (DBH) ≥ 10 cm
along transects, capturing the range of windthrow severity from old-growth to highly disturbed
(mortality > 60%) forest. Across all damage classes, tree density and basal area recovered to >90%
of the old-growth values after 20 years. Aboveground biomass (AGB) in old-growth forest was
380 (±156) Mg ha−1. In extremely disturbed areas, AGB was still reduced to 163 (±68) Mg ha−1

after 2 years and 323 (± 139) Mg ha−1 after 12 years. This recovery rate is ~50% faster than that
reported for Central Amazon forests. The faster recovery of forest structure in our study region may
be a function of its higher productivity and adaptability to more frequent and severe windthrows.
These varying rates of recovery highlight the importance of extreme wind and rainfall on shaping
gradients of forest structure in the Amazon, and the different vulnerabilities of these forests to natural
disturbances whose severity and frequency are being altered by climate change.

Keywords: forest blowdowns; forest succession and dynamics; natural disturbances; tree
mortality; biomass

1. Introduction

Windthrows are associated with strong downdrafts produced during severe convec-
tive storms [1–4]. In the Amazon, windthrows are a frequent natural disturbance that
influences regional tree mortality and has the potential to regulate regional biomass/carbon
stocks and balance [5–10]. The geographic distribution of windthrows generally follows
the pattern of rainfall across the Amazon Basin, though there are large variations in the size
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and frequency of occurrence [7,11,12]. Windthrows are more frequent in the Northwestern
Amazon than in the Central Amazon [12].

Windthrows create changes in forest composition and forest dynamics [13,14]. Conse-
quently, windthrows provide niches for maintaining a diverse cohort of species [6,8,15,16].
In old-growth tropical forests, species with limited competition strategies are eventually
eliminated from the community [17]. Therefore, understanding the drivers of structural
and compositional change in tropical forests is important for predicting the future composi-
tion of these ecosystems [18,19], especially since the frequency and intensity of convective
storms are being affected by climate change [7,12]. This knowledge is crucial for better
planning initiatives of forest management and climate adaptation [20]. Numerous stud-
ies have examined the impacts of climate variability [21,22], soils, nutrient availability,
geomorphological variation [23], hydrological regimes [24,25], and productivity [26] on
forest structure and dynamics, but the effects of large-scale windthrows have received less
attention and remain unassessed for most of the Amazon. Research in the Central Amazon
has demonstrated that the recovery of biomass and functional composition depends on
the size and severity of the disturbance [5,8,27]. Understanding how wind disturbances
impact standing biomass and influence subsequent succession through tree establishment,
growth, and mortality is an enduring task in forest ecology [28].

In this study, we investigate rates of forest recovery from windthrows in the North-
western Amazon. We compare our results with a similar study carried out in the Central
Amazon, which is characterized by a lower frequency of windthrows, poorer soils and
slower turnover rates than our study region. We address the following questions: (a) Which
forest structural attributes are most affected following windthrows? and (b) How rapidly
do these attributes recover to old-growth conditions? This is the first assessment of forest
recovery after windthrow events in the Northwestern Amazon, and provides insight into
the different regional patterns of forest dynamics and vulnerability to natural disturbances.

2. Materials and Methods
2.1. Study Area

The study area is located within ~50 km of Iquitos, Peru, in a region covered with
old-growth lowland forest (no flooded areas and less than 500 m a.s.l.) (Figure 1). Iquitos is
characterized by its lack of dry season (no consecutive months with rainfall ≤ 100 mm) [29].
The mean annual rainfall is 3000 mm, and mean annual temperature is 25.9 ◦C. Precipita-
tion is lowest from June to August with a mean and standard deviation of 183 mm and
±10 mm month−1, respectively [12]. The study sites are managed by the National Univer-
sity of the Peruvian Amazon (UNAP). Because we want to study the timing of recovery
after windthrow disturbances of differing severity, we identified a chronosequence of study
sites that were affected by windthrow disturbances at different times in the past. The old-
growth forests at the study sites have similar climatic, edaphic and floristic compositions.
None of our study sites have experienced any major, recent or direct human impacts such
as logging.

Windthrow events were identified via Landsat imagery using changes in non-
photosynthetic vegetation (NPV) between sequential years [3,30]. This revealed that distur-
bances at the three study sites (Nauta, Napo and Oroza), occurred in a chronosequence
of 2, 12 and 22 years, respectively, prior to transect installation. Oroza (named after the
closest town) was windthrown in 1988, has a disturbed area of 662 ha and was surveyed in
2010 (i.e., 22 years after windthrow). Napo experienced a windthrow event in 1998, has a
disturbed area of 188 ha, and was also surveyed in 2010 (12 years after windthrow). The
windthrow in Nauta occurred in 2009. This site has a disturbed area of 189 ha and was
surveyed in 2011 (2 years after windthrow).

Given that a chronosequence study substitutes space for time [8,31], our study sites
are not strictly replicates, and there are differences in forest structure in the undisturbed
parts of the transects. We acknowledge that additional temporal measurements would
be needed to assess the degree to which this influences our results, and we have, in most
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cases, normalized our data to the respective undisturbed forest when making comparisons
across sites.
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located across the windthrow gradient within each field site.

2.2. Assessing Windthrow Severity

Landsat 5 TM images processed with LEDAPS (Landsat Ecosystem Disturbance Adap-
tive Processing System) [32] were used to detect the occurrence of windthrows. For Oroza,
Landsat image P063R03 from 17 April 1988 (prior to disturbance) and 24 September 1988
(after disturbance) were used; for Napo, P062R03 from 19 August 1998 and 22 October
1998; and for Nauta, P063R03 from 2 September 2009 and 7 December 2009. Landsat
5 imagery with Ecosystem Disturbance Adaptive Processing System (LEDAPS) is available
in the Google Earth Engine https://earthengine.google.com, (accessed on 24 February
2020) [33], which is the platform used for our imagery analysis and Landsat imagery
processing. Windthrows were identified by their spectral characteristics (endmembers)
and their distinctive shape diverging from a central area with radiant corridors sepa-
rated by forest [1]. We used spectral mixture analysis (SMA) [34] to quantify the fraction
of distinct endmembers. Specifically, we used image-derived endmembers: green pho-
tosynthetic vegetation (GV), non-photosynthetic vegetation (NPV), and shadows. The
fractions of NPV and GV were then normalized without shadows as NPV/(GV + NPV)
and GV/(GV + NPV) [3,30,34]. Metrics of the windthrow area and damage are derived
from ∆NPV [3,6,15,30,35].

https://earthengine.google.com
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Using the ∆NPV, we estimated the percentage of trees directly toppled or killed in
the studied windthrows by using a locally adjusted predictive windthrow tree-mortality
model (Equation (1)) [12]:

M(mortality, in %) = 99.86·∆NPV (1)

To assign the mortality value by subplot (10 × 30 m), we resampled the image at a
greater spatial resolution (from 30 × 30 m to 3 × 3 m), and extracted weighted ∆NPV
values based on the pixels comprising subplots using the Zonal statistics tool available in
QGIS 3.10.3. The ∆NPV values were used to classify windthrow severity at the subplot
level, complementing previous studies in the CA [8].

2.3. Forest Inventory

At each site, we installed 10 m wide transects of varying lengths, with a total area of
three hectares for Napo and Oroza, and 3.09 ha for Nauta. In Napo and Oroza, the transects
were subdivided into 100 subplots of 300 m2 each (i.e., 30 m × 10 m), and 103 subplots for
Nauta, yielding a total of 303 subplots for our analysis. The transects encompassed the
entire gradient of windthrow tree-mortality derived from our remote-sensing metric [6,12].
In each subplot we measured the diameter of trees > 10 cm DBH (diameter at breast
height, 1.3 m). Combining all sites, we recorded 4889 living trees. A botanical sample was
collected from each recorded species for tree identification. A summary of forest floristics
characteristics by severity is shown in Appendix A. Tree locations were determined using
a local reference system (UTM 18S) and the following procedure. First, a handheld GPS
receiver (Global Position System, Garmin Map76 CSx, Olathe, Kansas, U.S.A) was used to
locate the start point of each transect, then the “x” and “y” coordinates of each tree were
measured using a rangefinder laser (Trimble Laserace 1000, Sunnyvale, CA, USA) based on
their distance and angle from the transect’s starting position.

2.4. Data Processing and Analysis

The basal area (BA) of recorded trees m2 ha−1 was estimated from the diameter
at breast height assuming a circular trunk shape [36]. As there are no locally adjusted
allometries, we estimated individual tree aboveground biomass (AGB) using references
from other Amazon regions (Models 1, 2 and 3, Table 1). The AGB at the subplot level was
calculated by summing the individual biomass of trees recorded in each subplot.

Table 1. Allometric equations used for AGB estimation.

Model Equation Reference

Model 1 AGBest = exp [−1.803 − 0.97 E + 0.976 ln (WD) + 2.673
ln (D) − 0.229 [ln(D)]2] Equation (7) in [37]

Model 2 AGBest = 0.230 D2.406·(WD)0.88 Equation (33) in [5]

Model 3 AGBest = 0.183 D2.328 Equation (13) in [5]

D = diameter (cm), WD = wood density (g/cm3), E = environmental stress.

Since Models 1 and 2 include wood density as a predictor, we compiled wood
density values of recorded species from previous studies conducted in the Amazon
Basin [5,8,38]. Values were assigned using data at the species, genus, or family level (in
order of preference), depending on the availability and geographical proximity of our study
region. Model 3 was applied to individual trees from species for which wood density was
not reported.

Forest structural attributes such as biomass can be over- and/or underestimated due
to spatial variations in small plots containing relatively large individual trees [5,6,39].
Previous studies from the Central Amazon suggest that robust estimates of biomass require
sample units with areas between 0.08 ha to 0.12 ha [8,39]. Therefore, to reduce intrinsic



Forests 2021, 12, 667 5 of 15

spatial variations in biomass estimates, we binned subplots from our study sites based on
their windthrow severity. The final area of our binned plots ranged between 0.09–0.12 ha.

2.5. Statistical Analysis

A chi-square test at the 5% significance level was used to compare the diameter
distribution of trees in old-growth plots. A Student’s t-test was used to assess whether
differences in mean DBH, basal area, and average AGB were statistically significant be-
tween disturbed and old-growth forest. To compare tree size, basal area, and AGB among
successional stages, we used a one-way ANOVA. For reporting forest recovery, we as-
sumed a 10% uncertainty around the respective undisturbed reference, i.e., a subplot was
considered ‘recovered’ if it attained 90% of the old-growth value for a given attribute.
We estimated the time required to recover old-growth levels of basal area and AGB by
fitting linear regressions to the subplot-level data using the time since windthrow as the
predictor. We further calculated 90% confidence bands of the response in order to visualize
uncertainties. Although our high number of subplots (total of 303) allows for calculating
confidence intervals and p-values independent of data distribution, these may be overly
optimistic as they do not account for site-level autocorrelation. The statistical analyses
were carried out in the statistical software package R 4.0.3 [40].

3. Results
3.1. Subplot Distribution by Disturbance Severity Class

Estimates of windthrow tree-mortality (Equation (1)) and the locations of transects at
respective sites allowed us to calculate the number of plots and the area occupied by each
severity class (Table 2). These classes encompass the range of disturbance severity from
old-growth forest to low, moderate, high, and extreme severity, and are given in Table 2.

Table 2. The number of subplots and their total area (ha) for each windthrow tree-mortality category
(defined as % of individuals) and disturbance severity class. Subplot data are given across the three
study sites and periods of time (year) since windthrow.

Mortality (%) Disturbance
Severity

Years Since Windthrow Total Number of
Subplots by Severity2 Years 12 Years 22 Years

≤4 Old-growth 39 (1.17 ha) 46 (1.38 ha) 35 (1.03 ha) 120

>4 & ≤20 Low 27 (0.81 ha) 20 (0.6 ha) 17 (0.51 ha) 64

>20 & ≤40 Moderate 14 (0.42 ha) 14 (0.42 ha) 7 (0.21 ha) 35

>40 & ≤60 High 10 (0.30 ha) 7 (0.21 ha) 15 (0.45 ha) 32

>60 (max:94) Extreme 13 (0.39 ha) 13 (0.39 ha) 26 (0.78 ha) 52

Total subplots by years 103 100 100 303

3.2. Structural Attributes of Old-Growth Forests

Old-growth forest subplots at our study sites had a mean (± standard deviation)
trees per hectare (TPH) of 562 ± 87 trees ha−1, BA of 24.8 ± 2.3 m2 ha−1 and AGB of
380 ± 156 Mg ha−1. We assessed possible pre-disturbance differences among old-growth
forests by assessing the mean diameter of trees, the basal area and the AGB across old-
growth plots. The results of the ANOVA indicated a significant difference in forest structure
among the study sites for BA (p = 0.003) and AGB (p = 0.002), but no significant differences
for mean DBH (p = 0.079). A post-hoc T-test (p-adjust using the Benjamin–Hochberg
method) indicated that there is no statistical evidence of differences in mean DBH (p = 0.31),
BA (p = 0.55), and AGB (p = 0.71) at the Napo and Nauta sites. The Oroza site showed
significant differences from the Napo site for BA (p = 0.02) but no difference from the Nauta
site (p = 0.06). For AGB, Oroza was significantly different from Nauta and Napo (p = 0.007
and p = 0.004, respectively). For mean DBH, Oroza did not differ significantly from Napo
(p = 0.07) or Nauta (p = 0.3).
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3.3. Recovery Patterns of Structural Attributes
3.3.1. Mean Diameter, Tree Density and Basal Area

We did not find significant differences in the size distribution of trees recorded at
varying windthrow severities. However, mean DBH was significantly reduced in extremely
disturbed plots 2 years after windthrow (t-test p = 0.03), but differences were not significant
12 years (t-test p = 0.1) and 22 years (t-test p = 0.16) after windthrow. We therefore suggest
that in extremely disturbed areas, DBH has recovered to old-growth levels by year 12.
For moderate and high severities, no significant differences were observed 22 years after
windthrow, with t-test values of p = 0.58 and p = 0.50, respectively.

The three sites, spanning 2 to 22 years after disturbance, show clear recovery of
structural attributes in the decades following the respective windthrow events. Figure 2a
shows the number of trees per hectare as a function of windthrow severity and recov-
ery time. Two years after windthrow disturbance, the number of trees per hectare was
382 (± 35) trees ha−1 in extremely disturbed areas. This rapidly increased to 599 (± 55)
trees ha−1 and 578 (±112) trees ha−1 12 and 22 years after windthrow disturbance, respec-
tively. This apparently fast recovery of TPH was also observed for high and moderate
windthrow severities. Figure 2b shows the basal area (BA) as a function of windthrow
severity and recovery time. Comparing the BA of extremely disturbed forest 2 years fol-
lowing the windthrow event (12.46 ± 4.5 m2 ha−1) with that of extremely disturbed forest
after 12 years (23.52 ± 4.51 m2 ha−1) and 22 years (24.46 ± 5.03 m2 ha−1) yields a gradual
increase over time. Similar recovery patterns are observed for the high, moderate and low
severity categories.
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Figure 2. Recovery of (a) tree density (N tree ha−1), and (b) mean basal area (m2 ha−1) of old-growth
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95% confidence intervals given by the error bars. Dashed dark green lines show the old-growth mean
(of the three sites).

3.3.2. Aboveground Tree Biomass

Out of the 4889 trees recorded in our study, 2171 (44.5%) were assigned wood density
values at the species level, 1554 (31.7%) at the genus level and 523 (10.7%) at the family
level. We did not assign wood density values for 641 (13.1%) trees. We used 95 binned
plots distributed over 4 severities and 3 measured years (ranging from 0.09 ha. to 0.12 ha.).
Estimates of AGB differed when using Model 1 [37] versus Model 2 [5], mainly due to
the relatively higher values given for trees larger than 50 cm DBH by Model 1. However,
regardless of which model was used, the overall trajectory of AGB recovery did not change
(Appendix B).



Forests 2021, 12, 667 7 of 15

Extreme disturbance (>60% mortality) reduced the mean AGB to 163 ± 68 Mg ha−1

(2 years after windthrow). AGB increased to 323.4 ± 138.7 Mg ha−1 and 327.5 ± 86.2 Mg ha−1,
12 and 22 years after disturbance, respectively. This AGB recovery process was also
observed for sites with high severity. Although AGB loss was considerably lower at low
and moderate severity, these areas showed an increased biomass compared to old-growth
levels 12 years after windthrow. AGB values differed among studied old-growth areas
(see details in Appendix C). For these reasons, AGB recovery in disturbed areas was
analyzed relative to old-growth values. Thus, a relative sequence of AGB recovery was
made (Figure 3A, bottom panel). As suggested by a linear model (Figure 4-Iquitos), AGB
stocks at all windthrow severities will recover to ~90% of that observed in contiguous
old-growth forest over a time span of 22 years.
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4. Discussion
4.1. Patterns of Recovery after Windthrow

Differences in forest attributes exist across the Amazon Basin [41,42], including tree-
mortality predictors [10,43] that can explain different mortality/survival mechanisms
when compared across a large region. Winds are an important mechanism of natural
disturbance in forests worldwide [44–46]. Windthrows produce varying levels of tree
damage/mortality that change forest structure [6,20] and can initiate varying successional
trajectories [8,15,28]. Our results give further evidence to the importance of wind as a major
disturbance mechanism in Amazon forests [9,12,15,47]

Forest inventories at windthrow sites in the Northwestern Amazon (our plots) and
Central Amazon [5,8,15] followed the same overall sampling and analysis design. The
degree of windthrow tree mortality estimated from ∆NPV was higher (up to 95%) in our
Northwestern Amazon sites compared to the Central Amazon (up to 70%) [5,12,15]. For
that reason, we included one additional severity class to represent extreme windthrow
tree-mortality (>60%).

The 562 ± 87 trees ha−1 in our old-growth forests is similar to the number reported by
other studies conducted in the Northwestern Amazon, for example 608–616 trees ha−1 [48],
559 ± 74 trees ha−1 [41], 589 ± 20 trees ha−1 [49], as well as in the Central Amazon
(583 ± 46 trees ha−1) [15]. Our data on stem density (Figure 3A, top panel) shows that
12 years after windthrow, the windthrown forest reaches the same values observed in
the adjacent/contiguous old-growth, and maintains this pattern at least until 22 years
of recovery. Compared to plots in the Central Amazon, (Figure 3B, top panel) the pat-
terns of forest recovery are similar in terms of TPH and the time required to recover to
old-growth values for both regions is between 12 and 14 years, independent of the sever-
ity. Tree density was smaller in the Northwestern Amazon indicating that, for a given
windthrow severity, mortality was relatively higher in this region than in the Central
Amazon. Tree density recovery following disturbances was also faster in Iquitos (NWA)
compared to Manaus (CA). In the Northwestern Amazon, tree density was reduced to
377 ± 89 trees ha−1 and 382 ± 35 trees ha−1 2 years after windthrow disturbance in the
>40% and > 60% tree-mortality categories, respectively. In the Central Amazon, tree density
was 422 ± 121 trees ha−1 4 years after disturbance in the >40% tree-mortality category [15].
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Basal area in old-growth forests in the Northwestern Amazon was previously reported
as ~28 m2 ha−1 [41] and 27.65 (±2.0) m2 ha−1 [49]. These values are similar to those found
at our study sites in the Northwestern Amazon (24.8 ± 2.3 m2 ha−1) and those in the
Central Amazon (26.8 ± 2.4 m2 ha−1) [15]. In our study, the estimated recovery time for the
relative basal area (Figure 3A, middle panel) shows a gradual increase in all the windthrow
severities. Compared with the Central Amazon (Figure 3B, top and middle panels), we
observed a faster recovery of tree density and basal area in the Northwestern Amazon.
This also contributes to a more rapid recovery of biomass [15,50] and may be related to
changes in floristic composition and species diversity [15,51].

4.2. Time Span of Biomass Recovery

In tropical forests, the recovery of biomass following disturbance can vary greatly
depending on the latitude, type and severity of the disturbance. In secondary forests
created by human disturbances (e.g., slash-and-burn, and clear cut), biomass recovery to
old-growth conditions can take from 66 [52] to >100 years [31,53–55]. These differences in
time reflect, among other factors, the availability of nutrients for regrowth [56]. A hurricane
in Puerto Rico reduced biomass by 50% [57]. Moreover, impacts and recovery times for this
disturbance depended strongly on the degree of hurricane damage, with biomass recovery
taking from 4 to 6 years (F0 damage), and from 50 to 150 years (F3 damage) [58,59]. This
pattern was also observed after selective logging in Tapajos, Brazil (Central Amazon).
Biomass recovery took ~13 years [60] and minimally affected forest carbon and water
exchanges [61].

Previous studies in old-growth Amazon forests reported AGB ranging from 303 to
385 Mg ha−1 [62], 155 to 425 Mg ha−1 [63] and ~256 Mg ha−1 [64]. Regional-scale variations
in biomass are well documented and likely related to factors such as climate [21,22], soils
and nutrient availability, or geomorphological characteristics [23]. The causes of regional
variations in vegetation structure across different forest types [64] and the main drivers of
tree mortality are not yet fully understood [10]. Our results highlight the importance of
large-scale windthrows in shaping forest structure in the Northwestern Amazon.

In the Amazon, windthrow distribution extends from the Northwestern Amazon to
the Central Amazon [12], showing a spatial and temporal variability in gap sizes [11,65]
and mortality rates [6,8,9,12]. In our study, the estimated time to recover AGB increased
slightly with windthrow severity. In our study, the recovery to old-growth levels occurred
after 22 years (Figure 3A, bottom panel), whereas in the Central Amazon, 24 years were
only enough to recover the old-growth levels of attributes observed in forests exposed to
low-severity windthrow, and showed a slower growth increment for moderate and high
severities even 27 years after windthrow (Figure 3B, bottom panel).

We described the trajectories of biomass recovery in the Northwestern and Central
Amazon using linear models (Figure 4). For the Northwestern Amazon, we estimated
recovery to be at least > 90% of the old-growth condition after 14 years, 15 years, 18 years,
and 20 years since windthrow for low, moderate, extreme, and high windthrow tree-
mortality, respectively. For the Central Amazon we estimated ~10 years, ~30 years, and
~37 years for low, high, and moderate windthrow tree-mortality, respectively (details
in Supplementary Material SM1, SM2). Differences in the width of confident intervals
between the Northwestern and Central Amazon in Figure 4 reflect the number of binned
plots used for each site and the numbers of measured years. In the Central Amazon, more
complex models such as the generalized additive model (GAM) were used for estimating
how biomass recovered to pre-disturbance levels (from 27 to 40 years, maximum) [8].

Our study indicated a faster recovery of biomass in the Northwestern Amazon than in
the Central Amazon, which may be explained by the higher productivity in this region [26],
and potentially related geographic variations in community attributes, including larger tree
diversity [42] which can influence tree mortality patterns [12]. In addition, high competition
in combination with water availability [25,66] promotes high productivity, and species that
sacrifice defenses in favor of the competitive advantage obtained by rapid growth and low
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wood density may be favored in regions with severe disturbance regimes [43]. Thus, faster
recovery could be the result of adaptation to more frequent windthrow disturbance in the
Northwestern Amazon [12], which provides supporting evidence for the growth-defense
hypothesis [67].

Ecologists have long recognized that disturbances and recovery processes overlap in
spatial and temporal dimensions [68]. In our study sites, the density and size distribution of
trees had returned to old-growth levels only 12 years after windthrow. Furthermore, basal
area and biomass recovered to pre-disturbance levels within 20 years of the disturbance.
This is ~50% faster than the recovery from windthrows observed in the Central Amazon.
Future research on forest recovery from windthrows should include a component of
geospatial analysis to help explain individual tree response [8].

5. Conclusions

This study demonstrated rapid recovery of tree density, basal area, and AGB in the
two decades following windthrow events that caused mortality rates >60% in forests near
Iquitos, Peru. The observed recovery rates are nearly twice as fast as those reported for a
comparable study conducted in the slower-growing forests of the Central Amazon. The
variations in forest damage and the recovery dynamics across this geographical and climatic
gradient emphasize the effect that extreme wind and rain associated with convective storms
can have on the spatial variability of forest structure across the Amazon Basin.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12060667/s1, Html SM1: Chronosequences (LM CI = 90%) for AGB recovery (>90% Old-
growth conditions) across a range of windthrow severities in Iquitos, Peru (Northwestern Amazon),
Html SM2: Chronosequences (LM CI = 90%) for AGB recovery (>90% Old-growth conditions) across
a range of windthrow severities in Manaus, Brazil (Central Amazon).
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Appendix A

Table A1. Summary of forest floristics characteristic by severity and years after windthrows.

Years after
Windthrow Severity Number of

Families
Number of

Genus
Number of

Species

2

Extreme 29 52 75

High 20 42 68

Moderate 23 45 76

Low 39 80 174

Old-growth 46 112 245

12

Extreme 34 86 125

High 26 53 79

Moderate 41 95 161

Low 46 100 185

Old-growth 52 159 342

22

Extreme 39 112 222

High 39 84 155

Moderate 31 54 82

Low 34 89 170

Old-growth 47 120 257
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