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Abstract

Speech signals have a unique shape of long-term modulation spectrum that is distinct from environmental
noise, music, and non-speech vocalizations. Does the human auditory system adapt to the speech long-term
modulation spectrum and efficiently extract critical information from speech signals? To answer this question,
we tested whether neural responses to speech signals can be captured by specific modulation spectra of
non-speech acoustic stimuli. We generated amplitude modulated (AM) noise with the speech modulation
spectrum and 1/f modulation spectra of different exponents to imitate temporal dynamics of different natural
sounds. We presented these AM stimuli and a 10-min piece of natural speech to 19 human participants under-
going electroencephalography (EEG) recording. We derived temporal response functions (TRFs) to the AM
stimuli of different spectrum shapes and found distinct neural dynamics for each type of TRFs. We then used
the TRFs of AM stimuli to predict neural responses to the speech signals, and found that (1) the TRFs of AM
modulation spectra of exponents 1, 1.5, and 2 preferably captured EEG responses to speech signals in the d
band and (2) the u neural band of speech neural responses can be captured by the AM stimuli of an exponent
of 0.75. Our results suggest that the human auditory system shows specificity to the long-term modulation
spectrum and is equipped with characteristic neural algorithms tailored to extract critical acoustic information
from speech signals.

Key words: amplitude envelope; auditory receptive field; neural entrainment; speech perception; temporal proc-
essing; temporal window

Significance Statement

Speech signals have a unique long-term modulation spectrum shape that differs speech from other natural
sounds. Does the human auditory system adapt to the speech long-term modulation spectrum and effi-
ciently extract critical information from speech signals? To answer this question, we generated artificial
sounds with various modulation spectra and examined whether neural encoding models derived from spe-
cific modulation spectra can better explain neural responses to speech signals than others. We found that the
modulation spectra with the exponents that are close to the speech modulation spectrum preferably captured
electroencephalography (EEG) responses to speech signals than others. Our results suggest that the human au-
ditory system shows high sensitivity to the long-termmodulation spectrum specific to speech signals.
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Introduction
Sensory systems evolve to adapt to environmental sta-

tistics and to efficiently extract features in natural stimuli es-
sential to animals’ survival (Barlow, 1961). For instance, the
human brain is equipped with cortical areas and neural
processing algorithms specialized for recognizing facial fea-
tures (Kanwisher et al., 1997; Tsao and Livingstone, 2008).
In parallel, speech is fundamental to human communication,
and hence the human auditory system must evolve to be
sensitive to unique acoustic properties of speech signals
(Belin et al., 2000; Overath et al., 2015). One acoustic feature
that differentiates speech from other natural sounds is long-
term modulation spectrum (Ding et al., 2017). Natural
sounds, such as environmental noise, speech, music, and
some vocalizations, often have broadband modulation
spectra that show a 1/f pattern with its exponent indicating
how sounds are modulated across various timescales (Voss
and Clarke, 1978; Theunissen and Elie, 2014). Compared
with environmental noise and some vocalizations, speech
has a unique modulation spectrum with an exponent of fre-
quency between 1 and 1.5 (Singh and Theunissen, 2003)
and a prominent peak around 4Hz (Ding et al., 2017; Varnet
et al., 2017). Does the human auditory system show sensi-
tivity to the specific shape of speech long-term modulation
spectrum?
Characteristic temporal dynamics of sounds (i.e., tem-

poral autocorrelation and periodicity) manifests in their
long-term modulation spectra (Wiener, 1930). Speech is
quasi-periodic with syllables ranging from 150 to 300ms
(Rosen, 1992); speech intonations and pitch contours
span across multiple syllables and reside in an even larger
timescale (.500ms; Ghitza and Greenberg, 2009). The
long-term modulation spectrum of speech can be consid-
ered as a first-order summary statistics that characterizes
such multiscale temporal dynamics. The slope of the
speech modulation spectrum indicates that the first-order
acoustic information is primarily carried by the low-fre-
quency range (e.g.,,10Hz). To efficiently process speech
signals, the human auditory systemmay develop canonical
neural algorithms (e.g., specialized receptive fields) to ex-
tract essential acoustic information over multiple time-
scales manifested in the speech modulation spectrum
(Poeppel, 2003; Ghitza and Greenberg, 2009; Ghitza,
2012; Giraud and Poeppel, 2012). The long-term modula-
tion spectrum of speech signals may prove to be crucial to
speech perception, and artificial sounds with a speech-like
modulation spectrum may efficiently drive speech-specific
neural responses of the human auditory system. Validating

those hypotheses can help deepen our understanding of
fundamental neural mechanisms of speech perception
and potentially reveal speech-specific auditory proc-
esses, analogous to face-specific neural processes
(Tsao and Livingstone, 2008).
Here, we employed an electroencephalography (EEG)

encoding framework to derive temporal response func-
tions (TRF) from speech signals and artificial sounds with
modulation spectra typical of speech signals and other
natural sounds (Di Liberto et al., 2015; O’Sullivan et al.,
2015; Holdgraf et al., 2017). The rationale is that, if the au-
ditory system simply responds to temporal changes in
sounds and is indifferent to the shape of long-term modu-
lation spectra of sounds, TRFs derived from sounds with
one type of modulation spectrum should be able to gener-
alize across sounds of different shapes of modulation
spectra. In contrast, if long-term modulation spectra are
indeed critical to different types of natural sounds, the
TRFs derived from sounds with different modulation
spectra should manifest specificity to the corresponding
modulation spectrum. Artificial sounds with a speech-like
modulation spectrum, but not other modulation spectra,
would drive the auditory system in a similar manner as
speech signals, and the TRFs derived from those artificial
sounds of the speech-like modulation spectrum should
be able to predict the neural responses to speech signals.
We selected a natural speech excerpt and generated

amplitude modulated (AM) sounds with a speech modula-
tion spectrum and with 1/f modulation spectra with differ-
ent exponents (Garcia-Lazaro et al., 2006). In the first
session of the experiment, while recording EEG signals,
we presented the AM stimuli to participants who were in-
structed to detect a short tone inserted in half of the AM
stimuli. In the second session, the participants listened to
the speech excerpt while undergoing EEG recording. We
derived TRFs from each type of AM stimuli, which were
then used to predict neural responses to the speech ma-
terial. We were interested to see which TRFs derived from
the AM stimuli could best capture neural responses to
natural speech. Moreover, we investigated how acoustic
information was encoded in different frequency bands of
neural signals and tested how different frequency bands
of amplitude modulations of sounds contributed to en-
coding neural signals.

Materials and Methods
Participants
Twenty-one native German speakers (age 23–49, one

left-handed, eight females) took part in the experiment. All
participants had normal hearing and no neurologic defi-
cits according to their self-report. Two participants were
excluded because one participant did not finish the ex-
periment and the EEG recordings from the other partici-
pant lacked triggers for stimulus onsets. The formal
analyses included 19 participants (ages 23–49, one left-
handed, eight females). Written informed consent was ob-
tained from each participant before the experiment and
monetary compensation was provided after the experi-
ment. The experimental protocol was approved by the
Ethics Council of the Max Planck Society.
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Stimuli
We selected a German TEDx talk given by a native male

German speaker, Redesigning Design (www.youtube.
com/watch?time_continue=784&v=dAljDx_lSQ4), and ex-
tracted the audio track using an online tool (which is not
available any more. Please contact the corresponding au-
thor for information regarding the audio track). The audio
data from the 4th minute to the 13th minutes of the talk
were further selected to avoid musical contents as well as
vocal and clamping sounds from the audience. Therefore,
a 10-min recording of German speech material was used
in the current experiment. The sampling rate of the
speech material was 20,000Hz, and the amplitude was
normalized to 70-dB sound pressure level (SPL) by refer-
ring the speech material to a 1-min white noise piece,
which was measured beforehand to be 70-dB SPL at the
experimental setting.
We followed the methods used in Garcia-Lazaro et al.

(2006) to generate AM stimuli with 1/f modulation spectra
of different exponents and the modulation spectrum of
the speech material. A schematic plot of the stimulus gen-
eration process is shown in Figure 1A. We first generated
AM envelopes of 1/f modulation spectra using an inverse
Fourier method. We fit the modulation spectra to have 1/f
shapes with exponents at 0.5, 0.75, 1, 1.5, and 2 (Fig. 1A,
left panel) and converted the spectra from the frequency
domain to the temporal domain using inverse fast Fourier
transformation (iFFT). The phase spectra were obtained
from pseudo-random numbers drawn uniformly from the
interval [0, 2p ]. We fixed the sampling rate to 20,000Hz
and then created modulation spectra of 20,000 � 10
points with a frequency range of 0–10,000Hz, so that
each generated envelope was 10 s long. Using different
random number seeds for the phase spectra, we were
able to generate 60 AM envelopes (Fig. 1A, middle panel)
with different dynamics (modulation phase) for each ex-
ponent. We next applied the same procedure to generate
AM stimuli with the modulation spectrum of the speech
material. We divided the speech material into ten 1-min
pieces and used one frequency band covering the fre-
quency range between 80 and 8000Hz to extract the
broadband AM envelope from each 1-min piece. The
speech AM envelopes were converted to modulation
spectra using FFT and were then averaged across the ten
speech pieces. We downsampled the modulation spec-
trum so that the averaged speech modulation spectrum
had 20,000 � 10 points, from which we generated 60 AM
envelopes of 10 s following the same procedure generat-
ing the 1/f AM envelopes.
All the AM envelopes generated from 1/f modulation

spectra and speech modulation spectra were then filtered
with a high-pass Butterworth filter of an order 3 at 1Hz and
a lowpass Butterworth filter of an order 6 at 30Hz. We se-
lected envelope segments of 5 s from the middle of the 10-s
envelopes for further usage to avoid artifacts caused by fil-
tering in the beginning and the end of the filtered AM enve-
lopes. All the selected AM envelopes (5 s long) were
normalized to have a modulation depth of 100%, which is
that the largest point of the envelopes had a magnitude of 1
and the lowest point had amagnitude of 0.

The AM stimuli were generated by modulating broad-
band white noise with the AM envelopes created above.
We first generated a 5 s piece of white noise using a ran-
dom number generation function, ‘randn,’ in MATLAB
R2016b (The MathWorks) at a sampling rate of 20,000Hz
and then directly modulated the amplitude of the noise
piece using the AM envelopes without dividing the noise
piece into different frequency bands. Each piece of white
noise was independently generated for each AM stimulus.
We generated 60 AM stimuli with different modulation
phases for each type of AM envelopes, so that each AM
stimulus of each type of AM envelopes had distinct modu-
lation phases from the other 59 AM stimuli. Hence, we
had six modulation spectra (five types of 1/f modulation
spectra and one speech modulation spectrum) and totally
60 � 6 AM stimuli. We applied a cosine ramp-up function
in a window of 50ms at the onset of all AM stimuli and a
sine ramp-down function of 50ms at the offset. The am-
plitude of the AM stimuli was normalized to;70-dB SPL.
All the AM stimuli and scripts for generating materials

and analyses can be found in the OSF project folder of the
present study: https://osf.io/yp4k3/.

Acoustic analysis on stimuli
To characterize amplitude modulations of the AM stim-

uli and to simulate outputs of cochlear filters, we com-
puted an averaged modulation spectrum for each type of
AM stimuli using a gammatone filterbank (Fig. 1B). We fil-
tered the AM stimuli through a gammatone filterbank of
32 bands logarithmically spanning from 80 to 8000Hz
(Patterson et al., 1987; Ellis, 2009). The envelope of each
cochlear band was extracted by applying Hilbert transfor-
mation on each band and taking the absolute values
(Glasberg and Moore, 1990; Søndergaard and Majdak,
2013). The amplitude envelopes across 32 bands were
then averaged and transformed to a modulation spectrum
using FFT. We averaged the modulation spectra across
the 60 AM stimuli for each type of AM envelopes. The a
posteriori AM spectra preserved the shape of modulation
spectra defined a priori (Fig. 1A) and the comparisons of
AM envelopes in the temporal domain also demonstrated
preserved similarity between the a priori and a posteriori
AM envelopes (Fig. 1C).

Experimental protocol and EEG recording
EEG data were recorded using an actiCAP 64-channel,

active electrode set (10–20 system, Brain Vision Recorder,
Brain Products), at a sampling rate of 500 kHz, with a 0.1-Hz
online filter (12dB/octave roll-off). There were 62 scalp elec-
trodes, one electrode (originally, Oz) was placed on the tip
of the nose. All impedances were kept below 5 kV, except
for the nose electrode, which was kept below;10 kV.
The experiment included two sessions. In the first ses-

sion, all the AM stimuli were presented in a randomized
order to each participant during EEG recording. A 1000-
Hz pure tone of 30-ms duration was randomly inserted
into the half of the AM stimuli (30 stimuli for each type of
AM envelopes), and the onset of the tone was randomly
distributed between 0.75 and 4.25 s (Fig. 1D). The signal-
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Figure 1. Stimulus generation, experimental paradigm, and behavioral results. A, AM stimulus generation. The left panel shows the mod-
ulation spectra used to generate AM envelops. The line color codes for different modulation spectra. An example of each AM envelope is
shown in the middle panel. We filtered the AM envelopes through a bandpass filter of 1–30Hz and then modulated broadband white
noise with the AM envelopes to create AM stimuli. An example waveform of the AM stimuli with a 1/f modulation spectrum of exponent 1
is shown in the upper right panel. The spectrogram of the example AM stimulus is shown in the lower right panel. B, Modulation spectra
of AM stimuli. We extracted amplitude envelopes of each AM stimulus and then converted the envelopes to modulation spectra for each
AM type. It can be seen that the trends of the prior modulation spectra were preserved in the modulation spectra of the AM stimuli. C,
Examples of prior AM envelopes and the AM envelopes from the AM stimuli. The upper row shows examples of the prior AM envelopes
and the lower row shows the AM envelopes extracted from the AM stimuli. D, Experimental paradigm for presenting AM stimuli during
EEG recording. E, Box plot of behavioral data. D-prime values were calculated to quantify the performance of tone detection. The thin
black line indicates the threshold of significance (a level of 0.01) derived from a permutation test (for more details, see Results). F, Local
SNR of tones in the AM stimuli. We calculated local SNRs using temporal windows of different sizes. The line color codes for different
AM types as in A. G, Correlation between behavioral data and local SNR. The dashed line represents the threshold of significance (a
level of 0.01) derived from a permutation test (for more details, see Results). The results show that the shorter the temporal window is,
the better the local SNR explains the behavioral performance. The error bars in F, G represent 61 SE over participants. The AM stimuli
can be found in the OSF project folder https://osf.io/yp4k3/.
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to-noise (SNR) of the tone to the AM stimuli was fixed at
�10dB, because in the preliminary test we determined
that a tone at a SNR of �10dB could be detected at an
adequate rate (i.e., avoiding ceiling or floor effects). We
applied a cosine ramp-up function in a window of 10ms
at the onset of the tone and a sine ramp-down function of
10ms at the offset. After each AM stimulus was pre-
sented, the participants were required to push one of two
buttons to indicate whether they heard a tone in the AM
stimulus. Between 1 and 1.5 s after participants re-
sponded, the next stimulus was presented. The AM stim-
uli were presented in four separate blocks with 90 trials in
each block. After each block, the participants could
choose to take a short break or to start the next block. An
illustration of the experimental procedure in this session
can be seen in Figure 1D.
In the second session, participants were presented with

the speech material while undergoing EEG recording and
were required to summarize the contents of the speech
material after the recording. The behavioral task was de-
signed to maintain participants’ focus on the speech ma-
terial and hence the participants’ summaries of the
speech material were not recorded or analyzed.
During the stimulus presentation in the both sessions,

participants were required to keep eyes open and to fix
on a white cross in the center of a black screen. The audi-
tory stimuli were delivered through plastic air tubes con-
nected to foam ear pieces (E-A-R Tone Gold 3A Insert
earphones, Aearo Technologies Auditory Systems).

Behavioral data analysis
Behavioral data were analyzed in MATLAB 2016b (The

MathWorks; RRID:SCR_001622) using the Palamedes
toolbox 1.5.1 (RRID:SCR_006521; Prins and Kingdom,
2009). For each AM envelope type, there were 60 stimuli,
half of which had a tone embedded. A two-by-two confu-
sion matrix was created for each AM envelope type by
treating the trials with the tone embedded as “target” and
the other trials as “noise.” Correct detection of the tone in
the target trials was counted as “hit,” while reports of
hearing a tone in the noise trials were counted as “false
alarm”; D-prime values were computed based on hit rates
and false alarm rates of each table. A half artificial incor-
rect trial was added to the table with all correct trials
(Macmillan and Creelman, 2004).

Local SNR of the embedded tones
The modulation spectra of AM stimuli led to different

temporal dynamics and modulated local SNRs of the em-
bedded tones. The differences of local SNR between AM
envelope types could potentially explain the behavioral
performance of tone detection. Therefore, we calculated
the local SNR of the embedded tones using rectangular
temporal windows of different sizes. We did not vary the
frequency bandwidth within the temporal windows but
calculated power within each temporal window in the
temporal domain, because the AM stimuli were generated
by modulating broadband white noise without decompos-
ing white noise into different frequency bands and each

frequency range can be considered to be equally modu-
lated. We chose nine temporal window sizes: 30, 50, 70,
100, 150, 200, 250, 350, and 500ms and centered the
temporal window in the middle of the tone, 15ms after
tone onset, and computed power of the AM stimuli with-
out the tone in this temporal window. Then, to compute
local SNR, we divided the power of the tone by the power
of the AM stimuli within the temporal window. We trans-
formed the values of local SNR into decibels by taking a
log with base 10 and multiplying by 10.

EEG preprocessing and analysis
EEG data analysis was conducted in MATLAB 2016b

using the Fieldtrip toolbox 20181024 (RRID:SCR_004849;
Oostenveld et al., 2011) and the wavelet toolbox in
MATLAB. EEG recordings were off-line referenced to the
average of activity at all electrodes. Raw EEG data were
first filtered through a bandpass filter from 1 to 45Hz em-
bedded in the Fieldtrip toolbox (a FIR zero-phase forward
and reverse filter using MATLAB ‘fri1’ function with an
order of 4). Trials were then visually inspected, and those
with artifacts such as channel jumps and large fluctua-
tions were discarded. An independent component analy-
sis was applied separately for EEG recording of each
experimental session and used to correct for artifacts
caused by eye blinks and eye movements. After prepro-
cessing, up to 10 trials were removed for each AM type.
To avoid biased estimation in the following analyses, we
only included 50 trials in the analyses for each AM enve-
lope type (;83% of data). Each trial was divided into a
11-s epoch, with a 3-s prestimulus period and a 3-s post-
stimulus period. Baseline was corrected for each trial by
subtracting out the mean of �1 to 0 s in each trial.

Auditory component extraction
We primarily focused on neurophysiological signals

evoked by auditory stimuli in this study. To extract EEG
signals mostly reflecting sound-related responses instead
of arbitrarily selecting certain electrodes (e.g., CZ or FCZ),
we derived a spatial filter using principal component anal-
ysis (PCA; Fig. 2A). We first averaged over all the trials of
the AM stimuli (300 trials) for each participant and calcu-
lated an evoked response to the stimulus onset at each
EEG electrode. PCA was then applied on the evoked re-
sponse from 0 to 500ms after the stimulus onset across
all electrodes. For each participant, we selected the
weighting matrix (spatial filter) of the first PCA component
and then applied the spatial filter both on each trial of the
AM stimuli and on the EEG recording of the speech mate-
rial, so that the derived signals were weighted over all
EEG electrodes and reflected summarized auditory com-
ponents. As PCA sometimes reversed polarity of EEG sig-
nals, the polarity of the derived signals was manually
checked and corrected for each participant. This proce-
dure of component extraction simplified further analyses
and avoided biases introduced by differences of EEG cap
positions and head sizes across participants. We con-
ducted all the analyses on the derived signals.
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Evoked responses to stimulus onset and offset
We calculated evoked responses to the onset and the

offset of the AM stimuli for each AM envelope type.
Baseline was corrected using the EEG signals between
�200 and 0ms before stimulus onset.

Induced power analysis
As each AM stimulus had different dynamics from the

other AM stimuli, we chose to calculate induced power
but not indices sensitive to congruence of phases across
trials, such as inter-trial phase coherence and evoked
power. To extract time-frequency information, single-trial
data from the derived EEG signals were transformed
using functions of Morlet wavelets embedded in the
Fieldtrip toolbox, with frequencies ranging from 1 to 45Hz
in steps of 1Hz. To balance spectral and temporal resolu-
tion of time-frequency transformation, window length in-
creased linearly from 2 to 10 cycles from 1 to 45Hz.
Power responses were extracted from the wavelet

transform output at each time-frequency point and then
were averaged across AM stimuli for each AM type. We
normalized the averaged power responses by dividing the
mean power value in the baseline range (�1 to �0.75 s)
and converted them to decibel units. We calculated in-
duced power spectra by averaging the induced power re-
sponses for each AM type from 0.5 to 4.5 s poststimulus
to avoid effects of neural responses evoked by stimulus
onset and offset.

EEG encoding analysis
To investigate how the auditory system encodes acous-

tic dynamics of different modulation spectra, we em-
ployed an encoding framework to predict EEG signals
using amplitude envelopes of different AM types. The
underlying hypothesis is that, if the auditory system tunes
to certain shapes of AM spectra and acoustic dynamics
of the corresponding AM stimuli efficiently drive auditory

Figure 2. Spatial projection of EEG signals, induced power, and onset/offset responses. A, PCA component extraction and EEG
spatial projection. To extract auditory responses across different EEG electrodes, we averaged EEG signals across all the selected
trials and calculated the onset response to the stimulus onset (left panel). Five PCA components were extracted across all EEG
channels and the first PCA component, which explained the largest variance, was selected. The middle panel shows an example to-
pography of weights of the first PCA component from one participant. We then projected EEG signals of each trial across electrodes
to the first PCA component using its weighting matrix and derived signals that summarized auditory-related responses across EEG
electrodes. B, Spectrograms of induced power for each type of AM stimuli. From left to right, each spectrogram represents induced
power of each AM type. C, Induced power spectra. We averaged induced power from 0.5 to 4.5 s after stimulus onset for each type
of AM stimuli to avoid influences of onset and offset responses and motor components caused by button presses. The line color
codes for different AM spectra as in Figure 1. The shaded area represents 61 SE over participants. No significant differences were
found between different AM types (p. 0.05). D, Onset and offset responses to each type of AM stimuli. The line color codes for dif-
ferent AM type. No significant differences were found between different AM types (p. 0.05).
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responses, the amplitude envelopes of such AM stimuli
can be used to predict auditory responses in EEG signals
with high accuracy. Moreover, if an AM type drives audi-
tory responses in a similar manner that speech signals
drive auditory responses, the kernel trained using this AM
type can be also used to predict auditory responses to
speech signals. Hence, we could draw a conclusion that
the shape of modulation spectrum of this AM type can
capture canonical auditory responses to speech signals.
The method used here is to map between amplitude en-

velopes of AM stimuli averaged across cochlear bands
(for details, see Acoustic analysis on stimuli) and the EEG
signals. A TRF was derived from the amplitude envelopes
of stimuli (S with subscript c indicating critical band) and
their corresponding EEG signals (R with subscript b indi-
cating neural band) through ridge regression with a pa-
rameter (l ) to control for overfitting (superscript t
indicating transpose operation):

TRFc;b ¼ Rt
bRb1l I

� ��1
RbSc:

EEG signals were reconstructed from TRF models as:

Rc ¼ TRFc;b pSc:

The encoding framework included two stages (illus-
trated in Fig. 3A): a training stage to derive TRFs for the
AM stimuli and the speech material and to evaluate how
well EEG signals can be predicted; a cross-encoding
stage to test how TRFs from the AM stimuli predict EEG
signals of the speech material and how TRFs from one
AM type predicts EEG signals of the other AM types.
At the training stage, we used 50 stimuli of each AM

type and their corresponding EEG recordings as a training
set to derive TRFs and a leave-one-out validation proce-
dure was conducted to determine the optimal l that gave
the highest encoding performance. The model perform-
ance was measured by averaging Pearson correlations (r)
of all the leave-one-out trials between the EEG recordings
and their corresponding predictions under the optimal l .
Correlation coefficients were first transformed using
Fisher’s Z-transformation and then averaged. Further
analyses were conducted on the transformed coefficients.
For the speech material, we divided the speech material
and its EEG recording into ten segments. Nine segments
were used to derive TRFs and one segment was used as
a validation set, and therefore a 10-fold validation proce-
dure was conducted to determine the optimal l . The
Pearson correlations of the ten validations under the opti-
mal l were averaged and used as the model performance
for the speech material.
At the cross-encoding stage, we first applied the de-

rived TRFs and l values from the AM stimuli to each of
the ten segments of the speech material and the EEG re-
cordings. Each predicted EEG response was compared
with its original recording, and then the encoding perform-
ance was quantified by averaging model performances
across the ten segments. Second, we applied the derived
TRF from one AM type to the other five AM types. We cal-
culated model performance on each trial of one AM type
and then averaged the model performances for 50 trials

for each AM type, which was used as the encoding per-
formance for this AM type using another TRF from another
AM type. Therefore, a six-by-six cross encoding matrix
was created. On the diagonal, the encoding performance
was calculated using the TRF from one AM type to apply
on the 50 trials of the same AM type, which represented
an upper-bound for the cross-encoding performance.
TRFs were calculated using the multivariate TRF (mTRF)
Toolbox (Crosse et al., 2016).
We tested encoding performance of each frequency band

of EEG signals by dividing the EEG signals into five neural
bands using a fliterbank of two-pass bandpass Butterworth
filters with an order of 4 following conventional definitions: d
(1–3Hz), u (4–7Hz), a (8–12Hz), b (13–30Hz), and g (low g )
bands (31–45Hz). The encoding procedure described
above was conducted in each neural band and in the range
between 1 and 45Hz. The rationale here is that the auditory
cortical responses may only encode acoustic dynamics in
certain neural bands but not all. Therefore, by decomposing
EEG signals into different frequency bands, we could inves-
tigate which neural band specifically encodes acoustic dy-
namics of different AM types.
We further investigated which frequency ranges of

modulation spectra of the AM stimuli were best encoded
in each neural band. We filtered the amplitude envelopes
of the AM stimuli calculated above using a fliterbank of
two-pass bandpass Butterworth filters with an order of 2
and decomposed the amplitude envelopes into frequency
bands linearly distributed from 1 to 45Hz with steps of
2Hz. We repeated the encoding procedures for each
modulation band of amplitude envelopes using each neu-
ral band of EEG signals.

Results
Tone detection performancemodulated by the shape
of modulation spectra and explained by local SNR
Behavioral results
The behavioral results (Fig. 1E) demonstrate that par-

ticipants’ sensitivity to tones (D-prime values) were
modulated by the shapes of modulation spectra of the
AM stimuli, although the global SNR (�10 dB) was
the same across all stimuli. The behavioral perform-
ance was examined using a one-way repeated measures
ANOVA (rmANOVA) with the main factor of AM Type. We
found a significant main effect of AM Type (F(5,90) = 2.32,
p=0.025, hp

2 = 0.131). To further examine in which AM type
tone detection performance is significantly better than in
other AM types, we conducted a permutation test. For each
participant, we permutated labels for AM types and ran-
domly assigned D-prime values to different AM types to
form a new dataset. The permutated D-prime values were
then averaged across the participants and the median was
calculated for the each AM type in this new dataset. As the
labels for AM types were permutated and the medians of
different AM types can be considered to be unspecific to
each AM type, we then averaged the derived medians of the
new permutated dataset. We repeated this procedure 1000
times and derived a threshold of a one-sided a level of 0.01
(Fig. 1E, thin black line). This permutation test avoided the
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problem of multiple comparison and directly addressed the
question that we were interested (Teng and Poeppel, 2020).
We found that tone detection performance in the AM type of
1/f modulation spectrum of exponent 2 was significantly
higher than in other AM types.

Local SNR
As different AM spectra led to different temporal dy-

namics in the AM stimuli, local SNR may be modulated by
AM types. Therefore, we calculated local SNR using rec-
tangular temporal windows of different sizes (for details,

Figure 3. Encoding framework and results. A, Illustration of encoding framework. The AM stimuli of each AM type and the speech
material were used to train TRF models. The TRFs from each AM type were then used to predict neural responses to the other AM
types and the speech material. B, Box plot of encoding results of speech signals. We trained encoding models using EEG signals of
different frequency bands: full band (1–45Hz), d (1–3Hz), u (4–7Hz), a (8–12Hz), b (13–30Hz), and g (31–45Hz). C, Box plots of
encoding results of the AM stimuli. From left to right, each panel shows encoding results from the AM stimuli of each AM type.
From B, C, it can be seen that the TRFs trained using the full band and the d and u bands better predicted neural responses to
both the AM stimuli and the speech material. D, TRF for the speech material. E, TRFs for the AM stimuli. The shaded area repre-
sents 61 SE over participants. F, AM TRFs cross-encoding neural responses to speech signals. We used the TRFs trained from the
AM stimuli to predict neural responses to the speech material. A permutation test was preformed to determine which the TRF mod-
els from the AM stimuli significantly predict speech neural responses (for more details, see Results). We found that the TRFs from the
AM stimuli of 1/f modulation spectra of exponent 1.5 and 2 can best predict speech neural responses in the d band (p, 0.01). G,
Cross-encoding between the AM stimuli. We used the TRFs from the AM stimuli of one AM type to encoding neural responses to the
other AM types. From left to right, each confusion matrix represents each neural band. The results along the diagonal show the encod-
ing results of one type of AM stimuli with its own TRF model. A permutation test was preformed to determine significant encoding re-
sults for each neural band (for more details, see Results); * represents one-sided a level of 0.05; ** represents one-sided a level of 0.01.
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see Materials and Methods). We found that the local
SNRs of tones in different AM stimuli were indeed modu-
lated by AM spectra and varied with temporal window
size (Fig. 1F). We then correlated the behavioral results
with the local SNRs and found that the correlation coeffi-
cients decreased as the temporal window size increased
(Fig. 1G), which was examined by a one-way rmANOVA
with Window size as the main factor (the main effect:
F(8,144) = 3.92, p,0.001, hp

2 = 0.179; linear trend:
F(1,18) = 7.48, p=0.014, hp

2 = 0.294). The correlation coef-
ficients were first transformed using Fisher’s Z transfor-
mation and then went through statistic tests. To further
determine whether correlation at each window size was
significant above chance, we conducted a permutation
test by shuffling labels of AM spectra for local SNRs for
each participant at each window size and correlated the
shuffled local SNRs with the behavioral results. This pro-
cedure created a new averaged correlation coefficient
across participants. We repeated this procedure 1000
times and derived a threshold of one-sided a level of 0.01
at each window size (Fig. 1G, dashed line). We found that
the correlations between the behavioral results and the
local SNRs were significant at all the window sizes, with
the highest correlation at the smallest window size
(30ms). This result suggests that different AM spectra re-
sulted in different local SNRs, which explained differences
of tone detection performance across AM types.
The best tone detection performance was observed for

the AM stimuli of 1/f modulation spectrum of exponent
2 probably because the AM stimuli of exponent 2 have
more modulation components in the low-frequency
range. Although tones were embedded randomly in the
AM stimuli, there were more chances for tones to be in a
position where local amplitude of the AM stimuli of expo-
nent 2 was low. However, an alternative explanation is
that the AM stimuli of exponent 2 fluctuate slowly and
hence the acoustic changes are more predictable com-
pared with the other AM stimuli. Listeners can better pre-
dict envelope changes and monitor the “surprise” caused
by the inserted tones. It would be interesting to separate
between predictability and local SNR by controlling one
factor while varying the other, but admittedly we could not
fully address this question in the current experiment.

Onset/offset responses and induced power do not
significantly differ between different types of AM
stimuli
We calculated induced power for each type of AM stim-

uli to investigate whether different AM types modulated
induced power of different neural bands (Fig. 2B,C). We
chose not to calculate evoked power or phase coher-
ence across trials because each AM stimulus had dis-
tinct modulation phases. We addressed the issue on
how acoustic dynamics in each type of AM stimuli ro-
bustly drive phase-locked neural responses in the fol-
lowing encoding analyses.
We first calculated spectrograms of induced power

(Fig. 2B), which show clear onset and offset responses in
the frequencies below 10Hz. The suppression of power in
the beta band (13–30Hz) can be seen in the spectrograms

after the offset of the stimuli, which was probably caused
by motor preparation for the button presses. Increased
power compared with the baseline (�1 to �0.75 s) in the
u (4–7Hz) and the a (8–12) bands can be observed across
all the AM stimuli. To quantify power changes induced by
different types of AM stimuli, we averaged the induced
power between 0.5 s and 4.5 s after stimulus onset to
avoid influences from onset and offset response. We con-
ducted a one-way rmANOVA at each frequency from 1 to
45Hz with the factor of AM type and found no significant
effects after adjusted false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995; Yekutieli and Benjamini,
1999; p, 0.05) although higher induced power responses
to the AM stimuli of exponents 1 and 2 can be observed
below 10Hz.
We next examined whether the AM spectra modulated

onset and offset responses. We averaged trials from each
AM type in the temporal domain (Fig. 2D). We conduced
one-way rmANOVA at each time point from �200 to
500ms with the factor of AM type and found no significant
effects of AM type after FDR corrections (p, 0.05) for
both the onset and offset responses. This is probably be-
cause we added ramping windows to the beginning and
the end of the AM stimuli, which diminished the influences
of modulation spectra. However, interestingly, the tempo-
ral profiles of the onset responses differed from the offset
responses. While positive peaks were observed around
250ms in both the onset and offset responses, large neg-
ative responses were shown in the offset responses
around 100ms. This observation indicates that, although
both the onset and offset responses were evoked by ab-
rupt changes of acoustic energy, the underlying auditory
processes are likely different (Kopp-Scheinpflug et al.,
2018). The offset responses were possibly further modu-
lated by the button presses in the experiment after offset
of stimuli and reflected neural components of predicting
processes, as all the AM stimuli had the same length (5 s),
participants likely registered the stimulus length and pre-
dicted the end of each AM stimulus. Our previous work
(Teng et al., 2018) showed that the onset responses were
modulated by different frequency modulation spectra
although the same ramping windows were added to the
stimuli of different 1/f modulation spectra. This interesting
difference between the current experiment and Teng et al.
(2018) suggests that not only the shape of amplitude en-
velopes but also spectral details of sounds significantly
modulate auditory evoked responses (Oganian and
Chang, 2018; Teng et al., 2019).

Encodingmodels of AM stimuli show high specificity
to different modulation spectra
We trained encoding models for the AM stimuli and the

speech material and derived TRFs (Fig. 3A). We first quan-
tified how well the encoding model of each type of stimuli
can be used to predict neural responses of different neu-
ral bands, so that we can validate the method and provide
a replication of our previous findings (Teng et al., 2018)
and of speech signals (Di Liberto et al., 2015). We then
employed the TRFs from the AM stimuli to predict neural
responses to the speech material and tested the degree
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of specificity of TRFs to the corresponding modulation
spectra. This aimed to answer our main question, whether
the human auditory system is sensitive to the shape of
modulation spectrum and whether the shape of modula-
tion spectra can be used to capture canonical neural re-
sponses to speech signals.
We followed conventional procedures to train TRFs

models using different types of stimuli (AM stimuli of dif-
ferent AM types and the speech material) and to predict
neural responses to the stimuli. For the speech material,
we replicated previous findings using EEG (Di Liberto et
al., 2015) and showed that neural responses to speech
signals measured by EEG can be robustly predicted using
the encoding model, with the low-frequency neural sig-
nals (d and u bands) showing the best encoding results
(Fig. 3B). We conducted a one-way rmANOVA on the en-
coding results with Neural band as the main factor and
found a significant main effect (F(5,85) = 14.33, p, 0.001,
hp

2 = 0.457) and a significant linear trend (F(1,17) = 33.17,
p, 0.001, hp

2 = 0.661). The encoding results of the AM
stimuli are shown in Figure 3C. We conducted a two-
way rmANOVA on the prediction performance of the AM
stimuli with AM type and Neural band as the main fac-
tors. We found a significant effect of Neural band
(F(5,90) = 47.86, p, 0.001, hp

2 = 0.727) but not of AM
type (F(5,90) = 0.25, p = 0.940, hp

2 = 0.014). The interac-
tion effect is not significant (F(25,450) = 1.21, p = 0.224,
hp

2 = 0.063). The linear trend of Neural band is signifi-
cant (F(1,18) = 60.21, p, 0.001, hp

2 = 0.700) and sug-
gests that the full band and the low-frequency bands
show better encoding performance than the high-fre-
quency bands. The TRFs of the corresponding encod-
ing models of the full band are shown in Figure 3D,E.
We next used the TRFs trained from the AM stimuli to

predict neural responses to the speech material in differ-
ent neural bands (Fig. 3F). To determine which TRFs from
the AM stimuli can robustly predict the speech responses
in different neural bands, we employed a permutation
test. For each participant, we first shuffled the labels of
the prediction performance for different neural bands and
different AM TRFs and then derived a group-averaged en-
coding result. We repeated this procedure 1000 times
and derived thresholds of significance of one-sided a lev-
els of 0.05 and 0.01 for each combination of AM TRF and
neural band. We found that the TRFs from the AM stimuli
of 1/f modulation spectra of exponents 1.5 and 2 can ro-
bustly predict the speech neural responses in the d band
compared with other AM TRFs and neural bands (Fig. 3F).
The TRF from the AM stimuli of speech modulation spec-
trum in the u band can also explain the speech neural re-
sponses, which is probably because the u range of the
AM stimuli of the speech modulation spectrum contains
higher power and preserves crucial features of speech
signals (Ding et al., 2017). It has been shown that speech
modulation spectra have a 1/f exponent of 1.5 (Singh and
Theunissen, 2003), and here, using the AM stimuli of 1/f
exponent 1.5, we could predict the speech neural re-
sponses in the d band. This result indeed suggests that
the human auditory system is sensitive to the shape of
speech modulation spectrum and an artificial sound with

a similar modulation spectrum can drive speech-like neu-
ral responses.
We also found that the encoding model from the AM

stimuli of 1/f exponent 2 significantly predicted the
speech neural responses (Fig. 3F), so an alternative expla-
nation could be that the AM stimuli of 1/f exponents of 1.5
and 2 have high modulation power in the d range than the
other AM stimuli (Fig. 1B) and hence better explained the
speech neural responses in the d range. Therefore, we
conducted a one-way rmANOVA on the prediction per-
formance in the d band with AM Exponent as the main
factor and found a significant main effect (F(5,90) = 2.41,
p=0.048, hp

2 = 0.115), though with a small effect size. It is
worth noting that all the AM stimuli had modulation spec-
tra of a 1/f shape, which means that the modulation
power in the d range was higher than in the other fre-
quency ranges. Therefore, there exist sufficient modula-
tion components in the d range to derive TRFs of the d
band to explain the speech responses in all the AM stimu-
li. However, the encoding performance was extremely low
for the TRFs from the AM stimuli of 1/f exponents 0.5,
0.75, and 1 in the d band (group mean: 0.0011, 0.0054,
and �0.0033, respectively), which is not fully consistent
with this alternative explanation. It is likely that the ratio of
modulation power between the low-frequency range and
the high-frequency range, but not the absolute magnitude
of modulation power in the d range, is crucial here, the
shape of modulation spectrum matters (see Discussion).
We next conducted cross encoding in different neural

bands with the AM stimuli, we used the TRF from one
type of AM stimuli to predict the neural responses to the
other AM stimuli. The reason for this analysis was that we
would like to examine the specificity of the encoding mod-
els trained from different AM stimuli. If high specificity
across different TRF models is observed, the results can
further demonstrate that the shape of modulation spectra
plays an important role in driving distinct neural responses.
The results are shown in Figure 3G. In each neural band,
we conducted a permutation test to determine which TRFs
from the AM stimuli can robust predict the neural re-
sponses to the other AM stimuli. For each participant, we
first shuffled the labels of the prediction performance for
different training exponents and testing exponents, and
then derived a group-averaged encoding results in each
neural band. We repeated this procedure 1000 times and
derived thresholds of significance of one-sided a levels of
0.05 and 0.01 for each combination of training exponents
and testing exponents in each neural band. We found that
the TRFs trained using the full band and the u , a, b and g
bands cannot generalize well from one type of AM stimuli to
the others, though some small effects are shown (Fig. 3G,
far-left and middle panels). In contrast, in the d band more
generalizations were observed. Particularly, the TRFs
trained using the AM stimuli of 1/f exponent 0.75 and of the
speech modulation spectrum can well predict the neural re-
sponses to the other AM stimuli. We further investigated this
finding in the following analyses, in which we decomposed
the AM envelopes into different modulation bands so that
we could have a better understanding on what acoustic
components in the AM stimuli enabled such generalizations.
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Contributions of eachmodulation band to encoding
performance
Modulation components of different frequencies in the

AM stimuli may be differentially extracted by the human
auditory system, which was potentially influenced by the
shape of modulation spectra. For example, although all
the AM stimuli contained considerable modulation com-
ponents between 1 and 30Hz, a high ratio of modulation
power between the low-frequency range and the high-fre-
quency range may emphasize the low-frequency modula-
tion components (Fig. 1A,B). This may be the reason why
the shape of modulation spectra is crucial to different nat-
ural sounds. However, the prominent modulation power in
the low-frequency range may bias TRF models trained
using the whole modulation spectra and hence the TRF
models take into account mainly the frequency ranges
with high modulation power without considering each
modulation band with equal weight. Hence, we decom-
posed the amplitude envelopes of the AM stimuli into dif-
ferent modulation bands and trained a TRF model for
each modulation band. This procedure normalized the
modulation spectra across frequencies and weighed each
modulation band equally during training TRF models.
We first calculated encoding results of the speech ma-

terial and the AM stimuli, respectively, using each modu-
lation component from 1 to 45Hz with a step of 2Hz (for
details, see Materials and Methods) and plotted the re-
sults in Figure 4A,B. We observed that the neural signals
in the low-frequency range (,10Hz) could be robustly
predicted by the encoding models trained using the low-
frequency modulation components, which echoes previ-
ous findings on robust auditory entrainment in the low-fre-
quency range (Luo and Poeppel, 2007; Lakatos et al.,
2008, 2013; Kerlin et al., 2010; Besle et al., 2011; Cogan
and Poeppel, 2011; Ding and Simon, 2012; 2013; Kayser
et al., 2012, 2015; Henry and Obleser, 2012; Ng et al.,
2012; Wang et al., 2012; Herrmann et al., 2013; Peelle et
al., 2013; Doelling et al., 2014; Henry et al., 2014; Riecke
et al., 2015; Zoefel and VanRullen, 2015). Interestingly, we
also observed considerable encoding performance in the
high-frequency range, which is consistent with our earlier
work on auditory processing in the concurrent u and g
neural bands (Poeppel, 2003; Boemio et al., 2005; Giraud
and Poeppel, 2012; Luo and Poeppel, 2012; Teng et al.,
2016, 2017; Teng and Poeppel, 2020).
To further quantify encoding results in each neural band

with its corresponding modulation band, we averaged the
encoding performance within each neural band and its
corresponding modulation band and plotted the results in
Figure 4C,D. For the speech material, we conducted a
one-way rmANOVA on the encoding results with fre-
quency band as the main factor and found a significant
main effect (F(1,18) = 47.95, p, 0.001, hp

2 = 0.727), which
suggests that the encoding performance deceased as the
frequency ranges increased. For the AM stimuli, we con-
ducted a two-way rmANOVA on the encoding results of
the AM stimuli with AM type and frequency band as the
main factors. We found a significant main effect of fre-
quency band (F(4,72) = 31.24, p,0.001, hp

2 = 0.634). The
main effect of AM type is not significant (F(5,90) = 0.95,

p=0.452, hp
2 = 0.050) and the interaction effect is not sig-

nificant (F(20,360) = 1.29, p=0.184, hp
2 = 0.067).

To further examine which type of AM stimuli was prefera-
bly encoded in each frequency band, we conducted a per-
mutation test in each frequency band for different AM
stimuli. For each participant, we permutated labels of AM
types for the encoding performance to form a new dataset.
The permutated encoding results were then averaged
across the participants and the median was calculated for
each AM type in this new dataset. As the labels for AM
types were permutated and the medians of different
AM types can be considered to be unspecific to each AM
type, we then averaged the medians to derive a value that
summarized the medians of this permutated dataset. We
repeated this procedure 1000 times and derived a thresh-
old of one-sided a level of 0.01 (Fig. 4D, thin black line). In
the d band, we found that the prediction performances of
the AM stimuli of 1/f exponents 0.75, 1.5, and 2 were pref-
erably encoded, as well as the AM stimuli of 1/f exponent 1
and of the speech modulation spectrum in the u band and
the AM stimuli of 1/f exponents 1 and 1.5 in the alpha
band. These results are consistent with the findings
in Teng et al., 2018, showing that in the d band the stimuli
with larger 1/f exponents robustly drive auditory responses
and in the u band the stimuli with 1/f exponent 1 specifically
drive auditory responses. Interestingly, the AM stimuli with
the speechmodulation spectrum also sufficiently drive the u
band auditory response, which is probably because this
type of AM stimuli has high modulation components in the u
band and is consistent with previous findings on auditory
entrainment of speech signals (Luo and Poeppel, 2007;
Peelle et al., 2013; Di Liberto et al., 2015).
We used the TRFs trained from the AM stimuli to predict

neural responses to the speech material in different fre-
quency bands (Fig. 4E). To determine which TRFs from
the AM stimuli can robust predict the speech responses
in different frequency bands, we employed the same per-
mutation test in the previous analysis (Fig. 3F). We found
that the TRFs from the AM stimuli of 1/f modulation spec-
tra of exponent 1 can robustly predict the speech neural
responses in the d band. The TRF from the AM stimuli of
1/f modulation spectra of exponent 0.75 in the u band
can also explain the speech neural responses.
We next conducted cross encoding in different fre-

quency bands with the AM stimuli. The results are shown
in Figure 4F. We conducted the same permutation test to
determine which TRFs from the AM stimuli can robustly
predict the neural responses to the other AM stimuli (Fig.
3G). We found that the TRFs trained from the AM stimuli
with the speech modulation spectrum in the d can ex-
plain neural responses the AM stimuli with 1/f exponents
1 and 1.5. This result well echoes the previous finding
that speech signals have a 1/f modulation spectrum of
exponent between 1 and 1.5 (Singh and Theunissen,
2003). A generalization from the TRF from the AM stimuli
of exponent 0.5 to the neural responses to the AM stimuli
with the speech modulation spectrum was also found in
the alpha band. However, in general, the TFRs from dif-
ferent AM stimuli cannot be generalized to other AM
stimuli.
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Discussion
We generated AM sounds (AM stimuli) with various

shapes of long-term modulation spectra to emulate tem-
poral dynamics of natural sounds and investigated how
the neural signatures to different modulation spectra can
be employed to predict the neural responses to speech
signals using an encoding framework. We showed that
the neural responses to speech signals can be predicted
by the encoding models derived from the modulation
spectra similar to the speech modulation spectra in the d
and u bands (Figs. 3, 4). Moreover, the TRFs derived from

the AM stimuli manifested specificity to the corresponding
modulation spectra and cannot be well generalized across
AM stimuli of different modulation spectra, which demon-
strated that the long-term modulation spectrum of sounds in-
deed drives neural responses characteristic to its specific
shape. Furthermore, the long-term modulation spectrum of
sounds modulates tone detection performance (Fig. 1) and in-
duced power of neural responses to AM stimuli (Fig. 2).
Much efforts have been devoted to finding canonical re-

ceptive fields (e.g., spectral-TRF or TRF) of the auditory
system using linear methods (Eggermont et al., 1983;

Figure 4. Encoding results of different modulation components. A, Encoding results of modulation components from 1 to 45Hz for
the speech material. The line color codes for different neural frequency bands. B, Encoding results of modulation components from
1 to 45Hz for the AM stimuli. From the left to right, each panel represents different AM envelope types. It can be seen from A, B
that the neural responses to the speech material and the AM stimuli can be robustly predicted in the low-frequency neural band
(,10Hz) with its corresponding modulation components. C, Box plot of encoding results of speech signals. D, Box plots of encod-
ing results of the AM stimuli. From left to right, each panel shows encoding results of different neural bands. E, AM TRFs encoding
neural responses to speech signals. We found that the TRFs from the AM stimuli of 1/f modulation spectra of exponent 1 can best
predict speech neural responses in the d band (p, 0.01). An effect was also shown for the AM stimuli of 1/f exponent 0.75 in the u
band. F, Cross encoding of the AM stimuli. From left to right, each confusion matrix represents each frequency band. The results
along the diagonal show the encoding results of one type of AM stimuli with its own TRF model. A permutation test was preformed
to determine significant encoding results for each neural band (for more details, see Results); * represents a level of 0.05; ** repre-
sents a level of 0.01.
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Depireux et al., 2001; Theunissen et al., 2001; Mesgarani
et al., 2014), but the estimated auditory receptive fields
often depend on the stimuli used and vary with different
temporal contexts (Bar-Yosef et al., 2002) and auditory
tasks (Fritz et al., 2003). The receptive fields estimated
using artificial sounds, such as short tones and spectral
or temporal modulated white noise, cannot capture neural
processes of complex natural sounds (Laudanski et al.,
2012). On the other hand, crucial acoustic dimensions or
features in natural sounds (e.g., speech, music, and bird-
songs) are not yet clearly understood and therefore the re-
ceptive fields estimated from natural sounds suffer from
lack of interpretability, what features in natural sounds
give rise to such neural responses? One approach to re-
solve this dilemma is to extract individual features from
natural sounds and to investigate each separately, which is
the strategy that we employed here. We focused on ampli-
tude envelops of sounds and varied their modulation spec-
tra to investigate how the long-termmodulation spectrum of
sounds modified neural responses. Indeed, different shapes
of the modulation spectra drove TRFs of distinct character-
istics, which in general showed high specificity to the corre-
sponding modulation spectra (Fig. 3). This finding revealed
that it is key to study neural computations of the auditory
system in the temporal domain, the global temporal proper-
ties of sounds, characterized by the long-term modulation
spectrum, largely modulate neural responses.
Nonetheless, we did observe certain degree of encod-

ing generalizations of TRFs among the AM stimuli and be-
tween the AM stimuli and the speech material used (Figs.
3F,G, 4E,F). The prominent generalization was found in
the d band. All the stimuli had sufficient modulation
power in the d band range (Fig. 1B); the bandwidth of the
d band of both EEG signals and modulation spectra was
narrow compared with other frequency bands. There
were limited shape variations of modulation spectra in the
d band across different AM stimuli and hence limited var-
iations of temporal dynamics in all the stimuli in the d
band. Therefore, such encoding generalizations in the d
band could be because of the similarity of modulation
power and limited temporal variations between the AM
stimuli and the speech material. On the other hand, the
encoding generalization in the u band between AM stimuli
of speech modulation spectrum and the speech material
(Fig. 3F) demonstrates that the long-term modulation
spectrum of speech signals explains neural responses
driven by speech signals, at least under the context of
EEG recording. Although the detailed temporal dynamics
(controlled by modulation phase) differed between the AM
stimuli of speech modulation spectrum and the speech
material, the global temporal properties captured by the
long-term modulation spectrum sufficed to drive neural
responses similar to the ones driven by speech signals re-
corded by EEG. Therefore, a general conclusion would be
that the long-term modulation spectrum of speech signals
preserves critical features in speech signals, which drive
speech-specific neural responses. However, a conserva-
tive conclusion could be that neural responses to speech
signals recorded by EEG reflect mainly the responses to
broadband envelops of speech signals.

Admittedly, our experimental procedures focused on
the acoustic aspect of the speech signals and did not take
into account “top-down” processes in speech perception. As
the participants could understand the speech materials, top-
down or high-level speech processes can largely modu-
late the neural responses, such as semantic context
(Broderick et al., 2018, 2019), listeners’ prior knowl-
edge of speech structure (Teng et al., 2020), and lin-
guistic structure (Kaufeld et al., 2020). It would be
worth considering in the future research whether more
insights can be revealed using this cross-encoding
framework if speech materials of a foreign language,
unintelligible to listeners, are used. Consequently, it is
worth mentioning that the specificity of speech proc-
essing we investigated here mainly involves low-level
acoustic processing in the speech processing hierar-
chy (Hickok and Poeppel, 2007).
One interesting finding of the behavioral results is that,

compared with our earlier finding (Teng et al., 2018) in
which the temporal window size of around 200ms was
found to best explain tone detection performance in the
stimuli with 1/f frequency modulation, here, we found an
advantage of small temporal windows (,50ms; Fig. 1G).
The discrepancy between two sets of results could be be-
cause in the current experiment the stimuli were modulated
in the temporal domain (amplitude modulation) whereas in
Teng et al., 2018 the stimuli were modulated in the spectral
domain. Detecting a tone in the AM stimuli in the current
experiment primarily required listeners to monitor fast
changes caused by tone onsets in the temporal domain
whereas spectral information does not help (amplitudes of
all frequency bands were equally modulated); in Teng et
al., 2018; listeners had to integrate acoustic information
over time to have enough spectral resolution of acoustic
signals to separate tones from dynamic spectral back-
grounds. This lends support to an interesting hypothesis –

to achieve sound recognition, the human auditory system
integrates acoustic information over a long temporal win-
dow (150–300ms) to ensure sufficient spectral resolution
while employing a short temporal window (,50ms) to ex-
tract fast-changing temporal details (Poeppel, 2003;
Boemio et al., 2005; Giraud and Poeppel, 2012; Teng et al.,
2016, 2017; Teng and Poeppel, 2020).
In summary, we found high specificity of encoding

models to AM sounds with different shapes of long-term
modulation spectra. The neural responses to speech sig-
nals recorded by EEG can be explained partly by TRFs
derived from the amplitude modulated sounds with speech-
like modulation spectra. Our results suggest that long-term
modulation spectrum is a crucial feature of sounds and that
investigating neural processing for different types of long-
term modulation spectra can help reveal specialized neural
processes of speech perception.
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