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Abstract

In classical nonlinear media, interactions between single photons are negligible. However,
a strong interaction can be reached using a single atom in a cavity. By driving a closed
cycle in the atom’s level structure we show parametric four-wave-mixing at the single
photon level and a Zeno-blockade in the effective energy level structure. Extending to a
multi-mode cycle, we show a giant cross Kerr nonlinearity between individual photons.
The new platform shows novel physics in quantum nonlinear optics and is promising for
real-time simulation of quantum systems.

Zusammenfassung

In klassischen nichtlinearen Medien sind Wechselwirkungen zwischen einzelnen Pho-
tonen vernachléssigbar. Eine starke Wechselwirkung kann jedoch mit einem einzelnen
Atom in einem Resonator erreicht werden. Indem wir einen geschlossenen Kreislauf in
der Levelstruktur des Atoms treiben, zeigen wir parametrisches Vierwellenmischen auf
Einzelphotonenebene und eine Zenoblockade in der effektiven Energieniveaustruktur.
Eine Erweiterung hin zu einem Multi-Moden-Kreislauf erlaubt die Demonstration einer
riesigen Kreuz-Kerr-Nichtlinearitit zwischen einzelnen Photonen. Die neue Plattform
zeigt neuartige Physik in der nichtlinearen Quantenoptik und ist vielversprechend fiir die
Echtzeitsimulation von Quantensystemen.
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Physics would be dull and life most unfulfilling
if all physical phenomena around us were linear.
Fortunately, we are living in a nonlinear world.

While linearization beautifies physics,
nonlinearity provides excitement in physics.

Y. R. Shen
The Principles of Nonlinear Optics
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1. Introduction

Performing research in general and doing a PhD thesis in particular is, aside from the
scientific endeavor also a highly personal challenge. Therefore, before I motivate this
thesis scientifically and put the performed research into context, I want to start on a
personal note, with my own motivation to work in quantum optics and especially in cavity
quantum electrodynamics (CQED). The spark for my deep fascination for CQED was
ignited during my quantum optics lectures in my master’s course, when I first heard about
the ground breaking experiments at the Ecole Normale Supérieure (ENS) in Paris by
Serge Haroche and his collaborators. Their experiments demonstrated a live-observation
of the birth and death of a single photon [1] and even allowed for nondestructive
counting of the number of photons [2] that are trapped in a photon box. These are
breathtaking experiments, bringing the abstract concept of a quantized energy portion
of an electromagnetic field, a photon, to life. My deep fascination with experiments
on the single photon level then led me to the Max Planck Institute of Quantum Optics
where I could finally work in the field of CQED myself and satisfy my curiosity. I never
regretted that decision and investigating this wondrous world of single photons and their
interaction with single atoms still delights me every day and has ultimately also led to
this thesis.

The quantization of energy in the theory of light-matter interaction was first introduced
as merely a mathematical concept in a semi-classical theory of black-body radiation by
Max Planck [3]. Soon after, Albert Einstein postulated for the first time that light itself
is indeed quantized, a hypothesis with which he could explain the photoelectric effect
[4, 5]. Although at first a controversial concept, the quantization of light with its newly
coined name for the energy quantum, photon, was generally accepted after the discovery
of Compton scattering [6]. As the history of the concept of a photon already shows, light
is intertwined and to a certain extent only meaningful in conjunction with, the interaction
with matter. A complete theory of light-matter interaction [ 7], combining quantum theory
with special relativity, was only developed in the late 1940s by Feynman, Tomonaga and
Schwinger, which earned them the Nobel prize in 1965. It is one of the most precisely
tested theories to date. At its heart lies the interaction of a single charged particle, in the
case of this thesis, the outermost electron of an atom, with a single photon. Although
the interaction between one atom (electron) and one photon is conceptually easy, it is
very challenging to observe experimentally. Experiments with single particles were once
considered impossible [8] and still remain challenging because they require an extremely
high amount of control and isolation from the environment. This also brings the problem
that the interaction between a single atom and a single photon remains very weak. Still,
these obstacles have been overcome by the gradual improvements in cooling [9, 10],
and trapping of atoms [11, 12] and the dramatic increase of the interaction probability
of one photon with one atom in a high finesse resonator [13]. This was only possible
by vastly improved fabrication techniques of high quality mirrors for resonators that
store and focus a photon repeatedly onto an atom. Another key ingredient is a coherent
source of light, which was achieved with the invention of the laser in the 1960s [14].
This ultimately led to the development of experimental cavity quantum electrodynamics
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(CQED) [15]. This field allows not only for the study of light-matter interaction at its
most fundamental level, but for the mediation and investigation of interactions between
photons as well. This photon interaction has been shown in experiments like single [16]
and two photon blockade [17]. It also paves the way for all optical quantum computing,
where photons are used as traveling qubits, which can be generated [18], stored [19],
distributed to different computation nodes [20], or used as quantum gates [21].
Another field of research which, at first glance, appears to be very different, is elec-
tromagnetically induced transparency (EIT). In EIT, a resonantly driven, and therefore
absorbing, medium becomes transparent when an additional coherent light field irradi-
ates the medium. This happens in a three level atom, where the two lasers drive two
distinct transitions in the medium to one common state. Each laser beam alone would
excite the medium and drive transitions, but a quantum interference effect prevents
excitation if both transitions are driven at the same time. This is because the transition
probability amplitudes interfere destructively, rendering the medium transparent. EIT
only happens in a narrow spectral window around the absorption line, where the two
light fields are in two-photon resonance. The medium then evolves into a superposition
state between the two originating states, called a dark state, as it can no longer absorb or
emit photons of the applied laser fields. The phenomenon was first observed in the 1970s
in the form of the related phenomena of coherent population trapping in gases [22]
and more extensively researched in the 1990s [23-26]. An important aspect for many
experiments on EIT was, in particular, the narrowness of the EIT window. A large change
in the absorption of a medium in a small frequency window leads to a large change in the
refractive index of the medium over an equally small frequency window (Kramers-Kronig
relation). Such a rapid change in refractive index leads to an extremely low group velocity
of light. As the transparency of one light beam is tunable with the intensity of the second
light beam, the group velocity is also tunable, leading to the observation of slow light [27,
28] or even stopped light [29]. EIT systems are also interesting in the context of quantum
information systems, as they allow for storage and subsequent readout of photons [30],
controlled phase shifts [31], single photon switches [32], transistors [33, 34], and the
implementation of photon-photon gates [35].

The two research fields mentioned so far, cavity quantum electrodynamics with a single
atom and electromagnetically induced transparency, can be combined leading to the new
field of single atom cavity electromagnetically induced transparency (CEIT), which only
very recently started to be investigated [36—40]. Here, the system is implemented in a
A-type atomic level scheme, with two atomic ground states which both exhibit transitions
to one common excited state. One of the two laser beams used to drive these transitions
in classical EIT is here replaced by the vacuum field of the cavity. This brings EIT to the
level of individual photons. Due to the quantized nature of the strongly coupled CQED
system, the atomic dark states of EIT become entangled with the photon number states
of the cavity, leaving dark states with n and n + 1 photons orthogonal in Hilbert space.
This leads to the emergence of an infinite ladder of dark states that are separated by one
photon each [41], compared to the single dark state that is created in normal EIT. The
theoretical and experimental results in this thesis contribute to the deeper understanding
of this still new, and largely unexplored field of CEIT.
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Adding a transition channel between the two ground states of the CEIT system, leads
to the formation of a closed cycle in the atomic energy level structure. A closed atomic
cycle is defined here as a situation in which an atom is driven with multiple light fields
addressing transitions of at least three different electronic states. These transitions form
a closed loop in the energy level scheme of the atom. The CEIT system offers a plethora
of ways to realize different cycles and investigate them in detail. As the cavity is an
integral part of such a cycle, monitoring the output provides valuable insight into the
internal cycling dynamics. Closed atomic level schemes represent the common thread of
all experiments in this thesis which therefore carries the title "Atomic Cycles in Cavity
QED".

The thesis is structured as follows: After a theoretical discussion of the system in Section 2
and the introduction of some experimental techniques in Section 3, the thesis begins with
the simplest possible experiment, driving the CEIT system with a weak probing field via
the cavity. This already reveals many interesting aspects that are discussed in Section 4.
One surprising effect manifests itself in the photon statistics of the output field, which
shows long lasting oscillations. These are due to the generation of a new field that beats
with the input drive. This new and tunable field is also measured spectrally via heterodyne
detection, revealing that it is narrow-band. The generation of this new field is due to a
four-wave mixing like process in a partially closed cycle in the atomic level scheme. This
system still suffers from an incoherent part in the cycle, because the atom exhibits decay
from an excited state. This sets the stage for further experiments in Section 5, where this
incoherent part is replaced with a Raman transition, connecting the atomic ground states
and therefore coherently closing the atomic cycle. This experiment reveals a plethora
of interesting effects. First of all, the system shows four-wave mixing with an output
field that exhibits full phase coherence to all input fields and a very narrow linewidth
while exhibiting antibunching and sub-Poissonian behavior. Furthermore, the photon
emission occurs continuously and produces significantly more photons than expected
from an all resonantly driven atom in free space. A thorough theoretical treatment in this
section reveals that this is due to the aforementioned ladder of dark states. The coherent
drive between the ground states acts like an effective drive between different rungs of
the dark state ladder. In a certain parameter regime a continuous quantum Zeno effect
is observed, leading to a blockade of higher rungs than the first two of the ladder. This
manifests itself as a generation of single photons during Rabi-oscillations between these
two states. In a different regime, this Zeno-blockade is lifted, which allows the ladder
to be climbed, resulting in a strong change of the photon statistics. From there on, it is
interesting to extend the system by considering an additional atomic excited level and
an additional cavity mode, because this allows for an atomic cycle, in which multiple
fields are generated that can also interact. As Section 6 shows, already the half-closed
system with two cavity modes, proves itself as very rich with interesting phenomena in
the interaction between the two cavity fields. This also nicely builds a bridge to the initial
motivation of studying light matter interaction at its most fundamental level. In such a
system, an atom interacts with single photons of two different fields at the same time and
therefore mediates an effective interaction between the photons. In the dispersive regime,
in which the atomic transition and the cavity mode exhibit a substantial detuning, this
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expresses itself in the emergence of a giant cross Kerr nonlinearity, where photons in
one cavity mode (gate) have a back-action on photons in the other cavity mode (probe).
This is only possible due to the unique combination that CEIT offers, where the system
inherits the steep change in refractive index from EIT and the single photon sensitivity
from CQED. This system then allows for non-destructive and all-optical sensing of the
average number of photons in the gate mode. Furthermore, already a single photon
in the gate mode leads to a significant phase shift of the light field in the probe mode,
which is especially interesting in the context of quantum information processing. Finally,
Section 7 presents an outlook into future experiments.
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2. Theory

The theoretical foundation presented in this chapter is the prerequisite for all experiments
in this thesis and sets the stage for the more specialized theoretical introduction in the
respective chapter. This theoretical chapter provides a short insight into the general
form of the light-matter interaction happening between a single atom and one quantized
electromagnetic field mode of a cavity. Later on, the coupling of this system to another
classical laser field is discussed and the emergence of cavity electromagnetically induced
transparency is explained. This is complemented by a short discussion of how simulations
in the real open quantum system are performed. In the end, the theory of heterodyne
detection is explained, as this technique is needed to measure the phase of light for the
experiments in Section 6 and the spectral properties of the emitted light field for the
experiments in Section 5.

2.1. Cavity QED

The following is a very brief overview of the theoretical concepts. Several textbooks on
the topic provide a more comprehensive coverage of the topic [15, 42]. Throughout the
theoretical treatment # is set to one (h = 1). When discussing light-matter interaction,
a prime example used in many textbooks is the interaction of a single two-level atom
with one electromagnetic field mode. This system is sufficiently easy to understand and
already provides most of the insights needed for the understanding of more complex
systems. A two-level system (TLS) typically has an infinitely lived ground state |g) and
an excited state |e) that spontaneously decays into free space. The Hamiltonian of this
simple system is given by:

H,=w,6'6 (2.1)

with the atomic transition frequency w, between state |g) and |e) and the raising (lower-
ing) operator &(&). The system and level scheme are shown in Figure 2.1(a). One mode
of the quantized electromagnetic field with linear polarization, can be described as:

E(z,t) = Eo(ae=t) — gfemilka—wt)y (2.2)

with the field amplitude E,, the frequency w, the creation (annihilation) operator 4'(a)
of one photon in the field and the wave number k of the field. This is especially interesting
in the context of a cavity, which consists of two mirrors facing each other, that reflect
light back and forth between them. This confines the electromagnetic field spatially. Due
to the boundary condition imposed by the mirrors, only light fields with frequencies
which constructively interfere after multiple round trips in the cavity, can exist inside.
Therefore a cavity separates out single modes from the continuum of modes that exist
in free space. A cavity supports multiple modes whose spectral distance is called free
spectral range (FSR) and depends on the distance between the mirrors. The following
treatment considers only a single mode of the cavity (spectral width 2k ~ 3 MHz), which
is close to resonance to the atomic transition (spectral width v,,,,, &~ 6 MHz). All other
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Figure 2.1: Sketch and according energy level diagram of the atom (a), the cavity (b)
and the strongly coupled atom-cavity-system (c).

modes are spectrally far away from the atomic transition and therefore do not interact
(FSR ~ 500 GHZ > ¥ 4;om»> k). The Hamilton-operator in a cavity is given by:

H.=w.aa'a (2.3)
with the frequency of the considered cavity mode w,. The eigenstates to this Hamiltonian
form a harmonic ladder of the form |n) with n photons inside of the mode. This is depicted
visually in Figure 2.1(b).

The interaction between a two-level system with one electric field mode within a cavity
via the dipole interaction can be described via the Hamiltonian (neglecting spatial and
temporal variation of the field for now and assuming the polarization is parallel to the
dipole moment):

H=d-E (2.4)

with the dipole operator d = d(6" + &) and the transition dipole moment of the atom d.
Introducing the coupling constant g = E,d and neglecting fast rotating terms between
the cavity frequency and the atomic frequency in the interaction picture (where the
operators show an explicit time dependence), a process usually called rotating wave
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approximation, results in the well known Jaynes-Cummings-Hamiltonian [43, 44]:

H,c =H.+H, +H, (2.5)

H:.=w.d'a+w,6'6+g(6a" +67a) (2.6)
The eigenstates to this Hamiltonian are given by the so-called dressed states:

|—,n) =cosf|g,n)—sin6 |e,n—1) 2.7)
|[+,n) =sin6 |g,n) +cos 6 |e,n—1) 2.8)

where the eigenstates are of the form |atomic state, cavity photons) and 0 is the mixing
angle defined as:

2g/n
Ay +4/482n+ A2,
with the detuning between atom and cavity of A, = w, — w.. If the atomic and cavity

frequency match each other, an excitation is exactly half in the atom and half in the cavity
and the energies in the new ladder of eigenstates are:

tanf = (2.9)

EX =nw +gvn (2.10)

This ladder is anharmonic as it scales with 4/n, which is the basis for many interesting
effects like single-[ 16] and two-photon blockade [17] or photon gateway [45]. A sketch
that illustrates this ladder is shown in Figure 2.1(c). The effects of the detuning between
the atom and the cavity become important in Section 6 and are discussed in more detail
there.

2.2. Cavity EIT

So far the theory has involved only a two-level atom that is now extended to a three-level
atom, which results in new and somehow unexpected effects. The new atomic level
scheme is shown in Figure 2.2(a). It involves two atomic ground states |1) and |2) that
do not decay and an excited state |3). The cavity is coupled to the transition |1) <« |3)
with coupling constant ¢ and a detuning of A,. = w, 1, — w,, where w, 1, is the atomic
transition frequency and w, the cavity frequency. In addition there is a classical coherent
laser beam irradiating the system, whose frequency is close to the |2) «— |3) transition
with a detuning of Ay; = w, 53 — w; 53, Where w, »3 is the atomic transition frequency
and w; ,; the laser frequency. This laser beam induces transitions with a resonant Rabi
frequency of Q,;. The Hamiltonian of the new system in the rotating wave approximation
and transformed to a rotating frame reads:

Heprr = (Age — Dy3)099 + Ay O35+ g(6158" + 6'1-3&) + 923(523 + G3) (2.11)

where &, denote the atomic transition operators of the form &, = |k) (l| (k,1 =1,2,3)
for k # [ and the atomic population operator for k = . The zero-point of energy is chosen
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Figure 2.2: (a) shows the atom (red dot) within the cavity and the transverse classical
drive (green arrow). (b) shows the atomic level scheme including the cavity
and the detunings. (c) shows the first three manifolds in the infinite effective
ladder of eigenstates.

at state |1). In the case of vanishing two-photon detuning A,. = A,; = 0 the following
eigenstates are solutions to the stationary Schrodinger equation:

|00) = NY [Q311,1) —gvn|2,n—1) ] (2.12)
|02) = N=[gv/al1,n) + Q12,0 — 1) + E¥[3,n—1) ] 2.13)

where the bare states are of the form |atomic state, cavity photons). The normalization

factors are N = (02, + gzn)_l/2 and N* = (2g%n + 2953)_1/2. The energies of the states
in the chosen basis are given by:

E? =now, (2.14)

Ef =nw,*4/ng2+ Q% (2.15)

This new basis forms a ladder of manifolds where each value for the excitation number
n in the system has three states. This ladder is shown in Figure 2.2(c). The states |\IJ:>
are called bright states, because they exhibit a component of the excited atomic state
|3). Furthermore the splitting between them increases in each manifold, as their splitting
depends on the number of excitations in the system, thereby forming a nonlinear ladder.
The states |\IIS> are called dark states, as they do not have any contribution from the
atomic excited state, but only from the ground states. They form a linear energy ladder,
because the energy spacing between state n and n+1 is constant. If the system is probed
and the drive is resonant to the dark states, the absence of atomic excitation renders
the system transparent for a laser beam. That is the reason this effect is called cavity
electromagnetically induced transparency (CEIT) in analogy to the long known effect in
gases [22] and has already been described in several studies [36, 37, 40, 41, 46].
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2.3. Heterodyne detection

The most employed technique to measure a light field is photon-detection (or photon-
flux detection). This detection method measures the energy flux (photons per second)
that hits a detector surface, which usually consists of a semiconductor photodiode. By
measuring only the energy of a light field, part of the information about the field is
lost, as the phase and amplitude are not accessible but only the time averaged intensity
(depending on the bandwidth of the detector). In certain types of experiments, it is
crucial to also measure the phase of the light field. A direct detection of the oscillating
electromagnetic field is unfortunately not possible with photodiodes, as these are not
fast enough by several orders of magnitude. There is a solution that mitigates these
disadvantages, known as heterodyne detection. First employed in the beginning of the
20" century in the radio frequency domain, it soon became a standard technique for
many high frequency applications and is extremely common in daily life applications
such as radio receivers and mobile phones. Later this technique was also transferred to
the optical domain, where it is called optical heterodyne detection. With this technique,
the very high frequency of the electric field to be measured is transferred to an easily
accessible frequency domain where off-the-shelve electronics can measure and process
the signal, without losing any information about the original electric field. The basic
principle of this so called down-mixing relies on interference between different light
waves. When two waves are mixed, the superposition exhibits a beat signal at the sum
and difference frequency of the two fields. The difference frequency is usually chosen to
be in the MHz regime by engineering of the field with which the signal is mixed. The
frequency of the sum frequency component in optical heterodyne is then too high to pass
the measurement electronics. The amplitude of this beat signal is the product of the two
wave amplitudes. Therefore it is possible to use one strong beam, usually called the local
oscillator (LO), to down-mix and amplify the signal of a weak signal beam. This chapter
only discusses the most important aspects. The treatment here follows [47], where more
details of the scheme can be found. The electric field operator of a single mode of the
electromagnetic field can be written as:

hew

E(t)=
(©) 2e,V

(a,e“" + c“lle_i“’t) (2.16)

where @, (&l) is the annihilation (creation) operator of a photon with frequency w and V
is the volume under consideration. As the local oscillator is generally in a bright coherent
state |a), it can be treated classically and is assumed to be monochromatic at frequency
w;o (as it stems from a low bandwidth laser). So the electric field of that beam can be
described as:

j2 . .
E;o(t) = —2eL§c (el@iot 4 glwiot) (2.17)
0

with the beam power P,,, the beam’s cross sectional area S and the speed of light c.
Superimposing the signal beam with electric field operator E, and the LO beam at a
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beam splitter results in superpositions of the fields at both outputs. These exhibit a phase
difference, which is reflected in the sign. The new field operators are:

b= ﬁp(t) + E;o(t)

- V2
These lead to two current operators in the two photodiodes of the balanced detector
J.(t) = P.q,/hw, where g, is the elementary charge and P, = eOScﬁi are the power
operators of both mixed fields. The output signal of the balanced photo detector is
a voltage proportional to the amplified difference between the two currents V(t) =

G(J, —J_), with gain factor G. Thus the voltage operator for one frequency component
w of the signal beam becomes:

5 N10PLo (\ itemwue)ea6] 1 AT —il(r—cig)—b]
V(t)=G e (awe Lo +ae Lo ) (2.19)
Wro

with the detection efficiency of the local oscillator beam 7);, and the phase difference
between the respective mode and the local oscillator 6. As an example, the measured
voltage of a coherent state |a,) with frequency w), in the probe beam is:

(2.18)

NPLoP,q>

v(t)=(a, [V(t)|a,) =2G Peope,

cos[(w, —wyo)t — 0] (2.20)

where 7 is the total detection efficiency for the beat signal consisting of the quantum
efficiency of the detector, optical path losses and the mode matching factor of the in-
terference. This formula shows that the power of the local oscillator can be used to
amplify the usually weak signal of the probe beam. The difference frequency, w,—wo, is
usually chosen by changing the local oscillator frequency such that it can be comfortably
processed by the balanced photodiode, whilst still being high enough to avoid the high
noise floor close to DC frequencies. Therefore, it is comparably easy to achieve shot-noise
limited operation by choosing an appropriate difference frequency.

2.4. Quantum simulations

All real systems exhibit dissipation to the environment. That is called an open quantum
system and it is possible to calculate ensemble averages in such systems via the density
matrix formalism. The dynamics of an open system can be calculated using a Lindblad
master equation of the form:

p =—ilH,pl+x(apd' —d'ap —pd'a)+ Y T,(26,p5! — 6160 —p67 6,)
(2.21)

where p is the density matrix, x is the cavity-field decay rate, and T, the polarization
decay rate of an atomic decay channel. The summation runs over all possible decay
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channels. In some of the experiments to follow, a second cavity mode is implemented. For
these, an additional mode appears in the master equation as well. The first term in this
equation describes the coherent evolution of the system and is called the von Neumann
equation. It results directly from the Schrodinger equation for a density matrix. The other
terms describe the dissipation processes. This master equation can be simplified in the
form of the Lindblad super-operator £:

p(t)=2Lp(t) (2.22)

By integration of this equation the time dependence of any operator O can be calculated
as:

(0(6)) =tr(0e? p(0)) (2.23)

This is especially interesting for the second-order correlation function, which can be
derived from the quantum regression theorem [48] to:

(ata"(v)a(e)a) = tr(a'ae (apya")) (2.24)

with the steady-state density matrix p,,. That means the system is moved out of equi-
librium by annihilation of a photon and the photon number during the subsequent
equilibration process back to the steady state is observed. Throughout the theoretical
investigation in this thesis, the master equation is solved numerically using QuTip [49].
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3. Experimental setup

A characterization and detailed description of the experimental apparatus can be found
in [50]. The system that is investigated is a single 8Rb atom, in precisely prepared and
addressable internal electronic states, inside of a high-finesse Fabry-Pérot resonator of
very small mode volume. This leads to strong coupling of specific atomic transitions to
resonator modes. The whole system is within an ultra high vacuum (UHV) chamber with
a residual pressure of the order of 107'° mbar [51]. The experiments presented in this
thesis require loading and trapping of a single atom inside of the cavity, control over its
internal degrees of freedom via lasers, detection of light retrieved from the system and
evaluation of the data. These subsystems will be described within this chapter.

3.1. Cavity

A very detailed report about the cavity is given in [50]. All the parameters given within
this chapter are for a wavelength of 780 nm unless otherwise noted. The cavity used in
these experiments is a Fabry-Pérot resonator with a finesse of % = 195000(2000). All
experiments use the TEM,,-mode (but different longitudinal modes) of the cavity. The
spacing between the mirrors is 295 pm, which leads to a free spectral range of around
500 GHz. The mirror distance can be tuned macroscopically, because one of the mirrors
is mounted on a inch-worm-motor, that allows a tuning range from 100 pm to over 1 mm.
Fine tuning of the mirror distance is done via a piezo tube, that houses the second
mirror. An active length stabilization, based on a Pound-Drever-Hall lock [52], keeps
it resonant to the atomic transition under investigation and is described in [51]. The
cavity is asymmetric, with one mirror having a much higher transmittance than the other
(T, = 2.5(5)ppm, T, = 17.8(5) ppm). The losses sum up to L = L; + L, = 11.0(5) ppm,
which leads to a field decay constant of k /27 = 1.5 MHz. The birefringence ( ~ 180kHz)
is well within the cavity linewidth and therefore negligible. The mode waist, where
the field falls off to 1/e of its initial amplitude, is w, ~ 20 pnm and the Rayleigh length
2, ~ 1.7 mm. Because of this long Rayleigh range, it is justified to make the assumption
that the cavity field is cylindrical, and the coupling constant does not considerably
change along the cavity axis (except for mode overlap effects, which only play a role in
Section 6.3.2).

Some of the experiments in this thesis require strong coupling to two atomic transition at
the same time. This demands that an integer multiple of the free spectral range exactly
spans the frequency difference of these two transitions. A natural choice is the D1 and
D2 line of rubidium, as these are the strongest transitions from the ground state of that
atom. Due to a combination of selective light shifts with the dipole traps to fine tune one
transition with respect to another and a macroscopic change of the cavity length via the
inch-worm motor, it was possible to achieve this situation. A detailed description of this
process is presented in the PhD thesis of C. Hamsen [53].
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3.2. The atom

The atom that is used within this thesis, is Rb which is one of two naturally occurring
isotopes (with a relative abundance of around 27%) of the metal rubidium and is solid at
room temperature. It is quasi-stable with a half-life of 5- 10'° years [54]. As it only has
one electron in its outermost electron shell, it exhibits a comparably easy level structure.
The electronic ground state of ®’Rb is the 55 , state. The so called D-lines of rubidium
are strong transitions from this ground state, arranged in a transition doublet, originating
from the fine structure of the atom due to spin-orbit coupling. Especially important for
cooling and trapping is the D2-line, with a transition wavelength in vacuum of 780.2 nm.
This provides a cycling transition, in which the atom stays during repeated excitation and
de-excitation processes due to selection rules. The D1-line, with a vacuum wavelength of
795.0nm, does not have such a cycling transition due to fewer states in the hyperfine
structure of the excited state manifold. Furthermore 8Rb exhibits a hyperfine splitting of
around 6.8 GHz in the ground state due to the coupling of the total angular momentum
of the electron to the angular momentum of the nucleus. The level scheme is depicted in
Figure 3.1. In the experiment, a magnetic guiding field is applied, lifting the degeneracy of
the magnetic sub-levels and leading to a Zeeman-splitting on the order of a few hundred
kHz.
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Figure 3.1: Level scheme of the 8Rb atom, depicting the fine-structure splitting, the
hyperfine splitting, the magnetic sub-levels, their Landé-factor g;.

3.3. Loading and trapping of atoms

The experiments require the trapping of a single atom at the center of the cavity mode
for a reasonable trapping time on the order of seconds. Rubidium is a solid metal so
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the first step towards trapping a single atom is the evaporation by heating of a small
metallic sample in a dispenser. The next step is the trapping of a cloud of atoms in
a magneto-optical trap (MOT), which takes around 2s. Subsequent molasses cooling
leads to a temperature of the cloud of 4K [50]. The cavity is around 25 cm above the
MOT. This distance is traversed by an atomic fountain that launches the cloud of atoms
upwards with a speed such that they have their turning point, and therefore minimal
kinetic energy, at the center of the cavity. A red detuned standing wave dipole trap [55] at
797.5nm is focused transversely into the cavity, as can be seen in Figure 3.2(a). This trap
attracts atoms to the maximum of its intensity, where the induced dipole of the ground
state of the atoms maximally interacts with the light field by lowering the energy. When
the atoms fall into this potential valley caused by the red detuned trap, they also gain
kinetic energy that would lead to an escape out of the field again. To prevent this and
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Figure 3.2: Two different views of the experimental setup and the beam paths. (a)
shows a view along the cavity axis where the transverse traps are depicted
but the intra-cavity trap is not shown. Also shown is the imaging system on
top of the cavity. (b) shows a view transversely to the cavity axis and only
depicts the blue intra-cavity trap, whereas the two transverse traps are left
out. The abbreviations TBTC and CP denote laser beams configurations and
stand for transverse probe, transverse cooling and cavity probe respectively.
The picture in (a) is a modified version of the sketch in [53].

eventually trap the atoms, an additional cooling field irradiates the atoms. This impinges
transversely to the cavity direction, is retro-reflected and has linear polarization that is
rotated by 90° in the retro-reflected beam. The light is red detuned by around 30 MHz to
the |F = 2) «> |F” = 3) transition of the D2-line of the atom. This leads to an intra-cavity
Sisyphus-type cooling in all direction [9, 56]. Even though this is a cycling transition,
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off-resonant scattering from |F” = 2) leads to a decay into the |F = 1) ground state, that
is repumped by a transverse |F = 1) «— |F’' = 2) laser on the D1-line.

In addition to the red detuned transverse dipole trap, there are two additional blue
detuned standing wave traps. Blue detuned traps confine atoms to nodes of their field as
they act repulsively. One of these two addition fields is within the cavity at 773.1 nm (7 free
spectral ranges away from the D2-probing field). An additional blue detuned transversal
trap of ~ 772nm is enabled once the first cooling cycle is finished. These in total three
traps together confine the atoms to one point in a three dimensional optical lattice. The
trap depth in this three-dimensional optical lattice was determined in a former thesis to
U~ —h-70MHz = kg - 3.3mK for the red transverse trap, U ~ h- 18 MHz = kg - 0.8 mK
for the blue transverse trap and U ~ h-24 MHz = k- 1.1 mK for the blue intra-cavity trap
[53]. Due to the probabilistic nature of the whole loading process, the unknown number
and position of trapped atoms and possible movement of the atoms within the cavity by
tunneling processes from one lattice site to another, it is necessary to image the atoms.
This also allows for optimizing the MOT duration to get exactly one atom most of the time
(Poisson distributed). Imaging is done by collecting the scattered light during cooling via
a high NA (0.47) objective with a magnification of 16.5, which consists of 5 spherical
lenses for aberration compensation and an additional focusing lens. Details about the
objective can be found in [57]. The collected light is then measured via an EMCCD
camera with an integration time of 300 ms. The final diffraction limited resolution of
the imaging system is 1.07(1) pm. This allows for a precise determination of the atom
position in the imaging plane. The out-of-focus blur of the atom image shows a linear
dependence of the width of a Gaussian fit on the position along the y-direction. This can
be used to deduce the atom’s position transversely to the focal plane. The back-reflection
mirrors of the transverse optical traps can be tuned in position via piezo elements, which
then itself moves the position of the whole standing wave and with it the atom. Together
with a live-fit of the atomic position, this allows for two-dimensional active position
stabilization of the atom to maximize the coupling constant [53]. Control over the third
dimension along the cavity axis is not yet possible but a control via optical tweezers is
under construction.

3.4. Internal control of the atom

A key ingredient to all experiments presented here, is the control over the internal
electronic degrees of freedom of the atom. A faithful preparation into a specific state and
a subsequent controlled interaction with light of the right frequency and polarization is a
prerequisite for all experiments. As shown in Figure 3.2, the setup basically allows for
optical access in three different configurations. For a magnetic field along the cavity axis,
the beam labels and their corresponding possible polarizations are shown in Table 1.

Possible are the depicted polarizations and superpositions of them. All beam directions

allow for quick and easy exchange of the input light, as everything is fiber coupled and
can be changed by fiber to fiber connectors to have different inputs.
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Name Abbreviation  Direction Polarization
Cavity probe CP Cavity ot,o”
Transverse cooling TC Transverse linear 1 linear
Transverse probe TP Transverse ct+o07,m

Table 1: Summary of the optical axes and their possible polarization.

3.5. Detection of light
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Figure 3.3: The detection setup with two different detection methods. The D1 light is
always detected in single photon counting modules (SPCM), whereas the
D2 detection method can be easily switched between a photon detection
via SPCMs or a heterodyne detection.

The light that leaves the out-coupling mirror is first split into the different wavelengths
that are used in the experiment by a dichroic mirror. The D1 light has a fixed beam path
and is detected via two single photon counting modules (SPCM) in a Hanbury Brown
and Twiss configuration (HBT) to allow for the measurement of second order photon
correlation functions. The second-order correlation function is an important measure
that helps to understand the dynamics of the underlying system. It can be described as
the probability to detect a second photon after time 7, when a first photon was detected
at time t. The function is normalized to the photon rate. In a formula it can be expressed
as:

at(6)a' (e + T)alt + v)ae))
(at(e)a(e)) (at(t +v)a(t + 7))

g(z)(t, T) — (31)

with @ (@") the photon annihilation (creation) operator. A common simplification is
setting t = 0 and assuming that the expectation value (&J"(t)&(t)> is time independent.
This leads to the usual expression for the g?(7) photon correlation function: g®(1) =
(6'a"(v)a(r)a)/(a'a)?. Experimentally, the temporal resolution for photon detection
times is 1 ns, but coincidence windows of typically 10 ns to 20 ns are used for computation
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of correlation functions. This allows for binning of the correlation function to increase
the number of events in each bin. To eliminate influence of detector dead-time and
after-pulsing, photons are only correlated between different detectors within the HBT
setup. The D2 light is coupled into a fiber, where it either goes to a photon detection setup
in HBT configuration or to a heterodyne setup to allow for the detection of the electric
field properties like the phase. The total detection efficiency for light from intra-cavity
field to detection via the SPCMs is around 26% for the D2-light [53], which is composed
of the intrinsic out-coupling efficiency of the cavity of 57%, a detector quantum efficiency
according to the datasheet of 65%, a fiber coupling efficiency of 80% and a 90% efficiency
for the rest of the optical elements (fiber and other optical elements not shown in picture
for simplicity). From a cycling measurement, where exactly one D1 photon is generated
for each D2 photon (see Appendix Appendix C), the total D1 light detection efficiency
from intra-cavity field to detection with SPCMs is deduced to be 34%.

Heterodyne detection setup

The theoretical foundation is described in Section 2.3. The heterodyne detection setup
is shown in Figure 3.4 and was built over the course of the Master thesis of Jonas
Neumeier [47], in which a more detailed overview is given. The optical part of the
heterodyne setup is shown in part (a). The output light field from the cavity (probe field)
is mixed with a strong local oscillator and the two output beam paths are recorded by
a differential photodiode. The quantum efficiency of the photodiode is determined to
be 96(1)%. The output voltage of the photodiode follows the expression as derived in
Section 2.3 and therefore oscillates with the difference (beat) frequency wy, = |w;o—w,|.
In the experiment this difference frequency was chosen to 60 MHz, by adjustment of the
local oscillator frequency due to two main reasons. First, 60 MHz is a good compromise
between the available detector bandwidth and an already significantly reduced noise
floor in comparison to DC voltages. Second, there is the possibility of back-scattering of
light from the detection setup to the cavity. This can be severe because the local oscillator
is strong, on the order of mW. Even though all components are anti reflection coated,
back-scattered light on the level of nW is still possible, which would already surpass the
typical probing power and therefore significantly influence the experiment. It is therefore
advisable to operate the detection setup with a LO beam as far detuned as possible from
the cavity resonance, to which the probe is typically resonant.

It would be possible to digitize the beat signal directly to extract the field quadratures,
which unfortunately has severe disadvantages. With a beat frequency of 60 MHz, digiti-
zation of the signal requires at least twice the sampling rate according to the Nyquist-
Shannon-theorem [58]. Together with a reasonable voltage resolution of at least 14 bit,
this would lead to a data rate of around 210 MB/s. Although this is within the writing
capabilities of current state of the art solid-state hard drives (SSD) (and surpasses normal
HDDs), it is still impractical, as it would only allow for very short measurement intervals
and would require a computationally heavy data evaluation. Therefore the experimental
setup uses an analog down-mixing scheme to retrieve the field quadratures which is
shown in Figure 3.4(b). The beat signal is split into two paths and mixed with two
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Figure 3.4: (a) shows the optical part of the heterodyne detection setup. The cavity
output with frequency w, is mixed with a local oscillator at frequency w;,
and measured via a differential photo diode. (b) shows the analog electronic
down-mixing circuit, in which the output of the balanced photodiode is
split, then mixed with an electronic local oscillator (eLO) at w, g, then
low-pass filtered and finally digitized by an FPGA and a PC.

sinusoidal signals called electronic local oscillator (eLO) with w,, = 60 MHz, whereas
one of them is 90° phase shifted with respect to the other. The resulting signal consists
of the sum and difference frequency (which is close to DC). A low-pass filter transmits
only the close to DC components, which are called quadratures Q and P These are then
digitized by a field-programmable gate array (FPGA) and stored on a PC with a time
resolution of 250 kHz and therefore with a significantly lower data rate than without the
analog down-mixing stage. The amplitude and phase of the electric field of the probe
light can then be calculated by (see [47] for a detailed derivation):

A= +/P2+Q2 (3.2)
¢ = arctan(—P/Q) (3.3)

In the first mode of operation, the laser generating the local oscillator is split into two
beams, where one beam probes the atom-cavity setup from which the output is then
superimposed with the frequency shifted local oscillator beam. This allows a measurement
of the influence of the experiment on the probe light in terms of phase and amplitude,
which gives valuable information about the underlying physics. On a technical note,
this requires the periodic recording of the reference phase between local oscillator and
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probe beam to compensate for drifts in the optical path lengths, as described in [47]. The
second mode of operation within this thesis is the operation without an explicit cavity
drive. There, the heterodyne detection acts as a precise spectrum analyzer for an output
field from the cavity with initially unknown frequency. In this type of experiment the local
oscillator frequency is scanned via an AOM. The quadratures only show a non-vanishing
amplitude if the following condition is satisfied: |w. o — wy| < wp, Where w;p is the
cut-off frequency of the low-pass filters of the quadrature lines. This represents a scanning
window which produces a non-zero output signal only when the probe frequency w,
lies within this window. This leads to a frequency dependent amplitude and therefore a
spectrum of the output light field.

3.6. Data acquisition and evaluation

While the atom is trapped, a sequence of experiments runs with a repetition rate of around
1 kHz. A typical sequence consists of a cooling interval, followed by a state preparation
into a specific Zeeman substate and finally the actual experiment as shown in Figure 3.5.

Cool |Prep| Exp | | Cool |Prep| Exp | Atom

420us |20us| 60ps 420us |20us| 60us ﬁt’g{ng
Camera Image Shifting | """

300ms 70ms

Figure 3.5: A sample experimental sequence consisting of cooling, state preparation
and an experimental pulse. During the full sequence the camera is exposing.
After one image the atom position is determined and adjusted.

Each pulse is characterized by a specific set of laser beams that illuminate the atom. The
raw data in our experiment consists of time-tagged photon detection events registered by
the single photon counting modules (SPCM) and is written to a hard disk. As this is only
an unstructured list of photon clicks, the click stream is evaluated and linked to specific
pulses in the sequence and their timestamps are changed to relative values with respect to
the pulse starting time. Due to the probabilistic loading scheme and potential movement
of the atom during the measurement it is necessary to continuously measure the exact
position of the atom within the cavity. The atoms are imaged during 300 ms, which is the
granularity for postselection on atom position later on. From such an atom picture, it is
possible to determine the three dimensional coordinate of the atom from light that was
scattered from the atom during cooling as described in the chapter about atom trapping.
This imaging technique can detect the number of atoms in the cavity, as well as their
positions. The atomic coordinate is determined in real time, while the experiment runs,
and is stored in a PostgreSQL database for fast and parallel access. After determining to
which atom image, pulse, and sequence each photon click belongs, the data is stored in
the data format HDF5 [59]. This is an ultra fast and highly structured binary data format
that is used in many areas of scientific research, especially in big data use cases. One
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Database Query: HDF5 File
# XPOS YOS 22<x<27

1 27 45 44<y<48 Atom 1 Data
2 23 44 Atom 2 Data
3 23 48 Atom 3 Data
4 24 42 Atom 4 Data
5 25 45 Atom 5 Data
6 22 51 Atom 6 Data
7 28 46 Atom 7 Data
8 25 46 »!| Atom 8 Data
9 24 42 Atom 9 Data
10 26 42 Atom 10 Data

Figure 3.6: The sketch shows the interplay between the data format HDF5 and the
database, when a specific atom position is requested.

distinct feature is that it allows for random access of the data without reading the full
file. This accelerates selective accesses that are needed in the experiment to postselect
data. Postselection of specific data portions is necessary, because the atom position varies
due to the probabilistic loading scheme. To ensure a constant coupling constant and a
specific overlap with the driving lasers, it is necessary to only use data collected while the
atom was at the right position within the cavity. Postselection of data is done via a query
to the database, where a range of x,y and possibly z positions is specified. The database
then returns the IDs of all atoms that fulfill this condition for a specific measurement.
The datasets corresponding to these atom IDs are then selectively read from the HDF5
file as sketched in Figure 3.6.

CavityTools

Over the course of this PhD thesis, an extensive evaluation tool called CavityTools was
created to simplify the data evaluation process and enable the user to evaluate mea-
surements without having detailed knowledge how the data is internally stored and
how the postselection is done in detail. Most measurements, whether it is a phase and
amplitude measurement via heterodyne detection, a Raman transfer, or a transmission
measurement, can be evaluated with a single line of code. This significantly simplifies
the data evaluation process and gives a high level of flexibility and fast workflow due
to the abstraction from low level data access. A complete sample code for a spectrum is
given in Listing 1.
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from Measurement import get_measurement_object

# position postselection of the atom
postselection = {

'x_min': 23,

'x_max': 33,

'y_min': 30,

'y_max': 38,

'y_dev_min': 10,

'y_dev_max': 18

}

# name of measurement, interval and
# cutoffs for evaluation
measurement_name = '180529_0Open_NM_set12'
interval = 'Probe'

cutoff_start = 0.0

cutoff_end = 20.0

m = Measurement.get_measurement_object(measurement_name,
selection=postselection,
m_type='nm', x_range=[-1, 2])

x_data = m.get_xdata()
y_data = m.scan(interval, line='2",
cutoff=[cutoff_start, cutoff_end])

Listing 1: Code showcasing how a spectrum can be obtained with the CavityTools
package.

Validation of evaluation programs

The computer programs that evaluate the photon click data in the form of timestamps
and compute spectra and correlation functions from that, are rather complex. It is highly
nontrivial to ensure correctness over several thousand lines of code. Throughout this
thesis, a new approach to that intrinsic problem was implemented. As already described in
Section 2.4, it is possible to simulate the physical system via a master equation approach.
Another approach is the quantum Monte-Carlo calculation of individual trajectories of
the system and subsequent averaging [60]. These two approaches evolve towards the
same results. The advantage of the Monte-Carlo approach is that it produces single
traces and not averages of the system. This allows to really see when e.g. a dissipation
operator is applied, or, in other words, when a photon decays out of the cavity. This is
the analog process to a photon detection in the real experiment. Therefore the Monte-
Carlo approach generates results of the exact same format as the real experiment. Using
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the same evaluation programs used for the real experiment for theoretical data, and
comparing the result with the master equation solution ensures that the programs used
are indeed valid and do not skew the data.

3.7. State detection on an open transition

87Rb exhibits hyperfine structure with two distinct ground states with a splitting of
6.8 GHz. Because electric dipole transitions between the two states are forbidden, the
effective lifetime of the energetically higher lying state |F = 2) is infinite for all experi-
ments within this thesis. Detecting whether the atom is in state |1) or |2) is crucial for
many experiments performed, as this is the basis for benchmarking any state preparation
as well as determining the beam waist. There are mainly two state detection techniques
available. One technique uses the features of a strongly coupled atom-cavity system
by probing the cavity. When the atom is in the not strongly-coupled ground state the
cavity exhibits the same countrate of photons as when empty. On the other hand if the
atom is in the strongly-coupled ground state, the normal-mode splitting blocks light
from entering the cavity [61]. The other technique, which proved to result in a higher
fidelity in the present experimental situation, relies on the excitation of the atom from
the side, with a beam that is resonant to the transition from one of the ground states to
an excited state and collection of scattered fluorescence light. As the atom emits in a
solid angle of 4, it is crucial to have a high NA objective collecting as many photons
as possible. With an atom in a cavity, where the atomic transition used for probing is
strongly coupled to the cavity mode, the efficiency increases considerably as discussed
in [62]. This experiment then results in two different distributions of detected photon
numbers in a specific probing time. These two distribution for the two ground states
can be discriminated. For the non-coupled atomic ground state this typically leads to
,. = 0 photons except for dark counts of the detector or far off-resonant scattering.
For the coupled ground state this leads to a Poissonian distribution with a mean of n,.
Choosing a discrimination threshold n, then allows for state detection with a fidelity
depending on the overlap between both distributions. This method is typically applied
on a cycling transition of the atom, as this results in a very high number of scattered
photons, because there is no decay channel to uncoupled states. Unfortunately, this is
not possible in the experiments of this thesis, as all the experiments demand a cavity
that is resonant to an open transition. In such a system, the cavity-assisted florescence
technique runs into problems, because each scattering event has a high probability to
decay into uncoupled states of the system, where no further photons can be scattered.
This limits the number of photons that can be scattered in total significantly. The atom
can either decay into uncoupled Zeeman substates in the otherwise coupled ground state
or into the other, uncoupled, ground state. Decay into uncoupled Zeeman substates can
be mitigated by usage of the TC arm in Figure 3.2. Using this back-reflected axis has
many benefits: Due to the spatially varying polarization of counter propagating laser
beams in linLlin configuration, the atom does not experience dark states within one
ground state manifold anymore. Another technique to avoid pumping into dark state in
the Zeeman-manifold is by active switching between different polarizations, which leads
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to similar results [63]. An additional advantage of counter-propagating laser beams is
that the radiation pressure is balanced and it is therefore less likely to kick the atom out
of the trapping potential. The resulting photon distribution for a 10 us probing, for an
atom previously prepared in a specific ground state, is shown in Figure 3.7. Previous
experiments showed that preparation of a specific ground state manifold is possible with
a fidelity of more than 99%. This means any limit on the state detection fidelity found
by this experiment stems from the detection, and not the preparation process. For the
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Figure 3.7: Photon detection probability for different previously prepared ground states
for a exposure time of 10 yis. The red line is a theoretical fit to the data as
described in the main text.

experiment, the cavity was resonant to |F = 1) «» |F” = 1) on the D2 line and the atom
was probed for an exposure time of 10 s with a transverse beam (TC axis) resonant with
the cavity with a power of 0.2 1W. As can be seen, the dark ground state manifold |F = 2)
almost always leads to zero photons. The problem is that the other manifold, |F = 1), also
leads to zero photons in around 4.4% of cases, because it is possible for the first scattering
event to already leave the atom in an uncoupled state. Furthermore, the chance that
photons are undetected is non-negligible because the photon can either scatter out of the
cavity into 47 or can be lost in the detection setup with its limited detection efficiency of
around 26% for the D2 light. The overlap between both distributions for the dark and the
bright ground state limits the discrimination fidelity to a little above 95%. This does not
improve for a longer probing time, as there is a characteristic amount of photons that can
be scattered given by the experimental situation. Also shown in the figure is a fit to the
distribution for |F = 1), which is derived from the complex two-parameter fit function as
derived in [63, 64], in which a detailed analysis of state detection on open transitions
can be found. This allows for determination of the signal rate to I}, = 954(3)kHz and
the decay rate into uncoupled states to I}, = 41(1) kHz. The theoretical lower limit for
the state detection infidelity is given by P = I},/(I, + I}) = 4.1%, which is close to the
measured value. The achieved state detection fidelity is sufficient for the applications in
this thesis.
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3.8. Raman transitions and determination of the beam waist

In many experiments presented in this thesis, it is necessary to be able to drive direct
transitions between the two ground state manifolds. The frequency splitting of 6.8 GHz
between them, would allow to couple these states by irradiation of the system with a
microwave. Unfortunately, this approach comes with plenty of disadvantages. The mi-
crowave’s relatively long wavelength does not allow for strong focusing, which means the
atom-light coupling remains low and the coupling Rabi frequency Q;, (for the transition
between the ground states [F = 1) «— |F = 2)) is limited to low values. Furthermore, past
tests in the existing setup have shown that it was not possible so far to expose the atom
with microwaves without disturbing the cavity length stabilization, preventing this mode
of operation. There is an alternative approach for the coupling between two ground
states called stimulated Raman transitions. There, two ground states are coherently
coupled by two light fields, which exhibit a detuning to each other fitting the energy
difference between the two ground states. The excited state is driven detuned from
resonance to prevent actual excitation and subsequent spontaneous decay. The excited
state is merely a mechanism to provide a virtual state with non-vanishing transition
probability, that both fields can address. These kind of transitions have been used in many
different systems with the purpose of coherent transitions between the ground states
[65-67] and for cooling to the motional ground state [68-70]. A sketch of the Raman
transitions with their respective polarization is shown in Figure 3.8(a). The virtual state
was ~ 30 GHz blue detuned to the D1-line transition of the atom. In the experiment in
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Figure 3.8: (a) shows a sketch with the possible Raman transitions in the chosen
polarization of the laser beams. (b) shows the transfer probability to the
other ground state against the detuning of one of the Raman beams. The
arrow color corresponds to the arrow color in plot (a) and shows which
peak belongs to which transition.
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part (b), the system is initially prepared in one of the ground states, then the Raman
lasers illuminate the system for a specific time. One of the two Raman lasers is scanned in
frequency and whenever the combination of both is resonant to a transition between any
ground states, a population transfer to the other ground state manifold is induced. This
transferred population can be detected with the subsequent state detection as described
in Section 3.7. The aforementioned state detection infidelity is visible as a baseline to the
measurement. The spectrum shows four peaks, that stem from transitions between differ-
ent Zeeman-substates, because their energetic degeneracy is lifted due to the magnetic
guiding field. The manifold is more populated towards positive magnetic sub-levels as
can be seen from the asymmetry of the peak heights. The frequency splitting between
two peaks is given by:

AE = hA; = gpusmB (3.4)

where g; is the Landé-factor, u; the Bohr magneton, m; the magnetic hyperfine state
and B the magnetic field. The measured splitting corresponds to a magnetic guiding field
at the atom of 0.6 G.

Determination of the beam waist

For many experiments throughout this thesis, it is important to know the Rabi frequency
that a light field in the TP beam arm (see Figure 3.2) induces in the atom. In general, the
Rabi frequency of a driven transition is given by:

Q.
eal)

Q= (3.5)

=

where d is the dipole vector and E is the electric field vector of the driving field. If both
are parallel, this simplifies to the dipole matrix element d and the electric field amplitude
E. In a real atom, the dipole matrix element can be expressed as:

d = dtrans <F1: mFl: FZJ mF2 |F, mF) (36)
where d,,,, is the dipole matrix element for the respective transition and
(F,, mF,,F,, mF,|F, mF) = CG (3.7)

is the Clebsch-Gordon coefficient for coupling of two states with spins (F,, mF;) and
(F,, mF,). For a Gaussian beam, the electric field at the focus can be expressed as:

4p
2
CEGTW,

E = (3.8)

with the power P, the speed of light c, the vacuum permittivity €, and the beam waist
in the focus w,. In practice, it is not easy to measure Rabi oscillations between the
ground state and an excited state, because of the fast decay time of the excited state.
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It is nevertheless possible to calculate the Rabi frequency, when the exact waist of the
beam at the position of the atom is known. This can be determined by driving Raman
transitions between the two ground states and calculating the beam waist from the
measured Rabi frequency between the ground states. This has several advantages. The
ground states do not decay, which means also a slow Rabi oscillation survives long enough
to be measured and also a read out technique of the atomic state is readily available.
Experimentally, the atom is prepared in the ground state manifold |F = 1). Then the
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Figure 3.9: Shown is the transfer probability to ground state |F = 2) for different in-
terrogation times of the Raman lasers (blue) and a damped sinusoidal fit
(orange) to determine the Rabi frequency.

Raman lasers interrogate the atom on the transition |F = 1,m; = 1) to |F = 2, m = 2) for
a variable time. Subsequently, a state detection is performed and the transfer probability
is calculated from repeated measurements. A scan of the interrogation time of the
Raman beams is shown in Figure 3.9. A damped Rabi-oscillation is clearly visible and the
frequency is determined via a sinusoidal fit. The damping is due to dephasing between
the ground states. The theoretical value for the Rabi frequency is given by:

2,
A

where 0, , are the resonant Rabi frequencies of the partial transitions and A is the detun-
ing to the real atomic state, to which the Raman-transfer couples. Inserting Equation 3.5
and Equation 3.8 into this equation and solving it for the waist results in:

4 4CG,CG,d> /PP,
Wo =

2 AQ.cem

Qe = (3.9

(3.10)

For the transversal beam in the experiment this leads to an effective waist of:

wo = 150(10) pm (3.11)
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The error on the waist is estimated, because atoms that are trapped at different positions
experience different driving strengths. The value given here is the average beam waist for
a broad spread of atoms. Furthermore, this effective beam waist is not the actual beam
waist of the TP arm but it includes potential losses along the path after the point at which
the power of the beams is measured and it also includes misalignment. Nevertheless
this effective beam waist is very useful, because it is possible to derive all other Rabi
frequencies on the same beam arm (TP), by measuring the power of the respective beam.
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4. Incoherently closed cycle and wave mixing

4.1. Introduction

The experiments in this section explore the properties of a cavity EIT system under
the influence of a weak probing field through the cavity. Especially the wave-mixing
capabilities of such a system are in the focus in this section as this system already exhibits
a partially closed atomic cycle. A new field is created which expresses itself as a beat,
that is visible in the photon statistics of the light emitted by the cavity. A heterodyne
measurement reveals further spectral properties of the field. First results of the system
used within this chapter were already presented and discussed in a previous PhD thesis
[46].

4.2. Results
@ @ |
3
13) A2V
3)|3

12)
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Figure 4.1: (a) shows a sketch of the setup with the driving geometry. (b) shows the
level scheme in the atomic basis.

A sketch of the driving geometry is in shown in Figure 4.1(a) and the atomic level scheme
is shown in Figure 4.1(b). The CEIT system consists of a three level atom, one transverse
laser beam with frequency w,5 coupling the states |2) and |3) and a cavity that is strongly
coupled to the transition |1) < |3) with coupling constant g. This is the same system
as already introduced in Section 2.2. Neither the transverse laser nor the cavity exhibit
a detuning to their respective atomic transition. This system is driven by an additional
cavity driving probe laser with frequency w5 that exhibits a detuning of A, = w —w;3 to
the cavity frequency w.. As long as this additional laser drive is weak in comparison to the
other fields in the system, it can be seen as a perturbation, that does not change the energy
structure with the already introduced triplet structure for a specific excitation number.
This is the case in the experiments in this chapter. Therefore the additional laser beam
merely probes the existing energy landscape of the CEIT system and drives transitions to
different manifolds of excitation. The concrete implementation in the 8’Rb atom uses
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the two ground states |1) = |5S,,,,F=1,m; = 1) and |2) = |5S,,,,F = 2,m; = 2) and
the excited state |3) = |5P;/,,F” = 2, mp» = 2). The coupling constant and cavity field
decay rate are (x,g)/2m = (1.5,10.2) MHz. When the frequency of the probing beam
is scanned, it maps the energy landscape and the output field of the cavity shows the
spectrum in Figure 4.2. The spectrum shows three distinct peaks. The center peak stems

175 A
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Figure 4.2: Shown is the photon detection rate of the cavity output field against the
frequency detuning A, of the probing field. The origin of each peak is
denoted above and explained in the text.

from the actual EIT, and is very narrow. It is narrow because the dark states in cavity
EIT do not have a contribution of the excited atomic state, which would introduce a fast
decay. This can be seen very clearly in the ladder picture as introduced in Section 2.2.
In this picture the coherent probing field leads to transitions in the dark states of the
ladder I\I/S). Because the energy-splitting between each rung in the manifold is constant,
all higher dark states are potentially addressed, limited by the driving strength of the
probing field. There are two additional features at a frequency of around +E"/A, that
stem from n-photon transitions to bright states in CEIT (|\I/’f)) The ladder of bright states
is nonlinear, meaning the probing laser is only resonant to one specific transition at a
time. Nevertheless, the spectrum is mainly governed by transitions to the first manifold,
because the excitation probability decreases for higher rungs, as the weak driving field
contains only negligible higher photon components. This effect can be also observed
in the photon correlation function g‘®(7). Driving the system around the transition
frequency to the first bright state [¥), at 9.5 MHz blue detuned from the 1) < |3)
transition frequency (A,/27m = 9.5MHz), leads to the photon correlation function in
Figure 4.3(b).

The resulting correlation function shows slightly sub-Poissonian photon statistics at T = 0,
which indicates that mainly the first manifold, with only one excitation in the system, is
addressed by the probing laser field. Very pronounced is a long lasting oscillation with a
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Figure 4.3: Photon correlation function for different parameters. (a) shows correlations
for A,;/2m = —2MHz and (c) for A,;/27m = 2MHz in comparison to no
detuning in (b). The beat frequencies are ~ 11.5MHz and ~ 10.7 MHz

in (a) and ~ 7.5MHz and ~ 6.7 MHz in (c). Blue in the background is a
quantum theory of the full relevant level scheme without any fit parameters.

frequency of about 9.5 MHz. The coherence time for which the oscillation is visible is on
the order of 2 is.

The oscillation occurs due to a beat between the drive field in the cavity with frequency
w3 and a newly generated field inside the cavity with wg,,,. The generation of this
new field can be explained in terms of a cycling process in the energy level scheme. To
keep it concise, the following description only considers the first manifold of the CEIT
system but can be generalized straightforwardly for higher rungs (which only need to
be considered for higher driving strengths). For reference it is useful to compare the
description with the level scheme in Figure 4.1. Initially the system is prepared in state
|1,0), with |atomic state, cavity photons). The probing beam with frequency w;5 drives
the transition to state &) resonantly. This eigenstate has components of |1, 1),|2,0) and
|3,0), but can only build up incompletely as there is no coherent evolution to the atomic
state |2) under the applied drives. As a result, a superposition state between the initial
state, the state with one cavity photon |1,1) and the excited atomic state |3,0) forms.
From there the system has the option to decay via the atomic excited state component
|3,0) (a decay from |1,1) via the cavity is also possible but does not proceed in the
cycle) to both atomic ground states |1,0) and |2,0). A decay to |1,0) does not continue
the cycle as it is the initial state again. Only a decay into |2, 0), which is accompanied
by emission of a photon of frequency wy, into free space, allows for a continuation of
the cycle. |2,0) is not an eigenstate of the system and therefore evolves into the dark
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state |‘1!f), under influence of the driving laser with frequency w,5. This dark state has
only components of atomic ground states |1,1) and |2, 0) and therefore can solely decay
via its cavity field component. For typical parameters the photonic component is small,
as shown in Section 2.2. Therefore, the dark state is long lived but eventually decays
spontaneously via the cavity back into the initial state |1, 0) while emitting a photon with
frequency wyg,,, out of the cavity. This closes the cycle, during which two new light fields
are generated. The first one via the decay of state |3,0), which is emitted into free space
due to being a purely atomic decay. This free space photon could not be measured in the
experiment. The second field is generated by decay of the dark state [¥?) to atomic state
|1,0) via the cavity. This field with wg,,, interferes with the drive field leaking from the
cavity with frequency w;; and manifests itself in the beat observed in the correlation
functions.
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Figure 4.4: Population of different states in a single Monte-Carlo simulation trace over
time for realistic parameters, showing the cycle that the atom undergoes.
The dotted vertical lines denote quantum jumps stemming from the op-
erators indicated below in corresponding color. The relevant simulation
parameters are: g/21 = 10MHz, Q,;/2m = 2.4MHz, A, /21 = 10 MHz.

A Monte-Carlo simulation of the system with close-to-experiment parameters in Figure 4.4
validates this view. It especially shows, that there is no coherent evolution from state
|1,0) to |2,0) without a spontaneous atomic decay, as happens at around 2.7 pis. Only
after that point, almost 100% of the population is in state |2, 0), which allows to continue
the cycle via evolution into the dark state [¥?) (which becomes clear in the magnified
inset). Subsequently, the cavity decays at 4.5 ps into the state |1,0), after which the
cycle restarts. The small deviations from that behavior, which are mainly visible in the
simulation after the first cycle, are due to population of higher excitation rungs.

Another evidence of this cycling view, and especially the origin of the new light field
of frequency wg,,, is provided by the coherence time of the generated field. It was
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Figure 4.5: The relevant part of the level scheme including decays and both A-systems
that play a role in the generation of the new light field within the cavity.

already mentioned that this is on the order of 2 pis. This agrees very well with the lifetime
of the dark state I\Ilf) (which is derived in Section A.3), indicating that this is indeed
the source of the new field. Additionally, further experiments later presented in this
section reveal that the coherence time is also tunable by Q,; (Figure 4.7), exactly as
expected from a field stemming from the decay of the dark state. The cycle is not closed
in a fully coherent way, as it still relies on a spontaneous atomic decay into free space.
This can be seen especially in comparison to the experiments in the next section of
the thesis (Section 5), where the free space decay is essentially replaced by a coher-
ent driving field, which leads to the generation of a spectrally substantially narrower field.

A more detailed look into the frequency of the newly generated field reveals that it fulfills
an energy conservation condition that is typical for four-wave mixing schemes:

C()fwm - CO13 + 6023 - (l)fs (4.1)

Figure 4.3 show the correlation function for the same detuning in the probe beam
(A,/2m = 9.5MHz) but for different values of the detuning of the |2) < |3) beam. As
is clearly visible, the frequency of the beat changes according to the four-wave mixing
condition. The system is modeled via a full quantum simulation incorporating all relevant
atomic levels and the magnetic field in the experiment. The simulation results agree
well with the experimental data, as can be seen by the agreement of the blue curve
with the data in Figure 4.3. Note that this is not a fit, but is the direct simulation
with experimentally determined parameters from independent measurements. Close
examination of Figure 4.3(b) reveals that the observed beat actually has two frequency
components at ~ 9.5MHz and at =~ 8.7 MHz, respectively. This can be explained by
a depumping mechanism that is depicted in Figure 4.5. Initially the system is well
prepared in ground state |1), but after excitation to state [¥) the system can also
decay into the state |2*) = |58, ,,F = 2,m; = 1). This forms a new A-system with states
|1*) = |5S;/,,F = 1,mg = 0) and |3*) = |5P;/,,F” = 2, mps = 1). From this system it can
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decay even further, which ultimately leads to accumulation of the atomic population
in the dark state |d) = [5S,/,,F = 2,m; = 0). There is no escape channel from that
state, because the transition to |5P;/,,F” = 2, mp, = 0) is dipole forbidden. Therefore,
all detected photons are from either the original A-system or from the A*-system. The
frequency of the beat, that is visible in the g(® correlation function, is given by:

Wheat = Weym — W13 (42)
Due to energy conservation, the frequency of the free space field is given by:
W = W13 — (wthzl* - ‘Utzqz;) (4.3)

where w+ is the transition frequency of the [1) <> |¥]) transition and w,y: the
transition frequency of the |2) «<— [¥) transition. Inserting this into the four-wave
mixing condition from Equation 4.1, the frequency of the field generated in the cavity
becomes:

Whym = Wa3 T Wy — Orogt (4.4)
The energy difference between the two ground states |1) and |2) is given by:
Wiy — Wiyt = Wz — Wigg (4.5)

where w,;3(w,y3) is the atomic transition frequency of the |1) «— |3)(|2) «— |3)) transition.
Inserting the relation leads to:

Whym = Wo3 T W3 — Wio3 (4.6)
This results in a beat frequency of:
Whpear = Wo3 T W13 — Wiz — W3 (4.7)

This means the observed beat in the correlation function depends on the atomic transition
frequencies w,;; and w,,3. These transition frequencies are different when the system
depumps into the other lambda system A* = |1*) <> |2*) «> |3*) because the applied
magnetic guiding field lifts the degeneracy between different Zeeman substates. This
explains the occurrence of two components in the beat. The applied magnetic guiding
field of 0.6 G results in a frequency difference of the two generated beats of 0.84 MHz,
which is in very good agreement with the experimentally measured value of 0.8 MHz.
These two frequency components are especially well visible in a Fourier transform of the
correlation function, which can be seen in Figure 4.6 in blue (for a different detuning
between w;5 and w,3). This Fourier transform clearly validates the occurrence of two
main frequency components, which stem from depumping as already explained before.
The right peak belongs to the initial A-system, whereas the left peak can be attributed
to the A*-system. The height of the peaks is almost identical, which is due to the fact
that this measurement had a measurement duration of 53 ps. For the applied driving
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Figure 4.6: Shown in blue is the Fourier transform of the g®(7) correlation function
over frequency. Shown in orange is the heterodyne measurement of the
field amplitude over the frequency detuning of the local oscillator beam.
This mode of operation is described in Section 3.5. The connecting line is a
guide to the eye. The heterodyne spectrum is shifted in frequency as such
that the highest values overlap. Both curves are normalized.

strengths, the system is already advanced in the depumping process at that time and the
amount of photons detected from both A-systems is equal. The widths of the peaks, which
differ due to different coherence times in the respective CEIT subsystems, is a result of
the different Clebsch-Gordon coefficients of the transitions in the A- and A*- systems.
The effective driving strength varies from Q,,/27 = 5.7 MHz to Q,.5./27 = 2.9 MHz.
So far the generated light field was only investigated by the beat with the probing field in
a photon correlation measurement. Another, and in certain ways, more direct, approach is
to use the heterodyne setup introduced in Section 3.5 as a spectrum analyzer and measure
the output light field in an amplitude measurement of its electric field. The measurement
is shown in Figure 4.6 in orange. The heterodyne measurement clearly shows two peaks
with the expected frequency difference from each other. Also the expected relative height
of both peaks agree well with the Fourier spectrum.

It was already observed in the widths of the peaks, that the Rabi frequency 2,5 plays
a central role for the coherence time (coherence time is inversely proportional to peak
width). Figure 4.7 shows the correlation function for different values of 2,5, with the beat-
ing becoming shorter for higher Q,5. This is because the Rabi frequency Q2,5 determines
the lifetime of the first dark state [¥?) of the CEIT system. This is due to the fact, that the
generated light is stemming from a decay of that long-lived state. For Q,5/27 = 9.7 MHz
the time during which a beat is visible is reduced to about 100 ns. Aside from the change
in the coherence time, the equal-time photon statistics of the cavity output also change
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Figure 4.7: Photon correlation function for different ,, as indicated in each plot. The

beat frequencies are ~ 9.5MHz and ~ 8.7 MHz. In the background in blue
is a full quantum simulation of the system.

for increased Q,5. It goes from sub-Poissonian in 4.7(a) to strongly super-Poissonian
in 4.7(c). When Q,, is increased, the energy of the bright states in the state ladder
changes, as it follows E, = 1/ng2 + Q3, (as introduced in Section 2.2). Keeping A, the
same while increasing ., tunes the dark state ladder for a fixed driving frequency in
and out of resonance to bright states of different rungs. This alters the photon statistics,
because the laser addresses different manifolds of the CEIT energy ladder in multi-photon
transitions, depending on ,;. The effect was predicted in [41] and first measurements
were presented in [46]. The effect allows for all-optical tuning of the photon statistics
of the output light field via the power of the classical beam that drives the atom. This
process does not change the wave-mixing and the frequency of the generated field stays
the same.

4.3. Summary

This section discussed a wave-mixing process with extremely low light levels in a three
level atom. The resultant newly generated field reveals itself in a strong oscillation of
the g®(7) photon correlation function of the output light field from the cavity. The
generated field stems from an incoherently closed cycle in the atomic level scheme, that
generates one cavity and one free space photon per cycle. The frequency of the new field
can be tuned via the frequency of the light field that drives the atom. The generated
field furthermore shows a high coherence to the input fields, as revealed by the long
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coherence time of the beat in the correlation function. This is further confirmed by a
direct measurement of its spectral properties via a heterodyne detection. Furthermore, by
tuning the power of the classical laser driving the atom, the equal-time photon statistics
of the system can be tuned all optically from sub- to super-Poissonian.
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5. Closed cycle and climbing the dark state ladder

5.1. Introduction

The system from the former chapter is modified by adding another field that couples the
two ground states and therefore closes the system coherently. As the system does not have
additional degrees of freedom, it is fully coherent and shows no source of decoherence
from atomic decay. This gives rise to the somehow expected effect of optical wave mixing,
as is typical when several waves interact with a nonlinear atomic system [71-75], but
here in the unique setting of a parametric but resonant process. Usually an atom, that is
irradiated by a light field, which is resonant to a transition between a ground and excited
state is seen as undergoing repeated absorption and subsequent emission of photons,
which is accompanied by quantum jumps between different electronic states [76]. The
theory and the experiments in this chapter however change the paradigm of this view by
showing a continuous generation of a light field by an atom without atomic excitation.
The weak ground state coupling laser does not destroy the fragile dark state ladder in
cavity EIT, which was already introduced in Section 2.2, but quite the contrary effect
happens. The ground state coupling field allows to drive transitions between different
manifolds in this harmonic ladder. Because the dark states are entangled states between
the atomic ground states (no excited state component) and a certain cavity photon
number, their decay leads to photon production in the cavity without atomic excitation.
An investigation of the effective driving strengths and decay rates in the dark state ladder
reveals, that for weak ground state driving, the ladder exhibits a Zeno effect [77]. This
suppresses transitions to higher rungs, effectively blocking the ladder and leading to
single photon emission. Stronger driving then lifts the blockade and produces a coherent
field. In this chapter this new system and its novel effects are investigated theoretically
and experimentally.

5.2. Theory

The contents of this chapter have partially been published in:

Continuous generation of quantum light from a single

ground-state atom in an optical cavity

C. J. Villas-Boas, K. N. Tolazzi, B. Wang, C. lanzano, G. Rempe
arXiv 1906.11449 (quant-ph), accepted in Physical Review Letters

The level scheme of the system that is considered is shown in Figure 5.1(a) and is very
similar to the scheme presented in Section 2.2, but with an additional laser beam. This
beam connects the atomic ground states |1) and |2) and has a frequency of w, ;, and a
Rabi frequency of Q,,. State |2) is coupled to the excited state |3) via a laser field with
frequency w, »; and Rabi frequency €,;. This excited state is coupled to ground state
|1) via a resonant cavity mode with coupling constant g. In the following chapter, this
cavity mode is not driven but the output field that leaks out of the cavity is measured.
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Figure 5.1: (a) shows the driving field configuration. (b) shows the level scheme in
the bare atomic basis with the ground states |1),|2) and the excited state
I3). Also shown are the Rabi frequencies Q,, ,; and detunings A, »; of the
driving fields and the atom cavity coupling constant g.

The two actively driven fields exhibit detunings between field and atomic transition
of Ay = w12 — w15 and Ayz = w93 — w35 With w,;; being the respective atomic
transition frequency. The Hamiltonian of the system is very similar to the one given in
Section 2.2 and can be written in rotating wave approximation as:

H =230+ (A + 0y3)055+ (Ap + Ay3)a a4 + g48 31 + Q1565 + 25303, + hec.
(5.1

where &, denote the atomic transition operators of the form &, = |k) (l| (k,1 =1,2,3)
and a (a") is the annihilation (creation) operator of the quantized cavity field. As the
system exhibits dissipation to the environment, it is an open quantum system and it is
possible to calculate ensemble averages with the density matrix formalism as described
in Section 2.4. Within this chapter for all theoretical results k = 1 applies and all other
parameters are expressed in terms of k. To deepen the understanding of the system it is
helpful to view the system in two different regimes.

5.2.1. Weak ground state coupling

The regime where Q,, < g is called weak ground state coupling regime. This means
the coupling field between the ground states can be treated as a perturbation V and the
eigenstates and eigenenergies of the system are the same as in the theoretical treatment
in Section 2.2.

The system is now investigated by scanning the detunings of the driving fields. Figure 5.2
shows a two dimensional color plot where both detunings are scanned. The different colors
correspond to the logarithmic steady state population of different observables. It can be
clearly seen, that the cavity is populated with photons although it is not directly driven.
Furthermore, this scan reveals the complex energy structure of the first energy manifold
of this system. Emission stems primarily from the first manifold as the driving strength Q,,
was low in this simulation, thus higher manifolds are barely populated as later presented
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Figure 5.2: Steady state values of different observables in two dimensional scans of A;,
against A,;. The left plot shows the logarithmic population of the cavity
mode, the right plot shows the logarithmic population of the atomic excited
state |3).

results will reveal. There are three distinct lines of high population visible in the left plot
where the photon production rate is significant. These correspond to the three states
in the first manifold of CEIT, where each exhibits a cavity component and therefore a
non-vanishing population in the cavity. The right plot with the atomic population shows
almost the same behavior, but in addition a dark line appears at A;, + A,; = 0 where
the two photon detuning is zero and therefore the dark state of the first manifold is
resonantly driven. Of special interest is the point at A, = A,3 = 0, because the cavity
population has a maximum while the atomic population in the excited state remains low.
Thus even though all atomic transitions are driven perfectly on resonance, the excitation
of the atom remains low and the excitation of the cavity is high. On first glance this seems
contradictory.

To explain this, it is convenient to reformulate the system (for A;, = A,; = 0) in
the {|+),|—)} basis with |£) = 1/+/2(|1) £ |2)). In this basis the effective energy level
diagram and the driving strengths look like in Figure 5.3. This can be understood as two
independent A-system for which an interference effect is expected, as known from cavity
EIT [36]. For weak ground state coupling the transitions |[+) «— |3) and |—) «— |3) are
both almost resonant and the interference between these two absorption paths avoids
the excitation of the atom to |3) and the system remains in the subspace of dark states.
For further investigation it is helpful to derive an effective Hamiltonian for that situation
as is explicitly done in the appendix under Section A.1. The final driven Hamiltonian for
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Figure 5.3: The effective level scheme and driving strengths for vanishing detunings of
the driving fields A, ,; = 0 in the |+), |—) basis.
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This Hamiltonian promotes transitions between all dark states (n «— n + 1) at the same
time. As the dark state ladder is linear all transitions are resonant to the same driving
fields. Remarkably, this system stays solely in the subspace of dark states, in driving
as well as in decay, because there is no decay from a dark state to a bright state as is
shown in Section A.3. This behavior is visualized in Figure 5.4. As the dark states have a
photonic component in the cavity, it is possible to continuously generate photons without
exciting the atom.
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Figure 5.4: The dark state ladder of the system for the first three dark states, with
effective driving strengths in blue and decay rates in green. The factors are
an approximation for (£2;,, Q,3) < g.

5.2.2. Quantum Zeno effect

It is insightful to compare the effective driving strengths of different transitions in the
dark state ladder. To simplify the expression, the discussion in this subsection is in the
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limit Q,; < g. The full expressions can be found in Appendix Appendix A. The effective
driving strength from n—1 to n is given by:

D) = {2 n=1 (5.3)
Q1,Q53/(gvn—1) n>1

which shows a steep decrease in the driving strength from n =1 to n > 1. Considering
the decay rates of different dark states, which can be calculated by Fermi’s golden rule
(derivation in Section A.3), leads to:

?K n=1

5.4
(n—1k n>1 -4

F\I’g—ﬂllgil = F(n) = {

This shows a fast increase from n =1 to n > 1 in the decay rate. So there is a step from
n=1to n> 1 for both the effective driving which decreases and the decay rate which
increases. A comparison between the driving strength to the n’th dark state and its decay
leads to the definition of a Zeno-factor as: Z(n) = D(n)/T'(n). This measure is called
Zeno factor because the decay from higher states n > 1 is much faster than the effective
driving strength to these states, so the system is constantly projected into the subspace
of the first two dark states |\I!f) and |\I/8 ) and experiences a continuous quantum Zeno
effect [77].
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Figure 5.5: (a) shows the relative Zeno factor Z(n) for different n and for two different
values of Q,5. The blue bars for higher n > 1 are so small that they are not
visible in the picture. (b) shows the population of the first three dark states
over £2;, for two different values of 2,;. The colors correspond to: green
solid— ¥y, red dashed— ¥?, purple dotted— WJ.

To compare the different dark state Zeno factors, it is helpful to normalize this measure to
Z(1) and define the relative Zeno-factor as % (n) = Z(n)/Z(1). This measure is helpful in
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determining how close the system behaves to a two level system. The calculated relative
Zeno factors for different values of n and Q2,5 are shown in Figure 5.5(a). The blue bars
are calculated for Q,; = 1k and are so small for n > 1 that they are not visible. The
relative Zeno factor is already 1 - 1072 for n = 2. This leaves the system an almost perfect
two level system with transitions between the first two dark states withn=0and n=1.
The Zeno factor can be tuned by changing €2,5. For Q,; = 8k the relative Zeno factor
is 0.22 for n = 2 and therefore 220 times bigger than in the Q,; = 1k case. Another
illustration of this effect is Figure 5.5(b), which shows the change in the population of
the first three dark states for increasing 2, for two different values of Q5. In the case of
Q,; = 1k, the system behaves as a perfect two level system, between the ground state
and the first dark state, as already expected from the Zeno-factor. Higher states are not
populated. This two level behavior breaks down for higher values of 0,5 (e.g. Q2,5 = 8k)
and higher states also have significant population (see Figure 5.5(b)). The almost perfect
two level behavior for low Q2,5 can also be seen in Figure 5.6. Shown in that figure, is the
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=
20 4
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Figure 5.6: Population of the dark states and the cavity over time exhibiting Rabi
oscillations between the the two dark states. The simulation parameters
are 2;, = 0.5k, 93 = 1.0x, g = 10x.

population oscillation between the ground state and first dark state over time, for a fixed
driving strength. The dark state population shows typical Rabi oscillations between the
first two dark states as in a two level atom with decay. In contrast to a typical atom the
decay here is not given by I';; or k but by I'(1) = k2, /g, which is much lower than the
usual decay constants in an purely atomic two-level system.

As already mentioned the Zeno-blockade behavior can be controlled by €2,;. Higher
values unblock formerly blocked parts of the dark state ladder. A way to investigate this
blockade is by the equal-time correlation g2(0) value, because an emission of more than
one photon at the same time is only possible when higher states of the dark state ladder
are populated. The result of a simulation is shown in Figure 5.7(a). As can be seen in this
plot, the equal-time correlation approaches one for higher values of 2,5, while the cavity
population goes down. This is expected from the full analytical formula of the effective
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Figure 5.7: (a) shows the population in the cavity (orange dashed) and the equal-time
photon correlation (blue) against the driving strength Q,5. (b) shows the
same data as graph (a) but in a plot where the g(?(0) is plotted against the
cavity population. The simulation parameters are £,, = 0.1k, g = 10x.

driving in the ladder and is treated in Section A.1.

The change in photon statistics is because the Zeno-blockade is lifted and the ladder of
dark states can be climbed for increased (2,5, which leads to the generation of a light
field that reflects the population of higher states by approaching a correlation value of
one. This is not a mere filling of the cavity but a true lifting of the Zeno-blockade as can
be seen in Figure 5.7(b), which shows, that the same cavity population leads to different
values for the equal-time photon correlation depending on 2,5.

5.2.3. Spectral properties of the generated light field

The power spectrum of a quantized light field can be determined via the Fourier-transform
of the un-normalized first-order correlation function GV(7) = <a"‘(’r)a(0)> [78]:

+00

S(w) = f (aT(T)a(O)>e_i‘°th (5.5)

—0Q

Several simulated spectra of the cavity field for different parameters are shown in Fig-
ure 5.8. The driving fields were resonant for this simulation. There are several things that
are remarkable in all the spectra: The emitted field exhibits a Dirac delta function-like
behavior at zero detuning that has no measurable width. This peak emerges from another
peak at zero detuning, but with a non-vanishing width. Furthermore each spectrum shows
two additional peaks at roughly £2Q,,. The width of these additional peaks depends
on ,; and on the coupling constant g as can be seen from the spectra for different
parameters. This structure can be explained as a Mollow triplet [78], in analogy to the
spectrum of a two-level system, as the presented system can be viewed as such in certain
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Figure 5.8: Logarithmic power spectra of the generated light field for different parame-
ters. The shown spectra are for the zero-detuning case A, = A,; =0.

regimes (which has been shown in the previous sections). Mollow derived that the emis-
sion power spectrum of a driven two-level atom consists of a coherent part from elastic
scattering, that exhibits the same spectral properties as the driving laser beam, namely
a delta function in the ideal case (experimentally validated in [79]) and an incoherent
part, that is emitted at different frequencies and is distributed in three peaks. In the
Mollow theory, the position of the peaks is given by 0, £Q2, where 2 is the Rabi frequency
of the drive. As already discussed the system in this chapter can be viewed (in the regime
Q,; K g) as a two-level system due to the Zeno-blockade with the ground state |\P8) and
the excited state |\IJ?). The effective Rabi frequency between these states is then Q = 2Q;,.
This agrees very well with the positions of the peaks in the simulation. The width of
the peaks is proportional to the spontaneous decay rate according to Mollow. The decay
rate of the first dark state is given by xQ2,/g* for Q2,3 < g. This is also confirmed by the
simulation, as the peak width changes strongly with g and Q,;. The height of the side
peaks is convoluted with the cavity linewidth and therefore is getting smaller for higher
effective Rabi-frequencies, because field-components outside of the cavity frequency
window cannot build up. In summary, the spectrum behaves very much as expected for
a two-level system with the two states [¥7) and |¥?), therefore supporting the results
obtained in the previous chapters about the Zeno-blockade effect. Deviation from the
two-level behavior is observed in the difference between the blue curve in Figure 5.8
and the red, where only Q,, is varied. The side peaks move towards the inside, which
is expected from the general expression (not for small €2,;) for the Rabi-frequency (see
Section A.1).
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5.2.4. Strong ground state coupling

In the regime Q,, > (g,Q,3) > K it is clear from Figure 5.1(b) that the splitting between
|[+) and |—) is large. This splits the system into two independent two-level systems which
are off-resonantly driven by the laser and cavity field. Even though the cavity mode and
the laser field addressing |2) «— |3) have a very distinct frequency, they couple the same
transition in this regime. The effective Hamiltonian (derivation in the appendix under
Section A.1) in this situation is given by:

H, s o~ {—[g%d'a+ Q% +(gQya+hc)]o,,

204,
2 7 2
+|:g a a+§223—(g§223a+h.c.):|0__}

To gain further insights, it is interesting to view the situation in three different regimes:

Regime 1: k=0

Starting from the initial state |1,0) = —= (|+) +|—)) |0) the evolved state at time t will be

2
(for a derivation see Section A.2):

1 ‘ By ‘ By
@ (1)) = 2 [11) (e|a,) + e la_)) +12) (e |a,) —e ™ |a_))] (5.6)
2 .
with 6 = 2%2132 and a, = :I:% (e””gzt/ Hho 1). Performing an atomic ground state detec-

tion, projects the system into one of two Schrodinger cat states. Interesting to note is,
that the phase and the amplitude of the coherent states in the cat state are both time
dependent. So by choosing an appropriate time of projection, the properties of the cat
state can be tuned. Figure 5.9 shows the Wigner-function [80] for different times t in the
upper row, where it is clear that the cat state changes periodically over time. The lower
plot shows the size of the cat ({n) = |a|?) in blue and the phase 8 in orange.

Regime 2: g?> 2Q,,x

In this regime with a small cavity decay x in comparison to g there will be a steady state
which is a complete mixture between |+) and |—). Tracing over the atomic state leads to
a steady state in the cavity field of [81]:

prr= 5 ()] + o) (@) 57)

. - gQZS . . . . . .
with a, = —i5H5— Z220%- Fora small k, like in this regime, this can be approximated as

a, ~—a_~—,,/g. This is a mixture of two coherent states that are completely out of
phase.
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Time t

Figure 5.9: The upper row shows the Wigner function of the cavity field for different
points in time. The lower plot shows the coherent state photon number
(n) = |a|* (blue line, left axis) and the phase 6 (orange line, right axis)
over time.

Regime 3: g2 < 20,k

In this regime a can be expressed as @ >~ a, >~ a_ ~ i35 This simplifies Equation 5.7 to

pss = |a){a|, which is a perfect coherent state in the cavity mode. These theoretical results
concerning the field properties in the weak and strong ground state coupling regime
and the transition between these two, can be seen clearly when evaluating the g2(0)
value over ,,. Figure 5.10(a) shows this simulation, where the analytically predicted
transition from single photon emission from a two-level system to a coherent state in the
cavity for increased ground state coupling is clearly reflected in the g2(0) as it goes from
a value of close to zero (single photon emission) to a value of one (coherent state) for
higher ground state couplings. Figure 5.10(b) shows the g?(7) correlation function for
one specific ground state coupling in each regime. The blue curve for low coupling, shows
strong antibunching and an oscillation with the Rabi frequency between the ground state
and the first dark state as expected for a two-level system. For long 7 it settles to one.
The orange curve for a high ground state coupling starts at one and shows minor residual
oscillations for short timescales, stemming from transient internal dynamics, but shows
no substantial deviation from a perfect coherent state.

5.2.5. Excitation-less generation of photons

As already mentioned, the emission of photons from the cavity stems from transitions
between dark states, that do not have a component of the excited atomic state |3), but a
photonic cavity component. A steady state photon number forms inside of the cavity, as



5 Closed cycle and climbing the dark state ladder 49

1.0 A
1.25 A
0.8
1.00 A
o 067 & 0.75
) )
50 0.4 A 50 0.50 4
i e () =0.1
0.2 0.25 - 12/K
le/KZ 10
0.0 1 T T T 0.00 T
0 5 10 0 2 4

le/K

Figure 5.10: (a) shows the value of the two photon correlation function for time 0
against the ground state coupling strength. (b) shows the full correlation
function for different ground state coupling strengths in different regimes.
The other parameters are Q2,3 = 3.0k, g = 10x.

each dark state can decay via emission of a photon out of the cavity. The avoidance of state
|3), despite resonant driving, is due to destructive interference of different absorption
path in the weak ground state coupling regime as explained before. This destructive
interference is not perfect for realistic close-to-experiment parameters, which means
there is residual population in |3). This is likely due to the finite detuning of the driving
beam, that addresses the dark state ladder with states [¥°), to the bright states [¥¥).
When these bright states are off-resonantly excited, they introduce population in |3). The
figure of merit is defined as the cavity population divided by the excited state population
<a'ra> / {(033), which is proportional to the number of photons that can be generated in
the system without having a spontaneous decay from state |3). From now on this ratio is
called photons per excitation (PPE) value.

The factor changes significantly with ,,, where it shows a steep decrease from around
400 to 200 when increasing €2;, as can be seen in Figure 5.11(a). After the initial steep
decrease the PPE value stays almost constant. This reflects very well the aforementioned
existence of two distinct regimes in the ground state coupling, which is also strongly
reflected in the g%(0) value in Figure 5.10. Figure 5.11(b) shows the same scan for a
low coupling constant g. Noteworthy is that the PPE factor is always below one, which
means that there is more atomic population in state |3), than there is population in
the cavity. This stems from the fact, that for a low coupling constant the dark states
become non-orthogonal. Furthermore outside of the strong coupling regime, the field,
that couples the two ground atomic states is able to induce transitions between dark-
bright and bright-bright pairs, thus increasing the population of the atomic excited state.
Figure 5.12 shows how the PPE factor changes, when different properties of the system
are changed including the before mentioned dependence on the coupling constant. It
seems that the PPE value exhibits a proportionality to three parameters of the system,
namely g2, 1/x and 1/ Y deph> Where y4,,, is a so far not mentioned dephasing between
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Figure 5.11: Shown is the value of <a"‘a>/ (043) over a wide range of Q,, for two
different values of the coupling constant g.

the two ground states in the system, which is very relevant when it comes to limitations
in a real system. Real experiments always exhibit a certain dephasing between the ground
states. For high values of Q2,5 and therefore a short lifetime of the dark states, the PPE
factor is slowly decreasing, because the overlap with the bright states increases. It is also
interesting how the system behaves when the excited atomic state is neither resonant to
the cavity nor to the |2) to |3) laser. This is especially interesting, as a standard technique
to avoid excited state population is, by working in a detuned regime of some excited
atomic state as e.g. in far detuned Raman-transitions.

Figure 5.13 shows a simulation, in which the frequency of the excited atomic state is
detuned from the cavity and the |2) to |3) laser, which stay at the same frequency. Part
(a) shows the cavity population, which is proportional to the photon production rate
for a fixed k. This clearly illustrates that the efficiency, with which the system runs for a
constant drive is strongly dependent on the detuning of the excited state. The highest
efficiency is reached exactly on atomic resonance. Even though the atom is resonantly
driven there, the PPE factor is barely affected with a relative change of below 5%.
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Figure 5.12: Shown is the value of <a"“a> / {(033) when tuning several different parame-
ters of the simulation. When scanning one parameter all others are fixed
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Figure 5.13: Different observables against the detuning of the excited atomic state
Ass. (a) shows the cavity population, (b) shows the PPE factor. The other
simulation parameters are Q;, = 1.0k, Q2,3 = 2.0k, g = 10k
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5.3. Experimental results

The last chapter focused on the theoretical framework and findings in a coherently
closed atomic cycle with a cavity. This chapter will now focus on the experimental
implementation in a strongly coupled atom-cavity system in the lab. The presented level
scheme from the last chapter is implemented on the D2 line of the 8Rb atom. The states
[1),]2),]3) are implemented as:

|1> = |581/2,F = 1,1‘1‘1F = +1>
|2) = |5$1/2,F =2,mp = +2> (5.8)
|3> = |5P3/2’F// = 2’ mF,, — +2)

The experimentally achieved parameters are (k, g)/27 = (1.5,10.2) MHz, where « is the
field decay rate and g the atom cavity coupling constant on the |1) « |3) transition. A

@) )

H+K+

Figure 5.14: (a) shows a sketch of the driving configuration with three lasers irradiating
the atom transversely, out of which two form a Raman pair. (b)shows
the experimental level scheme, that differs from the theoretical one in
Figure 5.1 by using a Raman transition to couple the two ground states
with single photon detunings A;, and A,,.

sketch of the driving configuration and the experimental level scheme used are depicted
in Figure 5.14.

5.3.1. Raman as ground state coupling

Now that the mapping of the states |1), |2) and |3) to real states of the 8Rb atom
is fixed, the next step for the realization of the theoretically investigated system is to
implement the drives between these levels. The drive between level |2) and |3) can easily
be implemented by using a conventional diode laser as the transition frequency is around
384 THz and therefore right at the transition between optical and near infrared where
off-the-shelve lasers are available. The transition between |1) and |2) has a transition
frequency of 6.8 GHz and is therefore in the microwave (MW) regime. Direct driving
of this transition via a microwave has proven disadvantageous in the setup. A suitable
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alternative are Raman transitions as discussed in Section 3.8. The Raman method couples
two atomic states via a resonant two-photon process with optical light fields exhibiting
a finite detuning to an excited atomic state |r). The interaction with the excited state
is off-resonant, preventing excitation of this state. This is important because excitation
leads to spontaneous decay into potentially uncoupled states and leads to dephasing in
the system. Figure 5.15 shows the experimentally used Raman lasers. The two photon
process from [5S;,,F = 1,my = +1) to |58, 5, F = 2,m; = +2) couples via the detuned
excited state |r) = |5P, ,,F' = 2, mp = +2) with a detuning of ~ 4.5GHz.

F'=2
5Py, F'=1
X
F=2
5Sie l
F=1
m= 0 +1 +2

Figure 5.15: The Raman beams with their respective energy (length of arrow) and
polarization (direction of arrow) are shown with the relevant part of the
level diagram of the atom.

From the detunings and power levels it is possible to calculate the off-resonant scattering
rate. According to [55] the scattering rate is given by:

212
3mc Iy

I,=—— 5.9
2R3 A2 (59)

where T is the scattering rate, I,; the decay rate of the excited state, w, the transition
frequency, A the detuning of the driving laser to the transition frequency, I = %eOcE2
the intensity at the atom and E the electric field. According to Equation 3.8 this can be
rewritten to:

212
3c I7,P

= (5.10)
* hwd A2w?
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where P is the beam power which is easily measurable and W?) is the beam waist at the
atom’s position which is determined in Section 3.8. To calculate the scattering rate in a
multi level atom it is necessary to sum up all scattering rates of the lasers to different
transitions they can couple to. This leads to the following formula if both Raman lasers
have the same power P, = P, = P [55]:

3¢’ P G?
Rc:ﬁ(plz( f) +(1- pl)Z( )) (5.11)
D177 0 i l

[1)—i |2)—i

where p; is the fraction of the atomic population that is in state |1), whereas the rest
is in |2) and CG; is the respective Clebsch-Gordon coefficient of the i’th transition. All
relevant transitions for the Raman ground state coupling are summarized in Table 2.

GS ES  A[GHz] CG-V/12
Flmgl Flmgl  -1.9 +1
Flmpl F2mpl  -2.7 /3
Flmgl F1mg0 53 +1
F1 mzl F2m0 4.5 -1
Flm;l F2m;2 4.5 /6
F2 mp2 F2 mp2 4.5 -4
F2mp2 Flmgl 121 V6
F2my2 F2mgl  11.3 V2

Table 2: Summary of all relevant atomic transitions with their detuning in the experi-
ment and the respective Clebsch-Gordon coefficients. GS stands for ground
states, ES for excited state.

Evaluating the scattering rate for the highest laser powers used in the experiment leads to
rates of up to 8.8 kHz, if the whole atomic population is in state |1). This value is already
substantial. This has two effects on the physical system presented here. First, it leads to
decoherence, because whenever a scattering event happens the system is projected out
of the dark states. Second, a scattering event means a spontaneous decay of the atom to
some random state (with a branching ratio given by the effective coupling strengths).
A second effect of driving the system with off-resonant but strong laser beams is that the
transitions experience a Stark shift due to the interaction of the atom with the light. The
Stark shift for the transition between |1) and |2) is now given by [55]:

3¢?I, P CG? CG?
AE = AEj — Ay = —2 Z Z (5.12)
wp Wi 12)—i

[1)—>i
A calculation with all coupling transitions from Table 2 results in a Stark shift of:

MHz
mw

AE,,,, =1.2 (5.13)
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The measured Stark shift of the transition for different Raman driving powers is shown
in Figure 5.16. A linear fit reveals a Stark shift slope of:

MHz
m

AE,,, = 1.1(1) (5.14)
This is in very good agreement with the theoretically expected value, showing that the
system is well understood and that the calculation of the beam waist at the atom position
as done in Section 3.8 is accurate.
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Figure 5.16: Shown is the absolute value of the relative Stark shift over the power
of both lasers (that had the same power), as determined from the peak
position in multiple spectra as in Figure 5.18.

5.3.2. State preparation

The experimental sequence starts in state |1) = |5S, ,,F = 1,my = +1), which needs to
be prepared beforehand. Preparing this state is unfortunately not straight forward by
optical pumping, as it cannot act as an uncoupled state for any configuration of lasers in
the current setup. The used sequence to maximize the population in the desired state is
shown in Figure 5.17.

The ground state manifold |F = 2) is depopulated by a 221 (coding is explained in caption
of Figure 5.17) and a 222 beam in nt-polarization and an additional 221 beam in lin_llin
configuration (see Section 3.4 for laser directions and an explanation of the polarization).
These together do not exhibit an uncoupled state in |F = 2) and therefore everything
ends in |F = 1). But the population of Zeeman-substates within this manifold is random.
To counteract this, an additional 212 beam in o *-polarization is used, which drives
transitions with A, = +1 to the excited manifold |[F” = 2). From there it can either
decay to the |F =1) or to the |F = 2) manifold, but on average it decays to a higher
Zeeman-substate (Mgaqe,>Mgpefore) - BeCause there are no uncoupled states in the system,
this method of state preparation slowly approaches an equilibrium with a high, although
not complete population in |1) = [5S, ,,F = 1, m; = +1). This residual imperfection is
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Figure 5.17: (a) shows the sequence that was used to prepare state |1) with the different
lasers and their respective polarization. The laser names are encoded as
nln2n3, where n1 stands for either D1(1) or D2(2) line of 8’Rb, n2 is
the ground state F-manifold and n3 the excited state F-manifold. 212 e.g.
drives the transition from |5S;,,F = 1) to |5P;,,, F” = 2). (b) shows the
countrate during the state preparation sequence versus time. The colorful
shades correspond in both pictures to the same pulse.

caused by depumping by the 212 laser. One problem is that, if the 212 beam and the 222
beam exhibit a two photon detuning that is resonant to a transition from |[F =1, my = 1)
to |F =2, my; = 2), a superposition state as in cavity EIT will form between them. To
prepare all population in this state into the |F = 1,m; = 1) a second state preparation
pulse is applied, where the 212 laser is turned off, leaving the system in the desired
state. The quality of the state preparation can be measured by a spectrum of the ground
state coupling. The cavity produces photons when the Raman transition between the two
ground states, |F = 1) and |F = 2), exhibits a two-photon detuning that is resonant to the
transition between a pair of Zeeman substates, with one substate in each ground state.
The Zeeman substates exhibit a frequency splitting due to the applied magnetic field.
The transitions that are allowed are given by the interplay between laser polarizations
and magnetic field direction and are the same as in Section 3.8. The second step with the
laser from |2) to |3) couples all Zeeman substates in the |F = 2) ground state manifold, as
the transition including the cavity is broader than the Zeeman splitting. When this three-
photon detuning is appropriate, a light field builds up inside of the cavity that decays
from the cavity with rate x and is then measured. The spectral response of the system,
when tuning the Raman driving frequency is depicted in Figure 5.18. As can be seen,
there are multiple peaks visible with the rightmost peak dominating. The rightmost peak
belongs to the transition from |F =1, my = 1) to |F = 2, m; = 2), as indicated in the plot.
This is the transition that is actually desired. All other depicted transition are parasitic
and their respective peak would vanish for a perfect state preparation. Unfortunately a
perfect state preparation is not possible in the current configuration of the experiment,
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Figure 5.18: Normalized countrate when the two-photon detuning of the Raman transi-
tion is scanned. The text above the peaks indicates the respective transition.
Some transitions are degenerate.

therefore a loss of around 20% of the population that is initially in undesired states
has to be accepted. This effect expresses itself as a diminished signal in the subsequent
experiments but does not lead to biased results when only the rightmost peak is driven.

5.3.3. Energy spectrum of the system

It is now interesting to investigate the system spectrally to understand its energy level
structure. This can be done by scanning the ground state coupling frequency with detuning
A, against the detuning A,; of the excited state coupling. Because A, is essentially
the two-photon Raman detuning, scanning one of the two Raman lasers is equivalent
to scanning A;,. This measurement reflects the eigenstates of the system’s first energy
manifold as introduced in the theory section in Section 5.2.1. Whenever one of the excited
states in the first manifold is resonant to the configuration of driving frequencies, light
is generated in the cavity. The system is restricted to mainly the first energy manifold
because the driving strength remains low. The result of the experiment is shown in
Figure 5.19. This experimental result agrees qualitatively very well with the simulation
of the same observable as shown in Figure 5.2. The orange lines in the plot stem from the
theoretically calculated energies of the first manifold for the ideal system without ground
state coupling. The fact that these replicate the measurement indicates that treating
the ground state coupling as a small perturbation is indeed valid. The highest photon
production rate is reached at A;, = A,; = 0 with a rate on the order of 100 kHz.

5.3.4. Four wave mixing and spectrum

The output light field is produced in a process that looks similar to four wave mixing as
it uses a typical double-lambda system [26]. The output light field should, in such a case,
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Figure 5.19: Logarithmic plot of the cavity output rate for a two-dimensional scan of
the excited state coupling A,; and the ground state coupling A,,. The
orange lines show the solution of an analytical theory.

obey certain wave mixing conditions. The output light should have the same frequency
as the sum of the input light fields, which can be expressed as:

Wiym = W1y T Wo3 — Wy, (5.15)

where wy,, is the frequency of the output light field from the cavity. To investigate the
system’s behavior under change of the input light frequencies, it is necessary to measure
the output field in a spectral measurement with very high precision. This is done with a
heterodyne setup as described in Section 3.5. The result is shown in Figure 5.20. Several
things are noteworthy. First of all, the output frequency of the light field follows the
inputs, as in classical four wave mixing. This already proofs that it is indeed a four wave
mixing process happening in the system. Furthermore the peaks exhibit an extremely
small spectral width of around 20 kHz. This width is likely Fourier-limited, because the
light field was only generated and measured in a pulse of 55 jis, suggesting the width
would be even smaller for a longer measurement duration. This means the generated
light field is fully coherent with the input light fields. The heterodyne local oscillator
beam, with which the generated field is interfered, is derived from a separate laser, which
is not involved in driving of the system. This means the generated light is even fully
phase coherent with the frequency comb used in the laboratory, to which all lasers are
stabilized. This very small spectral linewidth, likely even Fourier-limited, is indeed in
qualitative agreement with simulations, where the system’s spectrum is a delta function
without experimental imperfections. This is due to the Zeno-blockade, due to which the
system exhibits two-level system behavior with coherent elastic scattering (for details see
Section 5.2.3). The incoherent peaks of the Mollow triplet are several order of magnitude
weaker, leading to an insufficient signal-to-noise ratio to detect them in this measurement.
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Figure 5.20: Heterodyne spectrum showing four wave mixing for different detunings of
the input fields. The blue curve shows the spectrum for vanishing detunings
(A, = A, = Ay =0), the orange curve for A;, = 100kHz, the the green
curve for A,. = 100kHz and the purple curve for A,; = 200kHz. The
amplitude is normalized to the largest amplitude.

5.3.5. Excitation-less photon generation

This and the later chapters focus on the dark-state ladder as introduced in the theory
section under Section 5.2.1 and are measured for resonant driving (A;; = A,3 = 0)
unless otherwise noted. The emission from the cavity when driving dark states stems
from the decay of the states with n > 1, which all contain a cavity component. Exemplary
for n = 1, the dark state is |\IJ§)> o< Q,5]1,1) — g |2,0), where the state |1,1) can decay
via the cavity. As already mentioned in the corresponding theory chapter in Section 5.2.5,
driving the dark states still leads to residual population in the excited atomic state as the
detuning of the bright states is finite. So the signal that a dark state transition is driven
is a reduction of the excited state population in comparison to a free-space atom with
the same resonant light fields applied. Experimentally, it is not easy to probe the excited
state population because this would require a state detection sensitive to population in
this state. This is hard, because the excited state has a very short lifetime and a detection
technique would need to probe the state faster than 1/y; = 26 ns [54]. However, there is
an indirect method to serve the same purpose, based on the natural decay of the excited
state. Whenever the atom is in the excited state manifold, it does decay with a certain
branching ratio to different ground states. A level scheme with the relevant states for
87Rb is shown in Figure 5.21(a). If state |3) is populated it decays with the following
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Figure 5.21: (a) shows the full atomic level scheme that is relevant to the experiment
with the allowed and forbidden transitions and the uncoupled states in
which the atomic population accumulates for long interrogation times.
(b) shows the measured countrate of the cavity output over time (orange)
and a fit of this exponential decay (blue).

branching ratios (that can be deduced from the Clebsch-Gordon coefficients):

3) > [F=1,my = +1) = 6/12
3) > |F=2,mp = +1) =2/12 (5.16)
13) > |F=2,mp = +2) =4/12

This means the atom decays in 2/12 = 16% of the cases to state |[F = 2, my = +1) and
therefore out of the closed system. As the transition from there to the excited state
|[F” = 2, mp = +1) is spectrally broad, the same laser of the |2) «— |3) transition also
drives this transition. This either leads again into the closed system |1) < |2) « |3),
back to |F =2, mg = +1) or ends up in one of the states denoted by |d, ,). These two
states are uncoupled by the driving lasers and the population remains trapped there. In
the |d,)-case, this is based on the detuning of the driving laser, as the width of this ground
state transition is smaller than the frequency splitting of the Zeeman-substates due to
the applied magnetic guiding field along the cavity. In the case of |d,), this is due to the
selection rules that prevent a coupling via m-polarized light to the excited state manifold
|[F” = 2). These two uncoupled states are no longer able to produce photons. This leads to a
characteristic number of photons that such a system can scatter before it is depumped into
one of these uncoupled states. This characteristic photon number is inversely proportional
to the average atomic excited state population. Figure 5.21(b) shows the measured
photon rate for the system over time. After the initial dynamics with a fast increase in
the countrate, the photon rate decreases exponentially due residual excitation of state
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|3) and subsequent decay into the uncoupled states. The orange bars in Figure 5.22(a)
show the photon number distribution in this 60 jis long measurement interval for a large
number of measurements. The average number of photons per experiment is then 4.0.
Because of the exponential character of such a decay it is straightforward to extrapolate
this value for infinite measurement times via:

<ﬁ>=fA'e_t/Tdt=A'T (5.17)
0

with A the amplitude of the exponential decay and 7 the decay constant.
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Figure 5.22: (a) shows the theoretic photon number distribution without a cavity
for infinite measurement time (gray) and the experimentally measured
photon number distribution (orange) for 60 ps measurement time. Both
are for A, = A,3 = 0. (b) shows the total average photon number
against the detuning A,5. The gray curve shows the simulation without a
cavity and the orange data points show the measurement as extrapolated
for infinite measurement times from the exponential decay. The blue
curve is a quantum simulation for the system that is scaled and shifted to
accommodate the data. All simulations are performed in a full quantum
simulation with all participating atomic levels and decays between them.

For the measurement in Figure 5.22(a) this results in a total of 6.9(1) photons before the
system is fully decayed. Noteworthy is that the experimental detection efficiency of the
photons in the cavity to actually detected photons is only 26% (which means a perfect
detection system would measure 26.5 photons). To show that these photons indeed stem
from a transition between dark states it is necessary to compare the measured value to
the identical system without a cavity. As there is no dark state-ladder in the free space



5 Closed cycle and climbing the dark state ladder 63

equivalent of the experiment, the only way to produce a photon is by decaying from
the excited state and not via a dark state transition. In this situation the atom would
scatter in the full solid angle of 47. Assuming a detector collecting all photons of the
right frequency and the same photon detection efficiency as in the experiment, this would
lead to an average photon number of only 1.6 before the system is fully depumped into
uncoupled states. This number is based on a full quantum Monte-Carlo simulation of
the system for infinitely long measurement time including all relevant atomic states
and decay channels. The number of photons in the experiment is a 4.3-fold increase
compared to that and clearly shows, that the produced photons indeed result from a
transition between dark states. This experimental value is mainly limited by the finite
coupling strength g, the non-negligible dephasing rate between the ground states of
Y deph/ 27 = 64(1) kHz [82], the position distribution of atoms within the cavity and the
scattering rate of the Raman-transition between |1) and |2). As already shown in the
excited state population in the theory figure in Figure 5.2, the avoidance of the excited
state is only good for vanishing three photon detuning A, + A,; = 0. Therefore it is
interesting to see that the average number of photons also reproduces this result. Without
a loss of generality only a one-dimensional scan in A,; was performed. The results are
depicted as orange dots in Figure 5.22(b). These clearly show a resonance with a peak
at vanishing detuning with 6.9 photons for infinite measurement time. Shown in blue
is a theoretical calculation of the photon number from a Monte-Carlo simulation of the
system. The mainly flat gray line at around 1.6 photons is a simulation for the free-space
atom case for exactly the same scan. The emergence of a resonance, and also the far
larger total photon number again proofs that the photons indeed stem from a dark state
transition.

5.3.6. Photon statistics

The dynamics of the system within the dark state ladder can be analyzed via the second
order correlation function g (7). Multiple measured correlation functions are shown
in Figure 5.23. Figure part (a) shows the correlation function for different values of
Q,5. The data shows strong photon antibunching and sub-Poissonian statistics due to the
Zeno-blockade effect as higher rungs in the dark-state ladder are suppressed and the
dynamics are limited to the first two dark states [¥;) and [¥?) (see also Section 5.2.2).
The correlation function is mainly shaped by two parameters. First the effective Rabi
frequency that determines the coherent evolution of the system with Rabi-oscillations
between these two states and second the decay rate of the first dark state. The green
curve is a fit of a damped sinusoidal function that results in a frequency of 327(14) kHz,
which is in decent agreement with ©,,/27 = 400kHz, which is the calculated value
from the laser powers and the known beam waist. As already introduced in the theory
chapter (Section 5.2.2), the decay rate of the first dark state can be calculated via Fermi’s
golden rule. Together with the known dephasing rate of our ground-state superposition
of ¥ 4epn/27 = 64(1) kHz [82] the dephasing time is 2.0 pis for Q2,;/27 = 2.0 MHz (orange
dots in Fig. 5.23(a)), which agrees well with the experimentally measured value of
1.7(2) ps. Also visible in Figure part (a) is, that the correlation function does not change
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Figure 5.23: Both graphs show the second order correlation function g®(7) for A, =
A,5 = 0. (a) shows this function for different values of 2,5 for a fixed value
of Q,,/2m = 400 kHz. The orange data points are fitted by an exponentially
decaying sine wave as shown in green. (b) shows the correlation function
for different values of Q,, for a fixed value of ,;/27 = 5.0 MHz. The
binning for the correlation function in this measurement was 20 ns and
the error bars are statistical.

its frequency for different values of Q,5, as this does not have an effect on the effective
driving strength (in the regime g > Q,5), but indeed it has a strong effect on the lifetime
of the first dark state and therefore on the oscillation decay rate. The g®?(0) value also
changes, which is the topic of the Section 5.3.7. Figure 5.23(b) shows the correlation
function for different values of Q;,. The blue curve exhibits no visible oscillation because
the system operates in the overdamped regime, where the decay is faster than the driving.
When the effective Rabi frequency is increased, an oscillation emerges, completely similar
to the result in a two-level atom. So it is indeed £2,, that primarily determines the
oscillation frequency in the discussed parameter regime. Also the g‘®(0) value changes
dramatically, which is discussed in Section 5.3.8. In summary, the correlation functions
accurately depict the dynamics between the first two states in the dark state ladder and
agree very well with theoretical expectations for a two-level system implemented in the
dark states.

Intuitively it might seem contradictory that the heterodyne measurement in Figure 5.20
shows a linewidth of the emitted field of only 20 kHz, implying a coherence time of around
50 ps, whereas the correlation measurement in Figure 5.23 only shows a coherence time
of around 2 ps. As was already shown and discussed in [79, 83], this is no contradiction
at all, because first order coherence, as measured via the heterodyne detection, does
not imply second order coherence, as measured via photon correlation. A heterodyne
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detection is based on interference between light fields and emphasizes the wave properties
of light. On the other hand the photon detection measures the particle-like properties of
the generated light emphasizing the quantum properties.

5.3.7. Zeno blockade

Section 5.2.2 already discussed the existence of a quantum Zeno effect in the dark
state ladder that leads to a blockade of higher dark state rungs. This blockade can
be tuned by the value of Q,,. As already discussed in previous chapters, the g (7)
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Figure 5.24: (a) shows the equal-time correlation value g®(0) for different driving Rabi
frequencies €,5. The other driving was fixed at around Q,,/27 = 300 kHz.
(b) shows the measured photon countrate from the cavity output for the
same measurement. (c¢) shows the equal-time correlation value against
the countrate for the same data set as in (a) and (b). The orange curves
are theoretic expectations from a quantum simulation of the system. The
theory curve is calculated with only independently determined parameters,
except for the countrate, that is shifted by 6% (higher detection efficiency
than expected).

correlation function is a suitable tool to investigate the dynamics in the dark state ladder.
Especially the value for T = 0 is interesting as this is an indicator of the population of
higher rungs in the dark state ladder, because the equal-time detection of two photons
is only possible if the system was in a higher dark state, that has components of two or
more photons. The experimental results of a scan in 2,5 are shown in Figure 5.24(a).
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The equal-time correlation starts with a low value, which shows that the suppression
of these higher rungs indeed causes the system to behave very much like a two-level
system. When the Q,5 value is increased, higher rungs are unblocked and the equal-time
correlation function increases. For very high values of 5, it approaches the g®(0) value
of a coherent state, which is one. Unfortunately, a measurement with such a high Rabi
frequency was not possible due to limited laser power and excess stray light on the
camera. Figure 5.24(b) shows the measured output photon countrate from the cavity.
When the driving strength is increased, the photon production rate also increases but
peaks at around Q,;/27 &~ 4.5 MHz and goes down again for higher driving rate. This
behavior is expected from the full analytical formula for the effective driving strengths
within the ladder as given in Section A.1. Figure 5.24(c) shows the g?(0) value against
the measured photon countrate. It can be clearly seen, that the same countrate can lead to
very different photon statistics. This shows that indeed the Zeno-blockade is lifted and it
is not just an effect based on a potential filling of the cavity. All in all, the quantum theory
of the system and the experimental result show a remarkable agreement. This is especially
interesting because, aside from a 6% higher photon detection efficiency than expected,
there are no free parameters for the theory, but only independently measured parameters,
such as laser powers. This shows that the experimental system is well understood and
accurately modeled. As a summary, it is possible to observe and tune the Zeno-blockade
effect.

5.3.8. Strong coupling regime

As already described in Section 5.2.4, there is a second regime emerging in the presented
system, when 2, becomes significant in comparison to g,,; and k. In this regime,
the presented dark state ladder with the triplet of states in each manifold is no longer
a valid view on the system. On the contrary, the system is split into two distinct, off-
resonantly driven subsystems |+) and |—), as can be seen in Figure 5.1(b). The theory
chapter about the strong ground-state coupling regime distinguished between three
different regimes, with different results in the steady state cavity field when the system
is driven. Experimentally only one of the regimes is accessible, namely g2 > 2Q,,x. The
expectation in that regime is the formation of an incoherent mixture of two out-of-phase
coherent states. Figure 5.25 shows a measurement where the ground-state coupling is
varied in a range that spans the weak ground-state coupling regime to the strong ground-
state coupling regime. This means the whole crossover between both regimes is shown.
For small values of 2,, the outgoing light field exhibits strong single-photon character
from the Zeno-blockade effect, with g®(0) as low as 0.01(1). When the ground-state
coupling is increased, the equal-time correlation value increases as well, approaching a
coherent-state value of one. The orange curve in the background is a quantum simulation
of the regime transition for a closed system without decay into uncoupled states. This
simulation shows qualitative agreement but poor quantitative agreement. This is because
strong ground-state couplings lead to very high photon production rates, that let the
system decay into uncoupled states very fast. Furthermore this high scattering rate heats
the atom in the trap and leads to short storage times and unsteady atomic position due
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Figure 5.25: Shown is the equal-time correlation value g®?(0) for different ground
state coupling Rabi frequencies €2,,. The values range from 0.01(1) up to
values of around one. The other driving strength was Q,,/27 = 4.7 MHz.
The orange curve in the background is a quantum simulation of the system
without decay into uncoupled states.

to hopping between lattice sites. This hopping in return leads to time variations in the
effective driving field strengths.

All in all, this measurement clearly shows the expected transition from weak to strong
ground state coupling via the accompanying change in photon statistics, from the statistics
of single photons to that of a coherent state. This nicely validates the theoretically shown
existence of two regimes in this physical system. Remarkably, a driven single atom is able
to produce a coherent field, in stark contrast to a free space atom, which is limited to the
emission of single photons.

5.4. Summary

This chapter introduced a coherently closed cycle in the atomic level structure. The
theory behind the formation of the dark states was explained and the ability to climb
the ladder of dark states was introduced. Furthermore it was shown theoretically and
experimentally, that it is possible to continuously produce a new field in the cavity, with
a frequency that was not applied as an external drive. This light is produced without
atomic excitation as it stems from transitions between dark states, that do not contain
a component of the excited atomic state, although resonantly driven. The possibility to
generate light without exciting the atom prevents the atom from decay into uncoupled
states via spontaneous emission. Because this technique is not bound to a specific system,
but broadly applicable, as long as strong coupling can be achieved in the respective
system, it has broad applications in e.g. the fluorescence detection of molecules. These
decay to uncoupled rovibrational states, limiting the amount of light that can be detected.
In addition to that, this new field also has interesting properties that were investigated in
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this chapter. First, the field was investigated via a heterodyne setup, which revealed that
the field is spectrally very narrow-band and fully phase coherent to the driving lasers and
can be tuned in frequency. Secondly, the field was also investigated via the g photon
correlation function, which showed Rabi-oscillations between the first two dark states
in the weak driving regime. This also revealed a pronounced single-photon character,
originating from a continuous Zeno-effect, blocking higher excitation rungs of the dark
state ladder. Increasing the driving in the |2) < |3) arm of the A-system lifts the blockade
and makes higher rungs accessible which is expressed in an increased equal-time photon
correlation value for higher drivings. This is not an effect of filling up the cavity because
the actual photon generation rate decreases. Furthermore also the strong ground state
coupling regime was investigated and it was theoretically shown that this results in a
Schrodinger-cat like state in the cavity for vanishing cavity decay, which evolves into a
coherent state when the cavity decay increases. The transition between the weak and
strong driving regime was also experimentally observed, showing the corresponding
transition in the photon statistics from single photons to a coherent field.
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6. Towards multi-mode cycle and giant Kerr effect

6.1. Introduction

This chapter adds another cavity mode to the cavity EIT system and is a first step towards
the realization of a coherently closed atomic cycle with two cavity modes. It is not
closed yet, as it does not include a link between the second, newly introduced excited
state, and the first ground state. It additionally lacks coupling between the two ground
states. But even without closing this system, it already shows such rich physics that it
is well worth to be investigated on its own. The main effect of adding another strongly-
coupled cavity mode is that the combined system is able to mediate interactions between
photons of completely different fields with different wavelengths. In a previous version
with a similar setup, strong coupling between photons of different fields was already
demonstrated [82]. Bringing this interaction to the dispersive regime, where atomic
excitation is negligible, gives rise to a so called cross Kerr nonlinearity. This form of
the Kerr effect between two light fields is often discussed in the context of quantum
non-demolition measurements with first (theoretical) applications appearing as early as
the 1980s and 1990s [84, 85]. This interest is still unbroken [86, 87]. The investigation
of cross Kerr nonlinearities is especially interesting in the context of cavity QED, as this
enhances the nonlinearity to levels where a significant effect can be observed on the level
of individual photons. In this regime, this giant cross Kerr nonlinearity can be used to
non-destructively detect the presence of extremely low light levels with another light
field, as was already demonstrated in the microwave regime [88, 89]. An extension of
this effect to the strong dispersive regime (still with microwaves) allowed for counting
of individual photons, and live observation of photons being created and destroyed [1,
2, 90]. Bringing these effects to the optical domain would be useful - especially in the
context of quantum information processing - as the optical and near-infrared domains
allow for good transmission lines [91] and long coherence times [92].

On a different note, cross Kerr nonlinearities are also known to mediate phase shifts
between light fields, which sparked considerable research activity in that field in recent
years [93-95] and is especially spread widely in the context of N-type level schemes
[26, 96-98]. Bringing the cross Kerr effect to a level where a single gating photon could
cause a phase shifts of 7t to another field, would allow for the realization of universal
quantum gates between different light modes [99]. It should be mentioned that a study
by Shapiro [100] contradicts the usability of this scheme for quantum gates because
the non-instantaneous reaction of any realistic Kerr-medium to a real single photon
pulse introduces additional phase noise that prevents a high-fidelity gate operation.
This problem could be avoided while at the same time loosening the constraints for the
strength of the nonlinearity (no phase-shift of 7= per photon needed) by using coherent
states instead of single photon pulses [101]. The argument given by Shapiro [100]
does not apply to the results in this thesis as everything presented here was done in a
continuous wave measurement with coherent states (measurement time much larger
than all dynamics in the system) and a continuous drive leading to an average cavity
population of around one single photon, but not a true single photon state.
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Figure 6.1: (a) shows the driving geometry with two driven cavity fields and an addi-
tional laser addressing the atom. (b) shows the effective level scheme with
two strongly coupled cavity modes. The orange mode is called probe mode,
exhibits a coupling constant of g, and is resonant to the atomic transition
|1) < |3). The blue mode is called gating mode, has a coupling constant of
g, and has a detuning of A,, to the atomic |2) < |4) transition. The two
subsystems are coherently coupled by a classical beam with Rabi frequency
Q,; and detuning A, to the atomic transition |2) « |3).

The principal level scheme for the experiments in this chapter is shown in Figure 6.1.
It is intuitive to break down the derivation of the interaction of both cavity modes in
this chapter into two parts. First, the CEIT system on the left of the figure, consisting of
atomic states |1),[2),]3), the probing cavity mode with coupling constant g, (shown in
orange) and a laser addressing the atom connecting |2) and |3) (shown in green). This
system was already discussed in Section 4.

The second part of the system consists of a two level system dispersively coupled to
the gating mode. The next section (Section 6.2.1) first considers the theory of a disper-
sive interaction in a single atom CQED system in general, to give an intuition of the
resulting interaction between both systems, that is discussed in the chapter thereafter
(Section 6.2.2).

6.2.1. Dispersive interaction in CQED

The subsystem considered here consists of a two-level atom with ground state |2) and
excited state |4) which is strongly coupled to the gating cavity mode with coupling constant
g, and detuning to the atomic transition of A,,. In the dispersive regime, the detuning
between atom and cavity is bigger than the coupling constant A,, > g,. This changes the
situation in comparison to a resonant interaction and prevents atomic excitation, as will
be discussed later. Starting point for the treatment is the Jaynes-Cummings Hamiltonian
as described in Section 2.1. It is helpful to apply the following unitary transformation to
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the Hamiltonian:
_ 8s (tat _1ia
U=exp|—(b&,,—b'Gy) (6.1
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with the creation (annihilation) operator of the gating cavity mode b'(b) and the atomic
transition operator o ,,. Applying this transformation to the Hamiltonian and an expansion
up to the second order in g, leads to [102]:
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where w, , is the frequency of the gating cavity mode and w, », is the atomic transition
frequency between |2) and |4). Two interesting effects can be seen from the form of that
Hamiltonian: the cavity frequency experiences an atomic state dependent energy shift
by 6; 4624g§ /A, (first line of Equation 6.2). This so-called cavity-pull is not significant
here as it stays below the cavity linewidth for experimentally achieved values. Visible in
the rewritten Hamiltonian in the second line of Equation 6.2 is that the atomic transition
frequency experiences an AC Stark shift of gﬁiﬁ?}/ A,,, with the photon number b'b=n g
in the gating cavity mode. There is one additional term in the Hamiltonian that does not
scale with the photon number and therefore poses a constant offset that is not considered
for the further treatment. In this dispersive regime, the dressed states are also modified
in comparison to the resonant case, here explanatory given for the first manifold:

1) o [2,1) — £ |4,0) ©6.3)
Do
+,1) o< 2% 12, 1) +14,0) 6.4)
Do

This means that for g, < A,,, one state is more cavity-like and one is more atom-like.
As the cavity is driven in this experiment only the state |—, 1) is addressed. The decay
rate of that state is:

g \?
_,=|— + 6.5
I-1) (A24) Y4t K, (6.5)

with the decay rate of the gating cavity of x, and the atomic decay rate y,. For a large
detuning, this is almost identical to the decay rate of the empty cavity.

6.2.2. Effective Hamiltonian

The full Hamiltonian of the system in a rotating frame can be written as [82]:

H :(AP - A23)OA-22 + APOA-B?, + (Ap - A23 + A24)OA-44 + AP&T& (6 6)
+8,6130" + g,854b" + Q367 +hoc. '
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with the photon creation (annihilation) operator 4'(a) of the probing cavity mode (with
frequency w_ ,) and the detuning of the driving laser (with frequency w, ;5) to that mode
A, = w13 — w.,. Furthermore introduced are the coupling constants of both cavity
modes g, g,, the atom cavity detuning of the gating mode A,,, and the detuning and
Rabi frequency of the transverse drive, A,; and Q,; respectively. The gating cavity is
driven resonantly leading to a vanishing detuning and therefore a vanishing cavity energy
term in a rotating frame Hamiltonian. The interaction between the transition |2) « [4)
and the gating mode is dispersive, meaning a similar transformation as in the last chapter
can be applied to the full Hamiltonian. In the weak driving regime of the probing beam,
where glfﬁp < Qgs applies (with the average intra-cavity photon number in the probing
cavity 71,), the effective interaction Hamiltonian can be written as [103, 104]:

2.2
8,8 ..

Q3509

A

ab'h 6.7)

Heff o<

with the creation (annihilation) operator bT(b) of the gating cavity mode. This quantum
version of the classical Kerr Hamiltonian mediates an interaction between the photons in
the two cavity fields.

Intuitively this can be explained as stemming from the fact that light in the gating cavity
induces a photon number dependent AC Stark shift on the atomic transition frequency
between |2) «— |4), which shifts the atomic ground state |2) in energy. The energy shift of
this can be read out via the narrow dark state transitions of CEIT, because the two-photon
detuning also shifts according to the gating photon number. The shift of the CEIT peak
can be seen in the full quantum simulation shown in Figure 6.2(a). Different photon
numbers in the gating cavity lead to different shifts of the peak. The width also changes,
which will be discussed in Section 6.3.2. The shift of |2) due to photons in the gating
mode is dispersive, which means the atomic excitation to state |4) remains low. This
makes the measurement non-destructive for the gating photons, except for residual
losses due to finite detuning and experimental imperfections such as mirror losses. The
gating cavity population for a simulation with and without probing photons is depicted in
Figure 6.2(b). The green dashed line is a simulation where the whole atomic population
is in |1), as the probe beam is off. This is equal to the fully unperturbed gating cavity
population without an atom. With a probe, this slightly changes and is reduced to around
96% of its unperturbed value at the probing frequency of strongest interaction. This
can be improved by increasing the detuning A,, at the cost of a lower shift per gating
photon. The simulation shows, that this is indeed a non-destructive measurement for the
gating photons. This also expresses itself in the fact that the effective interaction term
commutes with the photonic and atomic terms, allowing for a quantum non-demolition
measurement (QND) [105].

An important distinction to be made is that of a strong and weak dispersive interaction. In
the weak dispersive regime the effective coupling strength of the dispersive interaction is
smaller than the biggest relevant decay rate of the system. In the here presented situation,
due to the narrow and long-lived dark state of CEIT, the lifetime of photons in the gating
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Figure 6.2: (a)shows the simulated countrate of the single photon detectors (SPCMs)
as in the real experiment against the detuning of the probe beam for three
different values of the gating photon number 7,. (b) shows the photon
number in the gating cavity for the green plot in (a) (indicated by 1, =
0.5) for the two situation with probing beam (green solid) and without
probing beam (green dashed). The simulation incorporates a full quantum
model of the system with the parameters: g,/2m = 10.0MHz, g, /27 =
10.0 MHz, Q,5/27 = 3.0MHz, A,, /27 = 50.0 MHz.

cavity, that decay with x, rather than atomic constraints, set the limit. This means that
the photon number in the gating cavity, to be measured via the shift of the EIT resonance,
has already changed before the system could even build up the corresponding shift. More
accurately, this means the Kerr interaction does not project the system fast enough to
collapse the coherent state, that is within the gating cavity, to a photon number state
before it decays. Therefore, only the average photon number 7, is measurable in the
experiment, and therefore, only that is relevant to all further discussions in this chapter.
To ensure a constant average gating cavity photon number that mode is continuously
driven by a laser in the experiment.

In the strong dispersive regime the projection to a photon number state is faster than
all decay constants, and therefore, an initially coherent state in the cavity collapses to a
photon number state as beautifully shown in [2]. Spectrally this allows for the observation
of well separated peaks corresponding to different photon numbers in a coherent driving
field [90]. There is no experiment (at least to the author’s best knowledge) that can yet
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reach the strong dispersive coupling regime in the optical domain, but an estimate of the
feasibility is made in the supplement of [87].

6.2.3. Cross Kerr nonlinearity

Even though it is usually used as a macroscopic quantity in a many body system it is
also possible to derive the linear susceptibility of a single atom within a cavity via a
semi-classical approach [37, 46, 106] to:

g; (Ap + A23 + ineph)
_(Ap + lYB)(Ap + A23 + ineph) + Qgg

W

X (6.8)
with the two decay constants y; for the excited state decay and y,,;, for the dephasing
between the ground states. For vanishing probe detuning A, and no dephasing, the
linear susceptibility vanishes, as in vacuum, which is a consequence of the CEIT which
renders the medium fully transparent. As already mentioned in the previous section, the
transition |2) < |4) is strongly coupled to the second cavity mode (gating cavity) in the
dispersive regime, which effectively leads to a photon number dependent AC Stark shift
of the energy of state |2). This then changes the detuning A,; to Al = A,z + Aggpk- TO
simplify the equations, but without limiting the generality, it is assumed that y4,,, =0
and that the initial detuning is A,; , = 0. This leads to the new effective susceptibility:

gﬁ(Ap + AStark)
—(A, +i73)(A, + Agiari) + Q3.

Xeff = (6.9

For small Ag,,« (Taylor expansion), and with the expression for the AC Stark shift of
state |2) from Section 6.2.1 this results in:

2 2.202
- g,8p 8,88, _
)(eff(ng)=_(A +.p At e i (6.10)
x1) Heross

where 7, is the mean photon number in the gating cavity mode. The second term can
readily be identified as an effective ¥ nonlinearity, as the system exhibits the well
known structure y,;; = xV + y®|E,|?, where E, is the electric field of the gate cavity
[107] (because |E,|* o< 71,). For zero detuning in the probing beam this simplifies to:

2,25
( _ gpggng
Xcross Tlg)

AP

(6.11)

which is in agreement with the independently derived results in [103, 104, 108], and
also confirms the effective Hamiltonian from the previous chapter. In the case of large
values of the AC Stark shift (Ag,,« > Q,3) Equation 6.9 becomes:

Keross = (612)
—1Y3
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This means the induced Kerr susceptibility becomes completely imaginary in the limit of
high photon numbers, which corresponds to absorption only. A simulation of the y .
nonlinearity in Equation 6.9 for different gating photon numbers (at A, = 0) is shown
in Figure 6.3. It is now possible to relate the index of refraction to the susceptibility
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Figure 6.3: Simulation of the cross Kerr coefficient y.,,., for different photon number in
the gating cavity, normalized to the biggest value within the plotting range.
The other parameters are g,/2n = 10MHz, g,/2n = 10MHz, A, /21 =
O0MHz, A,,/2m = 100MHz,y,/2n = 6 MHz, Q,,; /21 = 2MHz.

via the relation n?, =1+ Rey [107], where n;, is the index of refraction and Re y the
real part of the susceptibility. The optical path length of the probing light, and therefore,
the phase shift during passage through the medium, depends on the index of refraction
and in consequence on the average number of photons in the gating cavity. This can be
understood as a cross Kerr nonlinearity. In the classical self Kerr effect, the intensity of a
light beam changes the index of refraction of a medium, and therefore, the phase of that
same beam. Here it is a different effect, because the phase of the weak probe beam is
modulated by the intensity of the gating beam (here in terms of the photon number 7).
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6.3. Experimental results

6.3.1. Implementation in a real atom
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Figure 6.4: Level scheme for the experiments in the dispersive CQED regime. There are
two longitudinal cavity modes depicted (orange, blue), that are resonant
or close to resonant to two different transitions of the atom. Initially the
population is prepared in |F = 1, mp = 0).

The level scheme used within this chapter is shown in Figure 6.4. Two different longitu-
dinal TEM,,-modes of the same physical cavity, one of which is resonant to the D2 line
(780 nm) and the other close to resonant to the D1 line (795 nm) of 8’Rb. The atomic
transitions are strongly coupled to these cavity modes with resonant coupling constants
of g,/2m = 9.4MHz and g,/2n = 7.3 MHz. The mode resonant to the transition from
|5S,/2,F = 1,mg = 0) to |5P;3/,,F” = 1,mp» = +1) is called the probe cavity mode while
the mode resonant to the transition from |5S, ,, F = 2, m; = +1) to |5P; ;»,F' = 1, my = 0)
is called the gate cavity mode.

State preparation

The starting point of the measurement is the ground state |5S, ,,F = 1,m; = 0). Address-
ing the atom with two laser fields resonant to the [F=2) «» |F” =1) and |[F =2) <>
|F” = 2) transition in 0"+ 0~ polarization depopulates the |F = 2) manifold. In addition a
laser resonant to the |F = 1) «— |F’ = 1) transition in 7t-polarization is used, depopulating
all states in |F = 1) except |F = 1, my; = 0), because this state does not couple to that laser,
as that transition is dipole forbidden. In effect all population accumulates in the state
|F =1, m; = 0) with high fidelity. A measurement of the state preparation over time is
shown in Figure 6.5. As can be seen, at the beginning the probe and gating cavity modes
still emit photons. This is because the |F = 1) «— |F' = 1) laser addresses the excited state
of the gating mode and the |F =2) <> |F” = 1) laser the excited state of the probing
mode. The atom then decays via the cavity mode from the respective excited state, and
therefore, scatters photons into that respective mode. This makes emission into these
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Figure 6.5: Output countrate of different cavity modes over time during state prepara-
tion.

modes a good indicator of the state preparation. As can be seen in the measurement, the
state preparation is completed after around 4 ps with negligibly low countrate afterwards,
attesting to a high-fidelity state preparation.

Measure detuning

Starting from the all-resonant situation, where both cavity modes are perfectly resonant
to their respective atomic transition, it is possible to tune the atomic transition frequencies
via Stark shifts. The energy shift due to the Stark effect scales as I /A, with the intensity
I of the light field and the detuning to all coupling transitions A. As already introduced
in the work of [53], the near resonant red detuned dipole trap in the experiment induces
a differential Stark shift between the D1 and D2 line transitions, because the frequency
of that trap is closer to the D1 line transition (|5S,/2) to |5P;/2)) than to the D2 line
transition (|5S;/2) to |5P;/2)). This means that the transition frequency of the D1 line is
shifted more than that of the D2 line by that laser. When the power of this trap changes,
both transition frequencies change. Varying the cavity length until the probe cavity mode
is resonant again to the D2 line leaves a certain detuning of the gate mode to the D1
line. With this technique it is possible to tune the gate mode detuning. Reducing the
trapping power unfortunately also reduces the ground state trapping potential, leading
to a shorter trapping time and reduced trapping probability. To circumvent this, the trap
is only ramped down to a lower level during the experiment and ramped back up to a
higher value between measurements. To measure the detuning between gating mode and
D1 line, a laser interrogates the system transversely and a frequency scan is performed.
Photons from the resulting fluorescence spectrum are scattered into the cavity mode. The
output of the cavity mode then shows the normal mode spectrum of a strongly coupled
system. Tuning the cavity in frequency (via the length), until the normal modes are
symmetric, then results in the detuning introduced by the Stark shift.
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6.3.2. Sensing of photons
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Figure 6.6: The blue curve shows a measurement of the transmitted countrate for
different input frequencies, which forms a CEIT spectrum. Shown in the
background is a Lorentzian fit to determine the center. The orange curve
shows the same scan for an average gate photon number of i, = 0.5 in
the cavity. The detuning of the gating cavity to the atomic transition was
A,, = 23MHz.

Different methods that try to sense the photon number have become recently available
and the research is ongoing [38, 87, 109]. As the theory section already explained,
photons in the gating cavity lead to a shift of state |2). As a result, the narrow EIT
two-photon resonance shifts in frequency dependent on the photon number in the gating
cavity. Figure 6.6 shows the unperturbed EIT spectrum in blue and the spectrum for an
average gating photon number of i1, = 0.5 in orange. Two effects are striking: the center
frequency of the Lorentzian resonance peak shifts by 127(5) kHz and the width increases
from 108(2) kHz to 313(8) kHz (HWHM). The theory predicts a linear shift of the center
frequency of the CEIT peak for different average gating photon numbers f1,. This is indeed
validated by the measurement in Figure 6.7(a), where the peak position is depicted for
different gating photon numbers. The blue curve in the background is a linear fit, revealing
a shift of AS, = 270(10) kHz/ph, where /ph means per gating photon. Also the peak
width increases with increased gating photon number, which can be see in Figure 6.7(b).
This also shows a linear behavior with a slope of AW, = 570(50) kHz/ph (HWHM). The
width of the peak changes due to quantum fluctuations én of the photon number of the
gating cavity around its average value of i1,. These in turn lead to fluctuations of the
Stark shift and therefore fluctuations in the energy of state |2). This has an influence
on the phase between the ground states in the superposition state that constitutes CEIT
(e.g. |\IJ? > o< |1,1)—12, O)) In the weak dispersive regime, in which this experiment



6 Towards multi-mode cycle and giant Kerr effect 79

0.3 @ —

0.2 1

0.1 /

AS [MHz]

0.8 1 /

Width [MHz]

0.2 - _—
/

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Average gate photons 71,

Figure 6.7: Shift (a) and width (b) of the CEIT peak for different gating photon numbers.
The detuning of the gating cavity to the atomic transition was A,, =
23 MHz.

operates, the projection onto a photon number state due to the Stark shift is slower than
the timescale of these fluctuations in the gating photon number. The system therefore
stays in a coherent state and is not projected, as it cannot follow the instantaneous photon
number fast enough. As was shown in several theoretical treatments of similar systems
[102, 110], for a low gating photon number, this effectively leads to a randomization
of the phase between the ground states (dephasing) that is proportional to the number
of transmitted photons through the gating cavity. This can be viewed as a measurement
induced dephasing per transmitted photon. In the presented experiment, the gating cavity
is constantly driven to keep 11, constant although the cavity population decays with a
rate of k. This leads to a photon transmission rate proportional to , - i, and with it a
corresponding dephasing rate. Spectrally, this results in a broadening of the CEIT peak
due to ground state dephasing, that is linear in the average gating photon number 7,.
The linear scaling for low gating photon numbers has been also experimentally shown in
similar experiments in the microwave regime [89].

Tuning the sensitivity

Experimentally, the coupling strength g varies with the position of the atom within the
cavity. Figure 6.8 shows a sketch explaining this behavior. Atoms can only be trapped at the
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X position

Figure 6.8: A sketch of the cavity and the relevant cavity fields. Shown in bright blue is
the intra-cavity field intensity. Atoms are only trapped at the field minima.
The red line depicts the field that is resonant to the atomic transition.
The blue dots show the field strength of the resonant field at the trapping
positions that are given by the minimum of the intra-cavity field. The
gray line connecting the blue dots is a guide to the eye, to allow for easy
visualizing of the change of the coupling constant over position.

minima of the field intensity of the blue detuned intra-cavity trap (around 772 nm). There
are two different longitudinal modes of the cavity as already mentioned, each strongly
coupled to a different D-line of ’Rb (around 780 nm for the D2 line and 795 nm for the
D1-line). The standing wave trapping light field and the light fields of the two strongly
coupled modes dephase with position along the cavity axis due to their wavelength
mismatch. This leads to different values of the coupling strength g, ~ g, and gp, >~ g,
at different trapping positions within the cavity. Due to the exact determination of the
position with the imaging system, it is possible to postselect on atoms at a specific position
and determine the coupling constant there by normal mode spectroscopy as already
shown in [53]. An exemplary normal mode spectrum for the gating cavity (in the resonant
case for A,, ~ 0) is shown in Figure 6.9(a) for one specific postselection. The normal
modes are slightly asymmetric due to residual detuning of A,,. In the background (blue)
is a semi-classical theory [17, 111] that can be derived via the Heisenberg equations
of motion of the system, modified by accounting for the atomic motion within the trap
[112]. Scanning the atom postselection along the cavity direction and determining the
corresponding coupling strength leads to Figure 6.9(b). The orange data points show a
good agreement with the underlying theoretical curve (from a simple theory considering
the coupling constant at each trapping site). The step-like behavior of the theory curve is
due to the fact, that there are only discrete points at which an atom can be trapped. The
coupling constant on the D1-line g, can be tuned from 10.3 MHz (the used transition
was |58, 5, F = 2,mg = +2) to |5P; ,,F' = 1,mp = +1)) to around 2 MHz. Over the same
position range, the D2-line coupling constant g, that is shown as a theoretical curve in
the background of the figure (gray), stays above 90% of its peak value. This difference in
the dephasing position range is due to the lower frequency difference of the D2-line to
the intra-cavity trap. This allows for postselection on different coupling strengths with
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Figure 6.9: (a) shows the countrate of the cavity output (orange) for the atom driven
spectrum with a postselection of x € [42.25,42.75]. The coupling constant
deduced from the semi-classical fit (blue) is gg/ 271 =10.3MHz. (b) shows
the deduced coupling constants for different positions within the cavity
(orange) with the theoretical behavior in the background (blue) as calcu-
lated from a classical theory considering the discrete trapping positions and
the dephasing between both. For comparison, the theoretical D2 coupling
constant (maximum constant chosen to be the same as D1) is depicted in
gray. The theory curve is adjusted in position and amplitude to fit the data.
This measurement was done on a transition with a higher coupling con-
stant than in the final experiment, namely on the |5S, ,,F = 2,m; = +2)
to |SPy,,F' =1, mp = +1) transition.

crucial for tuning the sensitivity of the photon sensing mechanism. As already mentioned
in the theory part, the shift of the ground state |2) depends quadratically on the coupling
strength. Figure 6.10(a) shows a measurement for the shift for i, = 0.6 at different
positions of the atom within the cavity. The shift varies between almost no shift to close
to 200 kHz. Combining this with the known coupling constant at different positions from
the measurement in Figure 6.9(b) (corrected for the different Clebsch-Gordon coefficient
in the dispersive measurement), it is possible to measure the dependence of the shift on
the coupling strength. The result is depicted in Figure 6.10(b) and shows the expected
quadratic behavior, therefore confirming the theory.

In summary, the strength, and therefore, the sensitivity can be chosen via postselection
of the position, which allows for a high dynamic range of photon sensing.
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Figure 6.10: Shows the shift of the CEIT peak against the postselection position along
the cavity axis (a) and against the coupling strength (b) that varies with
the position. In (a) the blue line is just a guide to the eye, in (b) it is a fit
of a quadratic function. The gating photon number was n, = 0.6 for this
measurement.

6.3.3. Cross Kerr effect and determination of y®

It is possible to reconstruct the complex susceptibility y of a system from a transmission
spectrum, like in Figure 6.6, by identifying the imaginary part Im(y) as proportional to
the absorption in a medium!. The real part Re(y) is related to the index of refraction
[37, 107]. Quantitatively, this can be expressed as:

A(D)=1-T(A,)=Imyx(A,) (6.13)

where A denotes the absorption and T the transmission. The real part of the susceptibility
can be calculated via a Kramers-Kronig relation. These mathematical relations state
that the imaginary part of any complex function that is analytic in the upper half of
the complex plane, can be calculated from the real part and vice versa. The analyticity
condition is fulfilled in many physical systems, as it usually follows from causal response
for a stable system to an external impulse force, in this case, the driving field. The real
part is then given by:

1 Im y(w
p

lin general only true for the linear susceptibility; but it is also valid here, as the y®-term in the polariz-
ability is still only linear in E,(w)
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Solving this integral requires special care at the pole where w = A, but can be solved
with standard numerical methods [113]. The index of refraction can then be calculated
via:

n;,(A,)=4/1+Rey(A)) (6.15)

Figure 6.11(a) shows reconstructed dispersion relations for measurements with differ-
ent gating photon numbers. The curves are reconstructed from real measurements of
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Figure 6.11: (a) shows the index of refraction that is reconstructed from the data
against the detuning for different gating photon numbers. (b) shows the
difference in the refractive index An;, = n;, (7, =0.5) —n; (i, =0) as a
function of the detuning.

transmission spectra with the aforementioned method. The change in the refractive
index is especially steep without any gating photons, where the linewidth of the EIT
resonance is only limited by the ground state dephasing v, and the Rabi frequency Q,;.
Figure 6.11(b) shows the shift in the refractive index for different probing frequencies for
n, = 0.5 gating photons on average. The difference is as large as An;, = 0.15, leading to
a nonlinear refractive index change of An,,, ,, = 0.3/ph. According to [107] the total
refractive index is given by:

N =g+ 2N, 05 Eg | (6.16)

Cross
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with the gating field amplitude E,. The electric field per photon within the cavity can be
calculated via the coupling constant g, to:

h2g,./n,

7 (6.17)

E (n,) =
with the dipole moment d of the |[F=2,m; =1) to |F' =1, mp = 0) transition which
equals d = 1.27 - 107% Cm [54]. Inserting this into Equation 6.16 leads to:

h2g,\?
n =g+ 2N, (%) g (6.18)

Comparing the slope of this linear relation to the experimentally determined slope of

AN, 55 pn = 0.3/ph, the nonlinear refractive index can be deduced to n, ., = 2.6 - 1077 ‘\%2
From this the y.,,., value can be deduced via [114]:

2

1D Yeros = Merassto/3 = 86107 T2 (6.19)

This is a remarkably large value for a third order susceptibility, which is around 10
orders of magnitude bigger than in nonlinear crystals [107] and comparable with values
achieved in ultracold atomic clouds [27]. In contrast to the atomic cloud experiments,
this value is achieved here with only one single atom.

6.3.4. Cross phase modulation

The change in the effective refractive index of the medium leads to a different optical path
length for the transmission of the probe beam depending on the photon number in the
gating cavity mode. To measure this effect directly, it is necessary to implement a detection
method that is capable of phase determination. For that purpose, a heterodyne detection
setup was build and implemented, the specifics of which are discussed in Section 3.5. This
allowed for determination of the phase and the amplitude of the transmitted probe field.
These two quadratures are shown in Figure 6.12 over a scan of the probe detuning. The
bright states of CEIT are visible in the amplitude at A, ~ E;—L ~ *9.4MHz and the EIT
peak is visible at vanishing two-photon detuning A, = A,; = 0. The corresponding phase
measurement reveals that each of the three resonances comes with a certain phase shift,
as expected from a classical theory of a driven harmonic oscillator. However only all three
resonances together lead to the expected phase shift from —7t/2 to 7t/2. Remarkable is the
steep phase increase in the center corresponding to the EIT transmission window. This is
flanked by descending phase on both sides, which resemble anti-resonances as discussed
in [115]. This behavior was already expected from the refractive index measurement in
Figure 6.11 because the refractive index, and therefore, the optical path length changes
rapidly over the EIT window. As already shown, the EIT window for the probing beam can
be controlled via the gating photon number, which in turn also tunes the refractive index,
and therefore, the phase of the probe. Figure 6.13 shows the amplitude (a) and phase (b)
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Figure 6.12: Shown are the amplitude (a) and phase (b) of the output probe light over
the frequency of the input probe field as measured via the heterodyne
setup.

of the EIT window for 71, = 0.0 (blue dots) and n, = 0.85 (orange) photons in the gating
cavity. As can be seen, the peak position of the EIT window changes, as does its width,
which is in agreement with the intensity measurements in a previous chapter. This also
leads to a shift in the phase of the probing beam as predicted from the index of refraction
measurements. Figure part (c) shows the actual figure of merit in this chapter, the change
in the phase introduced by the gating photons. The difference is measured to be as big
as |[A®|=0.61(8)rad at A, = —0.35. However, if the highest transmission of 32(2)% of
the empty cavity transmission is aimed for, A, = 0.15 MHz is a more suitable point, with
a phase-shift of |A®| = 0.37(7) rad. This point is indicated in the plot by a gray line and
is also interesting because the amplitude does not change there, with or without gating
photons. Returning to the dispersion curves in Figure 6.11(a), another interesting feature
is striking. The dispersion relation flattens and shifts for increased gate photon number,
reflecting the already discussed shifting and broadening of the EIT resonance condition.
This also directly shows that ., is only linear for small gating photon numbers 7,,
and reaches a peak for higher photon numbers, as discussed in the theory section (see
also Figure 6.3). This can also be observed in a direct measurement, which is shown in
Figure 6.14. The figure shows the shift of the probe phase for one specific probe detuning
A, =0.2MHyz, for different gate photon numbers 7n,. For low gate photon numbers this
indeed shows a linear behavior (up to 71, ~ 0.4) but saturates for higher average gating
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Figure 6.13: Amplitude (a), phase (b) and phase difference (c) of the probing field
over frequency for n, = 0.0 (blue) and n, = 0.85 gate photons in the
cavity (orange).
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Figure 6.14: Phase shift between the situation with and without the respective gate
photon number for one specific detuning of the probe beam of A, =
0.2MHz. The line connecting the dots is a guide to the eye, and does
not reflect the theory. The detuning of the D1 line to the cavity was
A,, = 26 MHz.
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photon numbers, because the susceptibility becomes mostly imaginary and the phase
shift would eventually even goes down, when the probe frequency is not within the
increasingly shifted EIT window anymore.

6.4. Summary

This chapter of the thesis has shown that the CEIT system, extended by another strongly
coupled transition to a different cavity mode (gating mode), can provide a huge )(C(fgss
nonlinearity, very much in the spirit of experiments imagined long ago [84, 96]. The
imaginary part of this substantial nonlinear susceptibility is proportional to the trans-
mission of the probe beam, an effect that was used to sense the average number of
photons within the gating cavity mode. This measurement showed a remarkable AC Stark
shift per single photon. The sensitivity of this method can be tuned via postselection on
different coupling constants of the atoms within the cavity, allowing for a high dynamic
range in which photons could be sensed. Furthermore, the real part of the nonlinear
susceptibility is related to the index of refraction of the medium, and therefore, the optical
path length. A variation in the path length leads to a phase shift in the probe beam by
photons in the gating cavity, a so called cross-phase modulation. The effect shown here
was as big as 41(5)° per gate photon (for a low gate photon number). This surpasses
e.g. recent experiments also aiming towards a continuous dispersive Kerr nonlinearity by
using resonant Rydberg EIT by around three orders of magnitude [116] and is on par
with experiments in atomic clouds [95, 117]. On a different note, the presented system
can be easily extended to a completely closed two-cavity-mode atomic cycle with many
interesting applications, which are discussed in Section 7.
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7. Outlook

The experiment with two cavity modes as described in Section 6 operates in the weak
dispersive regime, where the measurement of the photon number is slower than the
decay, limiting the possibilities to use this system for analysis of photon statistics or
sensing of a specific photon number. This can be overcome by prolonging the dwell
time of photons in the gating cavity, which can be achieved by increasing the finesse of
the cavity and therefore reduce x,, while maintaining a small mode volume. Figure 7.1
shows a simulation of a cavity with similar parameters as used in the current experiment
but a Kg that is 100 times smaller. Part (a) shows that a coherent drive in the gating

() 0.004{ (=0 1.0 -
0.8 1
Ha)
®° [
1 — %0 S
(3).g A 0.4
8 8¢ (0)
Nt/
%9 27 0.2
0 - - |> T T 0.0 - == T
-5 0 5 0 1 2 3
Detuning [MHz] Photons

Figure 7.1: (a) shows the probing cavity population against detuning of the probe beam.
(b) shows different orders of the triggered (triggered on a probe photon)
equal time-correlation function of the gating field. (c¢) shows the photon
distribution of the gating field after a click in the probe field was detected
for different probe frequencies, marked in according colors in part (a) and
(b). The simulation parameters for the probing cavity are similar to the
experimental ones and only the parameters for the gating cavity are changed
considerably to g,/2m = 20MHz, A,, /27 = 80 MHz, k. /27 = 20kHz. The
gating cavity is driven with a coherent drive leading to an average photon
number of around one.

cavity indeed is projected into a photon number state, that can then be clearly resolved
in a spectrum of the probing beam. Part (b) shows the triggered (heralded) equal-time
n-photon correlation function of the gating field gE")’g (0). This function is proportional to
the probability to have n photons in the gating cavity after one probe photon was detected
at the same time. When the probe frequency is tuned to one of the peaks corresponding
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to a specific photon number, a detected probe photon then heralds the presence of n,
gating photons. This can also be seen in part (c), where the photon distribution in the
gating cavity is shown for different probing frequencies (color corresponding to part
(a) and (b)) and detection of a probe photon. The pureness degrades for higher values
of n, but can be improved for better parameters. This technique allows for building a
heralded N-photon source, a goal long envisioned in quantum information processing.
As it is challenging to support two, close to atomic resonance, longitudinal modes in a
cavity, a crossed cavity setup with independent cavities, where only the gating cavity
has this extremely low k would be beneficial. Constructing such a cavity seems realistic,
considering that there are cavities in usage that are only a factor of 10 larger in k than the
simulation, while still having a coupling constant of almost g/2m = 20MHz [118]. As a
summary, with the presented technique, resolving photon number states and constructing
heralded N-photon sources in the optical domain seems within reach.

From that point onward, it is interesting to go further into the direction of a completely
closed atomic cycle with multiple cavity coupled light fields as already mentioned in the
introduction. In general, nontrivial cycles in atoms are a very promising and engaging
topic, that is well worth pursuing. Extending the already introduced system with two
cavity modes from Section 6 by adding an additional laser as shown in Figure 7.2 (only
the left or right half), closes this system.

5P, F'=1 ——
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Figure 7.2: Simplified level scheme for the closed cycles system with four different
cavity modes and two classical external driving fields.

This leads to two interconnected A-systems, a so called double A-system, where two
external driving fields continuously produce photons in two-cavity modes. These photons
will have a strong temporal (and polarization) correlation. Furthermore, this system
could also exhibit a dark state ladder as introduced in Section 5, that prevents atomic
excitation, enabling the system to continuously produce photons. First experiments were
performed that strongly indicate these two effects and are discussed briefly in Appendix
Appendix C. Additionally if the transitions are driven equally strongly and the cavity
modes exhibit equal coupling strengths, this system does not have a preferred cycling
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direction. As a consequence, it could run in both directions, and potentially even in
superposition states of these.

Using the other polarization modes that the cavity supports as well, would turn the
system into a continuous and bright source of polarization entangled photon pairs of
different wavelength. This situation is depicted in Figure 7.2 if one considers now the full
scheme shown. First simulations on this system were already performed and the results
are promising. A state tomography setup is already under construction which allows for
characterization of the entangled photon pairs experimentally.

One line of investigation is real-time observation of the internal degrees of freedom of
one atom in a cavity [119, 120]. This becomes especially interesting in the context of
closed atomic cycles, where one or more arms of the cycle are driven by cavity modes
[121]. A closed cycle in the electronic degrees of freedom of an atom in such a system can
show similar physics to atomic currents in quantum many-body systems in optical lattices.
These systems then potentially allow for the simulation of Hubbard-type-Hamiltonians
or investigations of synthetic gauge fields.

In another line of future research, closed atomic cycles could be promising for the
realization of new types of heat engines [122-124]. In contrast to the classical cycle
running in a macroscopic heat engine, here the cycle is realized in the internal degrees
of freedom of one atom. The quantized nature of the transitions therein, then bring this
system to the regime of quantum heat engines, which are especially interesting when one
or more atomic transitions are coupled to cavity modes. The cavity modes can then act
as non-classical heat reservoirs, as they allow for precise engineering of the light field.
Furthermore research with two independent particles in one cavity, whose internal
and external (position) degrees of freedom are well controlled, shows great prospects.
Recently, first experiments in that field were presented [112, 118, 125] that show collective
effects of both particles that depend on the exact distance and position of each of the
particles. In the field of CEIT two-particle effects are also very interesting to investigate.
One atom could e.g. be used to precisely engineer the light field for the second atom,
when both atoms are separated enough to be individually addressable with laser beams.
This is especially interesting in the context of multiple strongly coupled cavity modes
as presented in Section 6 of this thesis. There, precise control of the position of each
atom would allow for tuning of the coupling constants individually. Additionally, first
theoretical considerations have revealed that a second atom could potentially extend
the Zeno-blockade mentioned in Section 5 to the second rung of the dark state ladder.
This would e.g. allow the system to act as a two-photon source, because higher rungs
are very efficiently suppressed. All these examples would benefit greatly from active
position control of the particles. This is possible with optical tweezers, a technique where
an intense laser beam traps a single particle in its focus and moves that particle to the
desired location, even with single site resolution in an optical lattice [126, 127].
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Appendices

A. Closed cycle

A.1l. Derivation of the effective Hamiltonians

The level scheme of Figure 5.1 is the basis for the following derivation. For this derivations
it assumed that g,;,,Q,; € R. The derivation follows [81]. The Hamiltonian of this
system in the interaction picture is (h = 1):

H= gaOA-31 + 0236-32 + Q126-21 +h.C. (A.l)
Hy v
0

where d is the annihilation operator of the cavity mode and &,; = |k) (I| (k,l =1,2,3)
are the atomic transition operators.
Expressing the Hamiltonian in the basis {|+), |—)}, with |£) = 1/+/2(|1) £ |2)), leads to:

1 . A . A A A
H= 72 [(84+3) 03 + (88— 93) 65 +hc.]+Qp, (6, —6_). (A.2)

From that point it is possible to derive the effective Hamiltonian for two different regimes
of our system:
Weak ground state coupling

For ©;, < g we can treat the coupling field as a perturbation V. The eigenstates of the
unperturbed Hamiltonian H, [41] are:

|xpg):N§[|1,n)—g‘/ﬁ|z,n—1)] (A.3)
23

+\ _ a7t QZB _ + En _ ]
|u*)=N; [|1,n)+gﬁ|z,n 1) gﬁ|3,n 1) (A.4)

with the normalization factors N = Q,, (02, + gzn)_l/2 and N* = g/n(2g%n+ 2933)_1/2

and the energies E, = 1/ng2 + Q3,. Rewriting V in terms of these eigenstates and apply-
ing a unitary transformation of the form U, = exp (—iH,t), the resulting transformed
Hamiltonian contains non-oscillating and fast oscillating terms:

V(t)=UViU,=Ulv (i |n) (n|) U,

n=0

- (A.5)
gvn+1Q
= (le Z E—Hf |\IJ,?+1> <\IJ,?| +h.c |+ Hoscillating(t)
n=0 n

n
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The terms summarized in Hgaing(t) describe transitions between bright and dark states
or between different bright states. Therefore these terms oscillate fast in the limit of strong
atom-field coupling (g > ,,) and can be neglected in a rotating wave approximation
(RWA). The new effective Hamiltonian is then:

oo
Jnr1Q
Vi o Q> ST E” 1 2 g N +he. (A.6)
n=0 n+1l n

That means the effective driving strength from rung n to rung n+ 1 is given by:

. Q1502938vn+1
\/gz(n +1)+Q3, \/gzn +Q2,

(A.7)

Qn+1

This effective driving strength shows the interesting phenomena, that the effective driving
first increases with ,; but goes down for higher values. This is because the ground
state coupling beam effectively only drives the transition between atomic ground states
with the same cavity photon number (|1,n) «— |2, n), which is a part of the dark state
transition |‘112) — |\Pg 1)). This transition exhibits the highest transition probability if the
population is evenly distributed between both ground states. The population in atomic
state |1) scales linear with 2,5, whereas the population in atomic state |2) scales with
g. The highest effective driving strength is therefore reached when Q,; and g are of
comparable size.

In the regime g > Q,; Equation A.6 can be further simplified to:

oo

Q
Ve 2 =0, [97) ()] _9122 gjgﬁ

n=1

U,

n+1

+h.c., (A.8)

Strong ground state coupling

First a unitary transformation of the form U, = exp[—iQ,,t (6., —&__)] is applied to
the Hamiltonian of Equation A.2, which leads to:

. 1 .
H,(t)=UHU,—V = —[(ga + Qy3) &4, e 24
1 1 1 /2 g 23) 034 (A.9)

(g& - 923) 6.3_eiﬂlzt] + h.C.

For Q,, > g and Q,; > « the terms in the Hamiltonian oscillate very fast. This allows to
derive the effective Hamiltonian according to the technique in [128]:

rRwa 1 At A A A
Hyp ~ E{—[gza a+ Q%+ (gQad +h.e)]6,, (A.10)

+[g%a'a+ 02, — (gQa+h.c) |6}
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A.2. Generation of Schrodinger-cat state

Defining
2
5=-2
QZ
g =2 (A.11)
2045
2= g8y
204,

and inserting this into the effective Hamiltonian for the strong ground state coupling
leads to:

Hg~—[64"a+ 60+ (Ad+hc)]6,, —[-6d'a—0+(Aa+hc)]6__  (A12)
Using a unitary transformation of the form
Ur =exp(idtda'as,, —ista'as__) (A.13)
the Hamiltonian results to:
Hy~—0(6,,—6__)—(Ade® +h.c)o6,, —(Ade ™ +he)6__. (A.14)

The time evolution operator is then given by:

U(t) =exp (—i JtHT(t’)dt’) (A.15)
=exp [i@ot (6,.4—6_exp{(atd+hc)é,, +(a’@d+hc)6__} (A16)

with
a :i%(e*f‘”ﬂ) :i% (e%gfzt —1) (A.17)
Starting from the initial atom-cavity state |1,0) = == (|+) + |—)) |0) the evolved state at

2
time t will be:

W (0)) = U(6)]1,0) = %U(r)(m +1-))[0)

B(0) = %(ef9f|+>|a+> e ) a ) (A.18)

9(0) = 5 [11) (e™le) + 10 )) +12) () — )]

An atomic state detection in the bare atom basis projects the system now into one of two
Schrodinger cat states.
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A.3. Decay rates

The decay rates can be determined via Fermi’s golden rule. |\I/S> denotes the n’th dark
state and |\Ifr(f)> the n’th bright state as defined in Equation A.3 and Equation A.4. Because

the dark states don’t contain a component of an excited atomic state only the cavity field
component can decay:
_ 0 0\|2
Tug)-foc.) = [(¥] va [27)]
Kn [gz(n—1)+Q§3] (A.19)
(g n+ Qgs)

The same calculation for the decay from dark states to bright states results in:

Tugyofo ) = | (95| va [90)[*
= kN2N2 | (g Vv —1— gQuv/avn—1]|" =0

n—1,%£

(A.20)

Therefore, there is no decay from the dark states to bright states.
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B. Clock state EIT
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Figure B.1: Level scheme for clock state CEIT. Initially the population is prepared in
state |[F = 1, my = 0). The laser polarizations are horizontal for the probe
laser and vertical for the control laser.

The width of the central EIT feature in CEIT is for low driving dominated by the decay
rate of the first dark state, which can be described by:

QZ

_ C
F\I’? == —g2 T Qg K+ Ydeph (B].)

where y 4, is the dephasing rate between the two ground states and €2, the Rabi frequency
of the classical laser driving the atom. This means for low ., the width of the EIT
converges towards the dephasing rate, because the first term vanishes asymptotically.
This dephasing rate is mainly given by magnetic field fluctuations, that jitter the energy
of the Zeeman substates and therefore the energy of the ground states randomly. For the
transitions used in Section 5.2.1, this lead to a measured dephasing rate of y e, /27 =
64(1)kHz [53]. The ground states used for that experiment exhibited a difference in the
magnetic quantum number of one. The experiments in this chapter now present CEIT,
where the two ground states both have the magnetic quantum number zero and therefore
do not shift in magnetic fields to first order. The magnetic-field insensitive pairs of states
are often referred to as clock states. The level scheme is shown in Figure B.1. In contrast
to the other experiments within this thesis, the probe laser drives both polarization
eigenmodes of the cavity because its polarization is linear horizontal. Also the classical
laser beam irradiating the atom is in linear vertical polarization. This leads to two outer
A-systems with a difference of two in the magnetic quantum number and one inner
A-system with the ground states |[F = 1, m; = 0) and |F = 2, m; = 0). When the frequency
of the probing beam is scanned, this leads to the spectrum in Figure B.2.
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Figure B.2: (a) shows the spectrum of the three central EIT peaks corresponding
to transitions from |[F=1,m; =0) to [F=2,m; =-2), |F=2,m; =0),
|F =2, mp = 2) (left to right). (b) shows the central peak for a very low con-
trol field strength. A Lorentzian fit reveals a half width of o = 12.7(2) kHz.
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Figure B.3: Countrate of photons over time. The probe was enable at time t = 0 and
disabled at t = 200 pis. The inset shows a zoom to the decay of the field, as
indicated by the gray box.

Part (a) shows three peaks, corresponding to the three A-systems mentioned. The width
in this figure was still limited by Q.. Part (b) shows a spectrum of only the inner peak for
a measurement with very low Q.. The peak is as narrow as o = 12.7(2) kHz. Driving now
on this narrow CEIT feature leads to an interesting behavior in the time domain, which



B Clock state EIT 99

can be seen in Figure B.3. The probe is enabled at time t = 0 and it takes an extremely
long time until it reaches full transmission. This can be explained by the narrowness of
the EIT window. When the probe is turned on suddenly it exhibits a very broad spectrum
of frequencies as is given by the Fourier-theorem. The EIT window then only allows the
low frequency components to enter the system. It acts as a low-pass filter. In other words,
it is also possible to say, that the transmission needs a long time to build up, because the
system needs a long time to evolve into the dark superposition state. When the probe
light is then turned off at t = 200 pis, the most of the transmission falls off with the cavity
decay constant k, as if it would be an empty cavity. This is due to the fact, that higher
excitation rungs in the dark state ladder almost decay like the empty cavity would (see
also Equation A.19). A small fraction slowly falls off with the same time constant as the
build-up process. This is due to the slow decay from the first dark state of the cavity EIT
ladder. Shaping the input light field as such, that it would only excite the first dark state
in e.g. a m-pulse, would lead to a significant slowing down of the light by a single atom.
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C. Multi-mode closed cycle

This chapter presents very first and preliminary results on the closed cycling system
with two cavity modes as discussed shortly in Section 7. There, the system is coherently
closed via in total four different cavity modes, of which two are resonant to the D2-
line of rubidium and two are resonant to the D1-line of rubidium. At each frequency
two different polarization eigenmodes of the cavity are used, one in o* and one in
o~. In a first measurement, the polarization modes were not distinguished, meaning
that effectively only two modes of the cavity are used, namely the ones with a different
wavelength. Furthermore the coupling constants of both were almost equal at ~ 10 MHz.
The system is then driven by two classical beams transversely addressing the atom and
therefore closing the system. This leads to a continuous production of photons in both
cavity modes, which is depicted in Figure C.1(a). The figure shows the time evolution of
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Figure C.1: (a) shows the photon detection rate of both considered cavity modes over
time. (b) shows the cross-correlation function as defined in Equation C.1.

the photon detection rate behind the cavity for light stemming from the D1 and the D2
cavity mode (the atom is strongly coupled to both with its D1 and D2 line). The classical
transverse laser beams are enabled at time t = 0. After the output light field shows
initially a transient behavior, the photon rate stays constant for the full measurement
duration of 100 yps, after which the classical transverse driving fields were turned off.
This is remarkable and indicates, that light is generated while the excited state of the
atom and therefore spontaneous decay into uncoupled levels is avoided. The photon rate
of D1-light at 795 nm and of D2-light at 780 nm evolve in parallel after the transient.
As it is a completely closed cycle the photons are always created in the same amount,
which means this difference reflects the difference in the total detection efficiency from
cavity photon to actual detection. This also means, that photons are created in pairs,
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which can be seen in Figure C.1(b), which shows the photon cross correlation function
gff)(’r), which is defined in analogy to the ordinary photon correlation function but for
one photon of each cavity mode:

(C.1)

with @'(4) and b'(b) the creation (annihilation) operators of the two cavity modes. For
independent photons the cross-correlation function has a value of constant one. The
measurement reveals that photons are indeed emitted predominantly in pairs. In theory
these pairs should be polarization entangled, which was not measured yet because the
state tomography setup was in the making and not yet finished as of writing this.
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