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The quantum Cramér-Rao bound is a cornerstone of modern quantum metrology, as it provides the ultimate
precision in parameter estimation. In the multiparameter scenario, this bound becomes a matrix inequality,
which can be cast to a scalar form with a properly chosen weight matrix. Multiparameter estimation thus elicits
tradeoffs in the precision with which each parameter can be estimated. We show that, if the information is
encoded in a unitary transformation, we can naturally choose the weight matrix as the metric tensor linked to the
geometry of the underlying algebra 𝔰𝔲(𝑛). This ensures an intrinsic bound that is independent of the choice of
parametrization.

Introduction.— A central challenge in quantum metrology
is to develop strategies for enhancing the precision of parame-
ter estimation. The quantum Fisher information (QFI), and the
associated quantum Cramér-Rao bound (QCRB), are invalu-
able tools for this task [1, 2], as they characterize the ultimate
precision attainable for different classes of probe states. This
is crucial to identifying quantum resources that lead to an
enhancement in sensitivity versus classical strategies.

It is well established that the maximal sensitivities achiev-
able for the estimation of a single parameter using particle-
separable and arbitrary quantum probe states are the shot noise
and Heisenberg limits, respectively [3]. However, much less
is known about the corresponding bounds for the simultane-
ous estimation of multiple parameters. Multiparameter quan-
tum metrology finds many important applications in fields
as diverse as imaging [4–6], field sensing [7–9], sensor net-
works [10–12], and remote sensing [13] to cite but a few
examples. In this case, the QCRB is a matrix inequality and
the ultimate bound is generally not saturable for all parame-
ters. This is because the corresponding optimal observables
may be incompatible [14–16] and one cannot simultaneously
achieve the optimal precision for each individual parameter.
Several comprehensive reviews highlight recent progress in
this subject area [17–22].

These difficulties have fueled the search for tighter bounds,
which prove to be handy for practical implementations. The
Holevo Cramér-Rao bound (HCRB) [2] epitomizes the co-
nundrums associated with incompatible observables: its main
tenet is to map the matrix QCRB onto a scalar inequality by
using a positive-definite weight matrix and then optimize this
scalar bound over all physically viable measurement proce-
dures for a given probe state. In this manner, one obtains a
weighted mean square error that has to be minimized. This
is considered hard to evaluate, even numerically, because it
is defined through a constrained minimization over a set of
operators. Closed results are known only for very simple
models [23–25] and the numerical tractability of calculating
the HCRB for finite-dimensional systems has been recently
considered [26, 27].

Surprisingly, little attention has been paid to the properties
of the weight matrix: its only role is to give relative weights to

the different parameter estimate variances, so different choices
lead to different optimal probe states and experimental designs.
In this Letter, we discuss whether that matrix can be chosen in
a natural way.

To provide a proper answer, we first assume that the param-
eters are imprinted onto the probe state via a unitary trans-
formation; i.e., we assume that the parameters belong to the
group SU(𝑛). From a geometrical viewpoint, the associated
Lie algebra 𝔰𝔲(𝑛) can be endowed with a metric tensor, the
Killing-Cartan form, with all the desirable properties [28].
When this metric is used as our weight matrix, we obtain a
QCRB with intrinsic properties, independent of the choice
of parametrization. Such a QCRB can significantly facilitate
finding the corresponding optimal states. We demonstrate the
power of this bound for the broad scenario of estimating all
of the parameters of an SU(𝑛) operation, which generalizes
known multiparameter estimation results for rotation [9] and
multiphase [29] estimation problems.

Setting the scenario.— We are interested in estimating mul-
tiple parameters simultaneously. The typical scheme requires
some 𝑑-dimensional vector of parameters θ = (𝜃1, . . . , 𝜃𝑑)> ∈
R𝑑 to be imprinted on a (pure) probe state |𝜓〉, which is
shifted by applying a corresponding unitary transformation
𝑈 (θ) ∈ SU(𝑛) that encodes the parameters θ (the superscript
> denotes the transpose). The output state |𝜓θ〉 = 𝑈 (θ) |𝜓〉
is then detected via a set of measurements, represented by a
positive operator-valued measure (POVM) [1] {Π𝑥}, where
the POVM elements are labeled by an index 𝑥 that represents
the possible outcomes (discrete or continuous) according to
Born’s rule 𝑝(𝑥 |θ) = 〈𝜓θ |Π𝑥 |𝜓θ〉.

Often, the protocol is repeated 𝑁 times using identical
copies of the state. From the output results x = (𝑥1, . . . , 𝑥𝑁 )>,
which we assume to be independent and identically dis-
tributed, one can construct a joint probability distribution
𝑝(x|θ) =

∏𝑁
𝑗=1 𝑝(𝑥 𝑗 |θ) and then infer the vector parameter

via an estimator θ̂. In the following, we restrict our atten-
tion to locally unbiased estimators, for which 〈𝜃̂ 𝑗〉 = 𝜃 𝑗 and
𝑑〈𝜃̂ 𝑗〉/𝑑𝜃𝑘 = 𝛿 𝑗𝑘 , and we compute average values 〈·〉 using
the probability distribution 𝑝(x|θ) [1].

The performance of the estimator can be properly assessed
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in terms of the covariance matrix C𝜓 (θ̂), defined as

[C𝜓 (θ̂)] 𝑗𝑘 = 〈(𝜃̂ 𝑗 − 𝜃 𝑗 ) (𝜃̂𝑘 − 𝜃𝑘 )〉 , (1)

where 𝑗 , 𝑘 = 1, . . . , 𝑑. The diagonal elements are the vari-
ances of the different parameters, whereas the nondiagonal
elements characterize the possible correlations between vari-
ous parameters.

To guide the design of real experiments, it is possible to
calculate theoretical lower bounds for C𝜓 (θ̂). The ultimate
limit for any possible POVM is given by the time-honoured
QCRB, which stipulates that

C𝜓 (θ̂) < Q−1
𝜓 (θ) , (2)

where the matrix inequality A < B means that A − B is a
positive semidefinite matrix. Here, the quantum Fisher infor-
mation matrix (QFIM) for pure states and unitary evolution
takes the particularly simple form [18][

Q𝜓 (θ)
]
𝑗𝑘

= 4 C𝜓 (𝐻 𝑗 , 𝐻𝑘 ) . (3)

The operators 𝐻 𝑗 are the generators of the transformation,
determined through 𝐻 𝑗 = 𝑖𝑈† (θ)𝜕𝜃 𝑗

𝑈 (θ), and we define the
symmetrized covariance between two operators as C𝜓 (𝐴, 𝐵) =
1
2 〈𝐴𝐵 + 𝐵𝐴〉 − 〈𝐴〉〈𝐵〉 and expectation values with respect to
|𝜓〉.

Given a covariance matrix, we can balance the precision of
the various parameters by using a weight matrix W � 0; this
leads to the inequality

wMSE(θ̂) ≡ Tr[WC𝜓 (θ̂)] ≥ Tr[WQ−1
𝜓 (θ)] ≡ 𝐶𝑆 (θ) . (4)

The left-hand side is the so-called weighted mean square er-
ror of the estimator wMSE, whereas 𝐶𝑆 (θ) is a scalar cost
function, much in the same spirit as the risk functions used
in Bayesian estimation [30]. For a given W, the standard
approach is to minimize 𝐶𝑆 (θ) to derive better parameter es-
timates. In contradistinction, we address here whether there is
an intrinsic choice for the matrix W.

Intrinsic bound.— Let us assume that the unitary process
can be represented as𝑈 (θ) = exp[𝑖𝛀(θ) ·X], where the vector
𝛀(θ) encodes the pertinent set of parameters θ and {𝑋𝑖} are
the generators of SU(𝑛); that is, {𝑋𝑖} comprise a basis of
the Lie algebra 𝔰𝔲(𝑛), which consists of traceless Hermitian
𝑛 × 𝑛 complex matrices with 𝑖[·, ·] as their Lie bracket [31]
([·, ·] denoting the regular commutator). For our final results
to hold, we require that the vector 𝛀(𝜽) is a smooth injective
function of the parameters θ.

A straightforward method for calculating 𝜕𝜃 𝑗
𝑈 (θ) is

through Wilcox’s formula [32] for a unitary operator 𝑈 =

exp(𝐴):

𝜕𝑈

𝜕𝜆
=

∫ 1

0
exp[(1 − 𝛽)𝐴] 𝜕𝐴

𝜕𝜆
exp(𝛽𝐴) 𝑑𝛽 . (5)

By recalling the definition of the generators, we find

𝐻 𝑗 = −𝜕𝛀θ

𝜕𝜃 𝑗

·
∫ 1

0
𝑈−𝛽 X𝑈𝛽𝑑𝛽 . (6)

Since 𝑈−1 X𝑈 ∈ 𝔰𝔲(𝑛), we conclude that 𝐻 𝑗 can be generi-
cally expressed as a linear combination of the generators {𝑋𝑖}
through

𝐻 𝑗 = h 𝑗 · X , (7)

where the real vectors of coefficients h 𝑗 (θ) are computed from
Eq. (6) and depend on𝛀θ. The far-reaching result that the gen-
erators 𝐻 𝑗 of the transformation are equal to linear combina-
tions of the generators {𝑋𝑖} is essential to finding an intrinsic
QCRB that is independent of parametrization. Moreover, this
relation will always hold for the same vectors h 𝑗 regardless of
the representation of the group that we use.

In this way, we can immediately work out a compact expres-
sion for the QFIM:

Q𝜓 (θ) = 4H> (θ) C𝜓 (X) H(θ) (8)

and the scalar QCRB now reads

Tr[WC𝜓 (θ̂)] ≥ 1
4 Tr[H−1> (θ)WH−1 (θ) C−1

𝜓 (X)] . (9)

The remarkable property of these expressions is that we have
separated the parameter dependence H(θ) =

(
h1, . . . , h𝑑

)>
from the state dependence that is embodied in [C𝜓 (X)] 𝑗𝑘 =

C𝜓 (𝑋 𝑗 , 𝑋𝑘 ). This form allows us to easily identify when the
QFIM becomes singular, which implies that all 𝑑 parameters
cannot be simultaneously estimated for some probe state and
parametrization. For example, when C𝜓 (X) is singular, the
probe state will never be useful for estimating all 𝑑 parameters,
while, when H is singular, the coordinate system defined by the
parametrization is singular at that specific set of parameters θ
regardless of the probe state. As discussed in Ref. [33], singu-
larities in one coordinate system can be alleviated for specific
parameters by switching to a new coordinate system; here,
we show how a proper choice of weight matrix W removes
all ambiguities that can arise from the choice of coordinate
system.

To proceed, we note that the parameters θ, are coordinates
of the group manifold (the parameters 𝛀(𝜽) form an alterna-
tive set of coordinates of the manifold), which is compact and
simply connected [31]. One can define therein a local met-
ric tensor and through that covariant operations and invariant
quantities. As 𝔰𝔲(𝑛) is compact and semisimple, the Killing
form 𝐵(𝑋,𝑌 ) = 2𝑛 Tr(𝑋†𝑌 ) is nondegenerate and defines a
scalar product (𝑋,𝑌 ) that, in turn, induces a natural metric
𝑑𝑠2 = (𝑑𝑈, 𝑑𝑈), called the Cartan metric. Actually, by ex-
pressing the metric as

𝑑𝑠2 =
∑︁
𝑗𝑘

𝑔 𝑗𝑘𝑑𝜃 𝑗𝑑𝜃𝑘 (10)

and computing 𝑑𝑈 = −𝑖𝑈∑
𝑗 𝐻 𝑗𝑑𝜃 𝑗 , we find that the metric

explicitly depends on the generators from Eq. (7) through

𝑔 𝑗𝑘 = Tr(𝐻 𝑗𝐻𝑘 ) . (11)

We can then use the orthonormality of the generators
(𝑋 𝑗 , 𝑋𝑘 ) = 𝛿𝑖 𝑗 to determine the components of the metric
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tensor to be (up to an inessential global constant)

𝑔 𝑗𝑘 = h 𝑗 · h𝑘 , (12)

or, in vector form, g = H>H. It follows that, if we choose
the Cartan metric as the weight matrix W = g, all of the
parametrization dependence cancels from Eq. (9) and the
QCRB becomes

Tr[g C𝜓 (θ̂)] ≥ 1
4 Tr[C−1

𝜓 (X)] . (13)

The only remaining ingredients are the covariances of the
generators of 𝔰𝔲(𝑛) with respect to the original state, or any
state along the unitary orbit, as Tr[C−1

𝜓
(X)] = Tr[C−1

𝜓′ (X)],
with |𝜓 ′〉 = 𝑈 |𝜓〉. This is exactly what one requires physically
and seems quite elegant. It nicely complements the single-
parameter scenario in which the QFI for unitary operations
takes the same value anywhere along the unitary orbit.

Discussion.— To see how our new result works, let us first
consider the simplest case of SU(2), which describes rota-
tions. A general element is characterized by the Euler angle
parametrization

𝑈 (Φ,Θ,Ψ) = 𝑒−𝑖Φ𝐽𝑧 𝑒−𝑖Θ𝐽𝑦 𝑒−𝑖Ψ𝐽𝑧 , (14)

where we have used the standard angular momentum notation
J for the generators. Derivatives with respect to the parameters
lead us to

hΦ = (0, 0, 1)> ,

hΘ = (− sinΦ, cosΘ, 0)> ,

hΨ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ)> ,

(15)

which makes the matrix H singular when, for example, Θ = 0.
The metric for this parametrization is

𝑑𝑠2 = 𝑑Φ2 + 2 cosΘ𝑑Φ𝑑Ψ + 𝑑Θ2 + 𝑑Ψ2, (16)

which directly cancels the singularities in H through
H−1>gH−1 = 11, as promised.

It is straightforward to show that in this case C𝜓 (J) is singu-
lar if and only if the probe state is an eigenstate of some angu-
lar momentum projection; that is, proportional to 𝑈 (θ) |𝐽𝑚〉.
States with any definite angular momentum projection cannot
be used for simultaneously estimating all three parameters of
a rotation.

To find the most sensitive states we have to minimize
Tr[C−1

𝜓
(J)]. This is straightforward to optimize because,

for any symmetric, positive semidefinite, invertible matrix M,
Tr(11)2 = Tr(M1/2M−1/2)2 ≤ Tr(M) Tr(M−1), with equality
if and only if M is proportional to the identity matrix. Since
Tr[C𝜓 (J)] = 𝐽 (𝐽 + 1) −∑

𝑘 〈𝐽𝑘〉2, we find

Tr[C−1
𝜓 (J)] ≥ 9

𝐽 (𝐽 + 1) , (17)

with the trace of the inverse achieving the minimum only when
the state is first-order unpolarized [34] (that is, 〈J〉 = 0), and

when C𝜓 (J) ∝ 11, as is the case for the so called Kings of
Quantumness [35–37]. We see that having isotropic angular
momentum up until second order makes a state most sen-
sitive to arbitrary rotations about arbitrary axes. Our min-
imum intrinsic QCRB is given by the square of the num-
ber of parameters divided by the quadratic Casimir invariant
C2 = 𝐽2

𝑥 + 𝐽2
𝑦 + 𝐽2

𝑧 = 𝐽 (𝐽 + 1)11.
The conditions guaranteeing the saturation of the QCRB

constitute a touchy business [38]. Fortunately, for the case
of pure states, a sufficient condition is 〈[𝐻 𝑗 , 𝐻𝑘 ]〉 = 0, ∀ 𝑗 , 𝑘 .
These expectation values will vanish for all states with 〈J〉 = 0
so the optimal state will have a saturable QCRB in this case.

These results can be directly extended to the case of a
full SU(𝑛) estimation. Using the same trick, we get that
Tr[C𝜓 (X)] is bounded by the quadratic Casimir invariant
C2 =

∑
𝑗𝑘 𝑔 𝑗𝑘𝑋 𝑗𝑋𝑘 of SU(𝑛) and, therefore, the second-order

unpolarized states

〈X〉 = 0 , C𝜓 (X) = C2

𝑑
, (18)

saturate the optimal QCRB for the simultaneous estimation
of all 𝑑 parameters. This yields a minimum total variance
𝑑2/C𝑛, generalizing Eq. (17). All of the parameters should be
simultaneously estimable with Heisenberg-scaling precisions,
because the square root of the Casimir invariant

√
C2, which

corresponds to physical quantities such as the number of parti-
cles, is quadratic in the labels of the irreducible representation.

Such a protocol outperforms sequential estimation protocols
by a factor on the order of 𝑑. Sequential estimation protocols
require splitting the physical resources O(

√
C2) into 𝑑 parts,

then at best estimating each of the 𝑑 parameters with variance
O[(

√
𝑑/C2)2], so that the total variance scales as O(𝑑3/C2).

This has been seen for the specific examples of multiphase
estimation [29], which satisfies U(1)⊗𝑛 ⊂SU(𝑛) up to a global
phase (i.e., modulo the centre of the group), and rotation es-
timation [9], which satisfies SU(2)⊂SU(𝑛). Estimating the
components of any subset of SU(𝑛) can now be similarly opti-
mized using our results.

Two final comments pertain. First, it is easy to realize that
the elegant form (8) for the QFIM also holds for mixed states,
where we must employ the replacement [39]

C𝜓 (X) ↦→ 1
2

∫ ∞

0
𝑑𝑠 Tr

[
(𝜚X − X𝜚) 𝑒−𝜚𝑠

(
X>𝜚 − 𝜚X>) 𝑒−𝜚𝑠

]
,

(19)
so the parameter dependencies factor out in terms of H(θ) and
will always disappear in the QCRB if we weight the covari-
ances using the metric. Second, the treatment can be repeated
much in the same way when the information is encoded in
channels with symmetries beyond SU(𝑛).

Concluding remarks.— We have used geometric arguments
to show how to obtain an intrinsic QCRB for unitary process.
This directly generalizes many earlier results for multiparam-
eter estimation, notably generalizing the single-parameter es-
timation result that estimation precision is unchanged along a
unitary orbit. An important advantage of these geometric argu-
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ments is that they provide deep connections between quantum
estimation and general quantum information tasks.
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