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ABSTRACT. We introduce a class of posets, which includes both ribbon posets (skew shapes) and d-complete
posets, such that their number of linear extensions is given by a determinant of a matrix whose entries are prod-
ucts of hook lengths. We also give q-analogues of this determinantal formula in terms of the major index and
inversion statistics. As applications, we give families of tree posets whose numbers of linear extensions are given
by generalizations of Euler numbers, we draw relations to Naruse–Okada’s positive formulas for the number of
linear extensions of skew d-complete posets, and we give polynomiality results analogous to those of descent
polynomials by Diaz-López, Harris, Insko, Omar, and Sagan.

1. INTRODUCTION

Linear extensions of posets are fundamental objects in combinatorics and computer science. The number
of linear extensions of a poset P , denoted by epPq, is a measure of the complexity of the poset. However,
computing epPq is a difficult problem—it is #P -complete [BW91b], even for posets with restricted height or
dimension [DP18]. Fortunately, for some posets that appear in algebraic and enumerative combinatorics,
their number of linear extensions can be efficiently computed through product formulas (posets arising
from Young diagrams [FRT54], rooted tree posets [Knu98], d-complete posets [Pro14]), determinants (posets
arising from skew Young diagrams [Ait43]), or recursive algorithms (series parallel posets [Möh89], tree
posets [Atk90]).

The goal of this paper is to introduce and study a family of posets, called mobile posets, that is a common
refinement of both ribbon posets (skew shapes) and d-complete posets. We introduce a folding algorithm
on such posets that allows us to compute their number of linear extensions via the determinant of a ma-
trix whose entries are products of hook lengths (Theorem 4.9). Moreover, we obtain a q-analogue of this
determinantal formula (Theorem 5.4). These determinantal formulas simultaneously specialize to known
formulas for both ribbon posets and d-complete posets in the literature.

1.1. Hook-length formulas and determinantal formulas for epPq. The family of d-complete posets defined
by Proctor [Pro99, Pro99b, Pro14] includes rooted tree posets (posets whose Hasse diagram is a rooted tree)
and posets from Young diagrams of (shifted) partitions. Proctor showed that these posets have a product
formula involving hook lengths for their number of linear extensions:

(1.1) epPq “ n!
ś

xPP hPpxq
,

where n is the number of elements of P , and hPpxq is the size of the hook of x, certain elements smaller than
or equal to x in P (see Section 2.2.3). This formula generalizes the hook-length formula for epPq of a rooted
tree due to Knuth [Knu98], as well as the hook-length formula for the number of standard tableaux of a
(shifted) partition due to Frame–Robinson–Thrall [Thr52, FRT54].

Tree posets are a natural generalization of rooted tree posets. The number of linear extensions of cer-
tain tree posets are of interest in enumerative and algebraic combinatorics. For example, given a set
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FIGURE 1. Left: schematic of a mobile poset. Right: schematic of a mobile tree poset. The
shaded rhombi depict d-complete posets, and the shaded triangles depict rooted tree
posets.

S “ ts1, . . . , sku Ă t1, . . . , n ´ 1u with s1 ă ¨ ¨ ¨ ă sk, the number of permutations of size n with de-
scent set S equals epZq, where Z is a path with n elements, called a ribbon, with down steps indexed by
S. Ribbons are also examples of posets arising from skew Young diagrams. Counting permutations with a
given descent set is an important problem in combinatorics with a rich history including work by MacMa-
hon [Mac15], Foulkes [Fou76], and Gessel–Reutenauer [GR93], and more recently by Diaz-Lopez, Harris,
Insko, Omar, and Sagan [DLHI`19]. Either by an inclusion-exclusion argument or from the Jacobi–Trudi
identity for linear extensions of skew Young diagrams, there is a determinantal formula

(1.2) epZq “ #tw P Sn | Despwq “ Su “ n! det

ˆ

1

psj`1 ´ siq!

˙

0ďi,jďk

,

where s0 “ 0 and sk`1 “ n.
In addition, more recently, linear extensions of tree posets have appeared in the context of noncrossing

partitions and quiver representation theory [GIMO19], as well as in pattern avoidance [DE18].
The main result of this paper is to give a determinantal formula for the number of linear extensions of

mobile posets, a class of posets which includes both ribbons and d-complete posets.
A mobile poset1 P is a poset obtained from a ribbon poset Z by allowing every element z in Z to cover

the maximal element of a nonnegative number of disjoint d-complete posets, and by letting at most one
element z1 of Z be covered by a certain element of a d-complete poset (see Figure 1: Left). If the d-complete
posets in this description are restricted to rooted tree posets, then the posets in the resulting family are
called mobile tree posets (see Figure 1: Right).

The determinantal formula for mobile posets below is a common refinement to the formulas for epPq of
Proctor and MacMahon for d-complete posets and ribbons, respectively.

Theorem 4.9. Let P be a mobile poset with n elements and F be the set of path folds for P (see (4.1)). Then

(1.3) epPq “ n! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

&

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

1{
ś

xPPi,j
hPi,j

pxq otherwise,

where k is the size of F and Pi,j are certain d-complete posets (see Definition 3.8).

1.2. q-analogues. Two well-studied q-analogues of the number of linear extensions for a labeled poset
pP, ωq are the major index and inversion q-analogues:

emaj
q pP, ωq :“

ÿ

σ

qmajpσq and einv
q pP, ωq :“

ÿ

σ

qinvpσq,

1The name “mobile” was chosen for the poset’s resemblance to mobiles for babies and to the kinetic sculptures of Alexander Calder.
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where both sums are over linear extensions σ of pP, ωq (see Section 2.3), and majpσq and invpσq are the
major index and number of inversions of σ, respectively. Björner–Wachs [BW91b] gave both major index
and inversion q-analogues of (1.1) for rooted trees, and Stanley [Sta71] gave a major index q-analogue of
(1.1) for posets from Young diagrams of partitions that was generalized to d-complete posets by Proctor
[Pro99,Pro99b]. For ribbon posets Z , a major index q-analogue of (1.2) comes from the Jacobi–Trudi formula,
and an inversion q-analogue is due to Stanley [Sta76, Corollary 3.2].

We give a q-analogue of Theorem 4.9 for mobile posets that is a common refinement to the respective
major index q-analogues for d-complete posets and ribbons.

Theorem 5.4. Let pP, ωq be a labeled mobile poset with n elements, and let F be the set of path folds for P
(see (4.1)). Then

(1.4) emaj
q pP, ωq “ rnsq! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

’

&

’

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

qmajpPi,j ,ωi,jq
ś

xPPi,j
rhPi,j

pxqsq
otherwise,

where k is the size of F and pPi,j , ωi,jq are certain labeled d-complete posets (see Definition 3.8).

We also give a determinantal formula for the inversion q-analogue of the number of linear extensions
for mobile tree posets (Theorem 5.12). This result is a common refinement of results of Björner–Wachs and
Stanley on rooted tree posets and ribbons.

To obtain our determinantal formulas, we carefully study the effect that folding cover relations in P has
on epPq via inclusion-exclusion and use a lemma by Stanley [Sta12, Example 2.2.4] to turn certain inclusion-
exclusion expressions into determinants. We are able to obtain hook-length formulas for the entries of the
determinant by using properties of d-complete posets developed by Proctor in [Pro99].

Outline. The rest of the paper is organized as follows. In Section 2 we give definitions, notation, and
background results on linear extensions, the previously known poset families mentioned above, and q-
analogues of epPq. Section 3 gives the inclusion-exclusion approach to compute epPq by folding certain
cover relations of the posets and determines when the resulting formulas can be written as determinants.
In Section 4 we recover the determinant formula (1.2) for epZq using this approach, and we introduce the
family of mobile posets and prove the main result (Theorem 4.9). This section also gives applications of
our main result to the simpler class of mobile tree posets. These posets are exactly the tree posets where
our methods apply (see Theorem 4.14 for a precise statement). Section 4.2.2 has two infinite families of
mobile tree posets whose number of linear extensions generalize Euler numbers. In Section 5 we prove the
q-analogues of our main result (Theorems 5.4 and 5.12). We conclude in Section 6 with results and open
questions related to this work on (i) positive formulas for the number of linear extensions of mobile posets
related to the Naruse–Okada formula [NO19] for skew d-complete posets, (ii) polynomiality for the number
of linear extensions of mobile tree posets, and (iii) a q-analogue of Atkinson’s algorithm (Lemma 6.8) for
the number of linear extensions of an arbitrary tree poset.

Acknowledgments. We are grateful to Igor Pak and Bruce Sagan whose comments and questions moti-
vated Sections 4.2.2 and 6.2, respectively. We are also thankful to David Barrington, Sergi Elizalde, Jang Soo
Kim, Peter Winkler, and Benjamin Young for helpful discussions and suggestions that led to improvements
in this paper.
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2. PRELIMINARIES

For nonnegative integers i ď m, we use ri,ms to denote the set ti, i` 1, . . . ,mu and rms to denote the set
r1,ms.

2.1. Posets and linear extensions. A partially-ordered set (poset) is a pair pP,ďPq, with P a finite set andďP

a binary relation on P that is reflexive, antisymmetric, and transitive. We denote a poset by its underlying
set when the order relation is clear from context. Throughout, we view ďP as both a subset of P2 and as
a way to compare two elements of P , depending on context. (Thus, writing px, yq P ďP is equivalent to
writing x ďP y.) We denote the set of cover relations of P by ÌP . An (induced) subposet Q of P is a poset
whose underlying set is a subset of the elements of P , and whose relations are given by s ďQ t if and only
if s ďP t. Given two elements x, y P P , the interval rx, ys is the subposet tz P P | x ďP z ďP yu.

Throughout, we represent posets by their Hasse diagrams, and we say P is connected if its Hasse diagram is
connected. A chain (resp. antichain) is a poset where any two elements are comparable (resp. incomparable).

If P and Q are two posets, we define their disjoint sum P`Q as the poset with underlying set the disjoint
union P \Q and with relations the disjoint union ďP \ ďQ. If E Ă P , we denote by PzE the poset with
underlying set PzE and with relations ďPzE :“ ďP z tpx, yq P ďP | x P E or y P Eu. Given a poset P with
two incomparable elements x and y, let P‘tpx, yqu be the poset obtained by adding the cover relation px, yq
and taking the transitive closure.

Definition 2.1. Let P and Q be disjoint posets, let p be an element in P , and let q be an element in Q. The
slant sum of P and Q at p and q is the poset PpzqQ :“ pP `Qq ‘ tpq, pqu.

Definition 2.2. Let P,Q1, . . . ,Qm be disjoint posets, let p be an element in P , and let qi be an element in
Qi for i “ 1, . . . ,m. The iterated slant sum of P,Q1, . . . ,Qm at p and q1, . . . , qm is the poset P pH

qi
i“1,...,m

Qi :“

pP `Q1 ` ¨ ¨ ¨ `Qmq ‘ tpq1, pq, . . . , pqm, pqu.

We now introduce the main object of study in this paper: linear extensions of posets.

Definition 2.3. A linear extension of an n-element poset P is a bijection f : P Ñ rns that is order-preserving;
that is, if x ďP y, then fpxq ď fpyq. We denote by LpPq the set of all linear extensions of P , by epPq :“

#LpPq the number of linear extensions of P , and by epPq :“ epPq{n! the probability that a permutation of
the elements of P is a linear extension of P .

The following standard result gives a formula for the number of linear extensions of a disjoint sum in
terms of the number of linear extensions for the summands.

Proposition 2.4 ([Sta12, Example 3.5.4]). The number of linear extensions of a disjoint sum of posets Pi,
each with ni elements, is

epP1 ` ¨ ¨ ¨ ` Pkq “
ˆ

n1 ` ¨ ¨ ¨ ` nk
n1, . . . , nk

˙

epP1q ¨ ¨ ¨ epPkq.

2.2. Families of posets with closed formulas for epPq. We recall some classes of posets for which the
number of linear extensions has a closed formula.

2.2.1. Rooted trees. A tree poset is a poset with a connected acyclic Hasse diagram, and a rooted tree poset is a
tree poset with exactly one maximal element (the root). Rooted tree posets have a particularly nice product
formula, due to Knuth, for the number of their linear extensions.
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Theorem 2.5 (Knuth [Knu98, Theorem 5.1.4H]). The number of linear extensions of a rooted tree poset P
with n elements is

epPq “ n!
ś

xPP hPpxq
,

where hPpxq :“ #ty P P | y ďP xu is the hook length of x in P .

2.2.2. Ribbons. Let S “ ts1, . . . , skuă Ă rn´ 1s, where the subscript ă indicates that s1 ă ¨ ¨ ¨ ă sk. A ribbon
poset ZpnqS with descent set S is the tree poset with underlying set tz1, . . . , znu whose cover relations are
zi`1 Ì zi if i P S and zi Ì zi`1 if i R S. These posets coincide with the cell posets of ribbon skew shapes,
and their linear extensions naturally correspond to permutations of size n with descent set S. Ribbon
posets have a determinantal formula for their number of linear extensions due to MacMahon [Mac15, 1.55,
vol 1], and this identity is a special case of the Jacobi–Trudi determinantal identity counting standard Young
tableaux of a skew shape (see [Sta99, Section 7.16]).

Theorem 2.6 (MacMahon [Mac15, 1.55, vol 1]). The number of linear extensions of a ribbon poset ZpnqS is
given by

(2.1) epZpnqS q “ n! ¨ det

ˆ

1

psj`1 ´ siq!

˙

0ďi,jďk

,

where s0 “ 0 and sk`1 “ n.

This result can be proved using the following lemma, due to Stanley, that turns an alternating sum over
sets into a determinant.

Lemma 2.7 (Stanley [Sta12, Example 2.2.4]). Let g be any function defined on r0, k ` 1s ˆ r0, k ` 1s that
satisfies gpi, iq “ 1 and gpi, jq “ 0 if j ă i, and let Dk be the sum

Dk :“
ÿ

1ďi1ăi2ă¨¨¨ăijďk

p´1qk´jgp0, i1qgpi1, i2q ¨ ¨ ¨ gpij , k ` 1q.

Then Dk “ detpEkq, where Ek “ pei,jq is the pk ` 1q ˆ pk ` 1q matrix with entries ei,j “ gpi, j ` 1q for
pi, jq P r0, ks ˆ r0, ks.

We will use Lemma 2.7 to prove our main results in Sections 3, 4, and 5.

2.2.3. d-complete posets. Defined by Proctor in [Pro99b], d-complete posets form a large class of posets con-
taining rooted tree posets and posets arising from Young diagrams,2 while still retaining a hook-length
formula for their number of linear extensions. We recall their definition below (see Definition 2.8).

A poset P has a diamond if there are four elements w, x, y, z in P such that z covers x and y, while x and y
cover w. For k ě 3, a double-tailed diamond poset dkp1q is a poset obtained by adding a k ´ 3 chain to the top
and bottom of a diamond. The neck elements are the k ´ 2 elements above the two incomparable elements
of the diamond. A dk-interval is an interval rw, zs which is isomorphic to dkp1q. Additionally, for k ě 3, a
d´k -convex set is a dk-interval with the maximal element removed. Note that for k ě 4, a d´k -convex set is an
interval.

Definition 2.8 ([Pro99, Pro99b, Oka10]). A poset P is d-complete if, for any k ě 3, the following properties
are satisfied:

(1) If I is a d´k -convex set, then there exists an element p such that p covers the maximal elements of I ,
and I Y p is a dk-interval.

(2) If I “ rw, zs is a dk-interval, then z does not cover any elements of P outside I .

2See [Pro99, Table 1] for a complete classification of d-complete posets.
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(3) There are no d´k -convex sets which differ only in their minimal elements.

A connected d-complete poset has a unique maximal element [Pro99, Section 14]. Given a connected
d-complete poset P , its top tree Γ is the subgraph of the Hasse diagram of P consisting of vertices x in P
such that y ěP x is covered by at most one other element. (This subgraph is indeed a tree.) An element y
of P is acyclic if y P Γ and is not part of the neck of any dk-interval of P . Note that if P is a rooted tree, then
Γ “ P and all its elements are acyclic.

Slant sums (see Definition 2.1) can be used to combine two d-complete posets to obtain a larger d-
complete poset.

Proposition 2.9 (Proctor [Pro99, Proposition B]). Let P1 be a connected d-complete poset with an acyclic
element y, and let P2 be a connected d-complete poset with maximal element x. Then the slant sum P :“

P1
yzxP2 is a d-complete poset, and the acyclic elements of P1 and P2 are acyclic elements of P .

Next, we recall the hook-length formula for the number of linear extensions of a d-complete poset.

Definition 2.10 ([Pro99b, Pro99, Oka10]). The hook length hPpzq of an element z in a d-complete poset P is
defined as follows:

(1) If z is not in the neck of any dk-interval, then hPpzq “ #ty | y ďP zu.
(2) If z is in the neck of a dk-interval, then we can find some element w such that rw, zs is a d`-interval

for some `. If x and y are the two incomparable elements in the d`-interval, then hPpzq “ hPpxq `

hPpyq ´ hPpwq.

Theorem 2.11 (Peterson–Proctor [Pro14]). The number of linear extensions of a d-complete poset P with n
elements is

epPq “ n!
ś

xPP hPpxq
,

where hPpxq is the hook length of x in P from Definition 2.10.

2.3. q-analogues of the number of linear extensions. We recall q-analogues of Theorems 2.5, 2.6, and 2.11
and prepare the preliminaries for the q-analogues of our results, which we display in Section 5.

A labeled poset pP, ωq is a poset P with n elements, together with a bijection ω : P Ñ rns. We call ω a
natural labeling if for any x, y P P with x ăP y, we have ωpxq ă ωpyq. A labeling ω is regular if we have the
following: for all x ăP z and y P P , if ωpxq ă ωpyq ă ωpzq or ωpxq ą ωpyq ą ωpzq then x ăP y or y ăP z.
For more on natural and regular labelings, we point to [Sta12, Chapter 3] and [BW89] respectively.

Definition 2.12. Let pP, ωq be a labeled poset. If f : P Ñ rns is a linear extension of P , then the permutation
ω ˝ f´1 P Sn is called a linear extension of the labeled poset pP, ωq. We write LpP, ωq for the set of all linear
extensions of pP, ωq.

Definition 2.13. Let σ “ σ1 ¨ ¨ ¨σn P Sn be a permutation, and define Despσq :“ ti P rn ´ 1s | σi ą σi`1u.
The inversion index invpσq of σ is the number of inversions of σ, and the major index of σ is

majpσq “
ÿ

iPDespσq

i.

The descent set of a labeled poset pP, ωq is given by DespP, ωq “ tx P P | x ÌP y and ωpxq ą ωpyqu. There
is a version of the inversion index in Definition 2.13 for labeled posets and of the major index for labeled
d-complete posets.

Definition 2.14. The inversion index of a labeled poset pP, ωq is the number of inversions of pP, ωq:

invpP, ωq “ #tpx, yq | ωpyq ă ωpxq and x ăP yu.
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Definition 2.15. The major index of a labeled d-complete poset pP, ωq is the sum of the hook lengths at the
descents of ω:

majpP, ωq “
ÿ

xPDespP,ωq

hPpxq.

We are now ready to state the q-analogues of the theorems from the previous section. For each integer n ě
1, we define the q-integer rnsq :“ 1`q`q2`¨ ¨ ¨`qn´2`qn´1 and the q-factorial rnsq! :“ rnsqrn´1sq ¨ ¨ ¨ r2sqr1sq .
We also define the q-multinomial coefficient r m

`1,...,`k sq :“
rmsq !

r`1sq !¨¨¨r`ksq !
.

Definition 2.16. The major index (inversion) q-analogue of the number of linear extensions of a labeled poset
pP, ωqwith n elements is

estat
q pP, ωq :“

ÿ

σPLpP,ωq

qstatpσq,

where stat P tmaj, invu. We write estat
q pP, ωq :“ estat

q pP, ωq{rnsq! for the major index (inversion) q-analogue
of epPq.

Note that setting q “ 1 in Definition 2.16 recovers epPq and epPq. Moreover, for the major index, Stanley
showed that the rational function emaj

q pP, ωqp1 ´ qqn{rnsq! gives the generating function of pP, ωq-partitions
[Sta12, Theorem 3.15.7].

The next standard results are q-analogues of Proposition 2.4.

Proposition 2.17 ([Sta12, Exercise 3.162(a)]). Let pP1`¨ ¨ ¨`Pk, ωq be a labeled poset that is the disjoint sum
of posets Pi, each with ni elements. Then

emaj
q ppP1, ω1q ` ¨ ¨ ¨ ` pPk, ωkqq “

«

n1 ` ¨ ¨ ¨ ` nk

n1, . . . , nk

ff

q

emaj
q pP1, ω1q ¨ ¨ ¨ e

maj
q pPk, ωkq,

where ωi is the labeling obtained by restricting ω to Pi.

Proposition 2.18 ([BW89, Section 3]). Let pP1 ` ¨ ¨ ¨ ` Pk, ωq be a labeled poset that is the disjoint sum of
posets Pi, each with ni elements. Suppose that ω has the property that every element of the label set ωpPiq
is smaller than every element of the label set ωpPjqwhenever i ă j. Then

einv
q ppP1, ω1q ` ¨ ¨ ¨ ` pPk, ωkqq “

«

n1 ` ¨ ¨ ¨ ` nk

n1, . . . , nk

ff

q

einv
q pP1, ω1q ¨ ¨ ¨ e

inv
q pPk, ωkq,

where ωi is the labeling obtained by restricting ω to Pi.

We have the following q-analogues, by Björner and Wachs [BW89], of the Knuth hook-length formula in
Theorem 2.5.

Theorem 2.19 (Björner–Wachs [BW89, Theorems 1.1 and 1.2]). Let pP, ωq be a labeled rooted tree poset with
n elements, where ω is a regular labeling. Then

(2.2) einv
q pP, ωq “ qinvpP, ωq rnsq!

ś

xPP rhPpxqsq
.

Moreover, if ω is any labeling, then

(2.3) emaj
q pP, ωq “ qmajpP, ωq rnsq!

ś

xPP rhPpxqsq
.

Note that if ω were a natural labeling, then invpP, ωq “ 0 in the first formula, which removes a power of
q.

We also have a q-analogue of the ribbon poset formula in Theorem 2.6, due to Stanley.
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Proposition 2.20 (Stanley [Sta12, Example 2.2.5], [Sta76, Corollary 3.2]). Let pZpnqS , ωq be a labeled poset
with ZpnqS a ribbon poset and ω a natural labeling. Then

einv
q pZ

pnq
S , ωq “ rnsq! ¨ det

ˆ

1

rsj`1 ´ sisq!

˙

0ďi,jďk

,

where s0 “ 0 and sk`1 “ n.

Lastly, Peterson and Proctor showed the following q-analogue of Theorem 2.11 and generalization of
(2.3). See [KY19] for a recent proof by Kim and Yoo using q-integrals.

Theorem 2.21 (Peterson–Proctor [Pro14]). Let pP, ωq be a labeled poset with P a d-complete poset having n
elements. Then

emaj
q pP, ωq “ qmajpP, ωq rnsq!

ś

xPP rhPpxqsq
.

Remark 2.22. After searching the literature, the authors were unable to find an analogous result for einv
q pP, ωq

when P is a d-complete poset.

3. INCLUSION-EXCLUSION AND DETERMINANT FORMULAS FOR COUNTING LINEAR EXTENSIONS

3.1. Folding and an alternating formula for linear extensions. We begin with a simple inclusion-exclusion
formula for epPq.

Definition 3.1. Let P be a poset, F Ă ÌP , and F op :“ tpy, xq P P2 | px, yq P F u. We write P a F for the
poset with the same underlying set as P , but with cover relations ÌPzF :“ ÌPzF . We call a fold of P at F
the poset

PF :“ pP a F q ‘ F op

obtained by deleting the cover relations in F , adding the opposite cover relations, and taking the transitive
closure. If S Ă F , then we call a partial fold of P at S the poset

PS,F :“ pP a F q ‘ Sop.

The next lemma uses inclusion-exclusion to describe how the number of linear extensions of a poset
changes when folding at a single cover relation.

Lemma 3.2. Let P be a poset and px, yq be in ÌP . Then

epPq “ epP a tpx, yquq ´ epPtpx,yquq.

Proof. The linear extensions of P are also linear extensions of Patpx, yqu. The linear extensions of the latter
that are not linear extensions of the former are exactly those extensions where y appears before x. Such
linear extensions are in bijection with the linear extensions of the poset pP a tpx, yquq ‘ tpy, xqu “ Ptpx,yqu.
Thus, as permutations of the same underlying set P , we have

(3.1) LpPq “ LpP a tpx, yquq zLpPtpx,yquq.

The result follows by calculating the cardinality of each of these sets. �

Example 3.3. Consider the seven element poset P in Figure 2: Left. Choosing either the cover relation pc, eq
or pa, cq, we obtain

77 “ epPq “ epP a tpc, equq ´ epPtpc,equq “ 105´ 28,(3.2)

“ epP a tpa, cquq ´ epPtpa,cquq “ 117´ 40.(3.3)

See Figure 2: Right for an illustration of these inclusion-exclusion formulas.
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P “
a

b c d

e f g

e( ) = e( ) − e( )
a

b c d

e f g

a

b c d

e f g
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c d
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f g

e( ) = e( ) − e( )
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b c d

e f g
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b c d
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a

b c
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FIGURE 2. Example of using the inclusion-exclusion formula from Lemma 3.2 to calculate epPq.

Remark 3.4. Note from (3.2) that if the cover relation px, yq is a bridge (that is, it does not belong to a cycle in
the Hasse diagram of P), then the Hasse diagram of the folded poset Ptpx,yqu is obtained by simply folding
the cover relation px, yq in the Hasse diagram of P . If the cover relation belongs to a cycle of the Hasse
diagram of P , as in (3.3), then the change in the Hasse diagram when forming the folded poset Ptpx,yqu is
more significant.

Corollary 3.5. Let P be a poset, and let F Ă ÌP . Then

(3.4) epPq “
ÿ

SĂF

p´1q#SepPS,F q.

Proof. The result follows from repeated application of Lemma 3.2. �

Example 3.6. For the poset P from Example 3.3, Corollary 3.5 yields the formula

(3.5) e( ) = e( ) − e( ) e( )− e( )+

when F “ tpc, eq, pd, gqu is the set of cover relations depicted in red on the left-hand side of the above
equation.

3.2. Component trees and component arrays. For the rest of the paper, we assume that P is connected3

and that the set of folds F consists only of bridges in the Hasse diagram of P ; that is, the cover relations that
we fold do not lie in a cycle in the Hasse diagram of P (see Remark 3.4). In this case, the Hasse diagram of
PS,F is obtained from the Hasse diagram of P by folding the edges in S and deleting the edges in F zS.

Definition 3.7. We define the component tree of PF to be the tree CpPF q with vertices the connected com-
ponents of the poset P a F , and with edges pCx, Cyq for each cover relation px, yq in F where x P Cx and
y P Cy .

Definition 3.8. Suppose #F “ k and σ “ pσ0, σ1, . . . , σkq is a total order on the vertices of CpPF q. The
component array MσpPF q is the triangular array of posets

pMσpPF qqi,j :“ CpPF qri, js,

where 0 ď i ď j ď k and CpPF qri, js is the subposet of PF on the elements in the connected components
σi, σi`1, . . . , σj of P a F .

Definition 3.9. Let CpPF q be the component tree of a folded poset PF . A total order σ “ pσ0, σ1, . . . , σkq
on the vertices of CpPF q is called a path order4 if each entry of the component array MσpPF q is a connected
poset.

3Given a disconnected poset P , one can first apply the techniques of this paper to each connected component separately. This will
compute the number of linear extensions of each connected component. Then, one can use Proposition 2.4 to compute epPq.

4The choice of this name will be justified in Proposition 3.11 and Remark 3.12.
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FIGURE 3. Left: example of component tree CpPF q with a chosen total order σ on the
vertices. Center: example of component array MσpPF q. Right: example of a component
array Mτ pPF qwith a different order τ “ pσ1, σ0, σ2q.

Example 3.10. For the poset P and folds F from Example 3.6, Figure 3 depicts the component tree and
component arrays for a path order σ “ pσ0, σ1, σ2q and an order τ “ pσ1, σ0, σ2q that is not a path order.

Proposition 3.11. There exists a path order σ on the vertices of CpPF q if and only if CpPF q is a path.

Proof. We prove the “if” statement first, so suppose CpPF q is a path. Thus, CpPF q has exactly two degree-
one vertices. Travel along the path from one degree-one vertex to the other, labeling the vertices along the
way in the order σ0, σ1, . . . , σk. The total order σ “ pσ0, σ1, . . . , σkq is a path order.

Now we prove the “only if” statement, so suppose CpPF q is not a path and let σ be a total order on the
vertices of CpPF q. Since CpPF q is a tree, it follows that there exists a vertex X in CpPF qwith degree at least
three. Let A,B,C be three of the vertices in CpPF q adjacent to X labeled in the order they appear in σ; that
is, there are indices 0 ď r ă s ă t ď k such that σr “ A, σs “ B, and σt “ C. Depending on where X
appears in σ, the poset CpPF qrr, ss has subposets A and B in different components or the poset CpPF qrs, ts
has subposets B and C in different components. Thus, σ is not a path order, as desired. �

Remark 3.12. The result above shows that there are exactly two path orders on the vertices of CpPF qwhen it
is a path: traveling from either end of the path to the other (and there are no path orders otherwise). Either
of these two orders σ gives a total order σ1 “ pσ10, σ

1
1, . . . , σ

1
k´1q on F , where σ1i denotes the element of F

that is incident with both σi and σi`1 in CpPF q; we call such a σ1 a path order on F . Furthermore, we will
often abuse notation and use σ for both a path order on the vertices of CpPF q and for its corresponding
path order on F .

3.3. Determinant formula. Given a component arrayMσpPF qwith σ a path order on the vertices ofCpPF q,
we define a matrix epMσpPF qq by

(3.6) epMσpPF qqi,j :“

$

’

&

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

eppMσpPF qqi,jq otherwise,

where pi, jq P r0, ks ˆ r0, ks. The upper-triangular entries of this matrix are the probabilities that a permuta-
tion of the elements of the poset pMσpPF qqi,j yields a linear extension.

Lemma 3.13. Let P be a poset with n elements, and let σ be a path order on the vertices of CpPF q. Then we
have

epPq “ n! ¨ detpepMσpPF qqq.
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Proof. We encode σ by the function φ : F Ñ rks, σi ÞÑ i ` 1. Now use the inclusion-exclusion formula in
(3.4) to write epPq as the alternating sum

(3.7) epPq “
ÿ

SĂF

p´1q#SepPS,F q.

Since F is a set of folds and CpPF q is a path, the poset PS,F is the following disjoint sum of subposets of
PF “ CpPF qr0, ks:

(3.8) PS,F “ CpPF qr0, i1 ´ 1s ` CpPF qri1, i2 ´ 1s ` ¨ ¨ ¨ ` CpPF qrij , ks,

where ti1, i2, . . . , ijuă is the image φpF zSq ordered by σ. Then by Proposition 2.4 and the fact that #PS,F “
#P , we have

epPS,F q “ p#Pq! ¨ epMσpPF q0,i1´1qepMσpPF qi1,i2´1q ¨ ¨ ¨ epMσpPF qij ,kq.

Then (3.7) becomes

epPq “ p#Pq!
ÿ

ti1,i2,...,ijuă Ă rks

p´1qk´j ¨ epMσpPF q0,i1´1qepMσpPF qi1,i2´1q ¨ ¨ ¨ epMσpPF qij ,kq.

The result then follows by using Lemma 2.7 with the function gpi, j ` 1q “ epMσpPF qi,jq for 0 ď i ď j ď k,
gpi, iq “ 1, and gpi, jq “ 0 for j ă i. �

Example 3.14. We continue with Example 3.10. Applying Lemma 3.13 to the component array MσpPF q in
Figure 3: gives

epPq “ 7! ¨ detpepMσpPF qqq “ 7!

¨

˝e( ) − e( ) e( )− e( )+)e( ) e( )e( )e(

˛

‚,

which evaluates to 77 as expected (see Example 3.3). The displayed expression matches the right-hand side
of (3.5) after applying Proposition 2.4.

Note that if instead we use the component array Mτ pPF q from the order τ “ pσ1, σ0, σ2q, which is not a
path order (Figure 3: Right), then expanding 7! ¨detpepMτ pPF qqq does not match the right-hand side of (3.5)
nor give epPq.

Remark 3.15. We have chosen to work in the setting where the component array MσpPF q has connected
poset entries (see Definition 3.9). As illustrated in Example 3.14 above, if we do not impose this restriction,
then Lemma 3.13 does not necessarily hold.

4. DETERMINANT FORMULAS FOR LINEAR EXTENSIONS OF MOBILE POSETS

In this section, we give the three main applications of Lemma 3.13. As a warm-up, we recover the
determinant formula for linear extensions of ribbons in Theorem 2.6. Then, we prove a determinant formula
for linear extensions of mobile posets in Theorem 4.9 and use this result to prove Corollary 4.12, which gives
a formula for the special case of mobile tree posets. In these three formulas, the matrix entries are given by
hook-length formulas of chains, of d-complete posets, and of rooted trees, respectively.

4.1. Recovering determinant formula for ribbons. The next result shows that MacMahon’s determinant
formula for the number of linear extensions of ribbon posets (or permutations with given descent set) can
be recovered using Lemma 3.13.

Proof of Theorem 2.6. Given a ribbon poset P :“ ZpnqS where S “ ts1 ă ¨ ¨ ¨ ă skuă Ă rn ´ 1s, we choose the
set of folds F “ tpzi`1, ziq | i P Su. The folded poset PF is a chain, so the component tree CpPF q is a path.
Now, Lemma 3.13 applies to give

epPq “ n! ¨ detpepMσpPF qqq,



12 ALEXANDER GARVER, STEFAN GROSSER, JACOB P. MATHERNE, AND ALEJANDRO H. MORALES

P = Z(6)
{3,5} PF

Mσ(PF ) =z1
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FIGURE 4. Left: a ribbon poset P . Center: the folded ribbon PF . Right: its component array MσpPF q.

where we have chosen from the two possible path orders on the set F the one that is consistent with the
ordered set S. With this path order σ, each poset CpPF qri, js in the component array is a chain of size sj`1´

si, where s0 “ 0 and sk`1 “ n. Since a chain has only one linear extension, it follows that epCpPF qri, jsq “
1{psj`1 ´ siq! and the desired formula follows. �

Example 4.1. For the ribbon P “ Zp6q
t3,5u, we use the set of folds F “ tpz4, z3q, pz6, z5qu. The folded poset PF

and the component array MσpPF q (where σ is the path order on F consistent with the ordered set S) are
illustrated in Figure 4. Applying Lemma 3.13 gives

epPq “ 6! ¨ detpepMσpPF qqq “ 6! ¨ det

¨

˚

˚

˚

˝

1
3!

1
5!

1
6!

1 1
2!

1
3!

0 1 1
1!

˛

‹

‹

‹

‚

“ 35,

and this agrees with the formula in Theorem 2.6.

4.2. Determinant formula for mobile posets. In this section, we use Lemma 3.13 to give a determinant
formula for the number of linear extensions of a class of posets we call “mobile posets”, which generalize
both rooted tree posets and ribbons.

Definition 4.2. A mobile poset P is a poset obtained from a ribbon Z by the following two operations:
(i) For every element z P Z , perform an iterated slant sum Z zH

ri
i“1,...,mz

Rpiqz with mz ě 0 connected

d-complete posets Rpiqz with respective maximal elements ri. Denote the resulting poset by P 1.
(ii) For at most one element z1 P Z , perform a slant sum Qz1

qzz1 P 1 where Qz1 is a connected d-complete
poset and q is one of its acyclic elements. Such an element z1 is called an anchor.

If no such element z1 P Z is used in Operation (ii), we say that the mobile is free-standing with respect to the
ribbon Z .

See Figure 1: Left for a schematic of a mobile poset.

Example 4.3. Figure 5 shows four examples: a free-standing mobile, a mobile, and two posets that cannot
be expressed as mobiles.

Remark 4.4. Note that, in a mobile poset there may be more than one choice of an underlying ribbon (see,
for example, Figure 5(a)). However, in a free-standing mobile poset, the possible underlying ribbons Z that
ensure the mobile is free-standing have a common unique subribbon Z 1 (indicated in heavy bold in the
figure) starting at the first descent of Z and ending immediately after the last ascent of Z .

Next, we show that certain mobile posets are also d-complete posets.
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(a) (b) (c) (d)

FIGURE 5. Examples of (a) a free-standing mobile poset, (b) a mobile poset, and (c) and (d)
posets that are not mobile posets.

Proposition 4.5. Let P be a mobile poset with underlying ribbon poset Z where Z has a unique maximal
element.

(1) If P is free-standing with respect to Z then P is d-complete.
(2) If P is not free-standing with respect to Z and the maximal element of Z coincides with the anchor

z1, then P is d-complete.

Proof. Since the ribbon Z has a unique maximal element, it follows that Z is a rooted tree. The mobile poset
P is obtained from the rooted tree Z with elements z1, . . . , zs by doing the following:

(a) Let T0 “ Z . For ` “ 1, . . . , s, let T` “ T`´1
z`H

ri
i“1,...,mz`

Rpiqz` for each of themz` ě 0 connected d-complete

posets Rpiqz` covered by z` in Z in Operation (i) of Definition 4.2. Denote the resulting poset Ts by P 1.
(b) Perform the slant sum Qz1

qzz1P 1, where q is an acyclic element of the d-complete poset Qz1 from
Operation (ii) of Definition 4.2.

Proposition 2.9 guarantees that the poset P 1 is a d-complete poset, and furthermore, that the poset P “

Qz1
qzz1P 1 is a d-complete poset, as desired. �

We will now produce a set of folds F on any mobile poset P that makes the component tree CpPF q a
path. After doing so, Proposition 3.11 will guarantee the existence of a path order on the vertices of CpPF q,
so we will be able to use Lemma 3.13 to compute the number of linear extensions of P .

Definition 4.6. Let P be a mobile poset and Z :“ ZS be an underlying ribbon poset of P . The set of path
folds for P (with respect to Z) is defined as

(4.1) F “

$

&

%

tpzi`1, ziq | i P Su if P is free-standing,

tpzi`1, ziq | i P S, i ă ju Y tpzi, zi`1q | i R S, i ě ju otherwise,

where j is the index of the anchor z1 “ zj covered by an acyclic element of a connected d-complete poset
Qz1 (see Definition 4.2 (ii)).

Lemma 4.7. Let P be a mobile poset and F be the set of path folds for P . Then the component tree CpPF q
is a path.

Proof. In the case of a free-standing mobile, the underlying folded ribbon ZF in the folded poset PF is a
chain. Hence PF consists of an underlying chain ZF , containing the folds, where for every element z P ZF
we do the corresponding slant sums in Operation (i) of Definition 4.2 that we do for the mobile P .

If the mobile is not free-standing with respect to Z and z1 “ zj is its anchor, then the underlying folded
ribbon ZF in the folded poset PF is a rooted path rooted at z1. Hence PF consists of this underlying
rooted path ZF , containing the folds, where we do the corresponding slant sums in Operations (i),(ii) of
Definition 4.2 that we do for the mobile P .
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In both cases, we have an underlying path ZF containing the folds (equivalently, the edges of the com-
ponent tree CpPF q), and the slant sums described above occur in the connected components of P a F (the
vertices of CpPF q). Thus the component tree CpPF q is a path, as desired. �

In view of Lemma 4.7 and Proposition 3.11, we choose the path order σ on F that is consistent with the
ordered set S of the underlying ribbon ZS of P . In this case, we call σ the induced path order. Because this σ
is a path order, the associated component array MσpPF q has connected poset entries; we characterize these
poset entries in the next result.

Lemma 4.8. Let P be a mobile poset and F be the set of path folds for P with induced path order σ. Then
every entry of the component array MσpPF q is a d-complete poset.

Proof. The poset PF is a mobile with respect to the folded ribbon ZF . As in the proof of Lemma 4.7, we
have that ZF is a rooted tree; moreover, the maximal element of ZF coincides with the anchor z1 if P is
not free-standing with respect to Z . Also by Lemma 4.7, we have that CpPF q is a path, so every poset
Pi,j :“ MσpPF qi,j comes from a subpath in CpPF q. Thus Pi,j is a mobile with respect to a smaller ribbon,
denote it by Zi,j , that has a unique maximal element. Moreover, this maximal element coincides with the
anchor z1 of P , if Pi,j is not free-standing with respect to Zi,j . By Proposition 4.5, it follows that each mobile
Pi,j is a d-complete poset, as desired. �

We now state and prove the main result for computing linear extensions of mobile posets.

Theorem 4.9. Let P be a mobile poset with n elements and F be the set of path folds for P with induced
path order σ. Then

(4.2) epPq “ n! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

&

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

1{
ś

xPPi,j
hPi,j

pxq otherwise,

where k is the size of F and Pi,j is the connected d-complete poset pMσpPF qqi,j .

Proof. Since σ is a path order, we may apply Lemma 3.13 to get

epPq “ n! ¨ detpepMσpPF qqq.

Thanks to Lemma 4.8, each poset Pi,j :“ pMσpPF qqi,j “ CpPF qri, js for i ď j is a connected d-complete
poset, so epPi,jq is given by the hook-length formula 1{

ś

xPPi,j
hPi,j

pxq via Theorem 2.11. �

Example 4.10. Consider the mobile poset P with Hasse diagram and set of path folds F “ tpe, bq, pf, dqu

pictured in Figure 6: Left. The component tree CpPF q and the component array MσpPF q are pictured in
Figure 6: Center, Right.

Applying Theorem 4.9 to P gives the determinantal formula

epPq “ 10! ¨ detpepMσpPF qqq “ 10! ¨ det

¨

˚

˚

˚

˝

1
1

1
9¨8¨5¨3¨2¨2¨2

1
10¨9¨6¨3¨2¨2¨2

1 1
8¨7¨5¨3¨2¨2

1
9¨8¨6¨3¨2¨2

0 1 1
1

˛

‹

‹

‹

‚

“ 240.
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FIGURE 6. Left: a mobile poset P with folds highlighted. Center: its component tree
CpPF q, with path order σ “ pσ0, σ1, σ2q. Right: its component array MσpPF q.

4.2.1. Mobile tree posets. In this subsection and the next, we give examples and applications of Theorem 4.9.
To illustrate these examples, we restrict to a smaller and simpler class of posets called “mobile tree posets”—
there are three reasons for this: here the entries of the component array are rooted trees, we are able to give
a complete classification of this class of posets in Theorem 4.14, and mobile tree posets admit both major
index and inversion q-analogues of our determinantal formulas while for the more general class of mobile
posets, we were only able to obtain a major index q-analogue (see Remark 2.22).

Definition 4.11. A mobile tree poset (resp. free-standing mobile tree poset) P is a mobile poset (resp. free-
standing mobile poset) for which all Rpiqz in Operation (i) and Qz1 in Operation (ii) (resp. all Rpiqz in Opera-
tion (i)) of Definition 4.2 are required to be rooted trees.5

See Figure 1: Right for a schematic of a mobile tree poset. Note that the class of mobile tree posets still
contains ribbons and rooted tree posets.

As a corollary of Theorem 4.9, we have a determinant formula for the number of linear extensions of
mobile tree posets.

Corollary 4.12. Let P be a mobile tree poset with n elements and F be the set of path folds for P with
induced path order σ. Then

(4.3) epPq “ n! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

&

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

1{
ś

xPPi,j
hPi,j

pxq otherwise,

where k is the size of F and Pi,j is the rooted tree poset pMσpPF qqi,j .

Proof. A mobile tree poset is an example of a mobile poset, so we apply Theorem 4.9 and note that the
posets in the component array MσpPF q, denoted by Pi,j :“ pMσpPF qqi,j , are rooted trees. �

Example 4.13. Consider the mobile tree poset P with Hasse diagram and set of path folds F “ tpd, aq, pd, cqu
pictured in Figure 7: Left. The component tree CpPF q and the component array MσpPF q are illustrated in
Figure 7: Center, Right.

Applying Corollary 4.12 to P yields the determinantal formula

epPq “ 6! ¨ detpepMσpPF qqq “ 6! ¨ det

¨

˚

˚

˚

˝

1
1

1
5¨4

1
6¨5

1 1
4¨3

1
5¨4

0 1 1
1

˛

‹

‹

‹

‚

“ 12.

5Note that every element of a rooted tree is acyclic (see Section 2.2.3), so any element of the rooted tree poset Qz1 can be chosen to
cover the anchor z1 in Z .
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FIGURE 7. Left: a mobile tree poset P with folds highlighted. Center: its component tree
CpPF q, with path order σ “ pσ0, σ1, σ2q. Right: its component array MσpPF q.

In fact, the result below implies that mobile tree posets are the only tree posets for which there exists
a set of folds where the component tree is a path and the folded poset is a rooted tree; thus, we have the
following characterization of mobile tree posets.

Theorem 4.14. A tree poset P is a mobile tree poset if and only if there exists a set of folds F such that PF
is a rooted tree and CpPF q is a path.

Proof. Suppose P is a mobile tree poset and let F be the path folds from (4.1). By Lemma 4.7, we have
that CpPF q is a path. Showing that PF is a rooted tree is a straightforward consequence of the proof of
Lemma 4.8—the only change is that the Rpiqz in Step (a) and Qz1 in Step (b) are rooted tree posets, and it is
clear that the outcome of doing all of the corresponding slant sums is a rooted tree poset.

Conversely, let P be a tree poset with a set of folds F “ tf1, . . . , fku such that PF is a rooted tree and
CpPF q is a path. Then each of the vertices of CpPF q corresponds to a rooted subtree in both PF and P . We
denote these rooted trees by T0, . . . , Tk (following one of the two orders of the path CpPF q). Let Z be the
path in P obtained by completing the subpath F with the unique subpath in the tree Ti from fi to fi`1 for
i “ 1, . . . , k ´ 1. This path Z as a subposet of P is a ribbon poset.

Since PF is a rooted tree, given an element z in Z , the elements in PzZ smaller than it are a disjoint sum
of rooted trees tT piqz u. The element z covers the root of each of these rooted trees. This coincides with the
outcome of performing Operation (i) in the definition of mobile tree posets (see Definitions 4.11 and 4.2).

In addition, there is at most one cover relation z1 Ì x, where z1 is in Z and x is in PzZ . Since if there
were another such cover relation z2 Ì y, neither of these relations is folded in PF (because folds only occur
in Z), so either PF has more than one maximal element or the Hasse diagram of PF has a cycle. Both of
these situations contradict the fact that PF is a rooted tree. We also know that the elements in the same
connected component as x in the Hasse diagram of PzZ form a rooted subtree (because PF is a rooted tree)
that we denote by Qz1 . The element z1 is covered by x, which can be any element of Qz1 . This coincides
with Operation (ii) in the definition of mobile tree posets (see Definitions 4.11 and 4.2), where we view the
element z1 as the anchor. It follows that P is a mobile tree poset, as desired. �

Remark 4.15. There are posets that cannot be expressed as mobile posets, but for which Lemma 3.13 still
applies (see Figure 5(d), where the folds are highlighted).

4.2.2. Two new generalizations of Euler numbers. The even Euler ribbon numbers E2k count the linear exten-
sions of the ribbon poset Z “ Zp2kq

t2,4,...,2k´2u, which is the infinite family of up-down posets. We illustrate
Corollary 4.12 by generalizing the even Euler ribbon numbers using two different families of posets:
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(4.4)

Cp(k) :
. . .
pp

. . .
pp

. . .
pp

Ap(k) :

p p p

1 2
k − 1

p

1 2
k − 1

. . .
pp

The first variation is obtained by appending a chain of p elements to each minimal element of the original
up-down poset Z . We denote the resulting poset by Cppkq. For example, the posets C1pkq for k “ 1, 2, 3, 4

are the following:

Corollary 4.16. The number of linear extensions of the poset Cppkq is

epCppkqq “ ppp` 2qkq! ¨ detpci,jq1ďi,jďk,

where

ci,j “

$

&

%

śj´i`1
r“1 1{pp!prp` 2r ´ 1qprp` 2rqq if j ě i´ 1,

0 otherwise.

Proof. This follows by applying Corollary 4.12 to this family and computing the hook lengths of the entries
of the component array. �

We recover the determinant formula for the even Euler ribbon numbers E2k “ epZp2kq
t2,4,...,2k´2uq given by

(2.1) when p “ 0 above, and when p “ 1 we obtain the sequence [Slo, A332471]

(4.5) tepC1pkqqu8k“1 “ t1, 16, 1036, 174664, 60849880, . . . u

with determinant formula:

epC1pkqq “ p3kq! ¨ detpai,jq1ďi,jďk, where ai,j “

$

&

%

śj´i`1
r“1

1
3rp3r´1q if j ě i´ 1,

0 otherwise.

The second variation is obtained by appending an antichain of p elements to each minimal element of
the original up-down poset Z . We denote the resulting poset by Appkq. For example, the posets C1pkq and
A1pkq are isomorphic, and the posets A2pkq for k “ 1, 2, 3, 4 are the following:

Corollary 4.17. The number of linear extensions of the poset Appkq is

epAppkqq “ ppp` 2qkq! ¨ detpai,jq1ďi,jďk,

where

ai,j “

$

&

%

śj´i`1
r“1 1{pprp` rk ´ 1qprp` 2rqq if j ě i´ 1,

0 otherwise.

Proof. This follows by applying Corollary 4.12 to this family and computing the hook lengths of the entries
of the component array. �

https://oeis.org/A332471
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When p “ 2, we obtain the sequence [Slo, A332568]

(4.6) tepA2pkqqu
8
k“1 “ t2, 220, 163800, 445021200, 3214652032800, . . .u

with determinant formula

epA2pkqq “ p4kq! ¨ detpci,jq1ďi,jďk, where ci,j “

$

&

%

śj´i`1
r“1

1
4rp4r´1q if j ě i´ 1,

0 otherwise.

5. DETERMINANT FORMULAS FOR q-ANALOGUES OF LINEAR EXTENSIONS OF MOBILES

In this section, we obtain determinant formulas for the major index q-analogue of epPq for mobile posets
(and therefore also for mobile tree posets as a special case) and for the inversion q-analogue of epPq for
mobile tree posets. The reason for not proving an inversion q-analogue for mobile posets is that we do not
know of an inversion q-analogue of Theorem 2.21 for d-complete posets (see Remark 2.22).

Throughout this section, we use the preliminaries introduced in Section 2.3.

5.1. Inclusion-exclusion for q-analogues of linear extensions. In this section, we collect results which
hold for any stat in tmaj, invu. A subposet Q of a labeled poset pP, ωq gets its own labeling by restricting
the labeling ω on P to Q; in this situation, we will often abuse notation and write pQ, ωq for the resulting
labeled poset when the meaning is clear from context.

Lemma 5.1. Let pP, ωq be a labeled poset, px, yq be in ÌP , and stat be in tmaj, invu. Then

estat
q pP, ωq “ estat

q pP a tpx, yqu, ωq ´ estat
q pPtpx,yqu, ωq.

Proof. The equality of sets of linear extensions in (3.1) extends to linear extensions of labeled posets:

(5.1) LpP, ωq “ LpP a tpx, yqu, ωq zLpPtpx,yqu, ωq.

By taking the generating polynomial over the sets on both sides with respect to the statistic stat P tmaj, invu,
the result follows. �

Corollary 5.2. Let pP, ωq be a labeled poset, F Ă ÌP , and stat be in tmaj, invu. Then

(5.2) estat
q pP, ωq “

ÿ

SĂF

p´1q#Sestat
q pPS,F , ωq.

Proof. The result follows from repeated application of Lemma 5.1. �

Given a labeled poset pP, ωq and a set of folds F , component arrays are defined for labeled posets anal-
ogously and are denoted by MσpPF , ωq, where σ is any total order on the vertices of CpPF q. Given a com-
ponent array MσpPF , ωq with σ a path order on the vertices of CpPF q, we define a matrix estat

q pMσpPF , ωqq
by

(5.3) estat
q pMσpPF , ωqqi,j :“

$

’

&

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

estat
q ppMσpPF , ωqqi,jq otherwise,

where pi, jq P r0, ks ˆ r0, ks.

https://oeis.org/A332568
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5.2. q-analogue by major index for mobile posets. The main result of this section is Theorem 5.4, which
gives a major index q-analogue of Theorem 4.9. Note that this also gives a major index q-analogue of
Corollary 4.12, since mobile tree posets are a special case of mobile posets.

Lemma 5.3. Let pP, ωq be a labeled poset with n elements, and let σ be a path order on the vertices ofCpPF q.
Then we have

emaj
q pP, ωq “ rnsq! ¨ detpemaj

q pMσpPF , ωqqq.

Proof. The proof is analogous to the proof of Lemma 3.13. That is, we apply Proposition 2.17 to each term
of the alternating sum in Corollary 5.2. Then we use Lemma 2.7 with gpi, j ` 1q “ e

maj
q ppMσpPF , ωqqi,jq for

0 ď i ď j ď k, gpi, iq “ 1, and gpi, jq “ 0 for j ă i. �

We now present our q-analogue of Theorem 4.9.

Theorem 5.4. Let pP, ωq be a labeled mobile poset with n elements and F be the set of path folds for P with
induced path order σ. Then

(5.4) emaj
q pP, ωq “ rnsq! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

’

&

’

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

qmajpPi,j ,ωi,jq
ś

xPPi,j
rhPi,j

pxqsq
otherwise,

where k is the size of F and pPi,j , ωi,jq is the labeled connected d-complete poset pMσpPF , ωqqi,j .

Proof. Since σ is a path order, we may apply Lemma 5.3 to get

emaj
q pP, ωq “ rnsq! ¨ detpemaj

q pMσpPF , ωqqq.

Each poset Pi,j :“ pMσpPF qqi,j “ CpPF qri, js for i ď j is a connected d-complete poset (see Lemma 4.8), so
e

maj
q pPi,j , ωi,jq “ qmajpPi,j ,ωi,jq{

ś

xPPi,j
rhPi,j

pxqsq via Theorem 2.21. �

We present two examples of using Theorem 5.4 to compute emaj
q pP, ωq for a mobile tree poset and a mobile

poset, respectively.

Example 5.5. Let P and MσpPF q be the same poset and component array from Example 4.13 (see Figure 7)
with labeling ω on P given by

a ÞÑ 1, b ÞÑ 3, c ÞÑ 6, d ÞÑ 4, e ÞÑ 2, f ÞÑ 5.

Applying Theorem 5.4 to this labeled mobile tree poset pP, ωq yields the determinantal formula

emaj
q pP, ωq “ r6sq! ¨ det

¨

˚

˚

˚

˝

1
r1sq

q5

r5sqr4sq

q7

r6sqr5sq

1 q4

r4sqr3sq

q6

r5sqr4sq

0 1 1
r1sq

˛

‹

‹

‹

‚

“ q11 ` 3q10 ` 3q9 ` q8 ` q6 ` 2q5 ` q4.

Example 5.6. Let P and MσpPF q be the same poset and component array from Example 4.10 (see Figure 6)
with labeling ω on P given by

a ÞÑ 10, b ÞÑ 7, c ÞÑ 8, d ÞÑ 9, e ÞÑ 5, f ÞÑ 6, g ÞÑ 4, h ÞÑ 2, i ÞÑ 3, j ÞÑ 1.
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Applying Theorem 5.4 to this labeled mobile poset pP, ωq yields the determinantal formula

emaj
q pP, ωq “ r10sq! ¨ det

¨

˚

˚

˚

˝

1
r1s

q
r9sr8sr5sr3sr2sr2sr2s

q2

r10sr9sr6sr3sr2sr2sr2s

1 1
r8sr7sr5sr3sr2sr2s

q
r9sr8sr6sr3sr2sr2s

0 1 1
r1s

˛

‹

‹

‹

‚

,

where we have suppressed q from the notation rmsq in the matrix entries for space concerns. The powers
of q in the numerators of the entries of the matrix are due to the two possible descents in DespPF , ωq: b Ì e

and d Ì f .

5.3. q-analogue for inversions of mobile tree posets. The main result of this section is Theorem 5.12, which
gives an inversion q-analogue of Corollary 4.12. In contrast with the major index q-analogue in Theorem 5.4,
the inversion q-analogue is more delicate and requires a special labeling of the poset.

Definition 5.7. Let P be a mobile tree poset, and let F be the set of path folds for P with induced path order
σ. Then σ gives an order Pσ0

,Pσ1
, . . . ,Pσk

on the connected components of the poset P a F . A labeling ω
on P is called a σ-partitioned labeling if whenever σi ă σj , we have

ωpxq ă ωpyq for every x P Pσi , y P Pσj .

Moreover, ω is called a σ-partitioned regular labeling if it is a σ-partitioned labeling such that the restriction
of ω to each connected component Pσi

of P a F is a regular labeling of that component.

Proposition 5.8. Let P be a mobile tree poset and F be the set of path folds for P with induced path order
σ. Then there exists a σ-partitioned regular labeling of P .

Proof. Lemma 4.8, together with the first paragraph of the proof of Theorem 4.14, asserts that the posets
CpPF qri, is for i “ 0, . . . , k (that is, the connected components of P a F ) are rooted trees. Assume that the
ith rooted tree has ni elements for i “ 0, . . . , k. Since rooted trees are two-dimensional posets, they admit a
regular labeling [BW91, Theorem 6.9], so we give each of the rooted tree posets CpPF qr0, 0s, . . . , CpPF qrk, ks
a regular labeling with the labels

rn0s, rn0 ` n1s z rn0s, . . . , rn0 ` ¨ ¨ ¨ ` nks z rn0 ` ¨ ¨ ¨ ` nk´1s,

respectively. This yields a σ-partitioned regular labeling of P . �

Example 5.9. Let P be the mobile tree poset illustrated below, with set of path folds F colored red and
labeling ω indicated. To the right of the poset, we depict the induced path order σ on the vertices of CpPF q.

1

2

3

4

6
5

7 8

9

10P =

1

2

3

4

6
5

7 8

C(PF ) =
9

σ0

10

σ1

σ2 σ3

Note that ω is a σ-partitioned regular labeling of P .

Lemma 5.10. Let pP, ωq be a labeled mobile tree poset with n elements, F be the set of path folds for P with
induced path order σ, and ω be a σ-partitioned labeling of P . Then we have

einv
q pP, ωq “ rnsq! ¨ detpe inv

q pMσpPF , ωqqq.
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Proof. The proof is analogous to the proof of Lemma 3.13—the only new concern is that the posets pPS,F , ωq
should satisfy the hypotheses of Proposition 2.18 with respect to the decomposition in (3.8), but this follows
from the fact that the posets appearing in the right-hand side of (3.8) are defined by intervals which are
coarsenings of the intervals r0, 0s, r1, 1s, . . . , rk, ks that define the connected components of P aF . Thus, we
may apply Proposition 2.18 to each term of the alternating sum in Corollary 5.2 and conclude the proof by
using Lemma 2.7 with gpi, j ` 1q “ e inv

q ppMσpPF , ωqqi,jq for 0 ď i ď j ď k, gpi, iq “ 1, and gpi, jq “ 0 for
j ă i. �

Lemma 5.11. Let pP, ωq be a labeled mobile tree poset with n elements, F be the set of path folds for P with
induced path order σ, and ω be a σ-partitioned regular labeling of P . Then the restriction of the labeling ω
to each entry of the component array MσpPF q is a regular labeling.

Proof. We use the same reduction as in the proof of Lemma 4.8; that is, every poset Pi,j :“ pMσpPF qqi,j
comes from a subpath in CpPF q and is a smaller mobile tree poset that is actually a rooted tree poset.
Also, the restriction of ω to each Pi,j is a pσi, σi`1, . . . , σjq-partitioned regular labeling of the unfolded poset
corresponding to Pi,j . Thus, it suffices to show that ω is a regular labeling for the poset PF .

Since ω is a σ-partitioned regular labeling of P , it follows that the restriction of ω to each component
CpPF qri, is is a regular labeling. Thus, it remains to show that ω is regular across connected components.
Since every element inCpPF qri, is has a smaller label than every element inCpPF qri`1, i`1s, the orientation
of the edge in F between the two connected components does not affect the regularity of the labeling. Thus,
ω is a regular labeling of PF as desired. �

Theorem 5.12. Let pP, ωq be a labeled mobile tree poset with n elements, F be the set of path folds for P
with induced path order σ, and ω be a σ-partitioned regular labeling of P . Then

(5.5) einv
q pP, ωq “ rnsq! ¨ detpMi,jq0ďi,jďk, for Mi,j :“

$

’

’

’

&

’

’

’

%

0 if j ă i´ 1,

1 if j “ i´ 1,

qinvpPi,j ,ωi,jq
ś

xPPi,j
rhPi,j

pxqsq
otherwise,

where k is the size of F and pPi,j , ωi,jq is the labeled rooted tree poset pMσpPF , ωqqi,j .

Proof. Lemma 5.10 assures that

einv
q pP, ωq “ rnsq! ¨ detpe inv

q pMσpPF , ωqqq.

Each poset Pi,j :“ pMσpPF qqi,j “ CpPF qri, js for i ď j is a rooted tree with a regular labeling thanks to
Lemma 5.11, so einv

q pPi,j , ωi,jq is given by the hook-length formula qinvpPi,j ,ωi,jq{
ś

xPPi,j
rhPi,j pxqsq via the

first statement in Theorem 2.19. �

Example 5.13. Let pP, ωq be the same labeled mobile tree poset from Example 5.5 (see Figure 7), and note
that ω is a σ-partitioned regular labeling (where σ is the same order depicted in Figure 7: Center). Applying
Theorem 5.12 to pP, ωq yields the determinantal formula

einv
q pP, ωq “ r6sq! ¨ det

¨

˚

˚

˚

˝

1
r1sq

q3

r5sqr4sq

q5

r6sqr5sq

1 q3

r4sqr3sq

q5

r5sqr4sq

0 1 1
r1sq

˛

‹

‹

‹

‚

“ q10 ` 3q9 ` 4q8 ` 3q7 ` q6.
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2
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1

2

6

5 3

1

D1

D2

1

3

4 4

1

4 4

5

1 1

FIGURE 8. (a) the excited diagrams of P1{I1, (b) possible excited diagrams of P2{I2. The
hook lengths are indicated next to the poset elements.

6. FINAL REMARKS

6.1. Positive formulas for counting linear extensions of mobiles. In Section 4, we generalized a deter-
minant formula for linear extensions of ribbon posets Z to mobile posets. It is natural to ask if other
known formulas for epZq generalize to mobile posets. For instance, there is a recent formula by Naruse (see
[NO19, MPP18]) that computes epZq, and more generally the number of skew standard Young tableaux, as
a positive sum of products of hook lengths. In [NO19], this formula was generalized to skew d-complete
posets. To define these posets, we recall the notion of an order filter as a subset I of P such that if x P I and
y ěP x then y P I .

Definition 6.1. A skew d-complete poset is a d-complete poset P with an order filter I removed. By abuse of
notation, we denote such a poset by P{I .6

The Naruse–Okada formula for counting linear extensions of skew d-complete posets is stated in terms
of excited diagrams: certain subsets D of the set of elements of P that can be obtained from the elements
of I by a sequence of certain excited moves that swap a certain element of D by an element of PzD. See
[NO19, Section 3] and [MPP18] for the precise definition of excited diagrams of skew d-complete posets
and skew Young diagrams, respectively.

Theorem 6.2 (Naruse–Okada [NO19]). Let P{I be a skew d-complete poset with n elements. Then

epP{Iq “ n!
ÿ

DPEpP{Iq

ź

xPPzD

1

hPpxq
,

where EpP{Iq is the set of excited diagrams of P{I .

Example 6.3. The poset P1{I1 “ C1p2q from Figure 9: Left has two excited diagrams D1 “ I1 “ tau and
D2 “ teu (see Figure 8(a)).

Their complements have the hook lengths t1, 1, 2, 2, 3, 5u and t1, 1, 2, 3, 5, 6u, respectively. In this case,
Theorem 6.2 gives

epC1p2qq “ 6!

ˆ

1

2 ¨ 2 ¨ 3 ¨ 5
`

1

2 ¨ 3 ¨ 5 ¨ 6

˙

“ 16,

agreeing with the data in (4.5).

The classes of skew d-complete posets and mobile (tree) posets are not the same but do have an over-
lap (see Figure 9). It would be interesting to see if skew d-complete posets P{I also have determinantal
identities for the number epP{Iq and if mobile (tree) posets Q have a Naruse-type formula for epQq. See
Example 6.4 for small positive evidence of the latter.

Example 6.4. One can show that the “x poset” P2 in Figure 9, which is a mobile tree poset, is not skew
d-complete. However, one can write the number epP2q “ 4 as the Naruse–Okada type sum 5!

`

1
3¨4¨4 `

1
4¨4¨5

˘

in terms of the two diagrams in Figure 8(b).

6In [NO19], skew d-complete posets are denoted by P{I to mimic skew shapes λ{µ. However, with our conventions from Sec-
tion 2.1 the skew d-complete poset P{I should be written PzI , but we stick to the notation established in the literature in this section.
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a b

e
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c d

e f

j

b

g

h i

P1/I1 = P2 = P3/I3 =

FIGURE 9. Left: a poset P1{tau that is both skew d-complete and a mobile tree poset (iso-
morphic to C1p2q from (4.4)). Center: a mobile tree poset P2 that is not skew d-complete.
Right: a skew d-complete poset P3{ta, bu that is not a mobile.

...

z1

z2

z3

z4

z5

z6

zm−1

zm

FIGURE 10. Example of a mobile tree poset PZ,m where k “ 6. Here the descents of Z “

tz1, . . . , z6u are z3 Ì z2 and z5 Ì z4.

6.2. Extending polynomiality of counting permutations by descents. In [Mac15], the number of permu-
tations of rns with a fixed descent set is shown to be a polynomial in n. In [DLHI`19], the authors studied
these polynomials, referring to them as descent polynomials. In particular, they showed that these poly-
nomials have a nonnegative integer coefficient expansion with respect to a natural basis of the ring of
polynomials in n [DLHI`19, Theorem 3.3].7

Descent polynomials can equivalently be regarded as polynomials whose value at n gives the number of
linear extensions of a ribbon with n elements. Thinking of descent polynomials in these terms, we present
a generalization of descent polynomials for free-standing mobile tree posets.

Let P be a mobile tree poset. Let Z be an underlying ribbon of P with maximal cardinality, and assume
for simplicity that P is free-standing with respect to Z . We write tz1, . . . , zku for the elements of Z , and we
require that tz1, . . . , zku are indexed in such a way that there is a cover relation zi Ì zj or zj Ì zi if and only
if |i´ j| “ 1.

Define PZ,m to be the poset whose elements are P \ tzk`1, . . . , zmu and with the same cover relations
as P , plus the additional cover relations zk Ì zk`1 Ì ¨ ¨ ¨ Ì zm´1 Ì zm (see Figure 10). We refer to a cover
relation of PZ,m of the form zi`1 Ì zi as a descent. We let despZq denote the number of descents of Z .
Additionally, note that PZ,m is a free-standing mobile tree poset with respect to the ribbon

pZ ` pzk`1 Ì ¨ ¨ ¨ Ì zmqq ‘ tpzk, zk`1qu.

If Z has at least one descent, let i “ maxtj P rm´1s | zj`1 Ì zju. Observe that PZ,matpzi`1, ziqu “ P 1`P2

where P 1 (resp., P2) is a free-standing mobile tree poset with respect to the ribbon on tz1, . . . , ziu (resp.,
tzi`1, . . . , zmu), and this ribbon is a ribbon of maximal cardinality. Note that, by the maximality of i, the
poset P2 is a rooted tree.

Theorem 6.5. For any PZ,m as defined above, the number epPZ,mq is a polynomial in QrN s, where N “

#pPZ,mq. If Z has at least one descent, then the degree of epPZ,mq is #pP 1q. If Z has no descents, then the
degree of epPZ,mq is 0.

7See [JM19] for recent results involving bounds on the roots of descent polynomials using the Naruse hook-length formula.
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Proof. First, assume that Z has no descents. It follows that PZ,m is a rooted tree. This implies that

epPZ,mq “
N !

ś

xPPZ,m
hPZ,m

pxq

“
N !

pNqpN ´ 1q ¨ ¨ ¨ pp#Pq ` 1q
ś

xPP hPpxq

“
p#Pq!

ś

xPP hPpxq
“ epPq,

where the second equality follows from the definition of PZ,m. Therefore, the above expression is a constant
polynomial in QrN s, as desired.

Now, assume that Z has at least one descent and that the statement of the theorem holds for all posets
QZ1,m1 , where the number of descents of Z 1 is strictly less than the number of descents of Z . As above, let
i “ maxtj P rm´ 1s | zj`1 Ì zju. By Lemma 3.2, we have that

epPZ,mq “ epPZ,m a tpzi`1, ziquq ´ eppPZ,mqtpzi`1,ziquq

“ epP 1 ` P2q ´ eppPZ,mqtpzi`1,ziquq.

Clearly, the maximal ribbons on tz1, . . . , ziu and on tzi`1, . . . , zmu of P 1 and P2, respectively, have fewer
descents than Z . Furthermore, none of the elements of tz1, . . . , ziu (resp., tzi`1, . . . , zmu) are covered by any
element of P 1ztz1, . . . , ziu (resp., P2ztzi`1, . . . , zmu). Additionally, by the maximality of i, the poset P2 is a
rooted tree with maximal element zm.

Similarly, the poset pPZ,mqtpzi`1,ziqu is a mobile tree poset with respect to the maximal ribbon on the
elements tz1, . . . , zmu, where zi Ì zi`1. By definition, this maximal ribbon has one fewer descent than Z
does, and there are no elements of this ribbon covered by an element of pPZ,mqtpzi`1,ziquztz1, . . . , zmu.

Applying Proposition 2.4 to the term epP 1 ` P2q in the displayed equation above, we obtain

epPZ,mq “

ˆ

N

#pP 1q

˙

epP 1qepP2q ´ eppPZ,mqtpzi`1,ziquq

“

ˆ

N

#pP 1q

˙

epP 1q #pP2q
ś

xPP2 hP2pxq
´ eppPZ,mqtpzi`1,ziquq,

where the last equality follows from the fact that P2 is a rooted tree. Observe that the factor epP 1q is
independent of N . One verifies that epP2q is independent of N using the same calculation that was used
in the base case of the induction. We also have that the binomial coefficient is a polynomial in N of degree
#pP 1q. This implies that the first term in this difference is a polynomial in QrN s of the desired degree.

By induction applied to eppPZ,mqtpzi`1,ziquq, we see that the second term in this difference is a polynomial
in QrN s of degree strictly less than #pP 1q. We obtain that epPZ,mq is a polynomial in QrN s of degree #pP 1q.

�

Example 6.6. In the table below, we give examples of the polynomial epPZ,mq when P is C1p1q, C1p2q, and
C1p3q. The posets Cppnqwere defined in (4.4).

PZ,m polynomial expression for epPZ,mq

pC1p1qqZ,m 1
pC1p2qqZ,m

`

N
3

˘

´ 4

pC1p3qqZ,m 16
`

N
6

˘

´ 4
`

N
3

˘

` 28

Remark 6.7. The authors in [DLHI`19] investigate other questions concerning descent polynomials, includ-
ing positivity in certain bases and roots of the polynomial (see also the recent work of Jiradilok–McConville
[JM19]). It would be interesting to also study these questions for the polynomial epPZ,mq.
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6.3. q-analogue of Atkinson’s recursive algorithm for linear extensions of any tree poset. Corollary 4.12
gives a determinantal formula to compute the number of linear extensions of mobile tree posets, so this
number can be computed in a polynomial number of operations by computing the determinant. This raises
the question of whether the number epPq of linear extensions of a tree poset P can be computed efficiently.
In [Atk90], Atkinson gave a recursive quadratic time algorithm to compute epPq for any tree poset P . This
algorithm actually calculates a refinement of epPq, which we discuss next.

Let P be a poset with n elements. Given an element a in P , we define the spectrum of a to be the sequence
of nonnegative integers pα1, . . . , αnq where αi is the number of linear extensions f of P with a occurring at
position i (that is, with f´1piq “ a). Note that epPq “

řn
i“1 αi. Atkinson’s algorithm computes, in quadratic

time, the spectra of elements of tree posets via a key lemma that shows how to compute the spectra of a
poset QbzaP from the spectra of the posets P and Q. In Lemma 6.8 below, we give an inversion q-analogue
of this lemma. We were not able to find a major index version of it.

For a labeled n-element poset pP, ωq and an element a in P , we define the q-spectrum of a to be the
sequence pα1pqq, . . . , αnpqqq of polynomials, where

αipqq :“
ÿ

σPLpP,ωq
σpiq“ωpaq

qinvpσq.

Note that einv
q pPq “

řn
i“1 αipqq and that, for all i P rns, we have αip1q “ αi.

Lemma 6.8. Let pP ` Q, ωq be a labeled poset where P and Q have u and v elements, respectively. Sup-
pose that ω has the property that ωppq ă ωpqq for every p in P and q in Q. Let pα1pqq, . . . , αupqqq and
pβ1pqq, . . . , βvpqqq be the q-spectra of elements a and b in P and Q, respectively. Then for r “ 1, . . . , u ` v,
the rth entry of the q-spectrum of a in pQbzaP, ωq is

γrpqq “

minpu,rq
ÿ

i“maxp1,r´vq

αipqqq
pu´i`1qpr´iq

«

r ´ 1

i´ 1

ff

q

«

u` v ´ r

u´ i

ff

q

v
ÿ

j“r´i`1

βjpqq.

Proof. A linear extension f of pQbzaP, ωq with a in position r (that is, with fprq “ ωpaq) is obtained by
combining a linear extension g of pP, ωq with a in position i for maxp1, r ´ vq ď i ď minpu, rq and a linear
extension h of pQ, ωqwith b in some position j with r´ i` 1 ď j ď v as follows: (i) choose i´ 1 positions S1

out of the r ´ 1 positions before a in f to insert, in order, the entries of g before a; (ii) choose u´ i positions
S2 out of the u` v´ r positions after a in f to insert, in order, the entries of g after a; (iii) insert a in position
r of f ; and (iv) insert the entries of h in order in the remaining positions of f .

Next, we calculate the inversions of f in terms of the inversions of g and h. Each inversion of g and h

is an inversion of f . It remains to count the inversions coming from pairs consisting of an element of Q
preceding an element of P , since the labels of P are smaller than those of Q. There are three kinds of these
inversion pairs in f : both elements are before a, both elements are after a, and one of the r ´ i elements of
Q before a with one of the u´ i` 1 elements of P after and including a. The number of inversions of each
of these kinds is invpS1q, invpS2q, and pu´ i` 1qpr ´ iq, respectively. (Here, the inversions of a set S Ă rns
are calculated as the inversions of the binary word of length n corresponding to the positions of the set S.)
Thus, in total, we have

invpfq “ invpgq ` invphq ` invpS1q ` invpS2q ` pu´ i` 1qpr ´ iq.

We then consider the contribution to γrpqq of all the linear extensions f obtained from fixed linear extensions
g and h. Then, the result follows by using a well-known expansion of q-binomial coefficients [Sta12, Prop.
1.7.1]. �
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In order to use the q-Atkinson algorithm on a tree poset T , a labeling is needed so that when we it-
eratively delete certain cover relations to split T into two posets P and Q, we have the property that all
elements of P have smaller labels than those of Q. Such labelings exist, and an algorithm provided in
[Gro18] produces them.

REFERENCES

[Ait43] A. C. Aitken, The monomial expansion of determinantal symmetric functions, Proceedings of the Royal Society of Edinburgh
Section A: Mathematics 61 (1943), no. 3, 300–310.

[Atk90] M. D. Atkinson, On computing the number of linear extensions of a tree, Order 7 (1990), 23–25.
[BW89] A. Björner and M. L. Wachs, q-hook length formulas for forests, Journal of Combinatorial Theory, Series A 52 (1989), no. 2,

165187.
[BW91a] , Permutation statistics and linear extensions of posets, Journal of Combinatorial Theory, Series A 58 (1991), no. 1, 85–

114.
[BW91b] G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225–242.

[DE18] T. Dwyer and S. Elizalde, Wilf equivalence relations for consecutive patterns, Adv. in Appl. Math. 99 (2018), 134–157.
[DLHI`19] A. Diaz-Lopez, P. E. Harris, E. Insko, M. Omar, and B. E. Sagan, Descent polynomials, Discrete Mathematics 342 (2019),

no. 6, 1674–1686.
[DP18] S. Dittmer and I. Pak, Counting linear extensions of restricted posets (2018), available at https://arxiv.org/abs/1802.

06312.
[Fou76] H. O. Foulkes, Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math. 15 (1976), no. 3,

235–252.
[FRT54] J. S. Frame, G. de B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group, Canadian Journal of Mathematics

6 (1954), 316–324.
[GIMO19] A. Garver, K. Igusa, J. Matherne, and J. Ostroff, Combinatorics of exceptional sequences in type A, Electron. J. Combin. 26

(2019), 1–20.
[GR93] I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, Journal of Combinatorial

Theory, Series A 64 (1993), no. 2, 189–215.
[Gro18] S. Grosser, Determinant formulas for counting linear extensions of tree posets, Undergraduate Honors Thesis, 2018. available

at https://people.math.umass.edu/~ahmorales/mentoring/thesis_Grosser.pdf.
[JM19] P. Jiradilok and T. McConville, Roots of descent polynomials and an algebraic inequality on hook lengths (2019), available at

https://arxiv.org/abs/1910.14631.
[Knu98] D. E. Knuth, The art of computer programming volume 3: Sorting and searching, Addison-Wesley, 1998.

[KY19] J. S. Kim and M. Yoo, Hook length property of d-complete posets via q-integrals, J. Combin. Theory Ser. A 162 (2019), 167–221.
[Mac15] P. A. MacMahon, Combinatory analysis Vol. I, II (bound in one volume), Dover Phoenix Editions. Dover Publications, Inc.,

Mineola, NY, 2004. Reprint of ıt An introduction to combinatory analysis (1920) and ıt Combinatory analysis. Vol. I, II,
1915, 1916.
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