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Abstract

Face recognition is one of the most important applications to receive atten-

tion in the areas of Computer Vision and Pattern Recognition. However, face

recognition has many challenges and difficulties, such as the requirement for

high speed search in large datasets and the requirement for high match accu-

racy under various noise conditions. Currently, as numerous 3D face datasets

become available, more and more researchers start to move their concentration

to 3D face recognition. Compared with 2D face image, 3D face images con-

tain more explicit information which is very useful for dealing with the head

orientation and the facial expression problem.

In this thesis, a framework to implement automatic 3D face recognition is pro-

posed and implemented. In the first stage, a key facial feature - the nose has

to be extracted for the subsequent face recognition process. In order to exploit

the local feature information, we present a face feature extraction methods

based on a 3D shape descriptor. Two different 3D shape descriptor Multi

Contour Surface Angle Moments Descriptor(MCSAMD) and Multi Shell Sur-

face Angle Moments Descriptor(MSSAMD) are designed and implemented.

The nose tip is identified using a binary neural network technique called k-

Nearest Neighbour Correlation Matrix Memories(CMM) algorithm. The main

face area is localized and cropped based on the nose tip localization with an

identification rate of almost 100% on FRGC 3D face database. Secondly, a

face aligned approach is implemented by applying a combination of methods

including Principal Component Analysis(PCA) face correction, Iterative Clos-

est Point algorithms(ICP) and the alignment using the symmetry of human



face. All faces are aligned to a unified coordinate system from the original pose

position even under expression variations. The position of the nose tip is also

further corrected. After the face alignment, the main face area is divided into

several regions with different weights according to the face expression variabil-

ity. Similarity measurement algorithms based on the pose-invariant 3D shape

descriptor MSSAMD are used to match the corresponding regions for different

faces. The expression variability weights are applied in the final considera-

tion of face identification and verification. Experiments are performed on the

FRGC database which is the largest 3D face database of 4950 faces with dif-

ferent expressions. In the experiments dealing with 4007 faces with different

expressions, a 91.96% verification at a false acceptance rate(FAR) of 0.1% and

a 97.63% rank-one identification rate are achieved.
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Chapter 1

Introduction

In Biometrics, the science of differentiating the unique and intrinsic physical

and behavioral attributes of human beings, the human face is thought to be an

effective biometric indicator as well as finger/palm print, voice, iris/retina and

handwriting signature. Due to their variations in properties, those biometric

attributes are applied to satisfy different application requirements. Face recog-

nition has a low requirement of intrusiveness, while others need the subjects

to cooperate during the identification or verification process. Furthermore, it

is relatively easier to acquire the necessary data because providing a photo

seems acceptable to most people. On the contrary, for example, collecting fin-

gerprints is always considered as an affront to a person’s privacy. Since there

always has been a great demand for the use of face recognition in law, security

and business applications, face recognition has become more and more impor-

tant in the research areas of computer vision and pattern recognition. Face

recognition technology could make a great improvement to the applications

that require distinguishing identities such as crowd surveillance and access

control.
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Among many various face recognition environments, in general, there are

three face recognition scenarios: face verification, face identification and watch

list [57].

Face verification:

Face verification is a face recognition operation to compare a query face image

against a template face image in the database to determine whether or not the

subject is someone who they claim to be. The query subject is matched only

with a face image in the gallery database belonging to the identity that he/she

claimed to be. The identity verification is approved only if the similarity score

is above a certain threshold. The verification rate and the false acceptance

rate(FAR) are two indicators to evaluate the verification performance. A good

balance is required between these two rates. A Receiver Operating Character-

istic(ROC) curve is plotted to show the performance by using the verification

rates vs the false acceptance rates.

Face identification:

Face identification is to compare a query image with a number of images in

a gallery database of known individuals to identify who this person is. The

query subject is identified with the subject in the gallery dataset achieving the

highest similarity matching score with the query image. The query subject is

one subject in the gallery database. The percentage of queries for which the

highest similarity score is a correct match is called the rank-one identification

rate. The percentage of queries for which the top n similarity scores achieve

a correct match is called rank n identification rate. A Cumulative Match

Curve(CMC) is plotted to show the identification performance by using the

different rank n vs corresponding percentages of correct identification.

14



Watch list:

An inquiry image is compared to all images in the gallery database(watch list)

and each comparison generates a similarity score. If at any time a similarity

score is greater than a threshold, an alarm is raised. The system will consider

the query subject is in the database if there is an alarm. There are two in-

dicators to show the performance of the watch list applications. One is the

Detection and Identification Rate which is the percentage of queries for which

an alarm is correctly raised. Another is the False Alarm Rate, which is the

percentage of queries where an alarm is raised but the query subject is not in

the gallery database.

1.1 3D face recognition

Over the past decades, face recognition technology has achieved many signif-

icant improvements. Many efficacious systems emerged within the recent ten

years. Most of them are capable of obtaining a recognition rate of 90% or

more under some controlled conditions [86]. Generally speaking, several prob-

lems are the key difficulties in face recognition. First one is: how to overcome

the illumination variations? The light conditions and camera parameters both

result in the variations of skin texture, which can significantly lower the perfor-

mance of the face recognition. Secondly, head orientation variations also affect

the results of the face recognition. Especially in 2D face images, severe head

rotation will lose/occlude some parts of the face. Expression variations prob-

lem is an importance challenge in face recognition, because the appearance of

the face changes when different expressions are produced. Aging factor is also
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a problem, because the face varies over time, particularly after a long period.

Another factor that will affect face recognition is the occlusion problem which

can be caused by glasses, scarf, beard and hat.

A face recognition system is required to solve at least the problems of illumina-

tion, head orientation and expression variants in the key challenges mentioned

above. There are many face recognition approaches which deal with 2D or 3D

face data respectively. Some researchers also combine 2D and 3D information

together to implement face recognition. As more and more 3D face collec-

tions become available, more 3D face recognition approaches appear because

3D face recognition has some advantages to deal with illumination and head

orientation problems. For illumination variations, 3D shape is not affected

by different lighting conditions. Thus 3D face recognition does not have il-

lumination problems if texture/intensity information is not used. Unlike the

occlusion occurred in severe 2D pose angles, there is no information loss in the

different head orientations of 3D face. However, 3D face recognition (without

using 2D texture data) still has some challenges left. The most challenging

one is how to deal with the facial expression variations, which severely affect

the face recognition process, because expressions such as laughter, anger and

crying can generate very different 3D face shapes. That increases the difficul-

ties to find the similarity between faces belonging to the same individual.

More and more 3D face data has become available in recent decades along

with the rapid development of 3D data acquisition devices. Some researchers

classify the data with more than two dimensional information into 2.5D and

3D representations [6]. A 2.5D face image only consists of a group of 3D points

to represent the face surface, where the depth z values are stored in each pixel
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in xoy plane. On the other hand, 3D face images cover the whole head by

taking scans from different viewpoints. In this thesis, we will ignore this dis-

tinction. All 3D face images are considered as a cloud of 3D points (x,y,z).

The 3D images can be considered as depth images, while the 2D images are

referred to as intensity images. In 2004, Xu et al. [94] presented a comparison

between intensity images and depth images in their discriminating ability of

recognizing people. They concluded that the face recognition of depth images

are less affected by illumination than intensity images. The results of Xu’s

work provide some evidence that the 3D face recognition has the advantage

over 2D face recognition in dealing with illumination problems. Examples of

2D face image, depth face image and face point cloud are shown in figure 1.1.

Figure 1.1: Left to right side: examples of intensity/texture image, depth image

and point cloud.

1.2 Motivation and aims

To build a practical automatic 3D face recognition system, a concern is about

the quality of face data. In most 3D face databases, the data are acquired by
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some scan device, for example a laser scanner as used in FRGC database [72].

The face data are not perfectly restricted to the main face area only. Hair,

clothes and other parts of the body like shoulder together with various noises

lower the quality of face images. To reduce these non-face factors, we have to

precisely detect where the main face area is. For the face detection, one previ-

ous approach is to use the texture information to find the face and remove the

unnecessary elements [80]. However, this method has a precondition that the

2D and 3D channels must be perfectly aligned which is not 100% guaranteed

in most 3D face databases. Another type of method to find the face is to

localize the facial features such as nose tip, eyes and mouth by using pure 3D

data [28] [16] [29] [93] [77] [49].

Another concern in 3D face recognition is how to handle the pose variations.

There are many methods to solve this problem. Currently, the most feasible

and widely used solution is to use face registration/alignment methods based

on the variants of Iterative Closest Point algorithm(ICP) [14]. Unlike the tex-

ture information used in 2D face recognition,a pure 3D face image normally is

a 3D point cloud which contains the x, y and z position information. Consid-

ering the differences in resolution, rotation and density of those points, it is

inconvenient to compare two 3D point-clouds which represent two pieces of 3D

surface. The information provided by those point clouds has to be converted

into some other form that can be used to measure the similarity of two faces.

Moreover, due to the expression variations in 3D faces, it is required that face

recognition approaches have the ability to extract the common parts or factors

between faces with different expressions. In summary, an integrated 3D face

recognition system has three tasks:

1). Face feature extraction to localize the face.
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2). Accurate face alignment.

3). Face recognition able to handle expressions.

An automatic 3D face recognition system has to achieve very high accuracy

in all of these three parts. Any incorrect results in the face detection will

affect the performance in face alignment and mistakes in the face alignment

will also cause the inaccuracy in face recognition stage. The ultimate aim of

this thesis is to implement a full automatic face recognition system including

face detection, face alignment and a fast face recognition approach. And in

the meantime, several issues are also concerned:

1). How reliable is the face detection based on the Face feature extraction (for

example: nose detection) even under expression variations?

2). How to implement a face alignment under expression variations?

3). How to evaluate a face alignment approach?

4). How does a facial expression affect the face recognition?

5). What is the computational efficiency in face recognition.

In this thesis, firstly we review the classical face recognition algorithms and

survey a number of state-of-the-art 3D face recognition techniques. Then we

propose and implement an automatic 3D face recognition approach including

three parts: nose tip detection/face detection, face alignment and face recog-

nition. In the nose tip detection, we propose an accurate 3D facial feature

localization approach based on 3D shape descriptors using k-Nearest Neigh-

bour AURA (Advanced Uncertain Reasoning Architecture) algorithm to de-

tect the nose tip with a recognition rate of 99.96. Then based on the results

of the nose tip detection, the main face area is found and cropped. After

that, an integrated ICP-based 3D face alignment is implemented to correct
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the pose variations even under different expressions. Compared with state-

of-the-art ICP-based face alignment techniques, our method achieves the best

performance both in neutral faces and non-neutral faces evaluations. Using

results of face detection and face alignment, we implement a high performance

3D face recognition approach which obtains a rank-one identification rate of

97.63% which the top 2 best performance achieved in the “first vs all” experi-

ments in FRGC v2 database.

1.3 Thesis overview

The following sections are respectively describing the content of corresponding

chapters in this thesis:

In chapter two, there will be a literature review of face recognition approaches.

The review includes classical and state-of-the-art face recognition techniques

about 2D and 3D face. The current 3D face databases are also introduced in

this chapter as well as the performance evaluation methods and protocols.

In chapter three, a 3D facial feature extraction algorithm is proposed based on

the 3D shape descriptor. Two 3D shape descriptors are implemented and com-

pared. Nose tip and eye corners are localized by using a KNN-CMM algorithm.

After the localization of the nose tip, the main face area can be cropped for

further tasks. In chapter four, an accurate face alignment using a combination

of face alignment methods including PCA, ICP and symmetrical face aliment

is implemented. All faces are aligned according to the pose of a standard face.
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The position of the nose tip is further corrected along ox,oy and oz direction.

Chapter five performs a fast and efficient 3D face recognition approach based

on the shape descriptor designed in the chapter three. Face regions are seg-

mented according to the degree that they are affected by expression variations.

Then a weight for each point relative to expression variability is applied during

the matching between corresponding regions. Implementation of face identifi-

cation and face verification are respectively proposed and performed.

In chapter six, conclusions will be drawn with further discussion of the progress

achieved and the contributions of the whole 3D face recognition system and

technology used in this thesis. Possible improvements and further investiga-

tion are also discussed in this chapter.
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Chapter 2

Literature Review

2.1 Introduction

Face recognition is a complex system in Biometrics. Pattern recognition, ma-

chine learning, computer vision and graphics are all involved in face recogni-

tion. Bledsoe [19] began the first research of face recognition in 1964. The first

automatic face recognition system was produced in 1977 by Kanade [52]. In

the beginning, the majority of face recognition methods were based on a 2D

face image. Face recognition in 2D utilizes the color or intensity information

of 2D images. An identification rate of more than 90% was recently reported

under controlled conditions [6]. However, the performance of 2D face recogni-

tion systems will decrease under changes to head orientation, illumination and

expression variations. Due to having better abilities to deal with those two

problems, 3D face recognition approaches have some advantages over 2D face

recognition ones. In this chapter, we will present an overview of related works

covered classical and state-of-the-art face recognition approaches.
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2.2 2D Face recognition algorithms

The typical 2D face recognition approaches can be categorized into the appearance-

based and the model-based algorithms. Appearance-based face recognition

algorithms are based on representations of images such as vector space struc-

tures, and model-based approaches are based on the model constructed by

facial features or internal facial elements [57].

2.2.1 Appearance-based face recognition

Computer graph/object recognition is called appearance-based or view-based

recognition if it is based on the representation of the whole images using a vec-

tor space structure [57]. View-based approaches consider an image as a vector.

An image can be understood as a point in a high-dimensional vector space.

Pixel values of an image are used directly. A set of images comprise an image

space, which is represented as X = (x1, x2, ......, xn)T , while x1 represents a

p × q image and n is the total number of images in training group. X is a

matrix of image vectors which is also called the image space. X is a p× q× n

data matrix. Figure 2.1 is a simple example of image space. The image in this

space is a two-pixels gray-level bitmap image. It is clear that images which

have similar gray values of pixels locate closer together, otherwise, their posi-

tions are far away from each other.

Appearance-based face recognition can be classified into Linear Analysis and

Non-linear analysis. Classical linear appearance-based analysis include PCA,

ICA and LDA. Each has its own basis vectors of a high dimensional face image

space [57]. What they have in common is: by utilizing those linear analysis

methods, the face vectors can be projected to the basis vectors. Through pro-
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Figure 2.1: Examples of three 1× 2 pixel images and their positions in image

space.

jecting from a higher dimensional input image space to a lower dimensional

space, dimensionality of the original input image space is reduced. The match-

ing score between the test face image and training images can be achieved by

calculation of the differences between their projection vectors. The higher the

score corresponding to minimum distance, the more similar are these two face

images.

The main idea of the Principal Component Analysis (PCA) [88] is to find the

vectors which best describe the distribution of face images within the entire

image space. PCA is an orthogonal transformation of the coordinate system

in which the pixels are described. PCA aims to extract a subspace where the

variance is maximized. PCA is performed by projecting a new image into the

subspace called face space spanned by the eigenfaces and then classifying the

face by comparing its position in face space with the positions of known indi-

viduals. Face space is comprised of eigenfaces, which are the eigenvectors of

the set of the faces. The projection from the original image vectors to another

vector space can be considered as a linear transformation. Figure 2.2 shows
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principal components of a two-dimensional set of points. The principal compo-

nents provide an optimal linear dimensionality reduction from 2D(a) to 1D(b).

In face recognition, each point represents a face image in an image space. By

applying PCA reduction, the distribution of the faces can be better described

in a face space with lower dimensionality.

Figure 2.2: Principal components of a set of points in 2D [81].

PCA derives only the most expressive features which are unrelated to actual

face recognition, and in order to increase performance additional discriminant

analysis is needed. Independent Component Analysis (ICA) [46] provides a

more powerful data representation than PCA. ICA is a generalization of PCA

but the distribution of the components of ICA is designed to be non-Gaussian.

The comparison between PCA and ICA is shown in figure 2.3. ICA seeks

a linear transformation which can most reduce the statistical dependence be-

tween the components.

Similar image projections are close together, different image projections locate

far away when using PCA, but the projections from different classes of images

are mixed together. For example, female and male faces are not separated and
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Figure 2.3: A three dimension example of data distribution and the PCA and

ICA axes. ICA uses a different face space than PCA. Left bottom shows the

distribution according to the PCA coordinate of the data. Right bottom in-

dicates that in this example ICA extracts better intrinsic distribution of the

data [57].

such class information is not used in PCA. Described by Belhumeur et al. [11],

Linear Discriminant Analysis (LDA) exploits the face class information such as

gender, age and nationality to help the recognition tasks, while such category

information is not used in either PCA or ICA. LDA is able to maximize the

ratio of between-class distribution to that of within-class distribution. This

means that the training set for the LDA method can utilize multiple images of

each individual to determine within-class variation, while eigenface uses only

one image per person. Variations between images of the same person are min-

imized in the classification process. This is the main advantage of the LDA

method over the eigenface method.

Linear discriminant methods concern the linear relationship between multiple
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pixels in the images. Some non-linear relations may exist in a face image,

especially under a complicated variation in viewpoint, illumination and facial

expression variations which are highly non-linear. To extract non-linear fea-

tures of images, the linear analysis method was extended to non-linear analysis

such as Kernel PCA, Kernel ICA and Kernel LDA etc. By using non-linear

analysis approaches the original input image space is projected non-linearly

onto a high dimensional feature space. In this high dimensional space, the

distribution of image vectors could be simplified to linear patterns. The face

non-linear projection is more complex than linear projection. Figure 2.4 shows

an example of PCA and KPCA. Unlike conventional PCA, Kernel PCA uses

more eigenvector projections than the original input dimensionality but still

uses the projection coefficients as features to classify. However, the suitable

kernel and correspondent parameters will only be determined empirically [57].

In Yang’s experiments [95], the conventional PCA, ICA and LDA approaches

are compared to the non-linear analysis method kernel LDA. Experimental

results based on two benchmark databases show that the kernel LDA methods

are able to extract non-linear features and provide a more effective represen-

tation for face recognition and achieve lower error rates.

2.2.2 Model-based face recognition

The aim of model-based face recognition approaches is to produce a model

to represent the facial variations. One significant advantage of model-based

approaches is that it is convenient to make a good use of the biometrical knowl-

edge of the human face. For example, model-based approaches may be based

on the distance and relative position of features or internal facial elements

(eyes, nose and mouth, etc.). The purpose of building a face model is to try
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Figure 2.4: Linear PCA and kernel PCA transformation. Kernel PCA uses a

higher-dimensional projection. Linear PCA is performed in input space (top).

Since the high dimensional feature space F (bottom right) is nonlinearly related

to input space via φ the contour lines of constant projections onto the principal

Eigenvector become nonlinear in input space. Kernel PCA does not actually

perform the map into F . but instead performs all necessary computations by

the use of a kernel function k in input space (R2) [79].

to eliminate the differences between the images of the same individual and

emphasize the variance between different persons. Normally, the first step of

the model-based methods is to construct the face model which contains the

information of shape and texture of the face; then apply and fit the model to

the face images within the training group; finally, compare the difference be-

tween the parameters of the fitted model of the test face and the training faces.

In 1973, Kanade [51] developed the earliest face recognition algorithms using

automatic feature extraction. He detected the corners of eyes and nostrils in
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frontal views by coarse scanning the gray-level pictures with a low-pass filter

and then compared those features against the features of known faces. In 1992,

Brunelli et al. [23] announced a system to recognize faces using 22 geometrical

face features including eyebrow thickness and vertical position, nose vertical

position and width, mouth vertical position, width and height, eleven radii

describing the chin shape, bigonial breadth and Zygomatic breadth. Brunelli’s

experiment proved that geometrical feature recognition is effective. However,

when the quantity of subjects increases to a large number, their system’s ca-

pability to distinguish human faces is weakened because there is not enough

information within these geometrical features to classify a great number of

faces.

Wiskott et al. [91] developed a model-based matching system called elastic

bunch graph matching. Since human faces have a similar topological struc-

ture, they classified the variance of a known class of individuals. A face can be

structured as a graph called a bunch graph by nodes and edges. A Face Bunch

graph (FBG) is generated from a set of training face images. The FBG serves

as a general representation of a set of faces. In order to deal with the head

orientation problem, different face bunch graphs of each possible orientation

are generated. Among these face bunch graphs, a set of references are used to

present the association of nodes at the same fiducial point in different bunch

graphs. To perform the graph match between a query face image and other

images in the training set, image graphs are produced by adaptation of the

face bunch graph to fit the face of the query image. The face bunch graph is

scaled and distorted to maximize a graph similarity between this graph and

the FBG. Then the probe face is recognized by comparing the similarity be-

tween the graph of this face and graphs of every face stored in the FBG.
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In 1998, Cootes et al. [33] [32] introduced a morphable face model - the Active

Appearance Model (AAM) which is a 2D statistical model to capture the vari-

ation of shape and appearance of a human face from a full profile viewpoint

to a frontal viewpoint. Any new image can be matched rapidly by finding the

model parameters which minimize the difference between this image and the

synthesized model. The AAM is potentially able to estimate the head pose of

a probe image by finding the best fitting model to produce new views from

the similar pose of the new image. Models are built based on a set of labeled

images. Landmark points are marked on each example face image at key po-

sitions to describe the facial features. A set of models is used to describe the

variation of the head orientation from different viewpoints. When matching

a new face in which the head orientation is unknown, the head pose can be

estimated by searching with each of these models to determine the best match.

Given a probe image, the goal of recognition is to find the best match between

the test parameter vector and the training data. They implemented their ex-

periments on faces with different poses and claimed the highest recognition

rate is over 97%.

2.3 3D face recognition approaches

2D face recognition approaches use grey scale or color 2D images to perform

face recognition. Unfortunately, these 2D methods have some weaknesses han-

dling the head orientation problem. For example, in Elastic Bunch Graph

Matching system, the system requires the two images involved in the match-

ing process to be at the approximated head pose. Otherwise, if two images at
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different viewpoints are matched, reduction of the identification rate will be

observed. Another weakness of the 2D face recognition system is the illumi-

nation problem. The variation of the lighting conditions also will change the

texture information of a face and therefore may cause a poor performance on

a 2D face recognition approach.

Since a face surface is naturally a 3D surface, using 3D images to describe faces

is capable of capturing more details such as depth information than using 2D

images. Moreover, the 3D shape (independently obtained without using 2D

data) can not be affected by the illumination variations. Thus, if the 3D image

is able to be captured reliably and precisely, exploiting the 3D depth or shape

information is able to provide a pose-invariant information, which can lower

the significance of the texture data. That means that the negative effect of the

different lighting conditions could be diminished or even removed if texture

information is not used. Unlike 2D images which could occlude some parts of

a face due to a severe head rotation, the 3D face image contains a face shape

and any pose variation does not result in a surface loss/occlusion. The head

pose problems could be tackled through analyzing the 3D image, because a 3D

image contains the information in any rotation direction. In the meantime,

the extra information of the third dimension may enlarge the discrimination

between different faces simply because it provides extra differences in the third

dimension. Consequently, the 3D face recognition is expected to have more

advantages to handle the problems of head pose and illumination than the face

recognition in 2D images.
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2.3.1 3D face recognition approaches based on 2D face

recognition algorithms

PCA is a widely used algorithm in 2D face recognition to reduce the dimension-

ality and classify the faces. Hesher et al. [43] extended the PCA algorithm to

3D face recognition. Multiple images per person were used and stored in their

gallery dataset. They treated the 3D image as a cloud of points and applied

PCA directly to the point clouds. Their experimental performance reports an

identification rate of 100% on a small dataset with expression variations. An-

other investigation of PCA in 3D face recognition has been presented by Chang

et al. [25]. They applied the PCA on both intensity(2D) and depth(3D) images

then fused the two results. The experiments were implemented on a relatively

large database with 275 subjects. The identification rate for intensity images

is 89.5% and the experiments for depth images achieved an identification rate

of 92.8%. After combination of results is performed, the identification rate

increased to 98.8%. Heseltine et al. [42] proposed a method using PCA on

the facial surface representations created by convolution kernels and distance

metrics. An identification rate of 87.3% is achieved in his experiments based

on the University of York 3D face database. Another approach introduced by

Heseltine et al. [41] used the fisherface algorithm to obtain an identification

rate of 88.7%. Cook et a. [31] presented a 3D face recognition system using

Log-Gabor filter. The face image is divided into many squared regions and

subregions. A set of 147 features are extracted by applying PCA to each fil-

ter response of regions/subregions for each face. Then faces are matched by

exploiting Mahalanobis-Cosine distance of two feature sets. The experiments

were performed on FRGC v2 database, and a rank-one identification rate of

96.2% and a verification rate of 92.3% at 0.1% FAR are reported.
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Cartoux et al. [24] segment face images based on principal curvature and find

the face’s bilateral symmetry plane. They used this plane to normalize for pose

and used the methods to match the profile based on the symmetry plane. Their

experiments implemented on a small database reported an identification rate

of 100%. Nagamine et al. [67] localized five feature points and then utilized

those points to normalize head orientation. Vertical profiles that pass through

the central portion of the face are matched through face data. Beumier et

al. [15] established a system using the central and lateral profiles both in 2D

and 3D to classify faces. The final results are created based on a weighted sum

rule to fuse the similarity score in 2D and 3D.

Similar recognition methods on 2D morphable models can be improved and

applied on 3D models as well. 2D face models represent the shape and texture

parameters of the model independently. However, only part of such infor-

mation is distinguished from the imaging conditions, such as head pose and

illumination. Thus V. Blanz et al. [18] [17] established a system for face recog-

nition based on fitting a statistical, morphable model of 3D faces to images as

an extension of a 2D morphable model. One aim of that system is to separate

the intrinsic model parameters of the face from extrinsic imaging parameters.

During the model fitting process, the shape and texture coefficients are opti-

mized as well as other rendering parameters, such as pose angels, head position,

size, color and intensity of the illumination etc. The similarity can be consid-

ered as the difference between the model coefficients of these two images, such

as the sum of Mahalanobis distances of the segment shapes and textures. They

claimed an identification rate of 95% on CMU-PIE [83] and 95.9% on FERET

dataset [71]. Lu et al. [58] presented an approach using a 3D model to produce
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several different 2D images. 2D images with different poses, illuminations and

expressions are synthesized from a 3D model. They used a database of 10

subjects to synthesize 22 images per person with variations in pose, expression

and illumination. They claimed a identification rate of 85% which outperforms

the PCA-based algorithms using the same database. Unfortunately, the small

number of images and subjects used in this experiment lower the reliability of

this method. Both Blanz et al. and Lu et al. used various 2D face images

synthesized from a 3D model and applied the classical approach in 2D face

recognition to overcome the pose, illumination and expression problems. How-

ever, there are some concerns [6]: how much verisimilitude and accuracy can

a synthesized face image provide?

As well as the depth image, texture or color information also can be utilized in

3D face recognition. Tsalakanidou et al. [87] utilized the color and depth infor-

mation to establish a multi-modal face recognition system. They first localize

the face by using depth and brightness information. The recognition is per-

formed by applying the Embedded Hidden Markov Models(EHMM) to depth

and color information. The results of color and depth image are combined to

produce an identification rate of 91.67%. Xu et al. [92] proposed a novel sys-

tem to describe the local features by using Gabor wavelets which are extracted

from depth and intensity information. The most effective and robust feature

are chosen based on a novel hierarchical selecting scheme embedded in LDA

and AdaBoost learning to build an effective classifier. Their experiments are

performed on FRGC v2 database and CASIA 3D face database. A verification

rate of 97.5% in “neutral vs all” experiment is claimed.
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2.3.2 3D face recognition using shape analysis

Some of previously introduced 3D face recognition approaches used 2D tex-

ture information which will bring illumination problems. Some approaches

only used parts of 3D information which may lose some useful information.

These are the main problems of above approaches. Another kind of approach

is to convert 3D information to other representations or describe the 3D sur-

face by using a shape descriptor.

Wang et al. [89] performed a multi-modal 3D face recognition using point

signatures in 3D images. They also use a 3D feature together with the 2D

feature produced by using a Gabor filter. Support Vector Machine(SVM) is

used in classification. An identification rate of 90% is reported. Bronstein et

al. [22] analyzed 3D face by using an isometric transformation approach. They

used a bending invariant canonical representation to overcome the expression

problems. The facial expressions can be modeled by applying isometric trans-

formation. 2D texture is also flattened and mapped to the canonical image.

Their experimental results only show examples without reporting any recog-

nition rate.

A. Mian et al. [65] proposed tensors matching for pose invariant 3D face recog-

nition system. They defined a 15 × 15 × 15 3D bin grid to crop 3D faces.

The surface area of the face crossing each bin of the grid is recorded in a third

order tensor. Each element of the tensor is the face surface area that intersects

the bin which corresponds to this tensor element. Then the linear correlation

coefficient of two tensors are computed to measure the similarity between two

faces. They reported a recognition rate of 86.4% on a dababase of 277 subjects.

The main problem of Mian’s approach is that it is to sensitive to misalignment
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of faces. They also did not consider the problems of expression variations.

In 1999, Johnson and Hebert [48] first introduced the Spin Image to describe

3D shape and then used it to recognize 3D objects. They defined an oriented

point at a surface vertex using the 3D position of the vertex and surface nor-

mal at the vertex. The surface normal at a vertex is then calculated by fitting

a plane to the points connected to the vertex. Two cylindrical coordinates are

defined according to this oriented point: the radial coordinate α, defined as the

perpendicular distance to the line through the surface normal, and the eleva-

tion coordinate β defined as the signed perpendicular distance to the tangent

plane defined by vertex normal and position. α and β are computed for all

vertices. The bin indexed by α and β is then incremented in the accumulator.

The resulting accumulator can be considered as an image. Wang et al. [90]

used a Sphere-Spin-Image(SSI) technique to describe the local 3D shape. The

main idea of SSI is to map the 3D points within a sphere to a 2D histogram.

They used a series of points to produce a set of SSI histograms to represent a

face. The similarity between different sets of SSI is measured by using a simple

correlation coefficient. The experiment performed on 31 models achieved an

identification rate of 91.68%. Conde, Rodriguez-Aagon and Cabello [29] also

make use of the Spin Image to implement a feature points selection to find the

nose tip and eye corners. Then they used these feature points to normalize

faces to create depth maps. Face verification experiments were implemented

by analyze the linear relation of the depth maps. They reported a Equal Error

rate of 2.59% on FRAV3D database. The main problem of the Spin Image

approaches is that it requires an accurate feature point localization to fix the

position of the selected oriented point as the origin point to create the spin

image. The Spin image can be considered as a projection from 3D to 2D which
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may lose some information.

In 1986, Besl and Jain [13] introduced an invariant surface characteristics

method to recognize 3D objects. They used two fundamental second-order

surface characteristics which represent extrinsic and intrinsic surface geome-

try respectively to describe 3D shape and capture domain-independent surface

information. Tanaka et al. [85] used a descriptor based on maximum and

minimum principal curvature and directions to represent a face shape. The

descriptor is then mapped onto two spheres called Extended Gaussian Im-

age(EGI). Then they measure the similarity between EGIs by using Fisher’s

spherical approximation. A 100% identification rate on a small database is

reported. However, Stein and Medioni [84] pointed out that the computation

of curvature requires a higher order derivative than the tangent. That implies

that the signal to nose ratio is lower for a curvature based representation than

for a tangent based scheme.

The Iterative Closed Point (ICP) algorithm is first introduced by Besl et

al. [14]. ICP is a method widely used to fit points in a target image to points

in a standard model. The target group of points is aligned to the model by

minimizing the sum of square errors of pairs of corresponding points. Firstly,

the position and overlay of two images are estimated. Then, based on the

initial estimate, a translation and rotation matrix is computed and applied to

minimize distances between each pair of corresponding points. The transfor-

mation procedure is iteratively performed until the sum of distances between

corresponding points falls below a particular preset threshold. ICP is an effec-

tive method to reduce the misalignment in face registration. Meanwhile, ICP

also can be used to match the difference between two faces. Details of Besl’s
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ICP algorithm is introduced in Appendix B.

Recently, many ICP-based face recognition approaches were published. Lu

et al. [58] implemented a method to extract feature points in 3D face images

by classifying the local minimum and maximum of curvature. Then ICP is

applied on those points to align face images. Faces are matched by using the

local features correlated by ICP. They used a database with 18 subjects and in

total 113 3D face images. An identification rate of 96.5% is reported. In [60]

Lu et al. exploited ICP and LDA to match 3D models synthesize by multiple

2.5D face images. In their experiment on a set of faces with various poses

and expressions, they found that almost all mistakes in recognition are caused

by expression variations. In their further research [59], a deformable model is

proposed to match 2.5D faces with different expression and pose. Each expres-

sion has its synthesized deformation template. A neutral face can use those

templates to generate a 3D deformation model. ICP is then applied in model

matching. They reported that using the deformation models, the identification

rate exceeds that obtained without using deformation models. Papatheodorou

et al. [69] presented a face recognition approach adding texture information

into the ICP algorithm. The similarity between faces is produced by measuring

the 4D Euclidean distance of three spatial dimension value and the texture in-

formation. They reported an identification rate from 66.5% to 100% according

to different head orientations and expressions. Chang et al. [26] segmented the

whole face into several regions by using a method called Adaptive Rigid Multi-

Region Selection(ARMS). They considered the regions around the nose to be

the expression invariant regions. Those regions are matched with their corre-

sponding ones in another face by using ICP algorithm. The results of matching

are evaluated by Root Mean Square Error(RMSE). The product rule is applied
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to fuse the similarity scores of different regions. Experiments on neutral images

in FRGC database report a rank-one identification rate of 97.1%. A rank-one

identification rate of 87.1% is achieved using faces with expression variations.

Mian et al. [64] introduced an approach to fuse 2D and 3D face recognition.

They use Scale-Invariant-Feature Transform(SIFT) to extract local features in

2D images. Matches are measured by the Euclidean distance between features.

In 3D face recognition, they first use a PCA pose correct method to align 3D

faces. Then the 3D face is segmented into a nose region and an upper face

region including eyes and forehead. The ICP algorithm is applied to match

different regions. The overall similarity score is produced by combining each

2D or 3D matching methods. Kakadiaris et al. [50] designed an automated 3D

face recognition framework. An annotated face model (AFM) is used to deal

with the expression variations. The face image is aligned to the AFM model by

a combination of three matching/alignment algorithms: Spin image, ICP and

Simulated Annealing(SA) on Z-buffers. A deformation image is generated by

the fitted model. Two wavelet transformations, Pyramid and Haar, are used

respectively. The match is implemented by measuring the distance metric for

each wavelet type. A 97% rank-one identification rate is reported in the “first

vs other” experiment of FRGC v2 database. A verification rate of 97.0% is

obtained in the ROC III experiment of the FRGC v2. Faltermier et al. [35]

established a framework to combine matches based on 28 facial regions. ICP

is applied during the matching of corresponding regions. Consensus Voting

and Borda Counting are used as fusion methods to combine different match-

ing scores. In experiments on the FRGC v2 database, they reported that a

rank-one identification rate of 97.2% and a verification rate of 93.2% are ob-

tained.
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Using similar idea as ICP, Chaua et al. [74] presented a framework to perform

3D face recognition by using Simulated Annealing(SA) and Surface Interpen-

etration Measure(SIM). They use SA to implement face registration and ex-

ploit SIM rather than RMSE to measure the difference of two surfaces. A

set of regions including the full face, the upper face, the nose region and the

expression-invariant region are segmented and matched respectively. Then the

final similarity is obtained by combining all results of regions. They claimed a

verification rate of 96.6% in “all vs all” experiment and a rank-one identifica-

tion rate of 98.4% in “first vs other” experiment by using FRGC v2 database,

which are so far the best results based on FRGC v2 database.

In the pure 3D face recognition approaches, several algorithms [26] [64] [50]

[35] [74] based on the 3D shape matching both achieved an outstanding per-

formance especially ICP-based approaches. However, implementing a surface

matching algorithm such as ICP or SA/SIM in the face recognition is a time-

consuming task. There are usually more than thousands of face matches oc-

curring in the face recognition experiment or in a practical face recognition

system. Furthermore, ICP and its variant are also frequently used in the face

registration stage as well as the SA/SIM algorithm [74]. Points of a face are

repeatedly used in the computation of the surface matching algorithm in the

face alignment and face recognition stages [35] [74]. Therefore, a more efficient

face recognition algorithm using surface/shape matching method is required.

Moreover, the feasibility of a 3D face recognition method depends on its ability

to deal with at least two key problems:(1)head orientations;(2)expression vari-

ations. The evaluation also takes into account how many people and images

in the experimental database. A small dataset is not convincing enough to

justify and evaluate an approach.
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Figure 2.5: An example of the Cumulative Match Characteristic(CMC) curve.

2.4 Face databases and performance evalua-

tion

In order to evaluate the performance of a face recognition system, some general

principles should be established. In most published papers, two face recogni-

tion scenarios are evaluated: identification and verification. For the identifica-

tion scenario, the most widely used way to show how good a face recognition

system will be is to give the rank of the matches between the test face and

gallery faces. Then a rank-one identification rate is produced by calculating

the number that correctly identifies (at first rank position) the same subject

from a group of gallery faces. Identification rates at different ranks also are
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Figure 2.6: An example of the Receiving Operating Characteristic(ROC) curve.

computed to plot a Cumulative Match Characteristic(CMC) curve as shown

in figure 5.15. For verification, there are several protocols for subject identi-

fication and verification: False Acceptance Rate (FAR), False Rejection Rate

(FRR). FAR is the percent of cases that incorrectly accept a correct match.

FRR is the probability that the system incorrectly declares failure of the match

between the input pattern and the matching template in the database. Equa-

tion 2.1 and 2.2 shows how to calculate FAR and FRR respectively. Generally,

Verification Rate(VR) (shown in equation 2.3) at different FAR are produced,

then a Receiving Operating Characteristic(ROC) curve(an example is shown

in figure 2.6) is created to show the verification performance of a face recogni-

tion system.

FAR =
n

N
(2.1)
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Where n is the number of matches between different subjects being incorrectly

considered as a correct match, and N is the total number of matches between

different subjects.

FRR =
m

M
(2.2)

Where m is the number of matches between same subjects being considered

as an incorrect match, and M is the total number of matches between same

subjects.

V R = 1− FRR (2.3)

There are more than 20 face databases available currently. These face databases

are constructed and designed for different face recognition tasks. Researchers

choose the appropriate database normally based on the task given (aging, ex-

pressions, lighting etc). As fast 3D data acquisition devices become cheaper

and more reliable, more and more 3D face databases begin to be available to

face recognition researchers. 3D face images are normally captured by laser

scanning devices or 3D cameras. As well as the depth or 3D information,

texture information for some databases also can be obtained. Table 2.1 lists

details of the 3D face databases available to academic researchers.

It is not easy to benchmark of all the algorithms because the researchers have

their own choices of database. For the same algorithms, the recognition rate

may vary due to different evaluation protocols and different image resources.
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Therefore, for the testing or comparison of different face recognition systems,

the standard database and evaluation method have to be decided. Face Recog-

nition Vendor Tests (FRVT) 2006 [73] follows five previous face recognition

technology evaluations - three FERET evaluations (1994, 1995 and 1996) and

FRVT 2000 and 2002 [71] [75] [76]. In FRVT 2006, a standard dataset and

test methodology is employed so that all participants are evenly evaluated.

Both the test data and the test environment will be provided to participants.

The test environment is called the Biometric Experimentation Environment

(BEE). It allows the experimenter to focus on the experiment by simplifying

test data management, experiment configuration, and the processing of results.

The Face Recognition Grand Challenge (FRGC) [72] is then being conducted

to fulfill the comparison of new techniques as one of the goals of the FRVT

2006. The FRGC is open to all face recognition researchers and developers

from companies, academic or research institutions.

Among those 3D face database listed in table 2.1, Face Recognition Grand

Challenge 3D face database(FRGC) has the largest number of individuals and

face images including pose and expression expression variations. A great num-

ber of researchers implemented their approaches and experiments based on

FRGC database [31] [92] [26] [50] [35] [74]. In this thesis, all experiments are

performed on FRGC 3D face database. The details of the FRGC 3D face

database are introduced in the Appendix A.
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2.5 Summary

This chapter presented a review of the classical 2D/3D face recognition al-

gorithms and a number of state-of-the-art 3D face recognition approaches.

Compared with 2D face recognition approaches, several significant challenges:

3D face detection, pose variations and expression variations are the key prob-

lems of the 3D face recognition. From the review of the covered face recogni-

tion techniques, 3D face recognition algorithms based on shape/surface anal-

ysis/matching achieved a good performance on large face databases such as

FRGC v2 database, which gives us a direction of research. In the following

chapters, we plan to solve those challenges step by step and finally implement

a high performance automatic 3D face recognition system.
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Database Subjects Images Texture Conditions Availability

Xm2vtsdb [62] 295 2/subject yes pose charge

3D RMA [1] 120 3/subject no orientations free

GavabDB [66] 61 549 no pose,

expression

free

FRAV3D [5] 106 16/subject yes poses,

lighting

free

BJUT-3D [2] 500 500 yes n/a free

Univ. of York

1 [3]

97 10/p no pose, ex-

pressions,

occlusion

free

Univ. of York

2 [3]

350 15/p no pose, ex-

pressions

free

Bosphorus [4] 105 31-54/p yes pose, ex-

pressions,

occlusions

free

FRGC

v1 [73] [72] [71]

275 943 yes illumination,

pose, ex-

pressions

free

FRGC

v2 [73] [72] [71]

466 4007 yes illumination,

pose, ex-

pressions

free

Table 2.1: Most available 3D face database.
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Chapter 3

Feature localization

3.1 Introduction

A 3D face is a group of high dimensional vectors of the x, y and z positions of

the vertices of a face surface. The R, G and B color information can be added

into this vector if the texture values of those vertices is required. A 3D face

is usually represented by a 3D shape file and 2D texture image. Face recog-

nition based on 3D has the potential to overcome the challenging problems

caused by expression and illumination variations [20]. However, many 3D face

recognition approaches, especially the feature-based ones, require a robust and

accurate facial feature localization.

This chapter focuses on the task of identifying and localizing 3D facial fea-

tures. As the nose tip is the most prominent feature of the face, many

works [74] [35] [92] [60] [64] perform nose tip detection and use the nose tip

as the foundation to detect other features. Some facial feature identification

algorithms use an assumption that the nose is the closest point to the camera

or device which acquires the 3D data [43] [55]. Although this supposition is
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Figure 3.1: An example of bad 2D-3D correspondence.

true in most cases, there is no guarantee because the noise, pose rotations and

the complex situation of hair and clothes could make some places closer than

the nose.

Making use of the corresponding 2D texture information is a possible way to

detect the face area first then localize the nose tip within the selected 3D face

crop. That requires 2D texture and 3D shape to correspond correctly. How-

ever, in some face datasets such as Spring2003 subset of FRGC, the 2D texture

channel is not always perfectly matched with the 3D shape channel (as shown

in figure 3.1). Using the 2D face crop method in a face with a poor 2D-3D

corresponding will often obtain a poor 3D shape crop.

Colombo et al. [28] presented a method to identify the shape of facial features

based on 3D geometrical information only by using HK Gaussian Curvature

classification. They achieved a 96.85% identification rate on a small dataset,

although only the rough nose/eye shapes are identified and no accurate loca-
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tions of nose tip or other features are detected. Of other algorithms, Bevilacqua

et al. [16] implemented an experiment to detect the nose tip based on extend-

ing the Hough Transform to 3D point cloud. However, only 18 3D faces are

involved in the experiment. Spin image and support vector Machine (SVM)

are used to represent and classify 3D shape [29] [93]. In [93], a 99.3% success-

ful localization rate of the nose tip is claimed, but it was tested on a limited

dataset without benchmark evaluation. The main problem of those approaches

is that they only used a small face database which is not enough to evaluate

the performance of the facial feature localization. A small database does not

provide enough cases about different noise and variations which are crucial in

performance evaluation.

Segundo et al. [80] proposed a 3D facial landmark detection based on the anal-

ysis of y-projections and x-projections of the topographic depth information.

They used a combination of region/edge detection algorithms and a Hough

transform based shape detection method to localize the main face area first

and then detect facial features. They reported a nose detection rate of 99.95%

on FRGC v2 database. However, using methods to detect face area first may

result in extra chance of mistakes and they did not report the accuracy of their

face detection.

To the best of our knowledge, most of the methods do not use benchmark

datasets to evaluate their results. Romero et al. [77] presented the first work

on benchmark datasets based on FRGC database. They manually marked

landmarks of eleven facial features. With those marked feature locations, the

results of automatic feature identification can be measured and evaluated.
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Some approaches mentioned above use the HK Gaussian Curvature or the

mean value and derivative of other attributes to represent 3D shapes. Within

a sphere of radius r at a point P , some statistical attributes such as mean

and derivative values are computed for point P and its neighbouring points

Pi. However, over a very large number of faces, the effectiveness of representa-

tion could be impaired because of the noise caused by clothes, hair and other

unwanted facial features. To solve this problem, we use more attributes to

describe a 3D surface. The number of attributes can be increased according

to the requirements of different feature identification tasks. More attributes

mean describing a piece of 3D shape will create a relative complex pattern

which requires a powerful classification method. In this thesis, we use a binary

neural network technique based on Advanced Uncertain Reasoning Architec-

ture (AURA) to implement the facial feature matching and searching. Each

point P will have a similarity score to tell how much it looks like the trained

features.

This chapter is organized as follows. In section 2, two 3D local shape/surface

descriptors called Multi Contour Surface Angle Moments Descriptor(MCSAMD)

and Multi Shell Surface Angle Moments Descriptor(MSSAMD) are introduced.

Section 3 describes the feature matching and searching algorithm based on a

binary neural network which is called AURA k-Nearest Neighbour technique.

The methodology for nose tip identification using both MCSAMD/MSSAMD

and AURA k-NN is presented in section 4. Section 5 proposes the medial

canthi (eye corners) localization using the same method after the nose tip de-

tection is implemented. Section 6 shows the experimental results and proved

that using MCSAMD and MSSAMD, the feature especially the nose tip can

be located more precisely than with other methods. Section 7 makes the con-
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clusion of this chapter.

3.2 3D Local Shape/Surface Descriptor

3D facial features can be considered as small groups of points and pieces of

3D surface. There are many methods to describe a 3D shape or surface. In

1984, Grimson and Lozano-Perez [38] first discussed how local measurements

of 3D position and surface normals recorded by a set of tactile sensors may

by used to identify and locate objects. They mentioned that angles relative to

the surface normal is an efficient local constraint. Compared with curvature-

based shape descriptors, Stein and Medioni [84] proposed a method using a

splash structure to describe a surface. At a given location P they compute

the surface normal n. Then a circular slice around n with the geodesic radius

r is computed. A surface normal n‘ can be determined at every point on this

circle. θ angles between the n and all n‘ are obtained. By using splashes, a 3D

surface can be described. They also stated that the computation of curvature

requires a higher order derivative than the tangent. For a curvature based

scheme, the signal to noise ratio is lower than for a tangent(or surface normal)

based scheme. In 1997, Chua and Jarvis [27] introduced the Point Signature

method to describe a 3D shape. They used a sphere to crop a 3D shape at a

point P . Then a number of contour points are produced. The surface normal

and normal plane also can be calculated at the point P . Distances d from the

contour of points to the normal plane are computed starting from a certain

position along a clockwise direction. d and the angle θ of the clockwise rota-

tion together can be used to describe a 3D surface within a sphere. Rather

than only use the contour points cropped by a sphere, Xu et al. [93] computed
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Figure 3.2: P and its neighbouring point within two spheres.

the distances d of all points to the normal plane at the center point P within

a sphere. Then the central and second statistical moments - mean and the

deviations of these d are computed. A 3D surface patch cropped by a sphere

is described using these two moments. Inspired by the above approaches, in

this thesis, the moments of the local shape characteristics - angles related to

the surface normal are used to describe a 3D surface. We provide a novel

method to describe the convex or concave degree of 3D local shape within a

given sphere but related to a number of shells.

3.2.1 Multi Contour Surface Angle Moments Descrip-

tor

For a point P in a 3D point cloud, itself and its neighbouring points Pi to-

gether forms a 3D surface as shown in figure 3.2. By finding all the points Pi

with the length of edge Pi − P approximately equal to the radius r, point P

and those Pi create a 1−ring mesh. Then the angle between Pi − P and the
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vertex normal Np can be calculated by using the following equation:

θ = arccos (
(Pi − P ) ·Np

|Pi − P ||Np| ) (3.1)

where Np is the vertex normal of point P , θ is the angle between the vertex

normal Np and the edge Pi − P , r is the radius of a sphere. θ is between

0o ∼ 180o

After the θ of all farthest neighbouring points are calculated, each point P

has one of the farthest neighbouring point set PF (P ) = {P1, P2, ..., Pn} and

one angle set θ(P ) = {θ1, θ2, ..., θn}(n is the number of farthest neighbouring

point). By calculating the mean θ using equation 3.2, we can find out how

convex or concave the mesh surface is. For instance, if the mean θi of all those

farthest neighbouring points is greater than 90o, this surface within a sphere

of radius r can be considered as a convex surface. When the mean of θi is less

than 90o,the surface will be a concave one.

mean(θ) =
1

n

n∑
i=1

θi (3.2)

The calculation of θ requires the direction of vertex normal at a point P . As

mentioned by Xu et al. [93], this method has a very large computational load

on localizing the neighbouring points. The computational cost of this method

is O(n2) (n is the total number of points) distance calculations of all points.

As most 3D face databases such as the FRGC 3D face dataset are captured by

a structured light sensor, all the points of a face have an ordered index. Thus

it is easy to find all the neighbouring points Pi of a particular point P in terms

of the vertical and horizontal relationship between those points. Therefore, we

can use an approximate algorithm to simplify the computation. For example,
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Figure 3.3: P and neighbouring points Pi consist of a 1-ring mesh.

as shown in figure 3.3, P has 24 neighbouring points within a 5×5 grid. We can

use point P and its farthest neighbouring points (the outermost circle of grid)

to create a 1-ring mesh. The cost of computation is reduced to O(nm) where

m is the number of neighbouring points of the point - Pi. This approximate

algorithm may cause a scale problem because different faces contain different

numbers of points, but it is possible to solve this problem by training faces

with different numbers of points.

According to the comparison of algorithms for vertex normal computation

made by Jin et al. [47], the mean weighted equally algorithm (MWE) is the

fastest one and it works well in most cases. Therefore, MWE is used for the

calculation of the vertex normal. Equation 3.3 is used by Jin et al. to calculate

the vertex normal by using MWE algorithm.
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NMWE‖
n∑

i=1

Ni (3.3)

where the summation is over all n triangle faces adjacent to the point P . The

‘‖’ makes implicit the normalization steps.

Figure 3.4: The distribution of points according to mean(θ) and STD(θ), red

points are nose tip and their neighbouring points (within a sphere), blue points

are the other points.

However, mean θ above is not enough to describe the subtlety of 3D shape.

Therefore, we use the two statistical attributes: mean and standard deviation

(calculated by equation 3.4) of θ to simply represent the shape within a sphere.

By using these two features as a 2D space coordinates, the 3D local surface

is projected into this 2D space. Moreover, only two attributes probably will

lose a lot of information. The various situation of the clothes and hair in the

FRGC dataset sometimes may cause unexpected points to have similar mean
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Figure 3.5: An example of different grid sizes.

value and STD of θ to an expected local facial feature. As shown in figure 3.4,

we can see the distribution of the nose tip points and its neighbouring points.

Although the nose tip points are clustered together, there are still other non-

nose points mixed among them.

σ2 =
1

n

n∑
i=1

(θi − θ)2 (3.4)

Ankerst et al. [9] introduced 3D shape histograms as an intuitive and powerful

similarity model for 3D object. Among three technique for decomposing the

3D information, they suggested a multi-shell model. The 3D surface/shape is

decomposed into concentric shells around the center point which is particularly

independent from a rotation of the objects. Any rotation of an object around

the center point results in the same histogram. Inspired by M. Ankerst’s work,

we introduce more circles to calculate mean and deviation of angles. Those

two kinds of attributes are used with more than one different grid size as

shown in figure 3.5 to create a Multi Contour Surface Angle Moments De-

scriptor(MCSAMD).
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Figure 3.6: The 3D surface is separated by several shells around a point.

This MCSAMD descriptor depends on the order of points. When the orienta-

tion of the head varies, the order of points will change. Therefore, MCSAMD

descriptor is not a complete orientation invariant method to describe a 3D

surface.

3.2.2 Multi Shell Surface Angle Moments Descriptor

If we use spheres to replace the grid circles in MCSAMD, another similar

descriptor is created. Every point between two spheres is used to compute

the mean and standard deviation of θ shown in figure 3.2. According to the

reasons mentioned above, only one pair of standard deviation and mean value

is not enough to describe the shape of a 3D surface and further to precisely

classify them. Thus, increasing the number of spheres to produce more shells

between spheres is a simple solution. An example of this new descriptor called

Multi Shell Descriptor(MSSAMD) is shown in figure 3.6.
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Given the surface normal Np at point p shown in figure 3.2, the θi represents

the angle between Np and PPi, where Pi is one neighbouring point of point

P . Each ‘shell’ has its standard deviation and mean value of the angles of

the points located in its range. Therefore, a 3D surface is described by this

MSSAMD including two vectors:

[std1, std2, ..., stdn] (3.5a)

[mean1,mean2, ..., meann] (3.5b)

Since it is difficult to give the neighbouring points a particular order by using

MSSAMD, the MSE algorithm can not be used. Xu et al. [93] and Romero et

al. [77] use similar methods to compute the third eigenvector of the covariance

matrix as the direction of the normal on point P . Given point p(x, y, z) as the

center of a sphere and its neighbouring points pi(xi, yi, zi) inside the sphere,

the covariance matrix of point p is:

C =
1

n

n∑
i=1

(pi −m)(pi −m)T (3.6)

CV = DV (3.7)

where m is the mean vector of all points, V is the matrix of eigenvectors and

D is the matrix of eigenvalues.

Since the p(x, y, z) is a three dimensional vector, by means of PCA three eigen-

vectors can be obtained and each of them represents three directions which are

orthogonal to each other. According to the definition of PCA, the correspond-

ing eigenvalues of these three eigenvector show the degree of data distribution.

Since the shape of face is a barrel like shape, when we use a sphere to cut a piece

of 3D surface, the corresponding eigenvalue of the surface normal direction will
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be the least of three eigenvalues. This has been confirmed by reviewing 943

faces in the training set of FRGC database. Figure 3.7 shows the histogram of

the ratios of height/width, height/depth, width/depth at the nose tip where

is the most prominent place of the face(r = 25mm). We can find the values

of the height and the width of a certain face are both greater than its depth.

Thus, the eigenvector corresponding with the smallest eigenvalue is the surface

normal at point p.

Figure 3.7: Histogram of the ratio between height, width and depth at nose tip

cropped by a sphere r = 25mm(943 faces of 275 individuals).

3.2.3 Summary

So far, we have proposed two 3D surface descriptors. Theoretically, MCSAMD

has a lower cost of computation - O(nm) than MSSAMD - O(n2). Moreover,

when using most 3D data acquisition devices (for example: the structured light

sensor Minolta Vivid 900/910 series used in FRGC database), the depth data
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are captured with a structured grid order. Some particular shapes, for instance,

the shape at a high slope point may cause the distance between neighbouring

points to be too large to be included in one of the shells of MSSAMD. Thus,

the MSSAMD will lose the ability to describe the information of shape at this

place, while MCSAMD makes sure that all neighbouring points are included.

This may cause differences in accuracy of the feature localization. However,

since MCSAMD depends on the structure order, the same shape with different

orientations may result in slight differences in MCSAMD. On the contrary, the

MSSAMD is an orientation/pose invariant descriptor. It is difficult to judge

which one is better at this stage. Therefore, two descriptors are both used and

evaluated in the feature localization experiments.

3.3 k-Nearest Neighbour AURA Algorithm

Facial features can be considered as small pieces of surface. Those small pieces

of surface can be described by 3D shape/surface descriptors introduced in pre-

vious section. To localize a facial feature, the shape descriptor of a feature has

to be selected as a standard model. The most similar shape within a face to

the standard model is the most likely position of this facial feature. A face

point-cloud may contain thousands of points and a face database usually con-

sists of thousands of faces. Thus, a high effective pattern storage and pattern

retrieval method is required. In this chapter, we use a binary neutral network

technique (k-Nearest Neighbour AURA algorithm) to measure the similarity

between the query shape and the standard feature model.
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3.3.1 AURA

Advanced Uncertain Reasoning Architecture (AURA) is a set of methods based

on binary neural networks in the form of correlation matrix memories (CMMs)

for high performance pattern matching [10]. Correlation Matrix Memories

(CMMs) are a form of static associative memories. Kohonen [54]first intro-

duced the idea of correlation matrix memories in 1972 and made the pioneering

contribution together with Anderson [8]. AURA has two ways to implement a

neutral network: software and hardware. Implementation of AURA on hard-

ware can significantly increase the speed of pattern recognition. In this thesis,

we only use the AURA in software.

CMMs learn and store the associations between input patterns P and outputs

O, which have to be transformed to a binary vector. The input and output

patterns are involved in the training of an initially empty binary matrix M .

During training, the values within M are only changed to ‘1’ where both input

and output vectors are set according to the Hebbian learning introduced in

1949 [40]. The training of M is presented as the following equation.

M =
∨

P T O (3.8)

P : input pattern (a row vector of binary elements); O: output pattern; M :

Correlation Matrix memory;
∨

is logical OR. Figure 3.8 shows an example of

CMM training process.

After training, the recall operation returns a summed integer output vector

V , then can be thresholded to be a binary vector. If I is the input vector for

recall operation, then (following equation):
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Figure 3.8: Example of training a CMM. When both of the bit of the input and

output vectors are ‘1’, a connection of corresponding position in matrix will be

set.

V = MIT (3.9)

The most important characteristic of CMM based systems is that each train-

ing/learning operation is quite simple only requiring the binary encoding and

bits setting of a binary matrix. Training time for very large dataset is dramat-

ically reduced in comparison to other networks such as MLPs which need to

train all other patterns at the same time when the new associations are trained.

In order to apply AURA technique, input patterns have to be quantized and

converted into binary values. The simplest way to transform decimal values

into binary values is to divide the possible range of the decimal value of an

attribute into several parts called bins, then a binary bit is set to ‘1’ on the

basis of which bin the actual value belongs to.
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In this thesis, we chose 40 3D faces in the Spring2003 subset of the FRGC

database as the training group. Nose tips of section one have been manually

marked by Romero et al. [77]. Thus, by using the MCSAMD method intro-

duced in section 2, the input pattern of the nose tip can be divided into 2× n

attributes (n: the number of grid circles). The ranges of each attribute are

divided into ten bins. The decimal values of each attribute is converted into

binary value depending on which bin a decimal value belongs to.

Figure 3.9: Convert a decimal value into a binary value. When the decimal

value is located in bin2, then responding bit of the binary vector will be set to

‘1’.

For example, if the range of an attribute decimal value is from ‘1’ to ‘11’ and

there are ten bins with same width of ‘1’, a value of ‘4.5’ is located in the bin

of ‘4’ to ‘5’ which is the second left bin. Thus, the binary value of a decimal

value ‘4.5’ will be ‘0001000000’. Figure 3.9 shows the decimal - binary con-

version. The width of a bin can be decided according to the distribution of
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data. In this thesis, we simply choose the bin width by using the range of data

(equation 3.10).

WIDTHbins =
max(value)−min(value)

n
(3.10)

After all the values of the four attributes have been converted into four 10-bit

binary values, an input vector can be generated by concatenating all binary

attributes together as shown in following Figure 3.10.

Figure 3.10: Several attributes combine to be an input vector.

CMM necessitates both input and output vectors. In this system, the training

process stores the binary attributes value into a column of the matrix. There-

fore, the output vector is designed as the sequence number of the faces in the

training group (as shown in figure 3.11).

Figure 3.11: Output vector represents the sequence of training faces.

As shown in Figure 3.12, the training process is to store the nose tips one by

one until all the training faces have been saved in the matrix.
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Figure 3.12: Store the each image into a column one by one.

3.3.2 AURA matching by using k-Nearest Neighbour

algorithm

In the recall or query phase, the query pattern is measured and then feature

attributes are generated. In the way same as the encoding procedure of the

training images, a binary query input vector is produced. However, a diffi-

culty of the quantization method is the boundary effect. Since there are clear

boundaries between bins, a decimal value will only belong to one bin. Thus,

the distance between two values within the same bin may be greater than the

distance of two values in two neighbouring bins. For example, two boundaries

are set at ‘2.00’ and ‘4.00’. ‘2.01’ belongs to the same bin of ‘3.99’. However,

it is clear that ‘2.01’ is much closer to ‘1.99’ which is in the prior bin than the

gap from ‘2.01’ to ‘3.99’. In order to compensate for that situation, Hodge et

al. [44] developed a binary Neural k-Nearest Neighbour technique called Inte-
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ger Pyramid in 2005.

The input attributes are concatenated to form the input vector, with one bit

set per attribute. This is used during the training phase to store data in the

CMM. However, during recall the Integer Pyramid technique replaces the sin-

gle bits set in the query vector, each with a ‘triangular kernel’ of integer values

arranged so that the maximum value of a kernel is located where the set bit

was, and adjacent zero bits are replaced with smaller integers, decreasing uni-

formly. This vector of integers then forms the input to the CMM, with the

response V calculated in the same way as before.

Figure 3.13: An example of CMM recall with kernel weighted inputs.

This use of kernels gives a maximum value in V for the stored vector that

has been most closely corresponding to the query vector. Vectors that do not

match exactly will have a reduced but non-zero response to each query bit.
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This gives a more gradual decrease in response for non-matching vector than in

the original CMM application. Knowing what the maximum response should

be, we convert the reduction in response to a vector of ‘distances’ of the query

from the stored vectors. With the triangular kernel described, the distance

approximates the quantized City Block Distance. An example of this use of

kernels is shown in figure 3.13.

The Integer Pyramid technique was later improved using a parabolic ker-

nel [44] to approximate the quantized squared Euclidean distance. For one

stored vector, the distance is:

d2
E =

∑

∀f
(xf − x′f )

2 (3.11)

where d2
E is the squared Euclidean distance, xf is the query attribute value

and x′f is the stored value for attribute f .

To calculate this distance using a CMM, the parabolic kernel weight values are

calculated as in the equation below. For the attribute f and bin k, with the

original set bin in bin t:

Wf,k = (
n∗

2
)2 − (t− k)2αf (3.12)

αf =
n∗2

n2
f

where n∗ is the maximum number of bins for any attribute and nf is the num-

ber of bins for the attribute f . af is to ensure the spread of the kernel for

all attributes within the CMM input vector. Figure 3.14 shows the parabolic

shape weight values.
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Figure 3.14: The weight values of the CMMs are set to be analogous to parabolic

shape which describe the distance from the central bin.

By using the parabolic kernel Integer Pyramid technique, the output V con-

tains scores ranked by Euclidean distance. These can be used as a similarity

score vector for each query, so V = {v1, v2, ..., vp} is the similarity with each of

the training nose tips. max(V ) tells the level of similarity that a query pattern

has to at least one nose tip of the training group.

3.4 Nose tip localization hierarchical method-

ology

In [77], Romero et al. manually marked eleven facial features including nose

tip and eye corners. We place those nose tip landmarks as the center of a grid

with two different sizes (empirically choose the fifth circle(9×9) and the ninth

circle(17× 17)) to generate the MCSAMD attributes. Each point P has four
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attributes - the mean and standard derivation of θ within 17 × 17 and 9 × 9

grid. The reason why choose two circles is to verify the benefit that extra

information from the second circle provides.

In order to create a MSSAMD descriptor suitable for nose tip detection, the

maximum radius of the farthest sphere is defined as 25mm simply because it

is the approximately range from a nose tip to its edges. Using different width

of a shell and the number of shells can change the ability of a MSSAMD to

describe a piece of 3D shape. In this thesis, we simply used 5mm to be the

width of a shell because we have to make sure there are enough points existing

in every shell area. As a result, there are totally five shells.

By implementing the binary encoding method introduced in section 3, those

attributes in MSSAMD or MCSAMD are converted into binary vectors then

stored into the CMM. After the training process, the attributes of the points

of the target faces are also calculated and encoded with AURA k-NN weights.

We define the three following steps to reduce the number of candidate points

for the nose tip in a particular image:

Step one: For a point Pi, the attributes of MCSAMD or MSSAMD are matched

with the features stored in the AURA. By using a k-NN AURA matching al-

gorithm, a similarity score vector V is generated. V contains the similarity

scores to all features from different subjects stored in AURA. The highest sim-

ilarity score S = max(V ) is chosen as the final similarity score for this point

Pi. Then by simply defining a threshold Tnose, any candidate with a similarity

score below Tnose is deleted from the candidates list. This step can significantly
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Figure 3.15: Yellow grids represents the projection of 3D point to 2D space;

blue circles means the candidates using similarity score filter; red points are

results of applying density filter, the white square is the final selection of nose

tip.
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narrow down the range of candidate points.

Step two: There are usually some other points left in the candidate list such

as those in the hair, clothes or chin areas that cannot be eliminated in step

one. However, most of those exceptional points are scattered and the points

around the actual nose tip always get a relatively high similarity score. There-

fore, we can locate the correct nose tip cluster by calculating the number of

the candidates within a certain range. The cluster with the highest density of

candidate points is chosen as the nose tip candidate cluster.

Step three: After the nose tip cluster is selected, the candidate with the high-

est similarity score inside this cluster is considered as the final choice.

If we implement this methodology in nose tip detection, figure 3.15 shows an

example of how a final nose tip selection is made. In figure 3.16 , the work

flow of the nose tip localization steps is illustrated.
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Figure 3.16: The work flow of nose tip localization.

3.5 Medial Canthi Detection

In the training set of MCSAMD, not only are the four MCSAMD attributes

of each nose tip stored in the CMM of AURA system, but the corresponding
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MCSAMD attributes of the two medial Canthi(inside eye corners) are also

encoded into binary vectors and stored in the CMM. We also know the dis-

tances between the nose tip and each of the eye corners are limited within

some ranges. Dne1 is the distance between the nose tip and the left eye inside

corner. Dne2 is the distance between the nose tip and another eye corner. Dee

represents the distance between two eye corners. Each of those three distances

within the training set can be used as a limitation. Dne1 and Dne2 should

approximately equal each other and the ratio of (Dne1 + Dne2)/Dee should be

in some limited range. Those relationships can be converted into binary input

attributes and stored in CMM. In the eye corner identification, we choose two

neighbouring grid sizes N ×N(N = 9, 7).

As with the nose tip localization, we evaluate the similarity score to the stored

eye corners of each neighbouring grid centered at a point P by using MCSAMD

and AURA k-NN techniques. After deleting the points with lower similarity

scores than a threshold Teye, a number of candidate points are considered as

potential eye corner points. However, only this filter is not enough. The po-

tential eye corner points are still mixed with some noise points.

The nose tip, left inside eye corner and right inside eye corner forms a triangle.

The number of triangles formed by potential eye corners and nose tips is very

large. Thus, we continue to reduce the number of candidates by using the rela-

tionship between nose and eyes stored in CMM. Another score Srel is designed

to represent the degree that a combination of the nose tip and two eye corners

is similar to the relationships of trained combinations. The candidate with the

highest Srel is our final selection(red points shown in figure 3.17). However,

in some 3D faces, there is a crevice near the eyebrow which is not easy to fix
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Figure 3.17: Yellow grid represents the projection of 3D points to 2D space;

blue/green circles shows the eye corner candidates, using similarity score filter;

red points are final choices for eye corners, the red square is the final selection

of nose tip; ‘*’ symbols represent the manually selected landmarks.
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in the preprocessing steps. That could cause the wrong selection of the eye

corner(an example is shown in figure 3.18).

Figure 3.18: The crevice near the eyebrow is so close to the real eye corner

that the selection of the potential eye corner is seriously affected.
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3.6 Experimental results

3.6.1 Database

In this chapter, the FRGC dataset is chosen as the experimental database.

The FRGC 3D dataset has three subsets. The Spring2003 subset is the 3D

training set that contains 3D scans, and controlled and uncontrolled still im-

ages from 943 subject sessions. In Fall2003 and Spring2004 subsets which are

designed as target subsets, there are 4,007 subject sessions of 466 subjects.

Each subject session has a 3D scan file containing 3D points and a 2D still

image file representing texture information.

The original size file is the high resolution face image. The resolution of faces

in the FRGC dataset is 640× 480. In order to reduce the cost of computation

in data processing, we resize the 3D channel file to a smaller size. We choose

160 × 120 as the downsized resolution because it is able to keep the balance

between details and cost of computation. It has enough details to evaluate the

localization of facial features. The resized 3D files are smoothed to delete the

spikes and to fill in the unexpected holes by using a similar technique to that

proposed by Mian et al. [63]. Firstly, we remove spikes from the face surface

by locating outlier points. For a particular point p in the FRGC database, it

has eight connected neighbouring points as shown in figure 3.19. Any point

whose distance(red line in figure 3.19) is greater than a certain threshold d

from any of its neighbouring points will be considered as a spike point. d is

defined using d = µ+0.6σ, where µ is the mean distance between neighbouring

points(green lines in figure 3.19) and σ is the standard deviation. The holes

caused by the removal of spike points can be filled by using cubic interpolation.
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Figure 3.19: A point p with its eight connected neighbouring points. Green

lines are distances between neighbouring points. Red lines are distances from

p to its neighbouring points.

Most of the faces in this subset are captured under controlled illumination with

neutral expressions. 40 3D faces are selected from the Spring2003 subset as the

training set. Those 40 faces are from 40 individuals including different races,

genders and numbers of points. 4007 faces from the Fall2003 subset and the

Spring2004 subset are used as test groups. Since there are 139 faces with very

poor 2D-3D corresponding, 3868 faces having good 2D-3D correspondence are

selected to more precisely evaluate the performance.

Since there are all neutral expression faces in the training group and the tar-

get group includes faces with expressions, expression variations may affect

the feature localization . In order to evaluate the effect of expression to fea-

ture localization, we separated the FRGC v2 dataset(Fall2003 subset and the

Spring2004 subset) into two groups: neutral faces and faces with expressions

according to the selections used in [74]. The first group contains 2128 neutral

faces and the second group has 1740 faces with expressions. The details of

those subsets are listed in table 3.1.
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Groups Descriptor Number of face images

I All faces 4007

II Good corresponding between 2D and 3D channels 3868

III Neutral faces 2128

IV Non-neutral faces 1740

Table 3.1: Different selections of face subsets.

3.6.2 Nose tip and eye-corners localization results using

MCSAMD

Thanks to the work of benchmark datasets made by Romero et al [77], we

can use those landmarks to evaluate our experimental results. We used the

methodology introduced in the previous section based on MCSAMD to localize

nose tip and two eye-corners. Figure 3.20 shows how the detection rates of nose

tip and two eye-corners changes as the allowable error distance is increased.

The localization results of those three features are also shown in a histogram

in Figure 3.21 using the following standards:

Good :≤ 12mm

Poor :≥ 12mm& ≤ 24mm

Failure :≥ 24mm

20mm is the approximate width of the nose and the error distance that we are

using is in 3D, so we choose 24mm as a threshold to determine the success or

failure in feature localization. Any error distance larger than this value will

be considered as a failure. An error distance below the half of this value is

considered as a successful detection.
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Since the landmarks are marked on 2D faces and there are some poor 2D-3D

correspondences in the FRGC database, the error distance does not completely

represent the accuracy of the localization. Therefore, we verified the FRGC

database manually to remove the faces with bad correspondence in 2D and

3D. Figures 3.22 and 3.23 show the results on the good 2D-3D correspon-

dence dataset by applying MCSAMD on nose tip and eye corners localization.

Although faces in Fall2003 and Spring2004 subsets present facial expression

variations, over 99.69% of nose tips are successfully located. Identification

rates of left and right eye corners are 96.41% and 96.80% respectively.

Figure 3.20: Cumulative Curves of error distance for the feature identification

on Fall2003 and Spring2004 subsets before 2D-3D correspondence verification.
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Figure 3.21: Histogram of the identification frequency on Fall2003 and

Spring2004 subsets before 2D-3D correspondence verification.

Figure 3.22: Cumulative Curves of error distance curve for the feature identi-

fication on Fall2003 and Spring2004 subsets after 2D-3D correspondence ver-

ification.
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Figure 3.23: Histogram of the identification frequency on Fall2003 and

Spring2004 subsets after 2D-3D correspondence verification.

3.6.3 Nose tip localization results comparison between

MCSAMD and MSSAMD

The figure 3.24 shows the comparison of MCSAMD and MSSAMD in the

nose tip localization. Although the system using MCSAMD has a little bit

higher accuracy in good and poor(acceptable) detections than the system us-

ing MSSAMD, the MSSAMD system has fewer failure detections shown in the

histogram of figure 3.24. When compared with ground truth data, the mean

error distance of MCSAMD and MSSAMD are 3.8574mm and 4.7174mm re-

spectively. When the faces with bad 2D-3D correspondence are removed from

the experimental list, the number of detection failure using MSSAMD becomes

zero while the MCSAMD system still has eleven detection failure shown in fig-

ure 3.25. Table 3.2 summaries the differences between two descriptors.
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Figure 3.24: Results comparison between MSSAMD and MCSAMD with all

faces in FRGC v2 dataset.

Figure 3.25: Results comparison between MSSAMD and MCSAMD with good

2D-3D correspondence faces.
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MSSAMD MCSAMD

Detection rate on FRGC v2 99.78% 99.48%

Detection rate on FRGC v2 with good

2D-3D corresponding

100% 99.72%

Average error distance 4.7174mm 3.8574mm

Orientation invariant Yes Partial

Cost of computation O(n2) O(nm)(m ¿ n)

Table 3.2: Comparison between MSSAMD and MCSAMD.

Figure 3.26: A face without nose.

In the FRGC v2 database, for some unknown reasons, actually two faces have

no noses at all. Figure 3.26 shows an example of one of them. By manual

reviewing the results of MSSAMD nose tip detection, in 4007 faces, only those

two faces have incorrect nose tip detections. The detection rate of the nose

tip localization on FRGC v2 database is actually 99.95%. Furthermore, even

in those two noseless faces, the detected position of the nose tip by applying

MSSAMD is close to the nose and the center of the face, shown in figure 3.27.
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Figure 3.27: Nose localization on two noseless faces; red squares are the posi-

tions of nose tip detected.
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3.6.4 The effect of expression variations on nose tip lo-

calization results

Figure 3.28: Error distance curves for the feature identification on neutral and

non-neutral faces.

Expression variations could lower the performance of the feature localization

because only neutral faces are used in training process. Figure 3.28 and 3.29

show the performance of the nose tip localization on neutral faces and non-

neutral faces. We can see from these figures that the effect of expression

variations is very slight. The performance of neutral faces and non-neutral

faces are very close to each other. One reason why expression variations do

not cause a drop of performance is because the nose is a facial feature which

does not vary when the expression changes.
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Figure 3.29: Histogram of the identification frequency on neutral and non-

neutral faces.

3.6.5 Comparison with state-of-the-art techniques

Unlike some techniques making use of the texture information in the 2D face

detection, this approach is a pure 3D shape analysis which is naturally in-

variant to illumination variations. It is also an orientation-invariant method.

In order to compare with approaches using all faces in FRGC database in-

cluding v1 and v2 datasets, the nose tip localization is also implemented on

FRGC v1 database, the nose tip detection rate is 100% on 943 faces. Thus the

nose tip detection of whole FRGC database is 99.96%(2 failures out of 4950).

Compared with results using other state-of-the-art techniques, the MSSAMD

achieved the highest detection rate of the nose tip localization, shown in ta-

ble 3.3.
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MSSAMD Segundo [80] Faltemier [35] Pears [70] Mian [63]

Detection rate

on FRGC v2

(4007 faces)

99.95% 99.95% 98.20% n/a n/a

Detection rate

on FRGC

v1&v2 (4950

faces)

99.96% n/a n/a n/a 98.3%

Detection rate

on FRGC in

good 2D-3D

corresponding

100%

(totally

3868

faces)

n/a n/a 99.92%

(totally

3680

faces)

n/a

Compare with

ground truth

data

Yes No No Yes No

Orientation in-

variant

Yes Partial Yes Yes Partial

Table 3.3: Details in comparison with state-of-the-art techniques.

3.7 Conclusions

This chapter presented a method based on two 3D surface descriptors and

AURA k-NN algorithm to identify and localize facial features, especially the

nose tip. The MCSAMD has slight higher accuracy in nose tip detection, but

the MSSAMD got more correct or acceptable detection. For a database with

orientation variations and other noise, such as FRGC v2, the MSSAMD is

more suited to a face detection system because it is a complete pose-invariant

approach and it obtains a zero failure rate in the nose tip localization.
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Eye-corner identification is not as good as for nose tips, probably because the

eye corner shape is relatively more complex than the nose tip. Moreover, un-

like nose, the eye corners of faces from different individuals have less similar

shapes. That increases variations of eye corner. When collecting the training

data, the unstable manual selection could also make the situation more diffi-

cult.

A 99.95% identification rate of the nose tip localization in a large dataset(FRGC

v2) with expression variations demonstrated the robustness and effectiveness of

this method. If we use the results of the nose tip localization using MSSAMD

to detect and crop the main face area, all faces can be used in the following

task. Even the noseless faces still can be used because the nose tip position

which is automatically detected is very close to the actual position of the nose

tip. That means there is no loss in the nose detection/face detection stage. It

builds a good foundation for face detection, segmentation and further recog-

nition.
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Chapter 4

Face Localization and

Alignment

4.1 Introduction

In order to implement 3D face recognition, firstly we need to know where the

main face area is, especially when the 3D face surface includes face, hair, cloth-

ing and other noise caused by objects surrounding the face. If the main face

area can be found, the face area then can be cropped from the original 3D sur-

face to reduce the effect of noise and other non-face factors. A sphere around

the nose tip can be defined to crop the face area. Thus we can make use of

the results in the nose tip detection in the previous chapter to implement the

face detection task. However, even when the main face area is localized, the

head orientations of different faces in a large face database vary. The head ori-

entation variations could lower the performance of the face recognition. Thus,

an effective face alignment is required to correct the poses of all faces. A face

alignment method implemented for the face recognition task is required to

handle expression variations and noise situations. Furthermore, faces belong-
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ing to the same individual should be in a consistent pose.

Mian et al. [64] used a Principle Component Analysis (PCA) based algorithm

to correct the pose variations. Three principle components are used as the x, y

and z-coordinates of the point cloud of a face. However the noise (for example

hair), surface loss and distortion of a face will affect the performance of this

method. Another solution is ICP-based face alignment. Faltemier et al. [35]

proposed a method for curvature and shape index based nose tip detection

to localize the position of the nose tip and then align the whole input image

to a template using the ICP algorithm. Kakadiaris et al. [50] implemented a

multistage alignment method including three algorithmic steps: Spin-images

based alignment, ICP-based alignment and Simulated Annealing on Z-Buffers

alignment. However, both of these approaches used the whole face area dur-

ing their alignments. The expression variations could affect the results of

alignment by using the whole area of the input images. Other ICP-based ap-

proaches [60] [92] attempted to solve the expression problems by only using

the less malleable face area such as areas around nose and eyes. Although

using the least affected areas is theoretically robust to expression variations,

it is based on an assumption that the localization of the nose tip is extremely

accurate and 100% correct, which is normally difficult to obtain.

In order to provide an accurate 3D face alignment method, especially one that

is able to align the faces of the same subject into a consistent form, in this

chapter we propose an integrated improved ICP-based face alignment approach

to correct 3D face images. The whole face alignment procedure has four phases

as following:
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1. Crop the main face area by using a sphere with its center at the nose tip

which is detected as in the previous chapter.

2. Align all cropped faces according to its PCA coordinates.

3. Make use of the symmetric character of the face to implement the alignment

especially along y and z-axis.

4. Align faces to a standard face template by using ICP algorithm to optimize

the alignment along x-axis.

4.2 Face localization

A 3D human face is not a rigid body. Emotional variations generate different

expressions. People’s appearances are different under different facial expres-

sions. That means that the 3D face surface will change. Therefore, we have to

find which part of the face will remain rigid under different expressions. That

may require localizing other facial features such as mouth, eyes and forehead

etc. However, to the best of our knowledge, the best techniques to localize

facial features except the nose can not guarantee 100% accuracy. On the other

hand, the face region around the nose is the most constant area because there

is only one facial action unit related to the nose region [39]. A facial action

unit is the basic measurement unit defined in the Facial Action Coding System

(FACS), which is a system to categorize human facial expressions, originally

developed by Paul Ekman in 1976 [34]. In FACS, all anatomical facial expres-

sions are decomposed into some facial action units. The following table 4.1

shows the number of facial action units related to the major parts of the hu-

man face.
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Nose Forehead Eyes Checks Mouth/Lips Chin

Facial action units 1 > 2 > 5 > 5 > 15 > 5

Table 4.1: The number of facial action units related to major parts of human

face.

A possible solution for face localization is to roughly correct the position of the

face by applying Principle Component Analysis (PCA). Since we have already

acquired the position of the nose tip, we can extract the face region above

the nose tip to avoid the expression variations. The next step is to use ICP

(Iterative Closest Point) to align the face to a standard position and then to

separate the expression-invariant area of the face. However, even after the

face localization step, there are still some parts of the hair being cropped into

the main face area due to some hair styles. Consequently, a further alignment

tuning process is necessary to improve the accuracy of the alignment.

Figure 4.1: Left figure is the original face; right side is the cropped face using

a sphere r = 100mm; the center of sphere is at the nose tip.

In the previous chapter, the nose tip has been successfully identified and lo-
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calized. The nose tip is in the center of the face. Thus, using the nose tip as

the center of a sphere, the main face area can be extracted from the original

image. According to many face processing works [64] [74] [35], spheres with

radius of 80−100mm are used. In this thesis, 100mm is selected as the radius

of this sphere to crop face in order to keep as much detail as possible. An

example is shown in figure 4.1.

4.3 Face pose correction based on Principle

Component Analysis

On the basis of results acquired in the section 4.2, the face shape appears as

a 3D shape that has the most convex point at its center - the nose tip. The

other parts of the face are very close to a cropped piece of barrel surface as

shown in figure 4.2. The length of c is shorter than the length of a and b and

the length of b is longer than the length of a. That fact has been illuminated

by A. Mian et al [64] and L. Zhang et al. [96].

Figure 4.2: a,b and c are the width, height and depth of the 3D face surface.
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Figure 4.3: The distribution along the depth direction is the smallest one. The

distribution along the height direction is the largest among three directions.

Thereupon, according to the distribution information of points such as a,b

and c, the top three largest principle components can be used as x, y and z

coordinates axes. Then the pose of all faces theoretically can be aligned into

a consistent coordinate system. Firstly, let pi(xi, yi, zi) 1 ≤ i ≤ n represent

a point within a face surface S, which has n points. Taking m as the mean

vector of all pi:

m =
1

n

n∑
i=1

pi (4.1)

Then the covariance matrix C can be given by:

C =
1

n

n∑
i=1

(pi −m)(pi −m)T (4.2)

By performing PCA on the covariance matrix C, a matrix V of eigenvectors

and a diagonal matrix D of eigenvalues are given by:

CV = DV (4.3)

Then three eigenvalues λ1 ≥ λ2 ≥ λ3 and three corresponding eigenvectors

ν1, ν2 and ν3 can be computed. Due to the particular shape of the cropped
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Figure 4.4: Examples of faces after the PCA alignment.

face, the smallest distribution of the point cloud of a face is along the normal

direction of the face surface. Figure 4.3 shows the histogram of the ratio be-

tween height, width and depth. Consequently, the eigenvector ν3 represents

the normal direction and the ν1 and ν2 are the vertical and horizontal dimen-

sion directions. By means of PCA, the matrix V is also a rotation matrix to

convert the coordinates of S to be its principal axes:

Snew = V (S −m) (4.4)

Figure 4.4 shows some faces after the PCA alignment. Most faces are at a
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Figure 4.5: A misalignment example due to hair style.

Figure 4.6: A misalignment example due to surface loss.

good front view position. However, some faces are not correctly aligned. From

those misaligned faces, we can see that the asymmetric shape produced by

different hair styles (an example is shown in figure 4.5) is one reason for the

misalignment. In some cases (an example is shown in figure 4.6), surface loss

at some positions will cause misalignment. Additionally, distortion of the face

(an example in figure 4.7) also will affect the accuracy of the face alignment.

Due to those failures in PCA alignment, a further alignment method is re-

quired to improve the performance.
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Figure 4.7: A misalignment example due to surface distortion.

4.4 Face alignment based on the symmetry of

human face using ICP algorithm

4.4.1 The Iterative Closest Point(ICP) Algorithm

Recently, the ICP algorithm has been used to align the faces by many state-

of-the-art face recognition approaches [60] [92] [35]. The iterative closest point

algorithm algorithm (ICP) is widely used for geometric alignment of 3D mod-

els. ICP is a method to fit a target cloud of points to another cloud of points

which constitute a model image. The whole idea of ICP is to minimize the

sum of square error between target points and the model points, then esti-

mate an appropriate transformation to align the target points to the model

points. Besel et al. [14] proposed the first ICP algorithm and proved that the

ICP algorithm always converges monotonically to the nearest local minimum

of a mean-square distance metric. The smallest distances between each point

in the target image and the points of model image are calculated to form a

rotation matrix. This procedure is repeated until the squared error distance of

the points of the target image to their closest points in the model image falls

below a preset threshold. The complete procedure of ICP algorithm is shown
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in figure 4.8.

Figure 4.8: The procedure of ICP alogrithm.

Since the introduction of ICP by Besl et al. [14], there have been many vari-

ants of the ICP algorithm based on different selection and matching of points

to the minimization strategy. These variants of ICP result in different ac-

curacy and performance of convergence [78]. In the following parts of this

section, we will propose an accurate face alignment algorithm based on the

symmetry of the human face using ICP algorithm. In this thesis, we ignore
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the differences of these variants of ICP algorithms. We only use the basic

concept and algorithms of ICP first proposed by Besl et al [14] to produce a

baseline performance. Appendix B shows the details of Besl’s ICP algorithm.

If the face alignment based on this algorithm can satisfy the requirement for

face alignment and the following face recognition tasks, using another more

efficient variant of ICP algorithms or other range image registration methods

such as GA/SIM [82] will also be practicable and could further increase the

accuracy and speed of the ICP alignment process.

4.4.2 Face alignment based on the symmetry of the hu-

man face

As mentioned in section 4.3, PCA-based face alignment is not capable of han-

dling surface loss, hair styles and distortion problems. Moreover, if the au-

tomatic localized position of the nose tip is not at the exact position of the

nose tip, the symmetry of the cropped face area could be affected. And thus

the PCA-based face alignment could produce slightly inaccurate results. An

example is shown in figure 4.9. We can see from this figure that the inaccuracy

in nose tip localization makes the cropped face area slight asymmetric. And

the asymmetry results in misalignment after PCA-based face alignment.

On the other hand, the human face can be considered as a symmetric surface

along the OY Z plane as shown in figure 4.10. There are several methods mak-

ing use of the symmetry of human face to implement face authentication or

registration. Inspired by [12], [96] and [68], face alignment based on the Itera-

tive Closest Point(ICP) algorithm can be optimized by utilizing the symmetry
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Figure 4.9: An example of misalignment caused by inaccurate nose tip local-

ization. The small red square is the position of automatic localized nose tip.

The left side of the face has slightly more number of points. The PCA-based

face alignment method is thus affected by the asymmetry.

of the face. However, in their implementation they only located a symmetry

plane of the face and did not consider the effect of expression variations.

If there is a target face: F = (Xt, Yt, Zt), we can define a mirror face as the

model face M :

M = Fmirror = (−1 ·Xt, Yt, Zt) (4.5)

By applying the ICP algorithm, the target face can rotate to fit the model

face if the mirror face is used as the model face. The rotation matrix and

the transformation matrix can be calculated and obtained. According to the

fundamentals of computer graphics [37], every 3D rotation is a composition of

three rotations about the x-axis, y-axis and z-axis:
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Figure 4.10: Human face is a symmetric surface about OY Z plane.

R = Ry(θ) ·Rx(α) ·Rz(β) (4.6)

Where:

Ry(θ) =




cos(θ) 0 − sin(θ) 0

0 1 0 0

sin(θ) 0 cos(θ) 0

0 0 0 1




Rx(α) =




1 0 0 0

0 cos(α) sin(α) 0

0 − sin(α) cos(α) 0

0 0 0 1
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Rz(β) =




cos(β) sin(β) 0 0

− sin(β) cos(α) 0 0

0 0 1 0

0 0 0 1




Since the model face is the mirror face of the target face along the oyz plane,

the rotation angle α along the x-axis is equal to zero and there are two rota-

tions left as shown in figure 4.11. If the target face is rotated by angle θ
2

along

the y-axis and angel β
2

along the z-axis, the aligned face is at the desired front

view pose as shown in figure 4.12.

Figure 4.11: Rotations along y-axis(left figure) and z-axis(right figure) from

the target face to model face(mirror face).

Then, we can use this part of the face as the target model to fit the mirror face.

After applying the ICP algorithm between the target model and the mirror

model, a rotation matrix R and a transformation matrix T can be calculated.

Given the rotation matrix:
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Figure 4.12: The target face is aligned to a perfect front view position according

to the θ and β generated by applying ICP to rotate target face to model face

(mirror face).

R =




r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44




According to the above equations, we can calculate:

r23 = sin(α) (4.7a)

r13 = − sin(θ) cos(α) (4.7b)

r21 = − sin(β) cos(α) (4.7c)

Thus, we can calculate the three angles α, θ and β respectively:

α = arcsin(r23) (4.8a)

θ = arcsin(−r13/ cos(α)) (4.8b)

β = arcsin(−r21/ cos(α)) (4.8c)

103



As we already know that the model face is the x mirror of the target face, the

rotation along x-axis is almost equal to zero. The composite rotation is mainly

formed by rotations about the y-axis and z-axis. If there is a rotation defined

as follows:

αnew = 0 (4.9a)

θnew =
θ

2
(4.9b)

βnew =
β

2
(4.9c)

The translation matrix T = [tx, ty, tz] can be calculated by applying ICP algo-

rithm. Then the new transformation matrix can be created as:

Tnew = [
tx
2

, 0, 0] (4.10)

Then we can apply the rotation according to the new rotation matrix Rnew and

the transformation matrix Tnew. The target face is aligned to a new position

by applying the rotation:

Fnew = Rnew · F + Tnew (4.11)

Even when the automatic localized position of the nose tip has a certain dis-

tance to the real nose tip that is exactly on the symmetry plane, the error

distance along x-axis of the nose tip to the real position is neutralized because

of the calculation of tx
2

as shown in figure 4.13. Thus, another effect of this

rotation is that the error distance of the automatically localized nose tip posi-

tion along x-axis is further reduced towards zero.
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Figure 4.13: The position of the nose tip is further corrected by implementing

[ tx
2
, 0, 0] as the transformation matrix.
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Figure 4.14: Red region is involved in the symmetric alignment because This

region is the most expression-invariant area.

Facial expression variations could generate some asymmetric shapes, which

will affect the mirror face alignment. However, according to the table 4.1,

most facial expressions occur in the area near the mouth and the facial region

around the nose tip is the area least affected by expression variations. Con-

sequently we can use a sphere around the nose tip to crop a piece of the face

surface as a relatively expression-invariant and symmetric area. Additionally

hair also may affect the symmetry of this area. Thus we choose 45mm as the

radius of this sphere to avoid the effect of hair and keep the symmetry of this

area as shown in figure 4.14. The whole procedure is shown in figure 4.15. The

target face is only rotated to half of the rotation angles to the mirror model.

Since the face is a symmetrical surface, the position of the target face after

this rotation is exactly the front view position.

Finally, implementing the face alignment using the symmetry of human face

has two outcomes:
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Figure 4.15: Black face is the target face; green face is the mirror face about

OYZ plane; red face is the face after applying alignment of symmetric algo-

rithm.
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1. Error distance of the localized nose tip position along the x-axis is reduced

towards zero.

2. Face misalignments along the y-axis and z-axis are minimized.

4.4.3 ICP face alignment using expression-invariant re-

gions

After face alignment based on the symmetry of the human face, the misalign-

ment along the x-axis is still not aligned and there is still an error in the

automatic localized position of the nose tip along the y-axis and z-axis. On

the other hand, human faces share relatively similar facial features and struc-

ture. So it is possible to align a face to another face by adjusting its rotation

to a standard position. Figure 4.16 shows as an example that two faces are

fitted together by using ICP algorithm. If the slight imprecision of the align-

ment caused by the variations of facial expression is temporarily ignored, the

faces from the same individual share a common shape. Thus, when those faces

are fitted to a standard face template which is from another individual, their

alignments will appear very close to being the same. Every facial feature is

aligned to almost the same position. That result also can be used to further

improve the accuracy of the nose tip detection. Since faces belonging to the

same person share more elements in common than faces from different indi-

viduals, the facial features, especially the nose tip, if they are from the same

people, will be corrected to similar positions. Shown in figure 4.17, three faces

are aligned to a standard face which belongs to a different person. Each of

them has a very closely aligned position.
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Figure 4.16: Face one(red) can be fitted to a face templet(black) by applying

ICP alignment.

Figure 4.17: Three faces from the same individual show close positions after

applying ICP alignment to fit each of them to a standard face template respec-

tively.
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Figure 4.18: When apply the ICP algorithm, only the points within the red

region of the target model are used.

In order to reduce the number of misalignments caused by expressions, it

is required that the parts of the face insensitive to expressions are used in

the alignment. In face alignment based on the symmetry of the face, the

misalignments along y and z-axis have been minimized. As a result, we can

define a region shown in figure 4.18 Only points near the nose tip and above

the eyes (within a sphere r = 70mm to reduce the effect of hair) are used in

the ICP alignment just because the nose, eyes and the forehead regions are

the least affected by expressions in 3D shapes. In some cases, because of the

error of the nose tip position, the target face area may exceed the range of

template face if we use the same size to crop the expression-invariant area to

apply ICP. Therefore, the expression-invariant region cropped in the standard

face template is slightly (radius=75mm) larger than the corresponding region

of the target face to avoid unexpected incorrect results.

However, such a region which is on the upper face could be affected by hair

110



Figure 4.19: The hair could damage the symmetry of the shape in expression-

invariant region. The hair noise also could affect the results of ICP-based

alignment.

noise as shown as in figure 4.19. Hair style variations may cause asymmetric

shapes. Fortunately, we have aligned the face according to the symmetry of the

face. The shape of a face especially in the expression-invariant region should

be a symmetric shape. So, the z value of a certain point should equal its

corresponding point(with the same y value and −x value) on the mirror side.

Consequently, the hair can be detected by finding the much larger z values (by

defining a threshold) compared to the corresponding points of the mirror side

of the face. Then those points are removed before applying the ICP algorithm

in case those points affect the alignment.

Unlike other face alignment approaches [60] [92] [35] based on the ICP algo-

rithm, which used the whole composite rotation matrix to rotate the target

face, we only use the information about rotation along the x-axis to align the

target face. Given a composite rotation matrix generated by the ICP algo-
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rithm and equation 4.8a, we can obtain the rotation angles α, θ and β along

the x, y and z-axis. Since we have minimized the misalignments on the y-axis

and z-axis in the face alignment based on the symmetry of the face, here we

only need the α along the x-axis to align the target face. Then the rotation

matrix R can be calculated by using the following equations:

R = Ry(θ) ·Rx(α) ·Rz(β) (4.12)

Where θ = 0 and β = 0, so:

Ry(θ) =




cos(θ) 0 − sin(θ) 0

0 1 0 0

sin(θ) 0 cos(θ) 0

0 0 0 1




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Rz(β) =




cos(β) sin(β) 0 0

− sin(β) cos(α) 0 0

0 0 1 0

0 0 0 1




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Rx(α) =




1 0 0 0

0 cos(α) sin(α) 0

0 − sin(α) cos(α) 0

0 0 0 1




And the transformation matrix T can be computed as:

T = [0, ytemplate, 0] (4.13)

Where ytemplate is the y value of the nose tip of the standard face template.

Then we can implement the composite rotation by using equation 4.11. Fur-
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Figure 4.20: Nose tip re-localization. Green face is the target face and the black

face is the standard face template. Using the y value of the nose tip position

of standard face template and the original x value to locate the new nose tip

position.
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Figure 4.21: Target face is shifted to a new coordinate system. The nose tip is

shifted to the center of the coordinate system.

thermore, after applying ICP alignment, the nose tip of the target face is

re-localized by using the nose tip of the standard face template. The new po-

sition of the nose tip uses the y value of the nose tip position of the standard

face template plus its own x value of the nose tip to find the closest z value

within the target face. Figure 4.20 demonstrates an example of how to imple-

ment nose tip re-localization. This process can further improve the accuracy

of the nose localization, especially the nose position accuracy between faces

belonging to the same individual simply because those face share a similar

shape. After this ICP-based alignment using the expression-invariant region,

all faces are precisely aligned into a desired front view position even along all

of the x, y and z-axis. Defining the re-localized nose tip as the zero point of

the coordinate system, all faces are shifted into the same coordinate system as

shown in figure 4.21.
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4.5 Evaluations

In this thesis, we use FRGC v2 as the experimental database to evaluate the

performance of our face alignment approach. The face images have been down-

sized from 640× 480 to 160× 120. Although the subjects are asked to look at

the camera during the data acquisition procedure and most of the faces show

a front view pose, there are still some faces appearing pose variations. Some

examples are shown in figure 4.22. Also expression variations exist in FRGC

v2 database. Figure 4.23 shows some example of one subject in the FRGC v2

database.

Figure 4.22: Examples of pose variations in FRGC v2 database.

115



Figure 4.23: Examples of expression variations in FRGC v2 database.

After the PCA alignment, about 10% of the 4007 faces appear to have a cer-

tain misalignment. By applying the integrated face alignment approach, no

observable misalignment is found during the manual check. Even the face that

does not have a complete nose achieves a relatively correct alignment as shown

in figure 4.24.

Figure 4.24: Three views of a noseless face. We can found that even a face

without a complete nose can also be aligned by applying our face alignment

approach.

However, it is not easy to compare the performance of our face alignment

method with other state-of-the-art techniques. In this chapter, we try to eval-

uate the in-class and between-class differences of all faces in the FRGC v2

database by comparing different face alignment approaches. We separate the

FRGC v2 face database into two categories: neutral faces (2182 faces) and
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non-neutral faces (1825 faces) to test the performance of correcting face pose

and the ability to handle the expression variations. We classify the current

state-of-the-art techniques into four types and then use the following methods

to simulate those four face alignment techniques.

1. PCA-based face alignment using the whole face area which is introduced in

section 4.3 (a similar method is used in [64]).

2. Face alignment using the ICP algorithm to fit the whole target face to a

standard face template (similar methods are used in [35] [50]).

3. Face alignment using the ICP algorithm to fit a sphere (r=45mm) area

around the nose tip of the target face to a standard face template (a similar

method is used in [92]).

4. Face alignment using the ICP algorithm to fit the expression-invariant area

of the target face to a standard face template (a similar method is used in [60]).

Since the expression-invariant regions of faces belonging to the same people

share similar shapes, we can use the differences of the expression-invariant

region between faces of the same individual to represent how good the face

alignment is. It is also an indicator of the in-class difference. We can calcu-

late the mean squared error distance (MSE) between the corresponding points

within the expression-invariant region of faces belonging to the same indi-

vidual. If a subject has n face images, we will calculate the MSE of every

possible face-face combination. The total number of these combinations is

(n− 1) + (n− 2) + ... + 2 + 1. Then we compute the mean values of the error

distances between the corresponding points (the closest points) of these face-

face combinations by using equation B.18. Table 4.2 shows the in-class MSE

values of different face alignment methods. Our method achieves the smallest
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Methods MSE(Neutral

faces)

MSE(Non-neutral

faces)

Method 1(PCA) 0.5033mm 0.5793mm

Method 2(Whole face) 0.2594mm 0.3327mm

Method 3(Nose) 0.3186mm 0.4358mm

Method 4(Expression-invariant) 0.2729mm 0.3084mm

Our method 0.1940mm 0.2550mm

Table 4.2: Comparison the MSE between faces belonging to the same individual

by using different face alignment approaches in.

in-class MSE values both in neutral faces and non-neutral faces. The cumu-

lative percentages of the in-class MSE of neutral faces and non-neutral faces

using different face alignment methods are shown in figure 4.25 and figure 4.26.

In these figures, we can see that our method outperforms other methods under

neutral expression and even under expression variations.

The MSE evaluation given above tests the in-class differences of these ap-

proaches. On the other hand, we can use the results of the identification ex-

periment based on the results of different alignment approaches to compare the

between-class distinguishing ability. In the FRGC v2 database there are 465

subjects. We select the first face images of each subject as the gallery dataset.

The remaining face images are separated into two datasets: neutral faces and

non-neutral faces. We define two rank-one identification experiments: “first

face vs neutral face” and “first face vs non-neutral face”. In the “first face vs

neutral face” experiment, 1761 neutral faces consist of the test dataset and the

gallery dataset includes all of the first face image (465 faces) of each individual

in FRGC v2 dataset. Each face in the test dataset is matched to every face in
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Figure 4.25: Cumulative percentages of the in-class Mean Squared Error Dis-

tance of neutral faces.

Figure 4.26: Cumulative percentages of the in-class Mean Squared Error Dis-

tance of non-neutral faces.
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Methods firs vs neutral first vs non-neutral

Method 1 27.71% 19.99%

Method 2 63.60% 44.97%

Method 3 47.42% 30.43%

Method 4 53.83% 46.60%

Our approach 96.31% 85.29%

Table 4.3: Comparison of rank-one identification rates.

the gallery dataset. If the match with rank-one similarity is a match between

two faces belonging to the same person, this match is considered as a correct

match, otherwise it is an incorrect one. So there are 1761 × 465 matches. In

the “first face vs non-neutral faces” experiment there are 1781× 465 matches.

To generate the similarity score of a match, we use the mean squared error dis-

tance method to measure the similarity between expression-invariant regions

of two faces. The mean squared error distance method is also used in the ICP-

based face recognition approach [35] [64]. Table 4.3 shows the results of these

two experiments. We find that our approach outperforms the other methods

both in “neutral faces vs neutral faces” and “non-neutral faces vs non-neutral

faces” experiments.

4.6 Conclusions

In this chapter, we proposed an integrated ICP-based approach to align faces

even with expression variations. The first PCA alignment makes it possible to

roughly correct the severe misalignments of faces. Then a face alignment based

on the symmetry of the face minimizes the possibility of misalignments along
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the y and z-axis and reduces the error distance of the automatically localized

nose tip position along x-axis to zero. That makes it possible to precisely ex-

tract an expression-invariant region. After that, a face alignment based on ICP

algorithm using the expression-invariant region produces the rotation angle α

along the x-axis. By rotating that angle α along the x-axis, the face can be

further aligned to a front view position. The position of the nose tip is also

further corrected by using the y value information of the standard face tem-

plate’s nose tip. In the comparison with four state-of-the-art face alignment

techniques, our approach achieves the best performance both in the in-class

and between-class evaluation experiments.

121



Chapter 5

Face Recognition

5.1 Introduction

Face recognition is a very difficult task due to many challenges in face lo-

calization, alignment and matching. Among the FRGC face database re-

lated state-of-the-art techniques, a surface matching (or range image match-

ing/registration) algorithm [64] [35] [74] is frequently used, such as ICP or

SA/SIM. Those approaches both use surface matching to match the nose, eyes

and forehead regions respectively, which are considered as expression-invariant

regions. However, implementing such algorithms is a very time-consuming

task. In particular, in [35] and [74], the surface matching algorithm has been

used in the face alignment stage. In other words, points of the face surface

are reused many times in such algorithms, which causes a low efficiency in the

face recognition system.

In previous chapters, 3D face detection based on nose tip localization and face

alignment using an integrated method have been accomplished. On the basis

of these achievements, in this chapter we will propose a face recognition system
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using a weighted surface matching algorithm based on the shape descriptor -

MSSAMD. Since pose variations of faces have been corrected and aligned in

the previous chapter, there is one challenge left: expression variations. We

attempt to segment the face area into two regions: the expression-invariant re-

gion and the expression-variant region. Inspired by state-of-the-art face recog-

nition approaches [35] [74], which both actually assigned a high weight to the

expression-invariant region in the face recognition stage, we propose an ac-

cumulating weighted face surface matching method. Unlike those approaches

matching different face region by using a surface matching algorithm such

as ICP or SA/SIM, the proposed method compares two face surfaces/shapes

using a simpler method which depends on the pose-invariant ability of the

shape descriptor. Our method does not have a very high computational cost

unlike those methods applying ICP or similar surface registration/matching

algorithm.

The remainder of this chapter consists of the face matching system based on

the shape descriptor in section 5.2, the face segmentation in section 5.3, an

improved accumulating weighted face matching method in section 5.4 and the

hierarchical face verification in section 5.5. Face identification and the face

verification experiments are performed based on the FRGC v2 face database

in section 5.6.
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5.2 Face matching based on the shape descrip-

tor - MSSAMD

In chapter 3, the 3D shape descriptor MSSAMD actually represents the rela-

tionship of a point with its neighboring points. A MSSAMD of a certain point

symbolizes a piece of 3D surface around this point. A 3D face image is a point

cloud with n points, and each of these points can produce a MSSAMD. The

values of MSSAMD of all points constitute a n × m matrix (m is the num-

ber of shells). Since a MSSAMD represents the relationship of neighboring

points around a particular point, the surfaces around those points are over-

lapped together. To compare two faces, corresponding points of each face have

been matched in pairs. The number of pairs of corresponding points which

achieve a correct match is an indicator of similarity. In some face recognition

work [64] [74] [35], researchers made an assumption that 3D face images be-

longing to the same person share similar shapes especially in the region least

affected by expressions. Thus, the more pairs of corresponding points shar-

ing similar MSSAMD that there are, the higher similarity of those two faces is.

Since faces belonging to the same individual share similar shapes, to compare

the difference of two faces, we can simply compare their shapes. In [64] [35],

they used a surface match algorithm such as ICP to match different faces and

then use mean squared error(MSE) to measure the different of two surfaces. If

we also use MSE to compare two faces based on the results of chapter 4 and

implement the identification experiments “first vs neutral” and “first vs non-

neutral”, the identification rates are 96.31% and 85.29% respectively which is

mentioned in section 4.5. The overall rank-one identification rate of all neutral

and non-neutral faces is about 90.77%. Compared with state-of-the-art tech-
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niques [64] [50] [35] [74] which achieved over 95% rank-one identification

rates in the same experiment on the FRGC v2 database, apparently, this per-

formance is not acceptable. The accuracy of the face alignment is not precise

enough for face matching using the MSE measurement. The MSE measure-

ment is too sensitive to the slight misalignment which is difficult to solve in

the face alignment stage. That is also the reason why further surface matching

algorithms are applied to precisely match and measure the difference of two

surfaces in [64] [35] [74].

However, applying these surface matching algorithms are high computational

cost tasks. In this chapter, we attempt to use a face matching method based

on the pose-invariant surface/shape descriptor - MSSAMD to quickly eval-

uate the similarity of two 3D face surfaces. If a 3D face is separated into

numerous overlapped small surface patches, the difference of two faces can be

represented as the number of these patches that have similar shapes to their

corresponding patches in another face. The greater the number of patches

that have similar shapes, the more similar these two faces are. A MSSAMD

shape descriptor contains the information of the relationship of a certain point

with its neighboring points, thus a MSSAMD can be considered to represent

a small piece of 3D surface. Since MSSAMD is a pose-invariant surface/shape

descriptor, the MSSAMD is able to tolerate a small misalignment between two

faces. Although there is a possibility that different shapes generate similar

MSSAMD values, considering that the MSSAMD descriptor is a multi-shell

descriptor(two 1 × 5 vectors) and a face point cloud has a great number of

points, the chance that two faces with different shapes achieve a great num-

ber of points having similar MSSAMDs is very low. When two corresponding

points Pa and Pb from two faces are matched, if they have similar MSSAMD,
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their shapes represented by the MSSAMDs can be considered identical. The

similarity of these two points at this position i can be defined as the distance

between two MSSAMD:

dist =| distance(MSSAMDPa −MSSAMDPb) | (5.1)

If dist is below a certain threshold ε, the shape at this position can be con-

sidered as identical shapes. If we use the same parameters of MSSAMD as

in previous chapters, the radii of the spheres are 5mm, 10mm, 15mm, 20mm

and 25mm. A MSSAMD has five shells, so the mean angle value vector and

the STD angle value vector both have five values: mean angle value vector

m = {m1,m2,m3,m4,m5} and STD angle value vector s = {s1, s2, s3, s4, s5}.
The distance of two MSSAMDs will also have the difference vector of mean

value and the difference vector of STD value. We define two distance vectors

to describe the difference between two MSSAMD: dmean and dstd as shown in

figure 5.1. In order to reduce the effect of noise, two thresholds εm and εs are

defined to filter dmean and dstd. Any match generating a MSSAMD difference

below εm and εs can be considered as a match between two identical 3D sur-

faces. Then the similarity of two faces can be represented by the number of

correct matches between corresponding points. In order to choose the proper

values of these two thresholds, we run a face recognition experiment on the

FRGC v2 database. The gallery dataset is the first face image of each subject,

and the query dataset is the remaining face images in the database. In this

chapter, we temporarily choose εm = 3 and εs = 1.

ndmean is defined to represent the number of values in dmean below threshold εm

and ndstd is the number of dstd below threshold εs. Thus, the range of ndmean
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Algorithm 1 Face Matching Algorithm

Require: Two 3D face surfaces: query face Q and gallery face G;

1: S = 0

2: for each p ∈ Q do

3: compute two vectors m and s of the MSSAMD of p;

4: search the corresponding point p′ in G;

5: compute two vectors m′ and s′ of the MSSAMD of p′;

6: compute the distance vector dmean = |m−m′|;
7: compute the distance vector dstd = |s− s′|;
8: ndmean = 0

9: for dmi ∈ dmean do

10: if dmi < εm then

11: ndmean + +;

12: end if

13: end for

14: ndstd = 0;

15: for dsi ∈ dstd do

16: if dsi < εs then

17: ndstd + +;

18: end if

19: end for

20: if ndmean < tm and ndstd < ts then

21: S + +;

22: end if

23: end for
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Figure 5.1: s and m are the two vectors of the MSSAMD of a point p, and s’

and m’ are the two vectors of the MSSAMD of the corresponding point p’.

and ndstd is [1 ∼ 5]. Since the region affected by expression variations may

affect the MSSAMD of points at the edge of the expression invariant region,

we define two distinguish/tolerate thresholds tm and ts to adjust the ability to

tolerate noises and the degree to distinguish shapes from different persons. In

particular the hair and expressions could also affect the values of MSSAMD at

some positions. A face matching algorithm is required to provide enough infor-

mation to distinguish faces from different individuals. And in the meantime,

the face matching algorithm also should have the ability to tolerate the slight

differences or noise between the faces belonging to the same person. Therefore,

it is necessary to adjust these two thresholds properly to keep the balance of

noise-tolerance and ability to distinguish. Two shapes will be considered to

match when dmean and dstd both are below their corresponding thresholds tm

and ts. Experimentally, we found the combination of tm = 3 and ts = 3 is a

suitable choice for FRGC v2 database. We define M as the result of a match
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Range

Max(x) 58.88mm ∼ 95.42mm

Min(x) −59.12mm ∼ −95.19mm

Max(y) 85.69mm ∼ 131.511mm

Min(y) −48.19mm ∼ −91.32mm

Table 5.1: The range of x and y in FRGC v2 database.

between two corresponding points. If M of a correct match is set to ‘1’ and M
of an incorrect match is set to ‘0’, then the overall similarity score S between

two faces can be defined as the sum of M:

S =
n∑

i=1

(Mi) (5.2)

Where n is number of points of the query face.

The computational complexity to match two faces by using this algorithm is

O(mn), where n is the number of points of gallery face and m is the number

of points of query face. Since more than thousands of faces may be involved in

face recognition experiments, there is a very high requirement of face matching

efficiency. For example, a 4007 faces vs 4007 faces experiment will generate

16, 056, 049 calculations of similarity score. If the computational time of a

single match is about one second, the overall time to complete the whole ex-

periment will be more than 185 days which is infeasible both for experiments

and the real world system. In order to reduce the complexity of computation,

the positions for matching need to be pre-processed. Thus, a group of sam-

pling positions are used to preset the corresponding position.

Each face image may be a different resolution, so the density and number of
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Figure 5.2: Green region is the area of a face; Red points are the sampling

positions.

the points representing a certain size of 3D face are different. Table 5.1 shows

the range of maximum/minimum values along ox and oy directions of all faces

in FRGC v2 database. The sampling positions used in this thesis are shown

in figure 5.2. By measuring the downsized FRGC v2 database, the range of

number of points for each face is from 2157 to 6162. The range of values along

ox direction is from 121.51mm to 186.23mm and the range of values along oy

direction is from 153.89mm to 198.03mm. The density of points on the oxy

plane can be calculated: from 4.39mm2 to 11.22mm2 per point, so the range

of the interval between points is from 2.09mm to 3.35mm. In order to keep as

much information as possible, 2mm is therefore chosen as the interval of the

sampling position on both oy and oy directions to cover the highest density.

Since there is not always a point existing exactly at the sampling position,
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the closest point to the sampling position is selected to provide its MSSAMD

values. However, if the distance from the closest point to a sampling position

is too large, this sampling position will be marked as a invalid point, because

this position is out of the range of the face. If we define N as the number of

valid points, the similarity score S therefore is modified to:

S =

∑N
i=1(Mi)

N
(5.3)

In order to evaluate the improvement of our algorithm from MSE method used

in ICP approaches, we can compare the distance between the within-class and

between-class similarity scores in the ’all vs all’ experiment by using MSE and

our algorithm. Every face in the FRGC v2 database matches with every other

faces. Matches between faces belonging to the same subject are within-class

matches. The within-class similarity score represent the similarity of faces

belonging to the same subject. Matches between faces belonging to different

subjects will generate between-class scores. The between-class similarity score

is an indicator to show the difference between two different subject. We can

see in figure 5.3 that a part of the distribution of within-class and between-

class MSE scores overlaps together. On the other hand, as shown in figure 5.4,

the histograms of within-class and between-class similarity scores using our

algorithm show that the overlapped part is smaller. Compared with the MSE

method used in ICP approaches, our method has better ability to enlarge

the difference between subjects. We also can use the Fisher’s [36] method to

compute the separation between two distributions which is the ratio of the

between-class variance to the within-class variance by using equation 5.4.

J =
|m1 −m1|2

s2
1 + s2

2

(5.4)

Where m represents a mean, s2 represents a variance, and the subscripts de-
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note the two classes.

The J values generated by using MSE and our algorithm are 1.543 and 2.744

respectively. These results also show the separation of the between-class and

within-class score by using our algorithm is larger than the separation of the

MSE method.
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Figure 5.3: The histograms of the within-class and between-class MSE scores

in ’all vs all’ experiment.
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Figure 5.4: The histograms of the within-class and between-class similarity

scores by using our algorithm in ’all vs all’ experiment.
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5.3 Face Segmentation

Without the texture information, pure 3D face does not have the illumination

problem which is a difficult problem in 2D face recognition. This is an advan-

tage of 3D face recognition. However, the most difficult challenge in 3D face

recognition is how to deal with the variations of facial expression. Consider-

ing what has been achieved in previous chapters, one possible solution is to

precisely segment the face to find and match regions which are not affected

by expression variations. According to what has been discussed in the chapter

of face alignment, the upper face including nose and forehead are the regions

least affected by different expressions and can be called expression invariant

regions. The rest of the face appears surface changes to various degrees when

expressions are produced. So, an accurate face segmentation is necessary be-

fore face matching is performed.

After the successful face detection and alignment in previous chapters, the

nose tip has been localized and main face region has been cropped. All faces

have been aligned to a certain position according to its shape. Since we use

a sphere r = 100mm to crop the main face area, the projection of the 3D

face onto xoy plane is a circle r = 100mm. Every 3D point can be projected

onto the xoy plane. The projection of the nose tip on the xoy plane is set to

be the origin of the coordinate system. Currently a very precise eye corner

detection has not been achieved, an alternative way has to be used to find the

expression invariant region which is related to the positions of eyes. If we use a

neutral face as the template face and calculate the z error of the corresponding

position between template face and other faces belonging to the same person,

different z error values are related to different positions or regions. Since the
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pose variations have already been corrected in previous chapters, there are

only expression variations existing in the FRGC v2 data. Thus, these z error

values can be considered as an indicator to represent the expression-invariant

levels of different positions. Then we calculate within-class z error values of

all subjects in FRGC v2 database. A figure can be created to show differ-

ent expression-variations levels at different positions by using the Root Mean

Square Error(RMSE) of these values. As shown in figure 5.5, different colors

represent different ranges of RMSE values (red < blue < green < magenta),

so we can see that the red region around nose, eye and forehead is the most

expression-invariant region.

Figure 5.5: Different colors represent different ranges of RMSE values. Red

region has less RMSE values than blue region, (Red: 0 ∼ 1.5mm; Blue: 1.5 ∼
3mm; Green: 3 ∼ 5mm; Magenta: 5mm ∼ ∞). The black lines show the

borders of expression-invariant region.
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According to figure 5.5 and by measuring the ground truth data of the FRGC

v1 [77], 30mm can be selected as the distance from the nose tip to the bottom

of the eyes along the oy direction and 20mm is chosen as the width of the nose.

As a result, the expression invariant region can be defined as the rectangular

area around the nose plus the area above the bottom of eyes as shown in fig-

ure 5.6. Mian et al. [64] used a similar way to segment the expression-invariant

area. This region which is marked red in figure 5.6 keeps relatively constant

no matter what expression is produced. Thus this expression invariant region

can be granted more weight in face recognition than other regions.

Figure 5.6: Red region is the region lest affected by expression variations; green

square is the position of nose tip.

5.4 Accumulating weighted face matching

According to table 4.1 in chapter 4, areas near the nose, eye and forehead

have different numbers of facial action units(FAU). The region near the nose

has the highest tolerance to expression variations because there is only one

FAU within this region. Therefore, even in the expression-invariant region

segmented in the previous section, different positions should have different
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expression-invariant abilities. In some state-of-the-art face recognition ap-

proaches [35] [74], these differences have been emphasized in different ways

according to their expression-invariant abilities.

Figure 5.7: Red square is the weight value at the nose tip; different positions

have different values according to [35].

In [35], Faltermier et al. defined 38 regions on the face and eventually chose 28

regions as the best committee of local regions for maximum results. Table 5.2

shows the parameters of the locations of those regions. Based on the sampling

positions created in the previous section, every time that a sampling position

is used in a committee region, ‘1’ is added to the weight value of this position.

After then, according to table 5.2, we can count how many times a sampling

position is used. Finally, we can accumulate and create a vector to represent

the weight of sampling positions on the whole face. If we use a circle to

represent a face’s projection on the xoy plane, z indicates the weight value.

This weight vector is illustrated in figure 5.7. From figure 5.7, we can see that

the region around the nose has been used the most times can be considered as

a weight. Weight values at different position vary according to their distances

to the nose region.
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Region x(mm) y(mm) Radius(mm) Region x(mm) y(mm) Radius(mm)

1 0 10 25 15 40 10 45

2 0 10 35 16 0 30 40

3 0 10 45 17 0 30 35

4 0 0 25 18 0 30 45

5 0 0 45 19 0 40 40

6 0 −10 25 20 0 40 35

7 0 40 45 21 0 20 45

8 0 20 35 22 −15 30 35

9 15 30 35 23 −30 20 45

10 −40 30 45 24 40 30 45

11 −20 0 25 25 30 40 45

12 −15 15 45 26 −30 40 45

13 −40 10 45 27 0 60 35

14 15 15 45 28 30 20 45

Table 5.2: The definition of regions used in [35].

Queirolo et al. [74] segmented the whole face into several regions: nose circle,

nose ellipse, upper head and a region including nose square and forehead. Af-

ter accumulating all regions together, the weight vector can be generated and

shown in figure 5.8. We find that the region around the nose has been used

five times, the forehead has been used three times and the cheek regions have

been used two times, the mouth region only has been used once. Once again

the nose region is the most important region which obtains the highest weight

value. Both of [74] and [35] actually emphasize the region least effected by

expressions while the face matching is being performed.
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Figure 5.8: Weight values of different positions according to the segmentation

in [74].

Segmentation method Ours Faltermier et al. Queirolo et al.

Identification rate 97.63% 95.71% 96.78%

Table 5.3: Identification results by using different segmentation methods.

In this thesis, on the basis of face segmentation in [35] and [74], we separate

the whole face into two main regions shown in figure 5.6. In the upper region

which is considered as expression invariant region, the weight of each point

depends on its distance to the nose tip. To reduce the complexity and create a

simple model, we use several steps to represent the differences of distance. we

define the radii as 10mm, 20, 30, 40, 50, 60, 70 to compute the weight values

for each point respectively as shown in figure 5.9. By summing all regions to-

gether, the closer a certain position is to the nose tip, the higher weight value

it will receive. A weight vector w of all positions can be created. The relation-

ship of weight values and the distance to nose tip is shown in figure 5.10. By

using our method to segment the face when performing face recognition exper-

iments, a slightly better performance can be obtained when compared to the

results using methods to segment the face in [35] and [74]. Table 5.3 shows the

“first vs other” identification experiment by using three segmentation methods.
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Figure 5.9: Several circles with different colors segment the expression invari-

ant region. Weight values of each circle region decrease when the distance to

the nose tip increases.

Figure 5.10: Points have different weight values according to their distances to

nose tip in the region lest suffered from expressions.

To combine the similarity score of different regions, Faltemier et al. [35] and

Lu et al. [60] used a sum rule to fuse difference measures. Chang et al. [26]
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used both sum rule and product rule in combination. Kittler et al. [53] proved

that the sum rule fusion is more resilient to errors than the product rule in

combination classifiers. Our accumulating weight method actually is a sum

of the number of times that each region is involved in face matching. Every

sampling position belonging to one of those regions receives a weight ‘1’. In

a match between two faces, the similarity score at a certain position on the

xoy plane will be set to ‘1’ if these two shapes at this position are consid-

ered identical, otherwise the score will be set ‘0’. Then we obtain a similarity

vector s containing positions of all points in a particular region. To imple-

ment 3D face identification, we only need to calculate the number of positions

being considered to have identical shapes. Then the similarity score S can

be calculated by equation 5.3. The weight values are applied when the num-

ber of identical sampling positions is counted. Equation 5.3 will be modified as:

S =

∑N
i=1(wi · Mi)

N
(5.5)

Where N is the number of valid points of the query face.

Table 5.4 shows the results when different regions are independently used in

face matching and the results by applying accumulating weight in face match-

ing. After the weight vector is applied in the face matching, the identification

rate is improved by about 3.4%.

Other works [74] and [35] employed surface alignment algorithms such as

the Iterative closest point algorithm (ICP) or Simulated annealing (SA) to

match regions they segmented. However most of these regions are overlapped

together. To implement a face match, a point may be used many times in
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Region: Identification rate

Full face 93.68%

Expression invariant region 94.24%

Accumulating weight applied 97.63%

Table 5.4: Rank-one identification rates of “first vs other” experiment by using

full face, expression-invariant region only and full face applying accumulating

weight respectively

computation. On the other hand, points are only used once in our method.

When we need a region to match, we just apply the weight vector to emphasize

the necessary part of the match score vector. Thus, the cost of computation

of our method may be much lower than the methods used in [74] and [35].

5.5 Hierarchical face verification

In verification, a match is considered as a correct one when the matching score

ms is greater than the threshold th. Otherwise, this match will be reported as

incorrect. If the number of matches between different people is N and n is the

incorrect match within N matches, which means its similarity score is greater

than the threshold th, the FAR of this match can be computed as:

FAR =
n

N
(5.6)

The threshold th can be calculated according to a certain FAR. If we define

the total number of matches between faces belonging to the same individual

as M , the number of matches with a matching score above threshold th can

be computed. If we define m as the number of matches above th, then the
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verification rate V is calculated as:

V =
m

M
(5.7)

By employing the accumulating weighted face matching in verification exper-

iments, a verification rate of 96.35% at 0.1% FAR is obtained in the “neutral

vs neutral” experiment. Inspired by the method used in [74], we also use

a hierarchical evaluation model to pursue higher verification rates. Firstly,

the whole face region is segmented into several parts including nose circle,

nose rectangle, upper face, expression invariant region and the accumulating

weighted face shown in figure 5.11. Each step of evaluation is to access the

match of one region. As shown in figure 5.12, two faces are reported as iden-

tical if any step of evaluation generates a positive result.

When a particular FAR is required, we only need to tune the threshold thi of

each region. If we tuned the matches of all regions under a certain FAR, the

overall FAR is:

FAR =

∑k
i=1 ni∑k
i=1 Ni

(5.8)

Where k is the number of regions.

The overall verification rate V at this FAR will be:

V =

∑k
i=1 mi∑k
i=1 Mi

(5.9)

Where k is the number of regions.

Since Ni equal to each other and the FARs of matches of each region have

been tuned to a certain value, the overall combined FAR will be the same
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Figure 5.11: From left to right of first row: two nose regions; from left to right

of second row: expression invariant region and accumulating weighted face;

from left to right of third row:upper face and full face.
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Figure 5.12: Steps to evaluate and combine matches of different regions.
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Region Verification

Full face (F) 96.35%

Upper face (U) 95.06%

Weighted region (W) 96.18%

Expression invariant region (E) 92.32%

Nose circle (N2) 95.26%

Nose rectangle (N1) 89.38%

Table 5.5: Verification rates at 0.1% FAR for different regions.

Region combined Verification

N1 89.38%

N1 + N2 96.04%

N1 + N2 + E 97.97%

N1 + N2 + E + W 98.44%

N1 + N2 + E + W + U 98.95%

N1 + N2 + E + W + U + F 99.36%

Table 5.6: Verification rates at 0.1% FAR for different region combinations.

value. For example, if the FAR of every match of different regions is 0.1%,

the overall FAR is also equal to 0.1%. A similar method is also used in [35]

to fuse the match scores of all regions/sub-regions. In this thesis, if regions

are matched separately, the verification rates at 0.1% FAR are listed in table

5.5. By implementing the hierarchical face verification model in the “neutral

vs neutral experiment”, when we start to combine the result of each region

together one by one, the performance can be increased step by step as shown

in table 5.6. The best performance 99.36% at FAR 0.1% is obtained when all

regions are combined together.
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Figure 5.13: Examples of faces with poor image quality.

5.6 Experiments results

In this thesis, FRGC v2 database is used as the experiment database. This

database has 4007 3D face images from 466 individuals [72]. Each individual

has several images with different expressions including neutral, sad, happy,

angry, surprised and puffy cheek. However, there are 56 subjects which have

only one image per person. In order to conveniently use the results of previous

chapters for face detection and face alignment, the resolution of 3D image is

160 × 120, downsized from 640 × 480 to be the same size as used in previous

chapters. In the FRGC v2 database, the quality of some face images is very

poor. Some faces appear to have distortion in the mouth or forehead region

due to the sudden head movement during the data-acquisition process; some

face images do not have noses. Holes near mouth, eyes and eyebrows could also

affect the face recognition performance. Examples of these faces with quality

problems are shown in figure 5.13. Thus, based on the selections of faces in

[74], the entire FRGC v2 database can be divided into several datasets. Each

dataset has different level of difficulty according to noise and expression con-

ditions. Table 5.7 shows the description of these datasets.
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Dataset Description Number

1 All neutral face images in excellent quality 933

2 All face images other than dataset1 3074

3 All neutral face images in various qualities 2182

4 All non-neutral face images in various quali-

ties

1825

5 All face images in the database 4007

Table 5.7: Datasets for different levels of difficulties.

In this thesis, two kinds of experiments are performed to evaluate our tech-

nique. The first type of experiment is defined as a number of face identification

experiments which concentrate on the rank-one identification rate. The second

type of experiment is the face verification experiment in which the experiments’

results are quoted as a verification rate at a certain FAR.

5.6.1 Experiment 1:Identification

We define three comparison groups of face identification experiments and each

contains several face identification experiments. The first group is to com-

pare the performance under a perfect controlled environment(using neutral and

noiseless faces) and the performance under uncontrolled environments (using

faces with expressions and various image qualities). The second comparison

is to evaluate the effect of expression variations in face identification experi-

ments. The third group is designed to simulate the performance of a real face

identification system which contains multiple face images for each subject in

the gallery dataset.
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Set Gallery Query

1 First neutral and noiseless face image

(248 faces)

Neutral and noiseless faces

(685 faces)

2 First neutral face image (248 faces) All remaining faces (3759

faces)

Table 5.8: Gallery and query datasets for each identification experiment sets

of the first comparison group.

5.6.1.1 Face image quality effect

In the first comparison group, the gallery dataset includes 248 faces correspond-

ing to the same number individuals. The remaining neutral and noiseless face

images described in table 5.7 and all remaining face images with various qual-

ities are used as the query datasets in the first comparison group. Table 5.8

shows the details of gallery and query datasets. The first set of gallery and

query faces is designed to test the ability to find a face with a similar shape

to the query face in the gallery dataset under a perfect environment. The

query dataset has 685 remaining faces with neutral expression in dataset 1 in

table 5.7. The second set is to verify whether the uncontrolled environment

such as expressions and noise could affect the identification results. The gallery

group of this set is the same as the first set, but the query group includes all re-

maining faces with various expressions and noise levels(3759 faces) to simulate

a real system. The Cumulative Match Curve(CMC) is shown in figure 5.14.

We can see from figure 5.14, that image quality and expressions could affect

the performance of the face identification system. Using neutral faces with a

good face image quality, a rank-one identification of 100% is achieved. Affected

by various qualities and expression variations, the identification rate is lowered

to 98.21%.
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Figure 5.14: Rank-one identification rate for “Neutral&noiseless first vs Neu-

tral&noiseless” and “Neutral&noiseless first vs remaining”.

5.6.1.2 Effect of expression variations

In the second comparison group of face identification experiments, three sets of

gallery and query datasets are classified to express the different ability to han-

dle expression variations and the noise. These gallery and query classifications

are listed in table 5.9. In this comparison group, all of the first face images of

465 subjects are used as the gallery dataset. The remaining faces in neutral

faces and non-neutral faces are used as the query datasets respectively. The

third combination of gallery and query datasets is to simulate the real world

identification system. The query dataset contains the remaining faces (3542

faces) in the whole FRGC v2 database. Rank-one identification rates of these

experiments are presented in table 5.10. CMC curves of these experiments are

151



Set Gallery Query

1 First faces of each individual(465faces) Neutral faces(1761 faces)

2 First faces of each individual(465faces) Non-neutral faces(1781 faces)

3 First faces of each individual(465faces) All remaining faces(3542 faces)

Table 5.9: Gallery and query datasets for each identification experiment sets

of the second comparison group.

shown figure 5.15. From the figure 5.15, we can discover that the experiment of

neutral expression faces achieves the highest result and the facial expressions

could affect the performance of face identification.

Figure 5.15: Rank-one identification rates for datasets with different levels of

expression variations in the second comparison group.
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Experiment Identification rate

First vs neutral others 99.38%

First vs non-neutral others 95.90%

First vs others 97.63%

Table 5.10: Rank-one identification rate of different datasets of the second

comparison group.

Set Gallery Query

1 Neutral&noiseless faces (933 faces) Neutral&noiseless faces (933

faces)

2 Neutral faces (2182 faces) Neutral faces (2182 faces)

3 Non-neutral faces (1825 faces) Non-neutral faces (1825 faces)

4 Fall2003 (1893 faces) Spring2004 (2114 faces)

5 All faces (4007 faces) All faces (4007 faces)

Table 5.11: Gallery and query datasets for each identification experiment sets

in the third comparison group.

5.6.1.3 Simulations of real systems

The third comparison group is to simulate the different situations of the real

face identification system. There are five face identification experiments in

this group. Neutral&noiseless faces, neutral faces, non-neutral faces and all

faces are matched with each face in their own datasets to simulate different

conditions and the different level of difficulties. The fourth experiment set is

recommended by the FRGC [72]. The gallery group was defined as all faces

in fall2003 dataset in FRGC v2 and the query group includes all faces from

spring2004 dataset. The faces from fall2003 datasets are collected earlier

than the spring2004 datasets. The time interval between two datasets makes
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Experiment Identification rate

Neutral&noiseless vs neutral&noiseless 99.70%

Neutral vs Neutral 99.95%

Non-neutral vs non-neutral 95.45%

Fall2003 vs Spring2004 96.02%

All vs all 99.32%

Table 5.12: Rank-one identification rates of the third comparison group.

the experiments more difficult. This is a common situation in a real face recog-

nition system. The table 5.12 shows the rank-one identification rates of these

experiments.

5.6.2 Experiment 2:Verification

This experiment concentrates on the face verification test. It is designed to

assess the possibility that a match between faces belonging to the same indi-

vidual above a threshold under a certain FAR. In this experiment, we designed

five sets of gallery and query datasets shown in table 5.13. In the first set, we

selected a group of faces which have a neutral expression and an excellent im-

age quality to test the ability to match two faces with identical shape under

ideal conditions. The number of faces in this group is 933. This group of faces

is defined as the gallery dataset and the query dataset as well. Thus the total

number of match is 933×933. The second set is designed to test the face verifi-

cation ability to deal with neutral expression but with various image qualities.

The third set is the verification experiment of non-neutral faces with various

image qualities. The gallery and query datasets of the last experiments are all

faces in the FRGC v2 database. This experiment is to simulate the situation
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Set Gallery Query

1 933 neutral expression faces with

excellent quality

933 neutral expression faces with

excellent quality

2 2182 neutral expression faces 2182 neutral expression faces

3 1825 non-neutral expression faces 1825 non-neutral expression faces

4 1893 faces in Fall2003 dataset 2114 faces in Spring2003 dataset

5 All 4007 faces All 4007 faces

Table 5.13: Gallery and query combinations for each verification experiments.

Set 1 2 3 4 5

Faces 933× 933 2182×2182 1825×1825 1893×2114 4007×4007

Matches 870, 489 4, 761, 124 3, 330, 625 4, 001, 802 16, 056, 049

In-class 5, 911 16, 754 11, 177 10, 824 50, 927

Between-

classes

864, 578 4, 744, 370 3319448 3, 990, 978 16, 005, 122

Table 5.14: The number of matches performed in each experiments.

and performance in a real face verification system which includes faces with

various expression and image qualities.

In a verification experiment, every face in query dataset is matched with the

faces in gallery dataset respectively. Thus, the size of the final similarity score

matrix is N × M , while N is the number of faces of gallery and M is the

number of faces of the query group. Table 5.14 shows the number of matches

performed in every set of gallery-query combination.

In those verification experiments, the most computationally complex one is

the “all vs all” experiment, because it has a total 16, 056, 049 matches per-

155



Set Description Verification rate

1 Neutral faces vs neutral faces both in excellent

quality

99.36%

2 Neutral faces vs neutral faces 98.38%

3 Non-neutral faces vs non-neutral faces 89.41%

4 Fall2003 vs spring2004 90.90%

5 All vs all 91.96%

Table 5.15: The verification rates at 0.1% FAR of each experiment.

formed in this experiment. Within those matches, there are 50, 927 matches

performed between the faces belonging to the same person. For the “all vs all”

experiment, a verification rate of 91.96% at 0.1% FAR is achieved. Results at

0.1% FAR of all verification experiments are listed in table 5.15. Figure 5.16

shows the Receiver Operating Characteristic (ROC) curves of experiments of

“neutral faces vs neutral faces”, “non-neutral faces vs non-neutral faces” and

“all vs all”. We can see clearly the effect of expression variations by comparing

these curves. Figure 5.17 presents the ROC curves of “neutral&noiseless faces

vs neutral&noiseless faces”, “fall2003 vs spring2004” and “all vs all”.

5.6.3 Comparison with state of the art face recognition

approaches

Other face recognition researchers have published their results on FRGC v2

database. We thus can compare our results with theirs. However, they used

different selections of the faces in FRGC database. We only can compare the

results using the same or similar selections of faces. There are three experi-

ments in this thesis sharing almost the same gallery-query selections as some
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Figure 5.16: Performance of verification experiment “neutral vs neutral”.

Figure 5.17: Performance of verification experiment fall2003 vs spring2004.
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Method Rank-one identification rate

Chang et al. [21] 91.9%

Cook et al. [30] 92.9%

Mian et al. [64] 96.2%

Kakadiaris et al. [50] 97.0%

Faltemier et al. [35] 97.2%

Queirolo et al. [74] 98.4%

Our performance 97.63%

Table 5.16: The results in “first vs other” identification experiment.

Method Verification rate

Mian et al. [64] 86.6%

Maurer et al. [61] 87.0%

Cook et al. [31] 92.31%

Faltemier et al. [35] 93.2%

Queirolo et al. [74] 96.5%

Our performance 91.96%

Table 5.17: The results in “all vs all” verification experiment.

works. Table 5.16 presents the rank-one of “First vs others” comparison. Ta-

ble 5.17 shows the results of “all vs all” together with some state of the art

methods and table 5.18 provides the comparison of “fall2003 vs spring2004”.

From those tables, we can see in the identification experiments, our result is

97.63%. It is currently the top second result so far. The verification results

are on the average level. However, one major concern of the face recognition is

the computation time of the algorithm. In the face identification experiment,

a query face will compare with a great number of faces in the gallery dataset.
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Method Verification rate

Husken et al. [45] 86.9%

Lin et al. [56] 90.0%

Al-Osaimi et al. [7] 94.1%

Faltemier et al. [35] 94.8%

Queirolo et al. [74] 96.6%

Kakadiaris et al. [50] 97.0%

Our performance 90.90%

Table 5.18: The results in “fall2003 vs spring2004” verification experiment.

The computational cost of such a comparison is very sensitive and important

to a real face identification system. In [74], [64] and [35], they used a ICP

or SA surface alignment/matching algorithms in the face matching procedure.

Using such algorithms makes the recognition a very time-consuming task. In

[74], the average time for two faces is claimed to be about 11 seconds. By

using our methods, the average time of a match between a query face and a

gallery face is about 0.0045 second on the configuration: Matlab R2007a, AMD

Athlon(tm) 64×2 Dual core Processor 4200+ 2.2GHz, 3.0GB of RAM. In the

“First vs others” identification experiment, the time of a query face matching

with 465 gallery faces is about 2 second. Including the time for pre-processing

such as nose detection and face alignment, the total identification time for a

real world system is still feasible and tolerable.
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5.7 Conclusions

This chapter presented a face recognition algorithm based on the pose-invariant

surface/shape descriptor. Our algorithm matches two faces by applying an ac-

cumulating weight to the match between each pair of corresponding points to

emphasize the expression-invariant regions according to the distance to the

nose tip. Rank-one identification rates of over 99.38% are achieved in various

identification experiments on neutral faces, which presents the ability to cor-

rectly identify constant shapes. In the “first vs others” experiment, compared

with state-of-the-art face recognition techniques, our approach achieved a rank-

one identification rate of 97.63%, which is the second best performance based

on FRGC v2 so far. In verification experiments, a verification rate of 98.38% at

0.1% FAR is obtained on neutral faces which is comparable to the best state-

of-the-art techniques. The verification rate on non-neutral faces outperforms

some state-of-the-art techniques but is not as good as some of the best perfor-

mance of those approaches. That indicates that although our algorithm has

an excellent ability to correctly identify faces even under expression-variations,

our algorithm based on shape/surface similarity measurement is to some ex-

tent more sensitive to expression variations. The similar shapes produced by

the same expression(especially the puffy mouth) could generate a high sim-

ilarity score which will lower the performance of verification experiments on

non-neutral faces. Unlike other approaches based on the surface matching al-

gorithm such as ICP and SA/SIM, our method has much lower computational

cost which is very important in the face recognition system.
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Chapter 6

Conclusion and future work

6.1 Progress achieved and contribution of this

thesis

In the beginning of this thesis, we gave an overview of current face recogni-

tion approaches. We reviewed the classical 2D face recognition algorithms and

surveyed a number of state-of-the-art 3D face recognition techniques. The ex-

isting challenges in face recognition especially in 3D face recognition have been

discussed. In the following chapters of this thesis, an automatic 3D face recog-

nition approach has been proposed and implemented including three parts:

face detection, face alignment and face recognition.

6.1.1 Pose-invariant and expression-invariant face de-

tection based on the localization of nose tip

In chapter 3, two 3D face shape/surface descriptors have been introduced.

Through representing 3D shape by statistical attributes with a number of cir-
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cles or shells, the piece of 3D surface at a facial feature position can be stored

and trained in a binary neutral network, the CMM. The localization of the

position of the same feature in another face therefore can be performed by

using a binary k-NN CMM algorithm. Nose tips can be detected by using this

algorithm and an identification rate of about 99.95% has been obtained. If two

noseless faces in FRGC v2 database are not included, the identification rate

is 100%. Even in the noseless faces, the position produced by this automatic

feature localization algorithm is very close to the actual position of the nose

tip. Additionally, this 3D nose tip localization approach is pose and expres-

sion invariant. Compared with other techniques, it gives the best performance

achieved within face recognition work based on the FRGC database. Accurate

face detection can be implemented based on the results of the nose tip localiza-

tion. Even noseless faces may also be correctly detected and cropped because

the position of the nose tip detected is very close to the center of the face.

However, this method only has the ability to localize one nose tip within a 3D

image. If there are two people’s faces appearing in an face image, this method

only can localize one of them, which will result in the neglect of another face.

6.1.2 Integrated expression-invariant face alignment frame-

work

Unlike other work which only uses one face registration or alignment algorithm,

in chapter 4 we proposed and performed a combination of three face alignment

methods. Firstly, we use a PCA alignment algorithms to roughly correct the

pose of faces. Then we correct the position of the nose tip along the ox axis

by analyzing the symmetrical characteristics. The head orientation is also fur-
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ther aligned particularly in oy and ox directions by using the symmetry of the

human face. Finally, we exploited ICP to match the expression-invariant part

of the face to a standard face to correct the head orientation in oz direction.

By implementing this integrated 3D face alignment, all faces are rotated and

aligned to the same coordinate system based on the expression-invariant region

to provide a substantial foundation for face recognition. In the in-class and

between-class evaluations, our method outperforms the simulations of state-

of-the-art ICP-based methods even under expression variations. Our method

emphasizes the importance of the expression-invariant region without depend-

ing on the eye/forehead localization. Using the face symmetry plane extraction

method to segment and localize the expression-invariant region is more reli-

able and precise. Other range image registration methods which are able to

generate a composite rotation matrix also can be used in this framework as

well as ICP.

6.1.3 Fast and accurate Face recognition

In chapter 3, we used the 3D shape descriptor to represent a piece of 3D sur-

face and implement the facial feature localization. So, a 3D face consisting of a

cloud of points can be represented by a shape descriptor vector. To match two

faces, we only need to measure the difference between two shape descriptor vec-

tors. Since a 3D face with only shape information does not have illumination

problems and the head orientation problems have been solved in the frame-

work of face alignment, there is only one challenge left in 3D face recognition -

expression variations. As the expression-invariant part of a face is segmented

out and used in the face alignment stage, in face recognition stage the whole

face also can be segmented into different regions and the expression-invariant
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region is given a high weight in face matching. Even though we performed

the face recognition experiments on faces in the FRGC v2 with a downsized

resolution (from 640× 480 to 160× 120), we obtained a 100% rank-one iden-

tification rate in the “neutral first vs neutral” identification experiment and

a verification rate of 99.36% at 0.1% FAR in the “neutral vs neutral” verifi-

cation experiment. For the experiments on faces with expression variations, a

rank-one identification rate of 97.63% in the “first vs other” experiment and

a verification rate of 91.96% at 0.1% FAR in the “all vs all” experiment have

been obtained. This identification rate of “first vs other” is the second higher

performance achieved in the FRGC v2 database so far. Moreover, our approach

of face matching has a very high computational efficiency. Implemented on a

normal desktop computer and in a matlab environment, the computational

time to match two faces is about 0.0045 second.

6.1.4 Summary

By implementing localization of the nose tip, the face alignment and the face

recognition, we build a high performance 3D face recognition system. Each

task of these three stages can be completed automatically. The most important

aspect of our system is the highly reliable nose tip localization which can detect

the nose tip with an identification rate of almost 100% even on a large face

database - the FRGC database. The robustness of this method produces no

loss for the following tasks. In the face alignment stage, our integrated method

uses symmetry face alignment to precisely segment the express-invariant region

avoiding extra errors by implementing another feature localization of related

facial features. Compared with other techniques, our face recognition method

matches faces more effectively. Our method ignores computationally expensive
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algorithms to accurately match face regions, while still producing a relatively

high performance especially in the face identification. One limitation of our

work is that the FRGC face database used in evaluation only has a limited

range of head orientation variations which may not be enough to prove the

pose-invariant ability of our approach.

6.2 Future work

In chapter 2, we performed the localization of nose tip and eye corners. Al-

though a high identification performance has been achieved in nose tip de-

tection, the recognition rate of eye corners is not as accurate as the nose tip

localization. This is because the shape of the eyes is more subtle than the

nose and also the facial expressions could severely affect the shape of eyes. If

a further localization to find more facial features such as the eyes, cheek or

mouth is required, a better shape descriptor able to precisely represent the

shape near the positions of facial features is required. Also how to better deal

with the effect of expression has to be considered. As we have shown that

our face recognition system has a good ability in face identification even with

expression variations, the performance of face verification experiments still has

space to improve. One possible solution is to use the original size of images

from the FRGC database which can provide more information and detail than

the downsized faces. Another interesting piece of work would be to use an

extra database like the University of York 3D face database to test and evalu-

ate the three parts of our implementations. This database has relatively more

background noise such as wall, desk and even another person. Thus using this

database can test the noise-tolerance ability of our system.
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Appendix A

Face Recognition Grand

Challenge 3D face database

Face Recognition Grand Challenge 3D face database(FRGC) has a large num-

ber of individuals and face images including pose and expression expression

variations. The face images of the FRGC database was segmented into training

and validation partitions. The data captured in the 2002−2003 academic year

is the training partition. In the training partition, there are two datasets: still

image dataset and 3D dataset. The 3D image training dataset consists of 943

faces. One face has one 3D channel file describing 3D information and one 2D

channel image containing texture information. Face images in the validation

partition were collected during the fall of 2003 and the spring of 2004. The

validation partition is also called as FRGC v2 database. The total number of

face images is 4007 from 466 subjects. C. Chaua [74] reported that the label of

subject 04643 is actually 04783. Thus, the number of subjects in the validation

partition is 465 rather than 466. Table A.1 shows the details of the FRGC 3D

face database. In the FRGC v2 database, each subject contains 1 − 22 face

images. Each subject has several face images with different expressions includ-
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Figure A.1: Examples of different expressions in FRGC database.

ing neutral, sad, happy, angry, surprise and puffy cheek. Figure A.1 shows the

examples of different expressions of a subject. Percentage of different races are

22% asian, 68% white and 10% others. There are 57% male and 43% subjects

in this dataset. The range of age of subjects are: 18− 22(65%), 23− 27(18%)

and 28 + (17%).

Partition Faces Subject Dataset

Training 943 275 FRGC v1

Validation 4007 466(465?) FRGC v2

Table A.1: Details of FRGC 3D face database.

The 3D images were taken under controlled illumination conditions appropriate

for the Vivid 900/910 sensor [72]. The Minolta Vivid 900/910 series is a

structured light sensor which takes 640 × 480 3D sampling and a registered

color image. Subjects were asked to stand or sit approximately 1.5 meters

from the sensor. In the FRGC, 3D images include both range (3D) and texture

(2D) channels. Each 3D face has two files which store 2D and 3D information

respectively. Figure A.2 and figure A.3 show two examples of the 2D and 3D
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Figure A.2: An example of the 2D face image [72].

channel files of a face in the FRGC 3D database. The Vivid sensor captured

the texture channel after the acquisition of the 3D channel, which may cause

poor registration between the 2D and 3D channels. The 2D channel file is a

color image file containing sRGB values in Portable Pixel Map format (’.ppm’).

The resolution of the 2D image is 640×480. The 3D channel file is a ’.abs’ file

which contains the x,y and z values in 3D space of each pixel in the 2D image

file. The format of the 3D channel file is shown in figure A.4. The first two

rows are the resolution in x and y directions. Then there is a row containing

the flag value which represents which pixel is a valid face pixel. When the flag

value is ’1’, then the corresponding pixel is a valid pixel. After the flag row,

there are three rows containing values of x, y and z. Values of an invalid pixel

are set to ’−9999999’.
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Figure A.3: An example of the 3D channel image [72].

Figure A.4: The format of 3D channel file.
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Appendix B

Iterative Closed Point (ICP)

algorithm

The first and also the most important step in ICP is to compute the near-

est distance between every point in the target to a point in the model. For

example, the distance between two points is denoted by the following equation:

Distance(p1, p2) =‖ p1 − p2 ‖ (B.1)

xp1, yp1, zp1 are the three-dimensional values of point p1 and xp2, yp2, zp2 are the

three-dimensional values of point p2.

Given a point tj in the target set of points T , the Euclidean distance of tj to

the model set of points M is:

Distance(tj,M) = min
i∈1..n

Distance(tj,mi) (B.2)

Where mi is a point in M(mi ∈ M).
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Thus, if we define y ∈ M , C as the closest point operator and Y is the set of

closest points to M, using equation B.2 we can find the corresponding closest

point in model M :

Y = C(T, M) (B.3a)

Y ⊆ M (B.3b)

After each point’s corresponding closest point in the model is computed, given

Y we can calculate the alignment:

(Ro, Tr, d) = Φ(T, Y ) (B.4)

where Ro is the rotation matrix and Tr is the translation matrix. d is the

error distance between T and M .

When the alignment is repeated, T will be updated to be:

Tnew = Ro(T ) + Tr (B.5)

In [14], Besl et al. used a quaternion-based algorithm to yield the least squares

rotation and translation for the data in two and three dimensions and used.

They recommended use of the singular value decomposition(SVD) method in

any n > 3 dimensional application. In this thesis, we are considering face

data in three dimensions. Therefore, we are able to use the quaternion-based

algorithm stated as follows:

We consider point clouds of the target and the model as two matrices: T (x, y, z),

M(x, y, z), then the cross covariance matrix Cov(T, M) between these two ma-
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trices can be calculated from following equation.

Cov(T, M) =
1

Nt

Nt∑
i=1

[(T − µt)(M − µm)T ] =
1

Nt

Nt∑
i=1

(TMT )− µtµ
T
m (B.6)

Where µt and µm are the mean values of T and M respectively.

µt =
1

Nt

Nt∑
i=1

T and µm =
1

Nt

Nt∑
i=1

M (B.7)

After we have Cov(T, M), let it be:

C =




c1 c2 c3

c4 c5 c6

c7 c8 c9




Define a matrix A:

A = Cov(T, M)− Cov(T, M)T (B.8)

Let A be represented as follows:

A =




a1 a2 a3

a4 a5 a6

a7 a8 a9




Then define a vector D as follows:

D = [a6, a7, a2] (B.9)

A scalar S is defined as follows:

S = c1 + c5 + c9 (B.10)
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If a matrix T is defined as follows:

T = (C + CT )− S · I (B.11)

where I is a 3× 3 identity matrix.

then:

T =




t1 t2 t3

t4 t5 t6

t7 t8 t9


 (B.12)

We define the quaternion matrix Q as follows:

Q =




S a6 a7 a2

a6 t1 t2 t3

a7 t4 t5 t6

a2 t7 t8 t9




(B.13)

We can use the quaternion matrix to calculate the composite rotation matrix.

The first step is to find the maximum eigenvalue and its corresponding eigen-

vector for Q. The corresponding eigenvector of Q is defined as a row vector

[q1, q2, q3, q4]. In the previous steps, we know the mean vectors of T and M

are µt = [xt, yt, zt] and µm = [xm, ym, zm]. Then we define two new vectors as

U1 = [xt, yt, zt, 1] and U2 = [xm, ym, zm, 1]. The transformation matrix R can

be defined as follows:

R =




R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

0 0 0 1




(B.14)
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where:

R1 = q2
1 + q2

2 − q2
3 − q2

4 (B.15a)

R2 = 2 · (q2 · q3 − q1 · q4) (B.15b)

R3 = 2 · (q2 · q4 + q1 · q3) (B.15c)

R4 = 0 (B.15d)

R5 = 2 · (q2 · q3 + q1 · q4) (B.15e)

R6 = q2
1 + q2

3 − q2
2 − q2

4 (B.15f)

R7 = 2 · (q3 · q4 − q1 · q2) (B.15g)

R8 = 0 (B.15h)

R9 = 2 · (q2 · q4 − q1 · q3) (B.15i)

R10 = 2 · (q3 · q4 + q1 · q2) (B.15j)

R11 = q2
1 + q2

4 − q2
2 − q2

3 (B.15k)

R12 = 0 (B.15l)

After the composite rotation matrix is generated, we can use this matrix to

implement the fitting process by rotating T to model M . A matrix L is defined

to update the composition rotation matrix to repeat the fitting process:

U2 = R · U1 + L (B.16)

L =




l1

l2

l3

l4
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L is used to update the composite rotation matrix:

R4 = l1 (B.17a)

R8 = l2 (B.17b)

R12 = l3 (B.17c)

The mean squared error distance of F to M can be calculated:

e =
1

N

N∑
i=1

‖ R · ti −mi ‖ (B.18)

The iteration continues until ek+1 − ek < τ , where τ is a preset threshold.
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