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ABSTRACT 20 

We developed microfluidic paper-based analytical devices (μPADs) for the chelate 21 

titrations of Ca
2+

 and Mg
2+

 in natural water. The μPAD consisted of ten reaction zones 22 

and ten detection zones connected through narrow channels to a sample zone located at 23 

the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the 24 

channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were 25 

added to the reaction zones and a consistent amount of a metal indicator (Eriochrome 26 

Black T or Calcon) was added to the detection zones. The total concentrations of Ca
2+

 27 

and Mg
2+

 (total hardness) in the water were measured using a μPAD containing a buffer 28 

solution with a pH of 10, whereas only Ca
2+

 was titrated using a μPAD prepared with a 29 

potassium hydroxide solution with a pH of 13. The μPADs permitted the determination 30 

of Ca
2+

 and Mg
2+

 in mineral water, river water, and seawater samples within only a few 31 

minutes using only the naked eye — no need of instruments.  32 

  33 
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1. Introduction 34 

Since the first demonstration by Whitesides’ group in 2007 [1], microfluidic 35 

paper-based analytical devices (μPADs) have gained a significant amount of attention as 36 

an analytical platform. Several publications have recognized μPADs that are fabricated 37 

from paper substrates as suitable for pointofcare testing and onsite analysis [2-4],
 

38 

because they are easy to fabricate, light, inexpensive, disposable, transportable, and 39 

instrument-free.  40 

As seen in a recent review article on μPADs [5], several detection methods 41 

including colorimetry [6-8], electrochemistry [9-11], fluorometry [12], 42 

chemiluminescence [13,14], and electrochemiluminescence [15], have been reported in 43 

the past decade. Among them, colorimetry is the most popular detection scheme 44 

whereby a scanner or digital camera captures the color image of a μPAD, followed by a 45 

measurement of the color intensity using image-processing software [7,16-19].  For the 46 

purpose of pointofcare testing, smart phones are coupled with μPADs since smart 47 

phones are equipped with both a camera and image-processing software in a small 48 

package [20]. 49 

Conversely, the naked eye is a potentially excellent detector, as we demonstrated in 50 

a previous study on μPADs used for acid-base titrations [21].  Using the μPADs, the 51 

endpoint of the neutralization reaction can be visualized by a color change in the 52 

detection zone adjacent to the reaction zone containing an equivalent amount of titrant. 53 

The first attempt at using the naked eye was in distance-based detection, which was 54 

developed by Henry’s group [22].  The length-based detection scheme permitted the 55 

determinations of glucose, glutathione, nickel ion [22], and lactoferrin [23].  With 56 

these methods, the concentration of an analyte was determined by the length of the 57 
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colored channel that became elongated with increases in its concentration.  58 

In our previous research, we demonstrated acid-base titrations on μPADs consisting 59 

of ten reaction zones and ten detection zones [21].  Strong and weak acids and bases 60 

could be titrated by selecting an appropriate indicator. The principle would obviously be 61 

applicable to other classic titration methods that include chelate titrations, redox 62 

titrations, and precipitation titrations. Although the detection scheme is slightly different, 63 

iodometry was demonstrated as an example of redox titrations [24].  In addition, 64 

acid-base titrations were achieved using another type of paper-based device, which was 65 

constructed by stacking two conventional PADs on top of one another and bonding them 66 

together [25].  As seen in these articles, μPAD-based titrations are expected to be an 67 

alternative to classic titration techniques since they simplify the operations, reduce 68 

consumption of the reagents, facilitate on-site-analysis, and are free from treatment of 69 

waste solutions after titrations due to possible incineration disposal. 70 

   In the present study, we developed μPADs for chelate titrations of Ca
2+

 and Mg
2+

 71 

using ethylenediaminetetraacetic acid (EDTA) according to the same principle as that 72 

previously reported for acid-base titrations. Several factors including selection of the 73 

buffer components and the indicator, amounts of chemicals added to the μPAD, and the 74 

channel length were optimized to obtain accurate and precise analytical results. The 75 

developed μPADs were successfully applied to the rapid determinations of Ca
2+

 and 76 

Mg
2+

 in mineral water, river water, and seawater samples. 77 

 78 

2. Experimental 79 

2.1. Chemicals 80 

Deionized water was prepared by means of an Elix water purification system (Millipore 81 
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Co. Ltd., Molsheim, France). N-Cyclohexyl-3-aminopropanesulfonic acid (CAPS) was 82 

obtained from Dojindo Molecular Technologies, Inc. (Kumamoto, Japan). Magnesium 83 

sulfate, calcium chloride dihydrate, sodium hydroxide, iron(III) standard solution (1000 84 

ppm), 1-(2-hydroxy-1-naphthylazo)-2-naphthol-4-sulfonic acid sodium salt (Calcon), 85 

and 2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic acid (NN) were 86 

purchased from Wako Pure Chemical Industries (Osaka, Japan). Ammonium chloride, 87 

ammonium hydroxide solution, potassium cyanide, and Eriochrome Black T (EBT) 88 

were obtained from Kanto Chemical (Tokyo, Japan). Ethylenediaminetetraacetic acid, 89 

disodium salt (EDTA・2Na) and methanol were purchased from SigmaAldrich (St. 90 

Louis, MO, USA). All indicators were dissolved in methanol at a concentration of 0.1 91 

(w/v)%. A buffer solution with a pH of 10 was prepared by dissolving appropriate 92 

amounts of CAPS in water and adjusting the pH with a sodium hydroxide solution. 93 

 94 

2.2. Fabrication and preparation of the μPADs 95 

The structure of the μPAD employed in this study was similar to that reported 96 

previously [21] except for the channel length between the reaction and detection zones 97 

(Supplementary Material, Fig. S1). Microsoft Office Power Point 2010 was used to 98 

design the μPADs with a sample zone located at the center and ten reaction and 99 

detection zones each arranged radially in a 30 × 30 mm square. According to a method 100 

developed by Carrilho and co-workers, the designed μPADs were printed on a sheet of 101 

filter paper (200 × 200 mm, Chromatography Paper 1CHR, Whatman, GE Healthcare 102 

Lifesciences, United Kingdom) using a wax printer (ColorQube 8570DN, Xerox, CT, 103 

USA) [26] followed by heating at 120 °C for 3 min in a drying machine (ONW-300S, 104 

AS ONE Corporation, Osaka, Japan). The back of the printing surface was covered with 105 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 

 

transparent packing tape to prevent solutions from leaking from beneath the μPAD.  106 

Each μPAD was cut into a piece that measured 30 × 30 mm, and then 30 μL of the 107 

buffer solution (pH 10 or 13) was added to the sample zone so as to completely fill the 108 

surfaces of the channels and zones of the μPAD (30 μL is the volume needed to fill all 109 

hydrophilic channels and zones [21]). The μPAD was completely dried, and then a 1 μL 110 

solution of ten different EDTA concentrations was added to each of the reaction zones 111 

since the volume needed to fill a reaction zone was determined to be 1 μL as reported in 112 

the previous paper [21], and 0.5 μL of a 0.1(w/v)% indicator solution was added to each 113 

of the detection zones. To accomplish titration, the μPAD was placed on an acrylic plate 114 

holder that was composed of two 30 × 30 mm plates with four fins at the corners of the 115 

holder in order to avoid bending of the μPAD (Supplementary Material, Fig. S1). 116 

Finally, a micropipette was used to introduce 30 μL of the sample solution from the 117 

center of the μPAD. 118 

 119 

2.3. Principle of chelate titrations using the μPADs 120 

The principle of chelate titrations is similar to that of classic chelate titrations for Ca
2+

 121 

and Mg
2+

 with EDTA, wherein the total concentration is determined at pH 10, whereas 122 

only Ca
2+

 is titrated at pH 13 since Mg
2+

 is masked with hydroxide ion so as not to react 123 

with EDTA [27]. However, in contrast to the classic titrations, the concentrations of 124 

Ca
2+

 and Mg
2+

 are directly determined by finding the endpoint from the color change 125 

without either calibration or calculation when using the μPAD method. When a sample 126 

solution is introduced into the center of the μPAD, the sample solution penetrates into 127 

ten reaction zones. Then, 1 μL of the sample solution can react with EDTA at each 128 

reaction zone since the volume occupying the reaction zone is 1 μL, which is the same 129 
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as the volume of EDTA solutions added to the reaction zones. So, when the amount of 130 

metal ions exceeds that of the EDTA in the reaction zones, uncomplexed metal ions 131 

penetrate the detection zones, resulting in a color reaction of blue (free form) to purple 132 

(complex with metal ion) from the indicator. The concentration of the metal ion is 133 

equivalent to the lowest EDTA concentration of the reaction zone among those adjacent 134 

to the detection zones with blue color, which indicates no influx of the uncomplexed 135 

metal ions. Therefore, in the proposed method, we need to know only the exact 136 

concentrations of EDTA added to the reaction zones without further calibration. 137 

 138 

2.4. Practical samples 139 

Bottles of commercially available mineral water were purchased at a local supermarket. 140 

Natural water samples were taken from the Asahigawa River, from Kojima Bay, and 141 

from the Shimotsui Fishery Harbor in Okayama Prefecture, Japan. The sample solutions 142 

were kept in plastic bottles and were determined in our laboratory. The sample solutions 143 

were titrated with EDTA via both the classic titration method and the μPADs in order to 144 

evaluate the accuracy and precision of the μPADs. 145 

 146 

3. Results and Discussion 147 

3.1. Selection of the reagents 148 

In a classic chelate titration of Ca
2+

 and Mg
2+

 with EDTA, the total concentration is 149 

determined using an ammonia buffer at pH 10, whereas only Ca
2+

 is titrated at a pH of 150 

13 that is adjusted with KOH to buffer the pH and mask the Mg
2+

. However, volatile 151 

ammonia is unsuitable for use in μPADs since reagent solutions added to the μPAD 152 

must be dried before use, which results in a change in the pH value due to the 153 
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volatilization of ammonia. 154 

A buffer that would be suitable for use in μPADs should have a pKa value that is near 155 

the selected pH and should be a stable solid at room temperature. We selected the CAPS 156 

buffer to accomplish a pH of 10 since the pKa value of CAPS is 10.6, whereas KOH was 157 

employed for the buffer at pH 13. These buffer components are solid so that the pH 158 

could be adjusted to 10 and 13, although exposure to CO2 under air should be avoided 159 

in order to maintain an alkaline pH. Thus, the μPADs should be stored with either 160 

vacuum-sealed or nitrogen-substitution packaging. 161 

In a classic chelate titration for Ca
2+

 and Mg
2+

, EBT is used as the indicator at pH 10, 162 

while NN permits the determination of only Ca
2+

 at pH 13 [28]. Both EBT and NN 163 

change from blue to purple via the formation of a complex with Ca
2+

 and Mg
2+

 in 164 

different pH regions because of their different pKa values. Therefore, EBT and NN are 165 

employed as the indicators at pH 10 and 13, respectively, in classic titrations. 166 

   In the preparation of the μPAD for the chelate titration at pH 10, we added 0.1 M 167 

CAPS buffer to completely fill the channels and zones. When 0.1% EBT was dropped 168 

into the detection zones containing 0.1 M CAPS buffer, the EBT showed a clear blue 169 

color. Thus, EBT worked well as the indicator in the presence of the CAPS buffer, pH 170 

10, when using the μPAD. However, when 0.1% NN was dropped into the detection 171 

zone of a μPAD with the pH adjusted to 13 using 0.1 M KOH, no color was observed, 172 

despite the presence or absence of metal ions (Fig. 1) — i.e., the NN was unsuitable due 173 

to its low color intensity when using the μPAD. Therefore, instead of NN, we examined 174 

EBT and Calcon at pH 13 since their structures are similar to NN, with the exception of 175 

a substituted functional group (Supplementary Material, Fig. S2). 176 

Surprisingly, the blue color of EBT without Ca
2+

 persisted on the filter paper even in 177 
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the presence of 0.1 M KOH (Fig. 1), despite a purple color in solution. The purple color 178 

of EBT at pH 13 was quite reasonable since the pKa2 value was 11.6 [27], because more 179 

than 98% of EBT is a trivalent anionic species (purple color). When adding Ca
2+

 and 180 

Mg
2+

 into the solution, the purple color persisted, which meant that EBT was unsuitable 181 

as an indicator in the solution with a pH of 13. 182 

The fact that EBT exhibited a blue color in the presence of 0.1 M KOH implied 183 

some interaction between EBT and the paper substrate. One possible explanation could 184 

be the interaction of the dissociated hydroxyl group of EBT with the hydroxyl groups of 185 

the paper substrate, cellulose. The color of EBT should change from purple to blue 186 

when one of the dissociated hydroxyl groups is protonated. Therefore, on the paper 187 

substrate, the dissociated hydroxyl group may have interacted with the hydroxyl groups 188 

of the cellulose. As a result, EBT may show a blue color on filter paper containing 0.1 189 

M KOH, although its color was purple in a solution with a pH of 13. 190 

Unfortunately, EBT was unsuitable for use at a pH of 13 since it changed color in 191 

the presence of Mg
2+

 (Fig. 1), which could have been due to the complex formation of 192 

Mg
2+

 with EBT. Conversely, a change in the color of Calcon was observed only when 193 

adding Ca
2+

, whereas its color remained blue in the presence of Mg
2+

. Calcon has a pKa2 194 

value of 13.5 [27]; i.e., more than 50% of Calcon exists as a blue-colored species at pH 195 

13. Therefore, it was quite reasonable that Calcon showed a clear color change from 196 

blue to purple in the presence of Ca
2+

, as noted in Fig. 1. These results suggest that 197 

Calcon is the most suitable indicator for the measurement of Ca
2+

 at pH 13 from among 198 

these three indicators. 199 

Consequently, 0.1 M CAPS buffer was used to attain a pH of 10 and 0.1 M KOH 200 

was selected to adjust the pH to 13. For indicators, EBT and Calcon were employed at 201 
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pH 10 and 13, respectively. Using these reagents, we prepared two μPADs, one for 202 

determining the total concentration of Ca
2+

 and Mg
2+

 (hardness) at pH 10, and the other 203 

for determining the concentration of Ca
2+

 at pH 13. 204 

 205 

3.2. Optimization of the design 206 

In the preliminary stages, we employed the same design as that of the μPADs for 207 

acid-base titrations. Initially, 30 µL of 0.1 M CAPS buffer was introduced into the 208 

center of the sample zone to completely fill the channels and zones of the μPAD. After 209 

drying the μPAD completely, 1 µL each of the 0.01 to 0.1 M EDTA solutions were 210 

added to the ten reaction zones in 0.01 M intervals, and 0.5 µL of 0.1% EBT was added 211 

to each of the ten detection zones. The titrations showed no clear endpoint for 0.03 M 212 

Ca
2+

 solution, e.g., the color changed from blue to purple in the zones for amounts from 213 

0.01 to 0.03 M (Supplementary Material, Fig. S3a) while the other zones, however, only 214 

showed partial color changes, which led to incorrect results. The reading error became 215 

most apparent at the level of 0.08 M of Ca
2+

 where the detection zones up to 0.1 M 216 

should have changed color in like manner to the detection zones at the levels of 0.01 to 217 

0.06 M (Supplementary Material, Fig. S3b). 218 

The incorrect color change was attributed to an incomplete reaction between Ca
2+

 and 219 

EDTA due to a slow dissolution rate of the reagents including CAPS and EDTA. In the 220 

acid-base titrations using the μPAD, the acid analyte accelerated the dissolution rate of 221 

the base in the reaction zones, and vice-versa, i.e., the dissolution rate of the reagent in 222 

the reaction zone was fast enough to react with the sample solution. However, the 223 

dissolution rate of the reagents (CAPS and EDTA) was too slow to react with EDTA 224 

sufficiently in the chelate titration since the sample solution did not accelerate the 225 
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dissolution of the reagents.  226 

To complete the complex formation in the reaction zones, we delayed the influx of 227 

the sample solution from the reaction zone into the detection zone. This was achieved 228 

by increasing the channel length between the reaction zone and the detection zone. The 229 

channel length between the reaction zone and the detection zone was 0.8 mm in the 230 

μPAD reported previously, whereas it was increased to 1.4, 2.0, and 3.0 mm. The time 231 

required to flow from the reaction zone to the detection zone was increased with 232 

increases in the length, and was 23.6 ± 2.9 s for the original design compared with 72.2 233 

± 2.9 s for the 3.0 mm length. Thus, the sample solution was impounded in the reaction 234 

zone for a longer period of time in the improved design with 3.0 mm than in the original 235 

version, which resulted in an increase in the time for dissolution and reaction in the 236 

reaction zones. 237 

  The holder of the μPAD was also modified to reduce the flow rate of a sample 238 

solution. In the acid-base titrations, we employed a holder that covered the surface of 239 

the μPAD and accelerated the flow rate of the sample solution due to the formation of 240 

an open channel between the μPAD and the acrylic cover plate similar to the same 241 

principle as the method to accelerate the flow rate in μPADs using razor-crafted open 242 

channels [29].  Conversely, in the chelate titration, we needed to reduce the flow rate 243 

to obtain a sufficient amount of time to dissolve the reagents in the reaction zone. 244 

Therefore, the design of the holder was changed so as not to cover the flow channels of 245 

the μPAD (Supplementary Material, Fig. S1). 246 

 247 

3.3. Determination of Ca
2+

 and Mg
2+ 

248 

Using the improved design, the μPAD for the chelate titrations of Mg
2+

 and Ca
2+

 249 
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was prepared by completely filling the channels and zones with 30 μL of 0.1 M CAPS 250 

at pH 10, and then by adding 1 μL of an EDTA solution in increments of 0.01 to 0.1 M 251 

to the reaction zones and 0.5 μL of 0.1% EBT to the detection zones. Two mixtures, 10 252 

mM Mg
2+

 + 10 mM Ca
2+

 and 30 mM Mg
2+

 + 30 mM Ca
2+

, were titrated using the 253 

μPADs, as shown in Figs. 2a and 2b. The endpoints were observed in the detection 254 

zones by the blue color adjacent to the reaction zones containing the lowest 255 

concentration of EDTA, which corresponded to 20 mM, as shown in Fig. 2a and 60 mM 256 

in Fig. 2b. These results indicated that the μPADs permitted successful titrations for the 257 

determination of the total concentrations for Mg
2+

 and Ca
2+

. In this study, the limits of 258 

quantification (LOQ) was defined as the lowest concentration determined by the μPADs 259 

whereas the limits of detection (LOD) was defined as the lowest concentration that 260 

changes the color of the detection zone adjacent to the reaction zone without EDTA. 261 

The LOD and LOQ were 0.5 mM for a total concentration of Mg
2+

 and Ca
2+

 262 

(Supplementary material, Fig. S4).The μPADs for the titration of Ca
2+

 at pH 13 were 263 

prepared by completely filling the channels and zones with 0.1 M KOH instead of 0.1 264 

M CAPS buffer, and then by adding 1 μL of an EDTA solution in increments of 0.01 to 265 

0.1 M to the reaction zones and 0.5 μL of 0.1% Calcon to the detection zones. The same 266 

sample solutions in Figs. 2a (10 mM Mg
2+

 + 10 mM Ca
2+

) and 2b (30 mM Mg
2+

 + 30 267 

mM Ca
2+

) were titrated using the μPAD, and the results are shown in Figs. 2c and 2d,  268 

which show that the sample solutions contained 10 mM Ca
2+

 and 30 mM Ca
2+

, 269 

respectively, and both were determined using two different μPADs — one for total 270 

Mg
2+

 and Ca
2+

 and the other only for Ca
2+

. 271 

The μPADs for measuring 1 to 10 mM of Ca
2+

 with an interval of 1 mM were also 272 

prepared using KOH to adjust the pH to 13, and by adding 0 to 9 mM of EDTA 273 
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solutions to the reaction zones with Calcon as the indicator. When samples containing 1 274 

to 5 mM Ca
2+

 were measured using the μPADs, the solutions containing 1 to 3 mM Ca
2+

 275 

showed a color change only in the detection zone adjacent to the reaction zone 276 

containing no EDTA. Conversely, 4 mM and 5 mM Ca
2+

 solutions did exhibit the 277 

correct color change in the detection zones, i.e., the interval of 1 mM of Ca
2+

 was 278 

measurable in a range of more than 4 mM, even though 1 to 3 mM of Ca
2+

 could not be 279 

determined (Supplementary material, Fig. S5). The LOQ (4 mM) of the μPADs for a 280 

titration at pH 13 was slightly poorer than that for a titration at pH 10 since the 281 

measurable lowest concentration of Ca
2+

 was 4 mM, which was 8-fold higher than its 282 

measureable concentration at pH 10 (0.5 mM). Therefore, the μPADs can determine the 283 

total concentration of Mg
2+

 and Ca
2+

 in an amount higher than 1 mM, whereas Ca
2+

 284 

concentrations lower than 4 mM are immeasurable. The LOD at pH 13 was 1 mM 285 

which was also slightly larger than 0.5 mM at pH 10 due to adsorption of Ca
2+

 on the 286 

paper substrate. 287 

   It was noteworthy that concentrations of more than 4 mM were distinguishable at an 288 

interval of 1 mM, and we were able to discriminate between the solutions containing 4 289 

mM and 5 mM of Ca
2+

 at pH 13.  This fact made it seem quite strange that the interval 290 

of 1 mM of Ca
2+

 was measurable in the range of more than 4 mM, although 1 to 3 mM 291 

of Ca
2+

 could not be determined. To clarify this phenomenon, we added 0.5 μL of 292 

Calcon to the sample, reaction and detection zones at pH 13, and then solutions of 1~5 293 

mM of Ca
2+

 were introduced into the sample zone while EDTA was absent from the 294 

reaction zones. In the sample zone only, 1 mM Ca
2+

 showed a color change, i.e., 30 μL 295 

of 1 mM Ca
2+

 (30 nmol of Ca
2+

) was completely retained in the sample zone 296 

(Supplementary Material, Fig. S6). The color changes spread to the reaction and 297 
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detection zones as the concentration of Ca
2+

 was increased(Supplementary Material, Fig. 298 

S6). These results indicated that Ca
2+

 could not reach the detection zones at 299 

concentrations lower than 3 mM at pH 13 even when the reaction zones contained no 300 

EDTA. Therefore, free Ca
2+

 was adsorbed onto the paper substrate at a pH of 13, which 301 

was probably due to the dissociated hydroxyl groups of cellulose (the pKa value of 302 

glucose is known to be 12.28) [30], although the dissociation constant is unknown. The 303 

adsorption of Ca
2+

 in the sample zone and in the reaction zones would have been 304 

saturated by the 3 mM of free Ca
2+

 since concentrations higher than 4 mM were 305 

measurable at pH 13. 306 

The μPADs employed in Fig. 2 were prepared for determining a concentration range 307 

of 10 to 100 mM. The μPADs need to be prepared so as to allow the sample 308 

concentration to fall into the range of the EDTA concentrations added to the reaction 309 

zones. When we measure a few mM of a sample, 1 to 10 mM EDTA solutions must be 310 

added to the reaction zones, resulting in data with 1 significant figure. Conversely, if the 311 

concentration of the sample contains 10 to 20 mM of the metal ion, we can prepare the 312 

μPAD using the EDTA solutions with 10 to 20 mM at an interval of 1 mM. In this case, 313 

we can determine the concentration of the sample to 2 significant figures. Therefore the 314 

concentrations obtained by the μPADs are digital values restricted by the concentration 315 

interval of EDTA added to the reaction zones. This feature of the μPAD requires no 316 

skill in order to find the endpoint and avoid misreading in the titrations since the 317 

concentration can be judged only by the position of the detection zone indicating the 318 

endpoint. 319 

   The developed μPADs have several advantages superior to commercially available 320 

paper strips for measuring the total hardness of water. With paper strips, the hardness of 321 
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a sample is measured by a color intensity generated by the formation of a colored 322 

complex. To determine the hardness, we have to compare the result with a reference 323 

which represents the relationship between the color intensity and the concentration 324 

range, e.g., a paper strip reports that the hardness of the sample is <55, >90, >180, >270, 325 

>360, or >445 ppm. This method could cause mistakes originating from the subjective 326 

view of an observer. In addition, a paper strip cannot determine the concentrations of 327 

Ca
2+

 and Mg
2+

 independently. Conversely, the μPADs permit the determination of the 328 

exact concentrations for both Ca
2+

 and Mg
2+

 and lead to no reading errors since the 329 

judgement of the color change is clearer than the comparison of the color intensity in 330 

the paper strip. 331 

 332 

3.4. Interference
 

333 

   In the classic titrations, heavy metal ions influence the titration results since several 334 

metal ions form chelates with EDTA and the indicator. Therefore, the interference of a 335 

heavy metal was investigated using Fe
3+

 as a possible interference in the determination 336 

of natural water samples. Sample solutions with 1, 10, and 100 ppm Fe
3+

 were applied 337 

to the μPADs with 0 to 90 mM of EDTA in the reaction zones at 10 mM interval using 338 

EBT as the indicator (pH 10). The solutions of 1 ppm Fe
3+

 changed the color of EBT in 339 

the detection zone when the reaction zones contained no EDTA, despite a much lower 340 

concentration (corresponding to 18 µM) of Fe
3+

 than the LOD of Ca
2+

 and Mg
2+

 (0.5 341 

mM).  Obviously, Fe
3+

 is a serious interfering substance for the μPAD. 342 

In the classic titration, KCN is frequently employed for masking many heavy metal 343 

ions [27]. Thus, we added 30 μL of 10% KCN in all channels and zones after drying 0.1 344 

M CAPS. Sample solutions of 40 mM Ca
2+

 with 100 to 500 ppm Fe
3+

 were titrated 345 
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using the μPADs treated with KCN. In the presence of KCN, no interference was 346 

observed up to 500 ppm (8.95 mM) of Fe
3+

. To apply the μPADs to the determination of 347 

practical samples, especially to natural water samples, the addition of KCN will be 348 

effective to exclude the interference of heavy metal ions since the concentration levels 349 

in natural water are known to be as low as 0.5−50 μM [31]. 350 

 351 

3.5. Practical analysis 352 

In order to demonstrate practical applicability of the μPADs, commercially available 353 

mineral water, river water, and seawater were titrated using both a classic chelate 354 

titration and the μPADs. The results are summarized in Table 1. The total 355 

concentrations of Mg
2+

 and Ca
2+

 in the mineral water samples were successfully 356 

determined at 3.2 and 19 mM using classic titration and 3 and 20 mM via the μPADs, 357 

which was in good agreement. Using the μPADs, the concentration of Ca
2+

 in mineral 358 

water 1 was below the detectable concentration limit at pH 13, and the concentration of 359 

Mg
2+

 in mineral water 2 were also undetectable due to its low concentration (both the 360 

hardness and the concentration of Ca
2+

 were found to be 20 mM). 361 

   The river water samples were taken at three different sites near the estuary of the 362 

Asahigawa River: at a point 0.2 km away from the estuary (Site 1), at the estuary (Site 363 

2), and at the bay (Site 3). The titration results using the μPADs are shown in Fig. S7 of 364 

the Supplementary Material. For these samples, the total concentrations obtained by the 365 

μPADs (5 mM) were also consistent with those determined by classic titration (Table 1), 366 

although the concentrations of Ca
2+

 were too low to be determined by the μPADs. 367 

The results for the determination of the seawater sample collected at the Shimotsui 368 

fishery harbor are shown in Fig. 3.  As shown in Fig. 3a, when using the μPAD at pH 369 
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10 without KCN, the color in all the detection zones changed to purple. To prevent 370 

interference from heavy metal ions, we added 30 μL of 10% KCN, as described in the 371 

section 3.4. Fig. 3b shows the titration at pH 10 by the μPAD containing KCN. The 372 

endpoint was clearly found at a concentration of 40 mM, which meant the total 373 

concentration of Mg
2+

 and Ca
2+

 was 40 mM. As shown in Table 1, the total 374 

concentration of Mg
2+

 and Ca
2+

 obtained by classic titration were 44 mM, which was in 375 

good agreement with the results shown in Fig. 3b. The concentration of Ca
2+

 determined 376 

via the μPAD was 10 mM (Fig. 3c), which also was consistent with the results of classic 377 

titration (11 mM). Furthermore, we prepared the μPAD for a concentration range of 378 

from 4 to 12 mM in order to precisely determine the concentration of Ca
2+

, and the 379 

result at 11 mM (Fig. 3d) was similar to that via classic titration. The titrations were 380 

attempted 5 times, and four of these resulted in 11 mM with one resulting in 12 mM 381 

(mean value, 11.2 mM). These results suggest that the μPADs are reliable for the 382 

determination of Ca
2+

 and Mg
2+

 in practical samples since the average concentrations of 383 

Ca
2+

 and Mg
2+

 in ocean water are 10.3 and 53.2 mM, respectively [31]. 384 

   It should be emphasized that the results of the μPADs represent excellent 385 

reproducibility as noted by the standard deviations in Table 1 of zero with the exception 386 

of the concentration of Ca
2+

 in the seawater sample. Even for the seawater sample, only 387 

one in five measurements showed a 1 mM difference, although the origin of the error is 388 

unclear. The μPADs certainly make the operations of the titrations for Ca
2+

 and Mg
2+

 389 

easy and reduce the experimental errors due to simple detection of the endpoint. 390 

 391 

4. Conclusions 392 

   We demonstrated successful titrations of Ca
2+

 and Mg
2+

 using μPADs prepared 393 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

 

for measurements at pH 10 and pH 13. The μPADs were superior to a commercially 394 

available paper strip for a measurement of the hardness in water samples, because we 395 

were able to determine the exact concentrations of both Ca
2+

 and Mg
2+

 using the μPADs 396 

while the commercially available paper strip permitted only a range of hardness that 397 

corresponded to the total concentration of Ca
2+

 and Mg
2+

. In addition, the results of the 398 

μPADs were digitized, which lessened the chances for a misreading.  399 

The results of this research underscored several unique characteristics of filter paper. 400 

(i) The amount of time required for dissolution of the buffer components and chelating 401 

reagents deposited in the zones was a key to the success of the titrations, and increasing 402 

the channel length between the reaction and detection zones efficiently dissolved the 403 

reagents and helped complete the complex formation reaction. (ii) At pH 13, the EBT 404 

showed a blue color, even though it was purple in solution, which could be attributed to 405 

the interactions between EBT and the hydroxyl groups of cellulose. (iii) The adsorption 406 

of Ca
2+

 occurred at pH 13 due to the partial dissociation of the hydroxyl groups of 407 

cellulose under the strong alkaline conditions, and, as a consequence, it was difficult to 408 

determine the concentrations of Ca
2+

 that were lower than 4 mM.  409 

   We also successfully analyzed practical samples of mineral water, river water, and 410 

seawater. The concentrations determined by the μPADs were in good agreement with 411 

those obtained by classic titrations when KCN was employed as a masking agent. 412 

Therefore, the μPADs would be more convenient than classic titration for 413 

determinations of Ca
2+

 or Mg
2+

 in terms of lightness, less expense, transportability, and 414 

ease of operation. 415 

    416 
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Table 1. Determination of Ca
2+

 and Mg
2+

 in practical samples 513 

 514 

  Classic Titration* μPAD* 

Mineral water 1 Mg
2+

 + Ca
2+

/ mM 3.2±0.0089 3±0 

 Ca
2+

/ mM 2.2±0.0089 Undetectable 

Mineral water 2 Mg
2+

 + Ca
2+

/ mM 19.1±0.0084 20±0 

 Ca
2+

/ mM 16±0.011 20±0 

River water (site 1) Mg
2+

 + Ca
2+

/ mM 5.3±0.0071 5±0 

 Ca
2+

/ mM 1.2±0.011 Undetectable 

River water (site 2) Mg
2+

 + Ca
2+

/ mM 5.3±0.0055 5±0 

 Ca
2+

/ mM 1.2±0 Undetectable 

Sea water (site 3) Mg
2+

 + Ca
2+

/ mM 5.5±0.0089 5±0 

 Ca
2+

/ mM 1.4±0.0071 Undetectable 

Sea water Mg
2+

 + Ca
2+

/ mM 44±0.0071 40±0 

 Ca
2+

/ mM 11±0.0045 11.2±0.45 

*Mean value ± standard deviation of five titrations. 515 

  516 
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Figure legends 517 

Figure 1. Color of indicators at pH 13 in solution and on a μPAD. (a) The 518 

concentrations of the indicators were 0.1(w/v)% in methanol. Initially, 30 μL of KOH 519 

was applied to the μPAD so as to completely fill the channels and zones. After drying, 520 

0.5 μL of NN, EBT, or Calcon was added to each of the detection zones, and then 0.5 521 

μL of either a 10 mM Ca
2+

 solution or a 10 mM Mg
2+

 solution was dropped into the 522 

detection zones. 523 

 524 

Figure 2. Chelate titration of Ca
2+

 using the μPAD. The distance between the reaction 525 

zone and the detection zone was 3 mm. (a) 10 mM Ca
2+

 + 10 mM Mg
2+

 at pH 10, (b) 30 526 

mM Ca
2+

 + 30 mM Mg
2+

 at pH 10, (c) 10 mM Ca
2+

 + 10 mM Mg
2+

 at pH 13, (d) 30 527 

mM Ca
2+

 + 30 mM Mg
2+

 at pH 13. EDTA solutions with 0 to 90 mM were added to the 528 

reaction zones at the interval of 10 mM. The numbers of the zones indicate the 529 

concentrations (mM) of EDTA solutions added to the reaction zones. Buffer, (a) and (b) 530 

0.1 M CAPS, (c) and (d) 0.1 M KOH; indicator, (a) and (b) EBT, (c) and (d) Calcon. 531 

The color of each detection zone is indicated by B (blue) or P (Purple). 532 

 533 

Figure 3. Titrations of a seawater sample. Conditions: (a) pH 10 without KCN, indicator, 534 

EBT; (b) pH 10 with KCN, indicator, EBT; (c) and (d) pH 13 with KCN, indicator, 535 

Calcon. In (c), EDTA solutions with 0 to 90 mM were added to the reaction zones at the 536 

interval of 10 mM. In (d), EDTA solutions with 0 to 12 mM were added to the reaction 537 

zones in intervals of 1 mM. The numbers of the zones indicate the concentrations (mM) 538 

of EDTA solutions added to the reaction zones. The concentrations of EDTA added to 539 

the reaction zones are indicated by the number printed on the μPADs. The color of each 540 
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detection zone is indicated by B (blue) or P (Purple). 541 
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