口腔バイオフィルム形成における Streptococcus mutans グルタミン代謝関連遺伝子の 機能とその役割の解明

岡山大学大学院医歯薬学総合研究科 社会環境生命科学専攻

小児歯科学分野

森川 優子

(平成 27 年 12 月 11 日受付)

はじめに

膜輸送体は、細菌からヒトに至るさまざまな生物種に普遍的に存在し、病原 真菌などから薬剤排出に関連する ABC 膜輸送体遺伝子が発見されている¹⁾。こ れまでに Escherichia coli や Bacillus subtilis の全ゲノムの 5% は膜輸送体の機 能に関与していることが示唆されている^{2,3)}。これらの生物は、膜輸送体を介し て、栄養素の取り込みや不要物の排出などを行っている⁴⁾。

ロ腔内は温度変化,唾液分泌量,唾液 pH,生活習慣,外来物質の侵入などの 因子により環境が大きく変化する⁵⁾。膜輸送体は口腔内細菌がこのような様々な 環境の変化に曝露される際に,環境変化によるストレスに応答するために機能 することが報告されている⁶⁻¹⁰⁾。このような種々のストレスによる生育条件の悪 化は,菌の生育に大きな影響を及ぼすことから,ストレス応答は細菌において 特に重要な細胞防御機構として考えられている¹¹⁾。これらのストレス応答の1 つに, 膜輸送体が pH やイオン勾配を維持し,微生物の生体恒常性を保つこと が知られている⁴⁾。

グラム陽性細菌 Streptococcus mutans は、ヒト齲蝕の主要な病原性細菌であり、 ロ腔内のバイオフィルム (デンタルプラーク)形成において重要な役割を担う

ことが知られている¹²。S. mutans の細胞膜には、多くの膜輸送体が存在し、物 質の取り込みに関与し、この菌の生育に大きく関与していることが報告されて いる¹³⁾。すでに, S. mutans UA159 株のゲノム解析により約 60 種類の ABC 膜 輸送体の存在が示唆されており, S. mutans における ABC 膜輸送体の機能は, 細胞内外に選択的に物質を輸送する機能をもつことが報告されている¹³⁾。 膜輸 送体は、①疎水性分子や電荷をもたない小型分子による単純拡散、②濃度勾配 と膜をはさんだ電位差(電気化学的勾配)を利用した、濃度勾配に従った輸送 (受動輸送), ③電気化学的勾配を利用した, 濃度勾配に逆らう方向の輸送(能 動輸送), ④アデノシン三リン酸 (ATP) 加水分解で生じるエネルギーを利用し た能動輸送を行う ATP 結合カセット輸送体 (ABC 膜輸送体)の 4種類が報告 されている¹⁴⁾。ABC 膜輸送体は、分子内にアミノ酸配列のよく保存された ATP 結合領域をもち, ATP 結合ドメイン Nucleotide Binding Domain (NBD) を 1機 能単位あたり 2 つ保持するスーパーファミリーであることが知られている ¹⁵⁾。 その多くは、脂質二重層を貫通する膜貫通ドメイン Membrane Spawning Domain (MSD) を持つ膜タンパク質で, MSD は特異的な物質の透過性と輸送方向に影 響していることが報告されている¹⁶。S. mutans では細胞質内への糖質の取り込 みには,4個のドメイン (2個の膜貫通ドメインと 2個の ATPase サブユニット) を基本構造とする ABC 膜輸送体が関与することが報告されている¹⁷⁾。

窒素は、グラム陽性細菌にとって、生育に必要な栄養素であり、様々な形に 変えて細胞内に取り込まれている¹⁸⁾。アンモニウムから合成される非必須アミ ノ酸グルタミンは、プリンやピリミジンなどを含む多くの化合物の生合成にお いて窒素源として用いられることが知られている¹⁹⁻²¹⁾。微生物での細胞内グルタ ミンやグルタミン酸の濃度は細胞内の窒素代謝に密接に関係していることが報 告されている^{20,22)}。これら窒素代謝に関連する膜輸送体として, E. coli では GlnB, B. subtillis では、GlnK が知られており、これらのタンパクに対して、窒 素の取り込みだけでなく、グルタミン代謝に関わる酵素活性および遺伝子の発 現にも関与していることが示されている²³⁻²⁵⁾。そしてこれらのタンパクに対して, 多くの菌において,相同性の高いものの存在が報告されており²⁶, Staphylococcus aureus では Amt, S. mutans では NrgA がアンモニウムトランスポーターとし て知られている²⁷⁾。さらに, S. mutans の NrgA は, アンモニウムイオンの取り 込みだけでなく、バイオフィルム形成中の菌の生育に関連していることが報告 されている^{27,28)}。このことから、窒素源の輸送に関連する膜輸送体は、S. mutans

のバイオフィルム形成に大きく関与していることが示唆される。しかしながら, これらの膜輸送体とバイオフィルムの関係の詳細はいまだ明らかとなっていな い。

本研究では, S. mutans の ABC 膜輸送体タンパクの遺伝子に着目し, S. mutans UA159 株のゲノム配列から細胞膜輸送に関連するグルタミン ABC 輸送体 (GlnP) をコードしていると推定される遺伝子 SMu0732 を抽出し,機能解析を 行い,バイオフィルム形成への関与を検討した。

材料と方法

1. 供試菌株と培養条件

用いた細菌およびプラスミドを表 1 に示す。日本人小児の口腔より分離され た S. mutans MT8148 株を野生株として用いた。S. mutans の培養は Brain Heart Infusion (BHI) 液体培地 (Becton Dickinson and Company, Franklin Lakes, NJ, USA), Todd Hewitt (TH) 液体培地 (Becton Dickinson and Company) および Mitis Salivarius (MS) 寒天培地 (Becton Dickinson and Company) を用い, 37℃で静置培 養した。必要に応じて抗生物質を次の最終濃度で添加した [エリスロマイシン (和光純薬) 10 µg/ml, スペクチノマイシン (和光純薬) 100 µg/ml]。特に記載のな い場合は、すべて好気培養とした。E. coli DH5α株 (ニッポンジーン、東京)の 培養は、Luria-Bertani 培地 (和光純薬)を使用し、必要に応じてアンピシリン (和光純薬) 100 µg/ml, カナマイシン (和光純薬) 30 µg/ml あるいはエリスロマイ シン (和光純薬) 150 µg/ml となるよう添加した。寒天平板培地の作製には 1.5% (w/v) 寒天 (和光純薬) を添加した。

2. 染色体 DNA の抽出

S. mutans からの染色体 DNA の抽出には Puregene Yeast/Bact. Kit B (QIAGEN

6

Sciences, Germantown, MD, USA)を用いた。BHI 液体培地 10 ml 中で18 時間 培養した *S. mutans* 菌体を遠心分離 (3,000 rpm, 10 分, 4°C) により集菌し, 250 µl の Glu-TE 緩衝液 (1 M Glucose, 10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.0) に再懸濁した。62.5 µl の N-acetylmuramidase SG (2.0 mg/ml; MP Biomedicals)を加え, 37°Cで90分間反応させた。600 µl の Cell Lysis Solution (QIAGEN)を加えて80°Cで5分間, 次いで 3 µl の RNase A (100 mg /ml; QIAGEN)を添加して 37°Cで 30 分間反応後, Protein Precipitation Solution (QIAGEN)を 200 µl 添加した。15,000 rpm で3分間遠心して得られた上清に,600 µl のイソプロピルアルコール (ナカライテスク株式会社, 京都)を加え DNA を共沈させ, 70% エタノール (和光純薬) で洗浄した。乾燥後, TE 緩衝液 (10 mM Tris-HCl, 1 mM EDTA, pH 7.8) 100 µl に溶解し, DNA の濃度を測定した。

3. Reverse Transcription - Polymerase Chain Reaction (RT-PCR)

S. mutans を TH 液体培地を用い, 37℃で18時間培養後, 新鮮な同液体培地に 継代し, 波長 600 nm における吸光度が 0.7 になるまで培養した。培養物を4℃ で5,000 rpm, 15分間遠心し, 菌体を回収した。得られた菌体を 300 µl の UltraPure[™] Diethylpyrocarbonate (DEPC) 処理水 (Invitrogen) に懸濁し, Lysing Matrix B (MP Biomedicals) に菌液を移し, TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) を900 µl 添加した後, FastPrep (Bio-Rad Laboratories, Hercules, CA, USA) を用いて菌体を破砕した。破砕菌体を含む懸濁液を遠心し,500 µlのクロ ロホルム を混和させた後,水層中の全 RNA を 300 µl のイソプロピルアルコー ルを用いて沈殿させた。その後、得られた沈殿を75% エタノールにて洗浄し、乾 燥後, 20 μl の DEPC 処理水に溶解させた。RT-PCR を行うため, 全 RNA 3 μgに RNase-free DNase I (1 unit/µg RNA; Promega, Madison, WI, USA) を加え, 37°C で30分間反応させた。さらに, Random hexamer primers (Promega) および SuperScriptIII (Invitrogen) を用いて cDNA を合成した。cDNA に遺伝子特異的プ ライマー (表2) を加え, Ampli Taq Gold 360 Master Mix (Applied Biosystems, CA, USA) を用い, S1000 Thermal Cycler (Bio-Rad) を使用して反応を行った。PCRの アニーリング温度および伸張反応時間は各プライマーに応じて設定し、これを30 回繰り返す PCR 法を行った。 増幅産物は TAE 緩衝液 (40 mM Tris, 20 mM 酢 酸, 1 mM EDTA, pH 8.0; 和光純薬) 中で 1.5% アガロースゲル (Agarose S, ニ ッポンジーン)を使用し, 電気泳動を行った。DNA サイズマーカーには100 bp ラ ダー (New England Biolabs, Bevery, MA, USA) と1 kb ラダー (New England Biolabs) を使用した。泳動用後のゲルは臭化エチジウム (1 μg/ml;和光純薬) 溶 液で染色後,波長 312 nmの紫外線で DNA のバンドを可視化し検出した。

4. オペロンの解析

① ノーザンブロッティング

MT 8148 株の *glnP* をプライマー GlnP 500-1-F と GlnP 500-1-R (表2) および PCR DIG Probe Synthesis Kit (Roche, Basel, Swiss) を用いた PCR 法で増幅し、ジゴキシゲニン標識 DNA プローブを作製した。

S. mutans MT8148 株より抽出した全 RNA 5 µg をローディングバ ッファー (0.05% bromophenol blue, 50% Formamide, 6.2% Formaldehyde, 10% glycerol, 10×Morpholinopropanesulfonic acid (MOPS) buffer [0.2M MOPS (pH 7.0), 50 mM Sodium acetate, DEPC処理水, 20 mM EDTA] に加 えて65℃で10分間変性させた後, 氷中に戻し, 泳動用バッファー (1×MOPS) 内で1.2% アガロースゲルを用いて 25 Vの電圧で電気泳動 を行った。電気泳動後のゲルは, 臭化エチジウムで染色後, 中和溶液 (200 mM Sodium acetate) により脱色を行い, 波長 312 nm の紫外線で RNA を可視化した。その後SSPE buffer (3 mM NaCl, 173 mM NaH2PO4・2H2O, 25 mM EDTA, pH7.4;同仁化学, 熊本)を用いて12時間キャピラリーブロッテ ィング法によりナイロンメンブレン (Hybond-N+; GE Healthcare, Fairfield, CT, USA) に転写を行った。転写後, 0.01N NaOH を用いてアルカリ固定 を行い, 20×SSC (0.3 M NaCl, 30 mM Sodium Citrate; ニッポンジー ン) で洗浄した。RNA をメンブレンに固定するため,80℃で2時間 ベーキング,波長 312 nm の紫外線で5分間処理を行った。そして 上述のジゴキシゲニン標識 DNA プローブを添加し,55℃,12時間 でハイブリダイゼーションを行った。ハイブリダイゼーション後,0.1% ラウ リル硫酸ナトリウム (SDS; 和光純薬) を添加した SSC で洗浄した。 さらに洗浄用バッファー (Roche) で15分間, 2回洗浄した。検出用バッ ファー (DIG Wash and Block Buffer Set: Roche) で平衡化後, アルカリホス ファターゼ化学発光基質 (CDP-Star: Roche) を添加し、メンブレンを20分 間X線フイルム (Lumi-Film Chemiluminescent Detection Film: Roche) に露 光させ, アルカリホスファターゼ標識抗 DIG 抗体を用いた DIG 標識プロー ブの化学発光検出を行った。

2 PCR assay

PCR には MT8148 株の全 RNA から作製した cDNA と, *SMu0730* から *SMu0733* の各遺伝子間領域を増幅するように設計したオリゴヌクレオチドプラ イマー 1-F と 1-R, 2-F と 2-R (図 1A, 表 2) を用いた。これらに Ampli Taq Gold[®] を加え, 95℃で9分間の反応後, 94℃で 30 秒, 72℃で 30 秒を 30 回繰り返す反応 を行った。ポジティブコントロールとして染色体 DNA, ネガティブコントロー ルとして, 超純水を用いて PCR を行った。

5. 形質転換

水上で融解した *E. coli* DH5α コンピーテントセル 100 µl とライゲーション反 応液 10 µl をチューブに入れて, 氷中で 30 分間静置した。42℃で 40 秒間湯浴 し, 直ちに氷中に戻した。SOC 液体培地 (2% Triptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 20 mM MgCl₂, 10 mM MgSO₄;和光純薬, 20 mM Sucrose; ナカライテスク) 400 µl を加え, 37℃で 1 時間震盪培養した。選択マーカーに用 いた抗生物質含有 LB 寒天培地に播種し, 37℃で一夜培養した。

6. glnP 挿入変異株の作製

S. mutans UA159 株の glnP (Accession Number: 1028188) 全塩基配列をもとに オリゴヌクレオチドプライマー GlnP2-F と GlnP2-R (表 2) を設計した。Ampli

11

Taq Gold[®]を加え,95℃で9分間の反応後,94℃で30秒,48℃で30秒,72℃で 30 秒を 30 回繰り返す PCR 法を行った。増幅した PCR 産物にフェノール/クロ ロホルム/イソアミルアルコール (PCI; 50% (v/v) トリス飽和フェノール, 48% (v/v) クロロホルム, 2% (v/v) イソアミルアルコール) を等量加え, 撹拌後に水層 を回収した。これを2回繰り返した後、水層に10分の1量の3M 酢酸ナトリウ ム (pH 5.2) と 2.5 倍量の 純エタノールを加えて DNA を共沈させた。70% エタ ノール中で3回洗浄後, TE に溶解した。精製した DNA 断片を pGEM-T Vector (Promega) にライゲーション後, 形質転換を行い, プラスミド pYM1 を作製した。 また, pKN100²⁹⁾を制限酵素 EcoRI で消化して切り出すことで得られたエリス ロマイシン耐性遺伝子カセットを, EcoRIで切断したプラスミド pYM1 に挿入 することで, SMu0732 に エリスロマイシン耐性遺伝子が挿入されたプラスミド pYM2 を作製した。glnP 挿入変異株は, Lindler and Macrina³⁰⁾ の方法に準じて作 製した。プラスミド pYM2 を制限酵素 Ncol で切断後, フェノール・クロロホル ム処理とエタノール沈殿を行った。馬血清 (Invitrogen, Carlsbad, CA, USA) を 10% 含む TH 液体培地 (Becton Dickinson) で S. mutans MT8148 株を2時間培養 後,1本鎖に処理した pYM2 を加え,さらに1 時間培養した。菌体を回収後,

エリスロマイシン (10 μg/ml) 含有 MS 寒天培地に塗抹し,2 日間嫌気的に培養 し、コロニーを得た。得られたコロニーを PCR 法により、ゲノム上の glnP がエ リスロマイシン耐性遺伝子の挿入により破壊されていることを確認し、この株を GEMR 株とした。

7. 相補株の作製

S. mutans MT8148 株からプライマーglnP-compl.sph1-F と glnP-compl.sal1-R (表 2) を用いて増幅した PCR 産物を Sph I ならびに Sal I で消化し,大腸菌お よびレンサ球菌で増幅可能なシャトルベクター pDL278³¹⁾ にライゲーションし, glnP が発現する pYM3 を作製した。Lindler and Macrina³⁰⁾の方法に準じて GEMR 株に pYM3 を形質導入することで相補株 comp-GEMR 株を作製した。 8. MT8148 株, GEMR 株および comp-GEMR 株の増殖速度

MT8148 株, GEMR 株および comp-GEMR 株を TH 液体培地で 37℃, 18 時 間培養した菌液 100 µl を, 最終濃度 10 mM になるようにグルタミンを添加し た TH 液体培地および無添加の TH 液体培地 10 ml に継代培養した。可視分 光光度計 (Novaspec plus ; GE Healthcare) を用いて, 菌液の濁度を波長 570 nm で1時間毎に測定した。 9. リアルタイム PCR による定量的遺伝子解析

MT8148 株, GEMR 株および comp-GEMR 株を TH 液体培地で培養後, 全 RNA を回収し cDNA を作製した。また必要に応じて, グルタミン (10 mM) を 添加した。転写産物の定量には, StepOne[™] (Applied Biosystems[®], Foster City, CA, USA) を用い SYBR Green PCR protocol に従って行なった。用いたプライマーは 表 2 に示すとおりである。目的遺伝子の発現量は, 16S rRNA を内部標準として補 正した。

10. 蛍光プローブによる細胞膜輸送の解析

MT8148 株, GEMR 株および comp-GEMR 株を TH 液体培地で培養後, 対 数増殖期初期まで培養した。5,000 rpm, 4℃, 10 分間の遠心で菌体を回収後, 3 ml の塩化ナトリウムリン酸緩衝液 (10 mM NaCl-50 mM NaPB; pH7.0) に懸濁し, 再び遠心し菌体を回収した。菌体は,塩化ナトリウムリン酸緩衝液に懸濁した 後,波長 600 nm で濁度が 0.2 になるように調整した。この菌体懸濁液に蛍光 プローブ N-Phenyl-1-naphthylamine (NPN;和光純薬) 溶液を 5 μ g/ml, 10 μ g/ml になるように添加し,遮光して室温で 30 分反応させた。反応後 3,000 rpm, 4℃ で 5 分間遠心し、塩化ナトリウムリン酸緩衝液で 2 回洗浄し、500 μ l の同緩衝

14

液にて再懸濁後, 96 穴蛍光測定用プレート (Nunclon[™] Delta Surface; Nunc[™], Roskilde, Denmark) の各穴に 100 µl ずつ分注し, 蛍光偏光度を蛍光分光光度計 (Gemini XPSOK microplate spectrofluorometer; Molecular Devices Co, Japan) を用 いて, 励起光 355 nm/ 蛍光 460 nm で測定した。

11. バイオフィルム構造の観察

バイオフィルム構造の変化は、Koo ら³²⁾の方法に準じて行った。MT8148 株, GEMR 株および comp-GEMR 株を TH 液体培地で 37℃, 18 時間培養後,遠心 分離により菌体を回収した。10 mM のヘキシジウムイオジン (Invitrogen) で菌体 を染色し、0.5% スクロース含有化学合成培地³³⁾にて、波長 600 nm における濁 度が 0.1 となるよう調整し生菌試料とした。これらの菌液をポリスチレン製 8 穴 Lab-Tek チャンバースライドシステム (Nunc) に 200 µl ずつ播種し、37℃, 24 時間培養した。形成されたバイオフィルムを共焦点走査型レーザー顕微鏡 LSM780 (Version 4.2, Carl Zeiss MicroImaging Co., Germany) にて観察した。形成 されたバイオフィルムの密度は ImageJ (Version 10.2, Macintosh computer application, Bethesda, MD, USA) にて断面の赤色面積を数値化し評価した。こ れらは、バイオフィルム1 画像につき各 3 箇所を無作為に抽出して行った。

12. バイオフィルム破砕試験

MT8148 株, GEMR 株および comp-GEMR 株を BHI 液体培地にて 37℃, 18 時間培養後,培養した供試菌液を 0.5% になるようにスクロースを添加した TH 液体培地に播種し、6 穴細胞培養用マルチウエルプレート (FALCON, Franklin Lakes, NJ, USA) に分注して, 37℃で 24 時間嫌気的に培養した。リン酸緩衝生 理食塩水 (PBS: Phosphate buffered saline) にて洗浄後, PBS に再懸濁し, Handy Sonic model UR-20P (TOMY SEIKO, LTD, 東京) で2分間, レベル7 で超音波処 理した。PBS で洗浄後、PBS に再懸濁し、セルスクレーパー (スミロン、住友べ ークライト,東京) で形成されたバイオフィルムを剥離した。剥離したバイオフ イルムを滅菌生理食塩水にて段階的に希釈し, Trypticase Soy 寒天培地 (Becton Dickinson) に播種し、37℃で2日間嫌気培養した。必要に応じて抗生物質(エリ スロマイシン,スペクチノマイシン)を添加して用いた。一方,コントロールに は超音波未処理のバイオフィルムとして、超音波処理をせずに同様に菌体を回収 したものを寒天培地に播種して用いた。

13. 統計処理

得られた結果は平均 ± 標準偏差で示し,有意差検定は Fisher's PLSD を用いて

行った。

結果

1. glnP のオペロンの確認

S. mutans MT8148 株について, SMu0731 と glnP の存在をノーザンブロッティ ングで検索した結果, SMu0731 と glnP の塩基配列の全長を合わせた約 2,800 bp のバンドが確認された (図 1B)。さらに, SMu0731 と glnP がオペロンであるこ とを確認するために, RT-PCR 法にて解析した。glnP と SMu0733 の遺伝子間領 域は増幅が認められなかったが, glnP と SMu0731 の遺伝子間領域では増幅が確 認された (図 1C)。これらの結果から, SMu0731 と glnP がオペロンであること が示された。

2. GEMR 株および相補株による SMu0731 の転写量

MT8148 株から抽出した DNA を用いて *glnP* 全長を増幅するプライマーを用 いた PCR 法により GEMR 株においてはエリスロマイシンカセットの長さ分バ ンドの位置が高くなっていることが確認できた (図 2A)。また MT8148 株から抽 出した全 RNA から作製した cDNA を用いて *glnP* のプライマーを用いた PCR 法により, comp-GEMR 株において *glnP* が発現していることが確認できた (図 2B)。*SMu0731* の発現を確認するため, リアルタイム PCR 法を行った。*SMu0731* の発現は GEMR 株で低下する一方で, comp-GEMR 株では MT8148 株と同程度 の発現が認められた (図 3)。

3. GEMR 株および comp-GEMR 株による増殖速度

glnP のグルタミンの取り込みへの影響を確認するために, *S. mutans* の増殖速 度を解析した。MT8148 株と comp-GEMR 株は, グルタミン添加の影響により対 数増殖期での増殖速度が減少した (図 4A, C)。一方で, GEMR 株の増殖速度は, グルタミンの影響を受けなかった (図 4B)。このことから, *glnP* はグルタミンの 取り込みに関与し, そのことにより細菌の増殖能に影響することが示唆された。

4. グルタミン添加による glnP, SMu0731 の転写への影響

グルタミンの添加が glnPに関連して S. mutans の増殖に影響をおよぼすこと から、グルタミンによる SMu0731 および glnP の mRNA 量への影響 をリアル タイム PCR 法にて解析した。グルタミンの添加により MT8148 株における SMu0731 の転写量は 4 倍, glnP の転写量は 2.3 倍それぞれ上昇した (図 5A, B)。このことは、グルタミンが glnP だけでなくオペロンを形成している SMu0731 にも影響することが示唆された。しかしながら転写量に差があること は、このオペロンの転写が不安定であるか、あるいは他の要因が関連している 可能性が考えられた。

5. 蛍光プローブ (NPN) による細胞膜輸送の解析

glnP は ABC 膜輸送体のファミリーの遺伝子であり, グルタミンの膜輸送に関 係していることが知られている²¹⁾。そこで *S. mutans* におけるグルタミンの膜輸 送との関連性を確認するため, 蛍光プローブによる細胞膜輸送の解析を行った。 蛍光プローブは, 各種の膜輸送タンパクを通過する際, 脂質二重層の間に吸着す る性質をもっており, この吸着量は膜輸送体の働きのレベルを反映する^{34,36)}。蛍 光プローブが吸着すると, その蛍光プローブが菌体内に残存し, 蛍光偏光度が大 きいほど, 膜輸送タンパクの働きが活発であることを意味する。本研究では蛍光 プローブの濃度依存的に, GEMR 株の蛍光偏光度は有意に低下した (図 6)。この ことから, *glnP* がグルタミンの取り込みに関与する可能性が高いことが示唆され た。

6. バイオフィルム構造の観察

ABC 膜輸送体ファミリーに属する抗生物質排出に関係する膜輸送体やアンモ ニウム膜輸送体は, S. mutans のバイオフィルム形成能と密接に関係することが知 られている^{27, 28)}。そこで ABC 膜輸送体の1つをコードする遺伝子である glnP

と S. mutans のバイオフィルム形成能との関係を明らかにするため、共焦点レー ザー顕微鏡を用いて、MT8148株、GEMR株ならびに comp-GEMR 株のバイオ フィルム微細構造を観察し、比較検討した。MT8148 株および comp-GEMR 株の バイオフィルム構造に明確な違いはなく、均一なバイオフィルムの構造が確認さ れた (図 7A, C)。一方で GEMR 株の構造は疎であることが明らかになった (図 7B)。バイオフィルムの構造を数値化するために、ImageJ で解析を行ったところ、 MT8148 株および comp-GEMR 株のバイオフィルム構造に違いは認められなか ったが, GEMR の構造は疎であることが確認された (図 8)。さらに, バイオフィ ルムの構造強度を確認するために、砕破試験を行った。超音波処理後に回収した 菌体のコロニー数を計測したところ、有意に GEMR 株のコロニー数が減少して いることが確認された (図 9)。これらの結果より, glnP の発現はバイオフィルム 形成能および構造の強度に関係することが示唆された。

考察

グルタミン酸合成酵素の発見以来³⁷⁾、グルタミン合成酵素 - グルタミン酸合 成酵素経路が細菌のアンモニア同化に重要な役割を果たすことが知られている 38)。グルタミンの生合成過程において、グルタミン合成酵素とグルタミン酸合成 酵素は低アンモニア条件下で作用することが明らかになっている³⁹⁾。S. mutans を低アンモニア条件下で生育させた場合、グルタミン合成酵素やグルタミン酸 合成酵素の作用が亢進し、グルタミンやグルタミン酸の合成が促進される 40%。 一方で、グルタミンやグルタミン酸は、菌体内でアンモニアを窒素源として合 成酵素によって作られる場合と, 膜輸送体から直接取り込まれる場合がある⁴¹。 Streptococcus pneumonia ではグルタミン膜輸送体が6種類存在することが予測 されており、これらの膜輸送体は細菌の恒常性に関与するだけでなく、マウス での病原性の発揮に関与している⁴²⁾。また, Streptococcus uberis のグルタミン膜 輸送体は、糖代謝と共に、初期段階におけるバイオフィルムの形成に関与する ⁴³⁾。S. mutans もグルタミンを合成することが知られており, S. mutans UA159 株 のゲノム解析により、5つのグルタミン膜輸送体を保有することが推測されてい る¹³⁾。しかしながら, S. mutans のグルタミン膜輸送体の機能については、これ まで明らかにされていなかった。本研究では, S. mutans MT8148 株のグルタミ ン ABC 膜輸送体に関連する遺伝子 glnP (SMu0732) の機能解析を行い, 増殖能 とバイオフィルム形成に及ぼす影響について明らかにした。

グラム陰性細菌である Treponema denticola においては、チアミンピロリン酸 ABC 膜輸送体がチアミンピロリン酸結合タンパク, 膜貫通パーミアーゼ, 細胞 質 ATPase からなり, tbpABC (Td) オペロンによりコードされている ⁴⁴。一方 S. mutans UA159 株では BLAST 解析により, ABC 膜輸送体をコードするとされ る 4 つの遺伝子からなる glnQHMP と名付けられたオペロンが推測されている ²⁰⁾。glnQHMP はそれらの遺伝子産物がグルタミン酸膜輸送体として機能し,S. mutans のグルタミン酸代謝や耐酸性に関与することが報告されているが、オペ ロンを構成する各遺伝子 glnQ (ATP 結合タンパク), glnH (基質結合タンパク) 質), glnM (パーミアーゼ),および glnP (膜タンパク)のそれぞれの機能の詳細 はこれまでに明らかとされていない。本研究では、ノーザンブロット解析より glnP と下流に存在する SMu0733 との間には intergenic region が存在し, SMu0731 と glnP はオペロンを形成することを明らかとなった (図 1C)。さらに SMu0731 はアミノ酸 ABC 輸送体として予測されているが、グルタミン添加に

より遺伝子発現が上昇することから、グルタミンに関連する輸送体であること が示唆された。

S. mutans の増殖はアミノ酸の影響を受けることが知られており、グルタミン 酸とシステインは増殖に必須であるが、メチオニンやリジンは増殖を抑制する ^{40,45)}。今回の結果では、グルタミンは対数増殖期における S. mutans の増殖を遅 延させたが、静止期にはグルタミン無添加群と同程度の菌の濁度が観察された (図 4A, C)。glnP の挿入変異株では菌体外からのグルタミンの取り込みが抑制 された (図 6)。そのため、対数増殖期における S. mutans の増殖が遅延しなかっ たと考えられる (図 4B)。これらの結果から、過剰なグルタミンの存在は S. mutans の増殖を抑制するストレス因子の1つであることが示唆される。しかし ながら、膜輸送体を介してグルタミンを取り込むことにより、S. mutans がその 環境に適応し、最終的に菌が増殖したものではないかと考えられる。このこと からも、グルタミン膜輸送体は、環境の変化を感知する細胞外ストレス防御機 構を担う可能性も示唆された。

近年, Tannerella forsythia において、シアル酸膜輸送体 NanT が菌の生存と バイオフィルム形成に関与することが明らかになった⁴⁰。また Haemophilus influenza が保有するコバルト膜輸送体がバイオフィルム形成に関与している⁴⁷⁾。 S. mutans では、銅の菌体内取り込みやアンモニウム膜輸送体がバイオフィルム 形成を促進する知られている27,48)。これらの報告から、細菌の膜輸送体が様々な 栄養素を取り込む、または抑制することにより、バイオフィルム形成に関係し ていることが示唆される。S. mutans のグルタミン膜輸送体はバイオフィルムの 形成能に関係するだけでなく (図 8), はがれやすさにも影響を及ぼすことが明 らかとなった (図 9)。バイオフィルムの最大の特徴は、菌体外多糖からなるグ リコカリックスで凝集することであり,バイオフィルム中に菌は保護される4%。 さらにバイオフィルムの構造は、菌の運動性や増殖能、二成分制御系ならびに 菌体外多糖の産生の影響を受ける⁵⁰⁾。Ehrlichia chaffeensis ではグルタミンの取 り込みは二成分制御系を介して遺伝子の発現や菌の増殖に影響を及ぼす 51)。実 際、二成分制御系は細菌の主要な環境感知・応答システムであり、細菌が環境 に適応するために欠かせないシステムであることが知られている^{52,53)}。S. mutans が保有する glnP は、環境変化を感知することで菌の増殖を最終的に維持するだ けでなく、バイオフィルム構造の強度に影響を及ぼしている。これらの結果か ら、グルタミン輸送体は二成分制御系により制御されている可能性も示唆され

本研究の結果を要約すると、グルタミン輸送体は菌の増殖、膜輸送、バイオ フィルム形成能ならびにその構造の維持に関与することから, S. mutans の glnP は菌の増殖能、菌体内へのグルタミン輸送やバイオフィルム形成に携わるタン パクをコードする遺伝子を制御し、さらにグルタミン輸送体が環境に応答する 二成分制御系と関連することが示唆された。一方で、グルタミン輸送体が菌体 外多糖産生能へ影響 (バイオフィルム形成に直接的関与) するのか, あるいは凝 集によりさまざまな菌との結合を促進するのかなどの多くの課題が残っている。 膜輸送体とバイオフィルム形成の関連が明らかになることで、将来的に膜輸送 体をターゲットとした方法による齲蝕予防に繋がっていくことが期待できる。 今後は、S. mutans が保有する膜輸送体とバイオフィルム形成能の解析、様々な 口腔内細菌との関連性を探索することにより、S. mutans のバイオフィルム形成 の一端が解明できるのではないかと考えられる。

謝辞

稿を終えるにあたり,終始御懇篤なるご指導と御校閲を賜った岡山大学大学院 医歯薬学総合研究科社会環境生命科学専攻小児歯科学分野の仲野道代教授に心か ら感謝致します。また,様々な面にわたり貴重な御助言と御協力を下さいました, 岡山大学大学院医歯薬学総合研究科社会環境生命科学専攻小児歯科学分野の諸先 生に厚く御礼申し上げます。

文献

- Dominique, S., Françoise, I., Michel, M., Jacques B. : Cloning of *Candida* albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. *Microbiol.*, **143**, 405-416, 1997.
- Linton, K.J. and Higgins, C.F.: The *Escherichia coli* ATP-binding cassette (ABC) proteins. *Mol Microbiol.*, 28, 5-13, 1998.
- 3) Young, J. and Holland, I.B. : ABC transporters: bacterial exporters-revisited five years on. *Biochem Biophys Acta.*, **1461**, 177-200, 1999.
- Padan, E.: Superfamilies of transport proteins. In: Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons; 1–10, 2009.
- 5) Lemos, J.A., Abranches, J., Burne, R.A.: Response of cariogenic streptococci to environmental stresses. *Curr Issuues Mol Biol.*, **7**, 95-107, 2005.
- 6) Belli, W.A. and Marquis, R.E. : Adaptation of *Streptococcus mutans* and *Enterococcus hirae* to acid stress in continuous culture. *Appl Environ Microbiol.*, 57, 1134-1138, 1991.
- Hamilton, I.R. and Buckley, N.D. : Adaptation by *Streptococcus mutans* to acid tolerance. *Oral Microbiol Immunol.*, 6, 65-71, 1991.

- Carlsson, J.: Bacteial metabolism in dental biofilms. *Adv Dent Res.*, **11**, 75-80, 1997.
- Svensäter, G., Sjögreen, B., Hamilton, I.R. : Multiple stress responses in *Streptococcus mutans* and the induction of general and stress-specific proteins. *Microbiol.*, 146, 107-117, 2000.
- 10) Len, A.C., Harty, D.W., Jacque, N.A.: Stress-responsive proteins are upregulated in *Streptococcus mutans* during acid tolerance. *Microbiol.*, **150**, 1339-1351, 2004.
- Stortz, G. and Hengge-Aronis, R. : Bacterial stress responses. In: Microbial Bioremediation of Chemical Pollutants. Washington, D.C., USA : ASM Press ; 485, 2000.
- Hamada, S. and Slade, H.D. : Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev., 44, 331-384, 1980.
- 13) Ajdic, D., McShan, W.M., McLaughlin, R.E., Savic, G., Chang, J., Charson,
 M.B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y.,
 Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B.A., Ferretti, J.J.:
 Genome sequence of *Streptococcus mutans* UA159, a cariogenic pathogen. *Proc*

Natl Acad Sci USA., 99, 14434-14439, 2002.

- Putman, M., van Veen, HW., Konings, W.N.: Molecular properties of bacterial multidrug transporters. *Microbiol Mol Biol Rev.*, 64, 672-693, 2000.
- 15) Rice, A.J., Park, A., Pinkett, H.W.: Diversity in ABC transporters: type I, II and III importers. *Biochem Mol Biol.*, **49**, 426-437, 2014.
- 16) Hosie, A.H., Allaway, D., Jones, M.A., Walshaw, D.L., Johnston, A.W.,
 Poole P.S.: Solute-binding protein-dependent ABC transporters are responsible for solute efflux in addition to solute uptake. *Mol Microbiol.*, 40, 1449-1459, 2001.
- Schneider, E. and Hunke, S. : ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. *FEMS Microbiol Rev.*, 22, 1-20, 1998.
- Detsch, C. and Stülke, J. : Ammonium utilization in *Bacillus subtilis*: transport and regulatory functions of NrgA and NrgB. *Microbiol.*, **149**, 3289-97, 2003.
- 19) Tomas, G.K., Wouter, T.H., Jetta, J.E., Hester, J.B., Sacha, A.F.T., Jan,
 K., Peter, W.M., Oscar, P.K.: Regulation of glutamine and glutamate metabolism
 by GlnR and GlnA in *Streptococcus pneumonia*. *J Bio Chem.*, 281, 25097-25109,

2006.

- 20) Kirsten, K., Dilani, B.S., Richard, M., Jennifer, S.D., Steven, D.G., Dennis,
 G.C. : Characterization of a glutamate transporter operon, *glnQHMP*, in *Streptococcus mutans* and its role in acid tolerance, *J Bacteriol.*, **192**, 984-993,
 2010.
- 21) Pei-Min, C., Yi-Ywan, M.C., Sung-Liang, Y., Singh, S., Chern-Hsiung,
 L., Jean-San, C.: Role of GlnR in acid-mediated repression of genes encoding
 proteins involved in glutamine and glutamate metabolism in *Streptococcus mutans*. *Appl Environ Microbiol.*, **76**, 2478-2486, 2010.
- 22) Dashper, S.G., Riley, P.F., Reynolds, E.C. : Characterization of glutamine transport in *Streptococcus mutans*. *Oral Microbiol Immunol.*, **10**, 183-187, 1995.
- 23) Arcondéguy, T., Jack, R., Merrick, M.: P(II) signal transduction proteins, pivotal players in microbial nitrogen control. *Microbiol Mol Biol.*, 65, 80-105, 2001.
- 24) Hsieh, M.H., Lam, H.M., Van, Dee, Loo, F.J., Coruzzi, G.: A PII-like protein in Arabidopsis: Putative role in nitrogen sensing. *Proc Natl Acad Sci USA.*, **95**,

13965–13970, 1998.

- 25) Coutts, G., Thomas, G., Blakey, D., Merrick, M.: Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. *EMBO J.*, **21**, 536-545, 2002.
- 26) Wolf, D.M., Zhang, Y., Roberts, G.P.: Specificity and regulation of interaction between the PII and AmtB1 proteins in *Rhodospirillum rubrum*. *J Bacteriol.*, 189, 6861-6869, 2007.
- 27) Ardin, A.C., Fujita, K., Nagayama, K., Takashima, Y., Nomura, R., Nakano,
 K., Ooshima, T., Matsumoto-Nakano, M.: Identification and functional analysis
 of an ammonium transporter in *Streptococcus mutans*. *PLOS ONE.*, 9, e107569,
 2014.
- 28) Nagayama, K., Fujita, K., Takashima, Y., Ardin, A.C., Ooshima, T., Matsumoto-Nakano, M.: Role of ABC transporter proteins in stress responses of *Streptococcus mutans. Oral Health Dent Manag.*, **13**, 359-365, 2014.
- 29) Nakano, K., Nomura, R., Nakagawa, I., Hamada, S., Ooshima, T. : Demonstration of *Streptococcus mutans* with a cell wall polysaccharide specific to a new serotype

k, in the human oral cavity. J Clin Microbiol., 42, 198-202, 2004.

- 30) Lindler, LE. and Macrina, F.L. : Characterization of genetic transformation in *Streptococcus mutans* by using a novel high-efficiency plasmid marker rescue system. *J Bacteriol.*, **166**, 658-665, 1986.
- 31) LeBlanc, D.J., Lee, L.N., Abu-Al-Jaibat, A.: Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin.
 Plasmid., 28, 130–145, 1992.
- 32) Koo, H., Xiao, J., Klein, M.I., Jeon, J.G.: Exopolysaccharides produced by *Streptococcus mutans* glucosyltransferases modulate the establishment ofmicrocolonies within multispecies biofilms. *J Bacteriol.*, **192**, 3024–3032, 2010.
- 33) Bouvet, A., van de Rijn, I. and McCarty, M. : Nutritionally variant streptococci from patients with endocarditis:growth parameters in a semisynthetic medium and demonstration of a chromophore. *J Bacteriol.*, **146**, 1075–1082, 1981.
- 34) Nieva-Gomez, D. and Gennis, R.B. : Affinity of intact *Eschelichia coli* for hydrophobic membrane probes in a function of the physiological state of the cells. *Proc Natl Acad Sci USA.*, **74**, 1811-1815, 1977.

- 35) Loh, B., Grant, C., Hancock, R.E. : Use of the fluorescent probe 1-N-phenylnaphtylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother.*, **26**, 546-551, 1984.
- 36) Ocaktan, A., Yoneyama, H., Nakae, T.: Use of fluorescence probes of monitor function of the submit proteins of the MexA-MexB-oprM drug extrusion machinery in *Pseudomonas aeruginosa*. J Biol Chem., 29, 21964-21969, 1997.
- 37) Tempest, D.W., Meers, J.L., Brown, C.M.: Synthesis of glutamate in *Aerobacter aerogenes* by a hitherto unknown route. *J Biochem.*, **117**, 405-407, 1970.
- 38) Thomas, G.H., Coutts, G., Merrick, M.: The *glnK amtB* operon: a conserved gene pair in prokaryotes. *Trends Genet.*, 16, 11–14, 2000.
- Brown, C.M., Mcdonald-Brown, D.S., Meers, J.L.: Physiological aspects of microbial inorganic nitrogen metabolism. *Advances Microbiol Physiol.*, **11**, 1–52, 1974.
- 40) Martin, E.J. and Wittenberger, C.L. : Regulation and function of ammonia-assimilating enzymes in *Streptococcus mutans*. *Infect Immun.*, **28**, 220–

224, 1980.

- 41) Karl, E.K. and John, J.M. : Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates *Salmonella typhimurium* virulence. *Infect Immun.*, 65, 587-596, 1997.
- 42) Tobias, H., Matthias, K., Uwe, K., Manfred, R., Lothar, P., Sven, H.: Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. *Infect Immun.*, **79**, 44-58, 2011.
- 43) Crowley, R.C., Leigh, J.A., Ward, P.N., Lappin-Scott, H.M., Bowler, L.D.: Differential protein expression in *Streptococcus uberis* under planktonic and biofilm growth conditions. *Infect Immun.*, **77**, 382-384, 2011.
- 44) Jiang, B., Hongwu, S., Youbin, T., Aiming, Y., Chunhao, L.: The Riboswitch Regulates a Thiamine Pyrophosphate ABC Transporter of the Oral Spirochete *Treponema denticola*. *J Bacteriol.*, **193**, 3912-3922, 2011.
- 45) Cowman, R.A., Perrella, M.M., Fitzgerald, R.J. : Influence on incubation atmosphere on growth and amino acid requirements of *Streptococcus mutans*. *Microbiol.*, 27, 86-92, 1974.

- 46) Honma, K., Ruscitto, A., Frey, A.M., Stafford, G.P., Sharma, A.: Sialic acid transporter NanT participates in *Tannerella forsythia* biofilm formation and survival on epithelial cells. *Microb Pathog.*, 1-9, 2015.
- 47) Tikhomirova, A., Jiang, D., Kidd, S.P. : A new insight into the role of intracellular nickel levels for the stress response, surface properties and twitching motility by *Haemophilus influenzae*. *Metallomics.*, 7, 650-661, 2015.
- 48) Singh, K., Senadheera, D.B., Lévesque, C.M., Cvitkovitch, D.G.: The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in *Streptococcus mutans*. *J Bacteriol.*, **197**, 2545-2557, 2015.
- 49) Marsh, P.D.: Dental plaque as a microbial biofilm. *Caries Res.*, 38, 204-211, 2004.
- 50) Stoodley, P., Sauer, K., Davies, D.G., Costerton, J.W.: Biofilm as complex differentiated communities. *Annu Rev Microbiol.*, **56**, 187-209, 2002.
- 51) Cheng, Z., Lin, M., Rikihisa, Y.: *Ehrlichia chaffeensis* proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. *mBio.*, **5**, e02141-14, 2014.

- John, S.P. and Eric, C.K.: Communication modules in bacterial signaling proteins. *Genet.*, 26, 71-112, 1992.
- 53) Ann, M.S., Victoria, L.R., Paul, N.G.: Two-component signal transduction. Ann

Rev Biochem., 69, 183-215, 2000.

表題脚注

岡山大学大学院医歯薬学総合研究科 社会環境生命科学専攻 小児歯科学分野

(指導:仲野道代教授)

図の説明

図1 S. mutans MT8148 株 glnP の発現様式

A: S. mutans UA159 株の全ゲノム配列より予測した glnP のオペロンとプライマー設計図。B: ノーザンブロッティングによる解析。レーン1: RNA 分子量マーカー,レーン2: MT8148 株全 RNA。C: PCR による解析。1F-1R: SMu0731と glnP を増幅するプライマー2F-2R: glnP と SMu0733 を増幅するプライマ
ー,M: DNA 分子量マーカー,レーン1: MT8148 株染色体 DNA,レーン2: MT8148 株 cDNA,レーン3: 超純水 (ネガティブコントロール)。

図2 glnP 挿入変異株及びの相補株の確認

A. GEMR 株のエリスロマイシン耐性遺伝子挿入の確認。M: DNA 分子量マー カー, レーン 1: MT8148 株, レーン 2: GEMR 株, レーン 3: 超純水 (ネ ガティブコントロール)。

B. 相補株 comp-GEM R 株の glnP 発現の確認。M:DNA 分子量マーカー、レ
ーン 1: MT8148 株染色体 DNA、レーン 2: MT8148 株 cDNA、レーン 3:
GEMR 株 cDNA、レーン 4: comp-GEMR 株 cDNA、レーン 5: MiliQ 水(ネ

ガティブコントロール)。

図3 S. mutans における SMu0731 mRNA の発現

MT8148 株, GEMR 株および comp-GEMR 株の cDNA を作成し, リアルタイ ム PCR により *SMu0731* mRNA の転写量を評価した。MT8148 株の遺伝子転写 量を基準値とし, 相対比を示す。GEMR 株と他の菌株との間で有意差検定を行 った。(Fisher's PLSD 検定 **P* <0.001) (n = 5)。

図4 グルタミン添加による S. mutans 増殖能への影響

MT8148 株, GEMR 株および comp-GEMR を 10 mM グルタミン添加培地で培養し,経時的に濁度を測定することにより,菌の増殖能を評価した。A: MT8148 株, B: GEMR 株, C: comp-GEMR 株。GEMR 株と他の菌株との間で有意差検定を行った。(Fisher's PLSD 検定 * P < 0.01, ** P < 0.001) (n = 5)。

図 5 グルタミン添加による *SMu0731*, *glnP* mRNA の発現への影響 グルタミン添加培地中で培養した MT8148 株の cDNA を作製し, リアルタイ ム PCR により SMu0731 と glnP mRNA の転写量を評価した。 グルタミン非 添加群遺伝子転写量を基準値とし,相対比を示す。A: SMu0731, B: glnP。(Fisher's PLSD 検定 * P <0.001) (n = 5)。

図6 glnP 挿入変異株による細胞膜輸送への影響

MT8148 株, GEMR 株および comp-GEMR 株に蛍光プローブ N-Phenyl-1-naphthylamine (NPN) を5 μg/ml, 10 μg/ml 添加し,蛍光偏光度を計 測することによる,細胞膜輸送のレベルを評価した。GEMR 株と他の菌株との 間で有意差検定を行った。(Fisher's PLSD 検定 * *P* <0.05, ** *P* <0.01, *** *P* <0.001) (n = 5)。

図7 glnP 挿入変異株によるバイオフィルム形成能への影響

(A) MT8148 株, (B) GEMR 株および (C) comp-GEMR 株の共焦点レーザー顕微 鏡像示す。ヘキシジウムイオジンを用いて染色後, 37℃, 24 時間培養し, バイ オフィルムを形成した。 図8 glnP 挿入変異株によるバイオフィルム構造への影響

MT8148 株, GEMR 株および comp-GEMR 株の菌体をヘキシジウムイオジンで 染色し、バイオフィルムを形成後、共焦点レーザー顕微鏡下で観察した。共焦 点レーザー顕微鏡像は Image J により数値化を行った。GEMR 株と他の菌株と の間で有意差検定を行った。(Fisher's PLSD 検定 * P <0.001) (n = 3)。

図9 glnP 挿入変異株によるバイオフィルム強度への影響

バイオフィルムを形成した MT8148 株, GEMR 株および comp-GEMR 株を超 音波処理し, 残存した菌体を Trypticase Soy 寒天培地に播種した。コロニー数 をカウントすることにより, 各菌株のバイオフィルムの強度として評価を行っ た。GEMR 株と他の菌株との間で有意差検定を行った。(Fisher's PLSD 検定 * P<0.001) (n = 5)。

表1 使用菌株およびプラスミド							
名称	特徴	由来					
Streptococcus mutans							
MT8148	S. mutans 臨床分離株 (血清型 c)	Ooshima ら (1983)					
GEMR	pGEM-Tを用いて 8148株の GlnP を欠失させた変異株 (<i>△glnP</i>), Em ^r	本研究					
comp-GEMR	pDL278 を用いて GEMR 株の GlnP を相補させた変異株	本研究					
Escherichia coli DH5α	クローニング用	ニッポンジーン					
pGEM-T	E.coli クローニングベクター、Amp ^r	Promega					
pDL278	<i>E.coli – Streptococcus</i> 属シャトルベクター、Sp ^r	LeBlanc ら (1991)					
pSP73	E.coli に対する PCR 産物のクローニングベクター、Amp ^r	Promega					
pKN100	エリスロマイシン耐性遺伝子を挿入した pSP73、Em ^r	Nakano ら (2004)					
pYM1	MT8148 株の <i>SMu0732</i> を pGEM-T に導入した 組み換えプラスミド、Amp ^r	本研究					
pYM2	pYM1 の <i>SMu0732</i> 内にエリスロマイシン耐性遺伝子を 挿入した組み換えプラスミド、Em ^r 、Amp ^r	本研究					
pYM3	MT8148 株の <i>SMu0732</i> を pDL278 に挿入した 組み換えプラスミド、Sp ^r	本研究					

Amp^r:アンピシリン耐性 Sp^r:スペクチノマイシン耐性 Em^r:エリスロマイシン耐性

	表2	本研究で使用したプライマー		
名称		塩基配列 (5'-3')		由来
GlnP2-F GlnP2-R	ATG AAG AA TTA TTT AA	C AAA TTT AAA GCT CTG ATG CTG I CCT CTT TTC TAA ACG TTT TGC	Cloning	本研究
EcoR1-pkn-F EcoR1-pkn-R	AAG AAT TC GCC GCA AC	G TAA TTA AGA AGG AGT GAT TAC 5G AAT TCA TAG AAT TAT TTC CTC	Erythromycin cassette	本研究
glnP-compl.sph1-F glnP-compl.sal1-R	AGA AGT TTO ATC AAT TT	G TAG AAA GCA TGC ACA TGA AGA T TAG GTC GAC CAT TAT TTA ATC	Cloning	本研究
731RT-F 731RT-R	TAT CTG GGT ATG TCA CT	F TCA TGG CTA AGC TGC GTG CAA F TTG CTC CTA TCG AAC TTG GCA	SMu0731 qRT-PCR	本研究
glnpRT-F glnpRT-R	ACG GCG TC. GGT TGT TA	A GCT TGG CTG GAT TGG ACA GTA T GGA CTC TTC TTT TGC ACC CTT	glnP qRT-PCR	本研究
1-F 1-R	ATA ACC ATC GGA CAA ATC	TAC AAT GAC CTT GCC GCT AGT 3 GAA GCC AGC CGC AGT TTA GGG	PCR assay	本研究
2-F 2-R	GGC CTT TTT CTA AAA ATC	AAT AAT ATC CAC ATC AAT TCC CGC CTC CTA GTT GCC CCA AAA	PCR assay	本研究
glnpRT-F glnpRT2-R	ACG GCG TC. AGG CCG ATC	A GCT TGG CTG GAT TGG ACA GTA G GCA GCT ATG ATG AAA TCA TGA	Cloning	本研究
GlnP 500-1-F GlnP 500-1-R	TAA TCC TCT TTC TAT CTT	TTT CTA AAC GTT TTG CTA GGC TGT TGA TGT GGT TCG CGG TAT	northern blotting	本研究
16s - F 16s - R	GAT C CGA T	GCT TCT GGG TTC CAA GCT TA CGA ACT TCA TTT CCG G	16S rRNA qRT-PCR	Inagaki ら (2009)

B

M MT8148 株

С

図1 森川優子

図2 森川優子

図3 森川優子

図4 森川優子

図5 森川優子

図6 森川優子

C. comp-GEMR 株

図7 森川優子

図8 森川優子

図9 森川優子