

Access to Electronic Thesis

Author: Emmanuel Ogunshile

Thesis title: A Machine With Class: A Framework for Object Generation, Integration and
Language Authentication (FROGILA)

Qualification: PhD

Date awarded: 2 February 2011

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.
No reproduction is permitted without consent of the author. It is also protected by
the Creative Commons Licence allowing Attributions-Non-commercial-No
derivatives.

If this electronic thesis has been edited by the author it will be indicated as such on the
title page and in the text.

i

ii

Dedication

This thesis is dedicated to the glory of God, my dad (Arch Bishop John Olatidoye Ogunshile),

mum (Mrs Comfort Dupe Ogunshile), daughter (Sharon Ifeoluwapo Ogunshile) and the rest of

my beloved family. I would not have been able to do this without your unconditional love,

support and prayers always.

iii

Acknowledgment

I would like to thank my supervisor Eur Ing Dr Anthony Cowling for the freedom he has given

me to explore my research interests, for the privilege to work under his supervisory guidance,

for his interest in my work and for his thorough and timely comments on my thesis throughout

my entire period of research.

I would like to thank Professor Robert Hierons and Dr Michael Stannett my external and

internal examiners respectively, for their extremely helpful comments on this thesis.

The Verification and Testing Research Group in Sheffield has provided an intellectually

stimulating and especially friendly climate in which to discuss research. For this I am extremely

grateful. I would like to thank my colleagues in the Verification and Testing Computer

Laboratory for providing a supportive and friendly environment in which to work in. Especially

Dr Andrew Hughes, Dr Simon Foster, Dr Abraham Rodrigues-Mota, Dr Mohammed KA Al-

Badawi, Dr Henry Addico, Mohammed Ibrahim Ullah, Zubair Sheikh, Dr Mahmood Javed,

Ramsay Taylor, Mesude Bicak, Dr Mariam Kiran, Maslita Abdul Aziz, Azman B Bujang Masli,

Abdelgawad Shatwan, Ali H A Mresa, Dr Neil Walkinshaw and Dr Susheel Varma.

My family have all provided a great deal of encouragement over the years, and supported me in

my academic studies, prayerfully and financially. In particular, I humbly acknowledge the

financial generosity and support of my younger brother, Samuel Ogunshile throughout my

entire period of education in the UK. He has truly been a brother, a friend in need and indeed. I

wish you nothing less than the highest grace and favour of God to achieve all that your heart

ever so desire.

I met Adenike Tomilola Awoseyila (my love, friend and sweetheart) at the very beginning of

my Ph.D; she has been with me through it all and without her this thesis would not have been

possible. I cannot thank you enough for your unconditional love, patience, understanding,

prayers, good wishes and financial support over the years – especially when it matters the most.

I love you truly and sincerely from the bottom of my heart and pray with you earnestly that the

good lord grant all your treasured desires and cause you to find grace and favour in places

where you least expect.

I would like to thank Jameen Haynes for her unconditional love, financial support, good wishes

and prayers always; and for visiting me all the way from California, USA twice. She has been

with me through it all and without her unceasing support this thesis would not have been

possible.

I am grateful to my parents, who have always respected my choices and constantly encouraged

me to pursue my goals. I would not have come this far without your unconditional sacrifice of

love, blessings, prayers, wisdom and financial support – since my arrival on planet earth. You

guyz are simply the best.

Finally, I thank my heavenly father for the grace of life, eternal love, salvation, provision,

sustainance and wisdom. All secret things belong to God [Deuteronomy 29:29]. But he has

revealed them to us by his spirit; for his spirit searcheth all things - even the deep things of God

[1 Corinthians 2:10].

iv

Table of Contents

Contents

Dedication .. ii

Acknowledgment .. iii

Table of Contents ... iv

List of Figures ... ix

List of Tables .. xi

Glossary of Symbols and Notations ... xiii

Abstract: ... xxiv

Chapter 1: Introduction .. 1

1.1 Motivation ... 3

1.1.1 Problems in Testing Object-Oriented Software ... 3

1.1.2 Object-Oriented Architecture vs. Procedure-Oriented Architecture 8

1.1.3 Classes vs. Procedure-Oriented Testing ... 9

1.1.4 Weyuker’s Test Adequacy Axioms .. 9

1.2 Aims and Objectives of the FROGILA Project ... 13

1.3 Summary and Contributions of this work ... 16

1.4 Thesis Organisation ... 18

Chapter 2: Software Testing ... 20

2.1 Introduction ... 20

2.2 Software Correctness: a motivation to test .. 20

2.2.1 Software Correctness: proving implementation with respect to specification 21

2.2.2 Software Correctness and Testing .. 22

 2.3 Program based testing.........................…………………………………………………...23

 2.3.1 Basic Principles………………………………………………………………..…….....23

2.3.2 Limitations of program based testing ... 24

2.3.3 Automation of program-based testing .. 25

2.3.4 Mutation testing .. 25

2.4 Functional Testing ... 26

2.4.1 The Category-Partition method .. 26

2.4.2 Other Partitioning methods ... 30

2.4.3 Other functional methods ... 32

2.4.4 Completeness of a specification ... 33

2.5 Statistical testing and reliability .. 33

2.6 Finite state machine testing .. 35

2.6.1 Morphisms .. 35

2.6.2 State Machine Minimality .. 37

v

2.6.3 Complete State Coverage Test Generation ... 38

2.6.4 Complete Transition Coverage Test Generation .. 39

2.6.5 Complete Functional Test Generation From Characterisation Set 39

2.6.6 Limitations of Chow’s Testing Method ... 41

2.6.7 Improving Finite State Machine Modelling with Statecharts ... 41

2.7 X-Machine Testing ... 41

2.7.1 The Deterministic Stream X-Machine Model .. 42

2.7.2 Design for Test Conditions ... 44

2.7.2.1 Test-Complete Condition .. 44

2.7.2.2 Output-Distinguishability Condition ... 44

2.7.5 The Fundamental Test Function of a Stream X-Machine .. 45

2.7.6 The Fundamental Theorem of Stream X-Machine Testing .. 46

2.8 Communicating X-Machine Models ... 46

2.8.1 The Basic Channel Approach ... 47

2.8.2 The Matrix Approach ... 49

2.8.3 The Channel Approach with Communication Server .. 53

2.8.4 The Modular Approach .. 56

2.8.5 Limitations of Communicating X-Machine Models .. 58

2.9 Summary .. 60

Chapter 3: Object-Oriented Programming and Testing 61

3.1 Introduction ... 61

3.2 Object .. 61

3.3 Class .. 63

3.3.1 Class Variables ... 63

3.3.2 Class Methods .. 65

3.3.3 Constants .. 68

3.3.4 Modifiers .. 68

3.3.5 Compositional Relationships .. 69

3.3.6 Polymorphism and Dynamic Binding .. 71

3.3.7 Problems in Testing Object-Oriented Software ... 73

3.4 Summary .. 74

Chapter.4: The Class-Machines System Model .. 75

4.1 Introduction ... 75

4.2 Preliminaries .. 76

4.2.1 Paradigm Features of Object-Oriented Languages ... 76

4.2.2 Types, State Variables and associated Memory Values ... 77

4.2.3 Class Interface and Family of Implementations ... 78

4.2.4 Access Modifiers .. 82

4.2.5 Proposed Features of the Class-Machine Model .. 82

vi

4.2.6 The Person Example ... 86

4.3 The Class-Machine .. 89

4.3.1 The State Encapsulating Class-Machine Variables .. 89

4.3.2 Methods Belonging to the Class-Machine Alone ... 91

4.3.3 Heterogeneous Family of Object-Machines ... 97

4.3.3.1 The Object-Machine .. 97

4.3.3.1.1 The Object-Machine States .. 98

4.3.3.1.2 The Object-Machine Methods .. 98

4.3.4 The Class-Machine Constructors ... 99

4.3.5 The Class-Machines Interface Type ... 99

4.3.6 The Class-Machine Connector Function .. 99

4.4 Derivation, Inheritance and Subtyping of a Completely Specified Object Machine 100

4.5 Object-Machines Methods Design for Test Conditions .. 102

4.5.1 The Complete Structure of methods of the OM under test ... 103

4.5.2 The Test Input Object Generator Function ... 103

4.5.3 The Precondition Generator Function .. 104

4.5.4 The Precondition Method Profile Generator Function ... 104

4.5.5 The Precondition Method Total Length Generator Function 105

4.5.6 The Probability to Trigger Function ... 105

4.5.7 The Probability not to Trigger Function ... 106

4.5.8 The High Probability Filter Function ... 107

4.5.9 The Low Probability Filter Function .. 108

4.5.10 Total Fault Remaining Undetected Function ... 109

4.5.11The Exact Method Match Generator Function .. 109

4.6 Summary .. 110

Chapter 5: The Paradigmatic Features of the Class-Machines System Model . 111

5.1 Introduction ... 111

5.2 The Objective of the Student Case Study .. 111

5.2.1 Derivation, Inheritance and Subtyping of the Student Class Machine 114

5.2.1.1 Derivation of the SCM Class Variables ... 115

5.2.1.2 Derivation of the SCM Class Methods .. 115

5.2.1.3 Deriving a heterogeneous family of the SCM Object-Machines 115

5.2.1.4 Derivation of the SCM Class Constructors .. 117

5.2.1.5 Derivation of the SCM Interface .. 117

5.2.2 Testing an Heterogeneous Family of Student Object Machines 117

5.2.2.1 Testing Method setForename in the Unchanged, Error and Goal State Testing Modes

 ... 118

5.2.2.1.1 The SetForename Unchanged State Precondition Method 119

5.2.2.1.2 The SetForename Error State Precondition Method .. 120

vii

5.2.2.1.3 The SetForename Goal State Precondition Methods .. 121

5.3 The Objective of the Employee Case Study .. 122

5.3.1 Derivation, Inheritance and Subtyping of the Employee Class Machine 126

5.3.1.1 Derivation of the ECM Class Variables .. 126

5.3.1.2 Derivation of the ECM Class Methods .. 126

5.3.1.3 Deriving a heterogeneous family of the ECM Object-Machines 126

5.3.1.4 Derivation of the ECM Class Constructors ... 127

5.3.1.5 Derivation of the ECM Interface ... 127

5.3.2 Testing an Heterogeneous Family of Employee Object Machines 128

5.3.2.1 Testing Method getRatePerHour in the Unchanged, Error and Goal State Testing

Modes .. 128

5.3.2.1.1 The GetRatePerHour Unchanged State Precondition Method 128

5.3.2.1.2 The GetRatePerHour Error State Precondition Methods 129

5.3.2.1.3 The GetRatePerHour Goal State Precondition Methods .. 130

5.3.2.2 Testing Method computeMonthlySalary in the Unchanged, Error and Goal State

Testing Modes ... 131

5.3.2.2.1 The computeMonthlySalary Unchanged State Precondition Method 132

5.3.2.2.2 The computeMonthlySalary Error State Precondition Methods 133

5.3.2.2.3 The computeMonthlySalary Goal State Precondition Methods 134

5.4 The Objective of the Stack Case Study ... 135

5.4.1 The Stack Class Machine ... 139

5.4.1.1 The STKCM Class Variables ... 139

5.4.1.2 The STKCM Class Methods .. 139

5.4.1.3 Heterogeneous family of the STKCM Object-Machines ... 139

5.4.1.4 The STKCM Class Constructors .. 140

5.4.1.5 The STKCM Class Interface .. 140

5.4.2 Testing an Heterogeneous Family of Stack Object Machines 140

5.4.2.1 Testing Method Push in the Unchanged, Error and Goal State Testing Modes 140

5.4.2.1.1 The Push Unchanged State Precondition Methods .. 141

5.4.2.1.2 The Push Error State Precondition Method .. 142

5.4.2.1.3 The Push Goal State Precondition Methods ... 143

5.5 Summary .. 144

Chapter 6: The Class Machines Friend Function System Model 145

6.1. Introduction .. 145

6.2 The CMƒƒ Machine ... 146

6.3 On the Power of Reflection in the Java Language .. 150

6.4 Summary .. 157

Chapter 7: Automated Testing, Debugging, Verification and Probabilistic Analysis with

the Class-Machine Testing Tool ... 158

7.1 Introduction ... 158

viii

7.2 The Design of the CMTT .. 158

7.3 Testing, Evaluation and Effectiveness of the CMTT .. 164

7.4 Summary .. 175

Chapter 8: Conclusions and Future Work .. 177

8.1 Our Major Contributions to State of the Art ... 177

8.2 Future Work ... 177

8.2.1. Comparing Class-Machines Testing Tool with Other Testing Tools 177

8.2.2. The Class-Machines Specification Language ... 178

Bibliographic References .. 179

Apendix A ... 192

A.1 Case Studies and their testing within the CMTT .. 192

A.1.1 Testing the POM in the unchanged, error, goal and complete state testing modes of the

CMTT .. 192

A.1.1.1 Testing the POM in the unchanged state testing mode of the CMTT 192

A.1.1.2 Testing the POM in the Error state testing mode of the CMTT 196

A.1.1.3 Testing the POM in the Goal state testing mode of the CMTT 199

A.1.1.4 Testing the POM in the Complete state testing mode of the CMTT 206

A.1.2 Testing the SOM in the unchanged, error, goal and complete state testing modes of the

CMTT .. 207

A.1.2.1 Testing the SOM in the unchanged state testing mode of the CMTT 207

A.1.2.2 Testing the SOM in the error state testing mode of the CMTT 209

A.1.2.3 Testing the SOM in the Goal state testing mode of the CMTT 210

A.1.2.4 Testing the SOM in the Complete state testing mode of the CMTT 213

A.1.3 Testing the EOM in the unchanged, error, goal and complete state testing modes of the

CMTT .. 213

A.1.3.1 Testing the EOM in the unchanged state testing mode of the CMTT 214

A.1.3.2 Testing the EOM in the Error state testing mode of the CMTT 215

A.1.3.3 Testing the EOM in the Goal state testing mode of the CMTT 218

A.1.3.4 Testing the EOM in the complete state testing mode of the CMTT 222

A.1.4 Testing the Bank Account in the unchanged, error, goal and complete state testing

modes of the CMTT .. 222

A.1.4.1 Testing the Bank Account in the unchanged state testing mode of the CMTT 223

A.1.4.2 Testing the Bank Account in the error state testing mode of the CMTT 225

A.1.4.3 Testing the Bank Account in the goal state testing mode of the CMTT 226

A.1.4.4 Testing the Bank Account in the complete state testing mode of the CMTT 228

A.2 Automatically Generated Java source codes within the Precondition Generator Panel of

the CMTT .. 229

A.3 Java source codes for the Class-Machines Friend Function (CMFF) 249

ix

List of Figures

Figure 1: Class Student overrides the monthlySalary method provided by its parent Class

Person. ... 6

Figure 2: Extensibility of Hierarchy Example ... 7

Figure 3: subClass FF extending superClass EE ... 12

Figure 4: The New Fault Handling Family of Class-Machine Checkers. 15

Figure 5: A minimal deterministic state machine (adapted from [2]) ... 38

Figure 6: An abstract example of an X-machine [38] ... 42

Figure 7: An abstract example of communicating X-machine component [39] 46

Figure 8: The Communicating X-Machine Server algorithm [104] .. 56

Figure 9: An abstract example of a XMCi with input and output streams and functions that

receive input and produce output in any possible combination of sources and destinations [34].

 ... 58

Figure 10: Three Communicating X-Machine Components XMC1, XMC2, and XMC3 and the

resulting communicating system where XMC2 communicates with XMC1 and XMC3, while

XMC3 communicates with XMC1 [34]. ... 58

Figure 11: CD Player Control and Display Panel example adapted from [109] 62

Figure 12: A Simple Person Class and myDate Class aggregation example 70

Figure 13: Sample Inheritance Hierarchy. Class Student inherits from Class Person 71

Figure 14: Example Class Hierarchy ... 72

Figure 15: A queue .. 79

Figure 16: Circular Array .. 80

Figure 17: Linked List ... 80

Figure 18: A class is defined to have an extensible interface and a possibly infinite family of

extensible concrete object implementations that adheres to that interface. 81

Figure 19: The Person Interface Example ... 87

Figure 20: The Person Example .. 88

Figure 21: Test Input Object Implementation in Java ... 93

Figure 22: Inheritance relationship between Object Machines A, B and C 101

Figure 23: Student Class inherits Person Class ... 112

Figure 24: The Student Interface ... 112

Figure 25: The Student Object Machine implementation in Java ... 113

Figure 26: Inheritance relationship between Person and Employee ... 123

Figure 27: The Employee Interface ... 124

Figure 28: The Employee Object Machine ... 125

Figure 29: The Stack Interface .. 136

Figure 30: The Stack Object Machine ... 137

Figure 31: Java implementation of the Ж function in the unchanged state testing mode 149

Figure 32: The ReflectionUtil.java class ... 152

Figure 33: The Main.java class ... 153

Figure 34: The result of reflection on StackTest.java ... 154

Figure 35: The result of reflection on PersonObjectMachineTest.java 155

Figure 36: The result of reflection on StudentObjectMachineTest.java 156

Figure 37: The result of reflection on EmployeeObjectMachineTest.java 157

Figure 38: The File Editor Panel workflow in the CMTT ... 159

Figure 39: The Precondition Method Generator Panel workflow in the CMTT 160

Figure 40: The Frogila Testing Tool Panel workflow in the CMTT ... 162

Figure 41: The Run/Compilation Panel Work flow diagram .. 164

x

Figure 42: The StackObjectMachine.java File opened and displayed within the File Editor

Panel of the CMTT .. 166

Figure 43: The Precondition Generator Panel of the CMTT ... 168

Figure 44: Testing the Stack Object-Machine System in the USPM testing mode of the CMTT

 ... 168

Figure 45: Testing the Stack Object-Machine System in the ESPM testing mode of the CMTT

 ... 171

Figure 46: Testing the Stack Object-Machine System in the GSPM testing mode of the CMTT

 ... 173

Figure 47: Complete Testing of the Stack Object-Machine System in the USPM, ESPM and

GSPM of the CMTT .. 175

Figure 48: Testing the POM in the USPM’s testing mode .. 193

Figure 49: Testing the POM in the ESPM’s testing mode .. 197

Figure 50: Testing the POM in the GSPM’s testing mode .. 200

Figure 51: Complete State Testing of the POM system in the USPM, ESPM and GSPM testing

modes ... 206

Figure 52: Testing the SOM in the USPM’s testing mode .. 207

Figure 53: Testing the SOM in the ESPM’s testing mode .. 209

Figure 54: Testing the SOM in the GSPM’s testing mode. ... 210

Figure 55: Complete State Testing of the SOM system in the USPM, ESPM and GSPM testing

modes ... 213

Figure 56: Testing the EOM in the USPM’s testing mode. .. 214

Figure 57: Testing the EOM in the ESPM’s testing mode. ... 216

Figure 58: Testing the EOM in the GSPM’s testing mode. .. 219

Figure 59: Complete State Testing of the EOM system in the USPM, ESPM and GSPM testing

modes ... 222

Figure 60: The compiled BankAccountTest.java class under test .. 223

Figure 61: Testing the Bank Account in the USPM’s testing mode. 224

Figure 62: Testing the Bank Account in the ESPM’s testing mode. ... 225

Figure 63: Testing the Bank Account in the GSPM’s testing mode. .. 227

Figure 64: Complete State Testing of the Bank Account system in the USPM, ESPM and

GSPM testing modes ... 228

Figure 65: StackTest.java .. 233

Figure 66: PersonObjectMachineTest.java ... 240

Figure 67: StudentObjectMachineTest.java .. 243

Figure 68: EmployeeObjectMachineTest.java .. 247

Figure 69: BankAccount.java .. 249

Figure 70: TransitionFunctionSpecObjectMachine.java ... 256

Figure 71: ClassMachine.java ... 257

Figure 72: TestObject.java .. 257

Figure 73: TransitionFunctionKey.java ... 258

Figure 74: TransitionFunctionValue.java .. 258

Figure 75: PreconditionMethodTemplate.java .. 259

xi

List of Tables

Table 1: Glossary of Symbols and Notations .. xxiii

Table 2: Access Levels in Java .. 69

Table 3: The Employee Model System ... 124

Table 4: The Unchanged State Precondition Method Profile of the Stack Object-Machine

System ... 166

Table 5: The Error State Precondition Method Profile of the Stack Object-Machine System .. 167

Table 6: The Goal State Precondition Method Profile of the Stack Object-Machine System .. 167

Table 7: The step by step transition of the stack object-machines system in the USPM Mode of

the CMTT .. 170

Table 8: The step by step transition of the stack object-machine system in the ESPM Mode of

the CMTT .. 172

Table 9: The step by step transition of the stack object-machine system in the GSPM Mode of

the CMTT .. 174

Table 10: The Unchanged State Precondition Method Profile of the POM System under test 193

Table 11: The step by step transition of the POM system under test in the USPM’s testing mode

 ... 196

Table 12: The Error State Precondition Method Profile of the POM System under test 197

Table 13: The step by step transition of the POM system under test in the ESPM’s testing mode

 ... 199

Table 14: The Goal State Precondition Method Profile of the POM System under test 199

Table 15: The step by step transition of the POM system under test in the GSPM’s testing mode

 ... 206

Table 16: The Unchanged State Precondition Method Profile of the SOM System under test 207

Table 17: The step by step transition of the SOM system under test in the USPM’s testing mode

 ... 208

Table 18: The Error State Precondition Method Profile of the SOM System under test 209

Table 19: The step by step transition of the SOM system under test in the ESPM’s testing mode

 ... 210

Table 20: The Goal State Precondition Method Profile of the SOM System under test 210

Table 21: The step by step transition of the SOM system under test in the GSPM’s testing mode

 ... 212

Table 22: The Unchanged State Precondition Method Profile of the EOM System under test 214

Table 23: The step by step transition of the EOM system under test in the USPM’s testing mode

 ... 215

Table 24: The Error State Precondition Method Profile of the EOM System under test 215

Table 25: The step by step transition of the EOM system under test in the ESPM’s testing mode

 ... 218

Table 26: The Goal State Precondition Method Profile of the EOM System under test 218

Table 27: The step by step transition of the EOM system under test in the GSPM’s testing mode

 ... 221

Table 28: The Unchanged State Precondition Method Profile of the Bank Account System

under test ... 223

Table 29: The step by step transition of the Bank Account system under test in the USPM’s

testing mode ... 225

Table 30: The Error State Precondition Method Profile of the Bank Account System under test

 ... 225

Table 31: The step by step transition of the Bank Account system under test in the ESPM’s

testing mode ... 226

xii

Table 32: The Goal State Precondition Method Profile of the Bank Account System under test

 ... 226

Table 33: The step by step transition of the Bank Account system under test in the GSPM’s

testing mode ... 228

Table 34: All the implemented Java Classes of the CMTT ... 262

xiii

Glossary of Symbols and Notations

Symbol/Notation Definition
f
2
 Represent the fault-finders testing method

CMTT Class-Machine Testing Tool

CMƒƒ Class-Machine Friend Function

OM Object-Machine

CM Class-Machine

API Application Programmer Interface

GUI Graphical User Interface

AA and WW Respectively represent concrete Java Class

Types

 a1 Object instance of AA

w1 Object instance of WW

BB, CC and DD Respectively represent concrete subclasses of

AA

XX, YY and ZZ Respectively represent concrete subclasses of

WW

P, QQ, P1 and P2 Respectively represent a program code

T and T’ Respectively represent a test set

M1 and M2 Respectively represent a finite automaton

r1 and r2 Respectively represent a relational operator

c1 and c2 Respectively represent a constant

aa1 and aa2 Respectively represent an arithmetic operator

CP Represent program component (i.e. fragment

of code)

Pre1 and Pre2 Respectively represent set of preconditions

EE Represent a concrete Java class

FF Represent a concrete subclass of class EE

var Represent instance attribute

WM and ZM Respectively represent method of class EE

and FF respectively

Spec and Imp Respectively represent system specification

and implementation

FROGILA Framework for Object Generation,

Integration and Language Authentication

OO Object Orientation

USPM, ESPM and GSPM Respectively represent the finite set of

unchanged, error and goal state precondition

methods

Inputs and Outputs Respectively represent a finite set of input

and output alphabet that can apply to an

automaton

v Represent a test case in Inputs

V Is a finite set of test cases equal to or a subset

of Inputs that can apply to Spec and Imp

t Represent a test case in T

 s1 and s2 Respectively represent a statement in P

 vv Represent a variable

xiv

k-dr Represent definition-reference pairs

kk Represent a chain of length variable

p-use Represent predicate use

c-use Represent computation use

p and c Respectively represent variable for predicate

and computation use

f Represent functional units that can be tested

in a system

param and ec Respectively represent parameter and

environment condition of f

PF Represent a set of partial functions

JSP Represent the Jackson Structure diagram

Sys Represent the system under test

ft Represent a fault type

vl Represent a value computed for ft within Sys

FSM Represent finite state machine

UIO Represent the unique input-output sequence

method

W Represent the W method

States and States’ Respectively represent a finite set of states

that can apply to Spec and Imp

NextStateFunction, NextStateFunction’, NSF

and NSF’

Respectively represent a next state transition

function that can apply to a finite automaton

initialState and initialState’ Respectively represent the initial state of

Spec and Imp, where initialState is in States

and initialState’ is in States’

func Represent a morphism

L Is called a state machine isomorphism

state and input Respectively represent state in States and

input in Inputs

SXMT Represent the Stream X-Machine Testing

method

Machine Represent a deterministic state machine

Acc(Machine) Represent an accessible automaton

testInput Either represent a subset of sequence of

inputs in Inputs or sequence of inputs equal

to Inputs

~testInput Represent equivalence relation on States

input* Represent sequences of input i.e. input* in

testInput

Red(Machine) Represent the machine constructed by

merging the states of Machine that are

equivalent; such a machine is called the

reduced machine of Machine

Min(Machine) Represent the minimal machine of an

automaton Machine. A deterministic state

machine Machine is minimal if it is

accessible and reduced

SC Represent the state cover set of Machine

xv

TC Represent the transition cover set of

Machine

(::) Represent concatenation

X Represent a test set of Spec and Imp i.e. input

sequences that can be used to establish

whether two finite state machines are

equivalent (i.e. algebraically similar)

Card(States') and Card(Q') Respectively returns the number of states of

Imp

Card(States) and Card(Q) Respectively returns the number of states of

Spec

H Represent a characterization set of Machine

if H distinguishes between any two distinct

states of our Machine

k Represent the number of extra states in Imp

Z Z ensures that transitions in Imp is identical

to the ones in the Spec after each transition is

performed (i.e. they both pass/fail the same

ones)

Σ and Г Respectively represent input and output

alphabets of an X-Machine

Q Represent a finite set of states

Mem

Represent a possibly infinite set called

memory of an X-Machine

Ф Represent a set of partial functions of an X-

Machine that map an input and a memory

state to an output and a possibly different

memory state

F Represent the next state partial function of an

X-Machine. F is often described using a state

transition diagram

q0 and m0 Respectively represent the initial state and

initial memory of an X-Machine

XMDL Represent the X-Machine Definition

Language

SPF Represent partial function of a deterministic

Stream X-Machine i.e. what it will compute

fc and fc' Respectively represent the functions

computed by two deterministic Stream X-

Machines Spec and Imp

A and A' Respectively represent the associated

automata of two deterministic Stream X-

Machines Spec and Imp

seq(Φ) and seq(Σ) Respectively represent a sequence of

processing functions (φ ∈ Φ) and inputs (in

∈ Σ)

 seq(Inputs) Represent a sequence of inputs in Inputs that

can apply to an automaton

tt Represent a fundamental test function of

Machine

xvi

tq, m: seq(Φ) → seq(Σ) Represent the test function of Machine w.r.t.

(q, m), where q ∈ Q and m ∈ Mem

ttq If m = m0 then tq,m is denoted by ttq

DSXM Represent a deterministic Stream X-Machine

pth Represent a path e.g. pth = <φ1, φ2,…, φn+1>

and pth = φ1::...:: φn

(.) Represent composition

Г* and Σ* Respectively represent sequence of outputs

and inputs in an X-Machine

D Represent D = Г* x Mem x Σ*

|pth| Represent the composite (partial) function

computed by Machine e.g. |pth| = φn+1 .

φn,…, φ2 . φ1 ∈ D ↔ D

XX Represent a set containing sequences of

processing functions XX ⊆ seq(Φ)

COXMi Represent the i-th X-Machine that

participates in a Communicating X-Machine

System

COMR Represent the communication relation

between the n X-Machines

MachineA, MachineB and MachineC Respectively represent a unique X-Machine

in a Communicating X-Machine System

BCM Represent Barnard’s Communicating X-

Machine model

Pre Represent the set of predicates on Mem x Σ�
TF Represent the next state transition function of

the BCM often described by means of a state

transition diagram TF: (Q x (Φ x Pre)) → Q

Ps Represent the set of ports in the BCM model

I and FS Respectively represent the sets of initial and

final states I ⊆ Q, FS ⊆ Q in the BCM model

R Represent a set of n Communicating X-

Machines

Ek,k’ Represent a set of relations where the output

port of one X-Machine k is connected to the

input port of another X-Machine k’ thereby

allowing data item or signal to be transmitted

Wn Represent a BCM of n Communicating X-

Machines Wn = (R, Ek,k’)

∑�and Γ� Respectively represent the alphabets of the j-

th input port and i-th output port of the BCM

model

num_in and num_out Respectively represent the numbers of input

and output ports of

CSXMS Represent the Communicating Stream X-

Machines Systems model

MAT Represent the set of matrices of order n x n to

form the values of the matrix variable that is

to be used for establishing communication

amongst the X-Machine components of the

CSXMS

xvii

Λi Represent a Stream X-Machine Λi = (Σ, Γ, Q,

Mem, Φ, F, I, FS, mo)

INi and OUTi Respectively represent the values that can be

transmitted by input and output ports of the

ith CSXMS

ini
0
 and outi

0
 Respectively represent the initial values of

the input and output ports of an X-Machine

model in the CSXMS

Vi Represent Vi = (Λi, INi, OUTi, ini
0
, outi

0
)

C
0
 Represent the initial communication matrix

WWn Represent a CSXMS of n Communicating X-

Machines WWn = (R, MAT, C
0
)

C Represent C ∈ MAT

Q’ and Q’’ Respectively represent the set of processing

states and communicating states, where Q =

Q’ ∪ Q’’ and Q’ ∩ Q” = ∅ holds for a

Communicating X-Machine

Φ’ and Φ’’ Respectively represent the set of processing

functions and communicating functions,

where Φ = Φ’ ∪ Φ’’ and Φ’ ∩ Φ’’ = ∅

holds for a Communicating X-Machine

⊥ Represent an undefined value

<> Represent an empty sequence of inputs

OMV and InpMV Respectively represent a set of output-move

and input-move functions

C[i, j] Represent data value stored in C[i, j]

indicates a message at most one message

from the memory Memi of X-Machine Vi ∈ R

to the memory Memj of X-Machine Vj ∈ R

← Represent the arrow symbol (←) used to

change the initial configuration C[i, j] = λ to

C[i, j] = y when the output-move function

OMV is exercised and it is also used to

transfer the message stored within C[j, i] to x

when the input-move function InpMV is

exercised

ΦE Represent the set of extended partial

functions

CGV Represent the Cowling, Georgescu and

Vertan’s Communicating X-Machine model

CSXMS-Channel Represent the channel model of a CSXMS

Kn+1 Represent additional co-ordinating

Communicating X-Machine within the

CSXMS-Channel approach called the

communication server machine

R
T
 Represent R

T
 = R ∪ Kn+1 in the CSXMS-

Channel model

Wn
T
 Represent the CSXMS-Channel model Wn

T
 =

(R
T
, MAT, C

0
) of a CSXMS with n X-

Machine components i.e. a variant of WWn

xviii

λ and @ Respectively represent the absence of a

message and there is no communication

defined between one X-Machine Vi and

another X-Machine Vj

jS
+

and jR
+
 Respectively represent (request to send) and

(request to receive)

jS
-
and jR

-
 Respectively represent (reject send) and

(reject receive)

↵ The server sends the symbol ↵ called OK

within Wn
T

to the X-Machine requesting such

operation if the required communication

operation is allowed

B Is a representation of the set of other X-

Machines that are still actively running

within the memory of the communication

server machine Kn+1

XM and MM Respectively represent the standard definition

and the variant of the standard definition of

an X-Machine

OPinst Is used to construct a Stream X-Machine

instance

OPcomm Is used to construct a Communicating X-

Machine Component CXMC

OPsys Is used to construct a Modular

Communicating Stream X-Machine System

CXM

MT Represent the Stream X-Machine type

without an initial state and initial memory

NewMT Represent the Stream X-Machine type with

an initial state and initial memory

ISi Is an n-tuple that corresponds to n input

streams

OSi Is a tuple that corresponds to n output

streams

ΦISi Is an association of function φi ∈Φi and the

input stream ISi

ΦOSi Is an association of function φi ∈Φi and the

output stream OSi

SISOi SISOi is the set of functions φ that read from

standard input stream (isi) and write to

standard output stream (osi)

SIOSi SIOSi is the set of functions φ that read from

standard input stream (isi) and write to the

j−th output stream (osj)

ISSOi ISSOi is the set of functions φ that read from

the j−th input stream (isj) and write to the

standard output stream (osi)

ISOSi ISOSi is the set of functions φ that read from

the j−th input stream (isj) and write to the

k−th output stream (osk)

ΦCi ΦCi is the new set of partial functions that

xix

read from either standard input or any other

input stream and write to either the standard

output or any other output stream

ε Represent the empty type

COMM_OBJECTS Represent a society of communicating

objects in an object-oriented system

obj Represent object obj in COMM_OBJECTS

PT and RT Respectively represent primitive types (PT)

and reference types (RT)

CLT and K Respectively represent variable used for

illustrating the concept of PT and RT

OI, IC and FI Respectively represent object instance,

interface class and family of concrete

implementations

CUT and IT Respectively represent the class under test

and its associated interface type

IMP and SE Respectively represent a finite set of concrete

implementations and single element SE in

IMP

ID, S and BV Respectively represent identity (ID), state (S)

and behaviour (BV)

inPT Represent a finite set of inputs with

predefined parameter types to be consumed

from an environment

U, E and G Respectively represent a finite set of

unchanged, error and goal state precondition

methods that can apply to methods of the OM

under test

NUS, NES and NGS Respectively represent a finite set of next

unchanged, error and goal state that the OM

under test can be driven into i.e. depending

on the testing mode

nextOMSI Is used for indicating the next transition state

for the OM under test. For example, if a

unique precondition method from E was

triggered then nextOMSI will indicate that the

OM has been driven into an error state

S* and outPT Respectively represent the modified set of

state variables (i.e. current memory value of

instance attributes) and the type of output

computed respectively i.e. when m of the OM

under test was exercised at run time

MOD Represent a finite set of access modifiers that

can apply to the CM

UTIO, ETIO and GTIO Respectively represent a finite set of

unchanged, error and goal state test input

objects that can be generated for the OM

under test in the unchanged, error and goal

state testing modes

TIO = UTIO ∪ ETIO ∪ GTIO

Represent the finite set of test input objects

that can apply to all the methods and Object-

xx

Machines of the CM under test in all the

relevant testing modes

preM and BE Respectively represent a precondition method

and a finite set of Boolean Expressions (BE)

ΛΛ and S” Respectively represent the Class-Machine

identifier and a finite set of class variables

that can apply to the CM alone

TYPECM and M” Respectively represent a finite set of

parameter types and class methods that can

apply to the CM

CT, τ and ¥ Respectively represent a finite set of

constructors, an extensible interface type

and a possibly infinite family of object-

machines that can apply to the CM

∆ Represent the function mapping the Class-

Machines interface type i.e. τ to a possibly

infinite family of Object-Machines

implementations i.e. ¥

pS” Represent all person class variables in Figure

20

 Is used to show the mapping of KEY to

VALUE

pM” Represent all person class methods in Figure

6

Guardm” = (Um”, Em”, Gm”) Is a triplet that encapsulates a finite set of

three unique precondition methods i.e. for

every unique class method m” ∈ M” under

test

 OMPM = USPM ∪ ESPM ∪ GSPM Is the complete finite set of all types of

precondition methods that can apply to the

OM in IMP under test in all the relevant

testing modes of the CM

modsetAge Is the type of access modifier that can apply

to method setAge in Figure 20

GuardsetAge Represents the finite set of three unique

precondition methods guarding method

setAge

pS Is the initial state of all instance and class

variables that belongs to the person object

machine depicted by Figure 20

inPTsetAge Is the finite set of input parameter types that

can apply to method setAge

pS* Represent the modified memory values

and/or states for the person object machine

system under test

outPTsetAge Is the type of output that method setAge will

produce at run time

nextOMSIsetAge Is used to indicate the type of state that the

person object machine system under test has

been driven into when setAge is exercised at

run time

xxi

POM, SOM and EOM Respectively represent the person (Figure

20), student (Figure 25) and employee (28)

object machine

S’ Is the finite set of instance variables that can

apply to the OM alone

M’ Is the finite set of methods belonging to the

OM alone

M = M’ ∪ M” Is the complete finite set of methods that can

apply to the OM

pS’ Represent all instance variables that belong

to the POM

pS = pS’ ∪ pS”

Represent all the state encapsulating

variables that can apply to the POM system

pM’ Represent all instance methods that can apply

to the POM

pM = pM’ ∪ pM”

all the instance and class methods that can

apply to the POM

 pCT Represent all the constructors that can apply

to the POM

IID and IM Respectively represent the interface

identifier and finite set of interface methods

that can apply to the Class-Machines

interface type τ
↑ The symbol ↑ can be read has is completely

specified with respect to. So we say that

OM is completely specified with respect to τ
i.e. written as (OM ↑ τ) iff (IM ⊆ M)

A_ID and B_ID and C_ID Respectively represent the identifier for

Object Machines A, B and C in Figure 22

A_States, B_States and C_States Respectively represent the finite set of states

that can apply to Object Machines A, B and

C

A_Methods, B_Methods and C_Methods Respectively represent the finite set of

methods that can apply to the Object

Machines A, B and C

⊗ Is the function appending every unique

element in the right-hand set onto the left-

hand set if and only if the element to be

added is not already present in the left-hand

set

Ψ = (TIOGen, PreGen) Is a 2-tuple machine consisting of the test

input object generator function TIOGen

(covered in section 4.5.2) and the

precondition generator function PreGen

(covered in section 4.5.3).

ℜ = (PMPGen, PMTLGen, P2Trig, PN2Trig,

HPFGen, LPFGen, TFRGen)

Is a 7-tuple machine, where PMPGen is the

precondition method profile generator

function (covered in section 4.5.4).

PMTLGen is the precondition method total

length generator function (covered in section

xxii

4.5.5).

P2Trig is the probability to trigger function

(covered in section 4.5.6).

PN2Trig is the probability not to trigger

function (covered in section 4.5.7).

HPFGen is the high probability filter

function (covered in section 4.5.8).

LPFGen is the low probability filter function

(covered in section 4.5.9).

TFRGen is the total number of faults

remaining in the OM after testing has been

completed (covered in section 4.5.10)

ϒ = (EMMGen) Is a 1-tuple machine with the exact method

match generator function EMMGen covered

in section 4.5.11.

Œ = (Ψ,ℜ,ϒ) Is the complete structure of the object

machine currently under test

PCM, SCM and ECM Respectively represent the person, student

and employee Class-Machine

AI, SE, CS and UM Respectively represent Artificial Intelligence,

Software Engineering, Computer Science and

Unknown Major

Shidden and Svisible Respectively represent a finite set of hidden

and visible state encapsulating variables of

the OM under test

Mhidden and Mvisible Respectively represent a finite set of hidden

and visible methods of the OM under test

Я Я is the function that converts every uniquely

hidden state encapsulating variable in Shidden

to a public non-hidden state variable. The

result is a modified Shidden (i.e. Shidden
ω
)

Ξ Ξ is the function that converts every uniquely

hidden method in Mhidden to a public non-

hidden method. The result is a modified

Mhidden (i.e. Mhidden
ω
)

ST = Svisible ∪ Shidden
ω
 Implies that the complete finite set of state

variables S of the OM becomes ST after the

application of Я on S

M
ω
 = Mvisible ∪ Mhidden

ω
 Implies that the complete finite set of

methods M of the OM becomes M
ω
 after the

application of Ξ on M

CMS Represent the current memory state of

instance and class variables in ST of the OM

under test

CAM CAM is the current active method i.e. k ∈ M
ω

of the OM under test

CAPM CAPM is the current active precondition

xxiii

method in Uk or Ek or Gk for the OM under

test i.e. depending on the testing mode of the

CM; since method k is guarded by Uk, Ek and

Gk.

CATIO CATIO is the current active test input object

generated from exercising a precondition

method in Uk or Ek or Gk for the OM under

test

ffKey = (CMS, CAM, CAPM, CATIO) Is the friend function key

CAMO CAMO is the current active method’s output

for the OM under test i.e. the type of output

generated when method k is exercised with

the test case that was saved inside CATIO

NTS NTS is the next transition state for the OM

under test i.e. the modified memory state

for all the state encapsulating variables in ST

when method k is exercised at run time

ffValue = (CAMO, NTS) Is the friend function value

Ж : OM → α(ffKey, ffValue) Is the function that has complete visibility on

all the encapsulated methods, memory states

of the instance and class variables of a given

object or class under test. The Ж function

also produces a set of machines that behave

in the same way as the originals (but, of

course that also allow the test engineer to see

what this behaviour is)

|pth| Represent the composite (partial) function

computed by a finite automaton when it

follows a path pth

π1, π2, ..., πn Represent a finite set of projection

functions, where

π1: A1 × A2 ×…× An →A1,

π2: A1 × A2 ×…× An →An,

πn: A1 × A2 ×…× An →An,

and A1, A2, ..., An are sets.

Assuming m and s* respectively represent the

initial memory and input of a finite

automaton, we say that if |pth|(m, s*) = (g*,

m') then the output g* and the new memory

value m' can be referred to as π1(|pth|(m, s*))

and π2(|pth|(m, s*)) respectively.

Table 1: Glossary of Symbols and Notations

xxiv

Abstract:

The object technology model is constantly evolving to address the software crisis problem. This novel

idea which informed and currently guides the design style of most modern scalable software systems has

caused a strong belief that the object-oriented technology is the ultimate answer to the software crisis,

i.e. applying an object-oriented development method will eventually lead to quality code. It is important

to emphasise that object-orientedness does not make testing obsolete. As a matter of fact, some aspects

of its very nature introduce new problems into the production of correct programs and their testing due

to paradigmatic features like encapsulation, inheritance, polymorphism and dynamic binding as this

research work shows.

Most work in testing research has centred on procedure-oriented software with worthwhile methods of

testing having been developed as a result. However, those cannot be applied directly to object-oriented

software owing to the fact that the architectures of such systems differ on many key issues.

In this thesis, we investigate and review the problems introduced by the features of the object

technology model and then proceed to show why traditional structured software testing techniques are

insufficient for testing object-oriented software by comparing the fundamental differences in their

architecture. Also, by reviewing Weyuker’s test adequacy axioms we show that program-based testing

and specification-based testing are orthogonal and complementary. Thus, a software testing

methodology that is solely based on one of these approaches (i.e. program-based or specification-based

testing) cannot adequately cover all the essential paths of the system under test or satisfactorily

guarantee correctness in practice. We argue that a new method is required which integrates the benefits

of the two approaches and further builds upon their individual strengths to create a more meaningful,

practical and reliable solution.

To this end, this thesis introduces and discusses a new automaton-based framework formalism for

object-oriented classes called the Class-Machine and a test method that is based on this formalism. Here,

the notion of a class or the idea behind classification in object-oriented languages is embodied within a

machine framework. The Class-Machine model represents a polymorphic abstraction for heterogeneous

families of Object-Machines that model a real life problem in a given domain; these Object-Machines

are instances of different concrete machine types. The Class-Machine has an extensible machine

implementation as well as an extensible machine interface. Thus, the Class-Machine is introduced as a

formal framework for generating autonomous Object-Machines (i.e. Object-Machine Generator) that

share common Generic Class-Machine States and Specific Object-Machine States. The states of these

Object-Machines are manipulated by a set of processing functions (i.e. Class-Machine Methods and

Object-Machine Methods) that must satisfy a set of preconditions before they are allowed to modify the

state(s) of the Object-Machines. The Class-Machine model can also be viewed as a platform for

integrating a society of communicating Object-Machines. To verify and completely test systems that

adhere to the Class-Machine framework, a novel testing method is proposed i.e. the fault-finders (f²) - a

distributed family of software checkers specifically designed to crawl through a Class-Machine

implementation to look for a particular type of fault and tell us the location of the fault in the program

(i.e. the class under test). Given this information, we can statistically show the distribution of faults in an

object-oriented system and then provide a probabilistic assertion of the number and type of faults that

remain undetected after testing is completed.

To address the problems caused through the encapsulation mechanism, this thesis introduces and

discusses another novel framework formalism that has complete visibility on all the encapsulated

methods, memory states of the instance and class variables of a given Object-Machine or Class-Machine

system under test. We call this the Class Machine Friend Function (CMƒƒ). In order to further illustrate

all the fundamental theoretical ideas and paradigmatic features inherent within our proposed Class-

Machine model, this thesis considers four different Class-Machine case studies. Finally, to further show

that the Class-Machine theoretical purity does not mitigate against practical concerns, our novel object-

oriented specification, verification, debugging and testing approaches proposed in this thesis are

exemplified in an automated testing tool called: The Class-Machine Testing Tool (CMTT).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

1

Chapter 1: Introduction

How can we effectively test object-oriented software in such a way that it enables us to draw

useful inferences about the number and type of faults that remain undetected after testing is

completed in the presence of some aspects of its very nature i.e. encapsulation, inheritance,

polymorphism and dynamic binding?

It is fair to say that ensuring that object-oriented systems are fault free is quite beyond current

testing methods (arguably this statement is true of almost all types of systems). All they can tell

is that a system has failed. They cannot tell us that the system is correct. How do we then build

correct object-oriented systems that fulfil their requirements?

We believe that these are significant questions that deserve full attention in software

engineering research. Satisfactorily answering these questions is one of the prime motivations

behind this research work. If one were to recount all the great discoveries and inventions of the

past few years [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91, 110, 111, 112,

113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,

132, 133, 136], one would be able to discern that a fundamental desire of all those involved in

the development of new computer systems (whether business software solutions, real-time

control systems or hardware devices) is to verify that the final product behaves correctly.

Attempts to design and build reliable software systems have resulted in the introduction of the

object-oriented technology paradigm and a growing research interest in object-oriented

systems. This growing research interest is mainly due to a very strong belief that the object-

oriented technology is the ultimate solution to the software crisis. Software engineers and

academics who share this view clearly believe that applying an object-oriented development

method will consequently lead to quality code. In particular, this view is based on some of the

great features provided by object-oriented languages which simplify testing and maintenance

activities. In this work, we argue that the features provided by object-oriented languages are no

substitute for testing object-oriented software. On their own, object-oriented development

approaches cannot guarantee the production of correct programs.

Although an object-oriented development method can produce better system architecture and

most object-oriented programming languages provide support for a disciplined coding style, it

is worth emphasising that they cannot by any means protect software engineers from making

mistakes or misunderstanding a system’s formal specification. Hence, software systems

developed using object-oriented development methods still need testing. Furthermore, because

object technology model promotes reuse, the testing phase of the software lifecycle is more

critical for object-oriented software than for traditional software owing to software components

being re-used in a number of contexts, and possibly applied in areas unintended by the original

developer; as a result, reusable components need to be properly tested.

On top of the above stated issues, features such as encapsulation, inheritance, polymorphism

and dynamic binding in object oriented languages can introduce new problems into the

production of correct object oriented programs and their testing, resulting in an urgent need to

develop new effective testing methods for them. Whilst there exists a proliferation of testing

methods which are largely centred on procedure-oriented software, our position on the subject

of this matter is that those methods cannot be applied directly to object-oriented software owing

to the fact that the architectures of such systems differ on many key issues. Hence, we argue

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

2

that those methods are not sufficient for testing object-oriented software as the architectures of

those systems differ due to many fundamental assumptions and key features inherent in the

object-oriented model.

Furthermore, our review of existing approaches that employ either finite state machines [29, 30,

31] or extended finite state machines [2, 32, 38] for the purpose of modelling the behaviour of

object-oriented systems (generally referred to as Object-Machines) shows that these approaches

are either too simplistic to model the complexity of object-oriented systems or too procedural to

represent objects in their purest form. Some of these approaches also fail to account for some

key features of object-oriented languages e.g. inheritance, polymorphism and dynamic binding.

Software testing is one of the key approaches used in software engineering to establish the

correctness of software systems. Software verification or model checking is another. One

possible way to classify existing testing methods is as either program-based or specification-

based. Most of the Object-Machine approaches [55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] that

exist for modeling the behaviour of a system or the internal structure of an object-oriented

component (i.e. an object) largely base their testing methodology on either program-based

testing or specification-based testing techniques. However, Weyuker’s test adequacy axioms

[97,100,101] reveal that program-based testing and specification-based testing are orthogonal

and complementary. To this end, this thesis argues that any Object-Machine approach that

bases its testing methodology solely on one of these approaches cannot adequately guarantee

correctness in practice. To engineer a more meaningful, practical and reliable solution, a new

testing method is required to integrate the benefits of the two approaches and further build upon

their individual strengths, thus providing the much needed correctness guarantee after testing is

completed.

To this end, this thesis proposes a novel testing method that combines both the computational

benefits of verifying and testing a formal specification as well as testing, debugging and

verifying the eventual concrete implementation via a distributed family of software checkers

called fault-finders (f
2
). Here, the idea behind f

2
 is to develop a family of autonomous agents

that crawl through a class implementation to look for a particular type of fault and tell us its

location in the program (i.e. the class under test). Given this information, we can statistically

show the distribution of faults in an object-oriented system and then provide a probabilistic

assertion of the number and type of faults that remain undetected after testing is completed.

Furthermore, classification is arguably the distinctive feature of an object-oriented language

[94, 102]. This is because the fundamental emphasis in object-oriented languages is on defining

abstraction. It is clear that with the object technology approach, it is far easier to generalise over

a set of objects that share a common interface and specific practical implementation by

identifying a class of related objects. Most Object-Machines currently used for specifying

object-oriented systems can only model a single instance of an object or component of a

system. But object-oriented systems are composed of a society of communicating objects where

each object is an instance of a concrete type [94] and belongs to a given class [102].

It is possible, by further exploring the object technology approach to create a machine which

generalises over heterogeneous families of Object-Machines, themselves instances of different

concrete machine types. Such a machine would have an extensible machine implementation as

well as an extensible machine interface [94]. In this thesis, such a machine is developed and we

refer to it as the Class-Machine. Here, the notion of a class or the idea behind classification in

object-oriented languages is embodied within a machine framework. The Class-Machine model

can also be viewed as a specification platform for integrating a family of communicating

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

3

object-machines. This is particularly useful for modelling, specifying, verifying, debugging,

integrating and testing a family of distributed object-oriented systems. In an object-oriented

system, the basic unit is a class (i.e. Class-Machine). Hence, testing needs to focus on the Class-

Machine. To show that our proposed automaton-based framework formalism and our testing

method based on this and its theoretical purity does not mitigate against practical concerns, our

novel object-oriented specification, verification, debugging and testing approaches proposed in

this thesis are exemplified in an automated testing tool called: The Class-Machine Testing Tool

(CMTT).

1.1 Motivation

1.1.1 Problems in Testing Object-Oriented Software

1. Testing Problems due to Encapsulation

One of the fundamental properties of object-oriented programming is the ability to hide

information through the encapsulation mechanism found in object-oriented languages. This

allows an object's state to be separated from its behaviour preventing possible modification of

its attributes by some external collaborating objects. The Java programming language provides

four different scope operators for this (public, protected, private, and package) that can

be used to selectively hide data constructs within a class implementation. However, these

benefits introduce major problems during the testing phase of the software lifecycle. In the

presence of encapsulation, the only way we can observe the state of an object is through the

public methods that comprise its interface. Therefore, a fundamental problem of observability

exists, since we cannot conveniently ascertain whether the state of the object is coherent after

invoking an operation.

There are a number of ways by which this problem can be resolved:

Firstly, it is possible to modify the class under test by adding certain new methods that allow

the software tester complete access to the hidden features of the class. However, this is not a

satisfactory solution because it forces us to include operations that are not part of the original

specification for the class under test. Moreover, we have no way of assuring that the class under

test will provide the same behaviour when these operations are removed from the tested code.

Secondly, a possible refinement to the above solution would be to define the operations in a

subclass. The problem here is that this approach would be useless if the child class does not

have complete access to the state of the inherited features of the parent class. For example,

assume the class under test is implemented in the Java language and some of the attributes and

methods of the class are hidden away (i.e. with the private modifier) from collaborating objects

that may require to communicate with concrete object instances that belong to the class under

test. In such situation, the class under test (i.e. our parent class in this case) would not be visible

to its child class.

Apart from those two general methods described above, several programming languages

provide certain language specific mechanisms with which to break encapsulation:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

4

Family-Related Constructs

The C++ programming language has intrusive friends subprograms that define operations

which do not belong to the class but have complete visibility of all the features of the class [95].

Also, the child units of Ada are non-intrusive package extensions with complete access to the

hidden part of their parent package [95]. Also, the Java reflection API represents (i.e. reflects)

the classes, interfaces, and objects in the Java Virtual Machine. With the Java reflection API,

software engineers can easily obtain useful information about a class’s modifiers, fields (i.e.

attributes of a class), methods, constructors, and superclasses (i.e. as a consequence of

inheritance). The Java reflection API is useful for writing development tools such as debuggers,

class browsers, and GUI builders.

Low-Level Constructs

Both Smalltalk’s inspectors and Eiffel’s class internals have low-level functions that can

examine all the features of an object. Generally, these functions break encapsulation by

providing access to the physical object structure [95].

Unchecked Type Conversion

Assuming the type system of the programming language used for implementing a piece of

software is weak or if the language does not check type conversion, then in this situation it is

possible to break encapsulation by simply writing another class, whose data structure is a clone

of the class under test save that all the features of the class (i.e. its attributes and methods) are

declared public, thus by casting all the instances of the class under test to the instances of the

clone class we would be able to access all their features freely without problems.

2. Testing Problems due to Inheritance

When the inheritance mechanism is explored within object-oriented systems, it opens a big

issue about whether derived classes (i.e. child classes) need to be retested with respect to

inherited operations from their parent classes. One important approach promoted within object-

oriented languages concerns how derived classes are allowed to be refined by modifying or

completely removing inherited operations, or adding new attributes and functions. Considering

the fact that derived classes are obtained through direct refinement of their parent classes, it is

only natural to expect a parent class that has been adequately tested to be reused without any

further need to retest its properties (i.e. its methods) within its child class. While the root of this

wisdom is well founded around the natural structure of the inheritance hierarchy, it is however

proved false with Weyuker’s test adequacy axioms [97, 100, 101]. Hence, some of the inherited

operations need retesting within the derived class.

The work of Barbey in [95] describes a strict form of inheritance. In this work, a derived class

is a strict heir of its parents as long as it preserves the exact inherited behaviour of its parent

class. This implies that inherited operations (i.e. methods of the parent class) cannot be

modified (e.g. overridden) within the derived class. Thus, all the derived class is permitted to do

is to be refined by defining new attributes and functions. Again, despite this intuition, when

strict inheritance mechanism is explored some of the inherited functions of the parent class still

need retesting within the derived class. As discussed previously in earlier sections, one of the

advantages of the encapsulation mechanism within object-oriented languages is that

collaborating client objects do not have direct access to the data structure of the server objects.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

5

However, by exploring the mechanism of inheritance we can easily break encapsulation. This is

because the inheritance mechanism allows derived classes to gain access to the features of their

parent classes, and further modify them should they choose to. Although encapsulation builds a

wall of protection between the server class and its client’s classes, it does not prevent its

derived class from messing up inherited operations.

Whilst the original specification and implementation code for the parent class is preserved

within the derived class (i.e. in strict inheritance scheme), the additional operations introduced

by the derived class can lead to profound changes in the eventual execution of the inherited

operations of the parent class. Thus the added functions can have a strong effect on the state of

the object in such a way that certain portions of the implementation code for the parent class

that were previously unreachable and that had not been tested, suddenly become reachable

within the child class and consequently need testing.

In a flexible inheritance scheme as opposed to strict inheritance scheme, child classes are

allowed to redefine (i.e. override) inherited operations i.e. in order to provide a new

implementation to an inherited operation or function from the parent class that is to be used

within the child class. Generally, overriding occurs when certain behaviours of an inherited

method from a parent class are not appropriate within the context of its child class.

This is best illustrated with an example. Below, we present a simple Java example that involves

inheritance. In this example, a Student Class inherits from a Person Class. In addition to other

methods provided by the Person Class, the person class also defines a method for computing

the end of month’s salary for a full-time person-employee. The Student Class inherits all the

operations of the Person Class. However, a student is only allowed to work during term time

for a maximum period of 20 hours in a week. For the purposes of this example it is assumed

that a person-employee can only work for a maximum period of 37 hours in a week. Also, the

hourly rate of pay for a person-employee and a full-time student is £10. Furthermore, we

assume that there are 4 weeks in any month of the year.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

6

In the above example, the Student Class had to override the monthlySalary method inherited In

In Figure 1, the Student Class had to override the monthlySalary method inherited from the

Person Class because the inherited method was not appropriate in the context of the Student

Class that represents full-time students who are only allowed to work for a maximum 20 hours

in a week during term time.

When inherited operations (i.e. methods of the parent class) are overridden within the context of

the child class, such a child class needs to be retested. Considering the above example for the

Person-Student class inheritance relationship, when the software engineer has suddenly realised

the need to provide a new implementation for the monthlySalary method as a consequence of

the fact that it is not appropriate in the context of the Student Class, it is clear that the modified

method will not reproduce the exact behaviour of the inherited code. Hence, one major side

effect that results from modifying inherited methods within a child class is that we have to

retest all other methods that invoke the overridden method as part of their own implementation;

it does not matter whether such methods have been inherited from the parent class where the

overridden method was first defined or in a later subclass somewhere in the inheritance

hierarchy: as long as those methods invoke a method whose behaviour has been modified, their

own behaviour would consequently be affected by such modifications, hence they need

retesting.

3. Testing Problems due to Polymorphism

The mechanism of polymorphism in object-oriented languages allows a heterogeneous family

of different classes of objects of a given concrete type to respond to the same request based on

the structure of the inheritance hierarchy. (This pattern of substitution is known as Liskov’s

substitution principle [98]). However, within object-oriented languages, polymorphic variable

names or object references can make testing problematic. This is because they introduce

undecidability (undecidability is used here in the English sense of the word) in program-based

public class Person{

private String surname;

private String forename;

private int age;

private String gender;

public Person(String s, String f, int a, String g){

 this.surname = s;

 this.forename = f;

 this.age = a;

 this.gender = g;}

public void setSurname(String s){surname = s;}

public String getSurname(){return surname;}

public void setForename(String f){forename = f;}

public String getForename(){return forename;}

public void setAge(int a){age = a;}

public int getAge(){return age;}

public void setGender(String g){gender = g;}

public String getGender(){return gender;}

public double monthlySalary(){ return (37 * 10) * 4;}

}// End of Class Person

public class Student extends Person{

private String major;

public Student(String s, String f, int a, String g, String m)

 {

 super(s, f, a, g); // call to Person Constructor

 major = m;

 }

public String getMajor()

 {

 return major;

 }

public void setMajor(String m){ major = m;}

public double monthlySalary()

 {

 return (20 * 10) * 4;

 }

 }// End of Class Student

Figure 1: Class Student overrides the monthlySalary method provided by its parent Class Person.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

7

testing as it is difficult to predetermine in advance what method of an object reference would be

invoked at run time, i.e. whether the original statically defined object method would be fired or

a refined method implementation of a child class would be invoked.

Apart from this, erroneous casting (i.e. type conversions) within object-oriented programs is

prone to happen in polymorphic contexts and these can easily lead to the type of faults that

cannot be easily detected. Also, in an object-oriented language such as Java, it is possible for

variables that reference objects to have a static concrete type in their original specification (i.e.

the declared concrete type in the original program definition). But due to the presence of

paradigm features like polymorphism in the object model, the actual concrete object type can be

bound to a dynamic concrete type that is determined at runtime. Hence it is possible for a given

object reference type that was deemed to have been statically type correct at compile time to be

dynamically fatal by producing a fault at run-time.

Extensibility of Hierarchies

Another problem similar to those described above arises when testing (i.e. functional-based and

implementation-based) a method with one or more paremeters that are polymorphic. We

illustrate this concept further with an example using Figure 2. Now, consider the following

testMethod with polymorphic object parameters as its arguments.

public void testMethod(AA a1, WW w1){

//do something

}

In the above implementation code for testMethod we know that testMethod accepts two

parameters (i.e. object a1 an instance of a concrete type AA and object w1 an instance of a

concrete type WW). As a consequence of polymorphism we know that object a1 can be bound

to any object member in the same family tree. The same is true for object w1. Hence, testing the

above method involves checking its effects when it is executed for various combinations of

actual object parameters based on the structure of the inheritance hierarchy shown below.

Therefore, a test suite must make sure that all the feasible cases with respect to bindings are

covered.

Figure 2: Extensibility of Hierarchy Example

However, given that within testMethod more than one polymorphic object parameter can be

bound to a1 and w1, it is impossible to plan a test in advance where you can check testMethod

for every possible object binding. This is because a disciplined approach promoted within

object-oriented languages allows a hierarchy of classes to be freely extensible. Thus, it is

AA

BB CC DD

WW

XX YY ZZ

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

8

possible at any point in time to add a new subclass to the hierarchy, without even causing a

recompilation of the testMethod.

4. Testing Problems due to Non-Instantiable Classes

These are classes from which object instances cannot be created because their implementation

is not completely defined (i.e. missing bits must be subsequently provided within concrete

subclasses). Example of these kinds of non-instantiatable classes in Java are: Abstract Classes

and Interface Classes. Because instances of these types of classes cannot be created, it is

difficult to adequately test them. Hence, to test such classes, the test engineer needs to create a

minimal test suite that covers the different bindings for the missing part of the implementation

in order to achieve exhaustive test that would provide the necessary guarantee required after

testing is completed.

1.1.2 Object-Oriented Architecture vs. Procedure-Oriented
Architecture

In this section, we argue that most work in testing has been done with procedure-oriented

software in mind and that some good methods of testing have been developed as a result.

However, we emphasise that those methods cannot be applied directly to object-oriented

software, due to the fact that the architectures of those systems are significantly different from

those of Object-Oriented software on a number of key areas. Also, we argue that the differences

between the two paradigms are sufficient to motivate the development of a test method that is

more specific to the object-oriented architecture.

The Procedure-Oriented Systems Architecture

• Here, the system is functionally broken down into subprograms. Each subprogram

separately implements some of the services provided by the overall system.

• The basic unit of test is generally a subprogram. It is possible for one subprogram to

contain other subprograms in other for its own definition to be complete (i.e.

aggregation).

• It is possible to gather a much larger unit of test from already tested subprograms (i.e.

bottom-up integration), or better still subprogram stubs that are residing within already

tested subprograms can be replaced by subprograms to be tested (i.e. top down

integration)

• Data handling is shared amongst subprograms, which may not be related in any way,

and which can be scattered throughout the entire system, hence the problem with

generating adequate test units.

• In order to communicate, subprograms make use of either parameters or global

variables.

The Object-Oriented Systems Architecture

• Here, the system is made up of a society of communicating objects; each object is an

instance of a concrete type [94] that belongs to a given class.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

9

• Each object in the system has its own set of attributes where the state and memory of

the object are hidden (i.e. encapsulated). An attribute can either be a value (e.g. a basic

type in Java) or another object.

• Every object in the system provides a set of methods that defines it behaviour.

• Here, a class is a polymorphic definition for a heterogeneous family of objects,

instances of different concrete types with extensible implementation and extensible

interface [94].

• A class encapsulates the definition of a heterogeneous family of objects, instances of

different concrete types and further conceals the details of their implementation.

• Generally the attributes of an object are usually hidden (i.e. with modifiers), in such a

way that the only way to observe or modify the state of an object is by invoking its

public (non-hidden) methods.

• Some methods can also be hidden (i.e. with modifiers). Certain methods belong to

objects of the class while others are class methods (i.e. these methods are internally used

for the purpose of implementing other methods).

• Some attributes belong to objects of the class while other attributes belong to the class

(i.e. class attributes are shared among a family of objects that belong to the class). Class

methods are methods that manipulate those class attributes.

• It is possible for one class to be related to another through the mechanism of inheritance.

• Through the power of polymorphism a heterogeneous family of different classes of

objects of a given concrete type can respond to the same request based on the structure

of the inheritance hierarchy.

 1.1.3 Classes vs. Procedure-Oriented Testing

• With classes data handling is not shared between units. A class contains all the attributes

and methods that can affect the state of a family of objects that belongs to it.

• A class can only be tested through its instances.

• It is not possible to test the methods of a class in isolation.

• Control flow analysis techniques are not directly applicable, since there is no sequential

order in which methods can be invoked.

• Because every object carries a state, it is impossible to reduce the testing of an object to

the independent testing of its methods. However, it could be argued that actually it is not

impossible to reduce the testing of an object to the independent testing of its methods,

but the problem with doing so is that one has to be able to determine accurately what the

state of an object is before and after each method invocation, and also one needs some

guarantee that determining the state does not change it, and neither of these are easy to

achieve in practice.

• Every method of the class can alter the state of the object or even the state of the class if

the class has class attributes (i.e. class methods can be used to manipulate class

attributes).

1.1.4 Weyuker’s Test Adequacy Axioms

Generally, one possible way to provide confidence that program code has been adequately

tested is by checking that the program has been covered according to some test selection

criteria. The two major forms of test case coverage classifications are specification-based and

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

10

implementation-based testing techniques. In chapter 2, these two forms of testing are explained

in detail. In this section, we argue that the two approaches to testing are orthogonal and

complementary. This is because specification-based testing is weak with regards to formal

adequacy criteria, while implementation-based testing has been studied in great depth. One

major disadvantage of specification-based testing is that although it tells us how well a program

satisfies its formal specification, it does not tell us what part of the program was executed to

satisfy each part of the specification. Also, the disadvantage of implementation-based testing is

that it does not tell us how well a program satisfies its intended functionality. Hence, we argue

that if the benefits of the two approaches are combined (i.e. integrated), implementation-based

testing will provide a level of confidence that can be obtained from the adequacy criteria that

the software program has been adequately tested while on the other hand specification-based

testing will help us to establish whether the program is actually doing what it is expected to do.

The work of Weyuker in [100] introduced a general axiomatic theory for test data adequacy.

This work examines different adequacy criteria in the light of these axioms. In another second

paper [101], Weyuker went ahead to refine and further expand the original set of eight axioms

to eleven. In the first paper, Weyuker used the original set of axioms to reveal several

weaknesses in well known implementation-based adequacy criteria. The prime goal of the

second paper was to uncover the inadequacy of the current set of axioms, i.e. there are

adequacy criteria that satisfy all the eleven axioms but still are not helpful in detecting faults in

software programs. In this work, by applying these axioms we challenge some conventional

wisdom about specification based testing and the idea that programs developed as a result of

applying object-oriented methods would require less testing than those developed from other

paradigms.

Below are the first four axioms of Weyuker [100]:

• Applicability: For every program, there exists an adequate test set.

• Non-Exhaustive Applicability: There is a program P and test set T such that P is

adequately tested by T, and T is not an exhaustive test set.

• Monotonicity: If T is adequate for P, and T is a subset of T’ then T’ is adequate for P.

• Inadequate Empty Set: The empty set is not an adequate test set for any program.

The first four axioms above are clearly obvious ones. They are relevant to all programs and it

does not matter what programming language was used for implementing the program. They

likewise also apply to implementation-based as well as functional-based testing techniques.

As above, the following three axioms of Weyuker are obvious ones [100]:

• Renaming: Let P be a renaming of QQ; then T is adequate for P if and only if T is

adequate for QQ.

• Complexity: For every n, there is a program P, such that P is adequately tested by a

size n test set, but not by any size n-1 test set.

• Statement Coverage: If T is adequate for P, then T causes every executable statement

of P to be executed.

In the above axioms (i.e. specifically the renaming one), a software program P is said to be a

renaming of another program QQ if P is identical to QQ with the exception that all instances of

an identifier w of QQ have been replaced in P by an identifier z, in such a way that z does not

appear in QQ, or if there is a set of such renamed identifiers. Here, the first two axioms above

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

11

are relevant to implementation-based testing and functional-based testing. But the third one (i.e.

statement coverage) applies only to implementation-based testing.

The remaining not so obvious axioms (i.e. four axioms) are the main focus of this work. Some

of these axioms are only relevant to implementation-based testing and not to functional-based

adequacy criteria. We can view these axioms as negative axioms because they simply reveal

inadequacy rather than guarantee adequacy. It is to these that we now turn.

Antiextensionality [100]: If two programs compute the same function (i.e. they are

semantically close), a test set that is adequate for one is not necessarily adequate for the other.

There are programs P and QQ such that P ≡ QQ, [test set] T is adequate for P, but T is not

adequate for QQ.

The above axiom is definitely more surprising than the other axioms. This is partly due to the

fact that our understanding of what it means for a program to be adequately tested is rooted in

specification-based testing. This is a very surprising result because a popular idea that is

promoted within the formal method community with respect to specification-based testing until

now viewed adequacy testing as a function of covering the whole specification. Hence, two

machines M1 and M2 are judged to be equivalent if they accept the same input and produce the

same output. This implies that a test set that is adequate for M1 is adequate for M2. In the same

manner you would normally expect two equivalent programs P1 and P2 with the same formal

specification to share the same test set (i.e. a test set that is adequate for one must be adequate

for the other). Within program-based testing approaches, a program P is deemed to be

adequately tested if the source code for P has been covered completely. Because it is possible

for equivalent programs to have radically different concrete implementations, it is absolutely

pointless to expect a test set that will execute all the statements of P1 to execute all the

statements of P2.

Now, let us apply this idea to reason about certain features in the object-oriented paradigm. We

know that a disciplined approach supported within most object-oriented languages concerns

how a subclass is allowed to replace an inherited method with a locally defined method with the

same name. It is obvious that the overriding subclass has to be retested. However, what is not

obvious here is that most times a different test set would be needed. To illustrate this concept

further with an example, recall that in section 1.1.1 we introduce an example where we tried to

compute the monthly salary for a full-time student and a full-time person-employee. In that

example, the Student Class overrides the monthlySalary method of its parent class (i.e. Person

Class) because the method was not appropriate within the context of the student class. Even

though the names of the two methods are the same within the parent class and the child class

and although the two methods compute semantically close functions, a test set that is adequate

for one is not necessarily adequate for the other.

General Multiple Change [100]: When two programs are syntactically similar (i.e. they have

the same shape), they usually require different test sets.

There are programs P and QQ which are the same shape, and a test set T such that T is

adequate for P, but T is not adequate for QQ.

Weyuker states: ‘‘Two programs P and QQ are of the same shape if one can be transformed

into the other by applying the following rules any number of times: (a) Replace relational

operator r1 in a predicate with relational operator r2. (b) Replace constant c1 in a predicate or

assignment statement with constant c2. (c) Replace arithmetic operator aa1 in an assignment

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

12

statement with arithmetic operator aa2.’’ Because it is possible to generate an adequate test set

for program P or QQ when one has been transformed into the other, i.e. to force the execution

of the two branches of each conditional statement, as a consequence the newly introduced

relational operators in the transformed P or QQ and/or constants in the predicates may require a

different test set to guarantee complete coverage. This axiom directly applies to implementation

rather than to specification.

Antidecomposition [100]: Testing a program component in the context of an enclosing

program may be adequate with respect to that enclosing program but not necessarily adequate

for other uses of the component.

There exists a program P and component CP such that T is adequate for P, T’ is the set of

vectors of values that variables can assume on entrance to CP for some t of T, and T’ is not

adequate for CP.

The above axiom describes the property of adequacy as well as illustrates a fascinating concept

about testing (i.e. it is possible for a program that satisfies adequacy testing criteria to still

contain unreachable code). Here, the unreachable code remains untested either adequately or

otherwise. Now, consider the example where component CP is unreachable in program P and

T’ is the null set. As expressed by the Inadequate Empty Set axiom in earlier section above, it

automatically follows by the axioms that T' will not adequately test CP. Whilst it is possible

that for some set of preconditions (say Pre1), certain parts of CP might not be reachable in P. It

is possible that for a different set of preconditions (say Pre2), CP may become reachable in P.

One possible reason why component CP cannot be adequately tested within program P might

be due to the fact that program P might not be using all the functionality that was defined for

component CP in its original specification. Now, let us use the antidecomposition axiom

described above to reason about some useful characteristics of object-oriented programs. To do

this, we use Figure 3 to explain some important ideas about testing object-oriented programs.

In the above example (see Figure 3), superClass EE defines a method WM. The method WM

has been adequately tested within the context of superClass EE. We then create subClass FF to

extend superClass EE. Due to inheritance mechanism in object-oriented languages, subClass

FF can comfortably inherit method WM. In this example, subClass FF does not override the

superClass EE

 Attributes: var, …

 Methods: WM, …

 WM initialises var = 0

subClass FF

 Attributes: …

 Methods: ZM, …

 ZM initialises var = 2

Figure 3: subClass FF extending superClass EE

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

13

inherited method WM. Now, according to the antidecomposition axiom we are expected to

retest method WM within the context of subClass FF. This is because it is possible that we may

obtain new faults within the context of subClass FF as a consequence of the inherited method

WM interacting with methods that are local to subClass FF. Also, new faults can be introduced

in subClass FF due to different local meanings for instance attributes inherited from superClass

EE. Above all, it is clear that the fault illustrated in Figure 3 (i.e. which concerns the conflicting

initialisation of the instance attribute var inherited from superClass EE by methods WM and

ZM) would not be detected without retesting method WM within the context of subClass FF.

Anticomposition [100]: Adequately testing each individual program component in isolation

does not necessarily suffice to adequately test the entire program. Composing two program

components results in interactions that cannot arise in isolation.

There exist programs P and QQ, and test set T, such that T is adequate for P, and the set of

vectors of values that variables can assume on entrance to QQ for inputs in T is adequate for

QQ, but T is not adequate for P;QQ. [P;QQ is the composition of P and QQ.]

 The above axiom states that it is possible for stand-alone components (i.e. objects) that have

been adequately tested in isolation to produce new faults when integrated with other

components.

Prior to now, our knowledge has been deeply rooted in specification-based testing which

requires us to limit testing to just the modified unit. It is clear that we do not only need to test

the modified unit but that it is expedient to retest every other unit that depends on the modified

component (i.e. as expressed by the anticomposition axiom). This is because a stand-alone

component (i.e. object) that has been adequately tested in isolation may not necessarily be

adequately tested when integrated with other collaborating components. This result implies that

integration testing is often required in addition to unit testing, irrespective of the programming

language used for developing the program.

It is to this end that this project proposes to develop a formal framework for integrating a

society of communicating object machines (i.e. to model distributed object-oriented

components that would be integrated via the Class-Machine framework described earlier in this

chapter) and any system which adhere to this formal model will be adequately tested through

our proposed testing method called fault-finders (f²).

1.2 Aims and Objectives of the FROGILA Project

� To develop an abstract formal machine model for generating heterogeneous collections

of Object-Machines. Such model of computation we refer to as the Class-Machine

(Here, the notion of a class or the idea behind classification in object-oriented languages

is embodied within a machine framework so that the Class-Machine model then

becomes the unit of test for object-oriented systems - thus the correctness of the Class-

Machine model can be established by subjecting it to verification and testing) [see

chapter 4].

� To develop an abstract formal machine model for integrating distributed object-oriented

Class-Machines. Such abstract framework would be useful for modelling distributed

object-oriented computing models of synchronous, semi-synchronous and asynchronous

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

14

message-passing. Such model of computation we refer to as the Communicating Class-

Machine Systems [see chapter 4].

� To develop an example case-study around the Class-Machine and Communicating

Class-Machine's automata theory in order to show and study how they can be used for

modelling and specifying stand-alone and communicating object-oriented systems [see

chapter 5].

� To develop a formal model and theory for the new fault handling family of Class-

Machine checkers called fault-finders (f²). Each checker agent is designed to crawl

through a Class-Machine implementation to look for a particular type of fault, tells us

the location of the fault in the program (i.e. the Class-Machine implementation under

test). Given this information, we can statistically show the distribution of faults in an

object-oriented system and then provide a probabilistic assertion of the number and type

of faults that remain undetected after testing is completed. Here, our f² testing method is

formally designed for carrying out Verification and Testing on the Class-Machine

model [see error state testing mode of chapters 4, 5 and 7].

� To develop a Case-Study around f² in order to evaluate their success in detecting faults

in object-oriented software in the presence of paradigmatic features like encapsulation,

inheritance, polymorphism and dynamic binding [see chapter 7].

� To develop an automated model checking test tool for stand-alone Class-Machines and

Communicating Class-Machines. We will refer to such a tool as the Class-Machine

Testing Tool (CMTT). The ultimate goal for this tool is to reveal the presence of a

family of faults that can be found in object-oriented systems if any in the stand-alone

Class-Machine and Communicating Class-Machine’s implementation System under test.

Thus, the tool operates by revealing the number for each fault type detected in the

system and a corresponding estimation via probability for each fault type that may still

remain undetected after testing is completed (i.e. given that exhaustive testing is

practically infeasible for any program P in a real world situation as a consequence of the

fact that, the entire domain of the software or program under test cannot be searched;

which in most cases is effectively infinite). Hence, for any object-oriented program

implementation Imp that adheres to the Class-Machine or Communicating Class-

Machine's Systems specification Spec, the tool automatically generates a graph showing

the distribution of a family of faults detected in Imp and their respective locations in Imp

thus making it easier to draw useful inferences about the quality of the system under

consideration after testing is completed. We anticipate that this new approach proposed

to object-oriented software verification and testing would allow us to provide a higher

level of guarantee and confidence over any object-oriented system under test when

compared to existing testing methods such as [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85,

86, 87, 88, 89, 90, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,

123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 136]. See chapter 7.

� To formulate a strongly typed object-oriented programming language designed for

testing and verification around the resulting Class-Machine's model types and automata

theory. This language will be called FROGILA: A Framework for Object Generation,

Integration and Language Authentication. [see section 8.2.2]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

15

Class-Machine Checker

Transition-Checker

Missing transitions

Extra transitions

Faulty transitions (input-

output)

Mis-directed transitions

State-Checker

Missing states

Extra states

Path-Checker

Missing path

Extra path

Faulty path

Statement Checker

Missing statements

Faulty statements

Function-Checker

Missing functions

Extra functions

Faulty functions

Constructor Checker

Missing constructor

Extra constructor

Faulty constructor

Attribute-Checker

Missing attributes

Extra attributes

Faulty attributes

Type-Checker

Missing type

Extra type

Faulty type

Class-Machine

Figure 4: The New Fault Handling Family of Class-Machine Checkers.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

16

In Figure 4 each checker is a Class-Machine in its own right designed to find a specific type of

fault in an object-oriented implementation of a given Class-Machine under test. The motivation

behind this approach is because we want to explore a disciplined modular approach where each

checker agent simply crawls through a class implementation to look for a specific type of fault

and tell us the location of the fault in the program (i.e. the class under test). Given this

information we can statistically show the distribution of faults in an object-oriented system and

then able to assert via probability the number and type of faults that remain undetected after

testing is completed.

1.3 Summary and Contributions of this work

� We introduced the Class-Machine formal framework as a heterogeneous family of

Object-Machines. Each Object-Machine in the family in turn is said to be an instance of

a concrete Object-Machine type. Every unique Object-Machine has an extensible

implementation and an extensible interface. Here, the notion of a class or the idea

behind classification in object-oriented languages is embodied within a machine

framework. Hence, we say that Class-Machine framework represents a basic unit of test

for object-oriented systems; testing needs to focus on the Class-Machine. Hence we

argue that testing a unique Class-Machine means testing a heterogeneous family of

Object-Machines that belong to it [see chapter 4].

� Case studies which illustrate the concepts that have already been presented, and which

show how the Class-Machines model theory can be applied to real life object-oriented

systems, focussing on the specification, verification and testing of them. By reviewing

the features provided by the object technology model (i.e. the concept of class, object

derivation, types, inheritance, subclassing and subtyping etc) we show that Class-

Machine aligns directly with the object-oriented architecture far better than existing

formal system models. Thus, by so doing, we provide the much needed confidence that

Class-Machine is sufficient for testing and specifying object-oriented systems. The

Class-Machine framework scales well to handle and model the complexity that can be

found in object-oriented systems. [see chapter 5].

� To address the problem of observability caused through the mechanism of encapsulation

that can be found in object-oriented languages, we proposed another specialised

framework formalism called the Class-Machine Friend Function i.e. CMƒƒ; whose

prime purpose is to break encapsulation by allowing CMƒƒ to have complete visibility

on all the encapsulated features of the Class-Machine state attributes and processing

functions or methods. The CMƒƒ is particularly useful during testing as it will return a

public version of a Class-Machine under test when it is invoked; thus allowing all

hidden methods and attributes encapsulating the state(s) of a heterogeneous family of

object-machines that belongs to the Class-Machine system under test to be directly

observable during testing. [see chapter 6].

� In order to further show that the Class-Machines theoretical purity does not mitigate

against practical concerns, all the Class-Machines theory and definitions presented in

chapter 4, in addition to the four different individual Class-Machines case studies

discussed, studied and presented in chapter 5 and the Class-Machines Friend Function

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

17

CMƒƒ concept introduced in chapter 6 were thus exemplified in an automated Class-

Machine Testing Tool (CMTT). [see chapter 7].

� We introduce Class-Machine as a type function for generating heterogeneous families of

Object-Machines that are instances of concrete machine types. Hence, Class-Machine is

introduced as an Object-Machine generator i.e. to provide identity to each machine

created. The role of the identity component is to enable two different Object-Machines

or Class-Machines of the same type to be distinguished [see chapter 4].

� The identification of a set of precondition methods under which a processing function or

method can be fired within a Class-Machine in the unchanged, error and goal state

testing modes of the Class-Machines testing technique. Class-Machine precondition

methods represent a set of processing functions. Each precondition method encapsulates

a unique transition path in the relevant testing mode, thus making the entire state space

of the Class-Machine system under test to be trackable. This solves the state explosion

problem with respect to finite state machine models in an elegant way [see chapter 4].

This result impacts on the following concepts that have been employed for the purpose

of formalising the Class-Machine model:

� The set of Class-Machine processing functions are formed by two disjoint subsets

namely the set of Class-Machine Methods and the set of Object-Machine Methods.

Class-Machine Methods are responsible for manipulating the Generic Class-Machine

States after satisfying a set of preconditions. Object-Machine Methods are responsible

for manipulating the Specific Object Machine States after satisfying a set of

preconditions [see chapter 4].

� The set of Class-Machine states is formed by two disjoint subsets namely the set of

Generic Class-Machine States and the set of a Specific Object-Machine States. Every

transition emerging from the Generic Class-Machine States or Specific Object Machine

States directly corresponds to the Class-Machine Methods or Object-Machine Methods

respectively.The set of Class-Machine attributes is formed by two disjoint subsets

namely the set of Class-Machine Attributes i.e. attributes that belong to the class and the

set of Specific Object Attributes i.e. instance attributes. Here, the memory and state of

the Class-Machine are encapsulated inside the Class-Machine state-attributes, thus

making the relationship between the attributes and states of the Class-Machine clear

[see Chapter 4].

� The proposal of a novel testing method i.e. the fault-finders (f²) that would allow us to

infer the number and type of faults that remain undetected after testing is completed,

since the ultimate goal of testing is to achieve correctness by detecting all the faults that

are present in an implementation so that they can be removed [see chapter 4].

� An investigation into the problems that exist with testing object-oriented software in the

presence of paradigm features like: encapsulation, inheritance, polymorphism and

dynamic binding [see chapters 1 and 3].

� By applying Weyuker’s test adequacy axioms we challenge some conventional wisdom

about specification-based testing and the idea that programs developed as a result of

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

18

applying object-oriented methods would require less testing than those developed from

other paradigms. Hence, we argue that language features are no substitute for testing.

Software systems that are developed as a result of applying object-oriented development

methods still need testing. Furthermore, we show that because the object technology

model promotes reuse, the testing phase of the software lifecycle is even more critical

for object-oriented software than for traditional software owing to the fact that software

components can be re-used in a number of contexts, and can possibly be applied in areas

that are not intended by the original developer; as a result, reusable components need to

be properly tested [see chapter 1].

� An investigation into different types of software testing, highlighting their respective

limitations and advantages, and proposing ideas for possible solutions where they are

required [see chapter 2].

1.4 Thesis Organisation

The rest of this work is organised as follows:

Chapter 2: Here, we start off with an examination of the motivation for software testing and

we then proceed to review a number of existing testing techniques, providing detailed

discussion on some of those techniques.

Chapter 3: Introduces the idea of Object Orientation (OO for short) i.e. a technique that has

influenced all aspects of computer science and software engineering since its introduction in the

1960’s. Object-Oriented ways of reasoning have been applied to a number of large scale

software engineering problems including systems design, operating systems, programming

languages, and database systems, to name but a few areas on which this technology has had

profound impact. The advantage of using the OO technique can be seen in how we can use the

concept to model quite complicated real-world systems that consist of many different kinds of

object and many instances thereof. In this chapter, our goal is to review some of the basic

concepts of object orientation and the impact that they have on testing object-oriented programs

in the presence of complicated paradigmatic and evolving object-oriented features like

encapsulation, inheritance, polymorphism and dynamic binding.

Chapter 4: Introduces the Class-Machine formal framework. Here, the notion of a class or the

idea behind classification in object-oriented languages is embodied within a machine

framework. Hence, we say that the Class-Machine framework represents a basic unit of test for

object-oriented systems; testing needs to focus on the Class-Machine. Also, in chapter 4, we

show that testing a unique Class-Machine means testing a heterogeneous family of Object

Machines that belongs to it. This is because classes are polymorphic definitions for

heterogeneous families of objects, instances of different concrete types - such a class has an

extensible implementation and an extensible interface [94, 102].

Chapter 5: Presents and discusses four unique case studies following our proposed automaton-

based framework formalism and test method based on this in chapter 4.

Chapter 6: Presents and discusses another novel framework formalism that has complete

visibility on all the encapsulated methods, memory states of the instance and class variables of a

given object or class under test (i.e. CMƒƒ).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

19

Chapter 7: Introduces and discusses our proof of concept (i.e. the CMTT). To evaluate the

CMTT, completely test, debug and verify the methods and memory states of the instance and

class variables of each unique case study covered in chapters 4 and 5 in the unchanged, error

and goal state testing modes of the CMTT, each unique case study covered in chapters 4 and 5

is tested, debugged and verified within the CMTT.

Chapter 8: Presents and discusses the main motivation behind this research work, the

conclusions of this thesis and our contribution to the state of the art in object-oriented software

testing. Furthermore, we also present requisite discussions on the subject of future work that

can be done in order to advance it further in the right directions.

Appendix A: Presents the complete result of testing the person class-machine, student class-

machine, employee class-machine and bank account class-machine systems in the USPM,

ESPM, GSPM and Complete Testing modes i.e. within the CMTT (please see Appendix A.1).

Furthermore, Appendix A contains other auxiliary program code writtten in the Java

Programming Language. Largely, these are used to support all the discussions, arguments and

our research work presented in this thesis. Some of these pieces of code were automatically

generated from the CMTT’s precondition generator panel, whilst some of these relate to direct

concrete implementation of our Class-Machines theoretical concepts presented in chapters 4, 5,

6 and 7.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

20

Chapter 2: Software Testing

2.1 Introduction

Software testing could mean anything from ad-hoc breaking of the system to generation of test

sets using a formal design; load or stress testing is also referred to as a form of testing.

Software testing is the process of executing a program or system with the intent of finding

faults by exposing it to inputs deliberately chosen to cause malfunction [1] or, it involves any

activity aimed at evaluating an attribute or capability of a program or system and determining

whether it meets its required results. Within the context of the above definition, software testing

can be viewed as a rather destructive activity, which generally causes the relationships between

testers and developers to be rather poor and thus testers are advised to acquire people skills, to

communicate problems without damaging the egos of the developers. As a result of this, testing

cannot in general be viewed on its own, but as a part of a process.

Firstly, our ultimate goal in this chapter is to examine the motivation for software testing.

Secondly, we review a number of existing testing techniques, providing detailed discussions

and arguments on some of those techniques with a view to motivating the need for a new

automaton-based framework formalism and testing method based on this which directly align

with the evolving complexity that can be found in the object-oriented architecture.

2.2 Software Correctness: a motivation to test

A prominent approach normally used in traditional computer science research is to make use of

some formal mathematical proof that will establish the logical equivalence of the

implementation with some mathematical definition or specification of what the system should

be like. This is a difficult task that is rarely achieved except with very small systems and under

very restricted conditions. One major drawback with this approach is the fact that most

practicing software engineers rarely ever consider using this approach whilst developing their

systems – even assuming that they knew how to. However, the use of such a formal

verification method is insufficient to guarantee the correctness of software implementations

under test, anyway. This is because there are a number of other places where faults can hide in

concrete implementations which cannot be revealed via mathematical proofs (sections 1.1.4,

2.8.5, 3.3.7, 4.1 and 6.1 covers in detail the limitations of formal verification methods). We

know that test adequacy criteria within specification (Spec) approaches imply covering the

whole specification while a test adequacy criterion with regards to concrete implementations

(Imp) is a function of covering the whole source code. Hence, a test set T that is adequate for

Spec is not necessarily adequate for Imp or vice versa (recall Weyuker’s antiextensionality

axiom).

Whilst reasoning about this problem, the work of Holcombe and Ipate in [2] recommends that

we focus on the client and the client’s needs. The client presents the software engineer with a

problem (i.e. the client’s needs). This problem needs expressing and analysing. The software

engineer needs to investigate possible solutions to this problem. At this stage, it is important

that the software engineer does not lose contact with the client’s perspective, otherwise s/he

might find that the potential or actual solution provided is a solution to the wrong problem.

No matter how much mathematical analysis and formal verification that has been carried out on

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

21

the system if it is the wrong system it cannot be correct! A correct system therefore, is one

that can demonstrably solve the problem within the constraints agreed with the client.

2.2.1 Software Correctness: proving implementation with
respect to specification

Within software engineering approaches, the three major techniques that inform system

development activities and testing are specification, design and implementation. The vast

majority of system development activities concern the conversion of the specification into an

implementation. But others are concerned with evaluating how well the implementation

satisfies the specification. If the specification Spec and the implementation Imp are assumed to

be (partial) functions Spec, Imp: Inputs → Outputs, then we say that the implementation is

correct with respect to the specification if Spec(v) = Imp(v), ∀ v ∈ Inputs. Conversely, a failure

occurs in the implementation if, for an input v, the output produced by the implementation does

not correspond to that produced by the specification. Any part of the implementation that could

lead to a failure is a fault. Then, the implementation is correct with respect to the specification

iff it is fault-free. Testing attempts to achieve correctness by detecting all the faults that are

present in the implementation so they can be removed. A finite set of inputs V ⊆ Inputs is

designed and the result produced by each element of Imp (i.e. Imp(v)) is compared with the

expected result (i.e. Spec(v)). The set of inputs V will be called the test set. Here, the elements

of the test set are carefully selected based on a particular criterion.

Several techniques for carrying out testing, and in particular for the generation of test sets have

been proposed and automatic tools support some of them. Generally, these techniques can be

classified according to the type of criterion used. The most common classification is into

program based techniques and functional techniques. Also, many methods have been proposed

for generating test sets randomly, and some statistical methods that combine random generation

with one of the other techniques [3]. Analysis methods have also been developed for estimating

the probability of an implementation being correct after testing has been successfully

completed. Different types of statistical models have also been used [4, 5, 6] and most of these

lead to conflicting claims as to the benefits of different types of testing.

Efforts to prove implementations satisfy their specifications after the implementation is

complete are seldom successful. In lieu, a process of refinement can be used (for instance, as

described by [7]). The specification, represented in some suitable formal notation, is converted

into an implementation using a series of simple refinements, each of which is easy to prove. In

this way, there should be no faults present in the implementation. However, these introduce a

number of difficulties that must not be overlooked.

Firstly, assuming the proof is constructed “by hand”, there is no way by which we can

completely assure that there will be no errors made in constructing the proof, and thus

guarantee that no faults are introduced into the implementation. It is possible to an extent, to

resolve these problems via peer reviews of the proofs involved. After all, this is the popular

approach by which all classical mathematical proofs are authenticated.

Secondly, an automatic proof system could be used to guide a human in the construction of a

proof, or alternatively the automatic proof system can be designed to perform the entire proof

construction. Currently, it is possible to use systems such as the BTool [8] in this way. Having

said that, there is still a major issue that deserves mentioning, in that the automatic proof system

and the system of axioms used in it must be known to be correct; the tool must have been

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

22

proved at some point. Furthermore, a formal description of the environment must be provided,

right down to the hardware level, and the actual physical environment must be proved

consistent with this formal model.

Whilst all the above recommendations are good, it is worth emphasizing that specification-

based testing is weak with regards to formal adequacy criteria, because it tells us nothing about

which parts of the implementation actually get exercised or which do not, to satisfy each part of

the specification. Our position here is that it does not matter how much mathematical analysis

and formal verification has been carried out on a system’s specification, there are a number of

other places where faults can hide in concrete implementations which cannot be revealed via

mathematical proofs (e.g. is it possible to use mathematical proofs to detect programmer’s

mistakes or their lack of understanding for formal specifications? Our response to that is a

capital NO!).

2.2.2 Software Correctness and Testing

The prime aim of testing is to achieve correctness by revealing all the faults that are present in

an implementation so that they can be removed. In the majority of cases the process of

designing a test case that would be affected by a particular fault means that the error leading to

that fault has not been considered when the software engineer was constructing the

implementation, otherwise if the software engineer had considered the possibility of that kind of

fault occurring, the implementation would have been designed in such a way to handle that kind

of fault without the need for the test engineer to actually execute the implementation and

observe a failure.

The following conditions need to hold for testing to guarantee correctness of a system:

1. The test set (T) used is proved to satisfy adequacy criteria, in that T will reveal any of the

faults that could possibly occur in the implementation (Imp). Also, the adequacy proof of T

must take into account the environment in which Imp is to exist, and all of the limitations

attached to proofs in general still hold.

Clearly, one possible way to achieve this is to add every possible input in the test set T (i.e.

exhaustive testing). Doubtless, we know that this is impractical in virtually all cases.

2. The result of every application of t ∈ T in each case is compared with the expected result and

found to be satisfactory.

It is worth mentioning here that testing and proving for correctness, as described above, are

almost equally unattainable (see [9]). In practical software engineering activities, testing and

proving for correctness play a good role in the production of implementations that are close to

correct. It is fair to say that there is little prospect at the moment to hope that all sources of

errors can be removed within a software implementation; hence there will always be a

justification for testing, in order to try to reveal the resulting faults.

Many testing methods have been proposed, and most of these can easily be classified into

program based techniques, and functional techniques. In the following sections, these are

reviewed in detail.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

23

2.3 Program based testing

These methods of testing are also known as structural and white-box testing.

2.3.1 Basic Principles

Most program based testing techniques base their test case selection criteria on the structure of

the source code i.e. test cases that covers the entire program according to some adequacy

criteria. Here, a test set (T) is said to be adequate for program (P) if T satisfies the following

hierarchy of criteria, as described here below, in ascending order of strength (see Ntafos [10]):

Statement (or segment) coverage: If T causes every statement in P to be executed at

least once, then statement coverage is achieved.

A segment is an indivisible part of P; no part of it can be executed without all of it being

executed, i.e. a piece of code with no branch statements.

Branch coverage: Every binary decision point in P leads to two structural element (i.e. the

true branch and the false branch). In contrast, the decision point for a case clause within P can

lead to many elements due to the fact that there may be a number of possible alternatives within

the clause. If T causes every branch in P to be executed at least once, then branch coverage is

achieved. This implies that for every branch statement in P, each of the possibilities must be

performed on at least one occasion.

Path testing: If T causes every distinct execution path to be taken at some point, then path

coverage is achieved. e.g, in the case of a loop, there are paths for each number of iterations of

the loop. Even for quite short and simple programs, this level of coverage can be infeasible.

In between these coverage levels, there are all manner of other coverage measures, designed to

approach path coverage without being infeasible. Two examples are:

Boundary-interior path coverage:

Ntafos’ work in [10] provides an overview of this technique.

The number of paths through each loop is limited as follows. For each loop, identify these

classes of path:

Boundary paths, which enter the loop but with no further iterations (these are boundary paths

for the loop);

Interior paths, which enter the loop and continue with at least one more iteration (these are

interior paths for the loop)

Hence, for complete boundary-interior cover, we simply need two (i.e. one boundary and one

interior) paths from each class for each loop.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

24

Data-flow analysis techniques:

The work of Ntafos in [10] described this technique, later discussed in more depth by Howden

[11, chapter 5]. Generally, when these techniques are applied, they scrutinize the definitions of

program variables and how these variables are eventually used in the program. These

techniques expect all statements within a program i.e. those with a data-flow relationship, to be

tested on at least one occasion.

Now, let us assume that statement s1 in program P assigns a value to variable vv, and statement

s2 uses variable vv in its definition, it is clear from this simple scenario that s1 and s2 have a

data-flow relationship. Hence, a data-flow analysis technique expects a test involving the

execution of s1 followed, at some stage by the execution of s2.

Several variations to this theme have been proposed. Some extend it to whole chains of

definition-reference pairs, kk-dr chains, where every chain of length kk must be executed by at

least one test case.

Some variants of the model actually differentiate between different types of variable use:

predicate use (p-use), as in branch statements, and computation use (c-use), as in the right hand

side of an assignment statement. The test set must then satisfy a condition on these p and c uses,

such as all c-uses, some p-uses.

2.3.2 Limitations of program based testing

A major limitation with most program-based testing techniques concerns the fact that they do

not use the requirements of the system in their test selection criterion.

In lieu, they all share the view that the implementation satisfies the requirements in its broad

structure. This ill founded assumption can be a very severe limitation if we recap on the

ultimate goal of testing, which is to compare the implementation with its requirements. It is

clear that as consequence of this: Errors corresponding to missing paths in the code will not

generally be detected.

Weyuker’s work in [12] introduced a set of properties and axioms for use in the evaluation of

program-based test selection criteria. Although this set of axioms and properties were

incomplete, yet most program-based test selection criteria at that time did not satisfy the list of

properties provided.

Another drawback of program based testing concerns the fact that you have to wait until there is

some code before you can even begin to construct tests. This is unsurprising given the

technique’s origins in the demonstration and destruction oriented eras of testing. Testing was

then carried out in its own phase of the software lifecycle. More modern approaches call for

testing to be integrated into all of the lifecycle phases.

Regardless of the above limitations, program based testing methods are still in widespread use

(see Gelperin & Hetzel [13] or one of the testing standards, such as [14]), and undoubtedly

reveal a great many errors that might otherwise escape.

More importantly, the coverage levels provide a good measure of the effectiveness of tests

generated in some other way. If the criterion selects test cases that do not achieve, say,

statement coverage, then the criterion is probably inadequate.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

25

2.3.3 Automation of program-based testing

One of the main benefits of program based testing is that it provides a lot of scope for

automating the testing procedure. Here, the application tool can be designed as a simple

coverage analyser to monitor all testing activities, and consequently report the degree to which

test set T satisfies adequacy criteria with respect to program P.

Some application tools in this area are a great deal more sophisticated. For example, Roper &

Smith [15] developed a tool that accepts the detailed design of a program P in the form of a

Jackson Structure diagram, this generates test sets T suitable for use on program P. Doubtless,

this is intriguing, as it highlights the need for there to be something to compare the

implementation with, in this case a JSP design.

2.3.4 Mutation testing

Mutation testing (see Woodward’s summary [16]) can be viewed as a fault-based testing

technique, given that it is possible to use it to establish the absence of a specific kind of faults in

any program P by showing that the application of test set T on program P would lead to a

failure if that kind of fault was present in P. The prevailing concept here is based around

making large numbers of changes to P under test. In this approach, every modified part of P is

a mutant.

Hence, during testing, T is applied to mutants (i.e. modified versions of P) as well as to the

original program P. The output generated is compared to that from the original program P.

Now, mutants that produce a different output compared with the original program P are said to

have been killed.

Thus, from this we can easily infer that T is adequate enough to reveal these kinds of faults in

these mutations. Mutants that preserve the same behaviour for every application of T as the

original program P are said to be live.

Assuming there is a live mutant after testing is completed, two possibilities can account for this:

• It is possible that T was not good enough. Hence an improved version must be devised

to kill the mutant, or reveal that original P contains a fault;

• It is possible that the mutant is in actual fact, equivalent to the original program P.

Several variants of mutation testing have been proposed, most of these are based on how the

mutants are generated.

Strong mutation testing, as described by DeMillo et al. in [17], involves a systematic

modification of all the operators in program P, and the application of the complete test set T on

each mutant. This approach is not cost-effective owing to the fact that it is computationally

expensive; so, in some cases, restricted subsets of the operators are mutated instead.

Weak mutation testing, introduced by Howden [18], was designed to cut down on the

computational cost, i.e. by combining several mutants into a single new version of the program.

Thus, it is not necessary to run the complete test set for every mutant. However, there is a risk

that mutations will “cancel one another out”. For example, in an object-oriented sysem some

functions with respect to a given object or class under test within their own definitions may be

composed of a chain of other functions in order for their own definitions to be complete. Hence

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

26

assuming that the complete definition of a function f depends on a sequence of other

independent functions i.e. f1, f2 and f3, we argue here that fundamental changes made to f1, f2

and f3 will not only affect the behaviour of f but also any mutations introuduced within f.

Consequently, there is the possibility that mutations introduced in f will cancel out the ones

within f1, f2 and f3 (or vice versa).

Firm mutation testing, was proposed by Wu et al. in [19], as an intermediate strategy. The

technique explores the benefit of an interactive development environment to allow certain parts

of program P to be mutated and executed in partial isolation from the rest of program P.

2.4 Functional Testing

Generally, these methods are sometimes referred to as black-box methods. They base their

criteria for test case selection largely on the intended functionality of the implementation, i.e.

on the specification, or requirements. Undoubtedly, this approach connects well with the goal of

comparing implementations with their requirements. Overall, the prime goal of functional

testing methods is to ensure that the process of defining partitions and boundaries is systematic

whilst constructing a system’s test specification. Because these methods have a great deal in

common, we will simply discuss one in detail, the category-partition method.

2.4.1 The Category-Partition method

This method was originally described by Ostrand and Balcer [20]. It was designed to be used in

conjunction with a tool that they had developed. The required tests are described using the Test

Specification Language, and the tool then generates test frames which describe individual test

cases.

The category-partition method is typical of black-box testing methods, owing to the fact that it

systematically analyses the content of the system’s requirements and then transforms this into a

more formal description of significant cases of equivalent classes. There are several steps to the

method. Although the method will be described here as consisting of 9 steps following

Cowling’s previous work in [92, 93], it is important to emphasize that Ostrand and Balcer only

described the method as consisting 7 steps. The work of [92, 93] splits the first of Ostrand and

Balcer’s steps into two parts as well as the last of their steps following the work in [93]. The

following steps describe the category-partition method [20]:

1. Identify functional units

2. Identify parameters

3. Identify categories

4. Partition the categories into choices

5. Determine constraints among choices

6. Produce a test specification, and generate test frames.

7. Review the test frames.

8. Construct the test cases and check for infeasible frames

9. Generate test scripts.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

27

1. Identify Functional Units

In their work [20], Ostrand and Balcer referred to this step as analysing the specification. By

this, they were actually referring to the requirements document. This step involves identifying

the functional units (f) that can be individually tested; this consists of top level user commands

or functions that are called by them, or lower level functions.

Example:

Now, for the purposes of this discussion, assuming there is a function called “end of month”

that can be used within a mail order system for computing all the transactions that took place

over the past month with customers with a view to generating, printing and sending each

customer the correct invoice which reflect their transactions over the past month. This can be

thought of as a single functional unit.

2. Identify Parameters

For all functions, f, identified in step 1 above, this step requires the tester to find the parameters

(i.e. requisite inputs to the functional unit f which potentially can come via the program or

supplied by the user) and environment conditions (i.e. the essential characteristics of the system

state at the time whilst f is invoked or fired) that can affect the behaviour of f.

Example:

The parameters to the “end of month” functional unit would be:

• The file of customers (including their names, addresses etc)

• The file of transactions over the past month

• The condition of the printer (should this be relevant, it would be considered an

environmental condition)

• The output that appears on the paper, ready to be put in envelopes and

• A host of possible others etc

3. Identify Categories

Here, for each parameter param and environment condition ec in the domain of the functional

unit f identified in earlier step above, we need to identify some properties and characteristics

that would have particular effects on the behaviour of f. Hence, in this step, we simply classify

the characteristics of each param and ec in the domain of f into categories that characterise the

behaviour of f.

One benefit of this approach is the fact that the process helps to reveal a number of ambiguities

and possible mistakes that may be present in the original specification.

Example:

Now, assuming from earlier example above, we want to identify the categories for the file of

customers, the categories would be based on the following properties:

• The validity of the file (e.g. is it in alphabetical order, does it have enough fields, etc)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

28

• The size of the file
• The addresses of the customers in the file
• For the file of transactions, the categories would be based on the following properties:

• The validity and existence of the file

• The size of the file

• The number of different customers referred to

• The number of different items referred to

• The number of transactions for each customer

4. Partition the Categories into Choices

In this step, the goal is to determine all the significant cases that can occur for a given

parameter param or environment condition ec within a specified category of the functional unit

f. These cases are equivalence classes which are referred to as choices. Each choice consists of

a subset of the category’s values, which will lead to the same sort of behaviour. The choices

must be mutually exclusive. Generally, in the category-partition method, the partitioning is

based on the specification, implementation, or any other design documents that are available, in

addition to the tester’s past experience of generating test cases.

Example:

For the transactions file identified above, we identify the following 2 categories, for which the

choices are as follows:

The validity and existence of the file:

• file doesn’t exist

• file exists, but is empty (although this choice is redundant)

• file exists, but contains garbage

• file exists and contains zero or more transactions

The size of the file:

• the file contains no transactions

• the file contains one transaction

• the file contains many transactions

5. Determine Constraints Among Choices

In this step, we simply decide what effect a combination of choices from one category will have

on those from another. Here, we are looking for mutual exclusion, special restriction and so on.

In addition, at this level, we need to mark any choices that we believe would generate an error

with [error]. Also, any special choices or redundant ones would need to be marked [single]

(hence this needs to be done very carefully). The two marks mentioned above will cause the test

frame generator to produce only simple test frames for these choiceshence they need not be

combined with all the other equivalence classes.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

29

6. Complete the Test Specification, and Process it

In order to automatically generate the test frames with a tool, the categories and choices must

be prepared in a standard format. This means the test specification must consist of the

categories, the choices within the categories and any required constraints on the choices.

Generally the structure for these must follow the standard format for the Test Specification

Language (TSL), and then the specification under test is fed into a test generation tool, which

consequently generates test frames (i.e. a set of equivalence classes from the test specification;

each category provides either exactly one or none of its choices) for all functional units, f, in the

specification.

7. Examine the Test Frame

This is the step where we ought to evaluate the quality of the test frames generated. If we

conclude at this stage that the quality of the test frames produced are unsatisfactory, then we

simply need to go back to the constraint determining step. Here, unsatisfactory could mean any

of the following:

• There are some test frames that are clearly missing

• There are some test frames that are clearly impossible

• There are far too many to be carried out within a reasonable amount of time or far too

few test frames

8. Construct Test Cases and Check for Infeasible Frames

All the tool does is to simply generate the test frames i.e. the sets of equivalence classes from

which all the required values for each test cases must be drawn. The work in [93] showed that

Ostrand and Balcer had hastily gone over the fact that the input values for each partition must

be selected, and the corresponding values for each output partition need determining from the

specification (which consequently can be a time-consuming activity) in order to ascertain that

they conform to the output partitions as defined in the test frame.

The important point that the work in [93] had brought to light, is the fact that in trying to

achieve the afore-mentioned above, it is possible to soon discover that a test frame is infeasible,

meaning that there are times that we may not be able to find a set of input and output values that

satisfy all the constraints corresponding to the various partitions. This kind of problem often

arises when the formulation of the categories, partitions and constraints in the test specification

does not match or reflect the original system specification as it had been originally defined.

Given that I have myself employed the category-partition method in the past for the purpose of

generating test cases from functional units of a system, I can confidently support the ideas

described in [93] that in practice test specifications do often result in infeasible frames. The

main possible causes for infeasible test frame are as follows [93]:

• The test specification may allow some combination of inputs that the system

specification does not allow. Thus, input values corresponding to this set of input

partitions would be illegal, and the system specification would not identify any legal

outputs for them, so that any corresponding frame would be infeasible.

• The system specification may be such that some range of outputs is not allowed to occur

for particular combinations of inputs, but the test specification does not include a

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

30

constraint to match this. Thus, the combination of these inputs with an output partition

that specifies values in this prohibited range would produce an infeasible frame.

• The system specification may be such that a simple description of the range of outputs

includes some values that actually can not occur. Thus, if a partition specifies that the

output should take such values then any frame that uses this partition will be infeasible.

The work of [93] recommends that the solution to the above causes is to return to step 5 of the

method and then introduce essential constraints to the test specification in order to get rid of all

the infeasible combinations of partitions, and from there rework the rest of the method.

9. Generate Test Scripts

In this final step, we simply need to convert each test frame into an actual test case. We would

accomplish this by selecting an actual value from each of the choices in the test frame. Also, for

each test case, we must determine the expected output and then organize these cases into scripts

in a manner that is suitable for execution by the implementation.

Advantages of the method:

• The test specifications are designed in a systematic and uniform way, which is useful for

quality analysis activities, and is often required by test standards

• The process of working through all the steps of the method will lead to deeper

understanding of the system being developed and may well reveal limitations of the

design specification.

• As the system evolves, the test specification can be easily modified

• The number of tests can be controlled in a relatively reliable way

• It supports generation of partitions from specification

• The method can be easily automated

• It is possible to start the test specification early in the development process

Limitations of the method

• It is difficult to describe early stages of the method formally

• The method relies heavily on the experience of the tester. Hence, it could lead to non-

uniform tests

• It is difficult to learn

• Although testing can start at an early stage, it is not possible to really carry out the tests

until the completed version of the implementation becomes available

• Owing to the number of steps involved in the method and the need to rework part of the

process when something goes wrong in the test specification, the method can be very

time consuming.

2.4.2 Other Partitioning methods

A number of other black-box testing methods have been proposed and to a great extent, these

are broadly similar to the category-partition method just discussed above. Generally, most of

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

31

these methods apply the basic partitioning principles in an ad hoc manner for as long as systems

have been developed.

Condition Tables

The work by Goodenough and Gerthart [9] introduced one of the first techniques ever recorded

for condition tables. At the same time they introduced their theoretical basis for testing and then

linked it with the concept of correctness. Their work shows that it is just as difficult to

guarantee correctness via testing as via proof. As in the category-partition method, where

categories were used, they use conditions to determine the behaviour of a system. Also, they

consider the possible values that the condition could take in place of choices. This information

is laid out in a table; hence there is a row for each condition, and a column for each possible

combination of values. Each column in the condition table corresponds to a test frame. It was

explicit in their approach that there was limited use of constraints especially between

conditions. However, this was only needed in order to indicate when they are mutually

exclusive. Also, there is no way by which one can reduce an overly large set of test cases by

way of adding some extra constraints.

Revealing subdomains

This idea was proposed by Weyuker and Ostrand [28]. In their work, they went on to highlight

some of the limitations in the theory presented by Goodenough and Gerthart [9], and then

emphasized the difficulties that exist with applying their idea to real systems. They developed

this new method and then extended the theory.

The prevailing idea here is to partition the input domain of the program into revealing

subdomains. Every element in a revealing subdomain will either get processed correctly or

incorrectly, hence only one element from the subdomain would be used as a test case. As it

stands, this is just as impractical as a proof. It is explicit from this approach that the subdomains

only need to be revealing with regards to a given kind of fault. The situation here corresponds

to where you have found the categories of a functional unit and then partitioned it into

equivalence classes.

Cause-Effect Graphing

This method was introduced by Elmendorf [21], but Myers work in [1, 22] illustrated it, and

brought it to wider attention. The method allows us to view a system’s specification (Spec) as

comprising a set of partial functions PF (so that f ∈ PF, f : Input → Output) from its inputs to

its output.

The first step of the method is to identify each functional unit f in the system’s Spec. After this

has been done, we must identify the input domains or partitions for f. In this technique, input

domains are represented as causes. For every cause or combination of causes for f, we must

identify the corresponding partitions or ranges of outputs, which are represented as the effects in

the model. In order to further show how the different input and output partitions for f are

combined, the method constructs a graph in which the nodes depict the causes and effects, these

nodes are linked by arcs representing relationships between causes and effects.

Now, for example, assuming some of the causes for f must all be present in order for a

particular effect to occur, the method represents this concept with arcs going from the causes to

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

32

the effect, labelled with an AND. In a similar manner, it is possible to have arcs labelled with

OR or NOT. Sometimes, the relationships between causes and effects can be very complicated,

i.e. due to the fact that certain combinations of causes cannot occur. To solve this problem,

intermediate nodes can be introduced.

After the graph has been developed, the next phase is to construct a decision table. Within the

decision table, we can easily observe the effect of f, by simply checking all the different

combinations of causes that lead to it. Each of these will form a test frame. At the same time,

list the states of the other effects for each of the combinations of causes. This gives you

information on the expected output for each of the frames.

This technique was criticised by Ostrand and Balcer [20] for the complexity of the graphs

produced, and the difficulty of modifying them after they have been built. Nevertheless, with a

suitable tool for constructing and editing such a graph, this method would become quite

practical.

Limitations of these “partitioning” methods

All the different partitioning methods described above generally attempt to partition the input

domain of a function or program into subsets the elements of which will behave in a broadly

similar fashion. The basic assumption or principle shared by all relate to the concept that the

presence of a fault will affect every element of a subset. This is intuitively appealing and

somewhat consistent with some success in practice. However, because the partitioning process

is difficult to describe formally, it is hard to verify the criteria for their adequacy.

2.4.3 Other functional methods

So far, every single testing method described focused largely at dynamically testing the actual

program code. Given that current state of the art in modern quality standards require that testing

be involved throughout every stage of the software development lifecycle (see [23, 13]), it is

clear that we need some higher level testing methods.

Testing specification refinements

There are research works that cover formal function definitions i.e. specifically for testing

purposes. Some of these works are directed towards model type specifications (e.g. Z) [24], and

others towards axiom based specifications (e.g. OBJ) [25].

Within these specification models, the general idea is to use the pre, post and invariant

conditions of the specification, simply as a proof, for testing purposes only. Now, assuming we

want to implement a simple symbol table as an ordered list of symbols, we can use our formal

specification to describe this concept using an invariant condition called ORDERED. In this

scenario, the ORDERED condition is of no consequence to the end user. However, by writing a

simple code to check the ordered condition, we can carry out tests to see if other operations on

the symbol table violate the invariant.

One of the benefits of using Z and OBJ based specifications is that they can be directly

exercised. Hence, conditions such as ORDERED in the above example can be easily verified at

the specification stage.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

33

Functional tests from JSP

In section 2.3.3, we briefly mentioned the work of Roper and Smith in producing tests from JSP

diagrams. The authors developed this work further in [26], i.e. into a functional testing method,

based on the specification. Now, by placing a strong constraint on the functions used to five

basic function types (data access, data storage, arithmetic expression, arithmetic relation and

Boolean expression), the specification can be made concise and unambiguous in an operational

specification. In his book [11], Howden described a comprehensive testing methodology for

these five types of function; hence, a test set T can be generated directly from the operational

specification.

Consequently, each t ∈ T obtained from the operational specification is applied to the JSP

program design, and to the concrete implementation produced from the JSP.

2.4.4 Completeness of a specification

To guarantee the correctness of a given specification Spec formally, it is desirable if Spec is

consistent and complete. Loosely, this means that the Spec must be unambiguous and be

defined for all possible inputs. To address this issue, Jalote’s work in [27] describes a method

for testing the completeness of specifications. This method was constructed in the OBJ

language. Jalote constructs, in OBJ, the specification of operations on abstract data types

axiomatically, and then tests the specification to see if there are any missing axioms.

To produce an adequate test set T for the specification, a tool is used to derive T automatically.

Here, the T produced is based on the syntax part of the specification, which provides the

signatures of the operations. The automatic tool generates all of the syntactically possible

expressions down to a certain depth of operation applications. Here, expressions correspond to

test cases, with the various output operations applied to them.

Although Jalote claims that this method works well in practice, he made it clear that there are

still some limitations on the axioms that it can cope with.

Aside from the above approach, Woodward’s work in [16] outlines an approach for testing an

executable specification by applying mutation testing methods.

2.5 Statistical testing and reliability

Up to now, we have only discussed testing techniques aimed at fault detection, with the goal of

correctness in mind. It is important at this point to make it clear that this is not the only

motivation for testing.

Now, let us assume that system Sys has been thoroughly tested without producing any failures

with respect to T (assuming T is adequate enough to reveal the presence of a fault in Sys). After

testing is completed, T provides a higher level of confidence in Sys, (or a reduced expectation of

failure) than before T was applied on Sys.

What can we say about system Sys given that it has passed all the tests applied to it? We need a

value vl that will represent the likelihood of faults remaining in Sys after testing is completed;

so that for any type of fault ft that can occur in Sys, a value vl is provided to represent the

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

34

likelihood of that kind of fault occurring. Hence, by taking advantage of this approach, we can

easily show the distribution of different type of faults in system Sys and through statistical

means (i.e. via probability) we can compute the value vl for specific type of fault present in Sys.

To this end, this project proposes to develop a novel testing technique for object-oriented

software around the ideas described in this section. This approach will enable us to draw useful

inferences about the number and type of faults that remain undetected after testing is completed;

thus providing the much needed guarantee via statistical analysis of the likelihood of a specific

kind of fault occurring in object-oriented software after testing is completed.

Now, let us recall that Weyuker’s test adequacy axiom (i.e. Non-Exhaustive Applicability

axiom – see section 1.1.4) supports the following argument about system Sys with respect to

test set T:

Although, in the above scenario, T is adequate to reveal the presence of faults in system Sys, we

can assume that T is not an exhaustive test set for system Sys.

Hence, there is the likelihood that some faults are still remaining in Sys. Here, we argue that the

fact that T is adequate for Sys simply means that T is satisfactory for Sys. After all, testing has

to stop at some point. So we say that T does not in any way guarantee that Sys is 100% fault

free.

Moving on, now, assuming that the likelihood of any faults remaining in Sys was quite small,

say 1.0 x 10
-4

, the consequence of this is that we may or may not be satisfied but at least we

know that it can be more reassuring if we could possibly say that the likelihood of a critical

fault in Sys was 1.0 x 10
-9

. It does not matter how we define what a critical fault is, all we need

do is to identify certain safety considerations that must be satisfied and then direct our tests

towards detecting faults that cause these to be violated. Thus, we can work out how critical a

fault is by simply evaluating the kind of system where the fault was detected, the application

area for the system and working environment. For the purposes of this argument, treating all

faults in system Sys as having the same level of importance is unacceptable.

By taking advantage of the benefits offered through statistical techniques we can easily increase

our level of confidence in system Sys after testing is completed. This is because statistical

methods can help us to quantify the likelihood of any faults remaining in Sys by estimating the

probability of failure. Different types of statistical models have been proposed (Miller et al. [4],

Hamlet & Taylor [5], Weiss & Weyuker [6]), and they lead to conflicting claims as to the

benefits of different types of testing. Whilst Hamlet and Taylor claim that “partition testing

does not inspire confidence,” Miller et al., on the other hand describe circumstances where

partitioning can increase confidence.

Statistical methods allow test set T to be generated randomly using a probability density

function based on the operational input distribution (i.e. a set of inputs for system Sys

distributed among its actual operations - functions). Hence, each t ∈ T that does not lead to a

failure slightly reduces the estimated probability of a failure occurring. The extent to which it

does this depends on the type of model used, and the assumptions made about the software’s

behaviour.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

35

2.6 Finite state machine testing

Many finite state machine (FSM) testing methods exist. Most of them are quite restrictive;

some require that the specification and the implementation are finite state machines with the

same number of states (see Sidhu et al. [29]); others assume that the specification is a finite

state machine with special properties (see Bhattacharrya [30]).

A more general testing theory for finite state machines was developed by Chow [31]. This

theory assumes that the specification and the implementation can both be expressed as finite

state machines and shows how a test set that finds all the faults in the implementation can be

generated.

Finite state machine testing strategies in particular may attempt to identify the following types

of faults:

• missing states

• extra states

• missing transitions

• mis-directed transitions

• transitions with faulty functions (inputs/outputs)

• extra transitions.

In its original form and design, the transition tour method [63] does not necessarily rely on the

specification machine being minimal (see subsequent section below for what it means for a

machine to be minimal). However, it does rely on it been strongly connected and complete. The

method involves a traversal of all transitions without trying to target specific states. Efficient

algorithms for determining minimal length sequences have been described [64].

The unique input-output (UIO) sequence method [64] involves deriving a sequence for each

state, which reflects the behaviour of that state. A number of improvements and variants of this

method have been found. This method checks that all the required states are present in the

implementation (i.e. it performs validation).

The W method [31] is designed for the case where there may be more states in the

implementation than in the specification. This is a potential advantage for this method over the

others. However a number of variations and hybrid techniques are being developed. Some of

these methods produce rather shorter sequences than the W method [64]. This is an advantage if

time for testing is short or more is known about the properties of the implementation (for

example, it has the same number of states as the specification).

In the sections that follow below, we review the theoretical concepts and results from Chow’s

Testing Method [31] needed to understand the basis of the Stream X-Machine based testing

(SXMT) method [103].

2.6.1 Morphisms

The formal approach to developing software systems requires that we create first a specification

upon which the system to be engineered must be based. This in practice can be seen as an

essential guide to what we want our system or eventual implementation to look like (i.e. the

behaviour and properties we want our system to exhibit). In doing this, during testing we also

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

36

want to be able to establish that our implementation conforms to the specification requirements.

In this respect, if we consider specification (Spec) and implementation (Imp) to be two

machines, we would want during testing to be able to establish the mathematical relationships

that exist between these two machines since we want to establish as far as possible that their

behaviours are the same. A morphism is a means of mapping states from one machine to the

states of the other in a way that respects the machine structure of both.

Definition 1 - [2]
Let Spec = (Inputs, States, NextStateFunction, initialState) and Imp = (Inputs, States’,

NextStateFunction’, initialState’) be two deterministic state machines over the same input

alphabet.

For example, next state function (i.e. NextStateFunction) has the following form and behaviour:

NextStateFunction: States × Inputs → States

Then we say func: Spec → Imp is a morphism if L: States → States’ is a function that satisfies

the following:

1. L(initialState) = initialState’

2. ∀ state ∈ States, ∀ input ∈ Inputs, L(NextStateFunction(state, input)) =

NextStateFunction’(L(state), input)

Thus the two initial states (i.e. in the Spec and Imp) must be related and a transition in the first

machine must relate to the transition of the related states in the second.

The second requirement above is equivalent to the following.

2a. ∀ state ∈ States, ∀ input ∈ Inputs, (L(NextStateFunction(state, input)) → nextState is an

arc in Spec) ⇔ (NextStateFunction’(L(state), input) → nextState’ is an arc in Imp).

If L: States → States' is a surjective morphism then Imp is obtained from Spec by merging all

states whose image through L is the same. If L is bijective then Spec and Imp are identical up to

a renaming of the state space. In this case L is called a state machine isomorphism [2].

Definition 2.

A bijective state machine morphism is called an isomorphism.

Lemma 1 - [2].

If func: Spec → Imp is a morphism then Spec and Imp accept the same language.

The language accepted by an automaton is the set of input sequences corresponding to paths in

the machine.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

37

2.6.2 State Machine Minimality

Minimal machines are machines with as few states as possible for a given behaviour. To show

that a machine automaton is minimal, we must show that it is unique up to a re-labeling of its

state space. We expand further on this idea in the following definition and supporting examples:

Definition 3 - [2].

Let Machine = (Inputs, States, NSF, initialState) be a deterministic state machine.

For example, here, next state function (i.e. NSF) has the following form and behaviour:

NSF: States × seq(Inputs) → States

Then a state ∈ States is called accessible if NSF(initialState, input) → state i.e. a path from the

initialState to state, where input ∈ seq(Inputs) is used to denote sequences of inputs applied on

the Machine to cause state to be accessible from the initialState. The above Machine is then

called an accessible automaton if all its states are accessible. Thus, in an accessible automaton

we can always find a path from the initialState to a given state in the Machine.

Given the above Machine, all the non-accessible states can be removed without affecting the

language accepted by our Machine. The resulting machine is called the accessible part of

Machine and will be denoted by Acc(Machine).

Definition 4 - [2].

Let Machine be a deterministic state machine defined exactly as in definition 3 above and let

testInput ⊆ seq(Inputs). Then we define an equivalence relation ~testInput on States by: state

~testInput state’ ⇔ ∀state, state’ ∈ States, ∀ input* ∈ testInput, (input* is a path in Machine

that starts in state ⇔ input* is a path in Machine that starts in state’)

What this means is that for every path labeled by an element of testInput from state there is a

path labeled by that element from state’ and conversely.

If state ~testInput state’ then we say that state and state’ are testInput equivalent. Otherwise

we will say that testInput distinguishes between state and state’. If testInput = seq(Inputs) and

state and state’ are testInput equivalent then we say that state and state’ are equivalent.

For two state machines Spec = (Inputs, States, NSF, initialState) and Imp = (Inputs, States’,

NSF', initialState’) over the same input alphabet, we say that Spec and Imp are equivalent if

their initial states initialState and initialState’ are equivalent. Here, we assume that Spec and

Imp have only terminal states, consequently Spec and Imp are equivalent if and only if they

accept the same language.

Definition 5 - [2].

A state machine Machine is reduced if ∀ state, state’ ∈ States if state and state’ are equivalent

then state = state’. Given a state machine Machine the machine constructed by merging the

states of Machine that are equivalent will be called the reduced machine of Machine and will be

denoted by Red(Machine).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

38

Definition 6 - [2].

A deterministic state machine Machine is minimal if it is accessible and reduced.

Theorem 1 [2].

Given a state machine Machine, there is a minimal state machine that accepts the same

language as Machine and this is unique up to a state machine morphism. We will call this the

minimal machine of Machine, denoted Min(Machine).

The minimal machine of an automaton Machine can be obtained by reducing Acc(Machine) or

by taking the accessible part of Red(Machine) since the above result will ensure that the

following diagram commutes (that is either way round gives the same result).

The basis of Chow’s test set generation are the concepts of characterisation set, state cover and

transition cover of a minimal finite state machine. These will be defined next.

2.6.3 Complete State Coverage Test Generation

A state cover is a set of input sequences that enables us to access any state in the machine from

the initial state [2].

Definition 7 - [2].

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then SC

⊆ seq(Inputs) is called a state cover set of Machine if ∀ state ∈ States ∃ input ∈ SC so that

NSF(initialState, input) → state is a path in Machine from the initial state (i.e. initialState) to

the given state in Machine.

 Machine Red Red(Machine)

 Acc Acc

 Acc(Machine) Red Min(Machine)

Figure 5: A minimal deterministic state machine (adapted from [2])

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

39

2.6.4 Complete Transition Coverage Test Generation

Definition 8 - [2].

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then TC

⊆ seq(Inputs) is called a transition cover of Machine if ∀ state ∈ States ∃ input ∈ TC so that

NSF(initialState, input) → state is a path in Machine from the initialState to state and ∀ input

∈ Inputs, input* :: input ∈ TC.

In other words, what we are implying by the above is that for any given state ∈ States there are

sequences of inputs in TC that would take our Machine to state from initialState and then

attempt to exercise all possible arcs from state irrespective of whether such arcs exist or not. It

is easy to see that if SC is a state cover for our Machine above then TC = SC ∪ [SC :: Inputs] is

a transition cover of Machine. Conversely, for any transition cover TC there exists a state cover

SC with SC ∪ [SC :: Inputs] ⊆ TC.

In the above, the symbol (::) represent concatenation. The first symbol (SC) before the union

symbol (∪) ensures that all state ∈ States in the machine Machine are accessible from the

initial state of the machine (i.e. complete state coverage). The second symbol ([SC:: Inputs])

ensures that there are no missing transitions, transitions with faulty functions (inputs/outputs),

mis-directed transitions and extra transitions.

SC ∪ [SC:: Inputs] ⇔ SC ∪ [{sc::i | sc ∈ SC, i ∈ Inputs}]

2.6.5 Complete Functional Test Generation From
Characterisation Set

Definition 9 - [2].

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then H

⊆ seq(Inputs) is called a characterization set of Machine if H distinguishes between any two

distinct states of our Machine.

It is worth mentioning that Chow’s theory was developed in the context of finite state machines

with outputs, i.e. an edge is labeled by a pair input/output with input ∈ Inputs and output

∈ Outputs; output is the output symbol and Outputs is called the output alphabet.

 input/output

 state state’

In the above case, a path will be a sequence of input/output pairs and the definitions of state

equivalence and distinguishability will refer to such input/output sequences rather than merely

to sequences of inputs.

For two automata Spec and Imp over the same input alphabet, a set of input sequences will be

called a test set of Spec and Imp if its successful application to the two automata will ensure

their equivalence.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

40

Definition 10 - [2].

Let Spec = (Inputs, States, NSF, initialState) and Imp = (Inputs, States', NSF', initialState') be

two finite state machines over the input alphabet Inputs. Then a set X ⊆ seq(Inputs) is called a

test set of Spec and Imp if the following is true:

If initialState and initialState' are X equivalent as states in Spec and Imp respectively then Spec

and Imp are equivalent.

The main concept behind generating a test set is that we want to be able to establish whether

two finite state machines are equivalent (i.e. in our case Spec and Imp above). A test set consists

of a set of input sequences that can be used to establish whether two finite state machines are

equivalent (i.e. algebraically similar). If they are not equivalent, in other words if their

behaviour is different, then we can find an input sequence in the test set that will show this

difference in behaviour. The key objective then is to find ways of constructing test sets.

Obviously, seq(Inputs) is a test set but not a very useful one since it is infinite. We want to find

finite test sets.

The following theorem is the basis of Chow’s finite state machine testing method. It describes a

procedure for constructing a finite test set.

Theorem 2 [2].

Let Spec and Imp be two minimal finite state machines over the input alphabet Inputs. Let TC

and H, respectively, be a transition cover and a characterisation set of Spec. Let k be the number

of extra states in Imp, Z = Inputsk
 :: H ∪ Inputsk-1 :: H ∪ ... ∪ H and let X = TC :: Z.

If Card(States') - Card(States) ≤ k and Spec and Imp are X-equivalent (i.e. if specification

machine Spec and implementation machine Imp both pass/fail the same tests in X = TC :: Z),

then Spec and Imp are isomorphic.

	

The theoretical idea presented in the above theorem is such that the transition cover TC ensures

that all the states and all the transitions of our machine Spec are also present in our eventual Imp

machine and Z ensures that transitions in Imp is identical to the ones in the Spec after each

transition is performed (i.e. they both pass/fail the same ones).

Notice that Z contains H and also all sets Inputi
 :: H, i = 1, ..., k. This ensures that Imp does not

contain extra states. If there were up to k-1 extra states, then each of them would be reached by

some input sequence of up to length k from the existing states.

If we can model both our system specification and implementation as finite state machines Spec

and Imp then the set X = TC :: Z of the above theorem will ensure that these are equivalent

provided that the maximum number of states of the implementation can be estimated. The basic

assumption here is that the finite state machine model of the implementation, Imp, need not be

minimal since the above theorem can be applied to Spec and Min(Imp). Hence Spec and

Min(Imp) are isomorphic, thus Spec and Imp are equivalent.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

41

2.6.6 Limitations of Chow’s Testing Method

The advantage of using Chow's testing method also comes with some major limitations. This is

because the method is only directly applicable to simple finite state machines and not to more

complex machines involving explicit data processing and internal memory (except the Stream

X-Machine based testing method (SXMT) [103] as described later).

It is often difficult to model many systems using finite state machines alone in a compact

manner. The method can be used to test the control structure of some complex systems with the

data structure and processing functions being tested in some other way. This last method is

unrealistic except in very special cases since the control is rarely independent of data state. By

expanding the state space massively it is possible to construct better models but they rapidly

become unusable. The assumption that the implementation is a finite state machine (that is,

there is no hidden memory) is very doubtful in practice (i.e. very few programs can actually be

modelled as simple finite state machine’s systems e.g. complex object-oriented systems

described later in chapters 3 and 4).

2.6.7 Improving Finite State Machine Modelling with
Statecharts

Statecharts [65] have been used to improve the capability of finite state machine modelling but

at the expense, however, of a coherent semantics. Statecharts also lack a convenient method for

describing the semantics of the individual transitions; some extensions have been introduced

[66], which provide a more powerful modeling language. Using these extended versions of

statecharts, some considerable progress has been made on developing a powerful testing

method; see Bogdanov & Holcombe [67].

2.7 X-Machine Testing

An X-Machine [32] is a general computational framework that abstracts the common features

of the main existing models (i.e. Finite State Machine, Pushdown Machine, Turing Machine

and other standard types of machine) and can easily be adapted to suit the needs of many

practical applications a major reason why our attention was drawn to the X-Machine model

of computation. Although X-Machines resemble Finite State Machines (FSM), there are two

significant differences between them: (a) there is an underlying data set attached to an X-

Machine, and (b) the transitions of an X-Machine are not labeled with simple inputs but with

functions that operate on inputs and data set values. An interesting class of X-Machines is the

stream X-machines that can model non-trivial data structures as a typed memory tuple. Stream

X-Machines employ a diagrammatic approach of modeling control by extending the expressive

power of the FSM [33]. They are capable of modeling both the data and the control by

integrating methods, which describe each of these aspects in the most appropriate way [34, 35,

36, 37].

Functions receive input symbols and memory values, and produce output while modifying the

memory values. The machine, depending on the current state and the current values of the

memory, consumes an input symbol from the input stream and determines the next state, the

new memory state and the output symbol, which will be part of the output stream.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

42

2.7.1 The Deterministic Stream X-Machine Model

Definition 11: A deterministic Stream X-Machine (Holcombe and Ipate, [2]) is an 8-tuple:

(Σ, Г, Q, Mem, Ф, F, q0, m0), where:

• Σ and Г are the input and output alphabets respectively.

• Q is the finite set of states.

• Mem is the (possibly) infinite set called memory.

• Ф, the type of the machine DSXM, is a set of partial functions φ that map an input and a

memory state to an output and a possibly different memory state, φ : Mem × Σ → Г ×

Mem.

• F is the next state partial function, F: Q × Ф → Q, which given a state and a function

from the type Ф determines the next state. F is often described using a state transition

diagram.

• q0 and m0 are the initial state and initial memory respectively.

Starting from the initial state q0 with the initial memory m0, an input symbol σ ∈ Σ triggers a

function φ ∈ Ф which in turn causes a transition to a new state q ∈ Q and a new memory state

m ∈ Mem. The sequence of transitions caused by the stream of input symbols is called

computation. The result of a computation is the sequence of outputs produced by the sequence

of transitions.

X-Machines possess the computing power of Turing machines and since they are more abstract,

they are expressive enough to be closer to the implementation of a system. This feature makes

them particularly useful for modelling and also facilitates the implementation of various tools,

which makes the development methodology built around X-Machines more practical.

Figure 6: An abstract example of an X-machine [38]

A number of case studies from various domains have been explored in order to investigate the

power and applicability of the X-Machine model for building software systems. Examples of

these can be found in domains like medical informatics [44], user interfaces [45], intelligent

agents [46], simulation [38], biology [47], and more [2] have demonstrated the value of the

stream X-Machine as a specification method, especially for interactive systems.

A tool for writing Stream X-Machine specifications has also been constructed [48] based on a

standard notation namely X-Machine Definition Language (XMDL), used as an interchange

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

43

language between developers who could share models written in XMDL for different purposes

(model checker, model animator, a tool to produce the test cases etc.).

Another important strength of using a Stream X-Machine to specify a system is that, under

certain well defined conditions, it is possible to produce a test set that is guaranteed to

determine the correctness of an implementation [2, 49].

Assumptions: The testing method assumes that the processing functions are correctly

implemented and reduces the testing of a Stream X-Machine to the testing of its associated

finite automaton. In practice, however, a separate process checks the correctness of the

processing functions: depending on the nature of a function, it can be tested using the same

method or alternative functional methods [2, 50]. The method was first developed in the context

of deterministic Stream X-Machines [2, 49] and then extended to the non-deterministic case

[51]. The method in which, initially, only equivalence testing was considered, has also been

extended to address conformance testing [52].

In order for a Stream X-Machine to be deterministic, there must be a single start state and the

set of basic functions, Φ must be such that given any state and any input value and any memory

value there is only one function that can be applied. Formally this is expressed as:

Definition 12 - [2, 103].

A Stream X-Machine, Machine, is deterministic if:

∀ φ, φ' ∈ Φ,

 if ∃ state ∈ Q, mem ∈ Mem, in ∈ Σ such that

 (state, φ) ∈ domain F, (mem, in) ∈ domain φ and

 (state, φ') ∈ domain F, (mem, in) ∈ domain φ',

 then φ = φ'. (Here domain F refers to the domain of a partial function F).

Hence each computation from the initial state to any other state is completely determined by the

input sequence and the initial memory value. A deterministic Stream X-Machine will compute a

partial function SPF: Σ* → Г*.

In the previous sections, we reviewed the fundamental theory of finite state machines, our

discussion included a result that describes how to test whether two finite state machines are

isomorphic. Isomorphism means that they are algebraically similar and if we wish we can

convert from one to another by using a renaming, which respects the algebraic structure and the

behaviour of the machines. Under these conditions their behaviour is the same. It is possible to

convert an X-Machine into a finite state machine by treating the elements of Φ as abstract input

symbols. We are, in effect, forgetting the memory structure and the semantics of the elements

of Φ. If we call this the associated automata of the X-Machine we have the following result:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

44

Theorem 3 [2]

Let Spec and Imp be two deterministic Stream X-Machines with the same set Φ of basic

functions, fc and fc' the functions computed by them and let A and A' be their associated

automata. If A and A' are isomorphic then fc = fc'.

	

2.7.2 Design for Test Conditions

The following conditions represent a formalisation of the idea of design for test (covered in

sections 2.7.2.1 and 2.7.2.2). They are conditions that must be satisfied if the complete test set

is to be constructed. They do not result in any limitation since any Stream X-Machine can be

made to satisfy these conditions - at the cost of including some extra test based functionality.

For example, if we consider any basic function φ ∈ Φ, so φ: Mem × Σ → Г × Mem, suppose

that mem ∈ Mem is any memory value that can be attained, the good question to ask here is

whether it is possible to find an input in ∈ Σ that could cause this function φ to operate? This

was the prime motivation behind the following definition.

2.7.2.1 Test-Complete Condition

Definition 13 - [2].

A type Φ, is called test-complete (or t-complete) if ∀ φ ∈Φ and ∀ m ∈ Mem, ∃ in ∈ Σ such that

(m, in) ∈ domain φ.

The above condition is particularly useful as it prohibits “dead-ends” in the machine (i.e. it

ensures that all states are reachable). In order to turn an X-Machine into one which is t-

complete we will need to introduce special test inputs. The test inputs are not used during

normal operation.

Another important condition that we need to consider is the case when a basic function has

operated in a given state with a memory value and an input. Here we can observe the output

produced by this basic function. A very good question to ask here is: what caused this output?

Clearly we know it was a basic function but which one? Because we cannot see these directly,

only through their effect on the output, we must ensure that there is no other basic function,

which could have produced the same output under identical conditions. This was the motivation

behind the next condition below.

2.7.2.2 Output-Distinguishability Condition

Definition 14 - [2].

A type Φ is called output-distinguishable if: ∀ φ1, φ2 ∈ Φ, if ∃ m∈ Mem, in ∈ Σ such that φ1(m,

in) = (out, m1') and φ2(m, in) = (out, m2') with m1', m2' ∈ Mem, out ∈ Г, then φ1 = φ2.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

45

What the above definition says is that we must be able to distinguish between any two different

processing functions in an X-Machine by examining their outputs. If we cannot then we will not

be able to tell the difference between them. As a result, we need to be able to distinguish

between any two of the processing functions (the φ’s) for all memory values. The mechanism

for achieving output distinguishability is by introducing some special test outputs, which are

used in those cases where two functions would not normally be distinguishable (these type of

functions can be identified from an initial stage of the original specification of the X-Machine

model system under test).

2.7.5 The Fundamental Test Function of a Stream X-Machine

The fundamental test function of a Stream X-Machine can be defined as a means of converting

sequences of processing functions (φ ∈ Φ) into sequences of inputs. This will be used to test

paths of the machine using appropriate input sequences.

Definition 15 - [2].

Let Machine = (Σ, Г, Q, Mem, Φ, F, q0, m0) be a Stream X-Machine with a set of processing

functions Φ which is t-complete w.r.t. Mem and let q ∈ Q and m ∈ Mem. A function tq, m:

seq(Φ) → seq(Σ) will be defined recursively as follows:

1. tq, m (< >) = < >

2. For n ≥ 0, the recursion step that defines tq,m (φ1::...::φn::φn+1) as a function of tq,m (φ1::...::φn)

depends on the following two cases:

i. If ∃ a path pth = φ1::...:: φn in Machine starting from q, then tq,m (φ1::...:: φn::φn+1) = tq,m (φ1::...::

φn) :: sn+1, with sn+1 chosen such that (mn, sn+1) ∈ domain φn+1 where mn = π2(|pth|(m, tq,m

(φ1::...:: φn)) is the final memory value computed by the machine along the path pth on the input

sequence tq,m (φ1::...:: φn). Note that such sn+1 exists since Φ is t-complete w.r.t. Mem. [For any

path pth = <φ1, φ2,…, φn+1> the composite (partial) function computed by Machine when it

follows that path is |pth| = φn+1 . φn,…, φ2 . φ1 ∈ D ↔ D where |pth| is also called the label of

pth and (.) is used to mean composition.]

ii. Otherwise, tq,m (φ1::...:: φn::φn+1) = tq,m (φ1::...:: φn).

Then tq,m is called a test function of Machine w.r.t. (q, m). If q = q0 and m = m0 then tq,m is

denoted by tt and is called a fundamental test function of Machine. If m = m0 then tq,m is

denoted by ttq.

Lemma 2 - [2].

Let Spec = (Σ, Г, Q, Mem, Φ, F, q0, m0) and Imp = (Σ, Г, Q', Mem, Φ, F', q0', m0) be two Stream

X-Machines with the same type Φ and initial memory m0, A and A' their associated automata,

fc and fc' the functions they compute and let t: seq(Φ) → seq(Σ) be a fundamental test function

of Spec and XX ⊆ seq(Φ) a set containing sequences of processing functions. We assume that Φ
is output-distinguishable and t-complete w.r.t Mem. If ∀s* ∈ t(XX), fc(s*) = fc'(s*) then q0 and

q0' are XX equivalent as states in A and A' respectively.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

46

2.7.6 The Fundamental Theorem of Stream X-Machine
Testing

Theorem 4 [2, 103].

Let Spec = (Σ, Г, Q, Mem, Φ, F, q0, m0) and Imp = (Σ, Г, Q', Mem, Φ, F', q0', m0) be two Stream

X-Machines with the same type Φ and initial memory, A and A' their associated automata, fc

and fc' the functions they compute and let t: seq(Φ) → seq(Σ) be a fundamental test function of

Spec. The theorem assumes that A and A' are minimal and that Φ is output-distinguishable and

t-complete w.r.t Mem. Let also TC and H, respectively, be a transition cover and a

characterisation set of A, Z = [Φk
 :: H] ∪ [Φk-1

 :: H] ∪ ... ∪ H, where k is a positive integer,

X = TC :: Z and Y = t (X). If Card(Q') - Card(Q) ≤ k and ∀ s* ∈ Y, fc(s*) = fc'(s*) then A and A'

are isomorphic.

	

2.8 Communicating X-Machine Models

A number of approaches for building communicating models of systems have been proposed.

These models consist of several X-Machines, which are able to exchange messages. These

messages are normally viewed as inputs to some functions of an X-Machine model, which in

turn may affect the memory structure.

A Communicating X-Machines model can be generally defined as a tuple:

((COXMi)i =1..n, COMR), where:

• COXMi is the i-th X-Machine that participates in the system, and

Figure 7: An abstract example of communicating X-machine component [39]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

47

• COMR is a communication relation between the n X-Machines.

There are several alternative approaches that formally define a Communicating X-Machine [40,

41, 42, 43]. Some of them deviate from the original definition of the X-Machine in that these

alternative approaches define COMR in a different way, with the effect of achieving either

synchronous or asynchronous communication.

The reason why our attention was drawn to the different types of Communicating X-Machine

models is because it seems intuitively possible to adapt some of their useful paradigm features

for the purpose of using them to specify distributed object-oriented systems and algorithms in

this way. In this thesis, we use the term distributed object-oriented system to mean a set of

autonomous computational object machine units with processing and storage capabilities that

are integrated via an arbitrary medium of communication. Also, we use the term distributed

object-oriented algorithm to mean the aggregation of a set of algorithms running in the different

object machine units of a distributed object-oriented system in order to find a common solution

for a particular problem. The advantage offered by this approach is such that each object

machine unit can then be designed and or programmed in such a manner allowing it to execute

local computations through the communication media. Aguado’s previous work [104, 105] in a

related area showed that two aspects inherent in these concepts can be abstracted. The first idea

defines the structure of communications among each individual object machine unit. For

example, MachineA communicates with MachineB and MachineB communicates with

MachineC etc. The second idea relates to the dynamic behaviour of the individual object

machine unit, which corresponds to the states and the different changes of state that can occur

in the system behaviour as a consequence of method invocations.

With regards to the second idea above, it is possible to infer that the global state of a distributed

object-oriented algorithm is the set of local states of the individual processes running inside the

object machines and the state of the communication media at a given period of time. It is

possible to represent the local states of the individual object machine units described above by

following the X-Machine paradigm formalism with some possible modifications in order to

align it to suit the object-oriented architecture since the data space is independent of the control

structure and hence we can model both. The state of the integration media for the object

machine units can be defined as a set of messages in transit.

Different classes of Communicating X-Machine Models have been proposed to the problem of

assembling and or integrating a society of X-Machines into a communicating system for the

purpose of building large-scale software systems that fulfil their requirements. The

Communicating X-Machine is a formal model that facilitates a disciplined development of

large-scale systems. In the sections that follow, we review various Communicating X-Machine

approaches highlighting those aspects that seem to be more relevant for specifying distributed

object-oriented testable systems.

2.8.1 The Basic Channel Approach

In 1996 Barnard, a former PhD student at The University of Staffordshire developed a basic

model for integrating a set of X-Machines into a communicating system. The sort of

communicating system [107] described by Barnard et al. was based on X-Machines with input

and output ports. Generally, communications between X-Machines are established via channels

in the model she introduced, where the output port of one X-Machine might be connected to the

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

48

input port of another X-Machine thereby allowing a data item or signal to be transmitted

through the channels connecting the machines. The formal definitions for this model given

below have been adapted from [104]:

Barnard’s Communicating X-Machine Model (BCM)

Definition 16: BCM is given by Λ = (D, Q, Φ, TF, Pre, Ps, I, FS)

D � Γ� x Mem x Σ�, where:

Σ
� � � ∑�

��_�

���
 and Γ� � � Γ�

��_���

���

∑�and Γ� are the alphabets of the j-th input port and i-th output port respectively, and num_in

and num_out are the numbers of input and output ports respectively, Mem is the data type of

the BCM memory.

• Q is the finite set of states of the BCM

• Φ is a set of relations on D, Φ: P�D � D�
• TF is the next state function that is often described by means of a state transition

diagram TF: (Q x (Φ x Pre)) → Q

• Pre is the set of predicates on Σ�x Mem, such that each predicate can be associated with

one or more transitions

• Ps is the set of ports. Each port has a name, is classified as an input or output port, and

has an associated alphabet.

• I and FS are the sets of initial and final states I ⊆ Q, FS ⊆ Q

Definition 17: A BCM of n Communicating X-Machines is a pair Wn = (R, Ek,k’), where:

R = {Λk | 1 ≤ k ≤ n} is a set of n Communicating X-Machines and Ek,k’ is a set of relations. As

shown below, the output port of one X-Machine k is connected to the input port of another X-

Machine k’ thereby allowing data item or signal to be transmitted through the channels

connecting the different X-Machines in the BCM model (thus showing how k and k’ are

related):

 � , ! � � Γ�, � � � ∑
�
�, !

��_�

���

��_���

���

The BCM definitions given above clearly represent how channels link ports of different X-

Machines for a system of communication developed around the Barnard abstract approach.

Each channel connecting one X-Machine to another is represented as a relation between an

output port of one X-Machine to another. Hence, a Communicating X-Machine System model

is established through channels.

Pursuant to the above BCM definitions, the authors proposed two important operational parts of

a system in their work [107] that need to be modelled by a Communicating X-Machine System

i.e. the external and internal behavioural models. The first model relates to how one X-

Machine communicates with another. The second model concerns the internal behaviour of

each X-Machine component. In the latter context, the set of states for each X-Machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

49

component and transitions can be observed as the behaviour of each one of them. This concept

in particular is fundamental for any specification formalism for distributed object-oriented

systems in practice as it would allow each object machine unit to be specified separately and

then combined later via an integrated medium of communication.

2.8.2 The Matrix Approach

In 1999 Balanescu et al. [40] introduced a new Communicating X-Machine model which is a

modified version to the basic model described by Barnard et al. [107] in 1996. The mechanism

employed in Balanescu’s model for integrating a set of X-Machines is via a communication

matrix, where each X-Machine component in the system is represented as a Stream X-Machine

thereby producing a model known as Communicating Stream X-Machine Systems. The major

advantage of Balanescu’s idea over Barnard’s is that it defines how the input-output

relationship can be obtained. Hence the Stream X-Machine testing method can be directly

applied to it. Balanescu’s model had been motivated by the fact that:

• Barnard’s model described in [107] was not developed to the point of directly deriving

the input-output relationship from it in order to apply the Stream X-Machine Testing

method.

• The Communicating X-Machine model described by Barnard et al. in [107] is just an X-

Machine with a number of ports (including zero) connected to its environments (i.e. to

other X-Machines). This concept deviates from the original Stream X-Machine

definition as Stream X-Machine was originally defined to read a single input from an

environment, store this input in the machine memory so that from an initial control state

a function to process the content of the memory is triggered to move the machine to a

new control state and allowing a new memory value to be computed. The machine then

continues with this routine until such time when there exist no applicable processing

functions and if it happens that the machine had already been driven into its final state

the last memory value is outputted to its environment via a decoding function.

The following three concepts have been used for the purpose of formalising the Communicating

Stream X-Machine Systems:

1. The set of (partial) functions of the X-Machine component of a Communicating Stream X-

Machine is formed by two disjoint subsets namely the set of processing functions and the

set of communicating functions. The processing functions are responsible for carrying out

internal computations of a given X-Machine component while communication functions are

responsible for sending and receiving messages from one X-Machine component to another.

2. The finite set of states of each X-Machine component of a Communicating Stream X-

Machine System is partitioned into two disjoint subsets as processing states and

communicating states. Every transition emerging from a processing state or a

communicating state directly corresponds to the processing or communicating functions,

respectively.

3. Each X-Machine component defines just one output port and one input port for the purpose

of communicating messages with other X-Machines. Communicating functions are used for

indicating where the information in one X-Machine output port should be sent or which

input port of a particular X-Machine should receive the information.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

50

In the section below, we review the definitions required for the purpose of formalising the

Communicating Stream X-Machine model. These definitions have been adapted from [104].

The Communicating Stream X-Machines Systems Model (CSXMS)

Definition 18 - [40, 104]: A CSXMS with n X-Machine components is a triplet WWn = (R,

MAT, C
0
), where:

• R is the set of n = |R| X-Machine components of the system of the form Vi = (Λi, INi, OUTi,

ini
0
, outi

0
) ∀ 1 ≤ i ≤ n. Such X-Machine components of the system are referred to as the

Communicating X-Machines. Λi in the definition above refers to a Stream X-Machine with

memory Memi (for detailed definition see definition 20 below). INi and OUTi directly

correspond to the values that can be transmitted by input and output ports of the ith

Communicating Stream X-Machine such that INi, OUTi ⊆ Memi ∪ {λ} and λ ∉ Memi. The

symbol λ is used to indicate that a port is empty. The initial values of the X-Machine ports

are set to ini
0
 and outi

0
.

• MAT defines the set of matrices of order n x n to form the values of the matrix variable that

is to be used for establishing communication amongst the X-Machine components. Hence,

for any C ∈ MAT and any pair of X-Machines say i, j the data value stored in C[i, j]

represents at most one message that is being passed from the memory Memi of X-Machine

Vi ∈ R to the memory Memj of X-Machine Vj ∈ R. Consequently, we can consider each

element of the matrix C[i, j] as a temporary buffer variable where the property INi ⊆ Memi

⊆ OUTj holds.

• Generally, all messages that are sent from the Communicating X-Machine Vi (i.e. X-

machine Λi) and Vj (i.e. X-Machine Λj) are data values from their respective memories

Memi and Memj. The λ symbol in the matrices is used to indicate that there is no message,

while the @ symbol is used for indicating a channel that is not going to be used (i.e. an X-

Machine communicating with itself is prohibited). The individual elements of the matrices

are drawn from machine memory Mem ∪ {λ, @}, where:

"#$ �% "#$�
&

���
 and λ,@ ∉ "#$

• C
0
 defines the initial communication matrix as C

0
[i, j] = λ assuming a valid communication

between the X-Machine Vi (i.e. X-Machine Λi) and Vj (i.e. X-Machine Λj) is allowed;

otherwise initial matrix is defined as C
0
[i, j] = @ to indicate that communication between

the two X-Machines i and j is prohibited. Furthermore, the matrix C
0
[i, i] = @ indicates that

an X-Machine communicating with itself is effectively not allowed.

• The ith Communicating X-Machine component can only read from the ith column and then

write to the ith row of the communication matrix (see definition 20 for detailed explanation

of the communicating functions).

Definition 19 [40, 104]: For any C ∈ MAT, any value x ∈ Mem and any pair of indices 1 ≤ i,

j ≤ n, with () *.
• If C[i, j] = λ an output variant of C, denoted by Cij ⇐ x is defined as:

(Cij ⇐ x)[i, j] = x and (Cij ⇐ x)[k, m] = C[k, m] ∀ (k, m) ≠ (i, j)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

51

• If C[i, j] = x an input variant of C, denoted by ⇐ Cij is defined as:

(⇐ Cij)[i, j] = λ and (⇐ Cij)[k, m] = C[k, m] ∀ (k, m) ≠ (i, j)

The above input and output variants of C simply define the different allowable transitions from

one matrix to another.

Definition 20 - [40, 104]: A Communicating X-Machine is a 5-tuple V = (Λ, IN, OUT, in
0
,

out
0
), where:

Λ = (Σ, Γ, Q, Mem, Φ, F, I, FS, mo) is a Stream X-Machine with the following properties:

The definitions of IN and OUT were provided within definition 18 above

• Σ and Γ are the finite input and output alphabet respectively.

• The finite set of states Q of each X-Machine component assembled into a communicating

system must be partitioned as Q = Q’ ∪ Q’’ where Q’ corresponds to the processing states

in each X-Machine component in the communicating system and Q’’ is the set of

communicating states corresponding to the central medium where all the n X-Machine

components have been integrated and where Q’ ∩ Q” = ∅ holds. Hence, this implies that

for each q’ ∈ Q’ in each X-Machine component, the functions emerging from q’ are

processing functions. Assuming that in state q’ several functions can be triggered, in this

situation one of them is arbitrarily chosen otherwise (i.e. if no function can be applied) the

entire communicating X-Machine system blocks. If the machine is in state q’’ ∈ Q’’ then all

the functions emerging from state q’’ are communicating functions. While the machine is in

state q’’, if several functions can be applied then one of them is arbitrarily chosen, else if

this is not the case then the machine simply does not change it current state and would have

to wait until one of such functions can be applied.

• Mem is a (possibly infinite) set called the memory.

• The type of the machine is define as a set Φ = Φ’ ∪ Φ’’ where Φ’ is called the set of

processing functions and Φ’’ is the set of communicating functions and Φ’ ∩ Φ’’ = ∅. Each

element φ’ ∈ Φ’ is a relation (partial function) of type:

φ’: IN x Mem x OUT x Σ* → Γ* x IN x Mem x OUT

1. A processing function φ’ is not an ordinary Stream X-Machine but it can be made to act or

exhibit the behaviour of an ordinary Stream X-Machine which can be defined as follows

[104]:

∀ x ∈ IN, ∀ m ∈ Mem, ∀ y ∈ OUT

φ’(x, m, y,<>) = ⊥

Clearly, as the above indicates, a processing function φ’ will always produce an undefined

value (⊥) for an empty sequence of inputs indicated by (<>).

∀ x ∈ IN, ∀ m ∈ Mem, ∀ y ∈ OUT, ∀ h ∈ Σ, ∀ s
*
 ∈ Σ*

, ∀ g
*
 ∈ Γ*

If ∃ m’ ∈ Mem, t ∈ Γ, x’ ∈ IN, y’ ∈ OUT, from another X-Machine component that depends on

m, h and x with a uniquely defined behaviour then the output produced by the processing

function (φ’) is defined as: φ’(x, m, y, h::s
*
) = (g*::t, x’, m’, y’). Otherwise, if the output of the

processing function (φ’) has no further relationship (i.e. case where no other X-Machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

52

processing function depends on the output from φ’) with other X-Machines in the

Communicating X-Machine System then the processing function (φ’) is said to produce an

undefined value (⊥).

(2) A communicating function φ’’ ∈ Φ’’: IN x OUT x MAT → IN x OUT x MAT operates in

two ways:

(2.a) As an output-move (OMV): Here, the communicating function (φ’’) is used by one X-

Machine Vi to send a message to another X-Machine Vj using C[i, j] as a buffer. The set of

moves between Memi and Memj from the output port of one X-Machine Vi to another X-

Machine Vj are called output moves denoted as OMVi ∀ 1 ≤ i ≤ n.

OMVi = {omvi->j | 1 ≤ j ≤ n, i ≠ j} where:

omvi->j: OUTi x MAT → OUTi x MAT

∀ y ∈ OUTi, ∀ C ∈ MAT, if ∃ j ≠ i and y ≠ λ with C[i, j] = λ (i.e. y is not empty and C[i, j] is

empty)

omvi->j(y, C) = (y ← λ, (Cij ⇐ y)) (the result of this is the output variant of Cij). The above

mathematical constraint imposed on both the output port y ∈ OUT of the X-Machine (Vi) and

the communication matrix C ∈ MAT implies that in order for Vi to send its output to X-Machine

Vj the buffer C[i, j] must be empty and the output port y of Vi must not be empty. Hence, the

output-move function (omvi->j) can only be invoked when C[i, j] is empty. The arrow symbol

(←) above is used to change the initial configuration C[i, j] = λ to C[i, j] = y when the output-

move function omvi->j is exercised.

(2.b) As an input-move (InpMV): Here, the communicating function (φ’’) is used by X-

Machine Vi to receive a message from X-Machine Vj using C[j, i] as a buffer. The set of moves

between Memj and Memi to the input port of X-Machine Vi are called input moves denoted as

InpMVi ∀ 1 ≤ i ≤ n.

InpMVi = {inpmvj->i | 1 ≤ i ≤ n, i ≠ j}, where:

inpmvj->i: INi x MAT → INi x MAT is defined by:

∀ x ∈ INi, ∀ C ∈ MAT

if ∃ j ≠ i and x = λ and C[j, i] ≠ λ (i.e. x is empty and C[j, i] is not empty)

inpmvj->i(λ, C) = (x ← C[j, i], (⇐Cji)) (the result of this is the input variant of Cji). The above

mathematical constraint imposed on both the input port x ∈ IN of the X-Machine Vi and the

communication matrix C ∈ MAT implies that in order for Vi to receive a message from X-

Machine Vj the buffer C[j, i] must not be empty and the input port x of Vi must be empty.

Hence, the input-move function (inpmvj->i) can only be invoked when C[j, i] is not empty. Here,

the arrow symbol (←) is used to transfer the message stored within C[j, i] to x when the input-

move function inpmvj->i is exercised; hence the notation style x ← C[j, i].

Following the above, the set of communicating functions Φ’’ can be defined as:

Φ’’ ⊆ OMVi ∪ InpMVi ∀ 1 ≤ i ≤ n

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

53

The set of partial functions Φ = Φ’ ∪ Φ’’ is further modified to give the set of extended partial

functions denoted with the symbol ΦE [104]:

ΦE: IN x Mem x OUT x MAT x Σ* → Γ* x IN x Mem x OUT x MAT

Earlier within definition 11, the next-state function F was defined. Furthermore, we say here

that the domain(F) ⊆ (Q’ x Φ’) ∪ (Q’’ x Φ’’). I ⊆ Q and FS ⊆ Q are the sets of initial and

terminal states and m0 ∈ Mem is the initial memory value.

2.8.3 The Channel Approach with Communication Server

In 2000 Cowling, Georgescu and Vertan (CGV) [108] developed a different version of a

Communicating X-Machine model that allows the use of channels as the basic mechanism for

exchanging messages amongst Communicating X-Machine components. The approach

introduced by CGV offers a higher level of synchronisation when compared with other

Communicating Stream X-Machine system models. The CGV communication framework was

designed in such a way that when a message is passed between Communicating X-Machine

components, the first X-Machine Vi ready to communicate is blocked until such time when the

receiving X-Machine Vj is also ready and able to exercise the message from Vi. One major and

important feature of the CGV model concerns the introduction of a co-ordinating

Communicating X-Machine’s component manager which in their work [108] was referred to as

the communicating server.

The role of the server in the model is to control and organise the synchronisation of messages

passed between the various X-Machines in the communicating system. Hence, the server

invokes a protocol function to control a send/receive operation among the X-Machines that are

trying to establish communication with other X-Machines via the server. When the server

receives a request from X-Machine Vi either to send (C[i, j]) or receive (C[j, i]) a message from

X-Machine Vj, the server goes on to examine the state and current condition of X-Machine Vj

and depending on this requisite scrutiny, the server either grants the request to send/receive to

X-Machine Vi or rejects the requested operation. The formal definitions representing the CGV

design concept with regards to their proposed Communicating Stream X-Machine System

(CSXMS) model are given and expanded upon herewith below:

Definition 21 - [104, 108]: The CSXMS-Channel model Wn
T
 = (R

T
, MAT, C

0
) for a CSXMS

with n X-Machine components is a variant of WWn = (R, MAT, C
0
) covered by definition 18 if

R
T
 is obtained from R. Furthermore, R

T
 includes one additional co-ordinating Communicating

X-Machine Kn+1 so that R
T
 = R ∪ Kn+1 in the CSXMS-Channel model. This new X-Machine

component is called the communication server or simply the server.

where:

+,-� . /λ,@0 1% / *2-, *3-, *24, *340

5��

678-� . /λ,@0 1 % / *2-, *3-, *24, *340

5��

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

54

Apart from the above server input-output port definition, for all other X-Machine components

in the communicating system Vi = (Λi, INi, OUTi, ini
0
, outi

0
) 1 ≤ i ≤ n, the following applies to

the way their input-out ports operate.

+,� . "#$� 1 /λ, 90 1 % /*24, *340

5��

678� . "#$� 1 /λ, 90 1 % /*2-, *3-0

5��

The symbol λ is used to indicate the absence of a message. The symbol @ can be used to

indicate that there is no communication defined between one X-Machine Vi and another X-

Machine Vj (e.g C[i, j] = @ is defined as no communication permitted between X-Machines (i

and j). In addition to the above, the functionality of the symbol @ is extended in such a way

that when communication between memories Memi and Memj is about to stop prior to X-

Machine Vi reaching its final state, the symbol @ is assigned to all of the cells of the row and

columns corresponding to the X-Machine Vi. Each X-Machine component in the

communicating system can send the symbol jS
+
(request to send) or jR

+
 (request to receive) to

the communicating server to request permission to send or receive a message to or from X-

Machine Vj. When the server receives such request, the server sends the symbol ↵ (called OK

in [104, 108]) to the X-Machine requesting such operation if the required communication

operation is allowed. If the communicating server is not in a position to grant the requested

operation (i.e. if an attempt to communicate was rejected) owing to the fact that X-Machine Vj

is not yet ready and in a position to respond adequately to the requested operation, the server

responds by sending the symbols jS
-

(reject send) or jR
-

(reject receive) to the relevant X-

Machine component concerned.

Definition 22 - [104, 108]: A server machine is a 5-tuple Kn+1 = (Λn+1, INn+1, OUTn+1, inn+1
0
,

outn+1
0
) where the local memory Memn+1 stores a representation (say B) of the set of other

machines that are still running. In its simplest form this representation can be done as follows:

B ⊆ {1, 2,…, n} such that j ∈ B if, and only if, C[j, n+1] ≠ @. The initial memory of the server

machine contains the whole set of values from 1 to n.

The communicating server operates in such a way that it continues selecting the ith data item

from memory until such time when B is empty then the operation of the server stops. Data items

in memory can be randomly selected or memory can be implemented around data structures

like lists, stack, etc. The memory of the communicating server described here is organised as

Mem = ({λ, @, ↵} ∪ {jS
+
, jR

+
, jS

-
, jR

-
}) x B[N] x {1, 2,…, n}, where a ∈ ({λ, @, ↵} ∪ {jS

+
,

jR
+
, jS

-
, jR

-
}) is the first element of the server machine memory that stores the last symbol

received from some communicating X-Machine Vj or the symbol that is going to be sent to X-

Machine Vj. The second element of the server machine memory is an array data structure B

with n Boolean values; where each ith Boolean value in B represents the readiness or ability for

each X-Machine component of the Communicating System to respond to message request (i.e.

request to send or receive) from X-Machine Vj. All X-Machine Vj initially are set to B[j] = true.

This default initialisation of all the X-Machine processes indicates that the processes are

currently active and are busy in their respective right exercising their corresponding tasks;

hence they are not in a position to respond to any request until such time when B[j] = false. This

implies that when a particular X-Machine Vj has finished executing a task and in a state where it

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

55

can respond to a request from X-Machine Vi, the value of B[j] in the X-Machine Vj’s memory is

set to false thereby enabling it to respond accordingly to a request. The third element of the

server machine memory r ∈ {1, 2,…, n} is the counter variable element responsible for

controlling and managing the order in which the ith X-Machine component of the

communicating system is chosen and processed by the server (initially, the value of the counter

is set to r = 1). Assume m represents the memory of the server machine, following on from

above, m.a denotes the first element of the memory, m.B[m.r] represent the ith element in the

array B of the server memory and m.i denotes the counter.

One major difference between the matrix and channel approaches for specifying a

Communicating Stream X-Machine System is in the type of channels allowed between the

server and the rest of the machines in the system. Matrix approach allows message passing

between machines in the system to be modelled as full-duplex channels i.e. message request and

passing between X-Machine Vi and X-Machine Vj is bi-directional and can occur

simultaneously so that Vi and Vj can communicate in both directions C[i, j] and C[j, i] at the

same time. By contrast, channel approach allows communication between machines in the

system and the server to be modelled as half-duplex i.e. communication is bi-directional and

cannot occur at the same time in both directions. The above property can be achieved by a

means of a variable z representing the n +1 column of the matrix hence a variable zi represents

the communication of messages in the matrix column z = n+1 and X-Machines i in the system

defined as zi = C[i, n+1] ∀ 1 ≤ i ≤ n+1. The following design formalism must be adhered to in

order for communication between the X-Machine components and the server to hold [104]:

• When the send/receive operation is invoked, the machine Vi will execute zi where i ≠ n+1

• If machine Vi stops prior to reaching its final state ∀ 1 ≤ j ≤ n+1, C[i, j] = @ and C[j, i] =

@. Clearly, after that zi must have the @ symbol assigned to it.

The above design decision representing the channel approach for specifying a Communicating

Stream X-Machine System (CSXMS) has a significant impact on the behavioural nature of the

CSXMS’s communicating functions i.e. output-move (OMV) and input-move (InpMV)

respectively. This is because the communicating function (omvi->j) is used by X-Machine Vi to

send a message to another X-Machine Vj using C[i, j] as a buffer while the communicating

function (inpmvj->i) can be used by X-Machine Vi to receive a message from X-Machine Vj

using C[j, i] as a buffer. The impact of the above design decision imposed a difficult constraint

on the way that the CSXMS communicating functions operate because by combining omvi->j and

inpmvj->i it is impossible to achieve the channel approach design decision. The introduction of

the communicating server in the channel approach model of CSXMS implies that some

operations would need access to zi = C[i, n+1] from X-Machine Vi by invoking either the

output-move function (omvi->j) or the input-move function (inpmvj->i). The formalised algorithm

representing the concept behind the way that the communicating server operates is written in

pseudo code below as presented in [104].

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

56

2.8.4 The Modular Approach

So far, all the communicating system models discussed in this thesis towards assembling X-

Machines into a communicating system suffer one major drawback, i.e. a system should be

conceived as a whole and not as a set of independent components. As a consequence, one needs

to start from scratch in order to specify a new component as part of the large system. It is clear

from the various communicating models reviewed earlier that specified X-Machine components

cannot be re-used as stand-alone X-Machines or as components of other systems, owing to the

fact that the formal definition of an X-Machine MM in those models differs significantly from

the standard definition of an X-Machine XM. Also, the semantics of the functions affecting the

communication matrix impose a limited asynchronous operation of an XM.

In 2001 Petros Kefalas [34] introduced a modular approach for modelling large scale systems

using Communicating X-Machines. This approach preserves to a great extent the standard

theory and definition of the X-Machine model described earlier. The only major difference that

exists when the modular approach is compared with the Communicating Stream X-Machine

Systems model (i.e. Matrix Approach), relates to the abolishments of the communicating states

and communicating functions and the use of an equivalent way to establish communication.

Kefalas’s modular approach views the Communicating X-Machine System as a sequence of

operations defined to transform a set of X-Machines into a system’s model. The approach

requires three operators to be defined, namely OPinst, OPcomm and OPsys, which will be used for

the incremental development of X-Machine components of a communicating system.

Now, assume the Stream X-Machine Type (MT) is defined as an X-Machine without an initial

state and initial memory as the tuple [34]:

MT = (Σ, Γ, Q, Mem, Φ, F)

It is possible that by applying the operator OPinst: MTi x (q0i, m0i) → NewMTi, ∀q0i ∈ �Q, m0i ∈

Mem a Stream X-Machine instance can be constructed; which results in an instance of a MT

[34]:

NewMT = MT OPinst (q0, m0)

When the server considers the value i, it behaves in the following manner:

case zi of

 zi = @ : delete i from E;

 zi = jS
+
 : if zj = iR

+
 then { zi ← ↵; zj ← ↵;}

 else

 if zj = iR
-
 then −

 else zi ←jS
-

 zi = jR
+
 : if zj = iS

+
 then { zi ← ↵; zj ← ↵;}

 else

 if zj = iS
-
 then −

 else zi ← jR
-

else :-

end

Figure 8: The Communicating X-Machine Server algorithm [104]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

57

A Communicating X-Machine Component (XMC) is defined as the result of the following

composition:

XMCi = (Σi, Γi, Qi, Memi, Φi, Fi)OPinst(q0i, m0i)OPcomm(ISi, OSi, ΦISi, ΦOSi), where:

• ISi is an n-tuple that corresponds to n input streams, representing the input sources used

for receiving messages from other XMC (isj is the standard input source of CXMCi): ISi

= (is1, is2,..., isn), and isj = ε (if no communication is required) or isj ⊆ Σi

• OSi is a tuple that corresponds to n output streams, representing the n output destinations

used to send messages to n other XMC (osj is the standard output destination of XMCi):

OSi = (os1, os2,..., osn), and osj = ε (if no communication is required) or osj ⊆ Σi

• ΦISi is an association of function φi ∈Φi and the input stream ISi, ΦISi : φi ↔ ISi

• ΦOSi is an association of function φi ∈Φi and the output stream OSi, ΦOSi : φ ↔ OSi

Note: that in the first and second of the four bullet points for the definition of XMC given

above, the subscripts for IS and is, or for OS and os, should not be the same.

The application of the operator OPcomm: NewMTi x (ISi,OSi, ΦISi, ΦOSi) → CXMCi has as a

result a Communicating X-Machine Component CXMCi as a tuple:

XMCi = (Σi, Γi,Qi, Memi, ΦCi, Fi, q0,m0, ISi,OSi), where [34]:

• ΦCi is the new set of partial functions that read from either standard input or any other input

stream and write to either the standard output or any other output stream.

Thus, the set consists of four different sets of functions, which combine any of the above

possibilities [34]:

ΦCi = SISOi ∪ SIOSi ∪ ISSOi ∪ ISOSi

• SISOi is the set of functions φ that read from standard input stream (isi) and write to

standard output stream (osi):

 SISOi = {(isi,m) → (osi,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ φi ∉ dom(ISi) ∧ φi ∉ dom(OSi)}

• SIOSi is the set of functions φ that read from standard input stream (isi) and write to the j−th

output stream (osj):

 SIOSi = {(isi,m) → (osj,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ φi ∉ dom(ISi) ∧ (φi → osj) ∈ OSi}

• ISSOi is the set of functions φ that read from the j−th input stream (isj) and write to the

standard output stream (osi):

 ISSOi = {(isj,m) → (osi,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ (φi → isj) ∈ ISi ∧ φi ∉ dom(OSi)}

• ISOSi is the set of functions φ that read from the j−th input stream (isj) and write to the k−th

output stream (osk):

 ISOSi = {(isj,m) → (osk,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ (φi → isj) ∈ ISi ∧ (φi → osk) ∈ OSi}

Finally, the Communicating X-Machine is defined as a tuple of n XMC as follows [34]:

CXM = (XMC1, XMC2,..., XMCn), with

• Σ1 ∪ Σ2 ∪ ... ∪ Σn = (os11 ∪ os12 ∪ ... ∪ os1n) ∪... ∪ (osn1 ∪ osn2 ∪ ∪ osnn), and

• Γ1 ∪ Γ2 ∪ ... ∪ Γn = (is11 ∪ is12 ∪ ... ∪ is1n) ∪ ... ∪ (isn1 ∪ isn2 ∪ ... ∪ isnn)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

58

Hence, following the above results, a Modular Communicating Stream X-Machine System can

be constructed from the operator OPsys : XMC1 x ...x XMCn → CXM.

2.8.5 Limitations of Communicating X-Machine Models

Whilst several approaches have been proposed to the problem of assembling X-Machines into a

communicating system, there is currently no testing method that is general enough to verify the

correctness of systems developed out of these various models. This is because the formal

definition for an X-Machine (MM) in these models differs significantly from the standard

definition of an X-Machine (XM). Also, from a functional testing perspective, not all the

Communicating X-Machine System’s models were developed to the point where the input-

output relationship can be derived from it (i.e. where every unique function f of an X-Machine

component takes a unique input and returns a unique output). This is a necessary condition that

must be satisfied if the Stream X-Machine Testing (SXMT) method [2,103] must be applied (i.e.

one of the Stream X-Machine design for test conditions). To apply SXMT, equivalent Stream X-

Machine must be derived from the model of Communicating X-Machine system under test.

To address this problem, Joaquin Aguado’s PhD thesis [105] proposed a testing method known

as the multiple independent architecture for global testing (MIAG). This method assumed that

when each individual X-Machine component of a Communicating X-Machine System has been

tested correctly in isolation then the overall system should work correctly when the various X-

Machine components are fully integrated together. However, this concept is in serious conflict

with Weyuker’s test adequacy axiom (i.e. as expressed by the Anticomposition axiom – see

section 1.1.4). This is because it is possible for stand-alone components (e.g. objects) that have

Figure 9: An abstract example of a XMCi with input and output streams and functions that receive

input and produce output in any possible combination of sources and destinations [34].

Figure 10: Three Communicating X-Machine Components XMC1, XMC2, and XMC3 and the

resulting communicating system where XMC2 communicates with XMC1 and XMC3, while XMC3

communicates with XMC1 [34].

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

59

been adequately tested in isolation to produce new faults when integrated with other

components.

Hence, we argue that this is not a satisfactory solution for any system model or object-oriented

system for that matter; because integration testing is always required in addition to unit

testing. In particular, the main focus of integration testing is to test the interactions among

components in the communicating system under test. Does a component that calls another do so

correctly? Are the parameters of the right types and ranges, and do they observe the proper

relationships? Does the invoked method actually return the correct type and is the value in the

correct range? To satisfactorily address these questions chapters 4, 6 and 7 of this thesis were

developed. We argue that a new testing method is required to create a more meaningful and

reliable solution for the object-oriented architecture. Moreover, the differences between input-

driven Communicating X-Machine Systems and object-oriented systems which are driven by

method invocations and responses (i.e. which does not always have to produce an output e.g.

mutator methods in Java) are sufficient enough reason to develop a test method that is more

specific to the object-oriented architecture.

More than that, in their purest form and design, both X-Machines [2, 32, 38] and

Communicating X-Machine models [40, 41, 42, 43, 104, 105] are either too procedural or

simplistic to represent the notion of objects and classes that can be found in object-oriented

languages. Also, the Object X-Machine based testing approach [55] proposed earlier relies

heavily on the Stream X-Machine based testing method [2] which is purely procedural.

Furthermore, the approach described in [55] does not capture or provide an automaton-based

framework formalism for the notion of classes that can be found in object oriented languages.

Hence testing an object-oriented system for completeness with [2, 55] then raises a few

questions like: what is the fundamental unit of test for object oriented systems? Is it a class or

an object? Given that object oriented systems are composed of a society of communicating

objects where each unique object in the system belongs to a class, it is clear that the class is the

fundamental unit of test. Furthermore, classes can also be used as a fundamental medium of

integration for a society of communicating objects (i.e. in an object-oriented system under test).

The unit of integration in procedure-oriented languages like C and Pascal, and object-based

languages such as Modula-2 and Ada 83 is the procedure and module respectively. The major

distinction between the types of languages discussed in this thesis is the mechanisms used for

abstraction. Procedure-oriented languages employ the procedure and function while object-

based and object-oriented languages use data abstraction as the major abstraction mechanism.

The integration mechanism is simple aggregation via either procedure/function call-return or

via containment when one module includes another. While this concept is also true for object-

oriented languages, the key difference is the presence of another integration mechanism:

inheritance. The mechanism of inheritance and polymorphism are the major characteristics

that distinguish an object-oriented language from an object-based language.

Hence, it is extremely difficult to directly use simple finite state machines or extended finite

state machine system models to accurately model or correctly test complex object-oriented

systems in the presence of complicated and evolving paradigmatic features (e.g. like inheritance

and polymorphism).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

60

2.9 Summary

In this chapter, we first of all examined the motivation for software testing in general. We then

proceeded to review a number of existing testing techniques, discussing their advantages and

disadvantages. In particular, we argued that most work in testing research has centred on

procedure-oriented software with worthwhile methods of testing having been developed as a

result. We nevertheless argued that those methods in their original forms cannot be applied

directly to complex object-oriented software. This is because the architectures of such systems

are either too simplistic or too procedural in their purest forms to model the evolving

complexity that can be found in the object-oriented architecture. Hence, we argued that a new

automaton-based framework formalism and testing method based on this is required i.e. which

directly aligns with the changing complexity that is currently inherent within object-oriented

programming languages like Java and C++.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

61

Chapter 3: Object-Oriented Programming and
Testing

3.1 Introduction

Object orientation (i.e. OO for short) is a technique that has influenced all aspects of computer

science and software engineering since its introduction in the 1960’s. Object-Oriented ways of

reasoning have been applied to a number of large scale software engineering problems

including systems design, operating systems, programming languages, and database systems, to

name but a few areas in which this technology has had a profound impact. The advantage of

using the OO technique can be seen in how we can use the concept to model quite complicated

real-world systems that consist of many different kinds of object and many instances thereof.

In this chapter, firstly, our goal is to review some of the basic concepts of object orientation in

order to examine the impact that they have on testing object-oriented programs in the presence

of complicated paradigmatic and evolving object-oriented features like encapsulation,

inheritance, polymorphism and dynamic binding. Our second goal in this chapter is to also

discuss the limitations of using finite state machine approaches which embody the notion of

objects to test object-oriented systems.

3.2 Object

A widely accepted claim [95] made for the object technology model is that it is a natural way of

thinking about things. In the world that we live in, we are surrounded by objects. Hence, once a

problem has been explicitly defined, it should be easier to identify an object involved in the

problem and the requisite actions we can perform on that object, in addition to the actions it

may request from us and possibly from other collaborating objects. The definition of the term

object is very broad: every perceived entity in an object-oriented system can be considered as

an object [68]. Generally, an object is an item that represents a concept that is either abstract, or

depicts an entity of the real world [69]. Expanding on the concept of abstraction in relation to

the definition of an object, Booch showed that an abstraction denotes the essential

characteristics of an object that distinguishes it from all other kinds of objects and thus provides

crisply defined conceptual boundaries, relative to the perspective of the viewer [70].

Furthermore, an object has some kind of state that controls its actions in response to message

requests. This is better explained with an example. Now, consider a radio receiver, which has as

part of its state the frequency to which it is currently tuned and also its wavebandsay for

example, AM/FM. Possible actions to perform on the radio would be to tune in to another

broadcasting station and change the waveband. In this example, we consider the radio receiver

as an object, and the control states of the radio receiver are hidden inside its attributes, in this

case inside the frequency and waveband respectively.

Now, to expand on this concept further, let us consider a CD player as an object. In this

example, the aim is to try and list all the possible actions that we can request from the CD

object. Doubtless, this sounds like a very simple undertaking, as all we need to do is to look at

the control panel of the CD player object and then evaluate what it can possibly do for us. The

control panel (see Figure 11) represents the user interface to the CD player object. From the

user interface below, it is easy to see what kind of actions that we can request from the CD

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

62

player Object. We can Play, Pause, Seek a particular track, Fast forward, Fast reverse, Stop

and Eject the CD. Just like in the radio receiver example above, the CD player object has some

state that controls its actions in response to message requests. For example, if the CD player

does not contain a CD and a user initiates a request to play CD, the empty state of the CD

player object would affect how the player goes on to respond to the user’s request. One possible

way for the CD player to communicate with the user in this case is either to do nothing or flash

an indicator light (i.e. the CD Player’s way of saying please insert a CD if you wish to listen to

a song!)

Figure 11: CD Player Control and Display Panel example adapted from [109]

In addition to the operations of the CD player object described above, it is clear from the

control panel (see Figure 11) how users can easily observe the state of the CD objectfor

example, which track is currently playing and how many minutes we are into the track. The

control panel only reveals to the user what s/he might directly find useful. Hence all the details

of the internal structure of the CD player object are concealed from the user. Here, the CD

player is treated as a black box mechanism. The merit of using the CD player example is

because it further helps to illustrate certain useful features of the object technology model.

Consequently, from this example we can comfortably draw the following useful inferences

about the object technology model:

• An Object provides a set of operations that users can invoke. These operations are

commonly referred to as methods in object-oriented programming languages.

• An Object maintains an internal state. Some of that state may be publicly available to the

user, i.e. directly or indirectly through the invocations of methods.

• An object can be treated as a black box. This means that all the internal data of the object is

hidden away from the user. Also, the mode of operation for each unique method of the

object is likewise hidden, in addition to how they individually go on to manipulate the

internal memory state of the object.

• An object has an identity which allows us to identify an object independently of it state.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

63

In the above example, we discussed the case of a single CD player. In actual fact, millions of

such players exist in the real world. It is easy to observe in the real world, how CD players of

the same make and model will have pretty much the same functionality; but having said that, it

is also true even with players of different makes and models, because they will also provide the

same basic, core functionalityi.e. that which allow the user to insert a CD and play it. By

exploring the object technology approach, it is far easier to generalise this concept by way of

trying to identify a class of CD players. In the section that follows below, we expand in greater

detail the concept behind a class.

3.3 Class

Simons’s work in [94] supports the argument which claims that classification is that which

makes a language distinctively object-oriented. This is because abstraction is the fundamental

characteristics of object-oriented languages. Several definitions have been provided in order to

explain the meaning of a class [60, 72, 95, 96]. Most of these definitions are not consistent and

leads to misconceptions regarding the notion of a class. Simons work in [94, 102] was designed

to address this ambiguity. In conclusion, he provided the following definition for classes [94,

102]:

Classes are polymorphic definitions for heterogeneous families of objects, instances of different

concrete types - such a class has an extensible implementation and an extensible interface;

Future references from here onwards to a class or classes in object-oriented languages in the

rest of this thesis assume the above definition.

3.3.1 Class Variables

Generally, in a programming language like Java, when a number of objects are created from the

same class, they each have their own distinct copies of instance variables. Now, consider a

simple example of a Person class in Java (see below) with the instance variables forename,

surname, age and gender. Each Person object has its own values for these variables, stored in

different memory locations.

Occasionally, we might want to have variables that are common to all objects. In Java this is

accomplished with the static modifier. Attributes that have the static modifier in their

declaration are called static attributes or class variables. These are associated with the class,

rather than with any object. In Java, every instance of the class shares a class variable, which is

in one fixed memory location. Any object can change the value of a class variable; it is also

possible to manipulate class variables without creating an instance of the class.

In order to illustrate the above concept better, let us assume that we want to create a number of

Person objects and assign each a serial number, beginning with 1 for the first object. This ID

number is unique to each object and is therefore an instance variable. Also, we need an attribute

to help us keep track of how many Person objects have been created so that we can know what

ID to assign to the next Person object. Such an attribute is not related to any individual object,

but to the class as a whole. For this, we need a class variable, numberOfPersons, defined in

Java as follows:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

64

public class Person{

 private String forename;

 private String surname;

 private int age;

 private String gender;

 // add an instance variable for the object ID

 private int id;

 //add a class variable for the number of Person objects instantiated

 private static int numberOfPersons = 0;

}

Class variables are referenced by the class name itself, as in Person.numberOfPersons. This

makes it clear that they are class variable. Also, it is possible to refer to static attributes with an

object reference like person1.numberOfPersons. Generally, this is discouraged because it does

not make it clear that they are class variables. We can use the Person constructor to set the id

instance variable and increment the numberOfPersons class variable:

public class Person{

 private String forename;

 private String surname;

 private int age;

 private String gender;

 private int id;

 private static int numberOfPersons = 0;

 public Person(String f, String s, int a, String g){

 forename = f;

 surname = s;

 age = a;

 gender = g;

 // increment number of Persons and assign ID number

 id = ++numberOfPersons;

 }

 // new method to return the ID instance variable

 public int getID(){

 return id;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

65

 ………

}// End of class Person

3.3.2 Class Methods

The Java programming language supports static methods as well as static variables. Any static

method, with the static modifier in their declarations can be invoked with the class name,

without the need for creating an instance of the class. It is also possible to refer to static

methods with an object reference. Often, static methods are used for accessing static attributes.

For example, we could add a static method to the Person class to access the numberOfPersons

static attribute:

public static int getNumberOfPersons(){

 return numberOfPersons;

}

Overall, each method in a class is characterised by its name, its signature (i.e. the arity and

types of formal arguments, the type of the optional result, and possibly a list of exceptions), and

its contract, the behaviour it guarantees to offer [95]. A contract is best expressed by using

axioms, pre and post conditions in a specification language, and directly by code in a

programming language like Java. A specific method call with actual parameters is generally

referred to as a message, or, for concurrent synchronizations, an event [95]. The only way to

request services or communicate with an object is via it methods. Example in Java:

public String getForename(){

 return forename;

}

public void setForename(String f){

 forename = f;

}

The two methods above are specified in Java to return type String and to set type String for the

forename attribute of the Person class. The two methods above are a good example for observer

and mutator methods respectively.

We define the signature of the above functions formally as:

getForename: ε → String

The method getForename takes an empty argument i.e. ε and then returns forename of

type String. The getForename method of the Person class simply returns a copy of the

value stored in the attribute forename without modifying the state of the Person Object.

We must recall that the states of an object are encapsulated inside their attributes.

Here, the state of Person object would not change as a consequence of invoking the

getForename method. So we say that the getForename method is nothing but an

observer. Also, note that in our formal definition and specification above for the

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

66

getForename method we placed a strong constraint on its return type which must strictly be

that of type String.

setForename: String [preconditions] → void

The method setForename takes the forename attribute of the Person class which is

specified here to be of type String and on satisfying the necessary set of preconditions

it modifies the state of the object Person and then returns the void type. Here, the void

keyword is used to indicate that the method setForename does not return a value. Also,

our set of preconditions represents a set of test functions defined for the setForename

method. In order for setForename method to successfully modify the state of the Person

object i.e. by driving it from its current-state to an expected next-state (i.e.

postcondition) the requisite set of preconditions must be satisfied (here this means our set

of test functions). Now, from above, we know that method setForename is guarded by a

finite set of precondition methods depicted with i.e. [preconditions] (This represents a

finite set of test functions. See more on these ideas in chapter 4). Now, assuming that method

setForename is guarded by two precondition methods i.e. pre1, pre2 ∈ preconditions.

If setForename method above did not satisfy the above set of preconditions when it is

invoked on object Person whilst in its current-state, the consequence of this is that the

object would be driven into an error state. In the Java programming language, it is possible to

combine the two preconditions i.e. pre1 and pre2 as a single function. But for the sake of

clarity, here, they are separated in order to illustrate our idea. Moreover, the complexity of

object-oriented systems sometimes could mean that one function f can invoke a chain of other

functions. So if calling f on object p whilst p is in a current-state (i.e. s1) would result in

p moving to next-state (i.e. s2), where f is composed of a sequence of other functions i.e.

f1, f2 and f3 then we say that the necessary set of test functions i.e. say [preconditions]

that f must satisfy in order to drive object p from state s1 to s2 is a union of a finite set of

precondition methods defined for f, f1, f2 and f3.

Barbey’s work in [95] classifies the methods of a class into five major categories: constructors,

observers, iterators, mutators, and destructors:

Constructor Functions: For example, in Java, class constructors are specialized functions

that are responsible for performing initialization of class attributes. Contrary to popular opinion,

they do not allocate storage space to objects. Their sole job is to carry out initialization of class

attributes. Java defines a special function called new; this function accept a constructor as its

argument and then on satisfying the necessary preconditions required for new to fire, it then

creates a storage space in memory for the specified object and then invokes the constructor

specified to carry out necessary initialization for all the class attributes i.e. for the newly created

object reference. This is best illustrated with an example:

Person p1 = new Person(String f, String s, int a, String g);

Person p2 = new Person();

Now, if we have to specify the new function properly, this is what is happening:

new: object [preconditions] → object

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

67

Here, new is a special class function in the Java language; it allocates a space in memory to

new instances called p1 and p2 if the above sets of preconditions are met (i.e. ∀ pre ∈

preconditions). Here, p1 and p2 hold references to the Person class. After the space

allocation process had been completed by the new function without problems, the constructor

function would then be fired to carry out necessary initialization of all class attributes. Both

new and Person constructors with the forms String x String x int x String → ε (as used in p1)

and ε → ε (as used in p2) from the above Java code example are specialized functions of the

person class. Above, we use ε to mean the empty type. It is clear from above that the Person

constructors can only be invoked within the new function.

Observer Methods (also known as selectors): An observer is a method that yields results of

another type than that of the object. Observers allow observing the state of the referenced

object, but not to modify its state or that of any other connected object. Example in Java:

public String getForename(){

 return forename;

}

Iterator Methods: The iterator method e.g. iterator() in Java is a special kind of

observer that allows access to all parts of an object in a given order. Example in Java:

HashSet simpleSet = new HashSet();

// Add some elements to the HashSet:

simpleSet.add("This");

simpleSet.add(" is");

simpleSet.add(" a");

simpleSet.add(" simple test program.");

// Retrieve an iterator to the hashset:

Iterator iter = simpleSet.iterator();

while(iter.hasNext())

 {

 String objectValue = (String)iter.next();

 System.out.println(objectValue);

 }

Mutator Methods (also known as modifiers) : A mutator modifies the state of an object by

modifying its attributes, or those of any other connected object. Example:

public void setForename(String f){

 forename = f;

}

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

68

Destructor Methods (i.e. Garbage Collection): In Java, garbage collection implies

that objects that are no longer needed by the program are garbage collected. That is such

objects can be thrown away. A more accurate and up-to-date metaphor to describe this would

be memory recycling. This generally happens when an object is no longer referenced by the

program; as a consequence the space that the object occupies can be easily recycled so that the

space is made available for subsequent new objects. It is the job of the garbage collector to

somehow determine which objects are no longer referenced by the program and thus make

available the space occupied by such unreferenced objects. Whilst in the process of freeing

unreferenced objects, the garbage collector is dutifully bound to run any finalizers of objects

being freed. The Object Class in Java provides a method for this purpose called finalize(). This

method is called by the garbage collector on an object when the garbage collection determines

that there are no more references to the object. The finalize() method has a protected modifier –

meaning it is freely available to all subclasses and to any class within the same package. Object

is the root class in Java. So every class in Java by default inherits from Object; meaning the

garbage collector can freely invoke finalize() method within an instance class to claim any

object that has no reference to it.

It is also possible for a method to be both an observer and a mutator (e.g. the pop method

offered by a class Stack modifies the state of a stack and returns the top element).

As mentioned before, observers, iterators, and mutators are methods that belong to an instance

object in Java, whereas constructors (e.g. Person constructors above) and the new method in

Java are methods of the class.

3.3.3 Constants

In an object-oriented programming language like Java, the static modifier in combination with

the final modifier can be used to define constants. The final modifier indicates that the value of

this attribute cannot change. For example:

static final double PI_VALUE = 3.14159;

Constants defined in this manner cannot be reassigned, and it would generate a compile-time

error if a program tries to do so. By normal convention in Java, the names of constant values

are spelled in uppercase letters. If the name is composed of more than one word, the words are

separated by an underscore.

3.3.4 Modifiers

The attributes and methods of a class are either public, default, protected or private

(encapsulated). When a method or attribute is declared public, it can be accessed anywhere.

When a method or attribute is declared private, it can only be accessed from within the class in

which it is declared. A protected attribute method or attribute is visible within its own class and

subclasses and also to any classes within the same package. A summary of the access levels is

given in the table below for a Java program:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

69

Situation public protected default private

Accessible to subclass from

same package

yes yes yes no

Accessible to non-subclass in

same package

yes yes yes no

Accessible to subclass from

different package

yes yes no no

Accessible to non-subclass

from different package

yes no no no

Inherited by subclass in same

package

yes yes yes no

Inherited by subclass in

different package

yes yes no no

Table 2: Access Levels in Java

3.3.5 Compositional Relationships

Alexander’s work [60] identified two types of relationships that can be used to derive new

classes from existing ones. The first of these types is aggregation. The mechanism of

aggregation allows a new class to reuse existing classes by simply creating instances of those

classes as part of its internal state representation. In an object-oriented language such as Java, it

is possible for a Person Class to aggregate instances of other classes as part of its own

definition. Now, to illustrate this concept further, let us consider the Person Class example that

describes the attributes of a Person Object in the real world and all the relevant methods that

can be used to manipulate their internal state representation.

Here, a person class is composed by aggregating String instances and myDate instance in order

to define the Person Class attributes i.e. forename : String, surname : String, dateOfBirth :

myDate and gender : String. The symbol (:) can be read as type of. In Figure 12 below, we

provide a simple illustration of class aggregation. In this example, we use the diamond symbol

to indicate the aggregating class; in this case i.e. the Person Class. The figure shows a class

diagram that consists of two classes namely Person Class and myDate Class with an instance of

myDate Class being aggregated into Person’ Class state space. Consequently, this implies that

every time an instance of a Person Class is created, this instance will automatically contain an

instance or a memory reference of myDate Class.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

70

Now, the second type of compositional relationship mechanism is inheritance [60]. Inheritance

is a very significant part of the object technology model. Unfortunately, it is also one of the

more complex features of the object model. Inheritance allows the state space representation of

one ClassA to be defined with respect to existing state space representation of a set of other

classes. Generally, when this happens, the ClassA being defined is said to inherit the public

attributes (i.e. states) and behaviour (i.e. methods) of its parent class (single inheritance e.g.

Java) or classes (multiple inheritance e.g. C++). Hence, ClassA definition would as a result of

inheritance embody the definition of its parent class or parent classes. In Figure 13, we illustrate

this concept further with an example. In this example, the Student Class inherits from its parent

Person Class.

myDate Class

-dayOfMonth : int

-month : int

-year : int

+getDayOfMonth()

+setDayOfMonth(dayOfMonth : int)

+getMonth()

+setMonth(month : int)

+getYear()

+setYear(year : int)

Person Class

-forename : String

-surname : String

-dateOfBirth : myDate

-gender : String

+getForename()

+setForename(forename : String)

+getSurname()

+setSurname(surname : String)

+getDateOfBirth()

+setDateOfBirth(dateOfBirth : myDate)

+getGender()

+setGender(gender : String)

Figure 12: A Simple Person Class and myDate Class aggregation example

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

71

Figure 13: Sample Inheritance Hierarchy. Class Student inherits from Class Person

3.3.6 Polymorphism and Dynamic Binding

Polymorphism is one of the most powerful mechanisms exploited within object-oriented

languages. Essentially, by meaning, it allows a heterogeneous family of different classes of

objects of a given concrete type to respond to the same request based on the structure of the

inheritance hierarchy. At run time, dynamic binding allows the correct method implementation

for different instances of an object belonging to a specific concrete type to be invoked

according to the structure of the inheritance hierarchy. Now, to illustrate this concept further, as

an example, let us consider the following fragment of code in Java that provides an

implementation for the method process specified within class SimpleTest:

public class SimpleTest

 {

 private Person person2 = new Person();

 public SimpleTest(){}

 public void process(Person person1)

 {

 person2.setDateOfBirth(person1.getDateOfBirth());

 }

 }

Person Class

-forename : String

-surname : String

-age : int

-gender : String

+getForename()

+setForename(forename : String)

+getSurname()

+setSurname(surname : String)

+getAge()

+setAge(age : int)

+getGender()

+setGender(gender : String)

Student Class

-major : String

+getMajor()

+setMajor(major : String)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

72

Figure 14: Example Class Hierarchy

Above, method process was defined staticly to have the following form. process:

Person → void. Also, as indicated above i.e. within Figure 14, we know that class

Student is a subclass of class Person. Hence, due to the mechanism of polymorphism discussed

above, it is possible to substitute a Student object instance where a Person object instance is

expected like in the case of the process method shown above. We know that as a

consequence of the mechanism of polymorphism in object-oriented languages it is possible for

subclass object references to be bound to their respective superclass references in a way that

respects the structure of the inheritance hierarchy.

Although, originally, by our specification for the process method above, we know that the

declared static type of the process method is the Person class, but the actual dynamic type of

the bound instance can be that of the Student class due to the mechanism of polymorphism at

run time. In an object-oriented language such as Java, it is possible for variables that reference

objects to have a static type in their original program specification (i.e. the declared static type

in the original program definition). But due to the presence of paradigm features like

inheritance and polymorphism in the object-oriented architecture, the actual static object type

can be bound to a dynamic object type that is determined at run time [60] (the mechanism of

dynamic binding in object-oriented architecture allows the class under test to automatically

resolve the correct method and/or object implementation for different instances of the class or

object under test that are thus being used). Thus, the dynamic concrete type, or actual type, is

myDate Class

-dayOfMonth : int

-month : int

-year : int

+getDayOfMonth()

+setDayOfMonth(dayOfMonth : int)

+getMonth()

+setMonth(month : int)

+getYear()

+setYear(year : int)

Student Class

-major : String

+getMajor()

+setMajor(major : String)

Person Class

-forename : String

-surname : String

-dateOfBirth : myDate

-gender : String

+getForename()

+setForename(forename : String)

+getSurname()

+setSurname(surname : String)

+getDateOfBirth()

+setDateOfBirth(dateOfBirth : myDate)

+getGender()

+setGender(gender : String)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

73

the type of the object instance that eventually gets bound to the variable at run time. Generally,

this variable can be an object instance of any member of the heterogeneous family of the class

under test.

3.3.7 Problems in Testing Object-Oriented Software

Earlier in section 1.1.1 we presented and discussed the problems that exist with testing object-

oriented programs in the presence of paradigmatic features like encapsulation, inheritance,

polymorphism and dynamic binding. Furthermore, we also argued that most work in testing

research has been done with procedure-oriented software in mind and that some good methods

of testing have been developed as a result. However, we emphasise that those methods cannot

be applied directly to object-oriented software, due to the fact that the architectures of those

systems are significantly different from those of object-oriented software on a number of key

areas. Also, we argue that the differences between the two paradigms are sufficient to develop a

test method that is more specific to the object-oriented architecture. To address these problems,

a number of object machine approaches (i.e. finite state machine system approaches that

embody the notion of objects in object-oriented systems) [2, 29, 30, 31, 32, 38, 55, 56, 83, 84,

85, 86, 87, 88, 89, 90, 91] were proposed to the problem of specifying, verifying, testing and

modeling the behaviour of a system or the internal structure of an object-oriented component

(i.e. an object) with a view to deriving a complete functional test set there from i.e. for any

given object-oriented model specification system under test. This motivation is thus consistent

with Simons’s earlier research work which argued that:

“Achieving test-completeness is made more difficult in object-oriented languages by the

mechanism of inheritance, which militates against reusing saved test suites in conformance

testing. JUnit’s saved tests fail even to cover the original state-space of the parent class in the

child class, because of the state partitioning in the refinement” [134, 135, 110].

Furthermore, it is crucial to mention at this juncture that most of the object machine approaches

referred to herein above, largely base their testing methodology on either program-based testing

or specification-based testing techniques. However, Weyuker’s test adequacy axioms

[97,100,101] reveal that program-based testing and specification-based testing are orthogonal

and complementary. To this end, this work argues that any object machine approach that bases

its testing methodology solely on one of these approaches cannot completely guarantee

correctness in practice. To engineer a more meaningful, practical and reliable solution, a new

testing method is required to integrate the benefits of the two approaches and further build upon

their individual strengths, thus providing the much needed correctness guarantee after testing is

completed. One problem worth mentioning here, i.e. with regards to testing from state-based

systems directly relates to the state explosion problem:

This is because “bounded exhaustive unit testing from state-based specifications is tractable

(McGregor [90]), but synthesizing the state space of entire systems from object state machines

produces a state explosion (Binder [56]) unless a suitable formal strategy is found for

partitioning the tests (Holcombe and Ipate [2, 49])…(Simons [110]).”

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

74

The overviewed problems herein above and those covered earlier in chapters 1 and 2 lead us to

the following thesis questions:

� How can we create a theoretical machine which embodies and/or encapsulates the

notion of a class [102] that can be found in object-oriented languages?

� How can we integrate program-based testing and specification-based testing techniques?

� How can we effectively test object-oriented software in such a way that it enables us to

draw useful inferences about the number and type of faults that remain undetected

after testing is completed in the presence of some aspects of its very nature i.e.

encapsulation, inheritance, polymorphism and dynamic binding?

� How can we exemplify the solution to problem 1, 2 and 3 within an automated testing

tool?

Satisfactorily answering these questions is one of the prime motivations behind this research

work. Hence, addressing these issues is the subject of our work in chapters 4, 5, 6 and 7. It is to

these that we now turn.

3.4 Summary

In this chapter, we reviewed some fundamental concepts of object orientation and the impact

that they have on testing object-oriented programs in the presence of complicated paradigmatic

and evolving object-oriented features like encapsulation, inheritance, polymorphism and

dynamic binding. We further discussed the limitations of using finite state machine approaches

like [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] that embody the notion of

objects in object-oriented systems. We argued that in order to be able to draw sound, useful and

reliable inferences after testing has been completed, we need a test method that combines the

benefits and strengths of using program-based and specification-based testing techniques. The

various problems covered in chapters 1, 2 and 3 motivated our outlined thesis questions at the

end of this chapter.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

75

Chapter.4: The Class-Machines System Model

4.1 Introduction

Given the level of complexity that is currently inherent in the object-oriented architecture, we

argue in this chapter that it is extremely difficult to directly use existing simple finite state

machine systems e.g. [2, 29, 30, 31, 32, 38] to model object-oriented systems in the most

correct and/or reliable way i.e. in the presence of complicated paradigmatic and evolving

object-oriented features. Thus, we argue that to model large scale object-oriented systems,

correct and/or reliable object-oriented finite state machine systems, we need more complex

machines that directly align with the complexity that can be found in the object-oriented

architecture. Current finite state machines [29, 30, 31] and extended finite state machine models

[2, 32, 38] are either too procedural or too simplistic in nature to perfectly represent objects or

object-oriented systems in their pure form. Paradigm features like encapsulation, inheritance,

polymorphism and dynamic-binding in object-oriented languages make testing a more

complicated endeavour as shown in chapter 1. Because hiding is a fundamental property of

object-oriented programming, programmers do not need to worry about the internals of a class,

since they only use the interface to communicate with the objects. However, in the presence of

hiding it is extremely difficult to observe the coherence of the state of an object after invoking

an operation of a class during testing.

Object-Oriented Systems consist of a society of communicating objects. These objects are

instances of concrete types [94] and each object belongs to a class in object-oriented languages.

Finite state machine models and extended finite state machine models (e.g. X-Machine) do not

map directly to an object owing to the differences in their architecture. Also, most functions in

an object-oriented system can generally exhibit sequentially dependent behaviour (i.e. the

behaviour and current memory state of an object is a function of the history of its various

dynamic method calls). This is because it is possible for one function to invoke several other

processing functions or methods in the class. In the presence of hiding it is extremely difficult

to observe all the dynamically computed or changing memory state(s) of the object from run to

completion when such functions are invoked. This is because showing correctness does indeed

involve showing that each object in a system goes through the correct sequence of concrete

states. It is crucial at this juncture to emphasise that the whole purpose of hiding of

implementations is to make the concrete states invisible. Furthermore, while an object

incorporates operations to make at least some of this state visible as an abstract state, these

operations are part of the implementation and so testing must establish their correctness

somehow, since it can not be assumed.

In order to address these problems, we propose in this chapter a new formal object-oriented

specification system model known as the Class-Machine to represent the notion of a class in

object-oriented languages (e.g. the Java Object-Oriented Programming Language). Earlier in

section 3.3, we discussed and presented a detailed definition for object-oriented classes

following Simons’ previous research work in [94, 102]. In this chapter, we extend that

definition in a new light. Here, the notion of a class is treated instead as a machine (i.e. a class

is a machine simply referred to as a Class-Machine) because in an object-oriented system, the

basic unit is a class. Hence, testing need to focus on the class. Consequently also, the notion of

an object in object-oriented languages is at the same time treated instead as a machine (i.e.

referred throughout the rest of this thesis as the Object-Machine). More crucially, our ultimate

goal in this thesis is to seek ways by which to create both an Object-Machine and a Class-

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

76

Machine abstraction that directly align with the complexity that can be found in the object-

oriented architecture; with the ultimate goal that is directed towards generating a complete

functional test set there from.

4.2 Preliminaries

The following preliminaries are fundamental to the understanding of the automaton-based

framework formalism to be introduced. In particular, later discussions and arguments in this

chapter and beyond it rely heavily on all the foundational work to be introduced and discussed

here. Hence, from section 4.3 onwards we shall assume that the reader is familiar with all the

ideas presented in this section.

 4.2.1 Paradigm Features of Object-Oriented Languages

• An object-oriented system is made of up a society of communicating objects (i.e.

COMM_OBJECTS); each object is an instance of a concrete type that belongs to a given

class i.e. every unique object (i.e. obj ∈ COMM_OBJECTS) in an object-oriented

system is said to belong to a unique concrete class. For any given object i.e. obj there is

an existing concrete class to which it belongs.

• Every unique object (i.e. obj ∈ COMM_OBJECTS) provides a set of operations that

users can invoke. These operations are commonly referred to as methods in object-

oriented programming languages i.e. every object in the system provides a set of

methods that defines it behaviour.

• Every unique object (i.e. obj ∈ COMM_OBJECTS) maintains an internal state. Some of

that state may be publicly available to the user, i.e. directly or indirectly through the

invocations of methods.

• Every unique object (i.e. obj ∈ COMM_OBJECTS) can be treated as a black box. This

means that all the internal data structure of the object is hidden away from the user.

Also, the way that the methods of the object operate is likewise hidden, in addition to

how they go on to manipulate the internal state of the object.

• Every unique object (i.e. obj ∈ COMM_OBJECTS) has an identity which allows us to

identify an object independently of it state.

• Each object in the system has its own set of attributes where the state and memory of

the object are hidden (i.e. encapsulated). An attribute can either be a value (e.g. one that

belongs to a basic type in Java) or another object represented by its identity.

• In an object-oriented system, a class is a polymorphic definition for heterogeneous

family of objects, instances of different but closely related concrete types with

extensible implementation and extensible interface.

• A class encapsulates the definition of a heterogeneous family of objects, (which are

instances of different concrete types) and the class further conceals the details of their

implementation.

• Generally the attributes of an object are usually hidden (i.e. with modifiers), in such a

way that the only way to observe or modify the state of an object is by invoking its

public (non-hidden) methods.

• Some methods can also be hidden (i.e. with modifiers) because these methods are only

used internally for the purpose of implementing other methods. Certain methods belong

to objects of the class while others are class methods.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

77

• Some attributes belong to objects of the class while other attributes belong to the class

(i.e. class attributes are shared among a family of objects that belong to the class). Class

methods are methods that manipulate those class attributes.

• It is possible for one class to be related to another through the mechanism of inheritance

so that one is a more specialised version of the other.

• Through the power of polymorphism, a heterogeneous family of different classes of

objects of a given concrete type can respond to the same request based on the structure

of the inheritance hierarchy

4.2.2 Types, State Variables and associated Memory Values

Object-Oriented Programming Languages like Java and C++ are strongly typed. Crucially, this

means that every unique state variable and expression has a type that is known at compile time.

For example, in Java, types control the values that state variables can store in their memory or

that an expression can produce. Java types further limit the type of operations permitted on

those values and so they help in evaluating the semantics of the operations. One of the

advantages of strong typing is that it helps in detecting errors at compile time. There are two

kinds of types in the Java Language: primitive types (PT) and reference types (RT). Java PT

consist of the boolean (indicated by the literals true and false) and numeric (e.g. byte,

short, int, long, and char, and the floating-point types float and double) types. Examples

of RT in Java are class types, interface types, and array types. The values of reference types are

pointers to objects. In addition to these, Java has a special type called the null type.

State variables are memory or storage locations. A unique state variable of a primitive type is

often defined or specified to store a value of that exact type. For example, a state variable of a

class type CLT can hold either a null reference or a pointer to an instance of class CLT or of any

class that is a subclass of CLT. Similarly, a state variable of an interface type can hold a null

reference or a pointer to any instance of any class that implements the interface. Now, assuming

that CLT is a primitive type, then a state variable of type "array of CLT" can hold a null

reference or a pointer to any array of type "array of CLT". Similarly, if CLT is a reference type,

then a state variable of type "array of CLT" can hold a null reference or a pointer to any array of

type "array of K" such that type K is assignable to type CLT. A state variable of type Object can

hold a null reference or a pointer to any object, whether class interface or array.

Fundamentally, it is worth mentioning here that every unique state variable in a Java program

must have a value before its value is used [137]:

• Each class variable, instance variable, or array component is initialized with a default

value when it is created:

o For type byte, the default value is zero, that is, the value of (byte) 0.

o For type short, the default value is zero, that is, the value of (short) 0.

o For type int, the default value is zero, that is, 0.

o For type long, the default value is zero, that is, 0L.

o For type float, the default value is positive zero, that is, 0.0f.

o For type double, the default value is positive zero, that is, 0.0d.

o For type char, the default value is the null character, that is, '\u0000'.

o For type boolean, the default value is false.

o For all reference types, the default value is null.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

78

• Each method parameter is initialized to the corresponding argument value provided by

the invoker of the method.

• Each constructor parameter is initialized to the corresponding argument value provided

by a class instance creation expression or explicit constructor invocation.

• An exception-handler parameter is initialized to the thrown object representing the

exception.

• A local variable must be explicitly given a value before it is used, by either initialization

or assignment, in a way that can be verified by the compiler using the rules for definite

assignment.

The example program:

class MyPoint {

 static int npoints;

 int x, y;

 MyPoint root;

}

class TestDriver {

 public static void main(String[] args) {

 System.out.println("npoints=" + MyPoint.npoints);

 MyPoint p = new MyPoint();

 System.out.println("p.x=" + p.x + ", p.y=" + p.y);

 System.out.println("p.root=" + p.root);

 }

}

prints:

npoints=0

p.x=0, p.y=0

p.root=null

illustrating the default initialization of npoints, which occurs when the class MyPoint is

prepared, and the default initialization of x, y, and root, which occurs when a new MyPoint is

instantiated.

4.2.3 Class Interface and Family of Implementations

In the same style as other modern data structure libraries, the Java collection library separates

interfaces and implementations. In the Java Programming Language, class interfaces defines a

set of method protocols that concrete class instances must implement. A single object instance

OI of an existing interface class IC can be made to bind or point to a possibly infinite family of

concrete implementations FI of classes that conform to the IC. This is because a disciplined

approach within object-oriented languages allows a hierarchy of classes to be freely extensible

as a result of the mechanism of inheritance. To illustrate this concept further, a queue example

is explored below:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

79

Now, assuming that there was a queue interface in the collections library, it might look like this:

interface Queue{

void add(Object obj);

Object remove();

int size();}

The above queue interface specifies that you can add elements at the tail end of the queue,

remove them at the head, and find out how many elements are in the queue (see Figure 15).

Here, the queue interface tells you nothing about how the queue is actually implemented i.e. it

simply defines a finite set of method protocols that a concrete class instance that implements

the queue interface must provide. Two common implementations of a queue exist; one that uses

a circular array (see Figure 16) and one that uses a linked list (see Figure 17):

 head tail

1 2 3 4

Figure 15: A queue

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

80

class MyCircularArrayQueue implements Queue {

 public MyCircularArrayQueue(int capacity){…}

 public void add(Object obj){…}

 public Object remove(){…}

 public int size(){…}

 private Object[] elements;

 private int head;

 private int tail;

}

3

2

1

5

4

head

tail

Figure 16: Circular Array

 head tail

Link

 data

 next

1

Link

 data

 next

Link

 data

 next

2 3

Figure 17: Linked List

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

81

class MyLinkedListQueue implements Queue

{

 public MyLinkedListQueue(){…}

 public void add(Object obj){…}

 public Object remove(){…}

 public int size(){…}

 private Link head;

 private Link tail;

}

When a queue interface is used within a program, it is not necessarily important for the

software engineer to know which concrete implementation is actually used once the collection

has been constructed. Hence, it makes sense to use the concrete class (i.e.

MyCircularArrayQueue) only when the collection object is constructed. A disciplined

approach often explored within the Java Programming Language is to use the interface type to

hold the collection reference.

Queue myExpressLane = new MyCircularArrayQueue(100);

myExpressLane.add(new Person(“Jameen”,”Haynes”, 25, “FEMALE”));

The above approach makes it easy for the software engineer to change his mind and use a

different concrete implementation should the need arise. Here, the software engineer only needs

to change the program in one place the constructor. Again, should the software engineer

decide that MyLinkedListQueue is a better choice after all, the program code becomes:

Queue myExpressLane = new MyLinkedListQueue();

myExpressLane.add(new Person(“Jameen”,”Haynes”, 25, “FEMALE”));

Thus, from above, we can see that a possibly infinite number or heterogeneous families of

concrete implementations can apply to a unique interface type i.e. for a given class under test.

Figure 18: A class is defined to have an extensible interface and a possibly infinite family of extensible

concrete object implementations that adheres to that interface.

CLASS

 (implements)

 … … … …

Class Interface

Object3

Object2

Object1 Object4

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

82

In its original form, the interface of the class shown in Figure 18 is extensible; so is the family

of concrete object implementations that can apply to it. This feature is made possible through

the mechanism of inheritance that can be found in object-oriented languages. The interface

simply defines a set of method protocols that a concrete object implementing the interface must

provide. The interface is also the criteria for membership i.e. all members of the family of

objects that can belong to the class must provide implementations that conform to this interface.

Now, assuming that the class under test CUT with associated interface type IT initially has a

finite set of concrete implementations IMP, we argue here that complete testing for CUT then

means testing every unique element in IMP. Consequently, for the purposes of this argument,

testing a single element SE in IMP at random does not cover the entire state space of the CUT

since SE is just a special case for the CUT. To achieve adequate coverage for the CUT, every

unique element in IMP must be tested. For the purposes of testing, we assume here that IMP

should be finite for the CUT. However, as the CUT evolves over time due to requisite changes

so would elements in IMP.

This is because the mechanism of inheritance in object-oriented languages allows a hierarchy of

classes to be freely extensible. Furthermore, because the mechanism of polymorphism in

object-oriented languages allows a family of objects that conform to the same interface type to

respond to the same request based on the structure of the inheritance hierarchy, the CUT is

flattened so that its associated family of IMP that can apply to the interface type IT of the CUT

contains all the concrete cases or IMP to be tested; thus, making the state space of the CUT to

be tractable.

The fact that we can keep track of all the possible object bindings for the interface type of the

CUT means that all the feasible cases with respect to bindings can be easily covered. Hence, by

exploring this approach it would be possible to plan a test in advance where you can check IT

for every possible object bindings. This proposal implies that problems caused via the

mechanism of polymorphism can then be easily addressed.

4.2.4 Access Modifiers

In section 3.2.4 we covered the notion and significance of modifiers in the Java Programming

Language (i.e. as an example of the impact that modifiers can have on variables encapsulating

states within object-oriented languages). Given that one of the prime goals of these

preliminaries is to lay all the requisite foundations for all the ideas that shall soon be presented

with respect to our proposed class machine model, it is crucial that the reader should understand

henceforth that later reference to modifiers implies the same meaning as those described in

earlier discussions in section 3.2.4.

4.2.5 Proposed Features of the Class-Machine Model

Below, an outline of the desired properties and features of our proposed Class-Machine model

specification system is presented:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

83

1. Adding A Visibility Mechanism to the Class-Machine Model

The class-machine model specification system should possess properties that help test

engineers to dynamically observe the different state(s) that the object-machine (i.e. the finite

state machine system that represent the notion of objects in object-oriented languages) can be

driven into, both during automatic test case generation and consequent execution of those test

cases on the object-machine system under test. In particular, the system must address the

problem of observability caused through the use of private modifiers in object-oriented

languages.

The class-machine model specification system should allow test engineers to be able to obtain

public version of the class-machine currently under test. The consequence of this is that when

systems are formally specified using the class-machine approach, there would be no need to

worry about hidden features of the class-machine under test; since we know that during testing

we can easily obtain a public version of the class under test.

2. Supporting the Class-Machines Specification formalism with
Access Modifiers to aid Automated Testing, Verification and
Code generation

The class-machine model specification system should allow a mechanism for handling and

defining modifiers (such as those that can be found in the Java Language). The consequence of

this is that any automatically generated program code from such specification can easily be

validated for conformance against the original specified class-machine. Such conformance

and/or verification result would doubtless serve as a major break through for the need to

automatically generate executable code from formally proven specifications. This means that

the generated code for a given class-machine will reflect exactly the sort of modifiers allocated

to its attributes, constants and functions in the same fashion as specified in the formal

specification. This mechanism of modifiers also has to allow one to define in a general fashion

what a public version of an implementation would look like, which presumably means that at

the very least the mechanism must include one modifier that has the meaning “public”.

3. Integrating the advantages and benefits of using specification-
based and program-based testing techniques within the Class-
Machines testing method

The class-machines model specification system should define a mechanism which can help to

provide credible answers to the question: why was the object-machine driven into the current

state that it is now in? That is by showing the precondition method(s) that were triggered during

dynamic execution at run time for the object-machine under test and the input(s) or test cases

that were applied on the object-machine to drive it to its current state. The consequence of the

approach proposed here is that it would help to address one of the fundamental drawbacks

inherent in using the functional-based testing method which is that although it tells us how well

a program satisfies its formal specification, it does not tell us what part of the program that was

executed to satisfy each part of the specification.

Also, it is anticipated that our class-machine approach should address the disadvantage of using

implementation-based testing, which is that it does not tell us how well a program satisfies its

intended functionality. Our class-machine approach will attain this desired goal by ensuring that

all the desired functionality for the object-machine under test is fully or completely specified

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

84

and thus concurrently integrated with the system. The consequence of employing this

methodology is that our approach will fully combine and integrate the benefits of the two

approaches (i.e. those of functional-based testing methods and implementation-based testing

methods). The class-machines system modelling approach proposed here will be designed to

offer a higher level of confidence than can be obtained from either separately applying the

adequacy criteria that the software program under test has been adequately tested or on the

other hand using the functional-based testing approach. This integration of the two approaches

into our class-machine modelling framework would concurrently also help us to establish

whether the program under test is actually doing what it is expected to do.

4. Conceptualising the Design of the Object-Machine Model

Earlier, we used Figure 18 to illustrate the notion of a class (i.e. Class-Machine) that can be

found in object-oriented languages. Here, we want each unique object or object-machine (OM)

in the family of concrete object-machine implementations IMP of the Class-Machine under test

to have the following useful characteristics:

• We want each unique OM in IMP under test to have identity (ID), state (S) and

behaviour (BV). The role of the ID component is to enable two different object

machines of the same type can be distinguished. We will describe S as a finite set of

state variables (i.e. instance attributes) with predefined types. Also, we will describe BV

as methods having predefined name, state variables S to be operated upon, finite sets of

inputs (inPT) with predefined parameter types to be consumed from an environment and

precondition method guards (i.e. the unchanged state set of precondition methods i.e. U,

the error state set of precondition methods i.e. E and the goal state set of precondition

methods i.e. G).

• We want each of U, E and G to be a finite set of precondition methods. We want each

unique precondition method in U, E and G to drive the OM under test to next unchanged

state (NUS), next error state (NES) and next goal state (NGS) respectively. Each unique

precondition method in U, E and G will help us to determine the next transition state for

the OM under test – i.e. depending on which one eventually gets fired. We will use

nextOMSI to indicate the next transition state for the OM under test. For example, if a

unique precondition method from E was triggered then nextOMSI will indicate that the

OM has been driven into an error state. Similarly, if a unique precondition method from

U or G gets fired, then nextOMSI will indicate that the OM has transitioned into the

unchanged or goal state i.e. depending on which one eventually gets fired.

• For each method m of the OM under test, we will use S* and outPT to indicate the

modified set of state variables (i.e. current memory value of instance attributes) and the

type of output computed respectively i.e. when m was exercised at run time.

• Also, we want each unique method of the OM under test to specify the type of access

modifier MOD that can apply to it. Now, given that each unique method of the OM

under test is guarded by a finite set of precondition methods U, E and G, we say here

that these precondition methods represent the different modes by which all the methods

of the OM under test can be tested. Every unique precondition method i.e. u ∈ U or e ∈

E and g ∈ G will therefore drive the OM under test deterministically to a unique next

state. Fundamentally, the goal here is that every precondition method should

encapsulate a unique object-machines transition state. Now, because the number of U, E

and G guarding each unique method of the OM under test are finite and the number of

inputs that instance variables and class variables can assume when these precondition

methods are triggered is finite, all the possible state(s) and/or memory values that the

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

85

OM can be driven into are said to be tractable. We anticipate that the consequence of

using our proposed method would address the state explosion problem that can be

found when using finite state machine systems approach to model object-oriented

systems in an elegant way.

• Furthermore, while in the unchanged state testing mode i.e. in the U testing mode, the

goal is to ensure that all the methods of the OM under test are exhaustively tested to

show under what condition(s) that they would not modify the state(s) of the OM.

Similarly, while in the error state testing mode i.e. in the E testing mode, our goal is to

ensure that all the methods of the OM under test are exhaustively tested for a finite set

of errors (i.e. every error detected in the OM system under test whilst in this mode

corresponds to a unique type of fault. Thus we will refer to this mode as the fault-

finders (f
2
) testing mode; given that in this testing mode each unique method of the OM

under test would be tested exhaustively for a family of possible faults (i.e. since every

unique error state precondition method will drive the OM under test to a unique error

state given the presence of that type of fault in the OM). This approach can thus also be

referred to as negative testing in order to show under what condition(s) that the OM

under test can be driven into error state(s). Finally, while in the goal state testing mode

i.e. in the G testing mode, we want to ensure that all the methods of the OM under test

are exhaustively tested to show under what condition(s) that the OM under test can be

driven into valid and/or acceptable state(s); in this mode, the OM under test would be

crucially tested dynamically i.e. positively for valid and/or acceptable state(s); hence we

will refer to the approach employed in this mode as positive testing.

5. Generating test input objects for the Object-Machine
under test

As describe above, the three different sets of precondition methods i.e. U, E and G guarding

every unique method of the OM under test correspond to the different testing modes that can

apply to the OM. During testing, we want to automatically generate and execute test cases

derived from the OM specification on corresponding concrete OM implementation code in each

of these testing modes i.e. in order to establish the correctness and conformance of the OM

implementation with its specification. Within each of our proposed testing modes, we will

encapsulate each of the generated test cases inside what we will call test input objects (TIO).

Now, assuming that UTIO, ETIO and GTIO individually represents a finite set of unchanged,

error and goal state test input objects that can be generated for the OM under test in the

unchanged, error and goal state testing modes respectively. During testing, we will

automatically derive all the elements in UTIO, ETIO and GTIO by converting every unique

precondition method in U, E and G to corresponding test input objects in the relevant testing

modes.

So what is a precondition method? We will define it as being composed of four parts:

(1) Firstly, every unique precondition method must specify the type of access modifier in

MOD that can apply to it.

(2) Secondly, a precondition method preM is a function that takes as input a finite set of

predefined input parameter types (inPT) i.e. these input parameters will be derived from

the method of the OM under test that preM guards since these parameters will be the

same in all cases.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

86

(3) Thirdly, a precondition method is guarded by a finite set of predicates or Boolean

Expressions (BE). The predicates or Boolean Expressions referred to here represents the

condition(s) that must hold in order for the OM under test to follow a particular path (i.e.

the unchanged, error or goal) when preM is exercised with inPT and an element in BE

concurrently get triggered at run time.

(4) Fourthly, a precondition method produces a test input object (i.e. elements from UTIO

or ETIO or GTIO) as output in the relevant testing modes i.e. depending on whether

elements in U, E and G were invoked at run time.

Suffice to mention at this juncture that in most object-oriented languages, it is possible to

specify U, E and G as part of a unique method m of the OM under test. But in order to simplify

and design all the methods of the OM for test and to provide a tool support to aid automated test

case generation and execution, the approach described above was proposed to support the

testing procedure. One of the anticipated merits of using our proposed approach is that an

automatic tool can then be used to train the test engineer on how to automatically generate U, E

and G for all the methods of the OM under test i.e. even when they are not originally specified

by the software engineer when the concrete implementation code for the OM was initially

produced. We anticipate that the training information that will be offered to the test engineer

will come in two forms. First, our proposed automatic tool will contain detail documentation

outlining how the tool can be used in addition to how the test engineer can automatically

generate U, E and G for all the methods of the OM under test with supporting examples.

Second, an animated graphical user interface guide which automatically illustrate to the test

engineer how to automatically generate U, E and G for all the methods of the OM under test

will be integrated as part of the tool with helpful examples.

Note: that the role of method preM is just not to act as the characteristic function for a

precondition, so that it returns a Boolean value to indicate whether a particular combination of

state and input satisfies the precondition. More than that, each unique test input object

generated from UTIO, ETIO and UTIO encapsulates a set of test cases that can be used to

exhaustively test method m that preM guards in the relevant testing modes. Furthermore, each

unique test input object generated from UTIO, ETIO and UTIO is also responsible for checking

the outputs from a test case. Thus, allowing the test engineer to be able to debug and verify

whether each unique method m of the OM under test causes the OM to transition into the

correct memory state when method m is exercised at run time.

These features of our proposed testing method distinguishes it from the JUnit [114, 115] testing

method which simply evaluates a set of test cases manually produced by the tester as either true

or false. The JUnit [114, 115] testing method heavily relies on the experience of the tester.

Hence, it could lead to non-uniform tests. Also, since the JUnit [114, 115] testing method does

not rely on a formal specification for the purposes of generating test cases, there is no way that

we can assure the correctness of the system under test (i.e. since there is nothing to compare the

system under test with). Consequently, a number of important paths in the system under test

could be missed without being tested. Hence, the system under test could contain faults which

could lead to failures.

4.2.6 The Person Example

Here, we introduce the person example as a support mechanism with which to explain the

various ideas and discussions that shall be presented in the rest of this chapter with respect to

our proposed class machine automaton framework formalism. In particular, the bulk of the

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

87

examples explored in the different sections below will consistently refer to the code examples

given in Figures 19 (i.e. an unordered set of pairs of the form <method name, method type>)

and 20.

public interface PersonInterface

 { // observer methods

 String getForename();

 String getSurname();

 int getAge();

 String getGender();

 // mutator methods

 void setForename(String f);

 void setSurname(String s);

 void setAge(int a);

 void setGender(String g);

 }

Figure 19: The Person Interface Example

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

88

public class PersonObjectMachine implements PersonInterface

 {

 // a set of possibly dynamic attributes encapsulating the distributed states and memory of the PersonObjectMachine

 private String forename;

 private String surname;

 private int age;

 private String gender;

 // a set of constant or fixed attributes encapsulating the distributed states and memory of the PersonObjectMachine

 private static final int UPPER_AGE = 60;

 public static final String UNKNOWN = "UNKNOWN";

 public static final String MALE = "MALE";

 public static final String FEMALE = "FEMALE";

 // a set of PersonObjectMachine Constructors

 public PersonObjectMachine()

 {

 this.forename = "None";

 this.surname = "None";

 this.age = 0;

 this.gender = "UNKNOWN";

 }

 public PersonObjectMachine(String f, String s, int a, String g)

 {

 this.forename = f;

 this.surname = s;

 this.age = a;

 this.gender = g;

 }

 // a set of PersonObjectMachine Observer Methods

 public String getForename()

 {

 return this.forename;

 }

 public String getSurname()

 {

 return this.surname;

 }

 public int getAge()

 {

 return this.age;

 }

 public String getGender()

 {

 return this.gender;

 }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender();

 }

 public void setForename(String f)

 {

 this.forename = f;

 }

 public void setSurname(String s)

 {

 this.surname = s;

 }

 public void setAge(int a)

 {

 this.age = a;

 }

 public void setGender(String g)

 {

 this.gender = g;

 }

 } // End of PersonObjectMachine

Figure 20: The Person Example

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

89

4.3 The Class-Machine

Our goal in this section is to:

• Create an automaton-based framework formalism which embodies the notion of a class

and an object that can be found in object-oriented languages like Java and C++ (in

section 3.3 the definition of a class was presented). We will call this the Class-Machine.

• Develop a test method that is based on the Class-Machine formalism.

• Develop an approach for estimating the probability of faults remaining in an object-

oriented system i.e. in order to make definite statements, provide sound inferences and

guarantees over an object oriented system under test after testing has been completed.

Definition 23: An extensible Class-Machine (CM) is a 10-tuple: (ΛΛ, S”, MOD, TYPECM,

TIO, M”, ¥, CT, τ, ∆), where:

• ΛΛ is the Class-Machine identifier. The role of the identifier component is to enable

two different Class-Machines of the same type to be distinguished.

• S” is a finite set of class variables belonging to the Class-Machine alone. The different

elements in S” encapsulate the distributed memory of the class (discussed with

examples in section 4.3.1).

• MOD and TYPECM represents a finite set of modifiers and parameter types that can

apply to the CM respectively (covered with examples in section 4.3.1).

• TIO is a finite set of test input objects that can apply to the CM in the unchanged, error

and goal state testing modes (covered with examples in section 4.3.2).

• M” is a finite set of class methods belonging to the Class-Machine alone (discussed

with examples in section 4.3.2).

• ¥ is a possibly infinite family of object-machines that can apply to the CM (discussed

with examples in section 4.3.3).

• CT is the finite set of constructors that can apply to the Class-Machine. The role of

every unique constructor function i.e. ct ∈ CT within the CM is to ensure that class

variables (i.e. the elements of S” above) and instance variables (i.e. the elements of S’

for the individual object machines, as defined below in section 4.3.3.1) are initialised

with the software engineer’s preferred default input values (discussed with examples in

section 4.3.4).

• τ is an extensible interface type that can apply to the CM. Meaning that τ can derive it

own set of interface methods from an already existing super type τ”. This notion is

embodied within the mechanism of inheritance that can be found in object-oriented

languages (discussed with examples in section 4.3.5).

• ∆ is the function mapping the Class-Machines interface type i.e. τ to a possibly infinite

family of Object-Machines implementations i.e. ¥ (discussed with examples in section

4.3.6).

4.3.1 The State Encapsulating Class-Machine Variables

In this section, first, we define MOD and then use elements in MOD to define the way that we

want each element in S” to be accessed.

MOD is the finite set of access modifiers that can apply to the CM.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

90

Example:

MOD = {private, public}. Figure 20 depicts examples of these types of access modifiers.

Every element of S” has the following form:

First, we show below that every unique class variable i.e. sti in S” is statically-typed. This

means that the type of sti must first be declared before it can be used.

Second, we show that every unique class variable i.e. sti in S” of the CM is declared statically to

be mapped to a given type of access modifier (i.e. mod ∈ MOD):

S” = {((st1 : t1) mod1)…((st2 : t2) mod2)…((stn : tn) modn)}

ti ∈ TYPECM ∀1 ≤ i ≤ n, where:

TYPECM is the finite set of parameter types that can apply to the CM. These represent the set

of parameter types that can be consumed or outputted to an environment within the CM:

TYPECM = RT ∪ PT

RT represents a finite set of reference types (see section 4.2.2 for detail explanation and

examples). For every unique element in RT, there is an associated default value (i.e. including

the null type that can be found in the Java Programming Language). The appropriate default

value elected for each unique element in RT in this case is largely but a design decision issue at

the time of the CM specification.

PT represents a finite set of primitive types (see section 4.2.2 for detail explanation and

examples). For every unique element in PT there is an associated default value. Again, as

above, the appropriate default value elected for each unique element in PT is largely but a

design decision issue at the time of the OM specification.

We say following above that RT ∩ PT = ∅ holds.

Example:

In Figure 20, the Person Object Machine implementation example in the Java programming

language was presented. In particular, that example was implemented as a class in the Java

Language. Below, we shall use that person example to illustrate the notion of class variables

discussed earlier. To do this, we use pS” to represent all person class variables in Figure 20. In

Java, class variables are those attributes defined with the static prefixes. Every unique class

variable in pS” has its own type and access modifier when it is declared. The symbol (i.e.)

is used to show a mapping of class variable to modifier:

pS”={((UPPER_AGE:int) private),((UNKNOWN_GENDER:String) public),

((MALE_GENDER : String) public), ((FEMALE_GENDER : String) public)}

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

91

4.3.2 Methods Belonging to the Class-Machine Alone

Example:

Given that the Person Object Machine implementation example depicted by Figure 6 does not

define any class method i.e. methods which are defined with the static prefixes, here we simply

use pM” to represent all person class methods and then indicate that it has zero elements.

pM” = {}

Guardm” = (Um”, Em”, Gm”) is a triplet that encapsulates a finite set of three unique precondition

methods i.e. for every unique class method m” ∈ M” under test. We will simply refer to (i.e.

Guardm”) as class method guards. Each unique precondition method in Um”, Em” and Gm” will

drive a unique OM in IMP that conforms to the CM’s interface through the unchanged, error

and goal state testing paths respectively when m” is exercised at run time. The implication of

this is that the memory values and/or states of elements in S” may be affected. Hence, because

class variables encapsulate the states that belong to the class, class methods are those methods

that are used for manipulating those states.

Every unique class method i.e. m” ∈ M” has the following form and behaviour:

m" (modm”, Guardm”) : S” x inPTm” → (S”*, outPTm”, nextOMSIm”)

Now, in order to explain the behaviour of class methods M”, we shall start by explaining all the

fundamental components of M”:

Firstly, from above, we say that a class method m" is mapped (i.e. indicated with the symbol

) to an 2-tuple object, elements of which are modm ∈ MOD and Guardm”.

Secondly, class method m" is said to operate on class variables S” after consuming a finite set

of input parameter types inPTm” ⊆ TYPECM from an environment.

Thirdly, class method m" produces an output type (outPTm” ∈ TYPECM) and a modified version

of S” i.e. S”* depending on what precondition method(s) that eventually get triggered at run

time from amongst the elements in Guardm”. Consequently, class method m" uses the next

object machines transition state indicator (i.e. nextOMSIm”) to indicate the type of state that the

OM under test has been driven into (i.e. whether the unchanged or error or goal state) when

class method m" was exercised at run time.

In particular, it is crucial to mention that prior to method m" being invoked at run time, every

unique state encapsulating variable in S” has its own predefined default value. These various

values for each unique variable in S” represents the initial memory values and/or states for the

OM under test. Now, from the initial memory states and/or values S”of the OM, method m"

with the form shown above is exercised in the presence of modm” and Guardm”. A new set of

memory states and/or values (i.e. S”*) is then computed and an output type outPTm” generated

for the OM under test. Consequently, the OM is driven into a state, the type of which is

indicated by nextOMSIm”.

Now, assuming that:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

92

• Um” ⊆ USPM is the finite set of unchanged state precondition methods that can apply to

class method m" ∈ M”.

• Em” ⊆ ESPM is the finite set of error state precondition methods that can apply to class

method m" ∈ M”.

• Gm” ⊆ GSPM is the finite set of goal state precondition methods that can apply to class

method m" ∈ M”.

• USPM is the complete finite set of unchanged state precondition methods that can apply

to the OM in IMP under test i.e. in the unchanged state testing mode of the CM.

• ESPM is the complete finite set of error state precondition methods that can apply to the

OM in IMP under test i.e. in the error state testing mode of the CM.

• GSPM is the complete finite set of goal state precondition methods that can apply to the

OM in IMP under test i.e. in the goal state testing mode of the CM.

• OMPM = USPM ∪ ESPM ∪ GSPM is the complete finite set of all types of

precondition methods that can apply to the OM in IMP under test in all the relevant

testing modes of the CM.

Note: from above that the triplet that encapsulates the three different finite set of precondition

methods that can apply to class method m” ∈ M” is Guardm” = (Um”, Em”, Gm”) in all the

relevant testing modes of the CM. Hence, since from our assumptions above Um”, Em”,Gm” ⊆

OMPM and each unique element in OMPM is a precondition method preM, we say that preM is

part of the definition of method m" given the form and behaviour of method m" described

earlier: m" (modm”, Guardm”) : S” x inPTm” → (S”*, outPTm”, nextOMSIm”).

Furthermore, following our assumptions above, we say that every unique precondition method

i.e. preM ∈ OMPM has the following form and behaviour:

preM (mod , be) : inPTm” → tio

From above, mod ∈ MOD is the type of modifier that can apply to precondition method preM.

Also, preM is said to be guarded by a finite set of Boolean Expressions i.e. be ⊆ BE. Hence,

preM is mapped to (i.e. indicated by the symbol) mod and be. Also, inPTm” ⊆ TYPECM is a

finite set of input parameter types that can apply to class method m” ∈ M” under test when it is

guarded by preM. Now, because preM will be invoked within m” at run time, they both share

the same type of inputs. Furthermore, during dynamic invocation and/or automatic test case

generation, preM is exercised to produce test input object i.e. tio ∈ TIO. During testing, each

test case saved inside tio that was generated is then applied automatically on the appropriate

method m” ∈ M” of the OM; thus allowing the test engineer to be able to view the new

internal memory value(s) computed (i.e. S”*) when preM was exercised at run time. Our

prime goal here is to verify if the OM under test is in the correct next transition state or not.

Note that while preM returns a Boolean value to indicate whether a particular combination of

memory state and input satisfies the precondition. It however operates much more than that in

that each unique test input object tio generated from TIO encapsulates a set of test cases that

can be used to exhaustively test class method m” that preM guards in the relevant testing

modes. Also, each unique test input object tio generated from TIO is also responsible for

checking the outputs from a test case. Consequently, allowing the test engineer to be able to

debug and verify whether each unique class method m” of the OM under test causes the OM to

transition into the correct memory state when method m” is exercised at run time.

where:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

93

TIO is the finite set of test input objects that can apply to the OM in all the relevant testing

modes of the CM.

TIO = UTIO ∪ ETIO ∪ GTIO

In Figure 21, TIO is implemented in Java as the precondition test object. Generated test cases

are saved inside precondition test objects:

BE is the finite set of Boolean expressions that can apply to the OM.

NUS is the finite set of next unchanged states that can apply to the OM.

NES is the finite set of next error states that can apply to the OM.

NGS is the finite set of next goal states that can apply to the OM.

In the unchanged, error and goal state testing modes of the CM, each unique preM ∈ USPM,

preM ∈ ESPM and preM ∈ GSPM behaves as follows:

preM nextOMSI, where:

nextOMSI ∈ NUS or nextOMSI ∈ NES or nextOMSI ∈ NGS depending on what testing modes of

the CM we are in.

This means that every unique unchanged, error and goal state precondition method preM

encapsulates a unique memory state that it will drive the OM under test to when it is invoked at

public class PreConditionTestObject

 {

 private Object[] testInput;

 public PreConditionTestObject(Object[] t)

 {

 this.testInput = t;

 }

 public Object[] getTestInput()

 {

 return this.testInput;

 }

 }// End PreConditionTestObject

Figure 21: Test Input Object Implementation in Java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

94

run time. Given a preM therefore, we want to be able to verify and/or know what kind of

memory state that it will drive the OM into when it is exercised. This represents the type of

memory values that would be computed for all the variables encapsulating states e.g. in the case

of class variables S”. The KEY-VALUE pair form shown above was proposed to address that

goal. The KEY is preM while nextOMSI is the VALUE. Hence, (preM nextOMSI) is used

to mean the mapping of KEY to VALUE. In all the CM testing modes, nextOMSI is used to

indicate what type of memory state(s) that the OM would be driven into (i.e. whether the

unchanged, error or goal state) as a consequence of invoking class method m" when it is

guarded by preM at run time. Given that as shown earlier, every unique class method m” ∈ M”

has Guardm” to which it is mapped to, elements of which are Um”, Em” and Gm”. To test m”

exhaustively, in each of the CM’s testing modes, a map with the form (preM nextOMSI) is

generated for each unique preM in Um”, Em” and Gm” in order to verify whether the OM under

test has been driven into the correct memory state or not.

Example:

Below, we use the setAge method within Figure 20 to illustrate further the ideas presented

above. In particular, we must make it clear at this juncture that while setAge method is used

here as an example, setAge is not a class method but an instance method. This is because a

disciplined approach employed within the Java Programming Language requires that only a

class method is permitted to manipulate a class variable. The form and behaviour of setAge

method shown below is exactly the same as in the case of method m” ∈ M” described earlier.

setAge (modsetAge, GuardsetAge) : pS x inPTsetAge → (pS*, outPTsetAge, nextOMSIsetAge), where:

modsetAge = public is the type of access modifier that can apply to method setAge.

GuardsetAge = (UsetAge, EsetAge, GsetAge) represents the finite set of three unique precondition

methods guarding method setAge.

UsetAge = {setAgeUSP1}.

EsetAge = {setAgeESP1, setAgeESP2}.

GsetAge = {setAgeGSP1, setAgeGSP2, setAgeGSP3, setAgeGSP4}.

inPTsetAge = {int}is a finite set of input parameter types that can apply to method setAge.

pS = {(forename =”None”), (surname =”None”), (age = 0), (gender = “UNKNOWN”),

(UPPER_AGE =60), (UNKNOWN_GENDER =“UNKNOWN”), (MALE_GENDER =”MALE”),

(FEMALE_GENDER =”FEMALE”)} is the initial state of all instance and class variables that

belongs to the person object machine depicted by Figure 20. As shown, both instance and class

variables have their respective predefined default values. The specified default values

represents the initial memory values and/or states of the person object machine prior to method

setAge being exercised with inPTsetAge in the presence of UsetAge, EsetAge and GsetAge.

outPTsetAge = void is the type of output that method setAge will produce at run time.

pS* represent the modified memory values and/or states for the person object machine system

under test. This means that new memory values for forename, surname, age and gender will be

computed based on the type of input inPTsetAge that method setAge consumes from an

environment and what precondition method in UsetAge, EsetAge and GsetAge that eventually get fired

at run time. Given that UPPER_AGE, UNKNOWN_GENDER, MALE_GENDER and

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

95

FEMALE_GENDER are state encapsulating variables with the static final prefixes, what this

means is that the memory values and/or states that they reference would never change when any

method of the person object machine system under test get triggered at run time; since by

default they are declared as constants.

nextOMSIsetAge ∈ NUS or nextOMSIsetAge ∈ NES or nextOMSIsetAge ∈ NGS depending on what

testing mode of the person object machine we are in. Hence, nextOMSIsetAge is used to indicate

the type of state that the person object machine system under test has been driven into when

setAge is exercised with the form shown above.

Below, examples for all the elements in UsetAge, EsetAge and GsetAge are shown with respect to

Figure 20:

One Unchanged State Precondition Method:

Our goal here is to illustrate how the setAge method can be tested in the unchanged state

testing mode. In particular, for this example we are considering the case of the default value of

the age attribute. Here, the memory state of the age attribute remains unchanged when user

test input satisfies [(age == 0)]. When this constraint holds, method setAge drives the

Person Object-Machine POM depicted by Figure 20 into an unchanged memory state.

Furthermore, recall from point five of section 4.2.5 that each unique test input object (i.e.

PreConditionTestObject) generated from exercising elements in UsetAge encapsulates a set of

test cases (i.e. testInput) that can be used to exhaustively test method setAge that

setAgeUSP1 guards in the unchanged state testing mode. Furthermore, each unique test input

object generated from exercising elements in UsetAge is also responsible for checking the outputs

from a test case. Thus, allowing the test engineer to be able to debug and verify whether

method setAge of the POM under test causes the POM to transition into the correct memory

state when method setAge is exercised at run time:

private PreConditionTestObject setAgeUSP1()

 {

 setAge(0); //Test Case

 if(this.age == 0) // Boolean Expression
 {

 Object[] testInput = new Object[]{0};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

Two Error State Precondition Methods:

Here, an error occurs with respect to Figure 20 when the input value of the age attribute

satisfies [(age < 0) || (age > UPPER_AGE)]. When the user test input falls within

any of these ranges, method setAge drives the POM into an error state:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

96

private PreConditionTestObject setAgeESP1()

 {

 setAge(-1); //Test Case

 if(this.age < 0) // Boolean Expression
 {

 Object[] testInput = new Object[]{-1};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject setAgeESP2()

 {

 setAge(65); //Test Case

 if(this.age > UPPER_AGE) // Boolean Expression
 {

 Object[] testInput = new Object[]{65};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

Four Goal State Precondition Methods:

Here, we illustrate how the setAge method can be tested in the goal state testing mode. Here,

the memory state of the age attribute will be driven into goal state when user test input satisfies

[(age == 0)||(age > 0)||(age < UPPER_AGE)|| (age == UPPER_AGE)]:

private PreConditionTestObject setAgeGSP1()

 {

 setAge(0); //Test Case

 if(this.age == 0) // Boolean Expression
 {

 Object[] testInput = new Object[]{0};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject setAgeGSP2()

 {

 setAge(22); //Test Case

 if(this.age > 0) // Boolean Expression
 {

 Object[] testInput = new Object[]{22};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

97

private PreConditionTestObject setAgeGSP3()

 {

 setAge(45); //Test Case

 if(this.age < UPPER_AGE) // Boolean Expression
 {

 Object[] testInput = new Object[]{45};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject setAgeGSP4()

 {

 setAge(60); //Test Case

 if(this.age == UPPER_AGE) // Boolean Expression
 {

 Object[] testInput = new Object[]{60};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

4.3.3 Heterogeneous Family of Object-Machines

Every unique object-machine OM ∈ ¥ has the following useful fundamental properties or

characteristics:

• Identity (ID)

• State (S)

• Behaviour (M)

4.3.3.1 The Object-Machine

Hence, following section 4.3.3, we can define OM as:

OM = (ID, S, M), where:

ID is the object machine identifier. The role of the identity component is to enable two different

object machines of the same type to be distinguished.

S’ is the finite set of instance variables that can apply to the OM alone

S is the complete finite set of state encapsulating variables that can apply to the OM. The

different elements in S encapsulate the distributed memory states of the OM. This is given by:

S = S’ ∪ S” and we require that S’ ∩ S” = ∅ holds. Every element of S’ has its own

declared static type in a manner similar to the description for S” in section 4.3.1.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

98

M’ is the finite set of methods belonging to the OM alone

M is the complete finite set of methods that can apply to the OM. This is given by:

M = M’ ∪ M” and we require that M’ ∩ M” = ∅ holds. The form and behaviour of all the

methods in M’ are similar to those of M” described in section 4.3.2.

4.3.3.1.1 The Object-Machine States

Further to section 4.3.3.1, the example presented below is used to illustrate the concept with

respect to S:

Example:

Here, we use pS’ to represent all instance variables that belong to the POM. Each unique

instance variable in pS’ has their static type and a predefined access modifier to which it is

mapped to when it is declared i.e. as shown within Figure 20:

pS’ = {((forename : String) private), ((surname : String) private), ((age : int)

private), ((gender : String) private)}

Given that in section 4.3.1 we covered all the class variables pS” that belongs to the POM

system under test, below we say that all the state encapsulating variables that can apply to the

POM system is given by:

pS = pS’ ∪ pS”

4.3.3.1.2 The Object-Machine Methods

Further to section 4.3.3.1, the example presented in this section is used to illustrate the concept

with respect to M:

Example:

Again, with respect to Figure 20, we use pM’ to represent all instance methods that can apply to

it:

pM’ = {getForename, getSurname, getAge, getGender, toString, setForename, setSurname,

setAge, setGender}

Given that in section 4.3.2 we showed that class methods pM” is empty with respect to Figure

20, in this section, we say that all the instance and class methods that can apply to the person

object machine system depicted by Figure 20 is given by:

pM = pM’ ∪ pM”

The form and behaviour of each unique method m ∈ pM is the same as that of the setAge

method covered in section 4.3.2.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

99

4.3.4 The Class-Machine Constructors

Every constructor function i.e. ct ∈ CT has the same form, behavior and testing as those of M”

and that of the setAge method discussed in section 4.3.2 except that constructors do not

produce an output when they are exercised at run time:

ct (modct, Guardct) : S x inPTct → (S*, nextOMSIct)

Example:

Also, with reference to Figure 20, we use pCT to represent all the constructors that can apply to

the POM:

pCT ={PersonObjectMachine(), PersonObjectMachine(String, String, int, String)}

4.3.5 The Class-Machines Interface Type

Every unique CM under test has an extensible interface type that a heterogenous family of

Object-Machines belonging to it must conform to. The interface type of the CM is given by:

τ = (IID, IM), where:

IID is the interface identifier for the Class-Machines interface type. The role of the identity

component is to enable two different interfaces of the same type to be distinguished.

IM is the finite set of interface methods that can apply to the Class-Machines interface type.

Every unique interface method i.e. im ∈ IM has the same form, behaviour and testing as those

of M” described in section 4.3.2.

4.3.6 The Class-Machine Connector Function

During testing, the role of the Class-Machine connector function (i.e. ∆) is to map the Class-

Machine’s interface type (i.e. τ) to a heterogeneous family of Object-Machines that adheres to τ
so that they can all be tested. Although, in its original form and design τ is extensible we

however do not vary τ. We only test τ for a family of Object-Machines that adheres to it. For

the purposes of testing, we assume that the family of Object-Machines to be tested are finite i.e.

as described in section 4.2.3.

∆: τ OM.

This is because every unique object-machine OM in ¥ provides a different type of concrete

implementation with respect to τ. Hence, testing a unique CM means testing a heterogeneous

family of Object-Machines that belongs to it. Furthermore, while it is possible for all the

Object-Machines in ¥ to compute the same function (i.e. they are semantically close), in that

they all implements the same interface type τ, a test set T that is adequate for one object-

machine OM in ¥ is not necessarily adequate for the others (i.e. as expressed by

Antiextensionality axiom in section 1.1.4). Hence, a different test set T must be generated for

each unique object-machine OM in ¥.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

100

The function ∆ is treated as a map with the form ∆(KEY, VALUE) pair structure, where τ is the

KEY and OM is the VALUE. The symbol is used to map KEY to VALUE. As a consequence

of this style, a record of the different concrete implementations that can apply in time to the

interface type τ can be kept for verification purposes i.e. since ¥ is extensible in its pure form, in

the light of new implementations that conform to τ.

Following the definition of τ in section 4.3.5, we say here that every unique OM in ¥ is deemed

to be completely specified with respect to the class-machines interface type (i.e. τ) iff the finite

set of interface methods i.e. IM of the CM is a subset of the methods of OM i.e. M (covered in

section 4.3.3.1.2). Hence, we say that when the above constraint holds, the following becomes

true:

(OM ↑ τ) iff (IM ⊆ M)

The symbol ↑ can be read has is completely specified with respect to. So we say that OM is

completely specified with respect to τ i.e. written as (OM ↑ τ) iff (IM ⊆ M).

Example:

Recall that in section 4.2.3 of our preliminaries we discussed two types of queue

implementations (i.e. MyCircularArrayQueue and MyLinkedListQueue). Also a generic

interface type (i.e. Queue) was defined to which these implementations must conform. In that

example, MyCircularArrayQueue and MyLinkedListQueue were both completely specified

with respect to Queue given that the Queue interface is a subset of both

MyCircularArrayQueue and MyLinkedListQueue. Similarly, the person object machine

depicted by Figure 20 was also completely specified with respect to the person interface

depicted by Figure 19; given that the person interface is a subset of the person object machine.

Furthermore, assuming that following the above:

¥ = {MyCircularArrayQueue, MyLinkedListQueue}.

τ = Queue.

The function ∆ operates as ∆: Queue OM, where OM ∈ ¥.

Note that: Every CM is extensible in its original form. That is, it is possible for one CM to be

related to another CM through the mechanism of inheritance in object-oriented languages.

4.4 Derivation, Inheritance and Subtyping of a Completely
Specified Object Machine

In Figure 22, the inheritance relationship between three distinct Object Machines A, B and C

are shown; where Object Machines B and C are subtypes of Object Machine A. The state

space of Object Machines B and C includes those of Object Machine A i.e. for all public non-

hidden state variables and methods. Hence, Object Machines B and C are said to be derived

from Object Machine A.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

101

Following on from above, now assume that:

• The Object Machine A = (A_ID, A_States, A_Methods), where:

 A_ID is identifier for the Object Machine A

 A_States is the finite set of states that can apply to the Object Machine A

 A_Methods is the finite set of methods that can apply to the Object Machine A

• The Object Machine B = (B_ID, B_States, B_Methods), where:

 B_ID is identifier for the Object Machine B

 B_States is the finite set of states that can apply to the Object Machine B

 B_Methods is the finite set of methods that can apply to the Object Machine B

• The Object Machine C = (C_ID, C_States, C_Methods), where:

 C_ID is identifier for the Object Machine C

 C_States is the finite set of states that can apply to the Object Machine C

 C_Methods is the finite set of methods that can apply to the Object Machine C

To illustrate the mechanism of inheritance using Figure 22 and the definitions provided above

for Object Machines A, B and C, below, we illustrate how the elements in B_States and

B_Methods are derived:

Now, by construction based on Figure 22, B_States = A_States ⊗ {StateVar1, StateVar2,

StateVar3} i.e. for all public non-hidden state variables in Object Machine A. Here, we

assume using a concrete example that the elements in {StateVar1, StateVar2, StateVar3} forms

the major difference between the elements in A_States.

Similarly, as above, B_Methods = A_Methods ⊗ {setStateVar1(), setStateVar2(),

setStateVar3()} i.e. for all public non-hidden methods in Object Machine A. Again, here, we

assume using a concrete example that the elements in {setStateVar1(), setStateVar2(),

setStateVar3()} forms the major difference between the elements in A_Methods.

A

C B

Figure 22: Inheritance relationship between

Object Machines A, B and C

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

102

where:

⊗ is the function appending every unique element in the right-hand set onto the left-hand set if

and only if the element to be added is not already present in the left-hand set.

We then say following the above illustrations that Object Machine A ⊆ Object Machine B

(due to the mechanism of inheritance). Similar approach to the one shown above is then

repeated to show that Object Machine A ⊆ Object Machine C (due to the mechanism of

inheritance).

By public non-hidden states or methods in this section and beyond it, we are actually referring

to state encapsulating variables and methods declared with public access modifiers in their

formal object-machine specifications or implementations. In an object-oriented language like

Java, derived subclasses do not have direct access to (nor are they permitted to inherit) the

attributes and methods of a parent class declared with private access modifiers (Table 2

represents access levels in Java i.e. showing the impact of access modifiers on state

encapsulating variables and methods of a parent class and derived subclasses).

Note: that there is a distinction to be made between the inheritance of interfaces and the

inheritance of implementations, and that programming languages may use different

mechanisms to represent these two forms of inheritance (e.g. in Java a class can extend another

and can implement interfaces). In particular, this distinction is important because the restriction

to public non-hidden states to which we refer in this section only applies to inheriting

interfaces: for inheriting implementations all states are included. In particular, chapter 5 was

designed extensively to illustrate the mechanism of inheritance with supporting examples.

4.5 Object-Machines Methods Design for Test Conditions

The structure of the methods of the object machine model presented and discussed thus far has

been motivated by two important goals:

• To make it easier to automatically generate a complete test set for a completely

specified object machine under test – so that all faults present in the machine may be

revealed; since the ultimate goal of testing is to achieve correctness by revealing all the

faults that are present in an implementation so that they can be removed.

• To make it easier to comprehend, study, test and verify the different constituent

components of the object machine model (e.g. the methods and precondition methods

that encapsulate the distributed state of the object machine).

Earlier in section 4.3.2 the form and behaviour of the methods (i.e. M) of a completely specified

object machine was presented and all the relevant components associated with the methods of

the object machine explained; hence, here, we shall not repeat this.

Every unique method i.e. m ∈ M has the following form and behaviour:

m (modm, Guardm) : S x inPTm → (S*, outPTm, nextOMSIm)

Now, in order to achieve the two stated set of goals above, a machine can be created to

represent the complete structure of the components that are required to define the methods of a

completely specified object machine (we call this the complete structure of methods of an

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

103

object machine currently under test and denote it with the symbol Œ); since the methods of

the object machine are responsible for manipulating the distributed memory state(s) and/or

values of the object machine under test.

4.5.1 The Complete Structure of methods of the OM under
test

The complete structure of methods of an object machine currently under test is denoted with the

symbol Œ, where:

Œ = (Ψ,ℜ,ϒ) is the complete structure of the object machine currently under test.

Ψ = (TIOGen, PreGen) is a 2-tuple machine consisting of the test input object generator

function TIOGen (covered in section 4.5.2) and the precondition generator function PreGen

(covered in section 4.5.3).

ℜ = (PMPGen, PMTLGen, P2Trig, PN2Trig, HPFGen, LPFGen, TFRGen) is a 7-tuple

machine

PMPGen is the precondition method profile generator function (covered in section 4.5.4).

PMTLGen is the precondition method total length generator function (covered in section 4.5.5).

P2Trig is the probability to trigger function (covered in section 4.5.6).

PN2Trig is the probability not to trigger function (covered in section 4.5.7).

HPFGen is the high probability filter function (covered in section 4.5.8).

LPFGen is the low probability filter function (covered in section 4.5.9).

TFRGen is the total number of faults remaining in the OM after testing has been completed

(covered in section 4.5.10)

ϒ = (EMMGen) is a 1-tuple machine with the exact method match generator function EMMGen

covered in section 4.5.11.

4.5.2 The Test Input Object Generator Function

Given that every unique method m ∈ M of the OM under test is mapped to and/or guarded by a

finite set of precondition methods Um, Em and Gm (i.e. represented simply as Guardm), during

testing, the goal is to generate in the unchanged, error and goal state testing modes of the CM

the corresponding test input object that can apply to each unique precondition method in Um, Em

and Gm.

Earlier, we define what OMPM means and show that every unique precondition method preM

∈ OMPM has the following form and behaviour:

preM (mod , be) : inPTm → tio

Now, recall as described earlier, that all the elements in UTIO, ETIO and GTIO corresponds to

the test input objects generated in the unchanged, error and goal state testing modes of the CM.

Hence, we say that the test input object generator function operates as follows:

TIOGen: OMPM → TIO

Consequently, tio ∈ TIO = UTIO ∪ ETIO ∪ GTIO is generated in the relevant testing modes

for each unique precondition method in Um, Em and Gm. To test a corresponding concrete

implementation method of each unique method m ∈ M of the OM under test exhaustively, each

unique corresponding test case saved up inside tio is then applied on method m automatically at

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

104

run time to verify whether the state encapsulating variables (i.e. instance and class variables)

belonging to the OM under test have been driven into the correct memory states and/or values

in the relevant testing modes of the CM. Here, the test input object generator function allows

the test engineer to know and/or generate a finite set of inputs that can exhaustively test method

m in a particular testing mode.

4.5.3 The Precondition Generator Function

Sometimes, given a unique method m ∈ M of the OM under test, we want to know specifically:

• The finite set of unchanged state precondion methods i.e. Um guarding it.

• The finite set of error state precondion methods i.e. Em guarding it.

• The finite set of goal state precondion methods i.e. Gm guarding it.

To achieve the above goal, the precondition generator function PreGen was created. This

function takes a finite set of methods M that can apply to the OM under test as its argument and

then returns OMPM:

PreGen: M → OMPM, where:

OMPM = USPM ∪ ESPM ∪ GSPM

Um ⊆ USPM

Em ⊆ ESPM

Gm ⊆ GSPM

Hence, from above, for each unique method m ∈ M of the OM under test, we can automatically

generate Um, Em and Gm guarding it in the relevant testing modes of the CM testing technique

i.e. given the form and behavior of each unique method m ∈ M described earlier.

4.5.4 The Precondition Method Profile Generator Function

Given that every unique method m ∈ M of the OM under test is guarded by a finite set of

unchanged, error and goal state precondition methods i.e. Um, Em and Gm, sometimes, we want

to carryout some useful analysis on method m:

• More specifically, for example, those which concern the need to automatically compute

the total number and/or lengths of the unchanged state precondition methods in Um.

• More specifically, for example, those which concern the need to automatically compute

the total number and/or lengths of the error state precondition methods in Em.

• More specifically, for example, those which concern the need to automatically compute

the total number and/or lengths of the goal state precondition methods in Gm.

To achieve the above stated goal, the precondition method profile generator function PMPGen

was created. This function takes a finite set of methods M that can apply to the OM under test as

its argument and then returns PMP:

PMPGen: M → PMP, where:

The form and behaviour of each unique method m ∈ M of the OM under test was covered in

detail earlier.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

105

PMPuspm = ω(m, luspm) is the complete profile of each unique method m ∈ M of the OM under

test in the unchanged state testing mode of the CM testing technique. This is represented as a

map with the form ω(KEY, VALUE) pair structure. Here, method m is the KEY and luspm is the

VALUE. This means that every unique method is mapped to the length of the unchanged state

precondition methods (i.e. Um) by which it is guarded by. This pattern is then repeated in the

error i.e. where PMPespm = ω(m, lespm) and goal i.e. where PMPgspm = ω(m, lgspm) state testing

modes of the CM respectively.

PMP = (PMPuspm, PMPespm, PMPgspm) is a triplet representing the complete profile of each

unique method m ∈ M of the OM under test in all the different testing modes of the CM testing

technique (i.e. the unchanged, error and goal state testing modes).

 4.5.5 The Precondition Method Total Length Generator
Function

To show how to calculate the total length of all precondition methods in a particular testing

mode of the CM testing technique, the precondition method total length generator function was

created. This takes as argument the PMPuspm discussed earlier and then returns the total length

TL computed for all the precondition methods that can apply to the OM under test in that

particular testing mode.

PMTLGen: PMPuspm → TL

Java implementation of the above function is given below:

public double PMTLGen(Map<String, Double> methodProfile)

 {

 double totalLengthCounter = 0;

 Set entries = methodProfile.entrySet();

 Iterator iter = entries.iterator();

 while(iter.hasNext())

 {

 Map.Entry entry = (Map.Entry)iter.next();

 String methodName = (String)entry.getKey();

 Integer intVal = (Integer)entry.get(methodName);

 double uTotal = intVal.doubleValue();

 totalLengthCounter+=uTotal;

 }

 return totalLengthCounter;

 }

4.5.6 The Probability to Trigger Function

Here, we propose an approach for calculating the probability of each unique method m ∈ M of

the OM under test being triggered whilst in the unchanged, error and goal state testing modes of

the CM testing technique. The probability to trigger function P2Trig takes as its argument e.g.

PMPuspm discussed earlier and then returns a map with the form ω(m, P2Trguspm) at run time.

The returned map contains a mapping of each unique method under test to the probability of it

being triggered. This approach was motivated by the fact that every unique method of the OM

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

106

under test can have different probability of being triggered in each unique testing mode of the

CM testing technique; given that each unique method m ∈ M under test has different number of

precondition methods in Um, Em and Gm. This is because each unique precondition method in

Um, Em and Gm encapsulate a unique path that it would drive the OM under test to within

method m when it is exercised at run time. Hence, the complexity of each unique method m

under test can vary. Also, we argue that untested paths within m can contain fault(s) thus

leading m to failure(s) at run time.

P2Trig: PMPuspm → ω(m, P2Trguspm)

Java example of the above function is given below:

public Map<String, Double> P2Trig(Map<String, Double> methodProfile)

 {

 double toTriggerProb = 0;

 Map<String, Double> probToTrig = new HashMap<String, Double>();

 Set entries = methodProfile.entrySet();

 Iterator iter = entries.iterator();

 while(iter.hasNext())

 {

 Map.Entry entry = (Map.Entry)iter.next();

 String methodName = (String)entry.getKey();

 Integer intVal = (Integer)entry.get(methodName);

 double preMTotalGuard = intVal.doubleValue();

 toTriggerProb = preMTotalGuard / PMTLGen(methodProfile);
 probToTrig.put(methodName, toTriggerProb);

 }

 return probToTrig;

 }

 4.5.7 The Probability not to Trigger Function

Here, we propose an approach for computing the probability not to trigger for each unique

method m ∈ M of the OM under test whilst in the unchanged, error and goal state testing modes

of the CM testing technique. The probability not to trigger function PN2Trig takes as its

argument (e.g. PMPuspm discussed earlier) and then returns a map with the form ω(m,

PN2Trguspm) at run time. The returned map contains a mapping of each unique method under

test to the probability of it not being triggered.

PN2Trig: PMPuspm → ω(m, PN2Trguspm)

Java example of the above function is given below:

public Map<String, Double> PN2Trig(Map<String, Double> methodProfile)

 {

 double toTriggerProb = 0;

 double notToTriggerProb = 0;

 Map Map<String, Double> probNotToTrig = new HashMap<String, Double>();

 Set entries = methodProfile.entrySet();

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

107

 Iterator iter = entries.iterator();

 while(iter.hasNext())

 {

 Map.Entry entry = (Map.Entry)iter.next();

 String methodName = (String)entry.getKey();

 Integer intVal = (Integer)entry.get(methodName);

 double preMTotalGuard = intVal.doubleValue();

 toTriggerProb = preMTotalGuard / PMTLGen(methodProfile);

 notToTriggerProb = 1 – toTriggerProb;
 probNotToTrig.put(methodName, notToTriggerProb);

 }

 return probNotToTrig;

 }

4.5.8 The High Probability Filter Function

Here, we propose an approach for calculating high probability to fire for each unique method

m ∈ M of the OM under test whilst in the unchanged, error and goal state testing modes of the

CM testing technique. The high probability filter function HPFGen takes as argument (e.g.

PMPuspm discussed earlier and a high probability filter value hpf) and then returns a map with

the form ω(m, HProbuspm) at run time. The returned map contains a mapping of each unique

method under test to the computed high probability of it firing in a particular testing mode of

the CM. Recall that earlier we used the probability to trigger function P2Trig to compute the

probability of each unique method m ∈ M of the OM under test firing in the unchanged, error

and goal state testing modes. Now, after computing the various probabilities of each of the

methods in M firing, a predefined high probability filter value hpf is then used to filter out the

methods with high probabilities to trigger in the different testing modes of the CM. In

particular, the value of hpf can vary from one OM under test to another. The value of hpf is

determined and/or chosen by the test engineer after the probabilities of each unique method m

∈ M of the OM under test firing in the unchanged, error and goal state testing modes has been

computed.

Crucially, in the different testing modes of the CM, the prevailing argument is that methods

with high probability to fire stand a higher chance that all the different paths within them will

be exercised and the presence of any fault(s) within them revealed; so that they can eventually

be removed.

HPFGen: PMPuspm x hpf → ω(m, HProbuspm)

Java example of the above function is given below:

public Map<String, Double> HPFGen(Map<String, Double> mthdProf, double hpf)

 {

 double toTriggerProb = 0;

 Map Map<String, Double> highProbFilter = new HashMap<String, Double>();

 Set entries = mthdProf.entrySet();

 Iterator iter = entries.iterator();

 while(iter.hasNext())

 {

 Map.Entry entry = (Map.Entry)iter.next();

 String methodName = (String)entry.getKey();

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

108

 Integer intVal = (Integer)entry.get(methodName);

 double preMTotalGuard = intVal.doubleValue();

 toTriggerProb = preMTotalGuard / PMTLGen(mthdProf);

 if(toTriggerProb >= hpf)

 {
 highProbFilter.put(methodName, toTriggerProb);

 }

 }

 return highProbFilter;

 }

4.5.9 The Low Probability Filter Function

The low probability filter function LPFGen operates in the same manner as the high probability

filter function. Except that, here, the low probability filter value lpf is used to filter out methods

with low probabilities to trigger in the different testing modes of the CM. Again, lpf is chosen

in the same manner as that of the hpf discussed earlier. Here, lpf is determined after computing

the various probabilities for each of the methods in M with the probability not to trigger

function PN2Trig covered earlier.

As in the case of the high probability filter function description above, the important argument

here is that methods with low probability not to fire stand a high chance that all the different

paths within them will not be exercised and the presence of any fault(s) within them will not be

revealed.

LPFGen: PMPuspm x lpf → ω(m, LProbuspm)

Java example of the above function is given below:

public Map<String, Double> LPFGen(Map<String, Double> mthdProf, double lpf)

 {

 double toTriggerProb = 0;

 double notToTriggerProb = 0;

 Map Map<String, Double> lowProbFilter = new HashMap<String, Double>();

 Set entries = mthdProf.entrySet();

 Iterator iter = entries.iterator();

 while(iter.hasNext())

 {

 Map.Entry entry = (Map.Entry)iter.next();

 String methodName = (String)entry.getKey();

 Integer intVal = (Integer)entry.get(methodName);

 double preMTotalGuard = intVal.doubleValue();

 toTriggerProb = preMTotalGuard / PMTLGen(mthdProf);

 notToTriggerProb = 1 – toTriggerProb;

 if(notToTriggerProb >= lpf)

 {

 lowProbFilter.put(methodName, notToTriggerProb);

 }

 }

 return lowProbFilter;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

109

4.5.10 Total Fault Remaining Undetected Function

Following earlier arguments, the goal here then is to propose an approach for estimating and/or

predicting the total number of faults remaining in the concrete OM implementation system

under test after testing has been completed in the various testing modes of the CM testing

technique. To achieve this goal, every unique method m ∈ M of the OM under test with low

probability to trigger will be automatically selected and each unique precondition method

encapsulating a unique transition path in U, E and G associated with method m counted in the

relevant testing mode. The total of these represents the total number of faults remaining

undetected in the OM under test. Since untested transition paths can potentially contain fault(s).

public double TFRGen(Map uMap, double uLpf, Map eMap, double eLpf, Map gMap,

double gLpf)

 {

 double totalFaultRemaining = 0;

 Map<String, Double> lowUspm = LPFGen(uMap, uLpf);

 Map<String, Double> lowEspm = LPFGen(eMap, eLpf);

 Map<String, Double> lowGspm = LPFGen(gMap, gLpf);

 double uspmCount = PMTLGen(lowUspm);

 double espmCount = PMTLGen(lowEspm);

 double gspmCount = PMTLGen(lowGspm);

 totalFaultRemaining = uspmCount + espmCount + gspmCount;

 return totalFaultRemaining;

 }

4.5.11The Exact Method Match Generator Function

Given any three unique finite sets of unchanged, error and goal state precondition methods U, E

and G, we want to be able to search and find them i.e. if they exist amongst every unique

method m ∈ M of the OM under test. This can be achieved since each unique method m ∈ M

under test has predefined precondition method guards (i.e. Guardm) to which it is mapped to

statically. To achieve this goal, the exact method match generator function EMMGen was

created. This function takes a finite set of method guards (i.e. Guard) as its argument and then

returns a finite set of methods M that can apply to the OM under test:

EMMGen: Guard → M, where:

Every unique Guardm in Guard can be defined as:

Guardm = (Um, Em, Gm) a triplet that encapsulates a finite set of three unique precondition

methods i.e. for the method m under test.

Hence, from above, every unique Guardm in Guard is searched for and matched exactly to a

unique method m ∈ M of the OM under test.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

110

4.6 Summary

This chapter introduced and discussed a new automaton-based framework formalism for

specifying, verifying and testing object oriented programs written in languages like Java and

C++. The chapter also discussed a test method that is based on this formalism. In order to make

definite statements, provide sound inferences and guarantees over an object oriented system Sys

under test after testing has been completed, an approach for estimating the probability of faults

remaining in Sys was proposed.

It is crucial to mention at this juncture that in its original form and design, our proposed testing

method focuses on complete state testing. However, the augmented probabilistic testing

technique appended to our testing philosophy was introduced to address the fact that in practice

with complex object oriented systems it is extremely difficult to completely or accurately claim

that all possible paths in the system under test has been followed and tested for the presence of

faults. (For example in the presence of while loops and the mechanism of polymorphism in

object oriented languages which can make the entire state space of the system under test not to

be tractable i.e. due to the state explosion problem described in [56])

Hence, it remains that untested paths within Sys can contain faults. While specification based

testing method such as [2] claims to test a system completely based on its design for test

conditions, it remains that the approach described in [2] shares similar weakness with other

specification based testing methods covered in section 2.3 in that while it tells us how well Sys

satisfies its formal specification, it does not tell us what part of Sys that was executed to satisfy

each part of the specification.

More than that, the approach in [2] has not been extended to complex object oriented systems to

ascertain their completeness claim i.e. given that the approach described in [2] is procedural in

its pure form. Also, the Object X-Machine based testing approach [55] described earlier relies

heavily on the Stream X-Machine based testing method [2] which is purely procedural.

Furthermore, the approach described in [55] does not capture or provide an automaton-based

formalism for the notion of classes that can be found in object oriented languages. Hence

testing Sys for completeness with [2, 55] then raises a few questions like: what is the

fundamental unit of test for object oriented systems? Is it a class or an object? Given that object

oriented systems are composed of a society of communicating objects where each unique object

in the system belongs to a class, it is clear that the class is the fundamental unit of test. Hence,

the argument here is that testing should focus on the class. Surprisingly, earlier work [94, 102]

by the same authors of [55] supports the argument which claims that classification is that which

makes a language distinctively object oriented.

To make the state space of our proposed CM model tractable (i.e. given that a class has an

interface type which can be mapped to a possibly infinite family of concrete implementations) a

finite family of implementations was proposed for the interface type of the CM under test i.e.

given that the family of concrete implementations can be further extended in the light of new

implementations that conforms to the interface type of the CM that is under test. Hence, using

this approach we can keep track of all possible object bindings for the interface type of the class

under test (i.e. since for the purposes of testing a finite set of implementations that adheres to

the interface type of the CM that is under test is assumed). The merit of this proposal implies

that problems caused through the mechanism of polymorphism can then be easily addressed.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

111

Chapter 5: The Paradigmatic Features of the
Class-Machines System Model

5.1 Introduction

In chapter 4 we presented and discussed all the fundamental theoretical ideas that embody our

own notion of the Class-Machines system model which directly relates to the notion of a class

that can be found in object-oriented languages. Crucially, the ideas of the Class-Machines

theoretical model presented and discussed in chapter 4 consist of a number of paradigmatic

features, and this chapter will expand on these through the use of three different Class-

Machines case studies. These will illustrate the concepts that have already been presented, and

will show how the Class-Machines model theory can be applied to real life object-oriented

systems, focussing on the specification, verification and testing of them. To achieve these goals,

in this chapter we consider the following case studies: Student (covered in section 5.2),

Employee (covered in section 5.3) and Stack (covered in section 5.4).

5.2 The Objective of the Student Case Study

In order to illustrate how our model handles inheritance, we needed a case study of something

that inherits from Person (covered as a running example in chapter 4), and Student is used. In

particular, this student case study assumes one design decision whilst specifying and

conceptualising the entire model system i.e. a student is a person, and so has the attributes

defined for a person (forename, surname, age and gender), and also the attribute major.

Furthermore, a student also has the methods defined for a person (getForename, getSurname,

getAge, getGender, toString, setForename, setSurname, setAge and setGender), and also the

methods (setMajor and getMajor). The structures resulting from this design decision are

illustrated in figures 23 and 24.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

112

Person Class

-forename: String

-surname : String

-age : int

-gender : String

+getForename()

+setForename(forename : String)

+getSurname()

+setSurname(surname : String)

+getAge()

+setAge(age : int)

+getGender()

+setGender(gender : String)

Student Class

-major : String

+getMajor()

+setMajor(major : String)

Figure 23: Student Class inherits Person Class

public interface StudentInterface extends PersonInterface

{

 public void setMajor(String m);

 public String getMajor();

}

Figure 24: The Student Interface

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

113

public class StudentObjectMachine extends PersonObjectMachine implements StudentInterface

 {

 // class attributes

 private String major;

 public static final String AI = "Artificial Intelligence";

 public static final String SE = "Software Engineering";

 public static final String CS = "Computer Science";

 public static final String UM = "Unknown Major";

 // class constructors

 public StudentObjectMachine()

 {

 super();

 this.major = "Unknown Major";

 }

 public StudentObjectMachine(String f, String s, int a, String g, String m)

 {

 super(f, s, a, g);

 this.major = m;

 }

 public void setMajor(String m)

 {

 this.major = m;

 }

 public String getMajor()

 {

 return this.major;

 }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major;

 }

 }// End of StudentObjectMachine

Figure 25: The Student Object Machine implementation in Java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

114

5.2.1 Derivation, Inheritance and Subtyping of the Student
Class Machine

Figure 23 illustrates the inheritance relationship between the Person and Student class. Our

ultimate goals in this section are to illustrate how:

• The finite set of class variables that can apply to the Student Class-Machine alone can

be derived from a set of class variables which belongs to the Person Class-Machine.

• The finite set of class methods belonging to the Student Class Machine alone can be

derived from a set of class methods which belongs to the Person Class-Machine.

• A heterogeneous family of object-machines that can apply to the Student Class-Machine

can be derived from the family of object-machines which belongs to the Person Class-

Machine.

• The finite set of constructor functions that can apply to the Student Class-Machine can

be derived from a set of constructor functions which belongs to the Person Class-

Machine.

• The finite set of interface methods that can apply to the Student Class-Machine can be

derived from a set of interface methods which belongs to the Person Class-Machine.

Definition 24: An extensible Student Class-Machine (SCM) is a 10-tuple: (stΛΛ, stS”,

stMOD, stTYPECM, stTIO, stM”, st¥, stCT, stτ, st∆), where:

All components in the SCM i.e. in the order that they are presented are exactly the same and

they share the same meaning individually as those components of the CM described in

definition 23; except for obvious renamings in order to adapt them for the Student Class-

Machine’s case study. Hence, within the SCM, each unique component starts with “st” to

indicate that it is a student component. Consequently, to avoid replications we shall not be

redefining these components here.

• stS” (illustrated with examples in section 5.2.1.1)

• stM” (illustrated with examples in section 5.2.1.2)

• st¥ (illustrated with examples in section 5.2.1.3)

• stCT (illustrated with examples in section 5.2.1.4)

• stτ and st∆ (illustrated with examples in section 5.2.1.5)

• stMOD and stTYPECM (illustrated with examples in section 5.2.1.1)

• stTIO (illustrated with examples in section 5.2.2)

All discussions that follow from section 5.2.1.1 onwards assume that the reader is familiar with:

• pS” (covered in section 4.3.1 with supporting examples)

• pS’ (covered in section 4.3.3.1.1 with example)

• pM” (covered in section 4.3.2 with supporting examples)

• pM’ (covered in section 4.3.3.1.2 with example)

• pCT (covered in section 4.3.4 with example)

• ⊗ (covered in section 4.4 with example)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

115

5.2.1.1 Derivation of the SCM Class Variables

First, in this section, we illustrate how every unique class variable of the SCM is shown to have

a declared type with reference to Figure 25. Second, every unique class variable of the SCM is

shown to be mapped to an access modifier. The type of access modifier assigned to a class

variable indicates the way by which this class variable can be accessed within and outside (e.g.

derived subclasses) the SCM. Third, we illustrate how the SCM inherits the set of class

variables which belong to the Person Class-Machine PCM depicted by Figure 20:

stS” = {((AI : String) public), ((SE : String) public), ((CS : String) public), ((UM :

String) public)}

In particular, modifiers have strong impact on how the state of the SCM can be accessed, tested

or verified i.e. during testing when the test engineer seeks to know whether each unique class

variable in stS” is holding the correct memory value when a class method is exercised at run

time.

By construction, based on Figures 23 and 25, pS” ⊆ stS” due to the mechanism of inheritance

i.e. for all public non-hidden person class variables in pS”:

stS” = pS” ⊗ {((AI : String) public), ((SE : String) public), ((CS : String) public),

((UM : String) public)}

5.2.1.2 Derivation of the SCM Class Methods

In this section, we illustrate how the SCM inherits the finite set of class methods which belongs

to the PCM.

stM” = {} for this case study with respect to Figure 25.

By construction, based on Figures 23 and 25, pM” ⊆ stM” due to the mechanism of

inheritance i.e. for all public non-hidden person class methods in pM”:

stM” = pM” ⊗ {}

5.2.1.3 Deriving a heterogeneous family of the SCM Object-
Machines

In this section, we illustrate how the SCM inherits a heterogeneous family of object-machines

which belongs to the PCM.

p¥ is an heterogeneous family of person object machines that can apply to the PCM

p¥ = {POM, SOM, EOM}, where:

POM is the person object-machine

POM = (pID, pS, pM)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

116

pID is the person object machine identifier

pS = pS’ ∪ pS” (see section 4.3.3.1.1 for example)

pM = pM’ ∪ pM” (see section 4.3.3.1.2 for example)

SOM is the student object-machine

SOM = (stID, stS, stM) is the student object-machine

stID is the student object machine identifier

stS’ is the finite set of instance variables that belong to the SOM alone

Every unique instance variable of the SOM is shown to have a declared static type with

reference to Figure 25. Also, with reference to Figure 25, every unique instance variable in stS’

has its own access modifier when it is declared:

stS’ = {((major : String) private)}

By construction, based on Figures 23 and 25, pS’ ⊆ stS’ due to the mechanism of inheritance

i.e. for all public non-hidden person instance variables in pS’:

stS’ = pS’ ⊗ {((major : String) private)}

stS is the complete finite set of state encapsulating variables that can apply to the SOM.

stS = stS’ ∪ stS”

stM’ is a finite set of instance methods belonging to the SOM alone

stM’ = {setMajor, getMajor} with respect to Figure 25.

By construction, based on Figures 23 and Figure 24, pM’ ⊆ stM’ due to the mechanism of

inheritance i.e. for all public non-hidden person instance methods in pM’:

stM’ = pM’ ⊗ {setMajor, getMajor}

stM is the complete finite set of methods that can apply to the SOM. This is given by:

stM = stM’ ∪ stM”

st¥ is an heterogeneous family of student object machines that can apply to the SCM

st¥ = {SOM, POM}

By construction, based on Figures 23 and 25, p¥ ⊆ st¥ due to the mechanism of inheritance i.e.

for all public non-hidden family of person object machines in p¥:

st¥ = p¥ ⊗ {SOM, POM}

EOM is the employee object-machine (covered in section 5.3.1.3)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

117

Note: that the symbol ⊗ only adds elements of the right hand set onto the left hand set if and

only if the elements of the right hand set are not already present on the left hand set.

5.2.1.4 Derivation of the SCM Class Constructors

In this section, we illustrate how the SCM inherits the finite set of class constructors which

belongs to the PCM.

stCT = {StudentObjectMachine(), StudentObjectMachine(String, String, int, String,

String)}with respect to Figure 25.

By construction, based on Figures 23 and 24, pCT ⊆ stCT due to the mechanism of inheritance

i.e. for all public non-hidden person instance methods in pCT:

stCT = pCT ⊗{StudentObjectMachine(), StudentObjectMachine(String, String, int, String,

String)}

5.2.1.5 Derivation of the SCM Interface

In this section, we illustrate how the SCM inherits the finite set of interface methods which

belongs to the PCM.

stτ = (stIID, stIM), where:

stIID is the Student Class Machine interface identifier

stIM is the finite set of student class machines interface methods that can apply to the SCM ‘s

interface.

stτ = StudentInterface based on Figure 24 above

st∆ is the function mapping the SCM ‘s interface (i.e. stτ) to an heterogeneous family of Student

Object Machines:

st∆: StudentInterface OM, where

OM ∈ st¥ and (OM ↑ StudentInterface) iff (stIM ⊆ stM) holds true with respect to earlier

discussions in section 4.3.6.

Given that Figures 19 and 24 respectively represents the Person and Student interfaces. We say

that pM ⊆ stM due to the mechanism of inheritance i.e. since (stIM ⊆ stM)

5.2.2 Testing an Heterogeneous Family of Student Object
Machines

During testing, our goal is to test every unique method of the object machine om ∈ st¥. As

shown in section 5.2.1.3, we know that st¥ = {POM, SOM} due to the mechanism of

inheritance. From the definitions in section 5.2.1.3, it can be assumed that the om under test is

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

118

POM where POM = (pID, pS, pM). In order to test the POM, every unique method pm ∈ pM

must be exercised at run time i.e. from an initial memory state of all the elements in pS, a

sequence of input parameter types inPTpm is consumed from an environment. Depending on

which precondition method in Upm, Epm and Gpm that eventually gets triggered in the different

testing modes, a modified person memory values and/or states pS* is computed and an output

type outPTpm generated. The POM then uses nextOMSIpm to indicate the type of state that it is

now driven into (i.e. whether the unchanged, error or goal state) as a consequence of exercising

method pm at run time:

pm (modpm, Guardpm) : pS x inPTpm → (pS*, outPTpm, nextOMSIpm), where:

modpm is the type of access modifier that can apply to method pm under test.

Guardpm = (Upm, Epm , Gpm).

Recall that Figure 20 depicts concrete Java implementation of all the methods of the POM.

Using the above stated form and behaviour of each unique method pm ∈ pM of the POM under

test, we illustrate how each unique method pm ∈ pM can be tested using our proposed approach

in the different testing modes of the CM testing technique (see section 5.2.2.1).

5.2.2.1 Testing Method setForename in the Unchanged,
Error and Goal State Testing Modes

In this section, we illustrate how the setForename method can be tested in the unchanged, error

and goal state testing modes.

setForename (modsetForename, GuardsetForename) : pS x inPTsetForename → (pS*, outPTsetForename, nextOMSIsetForename),

where:

modsetForename = public with respect to Figure 20

GuardsetForename = (UsetForename, EsetForename, GsetForename).

OMPM = USPM ∪ ESPM ∪ GSPM is the complete finite set of all types of precondition

methods that can apply to the POM

UsetForename ⊆ USPM = {setForenameUSP1}

EsetForename ⊆ ESPM = {setForenameESP1}

GsetForename ⊆ GSPM = {setForenameGSP1, setForenameGSP2, setForenameGSP3}

pS = {(forename =”None”), (surname =”None”), (age = 0), (gender = “UNKNOWN”),

(UPPER_AGE =60), (UNKNOWN_GENDER =“UNKNOWN”), (MALE_GENDER =”MALE”),

(FEMALE_GENDER =”FEMALE”)}

inPTsetForename = {String}

The new memory values for the elements in pS* depend on the testing mode and inputs used.

outPTsetForename = void is the type of output that method setForename will produce at run time.

NUS is the finite set of next unchanged states that can apply to the POM.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

119

NES is the finite set of next error states that can apply to the POM.

NGS is the finite set of next goal states that can apply to the POM.

nextOMSIsetForename ∈ NUS or nextOMSIsetForename ∈ NES or nextOMSIsetForename ∈ NGS

depending on what precondition method in UsetForename, EsetForename and GsetForename that

eventually get triggered in the different testing modes for the setForename method under test.

For the Person case study depicted by Figure 20, we assume all of the following design

decisions and constraints whilst formally specifying the finite set of precondition methods

guarding each method of the Person Instance Objects belonging to the Person Class. Since each

precondition method encapsulates a unique memory state of the person object. The condition

required for the forename unchanged state precondition method to keep the state of the

forename attribute of the person object unchanged when it is triggered is if for example the test

case "None" is applied on method setForename and the Boolean Expression or condition

if(this.forename.equals("None"))gets triggered within method

setForenameUSP1 developed in conjunction with Figure 20. Given that the default value

for the forename attribute within Figure 20 is "None", the memory value and/or state of the

forename attribute remains unchanged as a consequence of this test input.

5.2.2.1.1 The SetForename Unchanged State Precondition
Method

This section illustrates how the setForename method can be tested in the unchanged state

testing mode. In particular, for this example we are considering the case of the default value of

the forename attribute.

private PreConditionTestObject setForenameUSP1()

 {

 setForename("None"); // Test Case

 if(this.forename.equals("None")) // Boolean Expression

 {

 Object[] testInput = new Object[]{"None"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

The condition required for the forename error state precondition method to drive the forename

attribute of the person object to an error state when it is triggered is if for example the test case

"" is applied on method setForename and the Boolean Expression or condition

if(this.forename.length()<1) get triggered within method setForenameESP1

developed in conjunction with Figure 6. When this happens, the current memory state of the

person forename attribute i.e. its internal memory value remains unchanged as well as

setForename method indicating an unacceptable value i.e. an error in this case as a

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

120

consequence of this test input. Whilst setForenameUSP1 and setForenameESP1

appeared to overlap in that the memory state and/or value of the forename attribute will remain

unchanged when they are both exercised at run time, we placed different emphasis on each of

the unique testing modes of our testing method. For example, the main focus in the unchanged

state testing mode is for the method under test to drive the POM into an unchanged state. While

the main focus in the error state testing mode is for the method under test to drive the POM into

an error state (see section 5.2.2.1.2).

5.2.2.1.2 The SetForename Error State Precondition Method

This section illustrates how the setForename method can be tested in the error state testing

mode.

private PreConditionTestObject setForenameESP1()

 {

 setForename(""); //Test Case

 if(this.forename.length() < 1) //Boolean Expression

 {

 Object[] testInput = new Object[]{""};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

In the same way as in section 5.2.2.1.1, the following test cases and Boolean Expressions within

each unique goal state precondition method shown below will cause the forename attribute of

the POM to hold legal memory values based on our predefined constraints and assumptions

when they are exercised at run time.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

121

5.2.2.1.3 The SetForename Goal State Precondition Methods

In this section, we illustrate how the setForename method can be tested in the goal state testing

mode.

private PreConditionTestObject setForenameGSP1()

 {

 setForename("Hen"); //Test Case

 if(this.forename !=null) //Boolean Expression

 {

 Object[] testInput = new Object[]{"Hen"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject setForenameGSP2()

 {

 setForename("H"); //Test Case

 if(this.forename.length() == 1) //Boolean Expression

 {

 Object[] testInput = new Object[]{"H"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

122

private PreConditionTestObject setForenameGSP3()

 {

 setForename("Henry"); //Test Case

 if(this.forename.length() > 1) //Boolean Expression

 {

 Object[] testInput = new Object[]{"Henry"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

The remaining methods of the POM under test are tested using the same approach described in

sections 5.2.2.1.1, 5.2.2.1.2 and 5.2.2.1.3 in the unchanged, error and goal state testing modes

(Appendix A.5.2 depict this). Similarly, Appendix A.5.3 contains the complete testing of the

SOM in the unchanged, error and goal state testing modes.

5.3 The Objective of the Employee Case Study

The primary objective for introducing the Employee case study is in preparation for the fourth

and final case study that will be introduced in section 5.4 i.e. the Stack case study; as we need

to be able to construct arrays that contain objects of three different classes, so another case

study of something that inherits from Person is desirable, and Employee is used. Here, we

introduce an Employee that extends the behaviour and state variables of our earlier defined

Person (i.e. covered as a running example in chapter 4). Our objective is to further illustrate by

construction that an Employee is a Person with forename, surname, age, gender and salary.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

123

In particular, this study makes some important assumptions worth discussing as part of

conceptualising the overall structure of the Employee model specification system:

• A typical employee in our model specification system here is assumed to have a

monthly salary that can be computed based on the current grade level of the employee,

rate of pay per hour (i.e. rateOfPayPerHour) and the total number of hours worked (i.e.

totalHoursWorked) by the employee in a given calendar month of a given year. Thus it

is assumed here that the hourly rate of pay for a given employee is based entirely on the

employee’s current grade level (i.e. with respect to the company that s/he worked for),

as shown in Table 3.

• Furthermore, to simplify the salary calculations, we assume for the purposes of this case

study that there are 4 weeks in any given calendar month of a year, rather than using the

actual value of 365 / (12 x 7).

Person Class

-forename: String

-surname : String

-age : int

-gender : String

+getForename()

+setForename(forename : String)

+getSurname()

+setSurname(surname : String)

+getAge()

+setAge(age : int)

+getGender()

+setGender(gender : String)

Employee Class

- salary: double

- totalHoursWorked: double

- grade: int

 + getRatePerHour(grade : int)

+ computeMonthlySalary(totalHoursWorked: double, grade : int)

Figure 26: Inheritance relationship between Person and Employee

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

124

• Clearly, as depicted in Figure 26, the employee class is a subclass of the person class

hence it inherits from the person class all its public non hidden states/attributes as

well as processing functions or methods.

In the employee model system, every employee has a grade level and a rate of pay per hour that

corresponds to that grade level (Table 3 depict this information); so that any other grade level

supplied by the user outside our specified ones here are thus considered invalid.

Grade Rate of Pay Per Hour (£)

1 10

2 15

3 25
Table 3: The Employee Model System

public interface EmployeeInterface extends PersonInterface

{

 public double getRatePerHour(int grade);

 public void computeMonthlySalary(double thw, int grade);

}

Figure 27: The Employee Interface

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

125

public class EmployeeObjectMachine extends PersonObjectMachine implements EmployeeInterface

 {

 // class attributes

 private double salary;

 private double totalHoursWorked;

 private int grade;

 // class constructors

 public EmployeeObjectMachine()

 {

 super();

 this.totalHoursWorked = 0.0;

 this.grade = 0;

 computeMonthlySalary(this.totalHoursWorked, this.grade);

 }

 public EmployeeObjectMachine(String f, String s, int a, String g, double thw, int grade)

 {

 super(f, s, a, g);

 this.totalHoursWorked = thw;

 this.grade = grade;

 computeMonthlySalary(thw, grade);

 }

 public double getRatePerHour(int grade)

 {

 if(grade == 1)

 { return 10.0; }

 if(grade == 2)

 { return 15.0; }

 if(grade == 3)

 { return 25.0; }

 return 0.0;

 }

 public void computeMonthlySalary(double thw, int grade)

 { this.salary = thw * getRatePerHour(grade) * 4.0; }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" "+this.salary;

 }

 }// End of EmployeeObjectMachine

Figure 28: The Employee Object Machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

126

5.3.1 Derivation, Inheritance and Subtyping of the Employee
Class Machine

In Figure 26, we illustrate the inheritance relationship between the Person and Employee class.

Our ultimate goals in this section are the same as those outlined in section 5.2.1.

Definition 25: An extensible Employee Class-Machine (ECM) is a 10-tuple: (eΛΛ, eS”,

eMOD, eTYPECM, eTIO, eM”, e¥, eCT, eτ, e∆), where:

All the assumptions made within definition 24 holds as well in the case of the ECM. Hence, we

shall not be repeating them here.

• eS” (covered with examples in section 5.3.1.1)

• eM” (covered with examples in section 5.3.1.2)

• e¥ (covered with examples in section 5.3.1.3)

• eCT (covered with examples in section 5.3.1.4)

• eτ and e∆ (covered with examples in section 5.3.1.5)

• eMOD and eTYPECM (illustrated with examples in section 5.3.1.3)

• eTIO (illustrated with examples in section 5.3.2)

5.3.1.1 Derivation of the ECM Class Variables

The goal of this section is the same as the one stated in section 5.2.1.1 save that it focuses on

the inheritance relationship depicted by Figure 26.

eS” = {} with respect to Figure 28

eS” = pS” ⊗ {} with respect to Figures 26 and 28

5.3.1.2 Derivation of the ECM Class Methods

To illustrate how the ECM inherites class methods which belongs to the PCM, this section

explores the approach covered in section 5.2.1.2.

eM” = {} for this case study with respect to Figure 28.

eM” = pM” ⊗ {} with respect to Figures 26 and 28.

5.3.1.3 Deriving a heterogeneous family of the ECM Object-
Machines

The goal of this section and the approach employed is the same as the one in section 5.2.1.3

except that it focuses on Figures 26 and 28.

e¥ = {EOM, POM}

EOM = (eID, eS, eM) is the employee object-machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

127

eS’ = {((salary : double) private), ((totalHoursWorked : double) private), ((grade :

int) private)} i.e. with reference to Figure 28

eS’ = pS’ ⊗ {((salary : double) private), ((totalHoursWorked : double) private),

((grade : int) private)}

eS = eS’ ∪ eS”

eM’ = {getRatePerHour, computeMonthlySalary} with respect to Figure 28.

eM’ = pM’ ⊗ {getRatePerHour, computeMonthlySalary} based on Figures 26 and 28

eM = eM’ ∪ eM”

e¥ = p¥ ⊗ {EOM, POM} based on Figures 26 and 28

5.3.1.4 Derivation of the ECM Class Constructors

eCT = {EmployeeObjectMachine(), EmployeeObjectMachine(String, String, int, String, double,

int)} i.e. based on Figure 28.

eCT = pCT ⊗{EmployeeObjectMachine(), EmployeeObjectMachine(String, String, int, String,

double, int)}

5.3.1.5 Derivation of the ECM Interface

eτ = (eIID, eIM)

eτ = EmployeeInterface based on Figure 27

e∆: EmployeeInterface OM, where:

OM ∈ e¥ and (OM ↑ EmployeeInterface) iff (eIM ⊆ eM) holds true with respect to earlier

discussions in section 4.3.6.

Given that pM ⊆ eIM due to the mechanism of inheritance i.e. since (eIM ⊆ eM)

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

128

5.3.2 Testing an Heterogeneous Family of Employee Object
Machines

This section shares the same goal as section 5.2.2. In particular, the goal is to exercise every

unique method of the EOM under test in e¥.

5.3.2.1 Testing Method getRatePerHour in the Unchanged,
Error and Goal State Testing Modes

First, in this section, the form and behaviour of the getRatePerHour method under test is

presented. The same approach illustrated in section 5.2.2.1 is then used to test method

getRatePerHour in the unchanged, error and goal state testing modes of the CM testing

technique.

getRatePerHour (modgetRatePerHour, GuardgetRatePerHour) : eS x inPTgetRatePerHour → (eS*, outPTgetRatePerHour,

nextOMSIgetRatePerHour)

where:

modgetRatePerHour = public with respect to Figures 27 and 28

GuardgetRatePerHour = (UgetRatePerHour, EgetRatePerHour, GgetRatePerHour).

 UgetRatePerHour ⊆ USPM = {getRatePerHourUSP1}

EgetRatePerHour ⊆ ESPM = {getRatePerHourESP1, getRatePerHourESP2, getRatePerHourESP3}

GgetRatePerHour ⊆ GSPM = {getRatePerHourGSP1, getRatePerHourGSP2,

getRatePerHourGSP3}

eS = {(salary = 0.0), (totalHoursWorked = 0.0), (grade = 0)}

inPTgetRatePerHour = {int}

The same explanation in section 5.2.2.1 with respect to pS* applies to eS* in this section.

outPTgetRatePerHour = double

nextOMSIgetRatePerHour operates in the same way as described earlier, in section 5.2.2.1

In sections 5.3.2.1.1, 5.3.2.1.2 and 5.3.2.1.3 we discussed the behaviour of each unique

precondition method in UgetRatePerHour, EgetRatePerHour and GgetRatePerHour in the relevant testing

modes of the EOM (i.e. with respect to Figure 28).

5.3.2.1.1 The GetRatePerHour Unchanged State Precondition
Method

Given that the grade attribute of the EOM depicted by Figure 28 has a default value of zero, if

the input or test case value supplied by the user is zero when method getRatePerHour is under

test in the unchanged state testing mode, it remains that the memory value and/or state of the

grade attribute of the EOM would remain unchanged as a consequence of the fact that the

supplied input value by the user is exactly the same as the current default value of the grade

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

129

attribute. The emphasis in this testing mode revolves around the state encapsulating variable

under consideration (i.e. the grade attribute in this context) remaining unchanged with respect

to its memory value when method getRatePerHour eventually get exercised at run time with the

supplied user test input:

private PreConditionTestObject getRatePerHourUSP1()

 {

 grade = 0; //Test Case

 if(grade == 0) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

5.3.2.1.2 The GetRatePerHour Error State Precondition
Methods

Here, one of the test cases used in the error state testing mode overlaps the last one (i.e. in the

unchanged state testing mode). This is because the user supplied test input does violate the

constraints, and assumptions that were embodied within the design of the EOM; since (as

depicted in Table 3) an error occurs when the input value of the grade attribute satisfies

[(grade == 0) || (grade < 0) || (grade > 3)]. When the user test input

falls within any of these ranges, method getRatePerHour drives the EOM into an error state:

private PreConditionTestObject getRatePerHourESP1()

 {

 grade = 0; //Test Case

 if(grade == 0) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

130

private PreConditionTestObject getRatePerHourESP2()

 {

 grade = -1; //Test Case

 if(grade < 0) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourESP3()

 {

 grade = 7; //Test Case

 if(grade > 3) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

5.3.2.1.3 The GetRatePerHour Goal State Precondition
Methods

In the goal state testing mode, method getRatePerHour drives the EOM into goal state when the

user test input satisfies [(grade == 1) || (grade == 2) || (grade == 3)].

private PreConditionTestObject getRatePerHourGSP1()

 {

 grade = 1; //Test Case

 if(grade == 1) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

131

private PreConditionTestObject getRatePerHourGSP2()

 {

 grade = 2; //Test Case

 if(grade == 2) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject getRatePerHourGSP3()

 {

 grade = 3; //Test Case

 if(grade ==3) //Boolean Expression

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

5.3.2.2 Testing Method computeMonthlySalary in the
Unchanged, Error and Goal State Testing Modes

computeMonthlySalary (modcomputeMonthlySalary, GuardcomputeMonthlySalary) : eS x inPTcomputeMonthlySalary → (eS*,

outPTcomputeMonthlySalary, nextOMSIcomputeMonthlySalary), where:

modcomputeMonthlySalary = public with respect to Figures 27 and 28

GuardcomputeMonthlySalary = (UcomputeMonthlySalary, EcomputeMonthlySalary, GcomputeMonthlySalary)

UcomputeMonthlySalary ⊆ USPM = {computeMonthlySalaryUSP1}

EcomputeMonthlySalary ⊆ ESPM = {computeMonthlySalaryESP1, computeMonthlySalaryESP2,

computeMonthlySalaryESP3}

GcomputeMonthlySalary ⊆ GSPM = {computeMonthlySalaryGSP1, computeMonthlySalaryGSP2,

computeMonthlySalaryGSP3}

eS = {(salary = 0.0), (totalHoursWorked = 0.0), (grade = 0)}

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

132

inPTcomputeMonthlySalary = {double, int}

outPTcomputeMonthlySalary = void

nextOMSIcomputeMonthlySalary operates in the same way as described earlier, in section 5.2.2.1

In section 5.3.2.2.1, 5.3.2.2.2 and 5.3.2.2.3 we present the behaviour of each unique

precondition method in UcomputeMonthlySalary, EcomputeMonthlySalary and GcomputeMonthlySalary in the

relevant testing modes of the EOM (i.e. with respect to Figure 28).

5.3.2.2.1 The computeMonthlySalary Unchanged State
Precondition Method

In order to compute monthly salary for a given employee in the EOM system, the method

computeMonthlySalary takes two arguments: totalHoursWorked and grade, as depicted

in Figure 28. It then calculates the salary of the employee based on this specified information.

By default both totalHoursWorked and grade have zero memory values. Hence, in the

unchanged state testing mode of the EOM, if the supplied user input value is zero for both

totalHoursWorked and grade, the memory state of totalHoursWorked and grade

will remain unchanged as a consequence of the fact that the supplied user input values are the

same as the current default values for both totalHoursWorked and grade:

private PreConditionTestObject computeMonthlySalaryUSP1()

 {

 totalHoursWorked = 0 ; //Test Case

 grade = 0; //Test Case

 if((totalHoursWorked == 0) && (grade == 0)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

133

5.3.2.2.2 The computeMonthlySalary Error State
Precondition Methods

In the error state testing mode, method computeMonthlySalary will drive the EOM into an error

state if user test input satisfies [(totalHoursWorked < 0)] and [(grade == 0)

|| (grade < 0) || (grade > 3)]:

private PreConditionTestObject computeMonthlySalaryESP1()

 {

 totalHoursWorked = -2 ; //Test Case

 grade = 0; //Test Case

 if((totalHoursWorked < 0) && (grade == 0)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject computeMonthlySalaryESP2()

 {

 totalHoursWorked = -4 ; //Test Case

 grade = -1; //Test Case

 if((totalHoursWorked < 0) && (grade < 0)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

134

private PreConditionTestObject computeMonthlySalaryESP3()

 {

 totalHoursWorked = -6 ; //Test Case

 grade = 10; //Test Case

 if((totalHoursWorked < 0) && (grade > 3)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

5.3.2.2.3 The computeMonthlySalary Goal State Precondition
Methods

In the goal state testing mode, method computeMonthlySalary will drive the EOM into goal

state if user test input satisfies [(totalHoursWorked == 0) ||

(totalHoursWorked > 0)] and [(grade == 1) || (grade == 2) ||

(grade == 3)]:

private PreConditionTestObject computeMonthlySalaryGSP1()

 {

 totalHoursWorked = 0; //Test Case

 grade = 1; //Test Case

 if((totalHoursWorked == 0) && (grade == 1)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

135

private PreConditionTestObject computeMonthlySalaryGSP2()

 {

 totalHoursWorked = 30 ; //Test Case

 grade = 2; //Test Case

 if((totalHoursWorked == 30) && (grade == 2)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject computeMonthlySalaryGSP3()

 {

 totalHoursWorked = 48 ; //Test Case

 grade = 3; //Test Case

 if((totalHoursWorked == 48) && (grade == 3)) //Boolean Expression

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

5.4 The Objective of the Stack Case Study

In this study, we want to show how our model handles a class that takes a generic parameter,

and Stack is a well-known simple example of this. One important objective of this study is to

illustrate a bounded Stack that records a finite array of object items. In particular, for the Stack

case study we have chosen to make the push operation take an array of objects as parameter,

rather than just a single object as is conventional, this decision is a reasonable one (i.e. as will

become apparent later in the course of the study) in terms of the features of the Object-Machine

and Class-Machine model that we want to illustrate. For instance, an important feature of the

Stack case study is that, because the push operation takes an array of objects as a parameter

rather than the conventional arrangement of it taking just a single object, there are two

different conditions under which this method may not change the state of the Stack and this

design for the case study has been chosen to illustrate a situation where a method might have

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

136

more than one unchanged state precondition. One of these conditions is the state where the

stack is already full, and the other is the case where the parameter is an empty array.

public interface StackInterface

 {

 public void push(Object[] elem);

 public Object pop();

 public Object top();

 public List<Object> convertArrayToList(Object[] objectArray);

 }

Figure 29: The Stack Interface

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

137

import java.util.List;

import java.util.ArrayList;

public class StackObjectMachine implements StackInterface {

 private static int INITIAL_ALLOC = 3;

 private int alloc;

 protected int count;

 protected List<Object> items;

/** Constructs a Stack with initial allocation of 3. */

 public StackObjectMachine() {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 }

 public void push(Object[] elem)

 {

 Object[] itemValues = items.toArray();

 if(!(elem == null))

 {

 for(int i=0; i < elem.length; i++)

 itemValues[count++] = elem[i];

 }

 items = convertArrayToList(itemValues);

}

 public Object pop()

 { Object popedValue = new Object(); Object[] itemValues = items.toArray(); popedValue = itemValues[--count]; items = convertArrayToList(itemValues);

 return popedValue; }

 public Object top()

 { Object topValue = new Object(); Object[] itemValues = items.toArray(); topValue = itemValues[count - 1]; return topValue; }

 public List<Object> convertArrayToList(Object[] objectArray)

 {

 List<Object> list = new ArrayList<Object>();

 for(Object o: objectArray)

 {

 list.add(o);

 }

 return list;

 }

}//End of class StackObjectMachine

Figure 30: The Stack Object Machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

138

For the stack case study depicted by Figure 30, the following design decisions and constraints

were assumed:

• A typical stack object-machine in our model specification system is assumed to be

allocated a fixed memory capacity. That is we use the state variable alloc to encapsulate

the allocated memory capacity for the stack object-machine under test; where alloc =

INITIAL_ALLOC and INITIAL_ALLOC = 3. Hence, in our model stack object-machine

system, the state variable INITIAL_ALLOC is a memory location whose data value is

fixed for all specific instances of the stack object-machine under test. Furthermore, in

order to keep track of the size of the stack object-machine under test, we use the state

variable count. Also, in the same spirit, the state encapsulating variable items in our

stack model system represents the bounded stack with initial memory capacity for all

possible object items that can be stored in items.

• The state attributes INITIAL_ALLOC, alloc and count are designed as memory locations

in the bounded stack machine to hold data values of type Integer alone.

• The state attribute items is designed as memory location in the stack machine to hold

data value of type List<Object> i.e. list of objects alone.

• All the state attributes of the bounded stack machines system (INITIAL_ALLOC, alloc,

count and items) have their individual and/or respective initial default memory data

values which form the stack’s initial memory state configuration.

• From the above stack’s initial memory state configuration, we say that any one of a

finite set of constructor functions denoted stackCT can be used for initialising the

state(s) of the stack system so that the default memory data values of the stack machine

system are subsequently updated with the new input data values supplied by the

triggered constructor fuction(s).

• The stack class-machines system has a finite set of process functions or methods

partitioned into observer methods (e.g. top) and mutator methods (e.g. push, pop and

convertArrayToList) which can be used dynamically for manipulating the changing

memory state(s) of the stack object-machine, depending on whether unchanged state

precondition methods (uspm ∈ USPM) were fired or error state precondition methods

(espm ∈ ESPM) were triggered or goal state precondition methods (gspm ∈ GSPM)

were invoked. This is because every processing function or method in the bounded stack

system is guarded by the three different types of precondition methods i.e. USPM and

ESPM and GSPM.

Given the description above for our bounded stack machine system, below we provide a list of

possible operations that can be performed on the bounded stack machine:

• An array of object items can be pushed into the memory of the bounded stack object-

machine under test (i.e. through dynamic invocation and/or execution of the processing

function or method push). The push operation inserts the top object element into this

stack machine.

• Users can elect to remove i.e. pop the top object element from the bounded stack

machine (i.e. through dynamic invocation and/or execution of the processing function or

method pop). The pop operation removes the top object element from this stack

machine.

• The top operation returns the top object element of this stack machine (i.e. through

dynamic invocation and execution of the processing function or method top).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

139

5.4.1 The Stack Class Machine

Figures 29 and 30 represent the interface and concrete implemention of the bounded stack

model specification system respectively (i.e. with respect to definition 26). In this section, the

Stack Class-Machine is illustrated using the same approach in sections 5.2.1 and 5.3.1 (save

that, this time, there is no inheritance involve).

Definition 26: An extensible Stack Class-Machine (STKCM) is a 10-tuple: (stackΛΛ,

stackS”, stackMOD, stackTYPECM, stackTIO, stackM”, stack¥, stackCT, stackτ, stack∆), where:

All the assumptions made within definitions 24 and 25 holds as well in the case of the STKCM.

Hence, we shall not be repeating them here.

• stackS” (covered with examples in section 5.4.1.1)

• stackM” (covered with examples in section 5.4.1.2)

• stack¥ (covered with examples in section 5.4.1.3)

• stackCT (covered with examples in section 5.4.1.4)

• stackτ and stack∆ (covered with examples in section 5.4.1.5)

• stackMOD and stackTYPECM (illustrated with examples in sections 5.4.1.1 and 5.4.1.3)

• stackTIO (illustrated with examples in section 5.4.2)

5.4.1.1 The STKCM Class Variables

stackS” = {((INITIAL_ALLOC : int) private)} with respect to Figure 30

5.4.1.2 The STKCM Class Methods

stackM” = {} for this case study with respect to Figure 30

5.4.1.3 Heterogeneous family of the STKCM Object-
Machines

stack¥ = {STKOM}, where:

STKOM = (stkID, stkS, stkM)

stkS’ = {((alloc : int) private), ((count : int) protected), ((items : List<Object>)

protected)} based on Figure 30

stkS = stkS’ ∪ stkS”

stkM’ = {push(Object[]), pop(), top(), convertArrayToList(Object[])} with respect to Figure 30

stkM = stkM’ ∪ stkM”

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

140

5.4.1.4 The STKCM Class Constructors

stackCT = {StackObjectMachine()} i.e. with respect to Figure 30

5.4.1.5 The STKCM Class Interface

stackτ = (stkIID, stkIM), where:

stackτ = StackInterface based on Figure 29

stack∆: StackInterface OM, where:

OM ∈ stack¥ and (OM ↑ StackInterface) iff (stkIM ⊆ stkM) holds true.

Note that to avoid repetition this section assumes that the reader is familiar with the style and

meaning of the notation used above following our earlier work in section 4.3.6.

5.4.2 Testing an Heterogeneous Family of Stack Object
Machines

Again, this section shares the same goal as section 5.2.2. Similarly, as in section 5.3.2, the goal

is to exercise every unique method of the STKOM under test in stack¥.

5.4.2.1 Testing Method Push in the Unchanged, Error and
Goal State Testing Modes

push (modpush, Guardpush) : stkS x inPTpush → (stkS*, outPTpush, nextOMSIpush), where:

modpush = public with respect to Figure 30

Guardpush = (Upush, Epush, Gpush).

Upush ⊆ USPM = {pushUSP1, pushUSP2}

Epush ⊆ ESPM = {pushESP1}

Gpush ⊆ GSPM = {pushGSP1, pushGSP2}

stkS = {(INITIAL_ALLOC = 3), (alloc = INITIAL_ALLOC), (count = 0), items =

convertArrayToList(new Object[alloc])} based on Figure 30

inPTpush = { Object[] } based on Figure 30

The same explanation in section 5.2.2.1 with respect to pS* applies to stkS* in this section

outPTpush = void based on Figure 30

nextOMSIpush operates in the same way as described in section 5.2.2.1

In section 5.4.2.1.1, 5.4.2.1.2 and 5.4.2.1.3 we discuss the behaviour of each unique

precondition method in Upush, Epush and Gpush in the relevant testing modes of the STKOM (i.e.

with respect to Figure 30):

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

141

5.4.2.1.1 The Push Unchanged State Precondition Methods

In this section, our goal is to illustrate that pushUSP1() and pushUSP2() embodies two

different conditions under which they may not change the dynamic memory state of the

STKOM. In particular, pushUSP1() encapsulate the condition where the parameter is an

empty array while pushUSP2() encapsulate the condition where the stack is already full:

private PreConditionTestObject pushUSP1()

 {

 // Initial State of the Stack Object Machine

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 push(new Object[]{}); //Test Case

 if(count == 0) //Boolean Expression

 {

 Object[] testInput = {new Object[]{}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject pushUSP2()

 {

 // Initial states of the Stack Object Machine

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 //Test Cases

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 BankAccountTest bankAccount = new BankAccountTest(); // see Appendix A.1.4 for this

 push(new Object[]{person,student, employee, bankAccount});

 if(count > alloc) //Boolean Expression

 {

 Object[] testInput = {new Object[]{person,student, employee, bankAccount}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

142

5.4.2.1.2 The Push Error State Precondition Method

In this section, our goal is to illustrate that pushESP1()encapsulate the condition i.e. count

> alloc under which the STKOM will be driven into an error memory state. While

pushESP1() and pushUSP2()overlaps, the emphasy in this testing mode is to ensure that

the STKOM is driven into an error memory state when pushESP1() is exercised at run time.

private PreConditionTestObject pushESP1()

 {

 // Initial states of the Stack Object Machine

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 //Test Cases

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 BankAccountTest bankAccount = new BankAccountTest(); // see Appendix A.1.4 for this

 push(new Object[]{person,student, employee, bankAccount});

 if(count > alloc) //Boolean Expression

 {

 Object[] testInput = {new Object[]{person,student, employee, bankAccount}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

143

5.4.2.1.3 The Push Goal State Precondition Methods

In this section, our goal is to illustrate that pushGSP1()and pushGSP2()embodies two

conditions under which the STKOM will be driven into acceptable dynamic memory state.

private PreConditionTestObject pushGSP1()

 {

 // Initial states of the Stack Object Machine

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 //Test Cases

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 push(new Object[]{person,student, employee});

 if(count == alloc) //Boolean Expression

 {

 Object[] testInput = {new Object[]{person,student, employee}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject pushGSP2()

 {

 // Initial states of the Stack Object Machine

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 //Test Cases

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 push(new Object[]{person,student});

 if(count < alloc) //Boolean Expression

 {

 Object[] testInput = {new Object[]{person,student}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

While pushUSP1() and pushESP1() both have overlapping preconditions, they are

however considered in different testing modes (i.e. the unchanged and error modes

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

144

respectively) with focus directed towards different emphasis in the different testing modes of

the STKCM. That is, the memory of the state encapsulating variable under consideration

remains unchanged when pushUSP1()is exercised, whereas method push drives the STKOM

into error state when pushESP1()is exercised at run time.

Hence, as illustrated in sections 5.4.2.1.1, 5.4.2.1.2 and 5.4.2.1.3, each unique precondition

method in Upush, Epush and Gpush will drive the STKOM from an initial memory state stkS to a

modified memory state stkS* after consuming a finite set of inputs from an environment when

method push is exercised at run time. To exhaustively test method push in the different testing

modes of the STKCM, all the generated and saved test cases from each unique precondition

method in Upush, Epush and Gpush shown above are then applied on method push automatically at

run time to observe if each unique memory encapsulating variable in stkS’ and stkS” are

holding the correct memory values or not; this is done in order to verify and establish that the

STKOM under test is in a valid state or not.

To exhaustively test method pop(), top() and convertArrayToList(Object[]) in the unchanged,

error and goal state testing modes of the STKCM with respect to Figure 30, the same approach

described for method push(Object[]) is used (see Appendix A.5.1 for complete result of this).

 5.5 Summary

In this chapter we considered three case studies: Student, Employee and Stack. We used the

first two studies (Student and Employee) to illustrate the mechanism of inheritance that can be

found in object-oriented languages. Finally, the Stack case study was used to illustrate how our

model handles a class that takes a generic parameter. We then used the testing method

described in chapter 4 to illustrate how each unique method of the Student, Employee and Stack

machines can be tested using our proposed approach in the unchanged, error and goal state

testing modes.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

145

Chapter 6: The Class Machines Friend Function
System Model

6.1. Introduction

In object oriented languages such as Java and C++ state encapsulating variables i.e. instance

and class variables have their own declared type of access modifiers when they are specified

statically (section 3.2.4 illustrates access levels in Java and the impact that they have on

variables that encapsulate states).

The role of encapsulation is to allow an object’s state to be separated from its behaviour thus

preventing possible modification to the memory state(s) of its attributes by some external

communicating objects (e.g. objects of derived subclasses or collaborating objects of classes

defined outside the class under test).

In this chapter, we argue that although object oriented programming languages offers the ability

to conceal information through the encapsulation mechanism, while this concealment is useful,

it also has undesirable effects for testing.

The problem here is that during testing, these modifiers have a serious impact on how the

correct memory state of the object can be debugged, verified and tested. This problem is made

more complicated when inheritance is involved. This is because some instance and class

variables belonging to some parent classes may not be visible to their corresponding child

classes. For example, in section 4.3.3.1.1, every unique state encapsulating variable in pS’ is

mapped to a “private” modifier. Consequently, only the state variables in pS which are mapped

to “public” modifiers will be directly visible to stS and eS (respectively covered in sections

5.2.1.3 and 5.3.1.3) due to the mechanism of inheritance.

Similarly, some instance and class methods belonging to some parent classes may not be visible

to their corresponding child classes. On top of this stated problem, some functions with respect

to a given object or class under test within their own definitions may be composed of a chain of

other functions in order for their own definitions to be complete.

In the presence of encapsulation it will be extremely difficult for the test engineer to debug,

verify and completely test the different memory states of the object or class under test from run

to completion when such functions are exercised at run time. Hence, making it extremely

difficult for the test engineer to achieve complete state coverage for a given parent class and/or

subclass object under test (nor will s/he be able to draw very sound and accurate inferences on

the object-oriented system under test after testing has been completed).

To address these problems, this chapter proposes a novel framework formalism that has

complete visibility on all the encapsulated memory states of the instance and class variables of

a given object or class under test. We call this the Class Machine Friend Function (CMƒƒ)

and describe it in detail in the next section.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

146

6.2 The CMƒƒ Machine

Earlier in sections 4.3 and 4.3.3.1, we introduced the theoretical definitions of our proposed

Class-Machine (CM) and Object-Machine (OM) models and all the relevant components of

these two machines explained with supporting examples. This section assumes that the reader is

familiar with all the components of the CM and OM. Hence, we shall not be redefining them

here.

In the Class-Machine model, the structure of a Class-Machine is given by CM = (ΛΛ, S”,

MOD, TYPECM, TIO, M”, ¥, CT, τ, ∆). Our ultimate goal during testing is to test every method

of the OM ∈ ¥, where the structure of an Object-Machine is given by OM = (ID, S, M).

Shidden ⊆ S is the finite set of hidden state encapsulating variables i.e. instance and class

variables that cannot be seen outside the OM system under test (e.g. derived Object-Machines

of the OM system under test).

Svisible ⊆ S is the finite set of visible state encapsulating variables i.e. instance and class

variables that can be seen outside the OM system under test (e.g. derived Object-Machines of

the OM system under test). Hence, Shidden ∩ Svisible = ∅ holds.

Mhidden ⊆ M is the finite set of hidden methods i.e. instance and class methods. These types of

methods cannot be seen by derived Object-Machines of the OM system under test.

Mvisible ⊆ M is the finite set of visible methods i.e. instance and class methods. These types of

methods will be visible to derived Object-Machines of the OM system under test. Again, as

above, Mhidden ∩ Mvisible = ∅ holds.

Note: that while different element of MOD (from section 4.3) assigned to each unique element

in Shidden, Svisible, Mhidden and Mvisible might have different interpretations in different contexts,

their overall effect for any given attribute (variable or method) will be that from a given context

this attribute will either be visible or be hidden.

So, given the background above, in this section, we are extending the CM model introduced in

section 4.3 to describe the effects of these modifiers:

(i) We are assuming that, in any given context, the effect of a modifier is to make the

corresponding attribute either “hidden” or “visible”, which can be represented by a type

“visibility” that just has these two values.

(ii) These two visibility values have the effect of partitioning each of S and M into two

subsets, where the significance of describing it as a partition is the usual one, namely that the

two subsets are disjoint, and their union is equal to the original set.

(iii) Hence, the visibility of any attribute in a given context is determined by applying this

visibility function to the modifier produced by the mapping S or M as appropriate, and the result

of this application of the visibility function is to produce a result that determines which of the

two partitions the attribute is in.

Now, because it is possible for certain state variables Shidden and methods Mhidden to be hidden

away with modifiers, the consequence of this is that the test engineer would not be able to

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

147

directly observe and/or verify if the OM under test is in the correct next memory state when

method f ∈ M get exercised at run time.

To address these problems, this thesis proposed another specialised machine called the CMƒƒ;

whose prime purpose is to break encapsulation by allowing CMƒƒ to have complete visibility

on all the encapsulated state variables Shidden and methods Mhidden of the OM during testing.

Definition 27 The CMƒƒ is a triple of functions given by: CMƒƒ = (Я, Ξ, Ж), where:

Я is the function that converts every uniquely hidden state encapsulating variable in Shidden to a

public non-hidden state variable. The result is a modified Shidden (i.e. Shidden
ω
):

Я: Shidden → Shidden
ω

Ξ is the function that converts every uniquely hidden method in Mhidden to a public non-hidden

method. The result is a modified Mhidden (i.e. Mhidden
ω
):

Ξ: Mhidden → Mhidden
ω

Earlier, prior to the functions Я and Ξ being applied on the OM under test, the OM is given by

OM = (ID, S, M).

After the application of the functions Я and Ξ on the OM under test, the OM is then defined as

OM = (ID, ST, M
ω
), where:

ST = Svisible ∪ Shidden
ω
 i.e. S becomes ST. Now, every unique element of ST has a public

modifier

M
ω
 = Mvisible ∪ Mhidden

ω
 i.e. M becomes M

ω
. Again, every unique element of M

ω
 has a public

modifier

Note that specifically, what these functions (i.e. Я and Ξ) are assuming is that there is always

some modifier that, in a given context, will map into the visibility “visible” – usually this

modifier is called “public”, of course, because the normal understanding of this modifier is that

it maps into “visible” in every execution context. Thus, in terms of the description above, what

these functions are really doing is changing the mappings S and M, so that they always produce

the modifier “public”, and then the effect is that all of the attributes will end up in Svisible or

Mvisible as appropriate, and Shidden and Mhidden will both be empty.

Recall that in section 4.3 the form, dynamic behavior and testing of each unique method k ∈ M
ω

of the OM under test was fully explained.

In order to dynamically observe the different memory state(s) that the OM can be driven into in

the unchanged, error and goal state testing modes of the CM testing technique i.e. for each

unique method k ∈ M
ω
 that gets exercised at run time, the function Ж from above in the CMƒƒ

operates as follows:

Ж : OM → α(ffKey, ffValue), where:

OM = (ID, ST, M
ω
) covered above

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

148

α(ffKey, ffValue) is a map with the form α(KEY, VALUE) pair structure.

ffKey = (CMS, CAM, CAPM, CATIO) is the friend function key

CMS is the current memory state of instance and class variables in ST of the OM under test

CAM is the current active method i.e. k ∈ M
ω
 of the OM under test

CAPM is the current active precondition method in Uk or Ek or Gk for the OM under test i.e.

depending on the testing mode of the CM; since method k is guarded by Uk, Ek and Gk.

CATIO is the current active test input object generated from exercising a precondition method

in Uk or Ek or Gk for the OM under test

ffValue = (CAMO, NTS) is the friend function value

CAMO is the current active method’s output for the OM under test i.e. the type of output

generated when method k is exercised with the test case that was saved inside CATIO.

NTS is the next transition state for the OM under test i.e. the modified memory state for all the

state encapsulating variables in ST when method k is exercised at run time.

Hence, following the form and behaviour of the function Ж shown above for a given OM under

test, the complete transition from run to completion of every unique method k ∈ M
ω
 and the

corresponding changing memory states of all state encapsulating variables var ∈ ST i.e. as a

consequence of exercising method k at run time would be made visible by the CMƒƒ in the

unchanged, error and goal state testing modes of the CM testing technique.

The effect of the changes produced by applying CMƒƒ to a class machine CM is to produce a

machine in which every transition is identical to the corresponding transition of the original

machine, and similarly for the corresponding object machines, because the context in which the

new machines are run does not try to make any changes to state variables or invocations of

methods that previously would have been prevented by the modifiers.

The Java implementation code embodying the concept behind the Ж function discussed above

is presented in Figure 31 (Please see Appendix A.3 for the complete Java source code that

embodies our CMƒƒ concept). As an example, in the unchanged state testing mode of the CM

testing technique, the Ж function is implemented as what is shown in Figure 31. The yellow

arrow in Figure 31 indicates the part of the code where all the unchanged state precondition

methods USPM where generated from.

In particular, in order for the reader to fully see the part of our program code where we are

changing the mappings Shidden and Mhidden to the modifier “public”, the attention of the reader is

called to the full program code in Appendix A.3.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

149

In the unchanged state testing mode of the CMƒƒ, the above Java source code in summary

allows the test enginner to be able to verify whether the OM under test is in a correct state or

not i.e. does variables encapsulating the state(s) and/or distributed memory of the OM system

under test hold the correct internal memory and/or variable values? So that from a given

current and/or initial memory state(s) of the OM system under test, the above program code

displays:

• The initial memory values for all the variables var ∈ ST encapsulating the memory

and/or states of the OM system under test

• The current active method (i.e. the method k ∈ M
ω
 that was triggered during testing)

• the current active test input object (i.e. the automatically generated test input object that

applies to method k ∈ M
ω
 during testing)

• The current triggered precondition method i.e. the precondition method that was fired

when method k ∈ M
ω
 was exercised i.e. uspm ∈ Uk (this is the finite set of unchanged

state precondition method guarding method k) in order to verify and/or establish why

the OM is in the state that it is or whether there is a fault, exception that was raised to

put the OM under test to the current state that it is now in

• The result generated by current active method (i.e. the type of output computed by

method k ∈ M
ω
 during testing)

public Map getUnchangedStateTransitionFunction(ClassMachine myClass)

 {

 Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine();

 Object imp = generateNewObjectMachine(compiledObjectMachine);

 TestObject testObject = myClass.getTestObject();

 String[] usPreCondMethodNames = getUnchangedStatePreConditionMethodNames(testObject);

 Map profile = myClass.getObjectMachineType();

 String[] currentObjectState = getCurrentObjectState(imp);

 Map<TransitionFunctionKey, TransitionFunctionValue> unchangedStateTransitionFunction = new

HashMap<TransitionFunctionKey, TransitionFunctionValue>();

 for(String preMethod : usPreCondMethodNames)

 {

 for (Method preCondMethod : imp.getClass().getDeclaredMethods())

 {

 if(preCondMethod.getName().equals(preMethod))

 {

 try{

 preCondMethod.setAccessible(true);

 Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{});

 PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput;

 String usObjectMachineMethodName = (String) profile.get(preMethod);

 Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput());

 String[] nextObjectMachineState = getCurrentObjectState(imp);

TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState,

usObjectMachineMethodName, preMethod, pto.getTestInput());

TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState);

unchangedStateTransitionFunction.put(tKey, tValue);

 }catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 return unchangedStateTransitionFunction;

 }// End of getUnchangedStateTransitionFunction

Figure 31: Java implementation of the Ж function in the unchanged state testing mode

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

150

• The next object-machines transition state (i.e. the modified memory states and/or values

that each unique variable var ∈ ST will assume as a consequence of invoking method k

∈ M
ω
 at run time)

6.3 On the Power of Reflection in the Java Language

The mechanism of reflection in the Java Programming Language is a relatively advanced

feature crucially designed to be explored by software engineers who have a strong grasp of the

fundamentals of the language. Overall, the mechanism of reflection in its own original form can

be viewed as a rather powerful technique that can enable application programs to perform

operations which would otherwise be impossible. The Java reflection API represents (i.e. or

reflects) the classes, interfaces, and objects in the Java Virtual Machine. With the Java

reflection API, software engineers can easily obtain useful information about a class’s

modifiers, fields (i.e. attributes of a class), methods, constructors, and superclasses (i.e. as a

consequence of inheritance). The Java reflection API is useful for writing development tools

such as debuggers, class browsers, and GUI builders.

Thus, further to all of the afore-mentioned benefits afforded through dynamic exploration,

integration and application of the power of reflection in concrete object-oriented

implementations that address requisite real world scenarios and/or problems, our goal here is to

use the power of reflection to harness our own notion of the class-machine friend (i.e. CMƒƒ)

discussed earlier.

To do this, we developed a generic framework class in the java programming language (i.e.

called ReflectionUtil.java) to enable us to reflect and/or obtain all useful information about a

class’s modifiers, fields (i.e. attributes of a class), methods, constructors, and superclasses (i.e.

as a consequence of inheritance).

Furthermore, in order to test and generate some results as an example whilst exploring i.e.

ReflectionUtil.java (for this see Figure 32) we developed a driver class (i.e. called Main.java).

This driver class was fed during testing with four different concrete object-machine

implementations outlined herein below:

• The stack object-machine called StackTest.java (see section 5.4 for this)

• The person object-machine called PersonObjectMachineTest.java (see section 4.2.6 for

this)

• The student object-machine called StudentObjectMachineTest.java (see section 5.2 for

this)

• The employee object-machine called EmployeeObjectMachineTest.java (see section 5.3

for this)

The results generated following compilation and execution of the Main.java class i.e. see Figure

33 for this at runtime were consequently displayed using the DOS command line window in

Figures 34, 35, 36 and 37. The ReflectionUtil.java class depicted by Figure 32 reflect all locally

available and inherited constructors, attributes and methods of the Person, Student, Employee

and Stack case studies discussed and presented earlier in chapters 4 and 5.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

151

import java.util.*;

import java.lang.reflect.Constructor;

import java.lang.reflect.Field;

import java.lang.reflect.Method;

public class ReflectionUtil {

 public ReflectionUtil()

 {

 // do nothing

 }

 public static List <Constructor> getDeclaredConstructors(Object object)

 {

 Class<?> clazz = object.getClass();

 List<Constructor> constructors = new ArrayList<Constructor>();

 do

 {

 try {

 constructors.addAll(Arrays.asList(clazz.getDeclaredConstructors()));

 } catch (Exception e) { }

 } while ((clazz = clazz.getSuperclass()) != null);

 return constructors;

 }

 public static List <Field> getDeclaredFields(Object object)

 {

 Class<?> clazz = object.getClass();

 List<Field> fields = new ArrayList<Field>();

 do

 {

 try {

 fields.addAll(Arrays.asList(clazz.getDeclaredFields()));

 } catch (Exception e) { }

 } while ((clazz = clazz.getSuperclass()) != null);

 return fields;

 }

 public static List <Method> getDeclaredMethods(Object object)

 {

 Class<?> clazz = object.getClass();

 List<Method> methods = new ArrayList<Method>();

 do

 {

 try {

 methods.addAll(Arrays.asList(clazz.getDeclaredMethods()));

 } catch (Exception e) { }

 } while ((clazz = clazz.getSuperclass()) != null);

 return methods;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

152

…

public void describeInstance(Object object) {

 //Class<?> clazz = object.getClass();

 //Constructor<?>[] constructors = this.getDeclaredConstructors(object);

 //Field[] fields = this.getDeclaredFields(object);

 //Method[] methods = this.getDeclaredMethods(object);

 List <Constructor> constructors = this.getDeclaredConstructors(object);

 List <Field> fields = this.getDeclaredFields(object);

 List <Method> methods = this.getDeclaredMethods(object);

 System.out.println();

 System.out.println("***");

 System.out.println("Description for class: " + object.getClass().getName());

 System.out.println("***");

 System.out.println();

 System.out.println();

 System.out.println("Summary");

 System.out.println("---");

 System.out.println("Constructors: " + (constructors.size()));

 System.out.println("Fields: " + (fields.size()));

 System.out.println("Methods: " + (methods.size()));

 System.out.println();

 System.out.println();

 System.out.println("Details");

 System.out.println("---");

 if (constructors.size() > 0) {

 System.out.println();

 System.out.println("All Constructors including Inherited ones:");

 System.out.println("---");

 Iterator iter = constructors.iterator();

 while(iter.hasNext()){

 System.out.print(iter.next());

 }

 }

 if (fields.size() > 0) {

 System.out.println();

 System.out.println();

 System.out.println("All Field's values including Inherited ones: ");

 System.out.println("---");

 Iterator iter = fields.iterator();

 while(iter.hasNext()){

 Field field = (Field) iter.next();

 System.out.print(field.getName());

 System.out.print(" = ");

 try {

 field.setAccessible(true);

 System.out.println(field.get(object));

 } catch (IllegalAccessException e) {

 System.out.println("(Exception Thrown: " + e + ")");

 }

 }

 }

 if (methods.size() > 0) {

 System.out.println();

 System.out.println("All Methods including Inherited ones:");

 System.out.println("---");

 Iterator iter = methods.iterator();

 while(iter.hasNext()){

 System.out.print(iter.next());

 }

 System.out.println();

 }

 }// End of describeInstance method

 }// End of Class ReflectionUtil

Figure 32: The ReflectionUtil.java class

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

153

import java.util.*;

public class Main

 {

 public static void main(String[] args) throws Exception

 {

 ReflectionUtil r = new ReflectionUtil();

 List<Object> personList = new ArrayList<Object>();

 StackTest machine1 = new StackTest();

 PersonObjectMachineTest machine2 = new PersonObjectMachineTest("John", "Ogunshile", 34, "MALE");

 StudentObjectMachineTest machine3 = new StudentObjectMachineTest("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachineTest machine4 = new EmployeeObjectMachineTest("JJ", "Dan", 22, "MALE", 30, 1);

 personList.add(machine1);

 personList.add(machine2);

 personList.add(machine3);

 personList.add(machine4);

 Iterator<Object> iter = personList.iterator();

 while(iter.hasNext())

 {

 r.describeInstance(iter.next());

 System.out.println();

 System.out.println();

 }

 }

 }

Figure 33: The Main.java class

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

154

Figure 34: The result of reflection on StackTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

155

Figure 35: The result of reflection on PersonObjectMachineTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

156

Figure 36: The result of reflection on StudentObjectMachineTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

157

Figure 37: The result of reflection on EmployeeObjectMachineTest.java

6.4 Summary

This chapter introduced and discussed a novel framework formalism that has complete visibility

on all the encapsulated methods, memory states of the instance and class variables of a given

object or class under test. We call this the Class Machine Friend Function (CMƒƒ). The

proposed approach has merit over existing automaton-based models like [2, 29, 30, 31, 32, 38,

55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] in that the CMƒƒ would allow the test engineer to

debug, test and verify the correct memory states of any OM or CM under test in the unchanged,

error and goal state testing modes. Hence, with the CMƒƒ it does not matter whether the

methods and variables encapsulating the memory states of a given OM or CM under test are

hidden or not since during testing the CMƒƒ machine will automatically make them visible. The

CMƒƒ produces a set of machines that behave in the same way as the originals (but, ofcourse

that also allow the test engineer to see what this behaviour is).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

158

Chapter 7: Automated Testing, Debugging,
Verification and Probabilistic Analysis with the
Class-Machine Testing Tool

7.1 Introduction

This chapter seeks to develop an automated testing tool as a proof of concept in order to further

show that the Class-Machine theoretical purity does not mitigate against practical concerns. To

achieve this goal, our attention in this chapter shall be directed towards ensuring that our

automaton-based framework formalism, our testing method based on this and all the theoretical

work prensented in chapter 4, in addition to the four different individual Class-Machines case

studies discussed, studied and presented in (chapters 4 and 5) and the CMƒƒ concept introduced

in chapter 6 are all exemplified in an automated testing tool. We shall refer to this tool as the

Class-Machine Testing Tool (CMTT). The rest of this chapter is organised as follows: section

7.2 below covers the design of the CMTT, section 7.3 covers testing, evaluation and

effectiveness of the CMTT and section 7.4 provides a short summary based on all the work

done in this chapter.

7.2 The Design of the CMTT

The CMTT is currently an Autonomous Graphical User Interface Tool in the Java Programming

Language (i.e our ultimate future goal is to make this available on a dedicated website on the

world wide web where registered users around the globe would be able to gain access to it and

then use it to test their concrete object-machine systems) consisting of four different individual

panels (i.e. The File Editor Panel, Precondition Generator Panel, Frogila Testing Tool Panel

and Run/Compilation Panel) each panel in turn specifically abstracting away a unique design

logic in a modular form to solve the overall design problem that we have in mind whilst

conceptualising the entire system. Now, by using the tab key via the keyboard on user’s

computer system, users can move back and forth from one panel to another. Furthermore, the

entire design structure of the system is consistent with the Model, View, Controller architectural

pattern that can be found in the Java Programming Language. The implementation and testing

of the CMTT was carried out using (The Programming Language: Java Platform, Standard

Edition 6 Release), (Computer Name: Toshiba), (Operating System Name: Microsoft Windows

XP Professional) and (Processor: x86 Family 6 Model 13 Stepping 6 Genuine Intel ~1695

Mhz).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

159

From the beginning of the CMTT’s File Editor Panel, test engineers and/or users of the system

can perform the following i.e. in a manner consistent with the workflow diagram shown in

Figure 38:

• Open File: Here, test engineers and/or users of the system can click on the File menu to

select and open the compiled java class that they want to subject to test. By default, the

CMTT implements a java filter which filters out all java classes from users current

directory thus allowing users of the system to select what class that they want to subject

to test from this directory. Upon selection of a valid java class file from the pop up

menu window, the CMTT then displays the selected file within the File Text Area of

the File Editor Panel.

• Edit and Save File: Here, further to earlier step, the CMTT users are allowed to peruse

the opened java file and then carryout any requisite processing and/or further

manipulation of the java class as required by the user i.e. as an example – activities

which concerns saving and editing the selected java file in question.

• Exit File: Here, as the name explicitly suggests any written, opened and compiled java

class file can be exited or closed when the exit or quit icon is clicked upon.

• File Text Area: Here, software engineers can use the file text area to write their own

java file from scratch, edit and save the file as they require.

The File Editor Panel

Open File

Edit and Save

File

Exit File

File Text

Area

Figure 38: The File Editor Panel workflow in the

CMTT

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

160

Figure 39: The Precondition Method Generator Panel workflow in the CMTT

While the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM

Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal state

precondition method’s testing mode (i.e. GSPM Mode) it performs and/or goes through the

following dynamic system routine steps based on the workflow pattern depicted in Figure 39:

1. Select Compiled Object-Machine (SCOM): Here, the CMTT allows users of the system to

click on the Upload Compiled Object-Machine button that can be found on the

Precondition Generator Panel. Now, upon users clicking on this button, a pop up window

is displayed on users computer screen; and because by default the CMTT implements a

compiled java class filter which filters out all compiled java class names ending with (e.g.

className.class) from users current directory thus allowing users of the system to select

what compiled java class that they want to generate precondition test object-machine for

i.e. from the list of displayed compiled java class names shown in users current directory. It

is crucial at this juncture to mention that all the required information needed to completely

test all the state variables and methods of the selected compiled object-machine with are

saved up inside the automatically generated precondition test object-machine.

2. Generate the Type of the Object-Machine (GTOM): Now, further to earlier step above, here,

the CMTT allows users of the system to click on the Generate Object-Machine Type

button that can be found on the Precondition Generator Panel i.e. in order for it to

automatically infer the type of the selected compiled object-machines system under test (i.e.

a finite set of method names derived from the selected compiled object-machines system).

Now, further to users of the system clicking on the afore-mentioned button above, an

automatically generated type is derived for the selected compiled object-machines system

under test and thus added and displayed inside a visible java JComboBox’s component i.e.

on the Precondition Generator Panel. The type of the selected compiled object-machines

system under test generated here are thus displayed as a finite set of processing functions

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

161

or methods. This approach is repeated for the selected compiled object-machines system

under test whilst the CMTT is in the unchanged state precondition method’s testing mode

(i.e. USPM Mode), the error state precondition method’s testing mode (i.e. ESPM Mode)

and the goal state precondition method’s testing mode (i.e. GSPM Mode).

3. Select a method (SAM): In this step the CMTT allows users of the system to repeatedly

select a method from the list containing the type of the selected compiled object-machines

system under test (i.e. all the method names automatically derived and stored inside the

visible java JComboBox’s component in earlier step above). The goal here is to allow users

to repeatedly select a method from the JComboBox of methods until such time when there

are no more methods available in the JComboBox for selection (i.e. every selected and

processed method is automatically removed from the JComboBox); so that the CMTT can

then use the Precondition Generator Panel to automatically generate a precondition

method’s template object for each of the methods selected from the visible java

JComboBox’s element. The template object referred to here is effectively a Java List object.

Now, let us assume that the selected method name above is mn and the precondition

template object that was automatically generated for method mn is PTOmn. Assume also that

we have a java Map function with the form Map<String, List>. We say here that the java

Map function maps every method name i.e. mn in JComboBox to a corresponding

precondition template object i.e. PTOmn so that we now have Map<mn, PTOmn>; since every

method name is guarded by a finite set of precondition methods i.e. implemented here as a

java List object. The precondition template object is a generic template class implemented

within the CMTT to automatically generate java source codes which represent a finite set

of precondition methods by which a method name of a compiled object-machine under test

is guarded by.

4. Enter Total Number of Precondition Method Guarding Selected Method (TNPMGSM): In

this step, further to the last step above, the CMTT require the user of the system to enter for

each method name selected above, the total number of precondition methods guarding

that method name. This information can be derived from the original formal specification

system written and/or designed for the selected compiled object-machine system under test

in the first step above. All the information gathered during this session and those from the

third step above are concurrently used together in order to automatically generate a

precondition template object for each unique method name selected in the third step above.

5. Generate Method Template(GMT): Now, further to all of the steps described above, the

CMTT users are asked in this step to click on either Generate USP Method Template button

or Generate ESP Method Template button or Generate GSP Method Template button i.e.

depending on whether the system is in the unchanged state precondition method’s testing

mode (i.e. USPM Mode), the error state precondition method’s testing mode (i.e. ESPM

Mode) and the goal state precondition method’s testing mode (i.e. GSPM Mode).

6. Generate Precondition Test Object-Machine (GPTOM): In this final step, users of the

CMTT are asked to click on the Generate Precondition Test Object-Machine button to

produce a new java List object i.e. allPTOm containing all records of precondition

template objects generated so far i.e. for each method name selected in the third step above

whilst the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

162

Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal

state precondition method’s testing mode (i.e. GSPM Mode). All the information generated

and that are consequently stored in i.e. allPTOm are later used within The Frogila Testing

Tool Panel whilst testing the selected compiled object-machines system that was obtained

from the user in the first step described above.

Figure 40: The Frogila Testing Tool Panel workflow in the CMTT

While the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM

Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal state

precondition method’s testing mode (i.e. GSPM Mode) it performs and/or goes through the

following dynamic system routine steps:

1. Select Compiled Object-Machine (SCOM): Here, the test engineer is required to select the

object-machine that s/he wants to subject to test.

2. Automatic Test Case Generation (ATCG): Further to earlier step above, here, the CMTT

automatically generates complete test cases and/or test objects for the selected object-

machine. Now, all the generated test cases and/or test objects derived for the compiled

object-machine that was selected are automatically applied on all the methods of this object-

machine. Each unique test object generated will then be applied on a corresponding method

of the selected object-machine. Recall that from earlier examples in chapter 4 and chapter 5

that test cases are saved inside precondition method’s test objects. To achieve ATCG the

CMTT implements the approach described in section 4.5.2.

3. Complete State Coverage (CSC): In this step, the CMTT ensures that each unique method m

∈ M in the selected compiled object-machine under test with the form and behaviour shown

below is exercised at run time to achieve complete state coverage for the object-machine

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

163

under test: m (modm, Guardm) : S x inPTm → (S*, outPTm, nextOMSIm). This is

because each unique precondition method in Um, Em and Gm (i.e. simply referred to as

Guardm) individually encapsulate a unique memory state or transition path for the method m

under test in the unchanged, error and goal state testing modes. Hence, method m can only

drive the object-machine under test to a finite set of memory states (i.e. a trackable number

of memory states) consequently allowing state coverage to be achieved for the object-

machine under test; given that in the unchanged, error and goal state testing modes of the

CMTT we can only generate a finite set of test input objects for method m under test i.e. by

exercising each unique precondition method in Um, Em and Gm at run time. In chapters 4 and

5 we illustrated using examples that exercising a precondition method will produce a

PreConditionTestObject.

4. Automatic Object-Machine Debugging (AOMD): In this step, the CMTT allows the test

engineer to directly carryout observations on all internal variable values encapsulating the

different memory states of the object-machines system under test through automatic object-

machines memory state(s) debugging; thus, the values computed whilst the object-machine

was driven into different memory state(s) are displayed in the tool for ultimate perusal

and/or requisite observation by the test engineer i.e. following dynamic execution and

invocation of every method m ∈ M of the object-machines system under test.

5. Automatic Object-Machine Verification (AOMV): In this step, the CMTT goes through the

approach described in section 6.2 in the unchanged, error and goal state testing modes of the

CMTT. Figure 31 depicts Java implementation for the AOMV procedure.

6. Probabilistic Analysis of Transition States (PAOTRAS): In this final step of the CMTT’s

routine, the CMTT automatically generates a probabilistic summary for the object-

machines model system under test based on all the analysis that it conducts around our

predictive rules discussed in sections 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.6, 4.5.7, 4.5.8, 4.5.9,

4.5.10 and 4.5.11.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

164

From the beginning of the CMTT’s Run/Compilation Panel, test engineers and/or users of the

system can perform the following i.e. in a manner consistent with the workflow diagram shown

in Figure 41:

• Select Object-Machine to Compile: Here, the CMTT allows users to click on the select

object-machine to compile button and because by default the CMTT implements a

java filter which filters out all java classes from users current directory thus allowing

users of the system to select what java class that they want to subject to compilation

from this directory.

• Compile Selected Object-Machine: Here, the CMTT allows users to click on the compile

selected object-machine button; the CMTT then uses a custom designed script to

compile the selected java file consequently displaying the result of this compilation

within the File Text Area of The File Editor Panel.

• Clear all component area: Here, the CMTT allows users of the system to click on the

clear all component area button in order to clear and/or remove all textual element(s)

currently being displayed inside the File Text Area of The Run/Compilation Panel.

7.3 Testing, Evaluation and Effectiveness of the CMTT

In this section, our attention will be wholly directed towards testing, evaluating the quality,

novelty and effectiveness of our proposed testing philosophy and/or approach. More crucially,

our evaluation shall focus largely on the correctness and conformance of a concrete class-

machines system implementation under test with respect to its formal specification. To achieve

the above stated goal in this section, all the four different individual class-machines case studies

presented in chapter 4 (i.e. the person class-machine running example appended to chapter 4)

and chapter 5 (i.e. the student class-machine, employee class-machine and stack class-machine)

will be tested, evaluated and their respective results generated in the unchanged, error and goal

state testing modes of the CMTT.

The Run/Compilation Panel

Select Object-

Machine to

Compile

Compile

Selected

Object-Machine

Clear all

component

area

Figure 41: The Run/Compilation Panel Work flow diagram

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

165

Prior to achieving the above stated goals, firstly, it is important to make it clear at this juncture

that the main focus of the CMTT’s approach is on complete testing. Secondly, our probabilistic

analysis throughout within the CMTT below (i.e. all the automatically generated probabilistic

summary table produced in the unchanged, error and goal state modes of the CMTT with

respect to the PAOTRAS idea described in section 7.2) for each unique class machine system

under test has been introduced to address the fact that in practice with complex object oriented

systems it is extremely difficult to completely or accurately claim that all possible paths in the

class machine system under test has been followed and/or tested for the presence of faults.

Consequently, our position on the subject of this matter is that untested paths within the class

machine system under test can contain faults which can possibly lead to failures (i.e. in the

presence of while loops and the mechanism of polymorphism in object oriented languages

which can make the entire state space of the class machine system under test to be intractable).

To provide a well informed, more reliable, and sound conclusion over a given class machine

system under test i.e. after testing has been completed, our testing method was supported with

the PAOTRAS concept in order to aid the testing procedure.

Now, for the person class-machine, student class-machine, employee class-machine and stack

class-machine case studies referred to above, we assume the following for each of the case

study tested, analysed and evaluated within the CMTT:

(i) The object machine under test can be subjected to test within the CMTT in the unchanged,

error, goal and the complete transition state testing modes. In each of these testing modes,

probabilistic analysis is carried out for each method of the object machine under test. Since

each unique method of the object machine system under test is said to be guarded by a finite set

of unchanged, error and goal state precondition methods, we say that the method under test in

the relevant testing mode is tested exhaustively by the number of precondition methods

guarding it. Recall that each unique precondition method encapsulates a unique next object

machines transition state. By firing a given precondition method during a particular testing

mode, we aim to observe if the object machine under test has been driven into the correct

memory state or not.

(ii) The object machine under test is in an arbitrary state;

(iii) A specific method m of the object machine under test will be invoked (which means that

there will be separate probability calculations for each method m);

(iv) This invocation may cause one of the preconditions to fire (in principle there is exactly one

for each invocation); during testing however, method m is tested exhaustively with respect to

the number of precondition methods guarding it in the relevant testing mode.

(v) The probabilities to be calculated are the probabilities of a finite set of precondition method

guarding method m firing in the relevant testing mode and in relation to the overall methods of

the object machine under test in that testing mode.

(vi) All the probabilities to be calculated rely heavily on the ideas that were presented and

discussed with respect to the PAOTRAS concept described in section 7.2.

Recall that in section 5.4 we presented and discussed the aims and objectives of the Stack case

study. Using Figure 30 we illustrated the form, behaviour and how to test every unique method

of the Stack Object Machine system under test in the unchanged, error and goal state testing

modes. To evaluate the CMTT, completely test, debug and verify the methods and memory

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

166

states of the instance and class variables of the stack class-machine system in the unchanged,

error and goal state testing modes of the CMTT the following steps are followed:

1. Open the compiled StackObjectMachine.java file depicted by Figure 42 within

the File Editor Panel of the CMTT shown below. The workflow diagram represented by

Figure 38 provide helpful guidance on how users can open a file within the CMTT.

Figure 42: The StackObjectMachine.java File opened and displayed within the File Editor Panel of the CMTT

Method Name Total Number of Unchanged State Precondition Methods

(USPM) guarded by

Push 2

Pop 1

Top 1

Table 4: The Unchanged State Precondition Method Profile of the Stack Object-Machine System

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

167

Method Name Total Number of Error State Precondition Methods (ESPM)

guarded by

Push 1

Pop 1

Top 1

Table 5: The Error State Precondition Method Profile of the Stack Object-Machine System

 Method

Name

Total Number of Goal State Precondition Methods (GSPM)

guarded by

Push 2

Pop 1

Top 1

Table 6: The Goal State Precondition Method Profile of the Stack Object-Machine System

All the information in Tables 4, 5 and 6 were derived directly from the formal specification

system written and/or designed for the Stack Object-Machine System (e.g. see section 5.4.2).

2. Use the Precondition Generator Panel of the CMTT to automatically generate executable

Java program codes for the unchanged, error and goal state precondition methods of the

compiled StackObjectMachine.java class under test i.e. using the information in

Tables 4, 5 and 6. The result of this action is saved as StackTest.java in Figure 65.

The parts in Figure 43 where components are highlighted in yellow, red and green

correspond to the parts of the system where all the unchanged, error and goal state

precondition methods are generated from in that order:

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

168

Figure 43: The Precondition Generator Panel of the CMTT

3. Use the Frogila Testing Tool Panel of the CMTT to upload and test the

StackTest.java class in the unchanged, error and goal state testing modes. Within

the Frogila Testing Tool Panel of the CMTT depicted by Figure 44, components

highlighted in yellow, red and green correspond to the unchanged, error and goal state

precondition method’s testing modes respectively.

Figure 44: Testing the Stack Object-Machine System in the USPM testing mode of the CMTT

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

169

For the sake of clarity, Table 7 outlines a step by step transition of the stack object-machines

system under test (i.e. StackTest.java) since not all the results shown in Figure 44 are

directly visible to the reader (i.e. seeing that the users of the system need to scroll through the

tool and also expand the Class-Machine’s Test Result Summary Table section shown in

Figure 44 in order to peruse detail result displayed therein):

Unchanged State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Top

Current Active Test Input []

Current Triggered Precondition Method topUSP1

Result Generated by current active method java.lang.Object@48bc3d

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Unchanged State Testing Mode - Line 2

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Pop

Current Active Test Input []

Current Triggered Precondition Method popUSP1

Result Generated by current active method java.lang.Object@198f5e7

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = -1, items = [null, null, null]]

Unchanged State Testing Mode - Line 3

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Push

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ

Dan 22 MALE 30.0 1 1200.0, 0.0]]

Current Triggered Precondition Method pushUSP2

Result Generated by current active method java.lang.Object@c5c32e

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]]

Unchanged State Testing Mode - Line 4

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

170

Current Active Method Push

Current Active Test Input [[]]

Current Triggered Precondition Method pushUSP1

Result Generated by current active method Null

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Table 7: The step by step transition of the stack object-machines system in the USPM Mode of the CMTT

Whilst the CMTT is in the unchanged state precondition methods (USPM) testing mode

depicted by Figure 44, the CMTT proceeds to test every processing function or method of the

object-machine system under test (i.e. the StackTest.java class) by asserting that under

what condition or conditions would invocation and/or dynamic execution of a given method of

the object-machines system under test not modify i.e. the current and/or initial memory state(s)

of the object-machines system under test. Now, since every method m of the object-machines

system under test is guarded by a finite set of unchanged state precondition methods i.e.

USPMm, each of these precondition methods in turn during testing are automatically converted

to unchanged state precondition test object PTOm. Hence, during testing in order to exercise

every method m we apply every PTOm generated from USPMm on method m and then observe

the different memory state(s) that the stack object-machines system get driven into as a

consequence of the dynamic application of PTOm on method m (i.e. this approach thus allow us

to debug the content and/or values stored in all internal memory state variables; hence further to

this we can comfortably assert requisite property of correctness and conformance at a higher

level of detail for the stack object-machine system under test). Whilst in the unchanged state

precondition i.e.USPM methods testing mode, the goal of the CMTT is to ensure that none of

the precondition methods i.e. uspm ∈ USPMm changes the current and/or initial memory state(s)

of the object-machine system under test.

In Figure 44, the name of the object-machine under test is shown (i.e. StackTest.java).

Now, starting from the current memory state(s) of the stack object-machines system under test

i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that if the

current active method is top, current active test input applied on top is [] (i.e. top consumes no

input hence why [] is empty; all test inputs are enclosed within [] in the CMTT), current

triggered precondition method within method top is topUSP1, result generated by current active

method i.e. top is java.lang.Object@48bc3d i.e. an error that does not modify the current

memory state(s) of the stack object-machines system under test; since the execution of topUSP1

does not change the initial state of items (i.e. finding the top of an empty stack leads to an

error that would not change the initial state of the stack under test) and the next stack object-

machines transition state is [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null,

null]] (i.e. which shows that the next dynamic memory state(s) and/or transition of the stack

object-machines system under test remains the same as the initial current memory state(s) of the

stack object-machine system under test when topUSP1 was invoked). Note from above, that the

state variable i.e. items is an instance of java.util.List object. Also note that because the stack

object-machine has a fixed memory capacity i.e. INITIAL_ALLOC = 3 and since from the

current state of the stack object-machine system under test no object items has been added as of

yet hence items = [null, null, null].

Hence, for the different memory state(s) of the stack object-machine system under test we show

what unchanged state precondition method i.e. uspm ∈ USPMm that get fired within method m

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

171

of the stack object-machine system under test and what unchanged state’s precondition test

object i.e. PTOm that was applied on method m to put the stack object-machine system in that

memory state(s). Furthermore, we also show the output computed for every method m in the

object-machine. The output and/or result computed further to dynamic execution and/or

invocation of all method m within the stack object-machine system with the void type are

consistently shown within the CMTT as having to return the null type.

Figure 45: Testing the Stack Object-Machine System in the ESPM testing mode of the CMTT

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

172

Error State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Top

Current Active Test Input []

Current Triggered Precondition Method topESP1

Result Generated by current active method java.lang.Object@17eb767

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Error State Testing Mode - Line 2

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Pop

Current Active Test Input []

Current Triggered Precondition Method popESP1

Result Generated by current active method java.lang.Object@1fa157c

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = -1, items = [null, null, null]]

Error State Testing Mode - Line 3

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Push

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ

Dan 22 MALE 30.0 1 1200.0, 0.0]]

Current Triggered Precondition Method pushESP1

Result Generated by current active method java.lang.Object@1988d36

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]]

Table 8: The step by step transition of the stack object-machine system in the ESPM Mode of the CMTT

In Figure 45, starting from the current memory state(s) of the stack object-machines system

under test i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that

if the current active method is push, current active test input applied on push is [[John Edwards

33 MALE, Susan Price 18 FEMALE Computer Science, JJ Dan 22 MALE 30.0 1 1200.0, 0.0]]

(i.e. push consumes as input a java.util.List object with a size 4 object items), current triggered

precondition method within method push is pushESP1, result generated by current active

method i.e. push is java.lang.Object@1988d36 i.e. an error that modifies the current memory

state of count of the stack object-machines system under test and the next stack object-machines

transition state is [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]] (i.e.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

173

which shows that pushESP1 drives the stack object-machine into an error state due to the fact

that count > INITIAL_ALLOC hence by executing push we still could not modify the memory

state of items). Section 5.4.2 covers detail specification and testing of the push method.

Figure 46: Testing the Stack Object-Machine System in the GSPM testing mode of the CMTT

Goal State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Push

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science]]

Current Triggered Precondition Method pushGSP2

Result Generated by current active method Null

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 2, items = [John Edwards 33

MALE, Susan Price 18 FEMALE Computer Science, null]]

Goal State Testing Mode - Line 2

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

174

Current Active Method Push

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ

Dan 22 MALE 30.0 1 1200.0]]

Current Triggered Precondition Method pushGSP1

Result Generated by current active method Null

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 3, items = [John Edwards 33

MALE, Susan Price 18 FEMALE Computer Science, JJ Dan 22 MALE 30.0 1

1200.0]]

Goal State Testing Mode - Line 3

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Top

Current Active Test Input []

Current Triggered Precondition Method topGSP1

Result Generated by current active method Susan Price 18 FEMALE Computer Science

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 2, items = [John Edwards 33

MALE, Susan Price 18 FEMALE Computer Science, null]]

Goal State Testing Mode - Line 4

Object-Machine Under Test (OMUT) StackTest

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]]

Current Active Method Pop

Current Active Test Input []

Current Triggered Precondition Method popGSP1

Result Generated by current active method Susan Price 18 FEMALE Computer Science

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 1, items = [John Edwards 33

MALE, Susan Price 18 FEMALE Computer Science, null]]

Table 9: The step by step transition of the stack object-machine system in the GSPM Mode of the CMTT

In Figure 46, starting from the current memory state(s) of the stack object-machines system

under test i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that

if the current active method is push, current active test input applied on push is [[John Edwards

33 MALE, Susan Price 18 FEMALE Computer Science]] (i.e. push consumes a java.util.List

object input i.e. with size 2 list of object items), current triggered precondition method within

method push is pushGSP2, result generated by current active method i.e. push is null i.e.

method push has void type in its formal method signature definition hence it return type is null

(i.e. empty output type). The next stack object-machines transition state is [INITIAL_ALLOC =

3, alloc = 3, count = 2, items = [John Edwards 33 MALE, Susan Price 18 FEMALE Computer

Science, null]] (i.e. method push was exercised with java.util.List object which in turn has a

valid size = 2 list of object items that falls within the bound of INITIAL_ALLOC = 3; hence we

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

175

say that count <= INITIAL_ALLOC holds for the goal state precondition method i.e. pushGSP2

that was fired within method push that is currently under test).

Figure 47: Complete Testing of the Stack Object-Machine System in the USPM, ESPM and GSPM of the CMTT

7.4 Summary

This chapter presented, discussed, tested and evaluated the effectiveness of the CMTT using the

stack class-machine case study covered in section 5.4. For complete result of testing the:

• person class-machine system in USPM, ESPM, GSPM and Complete Testing modes i.e.

within the CMTT (please see Appendix A.1.1)

• student class-machine system in USPM, ESPM, GSPM and Complete Testing modes i.e.

within the CMTT (please see Appendix A.1.2)

• employee class-machine system in USPM, ESPM, GSPM and Complete Testing modes

i.e. within the CMTT (please see Appendix A.1.3)

• bank account class-machine system in USPM, ESPM, GSPM and Complete Testing

modes i.e. within the CMTT (please see Appendix A.1.4)

Given that one of the fundamental features of object oriented programming concerns the ability

for one object to communicate with a society of other communicating objects within a given

object-oriented system under test, the CMTT allows the test engineer to verify the internal

memory states of a given object or class under test when all the methods of that object or class

are individually exercised at run time in the unchanged, error and goal state testing modes. This

feature is made possible through debugging mechanism of the CMTT. Consequently, when a

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

176

method m belonging to an object or class is invoked at runtime, a unique precondition method

in Um or Em or Gm encapsulating a unique internal memory state and/or value for this object or

class would be automatically triggered (meaning that transition occurs) depending on the testing

mode. A message or messages (i.e. the internal memory values) is then communicated to

another object or class. The CMTT tool then helps the test engineer to verify through automated

debugging of all internal memory states/values i.e. whether the correct message(s) was sent

and/or communicated with the correct object or class that requires it in the unchanged, error and

goal state testing modes.

For every new memory states/values computed when method m under test is exercised in the

unchanged, error and goal state testing modes, the CMTT helps the test engineer to know what

precondition method in Um or Em or Gm that get triggered to put that object or class in that new

memory states/values. This address of one of the drawbacks inherent in using the specification-

based testing method which is that although it tells us how well a program satisfies its formal

specification, it does not tell us what part of the program that was executed to satisfy each part

of the specification.

Furthermore, our testing method also address the disadvantage of using implementation-based

testing which is that it does not tell us how well a program satisfies its intended functionality

i.e. by ensuring that all the desired functionality for all the Class-Machine systems under test

(i.e. the person class-machine, student class-machine, employee class-machine and stack class-

machine case studies referred to above) are fully and/or completely specified and thus

concurrently integrated with the system.

Hence, we argue that our testing method also integrates the advantages and benefits of using

specification-based and program-based testing technique within the CMTT. As a result, our

approach offers a higher level of confidence that can be obtained from the adequacy criteria that

the object or class under test has been adequately tested while on the other hand the

specification-based testing approach integrated into our testing method further help to establish

whether the object or class under test is actually doing what it is expected to do (i.e. when

compared to approaches such as [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 136]).

Finally, in other to check whether the automatically generated probability of faults remaining

undetected in the error state testing mode of the CMTT is meaningful or not, all the Class-

Machine systems under test (i.e. the person class-machine, student class-machine, employee

class-machine and stack class-machine) were seeded with randomised faults in order to ensure

that some failures occur in these systems as a consequence of all the faults introduced. The

number of the Class-Machine systems under test caught by the CMTT matches the number

expected based on the computed probabilities i.e. with respect to the PAOTRAS concept

described in section 7.2. The details of the types of faults referred to here were illustrated in the

error state testing mode of the Class-Machine’s testing technique in sections 4.3.2 (i.e. with

respect to setAgeESP1 and setAgeESP2), 5.2.2.1.2, 5.3.2.1.2, 5.3.2.2.2 and 5.4.2.1.2.

Furthermore, Figures 45, 49, 53, 57 and 62 depict the result of the number of error state

precondition methods caught by the CMTT in the error state testing mode when (the person

class-machine, student class-machine, employee class-machine and stack class-machine) were

subjected to test in the error state testing mode. This is because every unique error state

precondition method caught by the CMTT encapsulates a unique error memory state/value or

transition path when it is exercised at run time.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

177

Chapter 8: Conclusions and Future Work

This final chapter summarises our contributions to knowledge from section 1.3, before turning

to the discussion of possible future work in section 8.2.

8.1 Our Major Contributions to State of the Art

We have presented the following contributions to knowledge which we believe to be novel:

• A new automaton-based framework formalism which embodies the notion of a class and

an object in object-oriented languages. We call this the Class-Machine [see section 4.3].

• A new test method based on the Class-Machine formalism. We call this the fault-finders

(f²) i.e. in the U, E and G testing modes [see section 4.3].

• A new approach for estimating the probability of faults remaining after testing has been

completed in an object-oriend system was proposed [see section 4.5].

• Case studies which illustrate the concepts that have already been presented, and which

show how the Class Machines model theory can be applied to real life object-oriented

systems, focussing on the specification, verification and testing of them [see chapter 5].

• A novel framework formalism that has complete visibility on all the encapsulated

methods, memory states of the instance and class variables of a given object or class

under test. We call this the Class Machine Friend Function (CMƒƒ) [see section 6.2].

• An automated testing tool was developed as a proof of concept in order to further show

that the Class-Machine theoretical purity does not mitigate against practical concerns.

We call this the CMTT [see sections 7.2 and 7.3].

8.2 Future Work

No project is ever completely finished. Here, theoretical and practical aspects are highlighted,

which merit further exploration and development.

8.2.1. Comparing Class-Machines Testing Tool with Other
Testing Tools

The following is a list of automated object-oriented testing tools writing in the Java

Programming Language. Each of these embraces different views, philosophies, assumptions,

theories, hypotheses and constraints during software testing. In particular, since none of these

tools follow our theoretical view and/or definition of a class and an object in object-oriented

languages and what it means to test a class (i.e. testing an heterogeneous family of Object

Machines that belong to it), the goal then is to compare these tools with the Class Machines

Testing Tool in terms of how adequate, complete, effective they are in generating a complete

functional test set for the object or class under test.

• JWalk [110, 111, 112, 113],

• JUnit [114, 115],

• JCrasher [116],

• JTest [117],

• Daikon [118, 119, 120, 121],

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

178

• Agitator [122, 123],

• DSD-Crasher [124],

• Jov [125],

• Eclat [126],

• Rostra [127],

• Symstra [128],

• Randoop tool [129],

• Korat [130],

• Java Pathfinder [131, 132],

• Cantata++ [133]

• jStar [136].

More crucially, we feel that it would be good to compare, analyse and examine critically the

different testing philosophies employed by each of these unique testing tools. What types of

faults are they most suited to reveal when employed? Since the ultimate goal of testing is to

reveal the presence of faults in an implementation so that they can be removed. How sound are

the types of inferences that can be reached after employing each of this tools when compared to

the Class Machines testing tool? What lessons can be learnt and trainings that can be acquired

to inform and advance our current work? What differences and similarities exist if any between

these testing tools and the Class Machines Testing Tool? These and many more should be the

focus and goal of such comparisons.

8.2.2. The Class-Machines Specification Language

One of the ultimate goals of modern formal system development approaches is to get to the

point where executable program codes can be generated automatically from formally proven

specifications. To achieve this goal, we propose that future work should advance our Class

Machines modelling framework with a specification language called FROGILA. This language

would allow all fundamental object-oriented evolving and paradigmatic features like

encapsulation, inheritance and polymorphism to be represented and modelled. This language

therefore needs to conform to our definition and/or philosophy of what a class and an object is

in object-oriented languages. Furthermore, the language must be integrated with the current

Class-Machines Testing Tool. Hence, there is the need to develop the FROGILA Language’s

Compiler and Editor in order to facilitate easy processing and translation of the language’s

fundamental constructs. Also, a very ambitious side of this project is to consider developing an

extensible generic Cross Language Generator Machine and Compiler. This would allow users

to generate executable program codes in different object-oriented languages of their choosing

(e.g. in Java, C++ etc). The generated codes above would be automatically derived from the

Class-Machines Specification Language (i.e. the FROGILA Language) and thus automatically

verified in terms of conformance with the original specification in addition to complete

functional testing. Hence, what we propose here is a comprehensive testing tool and a language

that is designed for test.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

179

Bibliographic References

[1] Myers, Glenford J. The art of software testing, Publication info: New York: Wiley, ISBN:

0471043281, 1979.

[2] Holcombe, W. M. L and Ipate F. Correct Systems: Building a Business Process Solution.

Springer, 1998.

[3] Waeselynck, H. An Experiment with Statistical Testing. EuroSTAR, Brussels, 10/1, 1994.

[4] Miller, K. W., Morrel, L. J., Noonan R. E., Park, S. K., Nicol, D. M., Murril, B. W and

Voas, J. M. Estimating the Probability of Failure when Testing Reveals No Failures. IEEE

Transactions on Software Engineering, 18(1), 33-43, 1992.

[5] Hamlet, D and Taylor R: Partition Testing Does Not Inspire Confidence. IEEE Transactions

on Software Engineering, 16(2), 1402-1411, 1990.

[6] Weiss, S. N and Weyuker, E. J. An Extended Domain-Based Model of Software Reliability.

IEEE Transactions on Software Engineering, 14(10), 1512-1524, 1988.

[7] Morgan C. Programming From Specifications. Series in Computer Science. Prentice Hall

International, London, 1990.

[8] Abrial, J. R. B-Tool Reference Manual. BP International Limited and Edinburgh Portable

Compilers Ltd, BP Innovation Centre, Slough, Version 1.1, 1991.

[9] Goodenough, J. B and Gerhart S. L. Toward a theory of test data selection. IEEE

Transactions on Software Engineering, 1(2):156-173, June 1975.

[10] Ntafos, S. C. A comparison of some structural testing strategies. IEEE Transactions on

Software Engineering, 14(6):868-873, June 1988.

[11] Howden, W. E. Functional Program Testing and Analysis. McGraw-Hill, New York,

1987.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

180

[12] Weyuker, E. J. The evaluation of program-based software test data adequacy criteria.

Communications of the ACM, 31(6):668-675, June 1988.

[13] Gelperin, D and Hetzel, B. The growth of software testing. Communications of the ACM,

31(6):687-695, 1988.

[14] BCS Specialist Interest Group in Software Testing. A Standard for Software Component

Testing, Issue 1.2, edited by Dorothy Graham and Martyn Ould, November 1990.

[15] Roper, M and Smith, P. A structural testing method for JSP designed programs. Software

Practice and Experience, 17(2):135-157, February 1987.

[16] Woodward, M. R. Mutation testingan evolving technique. In Colloquium on Software

Testing for Critical Systems. Organised by Professional Group C1 (Software Engineering) of

the IEE. Digest No.: 1990/108. Chairman: Darrel C. Ince.

[17] DeMillo, R. A., Lipton R. J and Sayward, F. G. Hints on test data selection: Help for the

practicing programmer. IEEE Computer, 11(4):34-41, April 1978.

[18] Howden, W. E. Weak mutation testing and completeness of test sets. IEEE Transactions

on Software Engineering, 8(4):371-379, July 1982.

[19] Wu, D., Hennell, M. A., Hedley, D and Riddell, I. J. A practical method for software

quality control via program mutation. In Proceedings of the Second Workshop on Software

Testing, Verification and Analysis, Banff, Canada, IEEE, 159-170, July 1988.

[20] Ostrand, T. J and Balcer, M. J. The category-partition method for specifying and

generating functional tests. Communications of the ACM, 31(6):676-686, June 1988.

[21] Elmendorf, W. R. Functional analysis using cause-effect graphs. In Proceedings of SHARE

XLIII, New York, SHARE, 1974.

[22] Myers, G. J. Software Reliability. J. Wiley and Sons, New York, 1976.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

181

[23] NATO / MoD. Interim Defence Standard 00-55, Requirements for the Procurement of

Safety Critical Software in Defence Equipment, draft edition, 1989.

[24] Hayes, I. J. Specification directed module testing. IEEE Transactions on Software

Engineering, 12(1):124-133, January 1986.

[25] Gerrard, C. P., Coleman, D and Gallimore, R. M. Formal specification and design time

testing. IEEE Transactions on Software Engineering, 16(1):1-11, January 1990.

[26] Roper, M and Smith, P. A specification-based functional testing method for JSP designed

programs. Information and Software Technology, 30(2):89-98, March 1988.

[27] Jalote, P. Testing the completeness of specifications. IEEE Transactions on Software

Engineering, 15(5), May 1989.

[28] Weyuker, E. J and Ostrand, T. J. Theories of Program Testing and the Applications of

Revealing Subdomains. IEEE Transactions on Software Engineering, 6(3), 236-246, 1980.

[29] Sidhu, D. P., Motteler, H and Vallurupalli, R. IEEE/ACM Trans. Networking, 1, 590-599,

1993.

[30] Bhattacharrya, A. Checking Experiments in Sequential Machines. Wiley Eastern, New

Delhi, 1989.

[31] Chow, T. S. Testing Software Design Modelled by Finite State Machines. IEEE

Transactions on Software Engineering, 4(3), 178-187, 1978.

[32] Eilenberg, S. Automata, Languages and Machines, vol. A. Academic Press, 1974.

[33] Futatsugi, K., Goguen, J., Jouannaud, J and Messeguer, J. Principles of OBJ2, Proc. 12
th

ACM Symp. Principles of Prog. Langs., 52-56, 1985.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

182

[34] Kefalas, P., Eleftherakis, G and Kehris, E. Communicating X-Machines: A Practical

Approach for Formal and Modular Specification of Large Systems, Journal of Information and

Software Technology, Elsevier, 45(5):269-280, 2003.

[35] Kefalas, P. Formal Modeling of Reactive Agents as an Aggregation of Simple Behaviours,

LNAI 2308 (Vlahavas, I. P and Spyropoulos, C. D. eds.), Springer-Verlag, 461-472, 2002.

[36] Kefalas, P., Holcombe, M., Eleftherakis, G and Gheorge, M. A Formal Method for the

Development of Agent Based Systems, In Intelligent Agent Software Engineering, Plekhanova,

V. (eds), Idea Group Publishing Co., 68-98, 2003.

[37] Kefalas, P., Eleftherakis, G., Holcombe, M and Gheorghe, M. Simulation and Verification

of P Systems through Communicating X-Machines, BioSystems, 70(2):135-148, July 2003.

[38] Kefalas, P., Eleftherakis, G and Kehris, E. Communicating X-machines: from theory to

practice. In Manolopoulos Y., Evripidou S., Kakas A., editors, Advances in Informatics,

Lecture Notes in Computer Science, Springer-Verlag, 2563: 316-335, 2003.

[39] Kefalas, P., Stamatopoulou, I and Gheorghe, M. A formal modelling framework for

developing multi-agent systems with dynamic structure and behaviour. In Pechoucek, M., Petta,

P., Varga, L. Z., editors, Multi-Agent Systems and Applications IV: Proceedings of the 4th

International Central and Eastern European Conference on Multi-Agent Systems

(CEEMAS'05), Lecture Notes in Artificial Intelligence, Springer, 3690:122-131, 2005.

[40] Balanescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M., Holcombe, M and Vertan, C.

Communicating Stream X-Machine Systems are no more than X-Machines. Journal of

Universal Computer Science, 5(9):494–507, 1999.

[41] Gheorgescu, H and Vertan C. A New Approach to Communicating X-Machines Systems,

Journal of Universal Computer Science, 6(5):490-502, 2000.

[42] Barnard, J. COMX: A design methodology using Communicating X-Machines. Journal of

Information and Software Technology, 40:271–280, 1998.

[43]] Kefalas, P., Eleftherakis, G., Holcombe, M and Gheorghe, M. Simulation and

Verification of P Systems through Communicating X-Machines, BioSystems, 70(2): 135-148,

July 2003.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

183

[44 Eleftherakis, G. A Formal Framework for Modelling and Validating Medical systems.

Proceedings MEDINFO Conference, London, UK, 1:13-17, 2001.

[45] Fairtlough, M., Holcombe, M., Ipate, F., Jordan, C., Laycock, G and Duan, Z. Using an X-

machine to model a Video Cassette Recorder. Current issues in Electronic Modeling, 3:141-

161, 1995.

[46] Kefalas, P., Holcombe, M., Eleftherakis, G and Gheorghe, M. A Formal Method for the

Development of Agent-based Systems. In Intelligent Agent Software Engineering,

V.Plekhanova (ed), Idea, Hershey, 68-98, 2003.

[47] Gheorge, M., Holcombe, M and Kefalas, P. Computational Models of Collective Foraging,

Proceedings 4
th

 International Workshop on Information Processing in Cells and Tissues

(IPCAT), Luven, Belgium, 2001.

[48] Kefalas, P and Kapeti, E. A Design Language and Tool for X-machine Specification, In

Advances in Informatics, Fotadis D.I., Nikolopoulos S.D (eds). World Scientific, 134-145,

2000.

[49] Ipate, F and Holcombe M. An Integration Testing Method That is Proved to Find all

Faults. International Journal Computer Mathematics, 63:159-178, 1997.

[50] Ipate, F and Holcombe M. Specification and Testing Using Generalized Machines: a

Presentation and a Case Study, Software Testing, Verification and Reliability, 8:61-81, 1998.

[51] Ipate, F and Holcombe M. Generating Test Sequences from Non-deterministic Generalized

Stream X-Machines. Formal Aspects of Computing, 12(6): 443-458, 2000.

[52] Hierons, R. M and Harman, M. Testing Conformance to a Quasi-non-deterministic Stream

X-machine. Formal Aspects of Computing, 12(6): 423-442, 2000.

[53] Ipate, F. Complete Deterministic Stream X-machine Testing, Formal Aspects of

Computing, 16(4): 374-386, 2004.

[54] Hierons, R. M and Harman, M. Testing Conformance of a Deterministic Implementation

Against a Non-deterministic Stream X-machine. Theoretical Computer Science, 323(1-3): 191-

233, 2004.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

184

[55] Simons, A. J. H., Bogdanov, K. E and Holcombe, W. M. L. Complete Functional Testing

using Object Machines, Department of Computer Science Research Report CS-01-18, The

University of Sheffield, England, UK, 2001.

[56] Binder, R. V. Testing Object-Oriented Software: A Survey. Journal of Software Testing,

Verification & Reliability, 6(3/4):125-252, September / December, 1996.

[57] Berard, E. V. Essays on Object-Oriented Software Engineering. Vol. 1, Prentice Hall,

1993.

[58] Meyer, B. Introduction to the Theory of Programming Languages. Prentice Hall, 1990.

[59] Meyer, B. Object-Oriented Software Construction. Englewood Cliffs, New Jersey:

Prentice Hall, 1997.

[60] Alexander, R. T. Testing the Polymorphic Relationships of Object-Oriented Programs,

PhD Thesis, Department of Information and Software Engineering, George Mason University,

2001.

[61] Capper, N. P., Colgate, R. J., Hunter, J. C and James, M. F. The Impact of Object-Oriented

Technology on Software Quality: Three Case Histories. IBM Systems Journal, 33(1):131-157,

1994.

[62] Firesmith, D. G. Testing Object-Oriented Software. Advanced Technology Specialists,

1992.

[63] Sidhu, D. P and Leung, T-K. Formal Methods for Protocol Testing: a Detailed Study.

IEEE Trans. Soft. Eng. 15(4):413-426, 1989.

[64] Ural, H. Formal Methods for Test Sequence Generation. Computer Communications,

15(5):311-325, 1992.

[65] Harel, D. Statecharts: a Visual Formalism for Complex Systems. Science of Computer

Programming, 8:231-274, 1987.

[66] Weber, M. Combining Statecharts and Z for the Design of Safety-critical Systems. In

Gaudel, M. C and Woodcock, J. (ed.) FME'96, Industrial Benefit and Advances in Formal

Methods, Springer-Verlag, 307-326, 1996.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

185

[67] Bogdanov, K and Holcombe, M. Translating Statecharts and µSZ specifications into

Xmachines. Confidential report prepared for Daimler-Benz Research and Technology AG,

1996.

[68] Eckert, G and Golder, P. Improving object-oriented analysis. Information and Software

Technology, 36(2):67–86, 1994.

[69] Booch, G. Object-Oriented Design with Applications. Benjamin-Cummings, 1991.

[70] Booch, G. Object-Oriented Analysis and Design with Applications. Benjamin-Cummings,

second edition, 1994.

[71] Unified Modeling Language, version 1.1, http://www.omg.org/cgi-bin/doc?ad/97-08-11.

Accessed March 2007, Object Management Group, 1997.

[72] Meyer, B. Object-Oriented Software Construction. Second edition, Englewood Cliffs, New

Jersey: Prentice Hall, 1997.

[73] Berard, E. Issues in the Testing of Object-oriented Software. In Proceedings of Electro ’94

International. IEEE Computer Society Press, 1994.

[74] Firesmith, D. G. Testing Object-Oriented Software. In Proceedings of Eleventh

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS

USA). Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[75] Hayes, J. H. Testing of Object-Oriented Programming Systems (OOPS): A Fault-Based

Approach. In Proceedings of Object-Oriented Methodologies and Systems. Springer-Verlag,

1994.

[76] Binder, R.V. Design for Testability with Object-Oriented Systems. Communications of the

ACM, 37(9): 87-101, 1994.

[77] Barbey, S and Strohmeier, A. The Problematics of Testing Object-Oriented Software. In

Proceedings of SQM’94 Second Conference on Software Quality Management. Edinburgh,

Scoland, UK, 1994.

[78] Binder, R. V. Testing Objects: Myth and Reality. Object Magazine, 5(2):73-75, 1995.

[79] Payne, J. E., Alexander, R. T and Hutchinson, C. D. Design-for-Testability for Object-

Oriented Software. Object Magazine,7(5): 34-43, July, 1997.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

186

[80] Freedman, R. S. Testability of Software Components. IEEE Transactions on Software

Engineering, 17(6):553-64, 1991.

[81] Binder, R. V. Trends in Testing Object-Oriented Software. Computer, 28(10):68-69, 1995.

[82] Smith, M. D and Robson, D. J. Object-Oriented Programming: The Problems of

Validation. In Proceedings of 6
th

 International Conference on Software Maintenance. IEEE

Computer Society Press, Los Alamitos, CA., 272-281, 1990.

[83] Kung, D., Suchak, N., Gao, J., Hsia, P., Toyoshima, Y and Chen, C. On Object State

Testing. In Proceedings of Eighteenth Annual International Computer Software & Applications

Conference. IEEE Computer Society Press, Los Alamitos, CA., 222-227, 1993.

[84] Hong, H. S., Kwon, Y. R and Cha, S. D. A State-Based Testing Method for Classes.

Journal of Korea Information Science Society, 23(11):1145-1154, 1996.

[85] Hong, H. S., Kwon, Y. R and Cha, S. D. Testing of Object-Oriented Programs Based on

Finite State Machines. In Proceedings of Asia Pacific Software Engineering Conference. IEEE

Computer Society Press, Los Alamitos, CA., 234-241, 1995.

[86] Binder, R. V. The FREE Approach for System Testing: Use-Cases, Threads, and

Relations. Object Magazine, 6(2), February, 1996.

[87] McGregor, J. D. Functional Testing of Classes. In Proceedings of 7
th

 International

Software Quality Week. Software Research Institute, San Francisco, page 11, 1994.

[88] Liskov, B and Wing, J. M. Specifications and their use in defining sub-types. In

Proceedings of OOPSLA. New York: ACM Press. 16-28, 1993.

[89] Leavens, G. T. Modular Specification and Verification of Object-Oriented Programs. IEEE

Software, 8(4): 72-80, 1991.

[90] McGregor, J. D. Constructing Functional Test Cases Using Incrementally Derived State

Machines. In Proceedings of 11
th

 International Conference on Testing Computer Software.,

377-386, Washington, DC. USPDI, 13-16, June 1994.

[91] McGregor, J. D and Dyer, D. M. Selecting Functional Test Cases for a Class. In

Proceedings of 11
th

 Annual Pacific Northwest Software Quality Conference. PNSQC, Portland,

Oregon, 109-121, 1993.

[92] Cowling, A. J. The Category-Partition Method, COM6120 Module: Software

Measurement and Testing, Department of Computer Science, University of Sheffield, England,

UK, 2005.

[93] Cowling, A. J. A Formal Model for Test Frames, in McMinn, P (ed), Proceedings of

UKTest 2005 (UK Software Testing Research III), Department of Computer Science Research

Report CS-05-07, University of Sheffield, England, UK, 83-97, 2005.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

187

[94] Simons, A. J. H. Let’s Agree on the Meaning of Class. Department of Computer Science

Research Report CS-96-26, University of Sheffield, England, UK, 1996.

[95] Barbey, S. Test selection for specification-based testing of object-oriented software based

on formal specifications. PhD Thesis, 1753 Ecole Polytechnic Federale de Lausanne,

Switzerland, 1997.

[96] Overbeck, J. Integration Testing for Object-Oriented Software. PhD Thesis, Vienna

University of Technology, 1994.

[97] Perry, D. E and Kaiser, G. E. Adequate testing and object-oriented programming. Journal

of Object-Oriented Programming, 2(5):13-19, January 1990.

[98] Liskov, B., Atkinson, R., Bloom, T., Mogs, E., Schaffert, J. C., Scheifler, R and Snyder, A.

CLU Reference Manual, volume 114 of Lecture Notes in Computer Sciences. Springer Verlag,

Berlin Heidelberg New York, 1981.

[99] Ipate, F. Theory of X-machines and Applications in Specification and Testing, Ph.D.

Thesis, Department of Computer Science, University of Sheffield, 1995.

[100] Weyuker, E. J. Axiomatizing Software Test Data Adequacy. IEEE Transactions on

Software Engineering, 1128-1138, December, 1986.

[101] Weyuker, E. J. The Evaluation of Program-Based Software Test Data Adequacy Criteria.

Communications of the ACM, 668-675, June, 1988.

[102] Simons, A. J. H. A Language with Class: The Theory of Classification Exemplified in an

Object-Oriented Programming Language. PhD Thesis, Department of Computer Science,

University of Sheffield, 1995.

[103] Laycock, G. The Theory and Practice of Specification Based Software Testing. PhD

Thesis, Department of Computer Science, University of Sheffield, 1993.

[104] Aguado, J and Cowling A. J. Systems of Communicating X-machines for Specifying

Distributed Systems. Department of Computer Science Research Report CS-02-07, Department

of Computer Science, University of Sheffield, 2002.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

188

[105] Aguado, J. Conformance Testing of Distributed Systems: An X-Machine Based

Approach. PhD Thesis, Department of Computer Science, University of Sheffield, 2004.

[106] Aguado, J and Cowling, A. J. Foundations of the X-machine Theory for Testing.

Department of Computer Science Research Report CS-02-06, University of Sheffield, 2002.

[107] Barnard, J., Whitworth, J and Woodward, M. Communicating X-machines, Journal of

Information and Software Technology, Vol. 38, 401-407, 1996.

[108] Cowling, A. J., Georgescu, H., Vertan, C. A Structured Way to use Channels for

Communication in X-Machines Systems. Formal Aspects of Computing, 12(6):485-500, 2000.

[109] Garside, R and Mariani, J. Java: First Contact. Course Technology Ptr (Sd); 1ST edition

ISBN:1-85032-316-X, September, 1997.

 [110] Simons, A. J. H. JWalk: a tool for lazy systematic testing of Java classes by introspection

and user interaction, Automated Software Engineering, 14 (4), December, ed. B. Nuseibeh,

(Springer, USA). SpringerLink: DOI 10.1007/s10515-007-0015-3, 369-418, September, 2007.

 [111] Simons, A. J. H., Griffiths, N and Thomson, C. D. Feedback-based specification, coding

and testing with JWalk, Proc 3rd. Testing in Academia and Industry Conference - Practice and

Research Techniques, 29-31 August, eds. M. Roper, G. M. Kapfhammer and L. Bottacci,

(Cumberland Lodge, Windsor Great Park: IEEE), 69-73, 2008.

[112] Simons, A. J. H and Thomson, C D. Lazy systematic unit testing: JWalk versus JUnit,

Proc 2nd. Testing in Academia and Industry Conference - Practice and Research Techniques,

22-24, eds. McMinn, P., Harman, M, (Cumberland Lodge, Windsor Great Park: IEEE), 138,

September, 2007.

[113] Simons, A. J. H and Thomson, C. D. Benchmarking effectiveness for object-oriented unit

testing, Proc 1st. Software Testing Benchmark Workshop, 9-11 April, eds. Roper, M and

Holcombe W. M. L., (Lillehammer: ICST/IEEE), 2008.

[114] Beck, K. The JUnit Pocket Guide, 1st edn. Beijing: O’Reilly, 2004.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

189

[115] The JUnit project website. http://www.junit.org/. Accessed 10th July, 2009.

[116] Csallner, C and Smaragdakis, Y. JCrasher: An automatic robustness tester for Java.

Software – Practice and Experience, 34 (11):1025-1050, 2004.

[117] Parasoft JTest ® product description, http://www.parasoft.com/, Parasoft, Monrovia, CA.

Accessed 10 July 2009.

[118] Ernst, M. D. Dynamically discovering likely program invariants. PhD Thesis, Department

of Computer Science and Engineering, University of Washington, Seattle, Washington, 2000.

[119] Ernst, M. D., Cockrell, J., Griswold, W. G and Notkin, D. Dynamically discovering likely

program invariants to support program evolution, IEEE Trans. Softw. Eng., 27(2): 99-123,

2001.

[120] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S and

Xiao, C. The Daikon system for dynamic detection of likely invariants, Science of Computer

Programming, 2007.

[121] Perkins, J. H and Ernst, M. D. Efficient incremental algorithms for dynamic detection of

likely invariants. Proc. ACM Sigsoft 12th Symp. Found. Softw. Eng. (FSE ’04), Newport,

California, 23-32, 2004.

[122] Agitar Software. Agitator. http://www.agitar.com/. Accessed 10 July 2009.

[123] Boshernitsan, M., Doong, R and Savoia, A. From Daikon to Agitator: Lessons and

challenges in building a commercial tool for developer testing. Proc. 5th ACM Sigsoft Int. Symp.

on Softw. Testing and Analysis, Portland Maine, 169-180, 2006.

[124] Csallner, C and Smaragdakis, Y. DSD-Crasher: A hybrid analysis tool for bug finding.

Proc. 5th ACM Sigsoft Int. Symp. on Softw. Testing and Analysis, Portland, Maine, 245-254,

2006a.

[125] Xie, T and Notkin, D. Tool-assisted unit test selection based on operational violations.

Proc. 18th IEEE Int. Conf. Automated Softw. Eng. (ASE ’03), Montreal, Canada, 40-48, 2003.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

190

[126] Pacheco, C and Ernst, M. D. Eclat: Automatic generation and classification of test inputs.

Proc. 19th European Conf. Obj.-Oriented Prog., 504-527, 2005.

[127] Xie, T., Marinov, D and Notkin, D. Rostra: A framework for detecting redundant

objectoriented unit tests. Proc. 19th IEEE Conf. Automated Softw. Eng., Washington DC, 196-

205, 2004.

[128] Xie, T., Marinov, D., Schulte, W and Notkin, D. Symstra: A framework for generating

object-oriented unit tests using symbolic execution. Proc. Tools and Algorithms for the

Construction and Analysis of Systems (TACAS/ETAPS ‘05), Edinburgh, 365-381, 2005.

[129] Pacheco, C., Lahiri, S. K., Ernst, M. D and Ball, T. Feedback-directed random test

generation. Proc. 29th Int. Conf. Softw. Eng., Minneapolis, MN, USA, IEE Computer Society,

75-84, 2007.

[130] Boyapati, C., Khurshid, S and Marinov, D. Korat: Automated testing based on Java

predicates. Proc. ACM Sigsoft 3rd Int. Symp. on Softw. Test. and Analysis (ISSTA ’02), Rome,

Italy, 123-133, 2002.

[131] Visser, W., Havelund, K., Brat, G., Park, S and Lerda, F. Model checking programs.

Automated Softw. Eng. J., 10(2): 203-232, 2003.

[132] Lerda, F and Visser, W. Addressing dynamic issues of program model checking, Proc. 8th

Int. SPIN Workshop (SPIN ’01), Toronto, 80-102, 2001.

[133] IPL (Information Processing, Ltd., UK). Cantata++ for testing C, C++ and Java.

http://www.ipl.com/. Accessed 10 July, 2009.

[134] Simons, A. J. H. A theory of regression testing for behaviourally compatible object types.

Softw. Testing, Verif. and Reliability, 16(3):133-156, 2006.

[135] Simons, A. J. H. Testing with guarantees and the failure of regression testing in eXtreme

Programming. Proc. 6th Int. Conf. on Extreme Progr. and Flexible Proc. in Soft. Eng., LNCS

3556, Springer Verlag, Sheffield: 118-126, 2005.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

191

[136] Distefano, D and Parkinson M. jStar: Towards Practical Verification for Java. In

OOPSLA, ACM, 213-226, 2008.

[137] Horstmann, C and Cornell, G. Core Java 2: Fundamentals (volume 1). Prentice Hall

(ISBN 0131482025), 2004.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

192

Apendix A

 A.1 Case Studies and their testing within the CMTT

The goal of this section is to present the complete result of

• Testing the POM depicted by Figure 20, SOM depicted by Figure 25 and EOM depicted

by Figure 28 within the CMTT. In section 5.2.2 we illustrate how each unique method of

the POM can be tested in the unchanged, error and goal state testing modes using the

setForename method as an example.

• Testing the Bank Account within the CMTT in the unchanged, error and goal state

testing modes. The Bank Account Java source code depicted by Figure 60 was

introduced as an auxiliary program code to aid the specification and testing of the Stack

case study covered in section 5.4.

A.1.1 Testing the POM in the unchanged, error, goal and
complete state testing modes of the CMTT

Our goal in this section is to present the result of testing the POM in the unchanged, error, goal

and complete state testing modes of the CMTT. In particular, by complete state testing mode we

mean the mode where POM is tested exhaustively in one go (i.e. concurrently for the

unchanged, error and goal cases). In this section and subsequent sections that follow below, we

assume that the reader is familiar with how to use the CMTT. In section 7.3 we illustrate how to

use the CMTT in all the relevant testing modes.

A.1.1.1 Testing the POM in the unchanged state testing
mode of the CMTT

Method Name Total number of unchanged state

precondition method (USPM)

guarded by

getForename 1

getSurname 1

getAge 1

getGender 1

toString 1

setForename 1

setSurname 1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

193

setAge 1

setGender 1

Table 10: The Unchanged State Precondition Method Profile of the POM System under test

Similar to the Stack Case study illustrated in section 5.4, all the information in Tables 10, 12

and 14 are derived from the specification of the POM. This information is required for use

within the Precondition Generator Panel of the CMTT in order to generate U, E and G for each

unique method of the POM under test in the relevant testing modes.

Figure 48: Testing the POM in the USPM’s testing mode

Unchanged State Testing Mode - Line 1

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getForename

Current Active Test Input []

Current Triggered Precondition Method getForenameUSP1

Result Generated by current active

method

None

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

194

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 2

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setForename

Current Active Test Input [None]

Current Triggered Precondition Method setForenameUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 3

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method toString

Current Active Test Input []

Current Triggered Precondition Method toStringUSP1

Result Generated by current active

method

None None 0 UNKNOWN

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 4

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setGender

Current Active Test Input [UNKNOWN]

Current Triggered Precondition Method setGenderUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

195

Unchanged State Testing Mode - Line 5

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setSurname

Current Active Test Input [None]

Current Triggered Precondition Method setSurnameUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 6

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getSurname

Current Active Test Input []

Current Triggered Precondition Method getSurnameUSP1

Result Generated by current active

method

None

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 7

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getGender

Current Active Test Input []

Current Triggered Precondition Method getGenderUSP1

Result Generated by current active

method

UNKNOWN

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 8

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

196

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setAge

Current Active Test Input [0]

Current Triggered Precondition Method setAgeUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Unchanged State Testing Mode - Line 9

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getAge

Current Active Test Input []

Current Triggered Precondition Method getAgeUSP1

Result Generated by current active

method

0

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Table 11: The step by step transition of the POM system under test in the USPM’s testing mode

A.1.1.2 Testing the POM in the Error state testing mode of
the CMTT

Method Name Total number of error state

precondition method(ESPM) guarded

by

getForename 1

getSurname 1

getAge 1

getGender 1

toString 1

setForename 1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

197

setSurname 1

setAge 2

setGender 1

Table 12: The Error State Precondition Method Profile of the POM System under test

Figure 49: Testing the POM in the ESPM’s testing mode

Error State Testing Mode - Line 1

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setAge

Current Active Test Input [65]

Current Triggered Precondition Method setAgeESP2

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 65, gender = DOG, UPPER_AGE

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Error State Testing Mode - Line 2

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

198

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setAge

Current Active Test Input [-1]

Current Triggered Precondition Method setAgeESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = -1, gender = DOG, UPPER_AGE

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Error State Testing Mode - Line 3

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setForename

Current Active Test Input []

Current Triggered Precondition Method setForenameESP1

Result Generated by current active

method

 null

Next Object-Machine Transition State [forename = , surname = , age = 65, gender = DOG, UPPER_AGE = 60,

UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Error State Testing Mode - Line 4

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setGender

Current Active Test Input [DOG]

Current Triggered Precondition Method setGenderESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = DOG, UPPER_AGE

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Error State Testing Mode – Line 5

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

199

Current Active Method setSurname

Current Active Test Input []

Current Triggered Precondition Method setSurnameESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = , age = 65, gender = DOG, UPPER_AGE = 60,

UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Table 13: The step by step transition of the POM system under test in the ESPM’s testing mode

A.1.1.3 Testing the POM in the Goal state testing mode of
the CMTT

Method Name Total number of goal state

precondition method (GSPM)

guarded by

getForename 1

getSurname 1

getAge 1

getGender 1

toString 1

setForename 3

setSurname 3

setAge 4

setGender 3

Table 14: The Goal State Precondition Method Profile of the POM System under test

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

200

Figure 50: Testing the POM in the GSPM’s testing mode

Goal State Testing Mode - Line 1

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setSurname

Current Active Test Input [Addico]

Current Triggered Precondition Method setSurnameGSP3

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = Addico, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 2

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

201

Current Active Method setAge

Current Active Test Input [0]

Current Triggered Precondition Method setAgeGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 3

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method toString

Current Active Test Input []

Current Triggered Precondition Method toStringGSP1

Result Generated by current active

method

None None 60 UNKNOWN

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 4

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setAge

Current Active Test Input [22]

Current Triggered Precondition Method setAgeGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 22, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 5

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

202

Current Active Method setAge

Current Active Test Input [45]

Current Triggered Precondition Method setAgeGSP3

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 45, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 6

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setSurname

Current Active Test Input [A]

Current Triggered Precondition Method setSurnameGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = A, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 7

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getGender

Current Active Test Input []

Current Triggered Precondition Method getGenderGSP1

Result Generated by current active

method

UNKNOWN

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 8

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setGender

Current Active Test Input [MALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

203

Current Triggered Precondition Method setGenderGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = MALE, UPPER_AGE

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE]

Goal State Testing Mode - Line 9

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setForename

Current Active Test Input [H]

Current Triggered Precondition Method setForenameGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = H, surname = Addico, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 10

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setForename

Current Active Test Input [Hen]

Current Triggered Precondition Method setForenameGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = Hen, surname = Addico, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 11

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setForename

Current Active Test Input [Henry]

Current Triggered Precondition Method setForenameGSP3

Result Generated by current active null

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

204

method

Next Object-Machine Transition State [forename = Henry, surname = Addico, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 12

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getSurname

Current Active Test Input []

Current Triggered Precondition Method getSurnameGSP1

Result Generated by current active

method

None

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 13

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setAge

Current Active Test Input [60]

Current Triggered Precondition Method setAgeGSP4

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 14

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setGender

Current Active Test Input [UNKNOWN]

Current Triggered Precondition Method setGenderGSP3

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

205

FEMALE = FEMALE]

Goal State Testing Mode - Line 15

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getForename

Current Active Test Input []

Current Triggered Precondition Method getForenameGSP1

Result Generated by current active

method

None

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 16

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setGender

Current Active Test Input [FEMALE]

Current Triggered Precondition Method setGenderGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = FEMALE,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Goal State Testing Mode - Line 17

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method getAge

Current Active Test Input []

Current Triggered Precondition Method getAgeGSP1

Result Generated by current active

method

0

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

206

Goal State Testing Mode - Line 18

Object-Machine Under Test (OMUT) PersonObjectMachineTest

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Current Active Method setSurname

Current Active Test Input [Add]

Current Triggered Precondition Method setSurnameGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [forename = None, surname = Add, age = 60, gender = UNKNOWN,

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE,

FEMALE = FEMALE]

Table 15: The step by step transition of the POM system under test in the GSPM’s testing mode

A.1.1.4 Testing the POM in the Complete state testing mode
of the CMTT

Figure 51: Complete State Testing of the POM system in the USPM, ESPM and GSPM testing modes

In Figure 51, three radio buttons corresponding to USPM, ESPM and GSPM are concurrently

selected within the CMTT (i.e. a command to execute all testing modes in one go).

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

207

A.1.2 Testing the SOM in the unchanged, error, goal and
complete state testing modes of the CMTT

Our goal in this section is to present the result of testing the SOM in the unchanged, error, goal

and complete state testing modes of the CMTT.

A.1.2.1 Testing the SOM in the unchanged state testing
mode of the CMTT

Method Name Total number of unchanged state

precondition method (USPM)

guarded by

setMajor 1

getMajor 1

toString 1

Table 16: The Unchanged State Precondition Method Profile of the SOM System under test

Figure 52: Testing the SOM in the USPM’s testing mode

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

208

Unchanged State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method getMajor

Current Active Test Input []

Current Triggered Precondition Method getMajorUSP1

Result Generated by current active

method

Unknown Major

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Unchanged State Testing Mode - Line 2

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method toString

Current Active Test Input []

Current Triggered Precondition Method toStringUSP1

Result Generated by current active

method

None None 0 UNKNOWN Unknown Major

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Unchanged State Testing Mode - Line 3

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Unknown Major]

Current Triggered Precondition Method setMajorUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Table 17: The step by step transition of the SOM system under test in the USPM’s testing mode

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

209

A.1.2.2 Testing the SOM in the error state testing mode of
the CMTT

Method Name Total number of error state

precondition method (ESPM)

guarded by

setMajor 1

getMajor 1

toString 1

Table 18: The Error State Precondition Method Profile of the SOM System under test

Figure 53: Testing the SOM in the ESPM’s testing mode

Error State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Capentry]

Current Triggered Precondition Method setMajorESP1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

210

Result Generated by current active

method

null

Next Object-Machine Transition State [major = Capentry, AI = Artificial Intelligence, SE = Software Engineering,

CS = Computer Science, UM = Unknown Major]

Table 19: The step by step transition of the SOM system under test in the ESPM’s testing mode

A.1.2.3 Testing the SOM in the Goal state testing mode of
the CMTT

Method Name Total number of goal state

precondition method (GSPM)

guarded by

setMajor 4

getMajor 1

toString 1

Table 20: The Goal State Precondition Method Profile of the SOM System under test

Figure 54: Testing the SOM in the GSPM’s testing mode.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

211

Goal State Testing Mode - Line 1

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Artificial Intelligence]

Current Triggered Precondition Method setMajorGSP1

Result Generated by current active

method

 null

Next Object-Machine Transition State [major = Artificial Intelligence, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Goal State Testing Mode - Line 2

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method getMajor

Current Active Test Input []

Current Triggered Precondition Method getMajorGSP1

Result Generated by current active

method

Unknown Major

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Goal State Testing Mode - Line 3

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Software Engineering]

Current Triggered Precondition Method setMajorGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [major = Software Engineering, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Goal State Testing Mode - Line 4

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method toString

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

212

Current Active Test Input []

Current Triggered Precondition Method toStringGSP1

Result Generated by current active

method

None None 0 UNKNOWN Unknown Major

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Goal State Testing Mode - Line 5

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Computer Science]

Current Triggered Precondition Method setMajorGSP3

Result Generated by current active

method

null

Next Object-Machine Transition State [major = Computer Science, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Goal State Testing Mode - Line 6

Object-Machine Under Test (OMUT) StudentObjectMachineTest

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Current Active Method setMajor

Current Active Test Input [Unknown Major]

Current Triggered Precondition Method setMajorGSP4

Result Generated by current active

method

null

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software

Engineering, CS = Computer Science, UM = Unknown Major]

Table 21: The step by step transition of the SOM system under test in the GSPM’s testing mode

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

213

A.1.2.4 Testing the SOM in the Complete state testing mode
of the CMTT

Figure 55: Complete State Testing of the SOM system in the USPM, ESPM and GSPM testing modes

A.1.3 Testing the EOM in the unchanged, error, goal and
complete state testing modes of the CMTT

Our goal in this section is to present the result of testing the EOM in the unchanged, error, goal

and complete state testing modes of the CMTT.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

214

A.1.3.1 Testing the EOM in the unchanged state testing
mode of the CMTT

Method Name Total number of unchanged state

precondition method (USPM)

guarded by

getRatePerHour 1

computeMonthlySalary 1

toString 1

Table 22: The Unchanged State Precondition Method Profile of the EOM System under test

Figure 56: Testing the EOM in the USPM’s testing mode.

Unchanged State Testing Mode - Line 1

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [0.0, 0]

Current Triggered Precondition Method computeMonthlySalaryUSP1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

215

Result Generated by current active

method

 null

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Unchanged State Testing Mode - Line 2

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [0]

Current Triggered Precondition Method getRatePerHourUSP1

Result Generated by current active

method

0.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Unchanged State Testing Mode - Line 3

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method toString

Current Active Test Input []

Current Triggered Precondition Method toStringUSP1

Result Generated by current active

method

None None 0 UNKNOWN 0.0 0 0.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Table 23: The step by step transition of the EOM system under test in the USPM’s testing mode

A.1.3.2 Testing the EOM in the Error state testing mode of
the CMTT

Method Name Total number of error state

precondition method (ESPM)

guarded by

getRatePerHour 3

computeMonthlySalary 3

toString 1

Table 24: The Error State Precondition Method Profile of the EOM System under test

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

216

Figure 57: Testing the EOM in the ESPM’s testing mode.

Error State Testing Mode - Line 1

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [0]

Current Triggered Precondition Method getRatePerHourESP1

Result Generated by current active

method

0.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Error State Testing Mode - Line 2

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [-6.0, 10]

Current Triggered Precondition Method computeMonthlySalaryESP3

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

217

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -6.0, grade = 10]

Error State Testing Mode - Line 3

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [-4.0, -1]

Current Triggered Precondition Method computeMonthlySalaryESP2

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -4.0, grade = -1]

Error State Testing Mode - Line 4

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [-1]

Current Triggered Precondition Method getRatePerHourESP2

Result Generated by current active

method

0.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = -1]

Error State Testing Mode - Line 5

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [-2.0, 0]

Current Triggered Precondition Method computeMonthlySalaryESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -2.0, grade = 0]

Error State Testing Mode - Line 6

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

218

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [7]

Current Triggered Precondition Method getRatePerHourESP3

Result Generated by current active

method

0.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 7]

Table 25: The step by step transition of the EOM system under test in the ESPM’s testing mode

A.1.3.3 Testing the EOM in the Goal state testing mode of
the CMTT

Method Name Total number of goal state

precondition method (GSPM)

guarded by

getRatePerHour 3

computeMonthlySalary 3

toString 1

Table 26: The Goal State Precondition Method Profile of the EOM System under test

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

219

Figure 58: Testing the EOM in the GSPM’s testing mode.

Goal State Testing Mode - Line 1

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method toString

Current Active Test Input []

Current Triggered Precondition Method toStringGSP1

Result Generated by current active

method

None None 0 UNKNOWN 48.0 3 4800.0

Next Object-Machine Transition State [salary = 4800.0, totalHoursWorked = 48.0, grade = 3]

Goal State Testing Mode - Line 2

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [48.0, 3]

Current Triggered Precondition Method computeMonthlySalaryGSP3

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

220

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = 4800.0, totalHoursWorked = 48.0, grade = 3]

Goal State Testing Mode - Line 3

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [2]

Current Triggered Precondition Method getRatePerHourGSP2

Result Generated by current active

method

15.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 2]

Goal State Testing Mode - Line 4

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [1]

Current Triggered Precondition Method getRatePerHourGSP1

Result Generated by current active

method

10.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 1]

Goal State Testing Mode - Line 5

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [0.0, 1]

Current Triggered Precondition Method computeMonthlySalaryGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 1]

Goal State Testing Mode - Line 6

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

221

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method computeMonthlySalary

Current Active Test Input [30.0, 2]

Current Triggered Precondition Method computeMonthlySalaryGSP2

Result Generated by current active

method

null

Next Object-Machine Transition State [salary = 1800.0, totalHoursWorked = 30.0, grade = 2]

Goal State Testing Mode - Line 7

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0]

Current Active Method getRatePerHour

Current Active Test Input [3]

Current Triggered Precondition Method getRatePerHourGSP3

Result Generated by current active

method

25.0

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 3]

Table 27: The step by step transition of the EOM system under test in the GSPM’s testing mode

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

222

A.1.3.4 Testing the EOM in the complete state testing mode
of the CMTT

Figure 59: Complete State Testing of the EOM system in the USPM, ESPM and GSPM testing modes

A.1.4 Testing the Bank Account in the unchanged, error,
goal and complete state testing modes of the CMTT

Our goal in this section is to present the result of testing the Bank Account in the unchanged,

error, goal and complete state testing modes of the CMTT.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

223

A.1.4.1 Testing the Bank Account in the unchanged state
testing mode of the CMTT

Method Name Total number of unchanged state

precondition method (USPM)

guarded by

deposit 1

withdraw 1

Table 28: The Unchanged State Precondition Method Profile of the Bank Account System under test

public class BankAccountTest

 {

 private double accountBalance;

 public BankAccountTest()

 {

 this.accountBalance = 0;

 }

 public void deposit(double amount)

 {

 accountBalance = accountBalance + amount;

 }

 public void withdraw(double amount)

 {

 accountBalance = accountBalance - amount;

 }

 public String toString()

 {

 return ""+this.accountBalance;

 }

 }// End of BankAccountTest

Figure 60: The compiled BankAccountTest.java class under test

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

224

Figure 61: Testing the Bank Account in the USPM’s testing mode.

Unchanged State Testing Mode - Line 1

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method withdraw

Current Active Test Input [0.0]

Current Triggered Precondition Method withdrawUSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = 0.0]

Unchanged State Testing Mode - Line 2

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method deposit

Current Active Test Input [0.0]

Current Triggered Precondition Method depositUSP1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

225

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = 0.0]

Table 29: The step by step transition of the Bank Account system under test in the USPM’s testing mode

A.1.4.2 Testing the Bank Account in the error state testing
mode of the CMTT

Method Name Total number of error state

precondition method (ESPM)

guarded by

deposit 1

withdraw 1

Table 30: The Error State Precondition Method Profile of the Bank Account System under test

Figure 62: Testing the Bank Account in the ESPM’s testing mode.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

226

Error State Testing Mode - Line 1

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method withdraw

Current Active Test Input [-5.0]

Current Triggered Precondition Method withdrawESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = 0.0]

Error State Testing Mode - Line 2

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method deposit

Current Active Test Input [-5.0]

Current Triggered Precondition Method depositESP1

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = -5.0]

Table 31: The step by step transition of the Bank Account system under test in the ESPM’s testing mode

A.1.4.3 Testing the Bank Account in the goal state testing
mode of the CMTT

Method Name Total number of goal state

precondition method (GSPM)

guarded by

deposit 1

withdraw 1

Table 32: The Goal State Precondition Method Profile of the Bank Account System under test

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

227

Figure 63: Testing the Bank Account in the GSPM’s testing mode.

Goal State Testing Mode - Line 1

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method withdraw

Current Active Test Input [-7.0]

Current Triggered Precondition Method withdrawGSP1

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = 8.0]

Goal State Testing Mode - Line 2

Object-Machine Under Test (OMUT) BankAccount

Current State(s) of OMUT [accountBalance = 0.0]

Current Active Method deposit

Current Active Test Input [1.0]

Current Triggered Precondition Method depositGSP1

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

228

Result Generated by current active

method

null

Next Object-Machine Transition State [accountBalance = 1.0]

Table 33: The step by step transition of the Bank Account system under test in the GSPM’s testing mode

A.1.4.4 Testing the Bank Account in the complete state
testing mode of the CMTT

Figure 64: Complete State Testing of the Bank Account system in the USPM, ESPM and GSPM testing modes

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

229

A.2 Automatically Generated Java source codes within the
Precondition Generator Panel of the CMTT

In order to exhaustively test every unique method of the POM, SOM, EOM and the Bank

Account systems covered in A.1.1, A.1.2, A.1.3 and A.1.4 within the CMTT, the Precondition

Generator Panel of the CMTT was automatically used to generate U, E and G for each unique

method of the object machine system under test in the relevant testing modes. The

automatically generated Java program codes are then uploaded and executed in the unchanged,

error, goal and complete testing modes within the Frogila Testing Tool panel of the CMTT.

The goal of this section is to present all the automatically generated program codes developed

interactively with the test engineer for the stack case study covered in section 5.4, POM

depicted by Figure 20, SOM depicted by Figure 25, EOM depicted by Figure 28 and Bank

Account depicted by Figure 60.

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

230

import java.util.List;

import java.util.ArrayList;

public class StackTest {

 private static int INITIAL_ALLOC = 3;

 private int alloc;

 protected int count;

 protected List<Object> items;

/** Constructs a Stack with initial allocation of 3. */

 public StackTest() {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 }

 public void push(Object[] elem)

 {

 Object[] itemValues = items.toArray();

 if(!(elem == null))

 {

 for(int i=0; i < elem.length; i++)

 itemValues[count++] = elem[i];

 }

 items = convertArrayToList(itemValues);

 }

private PreConditionTestObject pushUSP1()

 {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 push(new Object[]{});

 if(count == 0)

 {

 Object[] testInput = {new Object[]{}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject pushUSP2()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 BankAccountTest bankAccount = new BankAccountTest();

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(new Object[]{person,student, employee, bankAccount}.length > alloc)

 {

 Object[] testInput = {new Object[]{person,student, employee, bankAccount}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

231

…

private PreConditionTestObject pushESP1()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 BankAccountTest bankAccount = new BankAccountTest();

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(new Object[]{person, student, employee, bankAccount}.length > alloc)

 {

 Object[] testInput = {new Object[]{person, student, employee, bankAccount}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject pushGSP1()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(new Object[]{person,student, employee}.length == alloc)

 {

 Object[] testInput = {new Object[]{person,student, employee}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject pushGSP2()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(new Object[]{person, student}.length < alloc)

 {

 Object[] testInput = {new Object[]{person, student}};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

public Object pop()

 {

 Object popedValue = new Object();

 Object[] itemValues = items.toArray();

 popedValue = itemValues[--count];

 items = convertArrayToList(itemValues);

 return popedValue;

 }

private PreConditionTestObject popUSP1()

 {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(count == 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

232

…

private PreConditionTestObject popESP1()

 {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(count == 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject popGSP1()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 push(new Object[]{person, student});

 if(count > 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

public Object top()

 {

 Object topValue = new Object();

 Object[] itemValues = items.toArray();

 topValue = itemValues[count - 1];

 items = convertArrayToList(itemValues);

 return topValue;

 }

private PreConditionTestObject topUSP1()

 {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(count == 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject topESP1()

 {

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 if(count == 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

233

…

private PreConditionTestObject topGSP1()

 {

 PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE");

 StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");

 alloc = INITIAL_ALLOC;

 count = 0;

 items = convertArrayToList(new Object[alloc]);

 push(new Object[]{person, student});

 if(count > 0)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 public List<Object> convertArrayToList(Object[] objectArray)

 {

 List<Object> list = new ArrayList<Object>();

 for(Object o: objectArray)

 {

 list.add(o);

 }

 return list;

 }

}//End of class StackTest

Figure 65: StackTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

234

public class PersonObjectMachineTest

 {

 // a set of possibly dynamic attributes encapsulating the distributed states and memory of the PersonObjectMachine

 private String forename;

 private String surname;

 private int age;

 private String gender;

 // a set of constant or fixed attributes encapsulating the distributed states and memory of the PersonObjectMachine

 private static final int UPPER_AGE = 60;

 public static final String UNKNOWN = "UNKNOWN";

 public static final String MALE = "MALE";

 public static final String FEMALE = "FEMALE";

 // a set of PersonObjectMachineTest Constructors

 public PersonObjectMachineTest()

 {

 this.forename = "None";

 this.surname = "None";

 this.age = 0;

 this.gender = "UNKNOWN";

 }

 public PersonObjectMachineTest(String f, String s, int a, String g)

 {

 this.forename = f;

 this.surname = s;

 this.age = a;

 this.gender = g;

 }

 // a set of PersonObjectMachineTest Observer Methods

 public String getForename()

 {

 return this.forename;

 }

 public String getSurname()

 {

 return this.surname;

 }

 public int getAge()

 {

 return this.age;

 }

 public String getGender()

 {

 return this.gender;

 }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender();

 }

// a set of PersonObjectMachineTest Mutator Methods

 public void setForename(String f)

 {

 this.forename = f;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

235

…

public void setSurname(String s)

 {

 this.surname = s;

 }

 public void setAge(int a)

 {

 this.age = a;

 }

 public void setGender(String g)

 {

 this.gender = g;

 }

// Unchanged State PreCondition Methods

 private PreConditionTestObject getForenameUSP1()

 {

 if(getForename().equals(this.forename))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getSurnameUSP1()

 {

 if(getSurname().equals(this.surname))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getAgeUSP1()

 {

 if(getAge() == this.age)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getGenderUSP1()

 {

 if(getGender().equals(this.gender))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringUSP1()

 {

 if((getForename().equals(this.forename)) && (getSurname().equals(this.surname)) && (getAge() == this.age) &&

(getGender().equals(this.gender)))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

236

…

 private PreConditionTestObject setForenameUSP1()

 {

 setForename("None");

 if(this.forename.equals("None"))

 {

 Object[] testInput = new Object[]{"None"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setSurnameUSP1()

 {

 setSurname("None");

 if(this.surname.equals("None"))

 {

 Object[] testInput = new Object[]{"None"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeUSP1()

 {

 setAge(0);

 if(this.age == 0)

 {

 Object[] testInput = new Object[]{0};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setGenderUSP1()

 {

 setGender("UNKNOWN");

 if(this.gender.equals("UNKNOWN"))

 {

 Object[] testInput = new Object[]{"UNKNOWN"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 // Error State Precondition Methods

 private PreConditionTestObject getForenameESP1()

 {

 if(!(getForename().equals(this.forename)))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getSurnameESP1()

 {

 if(!(getSurname().equals(this.surname)))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getAgeESP1()

 {

 if(!(getAge() == this.age))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }
…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

237

...

 private PreConditionTestObject getGenderESP1()

 {

 if(!(getGender().equals(this.gender)))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringESP1()

 {

 if((!(getForename().equals(this.forename))) || (!(getSurname().equals(this.surname))) || (!(getAge() == this.age)) ||

(!(getGender().equals(this.gender))))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setForenameESP1()

 {

 setForename("");

 if(this.forename.length() < 1)

 {

 Object[] testInput = new Object[]{""};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setSurnameESP1()

 {

 setSurname("");

 if(this.surname.length() < 1)

 {

 Object[] testInput = new Object[]{""};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeESP1()

 {

 setAge(-1);

 if(this.age < 0)

 {

 Object[] testInput = new Object[]{-1};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeESP2()

 {

 setAge(65);

 if(this.age > UPPER_AGE)

 {

 Object[] testInput = new Object[]{65};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setGenderESP1()

 {

 setGender("DOG");

 if((!(this.gender.equals(MALE))) || (!(this.gender.equals(FEMALE))) || (!(this.gender.equals(UNKNOWN))))

 {

 Object[] testInput = new Object[]{"DOG"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

238

// Goal State Precondition Methods

 private PreConditionTestObject getForenameGSP1()

 {

 if(getForename().equals(this.forename))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getSurnameGSP1()

 {

 if(getSurname().equals(this.surname))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getAgeGSP1()

 {

 if(getAge() == this.age)

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getGenderGSP1()

 {

 if(getGender().equals(this.gender))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setForenameGSP1()

 {

 setForename("Hen");

 if(this.forename !=null)

 {

 Object[] testInput = new Object[]{"Hen"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setForenameGSP2()

 {

 setForename("H");

 if(this.forename.length() == 1)

 {

 Object[] testInput = new Object[]{"H"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setForenameGSP3()

 {

 setForename("Henry");

 if(this.forename.length() > 1)

 {

 Object[] testInput = new Object[]{"Henry"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

239

…

 private PreConditionTestObject setSurnameGSP1()

 {

 setSurname("Add");

 if(this.surname !=null)

 {

 Object[] testInput = new Object[]{"Add"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setSurnameGSP2()

 {

 setSurname("A");

 if(this.surname.length() == 1)

 {

 Object[] testInput = new Object[]{"A"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setSurnameGSP3()

 {

 setSurname("Addico");

 if(this.surname.length() > 1)

 {

 Object[] testInput = new Object[]{"Addico"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeGSP1()

 {

 setAge(0);

 if(this.age == 0)

 {

 Object[] testInput = new Object[]{0};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeGSP2()

 {

 setAge(22);

 if(this.age > 0)

 {

 Object[] testInput = new Object[]{22};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setAgeGSP3()

 {

 setAge(45);

 if(this.age < UPPER_AGE)

 {

 Object[] testInput = new Object[]{45};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

240

…

 private PreConditionTestObject setAgeGSP4()

 {

 setAge(60);

 if(this.age == UPPER_AGE)

 {

 Object[] testInput = new Object[]{60};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setGenderGSP1()

 {

 setGender(MALE);

 if(this.gender.equals(MALE))

 {

 Object[] testInput = new Object[]{MALE};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setGenderGSP2()

 {

 setGender(FEMALE);

 if(this.gender.equals(FEMALE))

 {

 Object[] testInput = new Object[]{FEMALE};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setGenderGSP3()

 {

 setGender(UNKNOWN);

 if(this.gender.equals(UNKNOWN))

 {

 Object[] testInput = new Object[]{UNKNOWN};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringGSP1()

 {

 if((getForename().equals(this.forename)) && (getSurname().equals(this.surname)) && (getAge() == this.age) &&

(getGender().equals(this.gender)))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 } // End of PersonObjectMachineTest

Figure 66: PersonObjectMachineTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

241

public class StudentObjectMachineTest extends PersonObjectMachine

 {

 // class attributes

 private String major;

 public static final String AI = "Artificial Intelligence";

 public static final String SE = "Software Engineering";

 public static final String CS = "Computer Science";

 public static final String UM = "Unknown Major";

 // class constructor

 public StudentObjectMachineTest()

 {

 super();

 this.major = "Unknown Major";

 }

 public StudentObjectMachineTest(String f, String s, int a, String g, String m)

 {

 super(f, s, a, g);

 this.major = m;

 }

 public void setMajor(String m)

 {

 this.major = m;

 }

 public String getMajor()

 {

 return this.major;

 }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major;

 }

 private PreConditionTestObject setMajorUSP1()

 {

 setMajor("Unknown Major");

 if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM)))

 {

 Object[] testInput = new Object[]{"Unknown Major"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setMajorESP1()

 {

 setMajor("Capentry");

 if((!(this.major.equals(AI))) || (!(this.major.equals(SE))) || (!(this.major.equals(CS))) || (!(this.major.equals(UM))))

 {

 Object[] testInput = new Object[]{"Capentry"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setMajorGSP1()

 {

 setMajor("Artificial Intelligence");

 if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM)))

 {

 Object[] testInput = new Object[]{"Artificial Intelligence"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

242

 …

 private PreConditionTestObject setMajorGSP2()

 {

 setMajor("Software Engineering");

 if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM)))

 {

 Object[] testInput = new Object[]{"Software Engineering"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setMajorGSP3()

 {

 setMajor("Computer Science");

 if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM)))

 {

 Object[] testInput = new Object[]{"Computer Science"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject setMajorGSP4()

 {

 setMajor("Unknown Major");

 if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM)))

 {

 Object[] testInput = new Object[]{"Unknown Major"};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getMajorUSP1()

 {

 if(getMajor().equals(this.major))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getMajorESP1()

 {

 if((!(getMajor().equals(this.major))))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getMajorGSP1()

 {

 if(getMajor().equals(this.major))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

243

 …

 private PreConditionTestObject toStringUSP1()

 {

 if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringESP1()

 {

 if((!(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major))))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringGSP1()

 {

 if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

}// End of StudentObjectMachineTest

Figure 67: StudentObjectMachineTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

244

public class EmployeeObjectMachineTest extends PersonObjectMachine

 {

 // class attributes

 private double salary;

 private double totalHoursWorked;

 private int grade;

 // class constructors

 public EmployeeObjectMachineTest()

 {

 super();

 this.totalHoursWorked = 0.0;

 this.grade = 0;

 computeMonthlySalary(this.totalHoursWorked, this.grade);

 }

 public EmployeeObjectMachineTest(String f, String s, int a, String g, double thw, int grade)

 {

 super(f, s, a, g);

 this.totalHoursWorked = thw;

 this.grade = grade;

 computeMonthlySalary(thw, grade);

 }

 public double getRatePerHour(int grade)

 {

 if(grade == 1)

 {

 return 10.0;

 }

 if(grade == 2)

 {

 return 15.0;

 }

 if(grade == 3)

 {

 return 25.0;

 }

 return 0.0;

 }

 public void computeMonthlySalary(double thw, int grade)

 {

 this.salary = thw * getRatePerHour(grade) * 4.0;

 }

 public String toString()

 {

 return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" "+this.salary;

 }

 private PreConditionTestObject getRatePerHourUSP1()

 {

 grade = 0;

 if(grade == 0)

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourESP1()

 {

 grade = 0;

 if((grade == 0) || (grade < 0)|| (grade > 3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

245

…

private PreConditionTestObject getRatePerHourESP2()

 {

 grade = -1;

 if((grade == 0) || (grade < 0) || (grade > 3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourESP3()

 {

 grade = 7;

 if((grade == 0) || (grade < 0)|| (grade > 3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourGSP1()

 {

 grade = 1;

 if((grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourGSP2()

 {

 grade = 2;

 if((grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject getRatePerHourGSP3()

 {

 grade = 3;

 if((grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject computeMonthlySalaryUSP1()

 {

 totalHoursWorked = 0 ;

 grade = 0;

 if((totalHoursWorked == 0) && (grade == 0))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

246

…

private PreConditionTestObject computeMonthlySalaryESP1()

 {

 totalHoursWorked = -2 ;

 grade = 0;

 if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject computeMonthlySalaryESP2()

 {

 totalHoursWorked = -4 ;

 grade = -1;

 if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject computeMonthlySalaryESP3()

 {

 totalHoursWorked = -6 ;

 grade = 10;

 if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject computeMonthlySalaryGSP1()

 {

 totalHoursWorked = 0 ;

 grade = 1;

 if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject computeMonthlySalaryGSP2()

 {

 totalHoursWorked = 30 ;

 grade = 2;

 if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

247

 …

 private PreConditionTestObject computeMonthlySalaryGSP3()

 {

 totalHoursWorked = 48 ;

 grade = 3;

 if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3))

 {

 Object[] testInput = new Object[]{totalHoursWorked, grade};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringUSP1()

 {

 if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+"

"+this.salary))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringESP1()

 {

 if((!(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+"

"+this.salary))))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject toStringGSP1()

 {

 if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+"

"+this.salary))

 {

 Object[] testInput = new Object[]{};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 }// End of EmployeeObjectMachineTest

Figure 68: EmployeeObjectMachineTest.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

248

public class BankAccount

 {

 private double accountBalance;

 public BankAccount()

 {

 this.accountBalance = 0;

 }

 public void deposit(double amount)

 {

 accountBalance = accountBalance + amount;

 }

 public void withdraw(double amount)

 {

 accountBalance = accountBalance - amount;

 }

 private PreConditionTestObject depositUSP1()

 {

 double uspDepositAmount = 0;

 if(((this.accountBalance + uspDepositAmount) == this.accountBalance))

 {

 Object[] testInput = new Object[]{uspDepositAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

private PreConditionTestObject withdrawUSP1()

 {

 double uspWithdrawAmount = 0;

 if(((this.accountBalance - uspWithdrawAmount) == this.accountBalance))

 {

 Object[] testInput = new Object[]{uspWithdrawAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject depositESP1()

 {

 double espDepositAmount = -5;

 if(((this.accountBalance + espDepositAmount) < this.accountBalance))

 {

 Object[] testInput = new Object[]{espDepositAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject withdrawESP1()

 {

 double espWithdrawAmount = -5;

 if(((this.accountBalance - espWithdrawAmount) > this.accountBalance))

 {

 Object[] testInput = new Object[]{espWithdrawAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

249

A.3 Java source codes for the Class-Machines Friend
Function (CMFF)

In chapter 6 we introduced the CMƒƒ concept. In this section, our primary goal is to present the

complete implementation of that concept in the Java Programming Language.

Recall that the CMƒƒ is given by: CMƒƒ = (Я, Ξ, Ж). In Figure 70, the CMƒƒ is implemented

as a class in Java called TransitionFunctionSpecObjectMachine.java where Я, Ξ and Ж

are respectively implemented as a method called: getUnchangedStateTransitionFunction,

getErrorStateTransitionFunction and getGoalStateTransitionFunction within Figure

70. Furthermore, this section also present other java classes that Figure 70 relies on, in order to

compile or function as required.

…

private PreConditionTestObject depositGSP1()

 {

 double gspDepositAmount = 1;

 if(((this.accountBalance + gspDepositAmount) > this.accountBalance))

 {

 Object[] testInput = new Object[]{gspDepositAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

 private PreConditionTestObject withdrawGSP1()

 {

 double gspWithdrawAmount = -7;

 if((this.accountBalance - gspWithdrawAmount) >= 0)

 {

 Object[] testInput = new Object[]{gspWithdrawAmount};

 return new PreConditionTestObject(testInput);

 }

 return null;

 }

}// End of BankAccount

Figure 69: BankAccount.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

250

import java.lang.reflect.Field;

import java.lang.reflect.Method;

import java.util.Arrays;

import java.util.*;

public class TransitionFunctionSpecObjectMachine

 {

 private ClassMachine classMachine;

 public TransitionFunctionSpecObjectMachine()

 {

 this.classMachine = null;

 }

 public TransitionFunctionSpecObjectMachine(ClassMachine classMachine)

 {

 this.classMachine = classMachine;

 }

 public TransitionFunctionSpecObjectMachine(Class<?> com, TestObject to, Map mtg, Map type)

 {

 this.classMachine = new ClassMachine(com, to, mtg, type);

 }

 public Map getUnchangedStateTransitionFunction(ClassMachine myClass)

 {

 Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine();

 Object imp = generateNewObjectMachine(compiledObjectMachine);

 TestObject testObject = myClass.getTestObject();

 String[] usPreCondMethodNames = getUnchangedStatePreConditionMethodNames(testObject);

 Map profile = myClass.getObjectMachineType();

 String[] currentObjectState = getCurrentObjectState(imp);

 Map<TransitionFunctionKey, TransitionFunctionValue> unchangedStateTransitionFunction = new HashMap<TransitionFunctionKey,

TransitionFunctionValue>();

 for(String preMethod : usPreCondMethodNames)

 {

 for (Method preCondMethod : imp.getClass().getDeclaredMethods())

 {

 if(preCondMethod.getName().equals(preMethod))

 {

 try{

 preCondMethod.setAccessible(true);

 Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{});

 PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput;

 String usObjectMachineMethodName = (String) profile.get(preMethod);

 Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput());

 String[] nextObjectMachineState = getCurrentObjectState(imp);

 TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState,

usObjectMachineMethodName, preMethod, pto.getTestInput());

 TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState);

 unchangedStateTransitionFunction.put(tKey, tValue);

 }catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 return unchangedStateTransitionFunction;

 }// End of getUnchangedStateTransitionFunction

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

251

…

public Map getErrorStateTransitionFunction(ClassMachine myClass)

 {

 Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine();

 Object imp = generateNewObjectMachine(compiledObjectMachine);

 TestObject testObject = myClass.getTestObject();

 String[] usPreCondMethodNames = getErrorStatePreConditionMethodNames(testObject);

 Map profile = myClass.getObjectMachineType();

 String[] currentObjectState = getCurrentObjectState(imp);

 Map<TransitionFunctionKey, TransitionFunctionValue> errorStateTransitionFunction = new HashMap<TransitionFunctionKey,

TransitionFunctionValue>();

 for(String preMethod : usPreCondMethodNames)

 {

 for (Method preCondMethod : compiledObjectMachine.getDeclaredMethods())

 {

 if(preCondMethod.getName().equals(preMethod))

 {

 try{

 preCondMethod.setAccessible(true);

 Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{});

 PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput;

 String usObjectMachineMethodName = (String) profile.get(preMethod);

 Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput());

 String[] nextObjectMachineState = getCurrentObjectState(imp);

 TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState,

usObjectMachineMethodName, preMethod, pto.getTestInput());

 TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState);

 errorStateTransitionFunction.put(tKey, tValue);

 }catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 return errorStateTransitionFunction;

 }// End of getErrorStateTransitionFunction

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

252

 …

public Map getGoalStateTransitionFunction(ClassMachine myClass)

 {

 Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine();

 Object imp = generateNewObjectMachine(compiledObjectMachine);

 TestObject testObject = myClass.getTestObject();

 String[] usPreCondMethodNames = getGoalStatePreConditionMethodNames(testObject);

 Map profile = myClass.getObjectMachineType();

 String[] currentObjectState = getCurrentObjectState(imp);

 Map<TransitionFunctionKey, TransitionFunctionValue> goalStateTransitionFunction = new HashMap<TransitionFunctionKey,

TransitionFunctionValue>();

 for(String preMethod : usPreCondMethodNames)

 {

 for (Method preCondMethod : compiledObjectMachine.getDeclaredMethods())

 {

 if(preCondMethod.getName().equals(preMethod))

 {

 try{

 preCondMethod.setAccessible(true);

 Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{});

 PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput;

 String usObjectMachineMethodName = (String) profile.get(preMethod);

 Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput());

 String[] nextObjectMachineState = getCurrentObjectState(imp);

 TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState,

usObjectMachineMethodName, preMethod, pto.getTestInput());

 TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState);

 goalStateTransitionFunction.put(tKey, tValue);

 }catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 return goalStateTransitionFunction;

 }// End of getGoalStateTransitionFunction

public Object getMethodOutput(Object imp, String methodName, Object[] testInput)

 {

 Object methodOutputResult = new Object();

 for(Method method : imp.getClass().getDeclaredMethods())

 {

 if(method.getName().equals(methodName))

 {

 try{

 method.setAccessible(true);

 methodOutputResult = method.invoke(imp, testInput);

 }catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 return methodOutputResult;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

253

…

public String[] getCurrentObjectState(Object imp)

 {

 Field[] fields = imp.getClass().getDeclaredFields();

 String[] currentObjectState = new String[fields.length];

 int i = 0;

 for(Field field : fields)

 {

 try{

 field.setAccessible(true);

 currentObjectState[i] = field.getName()+" = "+field.get(imp);

 i++;

 }catch (IllegalAccessException e)

 {

 System.out.println("(Exception Thrown: " + e + ")");

 }

 }

 return currentObjectState;

 }

public String[] getUnchangedStatePreConditionMethodNames(TestObject to)

 {

 Map uspMap = to.getUnchangedStatePreCondMap();

 List<String> uspMethodArray = new ArrayList<String>();

 Set entries = uspMap.entrySet();

 Iterator it = entries.iterator();

 while(it.hasNext())

 {

 Map.Entry entry = (Map.Entry)it.next();

 List mTemplateList = (List) entry.getValue();

 for(Object o: mTemplateList)

 {

 PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o;

 uspMethodArray.add(temp.getPreCondMethodName());

 }

 }

 return convertToArrayOfString(uspMethodArray);

 }

public String[] getErrorStatePreConditionMethodNames(TestObject to)

 {

 Map espMap = to.getErrorStatePreCondMap();

 List<String> espMethodArray = new ArrayList<String>();

 Set entries = espMap.entrySet();

 Iterator it = entries.iterator();

 while(it.hasNext())

 {

 Map.Entry entry = (Map.Entry)it.next();

 List mTemplateList = (List) entry.getValue();

 for(Object o: mTemplateList)

 {

 PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o;

 espMethodArray.add(temp.getPreCondMethodName());

 }

 }

 return convertToArrayOfString(espMethodArray);

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

254

…

public String[] getGoalStatePreConditionMethodNames(TestObject to)

 {

 Map gspMap = to.getGoalStatePreCondMap();

 List<String> gspMethodArray = new ArrayList<String>();

 Set entries = gspMap.entrySet();

 Iterator it = entries.iterator();

 while(it.hasNext())

 {

 Map.Entry entry = (Map.Entry)it.next();

 List mTemplateList = (List) entry.getValue();

 for(Object o: mTemplateList)

 {

 PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o;

 gspMethodArray.add(temp.getPreCondMethodName());

 }

 }

 return convertToArrayOfString(gspMethodArray);

 }

 public String[] convertToArrayOfString(List list)

 {

 String[] methodArray = new String[list.size()];

 int k=0;

 for(Object o: list)

 {

 String s = (String)o;

 methodArray[k] = s;

 k++;

 }

 return methodArray;

 }

 public Class<?> getCompiledClass(String name)

 {

 Class<?> compiledClass = null;

 try{

 compiledClass = Class.forName(name);

 }catch (ClassNotFoundException e)

 {

 System.out.println("(Exception Thrown: " + e + ")");

 }

 return compiledClass;

 }

 public Object generateNewObjectMachine(Class<?> c)

 {

 Object objectMachine = new Object();

 try{

 objectMachine = c.newInstance();

 } catch (InstantiationException x)

 {

 x.printStackTrace();

 }

 catch (IllegalAccessException x)

 {

 x.printStackTrace();

 }

 return objectMachine;

 }

 …

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

255

…

public ClassMachine getClassMachine()

 {

 return this.classMachine;

 }

 public Object[] getData(Object data)

 {

 return new Object[]{data};

 }

 public Object[] getData(Object[] data)

 {

 Object[] result = data;

 return result;

 }

 public List<String> displayAllMethods(Object imp)

 {

 Method[] methods = imp.getClass().getDeclaredMethods();

 List<String> methodList = new ArrayList<String>();

 for (Method method : methods)

 {

 methodList.add(method.getName());

 }

 return methodList;

 }

public Object getFieldValues(Object imp, String fieldName)

 {

 Field[] fields = imp.getClass().getDeclaredFields();

 Object result = new Object();

 for (Field field : fields)

 {

 if(field.getName().equals(fieldName))

 {

 try{

 field.setAccessible(true);

 result = field.get(imp);

 } catch (IllegalAccessException e)

 {

 System.out.println("(Exception Thrown: " + e + ")");

 }

 }

 }

 return result;

 }

…

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

256

…

public List<Object> getTestInput(Object[] input)

 {

 List<Object> testInput = new ArrayList<Object>();

 if(input == null)

 {

 testInput.add(input);

 return testInput;

 }

 //if(!(input == null))

 //{

 //for(Object o: input)

 //{

 //Object[] objArray = (Object[])o;

 //testInput.add(Arrays.asList(objArray));

 //}

 //return testInput;

 //}

 if(!(input == null))

 {

 testInput = Arrays.asList(input);

 return testInput;

 }

 return null;

 }

 public Method getMethod(Object imp, String name)

 {

 Method[] methods = imp.getClass().getDeclaredMethods();

 for(Method m: methods)

 {

 if(m.getName().equals(name))

 {

 return m;

 }

 }

 return null;

 }

 }// End of class TransitionFunctionSpecObjectMachine

Figure 70: TransitionFunctionSpecObjectMachine.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

257

import java.util.Map;

public class ClassMachine

 {

 private static Class<?> compiledObjectMachine;

 private static TestObject testObject;

 private static Map methodTotalGuardMap;

 private static Map objectMachineType;

 public ClassMachine(Class<?> com, TestObject to, Map mtgMap, Map type)

 {

 this.compiledObjectMachine = com;

 this.testObject = to;

 this.methodTotalGuardMap = mtgMap;

 this.objectMachineType = type;

 }

 public static Class<?> getCompiledObjectMachine()

 {

 return compiledObjectMachine;

 }

 public static TestObject getTestObject()

 {

 return testObject;

 }

 public static Map getMethodTotalGuardMap()

 {

 return methodTotalGuardMap;

 }

 public static Map getObjectMachineType()

 {

 return objectMachineType;

 }

 } // End of class ClassMachine

Figure 71: ClassMachine.java

 import java.util.Map;

import java.util.HashMap;

import java.util.List;

public class TestObject

 {

 Map<String, List> uspMap = new HashMap<String, List>();

 Map<String, List> espMap = new HashMap<String, List>();

 Map<String, List> gspMap = new HashMap<String, List>();

 public TestObject(Map usp, Map esp, Map gsp)

 {

 this.uspMap = usp;

 this.espMap = esp;

 this.gspMap = gsp;

 }

 public Map<String, List> getUnchangedStatePreCondMap()

 {

 return this.uspMap;

 }

 public Map<String, List> getErrorStatePreCondMap()

 {

 return this.espMap;

 }

 public Map<String, List> getGoalStatePreCondMap()

 {

 return this.gspMap;

 }

 }// End of TestObject

Figure 72: TestObject.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

258

 public class TransitionFunctionValue

 {

 private Object output;

 private String[] nextState;

 public TransitionFunctionValue(Object output, String[] nextState)

 {

 this.output = output;

 this.nextState = nextState;

 }

 public Object getOutput()

 {

 return this.output;

 }

 public String[] getNextState()

 {

 return this.nextState;

 }

 public String toString()

 {

 return getOutput()+" "+getNextState();

 }

 } // End of TransitionFunctionValue

 import java.util.*;

import java.lang.reflect.Field;

public class TransitionFunctionKey

 {

 private String objectName;

 private String[] currentObjectState;

 private String methodName;

 private String preconditionName;

 private Object[] testInput;

 public TransitionFunctionKey(String on, String[] cos, String mn, String preCondName, Object[] testInput)

 {

 this.objectName = on;

 this.currentObjectState = cos;

 this.methodName = mn;

 this.preconditionName = preCondName;

 this.testInput = testInput;

 }

 public String getObjectName()

 {

 return this.objectName;

 }

 public String[] getCurrentObjectState()

 {

 return this.currentObjectState;

 }

 public String getMethodName()

 {

 return this.methodName;

 }

 public String getPreconditionName()

 {

 return this.preconditionName;

 }

 public Object[] getTestInput()

 {

 return this.testInput;

 }

 public String toString()

 {

 return getObjectName()+" "+getCurrentObjectState()+" "+getMethodName()+" "+getPreconditionName()+" "+getTestInput();

 }

 }// End of TransitionFunctionKey

Figure 73: TransitionFunctionKey.java

Figure 74: TransitionFunctionValue.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

259

 import java.util.List;

import java.util.ArrayList;

import java.util.Map;

import java.util.HashMap;

public class PreconditionMethodTemplate

 {

 private String methodTemplate;

 private String methodName;

 private String preCondMethodName;

 public PreconditionMethodTemplate()

 {

 //

 }

 public PreconditionMethodTemplate(String methodName, String preCondMethodName)

 {

 this.methodTemplate = " \n private PreConditionTestObject"+" "+preCondMethodName+"()"+

 "\n {"+

 "\n if((Please Write Your Boolean Precondition Expression Here) == true)"+

 "\n {"+

 "\n Object[] testInput = null;"+" "+"//Please modify Test Input to suit your situation"+" "+

 "\n return new PreConditionTestObject(testInput);"+

 "\n }"+

 "\n return null;"+

 "\n }";

 this.methodName = methodName;

 this.preCondMethodName = preCondMethodName;

 }

 public String getMethodTemplate()

 {

 return this.methodTemplate;

 }

 public String getMethodName()

 {

 return this.methodName;

 }

 public String getPreCondMethodName()

 {

 return this.preCondMethodName;

 }

 public List<PreconditionMethodTemplate> generatePreCondTemplateMethod(String name, String preCondType, int value)

 {

 List list = new ArrayList<PreconditionMethodTemplate>() ;

 PreconditionMethodTemplate[] template = new PreconditionMethodTemplate[value];

 for(int j=0; j< template.length; j++)

 {

 template[j] = new PreconditionMethodTemplate(name, name+preCondType+(j+1));

 list.add(template[j]);

 }

 return list;

 }

 public static void main(String[] args)

 {

 //PreconditionMethodTemplate p = new PreconditionMethodTemplate("getForename", "getForenameUSP1");

 //System.out.println(p.getMethodTemplate());

 //System.out.println();

 //System.out.println("Method Name is:"+" "+p.getMethodName());

 //System.out.println();

 //System.out.println("PreCondition Method Name is:"+" "+p.getPreCondMethodName());

 PreconditionMethodTemplate p = new PreconditionMethodTemplate();

 List k = p.generatePreCondTemplateMethod("getForename", "ESP", 5);

 for(Object o: k)

 {

 PreconditionMethodTemplate val = (PreconditionMethodTemplate)o;

 System.out.println(val.getMethodTemplate());

 }

 }

 }// End of class PreconditionMethodTemplate

Figure 75: PreconditionMethodTemplate.java

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

260

No Class Name Class Purpose Class Dependencies

1

ClassMachineFram

e.java

To provide a java class

for running and/or

animating our class-

machines testing tool’s

logic

• JavaFilter.java

• OpenFileTextArea.java

• PreConditionGenerator

Panel.java

• FrogilaPanel.java

• RunFileTemplate.java

2

JavaFilter.java

To provide a class

which filters out class

files ending with .java

extensions only.

• Does not depend on any

custom java class or

classes

3

OpenFileTextArea.j

ava

To provide a class

which allows users to

open a compiled java

class or a saved java

class under test within

the file editor panel

and/or text area of the

class-machines testing

tool.

• Does not depend on any

custom java class or

classes

4

PreConditionGener

atorPanel.java

To provide a generic

framework and/or tool

support allowing users

to automatically

generate precondition

template object for each

method of the object-

machine system under

test i.e. whilst the class-

machines testing tool is

in the USP, ESP and

GSP method testing

modes

• CompiledJavaClassFilte

r.java

• PreconditionMethodTem

plate.java

• ClassMachineFrame.jav

a

5

FrogilaPanel.java

To provide a friendly

graphical user interface

environment where all

the generated result

during the course of

testing are

shown/displayed

• CompiledJavaClassFilte

r.java

• TestResultSummary.java

• TransitionFunctionSpec

ObjectMachine.java

• ClassMachineFrame.jav

a

• TestObject.java

• ClassMachine.java

• TransitionFunctionKey.j

ava

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

261

• TransitionFunctionValu

e.java

6

RunFileTemplate.ja

va

To provide concrete

java implementation

class that allow users to

compile a given object-

machine system under

test

• JavaFilter.java

7 CompiledJavaClass

Filter.java

To provide a java

program code that

filters out all compiled

java classes within

users current directory

• Does not depend on any

custom java class or

classes

8 PreconditionMetho

dTemplate.java

To provide a generic

framework for

automatically

generating executable

precondition method

template object for each

method of the object-

machine system under

test in USP, ESP and

GSP method testing

modes

• Does not depend on any

custom java class or

classes

9 PreConditionTestO

bject.java

To provide an

implementation for a

concrete object which

stores up or save up in

its memory i.e.

generated test objects or

test cases for each

precondition method

guarding a method of

the object-machine

system under test in

USP, ESP and GSP

testing modes

• Does not depend on any

custom java class or

classes

10 ClassMachine.java To provide a direct java

implementation for the

class-machines

theoretical ideas

presented in this thesis

• TestObject.java

11 TestObject.java To provide a class

which saves up the

complete profile of the

object-machine system

• Does not depend on any

custom java class or

classes

A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA)

262

under test

12 TransitionFunction

SpecObjectMachine

.java

To provide a direct

implementation in java

for the class-machines

friend function concept

introduced in this thesis

• ClassMachine.java

• TestObject.java

• TransitionFunctionKey.j

ava

• TransitionFunctionValu

e.java

• PreConditionTestObject.

java

• PreconditionMethodTem

plate.java

13 TestResultSummary

.java

To provide a class that

record our probabilistic

analysis and lots more

for the object-machine

system under test

• Does not depend on any

custom java class or

classes

14 TransitionFunction

Key.java

To provide a java

implementation for the

transition function key

information derived

from the object-

machine system under

test. Since every key

maps to a unique value

i.e. every precondition

method drives the

object-machine system

under test to a unique

next object-machines

transition state

• Does not depend on any

custom java class or

classes

15 TransitionFunction

Value.java

To provide a java

implementation for the

transition function

value information

derived from the object-

machine system under

test

• Does not depend on any

custom java class or

classes

Table 34: All the implemented Java Classes of the CMTT

