
 
 
 
 
 

 

Access to Electronic Thesis 
 
 
Author: Emmanuel Ogunshile 

Thesis title:    A Machine With Class: A Framework for Object Generation, Integration and 
Language Authentication (FROGILA) 

Qualification: PhD 

Date awarded: 2 February 2011 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
 
 
 
If this electronic thesis has been edited by the author it will be indicated as such on the 
title page and in the text. 
 
 
 
 
 



i 

 

 

 



ii 

 

Dedication 

This thesis is dedicated to the glory of God, my dad (Arch Bishop John Olatidoye Ogunshile), 

mum (Mrs Comfort Dupe Ogunshile), daughter (Sharon Ifeoluwapo Ogunshile) and the rest of 

my beloved family. I would not have been able to do this without your unconditional love, 

support and prayers always. 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Acknowledgment 

I would like to thank my supervisor Eur Ing Dr Anthony Cowling for the freedom he has given 

me to explore my research interests, for the privilege to work under his supervisory guidance, 

for his interest in my work and for his thorough and timely comments on my thesis throughout 

my entire period of research. 

 

I would like to thank Professor Robert Hierons and Dr Michael Stannett my external and 

internal examiners respectively, for their extremely helpful comments on this thesis. 

 

The Verification and Testing Research Group in Sheffield has provided an intellectually 

stimulating and especially friendly climate in which to discuss research. For this I am extremely 

grateful. I would like to thank my colleagues in the Verification and Testing Computer 

Laboratory for providing a supportive and friendly environment in which to work in. Especially 

Dr Andrew Hughes, Dr Simon Foster, Dr Abraham Rodrigues-Mota, Dr Mohammed KA Al-

Badawi, Dr Henry Addico, Mohammed Ibrahim Ullah, Zubair Sheikh, Dr Mahmood Javed, 

Ramsay Taylor, Mesude Bicak, Dr Mariam Kiran, Maslita Abdul Aziz, Azman B Bujang Masli, 

Abdelgawad Shatwan, Ali H A Mresa, Dr Neil Walkinshaw and Dr Susheel Varma. 

  

My family have all provided a great deal of encouragement over the years, and supported me in 

my academic studies, prayerfully and financially. In particular, I humbly acknowledge the 

financial generosity and support of my younger brother, Samuel Ogunshile throughout my 

entire period of education in the UK. He has truly been a brother, a friend in need and indeed. I 

wish you nothing less than the highest grace and favour of God to achieve all that your heart 

ever so desire.  

 

I met Adenike Tomilola Awoseyila (my love, friend and sweetheart) at the very beginning of 

my Ph.D; she has been with me through it all and without her this thesis would not have been 

possible. I cannot thank you enough for your unconditional love, patience, understanding, 

prayers, good wishes and financial support over the years – especially when it matters the most. 

I love you truly and sincerely from the bottom of my heart and pray with you earnestly that the 

good lord grant all your treasured desires and cause you to find grace and favour in places 

where you least expect. 

 

I would like to thank Jameen Haynes for her unconditional love, financial support, good wishes 

and prayers always; and for visiting me all the way from California, USA twice. She has been 

with me through it all and without her unceasing support this thesis would not have been 

possible. 

  

I am grateful to my parents, who have always respected my choices and constantly encouraged 

me to pursue my goals. I would not have come this far without your unconditional sacrifice of 

love, blessings, prayers, wisdom and financial support – since my arrival on planet earth. You 

guyz are simply the best. 

 

Finally, I thank my heavenly father for the grace of life, eternal love, salvation, provision, 

sustainance and wisdom. All secret things belong to God [Deuteronomy 29:29]. But he has 

revealed them to us by his spirit; for his spirit searcheth all things - even the deep things of God 

[1 Corinthians 2:10].  



iv 

 

Table of Contents 

 

Contents 

Dedication ...................................................................................................................... ii 

Acknowledgment .......................................................................................................... iii 

Table of Contents ......................................................................................................... iv 

List of Figures ............................................................................................................... ix 

List of Tables ................................................................................................................ xi 

Glossary of Symbols and Notations ........................................................................... xiii 

Abstract: ................................................................................................................... xxiv 

Chapter 1: Introduction .............................................................................................. 1 

1.1 Motivation ........................................................................................................................... 3 

1.1.1 Problems in Testing Object-Oriented Software ............................................................... 3 

1.1.2 Object-Oriented Architecture vs. Procedure-Oriented Architecture ................................ 8 

1.1.3 Classes vs. Procedure-Oriented Testing ........................................................................... 9 

1.1.4 Weyuker’s Test Adequacy Axioms .................................................................................. 9 

1.2 Aims and Objectives of the FROGILA Project ................................................................. 13 

1.3 Summary and Contributions of this work ......................................................................... 16 

1.4 Thesis Organisation ........................................................................................................... 18 

Chapter 2: Software Testing ..................................................................................... 20 

2.1 Introduction ....................................................................................................................... 20 

2.2 Software Correctness: a motivation to test ........................................................................ 20 

2.2.1 Software Correctness:  proving implementation with respect to specification .............. 21 

2.2.2 Software Correctness and Testing .................................................................................. 22 

    2.3 Program based testing.........................…………………………………………………...23 

    2.3.1 Basic Principles………………………………………………………………..…….....23 

2.3.2 Limitations of program based testing ............................................................................. 24 

2.3.3 Automation of program-based testing ............................................................................ 25 

2.3.4 Mutation testing .............................................................................................................. 25 

2.4 Functional Testing ............................................................................................................. 26 

2.4.1 The Category-Partition method ...................................................................................... 26 

2.4.2 Other Partitioning methods ............................................................................................. 30 

2.4.3 Other functional methods ............................................................................................... 32 

2.4.4 Completeness of a specification ..................................................................................... 33 

2.5 Statistical testing and reliability ........................................................................................ 33 

2.6  Finite state machine testing .............................................................................................. 35 

2.6.1 Morphisms ...................................................................................................................... 35 

2.6.2 State Machine Minimality .............................................................................................. 37 



v 

 

2.6.3 Complete State Coverage Test Generation ..................................................................... 38 

2.6.4 Complete Transition Coverage Test Generation ............................................................ 39 

2.6.5 Complete Functional Test Generation From Characterisation Set ................................. 39 

2.6.6 Limitations of Chow’s Testing Method ......................................................................... 41 

2.6.7 Improving Finite State Machine Modelling with Statecharts ......................................... 41 

2.7  X-Machine Testing ........................................................................................................... 41 

2.7.1 The Deterministic Stream X-Machine Model ................................................................ 42 

2.7.2 Design for Test Conditions ............................................................................................. 44 

2.7.2.1 Test-Complete Condition ............................................................................................ 44 

2.7.2.2 Output-Distinguishability Condition ........................................................................... 44 

2.7.5 The Fundamental Test Function of a Stream X-Machine .............................................. 45 

2.7.6 The Fundamental Theorem of Stream X-Machine Testing ............................................ 46 

2.8 Communicating X-Machine Models ................................................................................. 46 

2.8.1 The Basic Channel Approach ......................................................................................... 47 

2.8.2 The Matrix Approach ..................................................................................................... 49 

2.8.3 The Channel Approach with Communication Server .................................................... 53 

2.8.4 The Modular Approach .................................................................................................. 56 

2.8.5 Limitations of Communicating X-Machine Models ...................................................... 58 

2.9 Summary ............................................................................................................................ 60 

Chapter 3: Object-Oriented Programming and Testing ....................................... 61 

3.1 Introduction ....................................................................................................................... 61 

3.2 Object ................................................................................................................................ 61 

3.3 Class .................................................................................................................................. 63 

3.3.1 Class Variables ............................................................................................................... 63 

3.3.2 Class Methods ................................................................................................................ 65 

3.3.3 Constants ........................................................................................................................ 68 

3.3.4 Modifiers ........................................................................................................................ 68 

3.3.5 Compositional Relationships .......................................................................................... 69 

3.3.6 Polymorphism and Dynamic Binding ............................................................................ 71 

3.3.7 Problems in Testing Object-Oriented Software ............................................................. 73 

3.4 Summary ............................................................................................................................ 74 

Chapter.4: The Class-Machines System Model ...................................................... 75 

4.1 Introduction ....................................................................................................................... 75 

4.2 Preliminaries ...................................................................................................................... 76 

4.2.1 Paradigm Features of Object-Oriented Languages ......................................................... 76 

4.2.2 Types, State Variables and associated Memory Values ................................................. 77 

4.2.3 Class Interface and Family of Implementations ............................................................. 78 

4.2.4 Access Modifiers ............................................................................................................ 82 

4.2.5 Proposed Features of the Class-Machine Model ............................................................ 82 



vi 

 

4.2.6 The Person Example ....................................................................................................... 86 

4.3 The Class-Machine ............................................................................................................ 89 

4.3.1 The State Encapsulating Class-Machine Variables ........................................................ 89 

4.3.2 Methods Belonging to the Class-Machine Alone ........................................................... 91 

4.3.3 Heterogeneous Family of Object-Machines ................................................................... 97 

4.3.3.1 The Object-Machine .................................................................................................... 97 

4.3.3.1.1 The Object-Machine States ...................................................................................... 98 

4.3.3.1.2 The Object-Machine Methods .................................................................................. 98 

4.3.4 The Class-Machine Constructors ................................................................................... 99 

4.3.5 The Class-Machines Interface Type ............................................................................... 99 

4.3.6 The Class-Machine Connector Function ........................................................................ 99 

4.4 Derivation, Inheritance and Subtyping of a Completely Specified Object Machine ...... 100 

4.5 Object-Machines Methods Design for Test Conditions .................................................. 102 

4.5.1 The Complete Structure of methods of the OM under test ........................................... 103 

4.5.2 The Test Input Object Generator Function ................................................................... 103 

4.5.3 The Precondition Generator Function .......................................................................... 104 

4.5.4 The Precondition Method Profile Generator Function ................................................. 104 

4.5.5 The Precondition Method Total Length Generator Function ....................................... 105 

4.5.6 The Probability to Trigger Function ............................................................................. 105 

4.5.7 The Probability not to Trigger Function ....................................................................... 106 

4.5.8 The High Probability Filter Function ........................................................................... 107 

4.5.9 The Low Probability Filter Function ............................................................................ 108 

4.5.10 Total Fault Remaining Undetected Function ............................................................. 109 

4.5.11The Exact Method Match Generator Function ............................................................ 109 

4.6 Summary .......................................................................................................................... 110 

Chapter 5: The Paradigmatic Features of the Class-Machines System Model . 111 

5.1 Introduction ..................................................................................................................... 111 

5.2 The Objective of the Student Case Study ........................................................................ 111 

5.2.1 Derivation, Inheritance and Subtyping of the Student Class Machine ......................... 114 

5.2.1.1 Derivation of the SCM Class Variables ..................................................................... 115 

5.2.1.2 Derivation of the SCM Class Methods ...................................................................... 115 

5.2.1.3 Deriving a heterogeneous family of the SCM Object-Machines ............................... 115 

5.2.1.4 Derivation of the SCM Class Constructors ................................................................ 117 

5.2.1.5 Derivation of the SCM Interface ................................................................................ 117 

5.2.2 Testing an Heterogeneous Family of Student Object Machines .................................. 117 

5.2.2.1 Testing Method setForename in the Unchanged, Error and Goal State Testing Modes

 ............................................................................................................................................... 118 

5.2.2.1.1 The SetForename Unchanged State Precondition Method ..................................... 119 

5.2.2.1.2 The SetForename Error State Precondition Method .............................................. 120 



vii 

 

5.2.2.1.3 The SetForename Goal State Precondition Methods .............................................. 121 

5.3 The Objective of the Employee Case Study .................................................................... 122 

5.3.1 Derivation, Inheritance and Subtyping of the Employee Class Machine ..................... 126 

5.3.1.1 Derivation of the ECM Class Variables .................................................................... 126 

5.3.1.2 Derivation of the ECM Class Methods ...................................................................... 126 

5.3.1.3 Deriving a heterogeneous family of the ECM Object-Machines .............................. 126 

5.3.1.4 Derivation of the ECM Class Constructors ............................................................... 127 

5.3.1.5 Derivation of the ECM Interface ............................................................................... 127 

5.3.2 Testing an Heterogeneous Family of Employee Object Machines .............................. 128 

5.3.2.1 Testing Method getRatePerHour in the Unchanged, Error and Goal State Testing 

Modes .................................................................................................................................... 128 

5.3.2.1.1 The GetRatePerHour Unchanged State Precondition Method ............................... 128 

5.3.2.1.2 The GetRatePerHour Error State Precondition Methods ....................................... 129 

5.3.2.1.3 The GetRatePerHour Goal State Precondition Methods ........................................ 130 

5.3.2.2 Testing Method computeMonthlySalary in the Unchanged, Error and Goal State 

Testing Modes ....................................................................................................................... 131 

5.3.2.2.1 The computeMonthlySalary Unchanged State Precondition Method .................... 132 

5.3.2.2.2 The computeMonthlySalary Error State Precondition Methods ............................ 133 

5.3.2.2.3 The computeMonthlySalary Goal State Precondition Methods ............................. 134 

5.4 The Objective of the Stack Case Study ........................................................................... 135 

5.4.1 The Stack Class Machine ............................................................................................. 139 

5.4.1.1 The STKCM Class Variables ..................................................................................... 139 

5.4.1.2 The STKCM Class Methods ...................................................................................... 139 

5.4.1.3 Heterogeneous family of the STKCM Object-Machines ........................................... 139 

5.4.1.4 The STKCM Class Constructors ................................................................................ 140 

5.4.1.5 The STKCM Class Interface ...................................................................................... 140 

5.4.2 Testing an Heterogeneous Family of Stack Object Machines ...................................... 140 

5.4.2.1 Testing Method Push in the Unchanged, Error and Goal State Testing Modes ........ 140 

5.4.2.1.1 The Push Unchanged State Precondition Methods ................................................ 141 

5.4.2.1.2 The Push Error State Precondition Method ............................................................ 142 

5.4.2.1.3 The Push Goal State Precondition Methods ........................................................... 143 

5.5 Summary .......................................................................................................................... 144 

Chapter 6: The Class Machines Friend Function System Model ....................... 145 

6.1. Introduction .................................................................................................................... 145 

6.2 The CMƒƒ Machine ......................................................................................................... 146 

6.3 On the Power of Reflection in the Java Language .......................................................... 150 

6.4 Summary .......................................................................................................................... 157 

Chapter 7:  Automated Testing, Debugging, Verification and Probabilistic Analysis with 

the Class-Machine Testing Tool ............................................................................. 158 

7.1 Introduction ..................................................................................................................... 158 



viii 

 

7.2 The Design of the CMTT ................................................................................................ 158 

7.3 Testing, Evaluation and Effectiveness of the CMTT ...................................................... 164 

7.4 Summary .......................................................................................................................... 175 

Chapter 8: Conclusions and Future Work ............................................................ 177 

8.1 Our Major Contributions to State of the Art ................................................................... 177 

8.2 Future Work ..................................................................................................................... 177 

8.2.1. Comparing Class-Machines Testing Tool with Other Testing Tools .......................... 177 

8.2.2. The Class-Machines Specification Language ............................................................. 178 

Bibliographic References ........................................................................................ 179 

Apendix A ................................................................................................................. 192 

A.1 Case Studies and their testing within the CMTT ............................................................ 192 

A.1.1 Testing the POM in the unchanged, error, goal and complete state testing modes of the 

CMTT .................................................................................................................................... 192 

A.1.1.1 Testing the POM in the unchanged state testing mode of the CMTT ...................... 192 

A.1.1.2 Testing the POM in the Error state testing mode of the CMTT ............................... 196 

A.1.1.3 Testing the POM in the Goal state testing mode of the CMTT ................................ 199 

A.1.1.4 Testing the POM in the Complete state testing mode of the CMTT ........................ 206 

A.1.2 Testing the SOM in the unchanged, error, goal and complete state testing modes of the 

CMTT .................................................................................................................................... 207 

A.1.2.1 Testing the SOM in the unchanged state testing mode of the CMTT ...................... 207 

A.1.2.2 Testing the SOM in the error state testing mode of the CMTT ................................ 209 

A.1.2.3 Testing the SOM in the Goal state testing mode of the CMTT ................................ 210 

A.1.2.4 Testing the SOM in the Complete state testing mode of the CMTT ........................ 213 

A.1.3 Testing the EOM in the unchanged, error, goal and complete state testing modes of the 

CMTT .................................................................................................................................... 213 

A.1.3.1 Testing the EOM in the unchanged state testing mode of the CMTT ...................... 214 

A.1.3.2 Testing the EOM in the Error state testing mode of the CMTT ............................... 215 

A.1.3.3 Testing the EOM in the Goal state testing mode of the CMTT ............................... 218 

A.1.3.4 Testing the EOM in the complete state testing mode of the CMTT ......................... 222 

A.1.4 Testing the Bank Account in the unchanged, error, goal and complete state testing 

modes of the CMTT .............................................................................................................. 222 

A.1.4.1 Testing the Bank Account in the unchanged state testing mode of the CMTT ........ 223 

A.1.4.2 Testing the Bank Account in the error state testing mode of the CMTT ................. 225 

A.1.4.3 Testing the Bank Account in the goal state testing mode of the CMTT .................. 226 

A.1.4.4 Testing the Bank Account in the complete state testing mode of the CMTT .......... 228 

A.2 Automatically Generated Java source codes within the Precondition Generator Panel of 

the CMTT .............................................................................................................................. 229 

A.3 Java source codes for the Class-Machines Friend Function (CMFF) ............................ 249 

 



ix 

 

List of Figures 

Figure 1: Class Student overrides the monthlySalary method provided by its parent Class 

Person. ........................................................................................................................................... 6 

Figure 2: Extensibility of Hierarchy Example ............................................................................... 7 

Figure 3: subClass FF extending superClass EE ......................................................................... 12 

Figure 4: The New Fault Handling Family of Class-Machine Checkers. ................................... 15 

Figure 5: A minimal deterministic state machine (adapted from [2]) ......................................... 38 

Figure 6: An abstract example of an X-machine [38] ................................................................. 42 

Figure 7: An abstract example of communicating X-machine component [39] ......................... 46 

Figure 8: The Communicating X-Machine Server algorithm [104] ............................................ 56 

Figure 9: An abstract example of a XMCi with input and output streams and functions that 

receive input and produce output in any possible combination of sources and destinations [34].

 ..................................................................................................................................................... 58 

Figure 10: Three Communicating X-Machine Components XMC1, XMC2, and XMC3 and the 

resulting communicating system where XMC2 communicates with XMC1 and XMC3, while 

XMC3 communicates with XMC1 [34]. ..................................................................................... 58 

Figure 11: CD Player Control and Display Panel example adapted from [109] ......................... 62 

Figure 12: A Simple Person Class and myDate Class aggregation example .............................. 70 

Figure 13: Sample Inheritance Hierarchy. Class Student inherits from Class Person ................ 71 

Figure 14: Example Class Hierarchy ........................................................................................... 72 

Figure 15: A queue ...................................................................................................................... 79 

Figure 16: Circular Array ............................................................................................................ 80 

Figure 17: Linked List ................................................................................................................. 80 

Figure 18: A class is defined to have an extensible interface and a possibly infinite family of 

extensible concrete object implementations that adheres to that interface. ................................. 81 

Figure 19: The Person Interface Example ................................................................................... 87 

Figure 20: The Person Example .................................................................................................. 88 

Figure 21: Test Input Object Implementation in Java ................................................................. 93 

Figure 22: Inheritance relationship between Object Machines A, B and C .............................. 101 

Figure 23: Student Class inherits Person Class ......................................................................... 112 

Figure 24: The Student Interface ............................................................................................... 112 

Figure 25: The Student Object Machine implementation in Java ............................................. 113 

Figure 26: Inheritance relationship between Person and Employee ......................................... 123 

Figure 27: The Employee Interface ........................................................................................... 124 

Figure 28: The Employee Object Machine ............................................................................... 125 

Figure 29: The Stack Interface .................................................................................................. 136 

Figure 30: The Stack Object Machine ....................................................................................... 137 

Figure 31: Java implementation of the Ж function in the unchanged state testing mode ......... 149 

Figure 32: The ReflectionUtil.java class ................................................................................... 152 

Figure 33: The Main.java class ................................................................................................. 153 

Figure 34: The result of reflection on StackTest.java ............................................................... 154 

Figure 35: The result of reflection on PersonObjectMachineTest.java ..................................... 155 

Figure 36: The result of reflection on StudentObjectMachineTest.java ................................... 156 

Figure 37: The result of reflection on EmployeeObjectMachineTest.java ............................... 157 

Figure 38: The File Editor Panel workflow in the CMTT ......................................................... 159 

Figure 39: The Precondition Method Generator Panel workflow in the CMTT ....................... 160 

Figure 40: The Frogila Testing Tool Panel workflow in the CMTT ......................................... 162 

Figure 41: The Run/Compilation Panel Work flow diagram .................................................... 164 



x 

 

Figure 42: The StackObjectMachine.java File opened and displayed within the File Editor 

Panel of the CMTT .................................................................................................................... 166 

Figure 43: The Precondition Generator Panel of the CMTT ..................................................... 168 

Figure 44: Testing the Stack Object-Machine System in the USPM testing mode of the CMTT

 ................................................................................................................................................... 168 

Figure 45: Testing the Stack Object-Machine System in the ESPM testing mode of the CMTT

 ................................................................................................................................................... 171 

Figure 46: Testing the Stack Object-Machine System in the GSPM testing mode of the CMTT

 ................................................................................................................................................... 173 

Figure 47: Complete Testing of the Stack Object-Machine System in the USPM, ESPM and 

GSPM of the CMTT .................................................................................................................. 175 

Figure 48: Testing the POM in the USPM’s testing mode ........................................................ 193 

Figure 49: Testing the POM in the ESPM’s testing mode ........................................................ 197 

Figure 50: Testing the POM in the GSPM’s testing mode ........................................................ 200 

Figure 51: Complete State Testing of the POM system in the USPM, ESPM and GSPM testing 

modes ......................................................................................................................................... 206 

Figure 52: Testing the SOM in the USPM’s testing mode ........................................................ 207 

Figure 53: Testing the SOM in the ESPM’s testing mode ........................................................ 209 

Figure 54: Testing the SOM in the GSPM’s testing mode. ....................................................... 210 

Figure 55: Complete State Testing of the SOM system in the USPM, ESPM and GSPM testing 

modes ......................................................................................................................................... 213 

Figure 56: Testing the EOM in the USPM’s testing mode. ...................................................... 214 

Figure 57: Testing the EOM in the ESPM’s testing mode. ....................................................... 216 

Figure 58: Testing the EOM in the GSPM’s testing mode. ...................................................... 219 

Figure 59: Complete State Testing of the EOM system in the USPM, ESPM and GSPM testing 

modes ......................................................................................................................................... 222 

Figure 60: The compiled BankAccountTest.java class under test ............................................ 223 

Figure 61: Testing the Bank Account  in the USPM’s testing mode. ....................................... 224 

Figure 62: Testing the Bank Account in the ESPM’s testing mode. ......................................... 225 

Figure 63: Testing the Bank Account in the GSPM’s testing mode. ........................................ 227 

Figure 64: Complete State Testing of the Bank Account system in the USPM, ESPM and 

GSPM testing modes ................................................................................................................. 228 

Figure 65: StackTest.java .......................................................................................................... 233 

Figure 66: PersonObjectMachineTest.java ............................................................................... 240 

Figure 67: StudentObjectMachineTest.java .............................................................................. 243 

Figure 68: EmployeeObjectMachineTest.java .......................................................................... 247 

Figure 69: BankAccount.java .................................................................................................... 249 

Figure 70: TransitionFunctionSpecObjectMachine.java ........................................................... 256 

Figure 71: ClassMachine.java ................................................................................................... 257 

Figure 72: TestObject.java ........................................................................................................ 257 

Figure 73: TransitionFunctionKey.java ..................................................................................... 258 

Figure 74: TransitionFunctionValue.java .................................................................................. 258 

Figure 75: PreconditionMethodTemplate.java .......................................................................... 259 

 

 

 



xi 

 

List of Tables 

Table 1: Glossary of Symbols and Notations .......................................................................... xxiii 

Table 2: Access Levels in Java .................................................................................................... 69 

Table 3: The Employee Model System ..................................................................................... 124 

Table 4: The Unchanged State Precondition Method Profile of the Stack Object-Machine 

System ....................................................................................................................................... 166 

Table 5: The Error State Precondition Method Profile of the Stack Object-Machine System .. 167 

Table 6: The Goal State Precondition Method Profile of the Stack Object-Machine System .. 167 

Table 7: The step by step transition of the stack object-machines system in the USPM Mode of 

the CMTT .................................................................................................................................. 170 

Table 8: The step by step transition of the stack object-machine system in the ESPM Mode of 

the CMTT .................................................................................................................................. 172 

Table 9: The step by step transition of the stack object-machine system in the GSPM Mode of 

the CMTT .................................................................................................................................. 174 

Table 10: The Unchanged State Precondition Method Profile of the POM System under test 193 

Table 11: The step by step transition of the POM system under test in the USPM’s testing mode

 ................................................................................................................................................... 196 

Table 12: The Error State Precondition Method Profile of the POM System under test .......... 197 

Table 13: The step by step transition of the POM system under test in the ESPM’s testing mode

 ................................................................................................................................................... 199 

Table 14: The Goal State Precondition Method Profile of the POM System under test ........... 199 

Table 15: The step by step transition of the POM system under test in the GSPM’s testing mode

 ................................................................................................................................................... 206 

Table 16: The Unchanged State Precondition Method Profile of the SOM System under test 207 

Table 17: The step by step transition of the SOM system under test in the USPM’s testing mode

 ................................................................................................................................................... 208 

Table 18: The Error State Precondition Method Profile of the SOM System under test .......... 209 

Table 19: The step by step transition of the SOM system under test in the ESPM’s testing mode

 ................................................................................................................................................... 210 

Table 20: The Goal State Precondition Method Profile of the SOM System under test ........... 210 

Table 21: The step by step transition of the SOM system under test in the GSPM’s testing mode

 ................................................................................................................................................... 212 

Table 22: The Unchanged State Precondition Method Profile of the EOM System under test 214 

Table 23: The step by step transition of the EOM system under test in the USPM’s testing mode

 ................................................................................................................................................... 215 

Table 24: The Error State Precondition Method Profile of the EOM System under test .......... 215 

Table 25: The step by step transition of the EOM system under test in the ESPM’s testing mode

 ................................................................................................................................................... 218 

Table 26: The Goal State Precondition Method Profile of the EOM System under test ........... 218 

Table 27: The step by step transition of the EOM system under test in the GSPM’s testing mode

 ................................................................................................................................................... 221 

Table 28: The Unchanged State Precondition Method Profile of the Bank Account System 

under test ................................................................................................................................... 223 

Table 29: The step by step transition of the Bank Account system under test in the USPM’s 

testing mode ............................................................................................................................... 225 

Table 30: The Error State Precondition Method Profile of the Bank Account System under test

 ................................................................................................................................................... 225 

Table 31: The step by step transition of the Bank Account system under test in the ESPM’s 

testing mode ............................................................................................................................... 226 



xii 

 

Table 32: The Goal State Precondition Method Profile of the Bank Account System under test

 ................................................................................................................................................... 226 

Table 33: The step by step transition of the Bank Account system under test in the GSPM’s 

testing mode ............................................................................................................................... 228 

Table 34: All the implemented Java Classes of the CMTT ....................................................... 262 

 

  



xiii 

 

Glossary of Symbols and Notations 

Symbol/Notation Definition 
f
2
 Represent the fault-finders testing method 

CMTT Class-Machine Testing Tool 

CMƒƒ Class-Machine Friend Function 

OM Object-Machine 

CM Class-Machine 

API Application Programmer Interface 

GUI Graphical User Interface 

AA and WW Respectively represent concrete Java Class 

Types 

 a1 Object  instance of AA 

w1 Object  instance of WW 

BB, CC and DD Respectively represent concrete subclasses of 

AA 

XX, YY and ZZ Respectively represent concrete subclasses of 

WW 

P, QQ, P1 and P2 Respectively represent a program code 

T and  T’ Respectively represent a test set 

M1 and M2 Respectively represent a finite automaton  

r1 and r2 Respectively represent a relational operator 

c1 and c2 Respectively represent a constant 

aa1 and aa2 Respectively represent an arithmetic operator 

CP Represent program component (i.e. fragment 

of code ) 

Pre1 and Pre2 Respectively represent set of preconditions 

EE Represent a concrete Java class 

FF Represent a concrete subclass of class EE 

var Represent instance attribute 

WM and ZM Respectively represent method of class EE 

and FF respectively 

Spec and Imp Respectively represent system specification  

and implementation  

FROGILA Framework for Object Generation, 

Integration and Language Authentication 

OO Object Orientation 

USPM, ESPM and GSPM Respectively represent the finite set of 

unchanged, error and goal state precondition 

methods  

Inputs and Outputs Respectively represent a finite set of input 

and output alphabet that can apply to an 

automaton 

v Represent a test case in Inputs 

V Is a finite set of test cases equal to or a subset 

of  Inputs that can apply to Spec and Imp 

t Represent a test case in T 

 s1 and s2 Respectively represent a statement in P 

 vv Represent a variable 
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k-dr Represent definition-reference pairs 

kk Represent a chain of length variable 

p-use Represent predicate use 

c-use Represent computation use 

p and c Respectively represent variable for predicate 

and computation use 

f Represent functional units that can be tested 

in a system 

param and ec Respectively represent parameter and 

environment condition of f 

PF Represent a set of partial functions 

JSP Represent the Jackson Structure diagram 

Sys Represent the system under test 

ft Represent a fault type 

vl Represent a value computed for ft within Sys 

FSM Represent finite state machine 

UIO Represent the unique input-output sequence 

method 

W Represent the W method 

States and States’ Respectively represent a finite set of states 

that can apply to Spec and Imp 

NextStateFunction, NextStateFunction’, NSF 

and NSF’ 

Respectively represent a next state transition 

function that can apply to a finite automaton 

 

initialState and initialState’ Respectively represent the initial state of 

Spec and Imp, where initialState is in States 

and initialState’ is in States’  

func  Represent a morphism  

 

L Is called a state machine isomorphism 

state and input Respectively represent state in States and 

input in Inputs 

SXMT Represent the Stream X-Machine Testing 

method 

Machine Represent a deterministic state machine 

Acc(Machine) Represent an accessible automaton 

testInput Either represent a subset of sequence of 

inputs in Inputs or sequence of inputs equal 

to Inputs  

~testInput Represent equivalence relation on States 

input* Represent sequences of input i.e. input* in 

testInput 

Red(Machine) Represent the machine constructed by 

merging the states of Machine that are 

equivalent; such a machine is called the 

reduced machine of Machine 

Min(Machine) Represent the minimal machine of an 

automaton Machine. A deterministic state 

machine Machine is minimal if it is 

accessible and reduced 

SC Represent the state cover set of Machine 
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TC Represent the transition cover set of 

Machine 

(::) Represent concatenation 

X Represent a test set of Spec and Imp i.e. input 

sequences that can be used to establish 

whether two finite state machines are 

equivalent (i.e. algebraically similar) 

Card(States') and Card(Q')   Respectively returns the number of states of 

Imp 

Card(States) and Card(Q) Respectively returns the number of states of 

Spec 

H Represent a characterization set of Machine 

if H distinguishes between any two distinct 

states of our Machine 

k Represent the number of extra states in Imp 

Z Z ensures that transitions in Imp is identical 

to the ones in the Spec after each transition is 

performed (i.e. they both pass/fail the same 

ones) 

Σ and Г Respectively represent input and output 

alphabets of an X-Machine 

Q  Represent a finite set of states 

Mem   

 

Represent a possibly infinite set called 

memory of an X-Machine 

 

Ф Represent a set of partial functions of an X-

Machine that map an input and a memory 

state to an output and a possibly different 

memory state 

F Represent the next state partial function of an 

X-Machine. F is often described using a state 

transition diagram 

q0 and m0 Respectively represent the initial state and 

initial memory of an X-Machine 

XMDL Represent the X-Machine Definition 

Language 

SPF Represent partial function of a deterministic 

Stream X-Machine i.e. what it will compute 

fc and fc' Respectively represent the functions 

computed by two deterministic Stream X-

Machines Spec and Imp 

A and A' Respectively represent the associated 

automata of two deterministic Stream X-

Machines Spec and Imp 

seq(Φ) and seq(Σ) Respectively represent a sequence of 

processing functions (φ ∈ Φ)  and inputs (in 

∈ Σ) 

 seq(Inputs) Represent a sequence of inputs in Inputs that 

can apply to an automaton 

tt Represent a fundamental test function of 

Machine 
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tq, m: seq(Φ) → seq(Σ) Represent the test function of Machine w.r.t. 

(q, m), where q ∈ Q and m ∈ Mem 

ttq If m = m0 then tq,m is denoted by ttq 

DSXM Represent a deterministic Stream X-Machine 

pth Represent a path e.g. pth = <φ1, φ2,…, φn+1> 

and pth = φ1::...:: φn 

(.) Represent composition 

Г* and Σ* Respectively represent sequence of outputs 

and inputs in an X-Machine 

D Represent D = Г* x Mem x Σ* 

|pth| Represent the composite (partial) function 

computed by Machine e.g. |pth| = φn+1 . 

φn,…, φ2 . φ1 ∈ D ↔ D 

XX Represent a set containing sequences of 

processing functions XX ⊆ seq(Φ) 

COXMi Represent the i-th X-Machine that 

participates in a Communicating X-Machine 

System 

COMR Represent the communication relation 

between the n X-Machines 

MachineA, MachineB and MachineC Respectively represent a unique X-Machine 

in a Communicating X-Machine System 

BCM Represent Barnard’s Communicating X-

Machine model 

Pre Represent the set of predicates on Mem  x  Σ� 
TF Represent the next state transition function of 

the BCM often described by means of a state 

transition diagram TF: (Q x (Φ x Pre)) → Q 

Ps Represent the set of ports in the BCM model 

I and FS Respectively represent the sets of initial and 

final states I ⊆ Q, FS ⊆ Q in the BCM model 

R Represent a set of n Communicating X-

Machines 

Ek,k’ Represent a set of relations where the output 

port of one X-Machine k is connected to the 

input port of another X-Machine k’ thereby 

allowing data item or signal to be transmitted 

Wn Represent a BCM of n Communicating X-

Machines Wn = (R, Ek,k’) 

∑�and Γ� Respectively represent the alphabets of the j-

th input port and i-th output port of the BCM 

model 

num_in and num_out Respectively represent the numbers of input 

and output ports of  

CSXMS Represent the Communicating Stream X-

Machines Systems model 

MAT Represent the set of matrices of order n x n to 

form the values of the matrix variable that is 

to be used for establishing communication 

amongst the X-Machine components of the 

CSXMS 
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Λi Represent a Stream X-Machine Λi = (Σ, Γ, Q, 

Mem, Φ, F, I, FS, mo) 

INi and OUTi Respectively represent the values that can be 

transmitted by input and output ports of the 

ith CSXMS 

ini
0
 and outi

0
 Respectively represent the initial values of 

the input and output ports of an X-Machine 

model in the CSXMS 

Vi Represent Vi = (Λi, INi, OUTi, ini
0
, outi

0
) 

C
0
 Represent the initial communication matrix 

WWn Represent a CSXMS of n Communicating X-

Machines WWn = (R, MAT, C
0
) 

C Represent C ∈ MAT 

Q’ and Q’’ Respectively represent the set of processing 

states and communicating states, where Q = 

Q’ ∪ Q’’ and Q’ ∩ Q” = ∅ holds for a 

Communicating X-Machine 

Φ’ and Φ’’ Respectively represent the set of processing 

functions and communicating functions, 

where Φ = Φ’ ∪ Φ’’ and Φ’ ∩ Φ’’ = ∅ 

holds for a Communicating X-Machine 

⊥ Represent an undefined value 

<> Represent an empty sequence of inputs 

OMV and InpMV Respectively represent a set of output-move 

and input-move functions 

C[i, j] Represent data value stored in C[i, j] 

indicates a message at most one message 

from the memory Memi of X-Machine Vi ∈ R 

to the memory Memj of X-Machine Vj ∈ R 

← Represent the arrow symbol (←) used to 

change the initial configuration C[i, j] = λ to 

C[i, j] = y when the output-move function 

OMV is exercised and it is also used to 

transfer the message stored within C[j, i] to x 

when the input-move function InpMV is 

exercised 

ΦE Represent the set of extended partial 

functions 

CGV Represent the Cowling, Georgescu and 

Vertan’s Communicating X-Machine model 

CSXMS-Channel Represent the channel model of a CSXMS 

Kn+1 Represent additional co-ordinating 

Communicating X-Machine within the 

CSXMS-Channel approach called the 

communication server machine 

R
T
 Represent R

T
 = R ∪ Kn+1 in the CSXMS-

Channel model 

Wn
T
 Represent the CSXMS-Channel model Wn

T
 = 

(R
T
, MAT, C

0
) of a CSXMS with n X-

Machine components i.e. a variant of WWn 
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λ and @ Respectively represent the absence of a 

message and there is no communication 

defined between one X-Machine Vi and 

another X-Machine Vj 

jS
+ 

and jR
+
 Respectively represent (request to send) and 

(request to receive)  

jS
- 
and jR

-
 Respectively represent (reject send) and 

(reject receive) 

↵ The server sends the symbol ↵ called OK 

within Wn
T 

to the X-Machine requesting such 

operation if the required communication 

operation is allowed 

B Is a representation  of the set of other X-

Machines that are still actively running 

within the memory of the communication 

server machine Kn+1 

XM and MM Respectively represent the standard definition 

and the variant of the standard definition of 

an X-Machine 

OPinst Is used to construct a Stream X-Machine 

instance 

OPcomm  Is used to construct a Communicating X-

Machine Component CXMC 

OPsys Is used to construct a Modular 

Communicating Stream X-Machine System 

CXM 

MT Represent the Stream X-Machine type 

without an initial state and initial memory 

NewMT Represent the Stream X-Machine type with 

an initial state and initial memory 

ISi Is an n-tuple that corresponds to n input 

streams 

OSi   Is a tuple that corresponds to n output 

streams 

ΦISi   Is an association of function φi ∈Φi and the 

input stream ISi 

ΦOSi   Is an association of function φi ∈Φi and the 

output stream OSi 

SISOi   SISOi is the set of functions φ that read from 

standard input stream (isi) and write to 

standard output stream (osi) 

SIOSi   SIOSi is the set of functions φ that read from 

standard input stream (isi) and write to the 

j−th output stream (osj ) 

ISSOi    ISSOi is the set of functions φ that read from 

the j−th input stream (isj) and write to the 

standard output stream (osi) 

ISOSi ISOSi is the set of functions φ that read from 

the j−th input stream (isj) and write to the 

k−th output stream (osk) 

ΦCi ΦCi is the new set of partial functions that 
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read from either standard input or any other 

input stream and write to either the standard 

output or any other output stream 

ε Represent the empty type 

COMM_OBJECTS Represent a society of communicating 

objects in an object-oriented system 

obj Represent object obj in COMM_OBJECTS 

PT and RT Respectively represent primitive types (PT) 

and reference types (RT) 

CLT and K Respectively represent variable used for 

illustrating the concept of PT and RT 

OI, IC and FI Respectively represent object instance, 

interface class and family of concrete 

implementations 

CUT and IT Respectively represent the class under test 

and its associated interface type 

IMP and SE Respectively represent a finite set of concrete 

implementations and single element SE in 

IMP  

ID, S and BV Respectively represent identity (ID), state (S) 

and behaviour (BV) 

inPT Represent a finite set of inputs with 

predefined parameter types to be consumed 

from an environment 

U, E and G Respectively represent a finite set of 

unchanged, error and goal state precondition 

methods that can apply to methods of the OM 

under test 

NUS, NES and NGS Respectively represent a finite set of next 

unchanged, error and goal state that the OM 

under test can be driven into i.e. depending 

on the testing mode 

nextOMSI Is used for indicating the next transition state 

for the OM under test. For example, if a 

unique precondition method from E was 

triggered then nextOMSI will indicate that the 

OM  has been driven into an error state 

S* and outPT Respectively represent the modified set of 

state variables (i.e. current memory value of 

instance attributes) and the type of output 

computed respectively i.e. when m of the OM 

under test was exercised at run time 

MOD Represent a finite set of access modifiers that 

can apply to the CM 

UTIO, ETIO and GTIO Respectively represent a finite set of 

unchanged, error and goal state test input 

objects that can be generated for the OM 

under test in the unchanged, error and goal 

state testing modes 

TIO = UTIO ∪ ETIO ∪ GTIO 

 

Represent the finite set of test input objects 

that can apply to all the methods and Object-
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Machines of the CM under test in all the 

relevant testing modes 

preM and BE Respectively represent a precondition method 

and a finite set of Boolean Expressions (BE) 

ΛΛ and S” Respectively represent the Class-Machine 

identifier and a finite set of class variables 

that can apply to the CM alone 

TYPECM  and M” Respectively represent a finite set of 

parameter types  and class methods that can 

apply to the CM 

CT, τ and ¥ Respectively represent a finite set of 

constructors, an extensible interface type 

and a possibly infinite family of object-

machines that can apply to the CM 

∆ Represent the function mapping the Class-

Machines interface type i.e. τ to a possibly 

infinite family of Object-Machines 

implementations i.e. ¥ 

pS” Represent all person class variables in Figure 

20 

 Is used to show the mapping of KEY to 

VALUE 

pM” Represent all person class methods in Figure 

6 

Guardm” = (Um”, Em”, Gm”) Is a triplet that encapsulates a finite set of 

three unique precondition methods i.e. for 

every unique class method m” ∈ M” under 

test 

 OMPM = USPM ∪ ESPM ∪ GSPM Is the complete finite set of all types of 

precondition methods that can apply to the 

OM in IMP under test in all the relevant 

testing modes of the CM 

modsetAge Is the type of access modifier that can apply 

to method setAge in Figure 20 

GuardsetAge Represents the finite set of three unique 

precondition methods guarding method 

setAge 

pS Is the initial state of all instance and class 

variables that belongs to the person object 

machine depicted by Figure 20 

inPTsetAge Is the finite set of input parameter types that 

can apply to method setAge 

pS* Represent the modified memory values 

and/or states for the person object machine 

system under test 

outPTsetAge Is the type of output that method setAge will 

produce at run time 

nextOMSIsetAge Is used to indicate the type of state that the 

person object machine system under test has 

been driven into when setAge is exercised at 

run time 
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POM, SOM and EOM Respectively represent the person (Figure 

20), student (Figure 25) and employee (28) 

object machine 

S’  Is the finite set of instance variables that can 

apply to the OM alone 

M’  Is the finite set of methods belonging to the 

OM alone 

M = M’  ∪ M” Is the complete finite set of methods that can 

apply to the OM 

pS’   Represent all instance variables that belong 

to the POM 

pS = pS’  ∪ pS” 

 

Represent all the state encapsulating 

variables that can apply to the POM system 

pM’ Represent all instance methods that can apply 

to the POM 

pM = pM’  ∪ pM” 

 

all the instance and class methods that can 

apply to the POM 

 pCT Represent all the constructors that can apply 

to the POM 

IID and IM Respectively represent the interface 

identifier and finite set of interface methods 

that can apply to the Class-Machines 

interface type τ 
↑ The symbol ↑ can be read has is completely 

specified with respect to. So we say that 

OM is completely specified with respect to τ 
i.e. written as (OM ↑ τ) iff (IM  ⊆  M) 

A_ID  and B_ID  and C_ID Respectively represent the identifier for 

Object Machines A, B and C in Figure 22 

A_States, B_States and C_States Respectively represent the finite set of states 

that can apply to Object Machines A, B and 

C 

A_Methods, B_Methods and C_Methods Respectively represent the finite set of 

methods that can apply to the Object 

Machines A, B and C 

⊗ Is the function appending every unique 

element in the right-hand set onto the left-

hand set if and only if the element to be 

added is not already present in the left-hand 

set 

Ψ = (TIOGen, PreGen) Is a 2-tuple machine consisting of the test 

input object generator function TIOGen 

(covered in section 4.5.2) and the 

precondition generator function PreGen 

(covered in section 4.5.3). 

 

ℜ = (PMPGen, PMTLGen, P2Trig, PN2Trig, 

HPFGen, LPFGen, TFRGen)  

 

Is a 7-tuple machine, where PMPGen is the 

precondition method profile generator 

function (covered in section 4.5.4). 

PMTLGen is the precondition method total 

length generator function (covered in section 
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4.5.5). 

P2Trig is the probability to trigger function 

(covered in section 4.5.6).  

PN2Trig is the probability not to trigger 

function (covered in section 4.5.7). 

HPFGen is the high probability filter 

function (covered in section 4.5.8). 

LPFGen is the low probability filter function 

(covered in section 4.5.9). 

TFRGen is the total number of faults 

remaining in the OM after testing has been 

completed (covered in section 4.5.10)   

 

ϒ = (EMMGen) Is a 1-tuple machine with the exact method 

match generator function EMMGen covered 

in section 4.5.11. 

 

Œ = (Ψ,ℜ,ϒ)   Is the complete structure of the object 

machine currently under test 

PCM, SCM and ECM Respectively represent the person, student 

and employee Class-Machine 

AI, SE, CS and UM Respectively represent Artificial Intelligence, 

Software Engineering, Computer Science and 

Unknown Major 

Shidden and Svisible Respectively represent a finite set of hidden 

and visible state encapsulating variables of 

the OM under test 

Mhidden and Mvisible Respectively represent a finite set of hidden 

and visible methods of the OM under test 

Я Я is the function that converts every uniquely 

hidden state encapsulating variable in Shidden 

to a public non-hidden state variable. The 

result is a modified Shidden (i.e. Shidden
ω
) 

Ξ Ξ is the function that converts every uniquely 

hidden method in Mhidden to a public non-

hidden method. The result is a modified 

Mhidden (i.e. Mhidden
ω
) 

ST = Svisible ∪ Shidden
ω
 Implies that the complete finite set of state 

variables S of the OM becomes ST  after the 

application of Я on S  

M
ω
 = Mvisible ∪ Mhidden

ω
 Implies that the complete finite set of 

methods M of the OM becomes M
ω
  after the 

application of Ξ on M 

CMS Represent the current memory state of 

instance and class variables in ST of the OM 

under test 

 

CAM CAM is the current active method i.e. k ∈ M
ω
 

of the OM under test 

 

CAPM CAPM is the current active precondition 
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method in Uk or Ek or Gk for the OM under 

test i.e. depending on the testing mode of the 

CM; since method k is guarded by Uk, Ek and 

Gk. 

CATIO CATIO is the current active test input object 

generated from exercising a precondition 

method in Uk or Ek or Gk for the OM under 

test 

ffKey = (CMS, CAM, CAPM, CATIO) Is the friend function key 

CAMO CAMO is the current active method’s output 

for the OM under test i.e. the type of output 

generated when method k is exercised with 

the test case that was saved inside CATIO 

NTS NTS is the next transition state for the OM 

under test i.e. the modified memory state 

for all the state encapsulating variables in ST 

when method k is exercised at run time 

ffValue = (CAMO, NTS) Is the friend function value 

Ж  :  OM  →   α(ffKey, ffValue) Is the function that has complete visibility on 

all the encapsulated methods, memory states 

of the instance and class variables of a given 

object or class under test. The Ж function 

also produces a set of machines that behave 

in the same way as the originals (but, of 

course that also allow the test engineer to see 

what this behaviour is) 

|pth| Represent the composite (partial) function 

computed by a finite automaton when it 

follows a path pth 

π1, π2, ..., πn Represent a finite set of projection 

functions, where 

 

π1: A1 × A2 ×…× An →A1, 

π2: A1 × A2 ×…× An →An, 

πn: A1 ×  A2 ×…× An →An, 

and A1, A2, ..., An are sets. 

 

Assuming m and s* respectively represent the 

initial memory and input of a finite 

automaton, we say that if |pth|(m, s*) = (g*, 

m') then the output g* and the new memory 

value m' can be referred to as π1(|pth|(m, s*)) 

and π2(|pth|(m, s*)) respectively.  

 
Table 1: Glossary of Symbols and Notations 
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Abstract: 

The object technology model is constantly evolving to address the software crisis problem. This novel 

idea which informed and currently guides the design style of most modern scalable software systems has 

caused a strong belief that the object-oriented technology is the ultimate answer to the software crisis, 

i.e. applying an object-oriented development method will eventually lead to quality code. It is important 

to emphasise that object-orientedness does not make testing obsolete. As a matter of fact, some aspects 

of its very nature introduce new problems into the production of correct programs and their testing due 

to paradigmatic features like encapsulation, inheritance, polymorphism and dynamic binding as this 

research work shows. 

Most work in testing research has centred on procedure-oriented software with worthwhile methods of 

testing having been developed as a result. However, those cannot be applied directly to object-oriented 

software owing to the fact that the architectures of such systems differ on many key issues. 

In this thesis, we investigate and review the problems introduced by the features of the object 

technology model and then proceed to show why traditional structured software testing techniques are 

insufficient for testing object-oriented software by comparing the fundamental differences in their 

architecture. Also, by reviewing Weyuker’s test adequacy axioms we show that program-based testing 

and specification-based testing are orthogonal and complementary. Thus, a software testing 

methodology that is solely based on one of these approaches (i.e. program-based or specification-based 

testing) cannot adequately cover all the essential paths of the system under test or satisfactorily 

guarantee correctness in practice. We argue that a new method is required which integrates the benefits 

of the two approaches and further builds upon their individual strengths to create a more meaningful, 

practical and reliable solution. 

To this end, this thesis introduces and discusses a new automaton-based framework formalism for 

object-oriented classes called the Class-Machine and a test method that is based on this formalism. Here, 

the notion of a class or the idea behind classification in object-oriented languages is embodied within a 

machine framework. The Class-Machine model represents a polymorphic abstraction for heterogeneous 

families of Object-Machines that model a real life problem in a given domain; these Object-Machines 

are instances of different concrete machine types. The Class-Machine has an extensible machine 

implementation as well as an extensible machine interface. Thus, the Class-Machine is introduced as a 

formal framework for generating autonomous Object-Machines (i.e. Object-Machine Generator) that 

share common Generic Class-Machine States and Specific Object-Machine States.  The states of these 

Object-Machines are manipulated by a set of processing functions (i.e. Class-Machine Methods and 

Object-Machine Methods) that must satisfy a set of preconditions before they are allowed to modify the 

state(s) of the Object-Machines. The Class-Machine model can also be viewed as a platform for 

integrating a society of communicating Object-Machines. To verify and completely test systems that 

adhere to the Class-Machine framework, a novel testing method is proposed i.e. the fault-finders (f²) - a 

distributed family of software checkers specifically designed to crawl through a Class-Machine 

implementation to look for a particular type of fault and tell us the location of the fault in the program 

(i.e. the class under test). Given this information, we can statistically show the distribution of faults in an 

object-oriented system and then provide a probabilistic assertion of the number and type of faults that 

remain undetected after testing is completed. 

To address the problems caused through the encapsulation mechanism, this thesis introduces and 

discusses another novel framework formalism that has complete visibility on all the encapsulated 

methods, memory states of the instance and class variables of a given Object-Machine or Class-Machine 

system under test. We call this the Class Machine Friend Function (CMƒƒ). In order to further illustrate 

all the fundamental theoretical ideas and paradigmatic features inherent within our proposed Class-

Machine model, this thesis considers four different Class-Machine case studies. Finally, to further show 

that the Class-Machine theoretical purity does not mitigate against practical concerns,  our novel object-

oriented specification, verification, debugging and testing approaches proposed in this thesis are 

exemplified in an automated testing tool called: The Class-Machine Testing Tool (CMTT).  
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Chapter 1: Introduction  

How can we effectively test object-oriented software in such a way that it enables us to draw 

useful inferences about the number and type of faults that remain undetected after testing is 

completed in the presence of some aspects of its very nature i.e. encapsulation, inheritance, 

polymorphism and dynamic binding? 

It is fair to say that ensuring that object-oriented systems are fault free is quite beyond current 

testing methods (arguably this statement is true of almost all types of systems). All they can tell 

is that a system has failed. They cannot tell us that the system is correct. How do we then build 

correct object-oriented systems that fulfil their requirements? 

We believe that these are significant questions that deserve full attention in software 

engineering research. Satisfactorily answering these questions is one of the prime motivations 

behind this research work. If one were to recount all the great discoveries and inventions of the 

past few years [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91, 110, 111, 112, 

113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 

132, 133, 136], one would be able to discern that a fundamental desire of all those involved in 

the development of new computer systems (whether business software solutions, real-time 

control systems or hardware devices) is to verify that the final product behaves correctly.  

Attempts to design and build reliable software systems have resulted in the introduction of the 

object-oriented technology paradigm and a growing research interest in object-oriented 

systems. This growing research interest is mainly due to a very strong belief that the object-

oriented technology is the ultimate solution to the software crisis. Software engineers and 

academics who share this view clearly believe that applying an object-oriented development 

method will consequently lead to quality code. In particular, this view is based on some of the 

great features provided by object-oriented languages which simplify testing and maintenance 

activities. In this work, we argue that the features provided by object-oriented languages are no 

substitute for testing object-oriented software. On their own, object-oriented development 

approaches cannot guarantee the production of correct programs.  

Although an object-oriented development method can produce better system architecture and 

most object-oriented programming languages provide support for a disciplined coding style, it 

is worth emphasising that they cannot by any means protect software engineers from making 

mistakes or misunderstanding a system’s formal specification. Hence, software systems 

developed using object-oriented development methods still need testing. Furthermore, because 

object technology model promotes reuse, the testing phase of the software lifecycle is more 

critical for object-oriented software than for traditional software owing to software components 

being re-used in a number of contexts, and possibly applied in areas unintended by the original 

developer; as a result, reusable components need to be properly tested. 

On top of the above stated issues, features such as encapsulation, inheritance, polymorphism 

and dynamic binding in object oriented languages can introduce new problems into the 

production of correct object oriented programs and their testing, resulting in an urgent need to 

develop new effective testing methods for them. Whilst there exists a proliferation of testing 

methods which are largely centred on procedure-oriented software, our position on the subject 

of this matter is that those methods cannot be applied directly to object-oriented software owing 

to the fact that the architectures of such systems differ on many key issues. Hence, we argue 
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that those methods are not sufficient for testing object-oriented software as the architectures of 

those systems differ due to many fundamental assumptions and key features inherent in the 

object-oriented model.  

Furthermore, our review of existing approaches that employ either finite state machines [29, 30, 

31] or extended finite state machines [2, 32, 38] for the purpose of modelling the behaviour of 

object-oriented systems (generally referred to as Object-Machines) shows that these approaches 

are either too simplistic to model the complexity of object-oriented systems or too procedural to 

represent objects in their purest form. Some of these approaches also fail to account for some 

key features of object-oriented languages e.g. inheritance, polymorphism and dynamic binding.  

Software testing is one of the key approaches used in software engineering to establish the 

correctness of software systems. Software verification or model checking is another. One 

possible way to classify existing testing methods is as either program-based or specification-

based. Most of the Object-Machine approaches [55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] that 

exist for modeling the behaviour of a system or the internal structure of an object-oriented 

component (i.e. an object) largely base their testing methodology on either program-based 

testing or specification-based testing techniques. However, Weyuker’s test adequacy axioms 

[97,100,101] reveal that program-based testing and specification-based testing are orthogonal 

and complementary. To this end, this thesis argues that any Object-Machine approach that 

bases its testing methodology solely on one of these approaches cannot adequately guarantee 

correctness in practice. To engineer a more meaningful, practical and reliable solution, a new 

testing method is required to integrate the benefits of the two approaches and further build upon 

their individual strengths, thus providing the much needed correctness guarantee after testing is 

completed. 

To this end, this thesis proposes a novel testing method that combines both the computational 

benefits of verifying and testing a formal specification as well as testing, debugging and 

verifying the eventual concrete implementation via a distributed family of software checkers 

called fault-finders (f
2
). Here, the idea behind f

2
 is to develop a family of autonomous agents 

that crawl through a class implementation to look for a particular type of fault and tell us its 

location in the program (i.e. the class under test). Given this information, we can statistically 

show the distribution of faults in an object-oriented system and then provide a probabilistic 

assertion of the number and type of faults that remain undetected after testing is completed.  

Furthermore, classification is arguably the distinctive feature of an object-oriented language 

[94, 102]. This is because the fundamental emphasis in object-oriented languages is on defining 

abstraction. It is clear that with the object technology approach, it is far easier to generalise over 

a set of objects that share a common interface and specific practical implementation by 

identifying a class of related objects. Most Object-Machines currently used for specifying 

object-oriented systems can only model a single instance of an object or component of a 

system. But object-oriented systems are composed of a society of communicating objects where 

each object is an instance of a concrete type [94] and belongs to a given class [102].  

It is possible, by further exploring the object technology approach to create a machine which 

generalises over heterogeneous families of Object-Machines, themselves instances of different 

concrete machine types. Such a machine would have an extensible machine implementation as 

well as an extensible machine interface [94]. In this thesis, such a machine is developed and we 

refer to it as the Class-Machine. Here, the notion of a class or the idea behind classification in 

object-oriented languages is embodied within a machine framework. The Class-Machine model 

can also be viewed as a specification platform for integrating a family of communicating 
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object-machines. This is particularly useful for modelling, specifying, verifying, debugging, 

integrating and testing a family of distributed object-oriented systems. In an object-oriented 

system, the basic unit is a class (i.e. Class-Machine). Hence, testing needs to focus on the Class-

Machine.  To show that  our proposed automaton-based framework formalism and our testing 

method based on this and its theoretical purity does not mitigate against practical concerns,  our 

novel object-oriented specification, verification, debugging and testing approaches proposed in 

this thesis are exemplified in an automated testing tool called: The Class-Machine Testing Tool 

(CMTT).  

1.1 Motivation 

1.1.1 Problems in Testing Object-Oriented Software  

1. Testing Problems due to Encapsulation  

One of the fundamental properties of object-oriented programming is the ability to hide 

information through the encapsulation mechanism found in object-oriented languages. This 

allows an object's state to be separated from its behaviour preventing possible modification of 

its attributes by some external collaborating objects. The Java programming language provides 

four different scope operators for this (public, protected, private, and package) that can 

be used to selectively hide data constructs within a class implementation. However, these 

benefits introduce major problems during the testing phase of the software lifecycle. In the 

presence of encapsulation, the only way we can observe the state of an object is through the 

public methods that comprise its interface. Therefore, a fundamental problem of observability 

exists, since we cannot conveniently ascertain whether the state of the object is coherent after 

invoking an operation.  

There are a number of ways by which this problem can be resolved: 

Firstly, it is possible to modify the class under test by adding certain new methods that allow 

the software tester complete access to the hidden features of the class. However, this is not a 

satisfactory solution because it forces us to include operations that are not part of the original 

specification for the class under test. Moreover, we have no way of assuring that the class under 

test will provide the same behaviour when these operations are removed from the tested code.  

Secondly, a possible refinement to the above solution would be to define the operations in a 

subclass. The problem here is that this approach would be useless if the child class does not 

have complete access to the state of the inherited features of the parent class. For example, 

assume the class under test is implemented in the Java language and some of the attributes and 

methods of the class are hidden away (i.e. with the private modifier) from collaborating objects 

that may require to communicate with concrete object instances that belong to the class under 

test. In such situation, the class under test (i.e. our parent class in this case) would not be visible 

to its child class. 

Apart from those two general methods described above, several programming languages 

provide certain language specific mechanisms with which to break encapsulation: 
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Family-Related Constructs  

The C++ programming language has intrusive friends subprograms that define operations 

which do not belong to the class but have complete visibility of all the features of the class [95]. 

Also, the child units of Ada are non-intrusive package extensions with complete access to the 

hidden part of their parent package [95]. Also, the Java reflection API represents (i.e. reflects) 

the classes, interfaces, and objects in the Java Virtual Machine. With the Java reflection API, 

software engineers can easily obtain useful information about a class’s modifiers, fields (i.e. 

attributes of a class), methods, constructors, and superclasses (i.e. as a consequence of 

inheritance). The Java reflection API is useful for writing development tools such as debuggers, 

class browsers, and GUI builders. 

Low-Level Constructs  

Both Smalltalk’s inspectors and Eiffel’s class internals have low-level functions that can 

examine all the features of an object. Generally, these functions break encapsulation by 

providing access to the physical object structure [95]. 

Unchecked Type Conversion  

Assuming the type system of the programming language used for implementing a piece of 

software is weak or if the language does not check type conversion, then in this situation it is 

possible to break encapsulation by simply writing another class, whose data structure is a clone 

of the class under test save that all the features of the class (i.e. its attributes and methods) are 

declared public, thus by casting all the instances of the class under test to the instances of the 

clone class we would be able to access all their features freely without problems. 

2. Testing Problems due to Inheritance  

When the inheritance mechanism is explored within object-oriented systems, it opens a big 

issue about whether derived classes (i.e. child classes) need to be retested with respect to 

inherited operations from their parent classes. One important approach promoted within object-

oriented languages concerns how derived classes are allowed to be refined by modifying or 

completely removing inherited operations, or adding new attributes and functions. Considering 

the fact that derived classes are obtained through direct refinement of their parent classes, it is 

only natural to expect a parent class that has been adequately tested to be reused without any 

further need to retest its properties (i.e. its methods) within its child class. While the root of this 

wisdom is well founded around the natural structure of the inheritance hierarchy, it is however 

proved false with Weyuker’s test adequacy axioms [97, 100, 101]. Hence, some of the inherited 

operations need retesting within the derived class.  

The work of Barbey in [95] describes a strict form of inheritance. In this work, a derived class 

is a strict heir of its parents as long as it preserves the exact inherited behaviour of its parent 

class. This implies that inherited operations (i.e. methods of the parent class) cannot be 

modified (e.g. overridden) within the derived class. Thus, all the derived class is permitted to do 

is to be refined by defining new attributes and functions. Again, despite this intuition, when 

strict inheritance mechanism is explored some of the inherited functions of the parent class still 

need retesting within the derived class. As discussed previously in earlier sections, one of the 

advantages of the encapsulation mechanism within object-oriented languages is that 

collaborating client objects do not have direct access to the data structure of the server objects. 
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However, by exploring the mechanism of inheritance we can easily break encapsulation. This is 

because the inheritance mechanism allows derived classes to gain access to the features of their 

parent classes, and further modify them should they choose to. Although encapsulation builds a 

wall of protection between the server class and its client’s classes, it does not prevent its 

derived class from messing up inherited operations. 

Whilst the original specification and implementation code for the parent class is preserved 

within the derived class (i.e. in strict inheritance scheme), the additional operations introduced 

by the derived class can lead to profound changes in the eventual execution of the inherited 

operations of the parent class. Thus the added functions can have a strong effect on the state of 

the object in such a way that certain portions of the implementation code for the parent class 

that were previously unreachable and that had not been tested, suddenly become reachable 

within the child class and consequently need testing. 

In a flexible inheritance scheme as opposed to strict inheritance scheme, child classes are 

allowed to redefine (i.e. override) inherited operations i.e. in order to provide a new 

implementation to an inherited operation or function from the parent class that is to be used 

within the child class. Generally, overriding occurs when certain behaviours of an inherited 

method from a parent class are not appropriate within the context of its child class.  

This is best illustrated with an example. Below, we present a simple Java example that involves 

inheritance. In this example, a Student Class inherits from a Person Class. In addition to other 

methods provided by the Person Class, the person class also defines a method for computing 

the end of month’s salary for a full-time person-employee. The Student Class inherits all the 

operations of the Person Class. However, a student is only allowed to work during term time 

for a maximum period of 20 hours in a week. For the purposes of this example it is assumed 

that a person-employee can only work for a maximum period of 37 hours in a week. Also, the 

hourly rate of pay for a person-employee and a full-time student is £10. Furthermore, we 

assume that there are 4 weeks in any month of the year. 
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In the above example, the Student Class had to override the monthlySalary method inherited In 

In Figure 1, the Student Class had to override the monthlySalary method inherited from the 

Person Class because the inherited method was not appropriate in the context of the Student 

Class that represents full-time students who are only allowed to work for a maximum 20 hours 

in a week during term time. 

When inherited operations (i.e. methods of the parent class) are overridden within the context of 

the child class, such a child class needs to be retested. Considering the above example for the 

Person-Student class inheritance relationship, when the software engineer has suddenly realised 

the need to provide a new implementation for the monthlySalary method as a consequence of 

the fact that it is not appropriate in the context of the Student Class, it is clear that the modified 

method will not reproduce the exact behaviour of the inherited code. Hence, one major side 

effect that results from modifying inherited methods within a child class is that we have to 

retest all other methods that invoke the overridden method as part of their own implementation; 

it does not matter whether such methods have been inherited from the parent class where the 

overridden method was first defined or in a later subclass somewhere in the inheritance 

hierarchy: as long as those methods invoke a method whose behaviour has been modified, their 

own behaviour would consequently be affected by such modifications, hence they need 

retesting. 

3. Testing Problems due to Polymorphism  

The mechanism of polymorphism in object-oriented languages allows a heterogeneous family 

of different classes of objects of a given concrete type to respond to the same request based on 

the structure of the inheritance hierarchy. (This pattern of substitution is known as Liskov’s 

substitution principle [98]). However, within object-oriented languages, polymorphic variable 

names or object references can make testing problematic. This is because they introduce 

undecidability (undecidability is used here in the English sense of the word) in program-based 

public class Person{ 

 

private String surname; 

private String forename; 

private int age; 

private String gender; 

 

public Person(String s, String f, int a, String g){ 

           this.surname = s; 

           this.forename = f; 

           this.age = a; 

           this.gender = g;} 

 

public void setSurname(String s){surname = s;} 

public String getSurname(){return surname;} 

public void setForename(String f){forename = f;} 

public String getForename(){return forename;} 

public void setAge(int a){age = a;} 

public int getAge(){return age;} 

public void setGender(String g){gender = g;} 

public String getGender(){return gender;} 

 

public double monthlySalary(){ return (37 * 10) * 4;} 

 

}// End of Class Person 

 

public class Student extends Person{ 

 

private String major; 

 

public Student(String s, String f, int a, String g, String m) 

    { 

       super(s, f, a, g); // call to Person Constructor 

       major = m; 

     } 

 

public String getMajor() 

     { 

          return major; 

      } 

 

public void setMajor(String m){ major = m;} 

 

 

public double monthlySalary() 

    { 

       return (20 * 10) * 4; 

    } 

 

 }// End of Class Student 

        

  
Figure 1: Class Student overrides the monthlySalary method provided by its parent Class Person. 
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testing as it is difficult to predetermine in advance what method of an object reference would be 

invoked at run time, i.e. whether the original statically defined object method would be fired or 

a refined method implementation of a child class would be invoked.  

Apart from this, erroneous casting (i.e. type conversions) within object-oriented programs is 

prone to happen in polymorphic contexts and these can easily lead to the type of faults that 

cannot be easily detected. Also, in an object-oriented language such as Java, it is possible for 

variables that reference objects to have a static concrete type in their original specification (i.e. 

the declared concrete type in the original program definition). But due to the presence of 

paradigm features like polymorphism in the object model, the actual concrete object type can be 

bound to a dynamic concrete type that is determined at runtime. Hence it is possible for a given 

object reference type that was deemed to have been statically type correct at compile time to be 

dynamically fatal by producing a fault at run-time.  

Extensibility of Hierarchies  

Another problem similar to those described above arises when testing (i.e. functional-based and 

implementation-based) a method with one or more paremeters that are polymorphic. We 

illustrate this concept further with an example using Figure 2. Now, consider the following 

testMethod with polymorphic object parameters as its arguments. 

public void testMethod(AA a1, WW w1){ 

//do something 

} 

In the above implementation code for testMethod we know that testMethod accepts two 

parameters (i.e. object a1 an instance of a concrete type AA and object w1 an instance of a 

concrete type WW). As a consequence of polymorphism we know that object a1 can be bound 

to any object member in the same family tree. The same is true for object w1. Hence, testing the 

above method involves checking its effects when it is executed for various combinations of 

actual object parameters based on the structure of the inheritance hierarchy shown below. 

Therefore, a test suite must make sure that all the feasible cases with respect to bindings are 

covered. 

 

Figure 2: Extensibility of Hierarchy Example 

However, given that within testMethod more than one polymorphic object parameter can be 

bound to a1 and w1, it is impossible to plan a test in advance where you can check testMethod 

for every possible object binding. This is because a disciplined approach promoted within 

object-oriented languages allows a hierarchy of classes to be freely extensible. Thus, it is 

AA 

BB CC DD 

WW 

XX YY ZZ 
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possible at any point in time to add a new subclass to the hierarchy, without even causing a 

recompilation of the testMethod. 

4. Testing Problems due to Non-Instantiable Classes 

These are classes from which object instances cannot be created because their implementation 

is not completely defined (i.e. missing bits must be subsequently provided within concrete 

subclasses). Example of these kinds of non-instantiatable classes in Java are: Abstract Classes 

and Interface Classes. Because instances of these types of classes cannot be created, it is 

difficult to adequately test them. Hence, to test such classes, the test engineer needs to create a 

minimal test suite that covers the different bindings for the missing part of the implementation 

in order to achieve exhaustive test that would provide the necessary guarantee required after 

testing is completed.   

1.1.2 Object-Oriented Architecture vs. Procedure-Oriented 
Architecture  

In this section, we argue that most work in testing has been done with procedure-oriented 

software in mind and that some good methods of testing have been developed as a result. 

However, we emphasise that those methods cannot be applied directly to object-oriented 

software, due to the fact that the architectures of those systems are significantly different from 

those of Object-Oriented software on a number of key areas. Also, we argue that the differences 

between the two paradigms are sufficient to motivate the development of a test method that is 

more specific to the object-oriented architecture. 

The Procedure-Oriented Systems Architecture 

• Here, the system is functionally broken down into subprograms. Each subprogram 

separately implements some of the services provided by the overall system. 

• The basic unit of test is generally a subprogram. It is possible for one subprogram to 

contain other subprograms in other for its own definition to be complete (i.e. 

aggregation). 

• It is possible to gather a much larger unit of test from already tested subprograms (i.e. 

bottom-up integration), or better still subprogram stubs that are residing within already 

tested subprograms can be replaced by subprograms to be tested (i.e. top down 

integration) 

• Data handling is shared amongst subprograms, which may not be related in any way, 

and which can be scattered throughout the entire system, hence the problem with 

generating adequate test units. 

• In order to communicate, subprograms make use of either parameters or global 

variables. 

The Object-Oriented Systems Architecture 

• Here, the system is made up of a society of communicating objects; each object is an 

instance of a concrete type [94] that belongs to a given class. 
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• Each object in the system has its own set of attributes where the state and memory of 

the object are hidden (i.e. encapsulated). An attribute can either be a value (e.g. a basic 

type in Java) or another object. 

• Every object in the system provides a set of methods that defines it behaviour. 

• Here, a class is a polymorphic definition for a heterogeneous family of objects, 

instances of different concrete types with extensible implementation and extensible 

interface [94]. 

• A class encapsulates the definition of a heterogeneous family of objects, instances of 

different concrete types and further conceals the details of their implementation. 

• Generally the attributes of an object are usually hidden (i.e. with modifiers), in such a 

way that the only way to observe or modify the state of an object is by invoking its 

public (non-hidden) methods.  

• Some methods can also be hidden (i.e. with modifiers). Certain methods belong to 

objects of the class while others are class methods (i.e. these methods are internally used 

for the purpose of implementing other methods). 

• Some attributes belong to objects of the class while other attributes belong to the class 

(i.e. class attributes are shared among a family of objects that belong to the class). Class 

methods are methods that manipulate those class attributes. 

• It is possible for one class to be related to another through the mechanism of inheritance. 

• Through the power of polymorphism a heterogeneous family of different classes of 

objects of a given concrete type can respond to the same request based on the structure 

of the inheritance hierarchy. 

 1.1.3 Classes vs. Procedure-Oriented Testing 

• With classes data handling is not shared between units. A class contains all the attributes 

and methods that can affect the state of a family of objects that belongs to it. 

• A class can only be tested through its instances. 

• It is not possible to test the methods of a class in isolation.    

• Control flow analysis techniques are not directly applicable, since there is no sequential 

order in which methods can be invoked.  

• Because every object carries a state, it is impossible to reduce the testing of an object to 

the independent testing of its methods. However, it could be argued that actually it is not 

impossible to reduce the testing of an object to the independent testing of its methods, 

but the problem with doing so is that one has to be able to determine accurately what the 

state of an object is before and after each method invocation, and also one needs some 

guarantee that determining the state does not change it, and neither of these are easy to 

achieve in practice. 

• Every method of the class can alter the state of the object or even the state of the class if 

the class has class attributes (i.e. class methods can be used to manipulate class 

attributes). 

1.1.4 Weyuker’s Test Adequacy Axioms 

Generally, one possible way to provide confidence that program code has been adequately 

tested is by checking that the program has been covered according to some test selection 

criteria. The two major forms of test case coverage classifications are specification-based and 
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implementation-based testing techniques. In chapter 2, these two forms of testing are explained 

in detail. In this section, we argue that the two approaches to testing are orthogonal and 

complementary. This is because specification-based testing is weak with regards to formal 

adequacy criteria, while implementation-based testing has been studied in great depth. One 

major disadvantage of specification-based testing is that although it tells us how well a program 

satisfies its formal specification, it does not tell us what part of the program was executed to 

satisfy each part of the specification. Also, the disadvantage of implementation-based testing is 

that it does not tell us how well a program satisfies its intended functionality. Hence, we argue 

that if the benefits of the two approaches are combined (i.e. integrated), implementation-based 

testing will provide a level of confidence that can be obtained from the adequacy criteria that 

the software program has been adequately tested while on the other hand specification-based 

testing will help us to establish whether the program is actually doing what it is expected to do. 

The work of Weyuker in [100] introduced a general axiomatic theory for test data adequacy. 

This work examines different adequacy criteria in the light of these axioms. In another second 

paper [101], Weyuker went ahead to refine and further expand the original set of eight axioms 

to eleven. In the first paper, Weyuker used the original set of axioms to reveal several 

weaknesses in well known implementation-based adequacy criteria. The prime goal of the 

second paper was to uncover the inadequacy of the current set of axioms, i.e. there are 

adequacy criteria that satisfy all the eleven axioms but still are not helpful in detecting faults in 

software programs. In this work, by applying these axioms we challenge some conventional 

wisdom about specification based testing and the idea that programs developed as a result of 

applying object-oriented methods would require less testing than those developed from other 

paradigms. 

Below are the first four axioms of Weyuker [100]: 

• Applicability: For every program, there exists an adequate test set. 

• Non-Exhaustive Applicability: There is a program P and test set T such that P is 

adequately tested by T, and T is not an exhaustive test set. 

• Monotonicity: If T is adequate for P, and T is a subset of T’ then T’ is adequate for P. 

• Inadequate Empty Set: The empty set is not an adequate test set for any program. 

The first four axioms above are clearly obvious ones. They are relevant to all programs and it 

does not matter what programming language was used for implementing the program. They 

likewise also apply to implementation-based as well as functional-based testing techniques. 

As above, the following three axioms of Weyuker are obvious ones [100]: 

• Renaming: Let P be a renaming of QQ; then T is adequate for P if and only if T is 

adequate for QQ.  

• Complexity: For every n, there is a program P, such that P is adequately tested by a 

size n test set, but not by any size n-1 test set. 

• Statement Coverage: If T is adequate for P, then T causes every executable statement 

of P to be executed. 

In the above axioms (i.e. specifically the renaming one), a software program P is said to be a 

renaming of another program QQ if P is identical to QQ with the exception that all instances of 

an identifier w of QQ have been replaced in P by an identifier z, in such a way that z does not 

appear in QQ, or if there is a set of such renamed identifiers. Here, the first two axioms above 
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are relevant to implementation-based testing and functional-based testing. But the third one (i.e. 

statement coverage) applies only to implementation-based testing. 

The remaining not so obvious axioms (i.e. four axioms) are the main focus of this work. Some 

of these axioms are only relevant to implementation-based testing and not to functional-based 

adequacy criteria. We can view these axioms as negative axioms because they simply reveal 

inadequacy rather than guarantee adequacy. It is to these that we now turn. 

Antiextensionality [100]: If two programs compute the same function (i.e. they are 

semantically close), a test set that is adequate for one is not necessarily adequate for the other. 

There are programs P and QQ such that P ≡ QQ, [test set] T is adequate for P, but T is not 

adequate for QQ. 

The above axiom is definitely more surprising than the other axioms. This is partly due to the 

fact that our understanding of what it means for a program to be adequately tested is rooted in 

specification-based testing. This is a very surprising result because a popular idea that is 

promoted within the formal method community with respect to specification-based testing until 

now viewed adequacy testing as a function of covering the whole specification. Hence, two 

machines M1 and M2 are judged to be equivalent if they accept the same input and produce the 

same output. This implies that a test set that is adequate for M1 is adequate for M2.  In the same 

manner you would normally expect two equivalent programs P1 and P2 with the same formal 

specification to share the same test set (i.e. a test set that is adequate for one must be adequate 

for the other). Within program-based testing approaches, a program P is deemed to be 

adequately tested if the source code for P has been covered completely. Because it is possible 

for equivalent programs to have radically different concrete implementations, it is absolutely 

pointless to expect a test set that will execute all the statements of P1 to execute all the 

statements of P2. 

Now, let us apply this idea to reason about certain features in the object-oriented paradigm. We 

know that a disciplined approach supported within most object-oriented languages concerns 

how a subclass is allowed to replace an inherited method with a locally defined method with the 

same name. It is obvious that the overriding subclass has to be retested. However, what is not 

obvious here is that most times a different test set would be needed. To illustrate this concept 

further with an example, recall that in section 1.1.1 we introduce an example where we tried to 

compute the monthly salary for a full-time student and a full-time person-employee. In that 

example, the Student Class overrides the monthlySalary method of its parent class (i.e. Person 

Class) because the method was not appropriate within the context of the student class. Even 

though the names of the two methods are the same within the parent class and the child class 

and although the two methods compute semantically close functions, a test set that is adequate 

for one is not necessarily adequate for the other. 

General Multiple Change [100]: When two programs are syntactically similar (i.e. they have 

the same shape), they usually require different test sets. 

There are programs P and QQ which are the same shape, and a test set T such that T is 

adequate for P, but T is not adequate for QQ. 

Weyuker states: ‘‘Two programs P and QQ are of the same shape if one can be transformed 

into the other by applying the following rules any number of times: (a) Replace relational 

operator r1 in a predicate with relational operator r2. (b) Replace constant c1 in a predicate or 

assignment statement with constant c2. (c) Replace arithmetic operator aa1 in an assignment 
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statement with arithmetic operator aa2.’’ Because it is possible to generate an adequate test set 

for program P or QQ when one has been transformed into the other, i.e. to force the execution 

of the two branches of each conditional statement, as a consequence the newly introduced 

relational operators in the transformed P or QQ and/or constants in the predicates may require a 

different test set to guarantee complete coverage. This axiom directly applies to implementation 

rather than to specification. 

Antidecomposition [100]: Testing a program component in the context of an enclosing 

program may be adequate with respect to that enclosing program but not necessarily adequate 

for other uses of the component. 

There exists a program P and component CP such that T is adequate for P, T’ is the set of 

vectors of values that variables can assume on entrance to CP for some t of T, and T’ is not 

adequate for CP. 

The above axiom describes the property of adequacy as well as illustrates a fascinating concept 

about testing (i.e. it is possible for a program that satisfies adequacy testing criteria to still 

contain unreachable code). Here, the unreachable code remains untested either adequately or 

otherwise.  Now, consider the example where component CP is unreachable in program P and 

T’ is the null set. As expressed by the Inadequate Empty Set axiom in earlier section above, it 

automatically follows by the axioms that T' will not adequately test CP. Whilst it is possible 

that for some set of preconditions (say Pre1), certain parts of CP might not be reachable in P. It 

is possible that for a different set of preconditions (say Pre2), CP may become reachable in P. 

One possible reason why component CP cannot be adequately tested within program P might 

be due to the fact that program P might not be using all the functionality that was defined for 

component CP in its original specification. Now, let us use the antidecomposition axiom 

described above to reason about some useful characteristics of object-oriented programs. To do 

this, we use Figure 3 to explain some important ideas about testing object-oriented programs. 

 

 

 

In the above example (see Figure 3), superClass EE defines a method WM. The method WM 

has been adequately tested within the context of superClass EE.  We then create subClass FF to 

extend superClass EE. Due to inheritance mechanism in object-oriented languages, subClass 

FF can comfortably inherit method WM.  In this example, subClass FF does not override the 

superClass EE 

 

     Attributes: var, … 

    Methods: WM, … 

    WM initialises var = 0 

subClass FF 

    Attributes: … 

    Methods: ZM, … 

    ZM initialises var = 2 

Figure 3: subClass FF extending superClass EE 
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inherited method WM. Now, according to the antidecomposition axiom we are expected to 

retest method WM within the context of subClass FF. This is because it is possible that we may 

obtain new faults within the context of subClass FF as a consequence of the inherited method 

WM interacting with methods that are local to subClass FF. Also, new faults can be introduced 

in subClass FF due to different local meanings for instance attributes inherited from superClass 

EE. Above all, it is clear that the fault illustrated in Figure 3 (i.e. which concerns the conflicting 

initialisation of the instance attribute var inherited from superClass EE by methods WM and 

ZM) would not be detected without retesting method WM within the context of subClass FF. 

Anticomposition [100]: Adequately testing each individual program component in isolation 

does not necessarily suffice to adequately test the entire program. Composing two program 

components results in interactions that cannot arise in isolation. 

There exist programs P and QQ, and test set T, such that T is adequate for P, and the set of 

vectors of values that variables can assume on entrance to QQ for inputs in T is adequate for 

QQ, but T is not adequate for P;QQ. [P;QQ is the composition of P and QQ.] 

 The above axiom states that it is possible for stand-alone components (i.e. objects) that have 

been adequately tested in isolation to produce new faults when integrated with other 

components.   

Prior to now, our knowledge has been deeply rooted in specification-based testing which 

requires us to limit testing to just the modified unit. It is clear that we do not only need to test 

the modified unit but that it is expedient to retest every other unit that depends on the modified 

component (i.e. as expressed by the anticomposition axiom).  This is because a stand-alone 

component (i.e. object) that has been adequately tested in isolation may not necessarily be 

adequately tested when integrated with other collaborating components. This result implies that 

integration testing is often required in addition to unit testing, irrespective of the programming 

language used for developing the program.  

It is to this end that this project proposes to develop a formal framework for integrating a 

society of communicating object machines (i.e. to model distributed object-oriented 

components that would be integrated via the Class-Machine framework described earlier in this 

chapter) and any system which adhere to this formal model will be adequately tested through 

our proposed testing method called fault-finders (f²). 

1.2 Aims and Objectives of the FROGILA Project 

� To develop an abstract formal machine model for generating heterogeneous collections 

of Object-Machines. Such model of computation we refer to as the Class-Machine 

(Here, the notion of a class or the idea behind classification in object-oriented languages 

is embodied within a machine framework so that the Class-Machine model then 

becomes the unit of test for object-oriented systems - thus the correctness of the Class-

Machine model can be established by subjecting it to verification and testing) [see 

chapter 4]. 

 

� To develop an abstract formal machine model for integrating distributed object-oriented 

Class-Machines. Such abstract framework would be useful for modelling distributed 

object-oriented computing models of synchronous, semi-synchronous and asynchronous 
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message-passing. Such model of computation we refer to as the Communicating Class-

Machine Systems [see chapter 4]. 

 

� To develop an example case-study around the Class-Machine and Communicating 

Class-Machine's automata theory in order to show and study how they can be used for 

modelling and specifying stand-alone and communicating object-oriented systems [see 

chapter 5]. 

 

� To develop a formal model and theory for the new fault handling family of Class-

Machine checkers called fault-finders (f²). Each checker agent is designed to crawl 

through a Class-Machine implementation to look for a particular type of fault, tells us 

the location of the fault in the program (i.e. the Class-Machine implementation under 

test). Given this information, we can statistically show the distribution of faults in an 

object-oriented system and then provide a probabilistic assertion of the number and type 

of faults that remain undetected after testing is completed. Here, our f² testing method is 

formally designed for carrying out Verification and Testing on the Class-Machine 

model [see error state testing mode of chapters 4, 5 and 7]. 

 

� To develop a Case-Study around f² in order to evaluate their success in detecting faults 

in object-oriented software in the presence of paradigmatic features like encapsulation, 

inheritance, polymorphism and dynamic binding [see chapter 7]. 

 

� To develop an automated model checking test tool for stand-alone Class-Machines and 

Communicating Class-Machines. We will refer to such a tool as the Class-Machine 

Testing Tool (CMTT). The ultimate goal for this tool is to reveal the presence of a 

family of faults that can be found in object-oriented systems if any in the stand-alone 

Class-Machine and Communicating Class-Machine’s implementation System under test. 

Thus, the tool operates by revealing the number for each fault type detected in the 

system and a corresponding estimation via probability for each fault type that may still 

remain undetected after testing is completed (i.e. given that exhaustive testing is 

practically infeasible for any program P in a real world situation as a consequence of the 

fact that, the entire domain of the software or program under test cannot be searched; 

which in most cases is effectively infinite). Hence, for any object-oriented program 

implementation Imp that adheres to the Class-Machine or Communicating Class-

Machine's Systems specification Spec, the tool automatically generates a graph showing 

the distribution of a family of faults detected in Imp and their respective locations in Imp 

thus making it easier to draw useful inferences about the quality of the system under 

consideration after testing is completed. We anticipate that this new approach proposed 

to object-oriented software verification and testing would allow us to provide a higher 

level of guarantee and confidence over any object-oriented system under test when 

compared to existing testing methods such as [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 

86, 87, 88, 89, 90, 91, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 

123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 136]. See chapter 7. 

 

� To formulate a strongly typed object-oriented programming language designed for 

testing and verification around the resulting Class-Machine's model types and automata 

theory. This language will be called FROGILA: A Framework for Object Generation, 

Integration and Language Authentication. [see section 8.2.2]  
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Class-Machine Checker 

Transition-Checker 
 

Missing transitions 

Extra transitions 

Faulty transitions (input-

output) 

Mis-directed transitions 
 

State-Checker 

 
Missing states 

Extra states 

Path-Checker 

 
Missing path 

Extra path 

Faulty path 

Statement Checker 
 

Missing statements 

Faulty statements 

 

 

 

Function-Checker 

 
Missing functions 

Extra functions 

Faulty functions 
 

 

 

 

Constructor Checker 

 

Missing constructor 

Extra constructor 

Faulty constructor 

 

 

Attribute-Checker 

 
Missing attributes 

Extra attributes 

Faulty attributes 

 

Type-Checker 

 
Missing type 

Extra type 

Faulty type 

Class-Machine 

Figure 4: The New Fault Handling Family of Class-Machine Checkers.  
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In Figure 4 each checker is a Class-Machine in its own right designed to find a specific type of 

fault in an object-oriented implementation of a given Class-Machine under test. The motivation 

behind this approach is because we want to explore a disciplined modular approach where each 

checker agent simply crawls through a class implementation to look for a specific type of fault 

and tell us the location of the fault in the program (i.e. the class under test). Given this 

information we can statistically show the distribution of faults in an object-oriented system and 

then able to assert via probability the number and type of faults that remain undetected after 

testing is completed. 

1.3 Summary and Contributions of this work  

� We introduced the Class-Machine formal framework as a heterogeneous family of 

Object-Machines. Each Object-Machine in the family in turn is said to be an instance of 

a concrete Object-Machine type. Every unique Object-Machine has an extensible 

implementation and an extensible interface. Here, the notion of a class or the idea 

behind classification in object-oriented languages is embodied within a machine 

framework. Hence, we say that Class-Machine framework represents a basic unit of test 

for object-oriented systems; testing needs to focus on the Class-Machine. Hence we 

argue that testing a unique Class-Machine means testing a heterogeneous family of 

Object-Machines that belong to it [see chapter 4]. 

 

� Case studies which illustrate the concepts that have already been presented, and which 

show how the Class-Machines model theory can be applied to real life object-oriented 

systems, focussing on the specification, verification and testing of them. By reviewing 

the features provided by the object technology model (i.e. the concept of class, object 

derivation, types, inheritance, subclassing and subtyping etc) we show that Class-

Machine aligns directly with the object-oriented architecture far better than existing 

formal system models. Thus, by so doing, we provide the much needed confidence that 

Class-Machine is sufficient for testing and specifying object-oriented systems. The 

Class-Machine framework scales well to handle and model the complexity that can be 

found in object-oriented systems. [see chapter 5]. 

 

� To address the problem of observability caused through the mechanism of encapsulation 

that can be found in object-oriented languages, we proposed another specialised 

framework formalism called the Class-Machine Friend Function i.e. CMƒƒ; whose 

prime purpose is to break encapsulation by allowing CMƒƒ to have complete visibility 

on all the encapsulated features of the Class-Machine state attributes and processing 

functions or methods. The CMƒƒ is particularly useful during testing as it will return a 

public version of a Class-Machine under test when it is invoked; thus allowing all 

hidden methods and attributes encapsulating the state(s) of a heterogeneous family of 

object-machines that belongs to the Class-Machine system under test to be directly 

observable during testing. [see chapter 6]. 

 

� In order to further show that the Class-Machines theoretical purity does not mitigate 

against practical concerns, all the Class-Machines theory and definitions presented in 

chapter 4, in addition to the four different individual Class-Machines case studies 

discussed, studied and presented in chapter 5 and the Class-Machines Friend Function 
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CMƒƒ concept introduced in chapter 6 were thus exemplified in an automated Class-

Machine Testing Tool (CMTT).  [see chapter 7]. 

 

� We introduce Class-Machine as a type function for generating heterogeneous families of 

Object-Machines that are instances of concrete machine types. Hence, Class-Machine is 

introduced as an Object-Machine generator i.e. to provide identity to each machine 

created. The role of the identity component is to enable two different Object-Machines 

or Class-Machines of the same type to be distinguished [see chapter 4]. 

 

� The identification of a set of precondition methods under which a processing function or 

method can be fired within a Class-Machine in the unchanged, error and goal state 

testing modes of the Class-Machines testing technique. Class-Machine precondition 

methods represent a set of processing functions. Each precondition method encapsulates 

a unique transition path in the relevant testing mode, thus making the entire state space 

of the Class-Machine system under test to be trackable. This solves the state explosion 

problem with respect to finite state machine models in an elegant way [see chapter 4]. 

This result impacts on the following concepts that have been employed for the purpose 

of formalising the Class-Machine model: 

 

� The set of Class-Machine processing functions are formed by two disjoint subsets 

namely the set of Class-Machine Methods and the set of Object-Machine Methods. 

Class-Machine Methods are responsible for manipulating the Generic Class-Machine 

States after satisfying a set of preconditions.  Object-Machine Methods are responsible 

for manipulating the Specific Object Machine States after satisfying a set of 

preconditions [see chapter 4]. 

 

� The set of Class-Machine states is formed by two disjoint subsets namely the set of 

Generic Class-Machine States and the set of a Specific Object-Machine States.  Every 

transition emerging from the Generic Class-Machine States or Specific Object Machine 

States directly corresponds to the Class-Machine Methods or Object-Machine Methods 

respectively.The set of Class-Machine attributes is formed by two disjoint subsets 

namely the set of Class-Machine Attributes i.e. attributes that belong to the class and the 

set of Specific Object Attributes i.e. instance attributes. Here, the memory and state of 

the Class-Machine are encapsulated inside the Class-Machine state-attributes, thus 

making the relationship between the attributes and states of the Class-Machine clear 

[see Chapter 4]. 

 

� The proposal of a novel testing method i.e. the fault-finders (f²) that would allow us to 

infer the number and type of faults that remain undetected after testing is completed, 

since the ultimate goal of testing is to achieve correctness by detecting all the faults that 

are present in an implementation so that they can be removed [see chapter 4]. 

 

� An investigation into the problems that exist with testing object-oriented software in the 

presence of paradigm features like: encapsulation, inheritance, polymorphism and 

dynamic binding [see chapters 1 and 3]. 

 

� By applying Weyuker’s test adequacy axioms we challenge some conventional wisdom 

about specification-based testing and the idea that programs developed as a result of 
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applying object-oriented methods would require less testing than those developed from 

other paradigms. Hence, we argue that language features are no substitute for testing. 

Software systems that are developed as a result of applying object-oriented development 

methods still need testing. Furthermore, we show that because the object technology 

model promotes reuse, the testing phase of the software lifecycle is even more critical 

for object-oriented software than for traditional software owing to the fact that software 

components can be re-used in a number of contexts, and can possibly be applied in areas 

that are not intended by the original developer; as a result, reusable components need to 

be properly tested [see chapter 1]. 

 

� An investigation into different types of software testing, highlighting their respective 

limitations and advantages, and proposing ideas for possible solutions where they are 

required [see chapter 2]. 

1.4 Thesis Organisation 

The rest of this work is organised as follows: 

Chapter 2: Here, we start off with an examination of the motivation for software testing and 

we then proceed to review a number of existing testing techniques, providing detailed 

discussion on some of those techniques. 

Chapter 3: Introduces the idea of Object Orientation (OO for short) i.e. a technique that has 

influenced all aspects of computer science and software engineering since its introduction in the 

1960’s. Object-Oriented ways of reasoning have been applied to a number of large scale 

software engineering problems including systems design, operating systems, programming 

languages, and database systems, to name but a few areas on which this technology has had 

profound impact. The advantage of using the OO technique can be seen in how we can use the 

concept to model quite complicated real-world systems that consist of many different kinds of 

object and many instances thereof. In this chapter, our goal is to review some of the basic 

concepts of object orientation and the impact that they have on testing object-oriented programs 

in the presence of complicated paradigmatic and evolving object-oriented features like 

encapsulation, inheritance, polymorphism and dynamic binding. 

Chapter 4: Introduces the Class-Machine formal framework. Here, the notion of a class or the 

idea behind classification in object-oriented languages is embodied within a machine 

framework. Hence, we say that the Class-Machine framework represents a basic unit of test for 

object-oriented systems; testing needs to focus on the Class-Machine. Also, in chapter 4, we 

show that testing a unique Class-Machine means testing a heterogeneous family of Object 

Machines that belongs to it. This is because classes are polymorphic definitions for 

heterogeneous families of objects, instances of different concrete types - such a class has an 

extensible implementation and an extensible interface [94, 102]. 

Chapter 5: Presents and discusses four unique case studies following our proposed automaton-

based framework formalism and test method based on this in chapter 4. 

Chapter 6: Presents and discusses another novel framework formalism that has complete 

visibility on all the encapsulated methods, memory states of the instance and class variables of a 

given object or class under test (i.e. CMƒƒ). 
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Chapter 7: Introduces and discusses our proof of concept (i.e. the CMTT). To evaluate the 

CMTT, completely test, debug and verify the methods and memory states of the instance and 

class variables of each unique case study covered in chapters 4 and 5 in the unchanged, error 

and goal state testing modes of the CMTT, each unique case study covered in chapters 4 and 5 

is tested, debugged and verified within the CMTT. 

Chapter 8: Presents and discusses the main motivation behind this research work, the 

conclusions of this thesis and our contribution to the state of the art in object-oriented software 

testing. Furthermore, we also present requisite discussions on the subject of future work that 

can be done in order to advance it further in the right directions. 

Appendix A: Presents the complete result of testing the person class-machine, student class-

machine, employee class-machine and bank account class-machine systems in the USPM, 

ESPM, GSPM and Complete Testing modes i.e. within the CMTT (please see Appendix A.1).  

Furthermore, Appendix A contains other auxiliary program code writtten in the Java 

Programming Language. Largely, these are used to support all the discussions, arguments and 

our research work presented in this thesis. Some of these pieces of code were automatically 

generated from the CMTT’s precondition generator panel, whilst some of these relate to direct 

concrete implementation of our Class-Machines theoretical concepts presented in chapters 4, 5, 

6 and 7. 
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Chapter 2: Software Testing 

2.1 Introduction 

Software testing could mean anything from ad-hoc breaking of the system to generation of test 

sets using a formal design; load or stress testing is also referred to as a form of testing.  

Software testing is the process of executing a program or system with the intent of finding 

faults by exposing it to inputs deliberately chosen to cause malfunction [1] or, it involves any 

activity aimed at evaluating an attribute or capability of a program or system and determining 

whether it meets its required results. Within the context of the above definition, software testing 

can be viewed as a rather destructive activity, which generally causes the relationships between 

testers and developers to be rather poor and thus testers are advised to acquire people skills, to 

communicate problems without damaging the egos of the developers. As a result of this, testing 

cannot in general be viewed on its own, but as a part of a process.  

Firstly, our ultimate goal in this chapter is to examine the motivation for software testing. 

Secondly, we review a number of existing testing techniques, providing detailed discussions 

and arguments on some of those techniques with a view to motivating the need for a new 

automaton-based framework formalism and testing method based on this which directly align 

with the evolving complexity that can be found in the object-oriented architecture. 

2.2 Software Correctness: a motivation to test 

A prominent approach normally used in traditional computer science research is to make use of 

some formal mathematical proof that will establish the logical equivalence of the 

implementation with some mathematical definition or specification of what the system should 

be like.  This is a difficult task that is rarely achieved except with very small systems and under 

very restricted conditions. One major drawback with this approach is the fact that most 

practicing software  engineers rarely ever consider using this approach whilst developing their 

systems – even assuming that they knew how to.  However, the use of such a formal 

verification method is insufficient to guarantee the correctness of software implementations 

under test, anyway. This is because there are a number of other places where faults can hide in 

concrete implementations which cannot be revealed via mathematical proofs (sections 1.1.4, 

2.8.5, 3.3.7, 4.1 and 6.1 covers in detail the limitations of formal verification methods). We 

know that test adequacy criteria within specification (Spec) approaches imply covering the 

whole specification while a test adequacy criterion with regards to concrete implementations 

(Imp) is a function of covering the whole source code. Hence, a test set T that is adequate for 

Spec is not necessarily adequate for Imp or vice versa (recall Weyuker’s antiextensionality 

axiom). 

Whilst reasoning about this problem, the work of Holcombe and Ipate in [2] recommends that 

we focus on the client and the client’s needs. The client presents the software engineer with a 

problem (i.e. the client’s needs). This problem needs expressing and analysing. The software 

engineer needs to investigate possible solutions to this problem. At this stage, it is important 

that the software engineer does not lose contact with the client’s perspective, otherwise s/he 

might find that the potential or actual solution provided is a solution to the wrong problem. 

No matter how much mathematical analysis and formal verification that has been carried out on 
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the system if it is the wrong system it cannot be correct! A correct system therefore, is one 

that can demonstrably solve the problem within the constraints agreed with the client. 

2.2.1 Software Correctness:  proving implementation with 
respect to specification 

Within software engineering approaches, the three major techniques that inform system 

development activities and testing are specification, design and implementation. The vast 

majority of system development activities concern the conversion of the specification into an 

implementation. But others are concerned with evaluating how well the implementation 

satisfies the specification. If the specification Spec and the implementation Imp are assumed to 

be (partial) functions Spec, Imp: Inputs → Outputs, then we say that the implementation is 

correct with respect to the specification if Spec(v) = Imp(v), ∀ v ∈ Inputs. Conversely, a failure 

occurs in the implementation if, for an input v, the output produced by the implementation does 

not correspond to that produced by the specification. Any part of the implementation that could 

lead to a failure is a fault. Then, the implementation is correct with respect to the specification 

iff it is fault-free. Testing attempts to achieve correctness by detecting all the faults that are 

present in the implementation so they can be removed. A finite set of inputs V ⊆ Inputs is 

designed and the result produced by each element of Imp (i.e. Imp(v)) is compared with the 

expected result (i.e. Spec(v)). The set of inputs V will be called the test set. Here, the elements 

of the test set are carefully selected based on a particular criterion.  

Several techniques for carrying out testing, and in particular for the generation of test sets have 

been proposed and automatic tools support some of them. Generally, these techniques can be 

classified according to the type of criterion used. The most common classification is into 

program based techniques and functional techniques. Also, many methods have been proposed 

for generating test sets randomly, and some statistical methods that combine random generation 

with one of the other techniques [3]. Analysis methods have also been developed for estimating 

the probability of an implementation being correct after testing has been successfully 

completed. Different types of statistical models have also been used [4, 5, 6] and most of these 

lead to conflicting claims as to the benefits of different types of testing. 

Efforts to prove implementations satisfy their specifications after the implementation is 

complete are seldom successful. In lieu, a process of refinement can be used (for instance, as 

described by [7]). The specification, represented in some suitable formal notation,   is converted 

into an implementation using a series of simple refinements, each of which is easy to prove. In 

this way, there should be no faults present in the implementation. However, these introduce a 

number of difficulties that must not be overlooked. 

Firstly, assuming the proof is constructed “by hand”, there is no way by which we can 

completely assure that there will be no errors made in constructing the proof, and thus 

guarantee that no faults are introduced into the implementation. It is possible to an extent, to 

resolve these problems via peer reviews of the proofs involved. After all, this is the popular 

approach by which all classical mathematical proofs are authenticated.  

Secondly, an automatic proof system could be used to guide a human in the construction of a 

proof, or alternatively the automatic proof system can be designed to perform the entire proof 

construction. Currently, it is possible to use systems such as the BTool [8] in this way. Having 

said that, there is still a major issue that deserves mentioning, in that the automatic proof system 

and the system of axioms used in it must be known to be correct; the tool must have been 
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proved at some point. Furthermore, a formal description of the environment must be provided, 

right down to the hardware level, and the actual physical environment must be proved 

consistent with this formal model. 

Whilst all the above recommendations are good, it is worth emphasizing that specification-

based testing is weak with regards to formal adequacy criteria, because it tells us nothing about 

which parts of the implementation actually get exercised or which do not, to satisfy each part of 

the specification. Our position here is that it does not matter how much mathematical analysis 

and formal verification has been carried out on a system’s specification, there are a number of 

other places where faults can hide in concrete implementations which cannot be revealed via 

mathematical proofs (e.g. is it possible to use mathematical proofs to detect programmer’s 

mistakes or their lack of understanding for formal specifications? Our response to that is a 

capital NO!). 

2.2.2 Software Correctness and Testing 

The prime aim of testing is to achieve correctness by revealing all the faults that are present in 

an implementation so that they can be removed. In the majority of cases the process of 

designing a test case that would be affected by a particular fault means that the error leading to 

that fault has not been considered when the software engineer was constructing the 

implementation, otherwise if the software engineer had considered the possibility of that kind of 

fault occurring, the implementation would have been designed in such a way to handle that kind 

of fault without the need for the test engineer to actually execute the implementation and 

observe a failure. 

The following conditions need to hold for testing to guarantee correctness of a system: 

1. The test set (T) used is proved to satisfy adequacy criteria, in that T will reveal any of the 

faults that could possibly occur in the implementation (Imp). Also, the adequacy proof of T 

must take into account the environment in which Imp is to exist, and all of the limitations 

attached to proofs in general still hold. 

Clearly, one possible way to achieve this is to add every possible input in the test set T (i.e. 

exhaustive testing). Doubtless, we know that this is impractical in virtually all cases. 

2. The result of every application of t ∈ T in each case is compared with the expected result and 

found to be satisfactory. 

It is worth mentioning here that testing and proving for correctness, as described above, are 

almost equally unattainable (see [9]). In practical software engineering activities, testing and 

proving for correctness play a good role in the production of implementations that are close to 

correct. It is fair to say that there is little prospect at the moment to hope that all sources of 

errors can be removed within a software implementation; hence there will always be a 

justification for testing, in order to try to reveal the resulting faults.  

Many testing methods have been proposed, and most of these can easily be classified into 

program based techniques, and functional techniques. In the following sections, these are 

reviewed in detail. 
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2.3 Program based testing 

These methods of testing are also known as structural and white-box testing. 

2.3.1 Basic Principles 

Most program based testing techniques base their test case selection criteria on the structure of 

the source code i.e. test cases that covers the entire program according to some adequacy 

criteria. Here, a test set (T) is said to be adequate for program (P) if T satisfies the following 

hierarchy of criteria, as described here below, in ascending order of strength (see Ntafos [10]): 

Statement (or segment) coverage: If T causes every statement in P to be executed at 

least once, then statement coverage is achieved. 

A segment is an indivisible part of P; no part of it can be executed without all of it being 

executed, i.e. a piece of code with no branch statements. 

Branch coverage: Every binary decision point in P leads to two structural element (i.e. the 

true branch and the false branch). In contrast, the decision point for a case clause within P can 

lead to many elements due to the fact that there may be a number of possible alternatives within 

the clause. If T causes every branch in P to be executed at least once, then branch coverage is 

achieved. This implies that for every branch statement in P, each of the possibilities must be 

performed on at least one occasion.   

Path testing: If T causes every distinct execution path to be taken at some point, then path 

coverage is achieved. e.g, in the case of a loop, there are paths for each number of iterations of 

the loop. Even for quite short and simple programs, this level of coverage can be infeasible. 

In between these coverage levels, there are all manner of other coverage measures, designed to 

approach path coverage without being infeasible. Two examples are: 

Boundary-interior path coverage: 

Ntafos’ work in [10] provides an overview of this technique. 

The number of paths through each loop is limited as follows. For each loop, identify these 

classes of path: 

Boundary paths, which enter the loop but with no further iterations (these are boundary paths 

for the loop); 

Interior paths, which enter the loop and continue with at least one more iteration (these are 

interior paths for the loop) 

Hence, for complete boundary-interior cover, we simply need two (i.e. one boundary and one 

interior) paths from each class for each loop. 
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Data-flow analysis techniques: 

The work of Ntafos in [10] described this technique, later discussed in more depth by Howden 

[11, chapter 5]. Generally, when these techniques are applied, they scrutinize the definitions of 

program variables and how these variables are eventually used in the program. These 

techniques expect all statements within a program i.e. those with a data-flow relationship, to be 

tested on at least one occasion. 

Now, let us assume that statement s1 in program P assigns a value to variable vv, and statement 

s2 uses variable vv in its definition, it is clear from this simple scenario that s1 and s2 have a 

data-flow relationship. Hence, a data-flow analysis technique expects a test involving the 

execution of s1 followed, at some stage by the execution of s2. 

Several variations to this theme have been proposed. Some extend it to whole chains of 

definition-reference pairs, kk-dr chains, where every chain of length kk must be executed by at 

least one test case. 

Some variants of the model actually differentiate between different types of variable use: 

predicate use (p-use), as in branch statements, and computation use (c-use), as in the right hand 

side of an assignment statement. The test set must then satisfy a condition on these p and c uses, 

such as all c-uses, some p-uses. 

2.3.2 Limitations of program based testing 

A major limitation with most program-based testing techniques concerns the fact that they do 

not use the requirements of the system in their test selection criterion. 

In lieu, they all share the view that the implementation satisfies the requirements in its broad 

structure. This ill founded assumption can be a very severe limitation if we recap on the 

ultimate goal of testing, which is to compare the implementation with its requirements. It is 

clear that as consequence of this: Errors corresponding to missing paths in the code will not 

generally be detected. 

Weyuker’s work in [12] introduced a set of properties and axioms for use in the evaluation of 

program-based test selection criteria. Although this set of axioms and properties were 

incomplete, yet most program-based test selection criteria at that time did not satisfy the list of 

properties provided. 

Another drawback of program based testing concerns the fact that you have to wait until there is 

some code before you can even begin to construct tests. This is unsurprising given the 

technique’s origins in the demonstration and destruction oriented eras of testing. Testing was 

then carried out in its own phase of the software lifecycle. More modern approaches call for 

testing to be integrated into all of the lifecycle phases. 

Regardless of the above limitations, program based testing methods are still in widespread use 

(see Gelperin & Hetzel [13] or one of the testing standards, such as [14]), and undoubtedly 

reveal a great many errors that might otherwise escape. 

More importantly, the coverage levels provide a good measure of the effectiveness of tests 

generated in some other way. If the criterion selects test cases that do not achieve, say, 

statement coverage, then the criterion is probably inadequate. 
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2.3.3 Automation of program-based testing 

One of the main benefits of program based testing is that it provides a lot of scope for 

automating the testing procedure. Here, the application tool can be designed as a simple 

coverage analyser to monitor all testing activities, and consequently report the degree to which 

test set T satisfies adequacy criteria with respect to program P.   

Some application tools in this area are a great deal more sophisticated. For example, Roper & 

Smith [15] developed a tool that accepts the detailed design of a program P in the form of a 

Jackson Structure diagram, this generates test sets T suitable for use on program P. Doubtless, 

this is intriguing, as it highlights the need for there to be something to compare the 

implementation with, in this case a JSP design. 

2.3.4 Mutation testing 

Mutation testing (see Woodward’s summary [16]) can be viewed as a fault-based testing 

technique, given that it is possible to use it to establish the absence of a specific kind of faults in 

any program P by showing that the application of test set T on program P would lead to a 

failure if that kind of fault was present in P. The prevailing concept here is based around 

making large numbers of changes to P under test.  In this approach, every modified part of P is 

a mutant.  

Hence, during testing, T is applied to mutants (i.e. modified versions of P) as well as to the 

original program P. The output generated is compared to that from the original program P. 

Now, mutants that produce a different output compared with the original program P are said to 

have been killed.  

Thus, from this we can easily infer that T is adequate enough to reveal these kinds of faults in 

these mutations. Mutants that preserve the same behaviour for every application of T as the 

original program P are said to be live. 

Assuming there is a live mutant after testing is completed, two possibilities can account for this: 

• It is possible that T was not good enough. Hence an improved version must be devised 

to kill the mutant, or reveal that original P contains a fault; 

• It is possible that the mutant is in actual fact, equivalent to the original program P. 

Several variants of mutation testing have been proposed, most of these are based on how the 

mutants are generated. 

Strong mutation testing, as described by DeMillo et al. in [17], involves a systematic 

modification of all the operators in program P, and the application of the complete test set T on 

each mutant. This approach is not cost-effective owing to the fact that it is computationally 

expensive; so, in some cases, restricted subsets of the operators are mutated instead. 

Weak mutation testing, introduced by Howden [18], was designed to cut down on the 

computational cost, i.e. by combining several mutants into a single new version of the program. 

Thus, it is not necessary to run the complete test set for every mutant. However, there is a risk 

that mutations will “cancel one another out”. For example, in an object-oriented sysem some 

functions with respect to a given object or class under test within their own definitions may be 

composed of a chain of other functions in order for their own definitions to be complete. Hence 
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assuming that the complete definition of a function f depends on a sequence of other 

independent functions i.e. f1, f2 and f3, we argue here that fundamental changes made to f1, f2 

and f3 will not only affect the behaviour of f but also any mutations introuduced within f. 

Consequently, there is the possibility that mutations introduced in f will cancel out the ones 

within f1, f2 and f3 (or vice versa). 

Firm mutation testing, was proposed by Wu et al. in [19], as an intermediate strategy. The 

technique explores the benefit of an interactive development environment to allow certain parts 

of program P to be mutated and executed in partial isolation from the rest of program P. 

2.4 Functional Testing 

Generally, these methods are sometimes referred to as black-box methods. They base their 

criteria for test case selection largely on the intended functionality of the implementation, i.e. 

on the specification, or requirements. Undoubtedly, this approach connects well with the goal of 

comparing implementations with their requirements. Overall, the prime goal of functional 

testing methods is to ensure that the process of defining partitions and boundaries is systematic 

whilst constructing a system’s test specification. Because these methods have a great deal in 

common, we will simply discuss one in detail, the category-partition method. 

2.4.1 The Category-Partition method 

This method was originally described by Ostrand and Balcer [20]. It was designed to be used in 

conjunction with a tool that they had developed. The required tests are described using the Test 

Specification Language, and the tool then generates test frames which describe individual test 

cases. 

The category-partition method is typical of black-box testing methods, owing to the fact that it 

systematically analyses the content of the system’s requirements and then transforms this into a 

more formal description of significant cases of equivalent classes. There are several steps to the 

method. Although the method will be described here as consisting of 9 steps following   

Cowling’s previous work in [92, 93], it is important to emphasize that Ostrand and Balcer only 

described the method as consisting 7 steps. The work of [92, 93] splits the first of Ostrand and 

Balcer’s steps into two parts as well as the last of their steps following the work in [93]. The 

following steps describe the category-partition method [20]: 

1. Identify functional units 

2. Identify parameters 

3. Identify categories 

4. Partition the categories into choices 

5. Determine constraints among choices 

6. Produce a test specification, and generate test frames. 

7. Review the test frames. 

8. Construct the test cases and check for infeasible frames 

9. Generate test scripts. 
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1. Identify Functional Units  

In their work [20], Ostrand and Balcer referred to this step as analysing the specification. By 

this, they were actually referring to the requirements document. This step involves identifying 

the functional units (f) that can be individually tested; this consists of top level user commands 

or functions that are called by them, or lower level functions.  

Example: 

Now, for the purposes of this discussion, assuming there is a function called “end of month” 

that can be used within a mail order system for computing all the transactions that took place 

over the past month with customers with a view to generating, printing and sending each 

customer the correct invoice which reflect their transactions over the past month. This can be 

thought of as a single functional unit. 

2. Identify Parameters 

For all functions, f, identified in step 1 above, this step requires the tester to find the parameters 

(i.e. requisite inputs to the functional unit f which potentially can come via the program or 

supplied by the user) and environment conditions (i.e. the essential characteristics of the system 

state at the time whilst f is invoked or fired) that can affect the behaviour of f.  

Example: 

The parameters to the “end of month” functional unit would be: 

• The file of customers (including their names, addresses etc) 

• The file of transactions over the past month 

• The condition of the printer (should this be relevant, it would be considered an 

environmental condition) 

• The output that appears on the paper, ready to be put in envelopes and 

• A host of possible others etc 

 

3. Identify Categories 

Here, for each parameter param and environment condition ec in the domain of the functional 

unit f identified in earlier step above, we need to identify some properties and characteristics 

that would have particular effects on the behaviour of f. Hence, in this step, we simply classify 

the characteristics of each param and ec in the domain of f into categories that characterise the 

behaviour of f.  

One benefit of this approach is the fact that the process helps to reveal a number of ambiguities 

and possible mistakes that may be present in the original specification. 

Example: 

Now, assuming from earlier example above, we want to identify the categories for the file of 

customers, the categories would be based on the following properties: 

• The validity of the file (e.g. is it in alphabetical order, does it have enough fields, etc) 
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• The size of the file 
• The addresses of the customers in the file 
• For the file of transactions, the categories would be based on the following properties: 

• The validity and existence of the file 

• The size of the file 

• The number of different customers referred to 

• The number of different items referred to 

• The number of transactions for each customer 

4. Partition the Categories into Choices 

In this step, the goal is to determine all the significant cases that can occur for a given 

parameter param or environment condition ec within a specified category of the functional unit 

f. These cases are equivalence classes which are referred to as choices. Each choice consists of 

a subset of the category’s values, which will lead to the same sort of behaviour. The choices 

must be mutually exclusive. Generally, in the category-partition method, the partitioning is 

based on the specification, implementation, or any other design documents that are available, in 

addition to the tester’s past experience of generating test cases. 

Example:  

For the transactions file identified above, we identify the following 2 categories, for which the 

choices are as follows: 

The validity and existence of the file: 

• file doesn’t exist 

• file exists, but is empty (although this choice is redundant) 

• file exists, but contains garbage  

• file exists and contains zero or more transactions 

The size of the file: 

• the file contains no transactions 

• the file contains one transaction 

• the file contains many transactions 

5. Determine Constraints Among Choices 

In this step, we simply decide what effect a combination of choices from one category will have 

on those from another. Here, we are looking for mutual exclusion, special restriction and so on. 

In addition, at this level, we need to mark any choices that we believe would generate an error 

with [error]. Also, any special choices or redundant ones would need to be marked [single] 

(hence this needs to be done very carefully). The two marks mentioned above will cause the test 

frame generator to produce only simple test frames for these choiceshence they need not be 

combined with all the other equivalence classes. 
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6. Complete the Test Specification, and Process it 

In order to automatically generate the test frames with a tool, the categories and choices must 

be prepared in a standard format. This means the test specification must consist of the 

categories, the choices within the categories and any required constraints on the choices. 

Generally the structure for these must follow the standard format for the Test Specification 

Language (TSL), and then the specification under test is fed into a test generation tool, which 

consequently generates test frames (i.e. a set of equivalence classes from the test specification; 

each category provides either exactly one or none of its choices) for all functional units, f, in the 

specification. 

7. Examine the Test Frame 

This is the step where we ought to evaluate the quality of the test frames generated. If we 

conclude at this stage that the quality of the test frames produced are unsatisfactory, then we 

simply need to go back to the constraint determining step. Here, unsatisfactory could mean any 

of the following: 

• There are some test frames that are clearly missing 

• There are some test frames that are clearly impossible 

• There are far too many to be carried out within a reasonable amount of time or far too 

few test frames 

8. Construct Test Cases and Check for Infeasible Frames 

All the tool does is to simply generate the test frames i.e. the sets of equivalence classes from 

which all the required values for each test cases must be drawn. The work in [93] showed that 

Ostrand and Balcer had hastily gone over the fact that the input values for each partition must 

be selected, and the corresponding values for each output partition need determining from the 

specification (which consequently can be a time-consuming activity) in order to ascertain that 

they conform to the output partitions as defined in the test frame.  

The important point that the work in [93] had brought to light, is the fact that in trying to 

achieve the afore-mentioned above, it is possible to soon discover that a test frame is infeasible, 

meaning that there are times that we may not be able to find a set of input and output values that 

satisfy all the constraints corresponding to the various partitions. This kind of problem often 

arises when the formulation of the categories, partitions and constraints in the test specification 

does not match or reflect the original system specification as it had been originally defined. 

Given that I have myself employed the category-partition method in the past for the purpose of 

generating test cases from functional units of a system, I can confidently support the ideas 

described in [93] that in practice test specifications do often result in infeasible frames. The 

main possible causes for infeasible test frame are as follows [93]: 

• The test specification may allow some combination of inputs that the system 

specification does not allow. Thus, input values corresponding to this set of input 

partitions would be illegal, and the system specification would not identify any legal 

outputs for them, so that any corresponding frame would be infeasible.  

• The system specification may be such that some range of outputs is not allowed to occur 

for particular combinations of inputs, but the test specification does not include a 
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constraint to match this. Thus, the combination of these inputs with an output partition 

that specifies values in this prohibited range would produce an infeasible frame. 

• The system specification may be such that a simple description of the range of outputs 

includes some values that actually can not occur. Thus, if a partition specifies that the 

output should take such values then any frame that uses this partition will be infeasible. 

The work of [93] recommends that the solution to the above causes is to return to step 5 of the 

method and then introduce essential constraints to the test specification in order to get rid of all 

the infeasible combinations of partitions, and from there rework the rest of the method. 

9. Generate Test Scripts 

In this final step, we simply need to convert each test frame into an actual test case. We would 

accomplish this by selecting an actual value from each of the choices in the test frame. Also, for 

each test case, we must determine the expected output and then organize these cases into scripts 

in a manner that is suitable for execution by the implementation. 

Advantages of the method: 

• The test specifications are designed in a systematic and uniform way, which is useful for 

quality analysis activities, and is often required by test standards 

• The process of working through all the steps of the method will lead to deeper 

understanding of the system being developed and may well reveal limitations of the 

design specification. 

• As the system evolves, the test specification can be easily modified 

• The  number of tests can be controlled in a relatively reliable way 

• It supports generation of partitions from specification 

• The method can be easily automated 

• It is possible to start the test specification early in the development process 

 

Limitations of the method 

• It is difficult to describe early stages of the method formally 

• The method relies heavily on the experience of the tester. Hence, it could lead to non-

uniform tests 

• It is difficult to learn 

• Although testing can start at an early stage, it is not possible to really carry out the tests 

until the completed version of the implementation becomes available 

• Owing to the number of steps involved in the method and the need to rework part of the 

process when something goes wrong in the test specification, the method can be very 

time consuming. 

2.4.2 Other Partitioning methods 

A number of other black-box testing methods have been proposed and to a great extent, these 

are broadly similar to the category-partition method just discussed above. Generally, most of 
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these methods apply the basic partitioning principles in an ad hoc manner for as long as systems 

have been developed. 

Condition Tables 

The work by Goodenough and Gerthart [9] introduced one of the first techniques ever recorded 

for condition tables. At the same time they introduced their theoretical basis for testing and then 

linked it with the concept of correctness. Their work shows that it is just as difficult to 

guarantee correctness via testing as via proof. As in the category-partition method, where 

categories were used, they use conditions to determine the behaviour of a system. Also, they 

consider the possible values that the condition could take in place of choices. This information 

is laid out in a table; hence there is a row for each condition, and a column for each possible 

combination of values. Each column in the condition table corresponds to a test frame. It was 

explicit in their approach that there was limited use of constraints especially between 

conditions. However, this was only needed in order to indicate when they are mutually 

exclusive. Also, there is no way by which one can reduce an overly large set of test cases by 

way of adding some extra constraints. 

Revealing subdomains 

This idea was proposed by Weyuker and Ostrand [28]. In their work, they went on to highlight 

some of the limitations in the theory presented by Goodenough and Gerthart [9], and then 

emphasized the difficulties that exist with applying their idea to real systems. They developed 

this new method and then extended the theory. 

The prevailing idea here is to partition the input domain of the program into revealing 

subdomains.  Every element in a revealing subdomain will either get processed correctly or 

incorrectly, hence only one element from the subdomain would be used as a test case. As it 

stands, this is just as impractical as a proof. It is explicit from this approach that the subdomains 

only need to be revealing with regards to a given kind of fault. The situation here corresponds 

to where you have found the categories of a functional unit and then partitioned it into 

equivalence classes. 

Cause-Effect Graphing 

This method was introduced by Elmendorf [21], but Myers work in [1, 22] illustrated it, and 

brought it to wider attention. The method allows us to view a system’s specification (Spec) as 

comprising a set of partial functions PF (so that f ∈ PF, f : Input → Output) from its inputs to 

its output.  

The first step of the method is to identify each functional unit f in the system’s Spec. After this 

has been done, we must identify the input domains or partitions for f. In this technique, input 

domains are represented as causes. For every cause or combination of causes for f, we must 

identify the corresponding partitions or ranges of outputs, which are represented as the effects in 

the model. In order to further show how the different input and output partitions for f are 

combined, the method constructs a graph in which the nodes depict the causes and effects, these 

nodes are linked by arcs representing relationships between causes and effects. 

Now, for example, assuming some of the causes for f must all be present in order for a 

particular effect to occur, the method represents this concept with arcs going from the causes to 
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the effect, labelled with an AND. In a similar manner, it is possible to have arcs labelled with 

OR or NOT. Sometimes, the relationships between causes and effects can be very complicated, 

i.e. due to the fact that certain combinations of causes cannot occur. To solve this problem, 

intermediate nodes can be introduced. 

After the graph has been developed, the next phase is to construct a decision table. Within the 

decision table, we can easily observe the effect of f, by simply checking all the different 

combinations of causes that lead to it. Each of these will form a test frame. At the same time, 

list the states of the other effects for each of the combinations of causes. This gives you 

information on the expected output for each of the frames. 

This technique was criticised by Ostrand and Balcer [20] for the complexity of the graphs 

produced, and the difficulty of modifying them after they have been built. Nevertheless, with a 

suitable tool for constructing and editing such a graph, this method would become quite 

practical. 

Limitations of these “partitioning” methods 

All the different partitioning methods described above generally attempt to partition the input 

domain of a function or program into subsets the elements of which will behave in a broadly 

similar fashion. The basic assumption or principle shared by all relate to the concept that the 

presence of a fault will affect every element of a subset. This is intuitively appealing and 

somewhat consistent with some success in practice. However, because the partitioning process 

is difficult to describe formally, it is hard to verify the criteria for their adequacy.  

2.4.3 Other functional methods 

So far, every single testing method described focused largely at dynamically testing the actual 

program code. Given that current state of the art in modern quality standards require that testing 

be involved throughout every stage of the software development lifecycle (see [23, 13]), it is 

clear that we need some higher level testing methods. 

Testing specification refinements 

There are research works that cover formal function definitions i.e. specifically for testing 

purposes. Some of these works are directed towards model type specifications (e.g. Z) [24], and 

others towards axiom based specifications (e.g. OBJ) [25].  

Within these specification models, the general idea is to use the pre, post and invariant 

conditions of the specification, simply as a proof, for testing purposes only. Now, assuming we 

want to implement a simple symbol table as an ordered list of symbols, we can use our formal 

specification to describe this concept using an invariant condition called ORDERED. In this 

scenario, the ORDERED condition is of no consequence to the end user. However, by writing a 

simple code to check the ordered condition, we can carry out tests to see if other operations on 

the symbol table violate the invariant. 

One of the benefits of using Z and OBJ based specifications is that they can be directly 

exercised. Hence, conditions such as ORDERED in the above example can be easily verified at 

the specification stage.   
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Functional tests from JSP 

In section 2.3.3, we briefly mentioned the work of Roper and Smith in producing tests from JSP 

diagrams. The authors developed this work further in [26], i.e. into a functional testing method, 

based on the specification. Now, by placing a strong constraint on the functions used to five 

basic function types (data access, data storage, arithmetic expression, arithmetic relation and 

Boolean expression), the specification can be made concise and unambiguous in an operational 

specification. In his book [11], Howden described a comprehensive testing methodology for 

these five types of function; hence, a test set T can be generated directly from the operational 

specification. 

Consequently, each t ∈ T obtained from the operational specification is applied to the JSP 

program design, and to the concrete implementation produced from the JSP. 

2.4.4 Completeness of a specification 

To guarantee the correctness of a given specification Spec formally, it is desirable if Spec is 

consistent and complete. Loosely, this means that the Spec must be unambiguous and be 

defined for all possible inputs. To address this issue, Jalote’s work in [27] describes a method 

for testing the completeness of specifications. This method was constructed in the OBJ 

language. Jalote constructs, in OBJ, the specification of operations on abstract data types 

axiomatically, and then tests the specification to see if there are any missing axioms. 

To produce an adequate test set T for the specification, a tool is used to derive T automatically. 

Here, the T produced is based on the syntax part of the specification, which provides the 

signatures of the operations. The automatic tool generates all of the syntactically possible 

expressions down to a certain depth of operation applications. Here, expressions correspond to 

test cases, with the various output operations applied to them.  

Although Jalote claims that this method works well in practice, he made it clear that there are 

still some limitations on the axioms that it can cope with. 

Aside from the above approach, Woodward’s work in [16] outlines an approach for testing an 

executable specification by applying mutation testing methods.  

2.5 Statistical testing and reliability 

Up to now, we have only discussed testing techniques aimed at fault detection, with the goal of 

correctness in mind. It is important at this point to make it clear that this is not the only 

motivation for testing. 

Now, let us assume that system Sys has been thoroughly tested without producing any failures 

with respect to T (assuming T is adequate enough to reveal the presence of a fault in Sys). After 

testing is completed, T provides a higher level of confidence in Sys, (or a reduced expectation of 

failure) than before T was applied on Sys.  

What can we say about system Sys given that it has passed all the tests applied to it? We need a 

value vl that will represent the likelihood of faults remaining in Sys after testing is completed; 

so that for any type of fault ft that can occur in Sys, a value vl is provided to represent the 
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likelihood of that kind of fault occurring. Hence, by taking advantage of this approach, we can 

easily show the distribution of different type of faults in system Sys and through statistical 

means (i.e. via probability) we can compute the value vl for specific type of fault present in Sys. 

To this end, this project proposes to develop a novel testing technique for object-oriented 

software around the ideas described in this section. This approach will enable us to draw useful 

inferences about the number and type of faults that remain undetected after testing is completed; 

thus providing the much needed guarantee via statistical analysis of the likelihood of a specific 

kind of fault occurring in object-oriented software after testing is completed. 

Now, let us recall that Weyuker’s test adequacy axiom (i.e. Non-Exhaustive Applicability 

axiom – see section 1.1.4) supports the following argument about system Sys with respect to 

test set T:  

Although, in the above scenario, T is adequate to reveal the presence of faults in system Sys, we 

can assume that T is not an exhaustive test set for system Sys. 

Hence, there is the likelihood that some faults are still remaining in Sys. Here, we argue that the 

fact that T is adequate for Sys simply means that T is satisfactory for Sys. After all, testing has 

to stop at some point. So we say that T does not in any way guarantee that Sys is 100% fault 

free.   

Moving on, now, assuming that the likelihood of any faults remaining in Sys was quite small, 

say 1.0 x 10
-4

, the consequence of this is that we may or may not be satisfied but at least we 

know that it can be more reassuring if we could possibly say that the likelihood of a critical 

fault in Sys was 1.0 x 10
-9

. It does not matter how we define what a critical fault is, all we need 

do is to identify certain safety considerations that must be satisfied and then direct our tests 

towards detecting faults that cause these to be violated. Thus, we can work out how critical a 

fault is by simply evaluating the kind of system where the fault was detected, the application 

area for the system and working environment. For the purposes of this argument, treating all 

faults in system Sys as having the same level of importance is unacceptable. 

By taking advantage of the benefits offered through statistical techniques we can easily increase 

our level of confidence in system Sys after testing is completed. This is because statistical 

methods can help us to quantify the likelihood of any faults remaining in Sys by estimating the 

probability of failure. Different types of statistical models have been proposed (Miller et al. [4], 

Hamlet & Taylor [5], Weiss & Weyuker [6]), and they lead to conflicting claims as to the 

benefits of different types of testing. Whilst Hamlet and Taylor claim that “partition testing 

does not inspire confidence,” Miller et al., on the other hand describe circumstances where 

partitioning can increase confidence. 

Statistical methods allow test set T to be generated randomly using a probability density 

function based on the operational input distribution (i.e. a set of inputs for system Sys 

distributed among its actual operations - functions). Hence, each t ∈ T that does not lead to a 

failure slightly reduces the estimated probability of a failure occurring. The extent to which it 

does this depends on the type of model used, and the assumptions made about the software’s 

behaviour. 
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2.6  Finite state machine testing 

Many finite state machine (FSM) testing methods exist. Most of them are quite restrictive; 

some require that the specification and the implementation are finite state machines with the 

same number of states (see Sidhu et al. [29]); others assume that the specification is a finite 

state machine with special properties (see Bhattacharrya [30]). 

A more general testing theory for finite state machines was developed by Chow [31]. This 

theory assumes that the specification and the implementation can both be expressed as finite 

state machines and shows how a test set that finds all the faults in the implementation can be 

generated.  

Finite state machine testing strategies in particular may attempt to identify the following types 

of faults: 

• missing states 

• extra states 

• missing transitions 

• mis-directed transitions 

• transitions with faulty functions (inputs/outputs) 

• extra transitions. 

In its original form and design, the transition tour method [63] does not necessarily rely on the 

specification machine being minimal (see subsequent section below for what it means for a 

machine to be minimal). However, it does rely on it been strongly connected and complete. The 

method involves a traversal of all transitions without trying to target specific states. Efficient 

algorithms for determining minimal length sequences have been described [64]. 

The unique input-output (UIO) sequence method [64] involves deriving a sequence for each 

state, which reflects the behaviour of that state. A number of improvements and variants of this 

method have been found. This method checks that all the required states are present in the 

implementation (i.e. it performs validation). 

The W method [31] is designed for the case where there may be more states in the 

implementation than in the specification. This is a potential advantage for this method over the 

others. However a number of variations and hybrid techniques are being developed. Some of 

these methods produce rather shorter sequences than the W method [64]. This is an advantage if 

time for testing is short or more is known about the properties of the implementation (for 

example, it has the same number of states as the specification). 

In the sections that follow below, we review the theoretical concepts and results from Chow’s 

Testing Method [31] needed to understand the basis of the Stream X-Machine based testing 

(SXMT) method [103]. 

2.6.1 Morphisms  

The formal approach to developing software systems requires that we create first a specification 

upon which the system to be engineered must be based. This in practice can be seen as an 

essential guide to what we want our system or eventual implementation to look like (i.e. the 

behaviour and properties we want our system to exhibit). In doing this, during testing we also 
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want to be able to establish that our implementation conforms to the specification requirements. 

In this respect, if we consider specification (Spec) and implementation (Imp) to be two 

machines, we would want during testing to be able to establish the mathematical relationships 

that exist between these two machines since we want to establish as far as possible that their 

behaviours are the same. A morphism is a means of mapping states from one machine to the 

states of the other in a way that respects the machine structure of both. 

Definition 1 - [2] 
Let Spec = (Inputs, States, NextStateFunction, initialState) and Imp = (Inputs, States’, 

NextStateFunction’, initialState’) be two deterministic state machines over the same input 

alphabet.  

 

For example, next state function (i.e. NextStateFunction) has the following form and behaviour: 

 

NextStateFunction: States × Inputs → States 

 

Then we say func: Spec → Imp is a morphism if L: States → States’ is a function that satisfies 

the following: 

 

1. L(initialState) = initialState’ 

2. ∀ state ∈ States, ∀ input ∈ Inputs, L(NextStateFunction(state, input)) = 

NextStateFunction’(L(state), input) 

 

Thus the two initial states (i.e. in the Spec and Imp) must be related and a transition in the first 

machine must relate to the transition of the related states in the second. 

The second requirement above is equivalent to the following. 

2a. ∀ state ∈ States, ∀ input ∈ Inputs,  (L(NextStateFunction(state, input)) → nextState is an 

arc in Spec) ⇔  (NextStateFunction’(L(state), input) → nextState’ is an arc in Imp). 

If L: States → States' is a surjective morphism then Imp is obtained from Spec by merging all 

states whose image through L is the same. If L is bijective then Spec and Imp are identical up to 

a renaming of the state space. In this case L is called a state machine isomorphism [2]. 

Definition 2. 

A bijective state machine morphism is called an isomorphism. 

Lemma 1 - [2]. 

If func: Spec → Imp is a morphism then Spec and Imp accept the same language. 

The language accepted by an automaton is the set of input sequences corresponding to paths in 

the machine. 
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2.6.2 State Machine Minimality 

Minimal machines are machines with as few states as possible for a given behaviour. To show 

that a machine automaton is minimal, we must show that it is unique up to a re-labeling of its 

state space. We expand further on this idea in the following definition and supporting examples: 

Definition 3 - [2]. 

Let Machine = (Inputs, States, NSF, initialState) be a deterministic state machine.  

For example, here, next state function (i.e. NSF) has the following form and behaviour:   

NSF: States × seq(Inputs) → States 

 

Then a state ∈ States is called accessible if NSF(initialState, input) → state i.e. a path from the 

initialState to state, where input ∈ seq(Inputs) is used to denote sequences of inputs applied on 

the Machine to cause state to be accessible from the initialState.  The above Machine is then 

called an accessible automaton if all its states are accessible. Thus, in an accessible automaton 

we can always find a path from the initialState to a given state in the Machine.  

Given the above Machine, all the non-accessible states can be removed without affecting the 

language accepted by our Machine. The resulting machine is called the accessible part of 

Machine and will be denoted by Acc(Machine). 

Definition 4 - [2]. 

Let Machine be a deterministic state machine defined exactly as in definition 3 above and let 

testInput ⊆ seq(Inputs). Then we define an equivalence relation ~testInput on States by:  state 

~testInput state’ ⇔ ∀state, state’ ∈ States, ∀ input* ∈ testInput, (input* is a path in Machine 

that starts in state ⇔  input* is a path in Machine that starts in state’) 

What this means is that for every path labeled by an element of testInput from state there is a 

path labeled by that element from state’ and conversely. 

If state ~testInput state’ then we say that state and state’ are testInput equivalent. Otherwise 

we will say that testInput distinguishes between state and state’. If testInput = seq(Inputs) and   

state and state’ are testInput equivalent then we say that state and state’ are equivalent. 

For two state machines Spec = (Inputs, States, NSF, initialState) and Imp = (Inputs, States’, 

NSF', initialState’) over the same input alphabet, we say that Spec and Imp are equivalent if 

their initial states initialState and initialState’ are equivalent. Here, we assume that Spec and 

Imp have only terminal states, consequently Spec and Imp are equivalent if and only if they 

accept the same language. 

Definition 5 - [2]. 

A state machine Machine is reduced if ∀ state, state’ ∈ States if state and state’ are equivalent 

then state = state’. Given a state machine Machine the machine constructed by merging the 

states of Machine that are equivalent will be called the reduced machine of Machine and will be 

denoted by Red(Machine). 
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Definition 6 - [2]. 

A deterministic state machine Machine is minimal if it is accessible and reduced. 

Theorem 1 [2]. 

Given a state machine Machine, there is a minimal state machine that accepts the same 

language as Machine and this is unique up to a state machine morphism. We will call this the 

minimal machine of Machine, denoted Min(Machine). 

The minimal machine of an automaton Machine can be obtained by reducing Acc(Machine) or 

by taking the accessible part of Red(Machine) since the above result will ensure that the 

following diagram commutes (that is either way round gives the same result). 

 

 

The basis of Chow’s test set generation are the concepts of characterisation set, state cover and 

transition cover of a minimal finite state machine. These will be defined next.   

2.6.3 Complete State Coverage Test Generation 

A state cover is a set of input sequences that enables us to access any state in the machine from 

the initial state [2]. 

Definition 7 - [2]. 

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then SC 

⊆ seq(Inputs) is called a state cover set of Machine if ∀ state ∈ States ∃ input ∈ SC so that 

NSF(initialState, input) → state is a path in Machine from the initial state (i.e. initialState) to 

the given state in Machine. 

 

 

 

           Machine                    Red                Red(Machine)                    

 

 

 

    Acc                                                  Acc 

 

 

 

           Acc(Machine)          Red              Min(Machine)            

Figure 5: A minimal deterministic state machine (adapted from [2]) 
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2.6.4 Complete Transition Coverage Test Generation 

Definition 8 - [2]. 

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then TC 

⊆ seq(Inputs) is called a transition cover of Machine if ∀ state ∈ States ∃ input ∈ TC so that 

NSF(initialState, input) → state is a path in Machine from the initialState to state and ∀ input 

∈ Inputs, input* :: input ∈ TC. 

In other words, what we are implying by the above is that for any given state ∈ States there are 

sequences of inputs in TC that would take our Machine to state from initialState and then 

attempt to exercise all possible arcs from state irrespective of whether such arcs exist or not. It 

is easy to see that if SC is a state cover for our Machine above then TC = SC ∪ [SC :: Inputs] is 

a transition cover of Machine. Conversely, for any transition cover TC there exists a state cover 

SC with SC ∪ [SC :: Inputs] ⊆ TC. 

In the above, the symbol (::) represent concatenation. The first symbol (SC) before the union 

symbol (∪) ensures that all state ∈ States in the machine Machine are accessible from the 

initial state of the machine (i.e. complete state coverage). The second symbol ([SC:: Inputs])  

ensures that there are no missing transitions, transitions with faulty functions (inputs/outputs), 

mis-directed transitions and extra transitions. 

SC ∪ [SC:: Inputs]  ⇔  SC ∪  [{sc::i | sc ∈ SC, i ∈ Inputs}]  

2.6.5 Complete Functional Test Generation From 
Characterisation Set  

Definition 9 - [2]. 

Let Machine = (Inputs, States, NSF, initialState) be a minimal finite state machine. Then H 

⊆ seq(Inputs) is called a characterization set of Machine if H distinguishes between any two 

distinct states of our Machine. 

It is worth mentioning that Chow’s theory was developed in the context of finite state machines 

with outputs, i.e. an edge is labeled by a pair input/output with input ∈ Inputs and output 

∈ Outputs; output is the output symbol and Outputs is called the output alphabet. 

                    input/output    

                                         state                                 state’ 

In the above case, a path will be a sequence of input/output pairs and the definitions of state 

equivalence and distinguishability will refer to such input/output sequences rather than merely 

to sequences of inputs.   

For two automata Spec and Imp over the same input alphabet, a set of input sequences will be 

called a test set of Spec and Imp if its successful application to the two automata will ensure 

their equivalence. 

 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

40 

 

Definition 10 - [2].  

Let Spec = (Inputs, States, NSF, initialState) and Imp = (Inputs, States', NSF', initialState') be 

two finite state machines over the input alphabet Inputs. Then a set X ⊆ seq(Inputs) is called a 

test set of Spec and Imp if the following is true: 

If initialState and initialState' are X equivalent as states in Spec and Imp respectively then Spec 

and Imp are equivalent. 

The main concept behind generating a test set is that we want to be able to establish whether 

two finite state machines are equivalent (i.e. in our case Spec and Imp above). A test set consists 

of a set of input sequences that can be used to establish whether two finite state machines are 

equivalent (i.e. algebraically similar). If they are not equivalent, in other words if their 

behaviour is different, then we can find an input sequence in the test set that will show this 

difference in behaviour. The key objective then is to find ways of constructing test sets. 

Obviously, seq(Inputs) is a test set but not a very useful one since it is infinite. We want to find 

finite test sets. 

The following theorem is the basis of Chow’s finite state machine testing method. It describes a 

procedure for constructing a finite test set. 

Theorem 2 [2]. 

Let Spec and Imp be two minimal finite state machines over the input alphabet Inputs. Let TC 

and H, respectively, be a transition cover and a characterisation set of Spec. Let k be the number 

of extra states in Imp, Z = Inputsk
 :: H ∪ Inputsk-1 :: H ∪ ... ∪ H and let X = TC :: Z. 

If Card(States') - Card(States) ≤ k and Spec and Imp are X-equivalent (i.e. if specification 

machine Spec and implementation machine Imp both pass/fail the same tests in  X = TC :: Z ), 

then Spec and Imp are isomorphic. 

	 

The theoretical idea presented in the above theorem is such that the transition cover TC ensures 

that all the states and all the transitions of our machine Spec are also present in our eventual Imp 

machine and Z ensures that transitions in Imp is identical to the ones in the Spec after each 

transition is performed (i.e. they both pass/fail the same ones). 

Notice that Z contains H and also all sets Inputi
 :: H, i = 1, ..., k. This ensures that Imp does not 

contain extra states. If there were up to k-1 extra states, then each of them would be reached by 

some input sequence of up to length k from the existing states. 

If we can model both our system specification and implementation as finite state machines Spec 

and Imp then the set X = TC :: Z of the above theorem will ensure that these are equivalent 

provided that the maximum number of states of the implementation can be estimated. The basic 

assumption here is that the finite state machine model of the implementation, Imp, need not be 

minimal since the above theorem can be applied to Spec and Min(Imp). Hence Spec and 

Min(Imp) are isomorphic, thus Spec and Imp are equivalent.  
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2.6.6 Limitations of Chow’s Testing Method 

The advantage of using Chow's testing method also comes with some major limitations. This is 

because the method is only directly applicable to simple finite state machines and not to more 

complex machines involving explicit data processing and internal memory (except the Stream 

X-Machine based testing method (SXMT) [103] as described later).  

It is often difficult to model many systems using finite state machines alone in a compact 

manner. The method can be used to test the control structure of some complex systems with the 

data structure and processing functions being tested in some other way. This last method is 

unrealistic except in very special cases since the control is rarely independent of data state. By 

expanding the state space massively it is possible to construct better models but they rapidly 

become unusable. The assumption that the implementation is a finite state machine (that is, 

there is no hidden memory) is very doubtful in practice (i.e. very few programs can actually be 

modelled as simple finite state machine’s systems e.g. complex object-oriented systems 

described later in chapters 3 and 4). 

2.6.7 Improving Finite State Machine Modelling with 
Statecharts 

Statecharts [65] have been used to improve the capability of finite state machine modelling but 

at the expense, however, of a coherent semantics. Statecharts also lack a convenient method for 

describing the semantics of the individual transitions; some extensions have been introduced 

[66], which provide a more powerful modeling language. Using these extended versions of 

statecharts, some considerable progress has been made on developing a powerful testing 

method; see Bogdanov & Holcombe [67]. 

2.7  X-Machine Testing 

An X-Machine [32] is a general computational framework that abstracts the common features 

of the main existing models (i.e. Finite State Machine, Pushdown Machine, Turing Machine 

and other standard types of machine) and can easily be adapted to suit the needs of many 

practical applications  a major reason why our attention was drawn to the X-Machine model 

of computation. Although X-Machines resemble Finite State Machines (FSM), there are two 

significant differences between them: (a) there is an underlying data set attached to an X-

Machine, and (b) the transitions of an X-Machine are not labeled with simple inputs but with 

functions that operate on inputs and data set values. An interesting class of X-Machines is the 

stream X-machines that can model non-trivial data structures as a typed memory tuple. Stream 

X-Machines employ a diagrammatic approach of modeling control by extending the expressive 

power of the FSM [33]. They are capable of modeling both the data and the control by 

integrating methods, which describe each of these aspects in the most appropriate way [34, 35, 

36, 37].  

Functions receive input symbols and memory values, and produce output while modifying the 

memory values. The machine, depending on the current state and the current values of the 

memory, consumes an input symbol from the input stream and determines the next state, the 

new memory state and the output symbol, which will be part of the output stream.  
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2.7.1 The Deterministic Stream X-Machine Model 

Definition 11: A deterministic Stream X-Machine (Holcombe and Ipate, [2]) is an 8-tuple: 

(Σ, Г, Q, Mem, Ф, F, q0, m0), where: 

• Σ and Г are the input and output alphabets respectively. 

• Q is the finite set of states. 

• Mem is the (possibly) infinite set called memory. 

• Ф, the type of the machine DSXM, is a set of partial functions φ that map an input and a 

memory state to an output and a possibly different memory state, φ : Mem × Σ → Г × 

Mem. 

• F is the next state partial function, F: Q × Ф → Q, which given a state and a function 

from the type Ф determines the next state. F is often described using a state transition 

diagram. 

• q0 and m0 are the initial state and initial memory respectively. 

Starting from the initial state q0 with the initial memory m0, an input symbol σ ∈ Σ triggers a 

function φ ∈ Ф which in turn causes a transition to a new state q ∈ Q and a new memory state 

m ∈ Mem. The sequence of transitions caused by the stream of input symbols is called 

computation. The result of a computation is the sequence of outputs produced by the sequence 

of transitions. 

X-Machines possess the computing power of Turing machines and since they are more abstract, 

they are expressive enough to be closer to the implementation of a system. This feature makes 

them particularly useful for modelling and also facilitates the implementation of various tools, 

which makes the development methodology built around X-Machines more practical.  

 

Figure 6: An abstract example of an X-machine [38] 

A number of case studies from various domains have been explored in order to investigate the 

power and applicability of the X-Machine model for building software systems. Examples of 

these can be found in domains like medical informatics [44], user interfaces [45], intelligent 

agents [46], simulation [38], biology [47], and more [2] have demonstrated the value of the 

stream X-Machine as a specification method, especially for interactive systems. 

A tool for writing Stream X-Machine specifications has also been constructed [48] based on a 

standard notation namely X-Machine Definition Language (XMDL), used as an interchange 
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language between developers who could share models written in XMDL for different purposes 

(model checker, model animator, a tool to produce the test cases etc.). 

Another important strength of using a Stream X-Machine to specify a system is that, under 

certain well defined conditions, it is possible to produce a test set that is guaranteed to 

determine the correctness of an implementation [2, 49]. 

Assumptions: The testing method assumes that the processing functions are correctly 

implemented and reduces the testing of a Stream X-Machine to the testing of its associated 

finite automaton. In practice, however, a separate process checks the correctness of the 

processing functions: depending on the nature of a function, it can be tested using the same 

method or alternative functional methods [2, 50]. The method was first developed in the context 

of deterministic Stream X-Machines [2, 49] and then extended to the non-deterministic case 

[51]. The method in which, initially, only equivalence testing was considered, has also been 

extended to address conformance testing [52]. 

In order for a Stream X-Machine to be deterministic, there must be a single start state and the 

set of basic functions, Φ must be such that given any state and any input value and any memory 

value there is only one function that can be applied. Formally this is expressed as: 

Definition 12 - [2, 103]. 

A Stream X-Machine, Machine, is deterministic if:  

∀ φ, φ' ∈ Φ,  

    if  ∃ state ∈ Q, mem ∈  Mem, in ∈  Σ such that  

    (state, φ) ∈ domain F, (mem, in) ∈ domain φ and  

    (state, φ') ∈ domain F, (mem, in) ∈ domain φ',  

    then φ = φ'. (Here domain F refers to the domain of a partial function F). 

Hence each computation from the initial state to any other state is completely determined by the 

input sequence and the initial memory value. A deterministic Stream X-Machine will compute a 

partial function SPF: Σ* →  Г*.  

In the previous sections, we reviewed the fundamental theory of finite state machines, our 

discussion included a result that describes how to test whether two finite state machines are 

isomorphic. Isomorphism means that they are algebraically similar and if we wish we can 

convert from one to another by using a renaming, which respects the algebraic structure and the 

behaviour of the machines. Under these conditions their behaviour is the same. It is possible to 

convert an X-Machine into a finite state machine by treating the elements of Φ as abstract input 

symbols. We are, in effect, forgetting the memory structure and the semantics of the elements 

of Φ. If we call this the associated automata of the X-Machine we have the following result: 
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Theorem 3 [2]  

Let Spec and Imp be two deterministic Stream X-Machines with the same set Φ of basic 

functions, fc and fc' the functions computed by them and let A and A' be their associated 

automata. If A and A' are isomorphic then fc = fc'. 

	 

2.7.2 Design for Test Conditions 

The following conditions represent a formalisation of the idea of design for test (covered in 

sections 2.7.2.1 and 2.7.2.2). They are conditions that must be satisfied if the complete test set 

is to be constructed. They do not result in any limitation since any Stream X-Machine can be 

made to satisfy these conditions - at the cost of including some extra test based functionality. 

For example, if we consider any basic function φ ∈ Φ, so φ: Mem × Σ →  Г × Mem, suppose 

that mem ∈ Mem is any memory value that can be attained, the good question to ask here is 

whether it is possible to find an input in ∈  Σ that could cause this function φ to operate? This 

was the prime motivation behind the following definition. 

2.7.2.1 Test-Complete Condition 

Definition 13 - [2]. 

A type Φ, is called test-complete (or t-complete) if ∀ φ ∈Φ and ∀ m ∈ Mem, ∃ in ∈ Σ such that 

(m, in) ∈ domain φ. 

The above condition is particularly useful as it prohibits “dead-ends” in the machine (i.e. it 

ensures that all states are reachable). In order to turn an X-Machine into one which is t-

complete we will need to introduce special test inputs. The test inputs are not used during 

normal operation. 

Another important condition that we need to consider is the case when a basic function has 

operated in a given state with a memory value and an input. Here we can observe the output 

produced by this basic function.  A very good question to ask here is: what caused this output? 

Clearly we know it was a basic function but which one? Because we cannot see these directly, 

only through their effect on the output, we must ensure that there is no other basic function, 

which could have produced the same output under identical conditions. This was the motivation 

behind the next condition below. 

2.7.2.2 Output-Distinguishability Condition 

Definition 14 - [2]. 

A type Φ is called output-distinguishable if: ∀ φ1, φ2 ∈ Φ, if ∃ m∈ Mem, in ∈ Σ such that φ1(m, 

in) = (out, m1') and φ2(m, in) = (out, m2') with m1', m2' ∈ Mem, out ∈ Г, then φ1 = φ2. 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

45 

 

What the above definition says is that we must be able to distinguish between any two different 

processing functions in an X-Machine by examining their outputs. If we cannot then we will not 

be able to tell the difference between them. As a result, we need to be able to distinguish 

between any two of the processing functions (the φ’s) for all memory values. The mechanism 

for achieving output distinguishability is by introducing some special test outputs, which are 

used in those cases where two functions would not normally be distinguishable (these type of 

functions can be identified from an initial stage of the original specification of the X-Machine 

model system under test).  

2.7.5 The Fundamental Test Function of a Stream X-Machine  

The fundamental test function of a Stream X-Machine can be defined as a means of converting 

sequences of processing functions (φ ∈ Φ) into sequences of inputs. This will be used to test 

paths of the machine using appropriate input sequences. 

Definition 15 - [2]. 

Let Machine = (Σ, Г, Q, Mem, Φ, F, q0, m0) be a Stream X-Machine with a set of processing 

functions Φ which is t-complete w.r.t. Mem and let q ∈ Q and m ∈ Mem. A function tq, m: 

seq(Φ) → seq(Σ) will be defined recursively as follows:  

1. tq, m (< >) = < > 

2. For n ≥ 0, the recursion step that defines tq,m (φ1::...::φn::φn+1) as a function of tq,m (φ1::...::φn) 

depends on the following two cases: 

 

i. If ∃ a path pth = φ1::...:: φn in Machine starting from q, then tq,m (φ1::...:: φn::φn+1) = tq,m (φ1::...:: 

φn) :: sn+1, with sn+1 chosen such that (mn, sn+1) ∈ domain φn+1 where mn = π2(|pth|(m, tq,m 

(φ1::...:: φn)) is the final memory value computed by the machine along the path pth on the input 

sequence tq,m (φ1::...:: φn). Note that such sn+1 exists since Φ is t-complete w.r.t. Mem. [For any 

path pth = <φ1, φ2,…, φn+1> the composite (partial) function computed by Machine when it 

follows that path is |pth| = φn+1 . φn,…, φ2 . φ1 ∈ D ↔ D where |pth| is also called the label of 

pth and (.) is used to mean composition.] 
 

ii. Otherwise, tq,m (φ1::...:: φn::φn+1) = tq,m (φ1::...:: φn). 

 

Then tq,m is called a test function of Machine w.r.t. (q, m). If q = q0 and m = m0 then tq,m is 

denoted by tt and is called a fundamental test function of Machine. If m = m0 then tq,m is 

denoted by ttq. 
 

Lemma 2 - [2].  

Let Spec = (Σ, Г, Q, Mem, Φ, F, q0, m0) and Imp = (Σ, Г, Q', Mem, Φ, F', q0', m0) be two Stream 

X-Machines with the same type Φ  and initial memory m0,  A and A' their associated automata, 

fc and fc' the functions they compute and let t: seq(Φ) → seq(Σ) be a fundamental test function 

of Spec and XX ⊆  seq(Φ) a set containing sequences of processing functions. We assume that Φ  
is output-distinguishable and t-complete w.r.t Mem. If ∀s* ∈ t(XX), fc(s*) = fc'(s*) then q0 and 

q0' are XX equivalent as states in A and A' respectively. 
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2.7.6 The Fundamental Theorem of Stream X-Machine 
Testing 

Theorem 4 [2, 103]. 

Let Spec = (Σ, Г, Q, Mem, Φ, F, q0, m0) and Imp = (Σ, Г, Q', Mem, Φ, F', q0', m0) be two Stream 

X-Machines with the same type Φ and initial memory, A and A' their associated automata, fc 

and fc' the functions they compute and let t: seq(Φ) → seq(Σ) be a fundamental test function of 

Spec. The theorem assumes that A and A' are minimal and that Φ is output-distinguishable and 

t-complete w.r.t Mem. Let also TC and H, respectively, be a transition cover and a 

characterisation set of A, Z = [Φk
 :: H ] ∪ [Φk-1

 :: H ] ∪ ... ∪ H, where k is a positive integer,  

X = TC :: Z and Y = t (X). If Card(Q') - Card(Q) ≤ k and ∀ s* ∈ Y, fc(s*) = fc'(s*) then A and A' 

are isomorphic. 

	 

2.8 Communicating X-Machine Models 

A number of approaches for building communicating models of systems have been proposed. 

These models consist of several X-Machines, which are able to exchange messages. These 

messages are normally viewed as inputs to some functions of an X-Machine model, which in 

turn may affect the memory structure. 

 

 

 

A Communicating X-Machines model can be generally defined as a tuple: 

 

((COXMi)i =1..n, COMR), where: 

 

• COXMi  is the i-th X-Machine that participates in the system, and 

Figure 7: An abstract example of communicating X-machine component [39] 
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• COMR is a communication relation between the n X-Machines. 

 

There are several alternative approaches that formally define a Communicating X-Machine [40, 

41, 42, 43]. Some of them deviate from the original definition of the X-Machine in that these 

alternative approaches define COMR in a different way, with the effect of achieving either 

synchronous or asynchronous communication. 

 

The reason why our attention was drawn to the different types of Communicating X-Machine 

models is because it seems intuitively possible to adapt some of their useful paradigm features 

for the purpose of using them to specify distributed object-oriented systems and algorithms in 

this way. In this thesis, we use the term distributed object-oriented system to mean a set of 

autonomous computational object machine units with processing and storage capabilities that 

are integrated via an arbitrary medium of communication. Also, we use the term distributed 

object-oriented algorithm to mean the aggregation of a set of algorithms running in the different 

object machine units of a distributed object-oriented system in order to find a common solution 

for a particular problem. The advantage offered by this approach is such that each object 

machine unit can then be designed and or programmed in such a manner allowing it to execute 

local computations through the communication media. Aguado’s previous work [104, 105] in a 

related area showed that two aspects inherent in these concepts can be abstracted. The first idea 

defines the structure of communications among each individual object machine unit. For 

example, MachineA communicates with MachineB and MachineB communicates with 

MachineC etc. The second idea relates to the dynamic behaviour of the individual object 

machine unit, which corresponds to the states and the different changes of state that can occur 

in the system behaviour as a consequence of method invocations.  

With regards to the second idea above, it is possible to infer that the global state of a distributed 

object-oriented algorithm is the set of local states of the individual processes running inside the 

object machines and the state of the communication media at a given period of time. It is 

possible to represent the local states of the individual object machine units described above by 

following the X-Machine paradigm formalism with some possible modifications in order to 

align it to suit the object-oriented architecture since the data space is independent of the control 

structure and hence we can model both. The state of the integration media for the object 

machine units can be defined as a set of messages in transit.  

Different classes of Communicating X-Machine Models have been proposed to the problem of 

assembling and or integrating a society of X-Machines into a communicating system for the 

purpose of building large-scale software systems that fulfil their requirements. The 

Communicating X-Machine is a formal model that facilitates a disciplined development of 

large-scale systems. In the sections that follow, we review various Communicating X-Machine 

approaches highlighting those aspects that seem to be more relevant for specifying distributed 

object-oriented testable systems. 

2.8.1 The Basic Channel Approach   

In 1996 Barnard, a former PhD student at The University of Staffordshire developed a basic 

model for integrating a set of X-Machines into a communicating system. The sort of 

communicating system [107] described by Barnard et al. was based on X-Machines with input 

and output ports. Generally, communications between X-Machines are established via channels 

in the model she introduced, where the output port of one X-Machine might be connected to the 
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input port of another X-Machine thereby allowing a data item or signal to be transmitted 

through the channels connecting the machines. The formal definitions for this model given 

below have been adapted from [104]: 

Barnard’s Communicating X-Machine Model (BCM) 

Definition 16:  BCM is given by Λ = (D, Q, Φ, TF, Pre, Ps, I, FS)  

D �  Γ� x  Mem  x  Σ�, where:  

Σ
� � � ∑�

��_� 

���
 and Γ� � � Γ�

��_���

���
  

∑�and Γ� are the alphabets of the j-th input port and i-th output port respectively, and num_in 

and num_out are the numbers of input and output ports respectively, Mem is the data type of 

the BCM memory. 

• Q is the finite set of states of the BCM 

• Φ is a set of relations on D, Φ: P�D � D� 
• TF is the next state function that is often described by means of a state transition 

diagram TF: (Q x (Φ x Pre)) → Q  

• Pre is the set of predicates on Σ�x Mem, such that each predicate can be associated with 

one or more transitions  

• Ps is the set of ports. Each port has a name, is classified as an input or output port, and 

has an associated alphabet.  

• I and FS are the sets of initial and final states I ⊆ Q, FS ⊆ Q   

Definition 17:  A BCM of n Communicating X-Machines is a pair Wn = (R, Ek,k’), where: 

R = {Λk | 1 ≤ k ≤ n} is a set of n Communicating X-Machines and Ek,k’ is a set of relations. As 

shown below, the output port of one X-Machine k is connected to the input port of another X-

Machine k’ thereby allowing data item or signal to be transmitted through the channels 

connecting the different X-Machines in the BCM model (thus showing how k and k’ are 

related): 

 � , !   �  �  Γ�,    � � � ∑
�
�, !

��_�

���

��_���

���
 

The BCM definitions given above clearly represent how channels link ports of different X-

Machines for a system of communication developed around the Barnard abstract approach. 

Each channel connecting one X-Machine to another is represented as a relation between an 

output port of one X-Machine to another. Hence, a Communicating X-Machine System model 

is established through channels. 

Pursuant to the above BCM definitions, the authors proposed two important operational parts of 

a system in their work [107] that need to be modelled by a Communicating X-Machine System 

i.e. the external and internal behavioural models. The first model relates to how one X-

Machine communicates with another. The second model concerns the internal behaviour of 

each X-Machine component. In the latter context, the set of states for each X-Machine 
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component and transitions can be observed as the behaviour of each one of them. This concept 

in particular is fundamental for any specification formalism for distributed object-oriented 

systems in practice as it would allow each object machine unit to be specified separately and 

then combined later via an integrated medium of communication. 

2.8.2 The Matrix Approach  

In 1999 Balanescu et al. [40] introduced a new Communicating X-Machine model which is a 

modified version to the basic model described by Barnard et al. [107] in 1996.  The mechanism 

employed in Balanescu’s model for integrating a set of X-Machines is via a communication 

matrix, where each X-Machine component in the system is represented as a Stream X-Machine 

thereby producing a model known as Communicating Stream X-Machine Systems. The major 

advantage of Balanescu’s idea over Barnard’s is that it defines how the input-output 

relationship can be obtained. Hence the Stream X-Machine testing method can be directly 

applied to it. Balanescu’s model had been motivated by the fact that: 

• Barnard’s model described in [107] was not developed to the point of directly deriving 

the input-output relationship from it in order to apply the Stream X-Machine Testing 

method. 

• The Communicating X-Machine model described by Barnard et al. in [107] is just an X-

Machine with a number of ports (including zero) connected to its environments (i.e. to 

other X-Machines). This concept deviates from the original Stream X-Machine 

definition as Stream X-Machine was originally defined to read a single input from an 

environment, store this input in the machine memory so that from an initial control state 

a function to process the content of the memory is triggered to move the machine to a 

new control state and allowing a new memory value to be computed. The machine then 

continues with this routine until such time when there exist no applicable processing 

functions and if it happens that the machine had already been driven into its final state 

the last memory value is outputted to its environment via a decoding function. 

The following three concepts have been used for the purpose of formalising the Communicating 

Stream X-Machine Systems: 

1. The set of (partial) functions of the X-Machine component of a Communicating Stream X-

Machine is formed by two disjoint subsets namely the set of processing functions and the 

set of communicating functions. The processing functions are responsible for carrying out 

internal computations of a given X-Machine component while communication functions are 

responsible for sending and receiving messages from one X-Machine component to another. 

2. The finite set of states of each X-Machine component of a Communicating Stream X-

Machine System is partitioned into two disjoint subsets as processing states and 

communicating states. Every transition emerging from a processing state or a 

communicating state directly corresponds to the processing or communicating functions, 

respectively. 

3. Each X-Machine component defines just one output port and one input port for the purpose 

of communicating messages with other X-Machines. Communicating functions are used for 

indicating where the information in one X-Machine output port should be sent or which 

input port of a particular X-Machine should receive the information. 

 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

50 

 

In the section below, we review the definitions required for the purpose of formalising the 

Communicating Stream X-Machine model. These definitions have been adapted from [104]. 

The Communicating Stream X-Machines Systems Model (CSXMS) 

Definition 18 - [40, 104]: A CSXMS with n X-Machine components is a triplet WWn = (R, 

MAT, C
0
), where: 

• R is the set of n = |R| X-Machine components of the system of the form Vi = (Λi, INi, OUTi, 

ini
0
, outi

0
) ∀ 1 ≤  i ≤ n.  Such X-Machine components of the system are referred to as the 

Communicating X-Machines. Λi in the definition above refers to a Stream X-Machine with 

memory Memi (for detailed definition see definition 20 below). INi and OUTi directly 

correspond to the values that can be transmitted by input and output ports of the ith 

Communicating Stream X-Machine such that INi, OUTi ⊆ Memi ∪ {λ} and λ ∉ Memi. The 

symbol λ is used to indicate that a port is empty. The initial values of the X-Machine ports 

are set to ini
0
 and outi

0
. 

• MAT defines the set of matrices of order n x n to form the values of the matrix variable that 

is to be used for establishing communication amongst the X-Machine components. Hence, 

for any C ∈ MAT and any pair of X-Machines say i, j the data value stored in C[i, j] 

represents at most one message that is being passed from the memory Memi of X-Machine 

Vi ∈ R to the memory Memj of X-Machine Vj ∈ R.  Consequently, we can consider each 

element of the matrix C[i, j] as a temporary buffer variable where the property INi ⊆ Memi 

⊆ OUTj holds.  

• Generally, all messages that are sent from the Communicating X-Machine Vi (i.e. X-

machine Λi) and Vj (i.e. X-Machine Λj) are data values from their respective memories 

Memi and Memj. The λ symbol in the matrices is used to indicate that there is no message, 

while the @ symbol is used for indicating a channel that is not going to be used (i.e. an X-

Machine communicating with itself is prohibited). The individual elements of the matrices 

are drawn from machine memory Mem ∪ {λ, @}, where:               

"#$ �% "#$�
&

���
 and λ,@ ∉ "#$  

• C
0
 defines the initial communication matrix as C

0
[i, j] = λ assuming a valid communication 

between the X-Machine Vi (i.e. X-Machine Λi) and Vj (i.e. X-Machine Λj) is allowed; 

otherwise initial matrix is defined as C
0
[i, j] = @ to indicate that communication between 

the two X-Machines i and j is prohibited. Furthermore, the matrix C
0
[i, i] = @ indicates that 

an X-Machine communicating with itself is effectively not allowed. 

• The ith Communicating X-Machine component can only read from the ith column and then 

write to the ith row of the communication matrix (see definition 20 for detailed explanation 

of the communicating functions). 

 

Definition 19 [40, 104]: For any C ∈ MAT, any value x ∈ Mem and any pair of indices 1 ≤ i, 

j ≤ n, with ( ) *. 
• If C[i, j] = λ an output variant of C, denoted by Cij ⇐ x is defined as: 

(Cij ⇐ x)[i, j] = x and (Cij ⇐ x)[k, m] = C[k, m] ∀ (k, m) ≠ (i, j) 
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• If C[i, j] = x an input variant of C, denoted by ⇐ Cij is defined as: 

(⇐ Cij)[i, j] = λ and (⇐ Cij)[k, m] = C[k, m] ∀ (k, m) ≠ (i, j) 

 

The above input and output variants of C simply define the different allowable transitions from 

one matrix to another.  

Definition 20 - [40, 104]: A Communicating X-Machine is a 5-tuple V = (Λ, IN, OUT, in
0
, 

out
0
), where: 

Λ = (Σ, Γ, Q, Mem, Φ, F, I, FS, mo) is a Stream X-Machine with the following properties: 

The definitions of IN and OUT were provided within definition 18 above 

• Σ and Γ are the finite input and output alphabet respectively. 

• The finite set of states Q of each X-Machine component assembled into a communicating 

system must be partitioned as Q = Q’ ∪ Q’’ where Q’ corresponds to the processing states 

in each X-Machine component in the communicating system and Q’’ is the set of 

communicating states corresponding to the central medium where all the n X-Machine 

components have been integrated and where Q’ ∩ Q” = ∅ holds. Hence, this implies that 

for each q’ ∈ Q’ in each X-Machine component, the functions emerging from q’ are 

processing functions. Assuming that in state q’ several functions can be triggered, in this 

situation one of them is arbitrarily chosen otherwise (i.e. if no function can be applied) the 

entire communicating X-Machine system blocks. If the machine is in state q’’ ∈ Q’’ then all 

the functions emerging from state q’’ are communicating functions. While the machine is in 

state q’’, if several functions can be applied then one of them is arbitrarily chosen, else if 

this is not the case then the machine simply does not change it current state and would have 

to wait until one of such functions can be applied. 

• Mem is a (possibly infinite) set called the memory. 

• The type of the machine is define as a set Φ = Φ’ ∪ Φ’’ where Φ’ is called the set of 

processing functions and Φ’’ is the set of communicating functions and Φ’ ∩ Φ’’ = ∅. Each 

element φ’ ∈ Φ’ is a relation (partial function) of type:  

 

φ’:  IN x Mem x OUT x Σ* → Γ* x IN x Mem x OUT 

1. A processing function φ’ is not an ordinary Stream X-Machine but it can be made to act or 

exhibit the behaviour of an ordinary Stream X-Machine which can be defined as follows 

[104]: 

 

∀ x ∈ IN, ∀ m ∈ Mem, ∀ y ∈ OUT 

φ’(x, m, y,<>) = ⊥ 

Clearly, as the above indicates, a processing function φ’ will always produce an undefined 

value (⊥) for an empty sequence of inputs indicated by (<>). 

∀ x ∈ IN, ∀ m ∈ Mem, ∀ y ∈ OUT, ∀ h ∈ Σ, ∀ s
*
 ∈ Σ*

, ∀ g
*
 ∈ Γ*

 

If ∃ m’ ∈ Mem, t ∈ Γ, x’ ∈ IN, y’ ∈ OUT, from another X-Machine component that depends on 

m, h and x with a uniquely defined behaviour then the output produced by the processing 

function (φ’) is defined as:  φ’(x, m, y, h::s
*
) = (g*::t, x’, m’, y’). Otherwise, if the output of the 

processing function (φ’) has no further relationship (i.e. case where no other X-Machine 
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processing function depends on the output from φ’) with other X-Machines in the 

Communicating X-Machine System then the processing function (φ’) is said to produce an 

undefined value (⊥). 

(2) A communicating function φ’’ ∈ Φ’’: IN x OUT x MAT → IN x OUT x MAT operates in 

two ways: 

(2.a) As an output-move (OMV): Here, the communicating function (φ’’) is used by one X-

Machine Vi to send a message to another X-Machine Vj using C[i, j] as a buffer. The set of 

moves between Memi and Memj from the output port of one X-Machine Vi to another X-

Machine Vj are called output moves denoted as OMVi ∀ 1 ≤ i ≤ n.  

OMVi = {omvi->j | 1 ≤ j ≤ n, i ≠ j} where: 

omvi->j: OUTi x MAT → OUTi x MAT 

∀ y ∈ OUTi, ∀ C ∈ MAT, if ∃ j ≠ i and y ≠ λ with C[i, j] = λ (i.e. y is not empty and C[i, j] is 

empty)  

omvi->j(y, C) = (y ← λ, (Cij ⇐ y)) (the result of this is the output variant of Cij). The above 

mathematical constraint imposed on both the output port y ∈ OUT of the X-Machine (Vi) and 

the communication matrix C ∈ MAT implies that in order for Vi to send its output to X-Machine 

Vj the buffer C[i, j] must be empty and the output port y of Vi must not be empty. Hence, the 

output-move function (omvi->j) can only be invoked when C[i, j] is empty. The arrow symbol 

(←) above is used to change the initial configuration C[i, j] = λ to C[i, j] = y when the output-

move function omvi->j is exercised. 

(2.b) As an input-move (InpMV): Here, the communicating function (φ’’) is used by X-

Machine Vi to receive a message from X-Machine Vj using C[j, i] as a buffer. The set of moves 

between Memj and Memi to the input port of X-Machine Vi  are called input moves denoted as 

InpMVi ∀ 1 ≤ i ≤ n.   

InpMVi = {inpmvj->i | 1 ≤ i ≤ n, i ≠ j}, where:  

inpmvj->i: INi x MAT → INi  x MAT is defined by: 

∀ x ∈ INi, ∀ C ∈ MAT 

if ∃ j ≠ i and x = λ and C[j, i] ≠ λ (i.e. x is empty and C[j, i] is not empty)  

inpmvj->i(λ, C) = (x ← C[j, i], (⇐Cji)) (the result of this is the input variant of Cji). The above 

mathematical constraint imposed on both the input port x ∈ IN of the X-Machine Vi and the 

communication matrix C ∈ MAT implies that in order for Vi to receive a message from X-

Machine Vj the buffer C[j, i] must not be empty and the input port x of Vi must be empty. 

Hence, the input-move function (inpmvj->i) can only be invoked when C[j, i] is not empty. Here, 

the arrow symbol (←) is used to transfer the message stored within C[j, i] to x when the input-

move function inpmvj->i is exercised; hence the notation style x ← C[j, i]. 

Following the above, the set of communicating functions Φ’’ can be defined as: 

 

Φ’’ ⊆ OMVi ∪ InpMVi ∀ 1 ≤ i ≤ n 
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The set of partial functions Φ = Φ’ ∪ Φ’’  is further modified to give the set of extended partial 

functions denoted with the symbol ΦE [104]:  

 

ΦE: IN x Mem x OUT x MAT x Σ* → Γ* x IN x Mem x OUT x MAT 

Earlier within definition 11, the next-state function F was defined. Furthermore, we say here 

that the domain(F) ⊆ (Q’ x Φ’) ∪ (Q’’ x Φ’’). I ⊆ Q and FS ⊆ Q are the sets of initial and 

terminal states and m0 ∈ Mem is the initial memory value. 

2.8.3 The Channel Approach with Communication Server                   

In 2000 Cowling, Georgescu and Vertan (CGV) [108] developed a different version of a 

Communicating X-Machine model that allows the use of channels as the basic mechanism for 

exchanging messages amongst Communicating X-Machine components. The approach 

introduced by CGV offers a higher level of synchronisation when compared with other 

Communicating Stream X-Machine system models. The CGV communication framework was 

designed in such a way that when a message is passed between Communicating X-Machine 

components, the first X-Machine Vi ready to communicate is blocked until such time when the 

receiving X-Machine Vj is also ready and able to exercise the message from Vi. One major and 

important feature of the CGV model concerns the introduction of a co-ordinating 

Communicating X-Machine’s component manager which in their work [108] was referred to as 

the communicating server. 

The role of the server in the model is to control and organise the synchronisation of messages 

passed between the various X-Machines in the communicating system. Hence, the server 

invokes a protocol function to control a send/receive operation among the X-Machines that are 

trying to establish communication with other X-Machines via the server. When the server 

receives a request from X-Machine Vi either to send (C[i, j]) or receive (C[j, i]) a message from 

X-Machine Vj, the server goes on to examine the state and current condition of X-Machine Vj 

and depending on this requisite scrutiny, the server either grants the request to send/receive to 

X-Machine Vi or rejects the requested operation. The formal definitions representing the CGV 

design concept with regards to their proposed Communicating Stream X-Machine System 

(CSXMS) model are given and expanded upon herewith below: 

Definition 21 - [104, 108]: The CSXMS-Channel model Wn
T
 = (R

T
, MAT, C

0
) for a CSXMS 

with n X-Machine components is a variant of WWn = (R, MAT, C
0
) covered by definition 18 if 

R
T
 is obtained from R. Furthermore, R

T
 includes one additional co-ordinating Communicating 

X-Machine Kn+1 so that R
T
 = R ∪ Kn+1 in the CSXMS-Channel model.  This new X-Machine 

component is called the communication server or simply the server. 

where:  

+,-� . /λ,@0  1% / *2-, *3-, *24, *340


5��
 

 

678-� . /λ,@0  1  %  / *2-, *3-, *24, *340


5��
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Apart from the above server input-output port definition, for all other X-Machine components 

in the communicating system Vi = (Λi, INi, OUTi, ini
0
, outi

0
) 1 ≤ i ≤ n, the following applies to 

the way their input-out ports operate. 

+,� . "#$�  1  /λ, 90  1  %  /*24, *340


5��
 

678� . "#$�  1  /λ, 90  1  %  /*2-, *3-0


5��
 

The symbol λ is used to indicate the absence of a message. The symbol @ can be used to 

indicate that there is no communication defined between one X-Machine Vi and another X-

Machine Vj (e.g C[i, j] = @ is defined as no communication permitted between X-Machines (i 

and j). In addition to the above, the functionality of the symbol @ is extended in such a way 

that when communication between memories Memi and Memj is about to stop prior to X-

Machine Vi reaching its final state, the symbol @ is assigned to all of the cells of the row and 

columns corresponding to the X-Machine Vi. Each X-Machine component in the 

communicating system can send the symbol jS
+
(request to send) or jR

+
 (request to receive) to 

the communicating server to request permission to send or receive a message to or from X-

Machine Vj. When the server receives such request, the server sends the symbol ↵ (called OK 

in [104, 108]) to the X-Machine requesting such operation if the required communication 

operation is allowed. If the communicating server is not in a position to grant the requested 

operation (i.e. if an attempt to communicate was rejected) owing to the fact that X-Machine Vj 

is not yet ready and in a position to respond adequately to the requested operation, the server 

responds by sending the symbols jS
- 

(reject send) or jR
- 

(reject receive) to the relevant X-

Machine component concerned. 

Definition 22 - [104, 108]: A server machine is a 5-tuple Kn+1 = (Λn+1, INn+1, OUTn+1, inn+1
0
, 

outn+1
0
) where the local memory Memn+1 stores a representation (say B) of the set of other 

machines that are still running. In its simplest form this representation can be done as follows: 

B ⊆ {1, 2,…, n} such that j ∈ B if, and only if, C[j, n+1] ≠ @. The initial memory of the server 

machine contains the whole set of values from 1 to n. 

 

The communicating server operates in such a way that it continues selecting the ith data item 

from memory until such time when B is empty then the operation of the server stops. Data items 

in memory can be randomly selected or memory can be implemented around data structures 

like lists, stack, etc. The memory of the communicating server described here is organised as 

Mem = ({λ, @, ↵} ∪ {jS
+
, jR

+
, jS

-
, jR

-
}) x B[N] x {1, 2,…, n}, where a ∈ ({λ, @, ↵} ∪ {jS

+
, 

jR
+
, jS

-
, jR

-
}) is the first element of the server machine memory that stores the last symbol 

received from some communicating X-Machine Vj or the symbol that is going to be sent to X-

Machine Vj. The second element of the server machine memory is an array data structure B 

with n Boolean values; where each ith Boolean value in B represents the readiness or ability for 

each X-Machine component of the Communicating System to respond to message request (i.e. 

request to send or receive) from X-Machine Vj. All X-Machine Vj initially are set to B[j] = true. 

This default initialisation of all the X-Machine processes indicates that the processes are 

currently active and are busy in their respective right exercising their corresponding tasks; 

hence they are not in a position to respond to any request until such time when B[j] = false. This 

implies that when a particular X-Machine Vj has finished executing a task and in a state where it 
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can respond to a request from X-Machine Vi, the value of B[j] in the X-Machine Vj’s memory is 

set to false thereby enabling it to respond accordingly to a request. The third element of the 

server machine memory r ∈ {1, 2,…, n} is the counter variable element responsible for 

controlling and managing the order in which the ith X-Machine component of the 

communicating system is chosen and processed by the server (initially, the value of the counter 

is set to r = 1). Assume m represents the memory of the server machine, following on from 

above, m.a denotes the first element of the memory, m.B[m.r] represent the ith element in the 

array B of the server memory and m.i denotes the counter. 

One major difference between the matrix and channel approaches for specifying a 

Communicating Stream X-Machine System is in the type of channels allowed between the 

server and the rest of the machines in the system. Matrix approach allows message passing 

between machines in the system to be modelled as full-duplex channels i.e. message request and 

passing between X-Machine Vi and X-Machine Vj is bi-directional and can occur 

simultaneously so that Vi and Vj can communicate in both directions C[i, j] and C[j, i] at the 

same time. By contrast, channel approach allows communication between machines in the 

system and the server to be modelled as half-duplex i.e. communication is bi-directional and 

cannot occur at the same time in both directions. The above property can be achieved by a 

means of a variable z representing the n +1 column of the matrix hence a variable zi represents 

the communication of messages in the matrix column z = n+1 and X-Machines i in the system 

defined as zi = C[i, n+1] ∀ 1 ≤ i ≤ n+1. The following design formalism must be adhered to in 

order for communication between the X-Machine components and the server to hold [104]: 

• When the send/receive operation is invoked, the machine Vi will execute zi where i ≠ n+1 

• If  machine Vi stops prior to reaching its final state ∀ 1 ≤ j ≤ n+1, C[i, j] = @ and C[j, i] = 

@. Clearly, after that zi must have the @ symbol assigned to it. 

 

The above design decision representing the channel approach for specifying a Communicating 

Stream X-Machine System (CSXMS) has a significant impact on the behavioural nature of the 

CSXMS’s communicating functions i.e. output-move (OMV) and input-move (InpMV) 

respectively. This is because the communicating function (omvi->j) is used by X-Machine Vi to 

send a message to another X-Machine Vj using C[i, j] as a buffer while the communicating 

function (inpmvj->i) can be used by X-Machine Vi to receive a message from X-Machine Vj 

using C[j, i] as a buffer. The impact of the above design decision imposed a difficult constraint 

on the way that the CSXMS communicating functions operate because by combining omvi->j and 

inpmvj->i it is impossible to achieve the channel approach design decision. The introduction of 

the communicating server in the channel approach model of CSXMS implies that some 

operations would need access to zi = C[i, n+1] from X-Machine Vi by invoking either the 

output-move function (omvi->j) or the input-move function (inpmvj->i). The formalised algorithm 

representing the concept behind the way that the communicating server operates is written in 

pseudo code below as presented in [104]. 
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2.8.4 The Modular Approach  

So far, all the communicating system models discussed in this thesis towards assembling X-

Machines into a communicating system suffer one major drawback, i.e. a system should be 

conceived as a whole and not as a set of independent components. As a consequence, one needs 

to start from scratch in order to specify a new component as part of the large system. It is clear 

from the various communicating models reviewed earlier that specified X-Machine components 

cannot be re-used as stand-alone X-Machines or as components of other systems, owing to the 

fact that the formal definition of an X-Machine MM in those models differs significantly from 

the standard definition of an X-Machine XM. Also, the semantics of the functions affecting the 

communication matrix impose a limited asynchronous operation of an XM.  

In 2001 Petros Kefalas [34] introduced a modular approach for modelling large scale systems 

using Communicating X-Machines. This approach preserves to a great extent the standard 

theory and definition of the X-Machine model described earlier. The only major difference that 

exists when the modular approach is compared with the Communicating Stream X-Machine 

Systems model (i.e. Matrix Approach), relates to the abolishments of the communicating states 

and communicating functions and the use of an equivalent way to establish communication. 

Kefalas’s modular approach views the Communicating X-Machine System as a sequence of 

operations defined to transform a set of X-Machines into a system’s model. The approach 

requires three operators to be defined, namely OPinst, OPcomm and OPsys, which will be used for 

the incremental development of X-Machine components of a communicating system. 

Now, assume the Stream X-Machine Type (MT) is defined as an X-Machine without an initial 

state and initial memory as the tuple [34]:  

MT = (Σ, Γ, Q, Mem, Φ, F) 

It is possible that by applying the operator OPinst: MTi x (q0i, m0i) → NewMTi, ∀q0i ∈ �Q, m0i ∈ 

Mem a Stream X-Machine instance can be constructed; which results in an instance of a MT 

[34]:   

NewMT = MT OPinst (q0, m0) 

When the server considers the value i, it behaves in the following manner: 

 

case zi of 

                 zi = @                 : delete i from E; 

                 zi = jS
+
                : if zj = iR

+
 then { zi ← ↵; zj ← ↵;} 

                                              else 

                                                          if zj = iR
-
 then − 

                                                          else zi ←jS
-
 

                 zi = jR
+
                : if zj = iS

+
 then { zi ← ↵; zj ← ↵;} 

                                              else 

                                                          if zj = iS
-
 then − 

                                                          else zi ← jR
- 

                       
else                      :- 

end  

 
Figure 8: The Communicating X-Machine Server algorithm [104] 
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A Communicating X-Machine Component (XMC) is defined as the result of the following 

composition:  

XMCi = (Σi, Γi, Qi, Memi, Φi, Fi)OPinst(q0i, m0i)OPcomm(ISi, OSi, ΦISi, ΦOSi), where: 

• ISi is an n-tuple that corresponds to n input streams, representing the input sources used 

for receiving messages from other XMC (isj is the standard input source of CXMCi): ISi 

= (is1, is2,..., isn), and isj = ε (if no communication is required) or isj ⊆ Σi  

• OSi is a tuple that corresponds to n output streams, representing the n output destinations 

used to send messages to n other XMC (osj is the standard output destination of XMCi): 

OSi = (os1, os2,..., osn), and osj = ε (if no communication is required) or osj ⊆ Σi  

• ΦISi is an association of function φi ∈Φi and the input stream ISi, ΦISi : φi ↔ ISi  

• ΦOSi is an association of function φi ∈Φi and the output stream OSi, ΦOSi : φ ↔ OSi 

 

Note: that in the first and second of the four bullet points for the definition of XMC given 

above, the subscripts for IS and is, or for OS and os, should not be the same. 

The application of the operator OPcomm: NewMTi x (ISi,OSi, ΦISi, ΦOSi) → CXMCi has as a 

result a Communicating X-Machine Component CXMCi as a tuple: 

XMCi = (Σi, Γi,Qi, Memi, ΦCi, Fi, q0,m0, ISi,OSi), where [34]: 

• ΦCi is the new set of partial functions that read from either standard input or any other input 

stream and write to either the standard output or any other output stream.  

Thus, the set consists of four different sets of functions, which combine any of the above 

possibilities [34]: 

ΦCi = SISOi ∪ SIOSi ∪ ISSOi ∪ ISOSi 

• SISOi is the set of functions φ that read from standard input stream (isi) and write to 

standard output stream (osi):  

      SISOi = {(isi,m) → (osi,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ φi ∉ dom(ISi) ∧ φi ∉ dom(OSi)} 

• SIOSi is the set of functions φ that read from standard input stream (isi) and write to the j−th 

output stream (osj ): 

 SIOSi = {(isi,m) → (osj,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ φi ∉ dom(ISi) ∧ (φi → osj ) ∈ OSi} 

• ISSOi is the set of functions φ that read from the j−th input stream (isj) and write to the 

standard output stream (osi): 

     ISSOi = {(isj,m) → (osi,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ (φi → isj) ∈ ISi ∧ φi ∉ dom(OSi)} 

• ISOSi is the set of functions φ that read from the j−th input stream (isj) and write to the k−th 

output stream (osk):  

    ISOSi = {(isj,m) → (osk,m)|φi = (σ,m) → (γ,m) ∈ Φi ∧ (φi → isj) ∈ ISi ∧ (φi → osk) ∈ OSi} 

Finally, the Communicating X-Machine is defined as a tuple of n XMC as follows [34]: 

CXM = (XMC1, XMC2,..., XMCn), with 

• Σ1 ∪ Σ2 ∪ ... ∪ Σn = (os11 ∪ os12 ∪ ... ∪ os1n) ∪... ∪ (osn1 ∪ osn2 ∪ .... ∪ osnn), and 

• Γ1 ∪ Γ2 ∪ ... ∪ Γn = (is11 ∪ is12 ∪ ... ∪ is1n) ∪ ... ∪ (isn1 ∪ isn2 ∪ ... ∪ isnn) 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

58 

 

 

Hence, following the above results, a Modular Communicating Stream X-Machine System can 

be constructed from the operator OPsys : XMC1 x ...x  XMCn → CXM. 

 

 

 

 

2.8.5 Limitations of Communicating X-Machine Models 

Whilst several approaches have been proposed to the problem of assembling X-Machines into a 

communicating system, there is currently no testing method that is general enough to verify the 

correctness of systems developed out of these various models. This is because the formal 

definition for an X-Machine (MM) in these models differs significantly from the standard 

definition of an X-Machine (XM). Also, from a functional testing perspective, not all the 

Communicating X-Machine System’s models were developed to the point where the input-

output relationship can be derived from it (i.e. where every unique function f of an X-Machine 

component takes a unique input and returns a unique output). This is a necessary condition that 

must be satisfied if the Stream X-Machine Testing (SXMT) method [2,103] must be applied (i.e. 

one of the Stream X-Machine design for test conditions). To apply SXMT, equivalent Stream X-

Machine must be derived from the model of Communicating X-Machine system under test.  

To address this problem, Joaquin Aguado’s PhD thesis [105] proposed a testing method known 

as the multiple independent architecture for global testing (MIAG). This method assumed that 

when each individual X-Machine component of a Communicating X-Machine System has been 

tested correctly in isolation then the overall system should work correctly when the various X-

Machine components are fully integrated together. However, this concept is in serious conflict 

with Weyuker’s test adequacy axiom (i.e. as expressed by the Anticomposition axiom – see 

section 1.1.4). This is because it is possible for stand-alone components (e.g. objects) that have 

 

Figure 9: An abstract example of a XMCi with input and output streams and functions that receive 

input and produce output in any possible combination of sources and destinations [34]. 

Figure 10: Three Communicating X-Machine Components XMC1, XMC2, and XMC3 and the 

resulting communicating system where XMC2 communicates with XMC1 and XMC3, while XMC3 

communicates with XMC1 [34]. 
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been adequately tested in isolation to produce new faults when integrated with other 

components.  

Hence, we argue that this is not a satisfactory solution for any system model or object-oriented 

system for that matter; because integration testing is always required in addition to unit 

testing. In particular, the main focus of integration testing is to test the interactions among 

components in the communicating system under test. Does a component that calls another do so 

correctly? Are the parameters of the right types and ranges, and do they observe the proper 

relationships? Does the invoked method actually return the correct type and is the value in the 

correct range? To satisfactorily address these questions chapters 4, 6 and 7 of this thesis were 

developed. We argue that a new testing method is required to create a more meaningful and 

reliable solution for the object-oriented architecture. Moreover, the differences between input-

driven Communicating X-Machine Systems and object-oriented systems which are driven by 

method invocations and responses (i.e. which does not always have to produce an output e.g. 

mutator methods in Java) are sufficient enough reason to develop a test method that is more 

specific to the object-oriented architecture. 

More than that, in their purest form and design, both X-Machines [2, 32, 38] and 

Communicating X-Machine models [40, 41, 42, 43, 104, 105] are either too procedural or 

simplistic to represent the notion of objects and classes that can be found in object-oriented 

languages. Also, the Object X-Machine based testing approach [55] proposed earlier relies 

heavily on the Stream X-Machine based testing method [2] which is purely procedural.  

Furthermore, the approach described in [55] does not capture or provide an automaton-based 

framework formalism for the notion of classes that can be found in object oriented languages. 

Hence testing an object-oriented system for completeness with [2, 55] then raises a few 

questions like: what is the fundamental unit of test for object oriented systems? Is it a class or 

an object? Given that object oriented systems are composed of a society of communicating 

objects where each unique object in the system belongs to a class, it is clear that the class is the 

fundamental unit of test. Furthermore, classes can also be used as a fundamental medium of 

integration for a society of communicating objects (i.e. in an object-oriented system under test). 

The unit of integration in procedure-oriented languages like C and Pascal, and object-based 

languages such as Modula-2 and Ada 83 is the procedure and module respectively. The major 

distinction between the types of languages discussed in this thesis is the mechanisms used for 

abstraction. Procedure-oriented languages employ the procedure and function while object-

based and object-oriented languages use data abstraction as the major abstraction mechanism.  

The integration mechanism is simple aggregation via either procedure/function call-return or 

via containment when one module includes another. While this concept is also true for object-

oriented languages, the key difference is the presence of another integration mechanism: 

inheritance. The mechanism of inheritance and polymorphism are the major characteristics 

that distinguish an object-oriented language from an object-based language.  

Hence, it is extremely difficult to directly use simple finite state machines or extended finite 

state machine system models to accurately model or correctly test complex object-oriented 

systems in the presence of complicated and evolving paradigmatic features (e.g. like inheritance 

and polymorphism). 
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2.9 Summary 

In this chapter, we first of all examined the motivation for software testing in general. We then 

proceeded to review a number of existing testing techniques, discussing their advantages and 

disadvantages. In particular, we argued that most work in testing research has centred on 

procedure-oriented software with worthwhile methods of testing having been developed as a 

result. We nevertheless argued that those methods in their original forms cannot be applied 

directly to complex object-oriented software. This is because the architectures of such systems 

are either too simplistic or too procedural in their purest forms to model the evolving 

complexity that can be found in the object-oriented architecture. Hence, we argued that a new 

automaton-based framework formalism and testing method based on this is required i.e. which 

directly aligns with the changing complexity that is currently inherent within object-oriented 

programming languages like Java and C++. 
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Chapter 3: Object-Oriented Programming and 
Testing 

3.1 Introduction 

Object orientation (i.e. OO for short) is a technique that has influenced all aspects of computer 

science and software engineering since its introduction in the 1960’s. Object-Oriented ways of 

reasoning have been applied to a number of large scale software engineering problems 

including systems design, operating systems, programming languages, and database systems, to 

name but a few areas in which this technology has had a profound impact. The advantage of 

using the OO technique can be seen in how we can use the concept to model quite complicated 

real-world systems that consist of many different kinds of object and many instances thereof.  

In this chapter, firstly, our goal is to review some of the basic concepts of object orientation in 

order to examine the impact that they have on testing object-oriented programs in the presence 

of complicated paradigmatic and evolving object-oriented features like encapsulation, 

inheritance, polymorphism and dynamic binding. Our second goal in this chapter is to also 

discuss the limitations of using finite state machine approaches which embody the notion of 

objects to test object-oriented systems. 

3.2 Object 

A widely accepted claim [95] made for the object technology model is that it is a natural way of 

thinking about things. In the world that we live in, we are surrounded by objects. Hence, once a 

problem has been explicitly defined, it should be easier to identify an object involved in the 

problem and the requisite actions we can perform on that object, in addition to the actions it 

may request from us and possibly from other collaborating objects. The definition of the term 

object is very broad: every perceived entity in an object-oriented system can be considered as 

an object [68]. Generally, an object is an item that represents a concept that is either abstract, or 

depicts an entity of the real world [69]. Expanding on the concept of abstraction in relation to 

the definition of an object, Booch showed that an abstraction denotes the essential 

characteristics of an object that distinguishes it from all other kinds of objects and thus provides 

crisply defined conceptual boundaries, relative to the perspective of the viewer [70].  

Furthermore, an object has some kind of state that controls its actions in response to message 

requests. This is better explained with an example. Now, consider a radio receiver, which has as 

part of its state the frequency to which it is currently tuned and also its wavebandsay for 

example, AM/FM. Possible actions to perform on the radio would be to tune in to another 

broadcasting station and change the waveband.  In this example, we consider the radio receiver 

as an object, and the control states of the radio receiver are hidden inside its attributes, in this 

case inside the frequency and waveband respectively. 

Now, to expand on this concept further, let us consider a CD player as an object. In this 

example, the aim is to try and list all the possible actions that we can request from the CD 

object. Doubtless, this sounds like a very simple undertaking, as all we need to do is to look at 

the control panel of the CD player object and then evaluate what it can possibly do for us. The 

control panel (see Figure 11) represents the user interface to the CD player object. From the 

user interface below, it is easy to see what kind of actions that we can request from the CD 
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player Object. We can Play, Pause, Seek a particular track, Fast forward, Fast reverse, Stop 

and Eject the CD. Just like in the radio receiver example above, the CD player object has some 

state that controls its actions in response to message requests. For example, if the CD player 

does not contain a CD and a user initiates a request to play CD, the empty state of the CD 

player object would affect how the player goes on to respond to the user’s request. One possible 

way for the CD player to communicate with the user in this case is either to do nothing or flash 

an indicator light (i.e. the CD Player’s way of saying please insert a CD if you wish to listen to 

a song!) 

 

Figure 11: CD Player Control and Display Panel example adapted from [109] 

In addition to the operations of the CD player object described above, it is clear from the 

control panel (see Figure 11) how users can easily observe the state of the CD objectfor 

example, which track is currently playing and how many minutes we are into the track. The 

control panel only reveals to the user what s/he might directly find useful. Hence all the details 

of the internal structure of the CD player object are concealed from the user. Here, the CD 

player is treated as a black box mechanism. The merit of using the CD player example is 

because it further helps to illustrate certain useful features of the object technology model. 

Consequently, from this example we can comfortably draw the following useful inferences 

about the object technology model: 

• An Object provides a set of operations that users can invoke. These operations are 

commonly referred to as methods in object-oriented programming languages. 

• An Object maintains an internal state. Some of that state may be publicly available to the 

user, i.e. directly or indirectly through the invocations of methods. 

• An object can be treated as a black box. This means that all the internal data of the object is 

hidden away from the user. Also, the mode of operation for each unique method of the 

object is likewise hidden, in addition to how they individually go on to manipulate the 

internal memory state of the object. 

• An object has an identity which allows us to identify an object independently of it state. 

 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

63 

 

In the above example, we discussed the case of a single CD player. In actual fact, millions of 

such players exist in the real world. It is easy to observe in the real world, how CD players of 

the same make and model will have pretty much the same functionality; but having said that, it 

is also true even with players of different makes and models, because they will also provide the 

same basic, core functionalityi.e. that which allow the user to insert a CD and play it. By 

exploring the object technology approach, it is far easier to generalise this concept by way of 

trying to identify a class of CD players.  In the section that follows below, we expand in greater 

detail the concept behind a class. 

3.3 Class 

Simons’s work in [94] supports the argument which claims that classification is that which 

makes a language distinctively object-oriented. This is because abstraction is the fundamental 

characteristics of object-oriented languages. Several definitions have been provided in order to 

explain the meaning of a class [60, 72, 95, 96]. Most of these definitions are not consistent and 

leads to misconceptions regarding the notion of a class. Simons work in [94, 102] was designed 

to address this ambiguity. In conclusion, he provided the following definition for classes [94, 

102]: 

Classes are polymorphic definitions for heterogeneous families of objects, instances of different 

concrete types - such a class has an extensible implementation and an extensible interface; 

Future references from here onwards to a class or classes in object-oriented languages in the 

rest of this thesis assume the above definition. 

3.3.1 Class Variables 

Generally, in a programming language like Java, when a number of objects are created from the 

same class, they each have their own distinct copies of instance variables. Now, consider a 

simple example of a Person class in Java (see below) with the instance variables forename, 

surname, age and gender. Each Person object has its own values for these variables, stored in 

different memory locations. 

Occasionally, we might want to have variables that are common to all objects. In Java this is 

accomplished with the static modifier. Attributes that have the static modifier in their 

declaration are called static attributes or class variables. These are associated with the class, 

rather than with any object. In Java, every instance of the class shares a class variable, which is 

in one fixed memory location. Any object can change the value of a class variable; it is also 

possible to manipulate class variables without creating an instance of the class. 

In order to illustrate the above concept better, let us assume that we want to create a number of 

Person objects and assign each a serial number, beginning with 1 for the first object. This ID 

number is unique to each object and is therefore an instance variable. Also, we need an attribute 

to help us keep track of how many Person objects have been created so that we can know what 

ID to assign to the next Person object. Such an attribute is not related to any individual object, 

but to the class as a whole. For this, we need a class variable, numberOfPersons, defined in 

Java as follows: 
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public class Person{ 

        private String forename; 

        private String surname; 

        private int age; 

        private String gender; 

        // add an instance variable for the object ID 

        private int id; 

        //add a class variable for the number of Person objects instantiated 

        private static int numberOfPersons = 0; 

         ......... 

} 

Class variables are referenced by the class name itself, as in Person.numberOfPersons. This 

makes it clear that they are class variable. Also, it is possible to refer to static attributes with an 

object reference like person1.numberOfPersons. Generally, this is discouraged because it does 

not make it clear that they are class variables. We can use the Person constructor to set the id 

instance variable and increment the numberOfPersons class variable: 

public class Person{ 

        private String forename; 

        private String surname; 

        private int age; 

        private String gender; 

        private int id; 

        private static int numberOfPersons = 0; 

        public Person(String f, String s, int a, String g){ 

            forename = f; 

            surname = s; 

            age = a; 

            gender = g; 

            // increment number of Persons and assign ID number 

            id = ++numberOfPersons; 

         } 

         // new method to return the ID instance variable 

         public int getID(){ 

             return id; 

         } 
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             ……… 

}// End of class Person 

3.3.2 Class Methods 

The Java programming language supports static methods as well as static variables. Any static 

method, with the static modifier in their declarations can be invoked with the class name, 

without the need for creating an instance of the class. It is also possible to refer to static 

methods with an object reference. Often, static methods are used for accessing static attributes. 

For example, we could add a static method to the Person class to access the numberOfPersons 

static attribute: 

public static int getNumberOfPersons(){ 

       return numberOfPersons; 

} 

Overall, each method in a class is characterised by its name, its signature (i.e. the arity and 

types of formal arguments, the type of the optional result, and possibly a list of exceptions), and 

its contract, the behaviour it guarantees to offer [95]. A contract is best expressed by using 

axioms, pre and post conditions in a specification language, and directly by code in a 

programming language like Java. A specific method call with actual parameters is generally 

referred to as a message, or, for concurrent synchronizations, an event [95]. The only way to 

request services or communicate with an object is via it methods.   Example in Java: 

public String getForename(){ 

       return forename; 

} 

public void setForename(String f){ 

       forename = f; 

} 

The two methods above are specified in Java to return type String and to set type String for the 

forename attribute of the Person class. The two methods above are a good example for observer 

and mutator methods respectively. 

We define the signature of the above functions formally as:  

getForename: ε → String 

The method getForename takes an empty argument i.e. ε and then returns forename of 

type String. The getForename method of the Person class simply returns a copy of the 

value stored in the attribute forename without modifying the state of the Person Object. 

We must recall that the states of an object are encapsulated inside their attributes. 

Here, the state of Person object would not change as a consequence of invoking the 

getForename method. So we say that the getForename method is nothing but an 

observer. Also, note that in our formal definition and specification above for the 
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getForename method we placed a strong constraint on its return type which must strictly be 

that of type String. 

setForename: String [preconditions] → void 

The method setForename takes the forename attribute of the Person class which is 

specified here to be of type String and on satisfying the necessary set of preconditions 

it modifies the state of the object Person and then returns the void type. Here, the void 

keyword is used to indicate that the method setForename does not return a value. Also, 

our set of preconditions represents a set of test functions defined for the setForename 

method. In order for setForename method to successfully modify the state of the Person 

object i.e. by driving it from its current-state to an expected next-state (i.e. 

postcondition) the requisite set of preconditions must be satisfied (here this means our set 

of test functions). Now, from above, we know that method setForename is guarded by a 

finite set of precondition methods depicted with i.e. [preconditions] (This represents a 

finite set of test functions. See more on these ideas in chapter 4). Now, assuming that method 

setForename is guarded by two precondition methods i.e. pre1, pre2 ∈ preconditions. 

If setForename method above did not satisfy the above set of preconditions when it is 

invoked on object Person whilst in its current-state, the consequence of this is that the 

object would be driven into an error state. In the Java programming language, it is possible to 

combine the two preconditions i.e. pre1 and pre2 as a single function. But for the sake of 

clarity, here, they are separated in order to illustrate our idea. Moreover, the complexity of 

object-oriented systems sometimes could mean that one function f can invoke a chain of other 

functions. So if calling f on object p whilst p is in a current-state (i.e. s1) would result in 

p moving to next-state (i.e. s2), where f is composed of a sequence of other functions i.e. 

f1, f2 and f3 then we say that the necessary set of test functions i.e. say [preconditions] 

that f must satisfy in order to drive object p from state s1 to s2 is a union of a finite set of 

precondition methods defined for f, f1, f2 and f3. 

Barbey’s work in [95] classifies the methods of a class into five major categories: constructors, 

observers, iterators, mutators, and destructors: 

Constructor Functions: For example, in Java, class constructors are specialized functions 

that are responsible for performing initialization of class attributes. Contrary to popular opinion, 

they do not allocate storage space to objects. Their sole job is to carry out initialization of class 

attributes. Java defines a special function called new; this function accept a constructor as its 

argument and then on satisfying the necessary preconditions required for new to fire, it then 

creates a storage space in memory for the specified object and then invokes the constructor 

specified to carry out necessary initialization for all the class attributes i.e. for the newly created 

object reference.  This is best illustrated with an example: 

Person p1 = new Person(String f, String s, int a, String g); 

Person p2 = new Person(); 

Now, if we have to specify the new function properly, this is what is happening: 

new:  object [preconditions] → object 
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Here, new is a special class function in the Java language; it allocates a space in memory to 

new instances called p1 and p2 if the above sets of preconditions are met (i.e. ∀ pre ∈ 

preconditions). Here, p1 and p2 hold references to the Person class. After the space 

allocation process had been completed by the new function without problems, the constructor 

function would then be fired to carry out necessary initialization of all class attributes.  Both 

new and Person constructors with the forms String x String x int x String → ε (as used in p1) 

and ε → ε (as used in p2) from the above Java code example are specialized functions of the 

person class. Above, we use ε to mean the empty type. It is clear from above that the Person 

constructors can only be invoked within the new function. 

Observer Methods (also known as selectors): An observer is a method that yields results of 

another type than that of the object. Observers allow observing the state of the referenced 

object, but not to modify its state or that of any other connected object. Example in Java: 

public String getForename(){ 

       return forename; 

} 

Iterator Methods: The iterator method e.g. iterator() in Java is a special kind of 

observer that allows access to all parts of an object in a given order. Example in Java: 

HashSet simpleSet = new HashSet();  

// Add some elements to the HashSet:  

simpleSet.add("This");  

simpleSet.add(" is");  

simpleSet.add(" a");  

simpleSet.add(" simple test program.");  

// Retrieve an iterator to the hashset:  

Iterator iter = simpleSet.iterator(); 

while(iter.hasNext()) 

     { 

       String objectValue = (String)iter.next(); 

       System.out.println(objectValue);   

     } 

 

Mutator Methods (also known as modifiers) : A mutator modifies the state of an object by 

modifying its attributes, or those of any other connected object. Example: 

public void setForename(String f){ 

       forename = f; 

} 
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Destructor Methods (i.e. Garbage Collection): In Java, garbage collection implies 

that objects that are no longer needed by the program are garbage collected. That is such 

objects can be thrown away. A more accurate and up-to-date metaphor to describe this would 

be memory recycling. This generally happens when an object is no longer referenced by the 

program; as a consequence the space that the object occupies can be easily recycled so that the 

space is made available for subsequent new objects. It is the job of the garbage collector to 

somehow determine which objects are no longer referenced by the program and thus make 

available the space occupied by such unreferenced objects. Whilst in the process of freeing 

unreferenced objects, the garbage collector is dutifully bound to run any finalizers of objects 

being freed. The Object Class in Java provides a method for this purpose called finalize(). This 

method is called by the garbage collector on an object when the garbage collection determines 

that there are no more references to the object. The finalize() method has a protected modifier – 

meaning it is freely available to all subclasses and to any class within the same package. Object 

is the root class in Java. So every class in Java by default inherits from Object; meaning the 

garbage collector can freely invoke finalize() method within an instance class to claim any 

object that has no reference to it. 

It is also possible for a method to be both an observer and a mutator (e.g. the pop method 

offered by a class Stack modifies the state of a stack and returns the top element). 

As mentioned before, observers, iterators, and mutators are methods that belong to an instance 

object in Java, whereas constructors (e.g. Person constructors above) and the new method in 

Java are methods of the class.  

3.3.3 Constants 

In an object-oriented programming language like Java, the static modifier in combination with 

the final modifier can be used to define constants. The final modifier indicates that the value of 

this attribute cannot change. For example: 

static final double PI_VALUE = 3.14159; 

Constants defined in this manner cannot be reassigned, and it would generate a compile-time 

error if a program tries to do so. By normal convention in Java, the names of constant values 

are spelled in uppercase letters. If the name is composed of more than one word, the words are 

separated by an underscore. 

3.3.4 Modifiers 

The attributes and methods of a class are either public, default, protected or private 

(encapsulated). When a method or attribute is declared public, it can be accessed anywhere. 

When a method or attribute is declared private, it can only be accessed from within the class in 

which it is declared. A protected attribute method or attribute is visible within its own class and 

subclasses and also to any classes within the same package. A summary of the access levels is 

given in the table below for a Java program: 
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Situation public protected default private 

Accessible to subclass from 

same package 

yes yes yes no 

Accessible to non-subclass in 

same package 

yes yes yes no 

Accessible to subclass from 

different package 

yes yes no no 

Accessible to non-subclass 

from different package 

yes no no no 

Inherited by subclass in same 

package 

yes yes yes no 

Inherited by subclass in 

different package 

yes yes no no 

Table 2: Access Levels in Java 

3.3.5 Compositional Relationships 

Alexander’s work [60] identified two types of relationships that can be used to derive new 

classes from existing ones. The first of these types is aggregation. The mechanism of 

aggregation allows a new class to reuse existing classes by simply creating instances of those 

classes as part of its internal state representation. In an object-oriented language such as Java, it 

is possible for a Person Class to aggregate instances of other classes as part of its own 

definition. Now, to illustrate this concept further, let us consider the Person Class example that 

describes the attributes of a Person Object in the real world and all the relevant methods that 

can be used to manipulate their internal state representation.  

Here, a person class is composed by aggregating String instances and myDate instance in order 

to define the Person Class attributes i.e.  forename : String, surname : String, dateOfBirth : 

myDate and gender : String. The symbol (:) can be read as type of. In Figure 12 below, we 

provide a simple illustration of class aggregation. In this example, we use the diamond symbol 

to indicate the aggregating class; in this case i.e. the Person Class. The figure shows a class 

diagram that consists of two classes namely Person Class and myDate Class with an instance of 

myDate Class being aggregated into Person’ Class state space. Consequently, this implies that 

every time an instance of a Person Class is created, this instance will automatically contain an 

instance or a memory reference of myDate Class. 
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Now, the second type of compositional relationship mechanism is inheritance [60]. Inheritance 

is a very significant part of the object technology model. Unfortunately, it is also one of the 

more complex features of the object model. Inheritance allows the state space representation of 

one ClassA to be defined with respect to existing state space representation of a set of other 

classes. Generally, when this happens, the ClassA being defined is said to inherit the public 

attributes (i.e. states) and behaviour (i.e. methods) of its parent class (single inheritance e.g. 

Java) or classes (multiple inheritance e.g. C++). Hence, ClassA definition would as a result of 

inheritance embody the definition of its parent class or parent classes. In Figure 13, we illustrate 

this concept further with an example. In this example, the Student Class inherits from its parent 

Person Class. 

myDate Class 
 

-dayOfMonth : int 

-month : int 

-year : int      

 

+getDayOfMonth() 

+setDayOfMonth(dayOfMonth : int) 

+getMonth() 

+setMonth(month : int) 

+getYear() 

+setYear(year : int) 

          

Person Class 
 

-forename : String 

-surname : String 

-dateOfBirth : myDate 

-gender : String 

 

+getForename() 

+setForename(forename : String) 

+getSurname() 

+setSurname(surname : String) 

+getDateOfBirth() 

+setDateOfBirth(dateOfBirth : myDate) 

+getGender() 

+setGender(gender : String) 

 

Figure 12: A Simple Person Class and myDate Class aggregation example 
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Figure 13: Sample Inheritance Hierarchy. Class Student inherits from Class Person 

3.3.6 Polymorphism and Dynamic Binding 

Polymorphism is one of the most powerful mechanisms exploited within object-oriented 

languages. Essentially, by meaning, it allows a heterogeneous family of different classes of 

objects of a given concrete type to respond to the same request based on the structure of the 

inheritance hierarchy. At run time, dynamic binding allows the correct method implementation 

for different instances of an object belonging to a specific concrete type to be invoked 

according to the structure of the inheritance hierarchy. Now, to illustrate this concept further, as 

an example, let us consider the following fragment of code in Java that provides an 

implementation for the method process specified within class SimpleTest:  

public class SimpleTest 

 {   

      private Person person2 = new Person(); 

      public SimpleTest(){} 

      public void process(Person person1) 

        {  

            person2.setDateOfBirth(person1.getDateOfBirth());                                  

        }                                                                                                           

  }             

 

Person Class 
 

-forename : String 

-surname : String 

-age : int 

-gender : String 

 

+getForename() 

+setForename(forename : String) 

+getSurname() 

+setSurname(surname : String) 

+getAge() 

+setAge(age : int) 

+getGender() 

+setGender(gender : String) 

Student Class 
 

-major : String 

 

 

+getMajor() 

+setMajor(major : String) 
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Figure 14: Example Class Hierarchy 

Above,  method process was defined staticly to have the following form. process:  

Person  → void. Also, as indicated above i.e. within Figure 14, we know that class 

Student is a subclass of class Person. Hence, due to the mechanism of polymorphism discussed 

above, it is possible to substitute a Student object instance where a Person object instance is 

expected like in the case of the process method shown above. We know that as a 

consequence of the mechanism of polymorphism in object-oriented languages it is possible for 

subclass object references to be bound to their respective superclass references in a way that 

respects the structure of the inheritance hierarchy.  

Although, originally, by our specification for the process method above, we know that the 

declared static type of the process method is the Person class, but the actual dynamic type of 

the bound instance can be that of the Student class due to the mechanism of polymorphism at 

run time. In an object-oriented language such as Java, it is possible for variables that reference 

objects to have a static type in their original program specification (i.e. the declared static type 

in the original program definition). But due to the presence of paradigm features like 

inheritance and polymorphism in the object-oriented architecture, the actual static object type 

can be bound to a dynamic object type that is determined at run time [60] (the mechanism of 

dynamic binding in object-oriented architecture allows the class under test to automatically 

resolve the correct method and/or object implementation for different instances of the class or 

object under test that are thus being used). Thus, the dynamic concrete type, or actual type, is 

myDate Class 
 

-dayOfMonth : int 

-month : int 

-year : int      

 

+getDayOfMonth() 

+setDayOfMonth(dayOfMonth : int) 

+getMonth() 

+setMonth(month : int) 

+getYear() 

+setYear(year : int) 

 

Student Class 
 

-major : String 

 

 

+getMajor() 

+setMajor(major : String) 

Person Class 
 

-forename : String 

-surname : String 

-dateOfBirth : myDate 

-gender : String 

 

 

+getForename() 

+setForename(forename : String) 

+getSurname() 

+setSurname(surname : String) 

+getDateOfBirth() 

+setDateOfBirth(dateOfBirth : myDate) 

+getGender() 

+setGender(gender : String) 
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the type of the object instance that eventually gets bound to the variable at run time.  Generally, 

this variable can be an object instance of any member of the heterogeneous family of the class 

under test.  

3.3.7 Problems in Testing Object-Oriented Software 

Earlier in section 1.1.1 we presented and discussed the problems that exist with testing object-

oriented programs in the presence of paradigmatic features like encapsulation, inheritance, 

polymorphism and dynamic binding. Furthermore, we also argued that most work in testing 

research has been done with procedure-oriented software in mind and that some good methods 

of testing have been developed as a result. However, we emphasise that those methods cannot 

be applied directly to object-oriented software, due to the fact that the architectures of those 

systems are significantly different from those of object-oriented software on a number of key 

areas. Also, we argue that the differences between the two paradigms are sufficient to develop a 

test method that is more specific to the object-oriented architecture. To address these problems, 

a number of object machine approaches (i.e. finite state machine system approaches that 

embody the notion of objects in object-oriented systems) [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 

85, 86, 87, 88, 89, 90, 91] were proposed to the problem of specifying, verifying, testing and 

modeling the behaviour of a system or the internal structure of an object-oriented component 

(i.e. an object) with a view to deriving a complete functional test set there from i.e. for any 

given object-oriented model specification system under test. This motivation is thus consistent 

with Simons’s earlier research work which argued that: 

“Achieving test-completeness is made more difficult in object-oriented languages by the 

mechanism of inheritance, which militates against reusing saved test suites in conformance 

testing. JUnit’s saved tests fail even to cover the original state-space of the parent class in the 

child class, because of the state partitioning in the refinement” [134, 135, 110]. 

Furthermore, it is crucial to mention at this juncture that most of the object machine approaches 

referred to herein above, largely base their testing methodology on either program-based testing 

or specification-based testing techniques. However, Weyuker’s test adequacy axioms 

[97,100,101] reveal that program-based testing and specification-based testing are orthogonal 

and complementary. To this end, this work argues that any object machine approach that bases 

its testing methodology solely on one of these approaches cannot completely guarantee 

correctness in practice. To engineer a more meaningful, practical and reliable solution, a new 

testing method is required to integrate the benefits of the two approaches and further build upon 

their individual strengths, thus providing the much needed correctness guarantee after testing is 

completed. One problem worth mentioning here, i.e. with regards to testing from state-based 

systems directly relates to the state explosion problem: 

This is because “bounded exhaustive unit testing from state-based specifications is tractable 

(McGregor [90]), but synthesizing the state space of entire systems from object state machines 

produces a state explosion (Binder [56]) unless a suitable formal strategy is found for 

partitioning the tests (Holcombe and Ipate [2, 49])…(Simons [110]).” 
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The overviewed problems herein above and those covered earlier in chapters 1 and 2 lead us to 

the following thesis questions: 

� How can we create a theoretical machine which embodies and/or encapsulates the 

notion of a class [102] that can be found in object-oriented languages? 

� How can we integrate program-based testing and specification-based testing techniques? 

� How can we effectively test object-oriented software in such a way that it enables us to 

draw useful inferences about the number and type of faults that remain undetected 

after testing is completed in the presence of some aspects of its very nature i.e. 

encapsulation, inheritance, polymorphism and dynamic binding? 

� How can we exemplify the solution to problem 1, 2 and 3 within an automated testing 

tool? 

 

Satisfactorily answering these questions is one of the prime motivations behind this research 

work. Hence, addressing these issues is the subject of our work in chapters 4, 5, 6 and 7. It is to 

these that we now turn. 

3.4 Summary 

In this chapter, we reviewed some fundamental concepts of object orientation and the impact 

that they have on testing object-oriented programs in the presence of complicated paradigmatic 

and evolving object-oriented features like encapsulation, inheritance, polymorphism and 

dynamic binding. We further discussed the limitations of using finite state machine approaches 

like [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] that embody the notion of 

objects in object-oriented systems. We argued that in order to be able to draw sound, useful and 

reliable inferences after testing has been completed, we need a test method that combines the 

benefits and strengths of using program-based and specification-based testing techniques. The 

various problems covered in chapters 1, 2 and 3 motivated our outlined thesis questions at the 

end of this chapter. 
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Chapter.4: The Class-Machines System Model 

4.1 Introduction 

Given the level of complexity that is currently inherent in the object-oriented architecture, we 

argue in this chapter that it is extremely difficult to directly use existing simple finite state 

machine systems e.g. [2, 29, 30, 31, 32, 38] to model object-oriented systems in the most 

correct and/or reliable way i.e. in the presence of complicated paradigmatic and evolving 

object-oriented features. Thus, we argue that to model large scale object-oriented systems, 

correct and/or reliable object-oriented finite state machine systems, we need more complex 

machines that directly align with the complexity that can be found in the object-oriented 

architecture. Current finite state machines [29, 30, 31] and extended finite state machine models 

[2, 32, 38] are either too procedural or too simplistic in nature to perfectly represent objects or 

object-oriented systems in their pure form. Paradigm features like encapsulation, inheritance, 

polymorphism and dynamic-binding in object-oriented languages make testing a more 

complicated endeavour as shown in chapter 1. Because hiding is a fundamental property of 

object-oriented programming, programmers do not need to worry about the internals of a class, 

since they only use the interface to communicate with the objects. However, in the presence of 

hiding it is extremely difficult to observe the coherence of the state of an object after invoking 

an operation of a class during testing.  

Object-Oriented Systems consist of a society of communicating objects. These objects are 

instances of concrete types [94] and each object belongs to a class in object-oriented languages. 

Finite state machine models and extended finite state machine models (e.g. X-Machine) do not 

map directly to an object owing to the differences in their architecture. Also, most functions in 

an object-oriented system can generally exhibit sequentially dependent behaviour (i.e. the 

behaviour and current memory state of an object is a function of the history of its  various 

dynamic method calls). This is because it is possible for one function to invoke several other 

processing functions or methods in the class. In the presence of hiding it is extremely difficult 

to observe all the dynamically computed or changing memory state(s) of the object from run to 

completion when such functions are invoked. This is because showing correctness does indeed 

involve showing that each object in a system goes through the correct sequence of concrete 

states. It is crucial at this juncture to emphasise that the whole purpose of hiding of 

implementations is to make the concrete states invisible. Furthermore, while an object 

incorporates operations to make at least some of this state visible as an abstract state, these 

operations are part of the implementation and so testing must establish their correctness 

somehow, since it can not be assumed. 

In order to address these problems, we propose in this chapter a new formal object-oriented 

specification system model known as the Class-Machine to represent the notion of a class in 

object-oriented languages (e.g. the Java Object-Oriented Programming Language). Earlier in 

section 3.3, we discussed and presented a detailed definition for object-oriented classes 

following Simons’ previous research work in [94, 102]. In this chapter, we extend that 

definition in a new light. Here, the notion of a class is treated instead as a machine (i.e. a class 

is a machine simply referred to as a Class-Machine) because in an object-oriented system, the 

basic unit is a class. Hence, testing need to focus on the class. Consequently also, the notion of 

an object in object-oriented languages is at the same time treated instead as a machine (i.e. 

referred throughout the rest of this thesis as the Object-Machine). More crucially, our ultimate 

goal in this thesis is to seek ways by which to create both an Object-Machine and a Class-



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

76 

 

Machine abstraction that directly align with the complexity that can be found in the object-

oriented architecture; with the ultimate goal that is directed towards generating a complete 

functional test set there from. 

4.2 Preliminaries 

The following preliminaries are fundamental to the understanding of the automaton-based 

framework formalism to be introduced. In particular, later discussions and arguments in this 

chapter and beyond it rely heavily on all the foundational work to be introduced and discussed 

here. Hence, from section 4.3 onwards we shall assume that the reader is familiar with all the 

ideas presented in this section. 

 4.2.1 Paradigm Features of Object-Oriented Languages 

• An object-oriented system is made of up a society of communicating objects (i.e. 

COMM_OBJECTS); each object is an instance of a concrete type that belongs to a given 

class i.e. every unique object (i.e. obj ∈ COMM_OBJECTS) in an object-oriented 

system is said to belong to a unique concrete class. For any given object i.e. obj there is 

an existing concrete class to which it belongs.  

• Every unique object (i.e. obj ∈ COMM_OBJECTS) provides a set of operations that 

users can invoke. These operations are commonly referred to as methods in object-

oriented programming languages i.e. every object in the system provides a set of 

methods that defines it behaviour.  

• Every unique object (i.e. obj ∈ COMM_OBJECTS) maintains an internal state. Some of 

that state may be publicly available to the user, i.e. directly or indirectly through the 

invocations of methods.  

• Every unique object (i.e. obj ∈ COMM_OBJECTS) can be treated as a black box. This 

means that all the internal data structure of the object is hidden away from the user. 

Also, the way that the methods of the object operate is likewise hidden, in addition to 

how they go on to manipulate the internal state of the object.  

• Every unique object (i.e. obj ∈ COMM_OBJECTS) has an identity which allows us to 

identify an object independently of it state.  

• Each object in the system has its own set of attributes where the state and memory of 

the object are hidden (i.e. encapsulated). An attribute can either be a value (e.g. one that 

belongs to a basic type in Java) or another object represented by its identity.  

• In an object-oriented system, a class is a polymorphic definition for heterogeneous 

family of objects, instances of different but closely related concrete types with 

extensible implementation and extensible interface.  

• A class encapsulates the definition of a heterogeneous family of objects, (which are 

instances of different concrete types) and the class further conceals the details of their 

implementation. 

• Generally the attributes of an object are usually hidden (i.e. with modifiers), in such a 

way that the only way to observe or modify the state of an object is by invoking its 

public (non-hidden) methods.  

• Some methods can also be hidden (i.e. with modifiers) because these methods are only 

used internally for the purpose of implementing other methods. Certain methods belong 

to objects of the class while others are class methods.  
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• Some attributes belong to objects of the class while other attributes belong to the class 

(i.e. class attributes are shared among a family of objects that belong to the class). Class 

methods are methods that manipulate those class attributes.  

• It is possible for one class to be related to another through the mechanism of inheritance 

so that one is a more specialised version of the other.  

• Through the power of polymorphism, a heterogeneous family of different classes of 

objects of a given concrete type can respond to the same request based on the structure 

of the inheritance hierarchy 

4.2.2 Types, State Variables and associated Memory Values  

Object-Oriented Programming Languages like Java and C++ are strongly typed. Crucially, this 

means that every unique state variable and expression has a type that is known at compile time. 

For example, in Java, types control the values that state variables can store in their memory or 

that an expression can produce. Java types further limit the type of operations permitted on 

those values and so they help in evaluating the semantics of the operations. One of the 

advantages of strong typing is that it helps in detecting errors at compile time. There are two 

kinds of types in the Java Language: primitive types (PT) and reference types (RT). Java PT 

consist of the boolean (indicated by the literals true and false) and numeric (e.g. byte, 

short, int, long, and char, and the floating-point types float and double) types. Examples 

of RT in Java are class types, interface types, and array types. The values of reference types are 

pointers to objects. In addition to these, Java has a special type called the null type.  

State variables are memory or storage locations. A unique state variable of a primitive type is 

often defined or specified to store a value of that exact type.  For example, a state variable of a 

class type CLT can hold either a null reference or a pointer to an instance of class CLT or of any 

class that is a subclass of CLT. Similarly, a state variable of an interface type can hold a null 

reference or a pointer to any instance of any class that implements the interface. Now, assuming 

that CLT is a primitive type, then a state variable of type "array of CLT" can hold a null 

reference or a pointer to any array of type "array of CLT". Similarly, if CLT is a reference type, 

then a state variable of type "array of CLT" can hold a null reference or a pointer to any array of 

type "array of K" such that type K is assignable to type CLT. A state variable of type Object can 

hold a null reference or a pointer to any object, whether class interface or array.  

Fundamentally, it is worth mentioning here that every unique state variable in a Java program 

must have a value before its value is used [137]: 

• Each class variable, instance variable, or array component is initialized with a default 

value when it is created:  

o For type byte, the default value is zero, that is, the value of (byte) 0.  

o For type short, the default value is zero, that is, the value of (short) 0.  

o For type int, the default value is zero, that is, 0.  

o For type long, the default value is zero, that is, 0L.  

o For type float, the default value is positive zero, that is, 0.0f.  

o For type double, the default value is positive zero, that is, 0.0d.  

o For type char, the default value is the null character, that is, '\u0000'.  

o For type boolean, the default value is false.  

o For all reference types, the default value is null.  
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• Each method parameter is initialized to the corresponding argument value provided by 

the invoker of the method.  

• Each constructor parameter is initialized to the corresponding argument value provided 

by a class instance creation expression or explicit constructor invocation.  

• An exception-handler parameter is initialized to the thrown object representing the 

exception.  

• A local variable must be explicitly given a value before it is used, by either initialization 

or assignment, in a way that can be verified by the compiler using the rules for definite 

assignment.  

The example program:  

class MyPoint { 

 static int npoints;  

 int x, y; 

 MyPoint root; 

} 

 

 

class TestDriver { 

 public static void main(String[] args) { 

  System.out.println("npoints=" + MyPoint.npoints); 

  MyPoint p = new MyPoint(); 

  System.out.println("p.x=" + p.x + ", p.y=" + p.y); 

  System.out.println("p.root=" + p.root); 

 } 

} 

 

prints:  

npoints=0 

p.x=0, p.y=0 

p.root=null 

 

illustrating the default initialization of npoints, which occurs when the class MyPoint is 

prepared, and the default initialization of x, y, and root, which occurs when a new MyPoint is 

instantiated.   

4.2.3 Class Interface and Family of Implementations 

In the same style as other modern data structure libraries, the Java collection library separates 

interfaces and implementations. In the Java Programming Language, class interfaces defines a 

set of method protocols that concrete class instances must implement. A single object instance 

OI of an existing interface class IC can be made to bind or point to a possibly infinite family of 

concrete implementations FI of classes that conform to the IC. This is because a disciplined 

approach within object-oriented languages allows a hierarchy of classes to be freely extensible 

as a result of the mechanism of inheritance. To illustrate this concept further, a queue example 

is explored below: 
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Now, assuming that there was a queue interface in the collections library, it might look like this: 

interface Queue{  

void add(Object obj); 

Object remove(); 

int size();}  

The above queue interface specifies that you can add elements at the tail end of the queue, 

remove them at the head, and find out how many elements are in the queue (see Figure 15). 

Here, the queue interface tells you nothing about how the queue is actually implemented i.e. it 

simply defines a finite set of method protocols that a concrete class instance that implements 

the queue interface must provide. Two common implementations of a queue exist; one that uses 

a circular array (see Figure 16) and one that uses a linked list (see Figure 17): 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          head                                                                                                  tail 

1 2 3 4 

Figure 15: A queue 
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class MyCircularArrayQueue implements Queue {        

    public MyCircularArrayQueue(int capacity){…} 

    public void add(Object obj){…} 

    public Object remove(){…} 

    public int size(){…} 

    private Object[] elements; 

    private int head; 

    private int tail; 

} 

3 

2 

1 

5 

4 

head 

tail 

Figure 16: Circular Array 
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Figure 17: Linked List 
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class MyLinkedListQueue implements Queue  

{ 

    public MyLinkedListQueue(){…} 

    public void add(Object obj){…} 

    public Object remove(){…} 

    public int size(){…} 

    private Link head; 

    private Link tail; 

} 

When a queue interface is used within a program, it is not necessarily important for the 

software engineer to know which concrete implementation is actually used once the collection 

has been constructed. Hence, it makes sense to use the concrete class (i.e. 

MyCircularArrayQueue) only when the collection object is constructed. A disciplined 

approach often explored within the Java Programming Language is to use the interface type to 

hold the collection reference. 

Queue myExpressLane = new MyCircularArrayQueue(100); 

myExpressLane.add(new Person(“Jameen”,”Haynes”, 25, “FEMALE”)); 

The above approach makes it easy for the software engineer to change his mind and use a 

different concrete implementation should the need arise. Here, the software engineer only needs 

to change the program in one place  the constructor. Again, should the software engineer 

decide that MyLinkedListQueue is a better choice after all, the program code becomes: 

 
Queue myExpressLane = new MyLinkedListQueue(); 

myExpressLane.add(new Person(“Jameen”,”Haynes”, 25, “FEMALE”)); 

Thus, from above, we can see that a possibly infinite number or heterogeneous families of 

concrete implementations can apply to a unique interface type i.e. for a given class under test. 

 

 

 

 

 

 

 

 

 

Figure 18: A class is defined to have an extensible interface and a possibly infinite family of extensible 

concrete object implementations that adheres to that interface. 
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In its original form, the interface of the class shown in Figure 18 is extensible; so is the family 

of concrete object implementations that can apply to it. This feature is made possible through 

the mechanism of inheritance that can be found in object-oriented languages. The interface 

simply defines a set of method protocols that a concrete object implementing the interface must 

provide. The interface is also the criteria for membership i.e. all members of the family of 

objects that can belong to the class must provide implementations that conform to this interface. 

 

Now, assuming that the class under test CUT with associated interface type IT initially has a 

finite set of concrete implementations IMP,  we argue here that complete testing for CUT then 

means testing every unique element in IMP. Consequently, for the purposes of this argument, 

testing a single element SE in IMP at random does not cover the entire state space of the CUT 

since SE is just a special case for the CUT. To achieve adequate coverage for the CUT, every 

unique element in IMP must be tested. For the purposes of testing, we assume here that IMP 

should be finite for the CUT. However, as the CUT evolves over time due to requisite changes 

so would elements in IMP. 

 

This is because the mechanism of inheritance in object-oriented languages allows a hierarchy of 

classes to be freely extensible. Furthermore, because the mechanism of polymorphism in 

object-oriented languages allows a family of objects that conform to the same interface type to 

respond to the same request based on the structure of the inheritance hierarchy, the CUT is 

flattened so that its associated family of IMP that can apply to the interface type IT of the CUT 

contains all the concrete cases or IMP to be tested; thus, making the state space of the CUT to 

be tractable.  

 

The fact that we can keep track of all the possible object bindings for the interface type of the 

CUT means that all the feasible cases with respect to bindings can be easily covered. Hence, by 

exploring this approach it would be possible to plan a test in advance where you can check IT 

for every possible object bindings. This proposal implies that problems caused via the 

mechanism of polymorphism can then be easily addressed. 

4.2.4 Access Modifiers 

In section 3.2.4 we covered the notion and significance of modifiers in the Java Programming 

Language (i.e. as an example of the impact that modifiers can have on variables encapsulating 

states within object-oriented languages). Given that one of the prime goals of these 

preliminaries is to lay all the requisite foundations for all the ideas that shall soon be presented 

with respect to our proposed class machine model, it is crucial that the reader should understand 

henceforth that later reference to modifiers implies the same meaning as those described in 

earlier discussions in section 3.2.4. 

4.2.5 Proposed Features of the Class-Machine Model 

Below, an outline of the desired properties and features of our proposed Class-Machine model 

specification system is presented: 
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1. Adding A Visibility Mechanism to the Class-Machine Model 

The class-machine model specification system should possess properties that help test 

engineers to dynamically observe the different state(s) that the object-machine (i.e. the finite 

state machine system that represent the notion of objects in object-oriented languages) can be 

driven into, both during automatic test case generation and consequent execution of those test 

cases on the object-machine system under test.  In particular, the system must address the 

problem of observability caused through the use of private modifiers in object-oriented 

languages. 

The class-machine model specification system should allow test engineers to be able to obtain 

public version of the class-machine currently under test. The consequence of this is that when 

systems are formally specified using the class-machine approach, there would be no need to 

worry about hidden features of the class-machine under test; since we know that during testing 

we can easily obtain a public version of the class under test. 

2. Supporting the Class-Machines Specification formalism with 
Access Modifiers to aid Automated Testing, Verification and 
Code generation 

The class-machine model specification system should allow a mechanism for handling and 

defining modifiers (such as those that can be found in the Java Language). The consequence of 

this is that any automatically generated program code from such specification can easily be 

validated for conformance against the original specified class-machine. Such conformance 

and/or verification result would doubtless serve as a major break through for the need to 

automatically generate executable code from formally proven specifications. This means that 

the generated code for a given class-machine will reflect exactly the sort of modifiers allocated 

to its attributes, constants and functions in the same fashion as specified in the formal 

specification. This mechanism of modifiers also has to allow one to define in a general fashion 

what a public version of an implementation would look like, which presumably means that at 

the very least the mechanism must include one modifier that has the meaning “public”. 

3. Integrating the advantages and benefits of using specification-
based and program-based testing techniques within the Class-
Machines testing method 

The class-machines model specification system should define a mechanism which can help to 

provide credible answers to the question: why was the object-machine driven into the current 

state that it is now in? That is by showing the precondition method(s) that were triggered during 

dynamic execution at run time for the object-machine under test and the input(s) or test cases 

that were applied on the object-machine to drive it to its current state. The consequence of the 

approach proposed here is that it would help to address one of the fundamental drawbacks 

inherent in using the functional-based testing method which is that although it tells us how well 

a program satisfies its formal specification, it does not tell us what part of the program that was 

executed to satisfy each part of the specification.  

Also, it is anticipated that our class-machine approach should address the disadvantage of using 

implementation-based testing, which is that it does not tell us how well a program satisfies its 

intended functionality. Our class-machine approach will attain this desired goal by ensuring that 

all the desired functionality for the object-machine under test is fully or completely specified 
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and thus concurrently integrated with the system. The consequence of employing this 

methodology is that our approach will fully combine and integrate the benefits of the two 

approaches (i.e. those of functional-based testing methods and implementation-based testing 

methods). The class-machines system modelling approach proposed here will be designed to 

offer a higher level of confidence than can be obtained from either separately applying the 

adequacy criteria that the software program under test has been adequately tested or on the 

other hand using the functional-based testing approach. This integration of the two approaches 

into our class-machine modelling framework would concurrently also help us to establish 

whether the program under test is actually doing what it is expected to do.  

4. Conceptualising the Design of the Object-Machine Model  

Earlier, we used Figure 18 to illustrate the notion of a class (i.e. Class-Machine) that can be 

found in object-oriented languages. Here, we want each unique object or object-machine (OM) 

in the family of concrete object-machine implementations IMP of the Class-Machine under test 

to have the following useful characteristics: 

• We want each unique OM in IMP under test to have identity (ID), state (S) and 

behaviour (BV). The role of the ID component is to enable two different object 

machines of the same type can be distinguished. We will describe S as a finite set of 

state variables (i.e. instance attributes) with predefined types. Also, we will describe BV 

as methods having predefined name, state variables S to be operated upon, finite sets of   

inputs (inPT) with predefined parameter types to be consumed from an environment and 

precondition method guards (i.e. the unchanged state set of precondition methods i.e. U, 

the error state set of precondition methods i.e. E and the goal state set of precondition 

methods i.e. G).  

• We want each of U, E and G to be a finite set of precondition methods. We want each 

unique precondition method in U, E and G to drive the OM under test to next unchanged 

state (NUS), next error state (NES) and next goal state (NGS) respectively. Each unique 

precondition method in U, E and G will help us to determine the next transition state for 

the OM under test – i.e. depending on which one eventually gets fired. We will use 

nextOMSI to indicate the next transition state for the OM under test. For example, if a 

unique precondition method from E was triggered then nextOMSI will indicate that the 

OM has been driven into an error state. Similarly, if a unique precondition method from 

U or G gets fired, then nextOMSI will indicate that the OM has transitioned into the 

unchanged or goal state i.e. depending on which one eventually gets fired.  

• For each method m of the OM under test, we will use S* and outPT to indicate the 

modified set of state variables (i.e. current memory value of instance attributes) and the 

type of output computed respectively i.e. when m was exercised at run time.  

• Also, we want each unique method of the OM under test to specify the type of access 

modifier MOD that can apply to it. Now, given that each unique method of the OM 

under test is guarded by a finite set of precondition methods U, E and G, we say here 

that these precondition methods represent the different modes by which all the methods 

of the OM under test can be tested. Every unique precondition method i.e. u ∈ U or e ∈ 

E and g ∈ G will therefore drive the OM under test deterministically to a unique next 

state. Fundamentally, the goal here is that every precondition method should 

encapsulate a unique object-machines transition state. Now, because the number of U, E 

and G guarding each unique method of the OM under test are finite and the number of 

inputs that instance variables and class variables can assume when these precondition 

methods are triggered is finite, all the possible state(s) and/or memory values that the 
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OM can be driven into are said to be tractable. We anticipate that the consequence of 

using our proposed method would address the state explosion problem that can be 

found when using finite state machine systems approach to model object-oriented 

systems in an elegant way.  

• Furthermore, while in the unchanged state testing mode i.e. in the U testing mode, the 

goal is to ensure that all the methods of the OM under test are exhaustively tested to 

show under what condition(s) that they would not modify the state(s) of the OM. 

Similarly, while in the error state testing mode i.e. in the E testing mode, our goal is to 

ensure that all the methods of the OM under test are exhaustively tested for a finite set 

of errors (i.e. every error detected in the OM system under test whilst in this mode 

corresponds to a unique type of fault. Thus we will refer to this mode as the fault-

finders (f
2
) testing mode; given that in this testing mode each unique method of the OM 

under test would be tested exhaustively for a family of possible faults (i.e. since every 

unique error state precondition method will drive the OM under test to a unique error 

state given the presence of that type of fault in the OM). This approach can thus also be 

referred to as negative testing in order to show under what condition(s) that the OM 

under test can be driven into error state(s). Finally, while in the goal state testing mode 

i.e. in the G testing mode, we want to ensure that all the methods of the OM under test 

are exhaustively tested to show under what condition(s) that the OM under test can be 

driven into valid and/or acceptable state(s); in this mode, the OM under test would be 

crucially tested dynamically i.e. positively for valid and/or acceptable state(s); hence we 

will refer to the approach employed in this mode as positive testing. 

5. Generating test input objects for the Object-Machine 
under test  

As describe above, the three different sets of precondition methods i.e. U, E and G guarding 

every unique method of the OM under test correspond to the different testing modes that can 

apply to the OM. During testing, we want to automatically generate and execute test cases 

derived from the OM specification on corresponding concrete OM implementation code in each 

of these testing modes i.e. in order to establish the correctness and conformance of the OM 

implementation with its specification. Within each of our proposed testing modes, we will 

encapsulate each of the generated test cases inside what we will call test input objects (TIO). 

Now, assuming that UTIO, ETIO and GTIO individually represents a finite set of unchanged, 

error and goal state test input objects that can be generated for the OM under test in the 

unchanged, error and goal state testing modes respectively. During testing, we will 

automatically derive all the elements in UTIO, ETIO and GTIO by converting every unique 

precondition method in U, E and G to corresponding test input objects in the relevant testing 

modes.  

So what is a precondition method? We will define it as being composed of four parts: 

(1) Firstly, every unique precondition method must specify the type of access modifier in 

MOD that can apply to it. 

(2) Secondly, a precondition method preM is a function that takes as input a finite set of 

predefined input parameter types (inPT) i.e. these input parameters will be derived from 

the method of the OM under test that preM guards since these parameters will be the 

same in all cases. 
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(3) Thirdly, a precondition method is guarded by a finite set of predicates or Boolean 

Expressions (BE). The predicates or Boolean Expressions referred to here represents the 

condition(s) that must hold in order for the OM under test to follow a particular path (i.e. 

the unchanged, error or goal) when preM is exercised with inPT and an element in BE 

concurrently get triggered at run time. 

(4) Fourthly, a precondition method produces a test input object (i.e. elements from UTIO 

or ETIO or GTIO) as output in the relevant testing modes i.e. depending on whether 

elements in U, E and G were invoked at run time.  

Suffice to mention at this juncture that in most object-oriented languages, it is possible to 

specify U, E and G as part of a unique method m of the OM under test. But in order to simplify 

and design all the methods of the OM for test and to provide a tool support to aid automated test 

case generation and execution, the approach described above was proposed to support the 

testing procedure. One of the anticipated merits of using our proposed approach is that an 

automatic tool can then be used to train the test engineer on how to automatically generate U, E 

and G for all the methods of the OM under test i.e. even when they are not originally specified 

by the software engineer when the concrete implementation code for the OM was initially 

produced. We anticipate that the training information that will be offered to the test engineer 

will come in two forms. First, our proposed automatic tool will contain detail documentation 

outlining how the tool can be used in addition to how the test engineer can automatically 

generate U, E and G for all the methods of the OM under test with supporting examples. 

Second, an animated graphical user interface guide which automatically illustrate to the test 

engineer how to automatically generate U, E and G for all the methods of the OM under test 

will be integrated as part of the tool with helpful examples.    

Note: that the role of method preM is just not to act as the characteristic function for a 

precondition, so that it returns a Boolean value to indicate whether a particular combination of 

state and input satisfies the precondition. More than that, each unique test input object 

generated from UTIO, ETIO and UTIO encapsulates a set of test cases that can be used to 

exhaustively test method m that preM guards in the relevant testing modes. Furthermore, each 

unique test input object generated from UTIO, ETIO and UTIO is also responsible for checking 

the outputs from a test case. Thus, allowing the test engineer to be able to debug and verify 

whether each unique method m of the OM under test causes the OM to transition into the 

correct memory state when method m is exercised at run time.  

These features of our proposed testing method distinguishes it from the JUnit [114, 115] testing 

method which simply evaluates a set of test cases manually produced by the tester as either true 

or false. The JUnit [114, 115] testing method heavily relies on the experience of the tester. 

Hence, it could lead to non-uniform tests. Also, since the JUnit [114, 115] testing method does 

not rely on a formal specification for the purposes of generating test cases, there is no way that 

we can assure the correctness of the system under test (i.e. since there is nothing to compare the 

system under test with). Consequently, a number of important paths in the system under test 

could be missed without being tested. Hence, the system under test could contain faults which 

could lead to failures. 

4.2.6 The Person Example 

Here, we introduce the person example as a support mechanism with which to explain the 

various ideas and discussions that shall be presented in the rest of this chapter with respect to 

our proposed class machine automaton framework formalism. In particular, the bulk of the 
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examples explored in the different sections below will consistently refer to the code examples 

given in Figures 19 (i.e. an unordered set of pairs of the form <method name, method type>) 

and 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public interface PersonInterface 

  { // observer methods 

    String getForename(); 

    String getSurname(); 

    int getAge(); 

    String getGender(); 

    // mutator methods 

    void setForename(String f); 

    void setSurname(String s); 

    void setAge(int a); 

    void setGender(String g); 

  } 

Figure 19: The Person Interface Example 
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public class PersonObjectMachine implements PersonInterface 

  { 

     // a set of possibly dynamic attributes encapsulating the distributed states and memory of the PersonObjectMachine 

      

     private String forename; 

     private String surname; 

     private int age; 

     private String gender; 

             

     // a set of constant or fixed attributes encapsulating the distributed states and memory of the PersonObjectMachine 

 

     private static final int UPPER_AGE = 60; 

     public static final String UNKNOWN = "UNKNOWN"; 

     public static final String MALE = "MALE"; 

     public static final String FEMALE = "FEMALE"; 

           

     // a set of PersonObjectMachine Constructors 

           

     public PersonObjectMachine() 

      { 

          this.forename = "None"; 

          this.surname = "None"; 

          this.age = 0; 

          this.gender = "UNKNOWN"; 

       } 

        

     public PersonObjectMachine(String f, String s, int a, String g) 

       {   

          this.forename = f; 

          this.surname = s; 

          this.age = a; 

          this.gender = g; 

       }                          

        

     // a set of PersonObjectMachine Observer Methods 

  

     public String getForename() 

       {              

         return this.forename; 

       } 

 

     public String getSurname() 

       { 

         return this.surname; 

       } 

 

     public int getAge() 

       { 

         return this.age; 

       } 

       

     public String getGender() 

       { 

         return this.gender;     

       } 

 

 

     public String toString() 

       { 

         return getForename()+" "+getSurname()+" "+getAge()+" "+getGender(); 

       } 

        

      public void setForename(String f) 

       { 

          this.forename = f; 

       }         

        

 

     public void setSurname(String s) 

       { 

         this.surname = s; 

       } 

 

     public void setAge(int a) 

       {           

         this.age = a; 

       } 

  

     public void setGender(String g) 

       {           

         this.gender = g; 

       } 

         

            

  } // End of PersonObjectMachine 

Figure 20: The Person Example 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

89 

 

4.3 The Class-Machine 

Our goal in this section is to:  

• Create an automaton-based framework formalism which embodies the notion of a class 

and an object that can be found in object-oriented languages like Java and C++ (in 

section 3.3 the definition of a class was presented). We will call this the Class-Machine. 

• Develop a test method that is based on the Class-Machine formalism.  

• Develop an approach for estimating the probability of faults remaining in an object-

oriented system i.e. in order to make definite statements, provide sound inferences and 

guarantees over an object oriented system under test after testing has been completed.  

 

Definition 23: An extensible Class-Machine (CM) is a 10-tuple: (ΛΛ, S”, MOD, TYPECM, 

TIO, M”, ¥, CT, τ, ∆), where: 

• ΛΛ is the Class-Machine identifier. The role of the identifier component is to enable 

two different Class-Machines of the same type to be distinguished. 

• S” is a finite set of class variables belonging to the Class-Machine alone. The different 

elements in S” encapsulate the distributed memory of the class (discussed with 

examples in section 4.3.1).   

• MOD and TYPECM represents a finite set of modifiers and parameter types that can 

apply to the CM respectively (covered with examples in section 4.3.1). 

• TIO is a finite set of test input objects that can apply to the CM in the unchanged, error 

and goal state testing modes (covered with examples in section 4.3.2). 

• M” is a finite set of class methods belonging to the Class-Machine alone (discussed 

with examples in section 4.3.2).  

• ¥ is a possibly infinite family of object-machines that can apply to the CM (discussed 

with examples in section 4.3.3). 

• CT is the finite set of constructors that can apply to the Class-Machine. The role of 

every unique constructor function i.e. ct ∈ CT within the CM is to ensure that class 

variables (i.e. the elements of S” above) and instance variables (i.e. the elements of S’ 

for the individual object machines, as defined below in section 4.3.3.1) are initialised 

with the software engineer’s preferred default input values (discussed with examples in 

section 4.3.4). 

• τ is an extensible interface type that can apply to the CM. Meaning that τ can derive it 

own set of interface methods from an already existing super type τ”. This notion is 

embodied within the mechanism of inheritance that can be found in object-oriented 

languages (discussed with examples in section 4.3.5). 

• ∆ is the function mapping the Class-Machines interface type i.e. τ to a possibly infinite 

family of Object-Machines implementations i.e. ¥ (discussed with examples in section 

4.3.6). 

4.3.1 The State Encapsulating Class-Machine Variables 

In this section, first, we define MOD and then use elements in MOD to define the way that we 

want each element in S” to be accessed. 

 

MOD is the finite set of access modifiers that can apply to the CM. 
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Example: 

 

MOD = {private, public}. Figure 20 depicts examples of these types of access modifiers. 

Every element of S” has the following form: 

 

First, we show below that every unique class variable i.e. sti in S” is statically-typed. This 

means that the type of sti must first be declared before it can be used.   

Second, we show that every unique class variable i.e. sti in S” of the CM is declared statically to 

be mapped to a given type of access modifier (i.e. mod ∈ MOD): 

S” = {((st1 : t1)  mod1)…((st2 : t2)  mod2)…((stn : tn)  modn)} 

ti ∈ TYPECM   ∀1 ≤ i ≤ n, where: 

TYPECM  is the finite set of parameter types that can apply to the CM. These represent the set 

of parameter types that can be consumed or outputted to an environment within the CM:     

TYPECM = RT ∪ PT    

RT represents a finite set of reference types (see section 4.2.2 for detail explanation and 

examples).  For every unique element in RT, there is an associated default value (i.e. including 

the null type that can be found in the Java Programming Language). The appropriate default 

value elected for each unique element in RT in this case is largely but a design decision issue at 

the time of the CM specification. 

PT represents a finite set of primitive types (see section 4.2.2 for detail explanation and 

examples). For every unique element in PT there is an associated default value. Again, as 

above, the appropriate default value elected for each unique element in PT is largely but a 

design decision issue at the time of the OM specification. 

We say following above that RT ∩ PT = ∅ holds. 

Example: 

 

In Figure 20, the Person Object Machine implementation example in the Java programming 

language was presented. In particular, that example was implemented as a class in the Java 

Language. Below, we shall use that person example to illustrate the notion of class variables 

discussed earlier. To do this, we use pS” to represent all person class variables in Figure 20. In 

Java, class variables are those attributes defined with the static prefixes. Every unique class 

variable in pS” has its own type and access modifier when it is declared. The symbol (i.e. ) 

is used to show a mapping of class variable to modifier: 

pS”={((UPPER_AGE:int) private),((UNKNOWN_GENDER:String) public), 

((MALE_GENDER : String) public), ((FEMALE_GENDER : String)  public)} 
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4.3.2 Methods Belonging to the Class-Machine Alone 

  

Example: 

  

Given that the Person Object Machine implementation example depicted by Figure 6 does not 

define any class method i.e. methods which are defined with the static prefixes, here we simply 

use pM” to represent all person class methods and then indicate that it has zero elements. 

 

pM” = {} 

 

Guardm” = (Um”, Em”, Gm”) is a triplet that encapsulates a finite set of three unique precondition 

methods i.e. for every unique class method m” ∈ M” under test. We will simply refer to (i.e. 

Guardm”) as class method guards. Each unique precondition method in Um”, Em” and Gm” will 

drive a unique OM in IMP that conforms to the CM’s interface through the unchanged, error 

and goal state testing paths respectively when m” is exercised at run time. The implication of 

this is that the memory values and/or states of elements in S” may be affected. Hence, because 

class variables encapsulate the states that belong to the class, class methods are those methods 

that are used for manipulating those states. 

 

Every unique class method i.e. m” ∈ M” has the following form and behaviour: 

m" (modm”, Guardm”) : S” x inPTm”  →  (S”*, outPTm”, nextOMSIm”) 

Now, in order to explain the behaviour of class methods M”, we shall start by explaining all the 

fundamental components of M”: 

Firstly, from above, we say that a class method m" is mapped (i.e. indicated with the symbol 

) to an 2-tuple object, elements of which are modm ∈ MOD and Guardm”.  

Secondly, class method m" is said to operate on class variables S” after consuming a finite set 

of input parameter types inPTm” ⊆  TYPECM from an environment. 

Thirdly, class method m" produces an output type (outPTm” ∈ TYPECM) and a modified version 

of S” i.e. S”* depending on what precondition method(s) that eventually get triggered at run 

time from amongst the elements in Guardm”. Consequently, class method m" uses the next 

object machines transition state indicator (i.e. nextOMSIm”) to indicate the type of state that the 

OM under test has been driven into (i.e. whether the unchanged or error or goal state) when 

class method m" was exercised at run time. 

In particular, it is crucial to mention that prior to method m" being invoked at run time, every 

unique state encapsulating variable in S” has its own predefined default value. These various 

values for each unique variable in S” represents the initial memory values and/or states for the 

OM under test. Now, from the initial memory states and/or values S”of the OM, method m" 

with the form shown above is exercised in the presence of modm” and Guardm”. A new set of 

memory states and/or values (i.e.  S”*) is then computed and an output type outPTm” generated 

for the OM under test. Consequently, the OM is driven into a state, the type of which is 

indicated by nextOMSIm”.    

Now, assuming that: 
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• Um” ⊆ USPM is the finite set of unchanged state precondition methods that can apply to 

class method m" ∈ M”.  

• Em” ⊆ ESPM is the finite set of error state precondition methods that can apply to class 

method m" ∈ M”.  

• Gm” ⊆ GSPM is the finite set of goal state precondition methods that can apply to class 

method m" ∈ M”.  

• USPM is the complete finite set of unchanged state precondition methods that can apply 

to the OM in IMP under test i.e. in the unchanged state testing mode of the CM.  

• ESPM is the complete finite set of error state precondition methods that can apply to the 

OM in IMP under test i.e. in the error state testing mode of the CM.  

• GSPM is the complete finite set of goal state precondition methods that can apply to the 

OM in IMP under test i.e. in the goal state testing mode of the CM.  

• OMPM = USPM ∪ ESPM ∪ GSPM is the complete finite set of all types of 

precondition methods that can apply to the OM in IMP under test in all the relevant 

testing modes of the CM. 

Note: from above that the triplet that encapsulates the three different finite set of precondition 

methods that can apply to class method m” ∈ M” is Guardm” = (Um”, Em”, Gm”) in all the 

relevant testing modes of the CM. Hence, since from our assumptions above Um”, Em”,Gm” ⊆ 

OMPM and each unique element in OMPM is a precondition method preM, we say that preM is 

part of the definition of method m" given the form and behaviour of method m" described 

earlier: m" (modm”, Guardm”) : S” x inPTm”  →  (S”*, outPTm”, nextOMSIm”). 

Furthermore, following our assumptions above, we say that every unique precondition method 

i.e. preM ∈ OMPM has the following form and behaviour: 

preM   (mod , be) :  inPTm”  → tio 

From above, mod ∈ MOD is the type of modifier that can apply to precondition method preM. 

Also, preM is said to be guarded by a finite set of Boolean Expressions i.e. be ⊆ BE. Hence, 

preM is mapped to (i.e. indicated by the symbol ) mod and be. Also, inPTm” ⊆ TYPECM is a 

finite set of input parameter types that can apply to class method m” ∈ M” under test when it is 

guarded by preM. Now, because preM will be invoked within m” at run time, they both share 

the same type of inputs. Furthermore, during dynamic invocation and/or automatic test case 

generation, preM is exercised to produce test input object i.e. tio ∈ TIO.  During testing, each 

test case saved inside tio that was generated is then applied automatically on the appropriate 

method m” ∈ M” of the OM; thus allowing the test engineer to be able to view the new 

internal memory value(s) computed (i.e. S”*) when preM was exercised at run time. Our 

prime goal here is to verify if the OM under test is in the correct next transition state or not. 

Note that while preM returns a Boolean value to indicate whether a particular combination of 

memory state and input satisfies the precondition. It however operates much more than that in 

that each unique test input object tio generated from TIO encapsulates a set of test cases that 

can be used to exhaustively test class method m” that preM guards in the relevant testing 

modes. Also, each unique test input object tio generated from TIO is also responsible for 

checking the outputs from a test case. Consequently, allowing the test engineer to be able to 

debug and verify whether each unique class method m” of the OM under test causes the OM to 

transition into the correct memory state when method m” is exercised at run time. 

where: 
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TIO is the finite set of test input objects that can apply to the OM in all the relevant testing 

modes of the CM.  

TIO = UTIO ∪ ETIO ∪ GTIO 

In Figure 21, TIO is implemented in Java as the precondition test object. Generated test cases 

are saved inside precondition test objects: 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

BE is the finite set of Boolean expressions that can apply to the OM. 

NUS is the finite set of next unchanged states that can apply to the OM. 

NES is the finite set of next error states that can apply to the OM. 

NGS is the finite set of next goal states that can apply to the OM. 

In the unchanged, error and goal state testing modes of the CM, each unique preM ∈ USPM, 

preM ∈ ESPM and preM ∈ GSPM behaves as follows:  

preM  nextOMSI, where:  

nextOMSI ∈ NUS or nextOMSI ∈ NES or nextOMSI ∈ NGS depending on what testing modes of 

the CM we are in. 

This means that every unique unchanged, error and goal state precondition method preM 

encapsulates a unique memory state that it will drive the OM under test to when it is invoked at 

public class PreConditionTestObject 

  { 

      private Object[] testInput; 

      public PreConditionTestObject(Object[] t) 

        { 

          this.testInput = t; 

        } 

      public Object[] getTestInput() 

        { 

          return this.testInput; 

        } 

  }// End PreConditionTestObject 

 
Figure 21: Test Input Object Implementation in Java 
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run time. Given a preM therefore, we want to be able to verify and/or know what kind of 

memory state that it will drive the OM into when it is exercised. This represents the type of 

memory values that would be computed for all the variables encapsulating states e.g. in the case 

of class variables S”. The KEY-VALUE pair form shown above was proposed to address that 

goal. The KEY is preM while nextOMSI is the VALUE. Hence, (preM  nextOMSI) is used 

to mean the mapping of KEY to VALUE. In all the CM testing modes, nextOMSI is used to 

indicate what type of memory state(s) that the OM would be driven into (i.e. whether the 

unchanged, error or goal state) as a consequence of invoking class method m" when it is 

guarded by preM at run time. Given that as shown earlier, every unique class method m” ∈ M”  

has Guardm” to which it is mapped to, elements of which are Um”, Em” and Gm”. To test m” 

exhaustively, in each of the CM’s testing modes, a map with the form (preM  nextOMSI) is 

generated for each unique preM in Um”, Em” and Gm” in order to verify whether the OM under 

test has been driven into the correct memory state or not. 

Example: 

Below, we use the setAge method within Figure 20 to illustrate further the ideas presented 

above. In particular, we must make it clear at this juncture that while setAge method is used 

here as an example, setAge is not a class method but an instance method. This is because a 

disciplined approach employed within the Java Programming Language requires that only a 

class method is permitted to manipulate a class variable. The form and behaviour of setAge 

method shown below is exactly the same as in the case of method m” ∈ M”  described earlier.   

setAge (modsetAge, GuardsetAge) : pS x inPTsetAge  →  (pS*, outPTsetAge, nextOMSIsetAge), where: 

modsetAge = public is the type of access modifier that can apply to method setAge. 

GuardsetAge = (UsetAge, EsetAge, GsetAge) represents the finite set of three unique precondition 

methods guarding method setAge. 

UsetAge = {setAgeUSP1}. 

EsetAge = {setAgeESP1, setAgeESP2}. 

GsetAge = {setAgeGSP1, setAgeGSP2, setAgeGSP3, setAgeGSP4}. 

inPTsetAge = {int}is a finite set of input parameter types that can apply to method setAge. 

 

pS = {(forename =”None”), (surname =”None” ), (age = 0), (gender = “UNKNOWN”), 

(UPPER_AGE =60), (UNKNOWN_GENDER =“UNKNOWN”), (MALE_GENDER =”MALE”), 

(FEMALE_GENDER =”FEMALE”)} is the initial state of all instance and class variables that 

belongs to the person object machine depicted by Figure 20. As shown, both instance and class 

variables have their respective predefined default values. The specified default values 

represents the initial memory values and/or states of the person object machine prior to method 

setAge being exercised with inPTsetAge in the presence of UsetAge, EsetAge and GsetAge. 

 

outPTsetAge = void is the type of output that method setAge will produce at run time. 

 

pS* represent the modified memory values and/or states for the person object machine system 

under test. This means that new memory values for forename, surname, age and gender will be 

computed based on the type of input inPTsetAge that method setAge consumes from an 

environment and what precondition method in UsetAge, EsetAge and GsetAge that eventually get fired 

at run time. Given that UPPER_AGE, UNKNOWN_GENDER, MALE_GENDER and 
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FEMALE_GENDER are state encapsulating variables with the static final prefixes, what this 

means is that the memory values and/or states that they reference would never change when any 

method of the person object machine system under test get triggered at run time; since by 

default they are declared as constants. 

nextOMSIsetAge ∈ NUS or nextOMSIsetAge ∈ NES or nextOMSIsetAge ∈ NGS depending on what 

testing mode of the person object machine we are in. Hence, nextOMSIsetAge is used to indicate 

the type of state that the person object machine system under test has been driven into when 

setAge is exercised with the form shown above. 

Below, examples for all the elements in UsetAge, EsetAge and GsetAge are shown with respect to 

Figure 20: 

 

One Unchanged State Precondition Method: 

Our goal here is to illustrate how the setAge method can be tested in the unchanged state 

testing mode. In particular, for this example we are considering the case of the default value of 

the age attribute. Here, the memory state of the age attribute remains unchanged when user 

test input satisfies [(age == 0)]. When this constraint holds, method setAge drives the 

Person Object-Machine POM depicted by Figure 20 into an unchanged memory state. 

Furthermore, recall from point five of section 4.2.5 that each unique test input object (i.e. 

PreConditionTestObject) generated from exercising elements in UsetAge encapsulates a set of 

test cases (i.e. testInput) that can be used to exhaustively test method setAge that 

setAgeUSP1 guards in the unchanged state testing mode. Furthermore, each unique test input 

object generated from exercising elements in UsetAge is also responsible for checking the outputs 

from a test case. Thus, allowing the test engineer to be able to debug and verify whether   

method setAge of the POM under test causes the POM to transition into the correct memory 

state when method setAge is exercised at run time: 

private PreConditionTestObject setAgeUSP1() 

  { 

     setAge(0);         //Test Case 

     if(this.age == 0)  // Boolean Expression 
       { 

          Object[] testInput = new Object[]{0};   

          return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

  } 

 

 

Two Error State Precondition Methods: 

Here, an error occurs with respect to Figure 20 when the input value of the age attribute 

satisfies [(age < 0) || (age > UPPER_AGE)]. When the user test input falls within 

any of these ranges, method setAge drives the POM into an error state: 
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private PreConditionTestObject setAgeESP1() 

  { 

     setAge(-1);       //Test Case 

     if(this.age < 0 ) // Boolean Expression 
       { 

          Object[] testInput = new Object[]{-1};   

          return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

  } 

 

 

private PreConditionTestObject setAgeESP2() 

  { 

     setAge(65);              //Test Case 

     if(this.age > UPPER_AGE) // Boolean Expression 
       { 

         Object[] testInput = new Object[]{65};   

         return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

  } 

 

 

Four Goal State Precondition Methods: 

Here, we illustrate how the setAge method can be tested in the goal state testing mode. Here, 

the memory state of the age attribute will be driven into goal state when user test input satisfies 

[(age == 0)||(age > 0)||(age < UPPER_AGE)|| (age == UPPER_AGE)]: 

 

private PreConditionTestObject setAgeGSP1() 

  { 

     setAge(0);        //Test Case 
 

     if(this.age == 0) // Boolean Expression 
       { 

         Object[] testInput = new Object[]{0};   

         return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

  } 

 

private PreConditionTestObject setAgeGSP2() 

  { 

     setAge(22);      //Test Case 
 

     if(this.age > 0) // Boolean Expression 
       { 

          Object[] testInput = new Object[]{22};   

          return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

   } 
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private PreConditionTestObject setAgeGSP3() 

  { 

     setAge(45);              //Test Case 
 

     if(this.age < UPPER_AGE) // Boolean Expression 
       { 

          Object[] testInput = new Object[]{45};   

          return new PreConditionTestObject(testInput); 

       } 

 

     return null; 

   } 

 

private PreConditionTestObject setAgeGSP4() 

  { 

      setAge(60);               //Test Case 
 

      if(this.age == UPPER_AGE) // Boolean Expression 
        { 

          Object[] testInput = new Object[]{60};   

          return new PreConditionTestObject(testInput); 

        } 

 

      return null; 

   } 

4.3.3 Heterogeneous Family of Object-Machines 

Every unique object-machine OM ∈ ¥ has the following useful fundamental properties or 

characteristics: 

• Identity (ID) 

• State (S)  

• Behaviour (M) 

4.3.3.1 The Object-Machine 

Hence, following section 4.3.3, we can define OM as: 

OM = (ID, S, M), where:  

ID is the object machine identifier. The role of the identity component is to enable two different 

object machines of the same type to be distinguished. 

S’ is the finite set of instance variables that can apply to the OM alone 

S is the complete finite set of state encapsulating variables that can apply to the OM. The 

different elements in S encapsulate the distributed memory states of the OM. This is given by: 

 

S = S’  ∪ S”   and we require that S’  ∩  S” = ∅ holds. Every element of S’ has its own 

declared static type in a manner similar to the description for S” in section 4.3.1. 
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M’ is the finite set of methods belonging to the OM alone 

M is the complete finite set of methods that can apply to the OM. This is given by: 

M = M’  ∪ M”   and we require that M’  ∩  M” = ∅ holds.  The form and behaviour of all the 

methods in M’ are similar to those of M” described in section 4.3.2. 

4.3.3.1.1 The Object-Machine States 

Further to section 4.3.3.1, the example presented below is used to illustrate the concept with 

respect to S:   

 

Example:  

Here, we use pS’ to represent all instance variables that belong to the POM. Each unique 

instance variable in pS’ has their static type and a predefined access modifier to which it is 

mapped to when it is declared i.e. as shown within Figure 20: 

pS’ = {((forename : String) private), ((surname : String) private), ((age : int ) 

private), ((gender : String) private)} 

Given that in section 4.3.1 we covered all the class variables pS” that belongs to the POM 

system under test, below we say that all the state encapsulating variables that can apply to the 

POM system is given by: 

pS = pS’  ∪ pS” 

4.3.3.1.2 The Object-Machine Methods 

Further to section 4.3.3.1, the example presented in this section is used to illustrate the concept 

with respect to M: 

Example: 

Again, with respect to Figure 20, we use pM’ to represent all instance methods that can apply to 

it: 

pM’ = {getForename, getSurname, getAge, getGender, toString, setForename, setSurname, 

setAge, setGender} 

Given that in section 4.3.2 we showed that class methods pM” is empty with respect to Figure 

20, in this section, we say that all the instance and class methods that can apply to the person 

object machine system depicted by Figure 20 is given by: 

pM = pM’  ∪ pM” 

The form and behaviour of each unique method m ∈ pM is the same as that of the setAge 

method covered in section 4.3.2. 
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4.3.4 The Class-Machine Constructors 

Every constructor function i.e. ct ∈ CT has the same form, behavior and testing as those of M” 

and that of the setAge method discussed in section 4.3.2 except that constructors do not 

produce an output when they are exercised at run time: 

 

ct  (modct, Guardct) :  S  x inPTct  → (S*,  nextOMSIct) 

 

Example: 

Also, with reference to Figure 20, we use pCT to represent all the constructors that can apply to 

the POM: 

pCT ={PersonObjectMachine(), PersonObjectMachine(String, String, int, String)}  

4.3.5 The Class-Machines Interface Type 

Every unique CM under test has an extensible interface type that a heterogenous family of 

Object-Machines belonging to it must conform to. The interface type of the CM is given by: 

τ = (IID, IM), where: 

IID is the interface identifier for the Class-Machines interface type. The role of the identity 

component is to enable two different interfaces of the same type to be distinguished. 

IM is the finite set of interface methods that can apply to the Class-Machines interface type. 

Every unique interface method i.e. im ∈ IM has the same form, behaviour and testing as those 

of M” described in section 4.3.2.   

4.3.6 The Class-Machine Connector Function 

During testing, the role of the Class-Machine connector function (i.e. ∆) is to map the Class-

Machine’s interface type (i.e. τ) to a heterogeneous family of Object-Machines that adheres to τ 
so that they can all be tested. Although, in its original form and design τ is extensible we 

however do not vary τ. We only test τ for a family of Object-Machines that adheres to it. For 

the purposes of testing, we assume that the family of Object-Machines to be tested are finite i.e. 

as described in section 4.2.3. 

∆:  τ  OM. 

This is because every unique object-machine OM in ¥ provides a different type of concrete 

implementation with respect to τ. Hence, testing a unique CM means testing a heterogeneous 

family of Object-Machines that belongs to it. Furthermore, while it is possible for all the 

Object-Machines in ¥ to compute the same function (i.e. they are semantically close), in that 

they all implements the same interface type τ, a test set T that is adequate for one object-

machine OM in ¥ is not necessarily adequate for the others (i.e. as expressed by 

Antiextensionality axiom in section 1.1.4). Hence, a different test set T must be generated for 

each unique object-machine OM in ¥. 
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The function ∆ is treated as a map with the form ∆(KEY, VALUE) pair structure, where τ is the 

KEY and OM is the VALUE. The symbol  is used to map KEY to VALUE.  As a consequence 

of this style, a record of the different concrete implementations that can apply in time to the 

interface type τ can be kept for verification purposes i.e. since ¥ is extensible in its pure form, in 

the light of new implementations that conform to τ. 

Following the definition of τ in section 4.3.5, we say here that every unique OM in ¥ is deemed 

to be completely specified with respect to the class-machines interface type (i.e. τ) iff the finite 

set of interface methods i.e. IM of the CM is a subset of the methods of OM i.e. M (covered in 

section 4.3.3.1.2). Hence, we say that when the above constraint holds, the following becomes 

true: 

 

(OM ↑ τ) iff (IM  ⊆  M) 

 

The symbol ↑ can be read has is completely specified with respect to. So we say that OM is 

completely specified with respect to τ i.e. written as (OM ↑ τ) iff (IM  ⊆  M).  

Example: 

Recall that in section 4.2.3 of our preliminaries we discussed two types of queue 

implementations (i.e. MyCircularArrayQueue and MyLinkedListQueue). Also a generic 

interface type (i.e. Queue) was defined to which these implementations must conform. In that 

example, MyCircularArrayQueue and MyLinkedListQueue were both completely specified 

with respect to Queue given that the Queue interface is a subset of both 

MyCircularArrayQueue and MyLinkedListQueue. Similarly, the person object machine 

depicted by Figure 20 was also completely specified with respect to the person interface 

depicted by Figure 19; given that the person interface is a subset of the person object machine. 

Furthermore, assuming that following the above: 

¥ = {MyCircularArrayQueue, MyLinkedListQueue}. 

τ = Queue. 

The function ∆ operates as ∆:  Queue  OM, where OM ∈ ¥. 

Note that: Every CM is extensible in its original form. That is, it is possible for one CM to be 

related to another CM through the mechanism of inheritance in object-oriented languages. 

4.4 Derivation, Inheritance and Subtyping of a Completely 
Specified Object Machine 

In Figure 22, the inheritance relationship between three distinct Object Machines A, B and C 

are shown; where Object Machines B and C are subtypes of Object Machine A. The state 

space of Object Machines B and C includes those of Object Machine A i.e. for all public non-

hidden state variables and methods. Hence, Object Machines B and C are said to be derived 

from Object Machine A. 
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Following on from above, now assume that: 

• The Object Machine A = (A_ID, A_States, A_Methods), where: 

             A_ID is identifier for the Object Machine A 

             A_States is the finite set of states that can apply to the Object Machine A 

             A_Methods is the finite set of methods that can apply to the Object Machine A 

• The Object Machine B = (B_ID, B_States, B_Methods), where: 

             B_ID is identifier for the Object Machine B 

             B_States is the finite set of states that can apply to the Object Machine B 

             B_Methods is the finite set of methods that can apply to the Object Machine B 

• The Object Machine C = (C_ID, C_States, C_Methods), where: 

             C_ID is identifier for the Object Machine C 

             C_States is the finite set of states that can apply to the Object Machine C 

             C_Methods is the finite set of methods that can apply to the Object Machine C 

To illustrate the mechanism of inheritance using Figure 22 and the definitions provided above 

for Object Machines A, B and C, below, we illustrate how the elements in B_States and 

B_Methods are derived: 

Now, by construction based on Figure 22, B_States = A_States ⊗ {StateVar1, StateVar2, 

StateVar3} i.e. for all public non-hidden state variables in Object Machine A. Here, we 

assume using a concrete example that the elements in {StateVar1, StateVar2, StateVar3} forms 

the major difference between the elements in A_States.  

Similarly, as above, B_Methods = A_Methods ⊗ {setStateVar1(), setStateVar2(), 

setStateVar3()} i.e. for all public non-hidden methods in Object Machine A. Again, here, we 

assume using a concrete example that the elements in {setStateVar1(), setStateVar2(), 

setStateVar3()} forms the major difference between the elements in A_Methods.  

 

A 

C B 

Figure 22: Inheritance relationship between 

Object Machines A, B and C 
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where: 

⊗ is the function appending every unique element in the right-hand set onto the left-hand set if 

and only if the element to be added is not already present in the left-hand set. 

We then say following the above illustrations that Object Machine A  ⊆  Object Machine B 

(due to the mechanism of inheritance). Similar approach to the one shown above is then 

repeated to show that Object Machine A  ⊆  Object Machine C (due to the mechanism of 

inheritance).  

By public non-hidden states or methods in this section and beyond it, we are actually referring 

to state encapsulating variables and methods declared with public access modifiers in their 

formal object-machine specifications or implementations. In an object-oriented language like 

Java, derived subclasses do not have direct access to (nor are they permitted to inherit) the 

attributes and methods of a parent class declared with private access modifiers (Table 2 

represents access levels in Java i.e. showing the impact of access modifiers on state 

encapsulating variables and methods of a parent class and derived subclasses). 

Note: that there is a distinction to be made between the inheritance of interfaces and the 

inheritance of implementations, and that programming languages may use different 

mechanisms to represent these two forms of inheritance (e.g. in Java a class can extend another 

and can implement interfaces).  In particular, this distinction is important because the restriction 

to public non-hidden states to which we refer in this section only applies to inheriting 

interfaces:  for inheriting implementations all states are included. In particular, chapter 5 was 

designed extensively to illustrate the mechanism of inheritance with supporting examples. 

4.5 Object-Machines Methods Design for Test Conditions  

The structure of the methods of the object machine model presented and discussed thus far has 

been motivated by two important goals: 

 

• To make it easier to automatically generate a complete test set for a completely 

specified object machine under test – so that all faults present in the machine may be 

revealed; since the ultimate goal of testing is to achieve correctness by revealing all the 

faults that are present in an implementation so that they can be removed. 

• To make it easier to comprehend, study, test and verify the different constituent 

components of the object machine model (e.g. the methods and precondition methods 

that encapsulate the distributed state of the object machine). 

 

Earlier in section 4.3.2 the form and behaviour of the methods (i.e. M) of a completely specified 

object machine was presented and all the relevant components associated with the methods of 

the object machine explained; hence, here, we shall not repeat this. 

 

Every unique method i.e. m ∈ M has the following form and behaviour: 

m (modm, Guardm) : S  x  inPTm  →  (S*, outPTm, nextOMSIm) 

Now, in order to achieve the two stated set of goals above, a machine can be created to 

represent the complete structure of the components that are required to define the methods of a 

completely specified object machine (we call this the complete structure of methods of an 
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object machine currently under test and denote it with the symbol Œ); since the methods of 

the object machine are responsible for manipulating the distributed memory state(s) and/or 

values of the object machine under test. 

4.5.1 The Complete Structure of methods of the OM under 
test 

The complete structure of methods of an object machine currently under test is denoted with the 

symbol Œ, where: 

Œ = (Ψ,ℜ,ϒ)  is the complete structure of the object machine currently under test. 

Ψ = (TIOGen, PreGen) is a 2-tuple machine consisting of the test input object generator 

function TIOGen (covered in section 4.5.2) and the precondition generator function PreGen 

(covered in section 4.5.3). 

ℜ = (PMPGen, PMTLGen, P2Trig, PN2Trig, HPFGen, LPFGen, TFRGen) is a 7-tuple 

machine  

PMPGen is the precondition method profile generator function (covered in section 4.5.4). 

PMTLGen is the precondition method total length generator function (covered in section 4.5.5). 

P2Trig is the probability to trigger function (covered in section 4.5.6).  

PN2Trig is the probability not to trigger function (covered in section 4.5.7). 

HPFGen is the high probability filter function (covered in section 4.5.8). 

LPFGen is the low probability filter function (covered in section 4.5.9). 

TFRGen is the total number of faults remaining in the OM after testing has been completed 

(covered in section 4.5.10)   

ϒ = (EMMGen) is a 1-tuple machine with the exact method match generator function EMMGen 

covered in section 4.5.11. 

4.5.2 The Test Input Object Generator Function 

Given that every unique method m ∈ M of the OM under test is mapped to and/or guarded by a 

finite set of precondition methods Um, Em and Gm (i.e. represented simply as Guardm), during 

testing, the goal is to generate in the unchanged, error and goal state testing modes of the CM 

the corresponding test input object that can apply to each unique precondition method in Um, Em 

and Gm. 

Earlier, we define what OMPM means and show that every unique precondition method preM 

∈ OMPM has the following form and behaviour: 

preM   (mod , be) :  inPTm  → tio 

Now, recall as described earlier, that all the elements in UTIO, ETIO and GTIO corresponds to 

the test input objects generated in the unchanged, error and goal state testing modes of the CM. 

Hence, we say that the test input object generator function operates as follows: 

 

TIOGen:  OMPM  → TIO 

 

Consequently, tio ∈ TIO = UTIO ∪ ETIO ∪ GTIO is generated in the relevant testing modes 

for each unique precondition method in Um, Em and Gm. To test a corresponding concrete 

implementation method of each unique method m ∈ M of the OM under test exhaustively, each 

unique corresponding test case saved up inside tio is then applied on method m automatically at 
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run time to verify whether the state encapsulating variables (i.e. instance and class variables) 

belonging to the OM under test have been driven into the correct memory states and/or values 

in the relevant testing modes of the CM. Here, the test input object generator function allows 

the test engineer to know and/or generate a finite set of inputs that can exhaustively test method 

m in a particular testing mode.   

4.5.3 The Precondition Generator Function 

Sometimes, given a unique method m ∈ M of the OM under test, we want to know specifically: 

• The finite set of unchanged state precondion methods i.e. Um guarding it.   

• The finite set of error state precondion methods i.e. Em guarding it.   

• The finite set of goal state precondion methods i.e. Gm guarding it.  

 

To achieve the above goal, the precondition generator function PreGen was created. This 

function takes a finite set of methods M that can apply to the OM under test as its argument and 

then returns OMPM: 

PreGen:  M  → OMPM, where: 

 

OMPM = USPM ∪ ESPM ∪ GSPM 

Um ⊆ USPM  

Em  ⊆ ESPM 

Gm  ⊆ GSPM 

 

Hence, from above, for each unique method m ∈ M of the OM under test, we can automatically 

generate Um, Em and Gm guarding it in the relevant testing modes of the CM testing technique 

i.e. given the form and behavior of each unique method m ∈ M described earlier. 

4.5.4 The Precondition Method Profile Generator Function 

Given that every unique method m ∈ M of the OM under test is guarded by a finite set of 

unchanged, error and goal state precondition methods i.e. Um, Em and Gm, sometimes, we want 

to carryout some useful analysis on method m: 

• More specifically, for example, those which concern the need to automatically compute 

the total number and/or lengths of the unchanged state precondition methods in Um.   

• More specifically, for example, those which concern the need to automatically compute 

the total number and/or lengths of the error state precondition methods in Em.   

• More specifically, for example, those which concern the need to automatically compute 

the total number and/or lengths of the goal state precondition methods in Gm.   

 

To achieve the above stated goal, the precondition method profile generator function PMPGen 

was created. This function takes a finite set of methods M that can apply to the OM under test as 

its argument and then returns PMP: 

 

PMPGen:  M  → PMP, where:  

 

The form and behaviour of each unique method m ∈ M of the OM under test was covered in 

detail earlier. 
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PMPuspm = ω(m, luspm) is the complete profile of each unique method m ∈ M of the OM under 

test in the unchanged state testing mode of the CM testing technique. This is represented as a 

map with the form ω(KEY, VALUE) pair structure. Here, method m is the KEY and luspm is the 

VALUE. This means that every unique method is mapped to the length of the unchanged state 

precondition methods (i.e. Um) by which it is guarded by. This pattern is then repeated in the 

error i.e. where PMPespm = ω(m, lespm) and goal i.e. where PMPgspm = ω(m, lgspm) state testing 

modes of the CM respectively.  

 

PMP = (PMPuspm, PMPespm, PMPgspm) is a triplet representing the complete profile of each 

unique method m ∈ M of the OM under test in all the different testing modes of the CM testing 

technique (i.e. the unchanged, error and goal state testing modes). 

 4.5.5 The Precondition Method Total Length Generator 
Function 

To show how to calculate the total length of all precondition methods in a particular testing 

mode of the CM testing technique, the precondition method total length generator function was 

created. This takes as argument the PMPuspm discussed earlier and then returns the total length 

TL computed for all the precondition methods that can apply to the OM under test in that 

particular testing mode. 

 
PMTLGen:   PMPuspm   → TL 

 

Java implementation of the above function is given below: 
 

public double PMTLGen(Map<String, Double> methodProfile) 

    { 

       double totalLengthCounter = 0; 

     

       Set entries = methodProfile.entrySet(); 

       Iterator iter = entries.iterator(); 

       while(iter.hasNext()) 

            { 

               Map.Entry entry = (Map.Entry)iter.next(); 

               String methodName = (String)entry.getKey(); 

               Integer intVal = (Integer)entry.get(methodName); 

               double uTotal = intVal.doubleValue(); 

                totalLengthCounter+=uTotal; 

          

            } 

      return  totalLengthCounter; 

    } 

4.5.6 The Probability to Trigger Function 

Here, we propose an approach for calculating the probability of each unique method m ∈ M of 

the OM under test being triggered whilst in the unchanged, error and goal state testing modes of 

the CM testing technique. The probability to trigger function P2Trig takes as its argument e.g. 

PMPuspm discussed earlier and then returns a map with the form ω(m, P2Trguspm) at run time. 

The returned map contains a mapping of each unique method under test to the probability of it 

being triggered. This approach was motivated by the fact that every unique method of the OM 
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under test can have different probability of being triggered in each unique testing mode of the 

CM testing technique; given that each unique method m ∈ M under test has different number of 

precondition methods in Um, Em and Gm. This is because each unique precondition method in 

Um, Em and Gm encapsulate a unique path that it would drive the OM under test to within 

method m when it is exercised at run time. Hence, the complexity of each unique method m 

under test can vary. Also, we argue that untested paths within m can contain fault(s) thus 

leading m to failure(s) at run time. 

 

P2Trig:  PMPuspm → ω(m, P2Trguspm)  

 

Java example of the above function is given below: 

 
public Map<String, Double> P2Trig(Map<String, Double> methodProfile) 

    { 

       double toTriggerProb = 0; 

 

        Map<String, Double> probToTrig = new HashMap<String, Double>(); 
     

       Set entries = methodProfile.entrySet(); 

       Iterator iter = entries.iterator(); 

       while(iter.hasNext()) 

            { 

               Map.Entry entry = (Map.Entry)iter.next(); 

               String methodName = (String)entry.getKey(); 

               Integer intVal = (Integer)entry.get(methodName); 

               double preMTotalGuard = intVal.doubleValue(); 

               toTriggerProb = preMTotalGuard / PMTLGen(methodProfile); 
               probToTrig.put(methodName, toTriggerProb); 

                       

            } 

      return probToTrig; 

    } 

 4.5.7 The Probability not to Trigger Function 

Here, we propose an approach for computing the probability not to trigger for each unique 

method m ∈ M of the OM under test whilst in the unchanged, error and goal state testing modes 

of the CM testing technique. The probability not to trigger function PN2Trig takes as its 

argument (e.g. PMPuspm discussed earlier) and then returns a map with the form ω(m, 

PN2Trguspm) at run time. The returned map contains a mapping of each unique method under 

test to the probability of it not being triggered. 

 

PN2Trig:  PMPuspm → ω(m, PN2Trguspm) 

 

Java example of the above function is given below: 

 
public Map<String, Double> PN2Trig(Map<String, Double> methodProfile) 

    { 

       double toTriggerProb = 0; 

       double notToTriggerProb = 0; 

 

       Map Map<String, Double> probNotToTrig = new HashMap<String, Double>(); 
     

       Set entries = methodProfile.entrySet(); 
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       Iterator iter = entries.iterator(); 

       while(iter.hasNext()) 

            { 

               Map.Entry entry = (Map.Entry)iter.next(); 

               String methodName = (String)entry.getKey(); 

               Integer intVal = (Integer)entry.get(methodName); 

               double preMTotalGuard = intVal.doubleValue(); 

               toTriggerProb = preMTotalGuard / PMTLGen(methodProfile); 

                       notToTriggerProb  = 1 – toTriggerProb; 
               probNotToTrig.put(methodName, notToTriggerProb); 

                       

            } 

      return probNotToTrig; 

    } 

4.5.8 The High Probability Filter Function 

Here, we propose an approach for calculating high probability to fire for each unique method 

m ∈ M of the OM under test whilst in the unchanged, error and goal state testing modes of the 

CM testing technique. The high probability filter function HPFGen takes as argument (e.g. 

PMPuspm discussed earlier and a high probability filter value hpf) and then returns a map with 

the form ω(m, HProbuspm) at run time. The returned map contains a mapping of each unique 

method under test to the computed high probability of it firing in a particular testing mode of 

the CM. Recall that earlier we used the probability to trigger function P2Trig to compute the 

probability of each unique method m ∈ M of the OM under test firing in the unchanged, error 

and goal state testing modes. Now, after computing the various probabilities of each of the 

methods in M firing, a predefined high probability filter value hpf is then used to filter out the 

methods with high probabilities to trigger in the different testing modes of the CM. In 

particular, the value of hpf can vary from one OM under test to another. The value of hpf is 

determined and/or chosen by the test engineer after the probabilities of each unique method m 

∈ M of the OM under test firing in the unchanged, error and goal state testing modes has been 

computed. 

 

Crucially, in the different testing modes of the CM, the prevailing argument is that methods 

with high probability to fire stand a higher chance that all the different paths within them will 

be exercised and the presence of any fault(s) within them revealed; so that they can eventually 

be removed.   

HPFGen:  PMPuspm x hpf → ω(m, HProbuspm)  

 

Java example of the above function is given below: 

 
public Map<String, Double> HPFGen(Map<String, Double> mthdProf, double hpf) 

  { 

      double toTriggerProb = 0; 

 

      Map Map<String, Double> highProbFilter = new HashMap<String, Double>(); 
     

       Set entries = mthdProf.entrySet(); 

       Iterator iter = entries.iterator(); 

       while(iter.hasNext()) 

            { 

               Map.Entry entry = (Map.Entry)iter.next(); 

               String methodName = (String)entry.getKey(); 
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               Integer intVal = (Integer)entry.get(methodName); 

               double preMTotalGuard = intVal.doubleValue(); 

               toTriggerProb = preMTotalGuard / PMTLGen(mthdProf); 

                     

               if(toTriggerProb >= hpf) 

                 { 
                   highProbFilter.put(methodName, toTriggerProb); 

 

                 }      

            } 

      return highProbFilter; 

    } 

4.5.9 The Low Probability Filter Function 

The low probability filter function LPFGen operates in the same manner as the high probability 

filter function. Except that, here, the low probability filter value lpf is used to filter out methods 

with low probabilities to trigger in the different testing modes of the CM.  Again, lpf is chosen 

in the same manner as that of the hpf discussed earlier. Here, lpf is determined after computing 

the various probabilities for each of the methods in M with the probability not to trigger 

function PN2Trig covered earlier. 

 

As in the case of the high probability filter function description above, the important argument 

here is that methods with low probability not to fire stand a high chance that all the different 

paths within them will not be exercised and the presence of any fault(s) within them will not be 

revealed. 

LPFGen:  PMPuspm x lpf → ω(m, LProbuspm)  

 
Java example of the above function is given below: 
 

public Map<String, Double> LPFGen(Map<String, Double> mthdProf, double lpf) 

  { 

       double toTriggerProb = 0; 

       double notToTriggerProb = 0; 

 

       Map Map<String, Double> lowProbFilter = new HashMap<String, Double>(); 

     

       Set entries = mthdProf.entrySet(); 

       Iterator iter = entries.iterator(); 

       while(iter.hasNext()) 

            { 

               Map.Entry entry = (Map.Entry)iter.next(); 

               String methodName = (String)entry.getKey(); 

               Integer intVal = (Integer)entry.get(methodName); 

               double preMTotalGuard = intVal.doubleValue(); 

               toTriggerProb = preMTotalGuard / PMTLGen(mthdProf); 

                       notToTriggerProb  = 1 – toTriggerProb; 

 

               if(notToTriggerProb >= lpf) 

                 { 

                   lowProbFilter.put(methodName, notToTriggerProb); 

                 } 

                       

            } 

      return lowProbFilter; 

   } 
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4.5.10 Total Fault Remaining Undetected Function 

Following earlier arguments, the goal here then is to propose an approach for estimating and/or 

predicting the total number of faults remaining in the concrete OM implementation system 

under test after testing has been completed in the various testing modes of the CM testing 

technique. To achieve this goal, every unique method m ∈ M of the OM under test with low 

probability to trigger will be automatically selected and each unique precondition method 

encapsulating a unique transition path in U, E and G associated with method m counted in the 

relevant testing mode. The total of these represents the total number of faults remaining 

undetected in the OM under test. Since untested transition paths can potentially contain fault(s). 

 
public double TFRGen(Map uMap, double uLpf, Map eMap, double eLpf, Map gMap, 

double gLpf) 

  { 

     double totalFaultRemaining = 0; 

 

     Map<String, Double> lowUspm = LPFGen(uMap, uLpf); 

     Map<String, Double> lowEspm = LPFGen(eMap, eLpf); 

     Map<String, Double> lowGspm = LPFGen(gMap, gLpf); 

 

     double uspmCount = PMTLGen(lowUspm); 

     double espmCount = PMTLGen(lowEspm); 

     double gspmCount = PMTLGen(lowGspm); 

 

     totalFaultRemaining = uspmCount + espmCount + gspmCount; 

 

     return totalFaultRemaining; 

 

  } 

4.5.11The Exact Method Match Generator Function 

Given any three unique finite sets of unchanged, error and goal state precondition methods U, E 

and G, we want to be able to search and find them i.e. if they exist amongst every unique 

method m ∈ M of the OM under test. This can be achieved since each unique method m ∈ M 

under test has predefined precondition method guards (i.e. Guardm) to which it is mapped to 

statically. To achieve this goal, the exact method match generator function EMMGen was 

created. This function takes a finite set of method guards (i.e. Guard) as its argument and then 

returns a finite set of methods M that can apply to the OM under test: 

 

EMMGen:  Guard → M, where:  

 

Every unique Guardm in Guard can be defined as: 

Guardm = (Um, Em, Gm) a triplet that encapsulates a finite set of three unique precondition 

methods i.e. for the method m under test. 

  

Hence, from above, every unique Guardm in Guard is searched for and matched exactly to a 

unique method m ∈ M of the OM under test. 
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4.6 Summary 

This chapter introduced and discussed a new automaton-based framework formalism for 

specifying, verifying and testing object oriented programs written in languages like Java and 

C++. The chapter also discussed a test method that is based on this formalism. In order to make 

definite statements, provide sound inferences and guarantees over an object oriented system Sys 

under test after testing has been completed, an approach for estimating the probability of faults 

remaining in Sys was proposed.  

 

It is crucial to mention at this juncture that in its original form and design, our proposed testing 

method focuses on complete state testing. However, the augmented probabilistic testing 

technique appended to our testing philosophy was introduced to address the fact that in practice 

with complex object oriented systems it is extremely difficult to completely or accurately claim 

that all possible paths in the system under test has been followed and tested for the presence of 

faults. (For example in the presence of while loops and the mechanism of polymorphism in 

object oriented languages which can make the entire state space of the system under test not to 

be tractable i.e. due to the state explosion problem described in [56]) 

 

Hence, it remains that untested paths within Sys can contain faults. While specification based 

testing method such as [2] claims to test a system completely based on its design for test 

conditions, it remains that the approach described in [2] shares similar weakness with other 

specification based testing methods covered in section 2.3 in that while it tells us how well Sys 

satisfies its formal specification, it does not tell us what part of Sys that was executed to satisfy 

each part of the specification.  

 

More than that, the approach in [2] has not been extended to complex object oriented systems to 

ascertain their completeness claim i.e. given that the approach described in [2] is procedural in 

its pure form. Also, the Object X-Machine based testing approach [55] described earlier relies 

heavily on the Stream X-Machine based testing method [2] which is purely procedural. 

Furthermore, the approach described in [55] does not capture or provide an automaton-based 

formalism for the notion of classes that can be found in object oriented languages. Hence 

testing Sys for completeness with [2, 55] then raises a few questions like: what is the 

fundamental unit of test for object oriented systems? Is it a class or an object? Given that object 

oriented systems are composed of a society of communicating objects where each unique object 

in the system belongs to a class, it is clear that the class is the fundamental unit of test. Hence, 

the argument here is that testing should focus on the class. Surprisingly, earlier work [94, 102] 

by the same authors of [55] supports the argument which claims that classification is that which 

makes a language distinctively object oriented. 

 

To make the state space of our proposed CM model tractable (i.e. given that a class has an 

interface type which can be mapped to a possibly infinite family of concrete implementations) a 

finite family of implementations was proposed for the interface type of the CM under test i.e. 

given that the family of concrete implementations can be further extended in the light of new 

implementations that conforms to the interface type of the CM that is under test. Hence, using 

this approach we can keep track of all possible object bindings for the interface type of the class 

under test (i.e. since for the purposes of testing a finite set of implementations that adheres to 

the interface type of the CM that is under test is assumed). The merit of this proposal implies 

that problems caused through the mechanism of polymorphism can then be easily addressed. 
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Chapter 5: The Paradigmatic Features of the 
Class-Machines System Model 

5.1 Introduction 

In chapter 4 we presented and discussed all the fundamental theoretical ideas that embody our 

own notion of the Class-Machines system model which directly relates to the notion of a class 

that can be found in object-oriented languages. Crucially, the ideas of the Class-Machines 

theoretical model presented and discussed in chapter 4 consist of a number of paradigmatic 

features, and this chapter will expand on these through the use of three different Class-

Machines case studies. These will illustrate the concepts that have already been presented, and 

will show how the Class-Machines model theory can be applied to real life object-oriented 

systems, focussing on the specification, verification and testing of them. To achieve these goals, 

in this chapter we consider the following case studies: Student (covered in section 5.2), 

Employee (covered in section 5.3) and Stack (covered in section 5.4). 

5.2 The Objective of the Student Case Study 

In order to illustrate how our model handles inheritance, we needed a case study of something 

that inherits from Person (covered as a running example in chapter 4), and Student is used. In 

particular, this student case study assumes one design decision whilst specifying and 

conceptualising the entire model system i.e. a student is a person, and so has the attributes 

defined for a person (forename, surname, age and gender), and also the attribute major. 

Furthermore, a student also has the methods defined for a person (getForename, getSurname, 

getAge, getGender, toString, setForename, setSurname, setAge and setGender), and also the 

methods (setMajor and getMajor). The structures resulting from this design decision are 

illustrated in figures 23 and 24. 
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Person Class 

 

 

-forename: String 

-surname : String 

-age : int 

-gender : String 

 

 

+getForename() 

+setForename(forename : String) 

+getSurname() 

+setSurname(surname : String) 

+getAge() 

+setAge(age : int) 

+getGender() 

+setGender(gender : String) 

Student Class 

 

-major : String 

 

 

+getMajor() 

+setMajor(major : String) 

Figure 23: Student Class inherits Person Class 

public interface StudentInterface extends PersonInterface 

{ 

 public void setMajor(String m); 

 public String getMajor(); 

} 

Figure 24: The Student Interface 
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public class StudentObjectMachine extends PersonObjectMachine  implements StudentInterface 

   { 

     // class attributes 

      private String major; 

       public static final String AI = "Artificial Intelligence"; 

       public static final String SE = "Software Engineering"; 

       public static final String CS = "Computer Science"; 

       public static final String UM = "Unknown Major"; 

       // class constructors 

       public StudentObjectMachine() 

       { 

         super(); 

         this.major = "Unknown Major"; 

       } 

     public StudentObjectMachine(String f, String s, int a, String g, String m) 

       { 

          super(f, s, a, g); 

          this.major = m; 

       } 

      public void setMajor(String m) 

       { 

         this.major = m; 

       }     

      public String getMajor() 

       { 

          return this.major; 

       } 

     public String toString() 

       { 

         return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major; 

       } 

    }// End of StudentObjectMachine 

Figure 25: The Student Object Machine implementation in Java 
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5.2.1 Derivation, Inheritance and Subtyping of the Student 
Class Machine  

Figure 23 illustrates the inheritance relationship between the Person and Student class. Our 

ultimate goals in this section are to illustrate how: 

• The finite set of class variables that can apply to the Student Class-Machine alone can 

be derived from a set of class variables which belongs to the Person Class-Machine. 

• The finite set of class methods belonging to the Student Class Machine alone can be 

derived from a set of class methods which belongs to the Person Class-Machine. 

• A heterogeneous family of object-machines that can apply to the Student Class-Machine 

can be derived from the family of object-machines which belongs to the Person Class-

Machine. 

• The finite set of constructor functions that can apply to the Student Class-Machine can 

be derived from a set of constructor functions which belongs to the Person Class-

Machine. 

• The finite set of interface methods that can apply to the Student Class-Machine can be 

derived from a set of interface methods which belongs to the Person Class-Machine. 

  

Definition 24: An extensible Student Class-Machine (SCM) is a 10-tuple: (stΛΛ, stS”, 

stMOD, stTYPECM, stTIO, stM”, st¥, stCT, stτ, st∆), where: 

All components in the SCM i.e. in the order that they are presented are exactly the same and 

they share the same meaning individually as those components of the CM described in 

definition 23; except for obvious renamings in order to adapt them for the Student Class-

Machine’s case study. Hence, within the SCM, each unique component starts with “st” to 

indicate that it is a student component. Consequently, to avoid replications we shall not be 

redefining these components here. 

• stS” (illustrated with examples in section 5.2.1.1)  

• stM” (illustrated with examples in section 5.2.1.2)  

• st¥ (illustrated with examples in section 5.2.1.3) 

• stCT (illustrated with examples in section 5.2.1.4) 

• stτ and st∆ (illustrated with examples in section 5.2.1.5) 

• stMOD and stTYPECM (illustrated with examples in section 5.2.1.1) 

• stTIO (illustrated with examples in section 5.2.2 ) 

All discussions that follow from section 5.2.1.1 onwards assume that the reader is familiar with: 

• pS” (covered in section 4.3.1 with supporting examples) 

• pS’ (covered in section 4.3.3.1.1 with example)  

• pM” (covered in section 4.3.2 with supporting examples) 

• pM’ (covered in section 4.3.3.1.2 with example) 

• pCT (covered in section 4.3.4 with example) 

• ⊗ (covered in section 4.4 with example) 
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5.2.1.1 Derivation of the SCM Class Variables  

First, in this section, we illustrate how every unique class variable of the SCM is shown to have 

a declared type with reference to Figure 25. Second, every unique class variable of the SCM is 

shown to be mapped to an access modifier. The type of access modifier assigned to a class 

variable indicates the way by which this class variable can be accessed within and outside (e.g. 

derived subclasses) the SCM. Third, we illustrate how the SCM inherits the set of class 

variables which belong to the Person Class-Machine PCM depicted by Figure 20: 

stS” = {((AI : String) public), ((SE : String) public), ((CS : String) public), ((UM : 

String) public)}  

In particular, modifiers have strong impact on how the state of the SCM can be accessed, tested 

or verified i.e. during testing when the test engineer seeks to know whether each unique class 

variable in stS” is holding the correct memory value when a class method is exercised at run 

time. 

By construction, based on Figures 23 and 25, pS” ⊆  stS” due to the mechanism of inheritance 

i.e. for all public non-hidden person class variables in pS”: 

stS” = pS” ⊗ {((AI : String) public), ((SE : String) public), ((CS : String) public), 

((UM : String) public)} 

5.2.1.2 Derivation of the SCM Class Methods  

In this section, we illustrate how the SCM inherits the finite set of class methods which belongs 

to the PCM. 

stM” = {} for this case study with respect to Figure 25.   

By construction, based on Figures 23 and 25,  pM” ⊆  stM” due to the mechanism of 

inheritance i.e. for all public non-hidden person class methods in pM”: 

 

stM” = pM” ⊗ {} 

5.2.1.3 Deriving a heterogeneous family of the SCM Object-
Machines 

In this section, we illustrate how the SCM inherits a heterogeneous family of object-machines 

which belongs to the PCM. 

p¥  is an heterogeneous family of person object machines that can apply to the PCM  

 

p¥ = {POM, SOM, EOM}, where: 

 

POM is the person object-machine 

POM = (pID, pS, pM)  
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pID is the person object machine identifier   

pS = pS’  ∪ pS” (see section 4.3.3.1.1 for example) 

pM = pM’  ∪ pM” (see section 4.3.3.1.2 for example) 

 

SOM is the student object-machine 

SOM = (stID, stS, stM) is the student object-machine 

stID is the student object machine identifier   

stS’ is the finite set of instance variables that belong to the SOM alone 

Every unique instance variable of the SOM is shown to have a declared static type with 

reference to Figure 25. Also, with reference to Figure 25, every unique instance variable in stS’ 

has its own access modifier when it is declared: 

stS’  = {((major : String)  private)}   

By construction, based on Figures 23 and 25, pS’ ⊆  stS’ due to the mechanism of inheritance 

i.e. for all public non-hidden person instance variables in pS’: 

stS’ = pS’ ⊗ {((major : String)  private)} 

 

stS is the complete finite set of state encapsulating variables that can apply to the SOM.   

stS = stS’  ∪ stS”   

stM’ is a finite set of instance methods belonging to the SOM alone   

stM’ = {setMajor, getMajor} with respect to Figure 25.   

By construction, based on Figures 23 and Figure 24, pM’ ⊆  stM’ due to the mechanism of 

inheritance i.e. for all public non-hidden person instance methods in pM’: 

stM’ = pM’ ⊗ {setMajor, getMajor} 

 

stM is the complete finite set of methods that can apply to the SOM. This is given by: 

stM = stM’  ∪ stM”   

st¥  is an heterogeneous family of student object machines that can apply to the SCM 

 

st¥ = {SOM, POM} 

 

By construction, based on Figures 23 and 25, p¥ ⊆ st¥ due to the mechanism of inheritance i.e. 

for all public non-hidden family of person object machines in p¥: 

st¥ = p¥ ⊗ {SOM, POM} 

EOM is the employee object-machine (covered in section 5.3.1.3) 
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Note: that the symbol ⊗ only adds elements of the right hand set onto the left hand set if and 

only if the elements of the right hand set are not already present on the left hand set. 

5.2.1.4 Derivation of the SCM Class Constructors  

In this section, we illustrate how the SCM inherits the finite set of class constructors which 

belongs to the PCM. 

 

stCT = {StudentObjectMachine(), StudentObjectMachine(String, String, int, String, 

String)}with respect to Figure 25. 

 

By construction, based on Figures 23 and 24, pCT ⊆  stCT due to the mechanism of inheritance 

i.e. for all public non-hidden person instance methods in pCT: 

 

stCT = pCT ⊗{StudentObjectMachine(), StudentObjectMachine(String, String, int, String, 

String)} 

5.2.1.5 Derivation of the SCM Interface  

In this section, we illustrate how the SCM inherits the finite set of interface methods which 

belongs to the PCM. 

stτ = (stIID, stIM), where: 

stIID is the Student Class Machine interface identifier  

stIM is the finite set of student class machines interface methods that can apply to the SCM ‘s 

interface.    

stτ = StudentInterface based on Figure 24 above 

st∆ is the function mapping the SCM ‘s interface (i.e. stτ) to an heterogeneous family of Student 

Object Machines:   

  

st∆: StudentInterface OM, where 

OM ∈ st¥ and (OM ↑ StudentInterface) iff (stIM  ⊆  stM) holds true with respect to earlier 

discussions in section 4.3.6. 

Given that Figures 19 and 24 respectively represents the Person and Student interfaces. We say 

that pM  ⊆ stM due to the mechanism of inheritance i.e. since (stIM  ⊆  stM) 

5.2.2 Testing an Heterogeneous Family of Student Object 
Machines 

During testing, our goal is to test every unique method of the object machine om ∈ st¥. As 

shown in section 5.2.1.3, we know that st¥ = {POM, SOM} due to the mechanism of 

inheritance. From the definitions in section 5.2.1.3, it can be assumed that the om under test is 
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POM where POM = (pID, pS, pM). In order to test the POM, every unique method pm ∈ pM 

must be exercised at run time i.e. from an initial memory state of all the elements in pS, a 

sequence of input parameter types inPTpm is consumed from an environment. Depending on 

which precondition method in Upm, Epm and Gpm that eventually gets triggered in the different 

testing modes, a modified person memory values and/or states pS* is computed and an output 

type outPTpm generated. The POM then uses nextOMSIpm to indicate the type of state that it is 

now driven into (i.e. whether the unchanged, error or goal state) as a consequence of exercising 

method pm at run time: 

pm (modpm, Guardpm) : pS  x inPTpm → (pS*, outPTpm, nextOMSIpm), where: 

modpm is the type of access modifier that can apply to method pm under test. 

Guardpm = (Upm, Epm , Gpm). 

Recall that Figure 20 depicts concrete Java implementation of all the methods of the POM. 

Using the above stated form and behaviour of each unique method pm ∈ pM of the POM under 

test, we illustrate how each unique method pm ∈ pM can be tested using our proposed approach 

in the different testing modes of the CM testing technique (see section 5.2.2.1). 

5.2.2.1 Testing Method setForename in the Unchanged, 
Error and Goal State Testing Modes 

In this section, we illustrate how the setForename method can be tested in the unchanged, error 

and goal state testing modes. 

setForename (modsetForename, GuardsetForename) : pS  x inPTsetForename → (pS*, outPTsetForename, nextOMSIsetForename), 

where: 

modsetForename = public with respect to Figure 20 

GuardsetForename = (UsetForename, EsetForename, GsetForename). 

OMPM = USPM ∪ ESPM ∪ GSPM is the complete finite set of all types of precondition 

methods that can apply to the POM 

UsetForename ⊆ USPM = {setForenameUSP1} 

EsetForename  ⊆ ESPM = {setForenameESP1} 

GsetForename  ⊆ GSPM = {setForenameGSP1, setForenameGSP2, setForenameGSP3} 

pS = {(forename =”None”), (surname =”None” ), (age = 0), (gender = “UNKNOWN”), 

(UPPER_AGE =60), (UNKNOWN_GENDER =“UNKNOWN”), (MALE_GENDER =”MALE”), 

(FEMALE_GENDER =”FEMALE”)}  

inPTsetForename = {String} 

The new memory values for the elements in pS* depend on the testing mode and inputs used. 

outPTsetForename = void is the type of output that method setForename will produce at run time. 

NUS is the finite set of next unchanged states that can apply to the POM. 
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NES is the finite set of next error states that can apply to the POM. 

NGS is the finite set of next goal states that can apply to the POM. 

nextOMSIsetForename ∈ NUS or nextOMSIsetForename ∈ NES or nextOMSIsetForename ∈ NGS 

depending on what precondition method in UsetForename, EsetForename and GsetForename that 

eventually get triggered in the different testing modes for the setForename method under test. 

For the Person case study depicted by Figure 20, we assume all of the following design 

decisions and constraints whilst formally specifying the finite set of precondition methods 

guarding each method of the Person Instance Objects belonging to the Person Class. Since each 

precondition method encapsulates a unique memory state of the person object. The condition 

required for the forename unchanged state precondition method to keep the state of the 

forename attribute of the person object unchanged when it is triggered is if for example the test 

case "None" is applied on method setForename and the Boolean Expression or condition 

if(this.forename.equals("None"))gets triggered within method  

setForenameUSP1 developed in conjunction with Figure 20. Given that the default value 

for the forename attribute within Figure 20 is "None", the memory value and/or state of the 

forename attribute remains unchanged as a consequence of this test input. 

5.2.2.1.1 The SetForename Unchanged State Precondition 
Method 

This section illustrates how the setForename method can be tested in the unchanged state 

testing mode. In particular, for this example we are considering the case of the default value of 

the forename attribute. 

private PreConditionTestObject setForenameUSP1() 

        {           

           setForename("None"); // Test Case 

           if(this.forename.equals("None")) // Boolean Expression 

             { 

               Object[] testInput = new Object[]{"None"};   

               return new PreConditionTestObject(testInput); 

             } 

           return null; 

         } 

The condition required for the forename error state precondition method to drive the forename 

attribute of the person object to an error state when it is triggered is if for example the test case 

"" is applied on method setForename and the Boolean Expression or condition 

if(this.forename.length()<1 ) get triggered within method  setForenameESP1 

developed in conjunction with Figure 6.  When this happens, the current memory state of the 

person forename attribute i.e. its internal memory value remains unchanged as well as 

setForename method indicating an unacceptable value i.e. an error in this case as a 
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consequence of this test input. Whilst setForenameUSP1 and setForenameESP1 

appeared to overlap in that the memory state and/or value of the forename attribute will remain 

unchanged when they are both exercised at run time, we placed different emphasis on each of 

the unique testing modes of our testing method. For example, the main focus in the unchanged 

state testing mode is for the method under test to drive the POM into an unchanged state. While 

the main focus in the error state testing mode is for the method under test to drive the POM into 

an error state (see section 5.2.2.1.2). 

5.2.2.1.2 The SetForename Error State Precondition Method 

This section illustrates how the setForename method can be tested in the error state testing 

mode. 

private PreConditionTestObject setForenameESP1() 

          { 

            setForename(""); //Test Case 

            if(this.forename.length() < 1 ) //Boolean Expression 

             { 

               Object[] testInput = new Object[]{""};   

               return new PreConditionTestObject(testInput); 

             } 

           return null; 

         } 

In the same way as in section 5.2.2.1.1, the following test cases and Boolean Expressions within 

each unique goal state precondition method shown below will cause the forename attribute of 

the POM to hold legal memory values based on our predefined constraints and assumptions 

when they are exercised at run time. 
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5.2.2.1.3 The SetForename Goal State Precondition Methods 

In this section, we illustrate how the setForename method can be tested in the goal state testing 

mode. 

private PreConditionTestObject setForenameGSP1() 

           { 

             setForename("Hen");  //Test Case 

 

             if( this.forename !=null ) //Boolean Expression 

               { 

                 Object[] testInput = new Object[]{"Hen"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

private PreConditionTestObject setForenameGSP2() 

   { 

             setForename("H"); //Test Case 

             if(this.forename.length() == 1) //Boolean Expression 

               { 

                 Object[] testInput = new Object[]{"H"};   

                 return new PreConditionTestObject(testInput); 

               } 

             return null; 

   } 
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private PreConditionTestObject setForenameGSP3() 

   { 

             setForename("Henry"); //Test Case 

             if(this.forename.length() > 1) //Boolean Expression 

               { 

                 Object[] testInput = new Object[]{"Henry"};   

                 return new PreConditionTestObject(testInput); 

               } 

             return null; 

   } 

The remaining methods of the POM under test are tested using the same approach described in 

sections 5.2.2.1.1, 5.2.2.1.2 and 5.2.2.1.3 in the unchanged, error and goal state testing modes 

(Appendix A.5.2 depict this). Similarly, Appendix A.5.3 contains the complete testing of the 

SOM in the unchanged, error and goal state testing modes. 

5.3 The Objective of the Employee Case Study  

The primary objective for introducing the Employee case study is in preparation for the fourth 

and final case study that will be introduced in section 5.4 i.e. the Stack case study; as we need 

to be able to construct arrays that contain objects of three different classes, so another case 

study of something that inherits from Person is desirable, and Employee is used. Here, we 

introduce an Employee that extends the behaviour and state variables of our earlier defined 

Person (i.e. covered as a running example in chapter 4). Our objective is to further illustrate by 

construction that an Employee is a Person with forename, surname, age, gender and salary. 
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In particular, this study makes some important assumptions worth discussing as part of 

conceptualising the overall structure of the Employee model specification system: 

• A typical employee in our model specification system here is assumed to have a 

monthly salary that can be computed based on the current grade level of the employee, 

rate of pay per hour (i.e. rateOfPayPerHour) and the total number of hours worked (i.e. 

totalHoursWorked) by the employee in a given calendar month of a given year. Thus it 

is assumed here that the hourly rate of pay for a given employee is based entirely on the 

employee’s current grade level (i.e. with respect to the company that s/he worked for), 

as shown in Table 3.  

• Furthermore, to simplify the salary calculations, we assume for the purposes of this case 

study that there are 4 weeks in any given calendar month of a year, rather than using the 

actual value of 365 / (12 x 7).  

Person Class 

 

 
-forename: String 

-surname : String 

-age : int 

-gender : String 

 

 

 

+getForename() 

+setForename(forename : String) 

+getSurname() 

+setSurname(surname : String) 

+getAge() 

+setAge(age : int) 

+getGender() 

+setGender(gender : String) 

Employee Class 
 

 

- salary: double 

- totalHoursWorked: double 

- grade: int 

 

 

 + getRatePerHour(grade : int) 

+ computeMonthlySalary(totalHoursWorked: double,  grade : int) 

 

Figure 26: Inheritance relationship between Person and Employee 
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• Clearly, as depicted in Figure 26, the employee class is a subclass of the person class 

hence it inherits from the person class all its public non hidden states/attributes as 

well as processing functions or methods. 

In the employee model system, every employee has a grade level and a rate of pay per hour that 

corresponds to that grade level (Table 3 depict this information); so that any other grade level 

supplied by the user outside our specified ones here are thus considered invalid.  

Grade Rate of Pay Per Hour (£) 

1 10 

2 15 

3 25 
Table 3: The Employee Model System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public interface EmployeeInterface extends PersonInterface 

{ 

 public double getRatePerHour(int grade); 

 public void computeMonthlySalary(double thw, int grade); 

} 

Figure 27: The Employee Interface 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

125 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public class EmployeeObjectMachine extends PersonObjectMachine  implements EmployeeInterface 

   { 

     // class attributes 

     private double salary; 

     private double totalHoursWorked; 

     private int grade; 

     // class constructors 

      public EmployeeObjectMachine() 

       { 

         super(); 

         this.totalHoursWorked = 0.0; 

         this.grade = 0; 

         computeMonthlySalary(this.totalHoursWorked, this.grade); 

       } 

     public EmployeeObjectMachine(String f, String s, int a, String g, double thw, int grade) 

       { 

          super(f, s, a, g); 

          this.totalHoursWorked = thw; 

          this.grade = grade; 

          computeMonthlySalary(thw, grade); 

       } 

     public double getRatePerHour(int grade) 

       { 

            if(grade == 1) 

              { return 10.0; } 

            if(grade == 2) 

              { return 15.0; } 

            if(grade == 3) 

              { return 25.0; } 

          return 0.0; 

       } 

     public void computeMonthlySalary(double thw, int grade) 

       {  this.salary = thw * getRatePerHour(grade) * 4.0;   } 

     public String toString() 

       { 

                      return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" "+this.salary; 

       } 

    }// End of EmployeeObjectMachine 

Figure 28: The Employee Object Machine 
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5.3.1 Derivation, Inheritance and Subtyping of the Employee 
Class Machine  

In Figure 26, we illustrate the inheritance relationship between the Person and Employee class. 

Our ultimate goals in this section are the same as those outlined in section 5.2.1. 

Definition 25: An extensible Employee Class-Machine (ECM) is a 10-tuple: (eΛΛ, eS”, 

eMOD, eTYPECM, eTIO, eM”, e¥, eCT, eτ, e∆), where: 

All the assumptions made within definition 24 holds as well in the case of the ECM. Hence, we 

shall not be repeating them here. 

• eS” (covered with examples in section 5.3.1.1)  

• eM” (covered with examples in section 5.3.1.2)  

• e¥ (covered with examples in section 5.3.1.3) 

• eCT (covered with examples in section 5.3.1.4) 

• eτ and e∆ (covered with examples in section 5.3.1.5) 

• eMOD and eTYPECM (illustrated with examples in section 5.3.1.3) 

• eTIO (illustrated with examples in section 5.3.2) 

5.3.1.1 Derivation of the ECM Class Variables 

The goal of this section is the same as the one stated in section 5.2.1.1 save that it focuses on 

the inheritance relationship depicted by Figure 26. 

eS” = {} with respect to Figure 28  

eS” = pS” ⊗ {} with respect to Figures 26 and 28 

5.3.1.2 Derivation of the ECM Class Methods  

To illustrate how the ECM inherites class methods which belongs to the PCM, this section 

explores the approach covered in section 5.2.1.2. 

eM” = {} for this case study with respect to Figure 28.   

eM” = pM” ⊗ {} with respect to Figures 26 and 28. 

5.3.1.3 Deriving a heterogeneous family of the ECM Object-
Machines 

The goal of this section and the approach employed is the same as the one in section 5.2.1.3 

except that it focuses on Figures 26 and 28. 

 

e¥ = {EOM, POM} 

EOM = (eID, eS, eM) is the employee object-machine 
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eS’ = {((salary : double)  private), ((totalHoursWorked : double)  private), ((grade : 

int)  private)}  i.e. with reference to Figure 28 

 

eS’ = pS’ ⊗ {((salary : double)  private), ((totalHoursWorked : double)  private), 

((grade : int)  private)} 

 

eS = eS’  ∪ eS”   

eM’ = {getRatePerHour, computeMonthlySalary} with respect to Figure 28.   

  

eM’ = pM’ ⊗ {getRatePerHour, computeMonthlySalary} based on Figures 26 and 28 

  

eM = eM’  ∪ eM”   

  

e¥ = p¥ ⊗ {EOM, POM} based on Figures 26 and 28 

5.3.1.4 Derivation of the ECM Class Constructors 

eCT = {EmployeeObjectMachine(), EmployeeObjectMachine(String, String, int, String, double, 

int)} i.e. based on Figure 28. 

eCT = pCT ⊗{EmployeeObjectMachine(), EmployeeObjectMachine(String, String, int, String, 

double, int)} 

5.3.1.5 Derivation of the ECM Interface  

eτ = (eIID, eIM) 

eτ = EmployeeInterface based on Figure 27 

e∆: EmployeeInterface  OM, where: 

OM ∈ e¥ and (OM ↑ EmployeeInterface) iff (eIM  ⊆  eM) holds true with respect to earlier 

discussions in section 4.3.6. 

Given that pM  ⊆ eIM due to the mechanism of inheritance i.e. since (eIM  ⊆  eM) 
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5.3.2 Testing an Heterogeneous Family of Employee Object 
Machines 

This section shares the same goal as section 5.2.2. In particular, the goal is to exercise every 

unique method of the EOM under test in e¥. 

5.3.2.1 Testing Method getRatePerHour in the Unchanged, 
Error and Goal State Testing Modes 

First, in this section, the form and behaviour of the getRatePerHour method under test is 

presented. The same approach illustrated in section 5.2.2.1 is then used to test method 

getRatePerHour in the unchanged, error and goal state testing modes of the CM testing 

technique. 

getRatePerHour (modgetRatePerHour, GuardgetRatePerHour) : eS  x inPTgetRatePerHour → (eS*, outPTgetRatePerHour, 

nextOMSIgetRatePerHour) 

where: 

modgetRatePerHour = public with respect to Figures 27 and 28 

GuardgetRatePerHour = (UgetRatePerHour, EgetRatePerHour, GgetRatePerHour). 

 UgetRatePerHour ⊆ USPM = {getRatePerHourUSP1} 

EgetRatePerHour  ⊆ ESPM = {getRatePerHourESP1, getRatePerHourESP2, getRatePerHourESP3} 

GgetRatePerHour  ⊆ GSPM = {getRatePerHourGSP1, getRatePerHourGSP2, 

getRatePerHourGSP3} 

eS = {(salary = 0.0), (totalHoursWorked = 0.0 ), (grade = 0)}  

inPTgetRatePerHour = {int} 

The same explanation in section 5.2.2.1 with respect to pS* applies to eS* in this section. 

outPTgetRatePerHour = double   

nextOMSIgetRatePerHour operates in the same way as described earlier, in section 5.2.2.1 

In sections 5.3.2.1.1, 5.3.2.1.2 and 5.3.2.1.3 we discussed the behaviour of each unique 

precondition method in UgetRatePerHour, EgetRatePerHour and GgetRatePerHour in the relevant testing 

modes of the EOM (i.e. with respect to Figure 28). 

5.3.2.1.1 The GetRatePerHour Unchanged State Precondition 
Method 

Given that the grade attribute of the EOM depicted by Figure 28 has a default value of zero, if 

the input or test case value supplied by the user is zero when method getRatePerHour is under 

test in the unchanged state testing mode, it remains that the memory value and/or state of the 

grade attribute of the EOM would remain unchanged as a consequence of the fact that the 

supplied input value by the user is exactly the same as the current default value of the grade 
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attribute. The emphasis in this testing mode revolves around the state encapsulating variable 

under consideration (i.e. the grade attribute in this context) remaining unchanged with respect 

to its memory value when method getRatePerHour eventually get exercised at run time with the 

supplied user test input: 

private PreConditionTestObject getRatePerHourUSP1() 

       {   

          grade = 0;  //Test Case           

          if(grade == 0) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 

5.3.2.1.2 The GetRatePerHour Error State Precondition 
Methods 

Here, one of the test cases used in the error state testing mode overlaps the last one (i.e. in the 

unchanged state testing mode). This is because the user supplied test input does violate the 

constraints, and assumptions that were embodied within the design of the EOM; since (as 

depicted in Table 3) an error occurs when the input value of the grade attribute satisfies 

[(grade == 0) || (grade < 0) || (grade > 3)]. When the user test input 

falls within any of these ranges, method getRatePerHour drives the EOM into an error state: 

private PreConditionTestObject getRatePerHourESP1() 

       {   

          grade = 0;    //Test Case         

          if(grade == 0) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 
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private PreConditionTestObject getRatePerHourESP2() 

       {   

          grade = -1;  //Test Case           

          if(grade < 0) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 

     private PreConditionTestObject getRatePerHourESP3() 

       {   

          grade = 7; //Test Case            

          if(grade > 3) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 

5.3.2.1.3 The GetRatePerHour Goal State Precondition 
Methods 

In the goal state testing mode, method getRatePerHour drives the EOM into goal state when the 

user test input satisfies [(grade == 1) || (grade == 2) || (grade == 3)]. 

private PreConditionTestObject getRatePerHourGSP1() 

       {   

          grade = 1;  //Test Case           

          if(grade == 1) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 
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private PreConditionTestObject getRatePerHourGSP2() 

       {   

          grade = 2;  //Test Case    

          if(grade == 2) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 

private PreConditionTestObject getRatePerHourGSP3() 

  {   

          grade = 3;  //Test Case    

          if(grade ==3) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

   } 

5.3.2.2 Testing Method computeMonthlySalary in the 
Unchanged, Error and Goal State Testing Modes 

computeMonthlySalary (modcomputeMonthlySalary, GuardcomputeMonthlySalary) : eS  x inPTcomputeMonthlySalary → (eS*, 

outPTcomputeMonthlySalary, nextOMSIcomputeMonthlySalary), where: 

modcomputeMonthlySalary = public with respect to Figures 27 and 28 

GuardcomputeMonthlySalary = (UcomputeMonthlySalary, EcomputeMonthlySalary, GcomputeMonthlySalary) 

UcomputeMonthlySalary ⊆ USPM = {computeMonthlySalaryUSP1} 

EcomputeMonthlySalary ⊆ ESPM = {computeMonthlySalaryESP1, computeMonthlySalaryESP2, 

computeMonthlySalaryESP3} 

GcomputeMonthlySalary ⊆ GSPM = {computeMonthlySalaryGSP1, computeMonthlySalaryGSP2, 

computeMonthlySalaryGSP3} 

eS = {(salary = 0.0), (totalHoursWorked = 0.0 ), (grade = 0)}  
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inPTcomputeMonthlySalary = {double, int} 

outPTcomputeMonthlySalary = void   

nextOMSIcomputeMonthlySalary operates in the same way as described earlier, in section 5.2.2.1 

In section 5.3.2.2.1, 5.3.2.2.2 and 5.3.2.2.3 we present the behaviour of each unique 

precondition method in UcomputeMonthlySalary, EcomputeMonthlySalary and GcomputeMonthlySalary in the 

relevant testing modes of the EOM (i.e. with respect to Figure 28). 

5.3.2.2.1 The computeMonthlySalary Unchanged State 
Precondition Method 

In order to compute monthly salary for a given employee in the EOM system, the method 

computeMonthlySalary takes two arguments: totalHoursWorked and grade, as depicted 

in Figure 28. It then calculates the salary of the employee based on this specified information. 

By default both totalHoursWorked and grade have zero memory values. Hence, in the 

unchanged state testing mode of the EOM, if the supplied user input value is zero for both 

totalHoursWorked and grade, the memory state of totalHoursWorked and grade 

will remain unchanged as a consequence of the fact that the supplied user input values are the 

same as the current default values for both totalHoursWorked and grade: 

private PreConditionTestObject computeMonthlySalaryUSP1() 

       {   

          totalHoursWorked = 0 ; //Test Case 

          grade = 0;            //Test Case 

          if((totalHoursWorked == 0) && (grade == 0)) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 
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5.3.2.2.2 The computeMonthlySalary Error State 
Precondition Methods 

In the error state testing mode, method computeMonthlySalary will drive the EOM into an error 

state if user test input satisfies [(totalHoursWorked < 0)] and [(grade == 0) 

|| (grade < 0) || (grade > 3)]:   

private PreConditionTestObject computeMonthlySalaryESP1() 

       {   

          totalHoursWorked = -2 ; //Test Case 

          grade = 0;            //Test Case 

     if((totalHoursWorked < 0) && (grade == 0)) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

       } 

private PreConditionTestObject computeMonthlySalaryESP2() 

 {   

          totalHoursWorked = -4 ; //Test Case 

          grade = -1;    //Test Case         

     if((totalHoursWorked < 0) && (grade < 0)) //Boolean Expression 

        { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

        }     

          return null; 

  } 
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private PreConditionTestObject computeMonthlySalaryESP3() 

    {   

          totalHoursWorked = -6 ; //Test Case 

          grade = 10;         //Test Case    

     if((totalHoursWorked < 0) && (grade > 3)) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

    } 

5.3.2.2.3 The computeMonthlySalary Goal State Precondition 
Methods 

In the goal state testing mode, method computeMonthlySalary will drive the EOM into goal 

state if user test input satisfies [(totalHoursWorked == 0) || 

(totalHoursWorked > 0)] and [(grade == 1) || (grade == 2) || 

(grade == 3)]:   

private PreConditionTestObject computeMonthlySalaryGSP1() 

  {   

          totalHoursWorked = 0; //Test Case 

          grade = 1;       //Test Case      

          if((totalHoursWorked == 0) && (grade == 1)) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

   } 
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private PreConditionTestObject computeMonthlySalaryGSP2() 

 {   

          totalHoursWorked = 30 ; //Test Case 

          grade = 2;            //Test Case 

          if((totalHoursWorked == 30) && (grade == 2)) //Boolean Expression 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

          return null; 

   } 

     

private PreConditionTestObject computeMonthlySalaryGSP3() 

 {   

          totalHoursWorked = 48 ; //Test Case 

          grade = 3;            //Test Case 

          if((totalHoursWorked == 48) && (grade == 3)) //Boolean Expression 

             { 

               Object[] testInput = new Object[]{totalHoursWorked, grade}; 

               return new PreConditionTestObject(testInput); 

             }     

          return null; 

  }  

5.4 The Objective of the Stack Case Study  

In this study, we want to show how our model handles a class that takes a generic parameter, 

and Stack is a well-known simple example of this. One important objective of this study is to 

illustrate a bounded Stack that records a finite array of object items. In particular, for the Stack 

case study we have chosen to make the push operation take an array of objects as parameter, 

rather than just a single object as is conventional, this decision is a reasonable one (i.e. as will 

become apparent later in the course of the study) in terms of the features of the Object-Machine 

and Class-Machine model that we want to illustrate. For instance, an important feature of the 

Stack case study is that, because the push operation takes an array of objects as a parameter 

rather than the conventional arrangement of it taking just a single object, there are two 

different conditions under which this method may not change the state of the Stack and this 

design for the case study has been chosen to illustrate a situation where a method might have 
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more than one unchanged state precondition. One of these conditions is the state where the 

stack is already full, and the other is the case where the parameter is an empty array.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

public interface StackInterface 

  { 

     public void push(Object[] elem); 

     public Object pop(); 

     public Object top(); 

     public List<Object> convertArrayToList(Object[] objectArray); 

  } 

Figure 29: The Stack Interface 
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import java.util.List; 

import java.util.ArrayList; 

public class StackObjectMachine implements StackInterface { 

 private static int INITIAL_ALLOC = 3; 

  private int alloc; 

  protected int count; 

  protected List<Object> items; 

/** Constructs a Stack with initial allocation of 3. */ 

  public StackObjectMachine() { 

    alloc = INITIAL_ALLOC; 

    count = 0; 

    items = convertArrayToList(new Object[alloc]); 

  }  

 public void push(Object[] elem)  

    {         

       Object[] itemValues = items.toArray(); 

        if(!(elem == null)) 

          { 

               for(int i=0; i < elem.length; i++) 

               itemValues[count++] = elem[i];            

          } 

        items = convertArrayToList(itemValues); 

} 

 public Object pop() 

  { Object popedValue = new Object();   Object[] itemValues = items.toArray();    popedValue = itemValues[--count];    items = convertArrayToList(itemValues); 

     return popedValue;  } 

 public Object top() 

  { Object topValue = new Object();   Object[] itemValues = items.toArray();   topValue = itemValues[count - 1];   return topValue;  } 

 public List<Object> convertArrayToList(Object[] objectArray) 

   { 

       List<Object> list = new ArrayList<Object>(); 

        for(Object o: objectArray) 

          { 

             list.add(o); 

          } 

        return list; 

    } 

}//End of class StackObjectMachine 

Figure 30: The Stack Object Machine 
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For the stack case study depicted by Figure 30, the following design decisions and constraints 

were assumed: 

• A typical stack object-machine in our model specification system is assumed to be 

allocated a fixed memory capacity. That is we use the state variable alloc to encapsulate 

the allocated memory capacity for the stack object-machine under test; where alloc = 

INITIAL_ALLOC and INITIAL_ALLOC = 3.  Hence, in our model stack object-machine 

system, the state variable INITIAL_ALLOC is a memory location whose data value is 

fixed for all specific instances of the stack object-machine under test.  Furthermore, in 

order to keep track of the size of the stack object-machine under test, we use the state 

variable count. Also, in the same spirit, the state encapsulating variable items in our 

stack model system represents the bounded stack with initial memory capacity for all 

possible object items that can be stored in items.  

• The state attributes INITIAL_ALLOC, alloc and count are designed as memory locations 

in the bounded stack machine to hold data values of type Integer alone. 

• The state attribute items is designed as memory location in the stack machine to hold 

data value of type List<Object> i.e. list of objects alone. 

• All the state attributes of the bounded stack machines system (INITIAL_ALLOC, alloc, 

count and items) have their individual and/or respective initial default memory data 

values which form the stack’s initial memory state configuration. 

• From the above stack’s initial memory state configuration, we say that any one of a 

finite set of constructor functions denoted stackCT can be used for initialising the 

state(s) of the stack system so that the default memory data values of the stack machine 

system are subsequently updated with the new input data values supplied by the 

triggered constructor fuction(s). 

• The stack class-machines system has a finite set of process functions or methods 

partitioned into observer methods (e.g. top ) and mutator methods (e.g. push, pop and 

convertArrayToList) which can be used dynamically for manipulating the changing 

memory state(s) of the stack object-machine, depending on whether  unchanged state 

precondition methods (uspm ∈ USPM) were fired or error state precondition methods 

(espm ∈ ESPM) were triggered or goal state precondition methods (gspm ∈ GSPM) 

were invoked. This is because every processing function or method in the bounded stack 

system is guarded by the three different types of precondition methods i.e. USPM and 

ESPM and GSPM.  

 

Given the description above for our bounded stack machine system, below we provide a list of 

possible operations that can be performed on the bounded stack machine: 

• An array of object items can be pushed into the memory of the bounded stack object-

machine under test (i.e. through dynamic invocation and/or execution of the processing 

function or method push).  The push operation inserts the top object element into this 

stack machine. 

• Users can elect to remove i.e. pop the top object element from the bounded stack 

machine (i.e. through dynamic invocation and/or execution of the processing function or 

method pop). The pop operation removes the top object element from this stack 

machine. 

• The top operation returns the top object element of this stack machine (i.e. through 

dynamic invocation and execution of the processing function or method top). 
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5.4.1 The Stack Class Machine 

Figures 29 and 30 represent the interface and concrete implemention of the bounded stack 

model specification system respectively (i.e. with respect to definition 26). In this section, the 

Stack Class-Machine is illustrated using the same approach in sections 5.2.1 and 5.3.1 (save 

that, this time, there is no inheritance involve).  

Definition 26: An extensible Stack Class-Machine (STKCM) is a 10-tuple: (stackΛΛ, 

stackS”, stackMOD, stackTYPECM, stackTIO, stackM”, stack¥, stackCT, stackτ, stack∆), where: 

All the assumptions made within definitions 24 and 25 holds as well in the case of the STKCM. 

Hence, we shall not be repeating them here. 

• stackS” (covered with examples in section 5.4.1.1)  

• stackM” (covered with examples in section 5.4.1.2)  

• stack¥ (covered with examples in section 5.4.1.3) 

• stackCT (covered with examples in section 5.4.1.4) 

• stackτ and stack∆ (covered with examples in section 5.4.1.5) 

• stackMOD and stackTYPECM (illustrated with examples in sections 5.4.1.1 and 5.4.1.3) 

• stackTIO (illustrated with examples in section 5.4.2) 

5.4.1.1 The STKCM Class Variables 

stackS” = {((INITIAL_ALLOC : int) private)} with respect to Figure 30 

5.4.1.2 The STKCM Class Methods 

stackM” = {} for this case study with respect to Figure 30 

5.4.1.3 Heterogeneous family of the STKCM Object-
Machines 

stack¥ = {STKOM}, where: 

 

STKOM = (stkID, stkS, stkM)  

stkS’ = {((alloc : int) private), ((count : int) protected), ((items : List<Object>)

protected)}  based on Figure 30 

stkS = stkS’  ∪ stkS”   

stkM’ = {push(Object[]), pop(), top(), convertArrayToList(Object[])} with respect to Figure 30   

stkM = stkM’  ∪ stkM” 
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5.4.1.4 The STKCM Class Constructors 

stackCT = {StackObjectMachine()} i.e. with respect to Figure 30 

5.4.1.5 The STKCM Class Interface 

stackτ = (stkIID, stkIM), where: 

stackτ = StackInterface based on Figure 29  

stack∆: StackInterface  OM, where: 

OM ∈ stack¥ and (OM ↑ StackInterface) iff (stkIM  ⊆  stkM) holds true. 

Note that to avoid repetition this section assumes that the reader is familiar with the style and 

meaning of the notation used above following our earlier work in section 4.3.6. 

5.4.2 Testing an Heterogeneous Family of Stack Object 
Machines 

Again, this section shares the same goal as section 5.2.2.  Similarly, as in section 5.3.2, the goal 

is to exercise every unique method of the STKOM under test in stack¥. 

5.4.2.1 Testing Method Push in the Unchanged, Error and 
Goal State Testing Modes 

push (modpush, Guardpush) : stkS  x inPTpush → (stkS*, outPTpush, nextOMSIpush), where: 

modpush = public with respect to Figure 30 

Guardpush = (Upush, Epush, Gpush). 

Upush ⊆ USPM = {pushUSP1, pushUSP2} 

Epush  ⊆ ESPM = {pushESP1} 

Gpush  ⊆ GSPM = {pushGSP1, pushGSP2} 

stkS = {(INITIAL_ALLOC = 3), (alloc = INITIAL_ALLOC ), (count = 0), items = 

convertArrayToList(new Object[alloc])} based on Figure 30 

inPTpush = { Object[] } based on Figure 30 

The same explanation in section 5.2.2.1 with respect to pS* applies to stkS* in this section 

outPTpush = void  based on Figure 30 

nextOMSIpush operates in the same way as described in section 5.2.2.1 

In section 5.4.2.1.1, 5.4.2.1.2 and 5.4.2.1.3 we discuss the behaviour of each unique 

precondition method in Upush, Epush and Gpush in the relevant testing modes of the STKOM (i.e. 

with respect to Figure 30): 
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5.4.2.1.1 The Push Unchanged State Precondition Methods 

In this section, our goal is to illustrate that pushUSP1() and pushUSP2() embodies two 

different conditions under which they may not change the dynamic memory state of the 

STKOM. In particular, pushUSP1() encapsulate the condition where the parameter is an 

empty array while pushUSP2() encapsulate the condition where the stack is already full: 

private PreConditionTestObject pushUSP1() 

  {  

      // Initial State of the Stack Object Machine 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

      push(new Object[]{});     //Test Case 

      if(count == 0)            //Boolean Expression 

        { 

          Object[] testInput = {new Object[]{}}; 

          return new PreConditionTestObject(testInput); 

        }     

     return null;    

  } 

 private PreConditionTestObject pushUSP2() 

  {    

          // Initial states of the Stack Object Machine 

          alloc = INITIAL_ALLOC; 

          count = 0; 

          items = convertArrayToList(new Object[alloc]); 

 

          //Test Cases 

          PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

          StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");          

          EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1); 

          BankAccountTest bankAccount = new BankAccountTest();  // see Appendix A.1.4 for this 

            push(new Object[]{person,student, employee, bankAccount}); 

          if(count > alloc) //Boolean Expression 

           { 

             Object[] testInput = {new Object[]{person,student, employee, bankAccount}}; 

             return new PreConditionTestObject(testInput); 

            }     

     return null; 

  } 
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5.4.2.1.2 The Push Error State Precondition Method 

In this section, our goal is to illustrate that pushESP1()encapsulate the condition i.e. count 

> alloc under which the STKOM will be driven into an error memory state. While 

pushESP1() and pushUSP2()overlaps, the emphasy in this testing mode is to ensure that 

the STKOM is driven into an error memory state when pushESP1() is exercised at run time. 

private PreConditionTestObject pushESP1() 

  {    

      // Initial states of the Stack Object Machine 

      alloc = INITIAL_ALLOC;                                   

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

      //Test Cases 

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");          

      EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1); 

      BankAccountTest bankAccount = new BankAccountTest();   // see Appendix A.1.4 for this 

      push(new Object[]{person,student, employee, bankAccount}); 

      if(count > alloc)  //Boolean Expression 

        { 

          Object[] testInput = {new Object[]{person,student, employee, bankAccount}}; 

          return new PreConditionTestObject(testInput); 

        }     

     return null; 

  } 
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5.4.2.1.3 The Push Goal State Precondition Methods 

In this section, our goal is to illustrate that pushGSP1()and pushGSP2()embodies two 

conditions under which the STKOM will be driven into acceptable dynamic memory state. 

private PreConditionTestObject pushGSP1() 

  {    

        // Initial states of the Stack Object Machine 

        alloc = INITIAL_ALLOC; 

        count = 0; 

        items = convertArrayToList(new Object[alloc]); 

        //Test Cases 

        PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

        StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");  

        EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);    

        push(new Object[]{person,student, employee}); 

        if( count == alloc)  //Boolean Expression 

          { 

            Object[] testInput = {new Object[]{person,student, employee}}; 

            return new PreConditionTestObject(testInput); 

          }     

        return null; 

   } 

private PreConditionTestObject pushGSP2() 

  {    

      // Initial states of the Stack Object Machine 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

      //Test Cases 

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science"); 

      push(new Object[]{person,student}); 

      if(count < alloc) //Boolean Expression 

        { 

           Object[] testInput = {new Object[]{person,student}}; 

           return new PreConditionTestObject(testInput); 

        }     

     return null; 

  } 

While pushUSP1() and pushESP1() both have overlapping preconditions, they are 

however considered in different testing modes (i.e. the unchanged and error modes 
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respectively) with focus directed towards different emphasis in the different testing modes of 

the STKCM. That is, the memory of the state encapsulating variable under consideration 

remains unchanged when pushUSP1()is exercised, whereas method push drives the STKOM 

into error state when pushESP1()is exercised at run time. 

Hence, as illustrated in sections 5.4.2.1.1, 5.4.2.1.2 and 5.4.2.1.3, each unique precondition 

method in Upush, Epush and Gpush will drive the STKOM from an initial memory state stkS to a 

modified memory state stkS* after consuming a finite set of inputs from an environment when 

method push is exercised at run time. To exhaustively test method push in the different testing 

modes of the STKCM, all the generated and saved test cases from each unique precondition 

method in Upush, Epush and Gpush shown above are then applied on method push automatically at 

run time to observe if each unique memory encapsulating variable in stkS’ and stkS” are 

holding the correct memory values or not; this is done in order to verify and establish that the 

STKOM under test is in a valid state or not.  

To exhaustively test method pop(), top() and convertArrayToList(Object[]) in the unchanged, 

error and goal state testing modes of the STKCM with respect to Figure 30, the same approach 

described for method push(Object[]) is used (see Appendix A.5.1 for complete result of this). 

 5.5 Summary 

In this chapter we considered three case studies: Student, Employee and Stack. We used the 

first two studies (Student and Employee) to illustrate the mechanism of inheritance that can be 

found in object-oriented languages. Finally, the Stack case study was used to illustrate how our 

model handles a class that takes a generic parameter. We then used the testing method 

described in chapter 4 to illustrate how each unique method of the Student, Employee and Stack 

machines can be tested using our proposed approach in the unchanged, error and goal state 

testing modes. 
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Chapter 6: The Class Machines Friend Function 
System Model 

6.1. Introduction 

In object oriented languages such as Java and C++ state encapsulating variables i.e. instance 

and class variables have their own declared type of access modifiers when they are specified 

statically (section 3.2.4 illustrates access levels in Java and the impact that they have on 

variables that encapsulate states).  

The role of encapsulation is to allow an object’s state to be separated from its behaviour thus 

preventing possible modification to the memory state(s) of its attributes by some external 

communicating objects (e.g. objects of derived subclasses or collaborating objects of classes 

defined outside the class under test).  

In this chapter, we argue that although object oriented programming languages offers the ability 

to conceal information through the encapsulation mechanism, while this concealment is useful, 

it also has undesirable effects for testing.   

The problem here is that during testing, these modifiers have a serious impact on how the 

correct memory state of the object can be debugged, verified and tested. This problem is made 

more complicated when inheritance is involved. This is because some instance and class 

variables belonging to some parent classes may not be visible to their corresponding child 

classes. For example, in section 4.3.3.1.1, every unique state encapsulating variable in pS’ is 

mapped to a “private” modifier. Consequently, only the state variables in pS which are mapped 

to “public” modifiers will be directly visible to stS and eS (respectively covered in sections 

5.2.1.3 and 5.3.1.3) due to the mechanism of inheritance.  

Similarly, some instance and class methods belonging to some parent classes may not be visible 

to their corresponding child classes. On top of this stated problem, some functions with respect 

to a given object or class under test within their own definitions may be composed of a chain of 

other functions in order for their own definitions to be complete.   

In the presence of encapsulation it will be extremely difficult for the test engineer to debug, 

verify and completely test the different memory states of the object or class under test from run 

to completion when such functions are exercised at run time. Hence, making it extremely 

difficult for the test engineer to achieve complete state coverage for a given parent class and/or 

subclass object under test (nor will s/he be able to draw very sound and accurate inferences on 

the object-oriented system under test after testing has been completed).  

To address these problems, this chapter proposes a novel framework formalism that has 

complete visibility on all the encapsulated memory states of the instance and class variables of 

a given object or class under test. We call this the Class Machine Friend Function (CMƒƒ) 

and describe it in detail in the next section.  
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6.2 The CMƒƒ Machine  

Earlier in sections 4.3 and 4.3.3.1, we introduced the theoretical definitions of our proposed 

Class-Machine (CM) and Object-Machine (OM) models and all the relevant components of 

these two machines explained with supporting examples. This section assumes that the reader is 

familiar with all the components of the CM and OM. Hence, we shall not be redefining them 

here. 

In the Class-Machine model, the structure of a Class-Machine is given by CM = (ΛΛ, S”, 

MOD, TYPECM, TIO, M”, ¥, CT, τ, ∆). Our ultimate goal during testing is to test every method 

of the OM ∈ ¥, where the structure of an Object-Machine is given by OM = (ID, S, M). 

 

Shidden ⊆ S is the finite set of hidden state encapsulating variables i.e. instance and class 

variables that cannot be seen outside the OM system under test (e.g. derived Object-Machines 

of the OM system under test). 

Svisible ⊆ S is the finite set of visible state encapsulating variables i.e. instance and class 

variables that can be seen outside the OM system under test (e.g. derived Object-Machines of 

the OM system under test). Hence, Shidden ∩ Svisible = ∅ holds.   

Mhidden ⊆ M is the finite set of hidden methods i.e. instance and class methods. These types of 

methods cannot be seen by derived Object-Machines of the OM system under test. 

Mvisible ⊆ M is the finite set of visible methods i.e. instance and class methods. These types of 

methods will be visible to derived Object-Machines of the OM system under test. Again, as 

above, Mhidden ∩ Mvisible = ∅ holds. 

Note: that while different element of MOD (from section 4.3) assigned to each unique element 

in Shidden, Svisible, Mhidden and Mvisible might have different interpretations in different contexts, 

their overall effect for any given attribute (variable or method) will be that from a given context 

this attribute will either be visible or be hidden. 

So, given the background above, in this section, we are extending the CM model introduced in 

section 4.3 to describe the effects of these modifiers: 

(i) We are assuming that, in any given context, the effect of a modifier is to make the 

corresponding attribute either “hidden” or “visible”, which can be represented by a type 

“visibility” that just has these two values.    

(ii) These two visibility values have the effect of partitioning each of S and M into two 

subsets, where the significance of describing it as a partition is the usual one, namely that the 

two subsets are disjoint, and their union is equal to the original set.    

(iii) Hence, the visibility of any attribute in a given context is determined by applying this 

visibility function to the modifier produced by the mapping S or M as appropriate, and the result 

of this application of the visibility function is to produce a result that determines which of the 

two partitions the attribute is in. 

Now, because it is possible for certain state variables Shidden and methods Mhidden to be hidden 

away with modifiers, the consequence of this is that the test engineer would not be able to 
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directly observe and/or verify if the OM under test is in the correct next memory state when 

method  f ∈ M get exercised at run time.  

To address these problems, this thesis proposed another specialised machine called the CMƒƒ; 

whose prime purpose is to break encapsulation by allowing CMƒƒ to have complete visibility 

on all the encapsulated state variables Shidden and methods Mhidden of the OM during testing.  

 

Definition 27 The CMƒƒ is a triple of functions given by: CMƒƒ = (Я, Ξ, Ж), where: 

Я is the function that converts every uniquely hidden state encapsulating variable in Shidden to a 

public non-hidden state variable. The result is a modified Shidden (i.e. Shidden
ω
): 

Я:  Shidden → Shidden
ω
 

Ξ is the function that converts every uniquely hidden method in Mhidden to a public non-hidden 

method. The result is a modified Mhidden (i.e. Mhidden
ω
): 

Ξ:  Mhidden → Mhidden
ω
 

Earlier, prior to the functions Я and Ξ being applied on the OM under test, the OM is given by 

OM = (ID, S, M). 

After the application of the functions Я and Ξ on the OM under test, the OM is then defined as   

OM = (ID, ST, M
ω
), where: 

ST = Svisible ∪ Shidden
ω
 i.e. S becomes ST. Now, every unique element of ST has a public 

modifier  

M
ω
 = Mvisible ∪ Mhidden

ω
 i.e. M becomes M

ω
. Again, every unique element of M

ω
 has a public 

modifier 

Note that specifically, what these functions (i.e. Я and Ξ) are assuming is that there is always 

some modifier that, in a given context, will map into the visibility “visible” – usually this 

modifier is called “public”, of course, because the normal understanding of this modifier is that 

it maps into “visible” in every execution context.  Thus, in terms of the description above, what 

these functions are really doing is changing the mappings S and M, so that they always produce 

the modifier “public”, and then the effect is that all of the attributes will end up in Svisible or 

Mvisible as appropriate, and Shidden and Mhidden will both be empty.   

Recall that in section 4.3 the form, dynamic behavior and testing of each unique method k ∈ M
ω
 

of the OM under test was fully explained. 

In order to dynamically observe the different memory state(s) that the OM can be driven into in 

the unchanged, error and goal state testing modes of the CM testing technique i.e. for each 

unique method k ∈ M
ω
 that gets exercised at run time, the function Ж from above in the CMƒƒ 

operates as follows: 

Ж  :  OM  →   α(ffKey, ffValue), where: 

OM = (ID, ST, M
ω
) covered above    
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α(ffKey, ffValue) is a map with the form α(KEY, VALUE) pair structure.   

ffKey = (CMS, CAM, CAPM, CATIO) is the friend function key  

CMS is the current memory state of instance and class variables in ST of the OM under test 

CAM is the current active method i.e. k ∈ M
ω
 of the OM under test 

CAPM is the current active precondition method in Uk or Ek or Gk for the OM under test i.e. 

depending on the testing mode of the CM; since method k is guarded by Uk, Ek and Gk. 

CATIO is the current active test input object generated from exercising a precondition method 

in Uk or Ek or Gk for the OM under test 

ffValue = (CAMO, NTS) is the friend function value 

CAMO is the current active method’s output for the OM under test i.e. the type of output 

generated when method k is exercised with the test case that was saved inside CATIO. 

NTS is the next transition state for the OM under test i.e. the modified memory state for all the 

state encapsulating variables in ST when method k is exercised at run time. 

Hence, following the form and behaviour of the function Ж shown above for a given OM under 

test, the complete transition from run to completion of every unique method k ∈ M
ω
 and the 

corresponding changing memory states of all state encapsulating variables var ∈ ST i.e. as a 

consequence of exercising method k at run time would be made visible by the CMƒƒ in the 

unchanged, error and goal state testing modes of the CM testing technique. 

The effect of the changes produced by applying CMƒƒ to a class machine CM is to produce a 

machine in which every transition is identical to the corresponding transition of the original 

machine, and similarly for the corresponding object machines, because the context in which the 

new machines are run does not try to make any changes to state variables or invocations of 

methods that previously would have been prevented by the modifiers.   

The Java implementation code embodying the concept behind the Ж function discussed above 

is presented in Figure 31 (Please see Appendix A.3 for the complete Java source code that 

embodies our CMƒƒ concept). As an example, in the unchanged state testing mode of the CM 

testing technique, the Ж function is implemented as what is shown in Figure 31. The yellow 

arrow in Figure 31 indicates the part of the code where all the unchanged state precondition 

methods USPM where generated from.  

In particular, in order for the reader to fully see the part of our program code where we are 

changing the mappings Shidden and Mhidden to the modifier “public”, the attention of the reader is 

called to the full program code in Appendix A.3. 
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In the unchanged state testing mode of the CMƒƒ, the above Java source code in summary 

allows the test enginner to be able to verify whether the OM under test is in a correct state or 

not i.e. does variables encapsulating the state(s) and/or distributed memory of the OM system 

under test hold the correct internal memory and/or variable values? So that from a given 

current and/or initial memory state(s) of the OM system under test, the above program code 

displays:  

• The initial memory values for all the variables var ∈ ST encapsulating the memory 

and/or states of the OM system under test  

• The current active method (i.e. the method k ∈ M
ω
  that was triggered during testing)   

• the current active test input object (i.e. the automatically generated test input object that 

applies to method k ∈ M
ω
  during testing) 

• The current triggered precondition method i.e. the precondition method that was fired 

when method k ∈ M
ω
  was exercised i.e. uspm ∈ Uk (this is the finite set of unchanged 

state precondition method guarding method k) in order to verify and/or establish why 

the OM is in the state that it is or whether there is a fault, exception that was raised to 

put the OM under test to the current state that it is now in  

• The result generated by current active method (i.e. the type of output computed by 

method k ∈ M
ω
 during testing)  

public Map getUnchangedStateTransitionFunction(ClassMachine myClass) 

        {                      

               Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine(); 

               Object imp =  generateNewObjectMachine(compiledObjectMachine); 

 

               TestObject testObject =  myClass.getTestObject(); 

               String[] usPreCondMethodNames = getUnchangedStatePreConditionMethodNames(testObject);       

                 

               Map profile = myClass.getObjectMachineType(); 

                        

               String[] currentObjectState = getCurrentObjectState(imp); 

 

 Map<TransitionFunctionKey, TransitionFunctionValue> unchangedStateTransitionFunction = new 

HashMap<TransitionFunctionKey, TransitionFunctionValue>(); 

            

               for(String preMethod : usPreCondMethodNames) 

                  { 

                      for (Method preCondMethod : imp.getClass().getDeclaredMethods()) 

                           { 

                               if(preCondMethod.getName().equals(preMethod)) 

                                 {                                            

                                     try{ 

                                           preCondMethod.setAccessible(true); 

                                           Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{}); 

                                           PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput; 

                                             

                                           String usObjectMachineMethodName = (String) profile.get(preMethod); 

                                             

                      Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput()); 

                      String[] nextObjectMachineState = getCurrentObjectState(imp); 

                                               

TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState, 

usObjectMachineMethodName, preMethod, pto.getTestInput()); 

TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState); 

unchangedStateTransitionFunction.put(tKey, tValue); 

                                               

                                         }catch (Exception e)  

                                                { 

    e.printStackTrace(); 

                             } 

                                } 

 

                                   

  

                            } 

                                     

                    } 

                           

              

              return unchangedStateTransitionFunction; 

 
           }// End of getUnchangedStateTransitionFunction 

Figure 31: Java implementation of the Ж function in the unchanged state testing mode 
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• The next object-machines transition state (i.e. the modified memory states and/or values 

that each unique variable var ∈ ST will assume as a consequence of invoking method k 

∈ M
ω
 at run time)   

6.3 On the Power of Reflection in the Java Language 

The mechanism of reflection in the Java Programming Language is a relatively advanced 

feature crucially designed to be explored by software engineers who have a strong grasp of the 

fundamentals of the language. Overall, the mechanism of reflection in its own original form can 

be viewed as a rather powerful technique that can enable application programs to perform 

operations which would otherwise be impossible. The Java reflection API represents (i.e. or 

reflects) the classes, interfaces, and objects in the Java Virtual Machine. With the Java 

reflection API, software engineers can easily obtain useful information about a class’s 

modifiers, fields (i.e. attributes of a class), methods, constructors, and superclasses (i.e. as a 

consequence of inheritance). The Java reflection API is useful for writing development tools 

such as debuggers, class browsers, and GUI builders.  

Thus, further to all of the afore-mentioned benefits afforded through dynamic exploration, 

integration and application of the power of reflection in concrete object-oriented 

implementations that address requisite real world scenarios and/or problems, our goal here is to 

use the power of reflection to harness our own notion of the class-machine friend (i.e. CMƒƒ) 

discussed earlier.  

To do this, we developed a generic framework class in the java programming language (i.e. 

called ReflectionUtil.java) to enable us to reflect and/or obtain all useful information about a 

class’s modifiers, fields (i.e. attributes of a class), methods, constructors, and superclasses (i.e. 

as a consequence of inheritance).  

Furthermore, in order to test and generate some results as an example whilst exploring i.e. 

ReflectionUtil.java (for this see Figure 32) we developed a driver class (i.e. called Main.java). 

This driver class was fed during testing with four different concrete object-machine 

implementations outlined herein below: 

• The stack object-machine called StackTest.java (see section 5.4  for this) 

• The person object-machine called PersonObjectMachineTest.java (see section 4.2.6 for 

this) 

• The student object-machine called StudentObjectMachineTest.java (see section 5.2  for 

this) 

• The employee object-machine called EmployeeObjectMachineTest.java (see section 5.3  

for this) 

 

The results generated following compilation and execution of the Main.java class i.e. see Figure 

33 for this at runtime were consequently displayed using the DOS command line window in 

Figures 34, 35, 36 and 37. The ReflectionUtil.java class depicted by Figure 32 reflect all locally 

available and inherited constructors, attributes and methods of the Person, Student, Employee 

and Stack case studies discussed and presented earlier in chapters 4 and 5. 
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import java.util.*; 

import java.lang.reflect.Constructor; 

import java.lang.reflect.Field; 

import java.lang.reflect.Method; 

 

public class ReflectionUtil { 

 

  public ReflectionUtil() 

    { 

      // do nothing  

    } 

 

  public static List <Constructor> getDeclaredConstructors(Object object) 

         { 

 

            Class<?> clazz = object.getClass(); 

 

            List<Constructor> constructors = new ArrayList<Constructor>(); 

             do  

              { 

                try { 

                      constructors.addAll(Arrays.asList(clazz.getDeclaredConstructors())); 

                    } catch (Exception e) { } 

              } while ((clazz = clazz.getSuperclass()) != null); 

 

           return constructors; 

 

         } 

  

       public static List <Field> getDeclaredFields(Object object)  

         { 

             Class<?> clazz = object.getClass(); 

               

             List<Field> fields = new ArrayList<Field>(); 

             do  

              { 

                try { 

                      fields.addAll(Arrays.asList(clazz.getDeclaredFields())); 

                    } catch (Exception e) { } 

              } while ((clazz = clazz.getSuperclass()) != null); 

 

           return fields; 

         } 

  

       public static List <Method> getDeclaredMethods(Object object)  

         { 

             Class<?> clazz = object.getClass(); 

 

             List<Method> methods = new ArrayList<Method>(); 

             do  

              { 

                try { 

                      methods.addAll(Arrays.asList(clazz.getDeclaredMethods())); 

                    } catch (Exception e) { } 

              } while ((clazz = clazz.getSuperclass()) != null); 

 

           return methods; 

         } 

 

         … 
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… 

public void describeInstance(Object object) { 

    //Class<?> clazz = object.getClass(); 

     

    //Constructor<?>[] constructors = this.getDeclaredConstructors(object); 

    //Field[] fields = this.getDeclaredFields(object); 

    //Method[] methods = this.getDeclaredMethods(object); 

 

    List <Constructor> constructors = this.getDeclaredConstructors(object);   

    List <Field> fields = this.getDeclaredFields(object); 

    List <Method> methods = this.getDeclaredMethods(object); 

     

    System.out.println();  

    System.out.println("*****************************************"); 

    System.out.println("Description for class: " + object.getClass().getName()); 

    System.out.println("*****************************************"); 

    System.out.println();  

    System.out.println(); 

    System.out.println("Summary"); 

    System.out.println("-----------------------------------------"); 

    System.out.println("Constructors: " + (constructors.size())); 

    System.out.println("Fields: " + (fields.size())); 

    System.out.println("Methods: " + (methods.size())); 

 

    System.out.println(); 

    System.out.println(); 

    System.out.println("Details"); 

    System.out.println("-----------------------------------------"); 

 

    if (constructors.size() > 0) { 

      System.out.println(); 

      System.out.println("All Constructors including Inherited ones:"); 

      System.out.println("-----------------------------------------"); 

      Iterator iter = constructors.iterator(); 

      while(iter.hasNext()){ 

            System.out.print(iter.next()); 

      } 

    } 

 

    if (fields.size() > 0) { 

      System.out.println(); 

      System.out.println(); 

      System.out.println("All Field's values including Inherited ones: "); 

      System.out.println("-----------------------------------------"); 

      Iterator iter = fields.iterator(); 

      while(iter.hasNext()){ 

           Field field = (Field) iter.next();           

           System.out.print(field.getName()); 

           System.out.print(" = "); 

           try { 

           field.setAccessible(true); 

           System.out.println(field.get(object)); 

         } catch (IllegalAccessException e) { 

           System.out.println("(Exception Thrown: " + e + ")"); 

         } 

       } 

     } 

 

    if (methods.size() > 0) { 

      System.out.println(); 

      System.out.println("All Methods including Inherited ones:"); 

      System.out.println("-----------------------------------------"); 

      Iterator iter = methods.iterator(); 

      while(iter.hasNext()){ 

            System.out.print(iter.next()); 

       } 

      System.out.println(); 

    } 

    

   }// End of describeInstance method 

 
 }// End of Class ReflectionUtil 

Figure 32: The ReflectionUtil.java class 
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import java.util.*; 

 

public class Main  

  { 

       public static void main(String[] args) throws Exception  

         { 

             

              ReflectionUtil r = new ReflectionUtil(); 

              

              List<Object> personList = new ArrayList<Object>(); 

 

  StackTest machine1 = new StackTest();  

  PersonObjectMachineTest machine2 = new PersonObjectMachineTest("John", "Ogunshile", 34, "MALE"); 

  StudentObjectMachineTest machine3 = new StudentObjectMachineTest("Susan", "Price", 18, "FEMALE", "Computer Science"); 

  EmployeeObjectMachineTest machine4 = new EmployeeObjectMachineTest("JJ", "Dan", 22, "MALE", 30, 1); 

               

              personList.add(machine1); 

              personList.add(machine2); 

              personList.add(machine3); 

              personList.add(machine4); 

         

              Iterator<Object> iter =  personList.iterator(); 

    

              while(iter.hasNext()) 

                   {                

                      r.describeInstance(iter.next()); 

 

                      System.out.println(); 

                      System.out.println(); 

                   }   

        

           

          } 

     } 

Figure 33: The Main.java class 
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Figure 34: The result of reflection on StackTest.java 
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Figure 35: The result of reflection on PersonObjectMachineTest.java 
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Figure 36: The result of reflection on StudentObjectMachineTest.java 

  

 

 

 

 

 

 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

157 

 

 

Figure 37: The result of reflection on EmployeeObjectMachineTest.java 

6.4 Summary 

This chapter introduced and discussed a novel framework formalism that has complete visibility 

on all the encapsulated methods, memory states of the instance and class variables of a given 

object or class under test. We call this the Class Machine Friend Function (CMƒƒ). The 

proposed approach has merit over existing automaton-based models like [2, 29, 30, 31, 32, 38, 

55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91] in that the CMƒƒ would allow the test engineer to 

debug, test and verify the correct memory states of any OM or CM under test in the unchanged, 

error and goal state testing modes. Hence, with the CMƒƒ it does not matter whether the 

methods and variables encapsulating the memory states of a given OM or CM under test are 

hidden or not since during testing the CMƒƒ machine will automatically make them visible. The 

CMƒƒ produces a set of machines that behave in the same way as the originals (but, ofcourse 

that also allow the test engineer to see what this behaviour is). 
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Chapter 7:  Automated Testing, Debugging, 
Verification and Probabilistic Analysis with the 
Class-Machine Testing Tool 

7.1 Introduction 

This chapter seeks to develop an automated testing tool as a proof of concept in order to further 

show that the Class-Machine theoretical purity does not mitigate against practical concerns. To 

achieve this goal, our attention in this chapter shall be directed towards ensuring that our 

automaton-based framework formalism, our testing method based on this and all the theoretical 

work prensented in chapter 4, in addition to the four different individual Class-Machines case 

studies discussed, studied and presented in (chapters 4 and 5) and the CMƒƒ concept introduced 

in chapter 6 are all exemplified in an automated testing tool. We shall refer to this tool as the 

Class-Machine Testing Tool (CMTT).  The rest of this chapter is organised as follows: section 

7.2 below covers the design of the CMTT, section 7.3 covers testing, evaluation and 

effectiveness of the CMTT and section 7.4 provides a short summary based on all the work 

done in this chapter. 

7.2 The Design of the CMTT 

The CMTT is currently an Autonomous Graphical User Interface Tool in the Java Programming 

Language (i.e our ultimate future goal is to make this available on a dedicated website on the 

world wide web where registered users around the globe would be able to gain access to it and 

then use it to test their concrete object-machine systems) consisting of four different individual 

panels (i.e. The File Editor Panel, Precondition Generator Panel, Frogila Testing Tool Panel 

and Run/Compilation Panel) each panel in turn specifically abstracting away a unique design 

logic in a modular form to solve the overall design problem that we have in mind whilst 

conceptualising the entire system. Now, by using the tab key via the keyboard on user’s 

computer system, users can move back and forth from one panel to another. Furthermore, the 

entire design structure of the system is consistent with the Model, View, Controller architectural 

pattern that can be found in the Java Programming Language. The implementation and testing 

of the CMTT was carried out using (The Programming Language: Java Platform, Standard 

Edition 6 Release), (Computer Name: Toshiba), (Operating System Name: Microsoft Windows 

XP Professional) and (Processor: x86 Family 6 Model 13 Stepping 6 Genuine Intel ~1695 

Mhz). 
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From the beginning of the CMTT’s File Editor Panel, test engineers and/or users of the system 

can perform the following i.e. in a manner consistent with the workflow diagram shown in 

Figure 38: 

• Open File: Here, test engineers and/or users of the system can click on the File menu to 

select and open the compiled java class that they want to subject to test. By default, the 

CMTT implements a java filter which filters out all java classes from users current 

directory thus allowing users of the system to select what class that they want to subject 

to test from this directory. Upon selection of a valid java class file from the pop up 

menu window, the CMTT then displays the selected file within the File Text Area of 

the File Editor Panel. 

• Edit and Save File: Here, further to earlier step, the CMTT users are allowed to peruse 

the opened java file and then carryout any requisite processing and/or further 

manipulation of the java class as required by the user i.e. as an example – activities 

which concerns saving and editing the selected java file in question. 

• Exit File: Here, as the name explicitly suggests any written, opened and compiled java 

class file can be exited or closed when the exit or quit icon is clicked upon.  

• File Text Area: Here, software engineers can use the file text area to write their own 

java file from scratch, edit and save the file as they require. 

 

 

 

 

 

 

 

 

The File Editor Panel 

Open File 

Edit and Save 

File 

Exit File 

File Text 

Area 

Figure 38: The File Editor Panel workflow in the 

CMTT 
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Figure 39: The Precondition Method Generator Panel workflow in the CMTT 

While the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM 

Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal state 

precondition method’s testing mode (i.e. GSPM Mode) it performs and/or goes through the 

following dynamic system routine steps based on the workflow pattern depicted in Figure 39: 

1. Select Compiled Object-Machine (SCOM): Here, the CMTT allows users of the system to 

click on the Upload Compiled Object-Machine button that can be found on the 

Precondition Generator Panel. Now, upon users clicking on this button, a pop up window 

is displayed on users computer screen; and because by default the CMTT implements a 

compiled java class filter which filters out all compiled java class names ending with (e.g. 

className.class) from users current directory thus allowing users of the system to select 

what compiled java class that they want to generate precondition test object-machine for 

i.e. from the list of displayed compiled java class names shown in users current directory. It 

is crucial at this juncture to mention that all the required information needed to completely 

test all the state variables and methods of the selected compiled object-machine with are 

saved up inside the automatically generated precondition test object-machine. 

 

2. Generate the Type of the Object-Machine (GTOM): Now, further to earlier step above, here, 

the CMTT allows users of the system to click on the Generate Object-Machine Type 

button that can be found on the Precondition Generator Panel i.e. in order for it to 

automatically infer the type of the selected compiled object-machines system under test (i.e. 

a finite set of method names derived from the selected compiled object-machines system). 

Now, further to users of the system clicking on the afore-mentioned button above, an 

automatically generated type is derived for the selected compiled object-machines system 

under test and thus added and displayed inside a visible java JComboBox’s component i.e. 

on the Precondition Generator Panel. The type of the selected compiled object-machines 

system under test generated here are thus displayed as a finite set of processing functions 
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or methods. This approach is repeated for the selected compiled object-machines system 

under test whilst the CMTT is in the unchanged state precondition method’s testing mode 

(i.e. USPM Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) 

and the goal state precondition method’s testing mode (i.e. GSPM Mode). 

 

3. Select a method (SAM):  In this step the CMTT allows users of the system to repeatedly 

select a method from the list containing the type of the selected compiled object-machines 

system under test (i.e. all the method names automatically derived and stored inside the 

visible java JComboBox’s component in earlier step above). The goal here is to allow users 

to repeatedly select a method from the JComboBox of methods until such time when there 

are no more methods available in the JComboBox for selection (i.e. every selected and 

processed method is automatically removed from the JComboBox); so that the CMTT can 

then use the Precondition Generator Panel to automatically generate a precondition 

method’s template object for each of the methods selected from the visible java 

JComboBox’s element. The template object referred to here is effectively a Java List object. 

Now, let us assume that the selected method name above is mn and the precondition 

template object that was automatically generated for method mn is PTOmn. Assume also that 

we have a java Map function with the form Map<String, List>. We say here that the java 

Map function maps every method name i.e. mn in JComboBox to a corresponding 

precondition template object i.e. PTOmn so that we now have Map<mn, PTOmn>; since every 

method name is guarded by a finite set of precondition methods i.e. implemented here as a 

java List object. The precondition template object is a generic template class implemented 

within the CMTT to automatically generate java source codes which represent a finite set 

of precondition methods by which a method name of a compiled object-machine under test 

is guarded by.   

 

4. Enter Total Number of Precondition Method Guarding Selected Method (TNPMGSM):  In 

this step, further to the last step above, the CMTT require the user of the system to enter for 

each method name selected above, the total number of precondition methods guarding 

that method name. This information can be derived from the original formal specification 

system written and/or designed for the selected compiled object-machine system under test 

in the first step above. All the information gathered during this session and those from the 

third step above are concurrently used together in order to automatically generate a 

precondition template object for each unique method name selected in the third step above. 

 

5. Generate Method Template(GMT): Now, further to all of the steps described above, the 

CMTT users are asked in this step to click on either Generate USP Method Template button 

or Generate ESP Method Template button or Generate GSP Method Template button i.e. 

depending on whether the system is in the unchanged state precondition method’s testing 

mode (i.e. USPM Mode), the error state precondition method’s testing mode (i.e. ESPM 

Mode) and the goal state precondition method’s testing mode (i.e. GSPM Mode). 

 

6. Generate Precondition Test Object-Machine (GPTOM): In this final step, users of the 

CMTT are asked to click on the Generate Precondition Test Object-Machine button to 

produce a new java List object i.e. allPTOm containing all records of precondition 

template objects generated so far i.e. for each method name selected in the third step above 

whilst the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM 
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Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal 

state precondition method’s testing mode (i.e. GSPM Mode). All the information generated 

and that are consequently stored in i.e. allPTOm are later used within The Frogila Testing 

Tool Panel whilst testing the selected compiled object-machines system that was obtained 

from the user in the first step described above. 

 

Figure 40: The Frogila Testing Tool Panel workflow in the CMTT 

While the CMTT is in the unchanged state precondition method’s testing mode (i.e. USPM 

Mode), the error state precondition method’s testing mode (i.e. ESPM Mode) and the goal state 

precondition method’s testing mode (i.e. GSPM Mode) it performs and/or goes through the 

following dynamic system routine steps: 

1. Select Compiled Object-Machine (SCOM): Here, the test engineer is required to select the 

object-machine that s/he wants to subject to test. 

 

2. Automatic Test Case Generation (ATCG): Further to earlier step above, here, the CMTT 

automatically generates complete test cases and/or test objects for the selected object-

machine. Now, all the generated test cases and/or test objects derived for the compiled 

object-machine that was selected are automatically applied on all the methods of this object-

machine. Each unique test object generated will then be applied on a corresponding method 

of the selected object-machine. Recall that from earlier examples in chapter 4 and chapter 5 

that test cases are saved inside precondition method’s test objects. To achieve ATCG the 

CMTT implements the approach described in section 4.5.2.  

 

3. Complete State Coverage (CSC):  In this step, the CMTT ensures that each unique method m 

∈ M  in the selected compiled object-machine under test with the form and behaviour shown 

below is exercised at run time to achieve complete state coverage for the object-machine 
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under test: m (modm, Guardm) : S  x  inPTm  →  (S*, outPTm, nextOMSIm). This is 

because each unique precondition method in Um, Em and Gm (i.e. simply referred to as 

Guardm) individually encapsulate a unique memory state or transition path for the method m 

under test in the unchanged, error and goal state testing modes. Hence, method m can only 

drive the object-machine under test to a finite set of memory states (i.e. a trackable number 

of memory states) consequently allowing state coverage to be achieved for the object-

machine under test; given that in the unchanged, error and goal state testing modes of the 

CMTT we can only generate a finite set of test input objects for method m under test i.e. by 

exercising each unique precondition method in Um, Em and Gm at run time. In chapters 4 and 

5 we illustrated using examples that exercising a precondition method will produce a 

PreConditionTestObject. 

 

4. Automatic Object-Machine Debugging (AOMD): In this step, the CMTT allows the test 

engineer to directly carryout observations on all internal variable values encapsulating the 

different memory states of the object-machines system under test through automatic object-

machines memory state(s) debugging; thus, the values computed whilst the object-machine 

was driven into different memory state(s) are displayed in the tool for ultimate perusal 

and/or requisite observation by the test engineer i.e. following dynamic execution and 

invocation of every method m ∈ M of the object-machines system under test.  

 

5. Automatic Object-Machine Verification (AOMV): In this step, the CMTT goes through the 

approach described in section 6.2 in the unchanged, error and goal state testing modes of the 

CMTT. Figure 31 depicts Java implementation for the AOMV procedure.  

 

6. Probabilistic Analysis of Transition States (PAOTRAS): In this final step of the CMTT’s 

routine, the CMTT automatically generates a probabilistic summary for the object-

machines model system under test based on all the analysis that it conducts around our 

predictive rules discussed in sections 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.6, 4.5.7, 4.5.8, 4.5.9, 

4.5.10 and 4.5.11. 
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From the beginning of the CMTT’s Run/Compilation Panel, test engineers and/or users of the 

system can perform the following i.e. in a manner consistent with the workflow diagram shown 

in Figure 41: 

• Select Object-Machine to Compile: Here, the CMTT allows users to click on the select 

object-machine to compile button and because by default the CMTT implements a 

java filter which filters out all java classes from users current directory thus allowing 

users of the system to select what java class that they want to subject to compilation 

from this directory.   

• Compile Selected Object-Machine: Here, the CMTT allows users to click on the compile 

selected object-machine button; the CMTT then uses a custom designed script to 

compile the selected java file consequently displaying the result of this compilation 

within the File Text Area of The File Editor Panel.  

• Clear all component area: Here, the CMTT allows users of the system to click on the 

clear all component area button in order to clear and/or remove all textual element(s) 

currently being displayed inside the File Text Area of The Run/Compilation Panel. 

7.3 Testing, Evaluation and Effectiveness of the CMTT  

In this section, our attention will be wholly directed towards testing, evaluating the quality, 

novelty and effectiveness of our proposed testing philosophy and/or approach. More crucially, 

our evaluation shall focus largely on the correctness and conformance of a concrete class-

machines system implementation under test with respect to its formal specification. To achieve 

the above stated goal in this section, all the four different individual class-machines case studies 

presented in chapter 4 (i.e. the person class-machine running example appended to chapter 4) 

and chapter 5 (i.e. the student class-machine, employee class-machine and stack class-machine) 

will be tested, evaluated and their respective results generated in the unchanged, error and goal 

state testing modes of the CMTT.  

The Run/Compilation Panel 

Select Object-

Machine to 

Compile 

Compile 

Selected 

Object-Machine 

Clear all 

component 

area 

Figure 41: The Run/Compilation Panel Work flow diagram 
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Prior to achieving the above stated goals, firstly, it is important to make it clear at this juncture 

that the main focus of the CMTT’s approach is on complete testing. Secondly, our probabilistic 

analysis throughout within the CMTT below (i.e. all the automatically generated probabilistic 

summary table produced in the unchanged, error and goal state modes of the CMTT with 

respect to the PAOTRAS idea described in section 7.2) for each unique class machine system 

under test has been introduced to address the fact that in practice with complex object oriented 

systems it is extremely difficult to completely or accurately claim that all possible paths in the 

class machine system under test has been followed and/or tested for the presence of faults. 

Consequently, our position on the subject of this matter is that untested paths within the class 

machine system under test can contain faults which can possibly lead to failures (i.e. in the 

presence of while loops and the mechanism of polymorphism in object oriented languages 

which can make the entire state space of the class machine system under test to be intractable). 

To provide a well informed, more reliable, and sound conclusion over a given class machine 

system under test i.e. after testing has been completed, our testing method was supported with 

the PAOTRAS concept in order to aid the testing procedure. 

 

Now, for the person class-machine, student class-machine, employee class-machine and stack 

class-machine case studies referred to above, we assume the following for each of the case 

study tested, analysed and evaluated within the CMTT: 

(i) The object machine under test can be subjected to test within the CMTT in the unchanged, 

error, goal and the complete transition state testing modes. In each of these testing modes, 

probabilistic analysis is carried out for each method of the object machine under test. Since 

each unique method of the object machine system under test is said to be guarded by a finite set 

of unchanged, error and goal state precondition methods, we say that the method under test in 

the relevant testing mode is tested exhaustively by the number of precondition methods 

guarding it. Recall that each unique precondition method encapsulates a unique next object 

machines transition state. By firing a given precondition method during a particular testing 

mode, we aim to observe if the object machine under test has been driven into the correct 

memory state or not.  

(ii) The object machine under test is in an arbitrary state; 

(iii) A specific method m of the object machine under test will be invoked (which means that 

there will be separate probability calculations for each method m); 

(iv) This invocation may cause one of the preconditions to fire (in principle there is exactly one 

for each invocation); during testing however, method m is tested exhaustively with respect to 

the number of precondition methods guarding it in the relevant testing mode. 

(v) The probabilities to be calculated are the probabilities of a finite set of precondition method 

guarding method m firing in the relevant testing mode and in relation to the overall methods of 

the object machine under test in that testing mode. 

(vi) All the probabilities to be calculated rely heavily on the ideas that were presented and 

discussed with respect to the PAOTRAS concept described in section 7.2. 

Recall that in section 5.4 we presented and discussed the aims and objectives of the Stack case 

study. Using Figure 30 we illustrated the form, behaviour and how to test every unique method 

of the Stack Object Machine system under test in the unchanged, error and goal state testing 

modes. To evaluate the CMTT, completely test, debug and verify the methods and memory 
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states of the instance and class variables of the stack class-machine system in the unchanged, 

error and goal state testing modes of the CMTT the following steps are followed: 

1. Open the compiled StackObjectMachine.java file depicted by Figure 42 within 

the File Editor Panel of the CMTT shown below. The workflow diagram represented by 

Figure 38 provide helpful guidance on how users can open a file within the CMTT. 

 

Figure 42: The StackObjectMachine.java File opened and displayed within the File Editor Panel of the CMTT 

Method Name Total Number of Unchanged State Precondition Methods 

(USPM) guarded by 

Push 2 

Pop 1 

Top 1 

Table 4: The Unchanged State Precondition Method Profile of the Stack Object-Machine System 
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Method Name Total Number of Error State Precondition Methods (ESPM) 

guarded by 

Push 1 

Pop 1 

Top 1 

Table 5: The Error State Precondition Method Profile of the Stack Object-Machine System 

 

         Method 

Name 

Total Number of Goal State Precondition Methods (GSPM) 

guarded by 

Push 2 

Pop 1 

Top 1 

Table 6: The Goal State Precondition Method Profile of the Stack Object-Machine System 

All the information in Tables 4, 5 and 6 were derived directly from the formal specification 

system written and/or designed for the Stack Object-Machine System (e.g. see section 5.4.2). 

2. Use the Precondition Generator Panel of the CMTT to automatically generate executable 

Java program codes for the unchanged, error and goal state precondition methods of the 

compiled StackObjectMachine.java class under test i.e. using the information in 

Tables 4, 5 and 6. The result of this action is saved as StackTest.java in Figure 65. 

The parts in Figure 43 where components are highlighted in yellow, red and green 

correspond to the parts of the system where all  the unchanged, error and goal state 

precondition methods are generated from in that order: 
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Figure 43: The Precondition Generator Panel of the CMTT 

 

3. Use the Frogila Testing Tool Panel of the CMTT to upload and test the 

StackTest.java class in the unchanged, error and goal state testing modes. Within 

the Frogila Testing Tool Panel of the CMTT depicted by Figure 44, components 

highlighted in yellow, red and green correspond to the unchanged, error and goal state 

precondition method’s testing modes respectively. 

 

Figure 44: Testing the Stack Object-Machine System in the USPM testing mode of the CMTT 
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For the sake of clarity, Table 7 outlines a step by step transition of the stack object-machines 

system under test (i.e. StackTest.java) since not all the results shown in Figure 44 are 

directly visible to the reader (i.e. seeing that the users of the system need to scroll through the 

tool and also expand the Class-Machine’s Test Result Summary Table section shown in 

Figure 44 in order to peruse detail result displayed therein):   

Unchanged State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method Top 

Current Active Test Input [] 

Current Triggered Precondition Method topUSP1 

Result Generated by current active method java.lang.Object@48bc3d 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Unchanged State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method Pop 

Current Active Test Input [] 

Current Triggered Precondition Method popUSP1 

Result Generated by current active method java.lang.Object@198f5e7 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = -1, items = [null, null, null]] 

Unchanged State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method Push 

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ 

Dan 22 MALE 30.0 1 1200.0, 0.0]] 

Current Triggered Precondition Method pushUSP2 

Result Generated by current active method java.lang.Object@c5c32e 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]] 

Unchanged State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 
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Current Active Method Push 

Current Active Test Input [[]] 

Current Triggered Precondition Method pushUSP1 

Result Generated by current active method Null 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Table 7: The step by step transition of the stack object-machines system in the USPM Mode of the CMTT 

Whilst the CMTT is in the unchanged state precondition methods (USPM) testing mode 

depicted by Figure 44, the CMTT proceeds to test every processing function or method of the 

object-machine system under test (i.e. the StackTest.java class) by asserting that under 

what condition or conditions would invocation and/or dynamic execution of a given method of 

the object-machines system under test not modify i.e. the current and/or initial memory state(s) 

of the object-machines system under test. Now, since every method m of the object-machines 

system under test is guarded by a finite set of unchanged state precondition methods i.e. 

USPMm, each of these precondition methods in turn during testing are automatically converted 

to unchanged state precondition test object PTOm. Hence, during testing in order to exercise 

every method m we apply every PTOm generated from USPMm on method m and then observe 

the different memory state(s) that the stack object-machines system get driven into as a 

consequence of the dynamic application of PTOm on method m (i.e. this approach thus allow us 

to debug the content and/or values stored in all internal memory state variables; hence further to 

this we can comfortably assert requisite property of correctness and conformance at a higher 

level of detail for the stack object-machine system under test). Whilst in the unchanged state 

precondition i.e.USPM methods testing mode, the goal of the CMTT is to ensure that none of 

the precondition methods i.e. uspm ∈ USPMm changes the current and/or initial memory state(s) 

of the object-machine system under test. 

In Figure 44, the name of the object-machine under test is shown (i.e. StackTest.java). 

Now, starting from the current memory state(s) of the stack object-machines system under test 

i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that if the 

current active method is top,  current active test input applied on top is [] (i.e. top consumes no 

input hence why [] is empty; all test inputs are enclosed within [] in the CMTT), current 

triggered precondition method within method top is topUSP1, result generated by current active 

method i.e. top is java.lang.Object@48bc3d i.e. an error that does not modify the current 

memory state(s) of the stack object-machines system under test; since the execution of topUSP1 

does not change the initial state of  items (i.e. finding the top  of an empty stack leads to an 

error that would not change the initial state of the stack under test) and the next stack object-

machines transition state is [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, 

null]] (i.e. which shows that the next dynamic memory state(s) and/or transition of the stack 

object-machines system under test remains the same as the initial current memory state(s) of the 

stack object-machine system under test when topUSP1 was invoked). Note from above, that the 

state variable i.e. items is an instance of java.util.List object. Also note that because the stack 

object-machine has a fixed memory capacity i.e. INITIAL_ALLOC = 3 and since from the 

current state of the stack object-machine system under test no object items has been added as of 

yet hence items = [null, null, null].  

Hence, for the different memory state(s) of the stack object-machine system under test we show 

what unchanged state precondition method i.e. uspm ∈ USPMm that get fired within method m 
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of the stack object-machine system under test and what unchanged state’s precondition test 

object i.e. PTOm that was applied on method m to put the stack object-machine system in that 

memory state(s). Furthermore, we also show the output computed for every method m in the 

object-machine. The output and/or result computed further to dynamic execution and/or 

invocation of all method m within the stack object-machine system with the void type are 

consistently shown within the CMTT as having to return the null type. 

 

Figure 45: Testing the Stack Object-Machine System in the ESPM testing mode of the CMTT 
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Error State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method Top 

Current Active Test Input [] 

Current Triggered Precondition Method topESP1 

Result Generated by current active method java.lang.Object@17eb767 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Error State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT  [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method  Pop 

Current Active Test Input  [] 

Current Triggered Precondition Method  popESP1 

Result Generated by current active method  java.lang.Object@1fa157c 

Next Object-Machine Transition State  [INITIAL_ALLOC = 3, alloc = 3, count = -1, items = [null, null, null]] 

Error State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method Push 

Current Active Test Input [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ 

Dan 22 MALE 30.0 1 1200.0, 0.0]] 

Current Triggered Precondition Method pushESP1 

Result Generated by current active method java.lang.Object@1988d36 

Next Object-Machine Transition State [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]] 

Table 8: The step by step transition of the stack object-machine system in the ESPM Mode of the CMTT 

In Figure 45, starting from the current memory state(s) of the stack object-machines system 

under test i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that 

if the current active method is push,  current active test input applied on push is [[John Edwards 

33 MALE, Susan Price 18 FEMALE Computer Science, JJ Dan 22 MALE 30.0 1 1200.0, 0.0]] 

(i.e. push consumes as input a java.util.List object with a size 4 object items), current triggered 

precondition method within method push is pushESP1, result generated by current active 

method i.e. push is java.lang.Object@1988d36 i.e. an error that modifies the current memory 

state of count of the stack object-machines system under test and the next stack object-machines 

transition state is [INITIAL_ALLOC = 3, alloc = 3, count = 4, items = [null, null, null]] (i.e. 
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which shows that  pushESP1  drives the stack object-machine into an error state due to the fact 

that count > INITIAL_ALLOC hence by executing push we still could not modify the memory 

state of items).  Section 5.4.2 covers detail specification and testing of the push method. 

 

Figure 46: Testing the Stack Object-Machine System in the GSPM testing mode of the CMTT 

 

Goal State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method  Push 

Current Active Test Input  [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science]] 

Current Triggered Precondition Method  pushGSP2 

Result Generated by current active method  Null 

Next Object-Machine Transition State  [INITIAL_ALLOC = 3, alloc = 3, count = 2, items = [John Edwards 33 

MALE, Susan Price 18 FEMALE Computer Science, null]] 

Goal State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT  [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 
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Current Active Method  Push 

Current Active Test Input  [[John Edwards 33 MALE, Susan Price 18 FEMALE Computer Science, JJ 

Dan 22 MALE 30.0 1 1200.0]] 

Current Triggered Precondition Method  pushGSP1 

Result Generated by current active method  Null 

Next Object-Machine Transition State  [INITIAL_ALLOC = 3, alloc = 3, count = 3, items = [John Edwards 33 

MALE, Susan Price 18 FEMALE Computer Science, JJ Dan 22 MALE 30.0 1 

1200.0]] 

Goal State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method  Top 

Current Active Test Input  [] 

Current Triggered Precondition Method  topGSP1 

Result Generated by current active method  Susan Price 18 FEMALE Computer Science 

Next Object-Machine Transition State  [INITIAL_ALLOC = 3, alloc = 3, count = 2, items = [John Edwards 33 

MALE, Susan Price 18 FEMALE Computer Science, null]] 

Goal State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) StackTest 

Current State(s) of OMUT [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]] 

Current Active Method  Pop 

Current Active Test Input  [] 

Current Triggered Precondition Method  popGSP1 

Result Generated by current active method  Susan Price 18 FEMALE Computer Science 

Next Object-Machine Transition State  [INITIAL_ALLOC = 3, alloc = 3, count = 1, items = [John Edwards 33 

MALE, Susan Price 18 FEMALE Computer Science, null]] 

Table 9: The step by step transition of the stack object-machine system in the GSPM Mode of the CMTT 

In Figure 46, starting from the current memory state(s) of the stack object-machines system 

under test i.e. [INITIAL_ALLOC = 3, alloc = 3, count = 0, items = [null, null, null]], we say that 

if the current active method is push,  current active test input applied on push is [[John Edwards 

33 MALE, Susan Price 18 FEMALE Computer Science]] (i.e. push consumes a java.util.List 

object input i.e. with size 2 list of object items), current triggered precondition method within 

method push is pushGSP2, result generated by current active method i.e. push is null i.e. 

method push has void type in its formal method signature definition hence it return type is null 

(i.e. empty output type). The next stack object-machines transition state is  [INITIAL_ALLOC = 

3, alloc = 3, count = 2, items = [John Edwards 33 MALE, Susan Price 18 FEMALE Computer 

Science, null]] (i.e. method push was exercised with java.util.List object which in turn has a 

valid size = 2 list of object items that falls within the bound of   INITIAL_ALLOC = 3; hence we 
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say that count <= INITIAL_ALLOC holds for the goal state precondition method i.e. pushGSP2 

that was fired within method push that is currently under test).   

 

Figure 47: Complete Testing of the Stack Object-Machine System in the USPM, ESPM and GSPM of the CMTT 

7.4 Summary 

This chapter presented, discussed, tested and evaluated the effectiveness of the CMTT using the 

stack class-machine case study covered in section 5.4. For complete result of testing the: 

• person class-machine system in USPM, ESPM, GSPM and Complete Testing modes i.e. 

within the CMTT (please see Appendix A.1.1) 

• student class-machine system in USPM, ESPM, GSPM and Complete Testing modes i.e. 

within the CMTT (please see Appendix A.1.2)  

• employee class-machine system in USPM, ESPM, GSPM and Complete Testing modes 

i.e. within the CMTT (please see Appendix A.1.3) 

• bank account class-machine system in USPM, ESPM, GSPM and Complete Testing 

modes i.e. within the CMTT (please see Appendix A.1.4) 

 

Given that one of the fundamental features of object oriented programming concerns the ability 

for one object to communicate with a society of other communicating objects within a given 

object-oriented system under test, the CMTT allows the test engineer to verify the internal 

memory states of a given object or class under test when all the methods of that object or class 

are individually exercised at run time in the unchanged, error and goal state testing modes. This 

feature is made possible through debugging mechanism of the CMTT. Consequently, when a 
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method m belonging to an object or class is invoked at runtime, a unique precondition method 

in Um or Em or Gm encapsulating a unique internal memory state and/or value for this object or 

class would be automatically triggered (meaning that transition occurs) depending on the testing 

mode. A message or messages (i.e. the internal memory values) is then communicated to 

another object or class. The CMTT tool then helps the test engineer to verify through automated 

debugging of all internal memory states/values i.e. whether the correct message(s) was sent 

and/or communicated with the correct object or class that requires it in the unchanged, error and 

goal state testing modes.  

For every new memory states/values computed when method m under test is exercised in the 

unchanged, error and goal state testing modes, the CMTT helps the test engineer to know what 

precondition method in Um or Em or Gm that get triggered to put that object or class in that new 

memory states/values. This address of one of the drawbacks inherent in using the specification-

based testing method which is that although it tells us how well a program satisfies its formal 

specification, it does not tell us what part of the program that was executed to satisfy each part 

of the specification.  

Furthermore, our testing method also address the disadvantage of using implementation-based 

testing which is that it does not tell us how well a program satisfies its intended functionality 

i.e. by ensuring that all the desired functionality for all the Class-Machine systems under test 

(i.e. the person class-machine, student class-machine, employee class-machine and stack class-

machine case studies referred to above) are fully and/or completely specified and thus 

concurrently integrated with the system.  

Hence, we argue that our testing method also integrates the advantages and benefits of using 

specification-based and program-based testing technique within the CMTT. As a result, our 

approach offers a higher level of confidence that can be obtained from the adequacy criteria that 

the object or class under test has been adequately tested while on the other hand the 

specification-based testing approach integrated into our testing method further help to establish 

whether the object or class under test is actually doing what it is expected to do (i.e. when 

compared to approaches such as [2, 29, 30, 31, 32, 38, 55, 56, 83, 84, 85, 86, 87, 88, 89, 90, 91, 

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 

129, 130, 131, 132, 133, 136]).  

Finally, in other to check whether the automatically generated probability of faults remaining 

undetected in the error state testing mode of the CMTT is meaningful or not, all the Class-

Machine systems under test (i.e. the person class-machine, student class-machine, employee 

class-machine and stack class-machine) were seeded with randomised faults in order to ensure 

that some failures occur in these systems as a consequence of all the faults introduced. The 

number of the Class-Machine systems under test caught by the CMTT matches the number 

expected based on the computed probabilities i.e. with respect to the PAOTRAS concept 

described in section 7.2. The details of the types of faults referred to here were illustrated in the 

error state testing mode of the Class-Machine’s testing technique in sections 4.3.2 (i.e. with 

respect to setAgeESP1 and setAgeESP2), 5.2.2.1.2, 5.3.2.1.2, 5.3.2.2.2 and 5.4.2.1.2. 

Furthermore, Figures 45, 49, 53, 57 and 62 depict the result of the number of error state 

precondition methods caught by the CMTT in the error state testing mode when (the person 

class-machine, student class-machine, employee class-machine and stack class-machine) were 

subjected to test in the error state testing mode. This is because every unique error state 

precondition method caught by the CMTT encapsulates a unique error memory state/value or 

transition path when it is exercised at run time. 
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Chapter 8: Conclusions and Future Work 

This final chapter summarises our contributions to knowledge from section 1.3, before turning 

to the discussion of possible future work in section 8.2. 

8.1 Our Major Contributions to State of the Art 

We have presented the following contributions to knowledge which we believe to be novel: 

• A new automaton-based framework formalism which embodies the notion of a class and 

an object in object-oriented languages. We call this the Class-Machine [see section 4.3].  

• A new test method based on the Class-Machine formalism. We call this the fault-finders 

(f²) i.e. in the U, E and G testing modes [see section 4.3]. 

• A new approach for estimating the probability of faults remaining after testing has been 

completed in an object-oriend system was proposed [see section 4.5].  

• Case studies which illustrate the concepts that have already been presented, and which 

show how the Class Machines model theory can be applied to real life object-oriented 

systems, focussing on the specification, verification and testing of them [see chapter 5]. 

• A novel framework formalism that has complete visibility on all the encapsulated 

methods, memory states of the instance and class variables of a given object or class 

under test. We call this the Class Machine Friend Function (CMƒƒ) [see section 6.2]. 

• An automated testing tool was developed as a proof of concept in order to further show 

that the Class-Machine theoretical purity does not mitigate against practical concerns. 

We call this the CMTT [see sections 7.2 and 7.3]. 

8.2 Future Work 

No project is ever completely finished. Here, theoretical and practical aspects are highlighted, 

which merit further exploration and development. 

8.2.1. Comparing Class-Machines Testing Tool with Other 
Testing Tools 

The following is a list of automated object-oriented testing tools writing in the Java 

Programming Language. Each of these embraces different views, philosophies, assumptions, 

theories, hypotheses and constraints during software testing. In particular, since none of these 

tools follow our theoretical view and/or definition of a class and an object in object-oriented 

languages and what it means to test a class (i.e. testing an heterogeneous family of Object 

Machines that belong to it), the goal then is to compare these tools with the Class Machines 

Testing Tool in terms of how adequate, complete, effective they are in generating a complete 

functional test set for the object or class under test.  

• JWalk [110, 111, 112, 113],  

• JUnit [114, 115],  

• JCrasher [116],  

• JTest [117],  

• Daikon [118, 119, 120, 121],  
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• Agitator [122, 123],  

• DSD-Crasher [124],  

• Jov [125],  

• Eclat [126],  

• Rostra [127],  

• Symstra [128],  

• Randoop tool [129],  

• Korat [130],  

• Java Pathfinder [131, 132],  

• Cantata++ [133]  

• jStar [136].  

More crucially, we feel that it would be good to compare, analyse and examine critically the 

different testing philosophies employed by each of these unique testing tools. What types of 

faults are they most suited to reveal when employed? Since the ultimate goal of testing is to 

reveal the presence of faults in an implementation so that they can be removed. How sound are 

the types of inferences that can be reached after employing each of this tools when compared to 

the Class Machines testing tool? What lessons can be learnt and trainings that can be acquired 

to inform and advance our current work? What differences and similarities exist if any between 

these testing tools and the Class Machines Testing Tool? These and many more should be the 

focus and goal of such comparisons.  

8.2.2. The Class-Machines Specification Language 

One of the ultimate goals of modern formal system development approaches is to get to the 

point where executable program codes can be generated automatically from formally proven 

specifications. To achieve this goal, we propose that future work should advance our Class 

Machines modelling framework with a specification language called FROGILA. This language 

would allow all fundamental object-oriented evolving and paradigmatic features like 

encapsulation, inheritance and polymorphism to be represented and modelled. This language 

therefore needs to conform to our definition and/or philosophy of what a class and an object is 

in object-oriented languages. Furthermore, the language must be integrated with the current 

Class-Machines Testing Tool. Hence, there is the need to develop the FROGILA Language’s 

Compiler and Editor in order to facilitate easy processing and translation of the language’s 

fundamental constructs. Also, a very ambitious side of this project is to consider developing an 

extensible generic Cross Language Generator Machine and Compiler. This would allow users 

to generate executable program codes in different object-oriented languages of their choosing 

(e.g. in Java, C++ etc). The generated codes above would be automatically derived from the 

Class-Machines Specification Language (i.e. the FROGILA Language) and thus automatically 

verified in terms of conformance with the original specification in addition to complete 

functional testing. Hence, what we propose here is a comprehensive testing tool and a language 

that is designed for test. 
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Apendix A 

 A.1 Case Studies and their testing within the CMTT 

The goal of this section is to present the complete result of 

• Testing the POM depicted by Figure 20, SOM depicted by Figure 25 and EOM depicted 

by Figure 28 within the CMTT. In section 5.2.2 we illustrate how each unique method of 

the POM can be tested in the unchanged, error and goal state testing modes using the 

setForename method as an example. 

• Testing the Bank Account within the CMTT in the unchanged, error and goal state 

testing modes. The Bank Account Java source code depicted by Figure 60 was 

introduced as an auxiliary program code to aid the specification and testing of the Stack 

case study covered in section 5.4. 

A.1.1 Testing the POM in the unchanged, error, goal and 
complete state testing modes of the CMTT  

Our goal in this section is to present the result of testing the POM in the unchanged, error, goal 

and complete state testing modes of the CMTT. In particular, by complete state testing mode we 

mean the mode where POM is tested exhaustively in one go (i.e. concurrently for the 

unchanged, error and goal cases). In this section and subsequent sections that follow below, we 

assume that the reader is familiar with how to use the CMTT. In section 7.3 we illustrate how to 

use the CMTT in all the relevant testing modes. 

A.1.1.1 Testing the POM in the unchanged state testing 
mode of the CMTT 

Method Name Total number of unchanged state 

precondition  method (USPM) 

guarded by 

getForename 1 

getSurname 1 

getAge 1 

getGender 1 

toString 1 

setForename 1 

setSurname 1 
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setAge 1 

setGender 1 

Table 10: The Unchanged State Precondition Method Profile of the POM System under test 

Similar to the Stack Case study illustrated in section 5.4, all the information in Tables 10, 12 

and 14 are derived from the specification of the POM. This information is required for use 

within the Precondition Generator Panel of the CMTT in order to generate U, E and G for each 

unique method of the POM under test in the relevant testing modes. 

 

Figure 48: Testing the POM in the USPM’s testing mode 

 

Unchanged State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getForename 

Current Active Test Input [] 

Current Triggered Precondition Method getForenameUSP1 

Result Generated by current active 

method 

None 
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Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setForename 

Current Active Test Input [None] 

Current Triggered Precondition Method setForenameUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method toString 

Current Active Test Input  [] 

Current Triggered Precondition Method toStringUSP1 

Result Generated by current active 

method 

None None 0 UNKNOWN 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setGender 

Current Active Test Input [UNKNOWN] 

Current Triggered Precondition Method setGenderUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 
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Unchanged State Testing Mode - Line 5 

 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setSurname 

Current Active Test Input [None] 

Current Triggered Precondition Method setSurnameUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 6 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getSurname 

Current Active Test Input [] 

Current Triggered Precondition Method getSurnameUSP1 

Result Generated by current active 

method 

None 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 7 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getGender 

Current Active Test Input [] 

Current Triggered Precondition Method getGenderUSP1 

Result Generated by current active 

method 

UNKNOWN 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 8 
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Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setAge 

Current Active Test Input [0] 

Current Triggered Precondition Method setAgeUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Unchanged State Testing Mode - Line 9 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getAge 

Current Active Test Input [] 

Current Triggered Precondition Method getAgeUSP1 

Result Generated by current active 

method 

0 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Table 11: The step by step transition of the POM system under test in the USPM’s testing mode 

A.1.1.2 Testing the POM in the Error state testing mode of 
the CMTT 

Method Name Total number of error state 

precondition  method(ESPM) guarded 

by 

getForename 1 

getSurname 1 

getAge 1 

getGender 1 

toString 1 

setForename 1 
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setSurname 1 

setAge 2 

setGender 1 

Table 12: The Error State Precondition Method Profile of the POM System under test 

 

Figure 49: Testing the POM in the ESPM’s testing mode 

Error State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setAge 

Current Active Test Input [65] 

Current Triggered Precondition Method setAgeESP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State  [forename = None, surname = None, age = 65, gender = DOG, UPPER_AGE 

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Error State Testing Mode - Line 2 
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Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setAge 

Current Active Test Input [-1] 

Current Triggered Precondition Method setAgeESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State  [forename = None, surname = None, age = -1, gender = DOG, UPPER_AGE 

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Error State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setForename 

Current Active Test Input  [] 

Current Triggered Precondition Method setForenameESP1 

Result Generated by current active 

method 

 null 

Next Object-Machine Transition State  [forename = , surname = , age = 65, gender = DOG, UPPER_AGE = 60, 

UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Error State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setGender 

Current Active Test Input [DOG] 

Current Triggered Precondition Method setGenderESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State  [forename = None, surname = None, age = 0, gender = DOG, UPPER_AGE 

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Error State Testing Mode – Line 5 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 
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Current Active Method setSurname 

Current Active Test Input [] 

Current Triggered Precondition Method setSurnameESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = , age = 65, gender = DOG, UPPER_AGE = 60, 

UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Table 13: The step by step transition of the POM system under test in the ESPM’s testing mode 

A.1.1.3 Testing the POM in the Goal state testing mode of 
the CMTT 

Method Name Total number of goal state 

precondition method (GSPM) 

guarded by 

getForename 1 

getSurname 1 

getAge 1 

getGender 1 

toString 1 

setForename 3 

setSurname 3 

setAge 4 

setGender 3 

Table 14: The Goal State Precondition Method Profile of the POM System under test 
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Figure 50: Testing the POM in the GSPM’s testing mode 

 

Goal State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setSurname 

Current Active Test Input [Addico] 

Current Triggered Precondition Method setSurnameGSP3 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State  [forename = None, surname = Addico, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

 

Goal State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 
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Current Active Method setAge 

Current Active Test Input [0] 

Current Triggered Precondition Method setAgeGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

 

Goal State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method toString 

Current Active Test Input  [] 

Current Triggered Precondition Method toStringGSP1 

Result Generated by current active 

method 

None None 60 UNKNOWN 

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setAge 

Current Active Test Input [22] 

Current Triggered Precondition Method setAgeGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 22, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

 

Goal State Testing Mode - Line 5 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 
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Current Active Method setAge 

Current Active Test Input [45] 

Current Triggered Precondition Method setAgeGSP3 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 45, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 6 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setSurname 

Current Active Test Input [A] 

Current Triggered Precondition Method setSurnameGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = A, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 7 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getGender 

Current Active Test Input [] 

Current Triggered Precondition Method getGenderGSP1 

Result Generated by current active 

method 

UNKNOWN 

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 8 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setGender 

Current Active Test Input [MALE] 
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Current Triggered Precondition Method setGenderGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = MALE, UPPER_AGE 

= 60, UNKNOWN = UNKNOWN, MALE = MALE, FEMALE = FEMALE] 

Goal State Testing Mode - Line 9 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setForename 

Current Active Test Input [H] 

Current Triggered Precondition Method setForenameGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = H, surname = Addico, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 10 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setForename 

Current Active Test Input [Hen] 

Current Triggered Precondition Method setForenameGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = Hen, surname = Addico, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 11 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setForename 

Current Active Test Input [Henry] 

Current Triggered Precondition Method setForenameGSP3 

Result Generated by current active null 
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method 

Next Object-Machine Transition State [forename = Henry, surname = Addico, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 12 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getSurname 

Current Active Test Input [] 

Current Triggered Precondition Method getSurnameGSP1 

Result Generated by current active 

method 

None 

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 13 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setAge 

Current Active Test Input [60] 

Current Triggered Precondition Method setAgeGSP4 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 14 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setGender 

Current Active Test Input [UNKNOWN] 

Current Triggered Precondition Method setGenderGSP3 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

205 

 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 15 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getForename 

Current Active Test Input [] 

Current Triggered Precondition Method getForenameGSP1 

Result Generated by current active 

method 

None 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

 

Goal State Testing Mode - Line 16 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setGender 

Current Active Test Input [FEMALE] 

Current Triggered Precondition Method setGenderGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = FEMALE, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Goal State Testing Mode - Line 17 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method getAge 

Current Active Test Input [] 

Current Triggered Precondition Method getAgeGSP1 

Result Generated by current active 

method 

0 

Next Object-Machine Transition State [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 
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Goal State Testing Mode - Line 18 

Object-Machine Under Test (OMUT) PersonObjectMachineTest 

Current State(s) of OMUT [forename = None, surname = None, age = 0, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Current Active Method setSurname 

Current Active Test Input [Add] 

Current Triggered Precondition Method setSurnameGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [forename = None, surname = Add, age = 60, gender = UNKNOWN, 

UPPER_AGE = 60, UNKNOWN = UNKNOWN, MALE = MALE, 

FEMALE = FEMALE] 

Table 15: The step by step transition of the POM system under test in the GSPM’s testing mode 

A.1.1.4 Testing the POM in the Complete state testing mode 
of the CMTT 

 

Figure 51: Complete State Testing of the POM system in the USPM, ESPM and GSPM testing modes 

In Figure 51, three radio buttons corresponding to USPM, ESPM and GSPM are concurrently 

selected within the CMTT (i.e. a command to execute all testing modes in one go). 
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A.1.2 Testing the SOM in the unchanged, error, goal and 
complete state testing modes of the CMTT  

Our goal in this section is to present the result of testing the SOM in the unchanged, error, goal 

and complete state testing modes of the CMTT. 

A.1.2.1 Testing the SOM in the unchanged state testing 
mode of the CMTT 

Method Name Total number of unchanged state 

precondition  method (USPM) 

guarded by 

setMajor 1 

getMajor 1 

toString 1 

Table 16: The Unchanged State Precondition Method Profile of the SOM System under test 

 

Figure 52: Testing the SOM in the USPM’s testing mode 

 

 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

208 

 

Unchanged State Testing Mode - Line 1 

Object-Machine Under Test (OMUT)  StudentObjectMachineTest 

Current State(s) of OMUT  [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method getMajor 

Current Active Test Input [] 

Current Triggered Precondition Method  getMajorUSP1 

Result Generated by current active 

method 

Unknown Major 

Next Object-Machine Transition State  [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Unchanged State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method toString 

Current Active Test Input [] 

Current Triggered Precondition Method toStringUSP1 

Result Generated by current active 

method 

None None 0 UNKNOWN Unknown Major 

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Unchanged State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input [Unknown Major] 

Current Triggered Precondition Method setMajorUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Table 17: The step by step transition of the SOM system under test in the USPM’s testing mode 
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A.1.2.2 Testing the SOM in the error state testing mode of 
the CMTT 

Method Name Total number of error state 

precondition  method (ESPM) 

guarded by 

setMajor 1 

getMajor 1 

toString 1 

Table 18: The Error State Precondition Method Profile of the SOM System under test 

 

Figure 53: Testing the SOM in the ESPM’s testing mode 

Error State Testing Mode - Line 1 

Object-Machine Under Test (OMUT)  StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input [Capentry] 

Current Triggered Precondition Method  setMajorESP1 
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Result Generated by current active 

method 

null 

Next Object-Machine Transition State   [major = Capentry, AI = Artificial Intelligence, SE = Software Engineering, 

CS = Computer Science, UM = Unknown Major] 

Table 19: The step by step transition of the SOM system under test in the ESPM’s testing mode 

A.1.2.3 Testing the SOM in the Goal state testing mode of 
the CMTT 

Method Name Total number of goal state 

precondition  method (GSPM) 

guarded by 

setMajor 4 

getMajor 1 

toString 1 

Table 20: The Goal State Precondition Method Profile of the SOM System under test 

 

Figure 54: Testing the SOM in the GSPM’s testing mode. 
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Goal State Testing Mode - Line 1 

Object-Machine Under Test (OMUT)  StudentObjectMachineTest 

Current State(s) of OMUT  [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input   [Artificial Intelligence] 

Current Triggered Precondition Method   setMajorGSP1 

Result Generated by current active 

method 

 null 

Next Object-Machine Transition State  [major = Artificial Intelligence, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Goal State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method getMajor 

Current Active Test Input [] 

Current Triggered Precondition Method getMajorGSP1 

Result Generated by current active 

method 

Unknown Major 

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Goal State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input [Software Engineering] 

Current Triggered Precondition Method setMajorGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [major = Software Engineering, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Goal State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method toString 
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Current Active Test Input [] 

Current Triggered Precondition Method toStringGSP1 

Result Generated by current active 

method 

None None 0 UNKNOWN Unknown Major 

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Goal State Testing Mode - Line 5 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input [Computer Science] 

Current Triggered Precondition Method setMajorGSP3 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [major = Computer Science, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Goal State Testing Mode - Line 6 

Object-Machine Under Test (OMUT) StudentObjectMachineTest 

Current State(s) of OMUT [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Current Active Method setMajor 

Current Active Test Input [Unknown Major] 

Current Triggered Precondition Method setMajorGSP4 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [major = Unknown Major, AI = Artificial Intelligence, SE = Software 

Engineering, CS = Computer Science, UM = Unknown Major] 

Table 21: The step by step transition of the SOM system under test in the GSPM’s testing mode 
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A.1.2.4 Testing the SOM in the Complete state testing mode 
of the CMTT 

 

Figure 55: Complete State Testing of the SOM system in the USPM, ESPM and GSPM testing modes 

A.1.3 Testing the EOM in the unchanged, error, goal and 
complete state testing modes of the CMTT  

Our goal in this section is to present the result of testing the EOM in the unchanged, error, goal 

and complete state testing modes of the CMTT. 
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A.1.3.1 Testing the EOM in the unchanged state testing 
mode of the CMTT 

Method Name Total number of unchanged state 

precondition  method (USPM) 

guarded by 

getRatePerHour 1 

computeMonthlySalary 1 

toString 1 

Table 22: The Unchanged State Precondition Method Profile of the EOM System under test 

 

Figure 56: Testing the EOM in the USPM’s testing mode. 

Unchanged State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT  [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input   [0.0, 0] 

Current Triggered Precondition Method   computeMonthlySalaryUSP1 
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Result Generated by current active 

method 

  null 

Next Object-Machine Transition State  [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Unchanged State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT  [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [0] 

Current Triggered Precondition Method getRatePerHourUSP1 

Result Generated by current active 

method 

0.0 

Next Object-Machine Transition State  [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Unchanged State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method toString 

Current Active Test Input [] 

Current Triggered Precondition Method toStringUSP1 

Result Generated by current active 

method 

None None 0 UNKNOWN 0.0 0 0.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Table 23: The step by step transition of the EOM system under test in the USPM’s testing mode 

A.1.3.2 Testing the EOM in the Error state testing mode of 
the CMTT 

Method Name Total number of error state 

precondition  method (ESPM) 

guarded by 

getRatePerHour 3 

computeMonthlySalary 3 

toString 1 

Table 24: The Error State Precondition Method Profile of the EOM System under test 
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Figure 57: Testing the EOM in the ESPM’s testing mode. 

Error State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [0] 

Current Triggered Precondition Method getRatePerHourESP1 

Result Generated by current active 

method 

0.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Error State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [-6.0, 10] 

Current Triggered Precondition Method computeMonthlySalaryESP3 
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Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -6.0, grade = 10] 

Error State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [-4.0, -1] 

Current Triggered Precondition Method computeMonthlySalaryESP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -4.0, grade = -1] 

Error State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [-1] 

Current Triggered Precondition Method getRatePerHourESP2 

Result Generated by current active 

method 

0.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = -1] 

Error State Testing Mode - Line 5 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [-2.0, 0] 

Current Triggered Precondition Method computeMonthlySalaryESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = -0.0, totalHoursWorked = -2.0, grade = 0] 

Error State Testing Mode - Line 6 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 
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Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [7] 

Current Triggered Precondition Method getRatePerHourESP3 

Result Generated by current active 

method 

0.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 7] 

Table 25: The step by step transition of the EOM system under test in the ESPM’s testing mode 

A.1.3.3 Testing the EOM in the Goal state testing mode of 
the CMTT 

Method Name Total number of goal state 

precondition  method (GSPM) 

guarded by 

getRatePerHour 3 

computeMonthlySalary 3 

toString 1 

Table 26: The Goal State Precondition Method Profile of the EOM System under test 
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Figure 58: Testing the EOM in the GSPM’s testing mode. 

Goal State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method toString 

Current Active Test Input [] 

Current Triggered Precondition Method toStringGSP1 

Result Generated by current active 

method 

None None 0 UNKNOWN 48.0 3 4800.0 

Next Object-Machine Transition State [salary = 4800.0, totalHoursWorked = 48.0, grade = 3] 

Goal State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [48.0, 3] 

Current Triggered Precondition Method computeMonthlySalaryGSP3 
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Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = 4800.0, totalHoursWorked = 48.0, grade = 3] 

Goal State Testing Mode - Line 3 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [2] 

Current Triggered Precondition Method getRatePerHourGSP2 

Result Generated by current active 

method 

15.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 2] 

Goal State Testing Mode - Line 4 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [1] 

Current Triggered Precondition Method getRatePerHourGSP1 

Result Generated by current active 

method 

10.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 1] 

Goal State Testing Mode - Line 5 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [0.0, 1] 

Current Triggered Precondition Method computeMonthlySalaryGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 1] 

Goal State Testing Mode - Line 6 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 
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Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method computeMonthlySalary 

Current Active Test Input [30.0, 2] 

Current Triggered Precondition Method computeMonthlySalaryGSP2 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [salary = 1800.0, totalHoursWorked = 30.0, grade = 2] 

Goal State Testing Mode - Line 7 

Object-Machine Under Test (OMUT) EmployeeObjectMachineTest 

Current State(s) of OMUT [salary = 0.0, totalHoursWorked = 0.0, grade = 0] 

Current Active Method getRatePerHour 

Current Active Test Input [3] 

Current Triggered Precondition Method getRatePerHourGSP3 

Result Generated by current active 

method 

25.0 

Next Object-Machine Transition State [salary = 0.0, totalHoursWorked = 0.0, grade = 3] 

Table 27: The step by step transition of the EOM system under test in the GSPM’s testing mode 
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A.1.3.4 Testing the EOM in the complete state testing mode 
of the CMTT 

 

Figure 59: Complete State Testing of the EOM system in the USPM, ESPM and GSPM testing modes 

A.1.4 Testing the Bank Account in the unchanged, error, 
goal and complete state testing modes of the CMTT  

Our goal in this section is to present the result of testing the Bank Account in the unchanged, 

error, goal and complete state testing modes of the CMTT. 
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A.1.4.1 Testing the Bank Account in the unchanged state 
testing mode of the CMTT 

 

 

Method Name Total number of unchanged state 

precondition  method (USPM) 

guarded by 

deposit 1 

withdraw 1 

Table 28: The Unchanged State Precondition Method Profile of the Bank Account System under test 

 

 

 

 

 

 

 

 

 

public class BankAccountTest 

  { 

     private double accountBalance; 

      

      

     public BankAccountTest() 

       {           

         this.accountBalance = 0; 

          

       } 

 

     public void deposit(double amount) 

       {             

           accountBalance = accountBalance + amount;  

       } 

 

     public void withdraw(double amount) 

       {           

          accountBalance = accountBalance - amount; 

       } 

 

     public String toString() 

       { 

          return ""+this.accountBalance; 

       } 

 

   }// End of BankAccountTest 

Figure 60: The compiled BankAccountTest.java class under test 
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Figure 61: Testing the Bank Account  in the USPM’s testing mode. 

Unchanged State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method withdraw 

Current Active Test Input [0.0] 

Current Triggered Precondition Method withdrawUSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = 0.0] 

Unchanged State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method deposit 

Current Active Test Input [0.0] 

Current Triggered Precondition Method depositUSP1 
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Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = 0.0] 

Table 29: The step by step transition of the Bank Account system under test in the USPM’s testing mode 

A.1.4.2 Testing the Bank Account in the error state testing 
mode of the CMTT 

Method Name Total number of error state 

precondition  method (ESPM) 

guarded by 

deposit 1 

withdraw 1 

Table 30: The Error State Precondition Method Profile of the Bank Account System under test 

 

Figure 62: Testing the Bank Account in the ESPM’s testing mode. 
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Error State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method withdraw 

Current Active Test Input [-5.0] 

Current Triggered Precondition Method withdrawESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = 0.0] 

Error State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method deposit 

Current Active Test Input [-5.0] 

Current Triggered Precondition Method depositESP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = -5.0] 

Table 31: The step by step transition of the Bank Account system under test in the ESPM’s testing mode 

A.1.4.3 Testing the Bank Account in the goal state testing 
mode of the CMTT 

Method Name Total number of goal state 

precondition  method (GSPM) 

guarded by 

deposit 1 

withdraw 1 

Table 32: The Goal State Precondition Method Profile of the Bank Account System under test 
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Figure 63: Testing the Bank Account in the GSPM’s testing mode. 

Goal State Testing Mode - Line 1 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method withdraw 

Current Active Test Input [-7.0] 

Current Triggered Precondition Method withdrawGSP1 

Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = 8.0] 

Goal State Testing Mode - Line 2 

Object-Machine Under Test (OMUT) BankAccount 

Current State(s) of OMUT [accountBalance = 0.0] 

Current Active Method deposit 

Current Active Test Input [1.0] 

Current Triggered Precondition Method depositGSP1 
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Result Generated by current active 

method 

null 

Next Object-Machine Transition State [accountBalance = 1.0] 

Table 33: The step by step transition of the Bank Account system under test in the GSPM’s testing mode 

A.1.4.4 Testing the Bank Account in the complete state 
testing mode of the CMTT 

 

Figure 64: Complete State Testing of the Bank Account system in the USPM, ESPM and GSPM testing modes 
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A.2 Automatically Generated Java source codes within the 
Precondition Generator Panel of the CMTT 

In order to exhaustively test every unique method of the POM, SOM, EOM and the Bank 

Account systems covered in A.1.1, A.1.2, A.1.3 and A.1.4 within the CMTT, the Precondition 

Generator Panel of the CMTT was automatically used to generate U, E and G for each unique 

method of the object machine system under test in the relevant testing modes. The 

automatically generated Java program codes are then uploaded and executed in the unchanged, 

error, goal and complete testing modes within the Frogila Testing Tool panel of the CMTT.  

The goal of this section is to present all the automatically generated program codes developed 

interactively with the test engineer for the stack case study covered in section 5.4, POM 

depicted by Figure 20, SOM depicted by Figure 25, EOM depicted by Figure 28 and Bank 

Account depicted by Figure 60. 
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import java.util.List; 

import java.util.ArrayList; 

 

public class StackTest { 

 

  private static int INITIAL_ALLOC = 3; 

 

  private int alloc; 

  protected int count; 

  protected List<Object> items; 

   

/** Constructs a Stack with initial allocation of 3. */ 

 

  public StackTest() { 

    alloc = INITIAL_ALLOC; 

    count = 0; 

    items = convertArrayToList(new Object[alloc]); 

  }  

 

 public void push(Object[] elem)  

    {         

       Object[] itemValues = items.toArray(); 

 

        if(!(elem == null)) 

          { 

            for(int i=0; i < elem.length; i++) 

               itemValues[count++] = elem[i];            

          } 

 

        items = convertArrayToList(itemValues); 

    } 

 

private PreConditionTestObject pushUSP1() 

  {  

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

 

      push(new Object[]{});      

 

      if(count == 0) 

        { 

          Object[] testInput = {new Object[]{}}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null;    

 

  } 

 

private PreConditionTestObject pushUSP2() 

  {    

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");         

      EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1); 

      BankAccountTest bankAccount = new BankAccountTest(); 

 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

  

      if(new Object[]{person,student, employee, bankAccount}.length > alloc) 

        { 

          Object[] testInput = {new Object[]{person,student, employee, bankAccount}}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

 

  } 

… 
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… 

 

private PreConditionTestObject pushESP1() 

  {    

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");          

      EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1); 

      BankAccountTest bankAccount = new BankAccountTest(); 

 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

  

      if(new Object[]{person, student, employee, bankAccount}.length > alloc) 

        { 

          Object[] testInput = {new Object[]{person, student, employee, bankAccount}}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

 

  } 

 

private PreConditionTestObject pushGSP1() 

  {    

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");  

      EmployeeObjectMachine employee = new EmployeeObjectMachine("JJ", "Dan", 22, "MALE", 30, 1);    

 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);      

  

      if(new Object[]{person,student, employee}.length == alloc) 

        { 

          Object[] testInput = {new Object[]{person,student, employee}}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

 

  } 

private PreConditionTestObject pushGSP2() 

  {    

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science"); 

 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);          

       

      if(new Object[]{person, student}.length < alloc) 

        { 

          Object[] testInput = {new Object[]{person, student}}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

 

  } 

public Object pop() 

  { 

     Object popedValue = new Object();     

     Object[] itemValues = items.toArray(); 

     popedValue = itemValues[--count]; 

     items = convertArrayToList(itemValues); 

     return popedValue; 

  } 

private PreConditionTestObject popUSP1() 

  { 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

 

      if(count == 0) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

     return null; 

  } 

 

… 
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… 

 

private PreConditionTestObject popESP1() 

  { 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);  

 

      if(count == 0) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

  } 

 

private PreConditionTestObject popGSP1() 

  {  

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");    

        

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);       

 

      push(new Object[]{person, student});  

       

      if(count > 0 ) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

  } 

 

public Object top() 

  {   

     Object topValue = new Object(); 

     Object[] itemValues = items.toArray(); 

     topValue = itemValues[count - 1]; 

     items = convertArrayToList(itemValues); 

      

     return topValue; 

  } 

 

private PreConditionTestObject topUSP1() 

  { 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]); 

  

      if(count == 0) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

  } 

 

private PreConditionTestObject topESP1() 

  {      

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);     

 

      if(count == 0) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

  } 

 

… 
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… 
 

private PreConditionTestObject topGSP1() 

  { 

      PersonObjectMachine person = new PersonObjectMachine("John", "Edwards", 33, "MALE"); 

      StudentObjectMachine student = new StudentObjectMachine("Susan", "Price", 18, "FEMALE", "Computer Science");   

 

      alloc = INITIAL_ALLOC; 

      count = 0; 

      items = convertArrayToList(new Object[alloc]);        

            

      push(new Object[]{person, student});  

  

      if(count > 0) 

        { 

          Object[] testInput = new Object[]{}; 

          return new PreConditionTestObject(testInput); 

        }     

 

     return null; 

  } 

 

 public List<Object> convertArrayToList(Object[] objectArray) 

   { 

       List<Object> list = new ArrayList<Object>(); 

         

       for(Object o: objectArray) 

          { 

             list.add(o); 

          } 

 

        return list; 

    } 

 

 

}//End of class StackTest 

Figure 65: StackTest.java 
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public class PersonObjectMachineTest  

  { 

     // a set of possibly dynamic attributes encapsulating the distributed states and memory of the PersonObjectMachine 

      

     private String forename; 

     private String surname; 

     private int age; 

     private String gender; 

        

      

     // a set of constant or fixed attributes encapsulating the distributed states and memory of the PersonObjectMachine 

 

     private static final int UPPER_AGE = 60; 

     public static final String UNKNOWN = "UNKNOWN"; 

     public static final String MALE = "MALE"; 

     public static final String FEMALE = "FEMALE"; 

 

           

     // a set of PersonObjectMachineTest  Constructors 

      

      

     public PersonObjectMachineTest() 

       { 

          this.forename = "None"; 

          this.surname = "None"; 

          this.age = 0; 

          this.gender = "UNKNOWN"; 

       } 

        

 

     public PersonObjectMachineTest(String f, String s, int a, String g) 

       {   

           this.forename = f; 

           this.surname = s; 

           this.age = a; 

           this.gender = g; 

           

       }                          

        

 

     // a set of PersonObjectMachineTest Observer Methods 

  

     public String getForename() 

       {              

         return this.forename; 

       } 

 

     public String getSurname() 

       { 

         return this.surname; 

       } 

 

     public int getAge() 

       { 

         return this.age; 

       } 

       

     public String getGender() 

       { 

         return this.gender;     

       } 

 

     public String toString() 

       { 

         return getForename()+" "+getSurname()+" "+getAge()+" "+getGender(); 

       } 

 

// a set of PersonObjectMachineTest Mutator Methods 

 

 

     public void setForename(String f) 

       { 

          this.forename = f; 

       }         

        

 

   …   
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public void setSurname(String s) 

       { 

         this.surname = s; 

       } 

 

     public void setAge(int a) 

       {           

         this.age = a; 

       } 

  

     public void setGender(String g) 

       {           

         this.gender = g; 

       } 

 

// Unchanged State PreCondition Methods 

 

    private PreConditionTestObject getForenameUSP1() 

       { 

          if(getForename().equals(this.forename)) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

       } 

 

    private PreConditionTestObject getSurnameUSP1() 

       { 

          if(getSurname().equals(this.surname)) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

       } 

 

 

    private PreConditionTestObject getAgeUSP1() 

       { 

          if(getAge() == this.age) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

       } 

 

    private PreConditionTestObject getGenderUSP1() 

        { 

          if(getGender().equals(this.gender)) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

        } 

 

      private PreConditionTestObject toStringUSP1() 

         { 

          if((getForename().equals(this.forename)) && (getSurname().equals(this.surname)) && (getAge() == this.age) && 

(getGender().equals(this.gender))) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

        } 

 

  … 
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     private PreConditionTestObject setForenameUSP1() 

        { 

           setForename("None"); 

           if(this.forename.equals("None")) 

             { 

               Object[] testInput = new Object[]{"None"};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

      private PreConditionTestObject setSurnameUSP1() 

        { 

           setSurname("None"); 

           if(this.surname.equals("None")) 

             { 

               Object[] testInput = new Object[]{"None"};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

      private PreConditionTestObject setAgeUSP1() 

        { 

           setAge(0); 

           if(this.age == 0) 

             { 

               Object[] testInput = new Object[]{0};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

     private PreConditionTestObject setGenderUSP1() 

        { 

           setGender("UNKNOWN"); 

           if(this.gender.equals("UNKNOWN")) 

             { 

               Object[] testInput = new Object[]{"UNKNOWN"};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

 

       // Error State Precondition Methods 

 

      private PreConditionTestObject getForenameESP1() 

        {             

           if(!(getForename().equals(this.forename))) 

             { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

      private PreConditionTestObject getSurnameESP1() 

         {             

            if(!(getSurname().equals(this.surname))) 

              { 

                Object[] testInput = new Object[]{};   

                return new PreConditionTestObject(testInput); 

              } 

 

           return null; 

         } 

      private PreConditionTestObject getAgeESP1() 

          {             

            if(!(getAge() == this.age)) 

              { 

                Object[] testInput = new Object[]{};   

                return new PreConditionTestObject(testInput); 

              } 

 

             return null; 

          } 
… 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

237 

 

 

... 
 

       private PreConditionTestObject getGenderESP1() 

          {              

            if(!(getGender().equals(this.gender))) 

              { 

                Object[] testInput = new Object[]{};   

                return new PreConditionTestObject(testInput); 

              } 

 

            return null; 

          }     

      

        private PreConditionTestObject toStringESP1() 

         { 

          if((!(getForename().equals(this.forename))) || (!(getSurname().equals(this.surname))) || (!(getAge() == this.age)) || 

(!(getGender().equals(this.gender)))) 

            { 

               Object[] testInput = new Object[]{};   

               return new PreConditionTestObject(testInput); 

            } 

 

          return null; 

        } 

          

        private PreConditionTestObject setForenameESP1() 

          { 

            setForename(""); 

            if(this.forename.length() < 1 ) 

             { 

               Object[] testInput = new Object[]{""};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

       private PreConditionTestObject setSurnameESP1() 

          { 

            setSurname(""); 

            if(this.surname.length() < 1 ) 

             { 

               Object[] testInput = new Object[]{""};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

         

       private PreConditionTestObject setAgeESP1() 

          { 

            setAge(-1); 

            if(this.age < 0 ) 

             { 

               Object[] testInput = new Object[]{-1};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

 

        private PreConditionTestObject setAgeESP2() 

          { 

            setAge(65); 

            if(this.age > UPPER_AGE) 

             { 

               Object[] testInput = new Object[]{65};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 

      private PreConditionTestObject setGenderESP1() 

          { 

            setGender("DOG"); 

            if((!(this.gender.equals(MALE))) || (!(this.gender.equals(FEMALE))) || (!(this.gender.equals(UNKNOWN)))) 

             { 

               Object[] testInput = new Object[]{"DOG"};   

               return new PreConditionTestObject(testInput); 

             } 

 

           return null; 

         } 
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// Goal State Precondition Methods 

 

        private PreConditionTestObject getForenameGSP1() 

          { 

             if(getForename().equals(this.forename)) 

               { 

                 Object[] testInput = new Object[]{};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

          } 

 

         private PreConditionTestObject getSurnameGSP1() 

           { 

             if(getSurname().equals(this.surname)) 

               { 

                 Object[] testInput = new Object[]{};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

         private PreConditionTestObject getAgeGSP1() 

           { 

             if(getAge() == this.age) 

               { 

                 Object[] testInput = new Object[]{};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

        private PreConditionTestObject getGenderGSP1() 

           { 

             if(getGender().equals(this.gender)) 

               { 

                 Object[] testInput = new Object[]{};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

         private PreConditionTestObject setForenameGSP1() 

           { 

             setForename("Hen"); 

 

             if( this.forename !=null ) 

               { 

                 Object[] testInput = new Object[]{"Hen"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

         private PreConditionTestObject setForenameGSP2() 

           { 

             setForename("H"); 

 

             if(this.forename.length() == 1) 

               { 

                 Object[] testInput = new Object[]{"H"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

          

       private PreConditionTestObject setForenameGSP3() 

           { 

             setForename("Henry"); 

 

             if(this.forename.length() > 1) 

               { 

                 Object[] testInput = new Object[]{"Henry"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

… 
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       private PreConditionTestObject setSurnameGSP1() 

           { 

             setSurname("Add"); 

 

             if( this.surname !=null ) 

               { 

                 Object[] testInput = new Object[]{"Add"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

          private PreConditionTestObject setSurnameGSP2() 

           { 

             setSurname("A"); 

 

             if(this.surname.length() == 1) 

               { 

                 Object[] testInput = new Object[]{"A"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

          private PreConditionTestObject setSurnameGSP3() 

           { 

             setSurname("Addico"); 

 

             if(this.surname.length() > 1) 

               { 

                 Object[] testInput = new Object[]{"Addico"};   

                 return new PreConditionTestObject(testInput); 

               } 

 

             return null; 

           } 

 

        private PreConditionTestObject setAgeGSP1() 

            { 

              setAge(0); 

 

              if(this.age == 0) 

                { 

                  Object[] testInput = new Object[]{0};   

                  return new PreConditionTestObject(testInput); 

                } 

 

             return null; 

            } 

 

          private PreConditionTestObject setAgeGSP2() 

            { 

              setAge(22); 

 

              if(this.age > 0) 

                { 

                  Object[] testInput = new Object[]{22};   

                  return new PreConditionTestObject(testInput); 

                } 

 

              return null; 

            } 

 

          private PreConditionTestObject setAgeGSP3() 

            { 

              setAge(45); 

 

              if(this.age < UPPER_AGE) 

                { 

                  Object[] testInput = new Object[]{45};   

                  return new PreConditionTestObject(testInput); 

                } 

 

              return null; 

            } 

 

… 
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         private PreConditionTestObject setAgeGSP4() 

             { 

               setAge(60); 

 

               if(this.age == UPPER_AGE) 

                 { 

                   Object[] testInput = new Object[]{60};   

                   return new PreConditionTestObject(testInput); 

                 } 

 

               return null; 

             } 

 

           private PreConditionTestObject setGenderGSP1() 

             { 

               setGender(MALE); 

 

               if(this.gender.equals(MALE)) 

                 { 

                   Object[] testInput = new Object[]{MALE};   

                   return new PreConditionTestObject(testInput); 

                 } 

 

               return null; 

             } 

 

            private PreConditionTestObject setGenderGSP2() 

             { 

               setGender(FEMALE); 

 

               if(this.gender.equals(FEMALE)) 

                 { 

                   Object[] testInput = new Object[]{FEMALE};   

                   return new PreConditionTestObject(testInput); 

                 } 

 

               return null; 

             } 

 

          private PreConditionTestObject setGenderGSP3() 

             { 

               setGender(UNKNOWN); 

 

               if(this.gender.equals(UNKNOWN)) 

                 { 

                   Object[] testInput = new Object[]{UNKNOWN};   

                   return new PreConditionTestObject(testInput); 

                 } 

 

               return null; 

             } 

 

           private PreConditionTestObject toStringGSP1() 

             { 

               if((getForename().equals(this.forename)) && (getSurname().equals(this.surname)) && (getAge() == this.age) && 

(getGender().equals(this.gender))) 

                 { 

                   Object[] testInput = new Object[]{};   

                   return new PreConditionTestObject(testInput); 

                 } 

 

               return null; 

             } 

 

   } // End of PersonObjectMachineTest 

 

Figure 66: PersonObjectMachineTest.java 
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public class StudentObjectMachineTest extends PersonObjectMachine   

   { 

     // class attributes 

           

     private String major; 

      

     public static final String AI = "Artificial Intelligence"; 

     public static final String SE = "Software Engineering"; 

     public static final String CS = "Computer Science"; 

     public static final String UM = "Unknown Major"; 

      

      

     // class constructor 

      

      

     public StudentObjectMachineTest() 

       { 

         super(); 

         this.major = "Unknown Major"; 

       } 

 

     public StudentObjectMachineTest(String f, String s, int a, String g, String m) 

       { 

          super(f, s, a, g); 

          this.major = m; 

       } 

 

 

     public void setMajor(String m) 

       { 

         this.major = m; 

       }     

 

 

     public String getMajor() 

       { 

          return this.major; 

       } 

 

     public String toString() 

       { 

         return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major; 

       } 

 

 

     private PreConditionTestObject setMajorUSP1() 

       {   

          setMajor("Unknown Major");            

 

          if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM))) 

            { 

              Object[] testInput = new Object[]{"Unknown Major"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject setMajorESP1() 

       {   

          setMajor("Capentry");            

 

          if((!(this.major.equals(AI))) || (!(this.major.equals(SE))) || (!(this.major.equals(CS))) || (!(this.major.equals(UM)))) 

            { 

              Object[] testInput = new Object[]{"Capentry"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject setMajorGSP1() 

       {   

          setMajor("Artificial Intelligence");            

 

          if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM))) 

            { 

              Object[] testInput = new Object[]{"Artificial Intelligence"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

   … 
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   … 
 

    private PreConditionTestObject setMajorGSP2() 

       {   

          setMajor("Software Engineering");            

 

          if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM))) 

            { 

              Object[] testInput = new Object[]{"Software Engineering"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

      private PreConditionTestObject setMajorGSP3() 

       {   

          setMajor("Computer Science");            

 

          if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM))) 

            { 

              Object[] testInput = new Object[]{"Computer Science"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject setMajorGSP4() 

       {   

          setMajor("Unknown Major");            

 

          if((this.major.equals(AI)) || (this.major.equals(SE)) || (this.major.equals(CS))|| (this.major.equals(UM))) 

            { 

              Object[] testInput = new Object[]{"Unknown Major"}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

    private PreConditionTestObject getMajorUSP1() 

       {              

 

          if(getMajor().equals(this.major)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject getMajorESP1() 

       {              

 

          if((!(getMajor().equals(this.major)))) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject getMajorGSP1() 

       {              

 

          if(getMajor().equals(this.major)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

    … 
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   … 
 

    private PreConditionTestObject toStringUSP1() 

       {              

 

          if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

       

      private PreConditionTestObject toStringESP1() 

       {              

 

          if((!(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major)))) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

 

      private PreConditionTestObject toStringGSP1() 

       {              

 

          if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.major)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

}// End of StudentObjectMachineTest 

Figure 67: StudentObjectMachineTest.java 
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public class EmployeeObjectMachineTest extends PersonObjectMachine   

   { 

     // class attributes 

           

     private double salary; 

     private double totalHoursWorked; 

     private int grade; 

           

     // class constructors 

          

     public EmployeeObjectMachineTest() 

       { 

         super(); 

         this.totalHoursWorked = 0.0; 

         this.grade = 0; 

         computeMonthlySalary(this.totalHoursWorked, this.grade); 

       } 

 

     public EmployeeObjectMachineTest(String f, String s, int a, String g, double thw, int grade) 

       { 

          super(f, s, a, g); 

          this.totalHoursWorked = thw; 

          this.grade = grade; 

          computeMonthlySalary(thw, grade); 

       } 

 

     public double getRatePerHour(int grade) 

       { 

            if(grade == 1) 

              { 

                return 10.0; 

              } 

 

            if(grade == 2) 

              { 

                return 15.0; 

              } 

 

            if(grade == 3) 

              { 

                return 25.0; 

              } 

 

          return 0.0; 

          

       } 

 

     public void computeMonthlySalary(double thw, int grade) 

       { 

          this.salary = thw * getRatePerHour(grade) * 4.0; 

            

       } 

 

     public String toString() 

       { 

         return getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" "+this.salary; 

       } 

 

    private PreConditionTestObject getRatePerHourUSP1() 

       {   

          grade = 0;             

 

          if(grade == 0) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject getRatePerHourESP1() 

       {   

          grade = 0;             

 

          if((grade == 0) || (grade < 0)|| (grade > 3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       }     

  … 
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private PreConditionTestObject getRatePerHourESP2() 

       {   

          grade = -1;             

 

          if((grade == 0) || (grade < 0) || (grade > 3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject getRatePerHourESP3() 

       {   

          grade = 7;             

 

          if((grade == 0) || (grade < 0)|| (grade > 3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject getRatePerHourGSP1() 

       {   

          grade = 1;             

 

          if((grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject getRatePerHourGSP2() 

       {   

          grade = 2;      

 

          if((grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject getRatePerHourGSP3() 

       {   

          grade = 3;      

 

          if((grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

    private PreConditionTestObject computeMonthlySalaryUSP1() 

       {   

          totalHoursWorked = 0 ; 

          grade = 0;             

 

          if((totalHoursWorked == 0) && (grade == 0)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

  … 
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private PreConditionTestObject computeMonthlySalaryESP1() 

       {   

          totalHoursWorked = -2 ; 

          grade = 0;             

 

          if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

      private PreConditionTestObject computeMonthlySalaryESP2() 

       {   

          totalHoursWorked = -4 ; 

          grade = -1;             

 

          if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

      private PreConditionTestObject computeMonthlySalaryESP3() 

       {   

          totalHoursWorked = -6 ; 

          grade = 10;             

 

          if((totalHoursWorked < 0) || (grade == 0) || (grade < 0)|| (grade > 3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject computeMonthlySalaryGSP1() 

       {   

          totalHoursWorked = 0 ; 

          grade = 1;             

 

          if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject computeMonthlySalaryGSP2() 

       {   

          totalHoursWorked = 30 ; 

          grade = 2;             

 

          if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

      … 
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    … 
 

    private PreConditionTestObject computeMonthlySalaryGSP3() 

       {   

          totalHoursWorked = 48 ; 

          grade = 3;             

 

          if((totalHoursWorked >= 0) || (grade == 1) || (grade == 2)|| (grade ==3)) 

            { 

              Object[] testInput = new Object[]{totalHoursWorked, grade}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

      private PreConditionTestObject toStringUSP1() 

       {                        

 

          if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" 

"+this.salary)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

 

      private PreConditionTestObject toStringESP1() 

       {                        

 

          if((!(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" 

"+this.salary)))) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

     private PreConditionTestObject toStringGSP1() 

       {                        

 

          if(toString().equals(getForename()+" "+getSurname()+" "+getAge()+" "+getGender()+" "+this.totalHoursWorked+" "+this.grade+" 

"+this.salary)) 

            { 

              Object[] testInput = new Object[]{}; 

              return new PreConditionTestObject(testInput); 

            }     

 

          return null; 

       } 

 

       

    }// End of EmployeeObjectMachineTest 

Figure 68: EmployeeObjectMachineTest.java 
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public class BankAccount 

  { 

     private double accountBalance; 

      

      

     public BankAccount() 

       {           

         this.accountBalance = 0; 

          

       } 

 

     public void deposit(double amount) 

       { 

             

           accountBalance = accountBalance + amount;  

       } 

 

     public void withdraw(double amount) 

       { 

           

          accountBalance = accountBalance - amount; 

       } 

 

   

 private PreConditionTestObject depositUSP1() 

   { 

      double uspDepositAmount = 0; 

   

      if(((this.accountBalance + uspDepositAmount) == this.accountBalance)) 

        { 

          Object[] testInput = new Object[]{uspDepositAmount};   

          return new PreConditionTestObject(testInput); 

        } 

     return null; 

   } 

 

private PreConditionTestObject withdrawUSP1() 

   { 

       double uspWithdrawAmount = 0; 

 

       if(((this.accountBalance - uspWithdrawAmount) == this.accountBalance)) 

         { 

            Object[] testInput = new Object[]{uspWithdrawAmount};   

            return new PreConditionTestObject(testInput); 

         } 

      return null; 

   } 

  

 private PreConditionTestObject depositESP1() 

   { 

     double espDepositAmount = -5; 

 

       if(((this.accountBalance + espDepositAmount) < this.accountBalance)) 

         { 

            Object[] testInput = new Object[]{espDepositAmount};   

            return new PreConditionTestObject(testInput); 

         } 

       return null; 

   } 

  

 private PreConditionTestObject withdrawESP1() 

   { 

       double espWithdrawAmount = -5; 

 

       if(((this.accountBalance - espWithdrawAmount) >  this.accountBalance)) 

         { 

            Object[] testInput = new Object[]{espWithdrawAmount};   

            return new PreConditionTestObject(testInput); 

         } 

       return null; 

   } 

 

    

… 
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A.3 Java source codes for the Class-Machines Friend 
Function (CMFF) 

In chapter 6 we introduced the CMƒƒ concept. In this section, our primary goal is to present the 

complete implementation of that concept in the Java Programming Language.  

Recall that the CMƒƒ is given by: CMƒƒ = (Я, Ξ, Ж). In Figure 70, the CMƒƒ is implemented 

as a class in Java called TransitionFunctionSpecObjectMachine.java where Я, Ξ and Ж 

are respectively implemented as a method called: getUnchangedStateTransitionFunction, 

getErrorStateTransitionFunction and getGoalStateTransitionFunction within Figure 

70. Furthermore, this section also present other java classes that Figure 70 relies on, in order to 

compile or function as required. 

 

 

 

 

 

 

 

 

 

… 
 

private PreConditionTestObject depositGSP1() 

   { 

       double gspDepositAmount = 1; 

 

       if(((this.accountBalance + gspDepositAmount) > this.accountBalance)) 

         { 

            Object[] testInput = new Object[]{gspDepositAmount};  

            return new PreConditionTestObject(testInput); 

         } 

       return null; 

   } 

  

 private PreConditionTestObject withdrawGSP1() 

   { 

       double gspWithdrawAmount = -7; 

  

       if((this.accountBalance - gspWithdrawAmount) >= 0 ) 

         { 

            Object[] testInput =  new Object[]{gspWithdrawAmount};  

            return new PreConditionTestObject(testInput); 

         } 

       return null; 

    } 

 

}// End of BankAccount 

Figure 69: BankAccount.java 



A Machine with Class: A Framework for Object Generation, Integration and Language Authentication (FROGILA) 

 

 

 

250 

 

 

import java.lang.reflect.Field; 

import java.lang.reflect.Method; 

import java.util.Arrays; 

import java.util.*; 

 

public class TransitionFunctionSpecObjectMachine   

  {  

      private ClassMachine classMachine; 

 

      public TransitionFunctionSpecObjectMachine() 

        {            

          this.classMachine = null; 

        } 

             

      public TransitionFunctionSpecObjectMachine(ClassMachine classMachine) 

        { 

          this.classMachine = classMachine; 

        } 

 

      public TransitionFunctionSpecObjectMachine(Class<?> com, TestObject to, Map mtg, Map type) 

        { 

          this.classMachine = new ClassMachine(com, to, mtg, type); 

        } 

 

 

      public Map getUnchangedStateTransitionFunction(ClassMachine myClass) 

        {                      

               Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine(); 

               Object imp =  generateNewObjectMachine(compiledObjectMachine); 

 

               TestObject testObject =  myClass.getTestObject(); 

               String[] usPreCondMethodNames = getUnchangedStatePreConditionMethodNames(testObject); 

                 

               Map profile = myClass.getObjectMachineType(); 

                        

               String[] currentObjectState = getCurrentObjectState(imp); 

 

               Map<TransitionFunctionKey, TransitionFunctionValue> unchangedStateTransitionFunction = new HashMap<TransitionFunctionKey, 

TransitionFunctionValue>(); 

            

               for(String preMethod : usPreCondMethodNames) 

                  { 

                      for (Method preCondMethod : imp.getClass().getDeclaredMethods()) 

                           { 

                               if(preCondMethod.getName().equals(preMethod)) 

                                 {                                            

                                     try{ 

                                            preCondMethod.setAccessible(true); 

                                            Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{}); 

                                            PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput; 

                                             

                                            String usObjectMachineMethodName = (String) profile.get(preMethod); 

                                             

                                            Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput()); 

                                            String[] nextObjectMachineState = getCurrentObjectState(imp); 

                                               

                                             TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState, 

usObjectMachineMethodName, preMethod, pto.getTestInput()); 

                                             TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState); 

                                             unchangedStateTransitionFunction.put(tKey, tValue); 

                                               

                                         }catch (Exception e)  

                                                { 

             e.printStackTrace(); 

                       } 

                                } 

 

                                   

  

                            } 

                                     

                    } 

                           

              

              return unchangedStateTransitionFunction; 

 

           }// End of getUnchangedStateTransitionFunction 

 

 

         … 
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… 
 

public Map getErrorStateTransitionFunction(ClassMachine myClass) 

          {                      

               Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine(); 

               Object imp =  generateNewObjectMachine(compiledObjectMachine); 

 

               TestObject testObject =  myClass.getTestObject(); 

               String[] usPreCondMethodNames = getErrorStatePreConditionMethodNames(testObject); 

                 

               Map profile = myClass.getObjectMachineType(); 

                

                            

               String[] currentObjectState = getCurrentObjectState(imp); 

 

               Map<TransitionFunctionKey, TransitionFunctionValue> errorStateTransitionFunction = new HashMap<TransitionFunctionKey, 

TransitionFunctionValue>(); 

               

 

               for(String preMethod : usPreCondMethodNames) 

                  { 

                      for (Method preCondMethod : compiledObjectMachine.getDeclaredMethods()) 

                           { 

                               if(preCondMethod.getName().equals(preMethod)) 

                                 {                                            

                                     try{ 

                                            preCondMethod.setAccessible(true); 

                                            Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{}); 

                                            PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput; 

                                             

                                            String usObjectMachineMethodName = (String) profile.get(preMethod); 

                                             

                                            Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput()); 

                                            String[] nextObjectMachineState = getCurrentObjectState(imp); 

                                               

                                             TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState, 

usObjectMachineMethodName, preMethod, pto.getTestInput()); 

                                             TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState); 

                                             errorStateTransitionFunction.put(tKey, tValue); 

                                               

                                         }catch (Exception e)  

                                                { 

             e.printStackTrace(); 

                       } 

                                } 

 

                                   

  

                            } 

                                     

                    } 

                           

              

              return errorStateTransitionFunction; 

 

           }// End of getErrorStateTransitionFunction 

 

        … 
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 … 
 

public Map getGoalStateTransitionFunction(ClassMachine myClass) 

          {                      

               Class<?> compiledObjectMachine = myClass.getCompiledObjectMachine(); 

               Object imp =  generateNewObjectMachine(compiledObjectMachine); 

 

               TestObject testObject =  myClass.getTestObject(); 

               String[] usPreCondMethodNames = getGoalStatePreConditionMethodNames(testObject); 

                 

               Map profile = myClass.getObjectMachineType(); 

                

                            

               String[] currentObjectState = getCurrentObjectState(imp); 

 

               Map<TransitionFunctionKey, TransitionFunctionValue> goalStateTransitionFunction = new HashMap<TransitionFunctionKey, 

TransitionFunctionValue>(); 

               

 

               for(String preMethod : usPreCondMethodNames) 

                  { 

                      for (Method preCondMethod : compiledObjectMachine.getDeclaredMethods()) 

                           { 

                               if(preCondMethod.getName().equals(preMethod)) 

                                 {                                            

                                     try{ 

                                            preCondMethod.setAccessible(true); 

                                            Object preConditionOutput = preCondMethod.invoke(imp, new Object[]{}); 

                                            PreConditionTestObject pto = (PreConditionTestObject)preConditionOutput; 

                                             

                                            String usObjectMachineMethodName = (String) profile.get(preMethod); 

                                             

                                            Object methodOutputResult = getMethodOutput(imp, usObjectMachineMethodName, pto.getTestInput()); 

                                            String[] nextObjectMachineState = getCurrentObjectState(imp); 

                                               

                                             TransitionFunctionKey tKey = new TransitionFunctionKey(imp.getClass().getName(), currentObjectState, 

usObjectMachineMethodName, preMethod, pto.getTestInput()); 

                                             TransitionFunctionValue tValue = new TransitionFunctionValue(methodOutputResult, nextObjectMachineState); 

                                             goalStateTransitionFunction.put(tKey, tValue); 

                                                      

                                                 

                                         }catch (Exception e)  

                                                { 

             e.printStackTrace(); 

                       } 

                                } 

 

                                   

  

                            } 

                                     

                    } 

                           

              

              return goalStateTransitionFunction; 

 

           }// End of getGoalStateTransitionFunction 

 

public Object getMethodOutput(Object imp, String methodName, Object[] testInput) 

       { 

          Object methodOutputResult = new Object(); 

 

          for(Method method : imp.getClass().getDeclaredMethods()) 

             { 

                 if(method.getName().equals(methodName)) 

                    { 

                       try{ 

                             method.setAccessible(true); 

                             methodOutputResult = method.invoke(imp, testInput); 

 

                          }catch (Exception e)  

                                 { 

  e.printStackTrace(); 

                                 } 

                    } 

             } 

 

          return methodOutputResult; 

       } 

 … 
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public String[] getCurrentObjectState(Object imp) 

       {  

              Field[] fields = imp.getClass().getDeclaredFields(); 

              String[] currentObjectState = new String[fields.length];  

               

              int i = 0; 

               

                    for(Field field : fields)  

                       {      

                          try{                      

                                 field.setAccessible(true); 

                                 currentObjectState[i] = field.getName()+" = "+field.get(imp); 

                                 i++; 

                             }catch (IllegalAccessException e)  

                                    { 

                                       System.out.println("(Exception Thrown: " + e + ")"); 

                                    } 

                        } 

                  

             return currentObjectState; 

      

        } 

 

public String[] getUnchangedStatePreConditionMethodNames(TestObject to) 

        { 

             Map uspMap = to.getUnchangedStatePreCondMap(); 

             List<String> uspMethodArray = new ArrayList<String>(); 

             Set entries = uspMap.entrySet(); 

             Iterator it = entries.iterator(); 

               

                       

             while(it.hasNext()) 

                  { 

                      Map.Entry entry = (Map.Entry)it.next(); 

                      List mTemplateList = (List) entry.getValue(); 

                      for(Object o: mTemplateList) 

                         { 

                            PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o; 

                            uspMethodArray.add(temp.getPreCondMethodName()); 

                         } 

                    

                  } 

 

            return convertToArrayOfString(uspMethodArray); 

            

        } 

 

public String[] getErrorStatePreConditionMethodNames(TestObject to) 

        { 

             Map espMap = to.getErrorStatePreCondMap(); 

             List<String> espMethodArray = new ArrayList<String>(); 

             Set entries = espMap.entrySet(); 

             Iterator it = entries.iterator(); 

                                     

             while(it.hasNext()) 

                  { 

                      Map.Entry entry = (Map.Entry)it.next(); 

                      List mTemplateList = (List) entry.getValue(); 

                      for(Object o: mTemplateList) 

                         { 

                            PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o; 

                            espMethodArray.add(temp.getPreCondMethodName()); 

                         } 

                    

                  } 

 

            return convertToArrayOfString(espMethodArray); 

            

        } 

   

   … 
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public String[] getGoalStatePreConditionMethodNames(TestObject to) 

        { 

             Map gspMap = to.getGoalStatePreCondMap(); 

               

             List<String> gspMethodArray = new ArrayList<String>(); 

 

             Set entries = gspMap.entrySet(); 

             Iterator it = entries.iterator(); 

                                    

             while(it.hasNext()) 

                  { 

                      Map.Entry entry = (Map.Entry)it.next(); 

                      List mTemplateList = (List) entry.getValue(); 

                      for(Object o: mTemplateList) 

                         { 

                            PreconditionMethodTemplate temp = (PreconditionMethodTemplate)o; 

                            gspMethodArray.add(temp.getPreCondMethodName()); 

                         } 

                    

                  } 

 

            return convertToArrayOfString(gspMethodArray); 

            

        } 

 

        public String[] convertToArrayOfString(List list) 

          { 

             String[] methodArray = new String[list.size()]; 

             int k=0; 

 

            for(Object o: list) 

               { 

                   String s = (String)o; 

                   methodArray[k] = s; 

                   k++;          

               } 

 

              return methodArray; 

          } 

 

 

      public Class<?> getCompiledClass(String name) 

        { 

             Class<?> compiledClass = null; 

 

             try{                    

                  compiledClass = Class.forName(name); 

                   

                }catch (ClassNotFoundException e)  

                       { 

                         System.out.println("(Exception Thrown: " + e + ")"); 

                       } 

 

            return compiledClass; 

          

        } 

 

 

       public Object generateNewObjectMachine(Class<?> c) 

         { 

              Object objectMachine =  new Object(); 

 

            try{     

                  objectMachine = c.newInstance(); 

 

               } catch (InstantiationException x)  

                       { 

                         x.printStackTrace(); 

                       } 

                 catch (IllegalAccessException x)  

                       { 

                  x.printStackTrace(); 

                       } 

                 

            return objectMachine; 

         } 

 

   … 
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public ClassMachine getClassMachine() 

         {  

            return this.classMachine; 

         } 

       

       public Object[] getData(Object data) 

         { 

            return new Object[]{data}; 

         } 

 

       public Object[] getData(Object[] data) 

         { 

           Object[] result = data; 

           return result; 

         } 

         

   public List<String> displayAllMethods(Object imp) 

     { 

       Method[] methods = imp.getClass().getDeclaredMethods(); 

       List<String> methodList = new ArrayList<String>(); 

       for (Method method : methods)  

             {  

                methodList.add(method.getName());      

             } 

 

         return methodList; 

     } 

 

public Object getFieldValues(Object imp, String fieldName) 

     { 

         Field[] fields = imp.getClass().getDeclaredFields(); 

         Object result = new Object(); 

         for (Field field : fields)  

             {  

                if(field.getName().equals(fieldName)) 

                  { 

                     try{ 

                          field.setAccessible(true); 

                          result = field.get(imp); 

                       

                        } catch (IllegalAccessException e)  

                                { 

                                  System.out.println("(Exception Thrown: " + e + ")"); 

                                } 

                  } 

             } 

 

         return result; 

         

     } 

 

  

 

… 
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public List<Object> getTestInput(Object[] input) 

     { 

           List<Object> testInput = new ArrayList<Object>(); 

            

           if(input == null) 

             {  

                testInput.add(input); 

                return testInput; 

             } 

 

            

           //if(!(input == null)) 

             //{ 

               //for(Object o: input) 

                  //{        

                     //Object[] objArray = (Object[])o;                  

                     //testInput.add(Arrays.asList(objArray)); 

                  //}        

  

               //return testInput; 

             //}   

 

 

           if(!(input == null)) 

             { 

               testInput =  Arrays.asList(input); 

               return testInput; 

             } 

 

         return null; 

     } 

 

 

   public Method getMethod(Object imp, String name) 

      { 

         Method[] methods = imp.getClass().getDeclaredMethods(); 

   

         for(Method m: methods) 

            { 

              if(m.getName().equals(name)) 

                { 

                  return m; 

                } 

            } 

 

        return null; 

      } 

     

  

  }// End of class TransitionFunctionSpecObjectMachine 

Figure 70: TransitionFunctionSpecObjectMachine.java 
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import java.util.Map; 

 

public class ClassMachine 

  { 

        private static Class<?> compiledObjectMachine; 

        private static TestObject testObject; 

        private static Map methodTotalGuardMap; 

        private static Map objectMachineType; 

         

 

        public ClassMachine(Class<?> com,  TestObject to, Map mtgMap, Map type) 

         {  

             this.compiledObjectMachine = com; 

             this.testObject = to;     

             this.methodTotalGuardMap = mtgMap;       

             this.objectMachineType = type;          

         } 

 

       public static Class<?> getCompiledObjectMachine() 

         { 

           return compiledObjectMachine; 

         } 

 

       public static TestObject getTestObject() 

         { 

           return testObject; 

         } 

 

       public static Map getMethodTotalGuardMap() 

         { 

           return methodTotalGuardMap; 

         } 

 

       public static Map getObjectMachineType() 

         { 

           return objectMachineType; 

         } 

  

 

   } // End of class ClassMachine 

Figure 71: ClassMachine.java 

 import java.util.Map; 

import java.util.HashMap; 

import java.util.List; 

 

public class TestObject 

  { 

      Map<String, List> uspMap = new HashMap<String, List>(); 

      Map<String, List> espMap = new HashMap<String, List>(); 

      Map<String, List> gspMap = new HashMap<String, List>();       

  

      public TestObject(Map usp, Map esp, Map gsp) 

        { 

          this.uspMap = usp;  

          this.espMap = esp;  

          this.gspMap = gsp;  

        } 

 

      public Map<String, List> getUnchangedStatePreCondMap() 

        { 

          return this.uspMap; 

        } 

 

      public Map<String, List> getErrorStatePreCondMap() 

        { 

          return this.espMap; 

        } 

 

      public Map<String, List> getGoalStatePreCondMap() 

        { 

          return this.gspMap; 

        } 

 

 

   }// End of TestObject 

Figure 72: TestObject.java 
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 public class TransitionFunctionValue 

  { 

     private Object output; 

     private String[] nextState; 

       

     public TransitionFunctionValue(Object output, String[] nextState) 

       { 

          this.output = output; 

          this.nextState = nextState; 

       } 

 

     public Object getOutput() 

       { 

         return this.output; 

       } 

 

     public String[] getNextState() 

       { 

         return this.nextState; 

       } 

 

     public String toString() 

         { 

           return getOutput()+" "+getNextState(); 

         } 

 

  }  // End of  TransitionFunctionValue 

    

 import java.util.*; 

import java.lang.reflect.Field; 

 

public class TransitionFunctionKey 

  { 

     private String objectName; 

     private String[] currentObjectState; 

     private String methodName; 

     private String preconditionName; 

     private Object[] testInput; 

       

     public TransitionFunctionKey(String on, String[] cos, String mn, String preCondName, Object[] testInput) 

       { 

          this.objectName = on; 

          this.currentObjectState = cos; 

          this.methodName = mn; 

          this.preconditionName = preCondName; 

          this.testInput = testInput; 

       } 

 

     public String getObjectName() 

       { 

         return this.objectName; 

       } 

 

     public String[] getCurrentObjectState() 

       { 

         return this.currentObjectState; 

       } 

 

     public String getMethodName() 

       { 

         return this.methodName; 

       } 

 

     public String getPreconditionName() 

       { 

         return this.preconditionName; 

       } 

 

     public Object[] getTestInput() 

       { 

         return this.testInput; 

       } 

       

     public String toString() 

         { 

           return getObjectName()+" "+getCurrentObjectState()+" "+getMethodName()+" "+getPreconditionName()+" "+getTestInput(); 

         } 

 

   }//  End of TransitionFunctionKey 

Figure 73: TransitionFunctionKey.java 

Figure 74: TransitionFunctionValue.java 
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 import java.util.List;  

import java.util.ArrayList;  

import java.util.Map;  

import java.util.HashMap;  

 

public class PreconditionMethodTemplate 

  {  

      private String methodTemplate; 

      private String methodName; 

      private String preCondMethodName; 

        

      public PreconditionMethodTemplate() 

        { 

          // 

        } 

 

      public PreconditionMethodTemplate(String methodName, String preCondMethodName) 

        { 

           this.methodTemplate = " \n private PreConditionTestObject"+" "+preCondMethodName+"()"+ 

                                    "\n {"+ 

                                         "\n if((Please Write Your Boolean Precondition Expression Here) == true)"+ 

                                           "\n {"+                                                  

                                                 "\n Object[] testInput = null;"+" "+"//Please modify Test Input to suit your situation"+" "+ 

                                                 "\n return new PreConditionTestObject(testInput);"+ 

                                                

                                           "\n }"+ 

    

                                         "\n return null;"+  

       

                                    "\n }"; 

      

             this.methodName = methodName; 

             this.preCondMethodName = preCondMethodName; 

                          

         } 

   

      public String getMethodTemplate() 

        { 

           return this.methodTemplate; 

        } 

 

      public String getMethodName() 

        { 

           return this.methodName; 

        } 

 

      public String getPreCondMethodName() 

        { 

           return this.preCondMethodName; 

        } 

 

      public List<PreconditionMethodTemplate> generatePreCondTemplateMethod(String name, String preCondType, int value) 

        {    

            List list = new ArrayList<PreconditionMethodTemplate>() ;  

            PreconditionMethodTemplate[] template = new PreconditionMethodTemplate[value]; 

 

            for(int j=0; j< template.length; j++) 

               {             

                 template[j] = new PreconditionMethodTemplate(name, name+preCondType+(j+1));  

                 list.add(template[j]); 

               } 

 

           return list; 

        } 

 

      public static void main(String[] args)  

         { 

           //PreconditionMethodTemplate p = new PreconditionMethodTemplate("getForename", "getForenameUSP1"); 

           //System.out.println(p.getMethodTemplate()); 

           //System.out.println(); 

           //System.out.println("Method Name is:"+" "+p.getMethodName()); 

           //System.out.println(); 

           //System.out.println("PreCondition Method Name is:"+" "+p.getPreCondMethodName()); 

 

           PreconditionMethodTemplate p = new PreconditionMethodTemplate(); 

           List k = p.generatePreCondTemplateMethod("getForename", "ESP", 5); 

           for(Object o: k) 

              { 

                PreconditionMethodTemplate val = (PreconditionMethodTemplate)o; 

                System.out.println(val.getMethodTemplate()); 

              } 

            

         } 

 

   }// End of class PreconditionMethodTemplate 

Figure 75: PreconditionMethodTemplate.java 
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No Class Name Class Purpose Class Dependencies 

1  

ClassMachineFram

e.java 

To provide a java class 

for running and/or 

animating our class-

machines testing tool’s 

logic 

• JavaFilter.java 

• OpenFileTextArea.java 

• PreConditionGenerator

Panel.java 

• FrogilaPanel.java 

• RunFileTemplate.java 

2  

JavaFilter.java 

 

To provide a class 

which filters out class 

files ending with .java 

extensions only. 

 

• Does not depend on any 

custom java class or 

classes 

 

3  

OpenFileTextArea.j

ava 

 

To provide a class 

which allows users to 

open a compiled java 

class or a saved java 

class under test within 

the file editor panel 

and/or text area of the 

class-machines testing 

tool. 

• Does not depend on any 

custom java class or 

classes 

 

4  

PreConditionGener

atorPanel.java 

 

To provide a generic 

framework and/or tool 

support allowing users 

to automatically 

generate precondition 

template object for each 

method of the object-

machine system under 

test i.e. whilst the class-

machines testing tool is 

in the USP, ESP and 

GSP method testing 

modes 

• CompiledJavaClassFilte

r.java 

• PreconditionMethodTem

plate.java 

• ClassMachineFrame.jav

a 

5  

FrogilaPanel.java 

 

To provide a friendly 

graphical user interface 

environment where all 

the generated result 

during the course of 

testing are 

shown/displayed 

• CompiledJavaClassFilte

r.java 

• TestResultSummary.java 

• TransitionFunctionSpec

ObjectMachine.java 

• ClassMachineFrame.jav

a 

• TestObject.java 

• ClassMachine.java 

• TransitionFunctionKey.j

ava 
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• TransitionFunctionValu

e.java 

6  

RunFileTemplate.ja

va 

 

To provide concrete 

java implementation 

class that allow users to 

compile a given object-

machine system under 

test  

• JavaFilter.java 

7 CompiledJavaClass

Filter.java 

To provide a java 

program code that 

filters out all compiled 

java classes within 

users current directory 

• Does not depend on any 

custom java class or 

classes 

8 PreconditionMetho

dTemplate.java 

To provide a generic 

framework for 

automatically 

generating executable 

precondition method 

template object for each 

method of the object-

machine system under 

test in USP, ESP and 

GSP method testing 

modes 

• Does not depend on any 

custom java class or 

classes 

9 PreConditionTestO

bject.java 

To provide an 

implementation for a 

concrete object which 

stores up or save up in 

its memory i.e. 

generated test objects or 

test cases for each 

precondition method 

guarding a method of 

the object-machine 

system under test in 

USP, ESP and GSP 

testing modes 

• Does not depend on any 

custom java class or 

classes 

10 ClassMachine.java To provide a direct java 

implementation  for the 

class-machines 

theoretical ideas 

presented in this thesis 

• TestObject.java 

11 TestObject.java To provide a class 

which saves up the 

complete profile of the 

object-machine system 

• Does not depend on any 

custom java class or 

classes 
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under test 

12 TransitionFunction

SpecObjectMachine

.java 

To provide a direct 

implementation in java 

for the class-machines 

friend function concept 

introduced in this thesis 

• ClassMachine.java 

• TestObject.java 

• TransitionFunctionKey.j

ava 

• TransitionFunctionValu

e.java 

• PreConditionTestObject.

java 

• PreconditionMethodTem

plate.java 

13 TestResultSummary

.java 

To provide a class that 

record our probabilistic 

analysis and lots more 

for the object-machine 

system under test 

• Does not depend on any 

custom java class or 

classes 

14 TransitionFunction

Key.java 

To provide a java 

implementation for the 

transition function key 

information derived 

from the object-

machine system under 

test. Since every key 

maps to a unique value 

i.e. every precondition 

method drives the 

object-machine system 

under test to a unique 

next object-machines 

transition state 

• Does not depend on any 

custom java class or 

classes 

15 TransitionFunction

Value.java 

To provide a java 

implementation for the 

transition function 

value information 

derived from the object-

machine system under 

test 

• Does not depend on any 

custom java class or 

classes 

Table 34: All the implemented Java Classes of the CMTT 


