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Abstract

This thesis draws its hypothesis from the quantitative description of reflection and refrac-
tion of light at interfaces, given by the Fresnel theory. According to the theory, initially
unpolarised light is partially polarised upon reflection from a smooth dielectric surface.
Hence, variations in the polarisation properties of reflected and scattered light must in-
dicate a change in properties of the reflecting surface. Assuming internal changes in re-
fractive index can be neglected, any substantial change in the polarisation of light is thus
indicative of a change in the material remitting the light. The contribution of this thesis
is to develop a method for image segmentation based on surface material characteristics.
The novel aspects of the method are the expression of intensity distribution as a function of
the surface zenith and azimuth angles, and the expansion of this function using spherical
harmonics to estimate surface characteristics. The method begins with estimating shape
from polarisation using [1]. The surface normals obtained are used in combination with
pixel intensities to form a three dimensional function that describes intensity changes in
the image. This function is then expanded as a harmonic series and the constants of the ex-
pansion are used as features to characterize image regions and to segment the image based
on the hypothesis. Experimental evidence is presented through analysis of polarisation
images and segmentation of images of different objects.
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Chapter 1

Introduction

Image segmentation is a problem that is critical to many applications in image processing

and computer vision [2]. While most commonly encountered type of images are intensity

images, other types of images include range (depth) images, magnetic resonance images

and thermal images. There are may techniques for image segmentation in literature which

rely on colour, gray scale intensity, shape in combination with some prior knowledge

about the objects. Other approaches include methods based on Markov Random Fields

and neural networks and fuzzy set theory [3]. However, in the absence of intensity or

colour based cues, the task of segmenting an image into distinct objects poses a tough

challenge. This problem is typical of most camouflaged objects and one that this thesis

concentrates on solving.

Information in a gray scale image is encoded by variations in pixel intensity. The varia-

tions may be caused by changes in shape or reflectance of an object and also depend on the

direction of illumination [4]. The relationship between incoming illumination (irradiance)

and reflected light is commonly expressed using the bidirectional reflectance distribution

function or BRDF, which is defined as the ratio of light in outgoing direction to incident ir-

radiation [5]. For a point on a surface specified by position x with light coming in through

solid angle dω, the BRDF is written as

ρbd(θo, θi, φo, φi) =
Lo(x, θo, φo)

Li(x, θi, φi) cos θidω
(1.1)

Where L is the radiance, θi, φi are the incoming directions and θo, φo are the outgo-

ing directions. A Lambertian surface is one whose BRDF is independent of incoming

and outgoing directions and thus, constant for any given point on the surface. That is

Lo(x, θ, φ) = Lo(x). For such surfaces, the intensity of reflected light is given by Lam-

bert’s cosine law which states that the radiant intensity observed from the surface is di-

rectly proportional to the cosine of the angle between the observer’s line of sight and the
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surface normal. The radiance of reflected light for a Lambertian surface is expressed using

the quantity radiosity B(x), which is given by

B(x) =

∫ π/2

0

∫ 2π

0

Lo(x) cos θ sin θdφdθ (1.2)

For a point light source that is far away compared to the size of the surface, assuming

there is no ambient illumination [5] use a local shading model that defines the radiosity at

a point x on the surface to be

B(x) = R(x)N.S = cos θ (1.3)

where R is the surface albedo, N is the unit surface normal and S is a vector that represents

the direction of the light source relative to the reflecting surface. Assuming the camera

response is linear in the surface radiosity, the value of a pixel at location (x,y) is then

given by

I(x, y) = kB(x, y) = kR(x)N.S = cos θ (1.4)

The above equation succinctly expresses the main problems of physics based image

analysis. Given an image, often the question in machine vision is to find an explanation

such that the intensity changes I(x, y) can be attributed to a change in albedo or shape,

or a combination of both. This problem is heavily under-constrained as there may be

many combinations of albedo, shape and illumination that result in a certain intensity

pattern. Hence limiting assumptions become necessary to make the problem tractable.

For instance, most simple shape recovery algorithms assume that the surface has a constant

albedo.

Shape recovery is another well studied problem in computer vision. Common methods

used for shape recovery include inference of shape from shading, multi-view techniques

and others that fall under a broad category of methods called Shape-from-X. These include

the use of texture, shading and stereo. A recent addition to this family of methods is the

use of polarisation information for shape recovery. Polarisation vision has steadily gained

use in the Computer Vision community over the last two decades. The areas in which

polarisation finds applications range from medical imaging and industrial inspection to

navigation. Recently a number of methods have been proposed that use cross-polarisation

to remove specularities, or use specularities for shape recovery [6], [7], [8].

This thesis presents a method for image segmentation based on material surface char-

acteristics. Assuming that camouflaged objects will be almost identical to the original in

colour, the method presented uses only gray scale intensities to extract information about
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the polarisation of light captured in an image. The features representing material char-

acteristics are generated using the shape from diffuse polarisation method and analyzed

using spherical harmonic decomposition.

The thesis begins with a review in Chapter 2 of recent work in polarisation vision

and relevant literature in rough surface scattering theory, characterization of reflectance

function and shape recovery. The chapter also draws attention to some interesting work in

human shape perception and distinction of shape from albedo.

Chapter 3 presents a review of the theory and previous work that underpin this research.

The chapter begins with a review of the basic physics behind scattering and polarisation

in Section 3.2. Section 3.3 introduces the concepts of Fresnel theory and presents the

important relations that are used in this work. Section 3.4 applies polarisation concepts to

images and defines the key parameters used throughout the rest of the thesis and Section

3.5 presents an introduction to the work by Atkinson and Hancock [1] in recovering surface

normals from polarisation information.

Chapter 4 draws on the theory in Chapter 4 to develop the results that are used in this

research. To begin, Section 4.1 explains the motivation for the hypothesis explored in

this thesis. The method used to estimate the polarisation parameters and its advantages

are discussed in Section 4.2. The harmonic analysis used to compute feature descriptors

is covered in Section 4.3 while Section 4.4 covers a brief overview of the graph theory

relevant to this application before an overview of the normalized graph cuts method for

segmentation.

Chapter 5 presents the experimental results of applying the method developed in Chap-

ter 4 to various image sets. Sections 5.2 and 5.3 present experimental results for two

chosen application areas to demonstrate the effectiveness of the developed method for

surface segmentation based on material characteristics. Section 5.2 explores the first ap-

plication in segmentation of image regions containing different materials. An obvious use

of this method is in detection of camouflaged targets in images based on differences in

polarisation characteristics of the camouflage material. Next, Section 5.3 presents results

demonstrating a second application area in quality inspection of fruits and vegetables, for

early detection of rots before they appear as skin lesions. Sections 5.4 and 5.5 discuss

the accuracy of segmentation results obtained. The estimation error in the spherical har-

monic expansion is analyzed by calculating the mean error in the image reconstructed by

superposition of the spherical harmonic functions.

3



Finally Chapter 6 provides a brief summary of the work presented in this thesis. The

chapter discusses the merits and drawbacks of this work and proposes directions for future

research.

4



Chapter 2

Literature Review

This chapter presents a review of the recent work in the areas of texture, shape recovery

and polarisation imaging and the research carried out n this thesis is placed in the context

of current research in target detection.

2.1 Effect of Illumination on Texture

Although texture is a topic widely studied and applied to problems in computer vision,

there is no agreement on a standard definition of what texture is. Julesz [9] introduced

the idea of textons or texture elements to represent a description of texture. Julesz hy-

pothesized that humans could pre-attentively distinguish between textures whose second

order statistics were different. However there was no precise definition for how this may

be applied to gray scale images. This drawback was removed by Malik et al in [10] which

introduced an operational definition of textons using clustered filter responses for filters

at various orientations and scales. This was then extended to a 3 dimensional definition

by Leung and Malik in [11], by concatenating filter responses over different illumina-

tion angles. Dana et al made another effort to classify textures by building a database of

bidirectional texture functions (BTF) [12], analogous to BRDF functions. They built a

database of BTF and BRDF measurements for various common textures. The database

was built from images of sample textures for a range of illumination angles. However the

samples for each texture occupied a large amount of space.

The perception of a texture and its analysis in the spatial domain are strongly related

to viewpoint. Chantler noted in [4] that the perceived texture of and object is also strongly

dependent on illumination conditions. He published the first comprehensive study on the
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effect of illumination on texture. Chantler uses empirical studies to show that the output

of the Laws operators are significantly affected by illumination direction. Assuming a

Lambertian reflectance and orthogonal projection, Chantler derives a BRDF function that

included a dependence of illumination tilt angle. Chantler et al took this further in [13],

developing a texture classifier that simultaneously estimates illumination direction. Re-

cently Xu et al [14] have proposed a fractal based method for texture description that is

invariant to changes in viewpoint and illumination.

2.2 Shape vs Shading

There have been several interesting experiments conducted to understand the nature shape

and texture perception. This area of study is called psychophysics, the study of the relation

between stimulus and response. Given an intensity image humans can intuitively assign

it either a shape or an albedo interpretation. Freeman and Viola proposed a model [15]

to distinguish between paint and shape.The model assigned prior probabilities based on

data from a psychophysical computation and interpreted intensity changes as either shape

or reflectance based on Bayesian probabilities. Bell and Freeman [16] train a classifier to

separate steerable pyramid coefficients into shape or shading based on local image infor-

mation. The advantage of this classifier over [15] was that it could separate components

in images with both shape and reflectance changes. However a low frequency residual

component in the algorithm causes limitations on the accuracy of recovery. Tappen et al

[17] use colour information and gray scale patterns to classify image derivatives as being

caused by shape or a change in surface reflectance. They then use belief propagation to

resolve ambiguities and recover intrinsic shape and shading images from a single image.

This method overcomes the residual component issue faced in [16].

In 2008, Padilla et al reported a new methodology for investigating the visually per-

ceived properties of surface textures in [18]. The method uses synthetic textures rendered

and rotated in real-time to study roughness perception and develops a method to estimate

it. This method is used by Clarke et al in [19] to perform a psychophysical experiment

on visual search patterns over synthetic textured backgrounds. The study shows that the

saliency model of feature conspicuity [20] by Itti and Koch fails to adequately explain

human performance in search tasks involving low contrast stimuli. In general however the

saliency model by Itti and Koch is one of the most popular and a standard reference for all

research on saliency. The model has also been extended further to include motion features

to create a saliency model for videos.
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2.3 Polarisation Vision

Although humans are insensitive to polarisation it contains a wealth of information about

the reflecting surface. Sunlight traveling through the atmosphere is naturally polarised due

to scattering by gas and dust particles. Light is also polarised when it passes underwater

after refraction at an air-water interface, as in oceans and other water bodies. Reflection

from a surface also causes light to be partially polarised. The information contained in

polarisation states of light has been applied to develop Computer Vision techniques only

very recently. Polarisation information is characterized by three basic parameters: inten-

sity, polarisation degree and polarisation phase.

Wolff first introduced the idea of using polarisation for material discrimination in [21].

He noted that at points of specular reflection, the ratio of maximum to minimum intensity

as viewed through a polarising filter can be used as a discriminator between dielectrics

and metals. For metals this ratio is between 1.0 and 2.0 whereas for dielectrics the ratio is

usually higher. The limiting assumption however is that the diffuse component of reflec-

tion be negligible compared to the specular component. To overcome this problem, Chen

and Wolff developed a polarisation phase based method for discrimination between met-

als and dielectrics [22]. The method is based on the principle that linearly polarised light

upon reflection from a conducting material is phase shifted to an elliptical polarised state.

For non conducting dielectrics however, the reflected light remains linearly polarised. The

high phase sensitivity of the technique makes it effective in both controlled and natural

lighting. Polarisation has also been in a number of shape recovery methods. Rahmann and

Canterakis use polarisation for reconstructing specular surfaces [7] and Miyazaki et al [8]

use a polarisation-based method to model transparent objects. Atkinson and Hancock use

the Fresnel theory to recover surface orientation [1] and estimate 2-dimensional BRDF

[23]. The technique described in [1] is used to compute the surface normals that for the

intensity function presented in this thesis.

2.4 Conclusions

Current research in the field of texture analysis and polarisation vision has established

the ground work necessary for determining object shape from polarisation. Methods for

highly accurate discrimination between metals and dielectrics based on polarisation phase

are also available. However the use of polarisation for material characterization within

dielectrics is an area of computer vision that is still largely unexplored. This thesis aims to
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fill this gap by proposing a method for discriminating between different dielectric mate-

rials using a combination of intensity, polarisation phase and degree. Surface texture and

illumination direction encoded in the polarisation state of diffusely reflected light are used

to discriminate among dielectric materials based on their index of refraction.
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Chapter 3

Polarisation Information

3.1 Introduction

This chapter provides the foundation to the theory and experiments discussed further in

this thesis. The chapter covers the fundamentals of light reflection and the theoretical ex-

planation behind polarisation of light upon reflection from an interface. This background

theory is placed in the context of surface reflectance analysis from polarisation informa-

tion contained in scattered light. A brief overview of the Fresnel theory of light is provided

before linking it with the work by Atkinson and Hancock in recovering surface normals [1]

and multiple viewpoint reconstruction [24]. Finally the last section gives a demonstration

of the motivation behind the study of polarisation information contained in light reflected

off material surfaces, and its applicability for image segmentation based on surface mate-

rial characteristics.

3.2 Scattering and Polarisation

When light is incident on a homogeneous material the time-varying electromagnetic field

creates oscillating atomic dipoles, which in turn generate secondary wavelets. This pro-

cess is called scattering [25], [26]. Within a homogeneous dielectric material the scattered

waves reinforce each other in the forward direction resulting in transmission and propa-

gation of light through a medium. Waves traveling in every other direction are cancel out

because of out-of-phase waves from neighboring atoms. However at an interface between

two materials of different refractive index, some light is always scattered in the backward

direction because there an imbalance of atomic oscillators. This phenomenon is called re-

flection. The incident light that is not reflected continues to propagate across the interface
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and into the second material, although with a phase shift caused by the change in refractive

index. This phenomenon is called refraction.

E0i⊥E0i⊥

E0i‖E0i‖

θiθi θrθr

E0r‖E0r‖

E0r⊥E0r⊥

θtθt

E0t⊥E0t⊥

E0t‖E0t‖

ni = 1ni = 1
ntnt

(a) External reflection

E0i⊥E0i⊥

E0i‖E0i‖
θ′iθ
′
i θ
′
rθ
′
r E0r‖E0r‖

E0r⊥E0r⊥

θ′tθ
′
t

E0t⊥E0t⊥

E0t‖E0t‖

nt = 1nt = 1
nini

(b) Internal reflection

Figure 3.1: Reflection of light at an interface between air and an optically denser material.

In the representation of Figure 3.1, the rays represent the direction of propagation of

each wave. On extension of the concept to a two dimensional boundary, the plane that

contains the incident, reflected and refracted rays (or propagation vectors of the respective

waves) is called the plane of specular incidence. The electric field in each of these waves

is resolved into two components, E‖ in the plane of incidence and E⊥ perpendicular to it.

Consider Figure 3.1(a) for the case of external reflection at the boundary. We know from

the Snell’s law that the angles of incidence and refraction, θi and θt are related as follows:

ni sin θi = nt sin θt (3.1)

where where ni and nt are the refractive indices of the first and second medium. If the

values of ni and nt are known, for any given angle of incidence the above relation can be

used to determine the direction of specular reflection.

In a simple model [25] of light reflection from a non-conducting and non-magnetic

surface resolution of the electric field into E‖ and E⊥ can be used to explain the polar-

isation of light upon reflection. When the incident E-field is perpendicular to the plane

of incidence, the bound electrons are driven into oscillation by the incident wave creat-

ing dipoles. These re-radiate creating a reflected and a refracted wave, both of which are

polarised normal to the plane of incidence. However with an incident field in the plane

of incidence, the atomic dipoles are driven into oscillation by the refracted wave and a

component of this wave appears in the reflected direction. Since the direction of reflection

is at an angle from the dipole axis, the electric field intensity in the reflected direction is

significantly attenuated. Thus, combining the above two cases, incident unpolarised light

upon reflected is partially polarised in a direction perpendicular to the plane of incidence.

At a certain angle of incidence, when sum of the angles of incidence and refraction that is

θi + θt equals 90◦ the reflected light direction is such that the parallel component electric
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field is completely extinguished. This is called the Brewster’s angle, when light incident at

the polarising angle θi = θp results in completely polarised reflected light. Mathematically

the polarising angle is expressed as tan θp = nt/ni.

3.3 Fresnel Theory of Light

The Fresnel theory of light can be used to understand the way in which polarised light

interacts with surfaces. If E0i and E0r are the peak amplitudes of the electric field in the

incident and reflected directions, the theory expresses the relation between the amplitudes

of the reflected wave and the incident light wave in terms of the material constants and

the angle of incidence. By starting with applying boundary conditions to the Maxwell’s

equations, the ratio of the amplitude of reflected field to that of the incident field for the

component perpendicular to the plane of incidence is derived by the Fresnel theory as:(
E0r

E0i

)
⊥

=

ni

µi
cos θi − nt

µt
cos θt

ni

µi
cos θi + nt

µt
cos θt

(3.2)

Here µiand µt the magnetic permeabilities of the first and second medium.

For dielectrics, the permeabilities µi ≈ µt ≈ µ0, the permeability of free space. Under

this assumption, (3.2) reduces to

r⊥ ≡
(
E0r

E0i

)
⊥

=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(3.3)

Similarly, the ratio of the components in the plane of incidence is then given by:

r‖ ≡
(
E0r

E0i

)
‖

=
nt cos θi − ni cos θt
ni cos θt + nt cos θi

(3.4)

The coefficients r⊥ and r‖ are called the Fresnel amplitude coefficients. The expres-

sions (3.3) and (3.4) apply to any linear isotropic and homogeneous media. However the

quantity measured by most light sensing devices is proportional not to the wave amplitude

but the intensity or radiant flux density, which is in turn proportional to the square of the

electric field [25]. Thus, the intensity coefficients can be derived as:

R⊥(n, θ) = (r⊥)2 =

(
E0r

E0i

)
⊥
,

R‖(n, θ) = (r‖)
2 =

(
E0r

E0i

)
‖

(3.5)

The discussion above was focused on the polarisation phenomenon in dielectrics. For

metals however the situation becomes more complicated due to their higher conductivity.
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The presence of free electrons causes the time varying electromagnetic field of incident

light to induce surface currents. There is also severe attenuation of transmitted light due

to the conversion of electromagnetic energy to heat in conductors, which renders metals

practically opaque in the visible wavelengths [26]. These phenomena make the electro-

magnetic analysis of metal surfaces less tractable. Hence the scope of analysis in this work

is restricted to dielectrics.

3.4 Polarisation Image

A dielectric surface may polarise incident light in two different ways. In the case of

specular reflection, initially polarised light is reflected from the air-dielectric boundary in

the specular direction. In case of diffuse reflection, initially unpolarised light is refracted

into the surface. The remitted light acquires a spontaneous polarisation due to multiple

reflections and refraction at the dielectric-air surface. In both cases, the zenith angle of the

reflected or remitted light is determined by the degree of polarisation while the azimuth

angle is determined by the phase angle of light. However the relations between the surface

normal angles and the polarisation is different in each case.

It has been established in the previous section that dielectric surfaces partially polarise

light upon scattering. When the scattered light is passed through a polarising filter placed

in front of the camera, the intensity of light observed though it fluctuates as a sinusoidal

function of the orientation of the polariser. Thus the polarisation components of the re-

mitted light can be resolved into components parallel and perpendicular to the plane of

incidence by taking images of the object for different orientations of the filter. The param-

eters that represent the partial linear polarisation of incident light by reflection from the

object surface are the minimum and maximum observed intensities Imax and Imin, and the

phase φ of the transmitted sinusoid with respect to the polariser orientation αp.

I(αp) =
(Imax + Imin)

2
+

(Imax − Imin)

2
cos(2αp − 2φ) (3.6)

The radiant flux intensity or radiance of the light I(αp) undergoing reflection at the surface

is attenuated according to the Fresnel intensity coefficients defined in (3.5), which take on

values between 0 and 1 inclusive. At an air-surface boundary, the relative refractive index

n can be written as as n ≡ nt/ni = nt since the refractive index of air at room temper-

ature is approximately 1. Assuming initially unpolarised light incident on a surface, the

intensity bounds of the transmitted light can be expressed in terms of the specular compo-

nent of reflectance Is and the Fresnel intensity coefficients for reflection in the following
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expression [27]:

Imax =
R⊥(n, θi)

R‖(n, θi) +R⊥(n, θi)
Is,

Imin =
R‖(n, θi)

R‖(n, θi) +R⊥(n, θi)
Is (3.7)

For diffuse reflection the formula is similar although not as elegant. This is because the

polarisation is the result of scattering within the material and refraction at the surface-

air boundary. Hence the relative refractive index is now 1/n. The Fresnel coefficients are

now given byR⊥(1/n, θ′i) andR‖(1/n, θ′i), where θ′i is the internal angle of incidence. The

maximum and minimum intensities can hence be written in terms of the diffuse reflectance

Id as

Imax =
1−R‖(1/n, θ′i)

2−R‖(1/n, θ′i)−R⊥(1/n, θ′i)
Id,

Imin =
1−R⊥(1/n, θ′i)

2−R‖(1/n, θ′i)−R⊥(1/n, θ′i)
Id (3.8)

Although there are many ways of defining the degree of polarisation, one way to define

the quantity is as a ratio of the intensity of polarised light to the total light intensity. In

terms of the minimum (Imin) and maximum (Imax) intensities observed as a polarising

filter is rotated through a full cycle, this is given by:

ρ =
(Imax − Imin)

(Imax + Imin)
(3.9)

which varies from 0 to 1 inclusive, indicating partial polarisation states ranging from com-

pletely unpolarised to completely polarised light.

3.5 Estimation of surface normals

For fixed light source direction and approximately planar samples, provided that the range

of refractive indices for different materials in a scene is limited, the angular distribution of

reflected or remitted light can be estimated from the polarisation image.

From the Fresnel theory it is straightforward to show that the azimuth angle for re-

flected polarised light or remitted diffusely polarised light is equal to the phase angle φ [1].

As established in Section 3.2 reflected light is attenuated to a greater extent in the parallel

plane than in the normal plane relative to incidence. By extension, maximum transmission

through a polariser occurs when the polariser is oriented at 90◦ to the azimuth angle φ of

the surface normal.
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Equations (3.6) through (3.9) can be applied with the Fresnel theory to analyze the dis-

tribution of reflectance from approximately planar samples of different material. This sec-

tion presents the review of the relations required to analyze the distribution of reflectance

from approximately planar samples of different materials. From the above results, substi-

tuting (3.7) into (3.9) gives an expression for the specular degree of polarisation in terms

of the Fresnel reflection coefficients:

ρs =
R⊥(n, θi)−R‖(n, θi)
R⊥(n, θi) +R‖(n, θi)

(3.10)

From the geometry of Figure 3.1(a), the zenith angle of the surface normal with respect to

incident light direction is given by θ = θi. If (3.10) is expanded further by substituting for

the Fresnel coefficients, the result is the following expression for ρs in terms of the zenith

angle θ and the refractive index n

ρs =
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
(3.11)

Similarly, by subsitituting (3.8) in to the definition of degree of polarisation in (3.9) the

expression for diffuse degree of polarisation ρd is derived as

ρd =
R⊥(1/n, θ′i)−R‖(1/n, θ′i)

2−R⊥(1/n, θ′i)−R‖(1/n, θ′i)
(3.12)

Using Snells’s law for the refraction of light from the material boundary into air, the inter-

nal angle of incidence can be replaced with the exitance angle, which is the observed angle

at which the light is scattered at the material surface. This angle θ′t is the zenith angle θ of

the surface normal with respect to the remitted light direction. As in the previous case, ex-

panding the Fresnel coefficients and simplifying the resultant expression gives the relation

between the diffuse degree of polarisation, the zenith angle and the refractive index.

ρd =
(n− 1/n)2 sin2 θ

2 + 2n2 − (1 + 1/n)2 sin2 θ + 4 cos θ
√
n2 − sin2 θ

(3.13)

Provided it is known whether the observations measure the specular polarisation of re-

flected polarised light, or the diffuse polarisation of remitted initially unpolarised light,

the zenith angle of light with respect to the surface normal can then be calculated from

(3.13) and (3.11). This is valid under the assumption that the range of refractive index

is small, and can be treated as a constant. These results have been used in further work

by Atkinson and Hancock in shape and BRDF recovery [23, 24, 28]. Further to this, if

data is collected from multiple light source directions, a set of simultaneous non-linear

equations can be solved to infer both refractive index and zenith angle of the surface nor-

mal. Figure 3.2 shows the degrees of diffuse and specular polarisation plotted against
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the zenith angle θ, as given by (3.13) and (3.11). An inspection of the plots reveals that

the range of values taken by diffuse polarisation degree is substantially lower than that

taken by the specular polarisation, for the same zenith angles. This seems to match with

what one would intuitively expect. Specifically, this is because diffuse polarisation arise

from a weak polarisation by refraction at the material surface according to Fresnel theory.

Specular polarisation on the other hand arises typically from specular reflection of initially

polarised light.
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Figure 3.2: Polarisation degree versus zenith angle of surface normal for (b) diffuse and
(a) specular reflection.

Now it is more convenient to rewrite (3.6) in terms of the mean-intensity Î = 1/2(Imax +

Imin) and the degree of polarisation ρ as defined in (3.9), giving:

I(αp) = Î(1 + ρ cos(2αp − 2φ)) (3.14)

The three components of the polarisation information as expressed in (3.14) are the

mean intensity Î , the degree of polarisation ρ and the polarisation phase φ. These shall

henceforth be referred to collectively as the polarisation image. It is worth nothing that

there is an ambiguity in the determination of phase. Polarising filters cannot distinguish

between two states of polarisation that are 180◦ apart. This is because the intensity of

light remitted through a filter is a function of twice the polariser orientation angle, that

is 2φ. This leaves an ambiguity of 180◦ in determining the phase of polarisation. This

ambiguity can be resolved using simple techniques in computer vision [1]. However there

is no attempt to resolve this ambiguity in this work as it does not affect the analysis.

3.6 Conclusions

The Fresnel theory of light provides a quantitative analysis of the electromagnetic interac-

tion of light at an interface. From the theory reviewed, it can be seen that the polarisation

degree depends on the maximum and minimum intensities observed through a polarising
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filter. The azimuth angle of the surface normal with respect to light source direction equals

the polarisation phase. Also, for the the same zenith angle, the degree of diffuse polarisa-

tion is higher than specular polarisation. These results are used in the following chapter to

derive the relations used in the analysis of images for material-based segmentation.
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Chapter 4

Surface Segmentation using Polarisation

The results of the Fresnel theory have been use to develop a number of machine vision

techniques including methods for surface quality inspection [29], [30] and surface shape

recovery [1], [24], [8], [7]. Polarisation can also be used to infer information concerning

the reflectance properties of surfaces. For instance, Atkinson and Hancock have shown in

[23] how diffuse polarisation can be used to estimate the bidirectional reflectance function.

However, their method is computationally demanding, using simulated annealing to esti-

mate the BRDF. The work presented in this thesis takes a simpler approach to reflectance

characterization.

The motivation behind analyzing polarisation information for material segmentation

was established in Chapter 3. Observation of intensity distributions of different materi-

als revealed distinct patterns depending on material type. This chapter takes the above

observation forward and develops the theoretical results used in this thesis for image seg-

mentation based on differences in material surface properties.

4.1 Motivation

The observation underpinning this thesis is that polarisation information in light remitted

from an object’s surface allows the measurement of its reflectance properties. Under the

restrictions of sample planarity and slowly varying refractive index, the polarisation state

of remitted light represents the distribution of mean intensity Î with respect to the zenith

and azimuth angles of remitted light. To provide some illustrative motivation, Figure 4.1

shows a scatter plot of the intensity versus the degree of polarisation and versus surface

azimuth angle for real and plastic leaves.
There are a number of features to note from the plot. First, the distributions are quite
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(d) Natural leaf in polarised light
Figure 4.1: Scatter plot: Distribution of intensity function
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Figure 4.2: Shift in scatter plot of zenith angle against intensity, for a change in assumed
refractive index

different for the two materials. This is attributed to the fact that natural leaves have a lay-

ered sub-surface structure, which affects distribution of remitted light through subsurface

refraction according to Snell’s law. Artificial leaves are frequently made from synthetic

polymers which have a more jumbled molecular structure and hence do not exhibit the

same reflectance properties.

Second, when the refractive index is changed within the known range for dielectrics,

there is a small shift in the plots at all zenith angles, demonstrated in Figure 4.2. This is

because as established in Section 3.4 equations (3.12) and (3.10), the diffuse degree of po-

larisation is a function of the zenith angle and the refractive index. However since the shift

is uniform across all angles, the effect of approximating refractive index in calculations

can be neglected.

Figure 4.1 demonstrates a difference in the patterns exhibited by light returned from

plastic and natural leaves. There is a difference in intensity plots with respect to both

polarisation degree and phase. As explained earlier, the difference in plots arises from the

structural difference between different materials in the studied scene.

This work attempts to exploit the difference in material structure as presented in the

properties of captured light to segment a scene into areas of different materials. One im-

mediately relevant application for this study will be in the detection of military camouflage

from amongst natural foliage. This may be used in military surveillance and target detec-

tion systems. Another application is in the detection of the quality of natural fruits. Studies

carried out as part of this research showed that degradation in fruits and vegetables due to

aging and natural enzyme action has an effect on the polarisation properties of remitted

light. This property can be exploited to build automatic quality inspection systems for

food products. There are several other possible applications for the method for example,

19



in airport security screening, automatic defects inspection and automobile lane guidance

systems.

Figure 4.3 shows the values of polarisation triplet (average intensity, polarisation de-

gree and phase) at various points on the surface, plotted as an image, for plastic leaves in

unpolarised light in (a) and polarised light in (b). The values range from 0 to 1 for nor-

malized average intensity and degree of polarisation, and from 0 to π/2 for polarisation

phase.

It was noted in Section 3.5 that the diffuse polarisation degree takes lower values than

specular for the same zenith angle. The polarisation image sets in Figure 4.3(a) and (b)

for example also reveal that polarisation degree is higher in initially polarised light, as

expected. This is in agreement with the expectation that spontaneous polarisation of ini-

tially unpolarised light is much weaker than the polarisation degree of remitted light that

is polarised before incidence.

It is also observed that as the incidence tends to normal (i.e. the more the angle between

the surface normal and incident light tends to 90 degrees), the spontaneous depolarisation

of incident light increases. The depolarisation is also greater at the veins when compared

to the leaf surface. This may be attributed to a difference in structure of veins. The veins

in plastic leaves also contain a thicker layer of plastic as compared to the remaining leaf

surface. This changes the nature of subsurface scattering in the veins.

The polarisation phase closely represents the shape of the object surface. The values of

polarisation phase vary more widely in initially unpolarised incident light than in polarised

incident light. This may be attributed to the random nature of electric field orientations

in unpolarised light. The small phase shifts in specular polarisation are caused by spon-

taneous depolarisation of the incident light by the object surface, which is much weaker

than the polarisation of incident light. The polarisation images demonstrate that the phase

accurately represents the azimuth angle of the surface normal with respect to incident light

direction, as predicted by equation (3.14).

4.2 Statistical Moments

The fundamentals of polarisation image analysis were covered in Section 3.4. Light scat-

tered from surfaces acquires an instantaneous polarisation because of refraction. For im-

ages captured through a polarising filter at different orientations, the components of the
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(a) Plastic in unpolarised light

(b) Plastic in polarised light

(c) Natural leaves in unpolarised light

(d) Natural leaves in polarised light

(e) Apricot in unpolarised light

Figure 4.3: Polarisation image components (L-R) Î , ρ, φ for different materials
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polarisation image are related by (3.14). The three parameter polarisation image (Î , θ, φ)

recorded for a given scene can be treated as a distribution of data points containing infor-

mation about the scene. Since the moment descriptors of a variable describe the nature of

its distribution, moment descriptors of the polarisation image parameters can be used to

represent this scene information.

Consider a variable x, described by a probability density function f(x). By definition

[31], the kth moment of the variable is given by

µk = E(xk) =

∫ ∞
−∞

xkf(x) dx (4.1)

In the case of x being a discrete variable the moment is expressed by a summation. The

centralized moments are then the expected values of the variable about its mean x̂. Since

the mean is also the first raw moment, the first centralized moment is zero and all central-

ized moments can be expressed as

E
(
(x− x̂)k

)
=

1

N

N∑
i=1

(xi − x̂)k (4.2)

In other words, the kth central moment of x is the expected value of xk about its mean, x̂.

4.2.1 Moment Estimators of Polarisation

Suppose that we take N equally spaced images of an object through a polarising filter,

with the polariser angle indexed as p = 1, 2, ..., N . Recall that the transmitted radiance

sinusoid is a function of the recorded image intensity in terms of the polarisation image

parameters given by (3.14), repeated here for ease of reference:

I(αp) = Î(1 + ρ cos(2αp − 2φ))

This may be rearranged as follows :

I(αp)/Î = 1 + ρ cos(2αp − 2φ) (4.3)

I(αp)/Î − 1 = ρ cos(2αp − 2φ) (4.4)

I(αp)− Î
Î

= ρ cos(2αp − 2φ) (4.5)

Now let xp = (I(αp) − Î)/Î . Substituting this in (4.5) and squaring both sides of the

equation gives

x2p = ρ2 cos2(2αp − 2φ) (4.6)
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Since the variable x has zero mean, the second central moment of x is 1/N
∑N

p=1 /x
2
p.

The right hand side of the equation (4.6) now becomes an integral of the expression with

respect to α. The limits of the integral are then derived from the total angle that polarising

filter is rotated through to record the observations. Since the transmitted radiance sinusoid

is a function of 2αp, the function completes one cycle in π radians and further readings

would only present repeated information. Therefore the limits of the integral are set from

0 to π giving

σ2 = 1/N
n∑
i=1

x2p = ρ2
∫ π

0

cos2(2α− 2φ) dα (4.7)

Upon integration in (4.7), the right hand side reduces to π/2 ρ2. This gives us the moment

estimates for image intensity and degree of polarisation as

Î = 1/N
N∑
p=1

I(αp) (4.8)

ρ =
√

2/π σ (4.9)

To derive an expression for the polarisation phase, both sides of (4.5) are multiplied by

cos 2α and the expected value is calculated on both sides. Let y = (I(αp)−Î)/Î cos 2αp =

xp cos 2αp.

ŷ = ρ

∫ π

0

cos(2α− 2φ) cos 2α dα (4.10)

Integrating the left hand side with respect to θ eliminates the variable from the expression

and reduces it to πρ cos 2φ. Thus the moment estimate for the phase of polarisation is

given by

ŷ = πρ cos 2φ (4.11)

φ =
1

2
cos−1

(
2ŷ

πρ

)
(4.12)

Equations (4.8), (4.9) and (4.12) define the moment descriptors of the polarisation

image used in this work. These represent the characteristics of the intensity distribution

as a function of material characteristics The initial estimates of polarisation parameters

obtained from moments are then fitted to the data using the Levenberg-Marquardt method

to give a robust estimate of the degree and phase of polarisation in the scattered light.

4.3 Feature Descriptors

A number of object recognition problems involve looking for image windows that match

an expected shape, texture or colour expectation. This is fundamentally a problem of se-
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lecting groups of pixels in the image which match the required description and discarding

those which do not. However it may not be possible to make the decision simply based on

pixel gray scale or colour information. In such cases, it helps to have a compact represen-

tation of pixels that brings out the properties of interest. Obtaining this representation of

the image is called segmentation or grouping [5]. The process of analyzing information

contained in the image and producing a description that makes the segmentation task sim-

pler is called feature generation. The important properties of a good feature representation

are that there should be relatively few components in the feature so as to make the segmen-

tation task computationally efficient. Secondly the feature should be a good representation

of the characteristics that are of interest in the image.

The choice of feature descriptors is largely subjective and depends on the type of seg-

mentation task at hand. The aim of this work is to enable segmentation of a given scene

into objects of different material composition. Hence a good feature descriptor would

need to adequately represent the reflectance properties of the objects as observed in the

polarisation image.

4.3.1 Laplace Spherical Harmonics

The relations in Section 3.5 presented a representation of the surface reflectance proper-

ties in terms of the observed image intensity. Looking at (3.6), it is easy to see that the

image intensity can be perceived as a 3-D function I(ρ, θ, φ) dependent on the polarisation

degree, zenith and azimuth angles of the surface normal. The choice of spherical harmon-

ics to represent the function I(θ, φ) takes advantage of the spherical symmetry that can

be observed in the representation of image intensity as a function of spherical coordinate

variables. At that note, a small diversion is taken to discuss some fundamental theory

behind the chosen feature representation.

In applied mathematics, the spherical harmonics Y m
l (θ, φ) are the angular part of a

set of solutions to the type of partial differential equations known and Laplace’s equation.

Laplace’s equations find application in a number of practical problems that arise in the

study of potentials. If a function f can be written in a form with separated angular variables

θ and φ, that is f = Φm(φ)Θm
l (θ), then the solution to the Laplace differential equation

on f gives the angular functions

Φm(φ) = Ae−imφ +Beimφ (4.13)

Θm
l (θ) = Pm

l (cos θ), (4.14)
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where l is the polynomial degree, m takes integer values from −l to l and Pm
l (z) are the

associated Legendre polynomials [32]. The spherical harmonics are then arrived at by

combining Φ(φ) and Θ(θ)

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (4.15)

with the normalization coefficient chosen such that the integral of the magnitude of the

functions over the sphere equals the Kronecker delta function:∫ 2π

0

∫ π

0

Y m
l (θ, φ)Ȳ m′

l′ (θ, φ) sin θdθdφ =

∫ 2π

0

∫ π

0

Y m
l (θ, φ)Ȳ m′

l′ (θ, φ)d(cos θ)dφ

= δmm′δll′

From the expansion theorem [33] it follows that the superposition of the solutions gives

the boundary solution to the Laplace’s differential equation on the sphere. That is

f(θ, φ) =
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (4.16)

Furthermore, the spherical harmonics Y m
l (θ, φ) form a compete set of linearly independent

orthonormal functions on the sphere. Using this property, we can derive the spherical

harmonic coefficients for the function f(θ, φ) as

al,m =

∫ 2π

0

∫ π

0

f(θ, φ)Y m
l (θ, φ) sin θ dθ dφ (4.17)

4.3.2 Harmonic Analysis

The information in the polarisation image is comprised of a set of triples consisting of the

mean image intensity Î , the degree of polarisation ρ and the polarisation phase φ. For an

image consisting of M pixels indexed by i = 1, 2, ..., M, the polarisation image may be

written as

P = {(Îi, ρi, φi), i = 1, ...,M} (4.18)

Recall from (3.13) in Ch. 3, Section 3.5 that the degree of polarisation is a function of

a constant refractive index n and the zenith angle θ. From this the above triple can be

written as

D = {(Îi, θi, φi), i = 1, ...,M} (4.19)

To exploit the spherical symmetry in the triplets we suggest that the mean image in-

tensity Î be expressed in terms of θ and φ giving a discrete 2-D function of the zenith and
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azimuth angles. This function Î(θ, φ) can then be expressed as the superposition of the

weighted orthonormal basis functions Y m
l (θ, φ) as follows

Î(θ, φ) =
∞∑
l=1

l∑
m=−l

al,mY
m
l (θ, φ), a ∈ R (4.20)

where Y m
l (θ, φ) are the spherical harmonic functions as defined in (4.15).

The expression for the spherical harmonic coefficients for a continuous function can be

calculated using (4.17). Extending this to the discrete domain using a moments estimation,

the spherical harmonic coefficients for the function in (4.20) can then be obtained as

al,m =
1

M

M∑
i=1

Îi Y
m
l (θi, φi) (4.21)

Estimation of harmonic functions in previous literature includes residual fitting ap-

proaches by [34], [35] and spherical FFT by [36]. This work uses a MATLAB function to

compute the Legendre polynomials and a moments based approach to estimate the coeffi-

cients al,m. The image is divided into windows and the average coefficients are calculated

over each window. The window size is chosen to ensure that the intensity function is a

reasonable representation of shape while taking care to not over-smooth the features.

4.3.3 Feature Selection

The object of feature selection is to find a smaller subset of the available features that

accurately represent the the full feature set. The advantages of reducing dimensionality

include a smaller feature vector which translates to lesser computation time. It also serves

to consolidate information that may be repeated in different dimensions of the feature.

Linear transformations of the feature set can be used to identify the dimensions that con-

tain maximum information and also realign the feature space so that a clearer partition

of the data points becomes visible. Principal Component Analysis (also known as the

KarhunenLoève transform) is one such linear transform in which the resultant features are

linear combinations of the original features. The objective of principal component analy-

sis is using the original data points to construct a lower dimensional linear subspace that

best explains the deviation of the features from the mean. This is a classical technique

from statistical pattern recognition ([5], from [37], [38], [39]).
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4.3.4 Affinity Measure

The distances between feature vectors in the multi-dimensional vector space are a good

indication of how they may be clustered into relevant groups. There exist many metrics for

calculating the distance between two vectors x and y. For example the Euclidean distance

between vectors is defined as the the L2-norm:

d(x,y) =

√
(x− y)T (x− y) =

√∑
i

(xi − yi)2 (4.22)

The city block or Manhattan distance is similarly defined to be the L1-norm:

d(x,y) =

√∑
i

|xi − yi| (4.23)

However in certain cases, for example if the features are correlated, the Euclidean distance

does not provide an accurate representation of the distribution. In such cases, the Maha-

lanobis distance provides a better measure of similarity because it takes into account the

variance of data while calculating distance. The Mahalanobis distance uses the feature

covariance matrix to compensate any inconsistencies in scaling of the features relative to

each other and account for correlation between features. The distance metric is given as

d(x,y) =

√
(x− y)TΣ−1(x− y) (4.24)

where Σ is the covariance matrix for all the feature vectors available.

To calculate the Mahalanobis distance between PCA-mapped spherical harmonic co-

efficient vectors, the algorithm commences by computing the variance matrix over the im-

age. Since the image is divided into blocks in the feature vector calculation, the variance is

also calculated over image blocks. Let the the image blocks be indexed by k = 1, 2, ..., L

and the k-th block have the feature vector Ak. The mean coefficient vector is then

Â =
1

L

L∑
k=1

Ak (4.25)

and the covariance matrix is

ΣA =
1

L

L∑
k=1

(Ak − Â)(Ak − Â)T (4.26)

The Mahalanobis distance between the coefficient vectors for the blocks indexed k1 and

k2 is

Dk1,k2 = (Ak1 − Ak2)TΣA(Ak1 − Ak2) (4.27)
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4.4 Graph Theoretic Clustering

Image segmentation or clustering can be approached as a graph partitioning problem. A

good segmentation is then a problem of cutting a graph into good pieces. A graph is

represented by its nodes and its edges, thus a graph G = (V,E) has vertices V and edges

E. The edges may also be assigned weights, in which case the graph is called a weighted

graph. The approach in graph theoretic clustering is to treat the weighted graph as a sparse

matrix, with a row and column for each vertex. The elements in the matrix represent the

weights between the edges represented by the row and column, e.g. w(i, j) is the weight

associated with the edge connecting vertices i and j. Image features can be associated

with vertices in a weighted graph where the weights on the edges represent a measure of

similarity, in other words the feature distance. The segmentation algorithm would then

attempt to cut the graph in a way that edges with high weights are grouped together and

edges with relatively low weights are removed, thus grouping the graph into sub-graphs

with similar features.

4.4.1 Normalized Graph Cuts

In a graph G = (V,E) comprised of vertices V and edges E with w(i, j) being the weight

associated with the edge connecting vertices i and j, the degree of dissimilarity between

two sections A and B can be computed as a sum of the weights on the edges that have been

removed to separate the sections. This is called a cut and can be expressed mathematically

as follows:

cut(A,B) =
∑

u∈A,v∈B

w(u, v). (4.28)

The minimum cut criterion proposed by Wu and Leahy [40] attempts to minimize the sum

of all edge weights connecting any two partitions. This criterion however has a tendency

to partition out small sets of points in the graph. Shi and Malik introduced a graph cut

criterion [41] that computes the cost as a fraction of the total edge connections to all the

nodes in the graph. The expression for the normalized cut is then

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(4.29)

where the total connection of all nodes in, for example, A to all nodes in the graph is

denoted as

assoc(A) =
∑

u∈A,t∈V

w(u, t). (4.30)
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With this definition of the disassociation between the groups, the minimum cut is that

which partitions groups that have a combination of the largest number of high weight

edges with within each group and smallest number of edges between groups. Therefore

cuts that partition out small groups of points do not have a small normalized cut. A graph

with N = |V | vertices is represented as an N×N symmetrical matrix as explained above,

consisting of the edge weights w(i, j). This is called an affinity matrix. The definition

of affinity measures used to assign weights in a segmentation problem depends on the

application. Affinity measures may be defined by distance, intensity, colour or texture.

The degree matrix is then a diagonal matrix defined from the affinity matrix, such that

each diagonal element is the sum of the weights on edges to that vertex from all others in

the graph, that is

Aij = w(i, j), Dii =
∑
j

Aij (4.31)

If y is a vector of length N , that holds the segmentation results for the graph such that an

element of y is 1 if the node belongs to a segment and −b if it does not, then the N-cut

criterion can be rewritten as the minimization of

yT (D − A)y

yTDy
(4.32)

The solution to this problem is then found by solving the generalized eigenvalue system

(D − A)y = λDy. The second smallest eigenvector of this system is the real values

solution for bi-partitioning the graph. The segments thus obtained are then recursively

partitioned until the desired segmentation is achieved.

4.5 Process Overview

The following block diagram gives an overview of the segmentation process. The main

stages of the segmentation process can be divided into the following parts:

• Image acquisition and registration

• Polarisation image generation

• Calculation of spherical harmonic coefficients

• Principal component analysis

• Affinity matrix computation
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Figure 4.4: Process diagram for segmentation using the developed method.

• N-cut segmentation using Mahalanobis distance between feature vectors

Given the polarisation image, the proposed algorithm attempts to simultaneously seg-

ment and classify using the normalized cut method. Spherical harmonic decomposition of

the intensity over image blocks yields the harmonic coefficient vectors al,m as described

in (4.21). These vectors are then transformed into low-dimension PCA-mapped feature

vectors. This work uses the Mahalanobis distance between feature vectors as an affinity

measure. The more different the feature vectors, the more likely that the windows having

the feature belong to different segments. For an image consisting of L blocks, the Ma-

halanobis distances between the feature vectors for each block are arranged in an L × L
block affinity matrix S with elements S(k1, k2) = exp[−Dk1,k2 ]. The polarisation image

is then segmented into regions by recursively applying Shi and Malik’s [41] algorithm to

the affinity matrix.

In practice the set of coefficients are estimated over non-overlapping pixel blocks of

size w × w, and the spherical harmonic expansion is truncated at a chosen value of l,

with m varying from −l to l. As a result the mean intensity distribution is each pixel

block is parameterized by an (l + 1)2 element vector of spherical harmonic coefficients,

A = [a0,0, a1,−1, a1,0, a1,1, ..., al,0, al,−1, ..., al,l]
T . Since application memory is a limited

resource, there is a trade-off between window size w and degree of expansion l. The

size of feature vectors calculable is also restricted by image size and resolution. Reliable

segmentation results are obtained for values of x varying from 8 to 12 pixels and values of

degree from 8 to 16.
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4.6 Conclusions

The motivation behind this thesis is demonstrated in the scatter plots of intensity (Fig. 4.1).

Since the degree of polarisation is a function of the zenith angle and the polarisation phase

is equal to the azimuth angle, components of the polarisation image represent the spatial

distribution of average image intensities. Figure 4.1 shows that the spatial distribution

of intensity for foliage is different from that for plastic leaves. Since the distribution of

normalized intensity spans a unit sphere, it can be represented using spherical harmonic

functions. Hence image intensity is characterized using spherical harmonic coefficients.

The coefficients calculated over blocks of image pixels are used to form a feature vector

that brings out the differences in material surface properties. The distance between these

feature vectors is then used to calculate an affinity matrix and normalized cuts are used

to recursively segment the image. The next chapter demonstrates the segmentation results

obtained using the method developed above. The technique is tested on images captured

in different lighting conditions and for different camouflaged objects and the results are

presented in the chapters that follow.
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Chapter 5

Experimental Results

This chapter demonstrates the results obtained by applying the method developed in Chap-

ter 4. The results show image segmentation in two main application areas. The first is ma-

terial separation in scenes containing different objects, based on the polarisation properties

of each material. The second is in quality inspection by segmenting fruits and vegetables

to identify rotting before it manifests as skin lesions. Results shown include segmentation

of images taken in polarised and upolarised light from a collimated helium light source as

well as images taken outdoors in direct and diffuse sunlight.

5.1 Experimental set up

All indoor images have been captured in a darkened room with matte black walls and

working surfaces to minimize noise caused by light scattered from objects other than those

of interest. The test objects and the camera are positioned on the same axis, and a halogen

source with light in the visible spectrum is positioned at approximately 15 degrees from the

viewing axis. This arrangement is chosen in order to reduce specular reflection. Images

are captured using a Nikon D200 camera, with fixed aperture size and exposure time.

Linear polarising filters are placed in front of the camera and the halogen source in case of

polarised incident light. The camera polaroid is rotated through increments of 10 degrees

to give 19 images per scene, or through 30 degrees to give 7 images. The objects studied

include natural and artificial leaves, man-made surfaces, military camouflage net and fruit.
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5.2 Application I : Material-based Surface Segmentation

It has been established theoretically that polarisation information can be used to charac-

terize material surfaces. This section provides the test results of the segmentation method

applied to different scenes. Indoor images are captured in a dark room in both polarised

and unpolarised light from a helium light source, with the remitted light being diffusely po-

larised in the first case and specularly in the second. Thus the effectiveness of the method

is tested for both diffuse and specular polarisation. From the Fresnel theory reviewed in

Section 3.3, the phase angle of remitted light is equal to the azimuth angle of the remit-

ted light direction, and for materials with restricted ranges of refractive index the specular

or diffuse polarisation determines the zenith angle. Based on this observation, the angu-

lar distribution of the mean intensity for remitted light is parameterized using spherical

harmonics. The vectors of spherical harmonics are used to characterize varying surface

material reflectance distributions, which in hypothesized to indicate a change in refractive

index of the scattering material. The distances between the feature vectors is then used to

segment the scene into different material patches.

The first segmentation demonstrated is for a scene of natural and plastic leaves. Figure

5.1(a) shows the test scene containing a bunch of artificial leaves in roughly the right half

of the image and natural leaves in the left. The sub-figures (b) and (c) show components

of polarisation image for scene images captured in unpolarised and polarised light from a

collimated halogen lamp in the dark room.

It is evident from the figure that polarisation image captures information about the scat-

tering surface. Because the remitted light is polarised spontaneously upon refraction from

the surface, the polarisation degree captures edges and fine surface texture in unpolarised

light. The degree of polarisation is a ratio of the intensities of polarised and unpolarised

light. Hence when incident light is polarised, the contribution from diffuse polarisation

is smaller and the polarisation degree captures coarser surface features. It is worth noting

that the degree of polarisation is higher in polarised light and near occluding boundaries

in unpolarised light. It is also higher for specular reflection in polarised light. The po-

larisation phase also captures more fine surface details in unpolarised than in polarised

light.

The polarisation image is used to calculate the spherical harmonic coefficients using

the relations derived in Section 4.3.2. Figures 5.2 and 5.3 show the first few spherical

harmonic coefficients for plastic and natural leaves respectively. However the information
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(a) Test scene

(b) Î , ρ and φ in unpolarised light

(c) Î , ρ and φ in polarised light

Figure 5.1: Components of the polarisation image computed for the scene in (a) are shown
in (b) and (c).
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(a) a00, a10, a11 in unpolarised light

(b) a20, a21, a22 in unpolarised light

(c) a00, a10, a11 in polarised light

(d) a20, a21, a22 in polarised light
Figure 5.2: Spherical harmonic coefficients for plastic leaves, corresponding to positive
values of m for l from 0 to 2
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(a) a00, a10, a11 in unpolarised light

(b) a20, a21, a22 in unpolarised light

(c) a00, a10, a11 in polarised light

(d) a20, a21, a22 in polarised light

Figure 5.3: Spherical harmonic coefficients for plastic leaves, corresponding to positive
values of m for l from 0 to 2
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contained in the spherical harmonic coefficients is distributed among a large number of

data dimensions. One way to compress the representation is by transforming the data in

terms of a set of basis functions that express the variation better. The KLT (or PCA) is

a powerful statistical tool for such data analysis and compression. Figure 5.4 shows the

feature vectors derived by applying the PCA transform to ΣA , the covariance matrix of

spherical harmonic coefficients. The first three principal components for the test image

account for 95% of the total variance. For a spherical harmonic expansion truncated at l =

20 for example the coefficient vector is typically reduced from 441 to 4 or 5 dimensions.

Spherical harmonic coefficients are calculated up to degree l = 12 for results in Figure

5.5, resulting in a coefficient vector with 169 dimensions. The first 6 of these dimensions

for positive m are shown in Figures 5.2 and 5.3. However, after applying the PCA trans-

form to coefficient vectors, 95 % of the variance is accounted for by the first 5 dimensions,

3 of which are shown in Figure 5.4(a) - (c). Thus almost all information in the feature

vector is compressed from the original 169 dimensions into 5 dimensions.

The results of segmenting the scene in Figure 5.1(a) using normalized graph cuts al-

gorithm from [41] are shown in Figure 5.5. These results were obtained by truncating

the spherical harmonic expansion at order 8 on the 660 × 720 image. The affinity matrix

was computed using the Mahalanobis distances between the feature vectors in blocks of

10 × 10 pixels. A small minority of the image blocks are classified incorrectly. Segmen-

tation is better in unpolarised light even in the presence of specularities due to stronger

spontaneous polarisation degree and therefore stronger discrimination in features. Spec-

ularities in the image cause some difficulty in correct segmentation when using polarised

light.

The results of segmentation for outdoor scenes are shown in Figures 5.6, 5.7 and 5.8.

The images to be segmented are shown in (a), and the components of polarisation im-

age for each are shown in (b) to (d). Subfigure (e) shows the segments generated by the

normalized cut algorithm. Segmentation results were tested for different values of win-

dow size and orders of expansion. The window size that produces optimal segmentation

is found to vary from scene to scene. It is noted that for the window size that produces

optimal segmentation, spherical harmonic expansion truncated at order 12 gives the de-

sired segments and the results are stable over multiple runs. Adding higher order terms

to the feature vector does not improve performance noticeably. This implies that most of

the key feature information is contained in low order harmonics, up to order 12. For other

window sizes however the normalized cuts seem to produce unpredictable results. This is
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(a)

(b)

(c)

(d)

Figure 5.4: Dimensions of the feature vector for plastic leaves in (a) unpolarised and (b)
polarised light, and natural leaves in (c) unpolarised and (d) polarised light.
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(a) Segmentation in unpolarised light

(b) Segmentation in polarised light

Figure 5.5: Segmentation of (a) into (L-R): background, natural leaves and plastic leaves.

an area that requires further investigation to analyze the factors that affect the accuracy of

segmentation.

5.3 Application II: Surface Quality Inspection

Layered surfaces are common in nature, and are found in leaves, fruits and skin. This

presents another application for the segmentation technique developed, in inspection of

the quality of layered surfaces. The angular distribution of light is estimated from the

polarisation image and parameterized using spherical harmonics. The feature vectors thus

obtained are transformed along the principal axes and used to characterize the reflectance

distribution on a pixel-by-pixel basis. This section presents the analysis of images of

bruised fruit. The segmentation task is then to separate the fresh and bruised regions in a

fruit before such damage appears as a lesion on the skin. The fruits used in the experiment

are bruised with a soft hammer and allowed to rot. The hammered areas on the fruit are

marked in ink to allow easy identification. Images of the fruit are captured three and four

days after the being bruised. The fruits used in the experiment are an apple, pear, orange,

two plums and two apricots.

Figure 5.9 shows the arrangement of fruit. There are four fruit subject to decay, namely

the pear (first from left), the large apple (second from left), the plum (third from left) and
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(a) Input image

(b) Polarisation image: Î (c) Polarisation image: ρ (d) Polarisation image: φ

(e) Segmentation: Natural and artificial leaves

Figure 5.6: Segmentation for artificial leaves and foliage in diffuse sunlight with w = 24,
l = 30
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(a) Input Image

(b) Polarisation image: Î

(c) Polarisation image: ρ

(d) Polarisation image: φ

(e) Segmentation: Camouflage and natural leaves
Figure 5.7: Segmentation for camouflage and foliage in direct sunlight with w = 66,
l = 12
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(a) Input Image

(b) Polarisation image: Î (c) Polarisation image: ρ (d) Polarisation image: φ

(e) Segmentation: Natural and manmade scenes
Figure 5.8: Segments for man made and natural objects in direct sunlight with w = 16,
l = 30
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apricot (fifth from left). The regions bruised on the pear, apple and apricot have been

circled with a marker pen. Results of a study on two image sections are presented here,

each of size 240× 240 pixels. The first sub-image shows the affected regions of the apple

and pear, and the second shows the affected area of the plum. The degree and phase of

(a) Polarisation image: Î

(b) Polarisation image: ρ

(c) Polarisation image: φ

Figure 5.9: Polarisation image components for scene with fruit

diffuse polarisation for the full image are shown in Figure 5.9 (b) and (c) for the scene,

and the polarisation phase is shown in Figure 5.10 for different stages of rotting. There

are a number of features to note from the polarisation data. First, the degree and phase

of polarisation reveal the boundaries between the undamaged and bruised surface regions

in the scene. Second, fresh fruit exhibits a higher shift in polarisation phase than rotting
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fruit.

(a) Apple and pear

(b) Apple and plum
Figure 5.10: Polarisation phase on day 3 and day 4 showing changes in increasing stages
of rotting

Figures 5.11 and 5.12 show the spherical harmonic coefficients for the two image

sections. The main feature to note is that the different objects define different regions in

the data. Also, the co-efficient variation within an object is greatest in the damaged areas.

Here again, the PCA transform is applied on the coefficient vector covariance matrix ΣA.

The results for the two -image sections are shown in Figures 5.13 and 5.14. The figures

show the first four principal components which account for 95% of the data variance.

These are used to compute a block-by-block feature vector to describe the fruit surface.

The features highlight the difference in the healthy and rotten fruit tissues as seen in Figure

5.13. The variation amongst the different fruits is also emphasized as shown in Figure 5.14,

while the feature vectors remain unaffected by shape variation.

The results of segmenting the scene using normalized graph cuts algorithm from [41]

are shown in Figure 5.15 and Figure 5.16. These results were obtained with 289 features

from spherical harmonic coefficients up to degree 16 on a 240 × 240 image. The affinity

matrix was computed by using the Mahalanobis distances between the feature vectors in
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Figure 5.11: Spherical harmonic coefficients for pear and apple for l=0,1 and 2 and posi-
tive values of m.

Figure 5.12: Spherical harmonic coefficients for apple and plum for l=0,1 and 2 and posi-
tive values of m.
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(a) Day 3: Relatively fresh fruit

(b) Day 4: Rotting fruit
Figure 5.13: Feature vector for pear and apple

(a) Day 3: Relatively fresh fruit

(b) Day 4: Rotting fruit
Figure 5.14: Feature vector for apple and plum
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(a) Day 3: Relatively fresh fruit

(b) Day 4: Rotting fruit
Figure 5.15: Segmentation results for pear and apple, segments coded by gray level
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blocks of 8× 8 pixels.

(a) Day 3: Relatively fresh fruit

(b) Day 4: Rotting fruit

Figure 5.16: Segmentation results for apple and plum, segments coded by gray level

5.4 Evaluation of Results

In Figure 5.6, the image to be segmented is 462 × 264 pixels in size and is divided into

blocks of size 24×24 for spherical harmonic coefficient calculation. The harmonic expan-

sion is truncated at order 30. The image is divided into 7×8 blocks. Out of 56 blocks, For

the scene in Figure 5.7(a), a block size of 66× 66 for feature generation produced the best

segmentation performance for the the image sized 370 × 420 pixels. With this window

size, the image is divided into 7 × 4 blocks of pixel regions, generating a 7 × 4 × 4 fea-

ture matrix after PCA. Out of 28 blocks, 2 blocks are classified incorrectly, and 3 blocks

contain sections of both materials. Assuming a worst case scenario that all blocks con-

taining more than one material are incorrectly classified gives an accuracy of 82% while

a more optimistic estimation gives an accuracy of 93%. Images of the mixed scene in

Figure 5.8 were captured in direct sunlight in late evening time. Sunlight is highly po-
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larised early mornings and late evenings because of the large distances it travels through

the atmosphere. Thus this scene is captured in highly polarised incident light. The image

is 250 × 400 pixels in size and the coefficients were calculated over 16 × 16 pixel blocks

and truncated at order 30. Thus the image is divided into 15 × 25 feature blocks. The

segments in the image represent grass, a stone pavement and the tar road. Some grass

growing around the corners of edges of the pavement is also classified correctly. A part

of the pavement that is also classified with grass in the first segment is due to limitations

of the block-wise feature calculation. In this image, out of 375 blocks 34 are classified

incorrectly, giving an estimated accuracy of 91%

5.5 Image Reconstruction from Harmonic Coefficients

The previous section showed segmentation results for images using spherical harmonic

expansions of different orders. In practice, it is common to truncate the harmonic ex-

pansion and ignore higher order terms. The truncation however introduces an inevitable

error in the estimated function. The accuracy of the estimated intensity function can be

checked by reconstructing the intensity at each pixel as a superposition of the weighted

spherical harmonic functions Y m
l (θ, φ). The expansion, given in (4.20), is repeated here

for reference:

Î(θ, φ) =
∞∑
l=1

l∑
m=−l

al,mY
m
l (θ, φ), a ∈ R

The reconstructed intensity Î is an approximation to the low pass filtered original im-

age, as the high frequency information contained in higher order terms is removed by the

truncation. The histograms in Figure 5.17 show a comparison of the original histogram

(a) with reconstructions (b) - (d) using coefficients of degree 20, 12 and 4, for a patch of

the scene in Figure 5.1(a).

The reconstruction error shows a drop with increase in degree of expansion, as ex-

pected. The resolution of reconstruction however is limited by the choice of window size

in coefficient calculation. The reconstructed images exhibit a smoothing of the intensities

attributed to the truncation of spherical harmonic expansion and the windowing in calcu-

lation of coefficients. The mean error The following table summarizes the reconstruction

errors in different images with change in window size w and expansion order l.
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(a) True histogram

(b) Reconstruction at l=20 (c) Reconstruction at l=12 (d) Reconstruction at l=4

Figure 5.17: Histograms: (a) shows an image histogram and (b) to (d) show histograms of
reconstructed pixel intensities with expansions up to l = 20, 12 and 4.

Table 5.1: Reconstruction error in intensity recalculated from spherical harmonic func-
tions

No. Image size w l Mean error
1 320x320 4 20 0.030091
2 320x320 4 12 0.030091
3 200x200 4 30 0.033601
4 200x200 4 12 0.033601
5 200x200 12 30 0.086619
6 200x200 12 12 0.086619
7 120x120 12 30 0.19924
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5.6 Conclusions

The experimental results presented in this chapter show successful application of polarisa-

tion theory to the problem of image segmentation based on surface reflectance properties.

The results presented show how polarisation information can be used to detect damaged

surface regions for soft fruit and different materials. The technique segments out sections

of the image that contain objects of different material, as evident from the segmentation

of plastic leaves and foliage, camouflage and foliage. It also segments sections of same

material that differ in quality, as demonstrated with the segmentation of the rotting fruit.

The segmentation seems to be more effective in unpolarised light than in polarised light,

attributed to the fact that the spontaneous polarisation of remitted light is more easily

measured in initially unpolarised light. The suitability of the technique is demonstrated in

controlled laboratory conditions and uncontrolled outdoor conditions, yielding successful

segmentation in both scenarios. The histogram of the image reconstructed by superimpos-

ing the weighted spherical harmonics bears increasing similarity to the original image as

the degree of expansion is increased. A satisfactory reconstruction is achieved at l > 16

although there is some inevitable blurring due to effects of windowing and truncation.
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Chapter 6

Conclusions and Further Research

6.1 Conclusions

There has been substantial work over the last two decades in polarisation vision with

applications in specularity removal, shape from polarisation and material discrimination.

Wolff suggested in [21] that polarisation degree can be used to differentiate between metals

and dielectrics. This thesis concentrates on the narrower problem of polarisation analysis

of dielectric material surfaces. The contribution of this work is in suggesting a technique

to segment dielectric materials using polarisation information, in cases that are otherwise

difficult to segment using colour and intensity based techniques. The novel aspects of this

research are:

• Use of spherical harmonics to represent polarisation information contained in inten-

sity distributions.

• Using spherical harmonic coefficients as a feature vector to segment an image based

on material properties.

The method characterizes differences in refractive index within dielectric materials

using the Fresnel theory and uses spherical harmonics to represent the spatial intensity

variation. The harmonic coefficients are then used as features to segment the image based

on material properties. Two application areas are selected to test the algorithm and demon-

strate its effectiveness. Results from the experiments show promising segmentation accu-

racy in both artificial and natural light. The first application is in target detection, where

camouflage net and plastic leaves are placed with natural leaves and an attempt is made to

separate them using the algorithm. The results in Section 5.2 demonstrate that the method
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is effective in polarised and unpolarised artificial light, as well as in direct and diffuse

sunlight. The thesis also demonstrates the applicability of the algorithm to quality inspec-

tion of degrading fruits in Section 5.3. Various fruits are bruised using a soft hammer and

allowed to rot. Periodic images are taken and the proposed technique is used to separate

out the damaged and degenerating areas of the fruit. Segmentation separates out areas that

appear at a later stage as skin lesions and visible rot.

The segmentation results are slightly more accurate under controlled lighting condi-

tions than in natural sunlight. This is attributed to lack of control over experimental param-

eters in outdoor settings. For example fluctuations in the intensity of sunlight due to atmo-

spheric variations or passing clouds can cause significant jumps or drops in the recorded

pixel intensities for a given set up. Another source of error is mis-registration of im-

ages taken at successive polariser orientations, due to movement of leaves and branches in

outdoor scenes. These drawbacks can easily be overcome using more sophisticated equip-

ment like liquid crystal based polarisation cameras or PLZT (Polarised Lead Zirconium

Titanate) [42]. Moreover, despite these inevitable variations, the overall segmentation is

remarkably accurate.

It is observed that the polarisation image for experiments performed in unpolarised

incident light contain more details than those performed in polarised light. This is due

to the fact that the analysis relies on information contained in diffuse polarisation. Dif-

fuse polarisation arises when light enters a material, undergoes scattering and is remitted

through refraction at the material surface. The light acquires a spontaneous polarisation

due to refraction at the surface, which is measured for analysis. Since this is a spontaneous

phenomenon, the degree of polarisation is very weak (usually < 0.4). This range of polar-

isation is easier to detect in initially unpolarised light than in light that is already strongly

polarised.

It is also observed that the segmentation accuracy is somewhat dependent on window

size. It appears that spherical harmonic decomposition may be sensitive to window size

and is more accurate when the window size matches some measure of the texture elements

in the image. However more time and effort needs to be allocated to further investigate the

factors that affect the choice of cut and to identify the dependency of segmentation results

on window size and choice of cut off frequency.
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6.2 Further Research

The work presented in this thesis is meant to serve as an exploration into the use of polar-

isation for material discrimination and camouflage detection. The thesis inevitably raises

questions that require further attention to arrive at satisfactory answers. Some of these are

listed here as suggestions for further research.

• Determination of zenith and refractive index: The results presented in this thesis

have been derived with the assumption that refractive index of materials in the study

varies in the range of 1.3 to 1.5, which is reasonable for dielectric materials. Since an

assumed refractive index of 1.45 is used for calculations, there is a small error in the

estimated zenith angle. This can be corrected using a multi-view set up. Changing

light source direction allows the capture of two views of the object. The polarisation

images calculated for each light source can then be used to write equation (3.13) as

a system of simultaneous non-linear equations which are then solved for the exact

values of n and θ.

• Shape recovery for features of non-planar objects: The results in Section 5.2 show

segmentation for bruised fruits. Although the method is effective, the application

does not strictly satisfy the initial planar assumption for estimation of zenith angle

from refractive index using Fresnel theory. A more accurate solution would be to use

a shape recovery method, for example shape from shading, to estimate the surface

normals and use these estimates in the spherical harmonic expansion. This solution

unfortunately is beyond the scope of the current thesis.

• Quantitative analysis of refractive index variations: The results developed and pre-

sented in this thesis are based on the hypothesis that slowly varying refractive in-

dex and planar samples allow the determination of the zenith and azimuth angles

of remitted light. Experimental observations support the hypothesis that changes

in material characterize the intensity distributions of remitted light and this can be

used for material based image segmentation. However a differential analysis of the

relation between zenith angle and the degrees of diffuse and specular polarisation

could yield a richer theoretical and mathematical explanation for the phenomenon.
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6.3 Merits and Drawbacks

The merits of the technique suggested in this thesis lie in its accuracy for correct

selection of window size and expansion order. Although the data collection method

used in the experiments is cumbersome and time consuming, there are polarisation

cameras available in the market that make data collection much swifter and easier.

One major drawback of the suggested technique is the use of an eigenvector-based

image segmentation method which makes it too slow for practical and real-time

applications. The error in the approximations introduced by Shi and Malik for com-

putation of normalized cuts is still not full understood and the applicability is still

limited to small image patches with computation time typically in minutes. An al-

ternative would be to attempt segmentation using a more efficient segmentation like

[43]. In summary, this thesis presents a new technique for segmentation of camou-

flaged textures in images, with novel contributions to the analysis and detection of

the textures.
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List of Acronyms

BRDF Bidirectional Reflectance Distribution Function

BTF Bidirectional Texture Functions

E-field Electric Field

FFT Fast Fourier Transform

KLT KarhunenLoève transform

MRF Markov Random Field

N-cut Normalized graph cut

PCA Principal Component Analysis

PLZT Polarised Lead Zirconium Titanate
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