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ABSTRACT 

 

The diamondback moth, Plutella xylostella (Linnaeus 1758.) (Lepidoptera: 

Plutellidae), is a major insect pest of Brassica crops in many parts of the world leading 

to economic losses amounting to an estimated US$ 4-5 billion. Although parasitoids 

(biological control agents) play a major role in suppressing the pest populations during 

November – May in South Africa, the pest reaches outbreak status during September and 

October due to low impact of parasitoids, which has necessitated regular application of 

insecticides. However, insecticide applications have often resulted in the pest developing 

resistance, and when coupled with the negative effects of several insecticides on 

parasitoids, integration of the two pest control strategies for effective management of P. 

xylostella population density has been difficult to achieve. One approach that has received 

little attention is integration of host plant resistance (bottom-up effect) and biological 

control (top-down effect) for effective management of P. xylostella. However, the 

interaction between host plants, the insect pest, and parasitoids is not simple and straight 

forward, as strong negative impact of host plants on fitness of the insect pest can be 

cascaded up the food chain and have a negative impact on a given parasitoid, which in 

turn may reduce the desired complementary effect between the two pest control strategies. 

To identify optimal interactions between cabbage (Brassica oleracea L. var. capitata, 

Brassicaceae), P. xylostella and its larval parasitoid Cotesia vestalis (Haliday 1834) 

(Hymenoptera: Braconidae), this study investigated (i) the effects of seven cabbage 

cultivars (Empowa, Hollywood F1, Megaton, Leano, Menzania, Beverley Hills and 

Karabo) on fitness parameters (survival, developmental time, pupal weights, longevity 

without food and oviposition rates) of P. xylostella; (ii) the influence of the same host 

plant cultivars on fitness parameters (developmental time, pupal weights, longevity 



xi 

without food, fecundity, emergence rate and sex ratio) of C. vestalis. Furthermore, net 

reproductive rates and the intrinsic rates of natural increase were calculated for C. vestalis 

that emerged from hosts fed on each of the cultivars. All experiments were conducted in 

climate-controlled laboratory rooms maintained at 22 ± 1 ºC (mean ± S.D.), 60 ± 5 % RH 

and 16L: 8D photoperiod. 

Under the no choice test, overall survival of P. xylostella immature stages was highest 

on Karabo (67.26%) and lowest on Megaton (44.92%). The larval and pupal 

developmental period, and generation time was prolonged on Empowa (18.48 days), 

Karabo (14.64 days) and Beverly Hills (17.48 days), while developmental period on 

Hollywood F1 (13.79 days) was shortest. Male and female P. xylostella pupal weights 

were lighter from larvae that fed on Megaton (4.13 and 4.65 mg), Menzania (4.53 and 

4.91 mg), and Hollywood F1 (4.11 and 5.08 mg), whereas pupal weights from Karabo 

(6.0 and 6.82 mg) were the heaviest. Unfed female moths originally reared on Beverley 

Hills had the highest longevity (5.05 days), whereas those reared on Leano (3.54 days) 

and Megaton (3.89 days) had the shortest life span. Under the choice-test, P. xylostella 

moth laid significantly more eggs on Empowa (48.8%) and Hollywood F1 (45.6%) and 

least on Menzania (11.8%) and Leano (10.6%). Megaton was more resistant to P. 

xylostella due to lower survival rates of immature stages, lower pupal weights and moth 

longevity. 

The generation time of C. vestalis was shortest on Karabo (10.10 days) and Leano 

(10.38 days), and longest on Megaton (12.57 days) and Empowa (12.80 days). The 

highest pupal weight of C. vestalis was obtained from parasitoids reared from P. xylostella 

fed Menzania (5.4 mg), Megaton (5.25 mg) and Beverly Hills (4.85 mg) and the lightest 

on Karabo (3.8 mg). Parasitoids reared on larvae that fed on Hollywood F1 lived the 

longest (2.28 days) followed by Menzania (1.94 days) and Beverly Hills (1.8 days), 
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whereas those whose hosts fed on Leano had shortest life span (0.83 days). Despite the 

parasitoids from Megaton hosts being heavier, their fecundity and number of female 

progeny per female (16.87 and 3.60, respectively) were lowest. Cotesia vestalis fecundity 

and daughters produced per female were highest on hosts fed on Menzania (38.00 and 

9.13, respectively) and Beverly Hills (32.87 and 9.07, respectively). As a consequence, 

the net reproductive rate (R0) and intrinsic rate of increase (r) were higher on Menzania 

(7.87 and 0.58, respectively) and Beverly Hills (8.29 and 0.62, respectively).  

As survival and overall fitness of P. xylostella was lower on Megaton, this cultivar can 

play a major role in restricting population growth of this pest and thus generational 

number of eggs deposited on it during September and October. However, this strong 

bottom-up effect of Megaton on P. xylostella was cascaded up the food chain, as overall 

fitness of C. vestalis was lower on hosts developing on it. In contrast, the overall fitness 

of C. vestalis was higher on hosts that developed on Menzania and Beverly Hills. As these 

cultivars showed potential to sustain population density of C. vestalis at higher levels, it 

is also assumed that the period required for the parasitoid to reach the critical density to 

suppress the host population at a lower average density will be reached quicker than on 

other cultivars. Thus, their cultivation may improve biological control of P. xylostella 

during November–May in South Africa.  
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Chapter 1: General introduction 

 

Nearly all plant species around the world are attacked by insect herbivores (Futuyma, 

2000), and this relationship is known to have evolved more than 350 million years ago 

(War et al., 2012). However, plants are not necessarily helpless victims to their predators, 

as they have demonstrated an ability to defend themselves against herbivory (Karban and 

Baldwin, 1997). The defensive mechanisms used by plants are either direct, (are always 

present on a plant), or indirect, (are induced by herbivory) (Mithöfer and Boland, 2012).  

 

1.1 Direct plant defence 

Direct plant defence includes plant attributes that have a negative effect on insect 

preference such as host plant selection, oviposition, and feeding behaviour or its 

performance, such as growth rate, developmental rate and reproduction success (War et 

al., 2012). These plant attributes may include plant morphological traits such as thorns, 

spines, trichomes (hairs), epicular wax films, tissue toughness and chemical defences, 

such as secondary metabolites, digestibility reducing proteins and anti-nutritive enzymes 

(Chen, 2008). Direct plant defences are exhibited on a plant by one or a combination of 

mechanisms such as antixenosis, antibiosis and tolerance (Stout, 2013). Antixenosis 

refers to plant properties (morphological traits such as plant colour, odour, and texture, 

such as waxiness and trichomes) that make it unacceptable or unattractive for oviposition 

by insect herbivores. Thus, antixenosis has a direct influence on insect behaviour 

(Andrahennadi and Gillott, 1998; Stout, 2013). For an example, glandular trichomes 

exhibit both morphological and chemical resistance factors as glands produce substances 

which may act as repellents or feeding deterrents or prevent mobility on the leaf surface 
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(Chen, 2008). For an example, Jyoti et al. (2001) found that among five Brassicaceae 

species tested (B. oleracea variety Italica L., ‘Green Comet’; B. oleracea L., ‘Rapid 

Cycling’(Crucifer Genetics Cooperative 3-1); B. oleracea variety botrytis L, ‘a standard 

cauliflower cultivar’Amazing; B. carinata L., and Sinapis alba L., Cornell Alt 543) 

Sinapis alba was the only species which exhibited antixenosis factors due to its trichomes 

around the stems that act as physical barriers to oviposition by the cabbage maggot, Delia 

radicum (L.). Leaf toughness affects the penetration of plant tissues by mouthparts of 

piercing–sucking insects and increases mandibular wear (fractures) in biting-chewing 

herbivores (Schoonhoven et al., 2005 pp 29). 

Antibiosis refers to plant properties such as secondary plant compounds that affect life 

history parameters such as growth and development of insect herbivores (Stout, 2013). 

Antibiosis may be as a result of both chemical and morphological plant attributes which 

may cause death of young larvae or other chronic effects on the herbivore that may cause 

mortality of larvae, pupae, or adults. Antibiosis results in small body size, low body 

weight, prolonged development of herbivore immature stages, low fecundity and survival 

of adults (Jyoti et al., 2001). Chen (2008) categorised direct plant defence in the form of 

antibiosis as anti-nutrition and toxicity. Anti-nutrition includes plant defence mechanisms 

that limit food supply before food is ingested and mechanisms that reduce nutritive value 

after food is ingested. Toxicity includes the disruption of physical structure of the 

herbivore or inhibiting chemical pathways in the insect (Chen, 2008). Plants can limit 

herbivore food supply during pre-ingestion when plants use mechanisms such as physical 

barriers, cell wall fortification, hypersensitive reactions, anti-manipulation and the 

production of insect repellents that prevent its accessibility to herbivore feeding (Chen, 

2008). During post-ingestion, plants may be responsible for the reduction of nutritional 

value by removing essential nutrients and/or inhibiting digestion through some plant 
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enzymes that remain active in the herbivore mid-gut after ingestion that destroy nutrients 

that are supposed to be used by insect herbivore or through the production of chemicals 

that are responsible for disrupting herbivore physical structures (Chen et al., 2007). For 

an example, maize (Zea mays L.) resistant line prevents feeding by Lepidopterans species 

such as fall armyworm, Spodoptera frugiperda by rapidly mobilizing a unique 33 kDa 

cysteine protease which causes damages to the peritrophic matrix, (a semi-permeable, 

non-cellular structure which surrounds the food bolus in an organism’s midgut) which 

assist in digestion and protects the midgut from physical and chemical damage (Pechan 

et al., 2000). Thus the disruption of insect peritrophic matrix may result in the inhibition 

of insect growth and development (Pechan et al., 2000). In other instances, some 

herbivores have the ability to sequester plant allelochemicals in their haemolymph and 

use them to defend themselves against their natural enemies (English–Loeb et al., 1993; 

Opitz and Müller, 2009). 

Plant can tolerate herbivore damage by modification of plant proteins, increased 

oxidative enzyme activity and altering resource reallocation (Eickhoff et al., 2008). 

Tolerance refers to the differential ability of plants to compensate for herbivory by 

regrowth (Strauss and Agrawal, 1999). For an example, Sarfraz et al. (2007) indicated 

that B. napus Q2, B napus Conquest, B. rapa and S. alba were able to tolerate feeding 

damage by P. xylostella by increasing their root mass. 

 

1.2 Indirect plant defence 

Plants can also have an indirect defence mechanism of protecting themselves against 

herbivores. Indirect plant defence is the release of volatile plant signals which attracts 

natural enemies (Degenhardt, 2009). This kind of plant defence enhances biological 
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control which is the use of natural enemies (parasitoids and predators) to suppress 

herbivore population density and thus damage on a plant (Degenhardt, 2009). Plants emit 

volatile organic compounds known as Herbivore-Induced Plant Volatiles (HIPVs) in 

response to herbivory attack which attract natural enemies of insect pests (see Plate 1.1) 

to their host habitat and thus also to their prey or hosts (Dicke and Takabayashi, 1999; 

Gols et al., 2009). These HIPVs differ in both quality and quantity depending on the plant 

species, plant genotype and herbivore species feeding on a plant (Dicke and Baldwin, 

2010). HIPVs can consist of hundreds of compounds made up of terpenoids, green leaf 

volatiles and benzenoids which are responsible for repelling or attracting herbivores and 

their natural enemies (Dicke and Baldwin, 2010). The composition of HIPVs both 

qualities and quantities are specific for attracting a particular enemy to the plant damaged 

by the herbivore (Sabelis et al., 2007; Arimura et al., 2009). For example, Cotesia vestalis 

(Haliday 1834) [= C. plutellae (Kurdjumov) (Hymenoptera: Braconidae) a specialist 

endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus) [= P. 

maculipennis (Curtis)] (Lepidoptera: Plutellidae) larvae is attracted to a blend of 

sabinene, n-heptanal, α-pinene, and (Z)-3 hexenyl acetate at ratios 1.8:1.3:2.0:3.0 (Uefune 

et al., 2012).  
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Plate 1.1 Plants emit Herbivore Induced Plant Volatiles in response to herbivore damage 

which attracts natural enemies. (Taken from Prince and Pohnert (2009) for illustration 

purposes). 

 

1.3 The tritrophic system studied 

1.3.1 The plant 

Cabbage, Brassica oleracea L. var. capitata, is a vegetable crop grown for its large 

leafy head (Singh et al., 2006). It was used for medicinal purposes to cure diseases such 

as headaches, gout, diarrhoea and peptic ulcers (Singh et al., 2006). Cabbage is also 

known to have cancer preventing properties (Brooks et al., 2001), and is rich in Vitamin 

C, β-carotene, lutein, DL-α-tocopherol and phenolics (Singh et al., 2006). Apart from 

having medicinal benefits, cabbage is grown in all South African provinces mainly in 

Western Cape, Kwazulu-Natal, Eastern Cape, Gauteng, Free State and North West 

(DAFF, 2013). Fresh cabbages are sold in fresh produce market, restaurants, processors, 

hawkers and supermarkets (DAFF, 2013). The crop can be eaten raw in salads such as 

coleslaw and atchaar or cooked. In many rural and peri-urban areas, it is mainly grown 

for subsistence (Kfir, 1997). It is estimated that about R186.2 million worth of cabbage 

was sold in the South African fresh produce markets during 2011 (DAFF, 2013). Success 

Herbivores 

feeding on a 

plant 

Plant releases 

HIPVs 

HIPVs attract 

parasitoids 

http://www.google.co.za/url?sa=i&source=images&cd=&cad=rja&docid=l8jOD4evZ5u48M&tbnid=vP8uQr3dlNO6sM:&ved=0CAgQjRwwAA&url=http://www.springerimages.com/Images/RSS/1-10.1007_s00216-009-3162-5-1&ei=M8fTUcqTNsSBhQf39YHwBQ&psig=AFQjCNHg2501fmeWCPB20LSNewVwOypNMw&ust=1372919987941481
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of the US$ 26 billion worth cabbage market per annum worldwide (FAO STAT, 2015) is 

threatened by a variety of diseases, and insect pests of which flea beetles (Phyllotreta 

cruciferae), cabbage looper (Trichoplusia ni (Hübner), aphids (Brevicoryne brassicae) 

and the diamondback moth (Plutella xylostella) are regarded as the most important 

(Talekar and Shelton, 1993). 

 

1.3.2 The pest 

Plutella xylostella is a major pest of Brassica crops worldwide (Talekar and Shelton, 

1993; Sarfraz et al., 2005; Furlong et al., 2013). In warmer parts of the world, it occurs 

in overlapping generations of up to 20 per year (Talekar and Shelton, 1993; Nofemela, 

2010). Its ability to develop resistance to all classes of insecticides has increased its pest 

status in many parts of the world (Talekar and Shelton, 1993; Sarfraz et al., 2005). In 

addition, the lack of effective alternative control measures in many areas are contributing 

to the total cost of US$ 4 and 5 billion annually for controlling P. xylostella and the direct 

damage it causes on produce (Zalucki et al., 2012). It was believed to have originated 

from the Mediterranean region of Europe and later spread throughout the world with its 

host plants (Hardy, 1938; Talekar and Shelton, 1993) but, Kfir (1998) is of the view that 

it may have originated from southern Africa on the basis of its natural enemy diversity 

(21 species of parasitoids) and richness of wild species of host plants (175 species, of 

which only 32 species are exotic), which may indicate a long association between the 

insect pest, its host plants and natural enemies. However, Pichon et al. (2006) reported 

that there is a large genetic variation among P. xylostella populations in different parts of 

the world, which makes it hard to pin its origins to a single point.  
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Plutella xylostella is an oligophagous pest, which feeds only on plants in the family 

Brassicaceae that contains mustard oils and glucosinolates  such as canola (Brassica 

napus), mustard (B. juncea), cabbage (B. oleracea var. capitata), Chinese cabbage (B. 

rapa. cv. gr pekinesis), broccoli (B oleracea var. italica), radish (Raphanus sativus), 

cauliflower (B. oleracea var. botrytis), kale (B. oleracea var. alboglaboratoryra), 

Brussels sprout (B. oleracea var. gemifera), collard (B. oleracea var. acephala), 

watercress (N. officinale) and some wild weedy Brassica species such as sond (R. 

raphanistrum L.), roth (Rorippa micrantha), yellow rocket (Barbarea vulgaris) and 

jonsell (Rorippa nudiuscula) (Talekar and Shelton, 1993; Kahuthia-Gathu, 2008). 

Glucosinolates are a group of defensive secondary compounds containing nitrogen and 

sulphur (Fahey et al., 2001), and the composition and/or quantities of glucosinolates is 

specific to each species, and may also differ among accessions of the same species, 

individuals, different developmental stages and plant parts due to abiotic and biotic 

environmental factors (Brown et al., 2003). When a plant is damaged by an insect 

herbivore, the glucosinolates come into contact with the plant myrosinase, a β-

thioglucosidase. The myrosinase removes the β-glucose moiety from glucosinolates and 

forms unstable toxic breakdown products called isothiocyanates, nitriles, thiocyanates 

(Ratzka et al., 2002). These compounds act as toxins, growth inhibitors and feeding 

deterrents to generalist herbivores (Ratzka et al., 2002). However, crucifer specialists use 

glucosinolates and their by-products isothiocyanates as positive cues for host location. 

Isothiocyanates serve as volatile cues that attract specialist herbivores to their host plants 

and glucosinolates are responsible for triggering oviposition or feeding after the insect 

has located and landed on the plant (Renwick and Chew, 1994; Ratzka et al., 2002; 

Renwick et al., 2002). Specialist herbivores overcome the toxic glucosinolates and its 

hydrolysis products by rapid excretion, hydrolysis of the glucosides, inhibition of 
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hydrolysis, and by sequestering of the glucosinolates (Schoonhoven et al., 1998). For 

example, P. xylostella uses glucosinolates for host location, oviposition and as a feeding 

stimulant (Renwick and Chew, 1994). Plutella xylostella has glucosinolates sulfatase 

accumulated in the gut of its larvae which is responsible for converting glucosinolates 

ingested with plant materials into dusulfo-glucosinolates which prevents the hydrolysis 

of glucosinolates into toxic isothiocyanates (Figure 1.1) (Ratzka et al., 2002). However, 

this detoxifying mechanism does not seem effective on all potential host plants. For 

instance, presence of saponin in some varieties of B. vulgaris leads to low survival of P. 

xylostella, making them potentially good trap or dead end plants (Shinoda et al., 2002; 

Agerbirk et al, 2003). 

 

 

 

Figure 1.1 Reactions catalyzed by plant myrosinase and diamondback moth 

Glucosinolate Sulfatase (GSS) (A) Myrosinase removes glucose from glucosinolates  

leading to the formation of toxic hydrolysis products (isothiocyanates, nitriles, 

thiocyanates, (Bottom Left). (B) DBM GSS forms dusulfo-glucosinolates (Bottom right). 

(Taken from Ratzka et al. (2002) for illustration purposes). 

 

http://www.pnas.org/content/99/17/11223/F1.large.jpg
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Plutella xylostella damages the leaves of its host plants from the seedlings until harvest 

period, but only the larval stage is herbivorous (Amit et al., 2001). The first instar larvae 

are very small, and they feed by mining leaves (Plate 1.2 A). Mines are so small that they 

are usually not noticed at low infestation levels. The larvae emerge from the mines to feed 

on the underside of the leaf. From the 2nd instar through 3rd and 4th instars, the larvae feed 

on the leaf surface (Nofemela, 2013a). The larvae strip away the bottom side of leaf 

between major veins except for the upper epidermis, which results in a characteristic 

window-like damage. The window-like areas soon turn into irregular holes as the leaves 

grow and expand (Plate 1.2 B). Serious economic damage is caused by high numbers of 

larvae per plant. When P. xylostella larvae feed on small cabbages or under the loose 

protective leaves, a major yield loss is expected because such plants do not produce 

economically viable heads (Plate 1.2.C).  

 

Characteristic window-like 
damage 
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Plate 1.2 Characteristic Plutella xylostella damage on a cabbage plant © Nethononda P.D. 

10/07/2013 

 

1.3.2.1 The life cycle of Plutella xylostella 

Plutella xylostella has a holometabolous life cycle (Plate. 1.3), which consist of egg, 

larval (four instars), pupal and adult stages. The moths are small (about 7 to 8 mm long), 

slender, and greyish to brown in colour with pronounced antennae which are always held 

perfectly straight forward when the moth is at rest (Talekar and Shelton, 1993). Plutella 

xylostella moth has a broad cream or light brown band along the back. The wings form a 

paler upper area and a darker lower area. The band is sometimes constricted to form light-

coloured diamonds on the back, hence its common name – the diamondback moth (Gunn, 

1917; Ullyett, 1947). When viewed from the side, the tips of the wings can be seen to turn 

B. P. xylostella damaging 

apical meristem 

C. Yield loss due to P. 

xylostella 

A. Neonates 

mining 
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upward slightly (Gunn, 1917). The moths have a high reproductive potential, and each 

female can lay up to 300 eggs during its short lifespan of 14 days in summer and 18 to 21 

days in winter (Gunn, 1917; Ullyett, 1947). 

 

  

 

 

 

 

 

 

 

Plate 1.3 Life cycle of Plutella xylostella © Nethononda P.D. 12/09/2013 

 

The eggs are laid singly or in small clusters of 2 to 8 along the midrib (Talekar and 

Shelton, 1993). Eggs are laid on the upper and lower leaf surfaces, stems and petioles 

(Talekar and Shelton, 1993). The eggs are oval, flattened and yellow to pale green in 

colour. The eggs darken before they hatch (Ho, 1965). It takes about 3 days for eggs to 

hatch during warm weather, whereas they take 4 to 5 days to hatch in cold weather (Gunn, 

1917). The neonates are translucent, very tiny (<0.5 mm) and they feed on the spongy 

mesophyll by mining into the leaves (Ullyett, 1947). After 2 to 4 days, they emerge from 

Eggs 

Larva 

Adult 

Pupa 
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the mines to feed on the surface and moult. The fully grown fourth instar larvae are about 

12 mm long (Ullyett, 1947). The larvae produce a silken thread that they use to hang on 

from the plant when disturbed. The larval stage takes approximately 9 to 22 days to 

complete at temperatures above 25 ºC and when food is not a limiting factor (Smith, 

2004). On completion of the larval stages, they spin a loose silken cocoon in which they 

pupate. Pupation occurs on the underside of leaves or the stem near the ground (Ullyett, 

1947), and the pupae are 7 to 8 mm long (Talekar and Shelton, 1993). The pupa changes 

in colour as it ages from green, yellowish then brownish colour before the adult moth 

appears 5 to 15 days later depending on ambient temperature (Ullyett, 1947).  

 

1.3.3 The parasitoid 

Cotesia vestalis (Haliday 1834) (Hymenoptera: Braconidae) is a solitary, koinobiont, 

larval endoparasitoid of P. xylostella that is widely used in biological control programmes 

against this pest worldwide (Shaw, 2003; Nofemela and Kfir, 2008). It is believed that C. 

vestalis originated from Europe and later spread throughout the world with its host, P. 

xylostella (Lim, 1982; Waterhouse and Norris, 1987; Talekar and Shelton, 1993). Besides 

some morphological differences between populations (Rincon et al., 2002), it was also 

established that populations from different far-flung regions are reproductively isolated 

(Rincon et al., 2006). This partly explains very variable level of suppression that C. 

vestalis exerts on P. xylostella throughout its range (Rincon et al., 2006; Nofemela and 

Kfir, 2008). In South Africa, it is the most efficient species often accounting for more 

than 80 % of total parasitism levels of P. xylostella (Nofemela and Kfir, 2005, 2008; 

Nofemela, 2013b; Bopape et al., 2014). 
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1.3.3.1 The life cycle of Cotesia vestalis 

Cotesia vestalis has a holometabolous life cycles that includes egg, larval (three 

instars), pupal and adult stages (Yu et al., 2008). It develops inside a host larva that 

continues to grow and feed after being parasitized, and it is a koinobiont (Yu et al., 2008). 

Although C. vestalis can parasitizes all P. xylostella instars, it has a high preference for 

2nd and 3rd instar larvae (Talekar and Yang, 1991; Shi et al., 2002; Nofemela, 2004). 

Egg. Female C. vestalis can lay up to 42.13 ± 12.2 (mean ± SD) eggs over a life span 

of 5.23 ± 2.7 days with the majority of eggs laid within the first two days of eclosion 

(Nofemela, 2004). The eggs are spindle shaped and transparent, with a narrow pedicel at 

the end (Yu et al., 2008). The newly laid eggs adhere firmly to the host tissue, mainly the 

gut (Yu et al., 2008). The developing embryo has three membrane layers. A group of cells 

grow from both anterior and posterior poles of the egg and spread all over the embryo 

surface to form a complete outer membrane called serosal membrane (Yu et al., 2008). 

The serosal membrane is comprised of a syncytium in the abdominal region and discrete 

polar cells which forms teratocytes (Yu et al., 2008). Teratocytes helps in absorption of 

nutrients and production of proteins that are stored inside the cells or released into the 

host haemolymph (Firlej et al., 2007). Teratocytes growth pattern is a physiological factor 

which reflect the suitability of the host, as their number or absence may result in 

insufficient food supply for the developing parasitoid which is reflected by prolonged 

parasitoid development (Firlej et al., 2007). Studies have shown that reduced successful 

parasitism is caused by a reduced number of teratocytes during the first day of parasitoid 

larval development (Alleyne et al., 2001; Barratt and Sutherland, 2001)  

First instar. It takes about two days for an egg to hatch into a 1st instar larva at 25 ± 1 

°C (Yu et al., 2008). During hatching, the chorion raptures and the discrete polar 

teratocytes dissociate into host’s haemolymph (Yu et al., 2008). The 1st instar larva is 
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transparent and caudate-mandibulate with a large head, and is about 0.07 ± 0.01 mm long 

(Yu et al., 2008). On the first day of hatching, the segmentation of the larval body is 

invisible because the serosal membrane is still attached (Yu et al., 2008). On the 2nd day, 

13 segments which include, 3 thoracic and 10 on the abdomen become visible (Alizadeh 

et al., 2011). It takes about 3.25 ± 0.05 days to complete the first stadium at 25 ± 1ºC 

(Alizadeh et al., 2011). 

Second instar. The 2nd instar larva is referred to as a vesiculate form because its horn 

tail in the first instar is replaced by vesiculate structure (anal vesicle) which is attached to 

the midgut with a visible constriction (Alizadeh et al., 2011). The 2nd instar larva is 

transparent with visible segments and gut. The head capsule remains the same size as in 

the 1st instar. The 2nd instar larva changes colour several times during its development. 

For instance,  after three days it becomes opaque with a cream colour and a light green 

gut, and after a further two days it becomes yellow, and the 1st segments of the abdomen 

become dark yellow (Yu et al., 2008). The tracheal system is visible at this stage and the 

anal vesicle begins to shrink back as it moults to become the third instar (Yu et al., 2008). 

It takes about 2.78 ± 0.10 days to complete the 2nd instar stadium at 25 ± 1ºC (Alizadeh 

et al., 2011). 

Third instar. The third instar larva is vermiform and yellowish green, with a slightly 

curved body (Yu et al., 2008). This instar is referred to as a hymenopteriform due to its 

tapered anterior with distinct segmentation and the absence of vesicle and mouthparts (Yu 

et al., 2008). The mature 3rd instar larva is white with a light yellow tint. After nine days 

of oviposition, the matured larva emerges from the side of 4th instar host larva at 25 ± 1ºC 

(Yu et al., 2008). It takes about 4 to 5 minutes for the parasitoid larva to exit from the 

host (Yu et al., 2008) to form a cocoon (Plate 1.4 B). The host larvae from which it 

egressed can live for a day or two (Yu et al., 2008).  
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Cocoon. After emergence from the host body, the C. vestalis larva immediately spins 

a creamy-white silken cocoon in which it pupates (Plate 1.4 C).  

Pre-pupa. The pre-pupa is the stage between cocoon formation and shedding of the 

3rd instar exuvium and it has a primrose head and thorax with an ivory-white abdomen 

with 13 segments and orange red eyes (Yu et al., 2008). Mouth structures such as 

mandibles, labium, labial palpi and maxillary palpi become visible at this stage. The 

prepupal stage last for about 1.9 ± 0.006 days at 25 ± 1ºC (Alizadeh et al., 2011). 

Pupation. After pupation the body become yellow and meconia (undigested food) 

become clearly visible on the midgut (Yu et al., 2008). After two days in the pupal stage, 

the pupa becomes bright yellow and slightly transparent, two red-dorsal ocelli, legs, 

wings and antennae become visible. After three days of pupation, the head and thorax 

becomes black until the whole body become black (Yu et al., 2008). The pupal stage last 

for about 4.03 ± 0.11 days at 25 ± 1ºC (Alizadeh et al., 2011). 

Adult. The adult emerges 6 days after cocoon formation at 25 ± 1ºC (Yu et al., 2008), 

and is a small wasps  of about 3 to 7 mm long with a black body, yellowish colour on the 

legs and the sternites and tergites (Plate. 1.4 A) (Yu et al., 2008). The antennae are black 

antennae with 16 segments with uniform slender shape (Alizadeh et al., 2011). There is 

sexual dimorphism in body length with females being longer than males (Alizadeh et al., 

2011). 
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Plate 1.4 A) Adult Cotesia vestalis; B) Parasitoid larva coming out of the Plutella 

xylostella larva; C) C. vestalis cocoon next to a dead fourth instar P. xylostella larva © 

Nethononda P.D. 15/06/2013 

 

1.3.3.2 Cotesia vestalis feeding and overcoming of host immune defence 

The developing larva feeds freely on the host haemolymph, and thus avoids feeding 

directly on the host vital organs until it is ready to pupate (Nofemela, 2004). The female 

injects a polydnavirus (PDV), which is a dsDNA virus with a poly-disperse genome 

which contains a series of different circular DNAs (Turnbull and Webb, 2002), venom 

and teratocytes in order to overcome its host defences during oviposition (Shi et al., 

2008). Yu et al. (2007) demonstrated that the calyx fluid in C. vestalis suppresses the host 

immune system and its venom has a limited effect on haemocytes and probably synergizes 

the effects of calyx fluid on C. vestalis polydnavirus (CvBV). 

 

1.4 Problem statement 

Although several cabbage cultivars are commercially available in South Africa 

(DAFF, 2014), growers cultivate them without any knowledge on their susceptibility to 

P. xylostella. Cultivars resistant to P. xylostella will help growers reduce production costs 

by reducing insecticide applications and all risks associated with their use. Plant 

resistance mechanisms such as antibiosis and antixenosis have the ability to reduce pest 

load on plants and may allow biological control agents such as parasitoids to be more 

A B C 
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effective in controlling insect pest (Stout, 2013). Some studies have indicated that plant 

resistance and biological control can be compatible (Kalule and Wright, 2002; Schmale 

et al., 2003). For an example, Fathi et al. (2011) indicated that P. xylostella infestation 

among six canola cultivars (Zarfam, Elite, Okapi, Option 500, Hyola 401 and Opera) was 

higher in all cultivars except Opera which shows some resistance towards P. xylostella 

and in addition parasitism rate by Diadegma majale was highest on that cultivar. 

However, others have shown that host plants can negatively affect parasitoid fitness 

(Gassmann and Hare, 2005; Simmons and Gurr, 2005). As herbivores obtain their food 

directly from plants, parasitoids also obtain their nutrition indirectly from the plants and 

as a consequence, parasitoids may be negatively affected when they encounter 

allelochemicals from their herbivore host (Bottrell et al., 1998). Thus, there is a need to 

identify optimal interactions between plant resistance and biological control. 

 

1.5 Hypothesis 

1. Female moths oviposit more on cabbage cultivars on which fitness of the offspring 

is highest. 

2. The fitness of Cotesia vestalis is higher on cabbage cultivars on which 

performance of Plutella xylostella is optimal. 

 

1.6 Aim and objectives of the study 

The aim of the study was to investigate the influence of different cultivars on 

interactions between organisms of the second and third trophic levels in a tritrophic 

system involving Brassica oleracea L. var. capitata – P. xylostella – C. vestalis. 
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Specific objectives of the study are: 

 To determine P. xylostella fitness on the seven different cabbage 

cultivars. 

 To determine C. vestalis fitness when its hosts are reared on different 

cultivars. 

 

1.7 Thesis outline 

After Chapter 1 of introduction, Chapter 2 determines the effect of seven cabbage 

cultivars on the fitness of P. xylostella while chapter 3 determines the indirect effect of 

the cabbage cultivars on the fitness of C. vestalis. Chapter 4 is the general discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 1.5 Structure of the thesis  

Chapter 4: General discussion 

Chapter 1: General introduction 

 

 Chapter 2: Development, survival, body weight and oviposition rates of 

Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) when reared on 

seven cabbage cultivars 

Chapter 3: Bottom-up effects of cabbage cultivars on fitness of a larval 

parasitoid of Plutella xylostella (L.) (Lepidoptera: Plutellidae)  
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Chapter 2: Development, survival, body weight and oviposition rates of Plutella 

xylostella (Linnaeus) (Lepidoptera: Plutellidae) when reared on seven cabbage 

cultivars  

 

2.1 Abstract  

Plant cultivars that negatively influence fitness of target phytophagous insects can be 

an important component of integrated pest management when they substantially restrict 

population growth of the target pest. In this study, the effects of seven cabbage (Brassica 

oleracea var. capitata L.) cultivars on survival and development of immature stages, 

pupal weights, moth longevity and oviposition rates of the diamondback moth, Plutella 

xylostella (L.) (Lepidoptera: Plutellidae), were evaluated in the laboratory. Under the no 

choice test, overall survival of P. xylostella immature stages was highest on Karabo 

(67.26 %) and lowest on Megaton (44.92 %). The larval and pupal developmental period, 

and thus generation time took longer on Empowa (18.48 days), Karabo (14.64 days) and 

Beverly Hills (17.48 days), while development on Hollywood F1 (13.79 days) was the 

fastest. Male and female P. xylostella pupal weights were lower in larvae that fed on 

Megaton (4.13 and 4.65 mg), Menzania (4.53 and 4.91 mg), and Hollywood F1 (4.11 and 

5.08 mg), whereas pupal weights from Karabo (6.0 and 6.82 mg) were the heaviest. Unfed 

female moths reared on Beverley Hills lived the longest (5.05 days), whereas those reared 

on Leano (3.54 days) and Megaton (3.89 days) lived for a shortest period. Under the 

choice-test, P. xylostella moth laid significantly more eggs on Empowa (48.8 %) and 

Hollywood F1 (45.6 %) and least on Menzania (11.8 %) and Leano (10.6 %). Although 

these results show differential impact of the cultivars on the fitness parameters studied, 

low survival rate of offspring on a crop is the primary target for using plant resistance as 

a pest management tactic. The significant reduction in survival rates, pupal weights, adult 
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longevity, fecundity and negative impact on developmental period of P. xylostella reared 

on Megaton indicate that this cultivar has higher level of resistance against P. xylostella. 

The results of this study show that Megaton can play a major role in restricting population 

growth of P. xylostella and generational number of eggs deposited on it. 

 

Key words: diamondback moth; oviposition preference; offspring performance; plant 

resistance; integrated pest management 

 

2.2 Introduction 

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an 

oligophagous pest of plants in the family Brassicaceae (Furlong et al., 2013). Since the 

larvae are forced to feed, and develop if possible, on plants on which they hatch (Löhr 

and Gathu, 2002; Zalucki et al., 2002; Sarfraz et al., 2010), P. xylostella is a perfect target 

for investigating the impact of different Brassica species and/or cultivars on offspring 

fitness. Although Brassicaceae are well known for their glucosinolate-myrosinase 

defensive system which is largely efficient against generalist insect herbivores and 

microorganisms (Müller and Sieling, 2006), specialist herbivores like P. xylostella use 

glucosinolates as oviposition and feeding stimulants, and their volatile breakdown 

products for host location (Renwick et al., 2006). However, the composition of 

glucosinolates and/or quantity varies between species, cultivars and organs of the same 

plant (Harvey et al., 2007a; Martin and Müller, 2007; van Leur et al., 2008). High content 

of glucosinolates (>0.6 µmol/g of fresh weight) and associated myrosinase has been found 

to be detrimental to P. xylostella offspring fitness, which suggests that the counter-

adaptation to glucosinolate hydrolysis by the pest may be dose-dependent (Siemens and 
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Mitchell-Olds, 1996; Li et al., 2000; Agerbirk et al., 2003). Other studies show that 

presence of saponin, a feeding deterrent, is a major reason for the low survival of P. 

xylostella on Barbarea vulgaris (Shinoda et al., 2002; Agerbirk et al., 2003). The high 

attraction to gravid moths and low survival of larvae is observed on several species of 

wild host plants. As a consequence, several studies have investigated the potential of 

using wild host plants as trap crops (Charleston and Kfir, 2000; Badenes-Perez et al., 

2004; Lu et al., 2004), but P. xylostella can survive fairly well on some species (Kahuthia-

Gathu et al., 2008). Where the bottom-up effect of a trap crop is sufficiently strong, the 

cost of controlling the target pest can be substantially reduced (Badenes-Perez et al., 

2005). However, adoption of trap cropping is often hampered by: 1) unwillingness of 

growers to cultivate, in limited farmland space, plants they do not have a market for (Khan 

et al., 2007), 2) trap crop harbouring other pests of the main crop (Nofemela, 2008), 3) 

variable success of the strategy (Shelton and Badenes-Perez, 2006).  

Although high or induced glucosinolate and myrosinase content can reduce herbivory 

and increase plant fitness (Agrawal, 1999), breeding crops for high expression has so far 

led to reduced crop yield (Stowe and Marquis, 2011). As growers prefer to cultivate crops 

with better agronomic traits, it is important to investigate among the currently available 

crops the ones possessing resistance against P. xylostella (Hamilton et al., 2005). Several 

studies have shown that P. xylostella fitness differs among Brassica crops (Golizadeh et 

al., 2009; Niu et al., 2013) and even among cultivars (Ebrahimi et al., 2008; Soufbaf et 

al., 2010; Fathi et al., 2011). The resistance mechanisms range from antibiosis resistance 

as reflected by lower survival and longer developmental rates of larvae (Golizadeh et al., 

2009; Soufbaf et al., 2010; Fathi et al., 2011), antixenosis as reflected by variable 

oviposition preference (Ebrahimi et al., 2008) to plant tolerance (Sarfraz et al., 2007). 

Thus, these studies emphasise the need to further investigate the influence of intrinsic 
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factors already present in the various Brassica crops that make them resistant to P. 

xylostella. Although reduced oviposition can be considered the first line of reducing 

infestations by a target pest (Hamilton et al., 2005), it is unlikely to work in mono-

cropping as gravid moths will lay eggs regardless, and thus selection of cultivar with 

reduced survival of larvae becomes a critical factor to the cost of controlling the pest. 

This aspect is very important for South Africa where P. xylostella enters a population 

outbreak phase in spring (Nofemela, 2010).  

Over 132,600 tons of cabbage (Brassica oleracea var. capitata L.) and other Brassica 

crops are estimated to have been harvested from 2,314 ha during 2013 in South Africa 

(FAO STAT, 2015), the bulk of which is consumed mainly by rural and peri-urban 

communities to supplement the largely maize-based diet. As of November 2014, 51 

cabbage cultivars were registered for commercial production in South Africa, excluding 

red cabbage hybrids (DAFF, 2014). However, no attempt was ever made to investigate 

the fitness of P. xylostella on the different cabbage cultivars in South Africa. In an attempt 

to provide baseline data on fitness of P. xylostella on different cabbage cultivars, the study 

presented here investigated several life history parameters (developmental time, survival 

rates of immature stages, pupal weight, and longevity of the moths without food) of the 

offspring on seven cultivars. The ovipositional preference for either of the seven cultivars 

by the moths was also investigated. The results of this study are particularly useful in 

identifying cultivars that on which P. xylostella performs badly with the view of 

recommending those cultivars for integrated pest management.  
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2.3 Material and methods 

2.3.1 Insect culture 

The larvae and pupae of P. xylostella were originally collected from cabbage fields at 

Brits Agricultural Research Station (23°25'33''S, 27°76'67''E, altitude 1,102 m), North-

West Province, South Africa (Nofemela 2004), and at Baviaanspoort Correctional 

Services Centre (25º 38’S 28º 30’E, alt. 1164 m) in Pretoria, Gauteng Province, South 

Africa (Bopape et al., 2014). The moth culture was reared on week old Brassica napus 

L. seedlings following the method described in Nofemela (2004) in rearing cages 

(43L×30B×33H cm) made of wood, glass and gauze. At monthly intervals, the culture 

was bolstered with field-collected individuals.  

 

2.3.2 Host plants  

Seven cabbage cultivars: Empowa, Beverley Hills, Karabo, Leano, Hollywood Fl, 

Megaton and Menzania, were used for this study. Each cultivar was raised from seeds in 

a greenhouse, and the seedlings were transplanted into 12.5 cm plastic pots filled with a 

mixture of compost, soil and vermiculite at 2:1:1 ratio at the four- leaf stage. The plants 

were then taken to the laboratory at six- to eight-leaf stage to conduct experiments. The 

plants were taken care of by irrigating, removing weeds and physical control of insect 

pests when necessary. 

 

2.3.3 Experiments  

All experiments were conducted in climate-controlled rooms maintained at 22 ± 1 °C 

(mean ± SD), 60 ± 5 % RH and 16L: 8D photoperiod at Agricultural Research Council – 

Plant Protection Research Institute, Rietondale Research station, Pretoria, South Africa. 
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2.3.3.1. No-choice test  

One plant from each cultivar was placed singly in a cage made from a 3.7 litre 

transparent rectangular plastic container with large holes cut on opposite sides and 

replaced with gauze for ventilation. The lids of the containers were cut to fit the mouth of 

the 12.5 cm plastic pot with a cabbage plant, and the container was then inverted over the 

plant. Each of the seven cabbage cultivars had 5 replicates. Two pairs of newly emerged 

(<16 hours old) male and female moths from the culture that were mating were placed in 

each cage with a plant. The female moths were allowed to oviposit on the plants for 48 

hours. 

Thereafter, the moths were removed and the numbers of eggs laid on each plant were 

recorded with the aid of a magnifying glass. Hatching of the eggs was monitored every 

day at 09h00 and 15h00. As neonate larvae mine the leaves on hatching (Ullyett, 1947), 

the number of first instar larvae was recorded as they leave the mines to feed on the leaf 

surface. Thus, the duration of the first instar stadium was determined as the difference 

between larval appearance on the leaf surface and the day of egg hatching. The durations 

of development in each of the subsequent larval instars was also monitored every day on 

each plant. The duration of pupal stage was determined as the difference from the day a 

larva forms pupa and the day of moth emergence. 

The survival rates of the all larval instars were recorded. The number of pupae that 

were formed on each plant was recorded, as well as duration of the pupal stage. Survival 

of pupae, as determined by proportion of P. xylostella moths that emerged out of the total 

number of pupae, was also recorded. Pupal weights were measured using a Sartorius 

GMBH Supermicro® scale (Sartorius GMBH, Gottingen, Germany). On emergence, the 

moths were separated based on gender and placed individually in Petri dishes. The days 
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lived by each moth were recorded at 09h00 and 15h00 to determine longevity of unfed 

adults. Identification of gender in the pupal stage is difficult, therefore males and females 

were separated at 4th larval stage. The male larva have a clearly visible white dot on the 

5th abdominal segment from the caudal end, whereas females have none (Liu and 

Tabashnik, 1997). 

 

2.3.3.2. Choice test 

The ovipositional preference of the moths was tested by placing all seven cabbage 

cultivars in a large (27L×27B×40H cm) gauze-covered cage. This experiment also 

enables one to establish if female moths choose to oviposit mainly on cabbage cultivars 

that provide the highest fitness gain for the progeny as determined from the no-choice 

test. Four pairs of mating moths from the culture were introduced into the cage and the 

females were allowed to oviposit on the plants for 48 hours. Thereafter, the plants were 

removed from the cage and the numbers of eggs laid on each plant were recorded with 

the aid of a magnifying glass. The cages were cleaned with soap and water after each trial, 

and thereafter left in the sun to dry. The position of each cultivar in the cage was 

randomised in each of the 5 replicates.  

 

2.4 Data analysis 

The data on duration of development, survival rates, generation time, pupal weights, 

longevity, and oviposition rates were subjected to a one-way analysis of variance 

(ANOVA). Prior to ANOVA, Shapiro-Wilk test was performed on the standardised 

residuals to test for deviations from normality. In cases where there was significant 

deviation from normality, the outliers were removed until the data set was normally 



26 
 

distributed. Where significant differences were detected with ANOVA, the means were 

separated using Student’s t-Least Significant Difference (LSD) test. All data analyses 

were performed at 5 % level of significance (SAS, 1999).  

 

2.5 Results 

2.5.1. Duration of development 

There was a significant difference (F6, 441 = 3.33; P = 0.0157) in the durations of 

development of 1st instars (Table 2.1) as they fed on the different host plant cultivars. The 

duration of the 1st instar was shortest on Hollywood F1 and longest on Beverley Hills 

(Table 2.1). There were no significant differences in the durations of development among 

2nd instar (F6, 434 = 1.13; P = 0.377) and 3rd instar (F6, 415 = 1.33; P = 0.2839) larvae on the 

different cabbage cultivars (Table 2.1). The duration of the 4th instar was significantly 

different (F6, 348 = 2.56; P = 0.0461) among the cultivars. The shortest period was 

observed on Karabo, Megaton, Hollywood F1, Menzania and the longest developmental 

time was on Empowa (Table 2.1). The developmental rates of pupae were significantly 

different (F6, 248 = 12.46; P<0.001) among the seven cabbage cultivars (Table 2.1). The 

shortest development was observed on Leano and the longest on Beverley Hills, Empowa, 

Karabo and Menzania (Table 2.1). The generational times (i.e., duration of egg-adult 

development) of P. xylostella were significantly different (F6, 248 = 11.81; P<0.001) 

among the cabbage cultivars (Table 2.1). The generation time was shortest on Hollywood 

F1 and longest on Empowa (Table 2.1). 
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Table 2.1 The durations of development (days) of Plutella xylostella life stages (mean ± SD) when reared on seven cabbage cultivars in the 

laboratory.  

Cultivar 1st instar 2nd instar 3rd instar 4th instar Pupa Generational time 

Beverley Hills 4.27±1.23a 2.0±0.77 a 1.91±0.78a 3.18±1.19ab 5.90±1.27a 17.48±1.36ab 

Empowa 3.99±1.00ab 1.49±0.42a 1.47±0.43a 3.62±1.22a 5.80±0.96a 18.48±1.38a 

Karabo 3.52± 0.38ab 1.54±0.33a 1.47±0.40a 2.60±0.84b 5.43±0.58a 17.64± 0.81ab 

Megaton 3.24±1.06abc 1.53±0.62a 2.11±0.40a 2.87±1.17b 3.81±0.81bc 16.78±0.66bc 

Menzania 3.22± 0.79abc 1.52±0.52a 1.93±0.71a 2.72±1.26b 5.17±1.44a 16.81±2.16bc 

Leano 3.06±0.75bc 1.84±0.75a 1.78±0.78a 3.27±1.24ab 3.33±0.50c 15.43±0.72c 

Hollywood F1 2.17± 0.53c 1.29±0.31a 1.47±0.34a 2.63±0.63b 4.25±0.91b 13.80±1.03d 

Means with the same letters are not significantly different at P =0.05 Student’s t-LSD test. 
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2.5.2 Pupal weights 

There was a significant difference (F1, 523 =59.18; P<0.001) in pupal weights of male 

(5.13 ± 1.12 mg) (mean ± SD) and females (5.71 ± 1.2 mg) from the various cultivars 

(Table 2.2). The male pupal weights were also significantly different (F6, 253 =30.29; 

P<0.001) among the cultivars (Table 2.2). The pupal weight was significantly higher on 

Karabo than the rest of cultivars. The second heaviest pupae were obtained from Beverley 

Hills, but did not differ significantly from Empowa and Leano. The lowest weight came 

from Hollywood, Menzania and Megaton (Table 2.2). 

 

Table 2.2 Pupal weights (mg) (mean ± SD) of P. xylostella reared on different cabbage 

cultivars.  

 

Cultivar Male Female 

Karabo 6.0 ± 0.88a 6.82 ± 0.98a 

Beverley Hills  5.88 ±1.01ab 6.09 ± 1.22b 

Empowa 5.46 ± 0.81b 6.07 ± 0.88b 

Leano 4.87 ± 0.76c 6.0 ± 0.88b 

Hollywood F1 4.11 ± 0.7d 5.08 ± 1.06c 

Menzania  4.53 ± 0.61cd 4.91 ± 0.79c 

Megaton  4.13 ± 1.29d 4.65 ± 0.99c 

Means with the same letters are not significantly different at P =0.05 Student’s t-LSD 

test. 

 

Like with males, the female pupal weights also differed significantly (F6, 269 =24.92; 

P<0.001) among the seven cabbage cultivars (Table 2.2). Female pupae that developed 

on Karabo were significantly heavier than those developed on all other cultivars. Again 

the second highest pupal weights occurred on Beverley Hills but did not vary significantly 

from Empowa and Leano. The lowest pupal weights came from Hollywood F1, Menzania 

and Megaton (Table 2.2). 
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2.5.3 Longevity without food  

The longevity of unfed male P. xylostella moths was significantly different (F6, 139 = 

10.76; P<0.001) among the cabbage cultivars (Table 2.3). Male P. xylostella moths reared 

on Beverley Hills had the longest lifespan and those that developed on Leano had the 

shortest lifespan (Table 2.3).  

The longevity of female P. xylostella moths was significantly different (F6, 139 = 15.47; 

P<0.001 from the different cabbage cultivars (Table 2.3). Females that developed on 

Beverley Hills had a longer lifespan without food whereas those that developed on Leano 

had the shortest life span (Table 2.3).  

 

Table 2.3 Longevity (days) of unfed adult P. xylostella when reared on seven cabbage 

cultivars.  

 

Cultivar Male Female 

Beverley Hills 4.56 ± 0.89a 5.05 ± 0.69a 

Empowa  4.36 ± 0.61ab 4.55 ± 0.71bc 

Menzania  3.96 ± 0.52bc 4.65 ± 0.54b 

Karabo 3.93 ± 0.78c 4.2 ± 0.70cd 

Megaton 3.74 ± 0.72c 3.89 ±  0.45de 

Hollywood F1 3.61 ± 0.59c 3.99 ± 0.624d 

Leano 3.11 ± 0.34d 3.54 ± 0.22e 

Means with the same letters are not significantly different at P = 0.05 Student’s t-LSD 

test. 

 

2.5.4 Oviposition preference 

The numbers of eggs deposited on the cabbage cultivars was significantly different (F6, 

34 = 2.68; P = 0.0391) (Figure 2.1). Plutella xylostella moths laid most eggs on Empowa 

and the least on Menzania and Leano (Figure 2.1).  
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Figure 2.1 Oviposition preference of Plutella xylostella among seven cabbage cultivars. 

Means with the same letter are not significantly different at P = 0.05 Student’s t-LSD test. 

 

2.5.5 Survival rates 

As 1st instar larvae leave the mines in order to moult into 2nd instar (Ullyett 1947), for 

practical purposes, the starting point for investigating survival rates of larvae on the 

different cabbage cultivars is the 1st instar larvae that had left the mines. There was no 

significant difference (F6, 34 = 0.80; P= 0.5795) in the survival rates of 2nd instar larvae 

among the cabbage cultivars (Table 2.4). There was 100% survival rate through the 2nd 

instar for larvae that developed on Beverley Hills, Megaton, Hollywood F1, Karabo and 

Leano, whereas 98.88% were still alive on Empowa and Menzania at the end of the 2nd 

instar (Table 2.4). The survival rates of the larvae through the 3rd instar were significantly 

different (F6, 34 = 4.21; P = 0.005) among the cabbage cultivars (Table 2.4). The highest 

survival rate of 3rd instars was observed on Beverly Hills, Empowa, Hollywood F1, 

Karabo and Leano, and survival was lowest on Megaton (Table 2.4). The survival rates 
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of the 4th instar larvae on the different cabbage cultivars were significantly different (F6, 

34= 2.64; P = 0.0414). The highest survival rate was observed on P. xylostella that 

developed on Empowa, Hollywood F1, Karabo and Leano and the least on Megaton 

(Table 2.4). There was no significant difference (F6, 24 = 1.98; P = 0.1079) in survival 

rates of P. xylostella pupae on the different cabbage cultivars. Overall survival of P. 

xylostella immature stages was highest on Karabo (67.26%) and lowest on Megaton 

(44.92%) (Table 2.4). 

 

Table 2.4 Survival rates (%) of P. xylostella immature stages on the different cabbage 

cultivars.  

Cultivar 2nd instar 3rd instar 4th instar Pupa 

Beverley Hills 100 ± 0.00a 100±0.00a 81.46 ± 16.38ab 50.48 ± 35.97a 

Empowa 98.88 ± 2.5a 98.88 ± 2.5a 93.88 ± 10.83a 83.22 ± 16.01a 

Hollywood F1 100 ± 0.00a 96.66 ± 7.47a 90 ± 14.9a 88.66 ± 14.05a 

Karabo 100 ± 0.00a 95.52 ± 8.74a 95.04 ± 8.67a 95.04 ± 8.66a 

Leano 100 ± 0.00a 100 ± 0.00a 96 ± 8.94a 80.84 ± 34.69a 

Megaton 100 ± 0.00a 66.30 ± 32.7b 60.96 ± 29.65b 60.96 ± 29.66a 

Menzania 98.88 ± 2.5a 98.88 ± 2.5a 85.82 ± 18.84a 85.82 ± 18.84a 

Means with the same letters are not significantly different at P = 0.05 Student’s t-LSD 

test. 

 

2.6 Discussion 

In terms of the preference-performance hypothesis, females are expected to 

preferentially choose hosts on which the fitness of their offspring will be better (Mayhew, 
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1997). When given a choice among the seven cultivars, P. xylostella laid the most eggs 

on Empowa and oviposited the least on Leano and Menzania in the present study. 

Furthermore, the fitness of P. xylostella offspring as measured by survival rates of 

immature stages, their developmental rates, pupal weights and longevity of moths without 

food differed significantly among cabbage cultivars. Survival rates of offspring are an 

important parameter in pest management, as they determine expected pest load on the 

crop. Overall survival of P. xylostella immature stages was lowest on Megaton, while 

survival rates on Empowa, Leano and Menzania were similar. This result indicated that 

P. xylostella oviposited the least number of eggs on Leano and Menzania even though 

survival rates of offspring were as high on Empowa. In contrast, the survival rates of the 

offspring were lowest on Megaton overall, despite this cultivar having received the 

intermediate number of eggs from the female moths. Thus, it is expected that Megaton 

will have lower infestations in the field due to its lower suitability for development of P. 

xylostella. The inability of P. xylostella to accurately choose to oviposit on host plants 

that support the highest survival of its offspring is widely reported (Lu et al., 2004; Sarfraz 

et al., 2006, 2007; Ebrahimi et al., 2008; Marchioro and Foerster, 2014). However, Zhang 

et al. (2012) found a positive relationship between oviposition preference and host 

suitability for offspring development. 

As P. xylostella is dependent entirely on resources acquired during larval development 

for egg production, its realised fecundity is correlated with lifespan (Kahuthia-Gathu et 

al., 2008). In the field, P. xylostella moths may not have access to adequate carbohydrate 

resource which in turn may influence their longevity and the number of eggs laid in a 

lifetime (Winkler et al., 2009). If adults do not have access to carbohydrates, they utilise 

nutrients derived from larval reserves for maintenance (Strand and Casas, 2007). Thus, 

the amount and quality of nutrients obtained during the larval stage influences longevity 
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in cases where moths do not have access to supplemental food. In the present study, 

longevity of unfed female moths was longer on Beverly Hills and shortest on Leano and 

Megaton. Although longevity of unfed male moths on Empowa was similar to Beverly 

Hills, female longevity was significantly shorter on Empowa. Reduced adult longevity is 

known to have an additional effect on population density (Asaro and Berisford, 2001) in 

addition to survival rates of immature stages (Nofemela, 2010). As far as results on female 

longevity show, lower incidence of P. xylostella on Megaton is expected, as survival of 

immature stages was also lower.  

For many insects, positive relationships between adult longevity, fecundity and body 

size was established (Tammaru et al., 2002) including P. xylostella (Sarfraz et al., 2007; 

Kahuthia-Gathu et al., 2008). In many instances, the weight of pupae is used as a proxy 

for adult body size (Tammaru et al., 2002). In this study, the pupae from larvae that fed 

on Megaton, Menzania and Hollywood F1 were the smallest, whereas pupae from Karabo 

were the heaviest. Thus, the low lifespan of the moths from Megaton is positively related 

to the low weight of pupae.  

As smaller individuals are more prone to faster depletion of nutrient reserves in periods 

of starvation than larger individuals (Gotthard, 2001; Stoks et al., 2006), there is benefit 

for being large. However, it may require a longer period of development to achieve a 

large body size (Heisswolf et al., 2005). This can be a fitness cost for species that suffer 

heavy mortality from natural enemies during the immature stages (Williams, 1999). 

Parasitoids are an important natural mortality factor of P. xylostella larvae and pupae 

during November–May in South Africa, and longer developmental time will extend 

exposure of hosts to these natural enemies (Kfir, 1997; Nofemela, 2010). The durations 

of larval and pupal periods, and thus generation time, took longer on Empowa, Karabo 

and Beverly Hills. The shorted duration of development was observed on Hollywood F1. 
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The clear linear relationship between duration of development and pupal weight of P. 

xylostella was observed on Hollywood F1 and Karabo. 

In conclusion, the results of this study add to the existing body of knowledge that 

different host plants or cultivars have a differential impact on fitness of P. xylostella (see 

Verkerk and Wright, 1994; Sarfraz et al., 2007). Although the fitness parameters 

measured for P. xylostella in this study are all useful for evaluating cultivar effects on 

phytophagous insects (Moreau et al., 2006), low survival rate of offspring on a crop is the 

primary target for using plant resistance as a pest management tactic. While plant 

resistance to P. xylostella remains relatively underexplored as a pest control tactic in 

South Africa, the results of this study shows that Megaton can play a major role in 

restricting population growth of this pest and generational number of eggs deposited on 

it. This is especially important for the spring period when P. xylostella density is high due 

to lower efficacy of parasitoids (Nofemela, 2010). The additional fitness costs in terms of 

reduced body weight of females and their longevity (and fecundity) make Megaton an 

attractive option for integrated pest management for P. xylostella.  
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Chapter 3: Bottom-up effects of cabbage cultivars on fitness of a larval parasitoid of 

Plutella xylostella (L.) (Lepidoptera: Plutellidae) 

 

3.1 Abstract 

As parasitoid development is dependent on resources provided by a single insect host, the 

quality and quantity of resources its herbivore host obtains from different host plants can 

influence parasitoid fitness. Laboratory studies were conducted on several fitness 

parameters (developmental time, pupal weights, longevity, fecundity and sex ratio) of a 

larval parasitoid Cotesia vestalis (Haliday) (Hymenoptera: Braconidae) when its host 

Plutella xylostella (L.) (Lepidoptera: Plutellidae) developed on seven cabbage cultivars. 

In addition, population increase parameters of the parasitoid were compared on the 

various cultivars. The generation time of the parasitoid was shortest on Karabo (10.10 

days) and Leano (10.38 days), and longest on Megaton (12.57 days) and Empowa (12.80 

days). The heaviest C. vestalis pupae were recorded from Menzania (5.4 mg), Megaton 

(5.25 mg) and Beverly Hills (4.85 mg), and the lightest from Karabo (3.8 mg). Parasitoids 

reared on larvae that fed on Hollywood F1 lived the longest (2.28 days) followed by 

Menzania (1.94 days) and Beverly Hills (1.8 days), whereas those whose hosts fed on 

Leano lived the shortest period (0.83 days). Despite the parasitoids from Megaton hosts 

being bigger, their fecundity and number of female progeny per female (16.87 and 3.60, 

respectively) were lowest. Cotesia vestalis fecundity and daughters produced per female 

were highest on hosts fed on Menzania (38.00 and 9.13, respectively) and Beverly Hills 

(32.87 and 9.07, respectively). As a consequence, the net reproductive rate (R0) and 

intrinsic rate of increase (r) were higher on Menzania (7.87 and 0.58, respectively) and 

Beverly Hills (8.29 and 0.62, respectively). Not only do these results suggest that the 

overall fitness of C. vestalis is higher on hosts developing on Menzania and Beverly Hills, 
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the critical density of the parasitoid required to suppress the host population at a lower 

average density will be reached quicker on these two cultivars than on others tested. 

 

Key words: diamondback moth, Cotesia vestalis, Braconidae, biological control, plant 

resistance, trophic cascade, integrated pest management 

 

3.2 Introduction 

As they are free-living, female parasitoids actively search for host insects in/on which 

to lay eggs, and the offspring develop by feeding on  haemolymph or tissues leading to 

host death (Harvey and Strand, 2002; Harvey, 2005). As parasitoid development is 

dependent on resources provided by a single host, parasitoid fitness is constrained by host 

quality, i.e., quality and quantity of resources available to the developing parasitoid 

(Godfray, 1994; Bottrell et al., 1998; Harvey, 2005). Parasitoid life history traits such as 

longevity, fecundity, developmental rate and survival rate are often used as currencies to 

determine overall fitness of parasitoids (Roitberg et al., 2001). As herbivorous insects 

obtain their nutrients from plants, then their parasitoids get their nutrition indirectly from 

plants (Bottrell et al., 1998). The relationship between the three trophic levels (plant-

herbivore-parasitoid) is referred to as a tritrophic interaction (Kester and Barbosa, 1991). 

Several studies have shown that the fitness of parasitoids varies with the range of host 

plants utilised by their host (Kester and Barbosa, 1991; Bottrell et al., 1998; Kruse and 

Raffa, 1999; Caron et al., 2008). The negative bottom-up effects of host plants on 

parasitoid fitness include low survival rates, small body size, and longer development 

time of the offspring (Idris and Grafius, 1996; Schuler et al., 2003; Sarfraz et al., 2008; 

Gols et al., 2009; Bukovinszky et al., 2012). In some cases, herbivores sequester 
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secondary plant compounds to reduce their suitability for parasitoid development 

(Barbosa et al., 1991; Kester and Barbosa, 1991; Gauld et al., 1992; Karowe and 

Schoonhoven, 1992; English–Loeb et al., 1993; Harvey et al., 2007b). As parasitoids are 

important natural enemies of insect pests in many agroecosystems and are widely used in 

biological control programmes, low fitness of (female) parasitoids can reduce ability to 

regulate the pest population at a lower average density (Sagarra et al., 2001; Arakawa et 

al., 2004; Santolamazza-Carbone et al., 2014). 

For the better part of a year (i.e., November–May) in South Africa, population density 

of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), on unsprayed 

cabbage (Brassica oleracea var. capitata L.) is maintained below 1 P. xylostella per plant 

in the field by the strong top-down impact of parasitoids (Nofemela, 2013c; Bopape et 

al., 2014). The larval endoparasitoid Cotesia vestalis (Haliday) (Hymenoptera: 

Braconidae) is the most dominant, often accounting for more than 80 % of total parasitism 

levels (Nofemela, 2013b; Bopape et al., 2014). During September and October, the pest 

population density increases to high damaging levels due to lower impact of parasitoids 

during this time (Nofemela 2013a; Bopape, 2013). However, there is a wide variation in 

peak infestation levels between years on unsprayed crop (Nofemela, 2013a), implying 

that there may be differences in survival rates of the pest on different cultivars and/or a 

longer delay in density-dependent response of parasitoids of some cultivars. Recently, it 

was shown that some cabbage cultivars grown in South Africa have a strong bottom-up 

effect on P. xylostella (Nethononda et al., in press). Thus, it is worth investigating if this 

strong bottom-up effects of host plants on the herbivore are cascaded up the food chain. 

If true, then the critical threshold density of female parasitoids required to regulate the 

pest population at a low average density (Murdoch, 1994) is expected to be reached at 

different time periods on different cabbage cultivars. This study tested the hypothesis that 
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fitness of C. vestalis is higher on cabbage cultivars on which bottom-up effects are weak. 

The fitness parameters studied were: durations of development, pupal weights, longevity 

without food, fecundity of the F1 generation, emergence rates and numbers of female 

progeny in F2 generation. Life tables were constructed to compare population increase of 

the parasitoid on different cultivars. 

 

3.3 Materials and methods 

3.3.1 Study site 

All laboratory experiments were conducted in climate-controlled rooms maintained at 

22 ± 1 °C (mean ± SD), 60 ± 5 % RH and 16L: 8D photoperiod at the Rietondale campus 

of the Agricultural Research Council – Plant Protection Research Institute, Pretoria, 

Gauteng Province, South Africa. 

 

3.3.2 Host plants  

Seven cabbage cultivars: Empowa, Beverley Hills, Karabo, Leano, Hollywood Fl, 

Megaton and Menzania were used for this study. Seeds of each cultivar were planted in 

seedling trays and raised in a greenhouse. They were transplanted six weeks after 

germination at four-leaf stage into 12.5 cm plastic pots filled with a mixture of compost, 

red soil and vermiculite at 2:1:1 ratio. Plants were taken to the laboratory for experiments 

at six- to eight-leaf stage. There was no fertilizer application. 
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3.3.3 Insect cultures 

Both P. xylostella and C. vestalis cultures were established from individuals originally 

collected from cabbage at Baviaanspoort Correctional Services Centre (25º 38’S 28º 

30’E, altitude 1,164 m) in Pretoria (Bopape et al., 2014). Both P. xylostella and C. vestalis 

cultures were bolstered with field collected individuals at monthly intervals in order to 

reduce effects of inbreeding. Plutella xylostella was reared on Brassica napus seedlings 

and C. vestalis on 2nd and 3rd instar larvae of P. xylostella according to the methods 

described in Nofemela (2004) in rearing cages (43L×30B×33H cm) made of wood, glass 

and gauze.  

 

3.3.4 Fitness of Cotesia vestalis on host larvae reared on different cabbage cultivars 

Experiment 1 

One plant from each cultivar was placed in a cage made from a 3.7 litre transparent 

rectangular plastic container. Four pairs of newly emerged (<24 hours old) P. xylostella 

moths from the stock culture were introduced into each cage to oviposit for 48 hours. 

Plutella xylostella larvae were allowed to feed and develop normally until they reached 

third instar. Newly emerged (<24 hours old) C. vestalis females and males from the stock 

culture were introduced into glass vials (2.5 × 10 cm) at 2 male: 1 female ratio for 24 

hours in order to ensure mating success (Nofemela, 2004). The parasitoids were provided 

with thin streaks of honey. To maximise parasitism rates of larvae from each cultivar, 

larvae were individually exposed to a mated female parasitoid in a small cage. Each 

parasitoid was allowed to parasitize one host from each of the seven cultivars. Nofemela 

(2004) reported that the parasitoid is regarded as parasitized its host when it inserts its 

ovipositor into the host larva and wriggles with it for a few seconds, as the larva tries to 
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escape. Once the parasitism behaviour outlined above was observed, the larva was 

removed and placed back on the plant it developed on. In total 50 larvae per cultivar were 

used for this experiment. Egg-pupal, pupal-adult developmental times (and thus 

generation time) of each parasitoid offspring was recorded. Pupal weights were recorded 

in batches of three, as individual pupae were not heavy enough to get a reading on the 

Sartorius GMBH Supermicro® scale (Sartorius GMBH, Gottingen, Germany). Twenty 

female parasitoids that emerged after the 09h00 observations from each treatment 

(cultivar) were placed separately in ventilated glass jars. As these parasitoids were not 

provided with honey, their lifespan was observed every day at 09h00 and at 15h00 to 

determine longevity without food. 

 

Experiment 2 

The F1 generation parasitoids that were provided with honey were used to determine 

whether fecundity is influenced by the host plant on which their hosts developed on. To 

ensure that host plant effects do not confound the objective of this experiment, all host 

larvae used were reared on canola. Fifteen female and 30 male parasitoids that developed 

on hosts that fed on one of the seven cabbage cultivars were used. To ensure that all 

females were mated prior to the experiment, each female was confined on the day of 

emergence with two males in a glass vial for 24 hours. To serve as food, thin steaks of 

honey were made on the vials. Fifteen cages (43L×30B×33H cm) made of wood, glass 

and gauze were used for each female parasitoid per cultivar. Thirty five 3rd instar P. 

xylostella larvae were placed on canola seedlings in each cage. A mated female parasitoid 

was introduced into each of the cages. The seedlings and larvae were removed daily from 

the cages and replaced with a fresh batch of larvae and canola until the death of the female 
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parasitoid. The larvae that were exposed to the female parasitoids were reared further on 

canola until they pupated or parasitoid pupae formed. The number of parasitoid pupae 

formed, emergence rate and number of female progeny were recorded. 

Cotesia vestalis is able to parasitize hosts immediately after emergence, but its daily 

parasitism rate is limited as it continues to mature eggs post-emergence (Nofemela, 2004). 

Thus, C. vestalis is considered to be weakly ‘synovigenic’ (Jervis et al., 2001). In addition 

to establishing lifetime fecundity of C. vestalis from hosts fed on different cultivars, it is 

also important to establish if there are any differences in the timing of egg production. 

One tool that has proven important in this regard is the ovigeny index, defined as the 

proportion of egg laid on the first day to lifetime fecundity (Jervis et al., 2001).  

 

3.3.5 Life table and population increase parameters  

To determine which of the seven cultivars is likely to support high densities of C. 

vestalis, life tables were constructed. As population growth of the parasitoid population 

is dependent on the survival of females at each age class (lx), and the number of daughters 

produced per female per age class (mx), the contribution of each female to the next 

generation (R0) is represented by the product of lx × mx (Price, 1997; Núñez-Campero et 

al., 2014). The period over which progeny are produced is represented by T =∑(x × lx × 

mx)/∑ (lx × mx), and the intrinsic rate of increase by r = logeR0/T (Price, 1997). 

 

3.4 Data analysis 

The data on durations of development of immature parasitoids, pupal weights, 

fecundity and longevity were subjected to a one-way ANOVA to test for cultivar effects. 

Prior to ANOVA, Shapiro-Wilk test was performed on the standardised residuals to test 
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for deviations from normality. In cases where there was significant deviation from 

normality, the outliers were removed until the data set was normally distributed. Where 

significant differences were detected with ANOVA, the means were separated using 

student’s t-Least Significant Difference test. All data analyses were performed at 5 % 

level of significance (SAS, 1999).  

 

3.5 Results 

3.5.1 Duration of development 

The duration of egg–pupal development of immature C vestalis was significantly 

different (F6, 333 = 51.63; P<0.001) on host larvae reared on different cabbage cultivars 

(Table 3.1). The duration taken to reach the pupal stage was shortest on Karabo (6.17 

days) and longest on Empowa (9.15 days) (Table 3.1). The time taken for pupae to reach 

adult stage was also significantly different (F6, 263 = 8.45; P<0.001) (Table 3.1). Pupal-

adult developmental time was shortest on Beverly Hills (3.79 days) and longest on 

Megaton (4.71 days) (Table 3.1). The generation time (i.e., egg–adult development time) 

of C. vestalis were thus significantly different (F6, 258 = 50.45; P<0.001) when its hosts 

were reared on different cabbage cultivars (Table 3.1). Egg–adult developmental time 

was shortest for parasitoids on Karabo (10.10 days) and Leano (10.38 days), and longest 

on Megaton (12.57 days) and Empowa (12.80 days) (Table 3.1).  
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Table 3.1 The developmental time (days) of immature Cotesia vestalis, pupal weights (mg), longevity (days) of emergent adult parasitoids 

from host larvae reared on various cabbage cultivars. 

Cultivar Egg to pupa Pupa to adult Egg to Adult Pupal weights Longevity  

Empowa 9.15 ± 1.31a 4.14 ± 0.57b 12.80 ±0 .72a 4.65 ± 0.49b 1.56 ± 0.06c 

Megaton 8.36 ± 0.63b 4.71 ± 0.62a 12.57 ± 0.85a 5.25 ± 1.62a 1.49 ± 0.59cd 

Hollywood F1 7.66 ± 1.46c 3.92 ± 0.42bc 10.54 ± 1.31c 4.55 ± 0.69b 2.28 ± 0.72a 

Beverley Hills 7.22 ± 0.47d 3.79 ± 0.56c 10.98 ± 0.63b 4.85 ± 0.67ab 1.80 ± 0.48bc 

Menzania 7.06 ± 1.06d 3.93 ± 0.60bc 10.61 ± 1.27bc 5.4 ± 0.82a 1.94 ± 0.72b 

Leano  6.87 ± 0.63d 3.86 ± 0.95bc 10.38 ± 0.80cd 4.5 ± 1.00b 0.83 ± 0.34e 

Karabo 6.17 ± 0.63e 4.05 ± 0.43bc 10.10 ± 0.86d 3.8 ± 0.62c 1.23 ± 0.38d 

Means with the same letter are not significantly different at P = 0.05 Student’s t-LSD test. 
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3.5.2 Pupal weights 

There was a significant difference (F6; 133 = 6.76; P<0.001) in the weights of the 

parasitoid pupae from host larvae reared on different cultivars (Table 3.1). The heaviest 

C. vestalis pupae were observed on Menzania (5.4 mg), Megaton (5.25 mg) and Beverly 

Hills (4.85 mg) and the lightest on Karabo (3.8 mg) (Table 3.1).  

 

3.5.3 Longevity without food  

The longevity of unfed female C. vestalis reared from P. xylostella that fed on different 

cultivars differed significantly (F6, 139 = 16.93; P<0.001) (Table 3.1). Parasitoids reared 

on larvae that fed on Hollywood F1 lived the longest (2.28 days) followed by Menzania 

(1.94 days) and Beverly Hills (1.8 days), whereas those whose hosts fed on Leano lived 

the shortest period (0.83 days) (Table 3.1). 

 

3.5.4 Fecundity 

Although parasitoids successfully parasitized hosts throughout their life span, the rate 

of progeny production was highest on the first day post-emergence, and from then it 

declined as females aged (Figure 3.1). The number of progeny produced per parasitoid 

on the first day post-emergence was significantly different (F6, 104 = 8.34; P<0.001) (Table 

3.2). Parasitoids that developed on hosts fed on Menzania produced the most offspring 

(17.60), whereas those from Megaton produced the least (7.67) (Table 3.2). The ovigeny 

index of C. vestalis was around 0.5 in most cultivars [Karabo (0.53), Empowa (0.50), 

Leano (0.48), Menzania (0.46), Megaton (0.46), Hollywood F1 (0.42) and Beverly Hills 

(0.37)], which indicates that the parasitoids invested more on reproduction on the first 

day (Table 3.2). 
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Figure 3.1 Daily rate of offspring production per female Cotesia vestalis whose hosts fed 

on different cultivars. The values in the middle of the graphs indicate the number of 

female parasitoids that were provided with hosts.  

 

Progeny production on the second day was also significantly different (F6, 102 = 5.51; 

P<0.001) with parasitoids on Megaton hosts producing the least progeny (4.27) and those 

from Beverly Hills (10.67), Menzania (9.33) and Karabo (8.77) producing the most 

(Table 3.2). On the third day, progeny production per female parasitoid remained 

significantly different (F6, 90 = 3.45; P = 0.0043) (Table 3.2). Parasitoids that developed 

on Menzania hosts produced the most offspring (7.40), whereas those that developed on 
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Megaton hosts produced the least (3.53) (Table 3.2). Rate of progeny production on the 

fourth day declined sharply for all females, as a consequence no significant difference 

(F6, 45 = 0.85; P = 0.5391) in progeny produced per female was observed (Table 3.2). By 

the fifth day of the experiment, parasitoids from Megaton, Karabo and Leano hosts were 

dead (Figure 3.1). However, progeny production among the remaining females was not 

significantly different (F3, 11 = 0.09; P = 0.9624) (Table 3.2). Only three parasitoids were 

alive on the sixth day of the experiment, two from Hollywood F1 and one from Beverly 

Hills producing two and three offspring, respectively. The low number of treatments and 

the lack of replicates for Beverly Hills prevented performance of statistical analysis. 

Although the parasitoids reproduced until they died, the longer lifespan of parasitoids 

from Hollywood F1 and Beverly Hills hosts did not automatically result in high number 

of total progeny produced. Instead, it is parasitoids from Menzania and Beverly Hills 

hosts that reproduced significantly during the first three days of the experiment that 

produced a significantly high (F6; 103 = 6.82; P<0.001) total number of progeny at 38.00 

and 32.87, respectively (Figure 3.1, Table 3.2).  
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Table 3.2 Fecundity of F1 generation Cotesia vestalis females that developed on host larvae fed on different cabbage cultivars. 

Cultivar Fecundity 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Total 

Menzania 17.60 ± 4.84a 9.33 ± 2.58ab 7.40 ± 3.04a 5.10 ± 2.92a 4.00 * 38.00 ± 10.94a 

Empowa 10.73 ± 3.75b 5.60 ± 1.84cd 4.14 ± 1.75cd 3.00 ± 0.71a 3.50 ± 0.71a * 21.67 ± 8.57b 

Leano 11.93 ± 2.12b 6.87 ± 3.42bcd 5.46 ± 2.96abcd 6.50 ± 0.71a * * 24.40 ± 9.09b 

Megaton 7.67 ± 2.38c 4.27 ± 1.16d 3.53 ± 1.55d 3.50 ± 1.38a * * 16.87 ± 6.27b 

Karabo 12.87 ± 4.90b 8.77 ± 4.25ab 5.00 ± 2.67bcd 3.00 ± 1.14a * * 24.33 ± 10.79b 

Hollywood F1 10.40 ± 4.34bc 7.13 ± 3.25bc 6.00 ± 2.77abc 4.64 ± 3.50a 3.50 ± 1.00 2.00  ± 0.00 24.64 ± 11.03b 

Beverley Hills 12.33 ± 5.02b 10.67 ± 6.51a 6.50 ± 3.94ab 5.00 ± 2.65a 3.40 ± 1.14a 3.00 32.87 ± 14.78a 

Means with the same letter are not significantly different at P = 0.05 Student’s t-LSD test. The asterisk (*) indicates that all female parasitoids 

were dead. 
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3.5.5 Emergence rate 

Emergence rates of the F2 generation parasitoids were significantly different (F6; 97 = 

3.72; P = 0.0023) (Table 3.3). The highest emergence rate was found on the Leano (88.95 

%) and Megaton (80.13 %) (Table 3.3).  

 

Table 3.3 Emergence rates (%) and female progeny per female from Cotesia vestalis 

mothers reared on hosts fed different cabbage cultivars. 

Cultivar % Emergence Number of female progeny 

Menzania 73.06 ± 12.85bc 9.13 ± 2.95a 

Empowa 75.62 ± 16.45bc 5.47 ± 3.02bc 

Leano 88.95 ± 13.38a 6.47 ± 1.41abc 

Megaton 80.13 ± 15.29ab 3.60 ± 2.20c 

Karabo 67.98 ± 13.02c 5.13 ± 2.77bc 

Hollywood F1 69.66 ± 17.25bc 7.40 ± 8.23ab 

Beverley Hills 67.82 ± 18.69c 9.07 ± 7.68a 

Means with the same letter are not significantly different at P = 0.05 Student’s t-LSD test. 

 

3.5.6 Female progeny production 

There number of female progeny produced per female parasitoid was significantly 

different (F6, 104 = 2.82; P = 0.0142) when hosts were reared on different cabbage cultivars 

(Table 3.3). Females that developed on Menzania, Beverly Hills and Hollywood F1 hosts 

produced more female progeny in their lifetime, whereas those developing on Megaton, 

Karabo, Empowa and Leano hosts produced the least female progeny (Table 3.3). 
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Table 3.4 Population increase parameters of F1 generation Cotesia vestalis when Plutella xylostella larvae were reared on seven different 

cultivars. 

Parameters Menzania Empowa Leano Megaton Karabo Hollywood F1 Beverly Hills 

R0 (Net reproductive rate) 7.87 5.09 5.80 3.28 4.49 6.70 8.29 

r (Intrinsic rate of increase) 0.58 0.44 0.47 0.20 0.42 0.48 0.62 

T (Mean generation time) 2.07 1.85 1.98 2.17 1.70 2.25 2.00 
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3.5.7 Population increase parameters 

The net reproductive rate of the parasitoid was higher on Beverly Hills (8.29) and 

Menzania (7.87), whereas it was lowest on Megaton (3.28) (Table 3.4). This is despite 

the similarity of the mean generation times of the parasitoids on the three cultivars (Table 

3.4). The intrinsic rate of increase of C. vestalis was much higher on Beverly Hills (0.62) 

and Menzania (0.58), and it was much lower on Megaton (0.20) (Table 3.4).  

 

3.6 Discussion 

The bottom-up effects of host plants on insect herbivores can have a significant 

influence on biological control of insect pests (Price, 1997; Bottrell et al., 1998; Cortesero 

et al., 2000). As parasitoids are important natural enemies of insect pests in many crop 

systems (Hawkins et al., 1999), a strong negative impact of a host plant on survival rates 

of a target herbivore may cause the latter to die before koinobiont parasitoid offspring can 

complete development (Schuler et al., 2003), which in turn may reduce availability of 

suitable hosts for these natural enemies. As koinobiont parasitoids kill their hosts after 

several days following parasitism, it is vital to plant crops with some level of resistance 

to the target herbivore (Brewer et al., 1999). However, the majority of studies in this 

regard have shown that cultivars that reduce consumption rate of herbivore larvae and 

thus increase their developmental time are ideally suited for integration with parasitoids 

than those that reduce survival rates of the pest (Verkerk et al., 1998; Groot and Dicke, 

2002). Recently, it was shown that developmental time of P. xylostella is longer when 

feeding on cabbage cultivars Empowa, Beverly Hills and Karabo (Nethononda et al., in 

press). While hosts feeding on these cultivars are likely to be exposed for longer period 

to parasitism, the influence of these cultivars on fitness of the parasitoid is as important 
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as parasitism rates to biological control. In this study, the developmental time of C. 

vestalis was longer on Empowa and Megaton, whereas parasitoids developing on hosts 

fed on Karabo and Leano developed faster. Although longer generation time of a 

parasitoid can lead to generational asynchrony between it and the host population 

(Godfray et al., 1994), the generation time of C. vestalis is shorter than that of P. xylostella 

on either cultivar (Nethononda et al., in press). While longer developmental time can 

increase vulnerability to hyperparasitism (Caron et al., 2008), there can be trade-off 

between developmental time and other fitness traits (Harvey, 2005). For example, a linear 

relationship between developmental time and adult body size has been observed in several 

species (Harvey, 2005). The longer developmental time of C. vestalis on Megaton 

resulted in heavier pupae, whereas shorter developmental time on Karabo yielded smaller 

pupae. However, there was no clear relationship between body size and longevity of the 

parasitoids on any cultivar.  

Parasitoids that do not host-feed as adults like C. vestalis, are entirely dependent on 

resources acquired during larval development for egg production. Thus, the quantity and 

quality of resources obtained during larval stage can greatly influence lifetime 

reproductive success (Heimpel and Rosenheim, 1998; Lebreton et al., 2009). The number 

of eggs available for oviposition among female C. vestalis can be used to measure 

variation in nutritional status of hosts fed on different cultivars. The fecundity of C. 

vestalis was highest on hosts fed on Menzania and Beverly Hills, and lowest for 

parasitoids that developed on Megaton hosts. Although parasitoid pupae from Megaton 

hosts were heavier, their fecundity was lower. As fecundity alone does not determine 

efficacy of a parasitoid in suppressing a pest population, instead the number of daughters 

produced per female is vital for maintenance of the critical ratio of the parasitoid to host 

density. In this study, C. vestalis that developed on Menzania and Beverly Hills produced 
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the most female progeny, whereas those that developed on Megaton hosts produced the 

least daughters. As a consequence, the intrinsic rate of increase of the parasitoid was 

highest on Beverly Hills and Menzania hosts, and least on Megaton hosts. These findings 

support the hypothesis that fitness of C. vestalis is higher on cabbage cultivars on which 

bottom-up effects are weak. 

In conclusion, the findings of this study suggest that fitness of C. vestalis and thus its 

performance is influenced by the cabbage cultivar on which P. xylostella developed. A 

lot more hosts were parasitized by C. vestalis females from Menzania and Beverly Hills 

hosts. These parasitoids did not only produce more offspring, but they also produced more 

daughters per females. As female offspring are only produced from fertilized eggs, the 

higher number of female progeny implies that the mothers carried more sperm. In 

addition, the intrinsic rate of increase of C. vestalis was higher when host larvae were fed 

on Menzania and Beverly Hills. When viewed in totality, these results suggest that 

cultivation of Menzania and Beverly Hills will sustain population density of C. vestalis 

at higher levels, which could result in P. xylostella pest population to be regulated at a 

low average density for longer periods during November – May in South Africa.  
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Chapter 4: General discussion  

 

Notwithstanding the efficiency of pest control tactics such as biological control 

(Sarfraz et al., 2005; Gichini et al., 2008; Nofemela, 2010), and trap cropping (Shelton 

and Badenes-Perez, 2006), in suppressing crop infestations by P. xylostella in some areas, 

it is increasingly being recognised that its effective management in many areas requires 

more than one tactic in what is termed integrated pest management (Furlong et al., 2013). 

Nowhere is this fact clearer than in tropical areas of South East Asia and Hawaii where 

P. xylostella develops resistance to insecticides within two years of application (Zhao et 

al., 2006; Furlong et al. 2013). In October 1998, the United States Department of 

Agriculture and Environmental Protection Agency issued a joint statement that for 

integrated pest management (IPM) to be effective practiced, a farm should have a 

management strategy for “prevention, avoidance, monitoring, and suppression” of pests. 

They went on further to say, to qualify as an IPM farm, the grower should have at least 3 

of these tactics in place. Prevention refers to removal of pest sources through tillage, crop 

rotation or crop–free periods. Avoidance makes reference plant resistance, release of 

natural enemies or use of trap crops. Monitoring refers to regular scouting of the crop to 

determine the need for another control tactic. Suppression comes in when prevention and 

avoidance strategies have failed, and it often refers to application of an insecticide. This 

four-pronged management strategy may have motivated the IPM definition of Ehler and 

Bottrell (2000) “A comprehensive approach to dealing with pests that strives to reduce 

pest status to tolerable levels through the use of methods that maximise economic 

benefits, are environmentally sound and sustainable.”  

While the term IPM is used widely in the P. xylostella literature, Nofemela (2013a) 

reported that nowhere in the world it is truly practiced, as monitoring of the densities of 
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the pest and its natural enemies are often not done. The potential of estimating P. 

xylostella infestations through monitoring densities of male moths in synthetic sex 

pheromone traps was demonstrated, and action threshold of 8.52 moths per trap per week 

equivalent to 1 immature P. xylostella per plant was established for South Africa 

(Nofemela, 2010). Furthermore, a method of estimating background parasitism levels 

based on ratios of C. vestalis pupae to P. xylostella infestations was developed in which 

20 % ratio is equivalent to 50 % parasitism level (Nofemela, 2013b). While the 

development of these methods for monitoring the pest and its natural enemy densities 

ought to have advanced integrated management of P. xylostella in South Africa in terms 

of insecticide applications, the lack of options besides biological control when it comes 

to the avoidance strategy has proven to be a stumbling block. For instance, the lower 

efficiency of the parasitoids during September and October enables the pest enter a 

population outbreak phase and cause serious economic damage on Brassica crops 

(Mosiane et al., 2003; Nofemela, 2010, Bopape et al. 2014). The only viable option was 

to apply insecticides on a weekly basis in order to protect crop yield. However, this 

practice has proven detrimental to parasitoid population growth (Furlong et al., 2008; 

Bommarco et al., 2011). Even the application of a selective insecticide (Bacillus 

thuringiensis variety kurstaki) was found to negatively influence parasitoid diversity 

(Bopape et al., 2014), which is essential for stability of biological control efficiency in 

the presence of hyperparasitoids (Nofemela, 2013c). Efforts to introduce Diadegma 

semiclausum (Hellén) (Hymenoptera: Ichneumonidae), a parasitoid that is efficient at 

cool temperatures in order to prevent the population outbreak of the pest during spring 

have failed, due to lower virulence of the parasitoid on the South African population of 

P. xylostella (R.S. Nofemela, personal communication). Chapter 2 clearly shows that 

cultivation of Megaton during late winter and spring can play a major role in restricting 
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the population growth of P. xylostella and generational number of eggs deposited on it. 

Thus, it hoped that this finding can help reduce frequency of insecticide applications 

during spring while achieving the goal of keeping the pest population density low. 

However, C. vestalis did not perform very well on Megaton, but on Menzania and Beverly 

Hills (Chapter 3). As parasitoid efficiency is higher during November–May each year 

(Nofemela, 2010; Bopape et al., 2014), the cultivation of Menzania and Beverley Hills 

cultivars during this period has a potential to enhance biological control. Thus, study has 

managed to bring in aspects related to bottom-up effects of host plants in relation to 

integrated management of P. xylostella for the first time in South Africa.  
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