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Summary

The emperical pseudopotential method in the large basis approach was used to calculate

the electronic bandstructures of bulk semiconductor materials and layered semiconductor

heterostructures. The crucial continuous atomic form factor potentials needed to carry out

such calculations were determined by using Levenberg-Marquardt optimization in order

to obtain optimal cubic spline interpolations of the potentials. The optimized potentials

were not constrained by any particular functional form (such as a linear combination of

Gaussians) and had better convergence properties for the optimization. It was demon-

strated that the results obtained in this work could potentially lead to better agreement

between calculated and empirically determined band gaps via optimization.
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Chapter 1

Introduction

1.1 Background

Semiconductor materials continue to play an important role in the advancement of techno-

logical applications and therefore research on the properties of semiconductor structures

has continued unabated. Historically in 1947, Bardeen and Brattain discovered the tran-

sistor effect while trying to understand the nature of the electrons at the interface between

a metal and semiconductor. In 1956 Bardeen, Brattain and Shockley were awarded the

Nobel Prize in physics, for research on semiconductors and their discovery of transistor

effect1. Similar research also provided insight into other quantum effects in semicon-

ductor materials; such as, tunneling phenomena in semiconductors (Nobel Price, 1973),

electronic structure of magnetic and disordered systems (Nobel Price, 1977), the quan-

tized Hall effect (Nobel Prize, 1985) and most recently graphene (Nobel Price, 2010)2.

Semiconductors like silicon and germanium have been the cornerstone of the semicon-

ductor industry since the early days, with silicon still being the key contributor in most

electronic devices. However, due to its indirect band gap, silicon is unsuitable for cer-

tain opto-electronic applications, and therefore there is a need to design new materials

to counter-act this short-fall [1]. Fortunately bandstructure theory, together with new

1See www.nobelprize.org/nobel prizes/physics/laureates/1956 (last accessed 24/02/2015)
2www.nobelprize.org/nobel prizes/physics/laureates (last accessed 24/02/2015)
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computational and experimental techniques, affords us the opportunity to investigate the

electronic structure of other materials which may also posses useful properties.

While early studies on semiconductors were based on bulk materials, resulting in the

discovery of very useful properties, workers could not help but imagine combining bulk

material to form so-called layered structures, or man-made materials. In the early 1970s

Esaki and Tsu [2] succeed in developing the first kind of such a structure in the form

of a superlattice. In their work they considered two experimental methods. In the first

method a periodic variation of donor and acceptor impurities, was implanted in a single

bulk semiconductor. In the second method they considered a periodic variation of alloy

composition, introduced during the crystal growth [2]. The word superlattices means a

periodic structure made of layers of two or more semiconductors deposited alternately

on each other along the growth direction [2]. Typically the layer thicknesses are on the

order of tens of nanometers, hence superlattices are also sometimes referred to nano-

structures. Superlattices are related to quantum wells, since they are both composed of

altinating layers of different semiconductor materials. They differ from quantum wells in

that the layer thickness in superlattices is usually smaller leading to the dominance in the

periodicity. In the case of quantum wells, the layers are usually thicker resulting in the

dominance of the bulk properties of the individual layers. This essential difference will be

elaborated upon in the next chapter.

1.2 Layout of dissertation

The layout of this dissertation is as follows. In the remainder of this chapter the rationale

and objectives, advantages, and limitations of the present study are discussed. Chapter

two provides a brief review of the relevant literature. In chapter three the main methods

used in this work are explained. Chapter four discusses how we determine continuous

atomic form factor potentials (CAFFPs) by using Levernberg-Marquardt optimization

algorithm (LMA) in conjunction with cubic spline interpolation. In chapter five we provide

the codes that were developed in this work, together with a description of how they work.

2



Chapter six presents our results and discussions of different bandstructures obtained.

A summary of the main results and an outlook for the future work is provided in the

concluding chapter.

1.3 Rationale and objectives

We consider the problem of calculating the electronic bandstructure of bulk semiconductor

and layered semiconductor materials, within the frame work of emperical pseudopotential

method and the large basis approach. The main focus of this work will be on obtaining

the continuous atomic form factor potentials that are required to calculate the electronic

bandstructure of superlattices and quantum wells. Electronic bandstructure is funda-

mentally important because it forms the foundation of any calculation of the transport

properties of semiconductors.

For bulk materials the emperical pseudopotential method (EPM) can be used to compute

the electronic bandstructure by knowing only the atomic form factors at discrete values of

the magnitude of the reciprocal lattice vector q = ||G−G′|| = 0,
√

3,
√

4,
√

8,
√

11, where

q has been expressed in units of 2π/a0, and a0 is the lattice constant of the bulk mate-

rial. However, in the case of layered structures, continuous atomic form factor potentials

(CAFFPs) are required.

In the past, several interpolation schemes have been used to approximate the CAFFPs,

V (q) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Zunger et al. [3, 10, 11, 12] made use of a single

Gaussian or a linear combination of four Gaussians to determine V (q), with the Gaussian

parameters fitted to reproduce certain key experimentally observed results, like the carrier

effective mass and energy band gaps that can be deduces from optical spectra. Fridel

et al. [6] fitted V (q) by including a hyperbolic tangent term which was mainly used

to truncate the pseudopotential at large q. Glembocki and Pollak [9], interpolated the

local form factor for Germanium by following an approach due to Bednarek and Rösseler

[13] in which they fitted to the Cohen and Bergstresser [14] form factors. Allen et al.

3



extrapolated V (q = 0) = −2EF/3, which is the values of the ‘Heine-Abarenkov-Animalu

model potential’ [15], with EF being the Fermi energy.

The purpose of the present work is to apply a least-square optimization technique, together

with the cubic-spline interpolation, to develop an alternative scheme for interpolating the

CAFFPs. Unlike previous work, which made use of linear combinations of Gaussian

functions to interpolate the form factors, here we make use of optimized piecewise cubic

spline interpolated atomic form factors which have better convergence properties than

the Gaussians. As we will discuss in chapter four, the more rapid convergence properties

of cubic spline is essential in order to perform the optimization calculation within a

reasonable amount of time.

1.4 Advantages and limitations of the present study

Since it makes use of relatively small number of empirically fitted parameters, such as

band gaps and effective masses, the emperical pseudopotential method (EPM) can be

an extremely efficient method for calculating accurate electronic bandstructures. The

EPM allows the form factor potentials to be adjusted in order to fit the experimental

results. The EPM is well suited to full-zone bandstructure calculations and has already

been widely applied in studies of semiconductors [1, 3, 4, 15, 16, 17]. However, the

EPM is strictly speaking only applicable in the case of a single electron Schrödinger’s

equation, it does not explicitly take into account many body effects. Another limitation

of this method is that the dimension N of the matrices that must be digonalized increases

linearly with the superlattice period, i.e. Nnz, where nz is the superlattice period in units

of the lattice constant a0. This effectively makes it only possible to treat systems with

layer thicknesses ∼ 102 Å. Wang and Zunger [18] dealt with this limitation by developing

the so-called ‘folded-spectrum method’, which allows calculations of eigenstates within a

desired energy window. Other computational techniques, such as parallization, can also

be employed to deal with the huge size of the matrices, if needed.

4



The existence of other theoretical frame works such as the k · p method [19, 20, 21] and

density functional theory [22] offers workers the opportunity to share and compare data.

These complementary approaches can also be used to probe the limitations of the EPM.

Although mostly used for calculations at the zone centre, i.e. Γ = 0, the k · p can also be

used over the full zone, provided a sufficient number of bands are included. Recently the

k · p method has been applied in studies involving layered semiconductors. Wang et al.

[23] used the k · p method to study the structure of abrupt (InAs)n/(GaSb)n superlattices.

Stier et al. [24] applied an 8-band k · p model to investigate the electronic and optical

properties of strained quantum dots. Botha and Singh [25] studied the interaction between

bulk and structural inversion asymmetry in the type-II quantum wells by employing a 14

band k · p model.

More recently Radhia et al. [26] extended the 15×15 k · p Hamiltonian derived by Car-

dona and Pollak [27], by adding spin-orbit coupling to the model; hence doubling the num-

ber of bands to give a 30×30 k · p Hamiltonian which they then employed to calculate the

bandstructure of several direct band-gap semiconductors (InAs, InP, InSb). A 40-band

k · p model was also used by Säıdi et al. [28] to fit the standard k · p band parameters at

Γ, X and L valley indirect-band gap bulk material for the Td group semiconductor. The

k · p method is not computationally expensive since the size of the Hamiltonian matrix,

which depends on the number of the bands used, is relatively small. One advantages of

the k · p approaches is that it rely on relatively small number of input parameters, such

as the momentum matrix elements and zone center band energies, which are precisely

known.

The inability of the EPM to accurately account for the many-electron effects prompted

the development of Density Functional Theory (DFT). A clear difference between DFT

and the EPM is that DFT is an ab-initio approach which does not make use of any

experimentally measured inputs. In the DFT approach an hypothesis on the geometric

structure of the system is all that is needed to build the Hamiltonian operator [29]. One

of the major draw-backs of DFT is the underestimation of the fundamental band gaps

in bandstructure calculations [30, 31, 32, 33, 34, 35, 36]. In a paper by Perdew [36] it is

argued that the underestimations of the gap in semiconductors and insulators is due to the

5



exchange correlation energy in the Kohn-Sham DFT. The need for an energy-depended

potential which lie beyond the Kohn-Sham formalism is emphasized [36].

Hybertsen and Louice [31, 32] produced good results which agree well with experimen-

tal data for the band gap, optical transitions, and the band dispersions for silicon and

diamond. Their theory is based on evaluation of
∑

(r, r′, E) to first oder in the dressed

Green’s function and the screened coulomb interaction: the GW approximation. The

failures of DFT are not the breakdowns of the theory itself but are due to the current

exchange-correlation functionals [35]. Godby et at. [33, 34] showed how the DFT exchange

correlation potential VXC(r) of a semiconductor is calculated from the self-energy operator∑
(r, r′, E), and how

∑
is obtained using the Green’s function and the screen coulomb

interaction (GW ) approximation. In their work Godby et al. [33, 34], achieved good agree-

ment with experimental data for Si, GaAs, AlAs and diamond. Recently Sun et al. [37]

implemented first-principles relativistic pseudopotential calculations within generalized

gradient approximation (GGA) to investigate the structural and electronic properties of

quaternary InAs/GaSb superlattices with an InSb or GaAs type of interface.

The results of the present cubic spline CAFFPs are compared to DFT in chapter six.

The k · p theory and the DFT is not the focus of this work. The literature on these two

theories is merely included to providing some insight into the limitations of the EPM .

Of course, both the k · p and DFT also have their own limitations. In the next chapter

we include a brief review of the later two techniques. Although they are not used in this

work, both the k · p method and DFT have been used successfully for many years in

studies of semiconductors and it is therefore worth being familiar with these two related

techniques.
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Chapter 2

Review of Layered Semiconductor

Structures, the Empirical

Pseudopotential and Related

Methods

In band theory it is essential to have an accurate knowledge of what happens near top of

the valence band and near the bottom of the conduction band for different semiconductor

structure. It is within this range of energies, that most properties of semiconductor mate-

rials can be experimentally determined. For example, knowledge of the fundamental band

gap, which is the energy gap between the lowest conduction band and the highest valence

band, can provide understanding of many electronic properties of semiconductors. There

are many theoretical techniques that can be used to calculate the electronic structure

of semiconductor materials. These techniques can be divided into two categories. The

first category consist of emperical methods [1, 3, 4, 14, 15, 16, 17]. The second category

consist of ab initio methods, such as Density Functional Theory (DFT) [38, 39, 40, 22],

such methods are very useful, but are not the focus of this work. In this chapter we will

provide a brief introduction to layered semiconductor structures in general, as well as the

most important techniques for calculating their electronic bandstructures.

7



2.1 A review of layered structures and their applica-

tions

The focus of this work is on bandstructure calculations for layered semiconductor struc-

tures, i.e. superlattices and quantum wells. These structures are also called two dimen-

sional systems, because the quantum confinement of the carriers occurs in one dimension

only thus leaving two degrees of freedom. Quantum wires and quantum dots on the other

hand are referred to as one-dimensional and zero-dimensional systems respectively, for

the same reason. Figure 2.1 displays three different types of superlattices, classified in

terms of their band alignment. In type-I superlattices the narrower band gap of one ma-

terial falls entirely within that of the wider band gap material. This is sometimes called

a straddled band gap alignment. Type-II have a staggered band gap alignment, and in

type III the band alignment is completely offset (mixed).

Eg

Ec

Ev

Ec

Ev

(a) (b) (c)

Eg

Figure 2.1: Classification of heterostructures according to band alignment: (a) straddled,

(b) staggered, (c) mixed. EC is the conduction band, EV is the valence band and Eg is

the band gap or energy gap.

There are two main growth techniques which are used to manufacture superlattices; molec-

ular beam epitaxy and Metal organic vapor deposition [41]. Superlattices still have a wide

range of potential applications such as long-wave optical sources, signal processing devices

and mid-infrared detectors, therefore there is always a need to continue research in this

field. In recent times a large amount of research has been done on all types of superlattices
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and many applications exist. This research is primarily prompted by their opto-electronic

transport properties. InAs and GaSb are direct band gap materials and combining these

two semiconductors can offer many interesting properties which can be directly applicable

in our every day lives. For short lattice periods the InAs/GaSb superlattices, and with a

deliberate addition of strain these superlattices exhibit interesting properties which might

be of great use in the development of the infrared detectors which have got a relevant

application mostly in the military [42, 43, 44]. Third generation infrared photon detec-

tors provide too advanced capabilities like better resolution, high pixels and multicolor

functionality [43]. It has been discovered that the type-II superlattice can also provide

an alternative to the photo-diodes, and also provide a solution to the long wave infrared

region, since mercury cadmium telluride (HgCdTe) fail to give the requirements of large

format two-dimensional arrays due to the problems of epitaxial layers such as uniformity

and number of defective elements [43].

Yao [45] studied the thermal properties of semiconductor superlattices for the first time. In

his work he measured the thermal diffusivity and thermal conductivity of the AlAs/GaAs

superlattices. Yao [45] found that the thermal diffusivity and thermal conductivity de-

creases with a decrease in superlattice period. Sai-Halasz et al. [46] showed that under

certain conditions like layer thickness, superlattices have a tendency of changing from

semiconductor to semi-metal and also to metal. Superlattices consisting of alternating

layers of extremely thin films often demonstrate strong quantum size effects that have been

utilized to improve conventional devices and develop new ones [47]. Indeed superlattices

have a wide range of applications and therefore research in semiconductor superlattices

needs to be continued. In this work we study the AlAs/GaAs superlattices by making

use of the emperical pseudopotential method (EPM) in the large basis approach.
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2.2 A brief review of the emperical pseudopotential

method applied to superlattice structure

The empirical methods are methods which make use of experimentally fitted parameters

such as the band gap, lattice constant etc. In these kinds of approaches the electronic

structure of the constituent materials is assumed to be understood and to be described

by a parameterized bulk model [48]. The parameters of the bulk model are assumed not

to change when the constituent materials are combined to form a superlattices [48]. The

method adopted in this work is the one which makes use of empirically fitted parameters.

Almost a decade after Eskai and Tsu [2] developed the first superlattice, Caruthers and

Lin-Chun [49, 50] reported for the first time the application the emperical pseudopotential

method to superlattice heterostructures. In their work they calculated the electronic

structure of the GaAs-Ga1−xAlxAs repeated mono-layer heterostructure. Andreoni and

Car [51] made use of the pseudopotential method to calculate the energy band structure

of the (GaAs)n/(AlAs)m. The strength and the reliability of the EPM for electronic

structure calculations of different heterostructures has been shown over the years. In

the early 1990’s Gell applied the EPM to calculate the valence-band effective masses in

strained Si/Ge semiconductor structure by taking in to account the effect of the spin orbit

couplings.

The effects of the spin orbit couplings in electronic structure calculations is well explained

in a paper by Dresselhaus [52]. Mäder and Zunger [3] applied the EPM to a large scale elec-

tronic structure calculations by investigating the AlAs/GaAs superlattices. Subsequently

Chen et al. [53] made use of the EPM to calculate the band structure of a coherently

strained Si layer on GaAs. We make use of the empirical pseudopotential method (EPM)

in the large basis approach to calculate the bandstructure of layered semiconductors. This

method is explained in detail in chapter three.
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2.3 A brief review of the multiband k · p method

The method was developed by Kane [19, 20] in the early days of semiconductor physics

and since its introduction this method has been frequently used in the study of electronic

properties of semiconductor structures. The k · p method can be used to find analytic

expressions for band dispersion and effective masses. In most cases the k · p method is

usually used to describe the band structure close to the zone center i.e. at k = 0 but it

can also be used over a full zone provided a large enough basis is used.

This method is sometimes referred to as the multiband envelope function or the multiband

effective mass method. This is because of the fact that Hamiltonian which describe

system are matrices, or systems of coupled Schrödingers equation, which gives the possible

energies and wave functions expressed as a set of envelope functions [54]. The Hamiltonian

is named after the number of bands that are explicitly included i.e. their wave functions

are explicitly evaluated. The 4 and 6 band Hamiltonians for the valence envelope wave

function were reported by Luttinger and Kohn [55]. Almost a decade later the 8-band

model that included the conduction band was developed by Pidgeon and Brown [56]. Due

to the fact that the model can use a relatively small number of bands, it can be consider

as a simple but yet effective model.

In recent times this method has been used in the studies involving zincblende and layered

semiconductor structures. The method has played an important role in providing the

much needed theoretical insight responsible for the development of technology based on

zincblende and layered semiconductor devices during the 1980’s and 1990’s [23, 57, 58].

For more details on this approach one can see Refs. [1, 19, 20, 59]

2.4 A brief review of density functional theory

The fundamental principle on which the Density Functional Theory is build upon is that

any property of a system of many interacting particles can be viewed as a functional of
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the ground state density ρ(r0) .i.e. one scalar function of a position n(r), in principle

determines all the information in the many body wavefunction for the ground state and

all the exited states [60].

Thomas and Fermi first proposed the original density functional theory of quantum system

in what is known as the Thomas-Fermi model [60]. In their method, they treated the

kinetic energy of the system of electrons as an approximated explicit functional of of the

density, idealized as non-interacting electrons in a homogeneous gas with the density equal

to the local density at any given point. The limitations in the Thomas-Fermi model is

due to the fact the exchange and the correlation amongst the electrons is not taken into

account and this leads to the model not providing accurate desired results. While it is

true that the Thomas-Fermi model does not give good enough results for the modern day

calculation it has however laid proper foundation for improvements to be made [60], and

indeed it was Dirac [39] who first made the much needed improvements by formulating

the local approximations for the exchange and correlations.

The modern density functional theory formulation is due to Hohenberg and Kohn [40] who

showed that a special role can be assigned to the density of particles in the ground state

of a quantum many-body system i.e. all the properties of the system can be considered

as to be unique functionals of the ground state density. In the following year in the paper

by Kohn and Sham [22] major improvements on density functional theory were reported.

The Kohn-Sham approach has led to very important approximations which provide the

basis of most calculations which attempts to make the first principle or the ab initio

predictions for the properties of condensed matter and molecular systems [60].

In the Kohn-Sham approach the original many-body problem is replaced with an inde-

pendent electron problem that is easily solvable [60]. The Kohn-Sharm ansatz and its

impact on the formulation and the calculations on density functional theory is well dis-

cussed in Ref. [60] and so here we will just give a brief discussion on that. Reliable and

accurate results for wide bands semiconductor materials such as the group IV and II-V

semiconductor materials can be obtained through the use of the local density approxima-

tion (LDA) and the generalized gradient approximation (GGA) [36]. The formulation of
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the density functional theory is not considered a priority in this work since in any case

it beyond the scope of our work, however interested readers are referred to Ref. [60] for

more details on this method.
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Chapter 3

The Empirical Pseudopotential

Method

3.1 Introduction

This chapter provides a more detailed explanation of the emperical pseudopotential method

(EPM), which is one of the main methods used in this dissertation. The material covered

here follows closely that which is found in Refs. [15, 16, 54] The EPM method was devel-

oped in the early days of semiconductor physics and was originally introduced by Phillips

and Kleinman [61, 62, 63] between the years 1958 and 1960. Since its introduction the

EPM has become an important tool for electronic bandstructure studies of solids and for

understanding the behavior of electrons in a crystal. In 1966 Cohen and Bergstresser [14]

extended the model to include zinc blende semiconductors. Bloom and Bergstresser [64]

went on to include the effects of spin-orbit coupling in their full-zone band structure cal-

culations for α-Sn, InSb and CdTe. Their work was based on a modified model proposed

by Weisz [65]. Based on the work by Bloom and Bergstresser [64], Walter and Cohen

[66] calculated the bandstructures for ZnTe and ZnSe, including for the first time the

spin-orbit interactions.
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The aforementioned studies were all based on a simplified “local” approximation of the

core potentials. However, later it was demonstrated through the X-ray Photoelectrons

Spectroscopy (XPS) and Ultraviolet Photoelectrons Spectroscopy (UPS) data that lo-

cal empirical pseudopotential calculations yielded incorrect values for the valence bands

widths. The non-local EPM with spin-orbit coupling was developed by Chelikowsky

and Cohen [17] and applied in their calculations of the full band structure for 11 zinc

blende and diamond semiconductor structures. Their work produced excellent results

which agreed well with the available experiments. The resulting bandstrucures obtained

in Ref. [17] are still widely used and published in reference books, such as the well known

Landolt-Börnstein tables [67]. Chelikowsky and Cohen [17] conducted a study of 11 di-

amond and zinc blende semiconductor structures, which included all of the materials

studied previously. Following on these results the EPM has been extensively used by

many groups [5, 6, 68, 69, 70, 71] to calculate the electronic band structure of relaxed or

strained group-IV and III-V bulk semiconductor where the continuous atomic pseudopo-

tential form factor V (q) is a requirement [15]. The atomic form factor is the measure of

the amplitude of the out going spherical wave relative to the outgoing plane wave.

The major advantage of the EPM is that while it requires only few adjustable parameters

the bandstructure calculations can be done for a full k space representation. This allows

comparison between the experimental data and theoretical data to be compared at high

symmetry points along the k space such as theX,Γ, and L points. One disadvantage of the

EPM is that it can be computationally expensive, particularly in large basis approaches.

While the issue of memory allocation for storing a large Hamiltonian matrix is no longer

a problem, thanks to modern technology, the issue filling and solving a large Hamiltonian

matrix still remain. In the large basis approach the order of the Hamiltonian matrix

increases linearly with the superlattice period .

3.2 Principles and approximations

To calculate the electronic structure of semiconductors we need to solve the Hamiltonian

representing a complete crystal. Such a Hamiltonian H consist of the kinetic energies of
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electrons and the cores, the core-core, electron-electron, and the electron-core Coulomb

interactions and relativistic effects [16]. Thus H can be written as [54]

H = Helectrons +Hnuclei +Helectrons−nuclei, (3.1)

where

Helectron =
∑
µ

(
− h̄2

2m0

∇2
µ +

∑
λ<ν

e2

|rλ − rµ|

)
, (3.2)

rµ are the positions of the electrons, and mo is the rest mass of the electron mass. The

Hamiltonian due to the interaction of the nuclei is given by,

Hnuclie =
∑
ν

(
h̄2

2Mnu

∇2
ν +

∑
λ<ν

ZλZνe
2

|Rλ −Rν |

)
(3.3)

where Rν are the positions of the nuclei, Zν are the atomic numbers and Mν are the

masses of the nuclei [54]. The Hamiltonian representing the interactions between the

electrons and the nuclei is,

Helectron−nuclie = −
∑
µ,ν

Zνe
2

|Rν − rν |
. (3.4)

Taking into account that in a typical microscopic sample of a semiconducting crystal,

there are a lot of nuclei, and correspondingly a lot of electrons, solving a Hamiltonian

of such a system becomes a difficult problem. We therefore need to make assumptions

and approximations in order to reduce the Hamiltonian (3.1) into a more manageable

form. For the purpose of this work we just make assumptions without proves. By as-

suming that the electrons below the outer shell are tightly bound to the nucleus thus

the atoms can be treated as separate entities and hence the number of particles is re-

duced [54]. The adiabatic (or Born-Oppenheimer approximation) assumes that electrons

behaves adiabatically in the cores (i.e change in the coordinates of a nucleus passes no

energy to the electrons, this then allows the decoupling of motions of the nuclei and the

electrons [54]. The independent electron approximation removes the complications of the

electron-electron interaction and replaces them with an average potential [54]. The mean

field approximations considers only one at the time and assumes that each electron moves

in the average field created by all the other electrons [15]. By making use of all these

assumptions and approximations Eq. (3.1) reduces to a more manageable form:

H ≈ h̄2

2mo

∇2 + Vc. (3.5)
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Equation (3.5) is the Hamiltonian for an electron of rest mass m0, travelling in an effec-

tive crystal potential Vc. This crystal potential represents not only interaction between

electrons and nuclei of atoms that constitute the lattice, but also the interaction between

the electrons them selves.

3.3 Electronic bandstructure calculations

The objective of band theory for any model of a semiconductor material, is to determine

the relationship between the energy E, and the crystal wave vector k. Bandstructure

calculations are usually the first step in determining many of the microscopic properties

of semiconductors. In calculating the bandstructure, we may start by determining the

crystal potential Vc and then finding the solution of the Schrödinger’s equation

Hψn,k = En,kψn,k. (3.6)

Since the crystal potential is periodic throughout, we employ the idea of Bloch, and

expand the wave function ψn,r in Eq. (3.6) in terms of a complete orthonormal set of

plane so that,

uG,k =
1√
Ω
ei(G+k)·r (3.7)

and then

ψn,k(r) =
∑
G

an,k(G)uG,k (3.8)

and therefore

ψn,k(r) =
1√
Ω

∑
G

an,k(G)ei(G+k)·r. (3.9)

Where ψn,k(r) is the wave vector, Ω is the total volume, G is reciprocal lattice vector and

k is the electron momentum. Taking R to be the bravais lattice vector from Eq. (3.8) we

have,

ψn,k(r + R) =
1√
Ω

∑
G

an,k(G)ei(G+k)·(r+R) (3.10)
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which gives

ψn,k(r + R) =
1√
Ω

∑
G

an,k(G)ei(G+k)·Rei(G+k)·r (3.11)

and therefore

ψn,k(r + R) = eik·R
1√
Ω

∑
G

an,k(G)eiG·Rei(G+k)·r (3.12)

which yield the Bloch’s theorem

ψn,k(r + R) = eik·Rψn,k(r). (3.13)

which is true provided that a set of wave vectors G can be found for the original expan-

sion, which satisfy:

G ·R = 2πn, n ∈ Z. (3.14)

Equation (3.14) is a set of vectors called reciprocal lattice vectors which describe the

periodicity of the lattice. This set of vectors is indeed necessary for the implementation of

the Bloch’s Theorem and we proceed further to deduce the results. From the Schrödinger’s

equation Eq. (3.6) and the expansion of ψ Eq. (3.7) yields,

H
∑
G

an,k(G)uG,k = En,k
∑
G

an,k(G)uG,k. (3.15)

By multiplying Eq. (3.15) from left to right by a plane wave u∗G,k and integrating over all

space we get, ∑
G

an,k(G)

∫
u∗G,kHuG,kdτ =

∑
G

an,k(G)En,,k

∫
u∗G,kuG,kdτ (3.16)

if we apply orthonomality property which states,∫
u∗G′,kuG,kdτ = δG′,G (3.17)

and writing

HG′,G =

∫
u∗G′,kHuG′,kδG′,G (3.18)

then Eq. (3.16) reduces to∑
G

an,k(G)HG′,G =
∑
G

an,k(G)En,kδG′,G. (3.19)
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This equation is possible for each value of the electron wave vector k. From the one

electron Hamiltonian Eq. (3.5) and Eq. (3.7) and also Eq. (3.18) the Hamiltonian can

be expressed as,

HG′,G =
1

Ω

∫
e−i(G

′+k)·r
(
− h̄2

2m0

∇2

)
ei(G+k)·rdτ

+
1

Ω

∫
e−i(G

′+k)·rVce
i(G+k)·rdτ. (3.20)

Therefore

HG′,G =
h̄2

2m0Ω

∫
|G + k|2ei(G−G′)·rdτ

+
1

Ω

∫
e−i(G

′+k)·rVce
i(G+k)·rdτ. (3.21)

The first integral (over all space) of Eq. (3.20) has a value only if

G’ = G, in which case it is equal to the normalization volume Ω introduced before. By

making use of the Kronecker delta, Eq. (3.21) can be written as,

HG,G′ =
h̄2

2m0

|G + k|2δG,G′ + V (3.22)

where V is the potential given by,

V =
1

Ω

∫
e−i(G

′+k)·rVce
i(G+k)·rdτ. (3.23)

Remembering that the aim of this work is to be able to calculate microscopic properties of

a crystal the potential V is defined such that is depended on some yet undefined potential

Vc located at every atomic site ra given by

Vc =
∑
ra

Va(r− ra). (3.24)

From Eq.(3.24) and Eq. (3.23) V can be written as

V =
1

Ω

∫
e−i(G

′+k)·r
∑
ra

Va(r− ra)e
i(G+k)·rdτ (3.25)

Therefore

V =
1

Ω

∑
ra

∫
Va(r− ra)e

−i(G−G′)·rdτ. (3.26)

As the origin for the summation over the atoms is undefined, then it is possible, and

mathematically convenient to perform the transformation r→ r+ra, then we obtain [54].

V =
1

Ω

∑
r

∫
Va(ra)e

i(G−G′)·(r+ra)dτ. (3.27)
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and therefore

V =
1

Ω

∑
ra

ei(G−G
′)·ra

∫
Va(ra)e

i(G−G′)·rdτ. (3.28)

Where the term
∑

ra
ei(G−G

′)·ra is known as the geometric structure factor S. Since the

atomic sites within the crystal are constructed from the Bravais lattice plus the basis,

then the sum over the atomic sites can be replaced with two separate summations, i.e

one over the Bravais lattice points and the other one over the points in each basis such

that [54],

S =
∑
R

∑
t

ei(G−G
′)·(R+t) (3.29)

where R is a Bravais lattice vector and t is a basis vector. Hence

S =
∑
R

ei(G−G
′)·R
∑
t

ei(G−G
′)·t (3.30)

The scalar product of a Bravais lattice vector with a reciprocal lattice vector is just an

integral number of 2π [54], i.e.

G′′ ·R = 2πn, n ∈ Z. (3.31)

Therefore, ei(G−G
′)·R = 1, and hence for N Bravais lattice points in the crystal we have [54],

S = N
∑
t

ei(G−G
′)·t. (3.32)

In a case of a compound structure e.g GaAs with an atom basis having a face centered

Bravais lattice the atoms are positioned in a manner such that t = ±T, where,

T =
A0

8
(̂i+ ĵ + k̂). (3.33)

Because the nature of the material is such that it contains two different types of atoms

i.e. Ga and As, the summation for the structure factor in Eq. (3.29) becomes:

S = N [ei(G−G
′)·T + e−i(G−G

′)·T]. (3.34)

Then from Eq. (3.34) it is easy to notice that

S = N [cos(G−G′) ·T + i sin(G−G′) ·T

+ cos(G−G′) ·T− i sin(G−G′) ·T] (3.35)
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and therefore

S = 2N cos(G−G′) ·T. (3.36)

The geometric structure factor potential in Eq. (3.25) can be re-written using Eq. (3.34)

as

V =
2N

Ω
cos(G−G′)·T

∫
Va(r)ei(G−G

′·r)dτ (3.37)

For face centered crystal structure the primitive cube of side A0 (lattice constant) contains

four Bravais lattice (i.e eight atoms), and hence,

Ωc =
A3

0

4
. (3.38)

Also re-witting G′ −G as the vector q, then

V =
2

Ωc

cos(q ·T)

∫
Va(r)e−iq·rdτ (3.39)

and now from Eq. (3.39) the factor

1

Ωc

∫
Va(r)e−iq·rdτ = Vf (q) (3.40)

is the Fourier transform of the undefined atomic potential Va and can be labelled conve-

niently as Vf (q) where q = |q| and this term is known as the atomic form factor potential

[14]. The form factor represent many microscopic properties of a crystal. For diamond

structure crystal such as Si, the atomic form factor potential V (q) would include the

1s22s22p6 electrons [54]. The remaining four valence electrons, which in an isolated, Si

atom are found in the 3s and 3p orbital, are the subject of the investigation and it is

their energy levels and charge distribution which determine the electronic properties of

the crystal [54]. The atomic form factor potential V (q) is a discrete function, only hav-

ing non-zero values for a particular value of q [54]. V (q) has only three non-zero values,

which occurs for q =
√

3,
√

8 and
√

11. In the case of a compound semiconductor with

two different atoms (with the cation at −T), and the anion at T, where T is given in Eq.

(3.33) we see that,

V =
N

Ω

∑
t

ei(G−G
′)·t
∫
Va(r)ei(G−G

′)·rdτ (3.41)

where N is just the number of different atoms. Summing over the two basis positions i.e.
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−T and at T we have

V =
N

Ω
e−i(G−G

′)·T
∫
V cat
a (r)ei(G−G

′)·rdτ

+
N

Ω
e−i(G−G

′)·T
∫
V an
a (r)ei(G−G

′)·rdτ . (3.42)

Remembering that N/Ω = 1/Ωc, and also that the fact that q = G′−G, then we obtain,

V = e−i(G−G
′)·T 1

Ωc

∫
V cat
a (r)e−i(q·r)dτ + ei(G−G

′)·T 1

Ωc

∫
V an
a (r)e−i(q·r)dτ (3.43)

From Eq. (3.40) the pseudopotential form factor for the anion and the cation can be seen

as,

Vf (q) =
1

Ωc

∫
V an
a (r)e−i(q·r)dτ (3.44)

and

Vf (q) =
1

Ωc

∫
V cat
a (r)e−i(q·r)dτ (3.45)

respectively and therefore it follows that

V = V cat
f (q)e−(G−G

′)·T + V an
f (q)e(G−G

′)·T (3.46)

Equation (3.44) can be manipulated easily by making use of trigonometric facts such as,

sinx =
eix − e−ix

2i

cosx =
eix + e−ix

2

to give

V =[V an
f (q) + V cat

f (q)] cos(G−G′·)T

+ [V an
f (q)− V cat

f (q)] sin(G−G′·)T. (3.47)

Often the sum i.e. [V an
f (q) + V cat

f (q)] and the difference i.e.[V an
f (q) − V cat

f (q)] of the

pseudopotential form factors is labeled symmetric and anti-symmetric form factors .i.e.

V S
f and V A

f respectively. Then Eq. (3.44) can be written as

V = V S
f (q) cos(G−G′·)T + iV A

f (q) sin(G−G′·)T (3.48)

Substituting Eq. (3.48) into Eq. (3.23) we get the Hamiltonian matrix for all the elements

of the matrix given by,

HG,G′ =
h̄2

2m0

|G + k|2δG,G′ + V S
f (q) cos(G−G′) ·T

+ iV A
f (f) sin(G−G′)·T (3.49)
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The atomic form factor potential Vf (q) are parameter that can be obtained by fitting to

experimental data. For the superlattices calculations the emperical pseudopotential form

factor are represented by a continuous curve. For our calculations we develop a continuous

form factor potential by making use of Levenberg-Marquardt algorithm together with the

cubic spline interpolation. This will be explained in details in the chapter Four.

3.4 Extension of the empirical pseudopotential method

to layered structures: the Large basis approach

In this chapter the extension of the pseudopotential method to large basis approximation

is explained. The generalization of the EPM is needed in the case of calculating the

electronic structure of layered structures such as superlattices quantum wells,quantum

wires and quantum dots. From the expression for the crystal potential which is given by,

V =
1

Ω

∑
ra

ei(G−G
′)·ra

∫
Va(r)ei(G−G

′)·rdτ (3.50)

Once again expressing q = G−G′ we get,

V =
Ωc

Ω

∑
ra

e−iq·ra
1

Ωc

∫
Va(r)e−q·rdτ (3.51)

where Ωc is the volume of the primitive cell. The normalized integral of the atomic

potential Va(r) is still the pseudopotential form factor, although now it is acknowledged

that the generalization may allow for many atom types at, as yet, unspecified positions

and so it is important to write [54]:

1

Ωc

∫
Va(r)e−iq·rdτ as V ra

f (q) (3.52)

therefore the emperical pseudopotential form factor of the atom at position ra is:

V =
Ωc

Ω

∑
ra

e−iq·raV ra
f (q). (3.53)

where q in V ra
f (q) is the magnitude of the difference of the lattice vectors i.e. q = ||G−G||.

Just as in the case of the bulk semiconductor, the atomic positions can be written as a
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sum of the Bravais lattice vector and a basis vector such that,

ra = R + t (3.54)

and thus it follows from Eq. (3.54) and Eq. (3.53) that,

V =
Ωc

Ω

∑
R

e−iq·R
∑
t

e−iq·tV ra
f (q) (3.55)

Once again the scalar product of the reciprocal lattice vector, q = G−G′, with Bravais

lattice vector, R, will be equal to the integral multiple of 2π, and hence eiq·R = 1 and

if there are N of these new generalized bases in the total volume of the crystal, then we

have,

V =
ΩcN

Ω

∑
t

e−iq·tV ra
f (q) (3.56)

If we let Ωb to be the total volume of the crystal Ω divided by the number of the new

general Bravais lattice points N , the volume occupied by its primitive cell would be:

V =
Ωc

Ωb

∑
t

e−iq·tV ra
f (q) (3.57)

In the case of the diamond or zinc blende crystal structure with two atom basis the volume

of the primitive cell Ωc is the volume occupied by two atoms. In general the basis with

Na atoms the volume occupied by its primitive cell would be,

Ωb =
Na

2
Ωc (3.58)

and therefore the expression for the crystal potential will be,

V =
2

Na

∑
t

e−iq·tV ra
f (q) (3.59)

so that the equation for the Hamiltonian matrix elements is

HG,G′ =
h̄2

2m0

|G + k|2δG,G′ +
2

Na

∑
t

e−iq·tV ra
f (q) (3.60)

Equation (3.60) is the generalized equation for the Hamiltonian matrix elements. By

making certain choices of the basis and the primitive cell, Eq. (3.60) can be used to

calculate the electronic structure of heterostructures of all dimensions, i.e. quantum

wells, wires, and dots [54].
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3.5 Inclusion of spin-orbit coupling

In band theory, the spin orbit interactions are responsible for the splitting of the degener-

ate energies. For most semiconductor materials the splitting occur on the valence bands

near the zone center i.e. Γ = 0. In developing the spin-dependent solution the basis set

must contain spin-dependent (s or s′) terms, and therefore the matrix elements of the

Hamiltonian given in Eq. (3.18) which is expressed as,

HG′,G =

∫
u∗G′,kHuG,kdτ (3.61)

can be written out as

HG′,s′,(G,s) =

∫
u∗G′,k,s′HuG,k,sdτ (3.62)

In the large basis approach the spin-orbit coupling potential VSO is the sum over the

contributions from all the Na atoms within the basis, and in the analogy of the crystal

potential Eq. (3.59) is,

VSO =
1

Na

∑
t

eiq·t[−iλra(G′ + k)× (G + k·)σs′,s] (3.63)

where once again q = G′ −G. and λra is a parameter quantifying the magnitude of the

interaction [54]. the superscript ra indicates that λ is depended upon the atomic species

at all the basis sites within the unit cell [54]. The entity σs′,s = 〈s′|σ|s〉 where:

σ = σ1̂i + σ2̂j + σ3k̂ (3.64)

where σ1, σ2 and σ3 are the Pauli spin matrices which are given by,

σ1 =

 0 1

1 0

σ2 =

 0 −i

i 0

σ3 =

 1 0

0 −1

 (3.65)

and thus,

σ =

 k̂ î− îj

î + îj −k̂

 (3.66)

25



3.6 Inclusion of other effects

The spin orbit couplings are not the only effects which can be taken into account when

calculating the electronic structure of semiconductor materials. The many body effects

and non-local effects can also be included for electronic structure calculations. To date

there is no literature that suggest that the many body effects can be included successfully

in the frame work of the emperical pseudopotential method, However, these effects can

be included in the multiband k · p [72], and the density functional theory [38, 60].

The local pseudopotential approximation has provided sufficient explanation to the opti-

cal data available for semiconductor compounds, however, there are some discrepancies in

the results of the local pseudopotential approximation when compared to experiment [17].

The results of the local pseudopotential calculations when compared to the valence bands

of high-resolution photoemission results, i.e., x-ray photoemission spectroscopy [73, 74],

ultraviolet photo emission spectroscopy [75, 76] reveal that the local EPM calculations

obtain incorrect valence bands width, in the majority of cases [17]. Band topologies and

optical critical point symmetries calculated by a local pseudopotential for Ge and GaAs

have been found to be in error [77]. In addition to this other one-electron approaches

(which correspond to energy dependent nonlocal pseudopotentials) produced more accu-

rate results for the valence bands than the local EPM approach [74].

These discrepancies led to suspicions that a purely local pseudopotential technique could

not produce satisfactory results, thus a refined nonlocal pseudopotential calculations

should be performed to supplement and extend on the earlier local EPM calculations

[17]. In Refs. [15, 17, 78, 79, 80, 81] the inclusion of the nonlocal effects in the pseudopo-

tential method is described. Chelikowsky and Cohen [79] calculated the bandstructure of

GaAs by employing a nonlocal pseudopotential, in their calculation they also included the

spin-orbit coupling, excellent agreement with electroreflectance was achieved. Kim [15]

investigated the electronic bandstructure of various crystal orientations of relaxed and

strained bulk, 1D and 2D confined semiconductors using nonlocal empirical pseudopoten-

tial method with spin-orbit interaction. Brust [80] examined the electronic structure of

three group-IV elements using a nonlocal pseudopotential.
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Several effects can be included within the frame work of the emperical pseudopotential

method. The inclusion of other effects is mainly to produce results which can be compara-

ble to experiments. In this work we only consider the inclusion of the spin-orbit coupling

in our calculations.
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Chapter 4

Levenberg-Marquardt Optimization

Applied to Cubic Spline

Interpolation

4.1 Introduction

In this Chapter we introduce the Levenberg-Marquardt (least squares) optimization tech-

nique and show how it may be applied to fit a piece wise cubic spline interpolation to an

arbitrary function. In particular we will demonstrate the accession made at the start of

this thesis about more rapid convergence properties of the cubic spline interpolation com-

pared to a linear combination of Gaussian functions. We begin with a brief description

of the Levenberg-Marquardt algorithm (LMA).

4.2 Levenberg-Marquardt optimization

The Levenberg-Marquardt algorithm is the most widely used technique applicable in

solving the nonlinear least- square problems. The LMA is mostly used to provide a
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solution to the problem of non-linear least squares by way of minimization. The least

square problem come about when fitting function to a set of data point by minimizing

the the sum of the squares of the errors between the data points and the function [82].

The LMA is actually a combination of two minimization methods i.e. the gradient-decent

method and the Gauss-Newton method. The LMA acts more like the gradient decent

method when the parameters are far from their optimal value, and acts more like the

Gauss-Newton method when the parameters are closer to their optimal value [82].

Over the years LMA has become a standard tool for solving nonlinear optimization prob-

lems in a wide variety of fields. The popularity of the method stems from the fact that

it significantly outperforms gradient descent and conjugate gradient methods in the op-

timization of medium sized nonlinear models [83]. Consider the problem of fitting a

function ỹ = g (x̃,α) to a set of m given data points (xk, yk), k = 1, 2, . . . ,m. Here x̃

is an independent variable and α = (α1, α2, . . . αn) is a vector of the system parameters,

with n < m. To solve this problem it is convenient to minimize the sum of the weighted

squares of the errors (or weighted residuals) between the measured data and the fitted

function, i.e. to minimize the quantity [82]

χ2 (α) =
1

2

m∑
k=1

(
y (xk)− ỹ (xk,α)

wk

)2

=
1

2
yTWy − yTWỹ +

1

2
ỹTWỹ. (4.1)

In Eq. (4.1) the m×m weighting matrix W is diagonal, with Wkk = 1/w2
k. Traditionally

there are two methods to obtain the minimum: the gradient descent (or steepest descent)

and Gauss-Newton methods [84]. According to the gradient descent method the pertur-

bation hgd that moves the parameters in the direction of steepest descent towards the

minimum is given by

hgd = βJTW (y − ỹ) , (4.2)

where J is the Jacobian matrix of the function g, and β is a positive scalar that deter-

mines the the length of the step. According to the Gauss-Newton method the required

perturbation is given by hgn, where

[
JTWJ

]
hgn = JTW (y − ỹ) . (4.3)
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The LMA adaptively varies the parameter updates between the gradient descent and

Gauss-Newton update, i.e.

[
JTWJ + λ1

]
hlm = JTW (y − ỹ) , (4.4)

where small values of the algorithmic parameter λ result in a Gauss-Newton update

and large values of λ result in a gradient descent update. At a large distance from

the function minimum, the gradient descent method is utilized to provide steady and

convergent progress towards the solution. As the solution approaches the minimum, λ is

adaptively decreased and the LMA approaches the Gauss-Newton method, for which the

solution typically converges more rapidly to the local minimum. The update relationship

suggested by Marquardt [85] is given by

[
JTWJ + λdiag

(
JTWJ

)]
hlm = JTW (y − ỹ) . (4.5)

In this work we make use of the Python function leastsq(), which provides an efficient

implementation of the LMA, to minimize the residual y − ỹ, i.e. the difference between

the target and the fitting function. For simplicity, in the following sections, we will denote

the residual simply as R ≡ y − ỹ

4.3 Cubic spline interpolation

For a more efficient approximation, a piecewise polynomial approximation with higher

odder pieces is needed [86]. Any smooth function that is piecewise polynomial, and is

also smooth where the polynomial connects can be regarded as a spline [87]. A piecewise

polynomial function f(x) is obtained by dividing x into contiguous intervals, and rep-

resenting f(x) by separate polynomial in each interval. At the endpoints i.e. knots the

polynomials are joined together such that a degree of smoothness of the resulting function

is achieved. If a functions f(x) is twice continuously differentiable, i.e. f(x) has a first and

a second derivative then f(x) is a cubic spline. The cubic spline approximating function

continues to be the most popular choice for interpolating and approximation [86].
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We subdivide the interval [0, qmax] into n equidistant sub-intervals, each having a length

a. The function f(q) is the expanded in terms of the cubic spline as follows. For q

contained within the i-th subinterval [qi, qi+1], where i = 0, 1, . . . , n− 1,, the cubic spline

interpolation of f(q) is given by

f(q) = C1,i + q
(
C2,i +

q

2

(
C3,i +

q

3

))
, (4.6)

where a = qmax/n = qi+1 − qi. Continuity of f(q) and f ′(q) between the ith and the

(i+ 1)th subinterval then requires,

1

6
C4,ia

3 +
1

2
C3,ia

2 + C2,ia+ C1,i = C1,i+1 (4.7)

and
1

2
C4,ia

2 + C3,ia+ C2,i = C2,i+1 . (4.8)

Solving for C3,i and C4,i in Eq. (4.7) and Eq. (4.8) gives

C3,i = − 1

a2
(−6C1,i+1 + 6C1,i + 4aC2,i + 2C2,i+1a) (4.9)

C4,i =
1

a3
(−12C1,i+1 + 12C1,i + 6aC2,i + 6C2, i+ 1a) (4.10)

now substituting Eq. (4.10) and Eq. (4.9) into Eq. (4.6) we get

f(q) =
1

a3
(a− q)2(a+ 2q)C1,i +

1

a2
(a− q)2qC2,i

+
1

a3
q2(3a− 2q)C1,i+1 +

1

a2
q2(q − a)C2,i+1 (4.11)

where C1,i, C2,i, C1,i+1 and C2,i+1 are our cubic spline coefficients, a = qmax/n, qmax is the

maximum interval and n is the number of the intervals. The polynomials appearing in

Eq. (4.11) are the orthogonal Hermite polynomials:

h0(s) = (1− s)2(1 + 2s)

h1(s) = (1− s)2s

h2(s) = s2(3− 2s)

h3(s) = s2(s− 1)
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such that,

h′0(s) = 6s(s− 1)

h′1(s) = (3s− 1)(s− 1)

h′2(s) = −6s(s− 1)

h′3(s) = s(3s− 2)

4.4 Application of the LMA to cubic spline interpo-

lation of CAFFPs

The knowledge of the form factors at a few discrete values of q is normally good enough

for accurate bandstructure calculation in bulk material. The discrete values of q are the

magnitudes of the differences between the reciprocal lattice vectors i.e. q = ||G−G′||,

of the, usually cubic, reciprocal lattice. In the large basis approach q can have many

more value than only a few discrete points. Therefore, the atomic form factor potentials

become continuous function of q in the case of layered structures [54]. The large basis

approach is also capable of treating bulk material as a special case. In the case of bulk

materials the only value of the continuous atomic form factor potentials that enter into

the calculations are those at the discrete set of q points mentioned earlier.

Unfortunately there exist no universal atomic form factors. This is due to the differences

that exist between the pseudopotential form factor potentials of the same species in dif-

ferent materials [54]. For example, in the case of AlAs/GaAs layered structure the As in

AlAs is different to As in GaAs. This is due to the difference that exist in the core poten-

tial, i.e. nucleus plus the inner electron shell, of the As atom is different in both materials.

This difference is significant for bandstructure calculations, so careful consideration has

to be made for layered structure calculations [54].
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The idea of using a linear combination of four Gaussians, multiplied by a smoothing func-

tion to determine the atomic form factor potentials, V (q), was originally proposed by

Mader and Zunger [3]. This idea was mainly proposed in order to circumvents the limita-

tions of other theoretical models such as the effective mass approximation (EMA) and the

Kroning-Penney model, to calculate properties of large semiconducting systems with non

trivial geometries which includes structurally inhomogeneous quantum structures, such

as partially ordered alloys, clustering in alloys, rough interfaces, quantum dots and wires,

and nano-meter quantum well [3]. All of these systems require for their description a

computational unit cell containing ≈ 1000 atoms [3].

The “folded spectrum method” proposed in Ref. [11] can be used to calculate the electronic

structure of systems that require a large supercell with complex geometries. Although

such an approach overcomes the limitations of the tight binding model and the effective

mass approximation, it is still not good enough for nanostructures. This is because the

long wave components of V (q) required for nanostructure, need to be explicitly fitted to

properties with larger repeated unit cells, not to bulk zinc blende properties. In addition

to this, fitting the binary compounds, AC and BC, does not by itself produce a common

C atom needed in the calculation for, AC/BC interfaces. Mäder and Zunger [3] made use

of a large number of additional lattice vectors which could be obtained by interpolation

[14, 88] or by fitting an algebraic form of the potential to a zinc blende form factor [89].

The crystal potential V (r), can be written as superposition of atomic potentials vα(r),

which is assumed to be spherically symmetric, i.e.

V (r) =
∑
n,α

vα(|r − τα −Rn|) (4.12)

=
1

Ωc

∑
α

∑
G

eiG(τα−r)vα(|G|)

where
∑

n,α, runs over all positions τα within the cell as well as the unit cell vectors Rn.∑
G e

iG runs over all atomic types α, and the reciprocal lattice vector G, Ωc is the unit

cell volume [3]. Choosing the origin in the zinc blende unit cell halfway between the two

atoms α = A and α = C, Eq. (4.13), can be expressed as,

V (r) =
1

Ωc

∑
G

[cos(G · τ)vs(G) + i sin(G · τ)va]exp(−iG · r) (4.13)

33



where τ = a
8
(111) is the atomic positions. vs(G) = vA(G) + vC(G), and va(G) = vA(G)−

vC(G) are the symmetric and antisymmetric respectively, a is the lattice constant [3]. The

symmetric and antisymmetric form factor can be adjusted at a small number of zinc blende

reciprocal lattice vectors G to fit band energies and effective masses at different unit cell

volumes Ωc. G vector length scales as Ω
− 1

3
c this gives information about the form factors in

the neighborhood of each G vector [3]. vs(G) and va(G) determined at a range of volumes

provided a means of fitting the hydrostatic deformation potentials , i.e. the volumes of the

derivatives of the band gaps [3]. By inspecting the obtained ≈ 20 discrete form factors,

it was found that vs and va could each be fitted very well by a linear combination of

two Gaussians [3]. The atomic potentials vA = 1
2
(vs + va) and vC = 1

2
(vs − va) can be

reconstructed from the form factors [3]. Each atomic pseudopotential vα(q), is a linear

combination of four Gaussians multiplied by a smoothing function:

vα(q) = Ωα

4∑
i=1

aiαe
−ciα(q−biα)2 [1 + f0αe

−βαq2 ] , (4.14)

where Ωα, is the atomic normalization volume, vα(q) is the atomic pseudopotential form

factor [3]. The parameters of Eq. (4.14) can be adjusted independently to obtain an

optimal fit of vα(q), may change [3]. For a complete explanation of 4.14 one can see

Ref.[3] The (continuous atomic form factor potentials) CAFFPs given by Eq. (4.14) has

proved to produce many experimentally observed results for bulk material and such as

the band gaps and effective masses [3].

As mentioned in chapter one, a major drawback of using the linear combination of Gaus-

sian functions to interpolate the atomic form factor potentials, is that such functions have

poor convergence properties compared to piecewise interpolations. This essential differ-

ence occurs because the adjustable coefficients in the linear combination are all inter-

dependent, i.e. when the Levernberg-Marquardt algorithm (or any other optimization

algorithm, for that matter) tries to adjust one coefficient it affects the functional form of

the whole linear combination. By contrast coefficients of the piecewise interpolation can

be optimized independently for each piece of the interpolation.

In Fig 4.1 we illustrate the difference in the convergence rates by using piecewise cubic

splines and a linear combination of Gaussians to interpolate a sine function. In this
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case a linear combination of four Gaussian functions was used and compared to a cubic

spline interpolation over six intervals. Both interpolations require twelve initially unknown
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Figure 4.1: Comparison of convergence rate for optimizing the continuous atomic form

factors using piecewise cubic spline (solid line) as oppose to linear combination of Gaus-

sians (dash lines) In this case the target function was sin(x) with x ∈ [0, 5]. The residual

R is the difference between the interpolated and target functions using 500 sample points

corresponding to a grid of equally spaced points in the x-domain.

coefficients to be optimized. As can be seen in Fig. 4.1, for the cubic spline interpolation,

convergence is achieved within few than 30 iterations, while for the linear combination of

Gaussians it takes more than a 1000 iterations to reduce the residual to approximately

the same value.

The difference in the rates of convergence shown in Fig. 4.1 are fairly typical independently

of the target function used. In trying to optimize the coefficients of the CAFFPs, forming

a residual between a target bandstructure and a calculated bandstructure, the difference
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between the rates of convergence becomes crucial because the bandstructure calculation

which has to be performed for each iteration is computationally expensive.

The cubic spline continuous atomic form factor potentials are determined in the following

way: Firstly cubic spline function is interpolated over the discrete points required in

the case of bandstructure calculations of bulk semiconductor materials. Our cubic spline

function is defined over 25 subintervals. We then use our cubic spline CAFFPs to calculate

the bandstructures for GaAs and AlAs as explained in details in chapter six. Excellent

results for energy bands are obtained for GaAs and AlAs bandstructures calculated with

the interpolated cubic spline continuous form factor potentials.

In order to determine the much needed continuous atomic form factor potentials for

layered structure calculations, the Levernberg-Marquardt method, in conjunction with

the cubic spline functions are used. In this work we calculate our continuous atomic form

factors by optimizing the cubic spline coefficients C(i,j), by fitting to calculated zinc

blende bandstructures. The C(i,j) are actually responsible for connecting the piecewise

polynomials which define the cubic spline functions. The results of the optimized cubic

spline CAFFPs for layered structure calculations are presented in chapter six. In the next

chapter we provide the Fortran codes and the Python scripts developed for the purpose

of this work.
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Chapter 5

Method For Numerical Calculations

5.1 Determining the cubic spline continuous atomic

form factor potentials

The purpose of this Chapter is to describe the Python scripts and the Fortran codes,

developed in this work. Two Fortran subroutines were written in this work for different

purposes. One code is written to setup the cubic spline function (see C1) and the other

code is written to set up the Hamiltonian matrix to be solved (see C2). These subroutines

are wrapped into Python modules using f2py [90]. Since Fortran is strictly suitable for

numeric and scientific computing and Python is an object oriented programming language.

To optimize the computational time the numerically intensive parts of this work, like the

loading of the matrix elements are done in Fortran.

Python is a scripting language which supports multiple paradigms, including object ori-

ented, imperative and functional programming. Such features including the large and

comprehensive standard library, compromises the computational speed, thus the numeri-

cally intensive parts of the code are better done in Fortran than in Python. Many impor-

tant and very useful Python libraries makes it easy to implement some of the important

functions of the codes.
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Our cubic spline continuous atomic form factor potentials are determined by employing

the Levernberg-Marquardt algorithm together with cubic spline interpolations. In order

to determine our cubic spline continuous form factor potentials, two important codes were

written, one in Fortran and the other one in Python. The function of the Fortran code is

to create a subroutine called smooth which is wrapped into a Python module using F2py

[90]. smooth is a cubic spline interpolation function of form:

f(q) =
1

a3
(a− q)2(a+ 2q)C1,i +

1

a2
(a− q)2qC2,i

+
1

a3
q2(3a− 2q)C1,i+1 +

1

a2
q2(q − a)C2,i+1 (5.1)

Here i refers to the ith interval, each interval being of length a. In the Python code

we optimize our cubic spline coefficients Ci,j, which are stored in the array CC(i,j).

Starting from arbitrary cubic spline coefficients, our cubic spline continuous atomic form

factors are determine as follows. The zinc blende bandstructures calculated from other

methods, e.g., DFT, k · p and the EPM are used as target bandstructures. The CC(i,j),

get optimized by adjusting themselves, such that the residual error between the target

bands and the cubic spline calculated bandstructure is reduced to a minimal value. The

optimized C(i,j), are written to file so that every time smooth is called anywhere in

the code, it takes into account the optimized cubic spline coefficients. This procedure is

explained in the coming sections, when we describe the Fortran and the Python codes

used.

5.2 Codes developed for determining the CAFFPs

and for calculating band structures

5.2.1 C1

The subroutine smooth is written in Fortran. The purpose of smooth is to return cubic

spline interpolation ff corresponding to coefficients CC(i,j). The coefficients CC(i,j)

are passed in a vector v. q is a vector containing the magnitude of the reciprocal lattice
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vector at which the form factors are required. aa is the interval for piecewise interpolation

and cut is the cutoff for the interpolated potential. For q > cut the potential is truncated

to zero. M is the number of intervals of length aa used in the cubic spline interpolation.

Using f2py [90] this code is wrapped into a Python module which can be imported to

various Python scripts.

subroutine smooth(ff,q,v,aa,cut,N,M)

IMPLICIT REAL*8(A-H,O-Y)

IMPLICIT INTEGER(I-N)

DIMENSION ff(0:N-1),q(0:N-1),v(0:2*M+1)

DIMENSION CC(2,0:M+3)

!f2py intent(in) q, v, aa, cut

!f2py intent(out) ff

! cut is max cut off for q values

! aa is the interval width for cubic spline interpolation

k = 0

N = size(q)

M = (size(v)-2)/2

do j = 0,M+2,2

CC(1,j)= v(k)

CC(1,j+1)= v(k+2)

CC(2,j)= v(k+1)

CC(2,j+1)= v(k+3)

k = k + 4

end do

aa = cut/float(M)

do i = 0,N-1

if (q(i) .GT. cut) then

ff(i) = 0.0d0

else

j = int(q(i)/aa)
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qd = q(i)-j*aa

ff(i) = (1.0/(aa**3))*(aa-qd)**2*(aa+2.0*qd)*CC(1,j)&

+(1.0/(aa*aa))*(aa-qd)**2*qd*CC(2,j) &

+(1.0/(aa**3))*qd*qd*(3.0*aa-2.0*qd)*CC(1,j+1) &

+(1.0/(aa**2))*(qd**2)*(qd-aa)*CC(2,j+1) &

end if

end do

end subroutine

5.2.2 C2

This code is written in Fortran. The purpose of this code is to create the Hamiltonian

matrix named ZMH. The Hamiltonian matrix created here is generalized to large basis.

For two atoms, this code can be used to determine the Hamiltonian Matrix for a com-

pound semiconductor. In the case of large basis, the lattice vectors is increased along

the z−direction in a spiral. The spin-orbit coupling is taken into account by adding the

constant spin-orbit parameters which are passed in as AFF. cj are the continuous atomic

form factor potentials. For zincblende bandstructure calculations say for example GaAs,

cj will contain the continuous atomic form factor potential for the Ga atom and a contin-

uous atomic form factor potential for the As atom. GK is the number of k-points and GRR is

the lattice vectors. This code is also wrapped into Python module called slpseudomatrix

using F2py [90] and can be called with in different Python codes.

SUBROUTINE slpseudomatrix(ZMH,A0,GK,GRR,cj,AXY,SOC,MM,M)

IMPLICIT INTEGER (I-N)

IMPLICIT REAL*8 (A-H,O-Y)

IMPLICIT COMPLEX*16 (Z)

PARAMETER (EV = 27.2113961d0, BR = 0.0529177249d0, API = 3.141592654d0)

DIMENSION GRR(0:M-1,0:2), cj(0:1,0:M-1,0:M-1), ZMH(0:M-1,0:M-1)

DIMENSION GK(0:2), GS(0:2),GP(0:2),AXY(0:1,0:3),AFF(0:1)
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!

!f2py intent(in) A0, GK, GRR, cj, AXY, AFF

!f2py intent(out) ZMH

!f2py depend(M) ZMH, GRR, cj

!f2py depend(MM) AFF

!

L = M/2

!open(20,file = ’zmh.dat’)

DO J = 0,L-1

DO I = 0,L-1

IF (I.NE.J) THEN

GS = GRR(J,:) - GRR(I,:)

qs = sqrt(GS(0)**2 + GS(1)**2 + GS(2)**2)

AB = qs*(2.0d0*API/A0)

DO K = 0,MM-1

ZMH(I,J) = ZMH(I,J)+(2.0/REAL(MM))*cj(int(AXY(K,3)),I,J) &

*CDEXP(-DCMPLX(0.0D0,DOT_PRODUCT(GS,(AXY(K,0:2)/ &

(10.0*BR))))*2.0d0*API/A0)

ZMH(I+L,J+L) = ZMH(I,J)

write(20,*) L

END DO

END IF

END DO

END DO

DO I = 0 ,L-1

GS = GK + GRR(I,:)

ZMH(I,I) = 0.5d0*DOT_PRODUCT(GS,GS)*(2.0*API/A0)**2

ZMH(I+L,I+L) = ZMH(I,I)

END DO
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! Add spin-orbit contrbution to Block 1, i.e.(+1/2,+1/2)

DO J = 0,L-1

DO I = 0,L-1

IF (I.NE. J) THEN

GS = GRR(I,:) - GRR(J,:)

CALL VCP(GK + GRR(I,:), GK + GRR(J,:),GP)

DO K = 0,MM-1

ZMH(I,J) = ZMH(I,J)+(1.0/REAL(MM))&

*CDEXP(-DCMPLX(0.0D0,DOT_PRODUCT(GS,(AXY(K,0:2)/(10.0*BR))))&

*2.0d0*API/A0)*DCMPLX(-AFF(INT(AXY(K,3))),0.0D0)&

*DCMPLX(0.0D0,GP(2))*((2.0d0*API)/A0)**2

END DO

END IF

END DO

END DO

! Add spin-orbit contrbution to Block 2, i.e.(+1/2,-1/2)

DO J = L-1,M-1

DO I = 0,L-1

IF (I.NE.J) THEN

GS = GRR(I,:) - GRR(J,:)

CALL VCP(GK + GRR(I,:), GK + GRR(J,:),GP)

DO K = 0,MM-1

ZMH(I,J) = ZMH(I,J)+(1.0/REAL(MM))&

*CDEXP(-DCMPLX(0.0D0,DOT_PRODUCT(GS,(AXY(K,0:2)/(10*BR))))&

*2.0d0*API/A0)*DCMPLX(0.0D0,-AFF(INT(AXY(K,3))))&

*DCMPLX(GP(0),-GP(1))*((2.0d0*API)/A0)**2

END DO

END IF

END DO
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END DO

! Add spin-orbit contrbution to Block 4, i.e.(-1/2,-1/2)

DO J = L-1,M-1

DO I = L-1,M-1

GS = GRR(I,:) - GRR(J,:)

CALL VCP(GK + GRR(I,:), GK + GRR(J,:),GP)

DO K = 0,MM-1

ZMH(I,J) = ZMH(I,J)+ (1.0/REAL(MM))&

*CDEXP(-DCMPLX(0.0D0,DOT_PRODUCT(GS,(AXY(K,0:2)/(10*BR)))) &

*2.0*API/A0)*DCMPLX(-AFF(INT(AXY(K,3))),0.0D0)&

*DCMPLX(0.0D0,-GP(2))*((2.0d0*API)/A0)**2

END DO

END DO

END DO

END SUBROUTINE

SUBROUTINE VCP(VA,VB,VC)

IMPLICIT REAL*8 (A-H,O-Y)

IMPLICIT COMPLEX*16 (Z)

IMPLICIT INTEGER (I-N)

DIMENSION VA(0:2), VB(0:2), VC(0:2)

VC(0) = VA(1)*VB(2) - VA(2)*VB(1)

VC(1) = VA(2)*VB(0) - VA(0)*VB(2)

VC(2) = VA(0)*VB(1) - VA(1)*VB(0)

END SUBROUTINE
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5.2.3 C3

This code is written in Python. The function of this code is to optimize the cubic spline

coefficients by making use of least squares. This code optimizes C(i,j) by finding and

reducing the error between zincblende bandstructures. This code makes use of the two

codes already explained in this chapter. From fillhmat we import slpseudomatrix this

is for the Hamiltonian matrix. smooth is also needed for the CAFFPs. The input files

needed are mostly loaded in as data files. For example bnd is the target bandstructure

and it is loaded in. SOC is the spin-orbit parameters, axy is the atoms, v0 and v1 are the

initial guess of cubic spline coefficients C(i,j). The optimized cubic spline C(i,j) are

written to file named opt_cc.dat and will be used in the next code.

from fillhmat import slpseudomatrix

from kagiso import smooth

from pylab import *

from scipy.optimize import leastsq

bnd = loadtxt(’hpc_GaAs_no.dat’)

SOC = loadtxt(’spin_orbit.dat’)

axy = loadtxt(’atoms.xyz’)

MM = len(axy)

fk = loadtxt(’k.r’)

fg = loadtxt(’G.r’)

v0 = loadtxt(’value1.dat’)

v1 = loadtxt(’value2.dat’)

g = open(’opt_cc_1.dat’,’w’)

ccc = concatenate((v0,v1))

ccc = concatenate((ccc,SOC))

print len(ccc)

mv = 25

N = len(fg)

h = fg.reshape(3*N,1)
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GRS = concatenate((h,h))

GRR = GRS.reshape(2*N,3)

M = len(GRR)

GS = zeros(3,’d’)

BR = 0.0529177249

EV = 27.2113961

A0 = 0.565/BR

tpa = (2.0*pi/A0)

fs = zeros((2,M,M),’d’)

cj = zeros((2,M,M),’d’)

k = 0

for xv in range(len(axy)):

for J in range(M):

for I in range(M):

GS[:,] = GRR[J,:] - GRR[I,:]

k = k+1

q = sqrt(GS[0]**2 + GS[1]**2 + GS[2]**2)

AB = q

fs[xv,I,J] = AB*tpa

fs = fs.reshape(2,M**2,1)

cv = smooth(fs[0,0:(len(fs[0]))],v0,0.2,5)

cv1 = smooth(fs[0,0:(len(fs[0]))],v1,0.2,5)

cv = cv.reshape(130,130)

cv1 = cv1.reshape(130,130)

cj[0] = (cv/2.0)

cj[1] = (cv1/2.0)

def ef(eng,A0,fk,fs,GRR,axy,MM,M,bnd):

MM = len(axy)

cv = smooth(fs[0,0:(len(fs[0]))],eng[0:2*mv+2],0.2,5)

45



cv1 = smooth(fs[0,0:(len(fs[0]))],eng[2*mv+2:4*mv+4],0.2,5)

cv = cv.reshape(M,M)

cv1 = cv1.reshape(M,M)

cj[0] = (cv/2.0)

cj[1] = (cv1/2.0)

i = 0

GK = fk[i,0:3]

ZMH = slpseudomatrix(A0,GK,GRR,cj,axy,AFF,MM,M)

E = (EV*eigvalsh(ZMH,’U’).real)

TE = bnd[i,1:131

for i in range(1,len(fk[:,0]),1):

GK = fk[i,0:3]

ZMH = slpseudomatrix(A0,GK,GRR,cj,axy,AFF,MM,M)

E1 = (EV*eigvalsh(ZMH,’U’).real)

TE1 = bnd[i,0:len(bnd[0,1:])]

E = concatenate((E,E1))

TE = concatenate((TE,TE1))

er = E-TE

err = sqrt(dot(er,er))

print err, E[1308] - E[1307], TE[1308] - TE[1307]

return er

opt, succ = leastsq(ef,ccc,args = (A0,fk,fs,GRR,axy,MM,M,bnd),maxfev=1000)

print opt

for i in range(len(opt)):

print >> g, (opt[i])

g.close()
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5.2.4 C4

Finally this code solves the Hamiltonian matrix and calculates the energies E(k) for both

the bulk and layered semiconductor structures. Notice in this code there a loaded file

named ’opt_cc_1.dat’ and ’opt_cc_2.dat’. These two files contain the optimized

cubic spline C(i,j) which are incorporated into smooth to produce optimized continuous

atomic form factor potentials. Most of the files used here are similar and have the same

function as previously reported in other sections. The calculated energies are written to

file named GaAs_ccff_bands_1.dat.

from fillhmat import slpseudomatrix

from kagiso import smooth

from pylab import *

axy = loadtxt(’atoms.xyz’)

fk = loadtxt(’k.r’)

fg = loadtxt(’G.r’)

ccc = loadtxt(’opt_cc_1.dat’)

ddd = loadtxt(’opt_cc_2.dat’)

SOC = loadtxt(’spin_orbit.dat’)

MM = len(axy)

mv = 25

N = len(fg)

h = fg.reshape(3*N,1)

GRS = concatenate((h,h))

GRR = GRS.reshape(2*N,3)

M = len(GRR)

GS = zeros(3,’d’)

BR = 0.0529177249

EV = 27.2113961

A0 = 0.565/BR

tpa = (2.0*pi/A0)
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fs = zeros((4,M,M),’d’)

cj = zeros((4,M,M),’d’)

k = 0

for xv in range(len(axy)):

for J in range(M):

for I in range(M):

GS[:,] = GRR[J,:] - GRR[I,:]

k = k+1

q = sqrt(GS[0]**2 + GS[1]**2 + GS[2]**2)

AB = q

fs[xv,I,J] = AB*tpa

fs = fs.reshape(4,M**2,1)

cv0 = smooth(fs[0,0:(len(fs[0]))],ccc[0:52],0.2,5)

cv1 = smooth(fs[0,0:(len(fs[0]))],ccc[52:104],0.2,5)

cv2 = smooth(fs[0,0:(len(fs[0]))],ddd[0:52],0.2,5)

cv3 = smooth(fs[0,0:(len(fs[0]))],ddd[52:104],0.2,5)

cv0 = cv0.reshape(M,M)

cv1 = cv1.reshape(M,M)

cv2 = cv2.reshape(M,M)

cv3 = cv3.reshape(M,M)

cj[0] = (cv0/2.0)

cj[1] = (cv1/2.0)

cj[2] = (cv2/2.0)

cj[3] = (cv3/2.0)

f = open(’GaAs_ccff_bands_1.dat’,’w’)
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GK = zeros(3,’d’)

ZMH = slpseudomatrix(A0,GK,GRR,cj,axy,AFF,MM,M)

E = (EV*eigvalsh(ZMH,’U’).real)

vmax = E[14]

#vmax = E[62] for N= 4

#vmax = E[14] for N= 1

#vmax = E[127]for N= 8

for i in range(len(fk[:,0])):

GK = fk[i,0:3]

ZMH = slpseudomatrix(A0,GK,GRR,cj,axy,SOC,MM,M)

E = (EV*eigvalsh(ZMH,’U’).real)

print i,(E[9]-E[7])

if i <= 40:

k = -sqrt(dot(GK,GK))

else:

k = +sqrt(dot(GK,GK))

u0 = list(E-vmax)

u0.insert(0,k)

for col in u0:

f.write(’%15.7f’ % col)

f.write(’\n’)

f.close()

print ’Done’

49



Chapter 6

Results and discussion

6.1 Introduction

In most cases electronic bandstructure calculations are the first step in calculating trans-

port properties of semiconductors. In the emperical pseudopotential method, one of the

key parameters that needs to be determined in order for accurate electronic bandstruc-

tures to be achieved is the atomic form factor potentials. As mentioned in chapter one,

the focus of this work is to develop reliable atomic form factor potentials that can be

used for bandstructure calculations in the case of layered semiconductor structures. Since

there exist no universal atomic form factors, there is always a need to determine the form

factors for specific materials.

In this work we make use of cubic spline CAFFPs to calculate the electronic bandstruc-

tures of semiconductor materials. One of the advantages of using cubic spline CAFFPs,

is that when optimizing the continuous atomic form factors, convergence can be achieved

within a short period of time. This is a major advantage because for large systems which

are computationally demanding, rapid convergence rate is required in order to reduce

computational time. Figure 6.1, illustrate the convergence rate achieved for optimizing

the present cubic spline coefficients.
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Figure 6.1: Convergence rate for optimizing the continuous atomic form factors potentials

used in this work. The residual R is the difference between the calculated and target

bandstructure. In this case the length of the residual was 1000.

The symmetric and anti-symmetric form factors can be easily determined from the in-

dividual atomic form factors by simply making use of V S
f = [V cat

f (q) + V an
f (q)] and

V A
f = [V an

f (q) − V cat
f (q)]. For continuous atomic form factor potentials, the material

in which the form factor exist has an effect on the form factor potentials, for example in

the case of GaAs and AlAs, the As form factor in GaAs is different to the As in AlAs.

Though we don’t show in plot the difference between these As continuous form factors

potentials, one can be able to see this clearly by comparing the CAFFPs of the As atom

in Fig. 6.2 and Fig. 6.6. We mentioned in Chapter one, several different ways in which

the form factors can be determined. In chapter four we explained how the atomic form

factors were determined in the present work. In the next sections we present the results

of using newly determined atomic form factors.
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6.2 Bandstructure calculations for GaAs

In this section the cubic spline continuous atomic form factor potentials (CAFFPs), cal-

culated in Chapter five, are used to calculate the electronic bandstructure for GaAs. As

mentioned before, for bulk structures like GaAs, the CAFFPs are not necessary, since the

bandstructure of such materials can be calculated from the knowledge of the form factors

calculated at only a few discrete point of q. However the CAFFPs can also be used for

bulk materials. It has been stated in the past Ref. [54], that the CAFFPs can be more

suitable for bulk materials since their continuous nature allows for many more point to

be taken into account for electronic bandstructure calculations. The atomic form factor

potentials in general depends on the type of the material. It makes no difference if the

atomic form factors is continuous or discrete, the type of the material has to be taken into

consideration. The atomic form factors for GaAs calculated at discrete point of q using

the cubic spline CAFFPs are listed in table. 6.1.

Table 6.1: Form factors of GaAs in units of eV calculated at the discrete points of q.

Source V S
f (q) V A

f (q)
√

3
√

4
√

8
√

11
√

3
√

4
√

8
√

11

Ref. [14] −3.13 −2.33 0.14 0.82 0.95 0.68 0.34 0.14

Ref. [15] −3.20 0.20 0.94 1.03 0.78 0.83

Ref. [17] −2.91 0.19 0.92 0.75 0.52 0.01

Present −3.40 −1.94 0.39 0.72 0.86 0.74 0.26 0.21

The atomic form factors depends on |q| which is the magnitude of the reciprocal lattice

vector. q itself a reciprocal lattice vector. Since the atomic form factors V (q) is dependent

on |q|, V (q) is defined only at the discrete point of q. Figure 6.2 shows the cubic spline

CAFFPs and the Gaussian CAFFPs of Ga in GaAs and As in GaAs together with differ-

ence between the Gaussian CAFFP and the cubic spline CAFFP. It can seen that both

the cubic spline CAFFPs and the Gaussian CAFFPs go through the required discrete

values of q. In addition it can be seen that at the points q =
√

0,
√

3,
√

4,
√

8 and
√

11

the difference between the two CAFFPs is essentially zero. A similar fitting procedure is
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Figure 6.2: Cubic spline CAFFPs and Gaussian CAFFPs of Ga in GaAs (top) and of As

in GaAs (bottom) plotted with the differences between the Gaussian CAFFPs and the

cubic spline CAFFPs.
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performed for As in GaAs, to obtain the complete bandstructure of GaAs, as illustrated

in Fig. 6.2.

As in the case of Ga, the CAFFP of As in GaAs also agree well at the discrete points of

q, hence one can expect that the resulting bandstructures calculated using both the cubic

spline and the Gaussian CAFFPs will have a very close resemblance. In the case of the

layered structure calculations it is expected that the difference between the two CAFFPs

will somehow affect the bandstructures, this is discussed in detail in section 6.4.

With the CAFFPs of Ga and As the electronic bandstructure of GaAs can be calculated.

Listed in table. 6.2 are the energy levels of the bulk GaAs, as obtained from the elec-

tronic bandstructure of GaAs calculated in this work. Figures 6.3 and 6.4 illustrates the

bandstructures of GaAs calculated using the cubic spline CAFFPs with and without the

spin-orbit couplings, respectively, while table. 6.3 summaries the measured energy levels

of the bandstructure of GaAs with the inclusion of the spin-orbit couplings. The word

relativistic in this work is used in the case of the electronic bandstructure calculated with

the inclusion of the spin-orbit coupling.

Good agreement for the energy gap is found between the current results and those obtained

through semi-emperical pseudopotential and experiments. Our energy gap is just 0.01 eV

below the experimentally obtained energy gap. The word energy gap or band gap Eg

in this work is used to refer to the energy difference between the conduction band and

the valence band at the zone i.e. at Γ = 0. The energy gap calculated in this work for

GaAs is also in good agreement with the band gap (∆Eg) reported by Chelikowsky and

Cohen [17] in their famous 1976 paper. It should be noted that in their work Chelikowsky

and Cohen [17] included the nonlocal effects.

It is expected that the energy gap of the band structure calculated using the cubic spline

CAFFPs and the Gaussian CAFFPs will be the same, since it was established in Fig. 6.2,

that the difference at the discrete points of q, is essentially very close to zero. However ta-

ble 6.2 shows that, there is difference of 0.01 eV in calculated band gap. This insignificant

difference can be accounted by the difference in the CAFFPs used.
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The DFT-LDA results in table 6.2 are just for comparison purpose for detailed explanation

of how they were obtained one can see a Ph.D thesis by S. Botti [29]. A close comparison

for Lv6 energy level between our results and experiments is found to be 0.01 eV. There is

not so much overall difference between our cubic spline CAFFPs bandstructures and the

Gaussian CAFFPs bandstructures as can be seen in table 6.2. A difference of 0.01 eV and

0.71 eV is achieved between our results and those obtained experimentally. The overall

comparison of our results and the results obtained through experiments is impressive. The

only concern is on the Γc7 energy level with the calculated difference of 0.71 eV. In order to

corrects some of these energy difference and to produce experimentally measured energies,

we suggest fitting the atomic form factors to other empirically determined parameters such

as effective mass and deformation potentials.

Table 6.2: Comparison of the energy levels (all in electron volt) of bulk GaAs, as ob-

tained in the current work without taking into account the spin-orbit coupling compare

to literature.

Energy levels Present Gaussians Experiment SEMI-EPMd DFT-LDAd

Γv6: −12.17 −12.18 −13.10a −12.11 −12.90

∆Eg 1.51 1.50 1.52b 1.51 1.37

Γc7: 4.01 4.00 4.72a 4.01 4.58

Xv
6 −10.03 10.02 −10.00 −10.45

Xc
6 2.05 2.01 1.98c 2.02 2.12

Xc
6 2.41 2.37 2.38c 2.39 2.39

Lv6 −10.68 −10.68 −10.64 −11.19

Lc6 1.82 1.79 1.81c 1.83 −1.79

Lc6 4.86 4.82 4.84 5.46
a T. C. Chiang et al. [91]

b D. D. Sell [92]

c D. E. Aspen et al. [93]

d S. Botti [29]
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Figure 6.3: Bandstructure of GaAs plotted from L[1
2
, 1
2
, 1
2
] to Γ[0, 0, 0] and to X[0, 0.1],

calculated without the spin-orbit coupling for 65 lattice vectors with a lattice constant of

5.65 Å. The bands have been scaled to have the zero in energy at the maximum of the

upper-most valence band.
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In other energy level the comparison between the present work and literature is within

(0.05 eV and 0.38 eV), this difference can be accounted by the fact that our CAFFPs were

determined by optimizing the cubic spline coefficients, by calculating the residual error

between the Gaussian and the cubic spline CAFFPs at the discrete points of q, unlike

in Ref. [3], where the atomic form factor were fitted to other empirically determined

properties like the effective mass and deformation potentials.

The inclusion of the relativistic effects in the bandstructure structure calculations offer

more accurate knowledge of the electronic properties of the material [54]. Usually this

is done by incorporate the spin-orbit couplings into the bandstructure calculations as

explained in Chapter three. Figure 6.4 shows the bandstructure of GaAs calculated with

the inclusion of the spin-orbit couplings. Microscopically analyzing Fig. 6.4 shows that

near the zone center i.e. Γ = 0 there are two bands degenerate. The first two bands are

called the heavy-hole and the light hole bands. The third band is the spin-orbit split-off

band (∆SO). The split between the heavy-holes and the light-holes is not measured in

this work but usually is to close by a few tens to a few hundreds of meV. The effects of

spin-orbit couplings in zinc-blende semiconductors is well explained in Refs. [52, 57].

Table 6.3: Comparison of the energies levels (all in electron volt) of GaAs with the

inclusion of the spin orbit coupling as obtained in the present work to literature.

Energy levels (eV): Present Gaussians Experiment Ref. [3]

Γv6: −12.25 −12.30 −13.10a −12.22

∆Eg 1.44 1.38 1.52c 1.52

Γc7: 4.86 3.77 4.49b 4.52

Xv
6 −10.03 −10.14

Xc
6 2.00 1.90 1.98 2.08

∆SO 0.24 0.35 0.34b 0.34
a T. C. Chiang et al. [91]

b D. D. Sell [92]

c D. E. Aspen et al. [93]
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Figure 6.4: Bandstructure of GaAs plotted from L[1
2
, 1
2
, 1
2
] to Γ[0, 0, 0] and to X[0, 0, 1],

calculated with the inclusion of the spin-orbit coupling for 65 lattice vectors. with a lattice

constant of 5.56 Å. The bands are calculated to have the zero in energy at the maximum

of the upper-most valence band.
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The spin-orbit split-off ∆SO band calculated in this work by employing the cubic spline

CAFFPs has been determined to be 0.24 eV, while that calculated using the Gaussian

CAFFPs is 0.34 eV. The difference of 0.1 eV, is due to the fact that the Gaussian CAFFPs,

takes into account the spin-orbit coupling effects, while in the case of the cubic spline

CAFFPs, the atomic form factors were only fitted to the bandstructures calculated with-

out the spin-orbit coupling and therefore the effects due to spin-orbit couplings were

omitted. A difference of 0.08 eV calculated for the band gap of the bandstructures calcu-

lated with the Gaussian CAFFPs and the cubic spline CAFFPs, is also due to the different

ways in which cubic spline CAFFPs and Gaussian CAFFPs were fitted. The drop in the

energy gap from 1.51 eV to 1.44 eV in the case of cubic spline calculated bandstructure,

and 1.50 eV to 1.44 eV in the case of Gaussian calculated bandstructure, is attributed by

the fact that constant spin-orbit coupling parameters, instead of k-dependent spin-orbit

coupling, were used in setting up the Hamiltonian matrix.

Some of the measured energy levels calculated in this work are listed in table 6.3 and

comparison is made between this work and literature. In table 6.3 fairly good agreement

between the current energy levels and that of Ref. [3] is realized with only a difference of

0.03 eV for Γc6. The present results is also in good agreement with experimental results

with a difference of 0.02 eV for Xc
6. The reason why the energy gap decreased from 1.51

eV (non-relativistic) to 1.44 eV (relativistic) is because constant spin-orbit couplings were

used instead of the momentum dependent spin-orbit couplings.

6.3 Bandstructure calculations for AlAs

Before the bandstructures of AlAs can be calculated, reliable form factor potentials are

needed. Just like in the case GaAs, as discussed in section 6.2, for a complete bandstruc-

ture calculations the continuous atomic form factor potential of As in AlAs, and Al in

AlAs needs to be determined. We follow a similar procedure as in the case of GaAs re-

ported in section 6.2. The Atomic form factor potentials calculated at the discrete points

of q for AlAs are listed in table 6.4. Unfortunately there is not enough literature on
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the discrete atomic form factor potentials of AlAs and so we can not list other obtained

atomic form factor potentials of AlAs.

Table 6.4: Form factors of AlAs in units of eV calculated at the discrete points of q.

Source V S
f (q) V A

f (q)
√

3
√

4
√

8
√

11
√

3
√

4
√

8
√

11

Present −3.05 −1.56 0.92 1.2 1.17 1.06 0.83 0.73

Once again the CAFFPs of As in AlAs is different to that of As in GaAs, or any com-

pound structure that has As atoms, and therefore a CAFFP of As in AlAs needs to be

determined. Figure 6.5 shows the Gaussian and the cubic spline continuous atomic form

factor potentials plotted together with the difference between the two CAFFPs. Figure 6.6
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Figure 6.5: Cubic spline CAFFPs and Gaussian CAFFPs of Al in AlAs plotted together

with the difference between the Gaussian CAFFPs and the cubic spline CAFFPs.

shows the cubic spline and the Gaussian continuous atomic form factor potentials of As

in AlAs, plotted together with the difference between the two continuous form factors.

Once again a close examination of Fig. 6.5 and Fig. 6.6 reveal that at the discrete points
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the difference between the two form factors is close to zero. With the CAFFPs of the Al
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Figure 6.6: Cubic spline CAFFPs and Gaussian CAFFPs of Al in AlAs plotted together

with the difference between the Gaussian CAFFPs and the cubic spline CAFFPs.

in AlAs and that of As in AlAs having been determined, calculating the bandstructure

for AlAs can follow easily.

Figure. 6.7 displays the bandstructure for AlAs calculated using the cubic spline CAFFPs

without the spin orbit couplings. As it can be seen in Fig. 6.7 AlAs has the minimum

conduction band at X, and so the energy gap of AlAs can be calculated indirectly between

Γ = 0 and X. But for the purpose of this work, the band gap i.e. ∆Eg is calculated at

the zone i.e. Γ = 0 center directly. The calculated energies of Fig. 6.7 are listed in

table 6.5. Examining the contents of table 6.5 shows that there is not so much difference

between the energies calculated using the Gaussian and the cubic spline CAFFPs. This

is of course expected since both the CAFFPs pass through the required discrete point

which are necessary for the bulk bandstructure calculations.

A major difference between the energies obtained through the Gaussian and the cubic

61



L Γ X0.43 0.5
k /[2πa0 ]

−12

−10

−8

−6

−4

−2

0

2

4

6

8

E
/
[e
V
]

Γv
6

Γc
7

L v
6

L c
6

L c
6

X c
6

X c
6

X v
6

∆Eg

Figure 6.7: Bandstructure of AlAs plotted from L[1
2
, 1
2
, 1
2
] to Γ[0, 0, 0] and then toX[0, 0, 1],

calculated without the spin-orbit coupling for 65 lattice vectors with a lattice constant of

5.65 Å. The bands have been scaled to have the zero in energy at the maximum of the

upper-most valence band.
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spline CAFFPs is at Xc
6 where a difference of 0.09 eV i recorded. A difference of 0.05

eV was also recorded for the Xv
6 energy level. This is due to similar reason explained in

the case of GaAs in section 6.2. The fact that the results obtained in this work produces

a band gap i.e. ∆Eg of 3.04 eV which is the same as achieved in Ref. [3] is pleasing,

taking into consideration that in Ref. [3], the atomic form factors were fitted to other

empirically measured properties such as effective masses and deformation potentials . A

difference of 0.07 eV, between the band gap calculated in this work and that obtained

through experiments, illustrates the strength of our cubic spline CAFFPs. The relativistic

bandstructure for AlAs calculated in this work is displayed in Fig. 6.8. Following on

Fig. 6.8 is table 6.6 which list the energies of the bandstructure of AlAs calculated with

the inclusion of the spin-orbit couplings. Again the reduction of ∆Eg from 3.04 to 2.97 eV

(cubic spline CAFFPs) and from 3.04 eV to 2.91 eV (Gaussian CAFFPs) in both cases is

due to the employment of the constant spin-orbit coupling parameters instead of the k-

Table 6.5: Comparison of the energy levels (in electron volt) of bulk AlAs, as obtained

in the current work without taking into account the spin-orbit coupling to literature and

experiment.

Energy levels: Present Gaussians Experiment Ref. [3] Semi-EPMa DFT-LDAa

Γv6: −11.76 −11.76 −11.68 −11.67 −12.03

∆Eg 3.04 3.04 3.11c 3.04 3.03 3.03

Γc7: 4.19 4.18 4.34d 4.21 4.21 5.11

Xv
6 −9.65 −9.60 −9.49 −10.01

Xc
6 2.24 2.20 2.23b 2.24 2.22 2.21

Xc
6 3.21 3.12 3.20 3.11

Lv6 −10.20 −10.20 −10.14 −10.57

Lc6 2.83 2.81 2.54d 2.87 2.87 2.99
a S. Botti [29]

b B. Monemar [94]

c D. Wolford [95]

d A. Onton [96]
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Figure 6.8: Bandstructure of AlAs plotted from L[1
2
, 1
2
, 1
2
] to Γ[0, 0, 0] and then toX[0, 0, 1],

calculated with the spin-orbit couplings. The bands have been scaled to have the zero in

energy at the maximum of Table 6.6 contains the results of the relativistic bandstructures

shown in Fig. 6.8. The band gap measurements for the Gaussian and the cubic spline

CAFFP the upper-most valence band.
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dependent spin-orbit couplings. For a better agreement in ∆Eg, it is suggested in Ref. [3]

that a non-local pseudopotential be incorporated in the calculations. The comparison of

other energy levels at the special points Γ, L and X is satisfactory with the difference

being in the range of 0.01− 0.16 eV, for the energies calculated in this work, experiments

and Ref. [3].

Table 6.6: Comparison of the energy level (all in electron volt) of bulk AlAs, as obtained

in the current work with spin-orbit coupling to literature.

Energy levels: Present Gaussians Experiment Ref. [3]

Γv6: −11.83 −11.87

∆Eg 2.97 2.91 3.13a 3.05

Γc7 3.23 2.91 4.34b 4.36

Xc
6 2.17 2.10 2.23a 2.27

Lc6 5.00 4.86 2.54c 2.82

∆SO 0.22 0.33 0.28b 0.31
a B. Monemar [94]

b A. Onton [96]

c D. E. Aspen et al. [93]

6.4 AlAs/GaAs superlattice bandstructure calcula-

tions

Finally all is in place for the calculation of the (AlAs)n/(GaAs)n bandstructures. Since

AlAs and GaAs are closely lattice matched [41], the lattice constant of 5.65 Åwill be used

for the (AlAs)n/(GaAs)n superlattice, and therefore the superlattice are assumed to be

strain free. As mentioned before the atomic form factor of As in GaAs is not the same

as the atomic form factor of As in AlAs. The difference is due to the difference in the

core potential i.e. nucleus plus the inner electron shell, of the As atom is different in both
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materials [54]. In addition to this, in a AC/BC superlattice it is expected that the atomic

form potential of the C atom will be similar to that in the bulk AC region and that of C

inside BC will be similar to that of bulk BC. However at the interface the C atom can

have different number of nearest neighbor atoms, so neither the atomic form potential of

C in AC nor that C in BC are appropriate.

In this work we follow a similar approach as in Ref. [97]. Here we assume that the

interfaces are infinitely thin, so an electron is either in an AC region or in a BC region [3].

This allow for the use of two different C atomic form potentials fitted in AC and BC

as reported in section 6.2 and section 6.3. Furthermore, since the is no strain in the

layers of our superlattice and a common lattice constant of 5.65 Å is used in this work,

there is therefore no difference between AlAs/GaAs and GaAs/AlAs. The period of the

superlattice reported here is for n = 1, 4 and n = 8 with the grown in the z-direction

i.e. (001). The reason we avoided calculations beyond n = 8, is due to the fact that the

matrix size to be solved increases with the number of layers, and therefore this might be

demanding computationally as explained in Chapter one.

The superlattice bandstructures will be plotted from R, to Γ and to M this is because our

main interest is to calculate band gaps at these special points. Figures 6.9, 6.10 and 6.11

shows the bandstructure (AlAs)n/(GaAs)n for n = 1, 4 and 8 respectively. Following on

these figures is table 6.7 which compares the results of the present work to theory and ex-

periments. Table 6.8 compare the band gap measured at R, Γ and M of (AlAs)n/(GaAs)n

for n = 1, 4 and 8, calculated without the spin orbit coupling.

The spin-orbit interactions are the interaction between the spin-induced magnetic mo-

ment and the magnetic field as experienced by an electron [15]. The effects of spin-orbit

couplings in band theory are well documented in Refs. [15, 16, 54]. In most cases the

spin-orbit interactions are responsible for splitting of the degenerate energies. For most

semiconductor material the splitting occur on the valence bands near the zone i.e. Γ = 0.

In Figs. 6.9, 6.10 and 6.11 the splitting of degenerate bands along the wave vector k can

be observed. At Γ = 0, we have the spin split-off band, as the wave k increases the doubly

degenerate bands split in to the heavy hole and the light hole. The valence band splitting
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is not calculated in this work but in most cases it just a few hundreds of mill-electron

volts. Munzar [98] calculated the heavy-hole-light hole splitting in GaAs/AlAs superlat-

tices by employing Eppenga’s [99] six band k·p for the description of the valence band of

GaAs/AlAs superlattices.

The present results compared to experiments show that the band gap obtained in the

this work has a difference of 0.22 eV for n = 1 and 0.21 eV for n = 4. For n = 4 the

comparison is between the present work and that from Ref. [3] shows a difference of 0.1

eV which is not too bad. Our results reveals that there is no much difference between the

energy gap calculated using the cubic spline CAFFPs and the Gaussian CAFFPs for the

energy gap. The difference in the energy gaps between the Gaussian CAFFPs and the

cubic spline CAFFPs is 0.02 eV for n = 4 and 0.11 eV for n = 8, for n = 1 the measured

energy gaps are equal.

Table 6.7: Comparison of the energy gap, ∆Eg (in electron volt) of (GaAs)n/(AlAs)n as

obtained in the present work with the inclusion of the spin-orbit coupling to experiments

and other theoretical models.

Fundamental energy gap ∆Eg

No. of layers Present Gaussians Experiment [100] Ref. [3]

1 1.98 1.98 2.20 2.02

4 1.98 1.96 2.19 2.08

8 1.85 1.96 1.91

Table 6.8: Comparison of the energy gaps calculated by the cubic spline CAFFPs and

the Gaussian CAFFPs measured at R, Γ and M (in electron volt) of (GaAs)n/(AlAs)n

without spin orbit coupling.

Number of layers Cubic spline CAFFPs Gaussian CAFFPs

R Γ M R Γ M

1 2.80 1.98 4.34 2.78 1.97 4.33

4 2.82 1.98 2.84 2.77 1.96 2.82

8 2.79 1.98 2.84 2.77 1.96 2.82

67



The energy difference between the cubic spline and the Gaussian CAFFPs bandstruc-

tures at the special point is between 0.01 and 0.05 eV. The contents of table 6.8 suggest

that there is not so much significance between the bandstructures of (GaAs)n/(AlAs)n,

obtained by employing the cubic spline CAFFPs and the Gaussian CAFFPs.

68



R Γ M0.5 0.5
k /[2πa0 ]

−10

−5

0

5

E
/
[e
V
]

Figure 6.9: The EPM bandstructure of (GaAs)1/(AlAs)1 (001) superlattice plotted from

R[1
2
,1
2
,1
2
] to Γ[0, 0, 0] and then to M [1, 0, 0]. The bands have been scaled to have the zero

in energy at the maximum of the upper-most valence band.
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Figure 6.10: EPM bandstructure of (GaAs)4/(AlAs)4 (001) superlattice plotted from

R[1
2
,1
2
,1
2
] to Γ[0, 0, 0] and then to M [1, 0, 0]. The bands have been scaled to have the zero

in energy at the maximum of the upper-most valence band
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Figure 6.11: EPM bandstructure of (GaAs)8/(AlAs)8 (001) superlattice plotted from

R[1
2
,1
2
,1
2
] to Γ[0, 0, 0] and then to M [1, 0, 0]. The bands have been scaled to have the zero

in energy at the maximum of the upper-most valence band
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Chapter 7

Conclusion

7.1 Summary and discussion

The seminal paper by Mäder and Zunger[3] introduced the idea of using a linear combina-

tion of Gaussians in the EPM to interpolate the atomic form factor potentials. Although

this idea has been used extensively -indeed their paper has to date being cited more than

1200 times- we have seen that there is in fact no particular advantage in using this in-

terpolation when it comes for fitting the bandstructures by optimization. In the present

study the Levernberg-Marquardt algorithm was used to obtain optimized cubic spline

interpolations of the atomic form factor potentials. It was illustrated that due to the

piecewise nature of the cubic spline interpolations, a more rapid convergence towards the

optimal fit could be obtained for the same number of independent coefficients. Since

in the case of superlattice the bandstructure calculation, according to the EPM, can be

computationally demanding even on the best computers today, the rate of convergence is

an important consideration when trying to optimize form factors by directly comparing

the energy band structure of layered semiconductor systems.

A substantial part of this study involved developing the necessary codes, firstly to imple-

ment the basic EPM within the large basis approach and, secondly to incorporate these
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codes into Levenberg-Marquardt algorithm. Before we proceed to calculate the band-

structures of layered semiconductor material, we first calculated the bandstructure for

bulk semiconductor material. The fact that for bulk material, only the knowledge of the

atomic form factor potential at the discrete points of q is enough for bandstructure cal-

culations was confirmed. The reliability of the optimized cubic spline atomic form factor

potentials calculated in this work, is illustrated through the energy band gaps measured

in layered structures.

7.2 Out look for future work

Indeed the results obtained in this work are satisfactory, but there is still room for im-

provement. In future we plan to optimize the cubic spline atomic form factor potentials by

calculating a residual between layered structures calculated with other methods. Layered

structure calculations can be at computationally demanding incorporating other compu-

tational techniques such as parallization can assist in optimizing computational demands

that comes with such systems. We also plan to include an average C atomic form factor

potential when calculating a superlattice the form AC/BC as suggested in Ref. [3].
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[59] R. Winkler and U. Rössler, Phys. Rev. B 48, 8918 (1993).

[60] R. Martin, Electronic Structures (Cambridge, London, 2005).

[61] J. C. Phillips, Phys. Rev. 112, 685 (1958).

[62] J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

[63] L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

[64] S. Bloom and T. K. Bergstresser, Solid State Commum. 6, 465 (1966).

[65] G. Weisz, Phys. Rev 149, 504 (1966).

[66] J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, Phys. Rev. B 1, 2661

(1970).

[67] O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in

Science and Technology (Springer-Verlag, Berlin, 1982).

[68] N. Bouarissa, Phys. Lett. A 245, 285 (1998).

[69] M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione, and K. F. Brennan,

Journal of Applied Physics 88, 6476 (2000).

[70] K. Kassali. and N. Bouarissa, Solid State Electronics Chem. Solids 44, 501 (2000).

[71] F. Long, P. Harrison, and W. E. Hagston, J. Appl. Phys. 79, 6939 (1996).

[72] F. Oyafuso, P. Von Allmen, M. Grupen, and K. Hess, VLSI DESIGN 8, 463 (1998).

[73] R. A. Pollak, L. Ley, S. Kowalcyzk, D. A. Shirley, D. J. Chadi J. Joannopoulos, and

M. L. Cohen, Phys. Rev. Lett. 29, 1103 (1973).

[74] L. Ley, R. A. Pollak, F. R. McFeey, S. P. Kowalckyzk, and D. A. Shirley, Phys. Rev.

B 9, 600 (1974).

[75] W. D. Grobman and D. E. Eastman, Phys. Rev. Lett. 29, 1508 (1972).

77



[76] D. E. Eastman, W. D. Grobman, J. L. Freeouf, and M. Erbudak, Phy. Rev. B 9,

3473 (1974).

[77] K. C. Pandey and J. C. Phillips, Phys. Rev. B 9, 1552 (1974).

[78] J. C. Phillips and K. C Pandey, Phys. Rev. Lett. 30, 787 (1973).

[79] James R. Chelikowsky and Marvin L. Cohen, Phys. Rev. Lett. 32, 674 (1973).

[80] D. Brust, Phys. Rev. B 4, 3497 (1971).

[81] D. Dugdale, Ph.D. thesis, University of Durham, United Kingdom, Durham, 2000.

[82] H. P. Gavin, Tech. Rep. Duke University 1 (2011).

[83] S. Roweis, Levenberg-Marquardt Optimization. Tech. rep. , Available on line at

http://www.cs.nyu.edu/roweis/notes/Im.pdf (2013).

[84] M. Gilli, D. Maringer, and E Schumann, Numerical Methods and Optimization in

Finance (Academic Press, Waltham, MA, USA, 2011), Vol. 88.

[85] D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).

[86] Carl de Boor, A Practical Guide to Splines (Springer, New York, 2001).

[87] Kenneth L. Judd, Numerical Methods in Economics (MIT Press, United States of

America, 1996).

[88] W. Andreoni, A. Baldereschi, and R. Car, Solid State Commun. 27, 821 (1978).

[89] J. B. Xia, Phys. Rev. B 38, 8365 (1988).

[90] H. P. Langtangen, Python Scripting for Computational Science (Springer Verlag,

Berlin, 2004).

[91] T. C. Chiang, J. A. Knapp, M. Aono, and D. E. Eastman, Phys. Rev. B 21, 3513

(1980).

[92] D. D. Sell, Phys. Rev. B 6, 3750 (1972).

[93] D. E. Aspen, C. G. Olson, and D. W. Lynch, Phys. Rev. Lett. 37, 766 (1976).

78



[94] B. Monemar, Phys. Rev. B 8, 5711 (1973).

[95] D.J. Wolford and J. A. Bradeley, Solid State Commun 53, 1069 (1985).

[96] A. Onton, in Proceedings of the 10th International Conference on the Physics of

Semiconductors (USAEC, New York, 1970), p. 107.

[97] Z. Ikonic, G. P. Srivastava, and J. C. Inkson, Phys. Rev. B 46, 15150 (1992).

[98] D. Munzar, Phy. Stat. Sol. b 175, 395 (1993).

[99] R. Eppenga, M. F. H. Schuurmans, and S. Colak, Phys. Rev. B 36, 1554 (1987).

[100] W. Ge, W. D. Schmidt, M.D. Struge, L. N. Pfeiffer, and K. W. west, J. Lumin. 59,

163 (1994).

79


