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ABSTRACT 

Vegetation status is a key indicator of the ecosystem condition in a particular area. The study 

objective was about the estimation of leaf nitrogen (N) as an indicator of vegetation water 

stress using vegetation indices especially the red edge based ones, and how leaf N 

concentration is influenced by various environmental factors. Leaf nitrogen was estimated 

using univariate and multivariate regression techniques of stepwise multiple linear regression 

(SMLR) and random forest. The effects of environmental parameters on leaf nitrogen 

distribution were tested through univariate regression and analysis of variance (ANOVA). 

Vegetation indices were evaluated derived from the analytical spectral device (ASD) data, 

resampled to RapidEye. The multivariate models were also developed to predict leaf N. The 

best model was chosen based on the lowest root mean square error (RMSE) and higher 

coefficient of determination (R
2
)
 
values. Univariate results showed that red edge based 

vegetation index called MERRIS Terrestrial Chlorophyll Index (MTCI) yielded higher leaf N 

estimation accuracy as compared to other vegetation indices. Simple ratio (SR) based on the 

bands red and near-infrared was found to be the best vegetation index for leaf N estimation 

with exclusion of red edge band for stepwise multiple linear regression (SMLR) method. 

Simple ratio (SR3) was the best vegetation index when red edge was included for stepwise 

linear regression (SMLR) method. Random forest prediction model achieved the highest leaf 

N estimation accuracy, the best vegetation index was Red Green Index (RGI1) based on all 

bands with red green index when including the red edge band. When red edge band was 

excluded the best vegetation index for random forest was Difference Vegetation Index 

(DVI1). The results for univariate and multivariate results indicated that the inclusion of the 

red edge band provides opportunity to accurately estimate leaf N. Analysis of variance results 

showed that vegetation and soil types have a significant effect on leaf N distribution with p-

values<0.05. Red edge based indices provides opportunity to assess vegetation health using 

remote sensing techniques. 

Key words: foliar nitrogen, remote sensing, red edge, vegetation index, leaf N estimation, 

univariate regression, multivariate regression, indicator, vegetation stress, leaf  N map. 
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CHAPTER 1: BACKGROUND 

1.1. Introduction and background 

Vegetation health is dependent on leaf nitrogen (N) concentrations. Plant nutrient such as 

Leaf N concentration, leaf water content and plant pigments such as chlorophyll 

concentration can be used as indicators of water stress for vegetation (Field and Mooney, 

1986; Ollinger et al, 2002). Factors such as increasing temperature and inadequate water 

supply as a results of erratic rainfall or unfavourable climate, affect the health or condition of 

vegetation. Vegetation also experience stress due to suboptimal conditions, leading to plant 

physiological functions such as light and dark photosynthesis decline from their physiological 

standard (Logan et al, 2003; Ninements, 2010).  

Human action has altered the land surface significantly since the beginning of industrial 

revolution, as more than half of accessible water is used by man. More nitrogen is fixed 

through anthropogenic means than any other way; this is a clear indication of the impact of 

man on the environment (Vitousek et al, 1997). A practical example of man-made activities 

include burning of fossil fuels which affect the environment including vegetation negatively 

through emissions of toxins such as carbon monoxide, sulphur dioxide and heavy metals 

(Kampa & Castanas, 2008). Impacts of anthropogenic (man-made) activities on vegetation 

health include agricultural activities, mining and urbanization. It is evident that the impact of 

human beings on the environment is increasingly strenuous, hence the need to study how 

vegetation reacts to stress. 

The Waterberg area has developments which impact on the natural vegetation, such as 

mining, agriculture, and urban development. For an example the residential development in 

the town of Lephalale, the construction of the second power station named Matimba B and 

the commissioning of additional open cast coal mines are likely to cause an increase in water 

requirements as well as effluent to process in the catchment (Ramoelo et al, 2014). 

Hydrological transfer schemes to the Mogol River will seem to increase the water availability 

and planned rising of the Mokolo Dam wall will further change hydrological conditions to 

which riparian vegetation will be exposed to. Monitoring the condition of natural resource 

base and its ecosystem services can enable management intervention and conservation 

planning of ecosystems.  
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Ramoelo et al, (2013) studied vegetation nutrients in a context of sustainable livestock and 

wildlife grazing, whereby amongst other objectives of the study was to estimate and map 

foliar and canopy N at a regional scale using high resolution spaceborne multispectral sensor 

(i.e. RapidEye). The RapidEye sensor contains five spectral bands in the visible-to-near 

infrared (VNIR), including a red edge band centered at 710 nm. The importance of the red-

edge band has been widely demonstrated in many studies for estimation of foliar chlorophyll 

and leaf N concentration, especially through field spectroscopy (Cho & Skidmore, 2006; 

Darvishzadeh et al, 2008; Huang et al, 2004). It is known that grass N concentration is an 

indicator of grass quality as it is positively correlated to protein content (Clifton et al, 1994; 

Wang, 2004). Recently, Ramoelo et al, (2014) demonstrated that remote sensing tools can be 

used to assess plant water stress, using leaf water potential and leaf N as indicators. The study 

did not assess the relationship between leaf N distribution and environmental parameters, 

including vegetation, soil and geological types, so this study aims to fill such a gap. 

This study intends to estimate leaf N as an indicator of vegetation water stress using remote 

sensing techniques. The study will further assess how leaf N is influenced by other 

environmental factors. Success in estimating leaf N was possible because of the development 

of hyperspectral remote sensing. Hyperspectral remote sensing have displayed the utility of 

red edge bands to estimate leaf N and chlorophyll concentrations (Cho & Skidmore, 2006; 

Darvishzadeh et al, 2008; Huang et al, 2004). In this study, vegetation indices computed from 

red edge bands, also known as red edge based broadband indices derived from red (710 nm) 

and near infrared (800 nm) (Hansen and Schjoerring, 2003; Mutanga and Skidmore, 2007; 

Ramoelo, 2014) were tested to assess a potential to predict vegetation water stress. 

1.2. Problem statement 

The problem researched in this study is whether leaf N concentration in vegetation, acts as an 

indicator of water stress or not. This is due to land use impacts around Lephalale area which 

calls for the study of the current hydrological conditions effects. These include the second 

power station construction (Matimba B); and the commissioning of another open cast coal 

mines which increases water needs and effluent to process in the catchment. Estimating leaf 

N as an indicator of vegetation water stress will help to understand environmental impact of 

the land use in Lephalale area. 

Remote sensing indices help in estimating vegetation condition at sub-regional level for 

monitoring purposes. Therefore several vegetation indices are investigated to predict leaf 
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nutrients during wet periods. Vegetation indices computed from red edge bands which are also 

called narrow-band indices, improve estimation of leaf N better than conventional broad-band 

indices derived from red (680 nm) and near infrared (800 nm) (Hansen and Schjoerring, 2003; 

Mutanga & Skidmore, 2007). There are a few systems to monitor natural vegetation condition 

over a large area. The purpose of this study is to estimate leaf N as an indicator of vegetation 

condition using vegetation indices and various statistical techniques.  

More innovation in this study is the development of leaf N estimation models based on ASD 

measured data re-sampled to RapidEye spectral band configurations. Eventually, the best 

models will be inverted on the actual RapidEye image to estimate the spatial distribution of 

leaf N. 

 

1.3. Aims and research objectives 

The study aims to asses water stress on vegetation using leaf Nitrogen (N) concentration as 

an indicator: 

Specific objective: 

 To estimate leaf N concentrations using vegetation indices  

 To determine if leaf N concentration vary across different vegetative land cover or 

vegetation types. 

 To determine if foliar concentration vary across different soil types, slope and aspect. 

 

1.4. Research hypotheses 

Hypotheses 

 Alternative hypothesis: The inclusion of red edge band in the vegetation indices 

improves the estimation accuracy of leaf N.  

o The null hypothesis: The inclusion of red edge band in the vegetation indices 

does not improve the estimation accuracy of leaf Nitrogen. 

 The alternative hypothesis: leaf N varies across different vegetative land cover or 

vegetation types.  
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o The null hypothesis: Leaf N does not vary across different vegetative land 

cover or vegetation types.  

 

1.5 Motivation of the study 

Water is a limited resource in the semi-arid environments. High proportion of water in the 

semi-arid environments are used for various developmental activities such mining, 

agriculture and domestic use. Often, these activities out-compete natural vegetation through 

water use, which induces vegetation stress. The vegetation stress or condition has high 

implications to the conservation of biodiversity, which could eventually lead to the loss of 

species and their habitats. Land use by man alters the entire ecosystem (Vitousek et al, 1997), 

and the area of Lephalale is under serious developments of mining, agriculture, urbanization.  

Therefore, there is a need to develop and assess spatially explicit tools to monitor the 

condition of the vegetation. Remote sensing has proved to be an alternative tool to assess the 

status of vegetation. This technique collects a lot of environmental impact data in the most 

scientific and cost effective way through satellite imagery (Vitousek et al, 1997). Old 

methods of collecting environmental data cannot achieve what remote sensing accomplishes.  

This will enable the natural resource and environmental planners to take informed decisions 

to preserve or conserve biodiversity. 

1.6. Study area  

The study was conducted in Waterberg region, Limpopo Province (see Figure 4.1). The area is 

semi-arid with a general shortage of water. Several land cover types such as agriculture, private 

game reserves, power stations, built up (residential, industrial and commercial) and natural 

vegetation occur in this region (WDEMF-Draft Report, 2010). The erection of new power 

station in this area might exert more pressure on water availability and use. It is therefore 

imperative to understand the distribution of leaf N to know the vegetation stress levels. Below 

are the details of the geology, landscape, climate and hydrology of the study area.  
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Figure 4.1: Demonstration of the study area map with the rivers, dams and developments 

such as the mine in the Lephalale area. The insert map shows the red dot which represents 

where the study area is geographically located in the northern province of South Africa called 

Limpopo province.  
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Geology: The Waterberg District can be classified into five geological types which are 

Transvaal Super Group, Waterberg Group, Bushveld Igneous Complex, and the Archaean 

Granite/Gneiss and the Swazian Complex. Important sources of platinum and chromium are 

found in the Bushveld Ingneous Complex, while Karoo Super group contains coal deposits. 

Transvaal Super Group contains iron ore deposits. The Waterberg District Lithology studies 

show that there are 26 main rock types (WDEMF-Draft Report, 2010).   

Landscape: The district has unique landscape features distinguishing Lephalale from the rest 

in the country. It consists of four main landscapes which are Waterberg Plateau, the 

Transvaal Plateau Basin, the Pietersburg Plain and the Limpopo Depression. The Waterberg 

Escarpment character is an asset and should be well protected. The key selling point 

employed by the tourism sector for marketing strategy is the wide open bushveld plains of the 

Limpopo Peneplain which represent a special South African bushveld character. The slopes 

are steep and are inherently sensitive to change. The soil types of the area are diverse, and the 

major soil associations include weakly developed soils on mountains catchments, dystrophic, 

red and yellow, plinthic upland duplex and paraduplex soils on undulating middleveld, 

rugged terrain and uplands and rocky areas (WDEMF-Draft Report, 2010).   

Climate: The mean circulation of the atmosphere over southern Africa is anticyclonic 

throughout the year. Air circulation has a direct effect of dispersing air pollution and that is 

because of various reasons. The northern and western regions of the area have a hot and 

semi-arid climate. The Waterberg District Municipality Air Quality Management Plan 

provided the information for the atmospheric conditions and wind. There was no measurable 

evidence of global warming or climate change from the information, due to significant 

natural fluctuations (WDEMF-Draft Report, 2010). 

Hydrology: The district is covered by the Limpopo water management area and the 

Crocodile (West) and Marico Water Management Area. There are five catchments within 

Waterberg District boundaries which are: Lower Crocodile River Sub-catchment; Mokolo (or 

Mogol) River Catchment; Lephalale River Catchment; Mogalakwena River Catchment; and a 

small-portion of the Olifants River Catchment. Most rivers drain in the north-westerly 

direction to the Limpopo River. The main dams in the Waterberg District Municipality are 

Mokolo Dam, the Doorndraai Dam, and the Glen Alpine Dam. Rivers are in a fair condition 

and groundwater is limited, and remains an important resource in the area (WDEMF-Draft 

Report, 2010). 
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1.7 Guide to chapters 

There are six chapters in this dissertation which are chapter 1 with background of the study 

including problem statement, aims and objectives, research hypotheses, motivation, the study 

area details and guide to chapters. Chapter 2 is all about literature review, followed by 

chapter 3 with the methodology of the research. The fourth chapter presents results, then the 

discussion is under chapter 5, and lastly is chapter 6 elaborates on conclusion and 

recommendations of the study based on findings made. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction     

2.1.1. Importance of N in ecosystem 

Global change including climate change and land cover-land use change are postulated to be 

the drivers of change in vegetation quality and quantity. Vegetation quality and quantity are 

signals of health (nutrient and pigment content) and productivity of the ecosystems. Plant 

nutrients such as N concentrations and pigments such as chlorophyll concentration, can act as 

indicators of condition and water stress in vegetation. Water content, plant nutrient and 

pigments influence the rate of photosynthetic activities. Litter decomposition, leaf respiration, 

growth rates and nutrient cycling also act as indicators for ecosystem condition (Field & 

Mooney, 1986, Ollinger et al, 2002). Leaf nitrogen concentration relates to net 

photosynthesis across various plant species and functional groups, thus represents a link 

between terrestrial cycles of nitrogen and carbon cycles (Field & Mooney, 1986, Reich et al, 

1992). It is important to quantify the leaf N concentration to understand the stress levels or 

the condition of vegetation. 

Nitrogen remains one of the most crucial and vital biochemicals that vegetation needs as a 

major part of proteins and nucleic acids, also helps as a regulator of carbon assimilation in the 

carbon cycle (Wright et al, 2004; Field & Mooney, 1986; Ollinger et al, 2002). Studies have 

been conducted, such as those assessing the availability of N as a key constraint of carbon 

cycling in terrestrial ecosystem, to consider the role of N in the earth’s climate system. Leaf 

N is a key variable for photosynthesis, and if it is limited plants are stressed.  

 

2.1.2. Vegetation stress assessment 

Vegetation stress is due to suboptimal conditions which could be caused by global change, 

leading to the decline in plant physiological functions such as light and dark photosynthesis 

(Logan et al, 2003; Ninements, 2010). Leaf nitrogen (N) levels are associated with 

photosynthetic capacity and aboveground net primary production (ANPP), thus 

representation of a simple and meaningful link between terrestrial cycles of N and Carbon 

cycles. Understanding the spatial variability of leaf N on a landscape, suitable tools and 

techniques are required. Remote sensing tools can aid in understanding the distribution of N, 
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which can assist in the ecosystem such as assessments of wildlife. Importance of foliar 

chemical composition cannot be overemphasised, since data about ecosystem processes can 

be acquired through remote sensing (Wessman et al, 1988, Abber & Federrer, 1992). Leaf N 

relates to maximum photosynthetic rate (Field & Mooney, 1986, Reich et al, 1992), and to 

water availability. Foliar chemistry remote sensing is important as it helps in large scale, 

spatially explicit estimates of ecosystem’s role and vitality.  

Leaf N concentration and protein content are related (Clifton et al., 1994; Wang et al, 2004) 

as proteins are some of the major nutrients for the herbivores, so estimating leaf N helps to 

inform and advise in fields such as agriculture (Prins & Beekman, 1989; Prins & van 

Langevelde, 2008). Assessing the spatial patterns of leaf N concentrations can assist in 

effective planning and management of savannah rangelands for sustainable livestock and 

wildlife grazing. Studies suggest that the availability of leaf N affects canopy spectral 

reflectance measurements. Nitrogen deficiency leads to decreased chlorophyll content 

(Moorby & Besford, 1983, Peñuelas et al, 1994). Severe N limitation causes plants to reflect 

more on the spectral region due to lower chlorophyll content. In other words N stress 

(chlorosis) has an impact on vegetation indices, which influences changes in soil cover, plant 

density and vegetation colour (Steven et al, 1990).  

2.2. Conventional means for estimating leaf N 

The old methods of estimating nitrogen among others are chemical tests like the Kjedahl 

method, SPAD meter device, and leaf colour chart (LCC). SPAD meter is a hand held and 

non-destructive device which measures chlorophyll concentration, through leaf transmittance 

in the red and near-infrared electromagnetic spectrum. It measures chlorophyll by producing 

transmittance values proportional to leaf chlorophyll amount (Uddling et al, 2007), 

calibration curves are used to convert SPAD meter readings to absolute chlorophyll values 

(Markwell et al, 1995).  

Chemical methods include Kjedahl method invented by a chemist named Johan Kjeldal in the 

year 1883. It helps to quantitatively determine nitrogen in chemical substances. The method 

was designed to study proteins in malt production, especially for quick and accurate 

determination of nitrogen content. It is a three steps method which are called: (1) digestion in 

which nitrogen is decomposed in organic sample by boiling in sulfuric acid to form 

ammonium sulphate solution, (2) distillation step involves addition of excess base to the acid 

mixture in which ammonium (NH4) will be converted to ammonia (NH3) and lastly (3) 
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Titration process is when the amount of ammonia is quantified in the receiving solution, the 

nitrogen content will be then calculated from ammonia ions (LABCONCO, 2012).  

The other method is Leaf colour chart (LCC) which is a colour chart with shades of leaf 

colour from light green to dark green (King-Brink & Sebranek, 1993). LCC tool is used as an 

indicator of leaf colour, and has 6 different colour shades from light yellowish green in the 

first chart to the dark green on the last chart. This tool takes the reading from two weeks after 

transplanting to initiation of flowering, whereby the colour of the leaf is measured by 

comparing the leaf colour with the colour of the shades of LCC. The colour of each leaf is 

measured by holding the tool on the leaf and comparing the colour of the chart with that of 

the leaf. If the colour of the leaf is between the two charts then the mean of the two values 

will be calculated. A reading below 4.0 means there is leaf N deficiency while a reading 

above that means that the leaf or vegetation has N (Regmi, 2006). The other technique is 

called Dumas method. It measures the total nitrogen gas through combustion, using 

automated instrument, and has good precision and high throughput of samples (King-Brink 

and Sebranek, 1993). 

 

2.2.1. Point based assessment of leaf N 

Plant nutrients such as N were estimated and mapped by time consuming field data collection 

methods, on small or localized scale basis. Remote sensing combined with ecosystem 

models, employ one approach to estimate forest ecosystem function on a regional scale 

(Martin & Aber, 1997). One of the cost effective methods which was applied in estimation of 

leaf area and feeding damage (herbivory), is the desktop scanner. It is used to estimate the 

leaf area removed from the low, medium, or high degree of simulated leaf feeding.  

This leaf area meter unfortunately overestimate low levels of simulated feeding injury. The 

method is used with the aid of a desktop scanner and requires two steps: firstly creation of a 

digital image files, secondly calculating the area represented by the image. Time required to 

measure leaf impact is shorter than with leaf area meter. It is a less complex and cost-

effective method of estimating leaf area and feeding damage. It also helps in some 

experiments where pre-feeding measurement of the leaf is either challenging or undesirable, 

or when there are low amounts of feeding (O’neal et al, 2002).   
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2.2.2. Chemical analysis, using several methods 

Chemical analysis methods used for foliar estimations, are slow, expensive and challenging 

to map or estimate over large geographic areas (Curran, 1989). Nutrient cycling measurement 

and process such as photosynthesis are important for assessment of exchange of greenhouse 

gasses between soil, vegetation and atmosphere (Mooney et al, 1987, Steudler et al, 1989, 

Worfsy et al, 1993). The Kjedahl method is one of the most accurate and unfortunately 

cumbersome, as it may take a week for a total of 72 samples to be analysed. A method such 

as this is not suitable if the aim is to rapidly estimate nitrogen concentration in large areas.  

The other chemical based method is the SPAD meter (also called chlorophyll meter)  for 

chlorophyll measurement, using colour chart with shades, with leaf colours from light green 

to dark green (Auearunyawat et al, 2012). The common thing between SPAD meter and LCC 

is that they help to adjust fertilizers N when plants have a deficiency of N (Balasubramanian 

et al, 1999). SPAD meter and LCC are not used simultaneously as each device can be used 

independently for similar or different purposes. Islam et al, 2009 correlated the results from 

both devices to study effect of change and impact of environmental parameter. 

Radiochemical methods are also the other N estimation techniques, used for analysis of 

nitrogen and protein, but require costly instrumentation (Pomeranz & Moore, 1975).  

Old methods can be exclusive and specific for a particular point of interest, especially in the 

cases where the aim of the study is not to cover larger areas. These methods are labour 

intensive and consume time, but results obtained can help in small scale studies that are not 

intended for large areas. These methods can give reliable results which can also be 

comparable and give similar outcomes just like advanced methods, as long as correct 

procedures, sampling, tests, estimations or quantifications are conducted. The downside of 

methods such as the chemical based, are that they can be laborious and destructive at times to 

natural flora. The other factor is the time consuming nature of the conventional methods 

which often negatively affects the time to make an informed decision. For large scale 

application for assessing leaf N, the conventional methods are just not suitable, as sampling, 

because of the above factors.  
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2.3. Estimation of leaf N using remote sensing 

2.3.1. Use of vegetation indices 

Vegetation index can be defined as an indicator that describes the greenness, thus the relative 

density and health of vegetation for each picture element/pixel in satellite (Tucker, 1979). 

The common technique for estimating vegetation parameters is the use of vegetation indices 

as predictors. NDVI and SR indices based on hyperspectral data computed from red-edge 

bands, provide accurate estimates of leaf N compared to conventional NDVI derived from 

680nm and 800nm (Mutanga and Skidmore, 2007; Ramoelo et al, 2012). NDVI is a 

technique that employs numerical indicator through the aid of visible and near infrared bands 

of the electromagnetic spectrum to observe the greenness of the target (Tucker, 1979).  

Successful estimation of leaf N using vegetation indices such as red edge position, depends 

mainly on chlorophyll concentration (Clevers et al, 2002; Mutanga et al, 2004; Cho and 

Skidmore, 2006; Numata et al, 2008), this assumes a positive correlation between leaf N and 

chlorophyll concentrations (Vos and Bom, 1993; Yoder and Pettigrew-Crosby, 1995). This 

method is limited because the dependence on the plant phenology, meaning that the 

relationship will deteriorate as leaves senesce (Wang et al., 2009). 

 

2.3.2. Use of known absorption features to estimate leaf N 

Electromagnetic spectra have absorption features which are known specific regions, linked to 

electron transition or physical bond vibrations of the specific foliar biochemical 

concentrations (Darvishzadeh et al, 2008; Knox et al, 2011). The electron transitions in 

chlorophyll (400-700 nm) and O-H bond in water stretch & bend for absorption features to be 

realised (Osborne & Fearn, 1986; Williams & Norris, 1987). A better understanding of 

absorption features lies in the biochemistry of plants as they are made up of hydrogen (H), 

carbon (C), oxygen (O), nitrogen (N). In other words plants absorption bands exist because of 

vibrations of bonds that are presented in this manner: C-O, O-H, C-H and N-H together with 

other vibrations and overtones (Curran, 1989). Absorption features are studied through 

hyperspectral remote sensing or imaging spectroscopy and are closely linked to plant 

nutrients such as leaf N.  
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Determining the wavelength and spectral features related to biochemicals of interest helps to 

achieve known absorption features. Hyperspectral remote sensing technique estimates leaf N 

by using spectral absorption features situated in the near-infrared (NIR) and shortwave 

infrared (SWIR). Absorption features are studied through near infra-red spectroscopy (NIRS) 

by selecting wavelengths and spectral features, which relates to any biochemical of interest 

such as leaf-N (Card et al, 1988, Curran et al, 1992, Grossman et al, 1996). For this study 

absorption features of leaf N are centred at wavelengths: 430 nm, 460 nm, 640 nm, 660 nm, 

910 nm, 1510 nm, 1940 nm, 2060 nm, 2180 nm, 2300 nm and dominate in the SWIR 

(Curran, 1989).  

Methods that only use red and near-infrared bands are only sensitive to leaf pigments that 

have strong absorption differences at either of the two sides of the red edge/710 nm band. 

The disadvantage is that the technique becomes limited especially when estimating 

concentrations of leaf nutrients, as they have many absorption bands lying outside the red and 

near-infrared region (Dixit & Ram, 1985; Shah et. al, 1990; Tsai & Phillip, 1998; Wessman, 

1989). Leaf N estimation using NIR and SWIR may be inaccurate because of reflectance of 

leaf water content which masks the absorption features of biochemicals (Gao & Goetz, 1994, 

1995; Fourty & Baret, 1998).  

 

2.3.3. Use of full spectra to estimating leaf N 

High spectral resolution sensors can help to study the detection and mapping of foliar 

chemistry and vegetation stress. These sensors are based on resolution specifications such as 

narrow channels sensors, thus fewer than 2 nm bandwidths. Spectral resolution is the manner 

in which spectral spaces are divided in the number and range of wavelength, spectral breath 

of each wavelength sample, including the number and contiguous nature of sampled 

wavelengths (Mutanga et al, 2009). Full spectral based leaf N estimation can be achieved by 

using hundreds of bands in hyperspectral study, using techniques like stepwise multiple linear 

regressions. Such techniques can lessen the dimensionality of the data, to maximize leaf N 

estimation. The limiting factor of full spectrum, when combined with SMLR is overfitting 

and multicollinearity (Curran, 1989; Martens & Naes, 2001), these two are always higher in 

dimensionality of the full spectrum data (Curran, 1989).  
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The other technique which minimises limiting factors such as labour and time consumption is 

Partial least square regression (PLSR). This method combines the most useful information 

from hundreds of bands into the first several factors, while less important factors may likely 

include background effects (Bolster et al, 1996). The method also reduces background effects 

and avoids the potential over-fitting challenges associated with SMLR. Technical challenges 

such as different scattering effects occur because of sample differences such as additive 

offsets (baseline shifts) and multiplicative effects (Datt, 1998). These can be accounted for 

and corrected before any statistical models are used to reduce the background effect (Bolster 

et al, 1996). Ramoelo (2012) used full spectrum technique to estimate the nitrogen (N) to 

phosphorus (P) ratio using multivariate technique of partial least squares regression (PLSR),  

coupled with continuum removal technique. The findings revealed that N: P ratio was 

successfully estimated using field spectra and partial least square regression.   

 

2.3.4. Use of integrated modelling approach (combining RS and environmental 

parameters) to estimate leaf N 

Integrated modelling approach estimates biochemical concentration by combining 

environmental variables such as climate, topography with in situ hyperspectral variables 

(Ramoelo et al, 2011). A study by Ramoelo et al, (2011) tested the performance of the non-

linear partial least squares regression (PLSR) to predict grass N and P concentrations. The 

study highlighted that when non-linear partial least squares regression (PLSR), is integrated 

in situ hyperspectral with environmental variables; there is improvement in grass nitrogen (N) 

and Phosphorus (P) estimation accuracy. This is better than only using remote sensing 

variables or conventional PLSR.   

The other study entails two-step method first, using vegetation indices and second integration 

of vegetation indices with environmental variables through SMLR and non-linear partial least 

squares regression PLSR. This research was pursued because there were fewer studies 

focusing on the leaf biochemical concentration estimation at a regional scale, using 

integration of environmental and remote sensing variables (Cho et al, 2009; Cho et al, 2010; 

Knox et al, 2011, Ramoelo et al, 2011; Ramoelo, 2012). Ramoelo, (2012) found that altitude 

combined with red-edge based vegetation indices were significant in estimating leaf N. Knox 

et al, (2012) demonstrated that combining absorption features and ecological or 
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environmental parameters improves estimation of leaf N. The challenge in using this 

technique is that environmental variables are often unavailable in usable accuracies. 

 

2.4 Statistical methods 

2.4.1. Univariate statistical analysis based on vegetation indices 

Simple linear regression or univariate is used to study the relationship between two variables, 

one being the dependant variable while the other is an independent or predictor variable. This 

type of regression fits a straight line plotted on a graph called scatter plot, to predict the 

outcome between the dependant (leaf N) and independent variable (either wave-bands or 

vegetation indices) (Dowdy et al, 2004). Use of vegetation indices were mainly based on 

simple regression, which determines the relationship between leaf N and indices or wave 

bands, for this study leaf N is the dependant variable while either waveband or vegetation 

indices are independent variables.    

 

2.4.2 Multivariate estimation of leaf N 

Researchers usually have to choose an appropriate statistical technique when conducting 

quantitative research. The correct choice depends on an accurate and appropriate research 

question (Metler, & Vanata, 2002). Simultaneous analysis of independent variables with 

dependent variables with the help of matrix algebra describes multivariate regression in 

simple terms (Dowdy et al, 2004). Multivariate statistical method is applied when several 

measurements are made on each individual in one or more samples. These techniques have 

been applied in fields such as biological sciences, geology, mining and many others. For 

example SMLR has been successful in biochemical estimation such as leaf N; however it has 

disadvantages such as over-fitting and multicolinearity (Curran 1989; Martens & Naes 2001) 

and has challenges when transferring predictive models to other data sets, or site (Grossman 

et al, 1996).  

 

 

 



16 
 

Stepwise multiple linear regression (SMLR) and partial least square regression (PLSR) 

Foliar biochemical concentrations are important indicators of the ecosystem processes. 

Studies have shown that remote sensing arguably offers the only practical solution when 

compared to chemical methods used for foliar estimations. Such methods are slow, expensive 

and pose challenges when mapping or estimating over large geographical areas (Curran, 

1989). In other words data collected through remote sensing provides hundreds or thousands 

of bands within visible to near-infrared wavelengths to identify many subtle absorption 

features attributable to a wide range of chemicals. Leaf N is an important indicator of 

photosynthetic rate and overall nutritional status (Curran, 1989; Field & Mooney, 1986). This 

has been observed after many spectroscopic studies.  

SMLR is usually used to estimate biochemical concentrations although it has disadvantages 

of over-fitting and multicolinearity (Curran, 1989; Grossman et al, 1996). PLSR method on 

the other hand combines the most useful information from hundreds of bands into the first 

several factors, while less important factors may likely include background effects (Bolster et 

al, 1996; Atzberger et al, 2003). PLSR reduces background effects and avoids the potential 

over-fitting challenges associated with SMLR. Technical challenges including different 

scattering effects occurring because of sample differences such as additive offsets (baseline 

shifts) and multiplicative effects (Datt, 1998), are considered and corrected before using any 

statistical models. PLSR appears to be a good technique to estimate N, most probably due to 

its predictive power (Ramoelo, 2012; Huang et al., 2004). Several studies used multivariate 

techniques for estimation of leaf N with success (Ramoelo et al, 2011; 2013; Huang et al, 

2004). Examples of these studies include leaf N estimation in the savanna environments 

(Ramoelo et al., 2012; 2013); leaf N estimation in forest (Cho et al., 2010); and leaf N 

estimation in crops (Huang et al., 2004; Habounde et al., 2002) 

 

The use of machine learning techniques (Random forests) 

Random forest is an ensemble (combination of results from different models) classification 

method that uses many tree models, in a regression or classification mode (Breiman, 2001). 

Mutanga et al, 2012 used random forest regression and SMLR to predict biomass estimation 

for wetland vegetation through WorldView-2 imagery. Random forest regression the better 

predictor of wetland biomass with a root mean square error prediction (RMSEP) of 0.0441 
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kg/m
2
 (a better observed mean biomass of 12.9 %), compared to that of SMLR which was 

root mean square error prediction (RMSEP) of 0.5465 kg/m
2
 (a poor observed mean biomass 

of 15.9 %). The other study which used random forest to estimate leaf area index (LAI) was 

conducted by Vuolo et al, (2013). LAI was investigated from the two agricultural areas one 

in Italy while the other was in Austria. The random forest regression mode results were as 

follows: the Italian agricultural area (RMSE= 0.502 and R
2= 

0.82) which had lower errors 

when compared with the Austrian agricultural area (RMSE= 0.860 and R
2= 

0.017). 

Random forest regression mode was again used to estimate canopy height in French Guiana 

with ICESst/GLAS data. The result revealed the random forest regressions were better 

compared with linear models. The relationship between GLAS metrics and canopy heights is 

not really linear; this might have affected the linear models results. Random forest 

regressions had RMSE of 3.4, thus the best configuration for canopy height estimation at all 

metrics used; and also showed a slight improvement in canopy height estimation with RMSE 

of 3.6 (Fayad et al, 2014).  

The last study was by Abdel-Rahman et al, (2013) using random forest regression and 

spectral band selection to estimate sugarcane leaf nitrogen concentration. In this study 

random forest regression algorithm was tested for a potential of selecting necessary spectral 

features in hyperspectral data to predict leaf N concentration. The findings of random forest 

were not so good compared to those of SMLR with R= 0.67, root mean square error 

validation RMSEV= 0.67 and a mean of 8.44%. This could have been affected by the lower 

parameters settings as the data here was for site specific applications which can help in the 

field of precision farming (Abdel-Rahman et al, 2013). 
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                   CHAPTER 3: METHODOLOGY 

         

Figure 3.1: Flow chart of the entire sections of the study process.  
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3.1 Data Requirements 

3.1.1. Field data collection 

o Sample collection using road sampling 

The field data was collected in December 2011 with the satellite overpass. It was mainly road 

sampling or road side sampling, as this was the accessible site to collect field data in the study 

area. The sampling approach was purposive in nature, since the random method could not be 

suitable because of the restricted access due to impermeable fences. The limitation of this 

approach could relate to the number of sample to be collected and the variability of nitrogen. 

Since the roads were prior selected covering various slopes and geological types, the desired 

variability was expected to be achieved.  About 5 leaves around the canopy of the tree were 

collected, to ensure full canopy coverage. For the grass samples, a plot of 20 x 20m was used. 

Two to three subplots of 0.5m x 0.5m were randomly placed and within each subplot, grass 

samples were cut. 

 

o Spectral measurements 

An Analytical Spectral Device (ASD) (FieldSpec 3) was used for spectral measurement in the 

field for each point visited, and this was done with satellite overpass. Leaf samples collected or 

harvested from the trees, spectral measurements were collected, and later averaged for each tree 

canopy. For the grass, canopy reflectance was measured in each subplot, and five 

measurements were made and averaged at a later stage. Using the spectral response function for 

RapidEye, the data collected was re-sampled to RapidEye spectral configurations. The re-

sampled spectra were used for further analysis. 

 

o Chemical analysis 

Leaf samples were dried at 80 
o
C for at least 24 hours at the laboratory to remove moisture and 

water content, while preserving the nutrient content. The samples were then taken to Bemlab 

laboratories for chemical analysis, and leaf N values were extracted using a Leco FP528 

nitrogen analyser (Horneck and Miller, 1998). The leaf N concentration was chemically 

analysed, and the unit of measurement is percentage of dry matter (%). 
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3.1.2. Satellite data – RapidEye 

The RapidEye multispectral data was already collected and available for use on this study. This 

satellite has a sensor type described as a multi-spectral push broom imager. Spectral bands of 

the satellite are as follows: sensor contains five spectral bands in the visible to near-infrared 

(VNIR) including red edge centred at 710 nm. It is a multispectral imager with spatial 

resolution of 6.25 m, and samples light in the spectral bands which are: blue (440-550 nm), 

green (520-590 nm), red (630-685 nm), red edge (690-730 nm), and near infrared (760-850 nm) 

(RapidEye, 2010). The ground sampling distance is 6.5 m, with a pixel size of 5 m, and has a 

swath width of 77 km, while the camera dynamic range of 12 bit and an image capture capacity 

of 5 million square km/day (RapidEye, 2009; Blackbridge, 2013). Images of RapidEye satellite 

were collected in December 2011, in order to predict the vegetation status at tree scale. Tree 

canopy was captured through the RapidEye Ortho product which was acquired at 5 m x 5 m re-

sampled spatial resolution. 

 

3.1.3. Environmental data or variables 

Spatial variability and distribution of leaf N on a landscape and its interaction with 

environmental data was analysed. The environmental data included soil, aspect, vegetation 

type, Digital Elevation Model (DEM) (altitude) and slope.   

 

o Vegetation type  

The vegetation map was acquired from South African National Botanical Institute (SANBI), 

and the vegetation types used for understanding the distribution of leaf N were: Limpopo Sweet 

Bushveld, Subtropical Alluvial Vegetation, Central Sandy Bushveld, Waterberg Mountain 

Bushveld, Western Sandy Bushveld and Roodeberg Bushveld. Table 4.1 below describes the 

vegetation types studied. 
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Table 3.1: Vegetation types’s description information sourced from Mucina & Rutherford, 

2010 

Vegetation type Vegetation & landscape 

features 

Geology & soils Climate, 

distribution & taxa 

Limpopo Sweet 

Bushveld (SVcb 

19) 

The landscape of 

vegetation are plains, 

sometimes undulating or 

irregular, also on riparian 

areas such as tributaries 

of Limpopo river, and 

vegetation described as 

short open woodland.  

Geology is mainly 

gneisses, 

metasediments, 

metavolcanics, 

basalts, sandstone, 

siltstone and 

mudstone. Soils have 

calcrete & surface 

layers with clayey-

loamy form and black 

clayey soils. 

Hot and wet season 

from November to 

April. Maximum 

temperature +/- 38 

o
C. Common taxa are 

Acacia robusta (tall 

trees), Acacia 

tenuispina (low 

shrubs). 

Subtropical 

Alluvial Vegetation 

(AZa 7) 

The vegetation and 

landscape features 

described as riverine 

(relate to a river) terraces 

which supports intricate 

complex or macrophytic 

vegetation (in river 

flowing channels and 

river-fed pans). Includes 

highly flooded grassland, 

short lived herb land and 

riverine thickets. 

Found in deep fine 

structured sandy to 

loamy soils, usually 

water logged and 

prone to floods 

during rainy seasons. 

Has higher salt 

accumulation due to 

higher evaporation. 

This vegetation types 

are mainly found on 

channels of flowing 

river or river-fed 

pans, and in areas 

were water flows 

slowly. 

Hot and wet season 

from November to 

April. Subtropical 

seasonal summer 

rainfall climate 

conditions with 

temperatures up to 22 

o
C. Common taxa: 

Acacia Natalitia 

(small trees); Justicia 

flava (low shrubs); 

Salvadora 

angustifolia (tall 

shrubs). 
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Central Sandy 

Bushveld (SVcb 

12) 

Common in low 

undulating areas, sandy 

plains, supports tall and 

deciduous woodland on 

deep sandy soils.  Also 

on lower slopes on 

eutrophic sands, and less 

sandy soils. Dominated 

by grassy herbaceous 

layer and low basal cover 

on dystrophic (inadequate 

nutrition disorder) sands. 

In areas underlain by 

granite and 

granophyres (fine 

grained rock) rocks. 

Soils dominating are 

sandstone, 

conglomerate and 

siltstone. 

Hot and wet season 

from November to 

April. Maximum 

temperature +/- 35.3 

o
C. Taxa such as 

Combretum 

Hereroense (tall 

shrubs), Acacia 

burkei (tall trees).  

Waterberg 

Mountain Bushveld 

(SVcb 17) 

Commonly found in 

rocky mountainous areas. 

Vegetation characterised 

by bushveld on higher 

slopes & broad leaved 

deciduous bushveld. 

Grass layer is either 

moderately or well 

developed. 

Dominated by 

sandstone, 

subordinate 

conglomerate, 

siltstone and shale 

including medium to 

coarse-grained 

sandstone. Common 

soils features are 

sandy, loamy to 

gravely and 

dystrophic. 

Hot and wet season 

from November to 

April. Maximum 

temperature +/- 35.3 

o
C. Common taxa are 

Acacia robusta (tall 

trees), Acacia robusta 

(small trees)  

Western Sandy 

Bushveld (SVcb 

16) 

Vegetation type varying 

from tall open woodland 

to low woodland, broad-

leaved which includes 

microphylous tree 

species. Some vegetation 

found in shallow soil of 

gravelly upland sites and 

Geology of sandstone 

and mud-stone; 

siltstone and shale. 

Soils are mainly 

plinthic catena, 

eutrophic, red-yellow 

apedal which are 

freely drained with 

Hot and wet season 

from November to 

April. Maximum 

temperature +/- 35.3 

o
C. Taxa such as 

Combretum 

apiculatum (small 

trees), Terminalia 
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deep sands occurring in 

slightly undulating plains. 

high base status. sericea, Acacia 

burkei (tall trees) are 

common under this 

vegetation type. 

Roodeberg 

Bushveld (SVcb 

18) 

Found in landscapes such 

as plains, low hills, with 

closed woodland to tall 

open woodland. It is 

characterised by 

vegetation of tall open 

woodland and poorly 

developed grass layer. 

Geology is composed 

of sandstone, 

conglomerate, 

siltstone and shale, 

while the vegetation 

is found in sandy soil 

with red yellow 

apedal status. 

Hot and wet season 

from November to 

April. Maximum 

temperature +/- 37.1 

o
C. Common taxa 

include Acacia burkei 

(tall trees); 

Dichostachys cineria 

(tall shrubs); 

Commiphora 

africana (low 

shrubs). 

 

o Soils  

The soil types studied map was acquired from ARC through SOTER database and these soil 

types were: Rhodic Lixisols, Rubic Arenosols, Chromic Acrisols, Ferric Luvisols and Eutric 

Arenosols. Each soil type was assessed for their effect on leaf N distribution, using one-way 

Analysis of Variance (ANOVA). This was to test whether the soil types affects leaf N 

distribution by checking if the mean values of leaf N among soil types are equal or not. To 

determine if the soil types varied significantly in spatial distribution of leaf N distribution a 

criteria was used. The criteria was the p-value < 0.05 means that leaf N distribution varies 

significantly among the soil types, thus soil types affects the distribution of leaf N. The p-value 

> 0.05 means leaf N distribution does not vary significantly across soil types meaning leaf N 

distribution is not affected by the soil types. A box-plot (see Figure 5.4) of all the soil types 

helped to find out if the mean of soil types varied or was similar.   
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DEM – SRTM 90 m 

Digital Elevation Model – Shuttle Radar Topography Mission with a resolution of 90 meters 

(DEM – STRM 90 m) was also used to determine whether altitude influences leaf N 

distribution or not. DEM is a digital representation of cartographic (the practice of making 

maps) information in a raster form, this model has elevations for a number of ground 

positions at regularly spaced intervals (Nijmeijer et al, 2001). DEM is called a model because 

computer language uses the topographical data (map) to automatically analyze the study area 

in 3 dimensions, instead of the cumbersome and laborious human interpretation (Das, 2013). 

The STRM data was downloaded from Http://glovis.usgs.gov. 

 

o Slope  

Slope which is the gradient (steepness) of a unit terrain was computed from the DEM using 

ArcGIS 10.2.1 software (in degrees). Slope data was used to find out if it affects leaf N 

distribution or not. DEM in a raster format has elevation of individual cells, and slope as a first 

derivative of DEM represents elevation change. Calculation of slope was done in ArcGIS 

(through ArcToolbox or Spatial Analyst toolbar) as a raster with slope value for every cell 

presented in degrees for this study (Burrough & McDonell, 1998; ArcGIS 10.2.1, 1999-2013).  

 

For each cell the slope tool in ArcGIS computes the slope by calculating the maximum rate of 

change in value from that cell to its neighbours. The maximum change in elevation over the 

distance between the cell and its eight neighbours will identify the steepest downhill descent 

from the cell. The calculation is done by fitting a plane on the data points called z-values of a 

3 x 3 cell neighbourhood around the centre cell. An average maximum technique is utilised 

whereby; for every individual cell in the centre of 3 x 3 windows, the slope value calculation 

is based on the rate of change of the surface horizontally and vertically around the centre cell. 

For this study the output slope raster range of slope values was in degrees which are between 

0 and 90 degrees (Burrough & McDonell, 1998; ArcGIS 10.2.1, 1999-2013). 

 

o Aspect 

Aspect describes the direction of the slope and was computed from the DEM, as well. In other 

words the value of the output raster here is purely about the direction in which the slope faces 

http://resources.arcgis.com/en/help/main/10.2/009z/009z000000v2000000.htm
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in a clockwise direction. The input raster is either mosaicked or clipped or otherwise-prepared 

DEM, for example a hillside facing east has an eastern aspect. Calculating aspect is based on a 

concept of the down slope direction as a result of maximum rate of change of value from each 

cell to its neighbours. A plane is fitted on data points called z-values of 3 x 3 cell 

neighbourhood around the centre cell, so the direction that the plane faces will represent the 

aspect, while flat areas are given a value of -1.  The values of aspect in this study are measured 

in degrees from 0 to 360 (Burrough & McDonell, 1998; Das, 2013; ArcGIS 10.2.1, 1999-

2013). Aspect was tested for its impact on Leaf N distribution and concentration. 

3.2 Data Analysis  

For each point visited in the field, the reflectance on the Rapid Eye image was extracted for 

data analysis. NDVI,  SAVI and SR were derived using the red and near infrared bands. The 

aim of selecting the best predictive model is to invert it to the RapidEye imagery to derive a 

leaf N map. The statistics was done using SPSS and R programming language.   

3.2.1 Univariate – leaf N vs Vegetation indices 

Vegetation indices are useful to assess plant stress or health, and also to enhance vegetation 

greenness signal, while minimizing solar irradiance and soil background effects. Vegetation 

indices offers a better option than solar irradiance which depends on time and atmospheric 

conditions, because a simple light reflection measurement of objects is insufficient to 

accurately estimate biochemical such as leaf N (Jackson & Huette, 1991). A combination of 

data from two or more spectral bands creates a vegetation index. For best results the use of 

vegetation indices needs knowledge of input variable units to form indices including external 

environment, architectural aspects of vegetation canopy effects (Jackson & Huette, 1991). 

Univariate or simple regression technique was used to determine which vegetation indices 

correlated with leaf N well. The other important point to note is that the univariate regression 

displayed the effect of red edge in the estimation of leaf N, thus to see if the estimation 

accuracy is improved or not. 

 

3.2.2 Multivariate analysis 

o SMLR 
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Leaf N prediction models were studied using multivariate regression technique known as 

stepwise multiple linear regressions (SMLR). To test the applicability of all five bands in 

combination with best performing vegetation index, and to test effect of red edge band whether 

it improves leaf N estimation accuracy or not. The selection of the best model with specific 

important variables to estimate leaf N was done using the lowest Akaike Information Criterion 

(AIC) (Sakamoto et al, 1986). The process was implemented in R statistical programming 

language or technique. 

 

o Random Forest (RF) – implemented in rattle/ R 

Random forest was implemented in rattle software for leaf N prediction models as a 

multivariate regression technique, to test the applicability of all five bands in combination with 

best performing vegetation index and also to test effect of the red edge band. Breiman, (2001) 

developed random forest to improve regression trees by combining a large set of decision trees, 

whereby each tree is built by selecting a random set of variables and a random sample from 

training dataset.  

This is the workflow used in this study: different training data subsets are selected (about 2 or 

3 subsets) with replacement to train each tree; the remainder of the training data is used for 

estimation of error and variable importance. The number of trees from all trees and for 

regression will then makes class assignment, and then the average of the results is used. 

Randomly selected subset of variables are used to split every individual node whereby the 

user decides the number of variables to be used (Breiman, 2001; Horning, 2010). One of the 

characteristics of variables subsets is that small subsets produces less correlation thus lower 

error rate, and at the same time low predictive power has high error rate as well, so preferable 

value range is often wider (Horning, 2010). For this study number of trees (ntree) was a 

default value of 500, and the number of different predictors tested at each node (mtry) was a 

default value of 1.  

Random forest has common variables such as number of trees (ntree), input data (predictor 

and response), and number of variables to use at each split, error calculation & variable 

significance information, sampling with or without replacement (Breiman, 2001; Horning, 

2010). One of the benefits from random forest is the measurement of the frequency of the 

unique pairs of training samples will subsequently be in the terminal mode, this is called 
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proximity. Proximity is important to fill in lost or missing data and also for calculation of 

outliers. Advantages of random forest are quite profound they include easy setting of 

parameters, less sensitivity to outliers in training data, automatic generation accuracy and 

variable importance and the fact that overfitting is not an issue at all (Horning, 2010). The 

disadvantages exist as well, firstly regression is unable to predict beyond range in the training 

data, secondly in the case of extreme values of regression prediction is not desirably accurate 

as higher values are underestimated and lower values are overestimated. Although there are 

shortfalls and benefits, random forest remains vital in earth observation applications as it is 

utilised in regression (Horning, 2010). 

 

 Selection of the best model and validation 

The models were validated by bootstrapping statistical method implemented in R statistical 

programming language. Bootstrapping is an unbiased way of validating models by drawing 

many independent bootstrap samples to evaluate corresponding bootstrapped replications and 

most importantly estimating the standard error. It is described as a non-parametric method 

which repetitively re-samples the sample data in order to validate specific characteristics of a 

population (Fox, 1997). It is named bootstrapping derived from the “expression of pulling 

oneself by the boot straps”, the analogy used is that: “the population is to sample as the 

sample is to the bootstrap samples” (Efron, 1979). In other words the method creates a sort of 

a pseudo-data from the sample at hand, to explore the regression parameters variability so 

that the uncertainty in the estimated standard errors can be calculated (Freedman & Peters, 

1984).  

Models were bootstrapped by calculating the RMSE between the predicted and the measured 

values of the regression results. It is implemented in a computer through non-parametric or 

parametric maximum likelihood, by allowing computation of maximum likelihood estimates 

of standard errors (Efron & Tibshirani, 1993). The bootstrapping results validated the 

uncertainty of the root mean square errors from the study which was not much, meaning that 

the error rate of regression results was acceptable. The best prediction model was therefore 

chosen based on high coefficient of determination (R
2
) and a lowest root mean square error 

(RMSE).  
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3.2.3 Influence of environmental variables on leaf N distribution 

To investigate how leaf N distribution is influenced by the environmental parameters such as 

soils, vegetation types, digital elevation model (DEM), slope and aspect, basic statistical 

analysis were employed. For the categorical variables such as soil and vegetation types, one 

way analysis of variance (ANOVA) was used, based on the 95% confidence level (p-

value<0.05). For continuous variables such as altitude, slope and aspect, simple regression was 

used and leaf N was always put as a dependant variable, and it was also done with 95% 

confidence level (p<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             



 

29 
 

CHAPTER 4: RESULTS  

      

This section present results of the univariate analysis based on simple regression and the 

multivariate analysis based on stepwise multiple linear regression (SMLR) and random 

forest. The results also include the impact of environmental parameters on the spatial 

distribution of leaf N, including leaf N maps created from the best regression models. 

 

4.1. Descriptive statistics 

Leaf N in plants showed to be relatively higher with a mean of 1.78 %. The minimum and 

maximum values of leaf N were 0.93 and 4.18 % respectively; the lowest values can be 

associated with grass and the higher ones to trees. The variability of leaf N was high as 

demonstrated by the coefficient of variance (CV) of 33.91 %. This is because of the grass and 

tree leaf N values are combined, which present an interesting variation. 

 

4.2. Univariate analysis results: leaf N vs various vegetation indices 

The results of univariate analysis are presented in Table 4.1. Univariate statistical method 

showed that the red edge based vegetation index called MTCI yielded the best results in 

predicting leaf N (R
2
=0.1454, RMSE= 0.5625). This highlighted the importance of red edge 

on improving leaf N estimation, and the second best predictor was red edge or 710 nm band. 

The third best predictor of N was SR4 computed by bands such as NIR and the red band 

while the fourth was RE_NDVI (based on band 710 nm and 805 nm). The last one was SAVI 

(based on these bands, 805 nm near infrared band, 657 nm band, and L which is the soil 

brightness correction factor) (Qi et al, 1994). These top five bands demonstrates the positive 

effect of red edge in estimating leaf N. Figure 4.1 illustrates the results of simple regression 

as, with scatter plots of the top five vegetation indices and wave bands for estimating leaf N, 

thus the best vegetation indices and wave bands correlating with leaf N well. Generally, the 

relationship between leaf N and vegetation indices is poor (R
2
 <0.20). All top five performing 

vegetation indices are arranged in order of the best performing to the least performing 

vegetation index (1 as the best and 5 as the least perfoming vegetation index). 
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Figure 4.1: Scatter plots of the top five vegetation indices (X-axis) against leaf N (Y-axis) 

when using univariate or simple linear regression to determine vegetation indices which 

correlate with leaf N, based on the highest coefficient of determination (R
2
) criteria. These 

top five vegetation indices/ wave bands are: 1. MTCI= MERIS Terrestrial Chlorophyll Index, 
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2. 710 nm or red edge wave band, 3. SR4= Simple Ratio, 4. RE_NDVI= Red Edge_ 

Normalised Difference Vegetation Index  and 5. SAVI= Soil Adjusted Vegetation Index. 

Table 4.1: Tabulated results of univariate regression for each band or vegetation index against 

leaf Nitrogen, a value of R
2 

that is closer to 1 means the N-estimation model is good while a 

value closer to 0 means the model is not good, while a p-value that is less than 0.05 also 

means the N-estimation is good which is termed 95 % significance level. The vegetation 

indices and wave bands are: 475= Blue, 555= Green, 657= Red, 710 nm= Red-edge 805= 

Near Infra-Red, NDVI= Normalised Difference Vegetation Index, RE_NDVI= Red Edge_ 

Normalised Difference Vegetation Index, SR= Simple Ratio, RE_SR= Red Edge_ Simple 

Ratio, MTCI= MERIS Terrestrial Chlorophyll Index, GI= Green index, RGI= Red/ Green 

Index, RGI1= Red/ Green Index, BGI= Blue Green Pigment Index, BRI= Blue Red Pigment 

Index, GRR= Green-Red Ratio, NGRR= Normalized Green-Red Reflectance, NGRR1= 

Normalized Green-Red Ratio, SR3= Simple Ratio, SR4= Simple Ratio, DVI= Difference 

Vegetation Index, DVI1= Difference Vegetation Index, SIPI= Structural Insensitive Pigment 

Index, SIPI1= Structural Insensitive Pigment Index, EVI= Enhanced Vegetation Index, NRI= 

Nitrogen Reflectance Index, SAVI= Soil Adjusted Vegetation Index, and SAVI1= Soil 

Adjusted Vegetation Index. 

Variable R
2
 P-value 

MTCI 0.14542 0.003424 

710 0.0818 0.031035 

SR4 0.0743 0.040277 

RE_NDVI 0.0697 0.047232 

SAVI 0.0697 0.47234 

RE_SR 0.0622 0.061359 

SIPI1 0.0444 0.115372 

555 0.0394 0.138657 

DVI 0.0229 0.261675 

805 0.017 0.333792 

475 0.0163 0.342947 

RGI 0.0144 0.373657 
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RGI1 0.0133 0.391837 

NGRR 0.012 0.416855 

NRI 0.012 0.416855 

BRI 0.0096 0.462457 

SRPI 0.0096 0.462457 

GI 0.0086 0.494438 

GRR 0.0085 0.494438 

657 0.0073 0.527907 

DVI1 0.0058 0.574216 

SR3 0.0046 0.874325 

NGRR1 0.0041 0.637267 

SR 0.004 0.6407 

SIPI 0.0021 0.736624 

BGI 0.0017 0.757789 

NDVI 0.0013 0.7924 

SAVI1 0.0013 0.792488 

EVI 0.0006 0.862078 

 

4.3. Multivariate analysis 

4.3.1. Leaf N estimation based on stepwise multiple linear regressions 

The multivariate regression technique of SMLR was used to predict leaf N models and to test 

the applicability of all five bands in combination with various vegetation indices. Red edge 

effect was tested through SMLR, by combining all five bands with various vegetation indices 

including, and excluding red edge band to estimate leaf N separately (Table 4.2 and 4.3). 

Studies showed the effect of red edge improves estimation of leaf N (Clevers et al, 2002, 

Ramoelo, 2012). The effect of red edge was not as significant when using the SMLR 

compared to univariate regression, as the red edge (710 nm) band did not improve leaf N 

estimation as expected through narrow band vegetation indices tested. The top five indices 

which performed well when using SMLR were chosen based on the higher coefficient of 
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variance (R
2
), and a lower root mean square error (RMSE). These top five vegetation indices 

were with the inclusion of red edge band (710 nm) were: BRI, SIPI, BGI, NGRR1 & NDVI, 

these results are showed in Table 4.3. The top five leaf N models with exclusion of 710 nm 

prediction were therefore based on SR4, SAVI, SR, DVI and RGI1. All top five performing 

vegetation indices are arranged in order of the best performing to the least performing 

vegetation index (1 as the best and 5 as the least performing vegetation index). They are all 

displayed in Table 4.2 according to a higher coefficient of variance (R
2
), and a lower root 

mean square error (RMSE).  

Table 4.2: Multivariate regression (SMLR) results of all four bands except for 710 nm band 

against vegetation index, each index showing their coefficient of determination (R
2
), root 

mean square error (RMSE) and the probability-value (p-value). The vegetation indices and 

wave bands are: 475= Blue, 555= Green, 657= Red, 710= Red edge 805= Near Infra-Red, 

NDVI= Normalised Difference Vegetation Index, RE_NDVI= Red Edge_ Normalised 

Difference Vegetation Index, SR= Simple Ratio, RE_SR= Red Edge_ Simple Ratio, MTCI= 

MERIS Terrestrial Chlorophyll Index, GI= Green index, RGI= Red/ Green Index, RGI1= 

Red/ Green Index, BGI= Blue Green Pigment Index, BRI= Blue Red Pigment Index, GRR= 

Green-Red Reflectance, NGRR= Normalized Green-Red Ratio, NGRR1= Normalized Green-

Red Reflectance, SR3= Simple Ratio, SR4= Simple Ratio, DVI= Difference Vegetation 

Index, DVI1= Difference Vegetation Index, SIPI= Structural Insensitive Pigment Index, 

SIPI1= Structural Insensitive Pigment Index, EVI= Enhanced Vegetation Index, NRI= 

Nitrogen Reflectance Index, SAVI= Soil Adjusted Vegetation Index, and SAVI1= Soil 

Adjusted Vegetation Index. 

  

Variable (without 710/RE)             R
2 

RMSE      P-value 

All bands + SIPI  0.48261 0.610504 0.623117 

All bands + NGRR1  0.339359 0.615081 0.767098 

All bands + SR 0.301544 0.528098 0.002077 

All bands + SIPI1  0.178344 0.572784 0.06705 

All bands + BRI  0.148669 0.588036 0.133395 

All bands + SRPI  0.148669 0.583036 0.133395 
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All bands + SR4  0.12732 0.579056 0.03357 

All bands + SAVI  0.12447 0.580001 0.068465 

All bands + NGRR 0.093912 0.601494 0.394945 

All bands + NRI 0.093912 0.601494 0.394945 

All bands + RGI 0.092553 0.601945 0.404276 

All bands + GI 0.091374 0.602336 0.412487 

All bands + GRR 0.091374 0.602336 0.412487 

All bands + DVI  0.085612 0.592732 0.188027 

All bands + SR3 0.07981 0.606156 0.49822 

All bands + SAVI1 0.076383 0.607284 0.525292 

All bands + NDVI 0.076383 0.607284 0.525293 

All bands + RGI1  0.047101 0.599456 0.271808 

All bands + BGI  0.042893 0.612223 0.676598 

Table 4.3: Multivariate regression (SMLR) results of all five bands including 710 nm band 

against each vegetation index, showing their coefficient of determination, root mean square 

error (RMSE) and the probability-value (p-value) of each index. The vegetation indices and 

wave bands are: 475= Blue, 555= Green, 657= Red, 805= Near Infra-Red, NDVI= 

Normalised Difference Vegetation Index, RE_NDVI= Red Edge_ Normalised Difference 

Vegetation Index, SR= Simple Ratio, RE_SR= Red Edge_ Simple Ratio, MTCI= MERIS 

Terrestrial Chlorophyll Index, GI= Green index, RGI= Red/ Green Index, RGI1= Red/ Green 

Index, BGI= Blue Green Pigment Index, BRI= Blue Red Pigment Index, GRR= Green-Red 

Reflectance, NGRR= Normalized Green-Red Reflectance, NGRR1= Normalized Green-Red 

Ratio, SR3= Simple Ratio, SR4= Simple Ratio, DVI= Difference Vegetation Index, DVI1= 

Difference Vegetation Index, SIPI= Structural Insensitive Pigment Index, SIPI1= Structural 

Insensitive Pigment Index, EVI= Enhanced Vegetation Index, NRI= Nitrogen Reflectance 

Index, SAVI= Soil Adjusted Vegetation Index, and SAVI1= Soil Adjusted Vegetation Index. 

Variable (with 710/RE)         R
2 

RMSE P-value 

All bands + SR3   0.306522 0.53145 0.00416 

All bands + SIPI   0.237839 0.551657 0.014125 
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All bands + RGI  0.221826 0.557422 0.021967 

All bands + SIPI1  0.21687 0.559195 0.025101 

All bands + SR  0.215741 0.559598 0.02587 

All bands + MTCI  0.214634 0.554582 0.012307 

All bands + NGRR  0.193532 0.561982 0.022476 

All bands + NRI  0.193532 0.561982 0.022476 

All bands + GI  0.185995 0.564603 0.027696 

All bands + GRR  0.185995 0.564603 0.027696 

All bands + SAVI1  0.174216 0.568673 0.038126 

All bands + BGI  0.138814 0.57523 0.04614 

All bands + NGRR1  0.133219 0.577096 0.053889 

All bands + BRI  0.130322 0.578059 0.058361 

All bands + SRPI  0.130322 0.578059 0.058361 

All bands + RE_NDVI  0.125666 0.585151 0.129948 

All bands + SAVI  0.125665 0.584091 0.129948 

All bands + RE_SR  0.124467 0.585552 0.133677 

All bands + SR4  0.122046 0.586361 0.141492 

All bands + RGI1  0.103925 0.586767 0.118127 

All bands + NDVI  0.072698 0.602615 0.406138 

 

 

 

 

 

4.3.2. Leaf N estimation based on Random forest regression 

Random forest was used to estimate leaf N and to test the applicability of all five bands in 

combination with best performing vegetation indices. Red edge effect on estimation accuracy 

was tested, by computing all five bands with narrow-band indices (red-edge based indices) 

separately (Figures 4.2 and 4.3) and Tables 4.4 and 4.5. The top five vegetation indices 
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selected according to a higher R
2
 value, and when red edge was included with all the bands 

were RGI1, BGI, MTCI, BRI and SRPI; these vegetation indices were top 5 better predictors 

of leaf N. On the other hand, the top five vegetation indices when red edge was excluded 

were DVI1, SIPI, EVI, BGI and SR. All top five performing vegetation indices are arranged 

in order of the best performing to the least performing vegetation index (1 as the best and 5 as 

the least performing vegetation index). 

Table 4.4: Multivariate regression results using random forest, of four bands excluding 710 

nm band against vegetation index  showing their coefficient of determination, root mean 

square error (RMSE) and the probability-value (p-value) of each index. The vegetation 

indices and wave bands are: 475= Blue, 555= Green, 657= Red, 805= Near Infra-Red, 

NDVI= Normalised Difference Vegetation Index, RE_NDVI= Red Edge_ Normalised 

Difference Vegetation Index, SR= Simple Ratio, RE_SR= Red Edge_ Simple Ratio, MTCI= 

MERIS Terrestrial Chlorophyll Index, GI= Green index, RGI= Red/ Green Index, RGI1= 

Red/ Green Index, BGI= Blue Green Pigment Index, BRI= Blue Red Pigment Index, GRR= 

Green-Red Reflectance, NGRR= Normalized Green-Red Reflectance, NGRR1= Normalized 

Green-Red Ratio, SR3= Simple Ratio, SR4= Simple Ratio, DVI= Difference Vegetation 

Index, DVI1= Difference Vegetation Index, SIPI= Structural Insensitive Pigment Index, 

SIPI1= Structural Insensitive Pigment Index, EVI= Enhanced Vegetation Index, NRI= 

Nitrogen Reflectance Index, SAVI= Soil Adjusted Vegetation Index, and SAVI1= Soil 

Adjusted Vegetation Index. 

Variable (without 

710/RE) 

          R
2
 

            
RMSE P-value 

All bands + DVI1 0.883913      0.20732 <0.05 

All bands + SIPI  0.883818 0.207405 <0.05 

All bands + EVI 0.877829 0.212684 <0.05 

All bands + SR 0.875684 0.214543 <0.05 

All bands + NDVI 0.875679 0.214547 <0.05 

All bands + SAVI1 0.875679 0.214547 <0.05 

All bands + BGI  0.875544 0.212739 <0.05 

All bands + RGI1  0.875349 0.214831 <0.05 

All bands + SRPI  0.872632 0.21716 <0.05 
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All bands + NGRR1  0.871613 0.218027 <0.05 

All bands + BRI  0.870316 0.21716 <0.05 

All bands + SIPI1  0.869711 0.219636 <0.05 

All bands + GI 0.864256 0.224187 <0.05 

All bands + GRR 0.864256 0.224187 <0.05 

All bands + NRI 0.864228 0.22421 <0.05 

All bands + RGI 0.861557 0.226404 <0.05 

All bands + NGRR 0.861336 0.226585 <0.05 

All bands + DVI 0.858082 0.38013 <0.05 

All bands + SR3 0.852036 0.23406 <0.05 

All bands + SR4  0.852036 0.23406 <0.05 

All bands + SAVI  0.845705 0.239015 <0.05 
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Figure 4.2: Scatter plots of leaf N model prediction calculated by random forest excluding the red edge/ 710 nm band, it is a combination of 4 bands and a vegetation index. The vegetation 

indices include: SR, SR4, SIPI1, SAVI, BRI, SRPI, DVI, RGI1, NGRR, NRI, RGI, GI, GRR, SR3, SAVI1, NDVI, SIPI, BGI and NGRR1. Each vegetation index displays a coefficient of 

determination (R2), used to select the best model.  
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Table 4.5: Random forest results of all bands including 710 nm band against vegetation of 

each index showing their coefficient of determination, root mean square error (RMSE) and 

the probability-value (p-value) of each index. The wave bands and vegetation indices and are: 

475= Blue, 555= Green, 657= Red, 805= Near Infra-Red, NDVI= Normalised Difference 

Vegetation Index, RE_NDVI= Red Edge_ Normalised Difference Vegetation Index, NGRR= 

Normalized Green-Red Ratio SR= Simple Ratio, RE_SR= Red Edge_ Simple Ratio, MTCI= 

MERIS Terrestrial Chlorophyll Index, GI= Green index, RGI= Red/ Green Index, RGI1= 

Red/ Green Index, BGI= Blue Green Pigment Index, GRR= Green-Red Reflectance, SAVI= 

Soil Adjusted Vegetation Index. 

Variable(with710/RE) R
2 

 RMSE P-value 

All bands + RGI1  0.867168 0.221769 <0.05 

All bands + BGI  0.863504 0.224807 <0.05 

All bands + MTCI  0.863003 0.225219 <0.05 

All bands + BRI  0.862431 0.225689 <0.05 

All bands + SRPI 0.862431 0.225689 <0.05 

All bands + NGRR1  0.859455 0.228117 <0.05 

All bands + DVI1 0.857402 0.229777 <0.05 

All bands + DVI 0.856448 0.230545 <0.05 

All bands + EVI 0.856423 0.230565 <0.05 

All bands + SIPI  0.854168 0.232368 <0.05 

All bands + NDVI  0.852401 0.233771 <0.05 

All bands + SAVI1  0.852401 0.233771 <0.05 

All bands + SR 0.852369 0.233797 <0.05 

All bands + SR3  0.847295 0.237781 <0.05 

All bands + SIPI1 0.847122 0.237915 <0.05 

All bands + 

RE_NDVI  

0.841567 0.242199 <0.05 

All bands + SAVI  0.841567 0.242199 <0.05 
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All bands + RE_SR  0.841566 0.24219 <0.05 

All bands + GI  0.838899 0.24423 <0.05 

All bands + GRR   0.838899 0.24423 <0.05 

All bands + NRI  0.838839 0.244276 <0.05 

All bands + RGI  0.838177 0.244776 <0.05 

All bands + NGRR  0.838121 0.244819 <0.05 

All bands + SR4  0.835712 0.246634 <0.05 
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Figure 4.3: Scatter plots of foliar N model prediction calculated by random forest excluding the red edge/ 710 nm band, so it is a combination of 4 bands and a vegetation 

index. The vegetation indices include: SR, SR4, SIPI1, SAVI, BRI, SRPI, DVI, RGI1, NGRR, NRI, RGI, GI, GRR, SR3, SAVI1, NDVI, SIPI, BGI and NGRR1. Each 

vegetation index displays a coefficient of determination (R
2
), used to select the best model.
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4.4. Determination of factors influencing leaf N distribution as an indicator of plant 

stress 

The vegetation health depends on leaf N, thus the lower concentration of leaf N actually leads 

to a poor vegetation health. Factors such as increasing temperature, inadequate water supply 

or unfavourable climatic conditions also contribute to vegetation stress (Field and Mooney, 

1986; Ollinger et al, 2002).  Ecological hypothesis testing of vegetation stress has a lot to do 

with the guidance and allocation of resources for stress mitigation and control (Pontius et al, 

2005; Wulder et al, 2005). For example there is a close link between soil and vegetation types 

in dry and savanna areas than in high rainfall areas, for areas with low rainfall water becomes 

a limiting growth factor which affects the vegetation composition (Mucina & Rutherford, 

2010). To disentangle and study the major influence of leaf N concentration, various 

environmental variables were related to leaf N. 

 

 Leaf N vs DEM  

The results showed that DEM or altitude does not significantly influence the concentration 

and distribution of leaf N (R
2 

= 0.0045168, and p-value = 0.119280). This actually means that 

there was no significant relationship between leaf N and DEM, with the R
2
 of 0. The null 

hypothesis was accepted with p>0.05. 

 

 Leaf N vs aspect 

For leaf N vs aspect, the results showed that aspect does not significantly influence the 

concentration and distribution of leaf N with the R
2 

of 0.13 (p-value = 0.403149). The p-value 

showed that the effect of aspect on leaf N distribution was not significant, and the null 

hypothesis was accepted with p>0.05.  

 

 Leaf N vs. slope 

Slope has a remarkable effect on the distribution of plant nutrients, for example steep slopes 

have more run off which can lead to water stress to plants. Less organic matter is lost due to 

erosion from steep slopes (ARC, 2009). This simply means that the steeper the slope the 
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lesser the nutrients for vegetation compared less steeper slopes habitats. The effect of slope 

on the distribution of leaf N concentration was determined through univariate regression (R
2 

= 0.046965, and p-value =0.112010), which shows no significant relationship. The null 

hypothesis was then accepted with p>0.05.  

 

 Leaf N vs. vegetation types 

Vegetation types have the ability to produce various types of soil organic matter, thus any 

change on vegetation such as seasonal change affecting water supply in vegetation, can alter 

the pattern of accumulation of organic matter of soil. Organic matter of forest soil for 

example is mainly from fallen leaves (ARC, 2009). For understanding the effects of 

vegetation types on leaf N concentration and distribution, one way ANOVA was used to test 

this. The results showed that leaf N distribution significantly differ from various vegetation 

types (p<0.05). This indicates that, vegetation types influence the leaf N distribution, which 

could be further linked to the soil types (see Figure 4.4). It simply means spatial distribution 

of vegetation stress displayed the central areas with lower stress levels irrigation of 

agricultural crops. The northern parts of the area showed higher stress levels as there is 

extensive land use including mining. In this case, the null hypothesis was rejected, with 

p<0.05. 

 

 Leaf N vs. soils 

The ability of soil to supply vegetation with necessities such as nitrogen depends on parent 

material thickness, texture and mineral content. The structure of soil is basically in such a 

way that soils from the parent material formed by hard rock has less plant growth than the 

deeper soils. Unfertilized sandy soils are less likely to be fertile while clay soils are more 

fertile (ARC, 2009). Environmental parameters such as steep slopes are typical of Lephalale 

area, and soil types are also diverse. These soil types are formed in: weakly developed areas, 

mountainous catchment, uplands and rocky areas to mention but a few (WDEMF-Draft 

Report, 2010).  

Different soil types were also studied to see if there will be any effect of soil on the leaf N 

distribution and concentration. One way ANOVA statistical method was used, to see if there 
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is a significant difference across various soil type (p<0.05) and can be depicted in Figure 5.4, 

showing spatial distribution of leaf N significant variation across different soil types. This 

means spatial distribution of plant stress was as follows: the central areas had lower stress 

levels because of irrigated agricultural crops. The northern parts of Lephalale are dominated 

by extensive land use such as mining showed significant stress levels. The null hypothesis 

was rejected with p<0.05. 

 

Figure 4.4: Box plots of vegetation (veg) types and soil types against N, demonstrating the 

effect of soil and vegetation types on the distribution of leaf N. The names of the types of 

vegetation SVcb 19 stands for Limpopo Sweet Bushveld, AZa 7 is for Subtropical Alluvial 

Vegetation, SVcb 12 is for Central Sandy Bushveld, SVcb 17 stands for  Waterberg 

Mountain Bushveld, SVcb 16 is  Western Sandy Bushveld, while SVcb 18 stands for 

Roodeberg Bushveld. 

 

4.5 Leaf N maps – stress levels in the Waterberg region 

The spatial distribution of leaf N was demonstrated in Figure 4.5 and 4.6. Figure 4.5 shows 

the general vegetation greenness based on the NDVI, while Figure 4.6 shows the spatial 

distribution of leaf N (%). The predicted leaf N values range between 0.01 to 3%. High leaf N 

values are found in the riparian zones and mostly on the irrigated agricultural areas towards 

the south. There is a general consensus between leaf N map and NDVI on the northern part of 

the region, which is relatively stressed than other regions. The unstressed areas in the riparian 

zones are well-depicted by the leaf N. Sharper and more informative stress levels are depicted 

by leaf N maps. 
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Figure 4.5: Vegetation index based on RapidEye image, vegetation (NDVI showing the level 

of greenness in the Waterberg region. 
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Figure 4.6: Leaf N distribution mapped through one of the best multivariate models which 

shows the leaf N stressed northern part of Lepahalale area mine associated with more water 

usage. The middle to the Southern site is less stressed with more leaf N concentration where 

there are rivers which contribute to vegetation hydration. 
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               CHAPTER 5: DISCUSSION 

      

Nutrients information is critical in understanding the condition of the vegetation. The 

findings showed that leaf N correlated with vegetation indices, for example MTCI and 710 

nm wave band were the top two best predictors of leaf N when using simple linear 

regression/univariate analysis. Red-edge band (710nm) and the MTCI (based on the red edge 

band) are important as they are highly correlated with chlorophyll (Clevers et al, 2002; Cho 

& Skidmore, 2006). Furthermore the red edge position is described as the inflection point on 

the slope which connects the red and NIR regions (Mutanga & Skidmore, 2007; Pu et al, 

2003); the steep increases in reflectance influences the chlorophyll absorption feature in the 

red region. This is between the photosynthesis region and the high reflectance value region of 

NIR, this is also where plant cell structure and leaves layers are usually affected. The red 

edge position provides a better understanding of vegetation health (Herrman et al, 2010). 

Univariate results highlighted the positive effect of red edge for accurate leaf N estimation, 

implying that leaf N estimation is better when red edge band was included, compared to when 

it is excluded as demonstrated in Figure 4.1.  

SMLR results were used to test the applicability of all five bands in combination with best 

performing vegetation index and also to test the effect of red edge band. The top five 

performing vegetation indices, according to the highest coefficient of determination (R
2
) 

when red edge was included were: BRI, SIPI, BGI, NGRR1 & NDVI while when red edge 

was excluded the top five indices were: SR4, SAVI, SR, DVI & RGI1. All the top five 

performing vegetation indices are presented in the order of the best performing to the least 

performing vegetation index. This further highlights the contribution of the red edge band. 

Red edge band inclusion displayed improvement of leaf N estimation accuracy.  

For random forest method top five performing vegetation indices, according to the highest 

coefficient of determination (R
2
) when red edge was used were: RGI1, BGI, MTCI, BRI and 

SR, while when red edge was not used top five indices were: DVI1, SIPI, EVI, SR, and 

NDVI. All the top five performing vegetation indices are presented in the order of the best 

performing to the least performing vegetation index, thus RGI1 is the best when red edge was 

used while DVI1 was the best vegetation index to estimate leaf N when red edge was 

excluded. MTCI has been a better vegetation index to predict leaf N for both univariate (the 
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best vegetation index) and random forest (third best vegetation index) results, which means 

there is correlation between leaf N and MTCI. Red-edge band has once again demonstrated 

its capability to improve leaf N estimation and modelling of leaf N, as the red edge computed 

MTCI was the third best vegetation index for random forest when red edge was included.  

The random forest results were generally higher than that of SMLR. Random forest has the 

capability of solving overfitting and multicollinearity as compared to SMLR, this may 

explain the better performance of random forest than SMLR.  

 

5.1 Leaf N estimation using resampled ASD to RapidEye 

In this study, the ASD measured reflectance was resampled to RapidEye spectral 

configuration. The models were developed from ASD resampled data and eventually the best 

model was inverted on the actual image to map the spatial distribution of leaf N. Mutanga et 

al, 2015 also resampled field spectra data using ASD to develop models and testing them on 

an actual WorldView-2 (a type of satellite imagery used) image. The study used random 

forest regression model and normalised vegetation indices (NDI) to predict leaf N 

concentration in grassland environment. It was also mentioned that there were no other 

similar study studies which employed this approach according to the records obtained by the 

researchers. The results of the study revealed that prediction of leaf N was successful proving 

that resampling field spectra data has a potential to provide earth observation field with 

reliable information. 

The approach of resampling ASD data provides future opportunity to estimate leaf N on 

atmospherically corrected images without going to the field. This could be achieved by 

developing a spectral library for various tree and grass species, and including crops with their 

corresponding leaf N values. Therefore, robust machine learning techniques such as random 

forest can be used to estimate leaf N without extensive field work, given that there is an 

existing spectral library. This study presents an innovative approach in estimating leaf N 

concentrations as an indicator of vegetation status or quality. The advantage of remote 

sensing compared to other methods is highlighted by this type of approach which displays a 

sustainable way of conducting scientific research without harming the ecosystem.  
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5.2 Use of leaf N for photosynthesis 

Leaf N is important for photosynthesis as it determines major functions of ecosystem such as 

the rate of nutrient and carbon intake (Guerschman et al, 2009). Water content, plant nutrient 

and pigments influence the rate of photosynthetic activities, litter decomposition, leaf 

respiration, growth rates as well as nutrient cycling; thus acting as indicators for ecosystem 

condition (Field and Mooney, 1986; Ollinger et al, 2002). The correlation between 

chlorophyll and N is an indication that leaf N has a role to play in photosynthesis. In other 

words chlorophyll which is important for photosynthesis process is directly proportional to 

leaf N and therefore an indicator of vegetation health or status. The concentration of leaf N 

has been proven to be related to the net photosynthesis across various plant species and 

functional groups, thus there is a profound link between terrestrial cycles and carbon cycles. 

Vegetation may experience stress due to unfavourable conditions which leads to plant 

physiological functions such as light and dark photosynthesis declining from their optimal 

physiological standards (Logan et al, 2003; Ninements, 2010). 

 

 

5.3. Factors influencing leaf N over the landscape 

 

5.3.1. Soil as a factor influencing distribution of leaf N distribution 

 

Different soil forms and World Reference Base soil groups such as Rhodic lixisols,  Ferric 

luvisols, Eufric arenosols, Rubic arenosols, Chromic Acrisols exist in Lephalale area and 

there are unique  properties which distinguishes each group or soil type (Fey, 2010).  The 

boxplots in Figure 4.4 shows the graphical demonstration of the effect of various soil and 

vegetation types on leaf N distribution. This is supported by the fact that leaf nutrients are 

influenced by soil (Mutanga et al, 2004). The effect of soil types on leaf N distribution is as 

follows:  

 

(a) Rubic arenosols is associated with high leaf N distribution according to Figure 4.4, they 

fall under oxidic category which may be of either Xanthirhodic (yellow-brown apedal B over 

red apedal B horizon) or Xanthic-hydromorphic (yellow-brown apedal B over unspecified 

material with signs of wetness) soil formation and reddish on the landscape. They are said to 

be enriched with clay, high water retention and having a good shrink-swell potential (Fey, 
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2010). It is therefore not surprising that Rubic arenosols is associated with high leaf N 

distribution compared to others as depicted on the box plot in Figure 4.4. The soil type has 

nutrients and retains water which is good for vegetation health.  

 

(b) Eutric arenosols, are a type of soil which are sandy in nature, easy to till, unable to store 

water and are permeable (FAO, 1993). Arenosols are a product of weathering of rock, 

generally this type of soils are hard to explore so  nitrogen percentage are usually at lower 

concentration in many of the performed analysis, although there is a wide variation into the 

Arenosols, they may also have the less concentration because of their exploitation challenges 

(van Englen & Dijkshoorn, 2013; FAO, 1993). So Eutric arenosols had a fairly good 

distribution of leaf N in Figure 4.4 shown as the second best leaf N distribution. One of the 

reasons why there seems to be a positive relationship with leaf N might be because the data 

was collected during wet season. The types of vegetation studied during data collection also 

play a role thus if there is a need for deep soil or requires sufficient water supply or not. 

 

(c) Chromic acrisols are a type of Plinthic soils which are distinguished by a hard soil 

formation. Plinthic soils are characterised by segregation and concentration of Iron oxides 

with marked spots and particles binding together. It should be noted that they are not found in 

higher or lower rainfall regions thus they are largely absent in most arid or humid regions. 

Soils horizons of Plinthic nature may act as water barriers for vegetation, the formation of the 

soil may be soft or hard. Plinthic soils are usually found in neither higher nor lower rainfall 

regions (Fey, 2010), and characterised by low activity clays in argic (horizon with higher clay 

content) subsurface horizon, crops cultivated on acrisols are dependent on fertilizers and need 

to be supplemented by water (rain or irrigation) (van Englen & Dijkshoorn J. A, 2013). 

Chromic acrisols showed moderate levels of leaf N distribution, when compared to other soil 

types which may be due to the moderate fertile nature of the soil.  

 

(d) Rhodic Lixisols, strongly weathered soils characterised by luvial horizon that has been 

washed away by clay down to a horizon called argic (subsurface horizon with a distinctly 

higher clay content than the overlying horizon) that has low clay activity with a moderate to 

high base saturation level. Lixisols are strongly weathered and leached with fine texture, 

covered or overlain by sandy and coarser textures of soil throughout. Erosion on the slopes 

affects the nature of lixisols and they need to be supplemented by fertilisers (van Englen & 
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Dijkshoorn, 2013). Lixisols are not so fertile, as the box plot (see Figure 4.4) shows lower 

levels of leaf N distribution.  

 

(e) Ferric luvisols are fertile soils which are suitable for vegetation growth; they are 

unfortunately prone to deterioration when tilted. Luvisols are commonly found on the slopes 

and are sensitive to processes such as erosion (van Englen & Dijkshoorn, 2013), as shown in 

Figure 4.4, Ferric luvisols appears to display varied (different concentrations) leaf N 

distribution which may be due to land use or erosion which affects the nutrient uptake by 

plants and the retention of water.  

 

5.3.2. Vegetation types as a factor influencing leaf N distribution 

It is worth mentioning that under extreme water stress conditions such as low rainfall which 

leads to high evapotranspiration, trees and shrubs will need deep soil to survive. On the other 

hand in case there is optimal water supply, shallower soils are able to support the growth of 

trees and shrubs. Leaf nutrients can be closely related to soil texture (Mucina & Rutherford, 

2010). Leaf N distribution variation in vegetation types were as follows as well:  

(a) Roodeberg bushveld described the vegetation type to be the one that grows in a sandstone 

conglomerate siltstone, mostly found in sandy high base status and vegetation features 

include short closed woodland to tall open woodland and poorly developed grass layer while 

trees of this vegetation type are not limited to hills. The species are classified as the least 

threatened and there are attempts for preservation are said to be fairly successful (Mucina & 

Rutherford, 2010). Results for Roodeberg bushveld showed good leaf N distribution levels 

according to the box plot as displayed in Figure 4.4. In other words the leaf N concentration 

is expected not to be so great due to factors such as sandstone and metavolcanic stone, so leaf 

N distribution level is also affected by malnourished soil and the inability of soil to retain 

water during the wet and hot season.  

(b) Limpopo sweet Bushveld, has a landscape features such as irregular plains and vegetation 

features include short open woodland. They survive in various types of conditions such as 

clayey-loamy soil (for example black clayey soil), surface limestone layers, brownish sandy 

soils. They are also the least threatened of the vegetation types in terms of conservation 

(Mucina & Rutherford, 2010). According to the boxplot in Figure 4.4 leaf N distribution 

levels in this vegetation type was varied with lower and higher concentration of leaf N for 
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this vegetation type. This may be due to the fact that this vegetation type survives under 

different types of environmental condition such as fertile (for example black clayey soil) or 

less fertile soil (such as sandy soils). 

(c) Western sandy Bushveld are found in various species such as tall, open to low woodland, 

broad-leaved or even microphylous trees. Typical habitats include shallow soils of gravelly 

upland sites and deep sands (Mucina & Rutherford, 2010). Leaf N distribution in Western 

sandy Bushveld as demonstrated in Figure 4.4 appears to be the second lowest due to factors 

such as deep sand and shallow soils which contribute to vegetation stress or low vegetation 

cover.  

(d) Central sandy Bushveld, are typically found in between mountainous areas, sandy plains, 

deep sandy soils and low rocky or gravelly soils. Other area common habitats include lower 

slopes on eutrophic sands and including soils that are less sandy. This vegetation type 

survives the hot and wet season as well, although they are described as vulnerable species in 

terms of conservation (Mucina & Rutherford, 2010). The boxplot in Figure 4.4 depicts 

Central Sandy Bushvelds to have variation in the level of leaf N distribution than other 

vegetation types (thus lower, moderate and high leaf N concentrations). This can be owed to 

the environmental conditions such as sandy or rocky soil type which usually have limited 

nutrients and lower water retention, thus contribution to the vulnerability such as water 

scarcity. The vegetation type survives under strenuous conditions, hence there is leaf N 

concentration detected.   

 (e) Waterberg Mountain Bushveld is mainly found on mountains, higher slopes, also in 

rocky mid and foot-slopes habitats and characterised by broader leaves. The vegetation type 

is typically found in lower-lying valleys including deeper sands of the plateaus. The 

vegetation mainly grows on sandstone, siltstone & shale, and also medium to coarse grained 

sandstone. So the vegetation is subjected to acidic, sandy, loamy to gravelly soil due to the 

nature of the environment they are found in (Mucina & Rutherford, 2010). Waterberg 

Mountain Bushveld had a varied (lower to high nitrogen concentrations) leaf N distribution 

this may be brought by various environmental conditions which affects the concentration of 

nitrogen. For example acidic, sandy, loamy to gravelly soil and the mountainous environment 

affect the nutrition and water supply.  

(f) Subtropical Alluvial vegetation are typically found in soils which are sandy to loamy, 

water logged, and prone to floods during rainy season and has higher salt accumulation due to 
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higher evaporation. This vegetation types are mainly found on channels of flowing river or 

river-fed pans, and also in areas were water flows slowly (Mucina & Rutherford, 2010). 

According to the box plot in Figure 4.4 the Subtropical Alluvial vegetation had a skewed leaf 

N distribution levels thus leaf N concentration is not spread evenly. It is supported by the fact 

that water supply was high since it was a rainy season (typically the vegetation is found in 

water logged habitat) and the soil type is being sandy-loamy which can retain water and 

nutrients supply including nitrogen is also fair. Basically the soil type that can retain water is 

usually fertile meaning it has sufficient nitrogen to supply to vegetation.  

 

5.3.3. Topographical features (DEM, Aspect and Slope) as factors influencing leaf N 

distribution 

 

Road sampling was the approach employed to collect leaf field data, and the results showed 

that leaf N distribution does not show correlation and significance with DEM, aspect and 

slope, thus topographical features did not have an influence on leaf N distribution. This may 

be because these environmental parameters might not be the best demonstration of leaf N 

distribution on the road compared to sampling the entire field beyond the fences. 

Environmental parameters such as soil and topographic factors affect distribution and 

concentration of plant nutrients (Venter, et al, 2003, Mucina & Rutherford, 2006). To 

simplify the meaning of DEM is to describe it as a digital format of earth’s surface either 

wholly or as a part of it (Bolstad & Stowe, 1994). DEM therefore includes slope and aspect 

(Das, 2013), so the effect of slope and aspect on leaf N distribution also affects DEM in the 

similar manner.  

 

Steep slopes often lead to vulnerability such as nutrients being washed away by run-off, and 

soil erosion which threatens vegetation health. So the slope type has an effect on leaf N 

distribution. The slope direction or aspect also depends on factors such as the amount of 

water supply and sunlight exposure to the vegetation. In geographical terms the direction of 

aspect is measured in degrees towards the downslope of maximum rate of change from the 

north in a clockwise direction (Das, 2013). For example if the slope direction is exposed to 

excessive sunlight the vegetation experiences higher evapotranspiration compared to when it 

is not, this affects the leaf N distribution. A lower leaf N concentration will typically be 

because vegetation experiences extreme environmental conditions such higher exposure to 

sunlight, site quality, plant and animal behaviuor and even an unfavourable drainage type 
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whereby vegetation has lower water uptake (Das, 2013) as the soil on such aspect cannot 

retain sufficient water. The data was collected during summer (December 2011) which is a 

hot and rainy, it is therefore not strange to have findings such as the insignificance of aspect 

on leaf N distribution. It is therefore this underlying analogy which explains the reasons that 

lead to these topographical features not to significantly influence leaf N distribution.   

 

 

5.3.4 Leaf N distribution map 

 

The distribution of leaf N as demonstrated on the maps (see Figures 4.5 and 4.6) created 

through the best models can be interpreted as follows: the northern part of Lephalele is 

stressed with leaf N whereas the middle to the south is less stressed.. Land use of any kind 

whether it is agriculture, or mines changes how the ecosystem relates to the atmosphere and 

land including the natural ecosystem structure and functioning (Kampa & Castanas, 2008; 

Vitousek et al, 1997). These types of land use are due to human enterprise which interacts 

seriously with the global environmental change components (Vitousek et al, 1997).  

Anthropogenic activities have a direct impact on vegetation stress in the area, as common 

scarce resources such as water are used by plants as well. The distribution of leaf N in the 

study area highlights how the human activity induces vegetation stress, because where there 

is land usage there is a higher vegetation stress as well. 

 

Leaf N spatial distribution clearly displays the fact that the vegetation in the periphery of 

sufficient water supply, such as rivers and dams is not water stressed. The vegetation around 

the mine is more stressed which may be due to the land use such as mine which demands 

higher amount of water. It is from this observation that leaf N concentration is higher where 

there is sufficient water supply, and lesser where there is insufficient water supply such as the 

northern part of the study area. Leaf N can therefore act as an indicator of water stress, as it is 

directly proportional to water availability. 

 

According to Ramoelo et al, (2014) who studied the potential of monitoring plant stress using 

remote sensing for dry and wet season in Lephalale area. The study revealed that the spatial 

distribution of plant stress displayed the central areas had lower stress levels due to the fact 

that there are irrigated agricultural crops, while the northern parts of the area is dominated by 

extensive land use showed significant leaf N stress levels. The study therefore supports the 
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findings of this research which demonstrates similar pattern of plant stress of leaf N within 

the area.  
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 CHAPTER 6 :CONCLUSIONS AND RECOMMENDATIONS 

   

Assessment of vegetation condition or stress is possible with the use of remote sensing, 

especially, new sensors such as RapidEye with the red edge band. The effect of red edge on 

the estimation of leaf N has been highlighted through the methods of univariate regression, 

multivariate methods such as random forest. The study further demonstrated that red edge 

(710 nm) improves leaf N estimation results as compared to when it is not used. Vegetation 

indices computed from red edge should therefore be used for leaf N estimation, as red edge 

wave band is not sensitive to background effects and produces better and accurate results for 

biochemical estimation in order to study vegetation health.  

The objectives of the study were reached as leaf N was successfully estimated using 

vegetation indices through univariate and multivariate regression methods, except for the 

insignificance of DEM, slope and aspect on leaf N distribution patterns. Leaf N concentration 

was also proven to be varied across different vegetation types. The distribution of leaf N also 

varied across soil types studied, however slope and aspect had no significance on leaf N 

distribution. Insignificance of DEM, slope and aspect on leaf N distribution can be due to 

various reasons including unfavourable or even extreme environmental conditions. 

Unfavourable environmental conditions include high sunlight exposure, poor site quality, and 

drainage conditions or erosion. Topographical features such as slope and aspect did not 

influence the distribution of leaf N significantly. This could be attributed to the fact that the 

sampling procedure was based on the road, due to access restrictions anthropogenic sites such 

as agricultural sites and mines. The detailed and overall findings of the study area would have 

been told if there were no restrictions of sampling, meaning a random sampling rather than 

purposive sampling is preferential for future studies. However the road sampling also paints a 

picture of lower leaf N concentration due to unfavourable environmental parameters impact, 

experienced by the vegetation.  

Soil and vegetation types play a crucial role in the understanding of the distribution of leaf N 

as they significantly affect and influence the concentration of leaf N. The estimation of leaf N 

is plausible, and can be used as an indicator of vegetation stress, the information can be used 

for deriving baseline information for biodiversity and conservation purposes. 
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Red edge inclusion has proved to improve leaf N estimation and therefore future studies can 

utilise this useful waveband to accurately study vegetation health or condition. The study 

further recommends that additional samples points need to be collected through further 

engagement with the protected, mining and agricultural areas which resulted due to limited 

restrictions of access to have additional sampling points. This could enable a detailed 

understanding of the variability of leaf N and its drivers. Further recommendations includes 

that the approach of resampling ASD measured reflectance data into satellite imagery should 

be employed for future studies as the findings highlighted how this approach produces 

credible results. Although fewer studies have resampled ASD data, this innovative approach 

has a great potential in scientific research and development of earth observation. This study 

contributes profoundly to environmental impact studies, to measure the effect of 

anthropogenic activities to the ecosystem. 
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