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ABSTRACT  24 

A study was undertaken to isolate and characterize Mycobacterium species from black 25 

wildebeest suspected of being infected with tuberculosis in South Africa. This led to the 26 

discovery of a new Mycobacterium avium species, provisionally referred to as the Gnou isolate 27 

from black wildebeest (Connochaetus gnou).  Sixteen samples from nine black wildebeest were 28 

processed for Mycobacterium isolation.  Following decontamination; samples were incubated in 29 

an ordinary incubator at 37°C on Löwenstein-Jensen slants and in liquid medium tubes using the 30 

BACTECTM MGITTM 960 system respectively.  Identification of the isolate was done by 31 

standard biochemical tests and using the line probe assay from the GenoType® CM/AS kit (Hain 32 

Life Science GmbH, Nehren, Germany).  The DNA extract was also analyzed using gene 33 

sequencing.  Partial gene sequencing and analysis of 16S rRNA gene, 16S-23S rRNA (ITS), 34 

rpoB and hsp65 and phylogenetic analyses by searching GenBank using the BLAST algorithm 35 

were conducted.  Phylogenetic trees were constructed using four methods, namely Bayesian 36 

inference, maximum likelihood, maximum parsimony and neighbor-joining methods.  The 37 

isolate was identified as Mycobacterium intracellulare using the GenoType® CM/AS kit and as 38 

Mycobacterium avium complex (MAC) by gene sequencing.  The gene sequence targeting all the 39 

genes, ITS, 16S rRNA, rpoB and hsp65 and phylogenetic analyses indicated that this isolate 40 

presented a nucleotide sequence different from all currently published sequences, and its position  41 

was far enough from other MAC species to suggest that it might be a new species. 42 

Keywords:  NTM, MAC, M. intracellulare, phylogenetic analyses, black wildebeest. 43 

Background 44 

In late 2006, animals from a commercial game farm reserve in Mpumalanga Province in South 45 

Africa were harvested for game meat exportation.  During meat inspection, the animal carcasses 46 

showed lesions suspicious of tuberculosis which was supported by histopathological results.  The 47 

exact cause of the disease was not determined and the farm was put under quarantine for 48 

suspected bovine tuberculosis.   49 
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In February 2009, 158 animals were harvested. A high number of animals (N = 135) showed 50 

gross-visible tuberculosis-like lesions and lesions from 6 animals processed for mycobacterial 51 

cultures yielded non tuberculous mycobacteria.   52 

Samples (n=16) from 9 animals were submitted to the National Health Laboratory Service 53 

(NHLS, Pretoria, South Africa) for mycobacterial isolation and a non-tuberculous 54 

mycobacterium (NTM) was isolated and identified as Mycobacterium intracellulare using a 55 

commercial kit and as Mycobacterium avium complex (MAC) by gene sequencing.  We 56 

submitted the results to the Department of Agriculture, Forestry and Fisheries (DAFF, South 57 

Africa) as M. intracellulare, and proceeded further with the characterization of the isolate in 58 

Japan.   59 

Subsequently, we received the complete history of the herd that included the histopathology 60 

report.  The report described well developed encapsulated granulomatous lesions observed on the 61 

different samples of organs as very suspicious for bovine tuberculosis (BTB).  Other lesions 62 

observed which were not typical of M. bovis (pseudotuberculosis) comprised lack of caseous 63 

necrosis and liquefaction in the granulomas.  The inspissated material from within the capsules 64 

could almost be squeezed out in total, leaving behind an empty “shell”.  There were also several 65 

smaller granulomas with a typical onion ring appearance, but absence of calcification and 66 

liquefaction with no gritty sensation on cut section of these capsules. .   67 

The genus Mycobacterium contains more than 170 species 68 

(http://www.bacterio.net/mycobacterium.html), most of which are classified as NTM or 69 

potentially pathogenic mycobacteria (PPM) (Chege et al., 2008; Kim et al., 2014; Malama et al., 70 

2014; Tortoli, 2014) and mycobacteria belonging to the Mycobacterium tuberculosis complex 71 

(MTC).  MTC comprises M. tuberculosis, M. bovis, M. africanum, M. canetti, M. pinnipedii, M. 72 

caprae, M. microti, M. mungi, Dassie bacillus, Oryx bacillus  and the attenuated M. bovis 73 

Bacille-Calmette-Guerin (BCG) vaccine strain.  With the exception of BCG, these species are 74 

pathogenic and can cause tuberculosis (TB) in mammalian hosts (Alexander et al., 2010; Pittius 75 

et al., 2012; Vos et al., 2001).   76 

http://www.bacterio.net/mycobacterium.html
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The M. avium-intracellulare complex is the most commonly encountered group of NTM, and the 77 

clinically most important members are M. intracellulare and M. avium (Biet et al., 2005).  M 78 

intracellulare has not been subdivided into subspecies whereas M. avium consists of four 79 

susbspecies, namely M. avium subsp. avium, M. avium subsp. hominissuis, M. avium subsp. 80 

silvaticum and M. avium subsp. paratuberculosis.  Mycobacterium Avium Complex (MAC) 81 

includes 10 different species, namely M. avium, M. intracellulare, M. colombiense, M. 82 

bouchedurhonense, M. timonense, M. arosiense, M. chimaera, M. vulneris, M. yongonense and 83 

M. marseillense  (Tortoli, 2014). 84 

The importance of NTM has received attention during the past decade, especially in humans.    85 

NTM are found in environmental systems (such as various soil and water systems) near human 86 

settlements and can be associated with colonization, serious infection or pseudo-outbreaks with a 87 

wide variety of presentations (Biet et al., 2005; Kankya et al., 2011; Katale et al., 2014).     88 

Indeed in humans, the isolation of NTM from clinical samples of patients presenting with 89 

pulmonary symptoms as suspected cases of tuberculosis has increased over the years and has 90 

been observed in different countries in Africa, America and Europe (Kankya et al., 2011; Katale 91 

et al., 2014; Mirsaeidi et al., 2014; Moore et al., 2010) whereas in animals the clinical 92 

significance of NTM has yet to be elucidated in the disease causing process (Chege et al., 2008; 93 

Kankya et al., 2011; Katale et al., 2014).  The members of the genus Mycobacterium are 94 

genetically closer to each other than the microorganisms belonging to other genera, making 95 

identification a difficult and challenging task.   The management, treatment and infection control 96 

measures differ significantly between M. tuberculosis and NTM infections.  97 

One hundred and fifty species of NTM have been reported worldwide, of which more than 60% 98 

are pathogenic to animals or humans (Kim et al., 2014; Tortoli, 2014).  In South Africa, reports 99 

on the isolation of NTM in animals, humans and environment and their effects in disease-causing 100 

processes are limited (Gcebe et al., 2013; Michel et al., 2007; Müller et al., 2011). 101 

Black wildebeest (Connochaetus gnou), known in Afrikaans as “Swartwildebees” and in German 102 

as “Weisschwanzgnu”, have been hunted in South Africa for meat and hides.  The overall 103 

research project was mainly on tuberculosis, samples from black wildebeest suspected of being 104 
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infected with tuberculosis were processed as part of phase I of the project focusing on prevalence 105 

and molecular studies of Mycobacteria.  The emergence of multidrug and extremely drug 106 

resistant Mycobacterium tuberculosis strains was one of the main justifications of the project.  107 

This work resulted in the reporting of a novel Mycobacterium avium complex species from 108 

wildebeest in South Africa, which is expected to add to the corpus of knowledge and extend the 109 

frontiers of research on NTM.  110 
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2. Materials and Methods 111 

2.1 Study area 112 

Mpumalanga province was selected as the area of study based on previous publications reporting 113 

TB in wildlife and livestock (Bengis et al., 1996; Michel et al., 2007; Vos et al., 2001) and 114 

availability of veterinary staff members experienced in conducting the comparative tuberculin 115 

skin test.  Mpumalanga is one of the nine provinces in South Africa; it is located in the north-116 

eastern part of the country, bordering Swaziland and Mozambique to the East. It embraces the 117 

southern half of the Kruger National Park, a vast nature reserve with abundant wildlife including 118 

big game. It has a subtropical foliage supporting about 1 439 000 cattle according to the Trends 119 

in the Agricultural sector 2013. 120 

2.2 Study design and sampling 121 

The study was designed as a cross section study sampling animals in the designated area from 122 

January 2009 to January 2011.  The local municipalities were selected based on the number of 123 

commercial farms, proximity to abattoirs, and location at human-wildlife interface and the 124 

movement of animals as well.  The municipalities selected comprised Malelane, Nelspruit, 125 

Lydenburg, Ermelo, Witbank and Standerton.  The target population comprised cattle carcasses 126 

showing gross tuberculous-like lesions at meat inspection from positive reactors to tuberculin 127 

skin test at the municipality abattoirs during the study period.  But samples from any other 128 

animal species showing gross tuberculous-like lesions were also included as convenience 129 

samples.  The sampling was purposive to increase the chances of isolating mycobacteria; animals 130 

were selected based on positive reaction on tuberculin skin test and suggestive lesions at the 131 

abattoir upon meat inspection. 132 

2.3 Sources of Samples  133 

Samples from Black Wildebeest were received as part of phase I of a research project related to 134 

“Prevalence and molecular studies of Mycobacteria”.  The samples were processed at the 135 

National Health Laboratory Service (NHLS) as part of a joint collaboration between University 136 

of Pretoria and NHLS.  The history of the case was provided by the state veterinarian in charge.  137 
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During a hunting period in February 2009 on a commercial game reserve located in Mpumalanga 138 

(South Africa), game animals (n=158) were randomly harvested and processed in the local 139 

abattoir according to standard operating procedures.  These animals comprised black wildebeest 140 

(Connochaetes gnou) (n=137), blesbok (Damaliscus dorcas phillipsi) (n=15), blue wildebeest 141 

(Connochaetes taurinus) (n=2), red hartebeest (Alcelaphus buselaphus caama) (n=2) and 142 

springbok (Antidorcas marsupialis) (n=2).   The animals lagging behind were the main target as 143 

well as females.  During routine meat inspection of these animals, a high number of black 144 

wildebeest (n=135) showed granulomatous lesions in one or more lymph nodes or organs, reason 145 

why samples were selected from this antelope species.  Sixteen samples randomly selected from 146 

nine black wildebeest showing fresh lesions suggestive of tuberculosis infection were submitted 147 

at NHLS for isolation and identification of Mycobacterium sp.  The samples included different 148 

organs and lymph nodes transported on ice (see Table 1). 149 

Table 1 150 

2.2. Mycobacterial isolation  151 

Samples were frozen at –20 °C until processing at NHLS.  Direct impression smears were made 152 

from lesions and smears were stained using the Ziehl-Neelsen method.  Tissue samples taken in a 153 

sterile manner from the inside of granulomatous lesions at the border between healthy and 154 

pathological tissues were finely cut using a sterile scalpel blade and homogenized using sterile 155 

glass beads by vortexing as described by Bengis et al. (1996) and Warren et al. (2006) with some 156 

modifications.  To maximize the mycobacterial yield, specimens were subjected to a digestion 157 

and decontamination procedure using N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) 158 

solution with NaOH at a final concentration of 2% (Chatterjee et al., 2013).  The specimens were 159 

left at room temperature for 15 min during the decontamination process and thereafter 160 

neutralized with phosphate buffer, centrifuged (Beckman Coulter) at 3000 x g for 15 min at 4°C, 161 

and the supernatant decanted and pellet suspended into 1 ml of phosphate buffer.  The sediment 162 

was inoculated onto two LJ slants supplemented with pyruvate and glycerol and an antibiotic 163 

mixture of polymyxin B, amphotericin B, carbenicillin and Trimethoprim (PACT) (National 164 

Health Laboratories, south Africa, and Becton Dickinson, Germany) using a 0.01ml calibrated 165 

loop.  A further 0.5 ml of the sediment was inoculated with a graduated Pasteur pipette into a 166 
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prepared liquid medium tube (BBLTM MGITTM Mycobacterium Growth indicator tubes) enriched 167 

with OADC and containing 800 µl of PANTATM antibiotic mixture (BDTM).  This was incubated 168 

in the BACTECTM MGITTM 960 mycobacterial detection system at 37°C (Warren et al., 2006).  169 

The system was monitored for a maximum period of 42 days for bacterial growth whereas LJ 170 

slants were observed for colony growth and any other contaminant at two week intervals for 10 171 

weeks.  Tubes detected as positive within that period were further processed using Ziehl-Neelsen 172 

staining and examined microscopically for the presence of acid fast organisms and morphology 173 

thereafter subcultured on LJ slant supplemented with glycerol and pyruvate.  For identification 174 

purposes, a single colony was subcultured on a fresh LJ slant to obtain pure colonies. The same 175 

was repeated with two other colonies on different LJ slants to rule out the possibility of missing a 176 

different organism.  Reference cultures of M. avium (ATCC 25291), M. bovis BCG and M. 177 

tuberculosis (ATCC 25177) were used as positive controls. 178 

2.3-Mycobacterial identification 179 

2.3.1 Biochemical profile  180 

Colonies were suspended in Middlebrook 7H9 (M7H9) broth enriched with OADC and 181 

inoculated into the different biochemical substrates according to the manufacturer’s instruction 182 

(Mycobacterium identification kit, Kyokuto Pharmaceutical Industrial Co., Ltd., Japan).    183 

2.3. 2 DNA extract and primary molecular identification  184 

DNA extracts were prepared based on the GenoType CM/AS reverse line blot assay (Hain Life 185 

Science, Nehren, Germany).   DNA was extracted from colonies on LJ slants by heating at 95°C 186 

for 20 min in a water bath.  Primers provided by the manufacturer’s kit (Hain Life Science, 187 

Nehren, Germany) were used.  The formula for the PCR assay per tube mixture contained 1.1 µl 188 

of ultra-pure water, 5 µl of 10 x buffer, 3.6 µl of MgCl2 (25 mM), 35 µl of primer/nucleotide mix 189 

from the kit and 0.3 µl of hot Taq polymerase.  The thermocycler was programmed to initiate the 190 

PCR as follows: one cycle of 15 min at 95°C, followed by 10 cycles of 30 seconds at 95°C, 2 191 

min at 58°C, 25 seconds at 95°C; then 20 cycles of 40 seconds at 53°C and 40 seconds at 70°C 192 

with a final cycle of 8 min at 70°C.  The hybridization was then followed as per manufacturer’s 193 

instructions using the strips provided in the kit (DNA strip Mycobacterium identification 194 
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species).  Part of each DNA extract was also stored at -20°C prior to further investigations in 195 

Japan. 196 

2.4. Gene sequencing 197 

The DNA extract obtained during the primary identification was processed further by sequencing 198 

analysis, targeting hsp65, rpoB, 16S rRNA genes and 16S-23SrRNA internal transcribed spacer 199 

(ITS) for identification of the bacterial species.  200 

2.4.1 16S ribosomal RNA gene and ITS    201 

The 16S ribosomal RNA gene and flanking 16S–23S rRNA ITS region was amplified with a 202 

primer pair of Bact-rrs-F: 5’-AGAGTTTGATCCTGGCTCAG and myco ITS-23S-Rv: 5’-203 

CGGTTGACAGCTCCCCGAGGC. Amplification reaction mixture consisted of 0.5 μM of each 204 

primers, 1× ExTaq buffer (Takara Bio Inc., Japan), 0.5 M betaine, 0.25 mM each of dNTPs, 1 U 205 

of ExTaq DNA polymerase (Takara Bio Inc.), 1 μL of target DNA solution and milli-Q water to 206 

adjust the final volume to 20 μL. Amplification was performed in a thermal cycler with a pre-207 

heat step at 98°C for 1 min, 38 cycles of denaturation at 98°C for 10 seconds, annealing at 55°C 208 

for 10 seconds and extension at 72°C for 110 seconds followed by a final extension at 72°C for 5 209 

min. The amplicon was electrophoresed in a 1% agarose gel and a band of approximately 1.9 kbp 210 

was excised and purified with Wizard SV Gel and PCR Clean-Up System (Promega Corp., USA). 211 

The sequence of the 5’ region of the 16S ribosomal RNA gene and ITS were read with primers 212 

Bact-rrs-F and myco ITS-23S-Rv, respectively, by ABI PRISM 3130xl Genetic Analyzer (Life 213 

Technologies Corp., CA, U.S.A.) according to the manufacturer’s instructions 214 

2.4.2 rpoB   215 

Partial rpoB gene was amplified and sequenced with primers Myco-F and Myco-R designed by 216 

(Ben Salah et al., 2008).  PCR reaction mixture was comprised of 0.5 μM of each primers, 1× 217 

GoTaq buffer (Promega Corp., USA), 0.5 M betaine, 0.25 mM each of dNTPs, 1 U of GoTaq 218 

DNA polymerase (Promega Corp.), 1 μL of target DNA solution and milli-Q water to adjust the 219 

final volume to 20 μL. Amplification was performed with an initial denaturation at 96°C for 1 220 

min, 38 cycles of denaturation at 96°C for 10 seconds, annealing at 60°C for 10 seconds and 221 

extension at 72°C for 45 seconds followed by a final extension at 72°C for 5 min.  The amplicon 222 
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was electrophoresed in a 1% agarose gel and a band with a size of 761bp was excised and 223 

purified. The sequence was read by ABI PRISM 3130xl Genetic Analyzer (Life Technologies 224 

Corp.) according to the manufacturer’s instructions. 225 

2.4.3 hsp65    226 

Partial hsp65 gene was amplified and sequenced with primers Myco-hsp65F (565-585): 5’- 227 

AGGGTATGCGGTTCGACAAG and MAC hsp65R (Turenne et al., 2006).  Amplification was 228 

performed with an initial denaturation at 96°C for 1 min, 38 cycles of denaturation at 96°C for 229 

10 seconds, annealing at 53°C for 10 seconds and extension at 72°C for 45 seconds followed by 230 

a final extension at 72°C for 5 min in the same reaction mixture content described in rpoB 231 

section.  The band with a size of 1067 bp was excised and sequencing was performed by the 232 

same procedure as in rpoB section. 233 

The obtained sequences were compared with the GenBank nucleotide database by the blastn 234 

program (National Center for Biotechnology Information: http://www.ncbi.nlm.nih.gov). 235 

2.5 Phylogenetic analyses 236 

The datasets for the different genes (ITS, 16S, hsp65 and rpoB) were collated by searching 237 

GenBank (http://www.ncbi.nlm.nih.gov/) using the BLAST algorithm, an acronym for the Basic 238 

Local Alignment Search Tool (Altschul et al., 1990).  BLAST searches various databases, as 239 

specified by the user, to look for similar sequences, and then uses a similarity matrix to measure 240 

the similarity between sequences and the possibility that the similarity could be due to chance 241 

based on the nucleotide sequence of the query versus its target. There are several types of 242 

searches available but for these analyses “blastn” was used which searches nucleotide databases 243 

with a nucleotide query. These sequences were then downloaded into a local database using 244 

BioEdit version 7.2.1 (Hall, 1999).   Sequences were aligned using MAFFT version 7 (Katoh et 245 

al., 2005, 2002); http://www.mafft.cbrc.jp/alignment/server/) with default parameters.  Multiple 246 

Alignments by Fast Fourier Transformation (MAFFT) utilizes an iterative algorithm, unlike 247 

previous progressive alignment methods.  Where necessary, small adjustments were made to the 248 

alignments manually to minimize hypothesized insertion/deletion events, again using BioEdit 249 

software (Hall, 1999).  The programme jModelTest 2.1.6 (Darriba et al., 2012) was run for each 250 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.mafft.cbrc.jp/alignment/server/
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gene separately, as well as the concatenated dataset, to determine the best evolutionary model to 251 

use for each dataset. Phylogenetic trees were constructed for all data sets by four different 252 

methods, Bayesian inference (BI), maximum likelihood (ML), maximum parsimony (MP) and 253 

neighbor-joining (NJ). This not only allowed independent confirmation of results, but also the 254 

benefit of different methods with different strengths, weaknesses and sensitivities. NJ and MP 255 

analyses were conducted with MEGA 5 (Molecular Evolutionary Genetic Analysis) (Tamura et 256 

al., 2011).  PhyML (Guindon et al., 2010) was used to carry out ML analyses on all the datasets 257 

and Mr. Bayes v3.2.5 (Ronquist et al., 2012) was used on the concatenated dataset. Both NJ and 258 

ML analyses used the relevant evolutionary model as given in jModelTest. All analyses, except 259 

those by Bayesian inference, consisted of 1000 bootstrap replications (Felsenstein, 1985), a 260 

statistical method for testing the reliability of all the groupings within the various trees.   261 

2.6 Statistical analyses 262 

The agreement between databases was calculated using Cohen’s Kappa. To compare the results 263 

obtained from each gene and combination of two genes, only the databases identified with better 264 

performance in the first analysis were used.  One thousand bootstrap replications were used for 265 

testing the reliability of all the groupings within the various trees (Hallgren, 2012; Joao et al., 266 

2014). 267 

2.7 GenBank accession numbers 268 

The sequences generated in this study were deposited in the GenBank database under accession 269 

number KR856202 for hsp65, KR856203 for rpoB, KR856204 for 16SrRNA and KR856205 for 270 

16S-23S rRNA ITS. 271 

272 
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3 Results 273 

3. 1 Mycobacterial isolation  274 

A mediastinal lymph node (from 1 animal) out of 16 samples (from 9 animals) yielded similar 275 

smooth colonies of slow growing microorganisms on Löwenstein-Jensen (LJ) slants inoculated 276 

with the sediment from positive MGIT tubes.  The acid-fast rods were observed under the 277 

microscope. 278 

3.2 Biochemical characteristics 279 

The phenotypic characteristics, including growth rate (fast/slow), production of pigment, growth 280 

at different temperatures and biochemical reactions with relevant substrates were evaluated. 281 

Colonies were identified as MAC slow growers with no pigment on specific substrates. They 282 

were positive for tellurite reduction, stimulation by pyruvate and heat-stable catalase but 283 

negative for niacin production, nitrate reduction, urease, acid phosphatase activity, Tween 80 284 

hydrolysis (7 and 14 days) and urease (Table 2); (Cook et al., 2003). 285 

Table 2 286 

3. 3 Primary molecular identification  287 

The isolate was identified as Mycobacterium intracellulare with a commercial kit routinely used 288 

at NHLS, the GenoType Mycobacterium CM/AS (Hain Lifesciences GmbH, Nehren, Germany).  289 

3. 4 Phylogenetic analyses 290 

ITS sequences 291 

Alignment of the 16S-23S rRNA ITS of Mycobacterium “Gnou isolate” with the other sequevars 292 

of the MAC show that the Gnou isolate is most closely related to the  MAC-T sequevar with only 293 

three nucleotide differences (results not shown). 294 

Phylogenetic analyses of these data by NJ, MP and ML, placed the Gnou isolate within the MAC 295 

and more closely related to MAC-T, with MAC-M, MAC-I and MAC-L forming a sister group. 296 

All three methods placed the Gnou isolate in the same place with varying degrees of bootstrap 297 

support.  298 
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16S rRNA, hsp65 and rpoB analyses. 299 

All three datasets by every method grouped the Gnou isolate with M. vulneris, M. 300 

bouchedurhonense, and M. colombiense with M. arosiense included in the group by just the MP 301 

analysis of HSP65.  However all other analyses placed M. arosiense close to the Gnou isolate 302 

grouping.  With the similarity between the various trees the four genes were combined into one 303 

dataset to give a concatenated tree (Figure 1).  Generally the groupings all have good bootstrap 304 

support.  All the species above M. mantenii in this phylogeny are members of the MAC. 305 

Figure 1 306 

4. Discussion and Conclusion  307 

This is the first report in South Africa of the discovery of a novel Mycobacterium avium complex 308 

species from black wildebeest which has been named “Gnou isolate” to reflect the species name 309 

of the wildebeest from which it was isolated.  Our isolate was identified using analysis of 16S 310 

rRNA gene, hsp65, rpoB and ITS.  A number of studies suggest that 16S rRNA gene sequencing 311 

provides genus identification in most cases (>90%) but less so with regard to species (65 to 83%) 312 

(Janda and Abbott, 2007; Joao et al., 2014).  Although 16S rRNA gene sequencing is highly 313 

useful in regards to bacterial classification, it has low phylogenetic power at the species level and 314 

poor discriminatory power for some genera (Janda and Abbott, 2007).  It has also been reported 315 

that analysis of 16S rRNA gene alone is insufficient for the accurate identification of NTM (Joao 316 

et al., 2014); it was proposed that a stepwise algorithm combining 16S rRNA and hsp65 gene 317 

analysis by multiple public databases could be used to identify NTM at the species level.  In 318 

some cases, 16S rRNA gene sequence data cannot provide a definitive answer since it cannot 319 

distinguish between recently diverged species.  While it is impossible to be completely accurate 320 

when modeling all evolution that has occurred between a set of sequences, several parameters 321 

appear to be particularly important. These are corrections for substitution patterns (nucleotide 322 

substitution matrices) and correction for different evolutionary rates at different sites, most 323 

accurately corrected using a gamma distribution model, the shape parameter α of which is 324 

calculated by jModelTest.  It has been established that NTM cause disease (Kim et al., 2014), but 325 

the significance of NTM in the disease processes in animals should be investigated further as the 326 
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presence of a small number of a specific pathogen does not correlate with the virulence of the 327 

pathogen nor its economic importance.   Organisms act in synergy, potentiating the colonization 328 

by other bacteria.  Although mixed infection with NTM has been reported, attention should be 329 

given to NTM in the future as several studies have recognized the significance of NTM as a 330 

major public health issue around the world (Kankya et al., 2011; Kim et al., 2014; Malama et al., 331 

2014; Moore et al., 2010; Temmerman et al., 2014).  Furthermore, NTM have been found to 332 

interfere with the diagnosis of TB in cattle; indeed, some cross reactions between the antigens of 333 

NTM with those used for diagnostic purposes such as M. avium and M. fortuitum may 334 

compromise the diagnosis and control of bovine tuberculosis (De la Rua-Domenech et al., 2006; 335 

Gcebe et al., 2013).  336 

To our knowledge, this is the first report of this new isolate of NTM, “Gnou isolate”, sampled 337 

from black wildebeest (Connochaetes gnou) in South Africa.  The diagnosis of NTM should be 338 

standardized as the isolate was identified as Mycobacterium intracellulare using DNA strip 339 

according to Hain’s method at National Health Laboratory Service and confirmed as a new 340 

species of MAC by gene sequencing at Research Center for Zoonosis Control at Hokkaido 341 

University in Japan. Tortoli et al. (2010) reported the misidentification of NTM using 342 

commercial kit assays as we have also experienced with this study.  The partial sequencing of 343 

16s rRNA gene alone is not sufficient to fully identify NTM to species level; algorithm analysis 344 

combining all four genes should be considered as well as biochemical identification.  One of the 345 

characteristics of this isolate was slow growth. The role of NTM, in particular slow growing 346 

MAC, should be further investigated in the disease causing process as they could potentiate 347 

colonization by other rapidly growing microorganisms. The isolation and identification at species 348 

level of some NTM should be performed to establish their clinical relevance in animals and 349 

humans.  Countries should also be encouraged to register new species on the international data 350 

bank for purposes of adding to the epidemiological knowledge of this genus.  351 
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