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Summary

Almost contact metric submersions constitute a class of Riemannian submersions whose
total space is an almost contact metric manifold. Regarding the base space, two types
are studied. Submersions of type I are those whose base space is an almost contact
metric manifold while, when the base space is an almost Hermitian manifold, then the
submersion is said to be of type II.

After recalling the known notions and fundamental properties to be used in the
sequel, relationships between the structure of the fibres with that of the total space
are established. When the fibres are almost Hermitian manifolds, which occur in the
case of a type I submersions, we determine the classes of submersions whose fibres
are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal
(almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of
submersions of type I based upon the structure of the fibres.

Concerning the fibres of a type II submersions, which are almost contact metric
manifolds, we discuss how they inherit the structure of the total space.

Considering the curvature property on the total space, we determine its correspond-
ing on the fibres in the case of a type I submersions. For instance, the cosymplectic
curvature property on the total space corresponds to the Kähler identity on the fibres.
Similar results are obtained for Sasakian and Kenmotsu curvature properties.

After producing the classes of submersions with minimal, superminimal or umbilical
fibres, their impacts on the total or the base space are established. The minimality of
the fibres facilitates the transference of the structure from the total to the base space.
Similarly, the superminimality of the fibres facilitates the transference of the structure
from the base to the total space. Also, it is shown to be a way to study the integrability
of the horizontal distribution.

Totally contact umbilicity of the fibres leads to the asymptotic directions on the total
space.

Submersions of contact CR-submanifolds of quasi-K-cosymplectic and
quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration
submersions induce the CR-product on the total space.

Key terms: Differential Geometry, Riemannian submersions, almost contact metric
submersions, CR-submersions, contact CR-submanifolds, almost contact metric mani-
folds, almost Hermitian manifolds, Riemannian curvature tensor, holomorphic sectional
curvature, minimal fibres, superminimal fibres, umbilicity.

V



Introduction

The theory of Riemannian submersions has been initiated by O’Neill [36] who wanted
to relate the curvature tensor of the total space with that of the base space and the
fibres. Replacing the total and the base space by almost Hermitian manifolds, Watson
[52] studied almost Hermitian submersions.

Considering that both the total and the base space are almost contact metric man-
ifolds, D. Chinea, [11]-[12] initiated the study of almost contact metric submersions.
Independently from Chinea, Watson [52], also studied two types of such a class of sub-
mersions. Submersions of type I being those whose base space is an almost contact
metric manifold while those of type II have almost Hermitian manifolds as base space.
Almost contact metric submersions continue to fascinate a number of differential ge-
ometers. For instance, we can cite [14], [25] and [26] among many others.

By a Riemannian submersion, one understands a submersion

F −→ M
π−→ M ′

between two Riemannian manifolds such that π∗|(Kerπ∗)⊥ is a linear isometry [36]. In this
definition, M and M ′ are called the total and the base space respectively, F denoting
the fibres of the submersion, which are the closed embedded submanifolds of the total
space.

The main purpose of this thesis is to interrelate the geometry of the fibres with
that of the total and the base space. In other words, we would like to know how the
properties on the fibres are related, the total and the base space. In a natural way, the
first question should be

“What geometric properties can be induced on the fibres of an almost contact metric
submersion”?

As a first tentative of responses, we say that the fibres can have the same structure or
a structure other than that of the total space. The above response leads to the following
series of research directions:

Suppose that the fibres have the same structure as that of the total space. In what
class can they lie? This question is of interest in the sense that the fibres of an almost
contact metric submersion of type I are almost Hermitian manifolds. It is well-known
that there are 4.096 classes of almost contact metric structures and 16 classes of almost
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Hermitian ones (see [15] and [22] for more details). Thus, how can these structures be
interrelated?

If the fibres have another structure than that of the total space. What kind of
properties do they have to influence the geometry of the total or the base space? As
responses to this question, the fibres can be minimal, superminimal or umbilical. From
the responses to this question, other questions then occur such as:

(1) Under what conditions the fibres can be minimal, superminimal or umbilical?

(2) If the fibres are minimal, superminimal or umbilical, what implications do they
have on the geometry of the total or of the base space?

Among the properties to be considered, we have settled the structure of the total
space and the curvature property in the one hand, the minimality, superminimality and
umbilicity on the other hand.

To this end, the thesis is organized as follows.

Chapter 1 is devoted to the background notions on almost Hermitian and almost
contact metric manifolds to be used throughout the thesis. Examples of almost contact
metric manifolds are given. Using the warped product, some illustrations of the various
classes of Kenmotsu structures are constructed. Let M2m+1 be an almost contact metric
manifold, it is shown that the direct product R2 ×M2m+1 is a way to characterize the
Kenmotsu structure on R2m+1.

In Chapter 2 , we shall recall some fundamental properties of almost contact metric
submersions, then we shall determine the structure of the fibres according to that of
the total space. We have to know how to interrelate these structures. For instance, we
have proved that if the total space is endowed with a quasi Sasakian, a cosymplectic,
a Kenmotsu, a C8, C9, C10, C11 or a C12-structure of a type I almost contact metric
submersion, then the fibres are endowed with the Kähler structure. Many similar results
are obtained with other almost contact metric structures on the total space.

Chapter 3 is devoted to the curvature relation. The main objective of this work is
to establish relationships between properties of the fibres with those of the total and
the base space. It seems interesting to examine the curvature property for the following
reason.

Let α be a real number. In [28], Janssens and Vanhecke have defined the C(α)-
curvature tensors on almost contact metric manifolds while Ki-curvature properties are
already studied on almost Hermitian manifolds. Then the following problem intertwines
the geometry of the fibres with that of the total space.

Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion of type I.
Suppose the total space satisfying a C(α)-curvature property. What is the corresponding
curvature property on the base space and what kind of Ki-identity do have the fibres?

In order to obtain the desired interrelations, the ϕ-linearity of the O’Neill configu-
ration tensors T and A appears to be an important tool. Then, in Section 3.1, we have
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determined the defining relations of some almost contact metric structures for which the
ϕ-linearity of T and A is obtained. Also, we have settled the classes of almost contact
metric structures which satisfy the cosymplectic curvature property. Then, we have
shown that, for such classes, the cosymplectic curvature property on the total space
transfers to the base space while the fibres have, as corresponding, the Kähler identity
for a type I submersion. Under supplementaries conditions on the configuration tensors
T and A, we have obtained that the Kenmotsu and Sasakian curvature properties are
related to the K2 and K3-curvature identities respectively.

Chapter 4 deals with the notions of minimality, superminimality and umbilicity of
the fibres. We first fixed the classes of submersions enjoying these properties, and carried
on establishing their implications on the total or the base space. For instance, in the
case of the minimality, it is shown that if the configuration tensor T is ϕ-linear in the
second variable, which means that TUϕV = ϕTUV , then the fibres are minimal. As a
consequence of minimality, it is proved that if the total space of a type I submersion is
defined by the codifferential of the fundamental 2-form φ or that of the contact 1-form,
η, then the base space inherits the structure of the total space if and only if the fibres
are minimal.

Concerning the superminimality and among many other results, we have:

Assume that the base space of an almost contact metric submersion of type I is G1-
Sasakian, G1-semi-Sasakian, G1-semi cosymplectic, G1-Kenmotsu, G1-semi Kenmotsu,
and that the fibres are superminimal. Then the total space inherits the structure of the
base space.

Furthermore, the property of being superminimal occurs only in the case of a type
I submersion. If the fibres of a type II submersion are superminimal, then the total
space is either cosymplectic or an almost-K-contact manifold.

Concerning the case of umbilicity, we have

Let π : M2m+1 −→ B2m′ be an almost contact metric submersion of type II. Then
the following statements are true.

(i) If the fibres are totally contact umbilic, then the characteristic vector field ξ of the
total space defines an asymptotic direction.

(ii) Suppose that the total space is equipped with the K-contact structure. If the fibres
are totally umbilic, then they are totally geodesic.

In Chapter 5, we have extended the study to the case where the total space is
a contact CR-submanifold of an almost contact metric manifold. Following [27], who
studied the case where the total space is nearly trans-Sasakian manifold, we have focused
our study on quasi-K-cosymplectic and quasi-Kenmotsu manifolds; some remarkable
distributions D⊥, vertical and D ⊕ {ξ}, horizontal are of interest and the following
results established.

* Under a certain condition, the base space is a (1, 2)-symplectic manifold.
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* Integrability and parallelism of the distributions under consideration induce the
property of CR-product on the total space.

Considering that the fibres of a submersion give rise to a foliation, the following is
of interest.

If π : M −→ M ′ is a submersion of a contact CR-submanifold of a quasi-Kenmotsu
manifold M onto an almost contact metric manifold M ′ such that the holomorphic sec-
tional curvatures H and H∗ of M and M ′, respectively, coincide on D⊕ {ξ}. Then, M
is locally a product M∗ × C, where M∗ is a totally geodesic leaf of D ⊕ {ξ} and C is a
curve tangent to the distribution D⊥.

We end our study with a conclusion where some new directions for future research
are suggested.
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Chapter 1

Preliminaries

In this chapter, we recall fundamental notions on manifolds which will be used in the
sequel.

Concerning the manifolds, the aim is not to discuss their geometric or topological
properties. We just present their defining relations in order to be used as fibres, as total
or as base space of fibration. Noting by K(D, ξ) the holomorphic ϕ−sectional curvature
of a 2−plan containing the characteristic vector field ξ, it is known that almost contact
metric manifolds are grouped into three classes, namely,

(1) the Sasakian type if K(D, ξ) ≥ 0;

(2) the cosymplectic type if K(D, ξ) = 0;

(3) the Kenmotsu type if K(D, ξ) ≤ 0.

We shall begin by examine the case of almost Hermitian before looking at the almost
contact metric structures.

Next, three diagrams of strict inclusions of the main known structures are drawn.
Furthermore, examples of these structures are constructed with the emphasis on the
Kenmotsu case.

Finally, the product of Riemannian manifolds, which prepare examples of two types
of almost contact metric submersions are treated.

1.1 Almost Hermitian manifolds

By an almost Hermitian manifold, one understands a Riemannian manifold, (M, g), of
even dimension 2m, furnished with a tensor field , J, of type (1, 1) satisfying the following
two conditions:

(i) J2D = −D, and
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(ii) g(JD, JE) = g(D, E), for all D, E ∈ Γ(M).

The tensor field J is called almost complex structure. A differentiable manifold, equipped
with an almost complex structure is called an almost complex manifold. The above con-
dition (ii) means that the Riemannian metric g is compatible with the almost complex
structure J. In this case, g is an almost Hermitian metric. Then, (M2m, g, J), is an
almost Hermitian manifold.

Any almost Hermitian manifold admits a differential 2-form, Ω, called the funda-
mental form or the Kähler form, defined by

Ω(D, E) = g(D, JE).

A local J-basis of an open subset of M is

{E1, ..., Em, JE1, ..., JEm}.

Extending the Levi-Civita connection ∇ to all tensorial algebra of M, one obtains many
tensor fields such as ∇DJ , ∇DΩ and so on which occur in the defining relations of
various classes of almost Hermitian manifolds obtained by Gray and Hervella in [22].

Let us recall some remarkable identities obtained by the use of the following known
Koszul formula

2g(∇EG, D) = E.g(G, D) + Gg(D, E)−Dg(E, G)− g(E, [G, D])

+ g(G, [D, E]) + g(D, [E, G]), (1.1)
(∇DJ)E = ∇DJE − J∇DE, (1.2)

(∇DΩ)(E, G) = −g((∇DJ)E, G) = g(E, (∇DJ)G), (1.3)
3dΩ(D, E, G) = G {(∇DΩ)(E, G)} , (1.4)
(∇DΩ)(E, G) = (∇DΩ)(JE, JG), (1.5)

where G denotes the cyclic sum over D, E and G.

The codifferential, δ, of Ω is given by

δΩ(D) = −
m∑

i=1

{(∇Ei
Ω)(Ei, D) + (∇JEi

Ω)(JEi, D)} (1.6)

Let us recall that the Lee form of an almost Hermitian manifold is a 1-form θ, given by

θ(D) =
1

m− 1
δΩ(JD). (1.7)

The Nijenhuis tensor, NJ , of the almost complex structure J is a tensor field of type
(1, 2) given in [6, p. 47] or [7, p. 63] by

NJ(D, E) = J2[D, E] + [JD, JE]− J [JD, E]− J [D, JE]. (1.8)
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When NJ(D, E) = 0, the almost complex structure J is said to be integrable; in this
case, the almost Hermitian manifold is called Hermitian.

Almost Hermitian structures have been completely classified by A. Gray and L.M.
Hervella [22]. We just recall the defining relations of some classes which will be used in
this study.

An almost Hermitian manifold (M2m, g, J) is said to be :

(1) Kählerian if dΩ(D, E, G) = 0 and NJ = 0, where NJ denotes the Nijenhuis tensor
of J ;

(2) almost Kählerian (or W2-manifold) if dΩ(D, E, G) = 0;

(3) nearly Kählerian (or W1-manifold) if (∇DΩ)(D, E) = 0;

(4) W3-manifold if (∇DΩ)(E, G)− (∇JDΩ)(JE, G) = 0 = δΩ;

(5) semi-Kählerian (or W1 ⊕W2 ⊕W3 −manifold) if δΩ = 0;

(6) W1 ⊕W3-manifold if (∇DΩ)(D, E)− (∇JDΩ)(JD, E) = 0 = δΩ;

(7) G1-manifold if (∇DΩ)(D, E)− (∇JDΩ)(JD, E) = 0;

(8) Hermitian or (W3 ⊕W4-manifold) if NJ = 0 or equivalently

(∇DΩ)(E, G)− (∇JDΩ)(JE, G) = 0;

(9) a G2-manifold or (W2 ⊕W3 ⊕W4-manifold) if

G{(∇DΩ)(E, G)− (∇JDΩ)(JE, G)} = 0 or G{g(NJ(D, E), JG)} = 0;

(10) quasi Kählerian or (W1 ⊕W2-manifold) if

(∇DΩ)(E, G) + (∇JDΩ)(JE, G) = 0;

(11) W2 ⊕W3-manifold if

G {(∇DΩ)(D, E)− (∇JDΩ)(JD, E)} = 0 = δΩ;

(12) locally conformal almost Kähler (W2 ⊕W4-manifold) if

dΩ = ΩΛθ or G
{

(∇DΩ) (E, G)− 1

m− 1
Ω (D, E) δΩ (JG)

}
= 0;

(13) locally conformal Kähler (W4-manifold) if

(∇DΩ)(E, G) =
−1

2(m− 1)
{g(D, E)δΩ(G)− g(D, G)δΩ(E)}

+
−1

2(m− 1)
{−g(D, JE)δΩ(JG) + g(D, JG)δΩ(JE)} ;
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(14) W1 ⊕W4-manifold if

(∇DΩ)(D, E) =
−1

2(m− 1)
{g(D, D)δΩ(E)− g(D, E)δΩ(D)− g(JD, E)δΩ(JD)};

(15) W1 ⊕W2 ⊕W4-manifold if

(∇DΩ)(E, G) + (∇JDΩ)(JE, G) =
−1

m− 1
{g(D, E)δΩ(G)− g(D, G)δΩ(E)}

+
−1

m− 1
{−g(D, JE)δΩ(JG) + g(D, JG)δΩ(JE)}; (1.9)

Notice that nearly Kählerian manifolds are also called almost Tachibana [54] and [55].
On the other hand, W3-manifolds are both semi-Kählerian and Hermitian; for this rea-
son, they are called special Hermitian. From the defining relations, it is clear that
a Hermitian manifold is a G1-manifold. Furthermore, a W1 ⊕ W3-manifold is both a
G1-manifold and semi-Kählerian.

Many examples of almost Hermitian manifolds are given by Gray and Hervella in
[22].

Now, let us focus on almost contact metric manifolds.

1.2 Almost contact metric manifolds

Let M be a differentiable manifold of odd dimension (2m + 1). An almost contact
structure on M is a triple (ϕ, ξ, η) where:

(1) ξ is a characteristic vector field,

(2) η is a 1-form such that η(ξ) = 1, and

(3) ϕ is a tensor field of type (1, 1) satisfying

ϕ2 = −I + η ⊗ ξ, (1.10)

where I is the identity transformation.

If M is equipped with a Riemannian metric g such that

g(ϕD,ϕE) = g(D, E)− η(D)η(E), (1.11)

then (g, ϕ, ξ, η) is called an almost contact metric structure. Therefore, the quintuple
(M2m+1, g, ϕ, ξ, η) is an almost contact metric manifold. As in the case of almost Her-
mitian manifolds, any almost contact metric manifold admits a fundamental 2-form, φ,
defined by

φ(D, E) = g(D, ϕE). (1.12)
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Furtheremore, ϕξ = 0 and η(D) = g(D, ξ).

As in the case of almost Hermitian manifolds, we recall some of the important iden-
tities.

(∇Dφ) (E, G) = g (E, (∇Dϕ) G) = −g ((∇Dϕ) E, G) , (1.13)
(∇Dη) E = g (E,∇Dξ) = (∇Dφ) (ξ, ϕE) , (1.14)
(∇Dφ) (E, G) + (∇Dφ) (ϕE, ϕG) = η (G) (∇Dη) ϕE − η (E) (∇Dη) ϕG, (1.15)
2dη (D, E) = Dη (E)− Eη (D)− η ([D, E]) , (1.16)
3dφ (D, E, G) = G {(∇Dφ) (E, G)} . (1.17)

Let {E1, . . . , Em, ϕE1, . . . , ϕEm, ξ} be a local ϕ-basis of an open subset of M, then the
coderivative, δ, is given by

δφ(D) = −
m∑

i=1

{(∇Ei
φ)(Ei, D) + (∇ϕEi

φ)(ϕEi, D)} − (∇ξφ)(ξ, D),

δη = −
m∑

i=1

{(∇Ei
η)Ei + (∇ϕEi

η)ϕEi} .

The analogous of the Lee form is the 1-form, ω, defined by

ω(D) =
1

m
(δφ(ϕD)− η(D)δη).

In [41], S. Sasaki and Y. Hatakeyama have defined two tensors fields N (1) and N (2) of
type (0, 2) by setting

(1) N (1)(D, E) = Nϕ(D, E) + 2dη(D, E)ξ,

(2) N (2)(D, E) = (LϕDη)E − (LϕEη)D

where Nϕ is the Nijenhuis tensor of ϕ while L denotes the Lie derivative.

If N (1) = 0, the manifold is said to be normal and in this case N (2) = 0.

Following Gray and Hervella [22], in the classification of almost Hermitian struc-
tures, D. Chinea and C. Gonzalez [15] have obtained a classification of almost contact
metric manifolds. They have shown that there are 4,096 classes of almost contact metric
manifolds.

Note that, among the 4,096 classes of these structures, only a few of them have been
identified. We recall here the defining relations of those manifolds which are already
identified and are susceptible to be used in the sequel.

An almost contact metric manifold is said to be :

(1) cosymplectic if dφ = 0, N (1) = 0, and dη = 0;
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(2) almost cosymplectic if dφ = 0 and dη = 0;

(3) semi-cosymplectic normal if δφ = 0 = δη = N (1);

(4) Sasakian if φ = dη, and N (1) = 0;

(5) quasi-Sasakian if dφ = 0, and N (1) = 0;

(6) semi-Sasakian if η = 1
2m

δφ;

(7) Kenmotsu if dφ(D, E, G) = 2
3
G {η(D)φ(E, G)} , dη = 0 and N (1) = 0;

(8) G1−Sasakian if (∇Dϕ)D − (∇ϕDϕ)ϕD + η(D)(∇ϕDξ) = 0;

(9) G1−semi-Sasakian if it is G1−Sasakian and δφ
2m

= η;

(10) G1−Kenmotsu if

(∇Dφ)(D, E)− (∇ϕDφ)(ϕD,E)− η(D)φ(E, D) = 0 = dη;

(11) G1−semi-Kenmotsu if it is G1−Kenmotsu and δφ = 0;

(12) G1−semi-cosymplectic if it is G1−Sasakian and δφ = 0 = δη.

(13) G2−Sasakian if

G {(∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G)− η(E)(∇ϕDη)G} = 0;

(14) G2−semi-Sasakian if it is G2−Sasakian and δφ
2m

= η;

(15) G2−Kenmotsu if

G {(∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G)− η(D)φ(E, G)} = 0 = dη;

(16) G2−semi-Kenmotsu if it is G2−Kenmotsu and δφ = 0;

(17) G2−semi-cosymplectic if it is G2−Sasakian and δφ = 0 = δη.

(18) C7−manifold if (∇Dφ)(E, G) = η(G)(∇Eη)ϕD + η(E)(∇ϕDη)E, and δφ = 0;

(19) C8−manifold if (∇Dφ)(E, G) = −η(G)(∇Eη)ϕD + η(E)(∇ϕDη)G, and δη = 0;

(20) C9−manifold if (∇Dφ)(E, G) = η(G)(∇Eη)ϕD − η(E)(∇ϕDη)G;

(21) C10−manifold if (∇Dφ)(E, G) = −η(G)(∇Eη)ϕD − η(E)(∇ϕDη)G;

(22) C11−manifold if (∇Dφ)(E, G) = −η(D)(∇ξφ)(ϕE, ϕG);

(23) C12−manifold if
(∇Dφ)(E, G) = η(D)η(G)(∇ξη)ϕE − η(D)η(E)(∇ξη)ϕG.
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(24) nearly cosymplectic if (∇Dϕ)D = 0;

(25) semi-cosymplectic if δφ = 0 and δη = 0;

(26) quasi-K-cosymplectic if (∇Dϕ)E + (∇ϕDϕ)ϕE − η(E)(∇ϕDξ) = 0;

(27) closely cosymplectic if (∇Dϕ)D = 0 and dη = 0;

(28) nearly-K-cosymplectic if (∇Dϕ)E + (∇Eϕ)D = 0 and ∇Dξ = 0;

(29) nearly Sasakian if (∇Dϕ)E + (∇Eϕ)D = 2g(D, E)ξ − η(D)E − η(E)D;

(30) semi-Sasakian normal if η = 1
2m

δφ and N (1) = 0;

(31) contact if φ = dη;

(32) K-contact if φ = dη and (∇Dη)E + (∇Eη)D = 0;

(33) C3−manifold if (∇Dφ)(E, G) = (∇ϕDϕ)(ϕE, G) and δφ = 0;

(34) locally conformal almost cosymplectic if dφ = −2φ ∧ ω and dη = η ∧ ω;

(35) locally conformal cosymplectic if dφ = −2φ ∧ ω, dη = η ∧ ω and Nϕ = 0

(36) generalized Kenmotsu if (∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G) = η(E)φ(G, D)
and dη = 0;

(37) nearly Kenmotsu if (∇Dϕ)D = −η(D)ϕD and dη = 0;

(38) almost Kenmotsu if dφ(D, E, G) = 2
3
G {η(D)φ(E, G)} ;

(39) semi-Kenmotsu normal if
(∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G) = η(E)φ(G, D), δφ = 0 and dη = 0;

(40) quasi-Kenmotsu if

(∇Dφ)(E, G) + (∇ϕDφ)(ϕE, G) = η(E)φ(G, D) + 2η(G)φ(D, E) and dη = 0;

(41) quasi-K-Sasakian if

(∇Dϕ)E + (∇ϕDϕ)ϕE = 2g(D, E)ξ + η(E)(∇ϕDξ)− 2η(E)D;

(42) C2−manifold if dφ = 0 and ∇η = 0;

(43) almost-K-contact if ∇ξϕ = 0;

(44) C5−manifold if

(∇Dφ)(E, G) =
1

2m
{φ(D, G)η(E)− η(G)φ(D, E)} δη;

11



(45) nearly-K-Sasakian if

(∇Dϕ)E + (∇Eϕ)D = 2g(D, E)ξ − η(E)D − η(D)E,

and ∇Dξ = −ϕD;

(46) almost trans Kenmotsu if

G
{

(∇Dφ)(E, G)− 1

m
φ(D, E)δφ(ϕG)− 2η(D)φ(E, G)

}
= 0,

and dη = 0.

Looking through the defining relations of all various classes of almost contact metric
structures, it appears that the differential dφ and the covariant derivative ∇φ of the
fundamental form φ can be expressed in formulae such as the following in which b is a
real number.

dφ(D, E, G) =
b

3
G {η(D)C} , (1.18)

dφ(D, E, G) =
b

3
G {φ(D, E)C} , (1.19)

dφ = b.φ ∧ ω, (1.20)
(∇Dφ)(D, E)− (∇ϕDφ)(ϕD,E) + b.η(D)C = 0, (1.21)
G {(∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G) + b.η(D)C} = 0. (1.22)

Note that in the above formulae, C is a factor which is determined by the class of the
manifold. For instance, if we take b = 2 and C = φ(E, G) in (1.18), we obtain

dφ(D, E, G) =
2

3
G {η(D)φ(E, G)} ,

which is one of the defining relations of an almost Kenmotsu manifold [28].

Taking b = 1 and C = (∇Gη)ϕE + (∇ϕGη)E in the same formula, we get

dφ(D, E, G) =
1

3
G {η(D) [(∇Gη)ϕE + (∇ϕGη)E]} ,

which leads to define a C7-manifold as in [15]. However, if b = 0 in the same formula,
we get one of the defining relations of almost cosymplectic, quasi Sasakian or a C2-
manifold. Taking b = −1 and C = (∇ϕDη)E, in (1.21), we obtain the defining relations
of G1-Sasakian structures; in the same formula, if b = −1 and C = φ(E, D) we then
obtain the defining relations of a G1-Kenmotsu manifold.

Clearly,(1.22) can be illustrated by G2-almost contact metric structures such as:
G2-Sasakian, G2-semi-cosymplectic or G2-Kenmotsu.

Frequently, we will use the above formulas which generalize the defining relations of
some structures.
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Proposition 1.2.1. Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold. Then,
we have,

2g((∇Dϕ)E, G) = 3dφ(D, ϕE, ϕG)− 3dφ(D, E, G) + g(N (1)(E, G), ϕD)

+ N (2)(E, G)η(D) + 2dη(ϕE, D)η(G)− 2dη(ϕG,D)η(E).

Proof. See Blair [6, p.52] or [7, Lemma 6.1, p.65].

The above proposition leads to express the defining relations of some structures in
the function of the covariant or the exterior derivative of the tensors. For instance

Proposition 1.2.2. Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold. If it
is

(1) quasi-Sasakian, then g((∇Dϕ)E, G) = dη(ϕE, D)η(G)− dη(ϕG,D)η(E);

(2) Sasakian, then (∇Dϕ)E = g(D, E)ξ − η(E)D;

(3) almost cosymplectic, then 2g((∇Dϕ)E, G) = g(Nϕ(E, G), ϕD);

(4) cosymplectic, then ∇Dϕ = 0;

(5) Kenmotsu, then (∇Dϕ)E = g(ϕD,E)ξ − η(E)ϕD.

Proof. (1) Recall that a quasi-Sasakian manifold is defined by dφ = 0 and N (1) = 0.
Using Proposition 1.2.1, we have,

2g((∇Dϕ)E, G) = N (2)(E, G)η(D) + 2dη(ϕE, D)η(G)− 2dη(ϕE, D)η(E).

On the other hand, it is known that N (1) = 0 implies that N (2) = 0 from which, the
preceding relation reduces to

g((∇Dϕ)E, G) = dη(ϕE, D)η(G)− dη(ϕG,D)η(E)

which is the proof of (1). Concerning the statement (2), we claim that

2g((∇Dϕ)E, G) = 3dφ(D, ϕE, ϕG)− 3dφ(D, E, G)

+ 2dη(ϕE, D)η(G)− 2dη(ϕG,D)η(E),

because a Sasakian manifold is normal. Since φ = dη, we have dφ = 0 so that the above
relation reduces to

2g((∇Dϕ)E, G) = 2dη(ϕE, D)η(G)− 2dη(ϕG,D)η(E).

Thus, g((∇Dϕ)E, G) = dη(ϕE, D)η(G)− dη(ϕG,D)η(E), which becomes

g((∇Dϕ)E, G) = φ(ϕE, D)η(G)− φ(ϕG,D)η(E).
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On the other hand, φ(ϕE, D) = g(ϕE, ϕD) = g(E, D) − η(E)η(D) and φ(ϕG,D) =
g(ϕG,ϕD) = g(G, D) − η(G)η(D). These lead to g((∇Dϕ)E, G) = g(D, E)η(G) −
g(G, D)η(E), which is

g((∇Dϕ)E, G) = g(D, E)g(G, ξ)− g(G, D)g(E, ξ),

from which (∇Dϕ)E = g(D, E)ξ−η(E)D, follows. This is the defining relation currently
used in the definition of a Sasakian structure. Let us consider the case of statement (3)
concerning the almost cosymplectic manifolds. From the relation dφ = 0 and dη = 0,
we get 2g((∇Dϕ)E, G) = g(N (1)(E, G), ϕD) by Proposition 1.2.1. But

N (1)(E, G) = Nϕ(E, G) + 2dη(E, G)ξ.

Since dη = 0, the above relation becomes N (1)(E, G) = Nϕ(E, G) and then

2g((∇Dϕ)E, G) = g(Nϕ(E, G), ϕD),

as claimed in statement (3). Considering (4), it is known that a cosymplectic man-
ifold is normal and then N (1)(E, G) = 0 which leads to 2g((∇Dϕ)E, G) = 0 from
which g((∇Dϕ)E, G) = 0. Using the non-degeneracy of g, the last relation implies that
(∇Dϕ)E = 0 which is the proof of (4). In the literature, this is the defining relation
currently used to define a cosymplectic manifold. Let us consider the case of Kenmotsu
manifold. Since a Kenmotsu manifold is normal and dη = 0, we then have

2g((∇Dϕ)E, G) = 3dφ(D, ϕE, ϕG)− 3dφ(D, E, G).

Considering dφ(D, E, G) in a Kenmotsu mnifold we have

3dφ(D, E, G) = 2 {η(D)g(E, ϕG) + η(E)g(G, ϕD) + η(G)g(D, ϕE)} (1.23)

Similarly,
3dφ(D, ϕE, ϕG) = 2 {η(D)g(E, ϕG)} , (1.24)

because η(ϕE) = 0 = η(ϕG). Making (1.24)- (1.23), leads to 3dφ(D, ϕE, ϕG) −
3dφ(D, E, G) = −2 {η(E)g(G, ϕD) + η(G)g(D, ϕE)} and with this, we get

2g((∇Dϕ)E, G) = −2 {η(E)g(G, ϕD) + η(G)g(D, ϕE)} ,

which is equivalent to

g((∇Dϕ)E, G) = −g(D, ϕE)g(G, ξ)− g(G, ϕD)g(E, ξ)

from which we deduce (∇Dϕ)E = g(ϕD,E)ξ − η(E)ϕD. This is the defining relation
usually used for a Kenmotsu manifold.
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The inclusion relationships of certain almost contact metric structures are given
through the following sketch that consists of three diagrams.
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Figure 1. Diagram in the Kenmotsu case.
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Figure 3. Diagram in the Sasakian case.

More details on almost contact metric manifolds can be found in [6], [7], [40] and [41].
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1.3 Some Examples of Almost Contact Metric Mani-
folds

1.3.1 Cosymplectic structure on R3

Let R3 with its cartesian coordinates (x1, x2, x3). Set ξ = ∂
∂x2 , η = dx2 and the tensor

field of type (1, 1),

ϕ
∂

∂x1
= − ∂

∂x3
, ϕ

∂

∂x2
= 0, ϕ

∂

∂x3
=

∂

∂x1
.

It is clear that dη = 0, η(ξ) = 1, ϕξ = 0. Using the linearity of ϕ, the relation (1.10)
is satisfied. Therefore, (ϕ, ξ, η) is an almost contact structure. Now, we want to show
that the metric g is compatible with the almost contact structure (ϕ, ξ, η). For this, let
us express the natural formulations of ϕX and ϕY where X = X i ∂

∂xi and Y = Y i ∂
∂xi

are two vector fields of R3. We have,

ϕX = X iϕ
∂

∂xi
= X3 ∂

∂x1
−X1 ∂

∂x3
and ϕY = Y iϕ

∂

∂xi
= Y 3 ∂

∂x1
− Y 1 ∂

∂x3
.

We then get, g(ϕX, ϕY ) = X3Y 3 + X1Y 1. But, g(X, Y ) = X1Y 1 + X2Y 2 + X3Y 3 and
η(X)η(Y ) = X2Y 2 from which g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) which shows that
(ϕ, η, ξ, g) is an almost contact metric structure and then (R3, ϕ, η, ξ, g) is an almost
contact metric manifold. Referring to the basis (dx1, dx2, dx3), we have, φ(X, Y ) =
2dx1 ∧ dx3 from which dφ = 0 is clear.

We then get dφ = 0 and dη = 0 allowing to say that (R3, ϕ, η, ξ, g) is an almost
cosymplectic manifold. To confirm or dis-confirm this, we must calculate Nϕ(X, Y ).
Recall that

Nϕ(X,Y ) = ϕ2 [X, Y ] + [ϕX, ϕY ]− ϕ [X, ϕY ]− ϕ [ϕX, Y ] .

A straightforward calculation gives Nϕ(X, Y ) = 0. Therefore (R3, ϕ, η, ξ, g) is cosym-
plectic.

1.3.2 Kenmotsu structure on M 3

As in the case of cosymplectic structure, let M3 = {(x, y, z) ∈ R3 : z > 0}, where
(x, y, z) are the standard coordinates in R3. The vector fields

E1 = z
∂

∂x
, E2 = z

∂

∂y
, E3 = −z

∂

∂z

are linearly independent at each point of M3. Let g be the Riemannian metric on M3

defined by, g(Ei, Ei) = 1 and g(Ei, Ej) = 0, ∀ i 6= j, i, j = 1, 2, 3. Let η be the 1-form
defined by η(·) = g(E3, ·).
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Let ϕ be the (1, 1) tensor field defined by

ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0.

Then using the linearity of ϕ and g, we have, η(E3) = 1, ϕ2 = −I+η⊗E3, g(ϕX, ϕY ) =
g(X, Y )−η(X)η(Y ), for any X, Y ∈ Γ(TM3). Thus, for E3 = ξ, (ϕ, ξ, η, g) is an almost
contact metric structure. Using the Koszul formula, we have, for any X, Y ∈ Γ(TM3),

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

which characterizes the Kenmotsu structure.

1.3.3 Sasakian structure on S3

Let (R4, g, J) where R4 = {(xi, yi)} with x, y ∈ R and i = 1, 2. J( ∂
∂xi ) = ∂

∂yi , J( ∂
∂yi ) =

− ∂
∂xi , and g =

∑2
i=1(dxi)2 + (dyi)2. It is clear that (g, J) is an almost Hermitian

structure.

Consider the unit sphere S3 immersed in R4 and a unit vector field µ normal to S3

defined by

µ =
2∑

i=1

(xi ∂

∂xi
+ yi ∂

∂yi
).

Set
ξ = Jµ,

η =
2∑

i=1

(xidyi − yidxi),

and
ϕ = J + η ⊗ µ.

Let us show that (ϕ, ξ, η) is an almost contact structure.

Indeed,

ϕ2D = J(JD + η(D)µ) + η(JD + η(D)µ)µ

−D + η(D)Jµ + η(JD)µ + η(D)η(µ)µ.

It is clear that η(µ) = 0 because η(µ) = g(ξ, µ) = 0 since µ is orthogonal to ξ. In this
way,

ϕ2D = −D + η(D)ξ + η(JD)µ.

Recall that η(JD) = g(JD, ξ) = g(JD, Jµ). Since (g, J) is an almost Hermitian struc-
ture, then

g(JD, Jµ) = g(D, µ).

But g(D, µ) = 0 because µ is normal. Thus, ϕ2 = −D + η(D)ξ.
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Let us verify that η(ξ) = 1. Since ξ = Jµ, then η(Jµ) = η(ξ). But, Jµ =∑2
i=1(x

i ∂
∂yi − yi ∂

∂xi ). So, we have,

η(ξ) = η(Jµ) =
2∑

i=1

(xi)2 + (yi)2 = 1

We have to show that η ◦ ϕ = 0. In fact,

(η ◦ ϕ)D = η(ϕD) = η(JD + η(D)µ) = η(JD) + η(D)η(µ).

On the other hand, η(µ) = 0 and η(JD) = 0. Therefore, (η ◦ ϕ)(D) = 0. To show
that ϕξ = 0, one must calculate ϕξ = Jξ + η(ξ)µ. Since Jξ = −µ and η(ξ) = 1, then
ϕξ = −µ + µ = 0.

1.3.4 Product M ′2m′ ×M 2m+1

The product of manifolds plays an important role in the construction of some examples
of submersions. Some results in this paragraph have been published in [47].

Let (M ′, g′, J ′) be a 2m′-dimensional almost Hermitian manifold and (M, g, ϕ, ξ, η)
be an almost contact metric manifold of dimension 2m+1. It is known that the product
M̃ = M ′ × M is a differentiable manifold of dimension 2 (m′ + m) + 1. One can put
n = m′ + m so that the dimension of M̃ is 2n + 1.

On the product M̃ = M ′ × M , one defines an almost contact metric structure
(g̃, ϕ̃, ξ̃, η̃) by setting

ϕ̃ (D′, D) = (J ′D′, ϕD) , (1.25)

η̃ (D′, D) =
m

n
η (D) , (1.26)

g̃ ((D′, D) , (E ′, E)) = g′ (D′, E ′) +
n2

m2
g (D, E) , (1.27)

ξ̃ =
n

m
(0, ξ) . (1.28)

Proposition 1.3.1. Let (M ′, g′, J ′) be an almost Hermitian manifold and (M, g, ϕ, ξ, η)
an almost contact metric manifold. If (M ′ ×M, g̃, ϕ̃, ξ̃, η̃) is an almost contact metric
manifold obtained as above, then it is:

(1) semi-Sasakian if, and only if, M ′ is semi Kähler and M is semi-Sasakian;

(2) G1-Sasakian if, and only if, M ′ is a G1-manifold and M is G1-Sasakian;

(3) semi-cosymplectic normal if, and only if, M ′ is a W3-manifold and M is semi-
cosymplectic normal;

(4) G1-semi-Sasakian if, and only if, M ′ is a W1 ⊕W3-manifold and M is G1-semi-
Sasakian.
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Proof. First, note that since M̃ = M
′2m′ × M2m+1, we have dim M̃ = 2(m′ + m) + 1.

Suppose that M̃ is semi-Sasakian, we then have

η̃ =
1

2(m′ + m)
δφ̃, (1.29)

η̃(D′, D) =
m

m′ + m
η(D), (1.30)

δφ̃(D′, D) = δΩ′(D′) + δφ(D). (1.31)

Thus, combining (1.30) with (1.29) and (1.31) gives

m

m′ + m
η(D) =

1

2(m′ + m)
(δΩ′(D′) + δφ(D)),

which leads to

m

m′ + m
η(D) =

1

2(m′ + m)
δΩ′(D′) +

1

2(m′ + m)
δφ(D).

Therefore
η(D) =

m′ + m

2m(m′ + m)
δΩ′(D′) +

m′ + m

2(m′ + m)
δφ(D),

η(D) =
1

2m
δΩ′(D′) +

1

2m
δφ(D),

and we deduce that η = 1
2m

δφ if and only if δΩ′ = 0. This means that M̃ is semi-
Sasakian if and only if M ′ is semi-Kähler and M is semi-Sasakian. Other statements
are proved in the same way.

Some illustrations can be pointed out from [15] as follows.

S6 × R2m+1 is nearly-K-cosymplectic,

S2 × R2m+1 is quasi-K-cosymplectic,

S2m+1 × R2p is quasi Sasakian.

Looking through these examples, it is known that:

S6 is nearly Kählerian and R2m+1 is cosymplectic,

S2 is quasi Kählerian and R2m+1 is cosymplectic,

S2m+1 is Sasakian and R2p is Kählerian.

It is known that there are 4,096 classes of almost contact metric structures; thus the
above proposition should take many pages; we then generalize it in the following
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Theorem 1.3.2. Let (M ′, g′, J ′) be an almost Hermitian manifold and (M, g, ϕ, ξ, η) an
almost contact metric manifold. If (M̃, g̃, ϕ̃, ξ̃, η̃) is an almost contact metric manifold
obtained as above, then, it is so that:

(1)

dφ̃((D′, D), (E ′, E), (G′, G)) =
b

3
G{η̃(D′, D)C̃}

if and only if,
dΩ′(D′, E ′, G′) = 0

and
dφ(D, E, G) =

b

3
G{η(D)C};

(2)

dφ̃((D′, D), (E ′, E), (G′, G)) =
b

3
G{φ̃((D′, D), (E ′, E))C̃}

if and only if,

dΩ′ (D′, E ′, G′) =
b

3
G {Ω′ (D′, E ′) C ′}

and
dφ (D, E, G) =

b

3
G {φ (D, E) C} ,

(3)
(∇̃(D′,D)φ̃)((D′, D), (E ′, E)) = b.η̃(D′, D)φ̃((E ′, E), (D′, D))

if and only if,
(∇′

D′Ω′) (D′, E ′) = 0

and
(∇Dφ)(D, E) = b.η(D)φ(E, D);

(4)

(∇̃(D′,D)φ̃)((E ′, E), (G′, G)) + (∇̃ϕ̃(D′,D)φ̃)(ϕ̃(E ′, E), (G′, G)) = b.η̃ (D′, D) C̃

if and only if,
(∇′

D′Ω′) (E ′, G′) + (∇′
J ′D′Ω′) (J ′E ′, G′) = 0

and
(∇Dφ)(E, G) + (∇ϕDφ)(ϕE, G) = b.η(D)C;

(5)

G{(∇̃(D′,D)φ̃)((E ′, E), (G′, G))} − G{(∇̃ϕ̃(D′,D)φ̃)(ϕ̃(E ′, E), (G′, G))

+ b.η̃(D′, D)C̃} = 0,

if and only if,

G {(∇′
D′Ω′) (E ′, G′)− (∇′

J ′D′Ω′) (J ′E ′, G′)} = 0

and
G {(∇Dφ) (E, G)− (∇ϕDφ) (ϕE, G) + b.η (D) C} = 0;
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(6)
δφ̃ = 0, δη̃ = 0, dη̃ = 0 or N (1) = 0

if and only if,
δφ̃ = 0 = δΩ′ = 0 = N (1).

Proof. (1) If

dφ̃((D′, D), (E ′, E), (G′, G)) =
b

3
G{η̃(D′, D)C̃},

then, by the fact that, in this product,

dφ̃ ((D′, D) , (E ′, E) , (G′, G)) = dΩ′ (D′, E ′, G′) +
m2

n2
dφ (D, E, G) ,

we have
dΩ′(D′, E ′, G′) +

m2

n2
dφ(D, E, G) =

b

3
{m

n
η(D)C},

and this implies

dΩ′ (D′, E ′, G′) = 0 and
m

n
dφ (D, E, G) =

b

3
G {η (D) C} .

Putting a = b.n
m

, one gets dφ (D, E, G) =
a

3
G {η (D) C}. Conversely, if

dΩ′ (D′, E ′, G′) = 0 and dφ (D, E, G) =
a

3
G {η (D) C} ,

then,
dΩ′ (D′, E ′, G′) + dφ (D, E, G) =

a

3
G {η (D) C} .

Since dφ (D, E, G) = a
3
G {η (D) C}, then,
m

n
dφ (D, E, G) =

a.m

3n
G {η (D) C} .

On the other hand, taking
a.m

n
= b, one gets

m

n
dφ (D, E, G) =

b

3
G {η (D) C} ,

from which we have

m2

n2
dφ(D, E, G) =

b

3
G{m

n
η(D)C}.

Since m
n
η (D) = η̃ (D′, D), then

dΩ′(D′, E ′, G′) +
m2

n2
dφ(D, E, G) =

b

3
G{η̃(D′, D)C̃},

which shows that

dφ̃((D′, D), (E ′, E), (G′, G)) =
b

3
G{η̃(D′, D)C̃}.
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(2) If dφ̃ ((D′, D) , (E ′, E) , (G′, G)) = b
3
G{φ̃ ((D′, D) , (E ′, E)) C̃}, then by the fact that

dφ̃ ((D′, D) , (E ′, E) , (G′, G)) = dΩ′ (D′, E ′, G′) +
m2

n2
dφ (D, E, G) ,

and
φ̃ ((D′, D) , (E ′, E)) = Ω′ (D′, E ′) +

m2

n2
φ (D, E) ,

in this product, we get

dΩ′ (D′, E ′, G′) =
b

3
G {Ω′ (D′, E ′, G′)}

and
dφ (D, E, G) =

b

3
G {φ (D, E) C} .

The converse is established as in the above assertion (1). Other statements are
proved in similar way.

This theorem is important according to the following proposition, due to Oubiña
[37, Prop.2.1].

Proposition 1.3.3. The manifold (M̃, g̃, ϕ̃, ξ̃, η̃) defined as above cannot be quasi-K-
Sasakian.

Proof. Recall that a quasi-K-Sasakian manifold is defined by the relation

(∇Dφ) (E, G) + (∇ϕDφ) (ϕE, G) =

2g (D, E) η (G)− 2g (D, G) η (E) + g (∇ϕDξ, G) η (E) .

Therefore, if
(
M̃, g̃, ϕ̃, ξ̃, η̃

)
is quasi-K-Sasakian, thus we get

(∇′
D′Ω′) (E ′, G′) + (∇′

J ′D′Ω′) (J ′E ′, G′) = 2g′ (D′, E ′)− 2g′ (D′, G′) ,

m2

n2
(∇Dφ) (E, G) + (∇ϕDφ) (ϕE, G) =

2n

m
g (D, E) η (G)− g (D, G) η (E)

+ g (∇ϕDξ, G) η (E) ,

which are absurd. Indeed, the first relation does not define a subclass in the classification
of almost Hermitian structures from Gray and Hervella [22]. The second implies that
m = n from which we deduce m′ = 0.

1.4 Examples of manifolds in Kenmotsu geometry

In Kenmotsu Geometry, we can refer to the warped product

R×s M2m,

where s is the warping function defined by s(t) = cet with c ∈ R∗, M2m being an almost
Hermitian manifold.

With this warped product, we can construct some examples as follows.
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1.4.1 Kenmotsu case

Let M1 and M2 be two cosymplectic manifolds. It can be shown that the direct product
M1×M2 is a Kähler manifold. Thus the warped product R×s (M1×M2) is a Kenmotsu
manifold.

In fact, it is known that R2 is a Kähler manifold. So, the warped product R×sR2 is a
Kenmotsu manifold. We have already seen that R3 can be furnished with the Kenmotsu
structure.

Considering that R3 can be endowed with a cosymplectic structure as already estab-
lished, it is true that R3×R3 is Kähler and then R×s (R3×R3) is a Kenmotsu manifold.
This is to say that R7 can be equipped with a Kenmotsu structure.

Following Massamba [32] and [33], we can show that M7 = {(x1, x2, ..., x7) ∈ R7 :
x7 > 0} is a Kenmotsu manifold. In fact, the vector fields

E1 = x7
∂

∂x1

, E2 = x7
∂

∂x2

, E3 = x7
∂

∂x3

, E4 = x7
∂

∂x4

, E5 = −x7
∂

∂x5

,

E6 = −x7
∂

∂x6

, E7 = −x7
∂

∂x7

,

are linearly independent at each point of M7. Let g be the Riemannian metric on M7

defined by, g(Ei, Ei) = 1 and g(Ei, Ej) = 0, ∀ i 6= j, i, j = 1, 2, 3, ..., 7. Let η be the
1-form defined by η(·) = g(E7, ·).

Let ϕ be the (1, 1) tensor field defined by

ϕE1 = −E2, ϕE2 = E1, ϕE3 = −E4, ϕE4 = E3, ϕE5 = −E6, ϕE6 = E5, ϕE7 = 0.

Then using the linearity of ϕ and g, we have, η(E3) = 1, ϕ2 = −I+η⊗E3, g(ϕX, ϕY ) =
g(X, Y )−η(X)η(Y ), for any X, Y ∈ Γ(TM7). Thus, for E7 = ξ, (ϕ, ξ, η, g) is an almost
contact metric structure. Using the Koszul formula, we have, for any X, Y ∈ Γ(TM7),

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

which proves that (M7, ϕ, ξ, η, g) is a Kenmotsu manifold.

Problem. We have seen that R3 and R7 can be endowed with a Kenmotsu structure.
How can one characterize the Kenmotsu structure on R2m+1?

According to the product of manifolds, as already defined , we would like to construct
the Kenmotsu structure on R2m+1. First, we have seen that R3 can be endowed with the
Kenmotsu structure. Since R2 is a Kähler manifold, then R2 × R3 is also a Kenmotsu
manifold. This is to say that R5 is a Kenmotsu manifold.

Following this procedure, we claim that: R2m+1 is Kenmotsu if R2m−1 is Ken-
motsu.

In fact, if R2m−1 is Kenmotsu, since R2 is Kähler, then

R2m+1 = R2 × R2m−1
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is Kenmotsu. Let us indicate the construction.

Consider M2m+1 = {(x1, x2, ..., x2m+1) ∈ R2m+1 : x2m+1 > 0}. Put ξ = ( −1
x2m+1

) ∂
∂x2m+1

,

η = −x2m+1dx2m+1, Ei = x2m+1
∂

∂xi
for i 6= 2m + 1. The vector fields Ei are linearly

independent at each point of M2m+1.

Note by M2m+1(R) the set of (2m + 1) real matrices and J =

(
0 1
−1 0

)
. Taking

ϕ ∈ M2m+1(R) such that ϕ =



J 0 0 0 0 0 0
0 J 0 . . . .
0 0 J 0 . . .
0 0 0 J 0 . .
0 0 0 0 J 0 .
. . . . . J .
0 . . . . . 0


, it is easy to verify that

(ϕ, ξ, η) is an almost contact structure. With the canonical metric on R2m−1, (g, ϕ, ξ, η)
is an almost contact metric structure.

1.4.2 Almost Kenmotsu case

In the siilar way as in the preceding example, if M1 and M2 are almost cosymplectic
manifolds, then the direct product M1 × M2 is an almost Kähler manifold. Thus,
M = R×s (M1 ×M2) is almost Kenmotsu.

1.4.3 Nearly Kenmotsu case

Let M1 and M2 be closely cosymplectic. In [9], Capursi has shown that the product
M1 ×M2 is nearly Kählerian. So, the warped product M = R ×s (M1 ×M2) is nearly
Kenmotsu. Since, from Gray-Hervella [22], S6 is a nearly Kähler manifold, then M =
R×s S6 is a nearly Kenmotsu manifold.

1.4.4 Quasi Kenmotsu case

It is known that S2 × R4 is a quasi Kähler manifold according to the almost complex
structure defined by the Cayley numbers. Thus, M = R×s(S2×R4) is a quasi Kenmotsu
manifold.

1.4.5 Semi-Kenmotsu normal case

From A. Gray [20], it is known that any parallelizable complex manifold is a W3-
manifold. Since S2 is parallelizable, then R×s S2 is a semi-Kenmotsu normal manifold.
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Let Q be a minimal surface immersed in R3. It can be shown that Q × R4 is a
W3-manifold. So, M = R×s (Q×R4) is a semi-Kenmotsu normal manifold. Concretely,
consider the following non planar surface Q defined by

x = u cos v
y = u sin v
z = av,

where a > 0. This surface is minimal. Thus, Q× R4 is a W3-manifold.

1.4.6 G1-Kenmotsu case

L. M. Hervella and E. Vidal, have shown that the product of a nearly Kähler M ′
1 with

a Hermitian manifold M ′
2 is a G1-manifold. With this in mind, the warped product is a

G1-Kenmotsu manifold.

According to Capursi, if M1 and M2 are normal then M1 × M2 is Hermitian. On
the other hand, since S6 is nearly Kählerian,then M = R ×s ((M1 × M2) × S6) is a
G1-Kenmotsu manifold.

1.4.7 G2-Kenmotsu case

In the similar way, let M ′
1 be Hermitian and M ′

2 almost Kähler. Then M ′
1 × M ′

2 is a
G2−manifold. Thus M = R×s ((M1 ×M2) is a G2-Kenmotsu manifold.

1.4.8 Generalized Kenmotsu case

It is known that the product of two spheres S2p+1 and S2p′+1 is Hermitian. Thus
M = R ×s (S2p+1 × S2p′+1) is generalized Kenmotsu. More on this class can be found
in [50].

1.5 The common properties of some classes of almost
contact metric manifolds

Some classes of almost contact metric manifolds have a common property. Here, we
present those which have in common the main defining relations.

(1) Cosymplectic, quasi-Sasakian and Kenmotsu manifolds

dφ(D, E, G) =
b

3
G {η(D)φ(E, G)}

and N (1) = 0.
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(2) Almost cosymplectic, C2 and almost Kenmotsu manifolds

dφ(D, E, G) =
b

3
G {η(D)φ(E, G)} .

(3) Nearly cosymplectic, nearly-K-cosymplectic, closely cosymplectic and nearly Ken-
motsu manifolds

(∇Dφ)(D, E) = b.η(D)C.

(4) Quasi-K-cosymplectic and quasi Kenmotsu manifolds

(∇Dφ)(E, G) + (∇ϕDφ)(ϕE, G) = b.η(D)C.

(5) G1-Sasakian and G1−Kenmotsu manifolds

(∇Dφ)(D, E)− (∇ϕDφ)(ϕD,E) + b.η(D)C = 0.

(6) G2−Sasakian and G2−Kenmotsu manifolds

G {(∇Dφ)(E, G)− (∇ϕDφ)(ϕE, G) + b.η(D)C} = 0.

(7) Trans-Sasakian, locally conformal cosymplectic and C4−manifolds

dφ(D, E, G) =
b

3
G {φ(D, E)C} .

(8) Almost trans-Sasakian and locally conformal almost cosymplectic

dφ = b.φ ∧ ω.
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Chapter 2

On the structure of the fibres

In this chapter, we determine the structure of the fibres according to that of the total
space.

Using the product of manifolds, we construct examples of almost contact metric
submersions before examining the structure of the fibres. This chapter can be viewed
as a classification of submersions whose fibres lie in a fixed class of almost Hermitian
structures for type I submersions. Many common properties of almost contact metric
manifolds are exploited.

2.1 Background on almost contact metric submersions

We begin by recalling, from O’Neill [36] the concept of Riemannian submersion before
attacking that of almost contact metric one.

Let (M, g) and (M ′, g′) be two smooth, connected and complete Riemannian mani-
folds. By a Riemannian submersion, one understands a smooth surjective mapping

π : M −→ M ′

such that:

(i) π has maximal rank, and

(ii) π∗|(Kerπ∗)⊥ is a linear isometry.

Here, π∗ denotes the differential of π whose kernel is denoted by ker π∗ and (ker π∗)
⊥ is

orthogonal to the kernel, ker π∗, of π∗.

Vectors in ker π∗ are vertical while those in (ker π∗)
⊥ are horizontal. For each x′ ∈ M ′,

π−1(x′) is a closed , embedded submanifold of M, called the fibre of π over x′. Noting
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by Fx′ = π−1(x′) it is known that dim Fx′ = dim M − dim M ′. The tangent bundle TM
of the total space M has an orthogonal decomposition

T (M) = V (M)⊕H(M),

where V (M) is the vertical distribution while H(M) designates the horizontal one.

A vector field X of the horizontal distribution is called a basic vector field if it is
π-related to a vector field X∗ which means π∗X = X∗.

In this work, we will denote horizontal vector fields by X, Y and Z, while those of
the vertical distribution will be denoted by U, V and W. On the base space, tensors and
other operators will be specified by a prime (′), while those of the fibres will be denoted
by a caret .̂ For instance, ∇, ∇′ and ∇̂ will designate the Levi-Civita connection of the
total space, the base space and the fibres, respectively.

Proposition 2.1.1 ([36]). Let π : (M, g) −→ (M ′, g′) be a Riemannian submersion, X
and Y two basic vector fields on M , then:

(1) g(X, Y ) = g′(π∗X, π∗Y );

(2) H[X, Y ] is the basic vector field associated to [X∗, Y∗];

(3) H(∇XY )is the basic vector field associated to (∇′
X∗Y∗).

Proof. See O’Neill [36].

Let (M2m+1, g, ϕ, ξ, η) and (M ′2m′+1, g′, ϕ′, ξ′, η′) be two almost contact metric man-
ifolds. By an almost contact metric submersion of type I, in the sense of Watson [52],
one understands a Riemannian submersion

π : M2m+1 → M ′2m′+1

satisfying

(i) π∗ϕ = ϕ′π∗,

(ii) π∗ξ = ξ′.

Next, we overview some of the fundamental properties of this type of submersions,
established by Watson [52].

Proposition 2.1.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Then,

(1) π∗η′ = η,

(2) π∗φ′ = φ;
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(3) U ∈ V (M) implies that ϕU ∈ V (M);

(4) X ∈ H(M) implies that ϕX ∈ H(M);

(5) ξ ∈ H(M);

(6) η(U) = 0 for all U ∈ V (M);

(7) N̂J(U, V ) = N (1)(U, V );

(8) π∗N
(1) = N ′(1);

(9) ϕX is basic associated to ϕ′X∗ when X is basic;

(10) H(∇Xϕ)Y is basic associated to (∇′
X∗ϕ

′)Y∗ when X and Y are basic.

Proof. See Watson [52].

As consequences of assertions (1) and (2) in the above proposition, we have
π∗dη′ = dη and π∗dφ′ = dφ respectively. Statements (3) and (4) mean that the vertical
and horizontal distributions are invariant by ϕ.

Now, let us deal with another type of almost contact metric submersions introduced
again by Watson.

Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold and (M ′2m′
, g′, J ′) an

almost Hermitian one. A Riemannian submersion

π : M2m+1 −→ M2m′

is called an almost contact metric submersion of type II if it satisfies π∗ϕ = J ′π∗. This
means that π is (ϕ, J ′)-holomorphic.

Proposition 2.1.3. Let π : M2m+1 −→ M2m′ be an almost contact metric submersion
of type II. Then,

(1) π∗Ω′ = φ;

(2) U ∈ V (M) implies that ϕU ∈ V (M);

(3) X ∈ H(M) implies that ϕX ∈ H(M);

(4) ξ ∈ kerπ∗;

(5) X ∈ H(M) implies that η(X) = 0;

(6) π∗N
(1) = NJ ′ ;

(7) H(∇Xϕ)Y is basic associated to (∇′
X∗J

′)Y∗ when X and Y are basic.

Proof. See again Watson [52].
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2.2 Examples of almost contact metric submersions

Theorem 2.2.1. Let (M ′2m′
, g′, J ′) be an almost Hermitian manifold and

(M2m+1, g, ϕ, ξ, η) an almost contact metric one. Consider the almost contact metric
manifold product M̃ = M ′ ×M defined as in the product manifold, then:

(1) the projection π1 : M ′×M −→ M is an almost contact metric submersion of type
I,

(2) the projection π2 : M ′×M −→ M ′ is an almost contact metric submersion of type
II.

Proof. It is known that these two projections are Riemannian submersions. We have to
show that they are (ϕ̃, ϕ)-holomorphic for the first type and (ϕ̃, J ′)-holomorphic for the
second type. Since ϕ̃(D′, D) = (J ′D′, ϕD), then,

π1∗ϕ̃(D′, D) = π1∗(J
′D′, ϕD) = ϕD = ϕπ1∗(D

′, D),

from which π1∗ϕ̃ = ϕπ1∗. On the other hand, π1∗ξ̃ = π1∗(0, ξ) = ξ which achieves the
proof of (1). In the similar way, we have,

π2∗ϕ̃(D′, D) = π2∗(J
′D′, ϕD) = J ′D′ = J ′π2∗(D

′, D),

which shows that π2∗ϕ̃ = J ′π2∗ and establishes (2). We note that, in the first case, the
fibres are constituted by M ′ and in the second case by M. Since ϕ̃(D′, 0) = (J ′D′, 0)
and ϕ̃(0, D) = (0, ϕD), then M ′ and M are invariant submanifolds of M̃ = M×M ′.

More concretely, we have seen that M3 = {(x, y, z) ∈ R3 : z > 0} can be endowed
with a Kenmotsu structure. Using the Kählerian structure of R2, it is clear that the
product R2 ×M3 is a Kenmotsu manifold as proved in Proposition 1.3.1.

According to the preceding Theorem 2.2.1, we have:

(i) The projection π1 : R2 ×M3 −→ M3 is an almost contact metric submersion of
type I whose fibres are the Kählerian manifold R2 where the total and the base space are
Kenmotsu manifolds.

(ii) The projection π2 : R2 × M3 −→ R2 is an almost contact metric submersion
of type II whose total space is Kenmotsu, the base space is the Kählerian manifold R2

while the fibres are Kenmotsu manifold M3.

2.3 On the fibres of a type I submersion

Proposition 2.3.1. The fibres of an almost contact metric submersion of type I are
almost Hermitian manifolds.
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Proof. Noting by (2m + 1) the dimension of the total space and by (2m′ + 1) that of
the base space, it is known that the fibres have (2m + 1) − (2m′ + 1) = 2(m −m′) as
dimension. Since the dimension of the fibres are even, it is possible to endow them with
an almost complex structure. Note by ϕ̂, the restriction of ϕ to the fibres, we have

ϕ̂2(U) = −U + η(U)ξ.

The vanishing of η on vertical vector fields gives rise to ϕ̂2(U) = −U . On the other
hand,

ĝ(ϕ̂U, ϕ̂V ) = ĝ(U, V )− η(U)η(V ),

from which
ĝ(ϕ̂U, ϕ̂V ) = ĝ(U, V )

is clear and shows the compatibility of ĝ with ϕ̂. We then conclude that (ĝ, ϕ̂) is an
almost Hermitian structure. Note that ϕ̂ = J .

Now we give a remarkable result on the fact that some manifolds are not total space
of almost contact metric submersions of type I. This is why we have to look at any
class of almost contact metric manifolds.

Proposition 2.3.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Then the total space cannot be a nearly Sasakian, nearly-K-Sasakian or a
quasi-K-Sasakian manifold.

Proof. Recall that the structures under consideration are defined as follows:

* nearly Sasakian if (∇Dϕ)E + (∇Eϕ)D = 2g(D, E)ξ − η(D)E − η(E)D;

* nearly-K-Sasakian if (∇Dϕ)E + (∇Eϕ)D = 2g(D, E)ξ − η(E)D − η(D)E and
∇Dξ = −ϕD;

* quasi-K-Sasakian if (∇Dϕ)E +(∇ϕDϕ)ϕE = 2g(D, E)ξ + η(E)(∇ϕDξ)− 2η(E)D.

Consider the case where the total space is nearly Sasakian. Since η vanishes on
vertical vector fields, we get
(a)

(∇Uϕ)V + (∇V ϕ)U = 2g(U, V )ξ

for all U, V vertical vector fields. Now, from (a), using the formula of Gauss we obtain

(∇̂Uϕ)V + (∇̂V ϕ)U = 0

and (b)
α(U, JV ) + α(V, JU)− 2ϕ(α(U, V )) = 2g(U, V )ξ

where α denotes the second fundmental form of M . Now, if we consider JU, JV we have
(c)

−α(JU, V )− α(JV, U)− 2ϕ(α(JU, JV )) = 2g(JU, JV )ξ
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Thus if we add (b) and (c) we obtain

−ϕ(α(U, , V ) + α(JU, JV )) = 2g(U, V )ξ

which is a contradiction. The same procedure applies to the case of nearly-K-Sasakian
and quasi-K-Sasakian manifolds.

Proposition 2.3.3. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is cosymplectic, quasi Sasakian, Kenmotsu, C9, C10, C11, or
C12-manifold, then the fibres are Kählerian.

Proof. Let U, V and W be three vector fields tangent to the fibres. The first three

manifolds have in common the following relations dφ(U, V,W ) =
b

3
G {η(U)φ(V, W )}

and N (1) = 0.

Since η vanishes on vertical vector fields, we have dφ(U, V,W ) = 0. On the other
hand, N̂(U, V ) = N (1)(U, V ) = 0. Therefore, the fibres are defined by dφ̂ = 0 = N̂ ,
which are the defining relations of the Kähler structure. For the rest of manifolds, their
defining relations become (∇Uφ)(V, W ) = 0, because of the vanishing of η on the vertical
distribution. Then g(W, (∇Uϕ)V ) = 0. Now, using the formula of Gauss we have

(∇Uϕ)V = (∇̂Uϕ)V + α(U,ϕV )− ϕ(α(U, V )).

Then
g(W, (∇Uϕ)V ) = g(W, (∇̂Uϕ)V ) = 0

and thus (∇̂Uϕ)V = (∇̂UJ)V = 0.

Proposition 2.3.4. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is almost cosymplectic, a C2-manifold or an almost Kenmotsu
manifold, then the fibres are almost Kählerian.

Proof. As in the preceding proposition, all these manifolds have in common the following
defining relation

dφ(U, V,W ) =
b

3
G {η(U)φ(V, W )} ,

which becomes dφ(U, V,W ) = 0 because of the vanishing of η on vertical vector fields.
Thus, on the fibres, we have dφ̂(U, V,W ) = 0 which defines the almost Kähler structure.

Proposition 2.3.5. Assume that π : M2m+1 −→ M ′2m′+1 is an almost contact metric
submersion of type I. If the total space is nearly cosymplectic, nearly Kenmotsu, nearly-
K-cosymplectic or closely cosymplectic, then the fibres are nearly Kählerian.
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Proof. The common defining relation for all these manifolds is

(∇Uφ)(U, V ) = b.η(U)C

where C is the factor determined by the class of the manifold. For instance, taking
C = φ(U, V ) and b = 1, we have nearly Kenmotsu. If b = 0, we get the nearly cosym-
plectic, nearly-K-cosymplectic or closely cosymplectic structure. As in the preceding
proposition, we have (∇̂U φ̂)(U, V ) = 0 because φ̂(U, V ) = φ(U, V ) and η(U) = 0 = η(V ).
On the other hand, in the classification of almost Hermitian structures [22], the nearly
Kähler structure is the only structure which is defined by (∇̂U φ̂)(U, V ) = 0.

Proposition 2.3.6. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is quasi-K-cosymplectic, or a quasi Kenmotsu manifold, then
the fibres are quasi Kählerian.

Proof. As in the preceding proposition, all these manifolds have in common the following
defining relation

(∇Uφ)(V, W ) + (∇ϕUφ)(ϕV,W ) = η(V )C1 + bη(W )C2.

The proof follows by the use of the procedure of Proposition 2.3.5.

Proposition 2.3.7. Suppose that the total space of an almost contact metric submersion
of type I is Gi-Sasakian or Gi-Kenmotsu, for i ∈ {1, 2}, then the fibres are Gi-manifolds.

Proof. Note that for i = 1, the manifolds under consideration have in common the
defining relation

(∇Uφ)(U,W )− (∇ϕUφ)(ϕU, W ) + bη(U)C = 0.

If i = 2, the common defining relation is

G {(∇Uφ)(V, W )− (∇ϕUφ)(ϕV,W ) + bη(V )C} = 0.

We can proceed as in Proposition 2.3.6 to obtain the required statement .

Now, we shall be concerned with the manifolds defined by the codifferential of the
fundamental 2-form.

Recall that in [36], O’Neill has defined two configuration tensors T and A, of the
total space of a Riemannian submersion by setting

TDE = H∇VDVE + V∇VDHE;

ADE = V∇HDHE +H∇HDVE.
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Among their fundamental properties, we have settled the following

TUV = TV U, (2.1)
TE = TVE, (2.2)

TXE = 0, (2.3)
H∇UV = TUV, (2.4)

AXY = −AY X, (2.5)
AE = AHE, (2.6)

AV E = 0. (2.7)

If X is basic, then
H∇UX = AXU (2.8)

and [U,X] is vertical.

Using the tensor A, Chinea [13] has defined an associated tensor A∗ on horizontal
vector fields by setting

A∗(X, Y ) = AXϕY − AϕXY,

and has established the following structure equations

δφ(U) = δφ̂(U) +
1

2
g(trA∗, U), (2.9)

δφ(X) = δφ′(X∗) + g(H, ϕX), (2.10)
δη = δη′ ◦ π − g(H, ξ), (2.11)

where, trA∗ is the trace of A∗.

ω and θ, we have the following.

Lemma 2.3.8. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion of
type I, then ω(U) = m−m′−1

m
θ(U) if and only if trA∗ = 0.

Proof. Let us recall that on the total space M2m+1, the Lee form is

ω(D) =
1

m
{δ(ϕD)− η(D)δη}

and the Lee form on the fibres is given by

θ(U) =
1

m−m′ − 1
δφ̂(ϕU).

Now, using equation (2.9)

ω(U) =
1

m
δφ(ϕU) =

1

m
(δφ̂(ϕU) +

1

2
g(trA∗, U))

=
m−m′ − 1

m
θ(U) +

1

2m
g(trA∗, U)

.

Thus ω(U) = m−m′−1
m

θ(U) if and only if trA∗ = 0.
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Proposition 2.3.9. If the total space of an almost contact metric submersion of type I
is trans-Sasakian or locally conformal cosymplectic, then the fibres are Kähler.

Proof. The case of trans-Sasakian structure on the total space is treated by
Chinea [12, Thm.2.1]. The case of locally conformal cosymplectic is established
in [18, Thm.4.4 page 112].

Proposition 2.3.10. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion type I. If the total space is almost trans-Sasakian or a locally conformal almost
cosymplectic, then the fibres are respectively W2 ⊕W4 or almost Kähler.

Proof. The case of almost trans-Sasakian is established by Chinea [12, Thm.2.1].

Now, let us consider the case of locally conformal almost cosymplectic. In this case,
the proof follows from relationships between dφ and dΩ on the one hand, and on the
other hand, between ω and θ.

Proposition 2.3.11. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. If the total space is nearly trans-Sasakian or quasi trans-Sasakian, then
the fibres are nearly Kähler or W1 ⊕W2 ⊕W4 respectively.

Proof. See Chinea [12, Thm.2.1].

Proposition 2.3.12. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. If the total space is semi-cosymplectic or semi-Sasakian, then the fibres
are semi-Kählerian if and only if trA∗ = 0.

Proof. See Chinea [13].

Proposition 2.3.13. If the total space of an almost contact metric submersion of type
I is a C7-manifold, semi-Sasakian normal, semi-cosymplectic normal or semi-Kenmotsu
normal, then the fibres are W3-manifolds if and only if trA∗ = 0.

Proof. If M is a C7-manifold, for all U, V,W vertical vector fields we have that
(∇Uφ)(V, W ) = 0, and thus (∇̂U φ̂)(V, W ) = 0 and the fibres are Kähler. Remember
that a C7 manifold enjoyes the codifferential δ = 0; applying equation (2.9), we get the
proof.

The semi-Sasakian normal and semi-cosymplectic normal cases are treated as follows.
Since η vanishes on vertical vector fields, it is clear that δφ = 0 on a semi-Sasakian
normal manifold. Thus, we have δφ = 0 and N (1) = 0 from which δΩ̂ = 0 and N̂J = 0
follow respectively; showing that the fibres are W3-manifolds. Now, the case of semi-
cosymplectic normal and semi-Kenmotsu normal follow in the same procedure as in the
case of semi-Sasakian normal.

Proposition 2.3.14. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. If the total space is Gi-semi-cosymplectic Gi-semi-Sasakian or Gi-semi-
Kenmotsu for i ∈ {1, 2}, then the fibres are Wi ⊕W3-manifolds if and only if trA∗ = 0.
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Proof. We proceed as in the proof of Propositions 2.3.7 and 2.3.9 by adding δφ = 0.

Chinea [11, Thm 2.2] and Watson [52, Thm 3.1] have shown, in another manner,
that the total space of an almost contact metric submersion of type I cannot be con-
tact, K-contact, Sasakian, nearly Sasakian or a quasi-K-Sasakian manifold. Indeed, for
Sasakian, contact and K-contact manifolds which are defined by φ = dη, the vanishing
of η on the vertical vector fields gives φ̂ = dη(U, V ) = 0. This implies that , on the
fibres, the Kähler form is identically null.

2.4 On the fibres of a Submersion of type II

Proposition 2.4.1 ([48]). The fibres of an almost contact metric submersions of type
II are almost contact metric manifolds.

Proof. It is clear that the dimension of the fibres is 2(m − m′) + 1 which is odd. Let
(ĝ, ϕ̂, ξ̂, η̂) be the restriction of the almost contact metric structure (g, ϕ, ξ, η) of the
total space to the fibres . We have to show that (ĝ, ϕ̂, ξ̂, η̂) is an almost contact metric
structure. Indeed,

(i) ϕ̂2U = −U + η̂(U)ξ̂;

(ii) η̂(ξ̂) = ĝ(ξ̂, ξ̂) = g(ξ, ξ) = 1;

(iii) ĝ(ϕ̂U, ϕ̂V ) = −ĝ(U, ϕ̂2V ) = ĝ(U, V )− ĝ(U, η̂(V )ξ̂),

but ĝ(U, η̂(V )ξ̂) = ĝ(U, ξ̂)η̂(V ) = η̂(U)η̂(V ). Thus, ĝ(ϕ̂U, ϕ̂V ) = ĝ(U, V ) − η̂(U)η̂(V ).

Proposition 2.4.2. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. Then ω(U) = m−m′

m
ω̂(U) if and only if trA∗ = 0.

Proof. Since it is a submersion of type II, we know that

δφ(U) = δφ̂(U) + 1
2
g(trA∗, U) and

δη = δη̂ +
∑m

i=1 g(AXi
Xi + AϕXi

ϕXi, ξ)

where {X1, ..., Xm′ , ϕX1, ϕXm′} is a local horizontal ϕ−basis.

Thus, if trA∗ = 0 and
∑m

i=1(AXi
Xi + AϕXi

ϕXi) = 0, then

ω(U) =
m−m′

m
ω̂(U)
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Proposition 2.4.3. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space verifies δφ = 0, then the fibres verify δφ̂ = 0 if and only if
trA∗ = 0.

Proof. In [46, Thm 2], it is shown that

δφ(E) = g(H, ϕHE) + δ′φ′(HE) + δφ̂(VE) +
1

2
g(trA∗,VE).

Since, from equation (2.9) which is valid also in the case of a type II submersion, we
have

δφ(U) = δφ̂(U) +
1

2
g(trA∗, U)

so that if δφ = 0, then δφ̂ = 0 if and only if trA∗ = 0.

As a consequence of this proposition we have the following.

Corollary 2.4.4. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. If the total space is a C3 or a C7-manifold, then the fibres inherit the structure
of the total space if and only if trA∗ = 0.

Corollary 2.4.5. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. If the total space is semi-cosymplectic, semi-Sasakian, almost trans-Sasakian
or locally conformal almost cosymplectic, then the fibres inherit the structure of the total
space if and only if trA∗ = 0.

Theorem 2.4.6. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is Gi-semi-cosymplectic, Gi-semi-Sasakian or Gi-semi-
Kenmotsu, then the fibres inherit the structure of the total space if and only if trA∗ = 0.

Proof. The manifolds under consideration have in common the following defining rela-
tions, apart from that of the codifferential of the fundamental 2-form φ. We have

(∇Dϕ)D − (∇ϕDϕ)ϕD + η(D)C = 0,

for i = 1, and G{(∇Dφ)(E, G)−(∇ϕDφ)(ϕE, G)+S} = 0, for i = 2. In fact, considering
the first case where i = 1, if C = (∇ϕDξ) we get one of the defining relations of G1−semi-
cosymplectic or G1-semi-Sasakian structures. Taking C = φ(D, E), we go to the G1-semi-
Kenmotsu structure. Now, consider the case where i = 2. Taking S = η(E)(∇ϕDη)G, we
get one of the defining relations of G2-semi-Sasakian or G2-semi-cosymplectic structure.
If S = η(D)φ(E, G), we find the case of G2-semi-Kenmotsu manifolds.

Let us consider three vector fields U, V and W tangent to the fibres. It is not difficult
to show that, on the fibres, we have (∇̂U ϕ̂)U − (∇̂ϕU ϕ̂)ϕ̂U + η̂(U)Ĉ = 0 for i = 1 and
G{(∇̂U φ̂)(V, W )− (∇̂ϕU φ̂)(ϕ̂V,W )+ Ŝ} = 0 for i = 2. With the use of Proposition 2.4.1
and Corollary 2.4.4 the proof follows.
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Proposition 2.4.7. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is semi-cosymplectic normal, semi-Sasakian normal or
semi-Kenmotsu normal, then the fibres inherit the structure of the total space if and
only if trA∗ = 0.

Proof. In the light of the preceding theorem and the fact that N̂ (1)(U, V ) = N (1)(U, V )
from which N (1) = 0 implies N̂ (1) = 0, we get the proof.

According to Blair [7], it is known that almost Kähler manifolds enjoy symplectic
structures. But in this study, one of the interesting problems is to know how can
symplectic structures be interrelated with almost contact metric ones via the theory of
almost contact metric submersions.

For this, we have already obtained the following proposition [2].

Proposition 2.4.8. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is quasi-K-cosymplectic or quasi Kenmotsu, then the base
space is a (1, 2)-symplectic manifold.

Proof. Note that all these manifolds have in common the following relation

(∇Dφ)(E, G) + (∇ϕDφ)(ϕE, G) = α.η(D)C,

where C is a factor determined by the class of the manifold. For instance, if α = 1 and
C = η(E)(∇ϕDξ), we get the defining relation of a quasi-K-cosymplectic strucure. If
α = 1 and C = η(E)φ(G, D) + 2η(G)φ(D, E), we obtain the principal defining relation
of a quasi Kenmotsu structure.

Let X, Y and Z be three basic vector fields. Since η vanishes on horizontal vector
fields, the common relation becomes

(∇Xφ)(Y, Z) + (∇ϕXφ)(ϕY, Z) = 0.

As π∗Ω′ = φ, we get

(∇′
X∗Ω

′)(Y∗, Z∗) + (∇′
J ′X∗Ω

′)(J ′Y∗, Z∗) = 0.

This last relation is the defining relation of a quasi Kählerian structure on the base
space.

Recalling that
(∇′

X∗Ω
′)(Y∗, Z∗) = g′((∇′

X∗J
′)Y∗, Z∗)

and

(∇′
J ′X∗Ω

′)(J ′Y∗, Z∗) = g′((∇′
J ′X∗J

′)J ′Y∗, Z∗),

we then get
g′((∇′

X∗J
′)Y∗, Z∗) + g′((∇′

J ′X∗J
′)J ′Y∗, Z∗) = 0
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which is equivalent to

g′((∇′
X∗J

′)Y∗) + (∇′
J ′X∗J

′)J ′Y∗, Z∗) = 0

from which
(∇′

X∗J
′)Y∗ + (∇′

J ′X∗J
′)J ′Y∗ = 0

follows. This is the defining relation of a (1, 2)-symplectic manifold as noted in [8].

When studying submersions of contact CR-submanifolds, [34], we obtained the fol-
lowing result which is analogous to the preceding .

Proposition 2.4.9. Let π : M2m+1 −→ M ′2m′ be a submersion of type II of contact
CR-submanifold of a quasi-K-cosymplectic manifold M onto an almost contact metric
manifold. Then, the base space M ′ is a (1, 2)-symplectic manifold.

Proposition 2.4.10. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submer-
sion of type II. If the base space is a (1, 2)-symplectic manifold, then the horizontal
distribution of the total space looks like quasi Kähler manifold.

Proof. Let X, Y and Z be basic vector fields. It is known that on the base space
π∗X = X∗, π∗Y = Y∗ and π∗Z = Z∗. Consider that the base space is defined by

(∇′
X∗J

′)Y∗ + (∇′
J ′X∗J

′)J ′Y∗ = 0.

This is to say that

(∇′
X∗Ω

′)(Y∗, Z∗) + (∇′
J ′X∗Ω

′)(J ′Y∗, Z∗) = 0.

Since π∗Ω′ = φ, we have,

π∗(∇′
X∗Ω

′)(Y∗, Z∗) = (∇Xφ)(Y, Z)

and
π∗(∇′

J ′X∗Ω
′)(J ′Y∗, Z∗) = (∇ϕXφ)(ϕY, Z),

which lead to
(∇Xφ)(Y, Z) + (∇ϕXφ)(ϕY, Z) = 0.

Taking into account that the horizontal distribution of an almost contact metric sub-
mersion of type II is even dimensional, the proof follows.
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Chapter 3

Curvature relation and the structure
of the fibres

In this Chapter, we show how C(α)−curvature tensors on the total space are interre-
lated with Ki−curvature identities on the fibres. We begin with the properties of the
O’Neill tensors of configuration. These properties are useful in the study of Riemannian
curvature properties and the holomorphic sectional curvature.

3.1 On the ϕ-linearity of the O’Neill’s tensors

Let us recall that T is used in the geometry of the fibres and A is the integrability tensor
of the horizontal distribution.

Following Watson and Vanhecke [55], the ϕ-symmetry of a smooth tensor field L of
type (1, 2) on almost contact metric manifold can be defined by

(1) L is ϕ-linear in the first variable if LϕDE = ϕLDE;

(2) L is ϕ-linear in the second variable if LDϕE = ϕLDE;

(3) L is ϕ-symmetric if LϕDE = LDϕE.

Since T and A are smooth tensors fields of type (1, 2), we can examine their ϕ-
linearity properties.

Proposition 3.1.1. Let π : M2m+1 −→ B be an almost contact metric submersion of
type I or type II. If the configuration tensor T (resp. A) is ϕ-linear in one of the
variables on the vertical (resp. horizontal) distribution, then it is ϕ-linear in the other
one.

In this proposition, B means that the base space can be endowed with an almost
contact or almost Hermitian structure.
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Proof. Suppose that TϕUV = ϕTUV ; we have to show that TUϕV = ϕTUV. Indeed,
since U and V are vertical, it is known that ϕU and ϕV are also vertical by virtue
of Propositions 2.1.2 and 2.1.3. On the other hand, T is symmetric on the vertical
distribution according to equation (2.1). Thus TUϕV = TϕV U = ϕTV U = ϕTUV . In
the similar manner, we can show that if TϕV U = ϕTUV, then TϕUV = ϕTUV . Consider
the configuration tensor A. Since X and Y are horizontal vector fields, then ϕX and
ϕY are also horizontal by virtue of Propositions 2.1.2 and 2.1.3; the fact that A is
skew-symmetric on horizontal vector fields, according to equation (2.5), gives rise to
AϕXY = −AY ϕX = −ϕAY X = −ϕ(−AXY ) = ϕAXY .

From the above proposition it turns out that, on a given distribution the ϕ-linearity
implies the ϕ-symmetries of these tensors.

Corollary 3.1.2. Let π : M2m+1 −→ B be an almost contact metric submersion of type
I or type II. If the configuration tensor A is ϕ-symmetric on the horizontal distribution,
then, AXϕX = 0.

Proof. Since AϕXY = AXϕY = −AϕY X, taking Y = X one gets AϕXX = −AϕXX and
the proof clearily follows.

Proposition 3.1.3. Let π : M2m+1 −→ B be an almost contact metric submersion of
type I or type II. Suppose that the total space is cosymplectic, then A = 0.

Proof. See Watson [52, Thms 4.4 and 4.17].

Corollary 3.1.4. Let π : M2m+1 −→ B be an almost contact metric submersion of
type I or type II. If the total space is endowed with the nearly cosymplectic or closely
cosymplectic structure, then:

(1) TUϕU = ϕTUU ;

(2) AXϕX = ϕAXX.

Proof. Recall that the structures under consideration verify the relation (∇Dϕ)D = 0.
Taking a vertical vector field U, we have (∇Uϕ)U = 0 from hich the proof of (1) is
obtained. Concerning assertion (2), we consider, X, horizontal and then
(∇Xϕ)X = 0, gives the proof.

Proposition 3.1.5. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is α−Kenmotsu, then:

(1) TUϕX = ϕTUX − α.η(X)ϕU ;

(2) TUV = ϕTUV + α.g(ϕU, V )ξ;

(3) AXϕU = ϕAXU ;
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(4) AXϕY = ϕAXY ;

(5) Aξξ = 0.

Proof. (1) On the total space, the condition under consideration becomes (∇Uϕ)X =
α {g(ϕU, X)ξ − η(X)ϕU}. Since ϕU is vertical and X is horizontal, then g(ϕU, X) = 0
and this implies that (∇Uϕ)X = −α.η(X)ϕU . The vertical part of this last equation
gives (1). The vanishing of η on the vertical vector fields, as shown in Proposition 2.1.2
leads to (∇Uϕ)V = α.g(ϕU, V )ξ, which gives the proof of (2) by taking its horizontal
projection. Concerning assertion (3), the condition on the total space becomes

(∇Xϕ)U = α {g(ϕX, U)ξ − η(U)ϕX} .

Since, by Proposition 2.1.2, η(U) = 0, the condition reduces to (∇Xϕ)U = 0. Taking
the horizontal projection of this equation, we obtain the proof of (3). To establish (4),
we have (∇Xϕ)Y = α. {g(ϕX, Y )ξ − η(Y )ϕX} . The vertical projection of this relation
gives V(∇Xϕ)Y = 0 because ϕX and ξ are horizontal. Therefore, AXϕY = ϕAXY .
(5) Since ϕξ = 0, we have ϕAξξ = 0 from which Aξξ = 0 follows.

Proposition 3.1.6. Let π : M2m+1 −→ B be almost contact metric submersion of type
I or type II. If the total space is endowed with the nearly Kenmotsu structure, then:

(1) TUϕU = ϕTUU ;

(2) Tξξ = 0;

(3) AXϕX = 0;

(4) Aξξ = 0.

Proof. Remember that a nearly Kenmotsu manifold is defined by (∇Dϕ)D = −η(D)ϕD.
In the case of a submersion of type I, the vanishing of η on vertical vector fields gives
η(U) = 0 so that the defining relation becomes (∇Uϕ)U = 0 from which the horizontal
projection gives TUϕU = ϕTUU . Considering the case of a submersion of type II, the
horizontal projection gives also (∇Uϕ)U = 0 because ϕU is vertical. We then get the
proof of (1). Now, let us examine assertion (2). If we have a type I submersion, ξ is
horizontal (basic). In this case, Tξξ = 0 according to the fact that TE = TVE. If we have
a submersion of type II, one has (∇ξϕ)ξ = 0 from which ∇ξξ = 0 follows. Since ξ is
vertical, the horizontal projection of ∇ξξ = 0 gives Tξξ = 0. Concerning assertion (3),
it is clear that the relation becomes (∇Xϕ)X = −η(X)ϕX. If we have a submersion of
type I, since ϕX is horizontal, the vertical projection gives V(∇Xϕ)X = 0 from which
AXϕX = ϕAXX follows. Using equation (2.5), one gets AXϕX = 0. If we have a
submersion of type II, the relation gives (∇Xϕ)X = 0 because η(X) = 0 and thus,
AXϕX = 0 is deduced. Considering assertion (4). In the case of a submersion of type
I, we have (∇ξϕ)ξ = 0 as above from which ∇ξξ = 0 follows. Since ξ is horizontal, the
vertical projection of ∇ξξ = 0 gives Aξξ = 0. If we have a submersion of type II, it is
known that ξ is vertical so that by virtue of equation (2.7) the proof follows.
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Proposition 3.1.7. Let π : M2m+1 −→ B be an almost contact metric submersion of
type I or type II. If the total space is endowed with the nearly α-Kenmotsu structure,
then:

(1) TUϕU = ϕTUU ;

(2) Tξξ = 0;

(3) AXϕX = 0;

(4) Aξξ = 0.

Proof. Recall that a nearly α-Kenmotsu manifold is defined by

(∇Dϕ)E + (∇Eϕ)D = α{−η(E)ϕD − η(D)ϕE}.

Setting D = E = U in the above relation, one gets (∇Uϕ)U = −αη(U)ϕU, which is the
relation in Proposition 3.1.6.

Proposition 3.1.8. Let π : M2m+1 −→ M2m′+1 be an almost contact metric submersion
of type I. If the total space is furnished with the quasi Sasakian structure, then:

(1) TUϕV = ϕTUV ;

(2) TUξ = 0;

(3) AXϕY = ϕAXY ;

(4) AXξ = 0.

Proof. We refer to Watson [52].

Now, let us turn to the case of almost contact metric submersions of type II.

Proposition 3.1.9. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is α−Kenmotsu then:

(1) TUϕV = ϕTUV ;

(2) AXϕY = ϕAXY + α.g(ϕX, Y )ξ.

Proof. (1) On vertical vector fields, the condition on the total space is

(∇Uϕ)V = α. {g(ϕU, V )ξ − η(V )ϕU} .

Since, according to Proposition 2.1.3 (1) and (3), respectively, ϕU and ξ are vertical,
H(ϕU) = 0 = H(ξ) which imply that H(∇Uϕ)V = 0. Therefore, TUϕV = ϕTUV .

Concerning assertion(2), it is clear that (∇Xϕ)Y = α.g(ϕX, Y )ξ because η(Y ) = 0.
Thus, V(∇Xϕ)Y = Vα.g(ϕX, Y )V(ξ) which implies that AXϕY = ϕAXY +α.g(ϕX, Y )ξ.
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Proposition 3.1.10. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is α−Sasakian, then:

(1) TUϕV = ϕTUV ;

(2) AXϕY = ϕAXY + α.g(X, Y )ξ.

Proof. (1) Using vertical vector fields U and V, the condition becomes

(∇Uϕ)V = α. {g(U, V )ξ − η(V )U} .

Since ξ and U are vertical, we have H(ξ) = 0 = H(U) so that H(∇Uϕ)V = 0 which
yields TUϕV = ϕTUV .

For assertion (2), since η(Y ) = 0, the condition becomes

(∇Xϕ)Y = α.g(X,Y )ξ

from which the vertical projection gives rise to AXϕY = ϕAXY + α.g(X, Y )ξ.

Proposition 3.1.11. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is Sasakian, then:

(1) TUϕV = ϕTUV ;

(2) TUξ = 0.

Proof. We refer to Watson [52].

Proposition 3.1.12. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is almost cosymplectic, then:

(1) AXϕY = ϕAXY ;

(2) AXξ = 0.

Proof. We refer again to Watson [52].
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3.2 Riemannian curvature properties

Recall that the Riemannian curvature tensor R of a Kählerian manifold satisfies the
K1−identity, named the Kähler identity, defined by

R(D, E, F, G) = R(D, E, JF, JG). (3.1)

Other Ki-identities (i = 1, 2, 3) have been studied by A. Gray in [21], but their inter-
relations with the theory of almost Hermitian submersions can be found in [54] and
[55].

Let (M2m, g, J) be an almost Hermitian manifold. The Ki-curvature properties are
defined in the following way.

K1 : R(D, E, F, G) = R(D, E, JF, JG),

K2 : R(D, E, F, G) = R(JD, E, JF,G) +R(JD, JE, F,G)

+R(JD, E, F, JG),

K3 : R(D, E, F, G) = R(JD, JE, JF, JG).

In their study of curvature tensors of almost contact metric manifolds, D. Janssens and
L. Vanhecke [28], have obtained the following properties of the Riemannian curvature
tensor.

(1) the cosymplectic curvature property, defined by

R(D, E, F, G) = R(D, E, ϕF, ϕG);

(2) the Kenmotsu curvature property, defined by

R(D, E, F, G) = R(D, E, ϕF, ϕG) + g(D, F )g(E, G)− g(D, G)g(E, F )

− g(D, ϕF )g(E, ϕG) + g(D, ϕG)g(E, ϕF );

(3) the Sasakian curvature property, defined by

R(D, E, F, G) = R(D, E, ϕF, ϕG)− g(D, F )g(E, G) + g(D, G)g(E, F )

+ g(D, ϕF )g(E, ϕG)− g(D, ϕG)g(E, ϕF ).

The curvature tensors of an almost contact metric manifold are called C(α)-curvature
tensors where α is a real number. For instance, the cosymplectic curvature tensor is a
C(0)-curvature tensor, the Kenmotsu curvature tensor is a C(−1)-curvature tensor and
the Sasakian curvature tensor is a C(1)-curvature tensor. For more details, we refer to
[28]. It is clear that the cosymplectic curvature tensor resembles to the Kähler identity.

Now, we want to determine the classes of almost contact metric manifolds satisfying
the cosymplectic curvature property.
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Theorem 3.2.1 ([28]). Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold.
If M satisfies the condition

(∇Dϕ)E = 0,

then it has the cosymplectic curvature property.

Proof. For an almost contact metric manifold, the Ricci identity is given by

R(D, E)ϕ− ϕR(D, E) = [∇D,∇E]ϕ−∇[D,E]ϕ.

The condition on M being equivalent to ∇ϕ = 0, the right hand side of the above
relation vanishes. We get R(D, E)ϕF − ϕR(D, E)F = 0 which gives

g(R(D, E)ϕF, ϕG) = g(ϕR(D, E)F, ϕG) = −g(R(D, E)F, ϕ2G)

from which we get

g(R(D, E)ϕF, ϕG) = −g(R(D, E)F,−G)− g(R(D, E)F, η(G)ξ).

It remains to show that g(R(D, E)F, η(G)ξ) = 0. Indeed, g(R(D, E)F, η(G)ξ) =
g(R(D, E)F, ξ)η(G), but

g(R(D, E)F, ξ)η(G) = R(D, E, F, ξ) = −R(D, E, ξ, F ) = −g(R(D, E)ξ, F ).

Since, ∇Dξ = 0, we get R(D, E)ξ = 0 from which we deduce g(R(D, E)F, ξ) = 0 so that
g(R(D, E)ϕF, ϕG) = g(R(D, E)F, G), hence R(D, E, ϕF, ϕG) = R(D, E, F, G) follows
immediately.

Theorem 3.2.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Suppose that the total space satisfies the condition

(∇Dϕ)E = 0,

then the base space verifies the cosymplectic curvature property and, on the fibres, this
property corresponds to the Kähler identity.

Proof. Let X and Y be basic vector fields, it is known thatH(∇Xϕ)Y is basic associated
to (∇′

X∗ϕ
′)Y∗. Thus, since (∇Xϕ)Y = 0, one deduces that (∇′

X∗ϕ
′)Y∗ = 0. Therefore,

according to the preceding Theorem 3.2.1, the base space verifies the cosymplectic cur-
vature property. Now, consider the vector fields U, V, W and S tangent to the fibres.
For a Riemannian submersion, the Gauss equation is given by

R(U, V,W, S) = R̂(U, V,W, S)− g(TUW, TV S) + g(TV W, TUS) (3.2)

This equation can be transformed in

R(U, V, ϕW, ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUϕW, TV ϕS) + g(TV ϕW, TUϕS). (3.3)
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Since T is ϕ−linear in the second variable, as shown in Proposition 3.1.3, we have

g(TUϕW, TV ϕS) = g(ϕTUW, ϕTV S) = −g(TUW, ϕ2TV S)

= g(TUW, TV S)− g(TUW, η(TV S)ξ);

Also η(TV S) = g(ξ, TV S) = −g(S, TV ξ) = 0, since TV ξ = 0. Thus,

g(TUϕW, TV ϕS) = g(TUW, TV S),

g(TV ϕW, TUϕS) = g(TV W, TUS). In this case, (3.3) leads to

R(U, V, ϕW, ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUW, TV S) + g(TV W, TUS). (3.4)

Subtracting (3.3) from (3.2), we get,

R(U, V,W, S)−R(U, V, ϕW, ϕS) = R̂(U, V,W, S)− R̂(U, V, ϕ̂W, ϕ̂S).

Since R(U, V,W, S) = R(U, V, ϕW, ϕS), then R̂(U, V,W, S) = R̂(U, V, ϕ̂W, ϕ̂S) which
shows that the fibres have the K1−curvature identity.

The above theorem can be viewed as a way to establish the following.

Corollary 3.2.3. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Suppose the following conditions satisfied

(1) the total space satisfies the cosymplectic curvature property,

(2) the configuration tensor T is ϕ-linear on the vertical distribution,

(3) TUξ = 0 for all vertical vector fields U.

Then the fibres have the Kähler identity.

Theorem 3.2.4. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I satisfying the following conditions

(1) the total space satisfies the Kenmotsu curvature property,

(2) the configuration tensor T is ϕ-linear on the vertical distribution,

(3) TUξ = 0 for all vertical vector fields U.

Then the fibres have the K2-curvature identity.
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Proof. Since T is ϕ−linear and TUξ = 0, by calculation we get
g(TUϕW ), TV ϕS) = g(TUW, TV S) and g(TϕUϕW, TV S) = −g(TUW, TV S).
By virtue of the Kenmotsu curvature property, we have

R(U, V,W, S) = R(U, V, ϕW, ϕS) +R(ϕU, V, ϕW, S) +R(ϕU, V, W, ϕS). (3.5)

So, the Gauss equation gives

(i) R(U, V, ϕW, ϕS) = R̂(U, V, ϕ̂W, ϕ̂S)− g(TUW, TV S) + g(TV W, TUS),

(ii) R(ϕU, V, ϕW, S) = R̂(ϕ̂U, V, ϕ̂W, S) + g(TUW, TV S) + g(TV W, TUS),

(iii) R(ϕU, V, W, ϕS) = R̂(ϕ̂U, V, W, ϕ̂S)− g(TUW, TV S)− g(TV W, TUS).

Therefore, summing (i), (ii) and (iii), we obtain a relation yielding to

R̂(U, V,W, S) = R̂(U, V, ϕ̂W, ϕ̂S) + R̂(ϕ̂U, V, ϕ̂W, S) + R̂(ϕ̂U, V, W, ϕ̂S),

which shows that the fibres verify the K2-curvature identity.

Proposition 3.2.5. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Suppose that the total space satisfies the conditions (∇Dϕ)D = 0, and ∇Dξ =
0, then the fibres possess the Kähler identity.

Proof. Let us recall that the conditions under consideration are the defining relations
of a nearly-K-cosymplectic structure. In [11], Chinea has proved that if the total space
of an almost contact metric submersion of type I is nearly-K-cosymplectic, then the
configuration tensor, T, satisfies TUϕV = TϕUV = ϕTUV and TUξ = 0. On the other
hand, it is known that for a submersion of this class, the fibres are nearly Kähler [12].
Since the total space has the cosymplectic curvature property, then the fibres have the
Kähler identity and then are Kähler.

Proposition 3.2.6. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Suppose that the total space satisfies the condition

(∇Dφ)(D, E) = α.η(D)φ(E, D),

then, the fibres possess the Kähler identity.

Proof. If α = 0, then the given condition reduces to (∇Dφ)(D, E) = 0 which leads to
the case that the fibres are nearly Kähler. According to the preceding Proposition 3.2.5,
the fibres possess the NK1−identity which is the Kähler one. Suppose that α 6= 0, the
vanishing of η on vertical vector fields gives rise to (∇Uφ)(U, V ) = 0 from which the
proof follows as in the case where α = 0.

Considering the fact that, a nearly α-Kenmotsu manifold is also defined by the
relation

(∇Dφ)(D, E) = α.η(D)φ(E, D);

the above Proposition 3.2.6 can be replaced by the following.
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Theorem 3.2.7. The fibres of a nearly α-Kenmotsu submersion of type I verify the
Kähler identity.

Now, we are going to examine the analogous properties in the case of almost contact
metric submersions of type II.

Theorem 3.2.8. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. Suppose that the condition

(∇Dϕ)E = 0,

is verified on the total space, then the fibres have the cosymplectic curvature property,
which corresponds to the K1-curvature identity on the base space.

Proof. By Theorem 3.2.1, the total space has the cosymplectic curvature property. As
in Theorem 3.2.2, setting D = U and E = V in the given condition on the total space,
we obtain (∇̂U ϕ̂)V = 0, hence the fibres have the cosymplectic curvature property. To
see that the base space verifies the Kähler identity, let X, Y, Z and P be basic vector
fields. As in Theorem 3.2.2, the Gauss equation is

R(X, Y, Z, P ) = R′(X∗, Y∗, Z∗, P∗)−2g(AXY,AZP )+g(AY Z,AXP )+g(AXϕZ, AY ϕP ).

This equation gives

R(X, Y, ϕZ, ϕP ) = R′(X∗, Y∗, ϕ
′Z∗, ϕ

′P∗)− 2g(AXY, AϕZϕP )

+ g(AY ϕZ, AXϕP ) + g(AXϕZ, AY ϕP ).

Taking account into the fact that, in the context of Proposition 3.1.3, the configuration
tensor A is ϕ−linear on the horizontal distribution and AXξ = 0, then this last equation
can be rewritten in the following way

R(X, Y, ϕZ, ϕP ) = R′(X∗, Y∗, ϕ
′Z∗, ϕ

′P∗)− 2g(AXY,AZP )

+ g(AY Z,AXP ) + g(AXZ,AY P ).

Thus, subtracting this last equation from the Gauss equation, we get

R(X, Y, Z, P )−R(X, Y, ϕZ, ϕP ) = R′(X∗, Y∗, Z∗, P∗)−R′(X∗, Y∗, ϕ
′Z∗, ϕ

′P∗) (3.6)

Since the total space satisfies the cosymplectic curvature property, then R(X, Y, Z, P ) =
R(X, Y, ϕZ, ϕP ), which implies that R′(X∗, Y∗, Z∗, P∗) = R′(X∗, Y∗, ϕ

′Z∗, ϕ
′P∗). The

base space being an almost Hermitian manifold, it follows that it has the K1-curvature
identity for which ϕ′ = J.

Theorem 3.2.9. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II which satisfies the following conditions:

(1) the total space verifies the cosymplectic curvature property,

(2) the configuration tensor A is ϕ-linear on the horizontal distribution, and

(3) AXξ = 0, for all horizontal vector fields.

Then, the fibres have the cosymplectic curvature property and, on the base space, this
property corresponds to the Kähler identity.
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Proof. Similar to the preceding.

Theorem 3.2.10. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II such that

(1) the total space has the Sasakian curvature property,

(2) the configuration tensor A is ϕ-linear on the horizontal distribution, and

(3) AXξ = 0 for all horizontal vector fields X.

Then, the fibres have the Sasakian curvature property which corresponds to the K3-
curvature identity on the base space.

Proof. Similar to that of Theorem 3.2.4.

3.3 Holomorphic sectional curvature

Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold, D and E two vector fields
orthogonal to ξ. The holomorphic bisectional curvature tensor is defined in [11] and [52]
by setting

Bϕ(D, E) = ‖D‖−2 ‖E‖−2 g(R(D, ϕD)E, ϕE).

Letting D = E in the above formula, one gets the definition of the ϕ-holomorphic
sectional curvature tensor which is

Hϕ(E) = ‖E‖−4 g(R(E, ϕE)E, ϕE).

Theorem 3.3.1 ([52]). Let π : M2m+1 −→ B be an almost contact metric submersion
of type I or type II. Then the ϕ− holomorphic sectional curvature tensor is given by:

(1) Hϕ(U) = Hϕ̂(U) + ‖U‖−4 {
‖TUϕU‖2 − g(TUU, TϕUϕU)

}
,

(2) Hϕ(X) = Hϕ′(X∗)− 3 ‖X‖−4 ‖AXϕX‖2.

Proof. See Watson [52].

Lemma 3.3.2. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type I. If the configuration tensors T and A are ϕ-linear in the second variable, then:

(1) Bϕ(U, V ) = Bϕ̂(U, V ) + 2 ‖U‖−2 ‖V ‖−2 ‖TUV ‖2 ;

(2) Hϕ(U) = Hϕ̂(U) + 2 ‖U‖−4 ‖TUU‖2 ;

(3) Bϕ(X, Y ) = Bϕ′(X∗, Y∗);

(4) Hϕ(X) = Hϕ′(X∗).
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Proof. We know that if TUϕV = ϕTUV then TϕUϕV = −TUV.
Therefore,

g(TUV, TϕUϕV = −g(TUV, TUV ).

On the other hand

g(TUϕV , TϕUV ) = g(ϕTUV, ϕTUV )

= −g(TUV, ϕ2TUV )

= g(TUV, TUV ).

Thus,

g(TUϕV , TϕUV )− g(TUV, TϕUϕV ) = 2g(TUV, TUV )

= 2 ‖TUV ‖2 ,

which is the proof of (1) from which (2) is a consequence.

Since AXϕY = ϕAXY, then from Corollary 3.1.2, one has AXϕX = 0. On the other
hand,

g(ϕAXY, ϕAXY ) = −g(AXY, ϕ2AXY )

= g(AϕXY,AϕXY )

But ϕ2AXY = −AXY + η(AXY )ξ, since AXξ = 0 then η(AXY )ξ = 0. Therefore

g(AϕXY, AϕXY ) = ‖AXY ‖2

and then
−g(AϕXY,AϕXY ) = −‖AXY ‖2 .

In the same way,
−g(AXY,AϕXϕY ) = −‖AXY ‖2

which leads to the proof of (3) from which (4) is a consequence.
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Chapter 4

Minimality, superminimality and
umbilicity of the fibres

The main objective of this chapter is to investigate specific properties which impact the
geometry of the base space.

4.1 Submersions with minimal fibres

It is known that an invariant submanifold of a Riemannian manifold is minimal if its
mean curvature vector field, H, is null. On the other hand, the mean curvature vector
field is the trace of the second fundamental form; since the O’Neill configuration tensor
,T, is the second fundamental form of the fibres of a Riemannian submersion, it is clear
that the minimality of the fibres is related to the properties of T.

In [20], A. Gray had shown that the minimality of a submanifold of an almost
Hermitian manifold can be established by using the O’Neill configuration tensor T.

On the other hand, Watson and Vanhecke [55] have shown that if T is J-symmetric
on vertical vector fields, then the fibres are minimal. In a similar way, it can be shown
that, for an almost contact metric submersion, if T is ϕ-symmetric on the vertical
distribution, then the fibres are minimal submanifolds. Furtheremore, the property of
being ϕ-symmetric derives from the ϕ-linearity.

In this subsection, we refer to the ϕ-linearity of the O’Neill’s tensors and determine
the classes of submersions with minimal fibres.

Proposition 4.1.1. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is defined by

(1) (∇Dϕ)E = 0, or

(2) dφ = 0 and (N (1) = 0 or dη = 0).

53



Then, the fibres are minimal.

Proof. Combine Proposition 3.1.3 and Corollary 3.1.4.

The above proposition is a generalization of the following.

Proposition 4.1.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is cosymplectic, closely cosymplectic, nearly cosymplectic,
nearly-K-cosymplectic, nearly Kenmotsu, quasi-Sasakian or almost cosymplectic, then
the fibres are minimal.

In the case of almost contact metric submersions of type II, we have

Theorem 4.1.3. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. If the total space is defined by

(1) (∇Dϕ)E = α {g(ϕD,E)ξ − η(E)ϕD} , or

(2) N (1) = 0 and (dφ = 0 or φ = dη).

Then, the fibres are minimaly embedded.

Proof. It follows from Propositions 3.1.9, 3.1.10 and 3.1.11.

The analogous of Proposition 4.1.2 is the following.

Proposition 4.1.4. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is cosymplectic, closely cosymplectic, nearly cosymplectic,
nearly-K-cosymplectic, nearly Kenmotsu, nearly α-Kenmotsu, Sasakian, quasi-Sasakian
or nearly Sasakian, then the fibres are minimal.

4.2 Implications of minimality

Lemma 4.2.1. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion of
type I. Then π∗ω′ = m

m′ω if and only if the fibres are minimal.

Proof. Let X be a basic vector field. We have

(π∗ω′)(X) =
1

m′ [δφ(X)− g(H, ϕX)− (δη + g(H, ξ))(η(X)].

Thus (π∗ω′) = m
m′ω if and only if the fibres are minimal.
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Lemma 4.2.2. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. Then θ′ = m

m′−1
ω if and only if the fibres are minimal.

Proof. As in the proof of the preceding lemma since η vanishes on horizontal vector
fields.

Proposition 4.2.3. If the total space of an almost contact metric submersion of type
I is trans-Sasakian or locally conformal cosymplectic, then the base space is respectively
cosymplectic or locally conformal cosymplectic if, and only, if the fibres are minimal.

Proof. The case of trans-Sasakian is treated in Chinea [12, Thm.2.1].

Concerning the case of locally conformal cosymplectic, we refer to (Chinea, Marrero
and Rocha in Annales Fac. Sc. Toulouse, 4, 473-517 (1995)).

Proposition 4.2.4. Let π : M2m+1 −→ M ′2m+1′ be an almost contact metric submersion
of type I. If the total space is almost trans-Sasakian or nearly trans-Sasakian, then the
base space is respectively almost cosymplectic or nearly-K-cosymplectic if, and only, if
the fibres are minimal.

Proof. Chinea [12, Thm.2.1].

Proposition 4.2.5. Let π : M2m+1 −→ M ′2m+1′ be an almost contact metric submersion
of type I. If the total space is quasi trans-Sasakian, then the base space is quasi-K-
cosymplectic if, and only if the fibres are minimal.

Proof. See again [12, Thm.2.1].

Proposition 4.2.6. If the total space of a type I almost contact metric submersion is
semi-cosymplectic or semi-Sasakian, then the base space inherits the structure of the
total space if and only if the fibres are minimal.

Proof. See Chinea [13].

Proposition 4.2.7. If the total space of a type I almost contact metric submersion is
semi-cosymplectic normal, semi-Sasakian normal or semi-Kenmotsu normal, then the
base space inherits the structure of the total space if and only if the fibres are minimal.

Proof. Note that the manifolds under consideration have in common the relation
N (1) = 0 which corresponds to N̂J = 0 on the fibres. As in the proof of Proposition
4.2.6, the proof follows.

Proposition 4.2.8. Let π : M2m+1 −→ M ′2m+1 be an almost contact metric submersion
of type I. If the total space is Gi-semi-cosymplectic, Gi-semi-Sasakian or Gi-semi-
Kenmotsu, then the base space inherits the structure of the total space if and only if the
fibres are minimal.
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Proof. As in the previous propositions.

Looking through all the preceding results related to the transference of the structure
from the total to the base space, we can summarize them in the following.

Theorem 4.2.9 ([49]). Let π : M2m+1 −→ M ′2m+1 be an almost contact metric submer-
sion of type I. If among the defining relations of the total space there is the codifferential
δφ or δη, then the base space inherits the structure of the total space if and only if the
fibres are minimal.

Now, let us look at the submersions of type II. The implication of minimality of the
fibres concerns the structure of the base space.

Proposition 4.2.10. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is semi-cosymplectic or semi-Sasakian, then the base space
is semi-Kählerian if and only if the fibres are minimal.

Proof. Let E be an arbitrary vector field. In [13], it is shown that

δφ(E) = g(H, ϕHE) + δ′φ′(HE∗) + δφ̂(VE) + 1
2
(trA∗,VE)

Let X be a horizontal basic vector field, then the above equation becomes

δφ(X) = g(H, ϕHX) + δ′φ′(HX∗) + δφ̂(VX) + 1
2
(trA∗,VX) Since the vertical pro-

jection V(X) = 0, the formula then reduces to

δφ(X) = g(H, ϕHX) + δ′φ′(HX∗). With Proposition 2.1.3 in mind, π∗Ω = φ. If the
total space is semi-cosymplectic then δφ = 0 and δη = 0. In this case, 0 = g(H, ϕHX)+
δ′φ′(HX∗) which shows that δ′φ′ = 0 if and only if H = 0; but from Proposition
2.1.3(1), on the base space which is almost Hermitian, δ′φ′ = δ′Ω′. If the total space is
semi-Sasakian then η = 1

2m
δφ. The vanishing of η on horizontal vector fields leads to

δφ(X) = 0 which means that on the base space, we have δΩ = 0.

Proposition 4.2.11. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submer-
sion of type II. If the total space is almost trans-Sasakian or locally conformal almost
cosymplectic, then the base space is locally conformal almost Kählerian if and only if the
fibres are minimal.

Proof. The under consideration manifolds have in common the following property
dφ = bφ ∧ θ as shown at page 27. Remember that a locally conformal almost Kähler
structure is defined by dΩ = Ω ∧ θ. In this case, the proof follows from relationships
between dφ and dΩ on the one hand, and on the other hand, between ω and θ.

Proposition 4.2.12. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is G2-semi-cosymplectic, G2-semi-Sasakian or G2-semi-
Kenmotsu, then the base space is a W2 ⊕ W3-manifold if and only if the fibres are
minimal.
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Proof. Let us indicate that all these manifolds have in common the following relations
G {(∇D)φ(E, G)− (∇ϕDφ)(ϕE, G) + C} = 0 and δφ = 0, where C is determined by the
class of the manifold. For instance, if C = η(D)φ(E, G), we get one of the defining rela-
tions of a G2−semi-Kenmotsu structure. Taking C = η(E)(∇ϕDη)G, one gets one of the
defining relations of G2-semi-Sasakian or G2-semi-cosymplectic structure. Let X, Y and
Z be basic vector fields. It is known that ϕX, ϕY and ϕZ are basic associated to J ′X∗,
J ′Y∗ and J ′Z∗ respectively. Since π∗Ω′ = φ and the vanishing of η on horizontal vector
fields, then on the base space we have G

{
(∇′

X∗Ω
′)(Y∗, Z∗)− (∇′

J ′X∗
Ω′)(J ′Y∗, Z∗)

}
= 0.

On the other hand, since δφ = 0, equation (2.10) implies that δΩ′(X∗) = 0 if and only
if g(H, ϕX) = 0 which implies that H = 0. Therefore, the base space is defined by
G

{
(∇′

X∗Ω
′)(Y∗, Z∗)− (∇′

J ′X∗
Ω′)(J ′Y∗, Z∗)

}
= 0 and δΩ′ = 0 if and only if H = 0.

Proposition 4.2.13. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is G1-semi-cosymplectic, G1-semi-Sasakian or G1-semi-
Kenmotsu, then the base space is W1⊕W3-manifold if and only if the fibres are minimal.

Proof. We can proceed as in the preceding.

Proposition 4.2.14. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is semi-cosymplectic normal, semi-Sasakian normal or
semi-Kenmotsu normal, then the base space is W3-manifold if and only if the fibres are
minimal.

Proof. It is known that π∗N
(1) = N ′

J . Using the fact that N (1) = 0 for all these manifolds,
we deduce N ′

J = 0 on the base space. From Proposition 4.2.10, where it is shown that
δΩ′ = 0, we then get the proof.

Proposition 4.2.15. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is nearly trans-Sasakian, then the base space is W1 ⊕W4-
manifold if and only if the fibres are minimal.

Proof. As in the case of Proposition 4.2.12, we have

(∇Xφ)(X, Y ) =
−1

2m

{
‖X‖2 δφ(Y )− g(X,Y )δφ(X)− g(ϕX, Y )δφ(ϕX)

}
.

On the base space, using equation (2.10) and the fact that π∗Ω′ = φ, the above relation
leads to the defining relation of a W1 ⊕W4-manifold.

4.3 Submersions with superminimal fibres

Superminimal fibres of a Riemannian submersion have been introduced by M. Falcitelli
and A. M. Pastore [19], who examined only the case of almost Kähler submersions. On
the other hand, B. Watson [53], studied extensively superminimal fibres of an almost
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Hermitian submersion. He used this property to derive the structure of the total space
according to that of the base space.

In [45], we extended the definition of superminimal submanifolds to the ϕ-invariant
fibres of almost contact metric manifolds, considering submersions whose total space is
a nearly α-Kenmotsu manifold. There, we showed that if the fibres of an almost contact
metric submersion with total space a nearly α-Kenmmotsu manifold are superminimal,
then the horizontal distribution is completely integrable. Furtheremore, in [46], the
study was extended to the case of almost contact metric submersions with a non specified
total space.

In this subsection, we have examined the case where the total space is a Gi-almost
contact metric manifold for i ∈ {1, 2} , a Chinea-Gonzalez manifold such as C3, C7, C8,
C9 and C10; generalized Kenmotsu, semi Kenmotsu normal and quasi Kenmotsu are also
treated.

Now we want to examine the superminimality of the fibres. We would like to begin
by investigating the classes of almost contact metric submersions whose fibres are, or
are not, superminimal in a natural way.

Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold and M̄ a ϕ-invariant
submanifold of M. If, ∇V ϕ = 0 for all V tangent to M̄, then M̄ is said to be supermin-
imal.

In order to verify the superminimality of the fibres of an almost contact metric
submersion of type I, there are four components of g(∇V ϕ)D, E) to be considered on
the total space M. From [45] and [46], we recall that

SM-1) g((∇V ϕ)U,W ) = g(∇̂V (ĴU)− Ĵ∇̂V U,W ),

SM-2) g((∇V ϕ)U,X) = g(TV (ϕU)− ϕ(TV U), X),

SM-3) g((∇V ϕ)X, U) = −g((∇V ϕ)U,X),

SM-4) g((∇V ϕ)X, Y ) = −g(AϕXY + AX(ϕY ), V ).

In the case of an almost contact metric submersion of type II, we easily find

SM-5) g((∇V ϕ)U,W ) = g(∇̂V (ϕ̂U)− ϕ̂∇̂V U,W ),

SM-6) g((∇V ϕ)U,X) = g(TV (ϕU)− ϕ(TV U), X),

SM-7) g((∇V ϕ)X, U) = −g((∇V ϕ)U,X),

SM-8) g((∇V ϕ)X, Y ) = −g(AϕXY + AX(ϕY ), V ).

It is clear that SM−1) implies that if the fibres are superminimal, then they are Kähler.

Proposition 4.3.1. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the total space is cosymplectic, a C11 or a C12-manifold, then the fibres are
superminimal.
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Proof. The case of a cosymplectic submersion is obvious. Let us consider the case of
a C11-submersion. Since the contact 1-form η vanishes on vertical vector fields, we
have (∇Uφ)(E, G) = 0. It is known that (∇Uφ)(E, G) = g(E, (∇Uϕ)G) which leads
to g(E, (∇Uϕ)G) = 0. According to the non-degeneracy of g, we deduce (∇Uϕ)G = 0
which shows that the fibres are superminimal. We apply the same procedure for a
C12-submersion.

Proposition 4.3.2. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the total space is cosymplectic, then the fibres are superminimal.

Proof. Since the total space is cosymplectic, obviously we have that, the four expressions
SM−5), SM−6), SM−7) and SM−8), vanish. Then the fibres are superminimal.

Proposition 4.3.3. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II with M, either C11 or C12, but not cosymplectic. Then the fibres cannot be
superminimal.

Proof. We first note that the base space of an almost contact metric submersion of type
II with a C11 or C12 total space is Kähler. The fundamental 1-form , η, on M vanishes
on the horizontal distribution, so the defining relations for C11 or C12- manifolds imply
that

(∇Xφ)(E, G) = g(E, (∇Xϕ)G).

Thus, (∇Xϕ)G = 0 for all horizontal vector fields X. Then, if the fibres are taken to
be superminimal, we have ∇Uϕ = 0, contradicting the non-cosymplectic nature of the
total space, M .

Proposition 4.3.4. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. If the total space is a Kenmotsu manifold, then the fibres cannot be
superminimal.

Proof. Suppose that the fibres are superminimal. This means that ∇Uϕ = 0 for
all vector fields U tangent to the fibres. But on Kenmotsu manifold we have 0 =
g((∇Uϕ)ϕU, ξ) = g(ϕU, ϕU)g(ξ, ξ) = ‖U‖2 . If ‖U‖2 = 0 then U = 0 which is not true.
Thus, the fibres cannot be superminimal.

4.4 Some implications of superminimality

In this subsection, we will present some implications of the superminimality of the fibres.

We begin by considering some minors remarks before going to the study of the
integrability of the horizontal distribution. We end this subsection with the transference
of the structure from the base to the total space when the fibres are superminimal.

If the fibres of an almost contact metric submersion of type I are supeminimal, then
the vanishing of expression SM − 4) yields AϕXY = −AXϕY. In this case, A∗(X, Y ) =
2AXϕY .

59



Proposition 4.4.1. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I such that on the total space , δη = 0. If the fibres are superminimal, then δη′ = 0
on the base space.

Proof. Since the fibres are superminimal, the vanishing of SM−1) implies that they are
Kähler. In this case, they are minimal. Using equation (2.11), it is clear that δη′ = 0
because δη = 0.

Now, let us consider the integrability of the horizontal distribution.

Recall that the horizontal distribution of a Riemannian submersion is said to be
integrable if the O’Neill tensor A vanishes identically (i.e. A≡ 0).

Proposition 4.4.2. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I such that the total space is almost cosymplectic or quasi-Sasakian. If the fibres
are superminimal, then the horizontal distribution is completely integrable.

Proof. It is not difficult to show that AXϕY = ϕAXY for the three mentioned almost
contact metric submersions. If the fibres are superminimal, we have g((∇Uϕ)X, Y ) =
−g(AϕXY + AXϕY , U), which implies that A≡ 0.

Proposition 4.4.3. Let π : M2m+1 −→ M ′2m+1 be an almost contact metric submersion
of type I whose total space M , is G1-Kenmotsu. If the fibres are superminimal, then the
horizontal distribution is completely integrable.

Proof. Let X be a horizontal vector fields and U a vertical one. According to the defining
relation of a G1-Kenmotsu structure, we have

(∇Xφ)(X, U)− (∇ϕXφ)(ϕX, U) = η(X)φ(X, U).

Thus we obtain

g(AXX, ϕU) + g(AXϕX,U) + g(AϕXX,U)− g(AϕXϕX,ϕU)− η(X)g(AϕXξ, U) = 0,

yielding 2g(AϕXX, U) = 0, from which one gets AϕXX = 0. Combining this result with
the fact that expression SM − 4) vanishes, we have A≡ 0.

As in [53], we are able to use the superminimality of the fibres to induce a spe-
cific almost contact metric structure onto the total space of an almost contact metric
submersion, provided that certain necessary structures exist on the base space and the
fibres.

Regarding the transference of structure from the base to the total space, three cases
are examined.

1) Automatical transference when the fibres are superminimal.

2) Transference subjected to the condition (∇Xϕ)U = 0, when the fibres are super-
minimal.
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3) Not transferring even the above condition (∇Xϕ)U = 0, holds when the fibres are
superminimal.

We begin by proving a technical result.

Lemma 4.4.4. Let π : M2m+1 −→ M ′2m+1 be an almost contact metric submersion of
type I. Suppose that dη′ = 0 on the base space. If the fibres are superminimal, then
dη = 0 on the total space.

Proof. In order to see that dη = 0, we begin by assuming that X and Y are basic vector
fields on the total space. Then dη(X, Y ) = dη′(X∗, Y∗) = 0. The vanishing of expression
SM − 2) implies, along with AϕX = 0 that A ≡ 0. Now

2dη(X, U) = (∇Xη)U − (∇Uη)X = g(X,∇Uξ)− g(U,∇Xξ)

= g(X,∇Uξ)− g(U,AXξ) = g(X,∇Uξ).

The superminimality of the fibres implies that

0 = g((∇Uϕ)ξ, X) = g(∇Uϕξ, X)− g(ϕ∇Uξ, X) = g(∇Uξ, ϕX).

Thus, ∇Uξ is g−orthogonal to all vector fields except, perhaps, ξ. Recall that ‖ξ‖2 =
g(ξ, ξ) is constant 1, so that g(∇Uξ, ξ) = 0. Hence dη(X, U) = 0 and dη(U,X) = 0.
Recall, too, that the Lie bracket [U, V ] is vertical from the complete integrability of the
vertical distribution. Then dη(U, V ) = 1

2
{Uη(V )− V η(U)− η([U, V ])} = 0, because η

vanishes on the vertical distribution.

Lemma applies to the following almost contact metric structures among others:

(1) closely cosymplectic,

(2) almost cosymplectic,

(3) cosymplectic,

(4) nearly Kenmotsu,

(5) quasi Kenmotsu,

(6) generalized Kenmotsu.

Theorem 4.4.5. Let π : M2m+1 −→ M ′2m+1 be an almost contact metric submersion of
type I. Assume that the base space is nearly cosymplectic, nearly-K-cosymplectic, nearly
Kenmotsu, G1-Sasakian or G1-Kenmotsu. If the fibres are superminimal, then the total
space is respectively nearly cosymplectic, nearly-K-cosymplectic, nearly Kenmotsu, G1-
Sasakian or G1-Kenmotsu.
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Proof. There are four expressions that must vanish in order to conclude that the total
space is nearly cosymplectic:

NC−1) g((∇Uϕ)U, V );

NC−2) g((∇Uϕ)U,X);

NC−3) g((∇Xϕ)X, U);

NC−4) g((∇Xϕ)X, Y ).

The superminimality of the fibres implies that the first two expressions are zero. We
may assume that the horizontal vector fields X and Y are basic for expression NC− 4),
in which case that expression vanishes because the base space is nearly cosymplectic.
Finally,

g((∇Xϕ)X, U) = g(∇XϕX,U)− g(ϕ∇XX, U) = g(∇XϕX,U) = 0

yielding the vanishing of expression NC−3). Concerning the case of nearly-K-cosymplectic
structure on the base space, we need only establish that ∇η = 0 on the total space; that
is, we must show that ∇Eξ = 0 for all vector fields, E, on M. But ∇Xξ = 0 by projection
onto the base space. For ∇Uξ, we know that 0 = (∇Uϕ)ξ by the superminimality of the
fibres. Thus 0 = ∇Uϕξ − ϕ∇Uξ = −ϕϕ∇Uξ = ∇Uξ − η(∇Uξ)ξ. But, during the proof
of Lemma 4.4.4, we established that η(∇Uξ) = g(∇Uξ, ξ) = 0. Therefore, ∇η = 0 and
M is nearly-K-cosymplectic.

Now, let us consider the case of the nearly Kenmotsu structure. Lemma 4.4.4 implies
that dη = 0 on the total space. Since η vanishes on the vertical distribution, we need
only to show that (∇Uϕ)U = 0 and that 0 = (∇Xϕ)X + η(X)ϕX. Let X be basic, then

(∇Xϕ)X + η(X)ϕX = (∇′
X∗ϕ

′)X∗ + η′(X∗)ϕ
′X∗ = 0.

Clearly, (∇Uϕ)U = 0 because the fibres are superminimal. Therefore, the total space is
nearly Kenmotsu.

There are four expressions which must vanish in order to prove that the total space,
(M, g, ϕ, ξ, η), is G1-Sasakian.

G1 − S−1) g((∇Uϕ)U, V )− g((∇ϕUϕ)ϕU, V ) + η(U)g(∇ϕUξ, V );

G1 − S−2) g((∇Uϕ)U,X)− g((∇ϕUϕ)ϕU, X) + η(U)g(∇ϕUξ, X);

G1 − S−3) g((∇Xϕ)X, U)− g((∇ϕXϕ)ϕX, U) + η(X)g(∇ϕXξ, U);

G1 − S−4) g((∇Xϕ)X, Y )− g((∇ϕXϕ)ϕX, Y ) + η(X)g(∇ϕXξ, Y ).

Since η vanishes on the vertical distribution, in the light of Proposition 2.1.2 (f), the
first two expressions respectively become

g((∇Uϕ)U, V )− g((∇ϕUϕ)ϕU, V ),

and
g((∇Uϕ)U,X)− g((∇ϕUϕ)ϕU, X),
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which vanish identicaly because of the superminimality of the fibres.

Assuming that the horizontal vector fields X and Y are basic, expression G1−S−4) is
zero because the base space is G1-Sasakian. Now, let us consider expression G1−S−3).
We have to calculate

g((∇Xϕ)X, U)− g((∇ϕXϕ)ϕX, U) + η(X)g(∇ϕXξ, U)

and show that it is zero; this can be proved by a straightforward calculation. Therefore
(M2m+1, g, ϕ, ξ, η) is G1-Sasakian. Let us consider the case of G1-Kenmotsu structure.
In [46], it is shown that if dη′ = 0 on the base space then the total space also verifies
dη = 0. As in the case of G1-Sasakian structure, there are four components which must
vanish to verify the G1-Kenmotsu structure on the total space. We have

G1 −K−1) (∇Uφ)(U, V )− (∇ϕUφ)(ϕU, V )− η(U)φ(V, U);

G1 −K−2) (∇Uφ)(U,X)− (∇ϕUφ)(ϕU, X)− η(U)φ(X, U);

G1 −K−3) (∇Xφ)(X,V )− (∇ϕXφ)(ϕX, V )− η(X)φ(V, X);

G1 −K−4) (∇Xφ)(X,Y )− (∇ϕXφ)(ϕX, Y )− η(X)φ(Y,X).

For the first two components, we note that superminimality of the fibres mean that
∇Uϕ = 0 because of the vanishing of η on the vertical vector fields. The fourth cal-
culation vanishes on basic horizontal vector fields because the projected tensors by the
submersion down to the base space vanish. Now, consider calculation G1 − K − 3).
Recall that (∇Xφ)(X, V ) = g(X, (∇Xϕ)V ) = g(X,∇XϕV − ϕ(∇XV )) = g(X, AXϕV −
ϕAXV ) = −g(AXX, ϕV ) − g(AXϕX, V ) = −g(AXϕX, V ). Similarly, (∇Xφ)(X,V ) =
g(AϕXX, V ). Thus, (∇Xφ)(ϕX, V ) − (∇ϕXφ)(ϕX, V ) = −g(AXϕX + AϕXX,V ) = 0.
Therefore G1 −K − 3) vanishes and M is G1-Kenmotsu.

Considering G1−Sasakian and G1-Kenmotsu manifolds, they have in common the fol-
lowing relation

(∇Dφ)(D, E)− (∇ϕDφ)(ϕD,E) + b · η(D)C = 0,

where C is a factor determined by the class of the manifold and b is a real number. For
instance, taking b = −1 and C = φ(E, D), we obtain one of the defining relations of
a G1- Kenmotsu structure; if b=1 and C = (∇ϕDξ), we get the defining relation of a
G1-Sasakian structure.

With this in mind, we can summarize the above results in the following way.

Theorem 4.4.6 ([48]). Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric sub-
mersion of type I whose base space is a G1-almost contact metric manifold. If the fibres
are superminimal then the total space inherits the structure of the base space.

Proposition 4.4.7. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Assume that the base space, M ′, is G1-semi-Sasakian, G1-semi-cosymplectic
or G1-semi-Kenmotsu manifold and that the fibres are superminimal. Then the total
space inherits the structure of the base space.
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Proof. In this proposition, it remains to consider the case where δφ′ = 0. It is known
that, since the fibres are superminimal, they are Kähler and then minimal. With this,
and the use of equation (2.10) of Chinea, we then have δφ = 0. Other properties of the
defining relations are established as in the preceding Theorem 4.4.5.

Proposition 4.4.8. π : M2m+1 −→ M ′2m′ be an almost contact metric submersion of
type II. If the fibres are superminimal, then the total space is almost-K-contact.

Proof. Recall that ξ is a vertical vector field in the case of an almost contact metric sub-
mersion of type II. Since the fibres are superminimal, they satisfy ∇Uϕ = 0. Therefore,
∇ξϕ = 0 which is the defining relation of an almost -K-contact structure.

Let us look at the case where the total space enjoys with a G2-structure as in [51].

Proposition 4.4.9. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. Assume that the base space, M ′, is a G2-semi-Sasakian or a G2-semi-
cosymplectic manifold and that the fibres are superminimal. Then the total space inherits
the structure of the base space.

Proof. Let us consider the case of G2-semi-cosymplectic structure. It is known that this
structure is G2-Sasakian and δφ = 0 = δη. We then have to consider the case where
δφ′ = 0. It is known that since the fibres are superminimal, they are Kähler and then
minimal. With this, and the use of equation (2.10), of Chinea, we then have δφ = 0;
equation (2.11) gives δη = 0. Considering the G2-semi-Sasakian structure, it remains to
show that η = 1

2m
δφ, which follows from Proposition 2.1.2 (1) and 2.1.2 (2).

Now we present some results on tranference subjected to the condition (∇Xϕ)U = 0.

Theorem 4.4.10. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. Assume that the base space M ′ is G2-Sasakian and the fibres are superminimal.
If (∇Xϕ)U = 0, then the total space, M, is G2-Sasakian.

Proof. There are six vanishing expressions to prove that the total space, (M, g, ϕ, ξ, η),
is G2−Sasakian.

G2 − S−1) G {(∇Uφ)(V, W )− (∇ϕUφ)(ϕV,W )− η(V )(∇ϕUη)W} ;

G2 − S−2) G {(∇Uφ)(V, X)− (∇ϕUφ)(ϕV,X)− η(V )(∇ϕUη)X} ;

G2 − S−3) G {(∇Uφ)(X, Y )− (∇ϕUφ)(ϕX, Y )− η(X)(∇ϕUη)Y } ;

G2 − S−4) G {(∇Xφ)(U, V )− (∇ϕXφ)(ϕU, V )− η(U)(∇ϕXη)V } ;

G2 − S−5) G {(∇Xφ)(Y, V )− (∇ϕXφ)(ϕY, V )− η(Y )(∇ϕXη)V } ;

G2 − S−6) G {(∇Xφ)(Y, Z)− (∇ϕXφ)(ϕY, Z)− η(Y )(∇ϕXη)Z} .

Obviously, the first two calculations vanish because the fibres are superminimal and
η vanishes on the vertical distribution. Recall that (∇Uφ)(X, Y ) = g(X, (∇Uϕ)Y ) and
(∇Uη)Y = g(Y,∇Uξ) = (∇Uφ)(ξ, ϕY ). But, (∇Uφ)(ξ, ϕY ) = g(ξ, (∇Uϕ)ϕY ); since
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the fibres are superminimal, (∇Uϕ)ϕY ) = 0 from which (∇Uη)Y = 0 and similarly
(∇ϕUη)Y = 0. With this, calculation G2 − S−3) vanishes. In G2 − S−4), we have to
show that (∇Xφ)(U, V ) = 0. In fact, (∇Xφ)(U, V ) = g(U, (∇Xϕ)V ); using the fact
that (∇Xϕ)V = 0, we get (∇Xφ)(U, V ) = 0 = (∇ϕXφ)(ϕU, V ). Thus, G2 − S−4)
vanishes. Now, taking G2 − S−5), it is known that (∇ϕXη)V = (∇ϕXφ)(ξ, ϕV ) =
g(ξ, (∇ϕXϕ)ϕV ). On the other hand, ϕX is horizontal and ϕV is vertical according
to Proposition 2.1.2. Since (∇ϕXϕ)ϕV = 0, we get −η(Y )(∇ϕXη)V = 0. Let us
look at (∇Xφ)(Y, V ) and (∇ϕXφ)(ϕY, V ). We have (∇ϕXφ)(ϕY, V ) = (Y, (∇Xϕ)V ),
and (∇ϕXφ)(ϕY, V ) = g(ϕY, (∇ϕXϕ)V ). Since (∇Xϕ)V = 0 and (∇ϕXϕ)V = 0, we
see that G2 − S−5) vanishes. The last calculation vanishes on basic horizontal vector
fields because the projected tensors by the submersion down to the base space vanish.
Therefore (M2m+1, g, ϕ, ξ, η) is G2-Sasakian.

Proposition 4.4.11. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. Assume that the base space is generalized Kenmotsu, semi-Kenmotsu
normal or a quasi Kenmotsu manifold and the fibres are superminimal. If (∇Xϕ)U = 0,
then the total space inherits the structure of the base space.

Proof. As in the case of the preceding proposition, there are also six calculations which
must vanish to prove that the total space inherits the structure of the base space. We
have

GeK-1) (∇Uφ)(V, W )− (∇ϕUφ)(ϕV,W )− η(V )φ(W, U);

GeK-2) (∇Uφ)(V, X)− (∇ϕUφ)(ϕV,X)− η(V )φ(X, U);

GeK-3) (∇Uφ)(X, Y )− (∇ϕUφ)(ϕX, Y )− η(X)φ(Y, U);

GeK-4) (∇Xφ)(U, V )− (∇ϕXφ)(ϕU, V )− η(U)φ(V, X);

GeK-5) (∇Xφ)(Y, V )− (∇ϕXφ)(ϕY, V )− η(Y )φ(V, X);

GeK-6) (∇Xφ)(Y, Z)− (∇ϕXφ)(ϕY, Z)− η(Y )φ(Z,X).

We first calculate GeK-4). It is clear that the condition (∇Xϕ)U = 0, applies
to (∇ϕXφ)(ϕU, V ), and (∇Xφ)(U, V ). Since η(U)φ(V, X) = 0, expression GeK-4) van-
ishes. In GeK-5), we have to treat (∇Xφ)(Y, V ) and (∇ϕXφ)(ϕY, V ). Recall that
(∇Xφ)(Y, V ) = g(Y, (∇Xϕ)V ) and (∇ϕXφ)(ϕY, V ) = g(ϕY, (∇ϕXϕ)V ), we can apply
the condition (∇Xϕ)U = 0. The last calculation vanishes on basic horizontal vector
fields because the projected tensors by the submersion down to the base space vanish.
We have then proved the case of generalized Kenmotsu manifold. Considering the case
of semi-Kenmotsu normal manifold, it remains to consider the case of δφ′ = 0 and
dη = 0. Since δφ′ = 0, we can use equation (2.10) of Chinea to get δφ = 0. In the light
of Lemma 4.4.4, since dη′ = 0 then dη = 0. The case of quasi Kenmotsu is treated in a
way similar to that of generalized Kenmotsu.

Proposition 4.4.12 ([49]). Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric
submersion of type I. Assume that the base space is a C7, C8, C9, or a C10-manifold and
the fibres are superminimal. If (∇Xϕ)U = 0, then the total space inherits the structure
of the base space.
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Proof. Let us consider the case where the base space is a C7−manifold. In order to prove
that the total space is a C7−manifold, there are six calculations which must vanish.

C7−1) (∇Uφ)(V, W )− η(W )(∇V η)ϕU − η(V )(∇ϕUη)W ;

C7−2) (∇Uφ)(V, X)− η(X)(∇V η)ϕU − η(V )(∇ϕUη)X;

C7−3) (∇Uφ)(Y, X)− η(X)(∇Y η)ϕU − η(Y )(∇ϕUη)X;

C7−4) (∇Xφ)(U, V )− η(V )(∇Uη)ϕX − η(U)(∇ϕXη)V ;

C7−5) (∇Xφ)(Y, V )− η(V )(∇Y η)ϕX − η(Y )(∇ϕXη)V ;

C7−6) (∇Xφ)(Y, Z)− η(Z)(∇Y η)ϕX − η(Y )(∇ϕXη)Z;

Since the fibres are superminimal, the two first calculations vanish. Regarding C7-3),
it is known that (∇Uφ)(Y,X) = g(Y, (∇Uϕ)X) from which (∇Uϕ)X) = 0 because of the
superminimality of the fibres. Note that (∇Y η)ϕU = (∇Y φ)(ξ, ϕ2U) = g(ξ, (∇Y ϕ)ϕ2U).
Applying the condition (∇Xϕ)U = 0 we deduce that (∇Y η)ϕU = 0. In C7-4), we
have to examine only (∇Xφ)(U, V ), others terms vanish because η vanishes on verti-
cal vector fields. But (∇Xφ)(U, V ) = g(U, (∇Xϕ)V ) = 0 by the use of the condition
(∇Xϕ)U = 0. Concerning C7-5), we have to examine (∇Xφ)(Y, V ) and η(Y )(∇ϕXη)V.
Recall that (∇Xφ)(Y, V ) = g(Y, (∇Xϕ)V ). Using the condition (∇Xϕ)V = 0, we have
then (∇Xφ)(Y, V ) = 0. Considering (∇ϕXη)V , we have (∇ϕXη)V = (∇ϕXφ)(ξ, V ) =
g(ξ, (∇ϕXϕ)V ). Using the condition (∇Xϕ)U = 0, we conclude that C7-5) vanishes. The
last calculation C7-6) vanishes on basic horizontal vector fields because the projected
tensors by the submersion down to the base space vanish. Therefore (M, g, ϕ, ξ, η) is a
C7−manifold. Consider the case of C8−manifold. As in the case of C7−manifold, we
have to examine the following six calculations

C8−1) (∇Uφ)(V, W ) + η(W )(∇V η)ϕU − η(V )(∇ϕUη)W ;

C8−2) (∇Uφ)(V, X) + η(X)(∇V η)ϕU − η(V )(∇ϕUη)X;

C8−3) (∇Uφ)(Y, X) + η(X)(∇Y η)ϕU − η(Y )(∇ϕUη)X;

C8−4) (∇Xφ)(U, V ) + η(V )(∇Uη)ϕX − η(U)(∇ϕXη)V ;

C8−5) (∇Xφ)(Y, V ) + η(V )(∇Y η)ϕX − η(Y )(∇ϕXη)V ;

C8−6) (∇Xφ)(Y, Z) + η(Z)(∇Y η)ϕX − η(Y )(∇ϕXη)Z;

As in the case of C7-manifold, since δη′ = 0 on the base space, equation (2.11) gives
δη = 0. Other calculations are treated as in the case of C7-manifold.

Proposition 4.4.13. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric sub-
mersion of type I. Assume that the base space is a C3-manifold and the fibres are
superminimal. If the transference criterion (∇Xϕ)U = 0, then the total space inherits
the structure of the base space.

Proof. As in the preceding situation, we have six calculations which must vanish.

C3−1) (∇Uφ)(V, W )− (∇ϕUφ)(ϕV,W );
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C3−2) (∇Uφ)(V, X)− (∇ϕUφ)(ϕV,X);

C3−3) (∇Uφ)(X,Y )− (∇ϕUφ)(ϕX, Y );

C3−4) (∇Xφ)(U, V )− (∇ϕXφ)(ϕU, V );

C3−5) (∇Xφ)(Y, V )− (∇ϕXφ)(ϕY, V );

C3−6) (∇Xφ)(Y, Z)− (∇ϕXφ)(ϕY, Z).

The first two calculations vanish because of the superminimality of the fibres. Con-
sider C3 − 3), we have,

(∇Uφ)(X,Y ) = g(Y, (∇Uϕ)X) and (∇ϕUφ)(ϕX, Y ) = g(Y, (∇ϕUϕ)ϕU),

which must vanish because of the superminimality of the fibres since U and ϕU are
vertical. In C3 − 4), we have (∇Xφ)(U, V ) = g(V, (∇Xϕ)U) and (∇ϕXφ)(ϕU, V ) =
g(V, (∇ϕXϕ)ϕU), which must vanish in case one used the criterion (∇Xϕ)U = 0.
Considering C3 − 5), we have (∇Xφ)(Y, V ) = g(Y, (∇Xϕ)V ), and (∇ϕXφ)(ϕY, V ) =
g(ϕY, (∇ϕXϕ)V ), which must also vanish as in C3−4). The calculation C3−6) vanishes
on basic horizontal vector fields because the projected tensors by the submersion down
to the base space vanish. Concerning the codifferential, since δφ′ = 0 on the base space,
we can use equation (2.10) to get δφ = 0.

The significance of the above criterion, (∇Xϕ)U = 0, is that, when the fibres are
superminimal, it ensures the transference of the structure from the base to the total
space. For instance, by Proposition 4.3.1, it is proven that submersions whose total
space is a C11 or a C12-manifold have superminimal fibres; but it can be shown that, in
this case, the structure of the base space does not transfer to the total space unless this
criterion is fulfilled.

As in [49], we can state the following

Proposition 4.4.14. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I with superminimal fibres. If the base space is a C11 or a C12-manifold then
these structures do not transfer to the total space unless (∇Xϕ)U = 0,.

Proof. Let us consider the case where the base space is a C11-manifold. As in the case
of the preceding Proposition 4.4.13, the following six calculations must vanish

C11−1) (∇Uφ)(V, W ) + η(U)(∇ξφ)(ϕV, ϕW );

C11−2) (∇Uφ)(V, X) + η(U)(∇ξφ)(ϕV, ϕX);

C11−3) (∇Uφ)(Y, X) + η(U)(∇ξφ)(ϕY, ϕX);

C11−4) (∇Xφ)(U, V ) + η(X)(∇ξφ)(ϕU, ϕV );

C11−5) (∇Xφ)(Y, V ) + η(X)(∇ξφ)(ϕY, ϕV );

C11−6) (∇Xφ)(Y, Z) + η(X)(∇ξφ)(ϕY, ϕZ).

Considering expressions C11−4) and C11−5), we encounter (∇Xϕ)V and (∇ξϕ)ϕV
which must vanish in order to conclude that the total space is a C11−manifold.
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Proposition 4.4.15. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submer-
sion of type I. Assume that the base space, M ′, is a G2-Kenmotsu or almost trans-
Kenmotsu manifold and the fibres are superminimal. Even (∇Xϕ)V = 0, the total space
does not inherit the structure of the base space.

Proof. From Lemma 4.4.4, it is established that if dη′ = 0 on the base space, then the
total space also verifies dη = 0. As in the case of G2-Sasakian structure, there are six
components which must vanish to verify the G2-Kenmotsu structure on the total space.
We have

G2 −K−1) G {(∇Uφ)(V, W )− (∇ϕUφ)(ϕV,W )− η(U)φ(V, W )} ;

G2 −K−2) G {(∇Uφ)(V, X)− (∇ϕUφ)(ϕV,X)− η(U)φ(V, X)} ;

G2 −K−3) G {(∇Uφ)(X, Y )− (∇ϕUφ)(ϕX, Y )− η(U)φ(X, Y )} ;

G2 −K−4) G {(∇Xφ)(U, V )− (∇ϕXφ)(ϕU, V )− η(X)φ(U, V )} ;

G2 −K−5) G {(∇Xφ)(Y, V )− (∇ϕXφ)(ϕY, V )− η(X)φ(Y, V )} ;

G2 −K−6) G {(∇Xφ)(Y, Z)− (∇ϕXφ)(ϕY, Z)− η(X)φ(Y, Z)} .

Since η vanishes on vertical vector fields, and the fibres are superminimal, the three
first calculations vanish. G2−K−5) vanishes because φ(Y, V ) = 0 since Y is horizontal
and V is vertical; (∇Xφ)(Y, V ) = 0 by the use of (∇Xϕ)V as in the calculation of
G2 − S−4), in the same way, we get (∇ϕXφ)(ϕY, V ) = 0. The obstruction to the
transfer of the structure to the total space is the calculation G2−K−4). Indeed, in this
calculation, η(X)φ(U, V ) 6= 0 because φ(U, V ) = g(U,ϕV ) and η(X) 6= 0.

In order to prove that the total space, (M2m+1, g, ϕ, ξ, η), is almost trans -Kenmotsu,
the following six calculations must vanish.

ATK-1) G
{
(∇Uφ)(V, W )− 1

m
φ(U, V )δφ(ϕW )− 2η(U)φ(V, W )

}
;

ATK-2) G
{
(∇Uφ)(Y,X)− 1

m
φ(U, Y )δφ(ϕX)− 2η(U)φ(V, X)

}
;

ATK-3) G
{
(∇Uφ)(Y,X)− 1

m
φ(U, Y )δφ(ϕX)− 2η(U)φ(Y,X)

}
;

ATK-4) G
{
(∇Xφ)(U, V )− 1

m
φ(X,U)δφ(ϕV )− 2η(X)φ(U, V )

}
;

ATK-5) G
{
(∇Xφ)(Y, V )− 1

m
φ(X, Y )δφ(ϕV )− 2η(X)φ(Y, V )

}
;

ATK-6) G
{
(∇Xφ)(Y, Z)− 1

m
φ(X,Y )δφ(ϕZ)− 2η(X)φ(Y, Z)

}
.

Since φ(U, V ) 6= 0, it is clear that ATK-1) and ATK-4) cannot vanish. So, the total
space does not inherit the structure of the base space. Considering ATK-5), we have
φ(X, Y )δφ(ϕV ) 6= 0 which obstructs this calculation to vanish.
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4.5 Umbilicity of the fibres

We begin by recalling some basic concepts before applying them to the case of Rieman-
nian submersions.

Let M̄ be a submanifold of a Riemannian manifold (Mm, g) and σ the second fun-
damental form of M̄. It is well known that the mean curvature vector field, H, of M̄ is
given by H = 1

m
tr(σ) where tr(σ) denotes the trace of σ.

If H = 0, then M̄ is said to be minimal;

If σ = 0, then M̄ is said to be totally geodesic, and

If σ(D, E) = g(D, E)H, then M̄ is totally umbilical.

Example. Let π : B ×s F −→ B be a Riemannian submersion whose total space
is a warped product. In this case, we have a submersion with totally umbilic fibres as
noted in [18]. In [29], it is established that a Kenmotsu manifold is a warped product;
therefore any almost contact metric submersion with total space a Kenmotsu manifold
is of totally umbilic fibres.

Now, let us regard some implications of the total umbilicity.

Proposition 4.5.1. Let π : (M, g) −→ (M ′, g′) be a Riemannian submersion with
totally umbilic fibres. If the mean curvature vector field, H, of the fibres is parallel,
then:

(1) R(U, V, U, V ) = R̂(U, V, U, V ) + [g(U, V )2 − g(U,U)g(V, V )]g(H, H);

(2) R(X, U, X,U) = g(AXU,AXU);

(3) R(X, Y, X, Y ) = R′(X∗, Y∗, X∗, Y∗)− 3g(AXY,AXY ).

Proof. Assertions (1) and (3) follow from O’Neill’s equations [36]. Let us consider (2).
Recall from Baditoiu and Ianus [1], that

R(X, U, X,U) = g(U,U)[g(∇XH, X)− g(X, H)− g(H, H)2] + g(AXU,AXU).

Since, H is vertical and X is horizontal, we have g(X,H) = 0; on the other hand, the
parallelism of H implies that ∇XH = 0 so that g(∇XH, X) = 0;
therefore R(X, U, X,U) = g(AXU,AXU).

In the case of contact geometry, Tripathi and Shukla, [42], have defined the concepts
of totally contact umbilic and totally contact geodesic in the following way.

Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold. For a distribution D
on M̄, M̄ is said to be D−totally geodesic if, for all D, E ∈ D, we have σ(D, E) = 0.

If for all D, E ∈ D, we have σ(D, E) = g(D, E)N for some normal vector field N,
then M̄ is D− totally umbilical.
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Suppose that M̄ is tangent to the structure vector field ξ. Consider the distribution
{ξ} generated by this vector field and {ξ}⊥ its complement. In this case, Tripathi and
Shukla have defined the following two concepts. The submanifold M̄ is said to be :

(1) totally contact umbilic if it is {ξ}⊥−totally umbilic;

(2) totally contact geodesic if it is {ξ}⊥−totally geodesic.

Definition 4.5.1. Let M̄ be a submanifold of an almost contact metric manifold
(M2m+1, g, ϕ, ξ, η). Then M̄ is:

(1) totally contact umbilic if, σ(ϕ2D, ϕ2E) = g(ϕ2D, ϕ2E)N , for all D, E ∈ Γ(M̄),

(2) totally contact geodesic if, σ(ϕ2D, ϕ2E) = 0, for all D, E ∈ Γ(M̄).

In his study of lightlike hypersurfaces of indefinite Sasakian manifolds, F. Massamba
[31] used also these two concepts.

Proposition 4.5.2. Let M̄ be a submanifold of an almost contact metric manifold
(M2m+1, g, ϕ, ξ, η). If M̄ is :

(1) totally contact umbilic, then,

σ(D, E) = g(ϕD,ϕE)N + η(D)σ(E, ξ) + η(E)σ(D, ξ)− η(D)η(E)σ(ξ, ξ),

(2) totally contact geodesic, then,

σ(D, E) = η(D)σ(E, ξ) + η(E)σ(D, ξ)− η(D)η(E)σ(ξ, ξ).

Proof. (1) Let us consider the relation

σ(ϕ2D, ϕ2E) = g(ϕ2D, ϕ2E)N.

It is known that
g(ϕ2D, ϕ2E) = g(D, E)− η(D)η(E),

from which g(ϕ2D, ϕ2E) = (g(D, E)− η(D)η(E))N. On the other hand,

σ(ϕ2D, ϕ2E) = σ(−D + η(D)ξ,−E + η(E)ξ)

= σ(D, E)− η(E)σ(D, ξ)− η(D)σ(E, ξ) + η(D)η(E)σ(ξ, ξ).

Remembering that
g(D, E)− η(D)η(E) = g(ϕD,ϕE),

we get the proof of assertion (1).
Concerning assertion (2), since M̄ is totally contact geodesic, we have σ(ϕ2D, ϕ2E) = 0,
which implies that σ(−D + η(D)ξ,−E + η(E)ξ) = 0. But

σ(−D + η(D)ξ,−E + η(E)ξ) = σ(D, E)− σ(D, η(E)ξ)

− σ(η(D)ξ, E) + σ(η(D)ξ, η(E)ξ)

= σ(D, E)− η(E)σ(D, ξ)

− η(D)σ(E, ξ) + η(D)η(E)σ(ξ, ξ).

which is σ(D, E) = η(D)σ(E, ξ) + η(E)σ(D, ξ)− η(D)η(E)σ(ξ, ξ).
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Proposition 4.5.3 ([42]). Let M̄ be a submanifold of an almost contact metric manifold
tangent to ξ. If M̄ is totally contact umbilic or totally contact geodesic, then ξ is an
asymptotic direction.

Proof. See [42, Thm.7.2, p28].

Let us examine some applications in the case of almost contact metric submersions.

Proposition 4.5.4. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I. If the fibres are totally contact umbilic, then

TUV = g(U, V )H.

Proof. It is known that the O’Neill configuration tensor T is the second fundamental
form of the fibres. Since η vanishes on vertical vector fields, then in Proposition 4.5.2, the
defining equation (1) becomes TUV = g(ϕU, ϕV )H, which is TUV = g(U, V )H because
g(ϕU, ϕV ) = g(U, V )− η(U)η(V ) = g(U, V ).

Corollary 4.5.5. Let π : M2m+1 −→ M ′2m′+1 be an almost contact metric submersion
of type I with totally contact umbilic fibres. If the fibres are minimal, then they are
totally geodesic.

Proof. In such a case, we have TUV = g(U, V )H, because of umbilicity of the fibres. If
moreover the fibres are minimal, we have TUV = 0 which shows that T = 0.

Proposition 4.5.6. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. Suppose that the total space M is a K−contact manifold. If the fibres are
totally contact umbilic, then they are totally geodesic.

Proof. See [24].

Proposition 4.5.7. Let π : M2m+1 −→ M ′2m′ be an almost contact metric submersion
of type II. If the fibres are totally contact umbilic, then the vector fields ξ defines an
asymptotic direction..

Proof. Since, for a type II submersion, ξ is tangent to the fibres, then we can apply
Proposition 4.5.3.
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Chapter 5

Submersions of contact
CR-submanifolds

The Riemannian submersions between Riemannian manifolds were initiated by O’Neill
[36]. The study of CR-submanifolds of an Hermitian manifold was initiated by Bejancu
in [3]. He generalized both totally real and holomorphic immersions. Given an almost
Hermitian manifold, (M, J, g), a submanifold M is called CR-submanifold if there exists
a differentiable distribution D on M such that it is holomorphic, and its complementary
orthogonal distribution D⊥ is totally real JDx ⊆ Dx and J(D⊥

x ) ⊆ TxM
⊥, for all x ∈ M .

Since then, many authors have treated CR-submanifolds on different ambient manifolds
and have amplified the definition to other decompositions of the tangent bundle (semi-
slant and almost semi invariant submanifolds). In [39], Sahin considered horizontally
conformal submersions and proved that every horizontally homothetic submersion is a
Riemannian submersion.

The subject was considered later on for Riemannian manifolds with an almost contact
structure. In this sense Benjacu and Papaghiuc studied semi-invariant submanifolds of a
Sasakian manifold or a Sasakian space form (see [4], [5] and [38] and references therein).

In this chapter, submersions of contact CR-submanifolds of quasi-K-cosymplectic
and quasi-Kenmotsu manifolds are investigated. Remarkable distributions of the under-
lining submersions are examined and their implications on the total space are pointed
out (for more details see [34] and [56]).

5.1 Contact CR-submanifolds

In this section, we introduce the notion of contact CR-submanifold of a manifold (see
[56], for details). Let M be an finite-dimensional isometrically immersed submanifold
of a (2m + 1)-dimensional manifold M and let g be the metric tensor on M as well as
the induced metric on M .

72



Definition 5.1.1 ([56]). A Riemannian submanifold M of a quasi-K-cosymplectic
(resp. quasi-Kenmotsu) manifold M is called a contact CR-submanifold if ξ is tan-
gent to M and there exists on M a differential distribution D : x 7−→ Dx ⊂ TxM such
that

(i) Dx is invariant under ϕ (i.e. ϕDx ⊂ Dx), for each x ∈ M ,

(ii) the orthogonal complementary distribution D⊥ : x 7−→ D⊥
x ⊂ TxM

⊥ of the distri-
bution D on M is totally real, (i.e. ϕD⊥ ⊂ TxM

⊥),

(iii) TM = D⊕D⊥⊕{ξ}, where TxM and TxM
⊥ are the tangent space and the normal

space of M at x, respectively, and ⊕ denotes the orthogonal direct sum.

We call D (resp. D⊥) the horizontal (resp. vertical) distribution. We denote by g
the metric tensor field of M as well as that induced on M . Let ∇ (resp. ∇) be the
covariant differentiation with respect to the Levi-Civita connection on M (resp. M).
The Gauss and Weingarten formulas for M are respectively given by

∇XY = ∇XY + h(X, Y ), (5.1)

and ∇XV = −AV X +∇⊥
XV, (5.2)

for any X, Y ∈ Γ(TM), V ∈ Γ(TM⊥), where h : Γ(TM) × Γ(TM) −→ Γ(TM⊥) is
a normal bundle valued symmetric bilinear form on M , the linear operator AV is the
fundamental form tensor of Weingarten with respect to the normal section V , and the
differential operator ∇⊥ defines a linear connection on the normal bundle TM⊥ called
the normal connection on M . Moreover, we have

g(h(X, Y ), V ) = g(AV X,Y ). (5.3)

The submanifold M is said to be totally geodesic if h vanishes identically.

The projection of TM to D and D⊥ are denoted by h and v, respectively, i.e., for
any X ∈ Γ(TM), we have

X = hX + vX + η(X)ξ. (5.4)

Applying ϕ to X, we have,

ϕX = FX + NX, ∀X ∈ Γ(TM), (5.5)

where FX = ϕhX and NX = ϕvX are tangential and normal components of ϕX,
respectively.

The normal bundle to M has the decomposition

TM⊥ = ϕD⊥ ⊕ ν, (5.6)

where ν denotes the orthogonal complementary distribution of ϕD⊥, and is an invariant
normal subbundle of TM⊥ under ϕ. For any V ∈ TM⊥, we put

V = pV + qV, (5.7)
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where pV ∈ ϕD⊥, qV ∈ ν. From the above equation, we have,

ϕV = fV + nV, ∀V ∈ TM⊥, (5.8)

where fV = ϕpV ∈ D⊥ and nV = ϕqV ∈ ν.

Now, we study the distributions involved and we characterize the horizontally one.
Let M be a contact CR-submanifold of a quasi-K-cosymplectic (respectively, quasi-
Kenmotsu) manifold M and M ′ be an almost contact metric manifold with the almost
contact metric structure (ϕ′, ξ′, η′, g′).

Assume that there is a submersion
π : M −→ M ′ such that:

(1) D⊥ = ker(π∗), where π∗ : TM −→ TM ′ is the tangent mapping to π,

(2) π∗ : Dx⊕{ξ} −→ Tπ(x)M
′ is an isometry for each x which satisfies: π∗◦ϕ = ϕ′◦π∗,

η = η′ ◦π∗, π∗(ξx) = ξ′π(x), where Tπ(x)M
′ denotes the tangent space of M ′ at π(x).

Comparing tangential and normal components in (5.4) and (5.5), we obtain the next
two Lemmas.

Lemma 5.1.1. For a contact CR-submanifold M of a quasi-K- cosymplectic (resp.
quasi-Kenmotsu) manifold M , the following equalities hold

F 2 + fN = −I + η ⊗ ξ, (5.9)
NF + nN = 0, (5.10)
Ff + fn = 0, (5.11)
n2 + Nf = −I. (5.12)

Lemma 5.1.2. Let M be a contact CR-submanifold M of an almost contact manifold
(M,ϕ, ξ, η, g). Then,

(∇XF )Y − ANY X − fh(X,Y ) = F ((∇Xϕ)Y ), (5.13)

(∇XN)Y + h(X, FY )− nh(X,Y ) = N((∇Xϕ)Y ), (5.14)

(∇Xf)V − AnV X + FAV X = f((∇Xϕ)V ), (5.15)

(∇⊥
Xn)V + h(X, fV ) + NAV X = n((∇Xϕ)V ), (5.16)

where F ((∇Xϕ)Y ), f((∇Xϕ)V ), n((∇Xϕ)V ) and N((∇Xϕ)Y ) are, respectively, tan-
gential and normal components of (∇Xϕ)Y and (∇Xϕ)V , for any X, Y ∈ Γ(TM) and
V ∈ Γ(TM⊥).

Proposition 5.1.3. For a contact CR-submanifold M of a quasi-K- cosymplectic (resp.
quasi-Kenmotsu) manifold M , the following equalities hold

(i) ker(F ) = D⊥ ⊕ {ξ},
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(ii) ker(N) = D ⊕ {ξ},

(iii) ker(n) = ND⊥,

(iv) ker(f) = ν.

Proof. (i) and (ii) are directly deduced from the definition of contact CR-submanifold.
For (iii), if X ∈ D⊥, then, by (5.10), nNX = −NFX = 0, i.e. nD⊥ ⊂ ker(n).
Conversely, let us consider U ∈ ker(n). From (5.11) and (5.12), it follows that, FfU =
−fnU = 0 and U = −n2U − NfU = −NfU . From the first equality, fU ∈ D⊥ and
then the second one implies that U ∈ ND⊥. Now let us prove (iv). For V ∈ ker(f), we
have fV = 0 and, by (5.10) and (5.12), 0 = FfV +fnV = fnV and n2V +NfV = −V
which implies ϕnV = n2V = −V , using (5.4). Applying ϕ and n to this equation,
we have, nϕ2nV = −nϕV , i.e., V = −nϕV ∈ ν. Thus, ker(f) ⊂ ν. For the other
inclusion, notice that, for any V normal to M , fV ∈ D⊥. Then, using (5.10) and
(5.12), fnV = FfV = 0 and ϕfV = NfV = −V − n2V , i.e. n2V = −V . Therefore,
fV = 0.

For a quasi-Kenmostu manifold, the defining relation is equivalent to, for any X,
Y ∈ Γ(TM),

(∇Xϕ)Y − ϕ((∇ϕXϕ)Y ) = g(ϕX, Y )ξ − 2η(Y )ϕX. (5.17)

The covariant derivative of the structure vector field ξ is given, for a quasi-K-
cosymplectic manifold, by,

∇Xξ = ϕ(∇ϕXξ), ∀X, Y ∈ Γ(TM), (5.18)

and for a quasi-Kenmotsu manifold, by

∇Xξ = −2ϕ2X + ϕ(∇ϕXξ), ∀X, Y ∈ Γ(TM). (5.19)

Note that, for both ambient almost contact manifolds, the following identities hold

∇ξξ = 0 and h(ξ, ξ) = 0. (5.20)

Now, we study the integrability of all the distributions involved in the definition of
contact CR-submanifolds. First of all, we have:

Lemma 5.1.4. For any X ∈ Γ(D ⊕ {ξ}), ϕX = FX ∈ Γ(D ⊕ {ξ}).

Proof. For any X ∈ Γ(D ⊕ {ξ}, X = hX + η(X)ξ. Applying ϕ to this equation,
one has ϕX = ϕhX + η(X)ϕξ, i.e. ϕX = FX. Therefore, for any Y ∈ Γ(TM),
g(ϕX, vY ) = −g(X, ϕvY ). Since ϕvY ∈ Γ(ϕD⊥) ⊂ Γ(TM⊥), we have g(X, ϕvY ) = 0,
that is, g(ϕX, vY ) = 0, which completes the proof.
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The above lemma means that D ⊕ {ξ} is invariant under ϕ.

For some other considerations, the submanifold M may be considered to be of odd
or even codimension, but whether the dimension of M is odd or even, the distribution
D is always of even dimension.

Lemma 5.1.5. Let M be a contact CR-submanifold of an almost contact manifold M .
Then, if M is quasi-K-cosymplectic, we have the following identities,

∇Xξ = F (∇FXξ) + fh(FX, ξ), (5.21)
h(X, ξ) = N(∇FXξ) + nh(FX, ξ), (5.22)

for any X ∈ Γ(D).

Moreover, if M is quasi-Kenmotsu, we have,

∇Xξ = 2{X − η(X)ξ}+ F (∇FXξ) + fh(FX, ξ),

h(X, ξ) = N(∇FXξ) + nh(FX, ξ), (5.23)

for any X ∈ Γ(D).

Proof. If M is a quasi-K-cosymplectic, from (5.18), one has, for any X ∈ Γ(D),

∇Xξ + h(X, ξ) = ∇Xξ = ϕ(∇FXξ) = ϕ(∇FXξ) + ϕh(FX, ξ)

= F (∇FXξ) + N(∇FXξ) + fh(FX, ξ) + nh(FX, ξ).

On the other hand, if M is a quasi-Kenmotsu, from (5.19), we get,

∇Xξ + h(X, ξ) = ∇Xξ = −2ϕ2X + ϕ(∇FXξ) + ϕh(FX, ξ)

= −2ϕ2X + F (∇FXξ) + N(∇FXξ) + fh(FX, ξ) + nh(FX, ξ).

Then, comparing tangential and normal components of both sides of these equations,
we complete the proof.

Proposition 5.1.6. Let M be a contact CR-submanifold of an almost contact manifold
M . Then, the following assertions hold:

(i) The distributions D, D⊥ and D⊕D⊥ are ξ-parallel if and only if h(ξ, FX) ∈ Γ(ν),
for any X ∈ Γ(D).

(ii) If M is quasi-K-cosymplectic (or quasi-Kenmotsu), then, for any X ∈ Γ(D),
[X, ξ] ∈ Γ(D) if and only if h(ξ, FX) ∈ Γ(ν).

(iii) If M is quasi-Kenmotsu (or quasi-K-cosymplectic), then, [X, ξ] ∈ Γ(D⊥), for any
X ∈ Γ(D⊥).
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Proof. (i) For X ∈ Γ(D), Y ∈ Γ(D⊥), using (5.13), we get,

g(∇ξX, ξ) = ξ(g(X, ξ))− g(X,∇ξξ) = 0,

g(∇ξX, Y ) = ξ(g(X, Y ))− g(X,∇ξY ) = g(F 2X,∇ξY ) = −g(FX,F∇ξY )

= −g(FX,∇ξFY ) + g(FX,ANY ξ) + g(FX, fh(ξ, Y ))

= g(h(ξ, FX), ϕY ),

∇ξX ∈ Γ(D⊥) if and only if h(ξ, FX) ∈ ν. Similarly, we can proceed for D⊥. Finally, if
D and D⊥ are ξ-parallel, then so is D⊕D⊥. (ii) If M is a contact CR-submanifold of a
quasi-K-cosymplectic manifold M , then, by (5.21) and (5.13), and for any X ∈ Γ(TM)
and Y ∈ Γ(D⊥), we have,

g(∇Xξ, ξ) = 0, (5.24)

g(∇Xξ, Y ) = g(∇Xξ, Y )− g(h(X, ξ), Y ) = g(ϕ(∇ϕXξ), Y )

= −g(h(ϕX, ξ), ϕY ). (5.25)

Then, ∇Xξ ∈ Γ(D) if and only if g(h(ϕX, ξ) ∈ ν. Consequently, [X, ξ] = ∇Xξ−∇ξX ∈
Γ(D) if and only if g(h(ϕX, ξ) ∈ ν. On the other hand, if M is a contact CR-submanifold
of a quasi-Kenmotsu manifold M , for any X ∈ Γ(TM) and Y ∈ Γ(D⊥) and since
ϕD⊥ ⊂ TM⊥, we have,

g(∇Xξ, Y ) = g(∇Xξ, Y )− g(h(X, ξ), Y ) = −2g(ϕ2X, Y ) + g(ϕ(∇ϕXξ), Y )

= 2g(X,Y ) + g(ϕ(∇ϕXξ), Y ) + g(ϕh(ϕX, ξ), Y )

= 2g(X,Y )− g(h(ϕX, ξ), ϕY ). (5.26)

The latter vanishes if and only if g(h(ϕX, ξ) ∈ ν, for any X ∈ Γ(D). Thus, [X, ξ] =
∇Xξ − ∇ξX ∈ Γ(D) if and only if g(h(ϕX, ξ) ∈ ν, ∀X ∈ Γ(D). The assertion (iii)
is obvious, using the defining relations of quasi-K-cosymplectic and quasi-Kenmotsu,
which completes the proof.

The differential of the fundamental form φ gives, for any X, Y , Z ∈ Γ(TM),

3dφ(X,Y, Z) = X(φ(Y, Z)) + Y (φ(Z,X)) + Z(φ(X,Y ))

− φ([X, Y ], Z)− φ([Z,X], Y )− φ([Y, Z], X). (5.27)

Using this differential, we have, for any Y , Z ∈ Γ(D⊥),

3dφ(X, Y, Z) = −φ([Y, Z], X) = −g([Y, Z], ϕX) = g(ϕ[Y, Z], X). (5.28)

So, dφ(X, Y, Z) = 0 if and only if [Y, Z] ∈ ker(F ) = D⊥ ⊕ {ξ}. This is equivalent to

[Y, Z] = v[Y, Z] + η([Y, Z])ξ.

But,
η([Y, Z]) = g(ξ,∇Y Z)− g(ξ,∇ZY ) = g(∇Zξ, Y )− g(∇Y ξ, Z).
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If M is a quasi-K-cosymplectic manifold, we have, ∇Zξ = ϕ(∇ϕZξ) and this implies
that, for any Y , Z ∈ Γ(D⊥),

g(∇Zξ, Y ) = −g(∇ϕZξ, ϕY )− g(h(ϕZ, ξ), ϕY ) = −g(AϕY ξ, ϕZ) = 0, (5.29)

since AϕY ξ ∈ Γ(TM) and ϕZ ∈ Γ(ϕD⊥). Consequently, η([Y, Z]) = 0 and [Y, Z] ∈ D⊥.
On the other hand, if M is a quasi-Kenmotsu manifold, then, by its definition, 0 =
2dη(Y, Z) = −η([Y, Z]) and [Y, Z] ∈ D⊥. Therefore, we have:

Lemma 5.1.7. Let M be a contact CR-submanifold of a quasi-K-cosymplectic (or quasi-
Kenmotsu) manifold M . The distribution D⊥ is integrable if and only if dφ(X, Y, Z) = 0,
for any X tangent to M and Y , Z ∈ Γ(D⊥).

From this lemma, we deduce:

Theorem 5.1.8. Let M be a contact CR-submanifold of a quasi-Kenmotsu manifold
M . Then, the distribution D⊥ is always integrable .

Proof. For any X, Y , Z ∈ Γ(D⊥), 3dφ(X, Y, Z) = −g([Y, Z], ϕX) = 0, since [Y, Z] ∈
Γ(TM) and ϕX ∈ Γ(ϕD⊥) ⊂ Γ(TM⊥). By Lemma 5.1.7, we complete the proof.

Finally, we characterize the integrability of D ⊕ {ξ}.

Theorem 5.1.9. Let M be a contact CR-submanifold of a quasi-K-cosymplectic man-
ifold M . If the horizontal distribution D ⊕ {ξ} is integrable, then,

h(FX, Y ) = h(X,FY ), ∀X, Y ∈ Γ(D ⊕ {ξ}). (5.30)

Proof. For any X, Y ∈ Γ(D ⊕ {ξ}), we have,

ϕ[ϕX, ϕY ] = ∇ϕXϕ2Y − (∇ϕXϕ)ϕY −∇ϕY ϕ2X + (∇ϕY ϕ)ϕX

= −∇ϕXY + ϕX(η(Y ))ξ + η(Y )∇ϕXξ − (∇ϕXϕ)ϕY

+∇ϕY X − ϕY (η(X))ξ − η(X)∇ϕY ξ + (∇ϕY ϕ)ϕX

= ∇ϕY X −∇ϕXY + {ϕX(η(Y ))− ϕY (η(X))}ξ + η(Y )(∇ϕXξ)

− (∇ϕXϕ)ϕY − η(X)(∇ϕY ξ) + (∇ϕY ϕ)ϕX. (5.31)

Likewise, using the Gauss equation, we get, for any X, Y ∈ Γ(D ⊕ {ξ}),

ϕ[X, Y ] = ∇XϕY −∇Y ϕX + (∇Y ϕ)X − (∇Xϕ)Y + h(X, ϕY )− h(ϕX, Y ). (5.32)

Since M is a quasi-K-cosymplectic manifold. Then, we have,

(∇Xϕ)Y + (∇ϕXϕ)ϕY = η(Y )(∇ϕXξ),

and the relation (5.31) becomes,

ϕ[ϕX, ϕY ] = ∇ϕY X −∇ϕXY + h(X, ϕY )− h(ϕX, Y )

+ {ϕX(η(Y ))− ϕY (η(X))}ξ + (∇Xϕ)Y − (∇Y ϕ)X. (5.33)
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Adding (5.33) and (5.32), one obtains,

ϕ[ϕX, ϕY ] + ϕ[X, Y ] + {ϕY (η(X))− ϕX(η(Y ))}ξ
= ∇ϕY X −∇ϕXY +∇XϕY −∇Y ϕX + 2{h(X, ϕY )− h(ϕX, Y )}.

If D ⊕ {ξ} is integrable and since ϕX = FX, for any X ∈ Γ(D ⊕ {ξ}), the terms on
the left hand-side are tangential to M . Then, equating normal components in the above
equation, we obtain the desired relation.

5.2 Properties of CR-submersions

A vector field X on M is said to be basic if X ∈ Γ(Dx ⊕ {ξ}) and X is π-related to a
vector field on M ′, i.e., there exists a vector field X∗ ∈ TM ′ such that π∗(Xx) = X∗π(x),
for each x ∈ M . The condition (2), π∗(ξx) = ξ′π(x), in the definition of submersion
preceding lemma 5.1.1, shows that the structural vector field ξ is a basic vector field.

Lemma 5.2.1 ([38]). Let X and Y be basic vector fields on M . Then

(i) g(X, Y ) = g′(X∗, Y∗) ◦ π,

(ii) the component h([X,Y ]) + η([X, Y ])ξ of [X, Y ] is a basic vector field and corre-
sponds to [X∗, Y∗], i.e., π∗(h([X, Y ]) + η([X,Y ])ξ) = [X∗, Y∗],

(iii) [U,X] ∈ D⊥, for any U ∈ D⊥,

(iv) h(∇XY ) + η(∇XY )ξ is a basic vector field corresponding to ∇∗
X∗Y∗, where ∇∗

denotes the Levi-Civita connection on M ′.

Note that the above Lemma 5.2.1 is the analogous of Proposition 2.1.1 of O’Neill.

For basic vector fields on M , we define the operator ∇̃∗ corresponding to ∇∗ by
setting, for any X, Y ∈ Γ(D ⊕ {ξ}),

∇̃∗
XY = h(∇XY ) + η(∇XY )ξ. (5.34)

By (iv) of Lemma 5.2.1, ∇̃∗
XY is a basic vector field, and we have

π∗(∇̃∗
XY ) = ∇∗

X∗Y∗. (5.35)

Define the tensor field C by, for any X, Y ∈ Γ(D ⊕ {ξ}),

∇XY = ∇̃∗
XY + C(X, Y ), (5.36)

where C(X, Y ) is the vertical part of ∇XY . It is known that C is skew-symmetric and
satisfies

C(X, Y ) =
1

2
v[X, Y ], X, Y ∈ Γ(D ⊕ {ξ}). (5.37)
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Next, we want to examine the influence of a given structure defined on the ambient M
on the determination of the corresponding structure on the contact CR-submanifold M
and the base space M ′.

The curvature tensors R, R∗ of the connection ∇, ∇∗ on M and M ′, respectively, are
related as from the work of Papaghiuc [38]. We have for any X, Y , Z, W ∈ Γ(D⊕{ξ}),

R(X, Y, Z, W ) = R∗(X∗, Y∗, Z∗, W∗)− g(C(Y, Z), C(X,W ))

+ g(C(X, Z), C(Y,W )) + 2g(C(X, Y ), C(Z,W )), (5.38)

where, π∗X = X∗, π∗Y = Y∗, π∗Z = Z∗ and π∗W = W∗.

We now pay attention to the different ambient manifolds involved, namely, quasi-
K-cosymplectic and quasi-Kenmotsu manifolds. First of all, we have, for any X, Y ∈
Γ(D ⊕ {ξ}),

∇XY = ∇XY + h(X, Y ) = ∇XY + ph(X, Y ) + qh(X, Y )

= ∇̃∗
XY + C(X, Y ) + ph(X, Y ) + qh(X, Y ). (5.39)

Using this, we have,

ϕ(∇XY ) = ϕ∇̃∗
XY + ϕC(X,Y ) + ϕph(X, Y ) + ϕqh(X, Y ). (5.40)

Replacing Y by ϕY into the relation (5.39), we obtain

∇XϕY = ∇̃∗
XϕY + C(X, ϕY ) + ph(X, ϕY ) + qh(X,ϕY ). (5.41)

If M is a quasi-K-cosymplectic manifold, we find

(∇Xϕ)Y = ∇XϕY − ϕ(∇XY ) = −(∇Xϕ)ϕY + η(Y )(∇ϕXξ). (5.42)

Substituting (5.40) and (5.41) in (5.42), one obtains

∇̃∗
XϕY + C(X,ϕY ) + ph(X, ϕY ) + qh(X, ϕY )− ϕ∇̃∗

XY

− ϕC(X,Y )− ϕph(X, Y )− ϕqh(X, Y )

= −(∇ϕXϕ)ϕY + η(Y )(∇ϕXξ). (5.43)

On the other hand, if M is a quasi-Kenmotsu manifold, we get,

(∇Xϕ)Y = ϕ((∇ϕXϕ)Y ) + g(ϕX, Y )ξ − 2η(Y )ϕX. (5.44)

Putting (5.40) and (5.41) in (5.44), with (∇Xϕ)Y = ∇XϕY − ϕ(∇XY ), one has,

∇̃∗
XϕY + C(X,ϕY ) + ph(X, ϕY ) + qh(X, ϕY )− ϕ∇̃∗

XY

− ϕC(X, Y )− ϕph(X, Y )− ϕqh(X, Y )

= ϕ((∇ϕXϕ)Y ) + g(ϕX, Y )ξ − 2η(Y )ϕX. (5.45)

We have the following results.

80



Theorem 5.2.2. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of a
manifold M onto an almost contact metric manifold M ′. Then,

(i) If M is quasi-K-cosymplectic, for any X, Y ∈ Γ(D ⊕ {ξ}),

(∇̃∗
Xϕ)Y + (∇̃∗

ϕXϕ)ϕY = η(Y )∇̃∗
ϕXξ, (5.46)

C(X, ϕY )− C(ϕX, Y ) = f{h(X,Y ) + h(ϕX, ϕY )}, (5.47)
q{h(X,ϕY )− h(ϕX, Y )} = n{h(X, Y ) + h(ϕX, ϕY )}, (5.48)
p{h(X,ϕY )− h(ϕX, Y )} = ϕ{C(X,Y ) + C(ϕX, ϕY )}. (5.49)

(ii) If M is quasi-Kenmotsu, for any X, Y ∈ Γ(D ⊕ {ξ}),

(∇̃∗
Xϕ)Y − ϕ((∇̃∗

ϕXϕ)Y ) = g(ϕX, Y )ξ − 2η(Y )ϕX, (5.50)
C(X, ϕY )− C(ϕX, Y ) = fh(X,Y ), (5.51)
C(X, Y ) = −C(ϕX, ϕY ), (5.52)
ph(X, ϕY ) = ϕqh(X, Y ). (5.53)

Proof. (i) If M is a quasi-K-cosymplectic manifold, we have,

∇ϕXξ = ∇ϕXξ + h(ϕX, ξ) = ∇̃∗
ϕXξ + C(ϕX, ξ) + h(ϕX, ξ), (5.54)

and

(∇ϕXϕ)ϕY = ∇ϕXϕ2Y − ϕ(∇ϕXϕY )

= ∇ϕXϕ2Y + h(ϕX, ϕ2Y )− ϕ(∇ϕXϕY + h(ϕX, ϕY ))

= ∇̃∗
ϕXϕ2Y + C(ϕX, ϕ2Y ) + h(ϕX, ϕ2Y )− ϕ(∇̃∗

ϕXϕY )

− ϕC(ϕX, ϕY )− ϕh(ϕX, ϕY )

= (∇̃∗
ϕXϕ)ϕY − C(ϕX, Y ) + η(Y )C(ϕX, ξ)− h(ϕX, Y )

+ η(Y )h(ϕX, ξ)− ϕC(ϕX, ϕY )− ϕh(ϕX, ϕY ). (5.55)

for any X, Y ∈ Γ(D ⊕ {ξ}). Putting the pieces (5.54) and (5.55) into (5.43), we have,

(∇̃∗
Xϕ)Y + C(X, ϕY ) + ph(X, ϕY ) + qh(X,ϕY )− ϕC(X, Y )

− ϕnh(X, Y )− ϕqh(X,Y )

= −(∇̃∗
ϕXϕ)ϕY + η(Y )∇̃∗

ϕXξ + C(ϕX, Y ) + h(ϕX, Y )

+ ϕC(ϕX, ϕY ) + ϕh(ϕX, ϕY ). (5.56)

Comparing the components of D ⊕ {ξ}, D⊥, ϕD⊥ and ν, respectively, on both sides of
(5.56), we find

(∇̃∗
Xϕ)Y + (∇̃∗

ϕXϕ)ϕY = η(Y )∇̃∗
ϕXξ,

C(X, ϕY )− C(ϕX, Y ) = ϕp{h(X,Y ) + h(ϕX, ϕY )},
q{h(X, ϕY )− h(ϕX, Y )} = ϕq{h(X,Y ) + h(ϕX, ϕY )},
p{h(X,ϕY )− h(ϕX, Y )} = ϕ{C(X,Y ) + C(ϕX, ϕY )}.
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(ii) Suppose that M is a quasi-Kenmotsu manifold. Using the fact that C is vertical,
for any X, Y ∈ Γ(D ⊕ {ξ}),

ϕ(∇ϕXϕ)Y = ϕ(∇ϕXϕY )− ϕ2(∇ϕXY )

= ϕ(∇̃∗
ϕXϕY )− ϕ2(∇̃∗

ϕXY ) + ϕC(ϕX, ϕY )− ϕ2(C(ϕX, Y ))

= ϕ((∇̃∗
ϕXϕ)Y ) + ϕC(ϕX, ϕY ) + C(ϕX, Y ). (5.57)

Putting (5.57) in (5.45), we get,

(∇̃∗
Xϕ)Y + C(X, ϕY ) + ph(X, ϕY ) + qh(X,ϕY )− ϕC(X, Y )

− ϕph(X, Y )− ϕqh(X, Y )

= ϕ((∇̃∗
ϕXϕ)Y ) + g(ϕX, Y )ξ − 2η(Y )ϕX + ϕC(ϕX, ϕY )

+ C(ϕX, Y ). (5.58)

Also, comparing the components of D ⊕ {ξ}, D⊥, ϕD⊥ and ν, respectively, on both
sides of (5.58), we have (∇̃∗

Xϕ)Y −ϕ((∇̃∗
ϕXϕ)Y ) = g(ϕX, Y )ξ− 2η(Y )ϕX, C(X, ϕY )−

C(ϕX, Y ) = ϕph(X, Y ), C(X, Y ) = −C(ϕX, ϕY ) and ph(X, ϕY ) = ϕqh(X, Y ), which
complete the proof.

Following the nature of ambient manifold, that is, if M is a quasi-K-cosymplectic
manifold, for any X ∈ Γ(D ⊕ {ξ}),

C(X, ϕX) =
1

2
ϕp{h(X, X) + h(ϕX, ϕX)}, (5.59)

and if M is a quasi-Kenmotsu manifold, for any X ∈ Γ(D ⊕ {ξ}),

C(X, ϕX) =
1

2
ϕph(X, X). (5.60)

Lemma 5.2.3. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of a
quasi-K-cosymplectic manifold M onto an almost contact metric manifold M ′. Then,
C(ξ, ξ) = 0, h(ξ, ξ) = 0 and C(X, ξ) = ϕph(ϕX, ξ), ∀X ∈ Γ(D ⊕ {ξ}).

Proof. Putting Y = ξ in the relation (iv) of Theorem 5.2.2 and using the fact that
ϕξ = 0, we get, ph(ϕX, ξ) = −ϕC(X, ξ). Applying ϕ to this equation , we have, for any
X ∈ Γ(D ⊕ {ξ}), ϕph(ϕX, ξ) = −ϕ2C(X, ξ) = C(X, ξ)− η(C(X, ξ))ξ = C(X, ξ), since
η(C(X, ξ)) = 0 because of the fact that C is vertical and ξ is a basic vector, and this
proves the last relation. The first two relations are obvious.

Theorem 5.2.4. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of a
manifold M onto an almost contact metric manifold M ′. Then,

(1) If M is quasi-K-cosymplectic, then, M ′ is also a quasi-K-cosymplectic manifold.

(2) If M is quasi-Kenmotsu, then, M is D ⊕ {ξ}-totally geodesic and M ′ is also a
quasi-Kenmotsu manifold.
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Proof. (1) Using (i) of Theorem 5.2.2, we have, for any X, Y ∈ Γ(D ⊕ {ξ}),

(∇̃∗
Xϕ)Y + (∇̃∗

ϕXϕ)ϕY = η(Y )∇̃∗
ϕXξ.

Applying π∗ to the above equation and using Lemma 5.2.1, equation (5.35), we derive

π∗((∇̃∗
Xϕ)Y ) + π∗((∇̃∗

ϕXϕ)ϕY ) = π∗(η(Y )∇̃∗
ϕXξ).

That is,
(∇∗

X∗ϕ
′)Y∗ + (∇∗

ϕ′X∗ϕ
′)ϕ′Y∗ = η′(Y∗)∇∗

ϕ′X∗ξ
′,

which proves that M ′ is a quasi-K-cosymplectic manifold. (2) From (5.53), we have
ph(X, Y ) = 0 and qh(X, Y ) = 0, and therefore, h(X, Y ) = 0, ∀X, Y ∈ Γ(D ⊕ {ξ}).
This proves that M is D ⊕ {ξ}-totally geodesic. The last assertion follows from (5.50),
mimicking the techniques used in (1).

By Proposition 2.4.8, we deduce the following results.

Theorem 5.2.5. Let π : M −→ M ′ be a submersion of type II of contact CR-
submanifold of a quasi-K-cosymplectic (or quasi-Kenmotsu) manifold M onto an al-
most contact metric manifold M ′ with dimD⊥ = 2k. Then, the base space M ′ is a
(1, 2)-symplectic manifold.

It is known that by a result of Chen [10] that the anti-invariant distribution D⊥

of a CR-submanifold of a Kähler manifold is always integrable. This is still true for
CR-submanifold of locally conformal Kähler manifold [17]. Now, we have:

Theorem 5.2.6. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of a
quasi-K-cosymplectic (or quasi-Kenmotsu) manifold M onto an almost contact met-
ric manifold M ′. If the horizontal distribution D ⊕ {ξ} is integrable and the vertical
distribution D⊥ is parallel, then, M is CR-product.

Proof. Since the horizontal distribution D ⊕ {ξ} is integrable, then, for any X, Y ∈
Γ(D ⊕ {ξ}), we have [X, Y ] ∈ Γ(D ⊕ {ξ}). Therefore, v[X,Y ] = 0. Now, using the
equation (5.37), we have C(X, Y ) = 0, ∀X, Y ∈ Γ(D ⊕ {ξ}). Putting the value of
C(X, Y ) in (5.36), we have ∇XY = ∇̃∗

XY ∈ Γ(D ⊕ {ξ}), which shows that D ⊕ {ξ} is
parallel. Since the horizontal distribution D⊕{ξ} and vertical distribution D⊥ are both
parallel, thus, using De Rham’s theorem [30, Thm 6.2], it follows that M is the product
M1 ×M2, where M1 is invariant submanifold of M and M2 is totally real submanifold
of M . Hence, M is a CR-product.

Next, we discuss the holomorphic sectional curvature of quasi-K-cosymplectic, quasi-
Kenmotsu manifold M and M ′, respectively.

Let π : M −→ M ′ be a submersion of a contact CR-submanifold of a manifold M .
For any manifold M and putting Y = ϕX, Z = ϕY , W = Y in Gauss equation

R(X,Y, Z, W ) = R(X, Y, Z, W )− g(h(X, W ), h(Y, Z))

+ g(h(X,Z), h(Y, W )), (5.61)
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to obtain the following equation, for any X, Y ∈ Γ(D ⊕ {ξ}),

R(X, ϕX,ϕY, Y ) = R(X,ϕX,ϕY, Y )− g(h(X, Y ), h(ϕX, ϕY ))

+ g(h(X, ϕY ), h(ϕX, Y )). (5.62)

Substituting h = ph + qh, in the above equation and using (5.38), we derive

R(X, ϕX,ϕY, Y ) = R(X,ϕX,ϕY, Y )− g(h(X, Y ), h(ϕX, ϕY ))

+ g(h(X,ϕY ), h(ϕX, Y ))

= R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗)− g(C(X, Y ), C(ϕX, ϕY ))

+ g(C(X,ϕY ), C(ϕX, Y )) + 2g(C(X, ϕX), C(ϕY, Y ))

− g(ph(X,Y ), ph(ϕX, ϕY ))− g(qh(X, Y ), qh(ϕX, ϕY ))

+ g(ph(X, ϕY ), ph(ϕX, Y )) + g(qh(X, ϕY ), qh(ϕX, Y )). (5.63)

Suppose that the distribution D ⊕ {ξ} is integrable. Then, we have

C(X, Y ) =
1

2
v[X,Y ] = 0, (5.64)

for any X, Y ∈ Γ(D ⊕ {ξ}). Thus, from the definition of C, we have ∇XY = ∇̃∗
XY ∈

Γ(D⊕{ξ}), i.e., D⊕{ξ} is parallel. By relation (5.30) and since ϕX = FX, h(ϕX, ξ) = 0
which implies that h(X, ξ) = 0, since h(ξ, ξ) = 0. Taking Y = ϕY in (5.30), one obtains,

h(ϕX, ϕY ) = −h(X, Y ), ∀X, Y ∈ Γ(D ⊕ {ξ}). (5.65)

Using this, the relation (5.63) becomes, for any X, Y ∈ Γ(D ⊕ {ξ}),

R(X, ϕX, ϕY, Y ) = R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗)− g(ph(X,Y ), ph(ϕX, ϕY ))

− g(qh(X, Y ), qh(ϕX, ϕY )) + g(ph(X, ϕY ), ph(ϕX, Y ))

+ g(qh(X, ϕY ), qh(ϕX, Y ))

= R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗) + ||ph(X, Y )||2 + ||qh(X, Y )||2

+ ||ph(X, ϕY )||2 + ||qh(X, ϕY )||2. (5.66)

It is easy to check that, for any X, Y ∈ Γ(D ⊕ {ξ}),

||h(X, Y )||2 = ||ph(X, Y )||2 + ||qh(X, Y )||2.

Therefore, we have,

R(X, ϕX, ϕY, Y ) = R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗) + ||h(X, Y )||2 + ||h(X, ϕY )||2, (5.67)

which implies that

H(X) = H ′(X∗) + ||h(X,X)||2 + ||h(X,ϕX)||2, (5.68)

where H(X) = R(X, ϕX,ϕX,X) and H ′(X∗) = R∗(X∗, ϕ
′X∗, ϕ

′X∗, X∗) are the holo-
morphic sectional curvatures of M and M ′, respectively.
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Theorem 5.2.7. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of
a quasi-K-cosymplectic manifold M onto an almost contact metric manifold M ′ with
integrable D ⊕ {ξ}. Then, the holomorphic sectional curvatures H and H∗ of M and
M ′, respectively, satisfy

H(X) ≥ H ′(X∗), ∀X ∈ Γ(D ⊕ {ξ}), ||X|| = 1, π∗X = X∗, (5.69)

and the equality holds if and only if M is D ⊕ {ξ}-totally geodesic.

Proof. The first assertion holds from (5.68). The equality holds if and only if h(X, X) =
0 and h(X, ϕX) = 0, for any X ∈ Γ(D ⊕ {ξ}), ||X|| = 1. From h(X,X) = 0, X ∈
Γ(D ⊕ {ξ}), ||X|| = 1 and linearity of h it follows immediately that h(X, Y ) = 0, for
any X, Y ∈ Γ(D ⊕ {ξ}) and proves that M is D ⊕ {ξ}-totally geodesic.

This result is similar of the one found in [16] for CR-submanifold of a quasi-Kähler
manifold onto an almost Hermitian manifold.

When the ambient manifold M is quasi-Kenmotsu, then, using (5.52), (5.63), (5.60)
and (2) in Theorem 5.2.4, the curvature tensors R and R∗ are related as,

R(X,ϕX,ϕY, Y ) = R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗)− g(C(X, Y ), C(ϕX, ϕY ))

+ g(C(X, ϕY ), C(ϕX, Y )) + 2g(C(X,ϕX), C(ϕY, Y ))

= R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗) + ||C(X, Y )||2 + ||C(X, ϕY )||2

+ 2g(C(X, ϕX), C(ϕY, Y ))

= R∗(X∗, ϕ
′X∗, ϕ

′Y∗, Y∗) + ||C(X, Y )||2 + ||C(X, ϕY )||2, (5.70)

for any X, Y ∈ Γ(D ⊕ {ξ}), since C(X,ϕX) = 1
2
ϕph(X, X) = 0. The relation (5.70)

reduces to,
H(X) = H ′(X∗) + ||C(X,X)||2 + ||C(X, ϕX)||2. (5.71)

Theorem 5.2.8. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of
a quasi-Kenmotsu manifold M onto an almost contact metric manifold M ′. Then, the
holomorphic sectional curvatures H and H∗ of M and M ′, respectively, satisfy

H(X) ≥ H ′(X∗), ∀X ∈ Γ(D ⊕ {ξ}), ||X|| = 1, π∗X = X∗, (5.72)

and the equality holds if and only if the distribution D ⊕ {ξ} is integrable.

Proof. The inequality follows from the relation (5.71). If H(X) = H ′(X∗) if and only
the skew-symmetric tensor C vanishes which means that the distribution D ⊕ {ξ} is
parallel and this completes the proof.

Also, we have,
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Theorem 5.2.9. Let π : M −→ M ′ be a submersion of a contact CR-submanifold of
a quasi-Kenmotsu manifold M onto an almost contact metric manifold M ′ such that
the holomorphic sectional curvatures H and H∗ of M and M ′, respectively, coincide on
D ⊕ {ξ}. Then, M is locally a product M∗ × C, where M∗ is a totally geodesic leaf of
D ⊕ {ξ} and C is a curve tangent to the distribution D⊥.

Proof. By Theorem 5.2.8, we have, the distribution D ⊕ {ξ} is integrable. We deduce
that D⊕{ξ} determines a foliation and if M∗ is a leaf of D⊕{ξ}, it is totally geodesic.
By Theorem 5.1.8, the distribution D⊥ is integrable and then, it defines a foliation. So
being TM = D ⊕D⊥ ⊕ {ξ}, we complete the proof.

Let us give a short conclusion and some open problems indicating how to pursue, in
the future, this study.
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CONCLUSION

In the study of submersions, it can be noted that the first step is to find manifolds
to use as total and base space of fibration. Next, one tests the compatibility with the
Riemannian structure and then establishes relevant properties. It is known that, almost
contact metric submersions are Riemannian submersions between manifolds equipped
with special structures.

Concerning manifolds, among 4,096 classes of almost contact metric structures, we
have examined only a few number of them, less than 100. It must be of interest to pursue
the study with new manifolds. What will be needed is the defining relations of some
new almost contact metric manifolds. The new manifolds can be constructed using the
direct sums of the irreductible Chinea-Gonzalez Ci−manifolds [15]. Other manifolds
can be obtained by the use of warped product following the formalism of Kenmotsu
[29]. In this case, we have constructed and studied 9 classes such as: nearly Kenmotsu,
quasi Kenmotsu, Gi−Kenmotsu where i ∈ {1, 2} , generalized Kenmotsu [49] and some
others.

Recall that in our research, we are interested by the following steps among others:

Let
F −→ M

π−→ M ′

be an almost contact metric submersion of type I. It is known that the fibres, F, are
almost Hermitian manifolds.

(1) We degage the defining relations of the total space M and deduce the structure
of the fibres;

(2) With the structure of the fibres, we interrelate the curvature properties of M
with that of the fibres F ;

(3) Given the defining relations of the base space M ′, we have shown how can be
transfered this structure to the total space M and what can be the role of the fibres?

New directions of research.

We think that it is possible to introduce the concept of conjugaison in contact and
paracontact geometries and obtain various types of almost contact metric submersions.
Let us say that a (ϕ, ξ, η)−structure is said to be

1. Conjugated almost contact structure if ϕ2 = −I − η ⊗ ξ.

2. Almost paracontact structure if ϕ2 = I − η ⊗ ξ.

3. Conjugated almost paracontact structure if ϕ2 = I + η ⊗ ξ.

4. Almost para-Hermitian structure if J2 = I, where J is a an almost para complex
structure.
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From Gündüzalp and Sahin [23], we have the following defining relations for some re-
markable classes in the case of paracontact structures.

An almost paracontact manifold is said to be:

(1) para-normal if Nϕ − 2dη ⊗ ξ = 0,

(2) para-contact if φ = dη,

(3) K-para-contact if it is para-contact and ξ is Killing,

(4) para-cosymplectic if ∇η = 0 and ∇φ = 0,

(5) almost para-cosymplectic if dφ = 0 and dη = 0,

(6) weakly para-cosymplectic if dφ = 0, dη = 0 and
[R(D, E), ϕ] = R(D, E)ϕ− ϕR(D, E) = 0,

(7) para-Sasakian if φ = dη and M is para-normal,

(8) quasi- para-Sasakian if dφ = 0 and M is para-normal.

Note that Gündüzalp and Sahin have introduced the study of submersions consider-
ing that the total and the base spaces are paracontact.

Our purpose will be to consider the case where the total space remains an almost
contact metric manifold; the base space being conjugated almost contact metric, almost
paracontact, conjugated almost paracontact or almost para-Hermitian manifolds. In
this case, regarding the fundamental properties, related to the structure of the fibres,
we can conjecture the following two elementaries results.

Theorem A. Let π : M2m+1 −→ M ′2m′+1 be a Riemannian submersion whose total
space M is an almost contact metric manifold. If the base space M ′ is a conjugated
almost contact manifold, an almost paracontact manifold or a conjugated almost para-
contact manifold, then the fibres are almost Hermitian manifolds.

Theorem B. Let π : M2m+1 −→ M ′2m′ be a Riemannian submersion whose total
space M is an almost contact metric manifold. If the base space M ′ is an almost Her-
mitian or an almost para-Hermitian manifold, then the fibres are almost contact metric
manifolds.

Theorem A shows that conjugated almost contact, almost paracontact and con-
jugated almost paracontact manifolds have some common properties which force the
fibres to lie in the class of almost Hermitian manifolds. This result resembles to that
of Gündüzalp and Sahin [23, Prop 3.5]. Suppose that, in this case, the base space is a
weakly para-cosymplectic manifold, what can be the structure of the fibres?

In the same manner, Theorem B shows that almost Hermitian and almost para-
Hermitian manifolds have some common properties which force the fibres to lie in the
class of almost contact manifolds.

We hope that, in the future, the study can be extended in this way by adding some
other new objects.
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