
Knowledge-based Support for Object-oriented Design

by

MARIANNE LOOCK

submitted in partial fulfilment of

the requirements for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSI1Y OF SOUTH AFRICA

SUPERVISOR: PROFESSOR A.L. STEENKAMP

JUNE 1994

ii

Abstract

The research is conducted in the area of Software Engineering, with emphasis on

the design phase of the Software Development Life Cycle (SDLC). The object­

oriented paradigm is the point of departure. The investigation deals with the

problem of creating support for the design phase of object-oriented system

development. This support must be able to guide the system designer through

the design process, according to a sound design method, highlight opportunities

for prototyping and point out where to re-iterate a design step, for example. A

solution is proposed in the form of a knowledge-based support system. In the

prototype this support guides a designer partially through the first step of the

System Design task for object-oriented design. The intention is that the

knowledge-based system should capture the know-how of an expert system

designer and assist an inexperienced system designer to create good designs.

Key terms:

Object-oriented Design; Knowledge-based Support System; Design

methodology; Object-orientation; Software Engineering; Software Development

Life Cycle; Design Cycle; Object-oriented System Development; System

Designer; Expert System.

Opgedra aan:

Johan, die Liefde in my lewe

Corlia, die Vreugde in my lewe

Pa en Ma, die Bron van lnspirasie in my lewe.

111 ~1111111111111111111111111111111111
01555385

iii

lV

Acknowledgements

To my Lord and Saviour Jesus Christ - in whom all things are possible - Thank

You for the opportunity to do this work.

A special word of thanks to my family, Johan and Corlia, who suffered all the

way - I love you!

My sincere gratitude to my Father and Mother for all their hard work, loyalty,

dedication and "We will help you wherever we can"-attitude.

Thank you to Izak and Lynnette, Anne-Mari, Ester and Johan for their

encouragement during the years of study and to my Father-in-law and Mother-in­

law for their interest in my progress.

A word of thanks to Professor Chris Bornman, Head of the Department of

Computer Science and Information Systems, University of South Africa, for

approving my sabbatical leave.

Thank you very much to Dr Andrew Whiter of Objective Solutions for his helpful

attitude towards my work.

Finally, I gratefully acknowledge the guidance of my supervisor, Professor Lerine

Steenkamp - my sincere thanks for helping me turn the byways into highways.

v

Table of Contents

Abstract . ii

Acknowledgements , . iv

Preface . ix

List of Figures •...•.•••....................•........................•.•••.. x

List of Tables • • . . • • . • • • • . • . . . • xii

List of Exhibits•..........•.•••.•••••••••••....••••...••..•.••• nu

List of Appendices • . • • • • • • • • • . • • . • • • • • . • . • . • • . xiv

List of Abbreviations and Acronyms ' . . • • • • • . . . • . • • . • . xv

Definitions of Terms . • • • . • • • . . • • • • • XVI

Statement of the Problem . 1

1.1 Introduction . 1

1.2 The Problem and its Relevance . 2

1.3 Current Status of the Area of Investigation . 3

1.3.1 The Design Phase . 4

1.3.2 Object-oriented Design . 5

1.3.3 Software Process Model . 7

1.3.4 Knowledge-based Systems in support of Design . 8

1.4 Proposed Solution . 9

1.4.1 Method of Investigation . 10

1.5 Structure of the Dissertation . 14

The Design Process • • • . • • . . . • • . • . . . • • • . • . . . • • • • . . 17

2.1 Introduction . 17

2.2 Software Process Model . 18

vi

2.3 Multi-Perspectives ... 22

2.4 Structured Design Methods . 23

2.4.1 Top-down Structured Design . 23

2.4.2 Data-Driven Design . 25

2.5 Object-oriented Design ... 25

2.5.1 Principles of Object-orientation 26

2.5.2 The Object-oriented Design Process . 33

2.5.3 Object-oriented Analysis and Design Methods . 37

2.6 Good Design Principles . 38

2. 7 Knowledge-based System for Design . 40

2.8 Summary and Conclusions . 41

Knowledge-based Systems ••• 43

3.1 Introduction . 43

3.2 A Knowledge-based System . 44

3.3 An Expert System . 44

3.3.1 The Structure of an Expert System 45

3.3.2 The Main Players in an Expert System . 46

3.3.3 Basic characteristics of an Expert System . 50

3.4 Knowledge Acquisition, Representation and Inferencing 50

3.5 Selection Criteria for Expert System Development Environments 53

3.6 Evaluation of Candidate Expert System Development Environment 64

3.7 Summary and Conclusions .. 73

OMT - An Object-oriented Design Methodology ••••••••••••••••..••••••••••••••••• 76

4.1 Introduction . 76

4.2 Modeling . 77

4.3 The Object-Modeling Technique . 78

4.3.1 Object Model ... 79

4.3.2 Dynamic Model . 82

4.3.3 Functional Model . 84

4.4 Model Summary . 87

4.5 The OMT Methodology for Design . 88

4.5.1 System Design ... 91

4.5.2 Object Design . 103

4.6 The Organization of the Design Knowledge Base . 111

4.7 Conceptual Model of Proposed Solution . 116

vii

4.8 Summary and Conclusion . 117

KAPPA-PC Knowledge-based Environment .•...••.•••.•....••••..•••.•...•.••.. 119

5.1 Introduction . 119

5.2 Kappa-PC Key Concepts . 120

5.3 Kappa-PC Building Blocks . 122

5.4 The KAL Language . 123

5.5 End-user Interface . 124

5.6 Developer's Interface . 128

5.7 Interfaces to External Data Sources and Programming Languages 129

5.8 Rule-based Reasoning . 130

5.9 Summary and Conclusions .. 131

The Design Prototype • . • • • • • • • • . • • • • • . . . • • • • . . • • • 133

6.1 Introduction . 133

6.2 The Scope of the Prototype . 134

6.3 The Object-oriented Design User's Manual . 135

6.3.1 The Purpose of the Manual . 136

6.3.2 The Format of the Manual . 136

6.4 Summary . 136

Evaluation, Summary and Conclusions . . • • • • • • • . . • . • 137

7.1 Introduction . 137

7.2 Evaluation . 137

7.3 Summary of Investigation . 138

7.4 Conclusions . 140

7.5 Areas for further Investigation . 141

Literature References • . . . • . • • • • • • • . • • . . . • • • . 143

EXllIBITS • • • • . • • • • • • • • . . • • . . . • • . . . • . . . • . . . • • . • . . • 152

APPENDIX A • . . . • . . • • . . • • • • • • • • . • • 159

Kappa-PC . 159

APPENDIX B • • • . • • • • 166

Leonardo . 166

viii

APPENDIX C . 173

Nexpert Object . 173

APPENDIX D • • • • • • • • • • • • • • • . • . • • • . . . • • • • • • • . . • • • • • 180

ART-IM .. 180

APPENDIX E . 187

EXSYS Professional . 187

APPENDIX F • • • • • • • • • • • • • • • . • . . • . . • • • • • • • • . . . • • • • 194

User's Manual . 194

APPENDIX G • • • • • • • • • • • • • • • . • • • • • • • • • • • . . • • . . • • • • • • 201

Description of Demonstration . 201

APPENDIX H • • • • • • • • • • • • . • . . • • • • • • • • . . • • • • • • • • . • . . . • • • . . • . • • • 219

Source Code of the Prototype . 219

INDEX••••••..••••••••..•..••...............••.•...••.•.....••..•..•... 240

ix

Preface

This is a dissertation of limited scope (weight S modules) and reports on

research done towards the MSc-degree in Information Systems (the MSc-degree

in Information Systems has a weight of 10 modules).

Course work comprising five modules forms the other half of the MSc-degree:

INF417-N (Software Engineering) (weight: 1 module),

INF 483-Y (Software Engineering Environments) (weight: 1 module),

COS452-H (Artificial Intelligence 2) (weight: 1 module),

One special topic project (weight: 2 modules) on An Evaluation of an

Application Development Methodology in a Fourth-Generation Environment.

The investigation forms part of the Object-oriented Information Systems

Engineering Environment (OISEE) project within the Department of Computer

Science and Information Systems at the University of South Africa. The project

is formulated in terms of a general framework of reference models that structures

the technological foundation of information systems engineering into separate

concerns. The following reference models were defined for the project:

- The 1Development Process Reference Model

- The Quality Assurance Reference Model

- The Technology Reference Model

- The Target System Reference Model.

The Development Process Reference Model is concerned with the Information

System Development Life Cycle, according to the following aspects:

- The Management Aspect

- The Life Cycle Aspect

- The Methods Aspect.

For the purpose of this research, an object-oriented spiral life cycle model is

adopted, consisting of a Feasibility Cycle, an Analysis Cycle, a Design Cycle and

an Implementation Cycle. This research concentrates on the Design Cycle within

this life cycle model.

1 The reference models and aspects in bold are relevant to this investigation.

x

List of Figures

Figure 1.1 Conceptualisation of a knowledge-based workbench

which supports Object-oriented Design 11

Figure 2.1 Universal Level of the Development Process Model 19

Figure 2.2 The quadrants of the Spiral Model 21

Figure 2.3 Revised Spiral Model for object-oriented development 21

Figure 2.4 Dijkstra's Control Constructs 24

Figure 2.5 TEACHER as an object 27

Figure 3.1 Expert systems are knowledge-based systems 45

Figure 3.2 The structure of an expert system 46

Figure 3.3 The players in the expert system game 47

Figure 3.4 Types of tools available for expert system building 49

Figure 4.1 Attributes and Values 80

Figure 4.2 One-to-one association and links 80

Figure 4.3 State diagram for phone line 83

Figure 4.4 Data flow diagram for windowed graphics display 86

Figure 4.5 The relationships between the modeling primitives 87

Figure 4.6 The Worldly Level of the Design Cycle 89

Figure 4.7 Block diagram of a typical application 94

Figure 4.8 Modeling System Design in the Design Cycle 103

Figure 4.9 Object-oriented Design within a Knowledge-based Environment 117

Figure 5.1 Kappa-PC Building Blocks 121

Figure 5.2 An Object Hierarchy 123

Figure 5.3 An Instance of the Conceptual Model 131

Figure G.1 ATM network 202

Figure G.2 ATM Object Model 203

Figure G.3 Design Cycle Window 204

Figure G.4 Design Summary Window 205

Figure G.5 Object Design Window 206

Figure G.6 System Design Window 207

Figure G.7 Question 1.1 209

Figure G.8 Question 1.2 210

Figure G.9 Question 2.1 211

Figure G.10 Question 2.2 212

Figure G.11 Question 3.1 213

xi

Figure G.12 Question 3.2 214

Figure G.13 Question 3.3 215

Figure G.14 Naming Subsystems Window 216

Figure G.15 Final Subsystems Window 217

Figure G.16 Final Window 218

Table 4.1

Table 4.2

Table 4.3

List of Tables

Modeling primitives for the Object Model

Modeling primitives for the Dynamic Model

Modeling primitives for the Functional Model

xii

81

84

86

xiii

List of Exhibits

Exhibit 4.1 Meta Object Model 153

Exhibit 4.2 Meta Dynamic Model 154

Exhibit 4.3 Meta Functional Model 155

Exhibit 4.4 Meta Model for class/object diagrams &

Instance of a Class Diagram 156

Exhibit 4.5 Meta Model for an Event Trace Diagram &

Meta Model for a State Diagram 157

Exhibit 4.6 Meta Model for a Data Flow Diagram 158

xiv

List of Appendices

Appendix A Kappa-PC 159

Appendix B Leonardo 166

Appendix C Nexpert Object 173

Appendix D ART-IM 180

Appendix E EXSYS Professional 187

Appendix F User's Manual 194

Appendix G Description of Demonstration 201

Appendix H Source Code of the Prototype 219

xv

List of Abbreviations and Acronyms

AI Artificial Intelligence

DDE Dynamic Data Exchange

DLL Dynamic Link Libraries

DFD Data Flow Diagram

ES Expert System

GI Graphical Interface

KB Knowledge Base

KBS Knowledge-based System

KS Knowledge System

OMT Object-Modeling Technique

OOA Object-oriented Analysis

OOD Object-oriented Design

OOP Object-oriented Programming

SE Software Engineering

SEE Software Engineering Environment

SDLC Software Development Life Cycle

CASE

DDE

DLL

DFD

Expert system

Knowledge Base

Knowledge-based

system

Life cycle

XVI

Definitions of Terms

The automation of the software engineering

process by making use of computerized tools.

These tools can be applied to the full or

partial life-cycle.

Facility provided by Microsoft Windows to

exchange data between various applications.

Facility provided by Microsoft Windows.

Compiled code from various languages may be

used interchangeably.

A graphical representation of the relationship

between input and output values of processes.

An expert system is a system which is an

"expert" in some narrow problem area.

The repository of knowledge, represented as

rules and facts that capture the reasoning

criteria which a human expert applies to solve

a problem in a particular area of knowledge;

for a methodology it may contain the

knowledge rules about the methodology and its

standards.

A knowledge-based system is a system in which

problem domain knowledge (in the knowledge

base) is explicit and separate from the general

knowledge (in the inference engine).

A cyclic process used in system development.

It usually takes on the form of analysis, design,

implementation and maintenance.

Method

Methodology

OMT

Paradigm

Polymorphism

Software Development

Life Cycle

Software Engineering -

XVII

A regular, orderly, definite way of doing

anything, applied to the specific approach to

carrying out one or more of the software

development activities; it is frequently based on

an abstract or intellectual model of how to

accomplish an activity; it is implemented by

utilizing procedures and tools.

A collection of methods and techniques which

provides the overall approach to developing

and improving software; usually based on an

underlying intellectual model (the paradigm).

An object-oriented development methodology

which uses object, dynamic and functional

models throughout the life-cycle.

An abstract or intellectual model on which

something is based.

Derived from the Greek meaning: "Many

shapes". The same definition is used for tasks

that are implemented differently.

a framework of orderly, interrelated activities

which facilitate the development,

implementation and maintenance of an

information system.

A systematic approach to systems

development, making use of sound engineering

principles and good management practice to

obtain software of a high quality. This process

is usually based on some form of life-cycle

framework.

Software Engineering

Environment

Target System

Technique

Tool

XVlll

An environment which provides support for a

particular development methodology and is

also referred to as a Computer-Aided Software

Engineering (CASE) environment. This

support is accomplished through integrated

CASE tools, utilities, procedures and one or

more databases.

The system that is under development for the

purpose of implementing it.

An informal method.

A mechanism for rendering a method

executable; computer tools are the computer

programs which make the execution or

implementation of the steps of a method

possible.

Knowledge-based Support for Object-oriented Design

CHAPTER!

Statement of the Problem

1.1 Introduction

Software Engineering (SE), first identified as a discipline in 1968, has two technical

aspects: Software engineering-in-the-large, (at the level of software systems

engineering with a number of developers) and software engineering-in-the-small,

(at the level of the program and individual programmers). The ultimate aim of

software engineering, in either of the two technical aspects, is to produce quality

software systems efficiently. This may be achieved by well-established project

management standards, a sound methodological approach, good engineering

principles and reliable tools in support of all phases of the Software Development

Chapter 1 - Statement of the Problem

2

Knowledge-based Support for Object-oriented Design

Life Cycle. Project management includes planning project development,

managing the workmanship and guaranteeing that the work is carried out to the

required standards, on time and within budget (Sommerville, 1992). The purpose

of a life cycle approach to software engineering is to enhance the productivity

and quality of software systems. The software development life cycle typically

includes four phases, namely feasibility, analysis, design and implementation.

In software development, disappointment with regard to quality and productivity

is still an issue. The well-known structured software development approach has

not fulfilled general expectations, namely producing high quality software within

time and cost constraints. High quality software systems are systems which are

maintainable, reliable and efficient, and which fulfil end-user requirements. It is

claimed that an alternative paradigm, called object-orientation, may meet these

expectations and, for this reason, the object-oriented approach to the design

phase has been chosen for this investigation. The main focus of this research is

to investigate support for object-oriented design, which in this case will be a

knowledge-based system. The intention is that the knowledge-based system should

capture the know-how of an expert or specialist system designer. Inexperienced

system designers will then be able to use this support system to create good

designs.

1.2 The Problem and its Relevance

The inexperienced system designer needs a support system to guide 1him through

1 The masculine form of the third person is used throughout to represent both genders.

Chapter 1 - Statement of the Problem

3

Knowledge-based Support for Object-oriented Design

the process of object-oriented design. The domain of discourse is growing

increasingly complex, the design methodologies are sophisticated, and the current

SE environments are tangled and advanced. This support system must be able

to guide the system designer cautiously through the design process, according to

a sound design methodology, highlight opportunities for prototyping (for example

to develop a program for user experiment action), and to point out where to

iterate (for example when quality assurance criteria have not been met).

1.3 Current Status of the Area of Investigation

When the complexity of software systems began to exceed the capabilities of the

existing structured development techniques, attention was focused on the need

for new methods. These methods must ensure that, during software

development, high productivity is achieved for delivering reliable and

maintainable systems with good quality. Software development has become very

expensive because of high personnel costs and low productivity. The quality of

software systems is poor because software performance is often unreliable

(caused by the existence of undetected errors) and software maintenance is often

complex and error-prone.

This section concentrates on key issues relevant to the area of investigation,

namely: The design phase, object-oriented design, software process models and

knowledge-based systems in support of design.

Chapter 1 - Statement of the Problem

4

Knowledge-based Support for Object-oriented Design

1.3.1 The Design Phase

The development of large software systems must be done in a well-defined way

because it involves many different activities which are usually performed by a

team of people. The correct system should be produced on time and within

budget. For this reason the total development of the software, from conception

to final delivery, is organised into one or another Software Development Life

Cycle. There are different methodologies which organize this overall life cycle

in different ways. A methodology involves various methods. These methods

specify how the phases of the life cycle should be handled. Each method may

implement specific techniques. Most software development methodologies

support three basic phases of the software development life cycle, namely

analysis, design and implementation.

Starting with the functional (behavioral) specifications which are the products

of the analysis phase, the objective of design is to create a plan on which the

actual building of the system will be based during the implementation phase. A

design specifies the specific object modules which need to be written, and how

the overall system will physically operate. The design process involves experience

(because the design process is built upon innovative design ideas) and a large

body of knowledge (consisting of principles, techniques and rules of thumb which

a system designer requires to transform his innovative design ideas into working

solutions).

The design phase is perhaps the most loosely defined since it is a process of

gradual decomposition towards more and more detail. It is a creative process, a

Chapter 1 - Statement of the Problem

5

Knowledge-based Support for Object-oriented Design

process of inventing a solution where none existed before.

There are several design approaches. These design approaches are tested ways

of creating designs which have often proved to be good designs. However, design

approaches do not take away the fact that design ideas have still to be created

and judged in terms of criteria in order to establish whether or not a good design

has indeed been achieved. One design approach is Structured Design (Colter,

1982). Here, the system designer produces a software solution to a problem in

such a way that the solution has components and interrelationships which

correspond to those of the problem. Another approach is the Data-Driven Design

(Orr, 1971). The system designer determines the structure of data which best

reflects the problem at hand. Then the system is designed on the basis of the

structure of data. Object-oriented Design (Jackson, 1983) determines how

interacting objects are structured into software sub-systems. An object, the key

concept here, is a package containing data and associated procedures which

operate on that data.

1.3.2 Object-oriented Design

Object-orientation provides a new paradigm for software construction. This new

paradigm aims at achieving software reliability, efficient design of software,

higher-quality software design and easier maintenance of software systems. In

this new paradigm, objects and classes are the building blocks, while methods,

messages and inheritance produce the primary mechanisms. Objects are

"packages" which include both the data and the procedures which act upon the

data. This packaging is referred to as encapsulation. The procedures which

Chapter 1 - Statement of the Problem

6

Knowledge-based Support for Object-oriented Design

reside within the object take on a new name, i.e. methods. An object, on the

other hand, may act and is activated by messages from other objects. Objects

which have a common use and behavior are grouped together in a class, and new

classes may be created which inherit the characteristics from classes already built,

plus any special characteristics defined for that specific class. Thus new classes

of objects may be defined from existing ones by simply defining how they differ

from the originals. This feature enables the programmer to re-use existing classes

and to program only the differences. The object-oriented paradigm offers a new

level of abstraction, with prebuilt libraries of classes and even prebuilt

application-specific class libraries or frameworks.

One of the main motivations and benefits of object-oriented development is the

productivity gains which may be realized through re-use. If object-oriented

analysis (OOA) and object-oriented design (OOD) components are developed

and verified, and object-oriented programming (OOP) components are

constructed and tested, and these components may be re-used in other

applications, a fast and economical way of developing systems will be established.

It is not crucial to use an object-oriented approach in all of the phases of

software development. For example, an object-oriented system design need not

necessarily be implemented in an object-oriented programming language.

However, by doing so, a cleaner conceptual mapping between the design and

coding phases of a software project is provided (Atkins & Brown, 1991).

Chapter 1 - Statement of the Problem

7

Knowledge-based Support for Object-oriented Design

1.3.3 Software Process Model

The life cycle framework concept has been adopted from the engineering

discipline. It is a well-phased framework in which the development of any

product takes place. In particular, as far as software is concerned, the software

process model is a conceptualization of the life cycle framework notion. A

software process model (Du Plessis, 1992) steers the software development

process, which means it guides the way in which the software is built from user

requirements. The software process consists of a set of technical and

management activities in which the software developer, the software manager and

the end-user participate.

It is now important that frames of reference should exist that establish shared

understanding among participants so that development may benefit (Du Plessis,

1992). A number of viewpoints, or aspects, concerned with the software process

model are represented by different reference models. These reference models

are: A Target System Reference Model, a Technology Reference Model, a

Quality Assurance Reference Model and a Development Process (DP) Reference

Model. Software development includes the modeling of the characteristics and

behavior of an application, the target system. One of the results of the modeling

activity is a conceptual Target System Reference Model. A Technology Reference

Model structures the development environment within which an application is

developed and a Quality Assurance Reference Model is concerned with the quality

of process and product. The DP Reference Model guides the set of technical and

management activities which takes place. It is concerned with a particular

software development life cycle (SDLC), according to which the management

Chapter 1 - Statement of the Problem

8

Knowledge-based Support for Object-oriented Design

aspect, the life cycle aspect and the methods aspect may be viewed. For the

OISEE project the aspects have been interpreted as follows:

(i) The Management Aspect : This aspect enables members of the project and

development management team to view a project at three levels of

abstraction. These levels are the Universal Level, the Worldly Level and

the Atomic Level.

(ii) The Life Cycle Aspect : Originally Boehm (1986) proposed a spiral life

cycle model. Du Plessis & Van der Walt (1992) explain a revised spiral

model for object-oriented development. The development is cyclic, where

the cycles are as follows: The Feasibility Cycle, the Analysis Cycle, the

Design Cycle and the Implementation Cycle. Each cycle is characterised

by four quadrants, namely Issue Formulation, Analysis and Evaluation of

Alternatives, Development and Review/Planning.

(iii) The Methods Aspect : The technical development process and the related

management tasks were guided by a chosen set of object-oriented

methods.

1.3.4 Knowledge-based Systems in support of Design

We may now ask which knowledge-based software support systems would be

useful to a system designer of an object-oriented application.

Current applications of Artificial Intelligence (AI) fall into the following

categories: Knowledge-based systems, natural language processing, speech

understanding, robotics, and image and pattern understanding. The terms

knowledge-based systems (KBS), knowledge systems (KS) or expert systems (ES)

Chapter 1 . Statement of the Problem

9

Knowledge-based Support for Object-oriented Design

are used for programs which model the experience of one or more people to

help the user make decisions.

Rolland & Probe (1986) argue that the design process is a complex, iterative,

lengthy and monotonous task which is characterized by a measure of uncertainty

(i) in the definition of the problem, because the boundaries of the application

domain are very seldom clearly defined, and the goals and scope of the

system are generally fuzzy.

(ii) in the manner of choosing an information system conceptual schema, because

the same application domain may be described by different schemata.

(iii) in the manner of translating the conceptual schema into a physical schema,

because this mapping is dependent on both the technical environment

which is available and on the end-user needs.

Owing to this uncertainty, a purely algorithmic solution is impossible. A system

designer may control the design process because he uses formal techniques and

experimental rules simultaneously. He continuously uses his experience which

allows him to recognize typical situations, to resolve problems by comparison and

to know when to iterate or prototype. From this it may be seen that, although

the design is a creative process, one may still learn from an expert about the

typical cases and pitfalls.

1.4 Proposed Solution

The purpose of the investigation is to support the software development process,

Chapter 1 - Statement of the Problem

10

Knowledge-based Support for Object-oriented Design

in particular the design of the software development life cycle in an object-oriented

environment, with a knowledge-based system. The support will be in accordance

with a selected methodology. The investigation also aims to construct a

prototype which will partially automate the work of the system designer. These

were the essential issues which guided the research.

1.4.1 Method of Investigation

The investigation started with a literature study concerning the identified issues

of the problem domain. An analysis of relevant references followed, which was

both interpretive and evaluative. The Design Cycle in the revised spiral software

development life cycle was the focus in the investigation. The object-oriented

paradigm was chosen as the basis for development and the Object-Modeling

Techniq_ue (OMT) methodology (Rumbaugh et.al., 1991) was adopted. A number

of knowledge-based environments were evaluated according to a set of criteria.

The set of criteria used, are grouped into eight categories, namely: End-user

interface criteria, developer interface criteria, system interface criteria,

inference engine criteria, knowledge base (KB) criteria, data inference criteria,

cost-related criteria and vendor-related criteria. The knowledge-based

environment which was chosen, is 2Kappa-PC. An analysis of the literature made

it possible to postulate a hypothesis, make certain assumptions and decide on the

constraints for the investigation. A proposed solution was conceptualised, based

on an analysis of the design task and a prototype was built to demonstrate the

concept. This prototype was evaluated according to criteria which were

synthesized during the investigation. The set of criteria concentrates on good

2 Kappa-PC is a registered trademark of lntelliCorp, Inc.

Chapter 1 - Statement of the Problem

11

Knowledge-based Support for Object-oriented Design

object-oriented design principles, a sound design method and the support which the

knowledge-based environment gives. The investigation concluded with the validation

of the original hypothesis.

(i) The Hypothesis

The investigation is based on the hypothesis that it is possible to create an aid

for inexperienced system designers in a software development process, namely

a knowledge-based workbench which supports object-oriented design as

illustrated in the following block diagram (Figure I. I).

Knowledge Base

Object-oriented Design

Design Decisions

Figure 1.1 Conceptualiz.ation of a knowledge-based workbench which supports Object-oriented Design

Chapter 1 - Statement of the Problem

12

Knowledge-based Support for Object-oriented Design

(ii) The Assumptions

The Analysis Cycle has been completed and the analysis deliverables,

which form the point of departure for this investigation, are available.

The analysis deliverables include the analysis part of the repository (the

format of which is determined by the meta model of the OMT

methodology), and the analysis document (the Requirements Specification

Document). The object-oriented paradigm is followed for design and the

revised spiral model for object-oriented development is adopted (Du

Plessis & Van der Walt, 1992).

(iii) The Constraints

Constraints for the investigation include the following:

• A personal computer (PC) environment

• The Design Cycle of the revised spiral model, within the

parameters of the OISEE project in the Department of Computer

Science and Information Systems at UNISA

• The application domain includes functional transformation systems

(e.g. batch computation and continuous transformation systems),

time-dependent systems (e.g. interactive interfaces and dynamic

simulation), and database systems (e.g. transaction managers).

• The scope of the research was to meet the requirements for a

partial dissertation.

Several relevant issues are mentioned but fall outside the scope of the

investigation. They are:

• Project management for a design team

• The role of the end-user in the Design Cycle

• Implementation, planning and cost estimation

Chapter 1 · Statement of the Problem

13

Knowledge-based Support for Object-oriented Design

• Estimating the cost of the design process

• The coding of application programs

• Prototyping during the Design Cycle

• Re-usable components in the Design Cycle

• Quality assurance and verification of the Design Cycle

• Consistency and completeness of the Design Cycle.

(iv) Literature Survey

The identified issues guided the literature study, during which references

were analytically reviewed, interpreted and evaluated for significance in

terms of the hypothesis and aims of the investigation.

(v) Conceptualisation

A synthesis is made of ideas concerning the relevant knowledge required

for the tasks of object-oriented design to formulate a conceptual model

as a proposed solution to the problem of supporting design steps by

means of a knowledge-based environment.

(vi) Demonstration of Concept

The conceptual model was prototyped within a knowledge-based

environment. The domain of discourse is the design process when

designing an application.

(vii) Evaluation

An evaluation of the prototype against established criteria follows.

(viii) Conclusion

Based on this evaluation, the hypothesis and assumptions of the

investigation were validated.

Chapter 1 · Statement of the Problem

14

Knowledge-based Support for Object-oriented Design

1.5 Structure of the Dissertation

The dissertation consists of seven chapters, followed by exhibits and appendices.

Chapter 1 identifies the research areas which are relevant to the investigation.

A motivation for investigating this area of research is given. The particular

aspects which will be considered are stated. A possible solution is proposed for

dealing with the problems of constructing a good design in an object-oriented

environment. This is followed by the method of investigation which guided the

research. The chapter concludes with an overview of the content of the

dissertation.

In Chapter 2 an overview of the design process is given. The software process

model is explained and the importance of multi-perspectives is discussed. The

categories of structured design methods are described, namely top-down

structured design and data-driven design. The principles of object-orientation

and the object-oriented design process are explained and object-oriented design

methods are reviewed. Good design principles are underlined and knowledge­

based support for object-oriented design is briefly discussed. The chapter is

concluded with a summary.

Chapter 3 reports on knowledge-based systems in general, and expert systems in

particular. The structure of an expert system, the main players in an expert

system and the basic characteristics of an expert system development

environment are discussed. Knowledge acquisition, knowledge representation

and inferencing are explained, and the selection criteria for an expert system

Chapter 1 · Statement of the Problem

15

Knowledge-based Support for Object-oriented Design

development environment are categorized and explained. Kappa-PC is evaluated

against these criteria and a summary of the chapter, as well as conclusions made

in the chapter, follow.

Chapter 4 is devoted to the design method which was identified during the

investigation, namely OMT (Rumbaugh et al., 1991). Modeling in general is

discussed and the OMT, in particular, is explained under the following headings:

The object model, the dynamic model, and the functional model. A summary of

all these models is given. The OMT method for design is discussed in detail with

reference to System Design and Object Design. The organization of the design

knowledge base (KB) is explained and the conceptual model of the proposed

solution is illustrated. A summary and conclusions end the chapter.

Chapter 5 is a description of the knowledge-based environment which was

identified during the investigation, namely Kappa-PC. The different key concepts

in Kappa-PC are mentioned and the Kappa-PC building blocks are explained.

The KAL language, the end-user interface, the developer's interface, the external

data sources interface together with the programming languages interface, and

the knowledge base (KB), with its rule-based reasoning, are discussed.

In Chapter 6 the purpose and scope of the design prototype is explained. The

purpose and format of the User's Manual, for the prototype which is built to

serve as a demonstration of concept, are given. The complete manual is included

as Appendix F and an explanation of the demonstration is given in Appendix G.

The source code of the design prototype is in Appendix H.

Chapter 1 - Statement of the Problem

16

Knowledge-based Support for Object-oriented Design

The contribution this research makes is evaluated, namely whether or not the

prototype which was built serves adequately to demonstrate the concept. The

research results are evaluated and summarized and the conclusions drawn during

the investigation are stated in Chapter 7. Areas for further investigation are

proposed.

Chapter 1 - Statement of the Problem

2.1 Introduction

Knowledge-based Support for Object-oriented Design

CHAPTER2

The Design Process

Design is the development of a model of the internal structure of the system. It

is a blueprint of how the system should be constructed in order to display the

behavior of the system (i.e. a description of what the system must do to meet the

needs of the users) as it was modeled in the Analysis Cycle. Design is a creative

activity because, although there are well-established methods which guide design,

Chapter 2 - The Design Process

18

Knowledge-based Support for Object-oriented Design

the essence is to create a solution where none existed before. The success of the

design process depends on original ideas and this is the reason why experience

is a very important factor that makes for a good system designer. Although

talent and experience are involved, one may not ignore the large body of

knowledge, consisting of principles, techniques and rules of thumb, which a

system designer needs, in order to help him create a working solution.

2.2 Software Process Model

The software process is the way in which the software is built, starting with user

requirements. The software process architecture guides the software process.

A specific instance of a software process architecture is referred to as a software

process model (Humphrey, 1989).

For the OISEE project, and hence for this investigation, Humphrey's (1989)

three-level software process model was adopted for the Management Aspect. This

model consists of a Universal Level, a Worldly Level, and an Atomic Level. The

Universal Level provides a global view of a software system project for senior

management. The global view may be structured by means of a software

development life cycle (SDLC) framework which guides the project. The next

level down is the WorldJy Level which guides the sequence of development and

management tasks of the cycles of the SDLC. The orderly and prescriptive

manner of performing the tasks of the Worldly Level is detailed in the Atomic

Level, for junior management. The DesignNet Model, proposed by Liu and

Horowitz (1989), will be the representation scheme for picturing tasks or

Chapter 2 - The Design Process

19

Knowledge-based Support for Object-oriented Design

activities, deliverables and status reporting, on all levels of the three-level model. The

representation scheme was derived from AND/OR graphs and Petri nets. DesignNet

conveys information regarding the schedule, the work-breakdown-structure, manpower

allocation, costing and current status of the project on all three levels. The principle

advantage of using DesignNet is that all participants involved in managing a project

share information and may communicate across project levels. The Universal Level of

the development process model is visually depicted in the DesignNet notation according

to the revised spiral model as seen in Figure 2.1 .

Figure 2.1 Universal Level of the Development Process Model (Du Plessis & Van der Walt, 1992)

For the Life-Cycle Aspect, the spiral model (Boehm, 1986) was considered for the

OISEE project. Boehm took the system development life cycle and introduced

Chapter 2 - The Design Process

20

Knowledge-based Support for Object-oriented Design

a risk-driven approach into the development of software products, calling it the

"spiral model". Whereas the classical waterfall model (Royce, 1970) was a

specifications-driven model with prototyping sometimes included, the spiral model

also calls for an evaluation of the risk of all the products developed during the

previous cycle of the spiral, including the plans for the next cycle and the

resources required to carry them out. After the completion of a cycle of the

spiral model, an evaluation is made as to whether to continue or abort the

development process. If the project should continue after such a risk evaluation,

the next cycle of the spiral model is started. Otherwise, the development stops

and an evaluation of the entire project is made. The advantages of the spiral

model are the concept of risk assessment and risk management which are

introduced into the system development process. With the spiral model, iterative

processes are possible (Sage & Palmer, 1990). For the purpose of this

investigation, a revised spiral model for object-oriented development, as proposed

by Du Plessis and Van der Walt (1992), is adopted. This model, as shown in

Figure 2.2, has four quadrants, namely Quadrant 1 - Issue Formulation;

Quadrant 2 - Analysis and Evaluation of Alternatives; Quadrant 3 -

Development; Quadrant 4 - Review/Planning.

For object-orientation four cycles are identified, as seen in Figure 2.3, namely

Cycle 1 - Feasibility; Cycle 2 - Analysis; Cycle 3 - Design; Cycle 4 -

Implementation. This research will concentrate on, and refine, the Design Cycle.

For the Methods Aspect a set of object-oriented methods were chosen to guide

the technical development process and the associated management tasks.

Chapter 2 - The Design Process

Knowledge-based Support for Object-oriented Design

Issue Formulation

Objectives
Needs
Alternatives
Constraints

Commitment

Partition

Review/Planning

Review Cycle Results
Plan Next Cycle

Analysis and Evaluation of Alternatives

Risk: Analysis
Evaluate Alternative Strategies

Development
Follow Lifecycle Framework

Figure 2.2 The quadrants of the Spiral Model (Du Plessis & Van der Walt, 1992)

Issue Formulation Analysis and Evaluation of Alternatives

Cycles
1. Foauoili1y Cyelo

2. AJlaly1is Cycle

3. Dorig11 Cycle

4 . lmplcmClllatioJt Cycle Review/Planning Development

Figure 2.3 Revised Spiral Model for object-oriented development (Du Plessis & Van der Walt, 1992)

Chapter 2 - The Design Process

21

22

Knowledge-based Support for Object-oriented Design

The combination of Humphrey's (1989) software process model, the revised

spiral model for object-oriented development (Du Plessis & Van der Walt, 1992),

and the DesignNet model (Liu & Horowitz, 1989) was proposed by Du Plessis

and Van der Walt (1992). This specific combination is adopted for this

investigation.

2.3 Multi-Perspectives

Different Information System Methodologies exist where each emphasizes certain

perspectives. There are three essential perspectives and most methodologies

emphasize one perspective to the exclusion of the other two. The three

perspectives are (Olle et al., 1988):

(i) Data-oriented,

(ii) process-oriented, and

(iii) behavior-oriented.

(i) The data-oriented perspective stresses a comprehensive and precise

analysis of the data and its relationships. The emphasis is on retrievability

of all information, independently of storage representation, resulting in the

expression of the integrity restrictions which the data must satisfy.

(ii) The process-oriented perspective is the oldest perspective. It started when

the computer was regarded as a convenient tool for performing specific

processes, such as generating a payroll. A trend towards moving away

from the computerizable process followed. The emphasis then shifted

towards an analysis of the activities as performed in business. The belief

Chapter 2 - The Design Process

23

Knowledge-based Support for Object-oriented Design

was that these activities could beneficially be computerized.

(iii) The behavior-oriented perspective focuses on the dynamic nature of the

data. The need to analyze and understand events in the real world,

which may have an impact on data recorded in the information system,

stresses a dynamic view of the business area and of the information

system. The concentration is on changes over time, changes which may

take place and changes which are observed to take place.

2.4 Structured Design Methods

Structured Design may be seen as the development of a plan of a computer

system solution to a problem which has the same elements and interrelationships

among the elements as the original problem (Page-Jones, 1988). In this section

two categories of design methods are discussed. These are Top-down structured

design and Data-driven design.

2.4.1 Top-down Structured Design

People have realised that the ability to manage the system development process

is not sufficient for the needs of the increasingly complex systems. During 1968,

at a NATO sponsored conference, Dijkstra (1969) talked about a structured

approach for the first time. He demonstrated his idea by making use of his now

well known control constructs used during the Implementation Cycle, namely

sequence, choice and iteration as illustrated in Figure 2.4. He argued that the

flow of control should follow one of these forms. Parnas (1972) proposed the

Chapter 2 • The Design Process

24

Knowledge-based Support for Object-oriented Design

idea of partitioning a system into modules because the problem-solving notion of divide­

and-conquer permits one to subdivide a difficult problem into sub-problems repeatedly

until the resulting problems become manageable. In top-down structured design, these

subproblems are called "modules". The top-down structured design method is a

functional method. Structured design has five chief goals (Page-Jones, 1988):

• Letting the nature of the problem guide the nature of the solution.

• Reducing system complexity by partitioning a system into hierarchies of

modules.

• Using graphical representation schemas to render systems more

understandable, e.g. structure charts, and supporting these by means of

pseudocode.

• Offering a set of strategies for developing a design solution from a well­

defined statement of a problem.

• Providing a set of criteria for evaluating the quality of a given design.

sequence choice iteration

-~-]
NI ; N2; ;Nk Jl A Then NI l!lso N2 WhileB DoN

Figure 2.4 Dijkstra's Control Constructs

Chapter 2 - The Design Process

25

Knowledge-based Support for Object-oriented Design

Structured Design is a disciplined approach to computer software design, based

on established design principles with the following advantages:

• A system may be divided into partitions or modules.

• It may be made verifiable.

• The understandability of a system is better because of the notion of

modules.

• Communication between people is better because the

understandability of the system is better.

• ModifiabiU-ty is easier because the understandability is better.

• Re-usability is better because a module with functional cohesion

may generally be re-used in other contexts.

2.4.2 Data-Driven Design

The data-driven design is best illustrated by the work of Jackson (1975 and 1983)

and the methods of Warnier and Orr (Orr, 1971). In this method, the structure

of a software system is obtained from mapping system inputs to outputs. Data­

driven designs have been successfully applied, in particular to information

management systems.

2.5 Object-oriented Design

Object-oriented design aims at creating quality designs which adhere to good

design principles and which may be efficiently implemented in a suitable

implementation language. Object-orientation has its roots in the principles

Chapter 2 - The Design Process

26

Knowledge-based Support for Object-oriented Design

behind the SIMULA programming language. The emphasis of research in

object-orientation has been on implementation aspects, such as the development

and use of object-oriented programming languages. The potential benefits of

object-orientation for the analysis and design of software systems have not been

recognized until recently (Van de Weg & Engmann, 1992).

Jackson's work is regarded as a forerunner of object-orientation. He is the father

of a system development method called Jackson System Development (JSD)

(Jackson, 1983). In this method the real world is described in terms of entities,

actions they perform or suffer, and the orderings of those actions. For example,

in a bank the entities are the customers; the actions are invest, withdraw, deposit

and terminate; the ordering of the actions is invest first, then a number of

withdraw and deposit actions, then finally, terminate. An entity exists as part of

the real world outside the system, it performs or suffers actions in a time

ordering, it is capable of being regarded as an individual, it may be uniquely

named, and the system must be required to produce or use information about it

whereas an action takes place at a particular point in time and cannot be

extended over a period (Connor, 1985). For example, to sleep is not an action,

but to wake up is indeed an action.

This description by Jackson of entities, actions they perform and the ordering of

such actions is the essence of the object-orientation paradigm.

2.5.1 Principles of Object-orientation

Object-oriented development is an approach to software development in which

Chapter 2 · The Design Process

27

Knowledge-based Support for Object-oriented Design

the decomposition of a system is based upon the idea of an object. An object is an

entity, the behavior of which is characterized by the actions (operations) which it suffers

(this means it is acceptable that the action may be performed upon the object) and by the

actions which it requires of other objects (Booch, 1987). Thus object-orientation is an

approach which exploits encapsulation or "packaging" in the process of designing and

building software. The object-oriented paradigm, at its simplest, takes the components

of a software system, namely data and procedures, and de-emphasizes the procedures,

stressing instead the encapsulation of data and procedural features together. The

encapsulation of data and related procedural features, forms an object. Figure 2.5

demonstrates an object. Any interaction with an object is done by sending a message

to the object. This means using one of the procedures which the object makes available

for interacting with its internal state (data).

Name
Employee-number
School

Research-on-lecture
Present-lecture
Mark-assignments

Figure 2.5 TEACHER as an object

TEACHER

Chapter 2 - The Design Process

data

procedural
features

28

Knowledge-based Support for Object-oriented Design

The claims which are made about object-orientation are that:

• It is more natural to think in terms of objects.

• The model of the problem space fits more directly into the solution

space.

The elements which underlie the object-oriented technology are not unique to

object-oriented systems, but they are particularly well supported in object­

oriented systems. They are:

(i) Identity

(ii) Classification

(iii) Polymorphism

(iv) Inheritance

(v) Synergy

(vi) Abstraction

(vii) Encapsulation

(viii) Information-hiding

(ix) Modularity

(x) Hierarchy

(xi) Combining data and behavior

(xii) Sharing

(xiii) Emphasis on object structure, not procedure structure

(xiv) Typing

(xv) Concurrency

(xvi) Persistence.

(i) ltkntity is the nature of an object which distinguishes it from all other

Chapter 2 - The Design Process

29

Knowledge-based Support for Object-oriented Design

objects. When data is grouped into separate entities, called objects,

each object has its own natural identity. This implies that two objects

are different even if all their attribute values are identical. For example,

John has exactly the same car (object) as Peter, the same model, the

same features and even the same color, but the cars (objects) have

different identities because the one car (object) belongs to John (class)

and the other car (object) belongs to Peter (class). An attribute is a

data value held by each object of a class, for example model, features

and color are attributes of car objects.

(ii) Classification exist when objects with the same behavior (operations) and

data structure (attributes) are grouped together into a class. An

operation is an action or transformation which an object performs or is

subject to. From the viewpoint of a class, each class is a definition of

data and procedures that each instance of that class will contain,

accordingly defining each instance's behavior. A class is thus a

generalization of the characteristics and behavior of the objects

belonging to the class. A class may be seen as an abstraction which only

describes properties important to an application and ignores the rest.

A given class usually has two kinds of clients, namely instances and

subclasses (Micallef, 1988). Each object may be seen as an instance of

its class. A class which inherits from one or more classes is called a

subclass.

(iii) Polymorphism refers to the same operation behaving differently when

applied to different classes, for example the display operation may

behave differently when applied to the text as opposed to the figure

class. The implication of polymorphism is that operations may be

Chapter 2 - The Design Process

30

Knowledge-based Support for Object-oriented Design

defined at the class level and implemented for subclasses or objects by

means of various methods. This means that a new method may easily

be added when required. A method is a specific implementation of an

operation by a certain class and a method is part of an object. A

method is invoked by sending a message to the object instance of the

class. A message (in 1Smalltalk-80) is the activating of an operation on

an object, containing an operation name and a list of argument values.

(iv) Inheritance is a powerful feature of object classes and is based on a

hierarchical relationship between classes. Inheritance refers to the

sharing of attributes and operations among classes in this relationship.

A class may be refined into consecutive finer subclasses. Each subclass

merges, or inherits, all of the properties of its superclass and adds its

own unique properties.

(v) Synergy is the compilation of ideas. As regards object-orientation, this

means that identity, classification, polymorphism and inheritance

together complement each other synergistically. These aspects exist in

isolation and characterize mainstream object-oriented languages.

According to Thomas (1989), these various features come together to

create a different style of programming.

(vi) Abstraction is ignoring an entity's unexpected characteristics, for example

deciding how an object should be implemented, and concentrating on

the essential, natural aspects of an entity, for example what an object

is and does. Abstraction refers to a data structure together with its

operations. Data abstraction applies to the data structure and

procedural abstraction applies to the operations. The implication of

1 Smalltalk-80 is a trademark of ParcPlace Systems.

Chapter 2 - The Design Process

31

Knowledge-based Support for Object-oriented Design

abstraction is that one may view concrete and abstract things, and their

relevant operations, as a modeling primitive.

(vii) Encapsulation is the grouping of both data and operations affecting that

data, into a single object. Encapsulation separates the external aspects

of an object from the internal implementation details of the object.

This prevents a program from becoming so interdependent that a small

change has enormous ripple effects. The ideal is that the

implementation of an object may be changed without affecting the

applications which use it. Combining data structure and behavior in a

single entity, as claimed by object-orientation, makes encapsulation

neater and more robust than in conventional languages which separate

data structure and behavior.

(viii) Information-hiding allows one to remove from view some portion of

those things which have been encapsulated by the object. Encapsulation

draws a capsule around related things, which is then called an object.

Information-hiding underlines that an object has a public interface and

a private representation.

(ix) Modularity is the characteristic of a system which has been decomposed

into a set of strongly cohesive and loosely coupled modules (Booch,

1991).

(x) Hierarchy is a grading or classifying of abstractions. A set of

abstractions often forms a hierarchy. By identifying these hierarchies in

a design, one may greatly simplify the understanding of the problem

(Booch, 1991).

(xi) Combining data and behavior means that the caller of an operation need

not consider how many implementations of a given operation exist. The

Chapter 2 - The Design Process

32

Knowledge-based Support for Object-oriented Design

burden of deciding what implementation to use shifts from the calling

code to the class hierarchy because of operator polymorphism. For

example, invoking the draw operation on some figures implies that the

decision on which procedure to use, circle or polygon, is made implicitly

by each object, based on its class, whereas in a non-object-oriented

environment, code must first distinguish the type of the figure and then

call the appropriate procedure to display it.

(xi.i) Sharing is promoted at several different levels by object-oriented

techniques. The sharing of code using inheritance is one of the main

advantages of object-oriented languages. Object-oriented development

also offers the prospect of re-using designs and code on future projects

because of features such as abstraction, encapsulation and inheritance.

(xiii) Emphasis on object structure rather than procedure structure has the result

that the emphasis falls on what an object is, rather than how it is used,

according to Booch (1986) who said that software systems built on

object structure are more stable in the long run.

(xiv) Typing is the administering of the class of an object. This administering

prevents objects of different types from being interchanged or allows

them to be interchanged only in very limited ways (Booch, 1991).

(xv) Concurrency allows different objects to act at the same time. This refers

to tasks, activities or events whose execution may overlap in time.

(xvi) Persistence is the characteristic of an object by which its existence

exceeds time and/or space. Existence exceeding time occurs when the

object continues to exist after its creator ceases to exist. Existence

exceeding space occurs when the object's location moves away from the

address space in which it was created.

Chapter 2 - The Design Process

33

Knowledge-based Support for Object-oriented Design

At this stage it seems correct to agree with Atkins and Brown (1991) when they

claim that the primary benefit of the object-oriented approach is that it directly

supports many of the good practices and goals of software engineering.

2.5.2 The Object-oriented Design Process

During the Analysis Cycle the focus is on what is to be done. System Analysts

must first understand the problem domain at hand and the system's

responsibilities within that problem domain. A complete Problem Statement is

compiled. Then the conceptual entities or objects in the problem under analysis

are modeled. Next, the interaction of the objects is modeled and lastly the

processing in the problem is modeled (Shlaer & Mellor, 1988). After the

modeling, an Analysis Document (or Software Requirements Specification) is

compiled.

"Object-oriented design is the method which leads to software architectures based on

the objects every system or sub-system manipulates (rather than 'the' function it is

meant to ensure)." (Meyer, 1988). During the Design Cycle the focus changes to

how it should be done. System Design consist of establishing a high-level strategy

for solving the problem and constructing a solution. It includes making decisions

about the organization of the system into subsystems, the allocation of sub­

systems to hardware and software components, and conceptual and policy

decisions which form the basis for detailed design.

The System Designer starts with the Analysis Document which consists of:

• A Problem Statement.

Chapter 2 - The Design Process

34

Knowledge-based Support for Object-oriented Design

• A model of the static structure of a system which shows the objects

in the system, relationships between the objects, and the attributes

and operations which characterize each class of objects. This

model answers the question: What happens to it?

• A model of those aspects of a system that are concerned with time

and changes. Describing the flow of control, in other words the

sequences of operations which occur in response to external

stimuli, without considering what the operations do, what they

operate on, or how they are implemented. This model answers the

question: When does it happen?

• A model of the computations within a system. This model shows

how output values in a computation are obtained from input

values, without regard for the order in which the values are

computed. This model answers the question: What happens?

Object-oriented design is an incremental process - the identification of new

classes and objects usually results in refining and improving upon the semantics

of existing classes and objects, and refining and improving upon the relationships

among existing classes and objects.

Object-oriented design is also an iterative process - implementing classes and

objects may lead to the discovery or invention of new classes and objects whose

existence simplifies and generalizes the design.

According to Booch (1991), the process of object-oriented design generally tracks

the following order of events:

Chapter 2 · The Design Process

35

Knowledge-based Support for Object-oriented Design

(i) Identify the classes and objects at a given level of abstraction.

(ii) Identify the semantics of these classes and objects.

(iii) Identify the relationships among these classes and objects.

(iv) Implement these classes and objects.

(i) Identify the classes and objects at a gi,ven level of abstraction.

Here two activities are of importance, namely:

• The discovery of the key abstractions in the problem space (the

significant classes and objects), and

• the invention of the important mechanisms, which are the object

structure that shows how different objects work together to

accomplish some function.

(ii) Identify the semantics of these classes and objects.

Establish the meanings of the classes and objects from the previous step.

Identify the things which may be done to each instance of a class and the

things which each object may do to another object. This identification

may be done by viewing each class from the perspective of its interface.

(iii) Identify the relaJionships among these classes and objects.

Establish how things interact within the system. With the key abstractions

one must establish the use, inheritance, and other kinds of relationships

among classes. As far as the objects are concerned one must establish

the static and dynamic semantics of each mechanism.

(iv) Impkment these classes and objects.

This step involves two activities:

• Making design decisions affecting the representation of the classes

and objects which were invented, and

Chapter 2 - The Design Process

36

Knowledge-based Support for Object-oriented Design

• allocating classes and objects to modules, and programs to

processors.

At this stage an inside view of each class and module is taken, to decide

how its behavior should be implemented. This is not necessarily the last

step in the design process because when completing this step, it is

necessary most of the time to repeat the entire process, this time at a

lower level of abstraction.

During System Design (or Preliminary Design), which is the first design task, the

basic approach to solving the problem is selected. The overall structure, style

and organization of the system, which is the system architecture, is decided upon.

At the end of System Design, the System Design Document is produced which

describes the structure of the basic architecture for the system as well as high

level strategy decisions. After the System Design, the System Designer must start

on the Object Design (or Detailed Design) during which the System Designer

elaborates on the analysis models and provides a detailed basis for

implementation. Object-oriented design ends:

• Whenever there are no new key abstractions (the significant

classes and objects) or mechanisms (which provide the

performance required of objects which operate together to

accomplish some function), or

• when the classes or objects already discovered may be

implemented by creating them from existing re-usable software

components.

A Design Document is constructed after the object design task.

Chapter 2 · The Design Process

37

Knowledge-based Support for Object-oriented Design

2.5.3 Object-oriented Analysis and Design Methods

Relatively little has been published on object-oriented methodologies for software

engineering, but a few will nevertheless be reviewed. Some Object-oriented

Analysis methods are included in this review for the sake of completeness.

Shlaer and Mellor (1988) describe a total methodology for object-oriented ana"lysis

which breaks analysis down into three tasks: Static modeling of objects, dynamic

modeling of states and events, and functional modeling. Shlaer and Mellor say

that their methodology is an approach to analysis only.

Coad and Yourdon (1990) also present an approach to object-oriented ana"lysis

which is similar to the original Object-Modeling Technique (OMT) as reported

by Loomis, Shah and Rumbaugh (1987).

The Object-Modeling Technique (OMT) (Rumbaugh et al., 1991) is a methodology

which describes classes and relationships throughout the life cycle, based on the

use of an object-oriented notation. In order to be able to describe all aspects of

a system, the Object Model is enlarged by adding a Dynamic Model and a

Functional Model. During the analysis task, a model of what the system is

supposed to do is developed, regardless of how it is implemented. During the

design task, the Object Model, Dynamic Model and Functional Model are

optimized, refined and extended until they are detailed enough for

implementation.

Booch (1986) describes the foundation of object-oriented software development

Chapter 2 - The Design Process

38

Knowledge-based Support for Object-oriented Design

He claims that Object-oriented software components model a person's perception

of reality very closely. Booch 's Methodology (Booch, 1991) consists of a collection

of models which address the object, dynamic and functional aspects of a software

system. Associations are mentioned but not incorporated into Booch's

methodology.

2.6 Good Design Principles

The system designer is concerned with achieving the design objectives specified

in the user implementation model, as well as with the overall quality of the

design. The nature and quality of the design created by the system designer

affect the ability of the programmers to implement a high-quality, error-free

system. This also affects the ability of the maintenance programmers to make

changes to the system after it has been put into operation. Ingalls (1981)

suggests that " a system should be built with a minimum set of unchangeable

parts; those parts should be as general as possible; and all parts of the system should

be held in a uniform framework". Classes and objects are the key abstractions of

the system when working with object-oriented design. How does one know if a

given class or object is well designed? Booch (1991) suggests that there are five

meaningful principles:

(i) Cohesion within a class or object.

(ii) Coupling between classes or objects.

(iii) Classes should be sufficient.

(iv) Classes should be complete.

(v) Classes should be primitive.

Chapter 2 • The Design Process

39

Knowledge-based Support for Object-oriented Design

(i) Cohesion is the degree of interaction within a class or object, which refers

to how the activities within a single class or object are related to one

another. There are various levels of cohesion, of which functional

cohesion is the most desirable. A functionally cohesive class or object

performs only one problem-related task. Informational cohesion is also

good. An informationally cohesive class or object performs a number of

actions on the same data structure, with independent code for each

action. For a good design, classes or objects must have a high level of

cohesion.

(ii) Coupling is the degree of interaction between two classes or objects. The

ideal is to make classes or objects as independent as possible. There are

various levels of coupling, of which data coupling is the most desirable.

Data coupling is coupling by elementary parameters where every

parameter is either a simple one or a data structure, all of whose

elements are used by the called class or object. For a good design,

classes or objects must have a low coupling, but highly coupled

superclasses and subclasses are an aid to inheritance, which is very

important for object-oriented design.

(iii) Sufficiency refers to classes capturing enough features of the

abstraction to permit meaningful and efficient interaction. For example,

if one designs the class Houses, one must remember to include an

operation which removes an item from the class, but if one should

neglect an operation which adds an item, the original idea is a waste.

(iv) Completeness refers to the interface of the class which should capture all

of the meaningful features of the abstraction. Sufficiency implies a

Chapter 2 - The Design Process

40

Knowledge-based Support for Object-oriented Design

minimal interface. A complete class is thus one whose interface is

general enough to be commonly usable to any client. Because

completeness may be overdone, it is suggested that classes should be

primitive.

(v) Primitive operations are those which may be efficiently implemented only

if given access to the underlying representation of the abstraction. For

example, adding an item to a class is primitive, because to implement this

Add operation, the underlying representation must be visible. On the

other hand, an operation adding four items to a class is not primitive

since this operation may be implemented just as efficiently upon the

more primitive Add operation, without having access to the underlying

representation.

2. 7 .Knowledge-based System for Design

A knowledge-based system is a computer-based consultant which has access to

stored expertise about some problem domain which is normally performed by a

skilled human (Cronk, Callahan & Bernstein, 1988). A knowledge-based system

for object-oriented design is a system which is able to assist the system designer

to use the expert knowledge of other system designers in order to create a good

object-oriented design. It has already been established that it is possible to build

a knowledge-based system as an aid for system designers in information system

design (Bouzeghoub, 1985). The aim of this research is to build a knowledge­

based system by means of a selected knowledge-based environment which will

assist the systern designer in applying the selected design method as well as in

Chapter 2 - The Design Process

41

Knowledge-based Support for Object-oriented Design

making decisions. For example, where may prototyping be useful during the

design process, or where is iteration in the Design Cycle possible?

2.8 Summary and Conclusions

The Software Process Model has been discussed and the Management Aspect,

the Life-Cycle Aspect, and the Methods Aspect of the Development Process

(DP) Reference Model have been explained.

A multi-perspective view for information systems has been described. It is true

that a methodology which concentrates on all three perspectives is the ideal.

Categories of structured design methods have been summarized, namely top­

down structured design and data-driven design.

First of all, object-oriented design was discussed by reviewing the principles of

object-orientation. Secondly, the object-oriented design process and how it

interfaces with object-oriented analysis and object-oriented programming was

explained. Thirdly, the object-oriented analysis and object-oriented design

methods were summarized. After this literature study, the author decided that

the OMT methodology (Rumbaugh et al., 1991) would be used for purposes of

this research. The reasons are that it is an object-oriented methodology which

supports the whole of the software development life cycle and that it is a

methodology which supports a multi-perspective view on any specific problem

domain.

Chapter 2 - The Design Process

42

Knowledge-based Support for Object-oriented Design

Good design principles were explained by referring to high cohesion, low

coupling, sufficiency, completeness and primitiveness.

It is concluded that knowledge-based support for object-oriented design is

possible because knowledge-based support for conventional structured systems

does indeed exist.

Chapter 2 - The Design Process

3.1 Introduction

Knowledge-based Support for Object-oriented Design

CHAPTER3

Knowledge-based Systems

In Chapter 2 the design process was discussed. It seems to be a complex task,

long and iterative, and full of uncertainty. The nature of the task of design is

two-sided. Firstly there is an algorithmic part, for example following a certain

methodology, and secondly a heuristic part, for example experimental rules of

system designers. When supporting the design process by means of a support

system, the support system must be able to include both formal knowledge and

experimental knowledge. For all these reasons it seems appropriate to assist the

Chapter 3 - Knowledge-based Systems

44

Knowledge-based Support for Object-oriented Design

design process by giving advice to system designers by means of a knowledge­

based system. This chapter reviews the knowledge-based technology as it

pertains to the objectives of the investigation and justifies the choice of Kappa­

PC.

3.2 A Knowledge-based System

In a knowledge-based system the problem domain knowledge is explicit and

separate from the general knowledge, for example knowledge about how to solve

problems. The collection of the domain knowledge is called the knowledge base,

while the general problem-solving knowledge is called the inference engine.

3.3 An Expert System

An expert system is a system which is an "expert" in some narrow problem area.

It may ease the work of the expert system user by making available the expert

knowledge of others in order to solve complex problems and render advice or

recommendations. These systems usually represent knowledge symbolically, their

reasoning processes are examined and explained by means of on-line help

facilities or on-line queries, and they address problem areas which require years

of special training and education for humans to master. Thus, it is possible to

provide explanations and the relevant rules used when the system offers

particular proposals regarding a problem. Expert Systems are Knowledge-based

Systems as explained in Figure 3.1.

Chapter 3 • Knowledge-based Systems

Knowledge-based Support for Object-oriented Design

ARTIFICIAL
INTELLIGENCE

PROGRAMS

KNOWLEDGE-BASED~-.. -----­SYSTEMS

EXPERT
SYSTEMS

Figure 3.1 Expert systems are knowledge-based systems (Waterman, 1986)

3.3.1 The Structure of an Expert System

45

An expert system consists of a user interface, a knowledge-base and an inference

engine. Figure 3.2 is a combination of a figure from Waterman (1986) and a user

interface component.

A User Interface is a language processor for friendly, problem-oriented communications

between the user and the computer. This communication may be in a natural language,

extended with menus and graphics (Turban, 1990). A Knowledge-base contains lots of

detailed knowledge about a particular problem domain. The knowledge may be

represented as facts (what is known about the problem area) and rules (logical

Chapter 3 - Knowledge-based Systems

46

Knowledge-based Support for Object-oriented Design

references between facts) which state what the knowledge is. This implies that the

knowledge-base is non-procedural.

An Inference Engine contains knowledge about how to make effective use of the domain

knowledge, for example how to solve the problem or how to interact with the user. This

implies that the inference engine is highly procedural. It consists of an interpreter and

a scheduler.

EXPERT SYSTEM ru-··-"-··-11-•1-·•-·•-1t-11-·•-··-.. -·•- ·1- 11 _11_ 11- ••- ··- ··- · •- 11- 11~ - ~

' !
!

' !
' ! !

KNOWLEDGE BASE !
(Domain knowledge) '

FACTS
·-- -- ·-- -- -- -- -- --·-

RULES

Rules, New
Facts Facts

INTERPRETER
- -- -- -- -- --·--·--·--

SCHEDULER

t.: scr
Interface

!
!

' ! !
!
!

' ! !
' !

' INFERENCE ENGINE
i (General problem-solving
I knowledge) !
- 1•-••-••- ••- •• - ••-U-••- u- •• -11- ••- •• - •• - ••-••- ••-••- u- 11- 11 _ 11 _ 11_ 11•

Figure 3.2 The structure of an expert system

3.3.2 The Main Players in an Expert System

When considering expert systems, the main players in this "game" are (Waterman,

Chapter 3 - Knowledge-based Systems

Knowledge-based Support for Object-oriented Design

1986):

(i) The knowledge engineer,

(ii) the domain expert,

(iii) the end-user and

(iv) the expert system building tool.

Their basic role and relationship to each other is illustrated in Figure 3. 3.

Builds

F.XPERT S\'STF.\1
Bl ' lLDI"iG 1001.

Uses

Domain Expertr-____ ..,

Interviews

Figure 3.3 The players in the expert system game (Waterman, 1986)

Extends
and tests

47

Knowledge-engineering is the process of building an expert system. The expert-system

builder, called the knowledge engineer, obtains the procedures, strategies and rules of

thumb for problem-solving from a human domain expert. He then

Chapter 3 - Knowledge-based Systems

48

Knowledge-based Support for Object-oriented Design

builds this knowledge into the expert system. This expert system will solve

problems in much the same way as the domain expert, and the end-user, for

whom the expert system was developed, will be able to make use of the expert

knowledge without the availability of the real domain expert. Expert system

building tools are available to build expert systems. Forsyth (1989) and

Waterman (1986) talk about these expert system building tools and in Figure 3.4

they are visually depicted. They are:

(i) Programming languages,

(ii) knowledge engineering languages,

(iii) system-building aids and

(iv) support facilities.

(i) Programming Langu,ages are either problem-oriented languages, such as

PASCAL and FORTRAN, or symbol-manipulation languages, such as LISP

and PROLOG. LISP is especially efficient for work in Artificial

Intelligence.

(ii) Knowledge Engi.neering Langu,ages consist of an expert system building

language integrated into an extended support environment. Knowledge

engineering languages are either skeletal or general-purpose. A skeletal

knowledge engineering language is a stripped-down expert system, also

called an expert system shell. An expert system shell is an expert system

with its domain-specific knowledge removed. The inference engine and

support facilities form part of the shell. A general purpose knowledge

engineering language may handle different problem areas and types.

(iii) System-Building Aids consist of programs which help capture and illustrate the

domain expert's knowledge and programs which design the expert system

Chapter 3 - Knowledge-based Systems

49

Knowledge-based Support for Object-oriented Design

under construction. Many of these aids are research tools just beginning to

mature into functional and effective aids.

(iv) Support Facilities help with programming, for example debugging aids and

knowledgebase editors. They also strengthen and explain the potential of the

finished product, for example built-in input/output facilities and explanation

facilities. The Support Facilities are usually combined with a Knowledge

Engineering Language and are designed to work specifically with that language.

rxPrRT
SYSTE\1
TOOi S

PROGRAMMING
LANGUAGES

KNOWLEDGE
ENGINEERING
LANGUAGES

SYSTEM-BUILDING.---­
AIDS

SUPPORT
FACILITIES

Problem-oriented

Symbol-manipulation

Figure 3.4 Types of tools available for expert system building (Waterman, 1986)

Chapter 3 - Knowledge-based Systems

50

Knowledge-based Support for Object-oriented Design

3.3.3 Basic characteristics of an Expert System

The characteristics of an expert system which distinguish it from a conventional

program are (Waterman, 1986 and Turban, 1990):

(i) Expertise

(ii) Symbolic Reasoning

(iii) Depth

(iv) Self-knowledge (Explanation Facility).

(i) Expertise refers to expert systems demonstrating skilful performance, having

a high level of competence, and having adequate depth and breadth in a

subject.

(ii) Symbolic Reasoning is the concept in terms of which expert systems

represent knowledge symbolically, and manipulate and reformulate symbolic

knowledge. Most current expert systems do not have the latter capability.

(iii) Depth in an expert system means that it operates best in a narrow domain

containing challenging problems by using complex rules (meaning complex

through their individual complexity or their great numbers).

(iv) Self-knowledge (explanation facility) refers to an expert system examining its

own reasoning and explaining its operation.

3.4 Knowledge Acquisition, Representation and Inferencing

Knowledge is fundamental to the operation of expert systems. The important

questions about knowledge are: How does one accumulate knowledge? How

Chapter 3 - Knowledge-based Systems

51

Knowledge-based Support for Object-oriented Design

does one represent knowledge? and How are conclusions made about this

knowledge? Chabris (1988), Turban (1990), and Waterman (1986) have the

following to say about these questions:

(i) Knowledge acquisition is the accumulation, transfer, and transformation of

knowledge, derived from various sources, especially from experts, so that

it may be symbolically represented and processed. Other potential sources

of knowledge include textbooks, databases, special research reports, and

pictures. The knowledge engineer must perform this accumulation and

reformulation of the knowledge.

(ii) Knowledge representation is a process of structuring knowledge (facts and

rules) about a problem in the computer, in a way which makes the problem

easier to solve. The three knowledge-representation schemata that are

most commonly used for knowledge representation are rules, semantic nets

and frames.

• A Rule is a formal way of defining a suggestion, directive, or strategy

expressed as

IF premise THEN conclusion

or

IF condition THEN action.

In a rule-based expert system, the domain knowledge is symbolized

as sets of rules which are checked against a collection of facts about

the current situation. When the IF portion of a rule is satisfied by the

facts of the current problem, the action specified by the THEN

portion is performed.

• A Semantic Net is a representation scheme consisting of a network of

Chapter 3 · Knowledge-based Systems

52

Knowledge-based Support for Object-oriented Design

points, called nodes (standing for events, concepts or objects),

connected by links, called arcs, describing the relations between the

nodes. One of the most common relationships in semantic networks

(Turban, 1990) is the is a link, which allows facts to be attached to

classes of objects (for example Poodle is a Dog), and the has a link,

which allows facts to be inherited by specific objects in the class (for

example Dog has a Tail).

• A Frame is a representation scheme which uses a network of nodes

(representing concepts or objects) and relations organized in a

hierarchy. The concept at each node is defined by a collection of

attributes (called slots) and values of those attributes. Each slot may

have procedures attached to it which are executed when the

information in the slot is changed.

(iii) Inferencing is the technique used by the inference engine to access and

apply the domain knowledge. An inference is a conclusion based on facts

or premises. A control mechanism controls the way the reasoning strategy

is applied. Examples of control mechanisms are forward-chaining and

backward-chaining. Forward-chaining means to chain forward from

conditions which are true, towards conclusions which the facts allow one to

establish. Backward-chaining refers to chaining backwards from a

conclusion one wishes to establish, towards the conditions necessary for its

validity, to see if they are supported by the facts.

Chapter 3 · Knowledge-based Systems

53

Knowledge-based Support for Object-oriented Design

3.5 Selection Criteria for Expert System Development Environments

The evaluation and selection of a specific expert system environment are

important parts of the demonstration of this research. A systematic process

(Stylianou et al., 1992) was used for the identification of Kappa-PC, the expert

system environment, which was used for this research. The expert system

environment evaluation criteria are grouped into eight categories:

(i) End-User Interface Criteria

(ii) Developer Interface Criteria

(iii) System Interface Criteria

(iv) Inference Engine Criteria

(v) Knowledge Base Criteria

(vi) Data Interface Criteria

(vii) Cost-Related Criteria

(viii) Vendor-Related Criteria.

For each category the criteria considered most important are double underlined.

The criteria next in importance are underlined.

(i) End-User Interface Criteria

With expert systems the end-user is as important as in any other kind of

computer software. Regardless of the specific knowledge captured in an expert

system and the development capabilities which the expert system environment

offers, if the end-user is not satisfied the project will fail. The following end-user

interface criteria are important:

• Saved Cases give the user the opportunity to interrupt his

Chapter 3 - Knowledge-based Systems

54

Knowledge-based Support for Object-oriented Design

communication with the system, and later be allowed to re-enter and

continue from the point of interruption without having to start over.

• Exolanation Facilities for expert users will be appreciated, for

example:

o Showing the Reasoning Path with a How Graph

o Offering Paraphrases to answer "What" questions

o Answering "Why" questions by pointing Relevances out

• Documentation will facilitate the use of an expert system.

• Tutorial which is good, will make the understanding of the expert

system easier.

• Windows are usually very user-friendly. When adding

o Window Colors, Borders, and Sizes or a

o Menu System with

a Pop-Up Menus or

a Pull-Down Menus, an expert system become easier to use.

o Customizable Features for end-users where they may design

custom screens from a screen design toolkit.

• Speech I/0 for voice recognition and/or synthesis.

• Accepts Unknown as an Answer makes the communication for the

end-user easier.

• Context-Sensitive Help helps the end-user to help himself.

• Display Manager should offer

o Graphic Results which are easy to understand, and

o Graphic Decision Trees which help to trace logic.

• Optimization of displays is important because cluttered and confusing

displays encourage user resistance.

Chapter 3 - Knowledge-based Systems

55

Knowledge-based Support for Object-oriented Design

• Learning facilities will make it easier for the end-user.

• Mouse Support is important to some end-users.

• Natural Language Interface makes the use of an expert system easier

by helping with the communication.

• Sensitivity Analysis and Change Answers and Rerun makes working

with, and debugging the system, quicker.

(ii) Developer Interface Criteria

If the developer interface is good and easy to use, the developer will be more

productive and efficient. The following developer interface criteria are

important:

• Command Language and interpreters are features which facilitate

rapid prototyping, which is critical for expert system development.

• Documentation is critical for the developer.

• Tutorials which are good, may not be ignored.

• Editing and Debugging Tools such as

o Rule and Working-Memory Browsers which allow the developer

to view every link between rules,

o Tracing for observing the chain of events,

o Cross-Index Utility for, amongst others things, the creation of a

back-up when the code is modified, and

o Incremental Compilation are considered to be very important

because they speed up the development process.

• Exolanation Facilities such as

o How certain conclusions were made (reasoning path)

Chapter 3 - Knowledge-based Systems

56

Knowledge-based Support for Object-oriented Design

o What is the meaning of the question being asked (paraphrase)

and

o Why is that question being asked (relevance), gain the

developer's confidence and are very good debugging tools.

• Ability to Customize Explanations makes the system more

understandable.

• Graphics always enhances clarity.

• Mathematical Capabilities add an important feature in many

applications.

• Sample Knowledge Bases may minimize the developer's work.

• Code Generator may ease or eliminate many programming problems.

• Windows are usually very user-friendly. When adding

o Window Colors, Borders, and Sizes or a

o Menu System with

a Pop-Up Menus or

a Pull-Down Menus, an expert system become easier to use.

o Customizable Features where a developer may design custom

screens from a screen design toolkit.

• Rapid Prototyping is very important for demonstration purposes, for

example when needing management acceptance.

• Open Architecture enhances the portability of the system.

• Batch-Processing Facilities are a help for the developer.

• Novice and Expert Modes will help not to frustrate a novice or expert

developer.

• String Handling where steps may be combined by using shortcuts and

command macros will be very useful to the developer.

Chapter 3 - Knowledge-based Systems

57

Knowledge-based Support for Object-oriented Design

(iii) System Interface Criteria

The system interface criteria concentrate on the available hardware, certain

features of the implementation language, copy protection, batch processing, real­

time processing, and network support.

• The Hardware spectrum is very important in the sense of servicing a

big audience of end-users.

o Portability makes development on one machine and usage on

another machine possible.

o Support for Microcomputers introduces a broad spectrum of

end-users to such an expert system.

o Compatibility with standard computer environments is

important.

o Multi-processor Support and

o Multi-user Support also broadens the end-user spectrum.

o Access to Special Hardware is very convenient.

• Implementation Language must be powerful in the sense of

o Portability, which means expert systems must operate efficiently

within mainstream computer environments,

o Embeddabilitv refers to the ability of expert systems to be built

into conventional applications, thereby providing these

applications with the advantages of a knowledge-based system,

and

o Compatibility, when a newly developed expert system will

operate within the existing systems environment.

• Copy Protection entails protecting the source code before handing the

Chapter 3 · Knowledge-based Systems

58

Knowledge-based Support for Object-oriented Design

system to the end-users, and the capability of preventing the end-user

from accessing and damaging the knowledge base. Passwords,

encryption and read/write privileges are important.

• Batch Processing,

• Real-Time Processing and

• Network Support make working with a shell more productive.

(iv) Inference Engi.ne Criteria

The inference engine is a collection of programming routines which implement

one or more reasoning modes, search techniques, conflict resolution strategies,

uncertainty handling systems, tracing and error checking.

• Reasoning Mode consists of:

o Forward Chaining (data-driven), where the system begins with

known facts, trying to assert new facts.

o Backward Chaining (goal-driven), means the system starts with

a goal or hypothesis and tries to match that goal with the action

clauses.

o Bi-Directional Inferencing combines forward and backward

reasoning.

o Non-monotonic Reasoning is the process whereby facts may be

changed after they have been established. These systems may

deal with very dynamic problems involving rapid changes in

values in short periods of time.

• Truth Maintenance System is a way of keeping track of postulates and

their justifications developed during an inferencing process.

Chapter 3 - Knowledge-based Systems

59

Knowledge-based Support for Object-oriented Design

• Search Strategy takes various forms:

o Breadth First, when every item at a given level is evaluated

before proceeding to the next level.

o Depth First concentrates on evaluating only one item at a given

level before proceeding to the next level.

o Branch-And-Bound means generating complete reasoning paths

and keeping track of the shortest path found so far.

o Generate-And-Test

o Best First refers to moving forward from the node which seems

closest to the goal node.

o Hill Climbing is depth-first with a heuristic measure which

orders choices when branching points are reached.

• Find All Answers and

• Find Only One Answer are both important and necessary under

specific conditions.

• Conflict Resolution decides which rule should be activated whenever

there is a conflict, for example:

o Rule-Assigned Priority gives the developer complete control.

o Specificity points out exactly which rule should be applied.

o Recency chooses the rule because of the collection of facts

which have been established more recently than the facts used

by the other rules.

• Certainty Measurement is a method of dealing with uncertain or

incomplete user input and imprecise knowledge. The different

paradigms are:

o Bayes Theorem (Forsyth, 1989), which rests on the belief that

Chapter 3 - Knowledge-based Systems

60

Knowledge-based Support for Object-oriented Design

for everything, no matter how unlikely it is, there is a prior

probability that it could be true. It may be a very low

probability, in fact it may be zero, but it does not prevent us

from calculating as if there were a probability there.

o Certainty Factor Model (or MYCIN model)(Chabris, 1988)

(Waterman, 1986), where a certainty factor is associated with

each piece of data in a working memory (in the MYCIN expert

system) and with each conclusion it draws in its reasoning

process. The value of certainty factors ranges from -1.0,

representing absolute untruth of a proposal, to 1.0, representing

absolute truth or confidence. These certainty factors are chosen

arbitrarily by the expert himself.

o Dempster-Shafer Theory (Lucas & Van der Gaag, 1991), where

current evidence leads to multiple beliefs regarding the same

hypothesis. This theory combines the beliefs in order to

compute an overall measure of belief in the hypothesis.

o Fuzzy Set Theory (Ford, 1991) (Shinghal, 1992) (Turban, 1990)

is suitable for solving problems which involve entities defined by

vague terms such as "about".

o Inheritance refers to facts or rules previously tested to be valid.

o Certainty Threshold considers only outcomes which have more

than a certain percentage of certainty.

• Blackboard, where data may temporarily be stored.

• Recursion and

• Iteration in the inference engine make the engine more powerful.

• Fuzzy Sets enables the inference engine to react less precisely and

Chapter 3 - Knowledge-based Systems

61

Knowledge-based Support for Object-oriented Design

logically than usual.

• Reliability in the inference engine is very important.

(v) Knowledge Base Criteria

Knowledge base criteria concentrate on the knowledge engineering sub-system,

representation technique for the knowledge, inheritance, multiple instances,

ability to generate a decision tree and/or a set of rules demonstrating the expert's

decision process, and a few more which will also be discussed.

• Representation Techniques may be one, or a combination of the

following:

o Rules, in the form of a series of production rules, represent the

knowledge.

o Partitioned Rule Sets, where rules are partitioned according to

some criteria - for example, where all validation rules are

grouped in one set, and all verification rules are grouped in

another set.

o Meta-rules are rules which contain knowledge on how to

process standard rules. They provide an index to the rest of the

knowledge base.

o Decision Tables refer to structuring the knowledge in the form

of tables.

o Frames allow objects to be associated with collections of

features. Each feature is stored in a slot. Each frame is

composed of a set of slots related to a specific object.

o Scripts (or Schemata) represent knowledge regarding

Chapter 3 • Knowledge-based Systems

62

Knowledge-based Support for Object-oriented Design

accumulated events, taking place in familiar situations, in a

series of "slots". A script is composed of a series of scenes

which are, in turn, composed of a series of events.

o Semantic Networks represent objects as nodes which are

connected to other nodes by arcs. These networks represent

the relationship among objects.

o Formal Logic refers to "recasting" various knowledge

representations in terms of logic. This leads to a better

understanding of knowledge representation and logic which may

handle incompleteness and default reasoning (Turban, 1990).

• Induction is the capability of an environment to generate a decision

tree and/or a set of rules from a set of examples demonstrating the

expert's decision process.

• Inheritance, where one object inherits properties of other objects

higher up in the hierarchy. Inheritance may eliminate duplication and

redundancy in knowledge representation.

• Knowledge Engineering Sub-system, which orchestrates the following

activities: Knowledge acquisition, knowledge representation,

inferencing, and explanations and justifications (Turban, 1990).

• Multiple Instance, where two or more knowledge representation

schemata are used.

• Demons are procedures which are automatically activated by the

changing or accessing of values in the knowledge base (Turban, 1990).

• Case Management organizes case information, estimates case value,

and suggests tactics and strategies for negotiation and case settlement

in expert systems for law (Waterman, 1986).

Chapter 3 • Knowledge-based Systems

63

Knowledge-based Support for Object-oriented Design

• Capacity of the knowledge base is important.

(vi) Data Interface Criteria

Developers of expert systems often find it necessary to cross the boundaries of

the shell environment. A capability might be needed which is best implemented

somewhere else or which is not provided by the shell. For this reason the

following features are important:

• Access to 3GL and 4GL

• Linkage to Databases

• Access to Underlying Language

• Linkage to Special Purpose Software

o Linkage to Transaction Processing Environments

o Access to Lotus, DOS, etc.

(vii) Cost-Related Criteria

"The pricing of tools is confusing. Some less powerful products are priced high,

while some of the cheaper products are very credible." (Harmon, Maus &

Morrissey, 1988). The following are important cost-related criteria, but not

important enough, according to the relevant article, to be underlined:

• Upgrades

• Required Software/Hardware

• Conversion

• Personnel

• Vendor Technical Support

• Training Programs

Chapter 3 - Knowledge-based Systems

64

Knowledge-based Support for Object-oriented Design

• Installation

• Run-Time Licence

• Consulting Fees.

(viii) Vendor-Related Criteria

According to Holsapple and Whinston (1987), vendors with a continuing history

of introducing software modernization are more likely to offer a shell which is

close to the state of the art. Another positive indication is the vendor's track

record of enduring enhancements of their software products. The following

criteria are considered to be important.

• Maintenance

• Technical Support

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path.

3.6 Evaluation of Candidate Expert System Development Environment

A number of environments were evaluated, namely Kappa-PC, 1Leonardo,

2Nexpert Object, 3ART-IM, and 4EXSYS Professional. The evaluation was of

1 Leonardo is a registered trademark of Creative Logic.

2 Nexpert Object is a registered trademark of Neuron Data.

3 ART-IM is a registered trademark of Inference Corporation.

4 EXSYS Professional is a registered trademark of Exsys, Inc.

Chapter 3 - Knowledge-based Systems

65

Knowledge-based Support for Object-oriented Design

necessity, based on literature and demonstrations of the vendors. A systematic

process (Stylianou et al., 1992) was followed, without hands-on experience of the

environments. The results are summarized in Appendices A, B, C, D and E

respectively and should be seen in the context of the emphasis placed on

particular criteria by the evaluation process followed. The Kappa-PC system was

chosen based on the summarized rating of 56. Other scores were Leonardo (53),

Nexpert Object (15), ART-IM (28), and EXSYS Professional (26). After

personally working with Kappa-PC the evaluation for Kappa-PC was extended,

for the purposes of this investigation. In this section the revised results,

according to the author, are presented.

(i) End-User Interface Criteria

• Saved Cases Indirect

• Explanation Facilities

o Reasoning Path· How Graph YES

o What - Paraphrases

o Why • Relevances

• Documentation

•Tutorial

•Windows

Indirect

Indirect

YES

YES

o Window Colors, Borders, Sizes YES

o Menu System

c Pop-Up Menus YES

c Pull-Down Menus YES

o Customizable Features YES

•Speech 1/0 Indirect

• Accepts Unknown as an Answer YES

Must program capability

Program own explanation

facility and directly reference

from rules or monitors

As above ·plus use meta-rules

to establish relevant rule sets

Using a 3rd party product e.g.

Dynamic Link Library (DLL)

All AskValue and

Chapter 3 · Knowledge-based Systems

66

Knowledge-based Support for Object-oriented Design

PostlnputForms allow user to

enter Unknown ie. NULL

• Context-Sensitive Help Indirect Using Windows own help

system and a simple DLL call

• Display Manager

o Graphic Results YES

o Graphic Decision Tree YES

•Optimization YES

•Learning YES Help systems for the user

• Mouse Support YES

• Natural Language Interface Indirect Using a 3rd party product e.g.

DLL interface

• Sensitivity Analysis or Change Answers

and Rerun YES The inference engine may be

rerun without resetting all user

input values except those one

wishes to change

(ii) Developer Interface Criteria

• Command Language/interpreter YES

• Documentation YES

•Tutorial YES

• Editing/Debugging Tools

o Rule/Working-Memo!)'. Browser YES

o Tracing YES

o Cross-Index Utility NO

o Incremental Compilation NO But it may compile any part of

the application to Cat any time

and re-integrate as a DLL

• Explanation Facility

o How (Reasoning Path) YES

o What (Paraphrase) Indirect See previous comment

Chapter 3 - Knowledge-based Systems

67

Knowledge-based Support for Object-oriented Design

o Why (Relevance)

• Ability to Customize Explanations

•Graphics

• Mathematical Capabilities

• Sample Knowledi:e Bases

•Code Generator

•Windows

Indirect

YES

YES

YES

YES

YES

o Window Colors, Borders, Sizes YES

o Menu System

c Pop-Up Menus YES

c Pull-Down Menus YES

o Customizable Features YES

• Rapid Prototyping YES

• Open Architecture YES

• Batch Processing Facilities YES

See previous comment

It is relatively straightforward to

code one's own customised

explanation facility - as above

The KAL language is a

comprehensive general-purpose

language supporting a wide

range of maths functions

Generates C code from KAL

Kappa-PC is an ideal tool for

rapid prototyping. It supports

all the necessary elements e.g.

rich graphical tools, interpreter,

dynamic object engine, GUI

builder, etc.

Kappa-PC supports a C

Application Programming

Interface (API), DLL, Dynamic

Data Exchange (DDE), and

SQL interface as well as

generating C. It is extremely

open and easy to integrate and

embeds with other applications

Chapter 3 - Knowledge-based Systems

68

Knowledge-based Support for Object-oriented Design

• Novice/Expert Modes

• String Handling

(iii) Sysklm lnklrface CriUJria

•Hardware

o Portability

o Support for Microcomputers

o Compatibility

NO

YES

Limited

YES

YES

o Multi-processor Support NO

o Multi-user Support NO

o Access to Special Hardware

• Implementation Language

o Portability

o Embeddability

o Compatibility

• Copy Protection

Indirect

NO

YES

YES

YES

KAL supports full string

manipulation e.g. SubString,

FindSubString,StringLength, #,

etc.

Kappa-PC is fully compatible

with other applications running

under MS-Windows in terms of

look-and-feel and the DDE and

DLL interfaces

Any real-time hardware card or

specialised control card may be

accessed via the C API

Once compiled to C or directly

via DOE from another

application

Kappa-PC is fully compauble

with other applications running

under MS-Windows in terms of

look-and-feel and the DDE and

DLL interfaces

Source code and knowledge

bases may be completely

Chapter 3 - Knowledge-based Systems

69

Knowledge-based Support for Object-oriented Design

• Batch Processing

• Real-Time Processing

• Network Support

(iv) Inference Engine Criteria

• Reasoning Mode

YES

YES

YES

o Forward Chaining YES

o Backward Chaining YES

o Bi-Directional Inferencing YES

o Non-monotonic Reasoning Indirect

• Truth Maintenance System Indirect

• Search Strategy

o Breadth First YES

o Depth First YES

o Branch-And-Bound Indirect

o Generate And Test Indirect

o Best First YES

o Hill Climbing Indirect

• Find All Answers YES

• Find Only One Answer YES

• Conflict Resolution YES

o Rule-Assigned PrioriJ;y YES

protected by compiling them

into C - password capability is

also possible on all Kappa-PC

edit boxes

An appropriate algorithm

would need to be coded in

KAL

A Truth Maintenance System

(TMS) could be coded in KAL

but its performance would not

be optimized, which is critical

for TMSs

Can be coded in KAL

Can be coded in KAL

Can be coded in KAL

Chapter 3 - Knowledge-based Systems

70

Knowledge-based Support for Object-oriented Design

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem

o Certain!l'. Factor Model

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

•Iteration

YES

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

YES

YES

The "SELECTIVE" strategy

Recency would need to be

added to the domain object

model and accessed from within

rules

Generally Kappa-PC does not

directly support any particular

methods for uncertainty

handling • instead the emphasis

is on the developer to code

KAL functions to combine

uncertainties or possibilities

according to some given

algorithm, e.g. Bayes, and to

call these directly from within

rules and methods

See above note

See above note

See above note

See above note

See above note

See above note

The domain object model may

be viewed as a blackboard and

event monitors linked to these

objects may trigger particular

rule sets or methods to change

the state of the "blackboard"

KAL is a fully recursive

language

KAL supports full iteration e.g.

For x From 1 To 10 Do

Chapter 3 · Knowledge-based Systems

71

Knowledge-based Support for Object-oriented Design

•Fuzzy Sets

• Reliability

(v) Know"/edge Base Criteria

• Representation Technique

o Rules

o Partitioned Rule Sets

o Meta-rules

o Decision Tables

o Frames

o Scripts/Schemata

o Semantic Networks

o Formal Logic

•Induction

Indirect

YES

YES

YES

YES

Indirect

YES

Indirect

Indirect

NO

Indirect

• Inheritance YES

• Knowledge Engineering Sub-system NO

• Multiple Instance

•Demons

• Case Management

Indirect

YES

NO

Fuzzy Sets may be programmed

in KAL as object classes

It is possible to define rules

which control the inference

strategy e.g. by changing rule

sets, priorities, etc. - these are

by definition meta-rules

It is possible to code a decision

table object in KAL

The objects in KAL are based

on Frames - this is where the

term "slot" originates from

These may be coded as object

classes with their appropriate

behaviors

May be coded as an object

network using KAL

Algorithms such as ID3 may be

coded using KAL

"Views" may be implemented

using KAL

KAL's "monitors" are demons

Chapter 3 · Knowledge-based Systems

72

Knowledge-based Support for Object-oriented Design

•Capacity Large

(vi) Data. Inrerface Crit.eria

• Access to 3GL and 4GL YES

•Linkage to Databases YES

•Access to Under1ying Language YES

• Linkage to Special Purpose Software

o Linkage to Transaction Processing

Environments YES

o Access to Lotus, DOS, etc. YES

(vii) Cost-Rekzred Cril£ria

•Upgrades

• Required Software/Hardware

• Conversion

•Personnel

•Vendor Technical Support

• Training Programs

• Installation

• Run-Time Licence

• Consulting Fees

YES

Kappa-PC supports up to

500,000 objects and rules

C is a 3GL and Kappa supports

a CAPI

Using Kappa-PC

CommManager or other

suitable 3rd party software

Maintenance and upgrades for

one year: 15% of purchase

price

The minimum needed for MS­

Windows ie. 386 with at least

2Mb RAM and 5Mb spare disk

capacity

Depends on existing skill base

and products

Depends on needs

Depends on needs

Available and customizable

Depends on needs

Highly volume-dependent

Depends on needs

Chapter 3 - Knowledge-based Systems

(viii)

73

Knowledge-based Support for Object-oriented Design

Vendor-RefaJed Cril£ria

• Maintenance

• Technical Support

• Training Courses

• Professional Application Development

Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path

YES

YES

YES

YES

YES

YES

Limited To Kappa (Unix, Windows N'1)

and OMW (Object

Management Workbench)

Kappa-PC was found to be a truly object-oriented development environment. Its

interactive, graphical development environment was a real pleasure to work with

and its high-level application development language is very powerful. The

Kappa-PC expert system tools were of great importance for this investigation.

They were used extensively during the demonstration of concept and found to be

sound and forceful.

3. 7 Summary and Conclusions

Expert Systems commenced from work in Artificial Intelligence laboratories.

They are considered to be one of the most successful branches of Artificial

Intelligence. Expert systems contain a high density of problem-solving knowledge

in a particular application domain. This knowledge allows expert systems to

"perform" like the human expert from which the knowledge was acquired.

Chapter 3 - Knowledge-based Systems

74

Knowledge-based Support for Object-oriented Design

In a knowledge-based system the knowledge about the problem domain is

separated from the general knowledge as to how to solve the problem or how to

interact with the user.

The structure of an expert system consists of a user interface, a knowledge base

and an inference engine. The main players in an expert system are the

knowledge engineer, the domain expert, the end-user and an expert system

building tool. The basic characteristics of an expert system are expertise,

symbolic reasoning, depth and self-knowledge.

Knowledge acquisition is the accumulation and transformation of knowledge.

The knowledge may be represented using representation schemata like frames,

semantic nets and rule sets. Accessing and applying the domain knowledge is

called "inferencing".

The selection criteria for an expert system environment consist of end-user

interface criteria, developer interface criteria, system interface criteria, inference

engine criteria, knowledge base criteria, data interface criteria, cost-related

criteria, and vendor-related criteria.

Kappa-PC was evaluated against these criteria and found to be the appropriate

environment for this research since its development method is truly object­

oriented, and it uses extensive rule-based reasoning.

The conclusion that was made after discussing expert systems in general and

Kappa-PC in particular is that expert knowledge about object-oriented design,

Chapter 3 - Knowledge-based Systems

75

Knowledge-based Support for Object-oriented Design

captured by means of an expert system, may be applied when developing a

system. By supporting the Design Cycle in such a way, it is possible to guarantee

a design of high quality. The expert system guides the following of a sound

design methodology, the "pitfalls" are monitored by an "expert", and validation

and verification are assisted by an "expert".

Chapter 3 - Knowledge-based Systems

Knowledge-based Support for Object-oriented Design

CHAPTER4

OMT - An Object-oriented Design Methodology

4.1 Introduction

In Chapter 3, knowledge-based systems were addressed because knowledge-based

support for the design process is the point of departure. This support must be

within the framework of a thorough and trustworthy object-oriented methodology.

The methodology which was chosen for this research is Rumbaugh's Object­

Modeling Technique (OMT) (Rumbaugh et al., 1991). In Chapter 4 the

Chapter 4 - OMT - An Object-oriented Design Methodology

77

Knowledge-based Support for Object-oriented Design

modeling perspectives of the OMT are reviewed and the OMT method for design

is described. The organization of a design knowledge base is proposed, followed

by the conceptual model of a proposed solution of the problem under

investigation.

4.2 Modeling

The understanding of the requirements of a real-world problem, before building

a solution for it, is crucial for the effectiveness and efficiency of the solution.

Building a model of the function of a proposed solution to a real-time problem,

makes the understanding and explanation of that solution easier. A model is an

abstraction of the presented system for the purpose of understanding it before

building it (Rumbaugh et al., 1991). Abstraction enables a person to deal with

complexity because it captures those points which are important for some

purpose and suppresses those points which are unimportant. The developer must

abstract different views of the system, build models according to these views,

verify that the models satisfy the user requirements and, step-by-step, add

technicalities to transform the models into an implementation.

Models of information systems may be conceptualised in terms of various levels

of abstraction (Du Plessis, 1986; Pocock, 1991; Klint, 1993; Harmsen &

Brinkkemper, 1993). Each lower level is an instance of the level above it giving

definition to the model primitives on each level. The meta model is a high level

of abstraction and denotes modeling of a model-object in terms of primary

notions called meta primitives. The model primitives at the meta model level are

Chapter 4 · OMT - An Object-oriented Design Methodology

78

Knowledge-based Support for Object-oriented Design

the primary notions required to construct a conceptual model of a real-world

problem domain by means of a particular methodology and development

environment (Du Plessis, 1994).

4.3 The Object-Modeling Technique

The OMT methodology models a system from three different, but related,

viewpoints. The object model represents the static and structural perspectives of

a system (the "data" perspective). The dynamic model represents the temporal

and behavioral perspectives of a system (the "control" perspective). The

functional model represents the transformational perspectives of a system (the

"function" perspective). All three perspectives are incorporated in a typical

software procedure, for example a software procedure uses data structures

(object model), it sequences operations in time (dynamic model) and it

transforms values (functional model). Each model contains references to entities

in other models. For example, events (dynamic model) become operations on

objects (object model), but are more fully expanded as functions in the functional

model. The functional model specifies what happens, the dynamic model

specifies when it happens and the object model specifies what it happens to.

The meta models, with their primitives (as defined by Rumbaugh, et al. (1991)),

for the object model, the dynamic model and the functional model are

represented in Exhibits 4.1, 4.2 and 4.3 respectively.

Chapter 4 - OMT • An Object-oriented Design Methodology

79

Knowledge-based Support for Object-oriented Design

4.3.1 Object Model

The structure of objects in a system is described by the object model. The

structure of objects encompasses their identity, their relationship to other objects,

their attributes and their operations. The construction of an object model has,

as its goal, the capturing of those concepts from the real world which are

important to an application. An Object diagram is the graphical representation

scheme of the object model. Object diagrams contain a number of object classes.

The abbreviation class will be used instead of object class. Classes are arranged

into hierarchies which share common structure and behavior. A class describes

a group of objects with similar properties (attributes), common behavior

(operations), common relationships to other objects and common semantics. An

object is an instance of a class. For example, Person is a class. The person

Johan Palmer is an object (an instance) of the class. An attribute is the data

value held by the objects in a class. Name and age are attributes. Each attribute

has a value for each object instance. For example, attribute age has the value 30

in object Johan Palmer and the person Johan Palmer is an object, whose name

attribute has the value 'Johan Palmer' (the string). Figure 4.1 illustrates classes,

objects and attributes.

An operation is a function or transformation which may be applied to or by

objects in a class. Draw is an operation on class Circle. All objects in a class

share the same operations. The same operation may apply to different classes,

for example the operation Draw may also apply to class Triangle. This is called

"polymorphism", where the same operation behaves differently on different

classes. A method is the specific implementation of an operation for a class. A

Chapter 4 • OMT - An Object-oriented Design Methodology

80

Knowledge-based Support for Object-oriented Design

• '

Cb11 with Attribate1 Objects with Valaes

Figure 4.1 Attributes and Values (Rumbaugh et al., 1991)

different method is implemented to Draw a figure from class Circle than from class

Triangle. A link is a physical or conceptual (theoretical) connection between object

instances. For example, Johan Palmer Lives-in Pretoria city. A link is an instance of an

association. An association describes a group of links with common structure and

common semantics. Figure 4.2 illustrates links and associations.

(' ountr~

r.au1c:

Has-ca Ual
City

name

Figure 4.2 One-to-one association and links (Rumbaugh et al., 1991)

} Cla11

diagram

Instance
diagram

Chapter 4 - OMT - An Object-oriented Design Methodology

81

Knowledge-based Support for Object-oriented Design

The modeling primitives for the object model are presented in Table 4.1.

Table 4.1 Modeling primitives for the Object Model

Chapter 4 - OMT - An Object-oriented Design Methodology

82

Knowledge-based Support for Object-oriented Design

These modeling primitives are used to compile the Meta Object Model of Exhibit

4.1.

4.3.2 Dynamic Model

The dynamic model describes those perspectives of a system concerned with time

and the sequencing of operations. The dynamic model captures control. Control

is the perspective of a system which describes the sequences of operations which

occur, without regard for what the operations do, what they operate on, or how

they are implemented. A State Diagram is the graphical representation scheme

of the dynamic model. Each state diagram shows the state and event sequences

permitted in a system for one class of objects. The values of the attributes and

links of an object at a particular time, are called its state. For example, the state

of the engine of a car is either active or inactive, depending on whether its

ignition has been switched on or not. The interval between two events received

by an object corresponds to a state. An individual stimulus from one object to

another is an event. An event is something which happens at a point in time,

such as Flight SA23 departs from Jan Smuts. An event has no duration. The state

of the object receiving an event will determine the response to an event. It may

include a change of state or the sending of another event to the original sender

or to a third object. The pattern of events, states and state transitions for a given

class may be abstracted and represented as a state diagram. The dynamic model

contains multiple state diagrams, one state diagram for each class with important

dynamic behavior. The dynamic model shows the pattern of activity for an entire

system. Actions in the state diagrams correspond to functions from the

functional model.

Chapter 4 - OMT - An Object-oriented Design Methodology

83

Knowledge-based Support for Object-oriented Design

The dynamic model specifies allowable sequences of changes to objects from the object

model. States are equivalence classes of attribute and link values for the object. Events

in a state diagram become operations on objects in the object model. Figure 4. 3

illustrates a state diagram for a phone line.

on-hook

Figure 4.3 State diagram for phone line (Rumbaugh et al., 1991)

on-hook

message
done

The modeling primitives for the dynamic model may be summarized in the form shown

in Table 4.2.

Chapter 4 - OMT - An Object-oriented Design Methodology

84

Knowledge-based Support for Object-oriented Design

Table 4.2 Modeling primitives for the Dynamic Model

These modeling primitives are used to compile the Meta Dynamic Model of

Exhibit 4.2.

4.3.3 Functional Model

The functional model describes those perspectives of a system concerned with

transformations of values (computations within a system). The functional model

Chapter 4 - OMT - An Object-oriented Design Methodology

85

Knowledge-based Support for Object-oriented Design

captures what a system does, without considering how or when it is done. The

graphical notation for the functional model is the data flow diagram (DFD). Data

flow diagrams show the flow of values from external inputs, through operations

and internal data stores, to external outputs. A data flow diagram contains

processes which transform data, data flows which move data, actor objects which

produce and consume data, and data store objects which store data passively.

Figure 4.4 shows a data flow diagram for the display of an icon on a windowing

system (Rumbaugh et al., 1991). The icon name and location are inputs to the

diagram from an unspecified source. The icon is expanded into vectors, using the

icon definition from the Jeon definitions data store. The vectors are clipped to

the size of the window and the location of the window on the screen gives the

vector an offset to be able to obtain vectors in the screen coordinate system.

Next the vectors are converted to pixel operations and sent to the screen buffer

for display. The sequence of transformations performed is shown by the data

flow diagram, as well as the external values and objects which affect the

computation.

Each process in the functional model is implemented by a method on some object

in the object model. Actors in the functional model are explicit objects in the

object model. Data stores in the functional model are also objects in the object

model. Data flows in the functional model are values in the object model.

A process in the functional model is invoked as an action in the dynamic model.

The dynamic model for an actor object specifies when it acts. Data stores are

passive objects which respond to queries and updates, and data flows are values

and pure values have no state and no dynamic model.

Chapter 4 - OMT - An Object-oriented Design Methodology

icon name

data flows

location

Knowledge-based Support for Object-oriented Design

data store

Icon
definitions

process

application
vector
list

data flow

actor

actor

process

Figure 4.4 Data flow diagram for windowed graphics display (Rwnbaugh et al., 1991)

The modeling primitives for the functional model are depicted in Table 4.3.

Table 4.3 Modeling primitives for the Functional Model

Chapter 4 - OMT - An Object-oriented Design Methodology

86

87

Knowledge-based Support for Object-oriented Design

These modeling primitives are used to compile the Meta Functional Model of Exhibit

4.3.

4.4 Model Summary

The relationships between the modeling primitives of the three models are shown in

Figure 4.5.

Dynamic model

event/action

Functional model

data flow

Object model

Figure 4.5 The relationships between the modeling primitives

Relative to the functional model:

• The object model explains the structure of the actors, data stores and

data flows in the functional model. The operations in the

Chapter 4 - OMT - An Object-oriented Design Methodology

88

Knowledge-based Support for Object-oriented Design

object model correspond to the functions performed in the

functional model.

• The dynamic model explains the sequence in which processes are

performed.

Relative to the object model:

• The functional model explains the operations on the classes and the

arguments of each operation. It therefore explains the supplier­

client relationship among classes.

• The dynamic model explains the states of each object and the

operations which are performed as it receives events and

changes state.

Relative to the dynamic model:

• The functional model explains the definitions of the leaf actions

and activities which are undefined with the dynamic model.

• The object model explains what changes state and undergoes

operations.

4.5 The OMT Methodology for Design

The Design Cycle shown in Figure 2.1 as a task on the Universal Level, is

detailed in Figure 4.6 by the author on the Worldly Level in DesignNet notation.

The Worldly Level depicts the resources, the main tasks and deliverables, as well

as the status of each design task for middle management, of a development

project. As was explained in Chapter 2, the DesignNet notation is a structured,

PetriNet based notation and was interpreted for object-oriented development

Chapter 4 - OMT - An Object-oriented Design Methodology

89

Knowledge-based Support for Object-oriented Design

according to the spiral model by Van der Walt (1994). The design tasks in Figure 4.6

are System Design, Analyze and Evaluate Design Alternatives, Object Design and

Implementation Planning. The proposed knowledge-based support which a design

expert may offer are formulated for the design steps within each design task.

Develop­
ment Team

Systom Dclip.

Figure 4.6 The Worldly Level of the Design Cycle

l:apJcmoatalion
Plauiag

The design process starts with the deliverables of the Analysis Cycle as seen in the

Analysis Document. These are:

i) a Problem Statement~

ii) an Object Model (= object model diagram + data dictionary)

representing the static structure of the real-world problem. The object

Chapter 4 - OMT - An Object-oriented Design Methodology

90

Knowledge-based Support for Object-oriented Design

model diagram is supplemented by an abbreviated textual description

including the purpose and scope of each entity;

iii) a Dynamic Model (= state diagrams + global event flow diagram)

representing the behavior of each active object of the system in the form

of a set of state diagrams;

iv) a Functional Model (=data flow diagrams+ constraints) representing the

functional derivation of values in the form of a levelled set of data flow

diagrams.

System Design, as defined by the OMT Methodology, is redefined by the author

and consists of a System Design task and an Analyze and Evaluate Design

Alternatives task. During System Design a high-level strategy for solving the

problem and building a solution is developed. Knowledge regarding the design

method, the steps of the method, the representation schemata used and the

deliverables of the design process is needed. The overall structure, style and

organization of the system, which is the system architecture, is decided upon.

The following steps are involved:

i) Organize the system into subsystems.

ii) Identify concurrency inherent in the problem.

iii) Allocate subsystems into processors and tasks.

iv) Choose an approach to management of data stores.

v) Handle access to global resources.

vi) Choose the implementation of control in software.

vii) Handle boundary conditions.

viii) Set trade-off priorities.

The first five steps belong to the System Design task and the last three steps

Chapter 4 - OMT - An Object-oriented Design Methodology

91

Knowledge-based Support for Object-oriented Design

belong to the Analyze and Evaluate Design Alternatives task. Each of these

steps are considered next.

4.5.1 System Design

The five steps of the System Design task and the three steps of the Analyze and

Evaluate Design Alternatives task are described next. Together these eight steps

form System Design according to the OMT Methodology.

Step 1 - Organize the system into subsystems (Step 1 of the System Design task)

Divide the system into a small number of members (20 is probably too many).

Each major member of a system is called a subsystem. Each subsystem encircles

perspectives of the system which share some common grounds, for example the

same physical location, similar functionality, or execution on the same kind of

hardware. A subsystem is a bundle of classes, associations, operations, events,

and constraints which have a well-defined and small interface (low coupling) with

other subsystems. Each subsystem may in turn be divided into smaller

subsystems of its own. The lowest level subsystems are called modules. A

subsystem is usually identified by the services it provides, for example 1/0

processing, drawing pictures, or performing arithmetic.

The relationship between two subsystems may be of the form: Client-supplier or

peer-to-peer. The client-supplier relationship refers to a relationship where the

client calls on the supplier to perform some service and to reply with a result.

In this relationship the client must know the interfaces of the supplier. The

supplier, however, does not have to know the interfaces of its clients because the

Chapter 4 • OMT • An Object-oriented Design Methodology

92

Knowledge-based Support for Object-oriented Design

clients initiate the interactions using the supplier's interface.

In a peer-to-peer relationship each of the suppliers may call on the others. This

is a more complicated interaction because the subsystems must know each other's

interfaces. This kind of communication is also not necessarily followed by an

immediate response. If one does have a choice, go for the supplier-client

relationship because it is easier to build, understand and change a one-way

interaction than a two-way interaction.

The breakdown of systems into subsystems may be ordered as an arrangement

of horizontal layers or vertical partitions. Each layer defines its own theoretical

environment, which may differ completely from other layers. Each subsystem

recognize the layers below it, but has no information about the layers above it.

A supplier-client relationship exists between lower layers, which are providers of

services, and upper layers which are users of services. The layered architecture

may be subdivided into two forms, namely closed and opened. When each layer

is built only in terms of the immediate lower layer, it is called a closed

architecture. Dependencies between layers are reduced and because a layer's

interface only affects the next layer, changes are made easily. When a layer may

use features of any lower layer to any depth, it is called an open architecture.

The redefinition of operations at each level is reduced, which results in a more

efficient and compact code. Open architecture does not comply with the

principle of information-hiding. Changes to a subsystem may affect any higher

subsystem. When choosing between the two kinds of architectures, the system

designer must weigh up the relative value of efficiency and modularity. When a

system is built in layers, it may be ported to other hardware/software systems by

Chapter 4 • OMT - An Object-oriented Design Methodology

93

Knowledge-based Support for Object-oriented Design

rewriting one layer. For this reason it is a good practice to introduce at least one

layer of abstraction between the application and any services provided by the

operating system or hardware. For example, define a layer of interface classes

providing logical services (for example 1/0 services) and map them onto the

concrete services which are system-dependent (for example 1/0 services for

UNIX).

Partitions divide a system vertically into several low coupled subsystems. Each

of these subsystems provides one kind of service. When subsystems have some

knowledge of each other, but this knowledge is not deep (for example, virtual

memory management and a file system in a computer operating system), one doesn't

need to create major design dependencies, which means that vertical partitions

may be used.

This step requires certain specific skills and types of knowledge:

• The ability to structure the system into subsystems by following a

normative approach based on a specific knowledge of a structuring

criterion. The decision to structure the system into subsystems is

made by analyzing the object model according to the following

criteria:

o Identify object classes which execute on the same kind of

hardware.

o Identify object classes which execute in the same physical

location.

o Identify object classes with similar functionality.

• Knowledge of the semantics and syntax of the representation

Chapter 4 - OMT - An Object-oriented Design Methodology

94

Knowledge-based Support for Object-oriented Design

schemata of the methodology used to develop the information system,

such as the class and object diagrams of the object model as illustrated

in Exhibit 4.4; or the event trace diagram and the state diagram of the

dynamic model as illustrated in Exhibit 4.5; or the data flow diagram of

the functional model as illustrated in Exhibit 4. 6.

• Knowledge of the application domain (e.g. banking), and domain of

discourse (e.g. an ATM system).

The knowledge and skills for this structuring step, as well as the other steps of design,

are used to organize the knowledge base (explained in Section 4.6).

Experience has indicated that a combination of layered partitions and partitioned layers

may be used in dividing a system into subsystems. Figure 4. 7 shows a block diagram

of a typical application.

appUeatioa paeka1•

window graphies

user simulatioa
dialo1 sereen grapllies package
control

phtl grapbies

oper•ting 1y1toa

co• puter llardwaro

Figure 4.7 Block diagram ofa typical application (Rumbaugh et al., 1991)

Chapter 4 - OMT - An Object-oriented Design Methodology

95

Knowledge-based Support for Object-oriented Design

Step 2 - Identify concurrency inherent in the problem (Step 2 of the System Design

task)

At this stage the system designer must identify which objects must be active

concurrently and which objects have activity that is mutually exclusive. Objects

which have activity that is mutually exclusive, may be gathered together in a

single thread of control or task. A thread of control is a path through a set of

state diagrams on which only a single object at a time is active. When objects

cannot be active together, they may be implemented on a single processor.

When two objects receive events at the same time, without interacting, they are

inherently concu"ent. If the events are unsynchronized, the objects cannot be

gathered onto a single thread of control. Two subsystems which are inherently

concurrent need not necessarily be implemented as separate hardware units.

Logical concurrency in a uniprocessor may be simulated with hardware interrupts,

operating systems and tasking mechanisms.

Identifying concurrency is done on the dynamic model. Examining state diagrams

of individual objects as well as the exchange of events amongst them, may cause

objects to be gathered together onto a single thread of control.

A thread is active within a state diagram (of an individual object) until an object

sends an event to another object and waits for another event. The thread

proceeds to the receiver of the event until it eventually returns to the original

object. The thread splits if the object sends an event and continues executing.

On each thread of control, only a single object at a time is active. Threads of

control are implemented as tasks in computer systems.

Chapter 4 - OMT - An Object-oriented Design Methodology

96

Knowledge-based Support for Object-oriented Design

The following types of knowledge are required:

• An interpretation of the constraints as specified in the

requirements statement, and the resulting interdependence of

objects.

• An interpretation of the arrival of events (as seen on an event

trace diagram depicted in Exhibit 4.5) at objects and the resulting

actions, i.e. whether or not such objects interact. If they do not

interact, the objects are inherently concurrent.

• An analysis of the thread of control (on the path through a set of

state diagrams on which only a single object at a time is active).

Exhibit 4.5 shows a meta model for a state diagram.

Step 3 - Allocate subsystems to processors and tasks (Step 3 of the System Design

task)

The system designer must allocate each concurrent subsystem to a hardware unit.

The hardware unit may be either a general purpose processor or a specialized

functional unit. To be able to do this allocation the system designer must:

• Estimate performance needs and the resources needed to satisfy them.

When needing more performance than that which a single CPU

may provide, multiple processors or hardware functional units may

be used Estimating the required CPU processing power means

computing the steady state load as the product of the number of

transactions per second and the time required to process a transaction. The

estimate should be increased to allow for an acceptable rate of

failure due to insufficient resources.

• Choose hardware or software implementation for subsystems. Object-

Chapter 4 - OMT - An Object-oriented Design Methodology

97

Knowledge-based Support for Object-oriented Design

orientedness makes its possible to see each hardware device as an

object which operates concurrently with other objects which, in this

case, may be other devices or software. The decision on which

subsystems must be implemented in hardware and which in

software must now be made by the system designer. For example,

it is easier to buy a floating point chip than to implement floating

point in software.

• Allocating tasks to processors to satisfy performance needs and

minimize inter-processor communication. Tasks for software

subsystems are assigned to processors because:

o Certain tasks are required at specific physical locations, for

example when a workstation needs its own operating system

to enable operation when the inter-processor network is

down.

o Response time or information flow rate exceeds the

available communication band-width between a task and a

piece of hardware. For example, high-performance

graphics devices have a high internal data generation rate.

These devices require tightly-coupled controllers.

o Computation rates are too high for a single processor. To

minimize computation costs, subsystems which interact the

most should be assigned to the same processor while

independent subsystems are assigned to separate processors.

• Determine the connectivity of the physical units which implement the

subsystems. At this stage the kinds and relative numbers of the

Chapter 4 - OMT - An Object-oriented Design Methodology

98

Knowledge-based Support for Object-oriented Design

physical units have been determined The system designer must

now choose the arrangement and form of the connections among

the physical units. Make the following decisions:

o Choose the topology of connecting the physical units.

o Choose the topology of repeated units, for example when

several copies of a particular kind of unit are included for

performance reasons.

o Choose the form of the connection channels and the

communication protocols.

This step may be supported by the following "knowledge-based guidance":

• Estimate the required CPU processing power.

• Identify which subsystems will be implemented in hardware and

which in software.

• Allocate the tasks for various software subsystems to processors.

• Determine the arrangement and form of the connections among

the physical units.

Step 4 - Choose an approach for management of data stores (Step 4 of the System

Design task)

The separation points of subsystems within an architecture may be provided by

internal and external data stores. The general implementation of internal data

stores consists of memory data structures and the general implementation of

external data stores consists of files and/or databases. For example, an

accounting system may use a database and files to connect subsystems. Files are

a cheap, simple and permanent form of data store. Databases provide a higher

Chapter 4 - OMT - An Object-oriented Design Methodology

99

Knowledge-based Support for Object-oriented Design

level of abstraction than files but they are more complex and more expensive

than files.

This step may be supported by the following "knowledge-based guidance":

• Identify the internal and external data stores.

Step 5 - Handle access to g/,obal resources (Step 5 of the System Design task)

Global resources must be identified and the system designer must also determine

mechanisms for controlling access to them. The following are examples of global

resources: Physical units, such as processors, tape drives and communication

satellites; space, such as disk space, a workstation screen and the buttons on a

mouse; logical names, such as object IDs, filenames and class names; and access

to shared data, such as databases. A physical object may control itself by

establishing a protocol for obtaining access within a concurrent system. A logical

entity, for example filenames and databases, has the danger of conflicting access

in a shared environment. This happens for example, when independent tasks

simultaneously use the same filename. In this case each global resource must be

owned by a "guardian object" which controls access to it. A "guardian object"

may control more than one resource. The purpose of "guardian objects" is to

place locks on subsets of a resource; serialize all access to a resource; and

partition global resources into separate subsets which are managed at a lower

level.

This step may be supported by the following "knowledge-based guidance":

• Identify global resources and determine mechanisms for controlling

access to them.

Chapter 4 - OMT ·An Object-oriented Design Methodology

100

Knowledge-based Support for Object-oriented Design

Step 6 - Choose the implementation of control in software (Step 1 of the Analyze and

Evaluate Design Alternatives task)

In a software system there are two kinds of control flow, namely external control

and internal control. The flow of externally visible events among the objects in

the system is called the external control. The three kinds of control for external

events are procedure-driven sequential, event-driven sequential, and concurrent

control. Procedure-driven sequential control refers to procedures issuing requests

for external input, waiting for it, and when input arrives, control proceeding

within the procedure which made the call. Event-driven sequential control occurs

when control lives within a dispatcher or monitor provided by the language,

subsystem, or operating system. Application procedures are now joined to events

and are called by the dispatcher when the matching events occur. In a concurrent

system, control lives concurrently in several independent objects, where each is

a separate task.

The flow of control within a process is internal control. The three kinds of

control flow which are used are procedure calls, quasi-concurrent inter-task calls,

and concurrent inter-task calls. Quasi-concurrent inter-task calls, for example co­

routines and lightweight processes, are programming facilities in which multiple

address spaces or call stacks exist but in which only a single thread of control

may be active at one time.

This step may be supported by the following "knowledge-based guidance":

• Choose a single control style for external events and control within

a process.

Chapter 4 - OMT - An Object-oriented Design Methodology

101

Knowledge-based Support for Object-oriented Design

Step 7 - Handle boundary conditions (Step 2 of the Analyze and Evaluate Design

Alternatives task)

When talking about boundary conditions, the following must be addressed:

Initialization, termination and failure. When the system is changed from a passive

initial state to a supportive steady state condition, it is called initialization.

Termination is the opposite of initialization, and is also simpler. Many internal

objects may simply be abandoned and all the external resources which the task

had reserved, must be released. Failure is the unplanned termination of a

system. The ideal is to plan for a controlled exit. This means leaving the

remaining environment as orderly and tidy as possible and logging or printing as

much information about the failure as possible before terminating.

This step may be supported by the following "knowledge-based guidance":

• Verify that initialization will be handled.

• Verify that termination will be handled.

• Verify that failure will be handled.

Step 8 - Set trade-off priorities (Step 3 of the Analyze and Evaluate Design

A/,tematives task)

It is the work of the system designer to set priorities which will be used to guide

trade-offs during the rest of the design. When desirable but incompatible goals

are the issue, it is the system designer who has to set the priorities. For example,

we need the system to be faster, for which we need extra memory, but we cannot

afford a lot of extra memory. Where is the trade-off? Priorities are hardly ever

definite. For example, trading memory for speed does not mean that any

increase in speed, no matter how small, is worth any increase in memory, no

Chapter 4 - OMT - An Object-oriented Design Methodology

102

Knowledge-based Support for Object-oriented Design

matter how large. The system designer must remember that all the trade-offs are

not made during system design, but establishing the priorities occurs at this stage.

The trade-off decisions during subsequent Design Cycles will now be compatible.

This step may be supported by the following "knowledge-based guidance":

• Set priorities which will guide trade-offs during the rest of the

Design Cycle.

At the end of the Analyze and Evaluate Design Alternatives task, the System

Design Document is produced which describes the structure of the basic

architecture for the system as well as high-level strategy decisions. Figure 4.8

shows the System Design task and the Analyze and Evaluate Design Alternatives

task.

After System Design, which involves the System Design task and the Analyze and

Evaluate Design Alternatives task, the system designer must start with the Object

Design task of the strategy chosen during System Design. During the Object

Design task, the system designer elaborates on the analysis model and provides

a detailed basis for implementation. This task involves the system designer in

following these steps:

i) Combine the three models to obtain operations on classes.

ii) Design algorithms to implement operations.

iii) Optimize access paths to data

iv) Implement control for external interactions.

v) Adjust class structure to increase inheritance.

vi) Design associations.

Chapter 4 - OMT - An Object-oriented Design Methodology

103

Knowledge-based Support for Object-oriented Design

vii) Determine object representation.

viii) Package classes and associations into modules.

The eight steps of Object Design, as defined by the OMT Methodology, correspond to

the eight steps of the Object Design task, as defined by the author. Each of these steps

are considered next.

laao Poraalatioa Aadysi.I ad Evala.Uoa ofAJ&om•ti?ot

Step I - Orpoizo tb

syatea irllO sab-11stea•

----.-~

Stop 2 Stop l Stop 4 Sr.pS

Figure 4.8 Modeling System Design in the Design Cycle

4.5.2 Object Design

The eight steps of Object Design follow.

Stop 6

(Stop I)

Stop 7

('ltop2)
Stepl l

(Stop l)

Chapter 4 - OMT - An Object-oriented Design Methodology

UU.on.al t.e.ol

WordlyLnol

Atomio Lovol

104

Knowledge-based Support for Object-oriented Design

Step 1 - Combine the three models to obtain operations on classes

The input to the object design task comprises the object, dynamic and functional

models. At this stage the actions and activities of the dynamic model and the

processes of the functional model must be converted into operations, attached

to classes, in the object model. The first step will be to define an operation for

each event in the dynamic model. The second step will then be to find an

operation for each data flow diagram in the functional model. The processes in

the data flow diagram constitute sub-operations.

This step may be supported by the following "knowledge-based guidance":

• Identify an operation for each event in the dynamic model.

• Identify an operation for each data flow diagram in the functional

model.

Step 2 - Design algorithms to implement operations

Each operation must now be formulated as an algorithm. The algorithm designer

must:

• Choose algorithms which minimize the cost of implementing

operations. Concentrate on:

o Computational complexity, for example how does processor

time increase as a function of the size of the data

structures?

o Ease of implementation and understandability, for example

give up some performance on non-critical operations if they

may be implemented quickly with a simple algorithm.

o Flexibility, for example when an algorithm is highly

Chapter 4 - OMT - An Object-oriented Design Methodology

105

Knowledge-based Support for Object-oriented Design

optimized, it is often difficult to read and change and this

may force one to provide two implementations of critical

operations so that the simple and inefficient algorithm may

be implemented quick1y and used to validate the system.

Then the complicated and efficient algorithm's correctness

may be validated against the simple one's correctness.

o Fine-tuning the object model, for example if the object

model were structured differently, would there be other

alternatives?

• Select data structures appropriate to the algorithms. Such data

structures include arrays, lists, queues, stacks, sets, bags,

dictionaries, associations, trees and many variations on these, such

as priority queues and binary trees.

• Define new internal classes and operations as necessary. During

the development of algorithms, new classes of objects may be

needed to hold intermediate results. New, low-level operations

may be invented during the decomposition of high-level operations.

• Assign responsibility for operations which are not clearly associated

with a single class. Most operations have obvious target objects.

Some operations may be performed at several places in an

algorithm, by one of several objects, as long as they eventually get

done. When more than one object is involved in an operation, one

must decide which object plays the lead role in the operation in

order to be able to decide which class owns this operation.

This step may be supported by the following "knowledge-based guidance":

Chapter 4 - OMT - An Object-oriented Design Methodology

106

Knowledge-based Support for Object-oriented Design

• Formulate an algorithm for each operation specified in the

functional model.

Step 3 • Optimize access paths to do.ta

The analysis model represents the logical information of a system. It is

semantically correct but insufficient. The design model must now add detail to

support efficient information access. An optimized system is obscured and

camouflaged to a greater degree and is less likely to be re-usable, and it is the

task of the system designer to find an appropriate balance between efficiency and

transparency. During design optimization the system designer must:

• Add redundant associations to minimize access cost and maximize

convenience. For example, he must provide indexes for recurrent

and expensive operations with a low hit ratio because such

operations are wasteful to implement using nested loops.

• Re-arrange the computation for greater efficiency. Narrow the

search as soon as possible by eliminating dead paths as early as

possible. For example, suppose we want to find all employees who

speak both Afrikaans and English. Suppose 5 employees speak

English and 200 speak Afrikaans. It will be better to test and find

the English speakers first, then test if they speak Afrikaans.

• Save derived values to avoid re-computation of complicated

expressions. This information may be retained in new objects or

classes which must be defined. The class which holds the cached

data must be updated if any of the objects on which it depends are

changed.

Chapter 4 - OMT - An Object-oriented Design Methodology

107

Knowledge-based Support for Object-oriented Design

This step may be supported by the following "knowledge-based guidance":

• Identify redundant associations which will minimize access cost and

maximize convenience.

• Verify the necessity for the re-arrangement of computation for

greater efficiency.

• Identify derived attributes to be saved to avoid re-computation of

complicated expressions.

Step 4 - Implement control for external interactions

During system design, a strategy was decided on for realizing the dynamic model.

This strategy must now be followed. To implement the dynamic model there are

three different basic approaches:

• Using the location within the program to hold state (procedure­

driven system).

• Direct implementation of a state machine mechanism (event-driven

system).

• Using concurrent tasks.

This step may be supported by the following "knowledge-based guidance":

• Identify the representation of control within a program which may

be:

o Where the location of control within a program implicitly

defines the program state,

o explicitly representing and executing state machines,

o where an object may be implemented as a task in the

programming language or operating system.

Chapter 4 - OMT - An Object-oriented Design Methodology

Knowledge-based Support for Object-oriented Design

Step 5 - Adjust class structure to increase inheritance

The system designer should:

108

• Rearrange and adjust classes and operations to increase

inheritance. Sometimes operations in different classes are alike

but not identical. If the definitions of the operations or the classes

are slightly adjusted, the operations may often be made to match

so that they may be covered by a single inherited operation.

• Abstract common behavior out of groups of classes. By doing this

a common superclass may be created which implements the

abstracted shared features, leaving only the specialized features in

the subclasses.

• Use delegation to share behavior where inheritance is semantically

invalid. When an existing class already implements some of the

behavior which we want to provide in a newly defined class, but in

all other respects the two classes are different, the system designer

must not inherit from the existing class. Rather make the one class

an attribute or associate of the other class. Now one object may

selectively invoke the desired functions of another class, using

delegation rather than inheritance.

This step may be supported by the following "knowledge-based guidance":

• Identify the rearrangement and adjusting of classes and operations

to increase inheritance.

• Identify common behavior in groups of classes.

• Verify when inheritance will be semantically invalid and use

delegation to share behavior.

Chapter 4 - OMT - An Object-oriented Design Methodology

109

Knowledge-based Support for Object-oriented Design

Step 6 - Design associations

Associations provide access paths between objects. A strategy must be

formulated for implementing the associations in the object model. The following

steps must be taken:

• Analyze the traversal of associations. If an association is only

traversed in one direction, it may be implemented as a pointer.

Associations may also be traversed in both directions and

implemented using three different approaches:

o Implement as an attribute in one direction only and when

a backward traversal is required, then perform a search

(when minimizing both the storage cost and the update cost

is important and also if there is a big difference in traversal

frequency in the two directions).

o Implement as attributes in both directions (when accesses

outnumber updates).

o Implement as a distinct association object, independent of

either class (when expanding predefined classes from a

library which cannot be altered, because the association

object may be added without adding any attributes to the

original classes).

• Implement each many-to-many association as a distinct class, in

which each instance represents one link and its attributes.

This step may be supported by the following "knowledge-based guidance":

• Identify a strategy for implementing the associations.

Chapter 4 - OMT - An Object-oriented Design Methodology

110

Knowledge-based Support for Object-oriented Design

Step 7 - Determine the exact representation of object attributes

The system designer may use primitive types in representing objects or he may

combine groups of related objects. The system designer must make this choice.

Classes may be defined in terms of other classes, but eventually everything must

be implemented in terms of built-in primitive data types, such as integers, strings

and enumerated types.

This step may be supported by the following "knowledge-based guidance":

• Identify when to use primitive types in representing objects and

when to combine groups of related objects when implementing

objects.

Step 8 - Packa.ge classes and associo.tions into modules

Packaging is important to permit different persons to work together on a

program without affecting one another's work. Packaging involves:

• Hiding internal information from outside view. This permits

implementation of a class to be changed without requiring any

clients of the class to adjust code.

• Coherence of entities. When entities (e.g. classes, operations and

modules) are organized according to an agreeable plan and all its

parts fit together to achieve a common goal, such an entity is

coherent.

• Constructing physical modules. The interfaces of modules must be

small and well-defined. In the same module one must find classes

which are closely connected by associations. Modules should have

some practical cohesiveness or harmony of purpose. Oasses in a

Chapter 4 - OMT - An Object-oriented Design Methodology

111

Knowledge-based Support for Object-oriented Design

module should represent similar things in the application.

Encapsulate strong coupling within a single module.

This step may be supported by the following "knowledge-based guidance":

• Identify and establish physical packaging.

A Design Document will now be constructed which consists of:

i) a Detailed Object Model plus

ii) a Detailed Dynamic Model plus

iii) a Detailed Functional Model.

4.6 The Organization of the Design Knowledge Base

The objective of this knowledge-based system for design is to ease the task of the

designer to achieve a good design and to avoid possible pitfalls and errors. The

Design knowledge base is organized into a number of separate aspects, each

containing rule sets providing support for a specific perspective of design. Rule­

based expert systems capture the knowledge of a domain expert in sets of rules.

These enable one to reason about a specific problem at hand. The Kappa-PC

System, the chosen knowledge-based environment for this investigation, utilizes

rule sets to formalize the knowledge-based guidance, in this case for the Design

Cycle of the SDLC when following the OMT approach. The "knowledge-based

guidance" which was formulated in Section 4.5 is reformulated as questions (that

may lead to rules) in rule sets. These questions assist the system designer in

making design decisions regarding the target system, via an object-oriented design

process as shown in Figure 4.9. (The target system is the system under

development for the purpose of implementing it.) The different sets of rules

Chapter 4 - OMT - An Object-oriented Design Methodology

112

Knowledge-based Support for Object-oriented Design

differentiate between rules regarding different areas. It was decided that the

rules will be structured in the following rule sets: The Work-break-down

Structure Rule Set and the Deliverables Rule Set for the Methodological Aspect;

the System Design Rule Set and the Object Design Rule Set for the Design

Aspect; the Design Verification Rule Set and the Re-usability Rule Set for the

Quality Assurance and Verification Aspect; a rule set for the Consistency and

Completeness Aspect; and a rule set for the Prototyping Aspect. Each of these

rule sets are reviewed next. Emphasis is placed on the Methodological Aspect

and the Design Aspect. The Quality Assurance and Verification Aspect, the

Consistency and Completeness Aspect and the Prototyping Aspect are not

discussed in detail, but are mentioned for the sake of completeness.

Structure of Rules

The general structure of the rule sets into aspects is presented here, with selected

examples to illustrate the questions that could lead to rules. These questions are

phrased in English syntax for purposes of user-friendliness. These questions in

general provide guidance with typical problem areas for an inexperienced OMT

designer.

• Methodological Aspect

The aspect concerns knowledge regarding the design

method, the steps of the method, the representation

schemata used and the deliverables of the design process.

o Work-break-down Structure Rule Set

This rule set contains all the rules which have to do

with the step-by-step following of the methodology.

For example: "First do System Design before

commencing to Object Design."

Chapter 4 - OMT - An Object-oriented Design Methodology

113

Knowledge-based Support for Object-oriented Design

o Deliverables Rule Set

A rule set which represents the rules concentrating

on deliverables. For example:

"Before starting with Design, do all the analysis

deliverables exist?"

"Can secondary deliverables be automatically produced

from primary deliverables?"

"Can the completeness of the deliverables be checked

and verified?"

"Is cross-reference of deliverables supplied?"

• Design Aspect

The aspect concerns the syntax and semantics of the three

conceptual models, namely the object model, the functional

model and the dynamic model. The meta models of the

object model, dynamic model and the functional model are

presented in Exhibits 4.1, 4.2 and 4.3 respectively. The

meta models for class/object diagrams, an event trace

diagram and a state diagram, and a data flow diagram are

presented in Exhibits 4.4, 4.5 and 4.6 respectively.

o System Design Rule Set

Structuring mechanisms applied to the object model

in Step 1 of the System Design task Each of the

object classes in the object diagram is queried by

means of a dialogue to determine adherence to

specific criteria. For example:

Chapter 4 - OMT - An Object-oriented Design Methodology

114

Knowledge-based Support for Object-oriented Design

"On what kind of hardware component does object­

class-A execute?"

"Jn which physical location does object-class-A

execute?"

"Identify the functionality of object-class-A."

In Step 2 of the System Design task, the dynamic

model, the event trace diagram and the state

diagrams form the basis for an analysis of concurrent

behavior. Since the investigation concentrated on

applications with limited dynamics, this part of the

knowledge base is not explained further here.

o Object Design Rule Set

This comprises all the rules which have to do with

the step-by-step following of Object Design, as

discussed in Section 4.5.2. For example:

"Identify an operation for each data flow diagram in

the functional model."

• Qua/,ity Assurance and Verification Aspect

This aspect concentrates on the quality assurance and

verification of the Design Cycle.

o Design Verification Rule Set

The rules which concentrate on "Is this a good

design?", falls under this rule set. For example:

''Are there other behaviors for an object which should

be included but which were not explicitly stated in The

Chapter 4 - OMT - An Object-oriented Design Methodology

115

Knowledge-based Support for Object-oriented Design

Requirements Specification?''

o Re-usability Rule Set

This rule set represents all the rules which point re­

usable components out or the rules which gather re­

usable components. For example:

"Does a re-usable component exist that will be able to

structure a document describing the current available

deliverables of the Design Cycle?"

o Performance Rule Set

This rule set represents all the rules which have to

do with the performance, for example:

"Identify performance constraints and verify their

relevance."

• Consistency and Completeness Aspect

Independent rules which check for consistency and

completeness will be gathered under this aspect. For

example:

o ''Are all the steps in the System Design task completed

before one starts with the Object Design task?"

o "Verify consistency of high-level strategy constraints."

o "Verify that transition from analysis to design is

consistent (i.e. that only the appropriate design details

are added)."

o "Determine whether design detail is sufficient to

proceed to implementation."

Chapter 4 - OMT - An Object-oriented Design Methodology

116

Knowledge-based Support for Object-oriented Design

o "Verify that design detail exists for scheduled tasks of

Project Management Planning."

o "Is there an inverse (undo) operation, or a

complementary operation which is an appropriate

addition to an object's protocol?'' (for example: For

every ADD-operation, is there a DELETE-operation

and a MODIFY-operation?).

• Prototyping Aspect (during Design)

The rules which represent prototyping will be gathered

here. For example:

o ''At what point during the Design Cycle is prototyping

possible?"

o ''At what point during the Design Cycle is prototyping

desirable?"

4. 7 Conceptual Model of Proposed Solution

The rules for the Design Cycle which were discussed in Sections 4.5 and 4.6 form

part of a knowledge base. With reference to Figure 1.1, and the method of

investigation outlined in Section 1.4.1, the block diagram in Figure 4.9 is an

instance of the conceptualization of the proposed solution. The object-oriented

design steps are supported by this knowledge base and the knowledge-based

environment which are discussed in the next chapter.

Chapter 4 - OMT - An Object-oriented Design Methodology

117

Knowledge-based Support for Object-oriented Design

Knowledge-based Environment (Kappa-PC)

Knowledge Base (OMT Design Rule Sets)

Object-oriented Design (0 MT Destgn)

Design Decisions (regarding Target System)

Figure 4.9 Object-oriented Design within a Knowledge-based Environment

4.8 Summary and Conclusion

Modeling in general was discussed with emphasis on the clarity which it offers

regarding the requirements of the application.

Rumbaugh's OMT approach is described. The three models which form the

basis of this methodology are explained separately. The three models are the

object model, which shows the static data structure of the real world, the dynamic

model, which shows the time-dependent behavior of the system and the objects

in it, and the functional model, which shows how values are computed, without

Chapter 4 - OMT - An Object-oriented Design Methodology

118

Knowledge-based Support for Object-oriented Design

regard for sequencing, decisions, or object structure. A summary, which explains

the relationships amongst the three models, follows.

The OMT approach for design is described in detail with emphasis on the two

tasks of the Design Cycle. The first task is System Design where the overall

architecture of the system is decided upon. The second task is Object Design

where the proposed system moves to a detailed basis for implementation.

A structure of knowledge-based guidance is described and 5 different aspects are

explained which will form one or more rule set/s each. The conceptual model

of the proposed solution is depicted in a block diagram, illustrating the different

building blocks of this solution.

Chapter 4 - OMT - An Object-oriented Design Methodology

Knowledge:based Support for Object-oriented Design

CHAPrERS

KAPPA-PC Knowledge-based Environment

5.1 Introduction

In this chapter the knowledge-based environment of Figure 4.9, namely Kappa­

PC will be described. This object-oriented environment was used to develop a

prototype of a target system which serve to demonstrate concept, as was

formulated in Chapter 4. One of the building blocks of the environment is an

expert system with which the knowledge-based support is demonstrated. First the

objects and methods for a knowledge base must be constructed. Secondly the

system which specifies how objects should behave, or which may reason about the

objects by using rules, is constructed.

Chapter 5 - KAPPA-PC Knowledge-based Environment

120

Knowledge-based Support for Object-oriented Design

5.2 Kappa-PC 1Key Concepts

Kappa-PC consolidates five key concepts (Kappa-PC Quick Start Manual, 1992):

i) Object-oriented development

The primitives of the target system are represented by structures called objects.

These objects may be either classes or instances of classes. A hierarchy is a

structure which represents the relationships among objects. The processes of the

target system are represented by monitors and methods. Application components

which are developed by means of an object-oriented methodology are re-usable

for new applications because they are independent entities.

ii) High-level tkscriptive language

Kappa-PC has its own descriptive language called Kappa-PC Application

Language (KAL). The language has a set of 280 predefined functions and

provides for fast prototyping, procedural programming and ample representation.

iii) High-performance rule systems

Rules and goals represent the criteria which one uses to make decisions. These

decision criteria may easily be changed. By using rules-based reasoning one

incorporates expertise, heuristics and rules of thumb into software solutions.

Each rule specifies a set of conditions and a set of conclusions to be made if the

conditions are true.

1 The concepts used in this chapter are interpreted according to the authors of Kappa-PC, and
may not correspond precisely to established interpretations found in the literature.

Chapter 5 - KAPPA-PC Knowledge-based Environment

121

Knowledge-based Support for Object-oriented Design

iv) Graphical development and delivery

A graphical development interface, including browsers, editors, layout tools, language

interpreter and a debugger, makes building an application easier. The representation of

the solution to the end-user may be done through a complete graphical interface (GI) of

forms, images and dialogue boxes.

v) Database mapping

Existing data gets mapped into the application. The results of running the application

may in tum be used to update the existing data.

These concepts form the basis for application development within the Kappa-PC

environment. The architecture of the environment is depicted in Figure 5.1 . It is an

extension of a figure found in the Kappa-PC Quick Start Manual. Interaction with the

knowledge base takes place by means of an application language, KAL, the end-user

interface tools of the End-User Interface and the tools of the Developer Interface.

I_ I l

Figure 5.1 Kappa-PC Building Blocks

l 1- '\,

Chapter 5 - KAPPA-PC Knowledge-based Environment

122

Knowledge-based Support for Object-oriented Design

5.3 Kappa-PC Building Blocks

The building blocks are the modeling primitives within the environment. Objects

are primary building blocks. Any target system may be viewed as a collection of

objects (automobiles) with certain attributes (color, price), parts (doors, tires),

abilities (moving, turning) and/or relationships to one another. Classes are

categories of the knowledge base which share important characteristics. A class

may be a group or collection of objects. For example, Autos is a class referring

to all automobiles. Subclasses are subsets of another class. For example, Sedans

and Station Wagons are two subclasses of the class Autos. Instances are specific

elements within knowledge base categories. It is a specific object, for example

Johan 'sCar. Slots are attributes of both classes and instances. Each slot describes

a characteristic of the object. For example, an object representing a car could

have a slot for color. Red may be the value of the Color slot. Inheritance exists

between two classes or between a class and one of its instances. Inheritance

illustrates the relationship between a class and its subclass. This hierarchy is

called the object hierarchy (Figure 5.2). Methods define the "behavior" of specific

objects. Methods are written in KAL and may be activated either by monitoring

slots or by receiving messages. The technique of storing an object's behavior as

one of its attributes is part of object-oriented programming. Functions perform the

key tasks in the application development process. Kappa-PC provides a library

of functions with which one may orchestrate the knowledge base. Using KAL (or

the "C" language) one may build one's own functions as well.

Chapter 5 · KAPPA-PC Knowledge-based Environment

Autos

Knowledge-based Support for Object-oriented Design

Sedans -----<
' ·, ..

JohansCar

MarysCar

StationWagons -- ·-- ·-· JosephsCar

Class Subclasses Instances

(Object) (Objects) (Objects)

Figure 5.2 An Object Hierarchy (Kappa-PC User's Guide)

123

Monitors are private functions or functions which change the value of slots. Images are

graphical representations of data or tools for changing data. With images one may

create a user interface. Rules are If-Then statements which allows one to "reason"

across the knowledge base. A rule specifies the conditions under which a particular

action or inference may occur.

5.4 The KAL Language

KAL is Kappa-PC's application language (Kappa-PC User's Guide Manual, 1992)

which one uses to write rules, methods and functions. It is also a language which

Chapter 5 - KAPPA-PC Knowledge-based Environment

124

Knowledge-based Support for Object-oriented Design

one uses to add, delete and retrieve information from the knowledge base. KAL

allows developers to create, control, modify, test, or delete the different

application components, such as classes, instances, rules, goals, functions, end­

user interface components and developer's interface components. KAL enables

the developer to perform different operations. Some examples are mathematical

computations (Sin - calculates the sine value of an angle), list manipulation

(LengthList - gets the number of items in a list), string manipulation (#= -

compares two text strings), logical operations (OR - checks if any of the argument

values is TRUE), file input/output (CloseReadFile - closes a file previous'ly opened

with the function OpenReadFile), and knowledge-processing functions

(ActivateRule - Adds a rule to the list of rules to be considered by the inference

engine). KAL also assists in setting up a database mapping environment and

read or write to various PC databases (2dBase), spreadsheets (3Lotus 1-2-3),

SQL relational databases (4Sybase), or ASCII files. With KAL the developer

may integrate his own user-defined functions within Kappa-PC.

5.5 End-user Interface

This interface provides the tools necessary to create a user-friendly application

using windows, menus and other graphical techniques. These tools fall into three

categories (Kappa-PC User's Guide Manual, 1992):

2 dBase is a registered trademark of Ashton-Tate.

3 Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

~ Sybase is a registered trademark of Sybase, Inc.

Chapter S - KAPPA-PC Knowledge-based Environment

125

Knowledge-based Support for Object-oriented Design

i) The control of tlU! Kappa-PC windows

There are eight standard windows in the Kappa-PC environment. They are

Kappa-PC Main Window, Object Browser, Session Window, Edit Tools Window,

KAL Interpreter, KAL View Debugger, Find/Replace, Rule Relation Window,

Rule Trace Window and Inference Browser.

• Kappa-PC Main Window - This is an interface for managing the

development of an application by saving and retrieving files and

applications and by managing all the Kappa-PC windows.

• Object Browser Window - Allows one to view and modify all the

objects and their relationships in an application. It presents one

with a graphical view of the object hierarchy.

• Session Window - This is the main interface for the end-user of

a Kappa-PC application.

• Edit Tools Window This window provide access to all

knowledge items in Kappa-PC - for example, classes, instances,

functions, rules and goals.

• KAL Interpreter Window - Allows one to type in and interpret

KAL expressions.

• KAL View Debugger Window Warns one about errors in

function and method code.

• Find and Replace Window - One may find and replace text which

appears anywhere in the knowledge base.

• Rule Relation Window A graphical way of representing

relationships between rules.

• Rule Trace Window - Allows one to view the rules which the

inference engine invokes in the form of a transcript. One may also

Chapter 5 · KAPPA-PC Knowledge-based Environment

126

Knowledge-based Support for Object-oriented Design

follow the impact of reasoning on particular slots in the knowledge

base.

• Inference Browser Window - One may view the rules which the

inference engine invokes in the form of a graphical network. With

this window one may see how the system arrived at its conclusions

by examining its lines of reasoning once the reasoning process is

complete.

ii) Pop-up windows provide user interaction

The application may interact with the user via pop-up dialogue windows. These

windows pop up in the middle of the screen and demand the prompt attention

of the user. The functions available for these windows are:

• PostMessage - This function allows one to present the user of the

application with a simple message.

• SetPostMessageTitle - Changing the default title "KAPP A" to any

user-defined title is possible with this function.

• Ask Value - With this function one may present the user of the

application with a standard user request form. The value of a

single-valued slot must be entered.

• PostMenu When one wants to present the user of the

application with a list of options, use this function.

• PostlnputForm - This function allows one to present the user of

the application with a customized form for data input.

iii) The "Session Window" provide application graphics

The Session Window provides a medium for communication between an

Chapter 5 - KAPPA-PC Knowledge-based Environment

127

Knowledge-based Support for Object-oriented Design

application and its user. This Session Window may be customized by the

developer to change its appearance. The run-time (or delivery) version of

Kappa-PC will essentially be this Session Window which has been customized to

fit requirements. Individual graphics objects are known as images. Examples of

images are line plots, bit maps, state boxes and meters. Some of the images

display information to the end-user about the condition of the application. Some

images allow the user to input information into the application. The types of

images are as follows:

• Line plot image - Plotting up to six pairs of x-y vectors containing

numerical values.

• Bit map image - Displaying a bit map file on the screen.

• State box image - Monitoring the value of a text slot while an

application is running.

• Meter image - Monitoring the value of a numeric slot during the

running of an application.

• Button image - A rectangular area which may activate a function

when the mouse is clicked over it.

• Drawing image - Drawing a customized image.

• Edit image - Allows one to type in a value for a single-valued

slot.

• Slider image - Entering a value into a single-valued slot which

requires a numeric value.

• Text image - Displaying a fixed piece of text, such as a label or

title.

• Transcript image - A text window into which one may output text

at any time while running the application.

Chapter 5 - KAPPA-PC Knowledge-based Environment

128

Knowledge-based Support for Object-oriented Design

• SingleListBox - A listbox which may be attached to a slot with a

single value. This is an input/output image where one may view

and modify the data in the attached slot.

• MultipleListBox - A listbox which may be attached to a slot with

multiple values. This is an input/output image where one may view

and modify the data in the attached slot.

• RadioButtonGroup - A group of buttons which may be attached

to a slot with a single value. This is an input/output image.

• CheckBoxGroup - Displays one checkbox for each permissible

value defined in the OwnerSlot. One may change the value of the

slot in the Session Window.

• CheckBox - Allows one to display the Boolean value of a single­

valued slot as well as changing the value of the slot in the Session

Window.

• ComboBox - Combining the editing ability of an Edit box with

the display ability of a SingleListBox.

5.6 Developer's Interface

Kappa-PC has eight application development tools (Kappa-PC User's Guide

Manual, 1992):

i) The Object Browser window which rapidly defines, creates, modifies,

deletes, renames, hides and shows the object representation.

ii) The Knowledge Tools window providing access to knowledge editors. For

example, class and instance editors, slot editors, slot option editors,

Chapter 5 - KAPPA-PC Knowledge-based Environment

129

Knowledge-based Support for Object-oriented Design

method and function editors, as well as rule and goal editors.

iii) The KAL Interpreter window which prototypes applications.

iv) The Session window creates, manipulates and displays user-friendly

dynamic displays for solution presentation.

v) The Rule Relations window dynamically displays rule networks and

interdependent application relationships.

vi) The Rule Trace window traces chaining processes where the developer

may step through inferencing one step at a time. The rule trace window

is designed to assist during debugging.

vii) The Inference Browser window speeds up debugging and assists during this

process by graphically displaying the inferencing process. It allows

interactive editing of rules.

viii) Kappa-PC applications may also be developed with any ASCII text editor

by using the "SA VE" and "RETRIEVE" facilities.

5. 7 Interfaces to External Data Sources and Programming Languages

There are links from Kappa-PC to popular software (Kappa-PC Quick Start

Manual, 1992). This helps to safeguard current software investments while

adding additional functionality to existing applications. Kappa-PC may interface

to databases (which may be dBase, 5Ingres, Sybase, 6INFORMIX, and 7DB2),

5 Ingres is a registered trademark of The ASK Group, Inc.

6 INFORMIX is a registered trademark of INFORMIX Software Inc.

7 DB2 is a registered trademark of International Business Machines Corporation (IBM).

Chapter 5 - KAPPA-PC Knowledge-based Environment

130

Knowledge-based Support for Object-oriented Design

spreadsheets (Lotus 1-2-3), graphics and Computer Aided Design (CAD)

packages, conventional programming languages (such as FORTRAN, C, and

PASCAL), and ASCII files.

5.8 Rule-based Reasoning

Rule-based reasoning allows developers to merge rules of thumb, heuristics, and

knowledge typically acquired by experience or judgement (Kappa-PC User's

Guide Manual, 1992). Rules, represented as "if' (conditions) and "then" (actions)

statements, specify logical relationships among values of slots. Rules and object

slots are compiled into a modified 8Rete inference network. The inference

engines are forward chaining, backward chaining, as well as the forward engine

may be invoked during backward inferencing and vice versa. Forward chaining

finds the consequences of known facts and the consequences of those

consequences. Backward chaining tries to verify a fact by finding rules which may

prove it. It also works on multiple conclusions. The control mechanisms are the

goal, the agenda, and four rule-activating schemata: depth-first, breadth-first,

best-first, and selective. The goal is an expression in the current knowledge

base, representing a "quit" test or postulate to be verified. The agenda is a

queue of object:slot pairs to be processed by the forward chainer. The last

control mechanism is priorities, given to rules, for conflict resolution. Figure 5.3

shows an instance of the conceptual model.

8 Rete refers to a fast algorithm for the Many Pattern/Many Object Pattern Match Problem
(Forgy, 1979).

Chapter 5 • KAPPA-PC Knowledge-based Environment

131

Knowledge-based Support for Object-oriented Design

Conceptual Model An Instance of the Conceptual Model

Knowledge Base (OMT Design Rule Sets) Design Aspect (System Design R11le Set)

Object-oriented Design (OMT Design) System Design - Step 1 (Identify S11bsystems)

IF

Design Decisions (regarding Target Sy1tem) func.objclassA = func.objclassB
THEN

sub.objclassA = sub.objclassB = func

Figure 5.3 An Instance of the Conceptual Model

5.9 Summary and Conclusions

The Kappa-PC key concepts are explained, namely object-oriented development, a high­

level descriptive language, a high-performance rule system, graphical development and

delivery, and database mapping.

The Kappa-PC building blocks are identified and each are briefly described.

They are objects, classes, subclasses, instances, slots, methods, functions,

monitors, images and rules. The KAL Language is discussed and the importance

of having a high-level development language is explained. The End-user

Chapter 5 - KAPPA-PC Knowledge-based Environment

132

Knowledge-based Support for Object-oriented Design

Interface is described in terms of all the tools. The tools of the Developer's

Interface are discussed and the Interfaces to External Data Sources and

Programming Languages are explained. The powerful rule-based reasoning of

Kappa-PC is addressed and its building blocks, namely rules, inference engines,

and control mechanisms are explained.

Kappa-PC is a powerful and user-friendly, object-oriented, application

development environment. It has a strong expert system component and lends

itself to a broad range of possible applications.

Chapter S - KAPPA-PC Knowledge-based Environment

Knowledge-based Support for Object-oriented Design

CllAPTER6

The Design Prototype

6.1 Introduction

In Chapter 5 the Kappa-PC knowledge-based environment was described. A

design prototype was built to serve as a demonstration of the conceptual model

formulated in Chapter 4 and depicted in Figure 5.3 of Chapter 5. The prototype

focuses on aspects of the System Design task which is part of the Design Cycle

and demonstrates that it is possible to support the Design Cycle of the software

development life cycle (SDLC) with a knowledge-based system. The prototype

does not claim to be a fully workable system but is a demonstration of limited

scope and restricted functionality of the Design Cycle. Although the prototype

could be enhanced to include explanations of guidance provided by the system

and the relevant rules used, this was consciously omitted. A User's Manual,

accompanying the prototype software, was compiled and is included as Appendix

F. Appendix G explains the design step (Step 1) which is applied to an ATM

Chapter 6 · The Design Prototype

134

Knowledge-based Support for Object-oriented Design

problem and which is demonstrated within the customized Kappa-PC

environment, and the source code of the prototype is in Appendix H. This

chapter explains the purpose of the prototype and discusses its scope. The

purpose of the User's Manual, which documents the steps to be followed for the

demonstration, is addressed, and the chapter concludes with the format of the

User's Manual.

6.2 The Scope of the Prototype

The Design Cycle of the SDLC consists of four main tasks as explained in Figure

4.6, namely a System Design task, an Analyze and Evaluate Design Alternatives

task, and an Object Design task. The prototype concentrates on the System

Design task which involves five steps. The first step was chosen to be supported

by knowledge-based guidance, namely "Organize the system into sub-systems".

The knowledge-based support which is given to this step of design was achieved

in the Kappa-PC environment. In order to create the prototype, the following

activities were required:

(i) The customization of Kappa-PC to contain a selection of rules to support

the chosen step of the System Design task and the development of the

user interface by means of the KAL language.

(ii) Choosing a suitable target system to be designed.

(iii) Establishing the analysis deliverables for the chosen target system and

specifically verifying the Object Model.

(iv) Starting with the deliverables of point (iii), the design step to be

supported is applied to the target system and the dialogue between the

system designer and the rule base is demonstrated.

Chapter 6 • The Design Prototype

135

Knowledge-based Support for Object-oriented Design

To illustrate the knowledge-based guidance, a target system was developed as a

prototype. (The source code of the prototype is in Appendix H.) The problem

statement of the target system, is as follows:

"Design the software to support a computerized banking network including both

human cashiers and automatic teller machines (ATMs) to be shared by a

consortium of banks. Each bank provides its own computer to maintain its own

accounts and process transactions against them. Cashier stations are owned by

individual banks and communicate diredly with their own bank's computers.

Human cashiers enter account and transaction data. Automatic teller machines

communicate with a central computer which clears transactions with the appropriate

banks. An automatic teller machine accepts a cash card, interacts with the user,

communicates with the central 5)1Stem to carry out the transaction, dispenses cash,

and prints receipts. The 5)1Stem requires appropriate record-keeping and security

provisions. The 5)1Stem must handle concurrent accesses to the same account

corredly. The banks will provide their own software for their own computer; you are

to design the software for the ATMs and the network. The cost of the shared 5)1Stem

will be apportioned to the banks according to the number of customers with cash

cards." (Rumbaugh et.al., 1991).

6.3 The Object-oriented Design User's Manual

The User's Manual is presented in Appendix F and serves as a guideline for

activating and running the demonstration.

Chapter 6 - The Design Prototype

136

Knowledge-based Support for Object-oriented Design

6.3.1 The Purpose of the Manual

The manual, presented in Appendix F, leads the user through a demonstration of

limited scope to illustrate that it is possible to achieve knowledge-based support

for the Design Cycle. The manual explains the use of the prototype stiffy and

the correct reactions on the different questions posed when performing the

relevant design step. The application software for this demonstration resides on

the prototype stiffy which accompanies the dissertation.

6.3.2 The Format of the Manual

The User's Manual is a step-by-step guide for the user to help him in making the

correct design choices, when executing the prototype, for purposes of the

demonstration. The manual consists of instructions on how to activate the

prototype; an example of a typical session follows and then the method to exit

the prototype can be found.

6.4 Summary

In this chapter the purpose of the prototype is explained and the scope of the

prototype is defined. By working with this prototype the designer is guided

through the first step of the System Design task enabling him to obtain a feasible

subsystem structure at an abstract level of the target system. A description of the

demonstration can be found in Appendix G and the source code of the prototype

is in Appendix H. A problem statement of the target system follows. The

purpose and format of the User's Manual is clarified and outlined.

Chapter 6 - The Design Prototype

Knowledge-based Support for Object-oriented Design

CHAPTER 7

Evaluation, Summary and Conclusions

7.1 Introduction

A summary of the research results of the investigation is presented in this

chapter. The original hypothesis and assumptions are validated in the light of

these results, enabling conclusions to be drawn as presented here. The chapter

concludes with proposed areas for further investigation.

7.2 Evaluation

The OMT methodology which was used during the investigation proved to be a

continuous process since the three models which are created during analysis,

namely the object model, the dynamic model and the functional model, are

expanded and intensified during the Design Cycle. The same notation is used

Chapter 7 • Evaluation, Summary and Conclusions

138

Knowledge-based Support for Object-oriented Design

throughout all the SDLC cycles. The cycles are highly iterative. The Analysis,

Design and Implementation Cycles may be repeated with more detail added in

successive iterations. In this way incremental development is supported.

The knowledge-based environment which was used, namely Kappa-PC, provided

sufficient and suitable support for the development of the prototype that was

built for demonstration purposes.

The prototype itself supported the inexperienced system designer satisfactorily

by leading him through a series of questions, forcing him into the correct school

of thought and establishing the correct conclusion according to the answers. This

demonstrates that it is possible to create an environment that can assist an

inexperienced system designer to make design decisions.

7.3 Summary of Investigation

A hypothesis was postulated which stated that it is possible to create assistance

for inexperienced system designers in a software development process, namely

a knowledge-based support for object-oriented design. The relevant issues which

have bearing on the investigation were identified, a motivation for the area of

research was constructed and a method of investigation was established which

guided the investigation. The assumptions which were made stated that the

Analysis Cycle has been completed and the analysis deliverables are available.

Keeping the established constraints in mind, a possible solution was proposed for

dealing with the problems of constructing a good design in an object-oriented

Chapter 7 - Evaluation, Summary and Conclusions

139

Knowledge-based Support for Object-oriented Design

environment.

The design process was investigated. The software process model and the

categories of design methods were explored, namely top-down structured design,

data-driven design and object-oriented design. Object-oriented design was

chosen because the parameters of the OISEE project prescribe it.

Another important aspect of the research is the support which knowledge-based

systems may provide. A study was made of knowledge-based environments and

one particular environment was chosen and used.

The steps of object-oriented design which may be supported by the knowledge

base were identified and the conceptual model of a proposed solution was

synthesized.

A significant amount of effort and time was required to master the sophisticated

and technically advanced environment of Kappa-PC, described in Chapter 5.

From the start, beginning with the key concepts of Kappa-PC, it was clear that

the environment is more than merely a knowledge base. The different concepts

in Kappa-PC were discussed, i.e. the KAL language, the end-user interface, the

developer's interface and the external data sources interface together with the

programming languages interface. Finally, the knowledge base's rule-based

reasoning was addressed.

A prototype was built to serve as a demonstration of the concept. This required

the customization of Kappa-PC to contain the relevant design rules and the user

Chapter 7 • Evaluation, Summary and Conclusions

140

Knowledge-based Support for Object-oriented Design

interface. Thereafter object-oriented design was performed on the chosen target

system, with support from the Kappa-PC environment. Next a User's Manual

was compiled to direct this demonstration which resides on the accompanying

prototype stiffy.

7.4 Conclusions

The assumptions, namely that the Analysis Cycle is completed and that the

analysis deliverables are available, were suitable assumptions and proved to be

a sound point of departure for this investigation. The constraints proved to be

valid ones because the PC environment, the Design Cycle of the revised spiral

model and the parameters of the OISEE project guided the investigation on a

focused and secure path.

The establishment of the relevant rules was feasible but the implementation of

these rules in a specific environment proved to be more difficult.

The contribution of this research is that the original hypothesis that an

inexperienced system designer, applying an object-oriented design methodology,

may be supported by a knowledge-based environment was validated. This

investigation also demonstrates that the technologies of SE, knowledge bases and

software engineering environments may be combined to serve the development

of quality software, thereby achieving higher levels of productivity among

inexperienced system designers.

Chapter 7 - Evaluation, Summary and Conclusions

141

Knowledge-based Support for Object-oriented Design

7 .5 Areas for further Investigation

A number of areas were identified for further research. They will now be

mentioned.

Quality assurance and verification of the Design Cycle are important issues and

need more attention. The Quality Assurance Reference Model is being

investigated by Ms D. Thornton, a member of OISEE project, in her Master's

investigation.

Consistency and completeness of the Design Cycle must be established and must

be verified before proceeding to implementation. These aspects need to be

investigated.

Prototyping, especially during the Design Cycle, but also during the other cycles

of the SDLC, extended and subjected to further investigation.

Aspects of re-usability during design, for example re-usable components (objects,

classes or subsystems), design deliverables and documentation need further

investigation.

Knowledge-based support for the other cycles of the SDLC is important and

should be investigated.

The merging of the knowledge bases that provide support for the Feasibility

Cycle, the Analysis Cycle, the Design Cycle and the Implementation Cycle of

Chapter 7 - Evaluation, Summary and Conclusions

142

Knowledge-based Support for Object-oriented Design

the SDLC, needs to be investigated. The result will be that the whole of the

SDLC will be supported by knowledge-based guidance.

Chapter 7 - Evaluation, Summary and Conclusions

143

Knowledge-based Support for Object-oriented Design

Literature References

Atkins M.C. and Brown A.W. 1991. Principles of object-oriented systems in

Software Engineer's Reference Book edited by J. McDermid.

Butterworth-Heinemann Ltd.

Boehm, B.W. August 1986. A Spiral Model of Software Development and

Enhancement, in ACM SIGSOFf Software Engineering Notes, Vol.11,

No.4.

Booch, G. February 1986. Object-oriented Development, in IEEE Transactions

on Software Engineering, Vol.12, No.2, pp.211-221.

Booch, G. 1987. Software Components with Ada: Structures, Tools, and

Subsystems. Menlo Park, California: Benjamin/Cummings Publishing

Company, Inc.

Booch, G. 1991. Object Oriented Design with Applications. Redwood City,

California: Benjamin/Cummings.

Literature References

144

Knowledge-based Support for Object-oriented Design

Bouzeghoub, G. 1985. An Expert System for Database Design, in Proceedings

International Conference on VLDB.

Chabris Christopher F. 1988. A Primer of Artificial Intelligence with sample

programs in Turbo Pascal. London, United Kingdom: Kogan Page Ltd.

Coad, P. and Yourdon, E. 1990. Object-Oriented Ana'lysis. Englewood Cliffs,

New Jersey: Y ourdon Press.

Colter, M.A. 1982. Evolution of The Structured Methodologies in Advanced

System Development/Feasibility Techniques, by Couger J.D., Colter M.A

and Knapp R. W. John Wiley & Sons.

Connor D. 1985. Information System Specification and Design Road Map.

Englewood Cliffs, New Jersey: Prentice-Hall.

Cronk, R.N., Callahan, P.H. and Bernstein, L. September 1988. Rule-Based

Expert Systems for Network Management and Operations: An Introduction,

in IEEE Network, pp.7-21.

Literature References

145

Knowledge-based Support for Object-oriented Design

Dijkstra, E.W. January 1969. Complexity controlled by hierarchical ordering of

function and variability, in Software Engineering, P.Naur and B.Randell,

Eds. NATO.

Du Plessis, A.L. 1986. A Software Engi,neering Environment for Real-time

Systems, PhD Thesis, University of South Africa.

Du Plessis, A.L. August 1992. CA/SE: The Opportunity and the Challenge.

Inaugural lecture University of South Africa.

Du Plessis, A.L. and Van der Walt, E. April 1992. Modeling the Software

Development Process, in IFIP WG8.1 Working Conference on Information

Systems Concepts: Improving the Understanding (ISC02), Alexandria,

Egypt.

Du Plessis, A.L. 1994. Reuse in Information System Development, Technical

Document, Centre for Software Engineering (001/94), University of South

Africa.

Forgy, C.L. 1979. On the efficient implementation of production systems, Ph.D.

Literature References

146

Knowledge-based Support for Object-oriented Design

Thesis, Carnegie-Mellon University.

Ford, N. 1991. Expert Systems and Artificial Intelligence. An information

manager's guide. London:Library Association Publishing.

Forsyth R. 1989. Expert Systems. Principles and Case Studies. 2nd Ed. Chapman

and Hall Ltd.

Hannon, P., Maus, R. and Morrissey, W. 1988. Expert Systems: Tools and

Applications. New York: Wiley.

Harmsen, F. and Brinkkemper, S. 1993. Computer Aided Method Engineering

based on Existing Meta-CASE Technology, in Proceedings of the Fourth

Workshop on The next generation of CASE Tools, Memoranda

Informatica 93-32.

Humphrey, W.S. 1989. Managing the Software Process. Addison-Wesley

Publishing Company.

Holsapple, C.W. and Whinston, A.B. 1987. Business Expert System. Richard D.

Literature References

147

Knowledge-based Support for Object-oriented Design

Irwin, Inc., Homewood, Ill.

Ingalls, D. August 1981. Design Principles behind Smalltalk. Byte, Vol.6, No.8,

p.286.

Jackson, M. 1975. Principles of Program Design. Orlando, FL: Academic Press.

Jackson, M. 1983. System Development. Englewood Cliffs, New Jersey:

Prentice-Hall.

Kappa-PC Quick Start Manual. June 1992. Version 2, IntelliCorp, Inc., USA

Kappa-PC User's Guide Manual. June 1992. Version 2, IntelliCorp, Inc., USA

Klint, P. 1993. A Meta-Environment for generating Programming Environments,

in ACM Transactions on Software Engineering and Methodology, Vol.2,

No.2.

Liu, L. and Horowitz, E. October 1989. A Formal Model for Software Project

Management, in IEEE Transactions on Software Engineering, Vol.15,

Literature References

148

Knowledge-based Support for Object-oriented Design

No.10.

Loomis, M.E.S., Shah, A.V. and Rumbaugh, J.E. June 1987. An object modeling

technUjue for conceptual design, in European Conference on Object­

Oriented Programming, Paris, France, published as Lecture Notes in

Computer Science, 276, Springer-Verlag.

Lucas P. and Van der Gaag, L. 1991. Principles of Expert Systems. Addison­

Wesley Publishing Company.

Meyer, B. 1988. Object-oriented Software Construction. Englewood Cliffs,

Hertfordshire: Prentice Hall.

Micalle~ J. April/May 1988. Encapsulation, Reusability, and Extensibility in

Object-Oriented Programming Languages, in Journal of Object-Oriented

Programming, Vol.1, No.1, p.15.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., Van Assche,

F.J.M. and Verrijn-Stuart, A.A. 1988. Information Systems Methodologi,es:

A Framework for Understanding. 2nd ed. 1991. England: Addison-Wesley.

Literature References

149

Knowledge-based Support for Object-oriented Design

Orr, K. 1971. Structured Systems Development. New Yark, NY: Y ourdon Press.

Page-Jones, M. 1988. The Practical Guide to Structured Systems Design. 2nd ed.

New Jersey: Prentice-Hall.

Parnas, D.L. December 1972. On the Criteria to be used in Decomposing Systems

into Modules, in Communications of the ACM, Vol.15, No.2, pp.1053-1058.

Pocock, J.N. 1991. Framework and tools for the integration of models,

Systematica technical Report M2K91.

Rolland, C. & Proix, C. 1986. An Expert System Approach to Information System

Design, in Information Processing 86, editor H.J.Krugler. North­

Holland:241-250.

Royce, W. W. 1970. Managing the Development of Large Software Systems:

Concepts and Techniques, in Proceedings WESCON, pp.1-9.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. 1991.

Object-Oriented Modeling and Design. New Jersey: Prentice-Hall.

Literature References

150

Knowledge-based Support for Object-oriented Design

Sage, A.P. and Palmer, J.D. 1990. Software Systems Engineering. New York:

John Wiley & Sons.

Shinghal, R. 1992. Formal Concepts in Artificial Intelligence. Chapman & Hall.

Shlaer, S. and Mellor, S. J. 1988. Object-Oriented Systems Analysis: Modeling the

World in Data. Englewood Cliffs, New Jersey: Yourdon Press.

Sommerville, I. 1992. Software Engineering. Addison-Wesley Publishing

Company Inc., 4th ed.

Stylianou, A.C., Madey G.R. & Smith, R.D. October 1992. Selection Criteria for

Expert System Shells: A Socio-Technical Framework, in Communications of

the ACM, Vol.35, No.10, pp.30-48.

Thomas, D. March 1989. What's in an Object?, in BYTE Vol.14, No.3, pp.231-

240.

Turban, E. 1990. Decision Support and Expert Systems: Management Support

Systems. New York: Macmillan Publishing Company, 2nd ed.

Literature References

151

Knowledge-based Support for Object-oriented Design

Van de Weg, R.LW. & Engmann, R. April 1992. A Framework and Method for

Object-Oriented Information Systems Analysis and Design, in IFIP WG8.1

Working Conference on Information Systems Concepts: Improving the

Understanding, Alexandria, Egypt.

Van der Walt, E. 1994. Software Project Management for Object-oriented

development, Msc Thesis, University of South Africa.

Waterman, D.A. 1986. A Guide to Expert Systems. Addison-Wesley Publishing

Company.

Literature References

Knowledge-based Support for Object-oriented Design

EXHIBITS

Exhibits

153

Knowledge-based Support for Object-oriented Design

The object model presents the static structure of a system by showing the objects in the

system, relationships between the objects, and the attributes and operations which

characterize each class of objects. This model is compiled with primitives from Table

4.1 .

1+

Meta Object Model

Exhibit4.1

Exhibits

154

Knowledge-based Support for Object-oriented Design

The dynamic model consists of multiple state diagrams, one state diagram for each

CLASS with important dynamic behavior, and shows the pattern of activity for an entire

system. This model is compiled with primitives from Table 4.2.

condition
guarded
transition

1+

state transition 1+ state

generalization attribute

l+ 1+

event

1+
aggregation

action
attribute l+

class +

1+

object

Meta Dynamic Model

Exhibit4.2

Exhibits

155

Knowledge-based Support for Object-oriented Design

The functional model describes computations within a system and consists of multiple

data flow diagrams which show the flow of values from external inputs, through

operations and internal data stores, to external outputs. This model is compiled with

primitives from Table 4.3.

+

1+

l+

1+

Meta Functional Model

Exhibit4.3

Exhibits

156

Knowledge-based Support for Object-oriented Design

Meta Model for class/object diagrams

Instance - A TM scenario

communicates-with

Instance of a Class Diagram

Exhibit4.4

Exhibits

Knowledge-based Support for Object-oriented Design

Event Trace Diagram

11
OBJECT l+I EVENT 11+ OBJECT

lnsta

Client ATM Consortium Bank

insert card

reauest nassword

enter nassword

verifv account

verify card with bank

Meta Model for an Event Trace Diagram

State (Transition) Diagram

state

guarded
transition

transition

account OK

hank account OK

condition

1+

l+ state

generalization l=~=i~::::f:~'--------, attribute
I+ 1+

event

1+
aggregation

action
attribute 1+

l+
class

1+

object

Meta Model for a State Diagram

Exhibit4.5

Exhibits

157

Knowledge-based Support for Object-oriented Design

Data Flow Dia ram S ntax

Instance - A TM scenario

Meta Model for a Data Flow Diagram

E::ihibit 4.6

amount

E::ihibits

158

account

Knowledge-based Support for Object-oriented Design

APPENDIX A

Kappa-PC

Appendix A · Kappa· PC

160

Knowledge-based Support for Object-oriented Design

The following is a subjective evaluation of Kappa-PC according to the author,

and was done based on literature from the vendors, before empirical experience.

For each category the criteria considered most important are double underlined

and received a 3 if present, according to the above mentioned literature. The

next important criteria are underlined and received a 2 if present. The rest of

the criteria received a 1 if present (Stylianou et al., 1992).

(i) End-User lnkt:face Criteria,

• Saved Cases

• Explanation Facilities

o Reasoning Path - How Graph 3

o What - Paraphrases

o Why - Relevances

•Documentation

•Tutorial

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features 2

•Speech 1/0

•Accepts Unknown as an Answer

• Context-Sensitive Help

• Display Manager

o Graphic Results 2

o Graphic Decision Tree

•Optimization

Appendix A - Kappa-PC

161

Knowledge-based Support for Object-oriented Design

•Learning

• Mouse Support

• Natural Language Interface

• Sensitivity Analysis or Change Answers and Rerun

(ii) Dewtloper lnt£rface Cril£ria

• Command Language/interpreter 1

• Documentation

•Tutorial

• Editing/Debugging Tools

o Rule/Working-Memory Browser

o Tracin2

o Cross-Index Utility

o Incremental Compilation

• Explanation Facility

o How (Reasoning Path) 3

o What (Paraphrase)

o Why (Relevance)

• Abilil}: to Customize Explanations 3

•Graphics 2

• Mathematical Capabilities

•Sample Knowled2e Bases

• Code Generator

•Windows

o Window Colors, Borders, Sizes 1

o Menu System

c Pop-Up Menus 1

c Pull-Down Menus 1

o Customizable Features 2

• Rapid Prototyping 3

• Open Architecture

Appendix A - Kappa-PC

162

Knowledge-based Support for Object-oriented Design

• Batch Processing Facilities

• Novice/Expert Modes

• String Handling

(iii) System Inter/ace Criteria

•Hardware

o Portability

o Sunnort for Microcomnuters 2

o Compatibility

o Multi-processor Support

o Multi-user Support

o Access to Special Hardware

• Imnlementation Languaee

o Portability

o Embeddability 3

o Comnaubility

• Cony Protection

•Batch Processing

• Real-Time Processing

• Network Support

(iv) Inference Engine Criteria

• Reasoning Mode

o Forward Chaining 2

o Backward Chaining 3

o Bi-Directional Inferencing

o Non-monotonic Reasoning

• Truth Maintenance System

• Search Strategy

o Breadth First 2

o Denth First 2

Appendix A - Kappa-PC

163

Knowledge-based Support for Object-oriented Design

o Branch-And-Bound

o Generate And Test

o Best First 2

o Hill Climbing

• Find All Answers

• Find Only One Answer

• Conflict Resolution

o Rule-Assigned Priority 2

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem

o Certainty Factor Model

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

• Iteration

•Fuzzy Sets

• Reliability

(v) Knowledge Bose Criteria,

•Representation Technique

o Rules 2

o Partitioned Rule Sets

o Meta-rules

o Decision Tables

o Frames

o Scripts/Schemata

Appendix A - Kappa-PC

164

Knowledge-based Support for Object-oriented Design

o Semantic Networks

o Formal Logic

•Induction

• Inheritance 2

• Knowled&e Eneineerin& Sub-s)'.!!tem

• Multiple Instance

•Demons 1

• Case Management

•Capacity

(vi) Data lnli!rfa.ce Crikria

• Access to 3GL and 4GL

• Linkage to Databases 3

• Access to UnderJl'.in& Lan&ua&e 2

• Linkage to Special Purpose Software

o Linkage to Transaction Processing

Environments 2

o Access to Lotus, DOS, etc. 2

(vii) Cost-.&lakJd Crikria

•Upgrades

•Required Software/Hardware

• Conversion

•Personnel

•Vendor Technical Support

• Training Programs

• Installation

•Run-Time Licence

• Consulting Fees

Appendix A • Kappa-PC

Knowledge-based Support for Object-oriented Design

(~iii) Vendor-Relakd Criteria

•Maintenance

•TechnicalSupport

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path

Total: 56

Appendix A - Kappa-PC

165

Knowledge-based Support for Object-oriented Design

APPENDIXB

Leonardo

Appendix B - Leonardo

167

Knowledge-based Support for Object-oriented Design

The following is a subjective evaluation of Leonardo according to the author, and

was done based on literature from the vendors, before empirical experience. For

each category the criteria considered most important are double underlined and

received a 3 if present, according to the above mentioned literature. The next

important criteria are underlined and received a 2 if present. The rest of the

criteria received a 1 if present (Stylianou et al., 1992).

(i) End-User lnllJrfac:e Crileria

• Saved Cases

• Explanation Facilities

o Reasoning Path - How Graph

o What - Paraphrases

o Why - Relevances 3

• Documentation

•Tutorial

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features 2

•Speech 1/0

• Accepts Unknown as an Answer

• Context-Sensitive Help

• Display Manager

o Graphic Results 2

o Graphic Decision Tree

• Optimization

Appendix B - Leonardo

168

Knowledge-based Support for Object-oriented Design

•Learning

• Mouse Support

• Natural Language Interface

• Sensitivity Analysis or Change Answers and Rerun

(ii) DeW11oper lnmtface Criteria,

• Command Language/interpreter

• Documentation 3

•Tutorial

• Editing/Debugging Tools

o Rule/Working-Memo!)'. Browser 2

o Tracing 2

o Cross-Index Utility

o Incremental Compilation

• Explanation Facility

o How (Reasoning Path) 3

o What (Paraphrase)

o Why (Relevance) 3

• Abilizy to Customize Explanations 3

•Graphics

• Mathematical Capabilities 2

• Sample Knowledge Bases

•Code Generator

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

• Rapid Protozyping

• Open Architecture 2

Appendix B - Leonardo

169

Knowledge-based Support for Object-oriented Design

•Batch Processing Facilities

• Novice/Expert Modes

• String Handling

(iii) System lnmrf aa Criteria

•Hardware

o Portability

o Su1u~ort for Microcomputers

o Compatibility

o Multi-processor Support

o Multi-user Support

o Access to Special Hardware

• Implementation Language

o Portability

o Embeddabilitv

o Compatibility

• Copy Protection

• Batch Processing

•Real-Time Processing

• Network Support

(iv) Inference Engine Criteria

• Reasoning Mode

o Forward Chaining 2

o Backward Chaining 3

o Bi-Directional Inferencing 2

o Non-monotonic Reasoning

• Truth Maintenance SY§tem

• Search Strategy

o Breadth First 2

o Depth First 2

Appendix B - Leonardo

170

Knowledge-based Support for Object-oriented Design

o Branch-And-Bound

o Generate And Test

o Best First

o Hill Climbing

• Find All Answers

• Find Only One Answer

• Conflict Resolution

o Rule-Assi&ned Priority

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem 1

o Certainty Factor Model 2

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

•Iteration

•Fuzzy Sets

• Reliability

(v) Knowledge Bose Crileria

• Representation Technique

o Rules 2

o Partitioned Rule Sets 2

o Meta-rules

o Decision Tables

o Frames 2

o Scripts/Schemata

Appendix B - Leonardo

171

Knowledge-based Support for Object-oriented Design

o Semantic Networks

o Formal Logic

•Induction

• Inheritance

• Knowledge EnKi!J.eering Sub-sntem

• Multiple Instance

•Demons 1

• Case Management

•Capacity

(vi) Data Interface Crileria

• Access to 3GL and 4GL

•Linkage to Databases 3

• Access to UnderOO!lg Language

• Linkage to Special Purpose Software

o Linkage to Transaction Processing

Environments

o Access to Lotus, DOS, etc. 2

(vii) Cost-Relakd Crit.eria

•Upgrades

•Required Software/Hardware

• Conversion

•Personnel

•Vendor Technical Support

• Training Programs

• Installation

•Run-Time Licence

• Consulting Fees

Appendix B - Leonardo

Knowledge-based Support for Object-oriented Design

(viii) Vendor-Related Criteria,

• Maintenance

•TechnicalSupport

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

•Commitment to Product

• Upgrade Path

Total: 53

Appendix B - Leonardo

172

Knowledge-based Support for Object-oriented Design

APPENDIXC

Nexpert Object

Appendix C - Nexpert Object

174

Knowledge-based Support for Object-oriented Design

The following is a subjective evaluation of Nexpert Object according to the

author, and was done based on literature from the vendors, before empirical

experience. For each category the criteria considered most important are double

underlined and received a 3 if present, according to the above mentioned

literature. The next important criteria are underlined and received a 2 if present.

The rest of the criteria received a 1 if present (Stylianou et al., 1992).

(i) End-User lnkrface Crikria

• Saved Cases

• Explanation Facilities

o Reasoning Path - How Graph

o What - Paraphrases

o Why - Relevances

• Documentation

•Tutorial

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

•Speech 1/0

•Accepts Unknown as an Answer

• Context-Sensitive Help

• Display Manager

o Graphic Results

o Graphic Decision Tree

• Optimization

Appendix C - Nexpert Object

Knowledge-based Support for Object-oriented Design

•Learning

• Mouse Support

• Natural Language Interface

• Sensitivity Analysis or Change Answers and Rerun

(ii) Dewtloper Jnkrfaa Criteria,

• Command Language/interpreter

•Documentation

•Tutorial

• Editing/Debugging Tools

o Rule/Workin2-Memory Browser

o Tracin2

o Cross-Index Utility

o Incremental Compilation

• Explanation Facility

o How (Reasoning Path)

o What (Paraphrase)

o Why (Relevance)

• Ability to Customize Explanations

•Graphics

• Mathematical Capabilities

•Sample Knowled2e Bases

•Code Generator

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

• Rapid Prototyping

• Open Architecture

2

Appendix C - Nexpert Object

175

176

Knowledge-based Support for Object-oriented Design

• Batch Processing Facilities

• Novice/Expert Modes

• String Handling

(iii) System Interface Crimria.

•Hardware

o Portability

o Sunnort for Microcomnuters

o Comnatibility

o Multi-processor Support

o Multi-user Support

o Access to Special Hardware

• Imnlementation Language

o Portability

o Embeddability

o Comnattbility

• Cofil' Protection

• Batch Processing

•Real-Time Processing

• Network Support

(iv) Inference Engine Criteria.

• Reasoning Mode

o Forward Chaining 2

o Backward Chaining 3

o Bi-Directional Inferencing

o Non-monotonic Reasoning

• Truth Maintenance S~tem

• Search Strategy

o Breadth First

o Denth First

Appendix C • Nexpert Object

177

Knowledge-based Support for Object-oriented Design

o Branch-And-Bound

o Generate And Test

o Best First

o Hill Climbing

• Find All Answers

• Find Only One Answer

• Conflict Resolution

o Rule-Assi2ned Priority

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem

o Certainty Factor Model

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

•Iteration

•Fuzzy Sets

• Reliability

(v) Knowledge Base Crikria

•Representation Technique

o Rules 2

o Partitioned Rule Sets

o Meta-rules

o Decision Tables

o Frames

o Scripts/Schemata

Appendix C - Nexpert Object

178

Knowledge-based Support for Object-oriented Design

o Semantic Networks

o Formal Logic

•Induction

• Inheritance

• Knowledge Engineering Sub-sntem

• Multiple Instance

•Demons

• Case Management

•Capacity

(vi) Data Inkrfa.ce Crikria

• Access to 3GL and 4GL 1

• Linkage to Databases 3

• Access to Under!)'.ing Language

• Linkage to Special PurPQse Software

o Linkage to Transaction Processing

Environments

o Access to Lotus, DOS, etc. 2

(vii) Cost-Relakd Crikria

•Upgrades

•Required Software/Hardware

• Conversion

•Personnel

• Vendor Technical Support

• Training Programs

• Installation

•Run-Time Licence

• Consulting Fees

Appendix C - Nexpert Object

179

Knowledge-based Support for Object-oriented Design

(Yiii) Vendor-Related Crikria

• Maintenance

• Technical Support

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path

Total: 15

Appendix C - Nexpert Object

Knowledge-based Support for Object-oriented Design

APPENDIXD

ART-IM

Appendix D - ART-IM

181

Knowledge-based Support for Object-oriented Design

The following is a subjective evaluation of ART-IM according to the author, and

was done based on literature from the vendors, before empirical experience. For

each category the criteria considered most important are double underlined and

received a 3 if present, according to the above mentioned literature. The next

important criteria are underlined and received a 2 if present. The rest of the

criteria received a 1 if present (Stylianou et al., 1992).

(i) End-User Interface Cril£ria

• Saved Cases

• Explanation Facilities

o Reasoning Path - How Graph

o What - Paraphrases

o Why - Relevances

• Documentation

•Tutorial

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

•Speech 1/0

• Accepts Unknown as an Answer

• Context-Sensitive Help

• Display Manager

o Graphic Results

o Graphic Decision Tree

•Optimization

Appendix D - ART-IM

Knowledge-based Support for Object-oriented Design

•Learning

• Mouse Support

• Natural Language Interface

• Sensitivity Analysis or Change Answers and Rerun

(ii) De-,ewper Inkrf ace Cril£ria

• Command Language/interpreter

• Documentation

•Tutorial

• Editing/Debugging Too1s

o Rule/Working-Memozy Browser

o Tracing

o Cross-Index Utility

o Incremental Compilation

• Explanation Facility

o How (Reasoning Path)

o What (Paraphrase)

o Why (Relevance)

• Ability to Customize Explanations

•Graphics

• Mathematical Capabilities

•Sample Knowledge Bases

•Code Generator

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

• Rapid Prototyping

• Open Architecture

2

2

1

Appendix D - ART-IM

182

183

Knowledge-based Support for Object-oriented Design

• Batch Processing Facilities

•Novice/Expert Modes

• String Handling

(iii) Syskm Inter/a« Criteria

•Hardware

o Portability 2

o SUJ!J!Ort for MicrocomJ!uters

o ComJ!atlbility

o Multi-processor Support

o Multi-user Support

o Access to Special Hardware

• ImJ!lementation Language

o Portability

o Embeddability

o ComJ!atlbility

• Copy Protection

• Batch Processing

• Real-Time Processing 2

• Network Support

(iv) Inference Engine Criteria

• Reasoning Mode

o Forward Chaining 2

o Backward Chaining

o Bi-Directional Inferencing

o Non-monotonic Reasoning

• Truth Maintenance S~tem 2

• Search Strategy

o Breadth First 2

o DeJ!th First 2

Appendix D - ART-IM

184

Knowledge-based Support for Object-oriented Design

o Branch-And-Bound

o Generate And Test

o Best First 2

o Hill Climbing

• Find All Answers

• Find Only One Answer

• Conflict Resolution

o Rule-Assi211ed Priority

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem

o Certainty Factor Model

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

•Iteration

•Fuzzy Sets

• Reliability

(v) Knowledge Base Crileria

• Representation Technique

o Rules 2

o Partitioned Rule Sets

o Meta-rules

o Decision Tables

o Frames 2

o Scripts/Schemata

Appendix D · ART-IM

185

Knowledge-based Support for Object-oriented Design

o Semantic Networks

o Formal Logic

•Induction

• Inheritance

• Knowledge Engineering Sub-system

• Multiple Instance

•Demons

• Case Management

•Capacity

(vi) Data lnt£tface Crileria

• Access to 3GL and 4GL

• Linkage to Databases 3

• Access to Under}Iing Language

• Linkage to Special Purpose Software

o Linkage to Transaction Processing

Environments

o Access to Lotus, DOS, etc. 2

(vii) Cost-Related Crileria

•Upgrades

•Required Software/Hardware

• Conversion

•Personnel

•Vendor Technical Support

• Training Programs

• Installation

•Run-Time Licence

• Consulting Fees

Appendix D - ART-IM

186

Knowledge-based Support for Object-oriented Design

(viii) Vendor-Related Crikria

• Maintenance

• Technical Support

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path

Total: 28

Appendix D - ART -IM

Knowledge-based Support for Object-oriented Design

APPENDIXE

EXSYS Professional

Appendix E · EXSYS Professional

188

Knowledge-based Support for Object-oriented Design

The following is a subjective evaluation of EXSYS Professional according to the

author, and was done based on literature from the vendors, before empirical

experience. For each category the criteria considered most important are double

underlined and received a 3 if present, according to the above mentioned

literature. The next important criteria are underlined and received a 2 if present.

The rest of the criteria received a 1 if present (Stylianou et al., 1992).

(i) End-User lnt£rface Cril£ria

• Saved Cases

• Explanation Facilities

o Reasoning Path - How Graph

o What - Paraphrases

o Why - Relevances

• Documentation

•Tutorial

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

•Speech 1/0

•Accepts Unknown as an Answer

• Context-Sensitive Help

• Display Manager

o Graphic Results

o Graphic Decision Tree

•Optimization

Appendix E • EXSYS Professional

Knowledge-based Support for Object-oriented Design

•Learning

• Mouse Support

• Natural Language Interface

• Sensitivity Analysis or Change Answers and Rerun

(ii) Developer lnkeface Criteria

• Command Language/interpreter

• Documentation

•Tutorial

• Editing/Debugging Tools

o Rule/Working-Memory Browser

o Tracing

o Cross-Index Utility

o Incremental Compilation

• Explanation Facility

o How (Reasoning Path)

o What (Paraphrase)

o Why (Relevance)

• Ability to Customize Explanations

•Graphics

• Mathematical Capabilities

•Sample Knowledge Bases

• Code Generator

•Windows

o Window Colors, Borders, Sizes

o Menu System

c Pop-Up Menus

c Pull-Down Menus

o Customizable Features

•Rapid Prototyping

• Open Architecture

2

2

2

Appendix E - EXSYS Professional

189

190

Knowledge-based Support for Object-oriented Design

•Batch Processing Facilities

•Novice/Expert Modes

• String Handling

(iii) System Interfa.ce Criteria,

•Hardware

o Portabili!y

o SUJ!J!Ort for MicrocomJ!uters

o ComJ!atl'bilily

o Multi-processor Support

o Multi-user Support

o Access to Special Hardware

• lmJ!lementation Language

o Portabilily

o Embeddability

o ComJ!ah'bilily

• CoJ!y Protection

•Batch Processing

• Real-Time Processing

• Network Support

(iv) Inference Engine Criteria,

• Reasoning Mode

o Forward Chaining 2

o Backward Chaining 3

o Bi-Directional Inferencing

o Non-monotonic Reasoning

• Truth Maintenance S~tem

• Search Strategy

o Breadth First

o DeJ!th First

Appendix E - EXSYS Professional

191

Knowledge-based Support for Object-oriented Design

o Branch-And-Bound

o Generate And Test

o Best First

o Hill Climbing

• Find All Answers

• Find Only One Answer

• Conflict Resolution

o Rule-AssiJllled Priority

o Specificity

o Recency

• Certainty Measurement

o Bayes Theorem

o Certainty Factor Model 2

o Dempster-Shafer Theory

o Fuzzy Set Theory

o Inheritance

o Certainty Threshold

• Blackboard

•Recursion

•Iteration

•Fuzzy Sets

• Reliability

(v) Knowledge Base Criteria

• Representation Technique

o Rules 2

o Partitioned Rule Sets 2

o Meta-rules

o Decision Tables

o Frames 2

o Scripts/Schemata

Appendix E - EXSYS Professional

192

Knowledge-based Support for Object-oriented Design

o Semantic Networks

o Formal Logic

•Induction

• Inheritance 2

• Knowledge En&jneerins; Sub-sl'.stem

• Multiple Instance

•Demons

• Case Management

•Capacity

(vi) Data lnkrjace Criteria

• Access to 3GL and 4GL

• Linkage to Databases 3

• Access to Under00n11 Language

• Linkage to Special PurPQse Software

o Linkage to Transaction Processing

Environments

o Access to Lotus, DOS, etc. 2

(vii) Cost-Re'/okd Criteria

•Upgrades

• Required Software/Hardware

• Conversion

•Personnel

• Vendor Technical Support

• Training Programs

• Installation

•Run-Time Licence

• Consulting Fees

Appendix E - EXSYS Professional

193

Knowledge-based Support for Object-oriented Design

(viii) Vendor-Related Criteria

• Maintenance

• Technical Support

• Training Courses

• Professional Application Development Services

• ProductNendor Maturity

• Commitment to Product

• Upgrade Path

Total: 26

Appendix E · EXSYS Professional

I

I

Knowledge-based Support for Object-oriented Design

APPENDIXF

User's Manual

Appendix F - User's Manual

195

.Knowledge-based Support for Object-oriented Design

This prototype was developed on Kappa-PC 2.0.

(The source code of the prototype is in Appendix H.)

When working with the prototype stiffy that accompanies the dissertation:

1. Activate Windows.

2. Activate Kappa-PC 2.0 and proceed with Step 3.

When working on the PC in Room 8-86 Theo van Wijk building, UNISA:

1. Click with left Mouse button twice on the Compilers icon.

2. Click with left Mouse button twice on the Kappa-PC 2.0 icon and wait.

3. Click with left Mouse button once on File in KAPPA (untitled) window.

4. Click with left Mouse button once on Open.

5. Click with left Mouse button once on design.kal (when working on the PC

in Room 8-86) or type b:design.kal in the File Name: position (when

working with the stiffy).

6. Click with left Mouse button once on OK and wait.

7. Click with left Mouse button once on the Session icon in the KAPP A

(untitled) window.

8. Click with left Mouse button once on SESSION and then click on OK.

(The first window of the Design Cycle - Figure G.3 in Appendix G - will

appear.)

9. Click with left Mouse button once on Project4.

10. Click with left Mouse button once on Design Project.

Appendix F - User's Manual

Knowledge-based Support for Object-oriented Design

(Refer to Figure G.4 in Appendix G.)

11. Click with left Mouse button once on System Design.

(Refer to Figure G.6 in Appendix G.)

12. Click with left Mouse button once on Step 1.

(Refer to Figure G. 7 in Appendix G.)

196

(The three questions applicable to Step 1, relative to this prototype,

begin.)

13. Click with left Mouse button once on OK.

(Refer to Figure G.8 in Appendix G.)

14. Click with left Mouse button once on MainMiniComputer for Transaction­

class.

15. Click with left Mouse button once on MainMiniComputer for EntryStation­

class.

16. Click with left Mouse button once on MainMiniComputer for

CashierTransaction-class.

17. Click with left Mouse button once on SpecialComponent for

Remote Transaction-class.

18. Click with left Mouse button once on MainMiniComputer for Update-class.

19. Click with left Mouse button once on SpecialComponent for ATM-class.

20. Click with left Mouse button once on MainMiniComputer for

Cashier Station-class.

21. Click with left Mouse button once on MainMiniComputer for Cashier-class.

22. Click with left Mouse button once on MainMiniComputer for

CardAuthorization-class.

23. Click with left Mouse button once on MainMiniComputer for Customer-

Appendix F - User's Manual

197

Knowledge-based Support for Object-oriented Design

class.

24. Click with left Mouse button once on MainMiniComputer for Consortium­

class.

25. Click with left Mouse button once on MainMiniComputer for Bank-class.

26. Click with left Mouse button once on MainMiniComputer for Account­

class.

27. Click with left Mouse button once on SpecialComponent for CashCard­

class.

(This concludes Question 1 of Step 1. Question 2 of Step 1 starts now.)

(Refer to Figure G.9 in Appendix G.)

28. Click with left Mouse button once on OK.

(Refer to Figure G.10 in Appendix G.)

29. Click with left Mouse button once on CentralMiniMainframe for

Transaction-class.

30. Click with left Mouse button once on CentralMiniMainframe for

Entry Station-class.

31. Click with left Mouse button once on CentralMiniMainframe for

CashierTransaction-class.

32. Click with left Mouse button once on ExternalMiniMainframe for

Remote Transaction-class.

33. Click with left Mouse button once on CentralMiniMainframe for Update­

class.

34. Click with left Mouse button once on ExtemalMiniMainframe for ATM­

class.

35. Click with left Mouse button once on CentralMiniMainframe for

Appendix F - User's Manual

198

Knowledge-based Support for Object-oriented Design

Cashier Station-class.

36. Click with left Mouse button once on CentralMiniMainframe for Cashier­

class.

37. Click with left Mouse button once on CentrtdMiniMainframe for

CardAuthorization-class.

38. Click with left Mouse button once on CentralMiniMainframe for Customer­

class.

39. Click with left Mouse button once on ExternalMiniMainframe for

Consortium-class.

40. Click with left Mouse button once on CentralMiniMainframe for Bank­

class.

41. Click with left Mouse button once on CentralMiniMainframe for Account­

class.

42. Click with left Mouse button once on ExternalMiniMainframe for

Cash Card-class.

(This concludes Question 2 of Step 1. Question 3 of Step 1 starts

now.) (Refer to Figure G.11 in Appendix G.)

43. Click with left Mouse button once on OK.

(Refer to Figure G.12 in Appendix G.)

44. Click with left Mouse button once on PerformArithmetic for Transaction­

class.

45. Click with left Mouse button once on Userlnterface for EntryStation-class.

46. Click with left Mouse button once on InputProcessing for

CashierTransaction-class.

47. Click with left Mouse button once on Other for RemoteTransaction-

Appendix F · User's Manual

199

Knowledge-based Support for Object-oriented Design

class. (Refer to Figure G.13 in Appendix G.)

48. Move with down-arrow-key to third position and change Other to ATM.

49. Click with left Mouse button once on OK.

50. Click with left Mouse button once on PerformArithmetic for Update-class.

51. Click with left Mouse button once on Other for AJM"-class.

52. Move with down-arrow-key to third position and change Other to ATM.

53. Click with left Mouse button once on OK.

54. Click with left Mouse button once on Userlnterface for CashierStation-class.

55. Click with left Mouse button once on Userlnterface for Cashier-class.

56. Click with left Mouse button once on PerformA.rithmetic for

CardAuthorization-class.

57. Click with left Mouse button once on Userlnterface for Customer-class.

58. Click with left Mouse button once on PerformArithmetic for Consortium-

class.

59. Click with left Mouse button once on PerformArithmetic for Bank-class.

60. Click with left Mouse button once on PerformArithmetic for Account-class.

61. Click with left Mouse button once on Other for CashCard-class.

62. Move with down-arrow-key to third position and change Other to ATM.

63. Click with left Mouse button once on OK and wait.

At this stage, because of the physical-location question (Question 2), there are

two subsystems without names. They must now be named. (Refer to Figure G.14

in Appendix G.)

64. Click with left Mouse button once on left white block, type

Appendix F - User's Manual

200

Knowledge-based Support for Object-oriented Design

ConsortiumComputer and press Enter.

65. Click with left Mouse button once on right white block, type

BankComputers and press Enter.

66. Click with left Mouse button once on Proceed.

(Refer to Figure G.15 in Appendix G.)

67. Click with left Mouse button once on down-arrow of right white block.

68. Click with left Mouse button once on ATMSubSystem in the overlay box

on top of the big green box.

The Expert System infers that there are three major subsystems after the first

iteration of Step 1 for the System Design task, namely "Breaking a system into

subsystems". The three subsystems are shown as three big boxes in Figure G.15.

69. Click with left Mouse button once on Proceed.

(Refer to Figure G.16 in Appendix G.)

70. Click with left Mouse button once on The End.

71. Close all Kappa windows.

72. Close KAPPA (untitled) window.

73. Save changes? NO.

Appendix F • User's Manual

Knowledge-based Support for Object-oriented Design

APPENDIXG

Description of Demonstration

Appendix G - Description of Demonstration

202

Knowledge-based Support for Object-oriented Design

Automated Teller Machine Example

The problem statement in Chapter 6 for an automated teller machine (ATM) network,

shown in Figure G.l, serves as an example for the target system. This ATM problem

is used for purposes of the prototype. The source code for the prototype is in Appendix

H.

\
\
\

\G.

• k
i

./°'\.

Figure G.1 A 1M network (Rumbaugh et al., 1991)

Appendix G - Description of Demonstration

203

Knowledge-based Support for Object-oriented Design

The Analysis Cycle is completed and one of the deliverables, namely the Object Model,

is presented in Figure G.2. When starting with the Design Cycle, Step 1 is: "Breaking

a system into subsystems". This step uses the Object Model.

I
Ea try
station

Entered on -• Traaaactio• ~ Consists of

l
I

ATM Cullier
1tatioa

Cullier
traanctio• .,

Remote
traa1actioa

Update

"
.,

Entered by Concerns

Owns Owns

Coaaorti•m ·~ :>---~-B...._a•_k_l--'E~m'!!1£D./~o'l'.'.•V!.._.S _JI I :::~mer ,, ,., r.n

Consists

Started bv

I

J
I Card

aatllorizatio•

Identifies~ •
~---~ of ~-~~

Has I Cull Card I
'--'-"u'•" ,Jr1....._~----------1Accoant L Accesse~s---~

Figure G.2 AlM Object Model (Rumbaugh et al., 1991)

Appendix G - Description of Demonstration

204

Knowledge-based Support for Object-oriented Design

When activating the prototype, the following window appears:

Figure G.J Design Cycle Window

In the Project box one may select the specific project. To continue with the Design

Cycle, click on the Design Project Button.

Appendix G - Description of Demonstration

205

Knowledge--bued Support for Object-oriented Design

The next window that appears will be:

Figure G.4 Design Summary Window

In the OMT methodology there are two main tasks to be completed for Design, namely

the System Design task and the Object Design task. Click on System Design for

purposes of this demonstration.

Appendix G - Description of Demonstration

206

Knowledge-based Support for Object-oriented Design

If clicked on Object Design, the following window would have appeared:

Figure G~ Object Design Window

This window and task is not supported by this prototype.

Appendix G - Description of Demonstration

207

Knowledge-based Support for Object-oriented Design

If clicked on System Design, the following window will appear:

Figure G.6 System Design Window

If one wants to do one of the eight steps of System Design, then one must click on the

appropriate button, for example click on the Step I button. Steps 2 to 8 are not

supported by this prototype. In the white blocks, next to the Step-buttons, the Step

Status for each step can be seen.

Appendix G - Description of Demonstration

208

Knowledge-based Support for Object-oriented Design

An example of the support which the rules of the knowledge base provide, follows.

When breaking a system into subsystems, each subsystem encompasses facets of the

system which share some common grounds. These grounds are firstly execution on the

same kind of hardware, secondly hardware in the same physical location and thirdly,

similar functionality. This is the reason why the first three questions in the dialogue part

of the demonstration confront the novice with the following detail:

Question I.

Question 2.

Question 3.

Refer to each class in the Object Model, which is received as a

deliverable from the Analysis Cycle. On what type of Hardware

component does the class under investigation execute?

Indicate the physical location of the hardware component upon

which the class under investigation executes.

A service is a group of related functions which share some

common purpose. Classify the service of the class under

investigation.

According to the answers to these questions, the first iteration for the possible sub­

systems for the target system may be completed and the first decisions made. All three

questions must be responded to before an inference is derived by the expert system.

Appendix G - Description of Demonstration

Question 1, Part 1:

Knowledge-hued Support for Object-oriented Design

Refer to each class In the Object ModeL which is
received as a deliverable from the Analysis Cycle.

Figure G. 7 Question I . I

Appendh G - Description of Demonstration

209

Question I, Part 2:

Knowledge-based Support for Object-oriented Design

Hardwan; camgpnent
does the

Tr1D11ctio!t=Class
execute?

Figure G.8 Question 1.2

Question I, Part 2 is asked for every class in the Object Model.

Appendb. G - Description of Demonstration

210

211

Knowledge-based Support for Object-oriented Design

Question 2, Part 1:

Figure G.9 Question 2.1

Appendix G - Description of Demonstration

Question 2, Part 2:

Knowledge-based Support for Object-oriented Design

hanlware component
upgn which the

Transaction-Class
executes.

cen1r.-.iniMainfr-

Figure G.10 Question 2.2

Question 2, Part 2 is asked for every class in the Object Model.

Appendix G - Description of Demonstration

212

Question 3, Part I :

Knowledge-based Support for Object-oriented Design

A service is a group of related functions which share
some common purpose.

Figure G.11 Question 3.1

Appendix G - Description of Demonstration

213

Knowledge-based Support for Object-oriented Design

Question 3, Part 2:

Figure G.12 Question 3.2

Classify the service of
the Tcan11ction=C!ass

under pnc pf the
foll owing:

lnputProceuing
OulputProceaaing

Uaerlnterfece
Printing

61aphica1Execulion
PerfomAlid.etic

214

Question 3, Part 2 is asked for every class in the Object Model. Now the rules are

activated and the reasoning process begins.

Appendix G - Description of Demonstration

Knowledge-hued Support for Object~riented Design

Question 3, Part 3:

Figure G.13 Question 3.3

Please change 'Other'. In the 3rd
position. to the actual type of

FunctionalitJ is: ExternalMlnlMalR'
tlther

--

215

For the Remote Transaction-class, A JM-class and CashCard-class, one must enter Other

when asked to "Classify the service". This window will appear and Other must be

changed to ATM

Appendix G - Description of Demonstration

216

Knowledge-based Support for Object-oriented Design

At this stage, two of the subsystems are without names. They must now be named.

Figure G.14 Naming Subsystems Window

Appendix G - Description of Demonstration

217

Knowledge-based Support for Object-oriented Design

This is the first decision which was made after the first iteration of the decision-making

process for the possible subsystems.

Figure G.15 Final Subsystems Window

Appendix G - Description of Demonstration

218

Knowledge-hued Support for Object-oriented Design

The demonstration ends with the following screen.

Figure G.16 Final Window

The source code of this prototype is listed in Appendix H.

Appendix G - Description of Demonstration

Knowledge-based Support for Object-oriented Design

APPENDIXH

Source Code of the Prototype

Appendix H - Source Code of the Prototype

220

Knowledge-based Support for Object-oriented Design

The generic source code of classes, subclasses and instances of these, in Kappa-PC, was deliberately
omitted in the interests of space, but is available from the author, as well as on the accompanying stiffy
in the file: design.kal

/*************************************
**** FUNCTION: NewProjectButtonAction
*************************************/

MakeFunction(NewProjectButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: DeleteProjectButtonAction
*************************************/

MakeFunction(DeleteProjectButtonAction, [),
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: QuitProjectButtonAction
*************************************/

MakeFunction(QuitProjectButtonAction, [],
HideWindow(SESSION));

/*************************************
**** FUNCTION: SystemDesignButtonAction
*************************************/

MakeFunction(SystemDesignButtonAction, [),
{
Hide Window(DesignSummary);
ShowWindow(SystemDesignMenu);
});

/*************************************
**** FUNCTION: QuitSummaryButtonAction
*************************************/

MakeFunction(QuitSummaryButtonAction, [),
{
Hide Window(DesignSummary);
ShowWindow(SESSION);
});

/*************************************
**** FUNCTION: DesignProjectButtonAction
*************************************/

MakeFunction(DesignProjectButtonAction, [],

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

If Known Value?(Design:Project)
Then {

EnumList(SystemDesign:ListOfObjects, slot,
SetValue(ObjectCJass, slot, None, None, None));

SetValue(StepSDl:Status, 1);
SendMessage(StepSDl, ClearSpeciaJSlots);
ResetValue(StepSDl, Testl);
ResetValue(StepSDl, Test2);
Hide Window(SESSION);
ShowWindow(DesignSummary);
}

Else Beep());

/*************************************
* * * * FUNCTION: ObjectDesignButtonAction
*************************************/

MakeFunction(ObjectDesignButtonAction, [],
{
Hide Window(DesignSummary);
ShowWindow(ObjectDesignMenu);
});

/*************************************
**** FUNCTION: QuitSystemDesignButtonAction
*************************************/

MakeFunction(QuitSystemDesignButtonAction, [),
{
Hide Window(SystemDesignMenu);
ShowWindow(DesignSummary);
});

/*************************************
**** FUNCTION: QuitObjectDesignButtonAction
*************************************/

MakeFunction(QuitObjectDesignButtonAction, [),
{
Hide Window(ObjectDesignMenu);
ShowWindow(DesignSummary);
});

/*************************************
**** FUNCTION: SDlButtonAction
*************************************/

MakeFunction(SDlButtonAction, [],
{
SetValue(StepSDl:Status, 2);

Appendix H - Source Code of the Prototype

221

Knowledge-based Support for Object-oriented Design

SendMessage(ObjectCJass, Li<ltOfObjects);
SendMessage(ObjectClass, Reset);
SendMessage(ObjectClass, HardwareQuestion);
SendMessage(ObjectClass, PhysicalLocationQuestion);
SendMessage(ObjectClass, FunctionalityQuestion);
SetValue(StepSDl:Status, 3);
SendMessage(StepSDl, PerformDesignStep);
});

/*************************************
* * *"' FUNCTION: DeleteProjectButtonActionBak
*************************************/

MakeFunction(DeleteProjectButtonActionBak, [],
If Known Value?(Design:Project)

Then {
SendMessage(Design, DeleteProject);
Resetlmage(ProjectSelection);
}

Else Beep());

!*************************************
* * * * FUNCTION: NewProjectButtonActionBak
*************************************/

MakeFunction(NewProjectButtonActionBak, [],
{
SendMessage(Design, CreateNewProject);
Resetlmage(ProjectSelection);
});

/*************************************
* * * * FUNCTION: ODlButtonAction
*************************************/

MakeFunction(ODlButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: OD2ButtonAction
*************************************/

MakeFunction(OD2ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: OD3ButtonAction
*************************************/

MakeFunction(OD3ButtonAction, [],
PostMessage("This Button i<I not supported for purposes of this demonstration."));

Appendix H - Source Code of the Prototype

222

223

Knowledge-based Support for Object-oriented Design

/**************•······················
**** FUNCTION: OD4ButtonAction ,

MakeFunction(OD4ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

r••••••••••••••••••••••••••••••••••••
**** FUNCTION: ODSButtonAction ,

MakeFunction(ODSButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/****************••···················
*** * FUNCTION: OD6ButtonAction
*************************************/

MakeFunction(OD6ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: OD7ButtonAction
*************************************/

MakeFunction(OD7ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: OD8ButtonAction
*************************************/

MakeFunction(OD8ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: SD2ButtonAction
*************************************/

MakeFunction(SD2ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: SD3ButtonAction
*************************************/

MakeFunction(SD3ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

/*************************************
**** FUNCTION: SD4ButtonAction
*************************************/

MakeFunction(SD4ButtonAction, [],

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

PostMessage("Tim Button is not supported for purposes of this demonstration."));

/*************************************
** ** FUNCTION: SDSButtonAction ,

MakeFunction(SDSButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

,
** ** FUNCTION: SD6ButtonAction ,

MakeFunction(SD6ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

,
**** FUNCTION: SD7ButtonAction ,

MakeFunction(SD7ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

,
** ** FUNCTION: SD8ButtonAction ,

MakeFunction(SD8ButtonAction, [],
PostMessage("This Button is not supported for purposes of this demonstration."));

,
**** FUNCTION: ProceedButtonAction ,

MakeFunction(ProceedButtonAction, [],
{
Hide Window(SubSystemName Window);
SendMessage(SpeciaJsWindow, ShowWindow);
});

,
**** FUNCTION: SpeciaJsWindowButtonAction ,

Make Function(Specials WindowButtonAction, [],
{
Hide Window(Specials Window);
ShowWindow(FinalWindow);
});

Appendix H - Source Code of the Prototype

224

Knowledge-based Support for Object-oriented Design

,
**** FUNCTION: EndButtonAction
*************************************/

MakeFunction(EndButtonAction, a,
{
Hide Window(FinalWindow);
Hide Window(SubSystemName Window);
Hide Window(Specials Window);
Hide Window(ObjectDesignMenu);
Hide Window(SystemDesignMenu);
Hide Window(DesignSummary);
HideWindow(SESSION);
});

/**************METHOD: CreateNewProject **************/
MakeMethod(Design, CreateNewProject, a.

{
PostlnputForm("Enter the new project's name:", Global, ProjectName,

"Project : ");
Let (name Global:ProjectName]

{
If Instance?(name)

Then PostMessage(FormatValue("Warning: %s
already exists.",

name))
Else Makelnstance(name, Project);

Self:Project = name;
};

});

/**************METHOD: DeleteProject **************/
MakeMethod(Design, DeleteProject, a,

Let [title FormatValue("Deleting %s", Self:Project)]
If (PostMenu(title, OK, Cancel) #= OK)

Then {
Deletelnstance(Self:Project);
ResetValue(Self:Project);
});

/**************METHOD: QuitProject **************/
MakeMethod(Design, QuitProject, a,

Hide Window(Design Cycle));

/**************METHOD: ResetSubSystems **************/
MakeMethod(Design, ResetSubSystems, a,

Appendix H - Source Code of the Prototype

225

Knowledge-based Support for Object-oriented Design

{
SetValue(StepSDl:Status, 1);
ResetValue(StepSDl:Testl);
ResetValue(StepSD1:Test2);
SendMessage(StepSDl, ClearSpecialSlots);
ResetValue(StepSDl:Specials);
});

MakeSlot(Design:Project);
SetSlotOption(Design:Project, V ALUE_TYPE, OBJECT);
SetSlotOption(Design:Project, ALLOW ABLE_ CLASSES, Project);
Design:Project = Project4;
SetSlotOption(Design:Project, IF _NEEDED, NULL);
SetSlotOption(Design:Project, WHEN_ ACCESS, NULL);
SetSlotOption(Design: Project, BEFORE_ CHANGE, NULL);
SetSlotOption(Design:Project, AFTER_CHANGE, NULL);

226

SetSlotOption(Design:Project, IMAGE, ProjectSelection, DesignSumEdit, SystemDesignEdit,
ObjectDesignEdit);

/**************METHOD: PerformDesignStep **************/
MakeMethod(SystemDesign, PerformDesignStep, [],

{
EnumList(SystemDesign:ListOfObjects, object,

{
Global:Object = object;
Assert(Global:Object);
SetForwardChainMode(BREADTHFIRST);
ForwardChain(NULL, Self:SDRuleSet);
});

Show Window(SubSystemName Window);
});

MakeSlot(SystemDesign:SystemDesignSteps);
SetSlotOption(SystemDesign:SystemDesignSteps, ALLOW ABLE_ VALUES, Stepl, Step2, Step3,
Step4, Steps, Step6, Step7, Step8);
SystemDesign:SystemDesignSteps = Step5;
SetSlotOption(SystemDesign:SystemDesignSteps, IF_ NEEDED, NULL);
SetSlotOption(SystemDesign:SystemDesignSteps, WHEN_ ACCESS, NULL);
SetSlotOption(SystemDesign:SystemDesignSteps, BEFORE_ CHANGE, NULL);
SetSlotOption(SystemDesign:SystemDesignSteps, AFTER_ CHANGE, NULL);
MakeSlot(SystemDesign:ListOfObjects);
SetSlotOption(SystemDesign:ListOfObjects, MULTIPLE);
SetValue(SystemDesign:ListOfObjects, Transaction, EntryStation, CashierTransaction,
RemoteTransaction, Update, ATM, CashierStation, Cashier, CardAuthorization, Customer,
Consortium, Bank, Account, CashCard);
SetSlotOption(SystemDesign:ListOfObjects, IF _NEEDED, NULL);
SetSlotOption(SystemDesign:ListOfObjects, WHEN_ACCESS, NULL);

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

SetSlotOption(SystemDesign:ListOfObjects, BEFORE_ CHANGE, NULL);
SetSlotOption(SystemDesign:ListOfObjects, AFfER_CHANGE, NULL);

/**************METHOD: Reset **************/
MakeMethod(ObjectCJass, Reset, U,

{
QuestionsWork:CurrentObjectCJassNumber = 1;
EnumList(SystemDesign:ListOfObjects, slot,

{
If GetSlotOption(ObjectCJass:slot, MULTIPLE)

Then SetValue(ObjectCJass, slot, None, None, None);
Questions Work:CurrentObjectCJassNumber + = 1;
});

});

/**************METHOD: HardwareQuestion **************/
MakeMethod(ObjectCJass, HardwareQuestion, U,

{

227

PostMessage("Refer to each cJass in the Object Model, which is received as a deliverable from
the Analysis Cycle.");

QuestionsWork:CurrentObjectCJassNumber = 1;
EnumList(SystemDesign:ListOfObjects, slot,

{
If GetSlotOption(ObjectCJass:slot, MULTIPLE)

Then SetNthElem(ObjectCJass:slot, 1, PostMenu("On what type of Hardware component
does the"

GetNthElem(SystemDesign:ListOfObjects,

QuestionsWork:CurrentObjectClassNumber)

"-CJass execute?",

MainMiniComputer,
SpecialComponent));

QuestionsWork:CurrentObjectCJassNumber += 1;
If (GetNthElem(ObjectCJass:slot, 1) #= SSpecialComponent)

Then PostlnputForm("Please change 'SpecialComponent' to the actual type of Hardware
Component:",

});
});

ObjectCJass:slot, "Harware Component is:");

/* ** *** * ****** * METHOD: PhysicalLocationQuestion **************I
MakeMethod(ObjectCJass, PhysicalLocationQuestion, U,

{
PostMessage("Indicate the physical location of the hardware component which the relevant cJass

executes on.");

Appendix H - Source Code of the Prototype

228

Knowledge-based Support for Object-oriented Design

QuestionsWork:CurrentObjectClassNumber = 1;
EnumList(SystemDesign:ListOfObjects, slot,

{
If GetSlotOption(ObjectClass:slot, MULTIPLE)

Then SetNthElem(ObjectClass:slot, 2, PostMenu("Indicate the physical location of the
hardware component which the "

GetNthElem(SystemDesign:ListOfObjects,

Questions Work:CurrentObjectClassNumber)

"-Class executes on.",

CentralMiniMainframe,
ExternalMiniMainframe));

Questions Work:CurrentObjectClassNumber + = 1;
If (GetNthElem(ObjectClass:slot, 2) #= SpecialComponent)

Then PostlnputForm("Please change 'SpecialComponent' in the 2nd position, to the correct
physical location:",

ObjectClass:slot, "Physical Location is:");
});

});

!************** METHOD: FunctionalityQuestion **************/
MakeMethod(ObjectClass, FunctionalityQuestion, O,

{
PostMessage("A service is a group of related functions which share some common purpose.");
QuestionsWork:CurrentObjectClassNumber = 1;
EnumList(SystemDesign:ListOfObjects, slot,

{
If GetSlotOption(ObjectClass:slot, MULTIPLE)

Then SetNthElem(ObjectClass:slot, 3, PostMenu("Classify the service of the "

GetNthElem(SystemDesign:ListOfObjects,

QuestionsWork:CurrentObjectClassNumber)

"-Class under one of the following:",

InputProcessing,
OutputProcessing,
Userlnterface,
Printing, GraphicalExecution,
PerformArithmetic,
ProcessControl,
DatabaseManagement,
Other));

Questions Work:CurrentObjectClassNumber + = 1;
If (GetNthElem(ObjectClass:slot, 3) #= Other)

Then PostlnputForm("Please change 'Other', in the 3rd position, to the actual type of

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

Functionality:",
ObjectClass:slot, "Functionality is: ");

});
});

/**************METHOD: ListOfObjects **************/
MakeMethod(ObjectClass, ListOfObjects, O,

{
If Slot?(SystemDesign:ListOfObjects)

Then {
ResetValue(SystemDesign:ListOfObjects);
SetSlotOption(SystemDesign:ListOfObjects, MULTIPLE);
}

Else {
MakeSlot(SystemDesign:ListOfObjects);
SetSlotOption(SystemDesign:ListOfObjects, MULTIPLE);
};

GetSlotList(ObjectClass, SystemDesign:ListOfObjects);
});

MakeSlot(ObjectClass:Transaction);
SetSlotOption(ObjectClass:Transaction, MULTIPLE);

229

Set Value(ObjectClass:Transaction, MainMiniComputer, CentralMiniMainframe, PerformArithmetic
);
SetSlotOption(ObjectClass:Transaction, IF_NEEDED, NULL);
SetSlotOption(ObjectClass:Transaction, WHEN_ ACCESS, NULL);
SetSlotOption(ObjectClass:Transaction, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectClass:Transaction, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass:EntryStation);
SetSlotOption(ObjectClass:EntryStation, MULTIPLE);
SetValue(ObjectClass:EntryStation, MainMiniComputer, CentralMiniMainframe, Userlnterface);
SetSlotOption(ObjectClass:EntryStation, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:EntryStation, WHEN_ACCESS, NULL);
SetSlotOption(ObjectClass:EntryStation, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectClass:EntryStation, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass:CashierTransaction);
SetSlotOption(ObjectClass:CashierTransaction, MULTIPLE);
SetValue(ObjectClass:CashierTransaction, MainMiniComputer, CentralMiniMainframe,
InputProcessing);
SetSlotOption(ObjectClass:CashierTransaction, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:CashierTransaction, WHEN _ACCESS, NULL);
SetSlotOption(ObjectClass:CashierTransaction, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectClass:CashierTransaction, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass:RemoteTransaction);
SetSlotOption(ObjectClass:RemoteTransaction, MULTIPLE);
SetValue(ObjectClass:RemoteTransaction, SpecialComponent, ExternalMiniMainframe, ATM);
SetSlotOption(ObjectClass:RemoteTransaction, IF _NEEDED, NULL);

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

SetSlotOption(ObjectClass:RemoteTransaction, WHEN_ ACCESS, NULL);
SetSlotOption(ObjectClass:RemoteTransaction, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectClass:RemoteTransaction, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass: Update);
SetSlotOption(ObjectClass:Update, MULTIPLE);

230

SetValue(ObjectClass:Update, MainMiniComputer, CentralMiniMainframe, PerformArithmetic);
SetSlotOption(ObjectClass:Update, IF_NEEDED, NULL);
SetSlotOption(ObjectClass: Update, WHEN _ACCESS, NULL);
SetSlotOption(ObjectClass:Update, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectCJass:Update, AFTER_CHANGE, NULL);
MakeSlot(ObjectClass:ATM);
SetSlotOption(ObjectCJass:ATM, MULTIPLE);
SetValue(ObjectCJass:ATM, SpecialComponent, ExternalMiniMainframe, ATM);
SetSlotOption(ObjectCJass:ATM, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:ATM, WHEN_ACCESS, NULL);
SetSlotOption(ObjectCJass:ATM, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectCJass:ATM, AFTER_CHANGE, NULL);
MakeSlot(ObjectCJass:CashierStation);
SetSlotOption(ObjectCJass:CashierStation, MULTIPLE);
SetValue(ObjectCJass:CashierStation, MainMiniComputer, CentralMiniMainframe, Userlnterface);
SetSlotOption(ObjectCJass:CashierStation, IF _NEEDED, NULL);
SetSlotOption(ObjectCJass:CashierStation, WHEN _ACCESS, NULL);
SetSlotOption(ObjectCJass:CashierStation, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectCJass:CashierStation, AFTER_ CHANGE, NULL);
MakeSlot(ObjectCJass:Cashier);
SetSlotOption(ObjectCJass:Cashier, MULTIPLE);
SetValue(ObjectCJass:Cashier, MainMiniComputer, CentralMiniMainframe, Userlnterface);
SetSlotOption(ObjectCJass:Cashier, IF _NEEDED, NULL);
SetSlotOption(ObjectCJass:Cashier, WHEN_ACCESS, NULL);
SetSlotOption(ObjectClass:Cashier, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectCJass:Cashier, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass:CardAuthorization);
SetSlotOption(ObjectCJass:CardAuthorization, MULTIPLE);
SetV alue(ObjectCJass:CardAuthorization, MainMiniComputer, CentralMiniMainframe,
PerformArithmetic);
SetSlotOption(ObjectCJass:CardAuthorization, IF _NEEDED, NULL);
SetSlotOption(ObjectCJass:CardAuthorization, WHEN_ACCESS, NULL);
SetSlotOption(ObjectClass:CardAuthorization, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectCJass:CardAuthorization, AFTER_ CHANGE, NULL);
MakeSlot(ObjectCJass:Customer);
SetSlotOption(ObjectCJass:Customer, MULTIPLE);
SetValue(ObjectCJass:Customer, MainMiniComputer, CentralMiniMainframe, Userlnterface);
SetSlotOption(ObjectCJass:Customer, IF_ NEEDED, NULL);
SetSlotOption(ObjectCJass:Customer, WHEN_ACCESS, NULL);
SetSlotOption(ObjectClass:Customer, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectCJass:Customer, AFTER_CHANGE, NULL);

Appendix H - Source Code of the Prototype

231

Knowledge-based Support for Object-oriented Design

MakeSlot(ObjectCJass:Consortium);
SetSiotOption(ObjectClass:Consortium, MULTIPLE);
SetValue(ObjectClass:Consortium,MainMiniComputer,ExternalMiniMainframe,PerformArithmetic
);
SetSlotOption(ObjectClass:Consortium, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:Consortium, WHEN_ACCESS, NULL);
SetSiotOption(ObjectCJass:Consortium, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectClass:Consortium, AFTER_ CHANGE, NULL);
MakeSlot(ObjectCJass:Bank);
SetSlotOption(ObjectCJass:Bank, MULTIPLE);
SetValue(ObjectClass:Bank, MainMiniComputer, CentralMiniMainframe, PerformArithmetic);
SetSlotOption(ObjectClass:Bank, IF_NEEDED, NULL);
SetSlotOption(ObjectClass:Bank, WHEN_ACCESS, NULL);
SetSiotOption(ObjectClass:Bank, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectClass:Bank, AFTER_ CHANGE, NULL);
MakeSlot(ObjectClass:Account);
SetSlotOption(ObjectClass:Account, MULTIPLE);
SetValue(ObjectClass:Account, MainMiniComputer, CentralMiniMainframe, PerformArithmetic);
SetSlotOption(ObjectClass:Account, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:Account, WHEN_ACCESS, NULL);
SetSlotOption(ObjectClass:Account, BEFORE_ CHANGE, NULL);
SetSlotOption(ObjectClass:Account, AFTER_CHANGE, NULL);
MakeSlot(ObjectClass:CashCard);
SetSlotOption(ObjectClass:CashCard, MULTIPLE);
SetValue(ObjectClass:CashCard, SpecialComponent, ExternalMiniMainframe, ATM);
SetSlotOption(ObjectClass:CashCard, IF _NEEDED, NULL);
SetSlotOption(ObjectClass:CashCard, WHEN_ ACCESS, NULL);
SetSlotOption(ObjectClass:CashCard, BEFORE_CHANGE, NULL);
SetSlotOption(ObjectClass:CashCard, AFTER_ CHANGE, NULL);

/*""""********* METHOD: ClearSpecialSlots •••••*********/
MakeMethod(StepSDl, ClearSpecialSlots, U,

{
EnumList(Self:Specials, slot, DeleteSlot(Self:slot));
ResetValue(StepSDl:Specials);
});

MakeSlot(StepSDl:Status);
SetSlotOption(StepSDl:Status, INHERIT, FALSE);
SetSlotOption(StepSDl:Status, VALUE_TYPE, NUMBER);
StepSDl:Status = 3;
SetSlotOption(StepSDl:Status, IF_NEEDED, NULL);
SetSlotOption(StepSDl:Status, WHEN_ ACCESS, NULL);
SetSlotOption(StepSDl:Status, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Status, AFTER_ CHANGE, NULL);
SetSlotOption(StepSDl:Status, IMAGE, SDSteplEdit);

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

MakeSlot(StepSDl:SDRuleSet);
SetSlotOption(StepSDl:SDRuleSet, INHERIT, FALSE);
SetSlotOption(StepSDl:SDRuleSet, MULTIPLE);
SetValue(StepSDl:SDRuleSet, RuleTestl, RuleTest2, RuleTest3, Rule4, Rule5, Rule6);
SetSlotOption(StepSDl:SDRuleSet, IF _NEEDED, NULL);
SetSlotOption(StepSDl:SDRuleSet, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:SDRuleSet, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:SDRuleSet, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:Account);
SetSlotOption(StepSDl:Account, INHERIT, FALSE);
SetSlotOption(StepSDl:Account, MULTIPLE);
SetValue(StepSDl:Account, Testl, None, None);
SetSlotOption(StepSDl:Account, IF _NEEDED, NULL);
SetSlotOption(StepSDl:Account, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Account, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Account, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:Transaction);
SetSlotOption(StepSDl:Transaction, INHERIT, FALSE);
SetSlotOption(StepSDl:Transaction, MULTIPLE);
SetValue(StepSDl:Transaction, Testl, None, None);
SetSlotOption(StepSDl:Transaction, IF_NEEDED, NULL);
SetSlotOption(StepSDl:Transaction, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Transaction, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Transaction, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:EntryStation);
SetSlotOption(StepSDl:EntryStation, INHERIT, FALSE);
SetSlotOption(StepSDl:EntryStation, MULTIPLE);
SetValue(StepSDl:EntryStation, Testl, None, None);
SetSlotOption(StepSDl:EntryStation, IF_ NEEDED, NULL);
SetSlotOption(StepSDl:EntryStation, WHEN_ ACCESS, NULL);
SetSlotOption(StepSDl:EntryStation, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:EntryStation, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:CashierTransaction);
SetSlotOption(StepSDl:CashierTransaction, INHERIT, FALSE);
SetSlotOption(StepSDl:CashierTransaction, MULTIPLE);
SetValue(StepSDl:CashierTransaction, Testl, None, None);
SetSlotOption(StepSDl:CashierTransaction, IF_NEEDED, NULL);
SetSlotOption(StepSDl:CashierTransaction, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:CashierTransaction, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:CashierTransaction, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:RemoteTransaction);
SetSlotOption(StepSDl:RemoteTransaction, INHERIT, FALSE);
SetSlotOption(StepSDl:RemoteTransaction, MULTIPLE);
SetValue(StepSDl:RemoteTransaction, None, None, ATM);
SetSlotOption(StepSDl:RemoteTransaction, IF _NEEDED, NULL);
SetSlotOption(StepSDl:RemoteTransaction, WHEN_ACCESS, NULL);

Appendix H - Source Code of the Prototype

232

Knowledge-based Support for Object-oriented Design

SetSlotOption(StepSDl:RemoteTransaction, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:RemoteTransaction, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl: Update);
SetSlotOption(StepSDl:Update, INHERIT, FALSE);
SetSlotOption(StepSDl: Update, MULTIPLE);
SetValue(StepSDl:Update, Testl, None, None);
SetSlotOption(StepSDl:Update, IF _NEEDED, NULL);
SetSlotOption(StepSDl:Update, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Update, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:Update, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:ATM);
SetSlotOption(StepSDl:ATM, INHERIT, FALSE);
SetSlotOption(StepSDl:ATM, MULTIPLE);
SetValue(StepSDl:ATM, None, None, ATM);
SetSlotOption(StepSDl:ATM, IF_NEEDED, NULL);
SetSlotOption(StepSDl:ATM, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:ATM, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:ATM, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:CashierStation);
SetSlotOption(StepSDl:CashierStation, INHERIT, FALSE);
SetSlotOption(StepSDl:CashierStation, MULTIPLE);
SetValue(StepSDl:CashierStation, Testl, None, None);
SetSlotOption(StepSDl:CashierStation, IF _NEEDED, NULL);
SetSlotOption(StepSDl:CashierStation, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:CashierStation, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:CashierStation, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:Cashier);
SetSlotOption(StepSDl:Cashier, INHERIT, FALSE);
SetSlotOption(StepSDl:Cashier, MULTIPLE);
SetValue(StepSDl:Cashier, Testl, None, None);
SetSlotOption(StepSDl:Cashier, IF _NEEDED, NULL);
SetSlotOption(StepSDl:Cashier, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Cashier, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Cashier, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:Customer);
SetSlotOption(StepSDl:Customer, INHERIT, FALSE);
SetSlotOption(StepSDl:Customer, MULTIPLE);
SetValue(StepSDl:Customer, Testl, None, None);
SetSlotOption(StepSDl:Customer, IF _NEEDED, NULL);
SetSlotOption(StepSDl:Customer, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Customer, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Customer, AFTER_CHANGE, NULL);
MakeSlot(StepSDl:CardAuthorization);
SetSlotOption(StepSDl:CardAuthorization, INHERIT, FALSE);
SetSlotOption(StepSDl:CardAuthorization, MULTIPLE);
SetValue(StepSDl:CardAuthorization, Testl, None, None);

Appendix H - Source Code of the Prototype

233

Knowledge-based Support for Object-oriented Design

SetSlotOption(StepSDl:CardAuthorization, IF _NEEDED, NULL);
SetSlotOption(StepSDl:CardAuthorization, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:CardAuthorization, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:CardAuthorization, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:Consortium);
SetSlotOption(StepSDl:Consortium, INHERIT, FALSE);
SetSlotOption(StepSDl:Consortium, MULTIPLE);
SetValue(StepSDl:Consortium, None, Test2, None);
SetSlotOption(StepSDl:Consortium, IF_NEEDED, NULL);
SetSlotOption(StepSDl:Consortium, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Consortium, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Consortium, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:Bank);
SetSlotOption(StepSDl:Bank, INHERIT, FALSE);
SetSlotOption(StepSDl:Bank, MULTIPLE);
SetValue(StepSDl:Bank, Testl, None, None);
SetSlotOption(StepSDl:Bank, IF _NEEDED, NULL);
SetSlotOption(StepSDl:Bank, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:Bank, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:Bank, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:CashCard);
SetSlotOption(StepSDl:CashCard, INHERIT, FALSE);
SetSlotOption(StepSDl:CashCard, MULTIPLE);
SetValue(StepSDl:CashCard, None, None, ATM);
SetSlotOption(StepSDl:CashCard, IF _NEEDED, NULL);
SetSlotOption(StepSDl:CashCard, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:CashCard, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:CashCard, AFTER_CHANGE, NULL);
MakeSlot(StepSD1:Test1);
SetSlotOption(StepSD1:Test1, INHERIT, FALSE);
SetSlotOption(StepSD1:Test1, MULTIPLE);

234

SetValue(StepSD1:Test1, Transaction, EntryStation, CashierTransaction, Update, CashierStation,
Cashier, CardAuthorization, Customer, Bank, Account);
SetSlotOption(StepSD1:Test1, IF _NEEDED, NULL);
SetSlotOption(StepSD1:Test1, WHEN_ACCESS, NULL);
SetSlotOption(StepSD1:Test1, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSD1:Test1, AFTER_ CHANGE, NULL);
SetSlotOption(StepSD1:Test1, IMAGE, Test1MultipleLiltBox, InternalSubSystemNameMultiple);
MakeSlot(StepSD1:Test2);
SetSlotOption(StepSD1:Test2, INHERIT, FALSE);
SetSlotOption(StepSD1:Test2, MULTIPLE);
SetValue(StepSD1:Test2, Consortium);
SetSlotOption(StepSD1:Test2, IF _NEEDED, NULL);
SetSlotOption(StepSD1:Test2, WHEN _ACCESS, NULL);
SetSlotOption(StepSD1:Test2, BEFORE_CHANGE, NULL);
SetSlotOption(StepSD1:Test2, AFTER_ CHANGE, NULL);

Appendix H - Source Code of the Prototype

235

Knowledge-based Support for Object-oriented Design

SetSiotOption(StepSDl:Test2, IMAGE, Test2MultipleListBox, ExternalSubSystemNameMultiple);
MakeSlot(StepSDl:Specials);
SetSiotOption(StepSDl:SpeciaJs, INHERIT, FALSE);
SetSlotOption(StepSDl:SpeciaJs, MULTIPLE);
SetValue(StepSDl:SpeciaJs, ATMSubSystem);
SetSlotOption(StepSDl:SpeciaJs, IF_NEEDED, NULL);
SetSlotOption(StepSDl:SpeciaJs, WHEN_ACCESS, NULL);
SetSiotOption(StepSDl:SpeciaJs, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:SpeciaJs, AFTER_ CHANGE, NULL);
MakeSlot(StepSDl:InternalSubSystemName);
SetSiotOption(StepSDl:InternalSubSystemName, INHERIT, FALSE);
StepSDl:InternalSubSystemName = BankComputers;
SetSlotOption(StepSDl:InternalSubSystemName, IF _NEEDED, NULL);
SetSlotOption(StepSDl:InternalSubSystemName, WHEN_ ACCESS, NULL);
SetSlotOption(StepSDl:InternalSubSystemName, BEFORE_ CHANGE, NULL);
SetSlotOption(StepSDl:InternalSubSystemName, AFTER_ CHANGE, NULL);
SetSlotOption(StepSDl:InternalSubSystemName, IMAGE, InternalSubSystemNameEdit,
InternalEditBox);
MakeSlot(StepSDl:ExternalSubSystemName);
SetSlotOption(StepSDl:ExternalSubSystemName, INHERIT, FALSE);
StepSDl:ExternalSubSystemName = ConsortiumComputer;
SetSlotOption(StepSDl:ExternalSubSystemName, IF_NEEDED, NULL);
SetSlotOption(StepSDl:ExternalSubSystemName, WHEN_ACCESS, NULL);
SetSlotOption(StepSDl:ExternalSubSystemName, BEFORE_CHANGE, NULL);
SetSlotOption(StepSDl:ExternalSubSystemName, AFTER_ CHANGE, NULL);
SetSlotOption(StepSDl:ExternalSubSystemName, IMAGE, ExternalSubSystemNameEdit,
ExternalEditBox);
StepSDl:SystemDesignSteps = Stepl;
MakeSlot(StepSDl:ATMSubSystem);
SetSlotOption(StepSDl:ATMSubSystem, MULTIPLE);
SetValue(StepSDl:ATMSubSystem, RemoteTransaction, ATM, CashCard);

/**************METHOD: ShowWindow .,,,.,.,.**********/
MakeMethod(SpeciaJsWindow, ShowWindow, ll,

{
SetValue(Special1ComboJ3ox:AllowableValues, StepSDl:SpeciaJs);
Resetlmage(SpeciallComboBox);
Resetlmage(TestlMultipleListBox);
Resetlmage(Test2MultipleListBox);
ShowWindow(Self);
});

/************** METHOD: AfterSpecialSelected **************I
MakeMethod(SpeciaJsWindow, AfterSpecialSelected, [slotname oldvalue],

Let [listbox slotname If ObjectListBox]

Appendix H - Source Code of the Prototype

Knowledge-based Support for Object-oriented Design

{
SetValue(listbox:AllowableValues, GetValue(StepSDl, Self:slotname));
Resetlmage(listbox);
});

Specials Window:X = O;
Specials Window: Y = O;
SpecialsWindow:Title ="Final Subsystem Window";
SpecialsWindow:SessionNumber = 4;
SpecialsWindow:Width = 640;
SpecialsWindow:Height = 480;
SpecialsWindow:Visible =FALSE;
SpecialsWindow:State = HIDDEN;
MakeSlot(SpecialsWindow:Speciall);
SetSlotOption(SpecialsWindow:Speciall, INHERIT, FALSE);
SpecialsWindow:Speciall = ATMSubSystem;
SetSlotOption(SpecialsWindow:Speciall, IF _NEEDED, NULL);
SetSlotOption(SpecialsWindow:Speciall, WHEN_ACCESS, NULL);
SetSlotOption(SpecialsWindow:Speciall, BEFORE_CHANGE, NULL);
SetSlotOption(Specials Window:Speciall, AFTER_ CHANGE, AfterSpecialSelected);
SetSlotOption(SpecialsWindow:Speciall, IMAGE, SpeciallComboBox);
MakeSlot(SpecialsWindow:Specia12);
SetSlotOption(SpecialsWindow:Specia12, INHERIT, FALSE);
Specials Window:Specia12 = UserlnterfaceSubSystem;
SetSlotOption(SpecialsWindow:Specia12, IF _NEEDED, NULL);
SetSlotOption(SpecialsWindow:Specia12, WHEN_ACCESS, NULL);
SetSlotOption(SpecialsWindow:Specia12, BEFORE_CHANGE, NULL);
SetSlotOption(Specials Window:Specia12, AFTER_ CHANGE, AfterSpecialSelected);
MakeSlot(SpecialsWindow:SpeciallObject);
SetSlotOption(SpecialsWindow:SpeciallObject, INHERIT, FALSE);
SpecialsWindow:SpeciallObject = CardAuthorization;
SetSlotOption(SpecialsWindow:SpeciallObject, IF _NEEDED, NULL);
SetSlotOption(SpecialsWindow:SpeciallObject, WHEN_ACCESS, NULL);
SetSlotOption(SpecialsWindow:SpeciallObject, BEFORE_ CHANGE, NULL);
SetSlotOption(SpecialsWindow:SpeciallObject, AFTER_CHANGE, NULL);
SetSlotOption(SpecialsWindow:SpeciallObject, IMAGE, SpeciallObjectListBox);
MakeSlot(Specials Window:Specia120bject);
MakeSlot(Specials Window:Testl);
SetSlotOption(SpecialsWindow:Testl, INHERIT, FALSE);
SpecialsWindow:Testl = InternalSubsystem;
SetSlotOption(SpecialsWindow:Testl, IF _NEEDED, NULL);
SetSlotOption(SpecialsWindow:Testl, WHEN_ACCESS, NULL);
SetSlotOption(SpecialsWindow:Testl, BEFORE_CHANGE, NULL);
SetSlotOption(SpecialsWindow:Testl, AFTER_ CHANGE, NULL);
MakeSlot(SpecialsWindow:Test2);
SetSlotOption(SpecialsWindow:Test2, INHERIT, FALSE);
SpecialsWindow:Test2 = ExternalSubsystem;

Appendix H • Source Code of the Prototype

236

Knowledge-based Support for Object-oriented Design

SetSlotOption(SpeciaJsWindow:Test2, IF_NEEDED, NULL);
SetSlotOption(SpeciaJsWindow:Test2, WHEN_ACCESS, NULL);
SetSlotOption(SpeciaJsWindow:Test2, BEFORE_CHANGE, NULL);
SetSlotOption(SpeciaJsWindow:Test2, AFTER_CHANGE, NULL);
SetValue(SpeciaJsWindow:BackgroundColor, 0, 0, 255);
SpeciaJsWindow:Menu =FALSE;
SpeciaJsWindow:Titlebar =TRUE;
SpeciaJsWindow:Sizebox =TRUE;
ResetWindow (SpeciaJsWindow);

/*************************••••••••••**********************/
/** ALL RULES ARE SAVED BELOW **/
/***/

/*************************************
**** RULE: RuleTestl
*************************************/

MakeRule(RuleTestl, O,
GetNthElem(GetValue(ObjectClass, Global:Object), 1)

#= MainMiniComputer And GetNthElem(GetValue(ObjectClass,
Global:Object),

2) #= CentralMiniMainframe,
Let [object Global:Object]

SetNthElem(StepSDl:object, 1, Testl));

/*************************************
* * * * RULE: RuleTest2
*************************************/

MakeRule(RuleTest2, 0,
GetNthElem(GetValue(ObjectClass, Global:Object), 1)

#= MainMiniComputer And GetNthElem(GetValue(ObjectClass,
Global:Object),

2) #= ExternalMiniMainframe,
Let [object Global:Object]

SetNthElem(StepSDl:object, 2, Test2));

!*************************************
* * * * RULE: RuleTest3
*************************************/

MakeRule(RuleTest3, 0,
GetNthElem(GetValue(ObjectClass, Global:Object), 1)

#= SpecialComponent And Not(GetNthElem(GetValue(ObjectClass,
Global:Object),

3) #=None),

Appendix H - Source Code of the Prototype

237

Knowledge-based Support for Object-oriented Design

Let [object Global:Object)
SetNthElem(StepSDl:object, 3, GetNthElem(ObjectClass:object,

3)));

/***********•••·······················
•••• RULE: Rule4

·····································1
MakeRule(Rule4, [],

GetNthElem(GetValue(StepSDl, Global:Object), 1)
#= Testl,

Let [object Global:Object)
Let [newslot GetNthElem(GetValue(StepSDl, object), 1)]

{
If Not(Slot?(StepSDl:newslot))

Then {
MakeSlot(StepSDl:newslot);
SetSlotOption(StepSDl:newslot, MULTIPLE);
AppendToLi<lt(StepSDl:Testl, newslot);
};

AppendToLi<lt(StepSDl:newslot, object);
});

1·····································
* * * * RULE: Rule6
·····································1

MakeRule(Rule6, [],
Not(GetNthElem(GetValue(StepSDl, Global:Object), 3)

#=None),
Let [object Global:Object]

Let [newslot GetNthElem(GetValue(StepSDl, object), 3)
SubSystem]

{
If Not(Slot?(StepSDl:newslot))

Then {
MakeSlot(StepSDl:newslot);
SetSlotOption(StepSDl:newslot, MULTIPLE);
AppendToLi<lt(StepSDl:Specials, newslot);
};

AppendToLi<lt(StepSDl:newslot, object);
});

1·····································
* * * * RULE: RuleS
·····································1

MakeRule(RuleS, [),
GetNthElem(GetValue(StepSDl, Global:Object), 2)

Appendix H - Source Code of the Prototype

238

Knowledge-based Support for Object-oriented Design

#= Test2,
Let (object Global:Object]

Let [newslot GetNthElem(GetValue(StepSDl, object), 2)]
{
If Not(Slot?(StepSDl:newslot))

Then {
MakeSlot(StepSDl:newslot);
SetSlotOption(StepSDl:newslot, MULTIPLE);
AppendToList(StepSD1:Test2, newslot);
};

AppendToList(StepSDl:newslot, object);
});

Appendix H - Source Code of the Prototype

239

Knowledge-based Support for Object-oriented Design

INDEX

A

abstract . 31, 77, 81, 108

abstraction 6, 8, 28-32, 35, 36, 39, 40, 77, 93, 99

actor object . 85

aggregation . 81, 84

Al .. 8

analysis 2, 4, 6, 8, 10, 12, 17, 20, 22, 26, 33, 36, 37, 41, 55, 66, 89, 96, 102, 106, 113-115, 134,

137, 138, 140, 141, 144, 150, 151, 161, 168, 175, 182, 189

architecture 18, 36, 56, 67, 90, 92, 98, 102, 118, 121, 161, 168, 175, 182, 189

Artificial Intelligence .. 8, 48, 74, 144, 146, 150

aspect ... 8, 18-20, 41, 112-116, 139

association ... 80, 81, 84, 109, 146

ATM .. 94, 133

attributes 29, 30, 34, 52, 79-82, 107, 109, 110, 122, 153

B

backward chaining 58, 69, 130, 162, 169, 176, 183, 190

blackboard .. 60, 70, 71, 163, 170, 177, 184, 191

c
case 2, 62, 72, 97, 99, 111, 146, 164, 171, 178, 185, 192

certainty factor . 60, 70, 163, 170, 177, 184, 191

class 6, 29, 30, 32, 34-36, 38-40, 52, 79-82, 84, 94, 99, 102, 105, 106, 108-110, 113, 114, 122,

128, 153, 154, 156

class diagram . 156

classification . 28-30

cohesion . 25, 38, 39, 42

INDEX

241

Knowledge-based Support for Object-oriented Design

combining data and behavior . 28, 31

completeness 13, 37, 39, 40, 42, 112, 113, 115, 141

concurrency . 28, 32, 90, 95

condition . 51, 84, 101, 127

constraint . 81

coupling . 38, 39, 42, 91, 111

criteria 3, 5, 10, 13-15, 24, 43, 53, 55, 57, 58, 61, 63-66, 68, 69, 71-75, 93, 113, 120, 149, 150,

160-165, 167-172, 174-179, 181-186, 188-193

cycle 2, 4, 7, 8, 10, 12, 13, 17-20, 23, 33, 37, 41, 75, 88, 89, 102, 103, 111, 114-116, 118, 133,

134, 136-138, 140, 141

D

data dictionary . 89

data flow 85, 86, 90, 94, 104, 113, 114, 155, 158

data flow diagram 85, 86, 94, 104, 113, 114, 158

data store .. 85, 86, 98

data structures . 78, 98, 104, 105

database ... 12, 98, 121, 124, 131, 144

DDE ... 67-69

debugging 49, 55, 56, 66, 129, 161, 168, 175, 182, 189

depth 50, 59, 69, 74, 92, 130, 162, 169, 176, 183, 190

derived values . 106

design 1-6, 8-15, 17, 18, 20, 23-26, 31, 33-44, 48, 54, 56, 75-77, 88-91, 93-96, 98-104, 106, 107,

109, 111-118, 130, 133-141, 143, 144, 147-151

DesignNet . 18, 19, 22, 88

development 1-4, 6-12, 14, 15, 17-23, 26, 32, 37, 41, 43, 53, 55, 57, 64, 73, 75, 78, 88, 105,

111, 120-122, 124, 125, 128, 131-134, 138, 140, 143-145, 147,

149-151, 165, 172, 179, 186, 193

DFD .. 85, 86

diagram 11, 79, 82, 83, 85, 86, 89, 90, 94-96, 104, 113, 114, 116, 118, 154, 156-158

discriminator ... 81

INDEX

242

Knowledge-based Support for Object-oriented Design

DLL ... 66-69

domain 3, 9, 10, 12, 13, 33, 40, 41, 44-48, 50-52, 70, 74, 78, 94, 111

domain expert . 47, 48, 74, 111

domain knowledge . 44, 46, 51, 52, 74

dynamic model 15, 37, 76, 78, 82-85, 88, 90, 94, 95, 104, 107, 111, 113, 114, 117, 137, 154

E

encapsulation .. 5, 27, 28, 31, 32, 148

end-user 2, 7, 9, 10, 12, 15, 47, 48, 53-55, 57, 58, 65, 74, 119, 121, 124, 125, 127, 132, 139,

160, 167, 174, 181, 188

end-user interface 10, 15, 53, 65, 74, 119, 121, 124, 132, 139, 160, 167, 174, 181, 188

engineering 1, 2, 7, 33, 37, 47-49, 61, 62, 72, 140, 143, 145-148, 150, 164, 171, 178, 185, 192

ES .. 8

event 70, 82, 84, 90, 94-96, 100, 104, 107, 113, 114, 157

event flow diagram ... 90

event trace .. 94, 96, 113, 114, 157

expert system 14, 43-51, 53-57, 60, 64, 73-75, 119, 132, 144, 147, 149, 150

expert system building tools . 48

expertise ... 40, 50, 74, 120

F

feature ... 6, 30, 56, 61

forward chaining . 58, 69, 130, 162, 169, 176, 183, 190

frame.. 52, 61

frames 7, 51, 61, 71, 74, 163, 170, 177, 184, 191

framework . 7, 18, 38, 76, 149-151

function 33, 35, 36, 77-79, 104, 124-127, 129, 145

functional model 15, 37, 76, 78, 82, 84-88, 90, 94, ~04, 106, 111, 113, 114, 117, 137, 155

INDEX

243

Knowledge-based Support for Object-oriented Design

G

generalization . 29, 81

GI .. 121

guarded transition . 84

guardian object . 99

H

hierarchy 28, 31, 32, 52, 62, 120, 122, 123, 125

hypothesis . 10, 11, 13, 58, 60, 137, 138, 140

I

identity . 28-30, 79

implementation 2, 4, 8, 12, 20, 23, 25, 26, 30-32, 36-38, 57, 68, 77, 79, 89, 90, 96, 98, 100,

102, 104, 107, 110, 115, 118, 138, 140, 141, 146, 162, 169, 176, 183,

190

inference 10, 44-46, 48, 52, 53, 58, 60, 61, 65, 66, 69, 71, 74, 123-126, 129, 130, 132, 162,

169, 176, 183, 190

inference engine 10, 44-46, 48, 52, 53, 58, 60, 61, 66, 69, 74, 124-126, 162, 169, 176, 183, 190

inferencing 14, 43, 50, 52, 58, 62, 69, 74, 129, 130, 162, 169, 176, 183, 190

information-hiding .. 28, 31, 92

inheritance 5, 28, 30, 32, 35, 39, 60-62, 70, 72, 102, 108, 122, 163, 164, 170, 171, 177, 178,

184, 185, 191, 192

instance 18, 29, 30, 35, 62, 72, 77, 79, 80, 109, 116, 128, 130, 131, 156, 164, 171, 178, 185,

192

K

Kappa-PC 10, 15, 44, 53, 64, 65, 67-70, 72, 73, 75, 111, 119-125, 127-134, 138-140, 147, 159,

160

KB ... 10, 15

INDEX

244

Knowledge-based Support for Object-oriented Design

KBS ... 8

knowledge acquisition ... 14, 43, 50, 51, 62, 74

knowledge base 10, 15, 44-46, 49, 53, 58, 61-63, 71, 74, 76, 77, 94, 111, 114, 116, 119,

121-126, 130, 139, 163, 170, 177, 184, 191

knowledge engineer ... 47, 51, 74

knowledge representation ... 14, 51, 62

knowledge-based support for object-oriented design 14, 42, 138

knowledge-based system 2, 10, 17, 40, 43, 44, 57, 74, 133

knowledge-engineering . 47

KS .. 8

L

life cycle . 2, 4, 7, 8, 10, 18, 19, 37, 41, 133

life cycle aspect . 8

M

message ... 27, 30, 126

meta model .. 12, 77, %, 156-158

method 1, 4, 10, 11, 14, 15, 24-26, 30, 33, 40, 59, 75, 77, 79, 80, 85, 90, 112, 116, 125, 129,

136, 138, 146, 151

methodology 3, 4, 10, 12, 37, 38, 41, 43, 75, 76, 78, 88, 90, 91, 94, 103, 112, 117, 120, 137,

140, 147

methods aspect ... 8, 20, 41

model 1, 7-9, 12-15, 17-22, 28, 29, 34, 37, 38, 41, 60, 70, 76-79, 81-90, 93-%, 102, 104, 105,

106, 107, 109, 111, 113, 114, 116-118, 130, 131, 133, 134, 137,

139-141, 143, 148, 153-158, 163, 170, 177, 184, 191

modularity .. 28, 31, 92

multi-perspectives .. 14, 17, 22

multiplicity . 81

INDEX

245

Knowledge-based Support for Object-oriented Design

0

object 1-6, 8, 10-15, 17, 20-22, 25-42, 61, 62, 64, 65, 67, 70, 71, 73, 75-90, 93-97, 99, 102,

103-105, 107-120, 122, 123, 125, 128, 130-135, 137-140, 143, 144,

148, 150, 151, 153, 156, 173, 174

object model 15, 37, 70, 76, 78, 79, 81-83, 85, 87-90, 93, 94, 104, 105, 109, 111, 113, 117, 134,

137, 153

Object-Modeling Technique .. 10, 37, 76, 78

object-orientation 2, 5, 14, 17, 20, 25-28, 30, 31, 41

object-oriented 1-3, 5, 6, 8, 10-14, 17, 20-22, 25-28, 30, 32-34, 36-42, 73, 75, 76, 88, 111, 116,

117, 119, 120, 122, 131-133, 135, 138-140, 143, 144, 148, 150, 151

object-oriented design 1-3, 5, 6, 11, 13, 14, 17, 25, 33, 34, 36, 38-42, 75, 76, 111, 116, 117,

133, 135, 138, 139, 140

object-oriented system . 6

OISEE .. 8, 12, 18, 19, 139-141

OMT 10, 12, 15, 37, 41, 76-78, 88, 90, 91, 103, 111, 117, 118, 137

OOA .. 6

OOD .. 6

OOP .. 6

optimization 54, 66, 106, 160, 167, 174, 181, 188

p

package ... 5, 103, 110

paradigm . 2, 5, 6, 10, 12, 26, 27

persistence . 28, 32

polymorphism . 28-30, 32, 79

primitive ... 31, 38, 40, 110

problem statement . 33, 89, 135, 136

procedure ... 28, 32, 78, 100, 107

prototype 9, 10, 13, 15, 16, 119, 133-136, 138-140

INDEX

246

Knowledge-based Support for Object-oriented Design

Q
quadrant . 20

qualifier . 81

R

re-usability . 25, 112, 115, 141

re-usable . 13, 36, 106, 115, 120, 141

re-use ... 6

reference model .. 7, 41, 141

requirements 2, 7, 12, 18, 33, 77, %, 115, 117, 127

role . 12, 47, 81, 105

rule 15, 51, 55, 59, 61, 65, 66, 70, 71, 74, 75, 111-115, 118-120, 123-125, 129-132, 134, 139,

144, 161, 163, 168, 170, 175, 177, 182, 184, 189, 191

rule-based reasoning . 15, 75, 119, 130, 132, 139

rules 4, 9, 18, 43, 46, 47, 50, 51, 55, 59-62, 65, 70-72, 111-116, 119, 120, 123-126, 129, 130,

131, 132, 134, 139, 140, 163, 170, 177, 184, 191

s
schema .. 9

schemata 9, 24, 51, 61, 62, 71, 74, 90, 94, 112, 130, 163, 170, 177, 184, 191

SDLC ... 7, 18, 111, 133, 134, 138, 141, 142

SE ... 1, 3, 140

SEE • . 52, 67, 70, 97, 126

selection ... 14, 43, 53, 74, 134, 150

self-knowledge . 50, 74

semantic net . 51

sharing . 28, 30, 32

software development life cycle 1, 2, 4, 7, 10, 18, 41, 133

software engineering . 1, 2, 33, 37, 140, 143, 145, 147, 148, 150

software engineering environment . 145

INDEX

247

Knowledge-based Support for Object-oriented Design

software process model 1, 7, 14, 17, 18, 22, 41, 139

specification . 12, 33, 115, 144

spiral model . 8, 12, 19-22, 89, 140, 143

state diagram ... 82, 83, 94-96, 113, 154, 157

subclass . 29, 30, 122

substate . 84

sufficiency . 39, 42

superclass .. 30, 108

superstate . 84

symbolic reasoning . 50, 74

synergy . 28, 30

system architecture . 36, 90

system-building aids . 48

T

target system . 7, 111, 119, 120, 122, 134-136, 140

technique 10, 37, 52, 61, 71, 76, 78, 122, 148, 163, 170, 177, 184, 191

thread of control .. 95, 96, 100

transition ... 84, 115

typing . 28, 32

u
user interface 10, 15, 45, 53, 65, 74, 119, 121, 123, 124, 132, 134, 139, 140, 160, 167, 174,

181, 188

v
validate . 105

validation ... 11, 61, 75

verification ... 13, 61, 75, 112, 114, 141

verify .. 77, 101, 107, 108, 115, 116, 130

INDEX

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:
	Button9:
	Button10:
	Button11:
	Button12:
	Button13:
	Button14:
	Button15:
	Button16:
	Button17:
	Button18:
	Button20:
	Button21:
	Button22:
	Button23:
	Button24:
	Button25:
	Button26:
	Button27:
	Button28:
	Button29:
	Button30:
	Button31:
	Button32:
	Button33:
	Button34:
	Button35:
	Button36:
	Button37:
	Button38:
	Button39:
	Button40:
	Button41:
	Button42:
	Button43:
	Button44:
	Button45:
	Button46:
	Button47:
	Button48:
	Button49:
	Button50:
	Button51:

