
INTEGRATING THE KEY APPROACHES OF

NEURAL NETWORKS

by

Beverley Robin Howard

Submitted in fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

In the subject

OPERATIONS RESEARCH

At the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROFESSOR WOLVAARDT

December 1999

1

Acknowledgements

I record my sincere thanks to Professor Wolvaardt for his guidance in the
presentation of this thesis.

My thanks to my wife Pauline and daughter Melissa for their tolerance throughout
my neglect of family duties in pursuit of my studies.

I am indebted to Miss Herculine Retief for the encouragement by carrying an
additional work load, enabling time for the completion of this work and for help
with the final reproduction.

For their help in communication and submission of work to the University of
South Africa I owe thanks to Miss. Bosh off, Mrs Pretorius and Mrs Swanepoel.

I would like also to thank the members of Professors Swanepoel's "Department
of Operations Research" that have befriended their oldest student on his visits to
the seat of learning.

Table of contents

Chapter1. FOUNDATIONS OF NEURAL NETWORKS

Summary

1.1 Artificial Intelligence

1.1.1 Expert systems

1.1.2 Optimization

1.1.3 Fuzzy logic

1.1.4 Neural networks

1.2 Biological origins

1.3 Computer models

1.3.1 Conventional computer behaviour

1.3.2 Artificial neural network behaviour

1.4 Artificial neural networks

1.5 The role of artificial neural networks

1.6 Analysis of neural network limitations

1.7 Neuron models

1.7.1 The two state neuron

1.7.2 A non-linear threshold neuron

1.7.3 The generic connectionist neuron

1.8 Activation functions

1.8.1 Continuous examples

1.9 Single neuron computation

1.10 Requirements for a practical circuit

References

Chapter 2. NEURAL NETWORKS STRUCTURES

Summary

2.1 . Artificial neural network properties

2.2 Building the network

2.2.1 The framework

2.2.2 lnstars and outstars

2.3 Classification of neural networks

2.3.1 Feed forward (multi-layer) networks

Page

11

11

11

12

13

14

14

15

17

17

18

19

19

21

21

21

24

24

25

26

28

29

30

32

32

32

34

34

35

36

36

2

2.3.2 Feedback (recurrent) networks

2.3.3 The delay unit

2.3.4 The integrator

2.4 Architecture selection

2.5 Training and learning

2.5.1 Learning

2.5.2 Supervised learning

2.5.3 Unsupervised learning

2.6 Layer designation

Examples

References

Chapter 3. BASIC LINEAR NETWORKS

Summary

3.1 The single neuron perceptron and linear separation

3.1.1 Selection of weights and bias

3.1.2 A training algorithm

3.1.3 Logic functions by perceptron (linear separation)

3.1.4 Delta rule training for linear separation

3.1.5 "n" layer networks

3.2 The adaline

3.2.1 Widrow-Hoff (LMS learning rule)

Examples

References

Chapter 4. FEEDFORWARD NETWORK DESCRIPTIONS

Summary

4.1 Directional classification

4. 1. 1 The multi-layer perceptron

4.1.2 The first Kohonen network

4.1.3 The Kohonen self organizing feature map

4.1.4 Learning vector quantization (LVQ)

4.1.5 LVQ structure

37

38

38

39

39

39

39

40

41

42

46

47

47

47

49

50

53

55

60

62

63

65

72

73

73

73

73

80

81

83

84

3

4.1.6 Cerebellar model articulation control (CMAC)

Examples

References

Chapter 5. GROUP METHOD DATA HANDLING

Summary

5.1 Group method data handling (GMDH)

5.1.1 A GMDH training algorithm

5.1.2 Selection criterion

5.1.3 Multi-layer procedure for GMDH

5.2 Water level prediction using a GMDH network

References

Chapter 6. RECURRENT NETWORK DESCRIPTIONS

Summary

6.1 Feedforward backpropagation

6.1.1 Backpropagation in multi-layer perceptron training

6.1.2 Backpropagation training

6.1.3 Exclusive OR implementation in backpropagation

6.1.4 Single layer recurrent network

6.2 The Hopfield network

6.2. 1 A Hopfield auto-associative algorithm

6.2.2 Hopfield network capacity

6.3 Hebbs learning

6.3.1 Hebbs learning algorithm

6.4 The Boltzmann machine

6.5 Bi-directional associative memories (BAM)

6.5.1 BAM algorithm

6.6 Counter-propagation networks

6. 7 The Elman network

6.7.1 Elman network analysis

6.8 The probabilistic neural network (PNN)

Examples

85

91

93

94

94

94

97

99

100

101

106

107

107

107

110

110

110

112

113

114

115

117

118

119

120

121

122

125

126

127

131

4

References

Chapter 7. PRACTICAL INPUT METHODS

Summary

7. 1 Data representation

7.2 Scent

7.3 Sight

7.3.1 A potential visual application in flour milling

7.3.2 Internet visual sensor examples

7.4 Taste

7.5 Touch

7.6 Sound

Multi-sensing

References

Chapter 8. RECENT DEVELOPMENTS

Summary

8.1 General

8.2 Image segmentation

8.3 Insect detection

References

Chapter 9.FUTURE TECHNOLOGY

Summary

9.1 Dedicated Neural Processors

9.2 Developmental approaches

9.3 Hierarchical network application

References

Chapter 10. NEURAL NETWORK TYPES

Summary

References

135

137

137

137

138

139

141

141

143

144

145

147

151

152

152

152

152

153

155

156

156

156

156

157

160

162

162

165

5

Appendix A. Portfolio selection

Summary

A. 1 Spreadsheet construction

A.2. Input selection

A.3 Actual inputs

A.4 Importance of inputs

Appendix B MATHEMATICS FOR NEURAL NETWORKS

Summary

B.1 Binary data representation

B.2 Vectors

B.3 Neural network required vector operations in "R""

B.3.1 Addition and subtraction

B.3.2 Scalar multiplication

B.3.3 The inner product

B.3.4 Length and distance in "R""

B.3.5 Normalizing

B.3.6 The angle between vectors

B.3. 7 Orthogonality

B.3.8 The outer product

B.4 Matrix operations for neural networks

B.4.1 Addition and scalar multiplication of matrices

B.4.2 Multiplication of matrices

B.5 Eigenvalues and eigenvectors

B.6 The Lyapunov function

Examples

References

166

166

166

166

171

173

174

174

174

175

175

176

177

177

178

178

178

179

179

179

179

180

181

182

186

189

6

List of Figures

Figure Description Page

1.1 A classic generic neuron 15

1.2 A basic computer model 17

1.3 The McCulloch-Pitts neuron 22

1.4 Hard limiting threshold function 22

1.5 A digital neuron model 23

1.6 A two input neuron 24

1.7 A generic connectionist neuron 24

1.8 A hard limiting function 26

1.9a The linear transfer function 26

1.9b The saturating linear function 26

1.10 The symmetrical linear function 27

1.11 The log sigmoid function 27

1.12 The tanh sigmoid function 28

2.1 lnstar and outstar 35

2.2 Feedforward multi-layer network 36

2.3 A feedforward network block diagram 37

2.4 Recurrent networks 37

2.5 A block diagram of a recurrent network 38

2.6 Delay unit 38

2.7 Integrator unit 38

3.1 Single neuron perceptron 47

3.2 Decision boundary I ine 48

3.3 a Linear decision plot 1 49

3.3 b linear decision plot 2 49

3.4 Data plot 52

3.5 Logic OR 53

3.6 Convex regions 55

3.7 Number grid signals 59

3.8 A two layer network 60

7

3.9

3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

9.1

An open convex region

An adaline neuron

Production of convex regions

Class separation

A perceptron network with a hidden layer

A block diagram of a feedforward network

An early Kohonen network

Hexagonal neighbourhoods

An L VQ structure

A GMAC module

Direct GMAC based control

Advanced GMAC control system

An N-adaline neuron

N-adalines for a required polynomial output

High level GMDH prediction

High level MLP prediction

Low level GMDH prediction

Low level MLP prediction

A backpropagation network

A block diagram of a three layer network

An exclusive OR solution network

Single layer recurrent network

Bi-directional associated memory

A counterpropagation network

An Elman recurrent network

A probabilistic neural network

A Salvador Dali painting

Locomotion mechanism

61

62

74

75

76

77

80

81

85

87

89

89

94

96

103

103

104

104

108

109

111

112

120

123

126

128

140

159

8

List of Tables

Table Number Content Page

1.1 Activities and network types 20

1.2 A two input OR table 23

3.1 Weight constant table 51

3.2 An OR formula spreadsheet 54

3.3 An OR calculation spreadsheet 54

3.4 A formula spreadsheet for weight updating 57

3.5 Spreadsheet confirmation of example results 58

3.6 A binary eight table 59

5.1 Amazon flooding data 101

6.1 An exclusive OR table 111

6,2 A vector storage table 121

7.1 Sensors and signal sources 138

9

Summary

The thesis is written in chapter form. Chapter 1 describes some of the history

of neural networks and its place in the field of artificial intelligence. It indicates

the biological basis from which neural network approximation are made.

Chapter 2 describes the properties of neural networks and their uses. It

introduces the concepts of training and learning.

Chapters 3, 4, 5 and 6 show the perceptron and adaline in feedforward and

recurrent networks particular reference is made to regression substitution by

"group method data handling. Networks are chosen that explain the

application of neural networks in classification, association, optimization and

self organization.

Chapter 7 addresses the subject of practical inputs to neural networks.

Chapter 8 reviews some interesting recent developments.

Chapter 9 reviews some ideas on the future technology for neural networks.

Chapter 10 gives a listing of some neural network types and their uses.

Appendix A gives some of the ideas used in portfolio selection for the

Johannesburg Stock Exchange.

10

Chapter 1.

FOUNDATIONS OF NEURAL NETWORKS

Summary

This chapter offers some history and a brief description of the field of artificial

intelligence as the domain in which neural networks function. It further

describes other artificial intelligence subjects that are related, or interface with

neural networks.

The biological basis from which neural network approximations stem are

described, together with simple artificial neurons to model aspects of these

cells.

1.1 Artificial intelligence

Definition: Artificial Intelligence, is the science of making machines do things

that would require intelligence if done by human beings. Minsky (1968).

For many years man has sought to model functions of the brain activities,

from simple animal forms to the extremely complex human brain. The field of

artificial intelligence (Al) has developed with increasing knowledge of the way

in which the brain functions and increasing ability to partially emulate those

functions through advances in technology.

John von Neumann (1903 to 1957) pioneered the development of the

computer to a level at which simple Al models became possible. His work

evolved the design and application of computing machines. It is he whom, in

1946, is credited with the proposal for computer working using the binary

system, and the concept that operating instructions for the machine could be

stored in memory. Sometime later his team at Princeton University built the

first computer in which information was processed a 'word' at a time rather

than serially.

11

Traditional Al systems make the important assumption of the physical symbol

system hypothesis. Newell and Simon (1976) contributed to the

understanding of the physical symbol system.

Definition: A set of entities, called symbols, which are physical patterns that

can occur as components of another type of entity, called an expression or

symbol structure. A physical symbol system is a machine that produces

through time an evolving collection of symbol structures.

Newell, Shaw and Simon (1963) used their early Al experiences with a logic

theory machine to prove theorems from the first chapter of Whitehead and

Russell (1950) Principia Mathematica. Subsequent attempts to use the

theorem proving technique to build a general solution system for complex

problems have not proved successful.

Gilling and Brightwell, (1982) indicate the vast gap that exists between human

intelligence and Al. They note that since the human brain has an estimated

1011 nerve cells, it follows that state of the art super computers can only

display intelligent behaviour in a narrow domain.

The logic approach to Al thinking moved in the 1970 decade to a knowledge

approach, human knowledge being represented symbolically. LiMin Fu (1994)

suggested that it is knowledge that makes the system intelligent and not the

inference mechanism.

The artificial intelligence field has inspired several areas of development that

include, expert systems, optimization, fuzzy logic, and neural networks.

1.1.1 Expert systems

Feigenbaum (1982) offers the following definition for an expert system.

Definition: An expert system is an intelligent computer program that

uses knowledge and inference procedures to solve problems that are

difficult enough to require significant human expertise for their solution.

12

Expert systems are a significant part of artificial intelligence. Its uses

differing widely from financial loan appraisal, through to equipment

replacement and medical diagnosis.

The system may have a self-learning approach in that feedback of the

results from an action may influence the later decisions. Most systems

consist of two principal parts, the first being the experts knowledge

base which provides the guiding rules or judgments based on the

chosen expert opinion. The second part interprets the knowledge base

in relation to the particular problem being presented.

1.1.2 Optimization

In the field of "operations research" many methods are used that

provide reasoned answers to posed problems. The methods attempt to

obtain an optimal solution to a problem under given constraints. The

practical problem is modelled mathematically and the model forecasts

indicate an optimal solution. The system performance is usually

measured in terms of a minimization or maximization criterion.

The basic problem of optimization is to arrive at the best decision for a

given set of circumstances. There may be difficulties in deciding the

best decision, in the light of the different perspectives that may be

viewed of the problem.

Optimization may use the algorithmic approach of the computer, as

demonstrated in linear and dynamic programming. It may also be

achieved by the use of neural networks in such varied applications as

partial pattern recognition and the travelling salesman problem. There

is a difference in that the neural network optimum would not be a

proven optimum.

Note that the knowledge base is in the determination of objectives and

constraints. If the wrong inputs are given algorithms will not provide

optimal solutions to the problem.

13

1.1.3 Fuzzy logic

Zadeh (1965) states that the theory of fuzzy logic is primarily

concerned with clarifying ambiguity in natural language. It has evolved

from the work done in the theory of fuzzy sets.

Giarratano and Riley (1994) offer this guidance "Conventional set

theory defines set membership in terms of characteristic functions (CF)

in which the CF is 1 if the object is a member and 0 if the object is not a

member. An object may have partial membersh(p of a fuzzy set, the

degree of membership being given by the compatibility function".

Fuzzy logic has been practically applied in many situations from

camera tracking to environmental decision. Maier and Sherif (1985)

supply more than 450 references of fuzzy logic applications.

1.1.4 Neural networks

This is the aspect of artificial intelligence that is to be the core work of

this thesis. Neural networks may be described as interconnected

networks of simple processing units (artificial neurons) that exhibit

some properties of the biological nervous system. Each processing

element (neuron) receives a part of the problem to be solved. This

gives the power of the network which is achieved by a technique

known in neural networks as parallel processing in which computations

are spread simultaneously between several processing elements.

Neural networks have demonstrated an ability to produce good results

when applied to the tasks of artificial intelligence. Examples include

pattern recognition in literary styles Aston University (1993), and

DARPA (1988) list a wide variety of applications ranging from

Aerospace to Telecommunications.

14

1.2 Biological origins

Neural network models have evolved from the perceptions of biological

behaviour, some researchers believing that neurons are the computational

units of the brain.

Anderson (1995) explains that knowledge of neuroscience is helpful in

understanding why models are founded in certain approximations about

biological neurons and the relative merits of those approximations.

There are many forms in real neurons following the biological need. The

following diagram illustrates the classic generic neuron, modelled after spinal

motor neurons.

dendrites

Ji'
synapses

_Qi

A classic generic neuron.

Figure 1.1

Neurons are cells with inputs from the dendrites, named because of their tree

like appearance. The cell body is called the soma, from which the axon serves

as a transmission line, sometimes with several branches, to the terminal

arborization. The special terminals are known as synapses and influence the

activities of other cells.

Current neural network theory assumes that the varying synaptic strengths of

several interconnected neurons are the key to the computations performed.

Anderson (1995) notes that there is a shortage of practical supporting

15

evidence for the theory, except for studies such as those on the eye of the

horseshoe crab (Limulus polephemus) and the abdominal ganglion of the

gastropod mollusc (Aplysia californica).

Axoplasmic flow, in. which enzymes and nutrients are moved towards the

synapses was demonstrated more than 50 years ago by the simple process of

constricting the axon and observing bulging on the soma side of the

constriction. Reverse transmission from synapses to soma has also been

shown to occur.

Transmission between cells occurs at the synaptic cleft. The transmissions

may be electrical or chemical. Invertebrates mainly use electrical synapses,

whilst in the higher vertebrates the transmission is mainly chemical.

The special structures of chemical synapses make use of molecules called

neurotransmitters. These synapses are of special significance to the

modelling of neural networks since they are the information transmitters.

Attempts to model neuron behaviour are complicated by the complexity of the

chemical synapse. The many types differ in ion exchange mechanism, time

constant, change of strength with activity, and environmental influence.

The two sides of the synaptic junction are known respectively as pre-synaptic

and post-synaptic sides. The former relates to the input side that is driven by

the action potential of its cell, whilst the latter refers to the driven cell.

Chemical synapses that have been meticulously studied by several

researchers, according to Anderson, (1995), are those on the spinal motor

neuron. They have been adopted as classical models for the mathematical

approximations made for artificial neural networks.

16

1.3 Computer models

Due to the great complexity of the neuron, modelling may take place at many

levels of understanding. Current computers would be unable to cope with the

full model complexity of the biological neuron at our present state of

knowledge. The degree of complexity of the neural network is based on the

particular purpose it is intended to serve, since an artificial neural network is

structured from several modelled neurons.

It may be relevant at this time to contrast conventional computer application

with its use in neural networks.

1.3.1 Conventional computer behaviour

A basic conventional computer model due to von Neumann.

.__c_P_u _ __,I~
Data

Data and "I Memory

Instruction

Figure 1.2

The activated computer performs the following sequence of events:

1. Receive an instruction from memory.

2. Retrieve all data required by the instruction from memory.

3. Execute the instruction.

4. Store the outcome in memory.

5. Go to step 1.

The algorithm is formulated to consist of a set of simple statements,

which may be processed to the instructions that the central processor

unit executes.

Strings of symbols that obey the rules of some formal system, may be

interpreted conceptually. The dream for artificial intelligence was that

all knowledge could be structured to permit symbol manipulation on a

Von Neumann machine.

17

The following are some essential characteristics of the Von Neumann

machine for comparison with those of neural networks.

The algorithm to solve the problem must be found, then the machine

must be given detailed instructions on the exact sequence of steps

(computer program) required to perform the algorithm.

Data is required in a precise format; noisy data upsets the machine

operation. Hardware degradation occurs when a few key memory

locations are disrupted.

Objects being processed, such as words or numbers, correspond to

memory blocks in the machine hardware.

A conventional database would not have the capacity to account for the

diversity of recognition that the human brain can make.

1.3.2 Artificial neural network behaviour

The main properties of an artificial neural network are:

a) Topology, organisation, number of layers and the manner of

connections (structure).

b) Learning, the storage of information in the network (behaviour).

c) Recall, the way in which information is retrieved from the network

(interpretation).

The neurons act independently, each one's output depending only on

the inputs received from the connecting neurons.

The neuron does not need knowledge of the state of any other neuron

from which there is no explicit connection. The large number of

connections provide several redundancies in facilitating a distributed

representation.

18

?
Simpson (1993)

0

notes that neural networks are advantageous in three

primary situations.

a) When a few decisions are required from large amounts of data such

as pattern and speech processing.

b) Where non-linear mappings are to be automatically acquired such

as loan evaluations and robot control.

c) Where a quick response is needed to a combinatorial optimization

problem, as encountered in telecommunication and airline

scheduling, a near optimal solution is usually provided by the neural

network.

1.4 Artificial neural networks

A definition of a neural network (ANN) might be:

A set of simple processing elements interconnected in a manner that permits

modelling, at a user-specified level, of the biological neuron.

Neural networks develop under the premise that, by modelling the physical

architecture of the brain, within knowledge and capacity constraints, we may

emulate its decision capability. This brain metaphor suggests that intelligence

may emerge through the interconnection of several processing elements,

each of which performs a simple computation, as a part of the total problem.

The processing capability of this connected network is dependent on the

connection strengths (weights), the manner of connections, and the learning

mode.

1.5 The role of artificial neural networks

The artificial neural network's role may be of greatest significance where the

data to be processed is noisy, in the fields of:

1) Classification, in which data is categorized.

2) Association, in which a memorized pattern or object is retrieved

based on recognition of part of the object.

19

3) Optimization, in which the solution found is thought to be the

best.

4) Prediction, in which a future value or values are forecast.

5) Self-organizing, in which the best selection is found from input

data through self-learning.

Activity Network type Potential Application

Classification Learning vector Any best selection from

quantization (LVQ) scanned data that may be

Counterpropagation clustered.

Probabilistic neural

networks (PNN)

Association Hamming Although a form of

Hopfield classification, these nets

Boltzmann identify data that is close to the

Bi-directional associative requirement but contains

memory (BAM) errors.

Optimisation Hopfield The travelling salesman

Boltzmann problem.

Prediction Back propagation For a given set of inputs the

General regression neural outputs may be grouped for a

networks (GRNN) decision such as stock

Group method data selection by predicted

handling (GMDH) progress.

Self Kohonen networks Winner selection from given

Organization LVQ data or clustering outputs

Activities and network types

Table 1.1

The above table lists the activity, possible network and potential application

gleaned from numerous sources. It is worth noting that the feed forward

backpropagation network has been used for most tasks.

20\

1.6 Analysis of neural network limitations

Analytical approaches to the understanding of neural networks are inhibited

by the variations of connecting pathways between neurons.

To progress in the understanding of artificial neural networks, it is clear that

the natural behavioural basis of the nervous system must be simplified. Even

the most sophisticated modern computers will not cope with the astronomical

number of calculations required to behave as a biological network in a simple

organism.

1. 7 Neuron models

The processing elements of the neural network are the neurons, which are

interconnected to form a neural network.

1. 7 .1 The two state neuron

The concept of the two-state neuron was introduced by McCulloch, and

Pitts, (1943). This was an early attempt to model the physiological

properties of the neuron and its connections, using neural computing

elements, based on their assumptions of the biological neuron's

behaviour.

After describing the all or none characteristics of quiescent or excited

neurons in higher animals, as well as the synaptic delay between the

receipt of a stimulus and the resultant output stimulus, Von Neumann

(1945) explained: "Following W Pitts and W S McCulloch we ignore the

more complex aspects of neuron functioning. It can easily be seen that

these simplified neuron functions can be imitated by telegraph relays or

vacuum tubes".

The McCulloch-Pitts neuron is of historical value, and not thought to be

an effective model in the light of modern biological knowledge. The

following diagram is of a two input, x1, x2 neuron, with threshold

function e = 1.

21

Output

A simple McCulloch - Pitts neuron.

Figure 1.3

This artificial neuron was constructed under the false assumption that

the brain functions as a logic and computational device. The inputs are

the outputs of preceding cells. In the absence of inhibitory synapses

the cell sums its inputs, if this sum exceeds a threshold value the

neuron becomes active, else it remains in a passive state.

The McCulloch-Pitts neuron has been known as a threshold logic unit

(TLU) where the information is processed as follows:

Each input signal represents the output of a preceding cell, this signal

being multiplied by a weight representing the strength of the connection

(synaptic strength). These weighted signals are now summed to

produce a total processing element activation. If this activation exceeds

a certain threshold the unit produces an output response.

0 u

Hard limiting threshold function

Figure 1.4

22

The original McCulloch-Pitts model of the neuron produced this binary

response (hard limiting function), in which the output was 0 or 1.

f(u)

A digital neuron model

Figure 1.5

Inputs Xi are the outputs of preceding cells,

0

~

Weights w1 are the strengths of synaptic connections,

u = 'Lxiwi is the sum of the weighted inputs,,

o = output of the threshold function f(u),

This single unit is capable of simulating the OR function, S = x1 OR x2.

X1 X2 s
0 0 0

1 0 1

0 1 1

1 1 1

A two input OR table.

Table 1.2

This artificial neuron behaves as a digital-processing unit in that the

inputs and outputs are of a binary nature. There is no mention of time,

the unit being assumed to respond instantaneously to its input whereas

the biological neuron integrates over time and space.

The logic function produced for a threshold value (bias) 2 is AND.

23

1.7.2 A non-linear threshold neuron

If in the McCulloch-Pitts neuron we replace the hard limiter function

with a non-linear function, we may have a more general neuron that

can have a discrete output (-1 or 1), or a continuous output varying

between Ymin and Ymax-

If the neuron fires, the output Yi is at a high (active) level, if the neuron

does not fire it is said to be at the low, (quiescent) level.

W1 f(u)

X1 u

I LXiWi

X2

A general two input neuron.

Figure 1.6

1.7.3 The generic connectionist neuron

The generic connectionist neuron.

Figure 1.7

Activation

function

0

For inputs Xi and connection weights Wi the initial artificial neuron

function is to sum the products of inputs Xi and associated weights wi.

24

In the biological neuron, activity at the synaptic cleft may be inhibitory,

simulated by a negative weight or excitatory, modelled by a positive

weight, this may be simulated in our artificial neurons.

Each input to a .neuron has exactly one associated weight, so for the

above model we may represent the inputs and weights as three­

dimensional vectors x and w.

3

Y = I, Xi Wi = DX1 W1 + X2 W2 + X3 W3 0
i=1

We are sometimes required to bias (provide a threshold weight e for)

the summation effect, to achieve a particular result, then to simplify

later computation we have:

y = I Xi wi + e which if we consider e = X4 W4 and X4 = 1 whilst W4 is the

bias quantity then:

4

I, Xi Wi = DX1 W1 + X2 W2 + X3 W3 + eo
1=1

In general:

n+1
I, Xi Wi = OX1 W1 + X2 W2+ + Xn Wn + 80

i=1
where 8 = Xn+1 Wn+1 and Xn+1 = 1 whilst Wn+1 is the bias quantity.

An appropriate activation function interprets the sum of these products

to an output or no output state, dependent on the sum achieving a

threshold level.

1.8 Activation functions

Activation levels of neurons can be discrete or continuous. Discrete examples

which are used to classify inputs into two categories are the symmetric hard

limiting function illustrated in (Figure 1.8), (or the hard limiting function O or 1).

1

-1

Figure 1.8

1 for y > O

f(y) = previous state for y = 0

-1fory<0

Where y = 2:1=1 Xi wi.

1.8.1 Continuous examples

The common continuous examples are the linear, saturating linear,

symmetrical linear, sigmoid and hyperbolic tangent, (tanh) functions.

(1) The linear transfer function has an output that is equal to its

input. f(y) = y (Figure 1.9a).

0 for y < 0

The saturating linear function (Figure 1.9b) f(y) = y for O<y<1

1 fory>1

Figure 1.9a Figure 1.9b

(2) f(y) = a + by (Figure 1.10)

-1 for y < -1

The symmetrical linear function f(y) = y for -1 <y<1

1 for y >1

26

Figure 1.10

(3) A Sigmoid function typically f(y) = 1/(1 + e-Y) where the function

f(y) ranges from 0 to 1, as y ranges from -oo to oo.(Figure 1.11)

---/
/ I

/
/

I
/

/
I v I

---- I

A sigmoid function

Figure 1.11

The function is valuable in backpropagation because of it's simple

derivative.

(4) f(y) = tanh(y) = 1 - e-Y

1 + e-Y

where f(y) ranges from -1 to 1 , as y ranges from -oo to oo. This is also

of sigmoid form.

/
I

I
I
I

I

t
I

J
v

A tanh (y) function

Figure 1.12

1.9 Single neuron computation

Consider the two input neuron, Figure 1 .4, the primary activity is to sum the

weighted inputs. For given inputs from preceding cells, with weights

representative of connection strengths, this summation results in a net

stimulus in which the relative strength of individual weighted inputs is lost.

A secondary step converts the net stimulus to an activation level for the

neuron, through the activation function. The tertiary step relates the

relationship of the activation level to the threshold into an output. If the inputs

are both 1 and the respective weights are 0.3 and 0.25 with a sigmoid

activation function, with threshold 0.5 then the output will be 1 if the activation

level equals or exceeds the threshold value, else output 0.

Step 1.

Step 2.

Step 3

1 x 0.3 + 1 x 0.25 = 0.55

0 = 1/(1 + e-0·55
) = 0.6341

Since 0.6341 > 0.5, output is 1.

1.10 Requirements for a practical circuit

To achieve a practical neural network some form of sensory detector will

transmit a suitable signal(s), as an input to one or more artificial neurons. The

chosen network will process the signals through it's structure to produce an

output(s). When comparisons are made between output(s) and expected

output(s), the circuit may be self-moderating to move closer to the desired

result(s).

There are many different networks in use for a wide variety of practical

applications varying through such diverse fields as drug detection sniffers to

weather forecasting.

Recent documentation suggests an exciting prospect of neuron modulation by

nitric oxide, to more closely simulate synaptic activity in the human brain.

(Davidson, C.1998) (See chapter 9 on recent advances)

29

References

[1] Anderson, J. An Introduction to Neural Networks pp.7-14 (1995).

[2] Davidson, C. Gas on the Brain. New Scientist. 3rd October (1998).

[3] DARPA (Defence Advanced Research Projects Agency) (1996).

[4] Feigenbaum, E. A The art of artificial intelligence: Themes and case

studies of knowledge engineering. Proceedings of IJCAl-77 1014-1029

(1977).

[5] Gilling, D. & Brightwell, R. The Human Brain pp 17-18 (1982).

[6] Giarratano, J & Riley, G. Expert Systems pp 8-9 (1994).

[7] Li Min Fu, Neural Networks in Computer Intelligence. (1994).

[8] Maier, J. & Sherif, Y.S. Applications of fuzzy set theory. IEE

Transactions on Systems, Man and Cybernetics (1985).

[9] Minsky, M. & Papert, S. Perceptrons. Cambridge Ma. MIT Press

(1969).

[1 O] McCulloch, W. & Pitts, W. A logical calculus of the ideas imminent in

nervous activity. Bulletin of Mathematical Biophysics, 5 pp.115-

133.(1943).

[11] Newell, A., Shaw, J. C. & Simon, H. A Empirical exploration with the

logic theory machine: A case study in heuristics. Computers and

thought, McGraw-Hill, New York.(1963).

30

[12] Newell, A, and Simon, H. A Computer science as empirical enquiry:

Symbols and search. Communications of the ACM, 19 (3), pp.113-

126.(1976).

[13] Whitehead, AN. & Russell, 8. Principia Mathematica 2nd edition

Cambridge University Press. (1950).

[14] Zadeh, L. A Fuzzy sets. Information and Control 8 pp.338-353 (1993).

31

Chapter 2.

NEURAL NETWORKS STRUCTURES

Summary.

This chapter describes in depth artificial neural network properties and the

basic construction of networks. lnstars and outstars are described as useful

elements in many networks. The broad classifications of feedforward and

feedback networks are illustrated and a simplified diagram method is

introduced.

The concepts of training a network and its learning abilities are illustrated.

2.1 Artificial neural network properties

The networks are a limited model of the biological brain, with each artificial

neuron attempting a small partial solution, for a sensory perception problem.

The neural network is made up of many simple processing elements called

artificial neurons. They are interconnected by direct links that act to perform

parallel distributed processing, so that a given computational task may be

solved.

Human beings are estimated to function with 10 billion or more neurons,

differing in their structure dependent on the function they perform. The

simulation of a small part of these functions is currently being attempted with

at most a few thousand artificial neurons.

Artificial neural networks generally share the following features:

(1) Information processing and memory are distributed among the

structure creating difficulty in dividing the structure into hardware

and software. (Networks are trained not programmed).

32

(2) The high level of interconnection is in a form such that the state of

an artificial neuron affects the potential of others to which it is

connected in relation to the strengths (weights) of the connections.

(3) The connection weights, which are a comparable to the real

neuron synaptic strength, are usually adaptive. Adaptation may

occur anywhere within the connection, weight adjustment is by

some algorithm, the result being distributed memory within the

network.

(4) The artificial neurons, now called neurons, contain typically non­

linear activation functions. The output of a particular neuron is a

non-linear function of the input signals of the other fired neurons.

Neural networks often have elements with high variability that are not reliable.

The highly redundant distributed structure renders the network insensitive to

parameter variation (input noise) over a wide range, it is also relatively

unaffected by individual element failure.

The total information of the network is distributed among the many artificial

neurons, so that the losses of a few processing elements, or alteration to

connections, cause relatively slight performance loss. Computer programmed

systems are made unreliable by small amounts of memory failure, by contrast

neural networks are robust.

Increasing degradation in a network depletes performance but does not cause

sudden termination. The robust character gives an advantage to neural

networks where complete failure is a critical hazard, whilst reduced

performance is major in that it permits some recovery time. In the operation of

nuclear plant, a changed pattern of behaviour, with regard to the many inputs

of pressure, temperature, fuel element displacement, coolant flow and

radiation levels, would still trigger a response in the absence of a few network

elements.

In multi-layer networks the activation function must be non-linear, or its

computational capability will be equivalent to that of a single layer network.

I.e. it cannot learn non-linear mappings.

Suppose a linear activation function is used in a two layer network, input

vector x, layer matrices Wa and Wb, then the output would be (xWa)Wb . Since

matrix multiplication is associative we may write x(WaWb) which is the

equivalent of a single layer with weight matrix We= WaWb.

2.2 Building the network

The fundamental tasks of network construction are:

a) The determination of the neural framework, and the pattern of

connections.

b) The activation functions and range for the neurons.

c) The system dynamics in terms of initial weighting, momentum

and learning rule.

2.2.1 The framework

The structure is by the number of layers, and the neurons per layer, a

group of neurons within a layer is referred to in some commercial

programmes as a slab. Typically there is an input layer, one or more

hidden layers and an output layer.

The input layer neurons function as distributors to other neurons. The

hidden layer provides the network non-linearities; the output layer

presents the classified result, which may be used for comparison to an

expected result. The network can be feedforward, or recurrent, with

connections between neurons being symmetric or asymmetric.

Connection types:

Interlayer between neurons in different layers

lntralayer connections between neurons in the same layer

34

Self-connection from a neuron to itself

Supralayer connection is between neurons in non-adjacent layers.

Jump connections each layer is connected to all other layers.

2.2.2 lnstars and Outstars

lnstars and outstars were tile Grossberg (1974) models for certain

biological functions, they have been interconnected to form many

complex networks.

Their description arises from the original form of representation.

\ I
lnstar Outstar

Figure 2.1

An instar is a pattern recognition device that is trained to respond to a

specific input vector x, it does not respond to any other vector. In

training, weights are adjusted to yield likeness to the input vector.

For inputs Xi and connecting weights Withe output is 2.:xi Wi from which

the neuron output responds strongly to the input for which it was

trained.

Wasserman (1989) describes the instar and outstar performance in the

following manner.

35

lnstar training modifies individual weights Wi at time t+1 from the state

at time t according to the formula: Wi (t + 1) = Wi (t) + a(Xi - Wi (t)), a is

the training coefficient, starting at some small value about 0.1 and

reducing as training progresses. The instar is triggered in response to a

specific input pattern.

The outstar has a complementary function to the instar in that, when

triggered, it transmits a desired excitation pattern to other neurons.

Outstar training modifies individual weights Wi at time t+1 from the state

at time t according to the formula: wi (t + 1) = Wi (t) + j3(yi - Wi (t)), j3 is

the training coefficient, starting at value near 1 and reducing to zero as

training progresses.

2.3 Classification of Neural Networks

Artificial neuron connection sets are called architecture or circuit structures,

the two major types being:

2.3.1 Feed forward (multi-layer) networks

Networks in which each neuron receives inputs from other neurons or

from external inputs, all connections are forward, there are no reverse

(feedback) connections.

Input Hidden Output

A feedforward network.

Figure 2.2

36

A simplified block diagram of the feedforward network shows the

unidirectional nature of the layers.

Input

Vector

Weight

Matrix Threshold

functions

A feedforward network block diagram.

Figure 2.3

Output

The input layer is a distributive vector, its weighted inputs matrix being

summed and by application of the transfer functions resulting in the output

pattern from the hidden layer. Where there are two or more hidden layers their

inputs are the outputs of the preceding layer.

2.3.2 Feedback (recurrent) networks

Networks that have dynamic processing units in the form of integrators,

or unit delays, that feedback to preceding summation units.

Input Hidden Output

A recurrent (feedback) network.

Figure 2.4

37

A block diagram of a recurrent network.

Figure 2.5

2.3.3 The delay unit

For units in which time events occur in discrete steps, this unit may be

used to delay the feedback signal that modifies the weights. The delay

function causes the output to lag the input by one time unit.

a(t) = u(t-1)

~~ a(t)

.;
a(O)

Figure 2.6

The outputs initial condition is t = 0 as indicated by the a(O) condition.

2.3.4 The integrator

The integrator in continuous time recurrent n·etworks has an output that

is dependent on its initial state, the input signal strength and the signal

application time.

Input u(t)

Initial state a(o),

~o~t)

i
a(t) = Jo u(t) + a(O).

Figure 2.7

38

2.4 Architecture selection

The problem specification, as stated by Hagan, Demuth, Beale, (1996),

guides the network determination by:

Problem inputs = network inputs,

problem outputs = network outputs.

The transfer function selection may be partially guided by the output required.

2.5 Training and learning

Training is the application of a series of patterns at the input to the artificial

neural network. Learning is the neural network ability to resolve those

patterns. I.e. the internal activities that produce the end result of the training.

2.5.1 Learning

Adjustment of the interconnection weights between layers is the

mechanism by which learning occurs. As a network result is produced

it is compared with the expected result, and the connecting weights are

adjusted towards the expected results. If learning is possible in finite

time, a set of weights emerge that will produce acceptable responses

for sample decisions or predictions.

The cycles of training are extremely important, since too little training

does not permit the network to learn the patterns. Too much training

results in the network learning noise or memorizing the training

patterns with consequent inability to generalize well with new patterns.

2.5.2 Supervised learning

This requires a set of input patterns and the expected output patterns.

Supervised networks build models, which classify patterns, make

predictions, or make decisions. The results are in accord with other

patterns of inputs and outputs they have "learned." They give the

neural networks deduced answer based upon the variety of learned

patterns.

In a supervised network, you show the network how to make

predictions, classifications, or decisions by giving it a large number of

correct classifications or predictions from which it can learn. The

historical data of relative success will provide output patterns.

There are many supervised network types such as backpropagation,

general regression neural network (GRNN), and probabilistic neural

network (PNN).

2.5.3 Unsupervised learning

Sets of training patterns are provided, but no target is given, or forward

path is provided, the network determines it's own output.

Unsupervised networks can classify a set of training patterns into a

specified number of categories without being shown in advance how to

categorize. The network does this by clustering patterns; it clusters

them by their proximity in n dimensional space where n is the number

of inputs. The user tells the network the maximum number of

categories and it usually clusters the data into that number of

categories. Occasionally the network may not be able to separate the

patterns into that many distinct categories.

Kohonen networks are unsupervised. Kohonen networks in some

proprietary networks (e.g. Neuroshell 2 Ward systems group, inc.) the

winning neuron is set to 1, all others 0, or we may take the option of

actual neuron values which will provide a neuron ranking. Pattern feed

options are the may be in rotation, or random. The relative clustering

distance may be Euclidean or normalized.

Euclidean distance, used in this analysis, is the square of the distance

between pattern and weight vector per neuron. The winning neuron is

selected as the one with minimum activation.

40

No type of network is guaranteed to always give an absolutely "correct"

answer, especially if patterns are in some way incomplete or

conflicting. Results should be evaluated in terms of the percentage of

correct answers that result from the model. In this regard, the

technology is similar to biological neural functioning after which it was

designed, and differs significantly from all other conventional computer

software.

Neural networks may not work at all with some applications. Some

problems are well suited for the pattern recognition capabilities of a

neural network and others are best solved with more traditional

methods.

2.6 Layer designation

A single layer network is one in which there are only input and output layers,

since the input vector is distributive only it is not counted in this study. (Some

texts designate the inputs as a layer).

A network having an input vector, two hidden layers and an output layer,

would be conventionally designated a three layer network.

41

Examples

Q1. What do you perceive as the potential difficulties in the simulation of human

intelligence by the use of artificial neural networks?

A 1 The first and most important factor is the current level of understanding of

human intelligence. Simulation of a process depends primarily on the

understanding of that process. Gaseous, chemical and electrical effects and

their interfaces are still the subject of much study.

The second factor is the limitation of scale, in that the human brain is

estimated to operate with 1011 neurons whilst the most sophisticated artificial

neural networks operate with a few thousand neurons.

A third factor is the diversity of connections in the biological neuron, the

connections being inhibitory or excitatory. Their strength being dependent on

their usage.

Q2. When a network has been structured, explain the differences between

supervised and unsupervised learning?

A2 For supervised learning the network is given a set of answers that are the

expected results, A comparison is made between expectation and actual

outputs. In a typical classification problem the network may be trained by

being given a series of scripted letters to be correctly identified as the

appropriate member of the alphabet. The success of the network is ability to

classify correctly units not used for training.

The unsupervised network is not given expected results, its learning is not

defined in terms of particular correct examples. In a Kohonen network the

number of outputs describes the expected clusters. The network decides

which is the correct group for a given vector of inputs.

42

Q3 The following input-weight pairs relate to the connectionist neuron shown in

figure 1.7,

(0.1, -0.5); (0.6, -0.3); (0.4, 2.4)

If a bias of 0.5 is decided, determine the output of this neuron for activation

function:

y = f(u) = 1/(1 + e-u) where u = L.xiwi +bias

A3 u = (0.1)(-0.5) + (0.6)(-0.3) + (0.4)(2.4) + 0.5 = 1.23

y = f(u) = 1/(1 + e-1
·
23

) = 0.77382.

Q4 What would be the effect for question three if a bias weight of -0. 7 was given?

u = (0.1)(-0.5) + (0.6)(-0.3) + (0.4)(2.4) - 0.7 = 0.03

y = f(u) = 1/(1 + e-0.03
) = 0.5075.

QS A neuron has inputs (x1. x 2) = (2, 3), with weights (w1, w2)T = (-4, 2) and bias

0.8, determine the output for:

a) A linear function

b) A symmetrical hard limit function

c) A log sigmoid function

d) A hyperbolic tangent function

AS a) u = 2(-4) + 3(2) + 0.8 = -1.2

y = f(-1.2) = -1.2

y=f(-1.2)=-1

y = f(u) = 1/(1 + e+1
·
2>) = 0.2315.

y = f(u) = (e(-12> - e+1·2>)/(e(-1-2> + e+1·2>) = -0.8336.

Q6 Herbert Simon (1983), made the following statement about machine learning:

"Learning denotes changes in the system that are adaptive in the sense that they

enable the system to do the same task, or tasks drawn from the same ·

population, more efficiently and more effectively the next time".

Comment on the above statement in the context of artificial neural networks.

43

A6 From the input pattern set provided the artificial neural network learns, so that

it may classify future unseen data. The learning usually takes place over

several epochs. The network may be trained to a state in which the

recognition is within an expected error. Over training may result in pattern

memorizing that reduces the network capacity to classify previously unseen

data, Herbert Simon has not introduced this aspect of learning.

In general a plot of error against training epochs in a supervised network

shows the following behavioural pattern.

,_
0 ,_ ,_

LI.I

Training epochs

The following question is similar to a question in Hagan, Demuth and Beale (1996).

Q7 A single layer neural network has 5 inputs and 3 outputs, which are

continuous in the range (0, 1). Answer the following questions about the

network architecture:

a) How many neurons are required?

b) What are the dimensions of the weight matrix W?

c) What would be the output Wx?

d) What transfer function would you select?

e) Would a bias be required?

44

A7 a) Three neurons would be required, one per output.

The three neurons would each require one matrix row, whilst each input

would need a matrix column. The weight matrix has three rows and 5

columns.

Wx is a three element vector.

A log sigmoid function is suggested because of the continuity requirement in

the range O to 1 .

Additional information would be required to determine the need for a bias.

45

References

[1] Anderson, J. An introduction to neural networks Massachusetts

Institute of Technology, pp 214-230, (1995).

[2] Grossberg, S. Classical and instrumental learning by neural networks.

Progress in theoretical biologyvol 3, pp 51-141(1974).

[3] Hagan, M. T. Demuth, H. B. Beale, M Neural network design PWS

publishing, Boston Ma. pp 2, 18-19, (1995).

[4] Wasserman, P.O. Neural Computing Theory and Practice, Van

Nostrand Reinhold, pp 214-216, (1989).

46

Chapter 3.

BASIC LINEAR NETWORKS

Summary

The basic building blocks of most modern networks, the perceptron and

adaline are introduced. They are only capable of solving linearly separable

classification problems. The perceptron has a further severe limitation, in that

it's potential weights increase is unbounded. The perceptron, Hebbian and

Widrow-Hoff learning rules associated with these networks are explained.

3.1 The single neuron perceptron and linear separation

X1

W1

LXjWj
Hard y

limiting

X2
Wz

A single neuron perceptron.

Figure 3.1

The output y for the simple network in Figure 3.1 is given by y = f(wrx + b)

with the decision boundary being given by wrx+ b = 0. Above the boundary

y = 1. On, or below the boundary y = 0.

For any point on the boundary line, the inner product of the input and weight

vectors is constant, hence input vector x is orthogonal to the given weight

vector w.

47

Vectors above the boundary line have an inner product wT x > b, whilst those

below the line have an inner product w T x < b.

For a given weight vector wand input vector x, the bias may be calculated

from wT x + b = 0, using values from the decision boundary line.

Example

Suppose we have x T = (x1, x2), wT = (1, 1) and b = -1 then the decision

boundary is x1 + x2 - 1 = 0 as shown in Figure 3.2.

1

0

Figure 3.2

The region to the right of the line will give y = 1, to the left or on the line y = 0.

Neural networks built of perceptrons were the first to interest researchers in

the possibilities of a true learning machine, and from it several complex

learning networks have evolved.

Definition:

Linear separation occurs when a hyper-plane provides the decision surface

that separates two pattern classes.

Suppose we have two pattern classes, Rosenblatt (1958) showed the ability

of the perceptron to be able to learn to separate given patterns into the two

classes. For linear separation it is possible to give rules for changing the

connection strengths so that, in finite time, a set of weights are arrived at that

will correctly classify the patterns.

48

3.1.1 Selection of weights and bias

Hagan, Demuth and Beale (1996) have given a method of deciding

suitable weights and bias values for the single-neuron perceptron. For

a chosen decision boundary they state that the weight vector will be

orthogonal to the weight boundary. It must point to the class to have

the value 1.

First the points are drawn on a suitable grid. A line is drawn that

separates two classes. Class a is shown as light circles of value 1.

Class b is shown as dark circles of value 0. The class point locations

are shown in Figure 3.3a. The arrow representing the weight vector

may be of any length. In Figure 3.3a weight vector wr = (3, 2) is given

as one of a set of choices.

Figure 3.3a Figure 3.3b

To determine the bias we pick a point on the decision boundary. We

then use the equation wrx + b = 0, whence b = -wrx. The values of x

are given by the relationship of the point on the decision boundary to

the weight vector start

In Figure 3.3a, x = 0, then b = - (3, 2) 0 = 0

0

In Figure 3.3b, x = 2 , then b = (-3, 3) 2 = -3

1 1

49

The results may be checked for each class point.

For dark point -2 and a hard limiting activation function,

2

f(wTx + b) = f((3, 2) -2 - 0) = f(-2) = 0,

2

For light point 4 and a hard limiting activation function,

2

f(wTx + b) = f((3, 2) 4 - 0) = f(16) = 1,

2

3.1.2 A training algorithm

We have two pattern classes a and b, and we have samples

representative of each class. We shall submit these samples

sequentially to the perceptron. As the supervisor we know the correct

response for each pattern submitted.

If the system makes a correct response nothing is done. If it gives an

incorrect response we modify the weights. If the output is 1 when it

should be -1, we decrease the weights. If it is -1 when it should be 1,

we increase the weights.

The concept of· training a perceptron to classify patterns can be

illustrated graphically by the example following the training algorithm.

This simple training algorithm (based on the work of Rosenblatt 1958)

forms a new vector of connection weights from the old weights vector,

based on the response to the training pattern, correctness of response

and the input vector.

To start, all network weights are randomized and the bias b is set.

When no starting values are given, it is recommended that the weights

are set to small random values.

50

Procedure

1) Initialize connection weights.

2) Apply the input pattern (training vector x).

3) Compute the perceptron output f(wrx + b).

The response level of output 0 is given by:

0 = f(wrx + b)

where b = bias, f is the hard limiting function.

1 [0 (can also be -1) for w r x + b ::;; O

4) Compare the actual output with the expected output

5) Compute new weights using the following table

Wn+1 = Wn + ex where Wn+1 is the new weight vector,

Wn is the previous weight vector .

Actual Expected

Output output

1 1

1 -1

-1 -1

-1 1

Weight constant table

Table 3

c

0

-1

0

1

6) Repeat from (2) for the complete pattern set.

Example

Suppose we have a series of points capable of representation in two classes

a and b. We use the perceptron to classify them by assigning the value 1 to

51

points in the a class and -1 to the points in the b class. The hard limiting

function (-1 and 1) with bias b = 0 is used.

Initial weight vector:

W = (W1, W2) = (0.4, 0.2)

Training sets a1 = (-0.5, 0.6); a2 = (0.3, 0.3);

b1 = (-0.3, -0.4); b2 = (0.7, 0.2);

I a1 =(-0.5. 0.6) 1~ I a2=(0.3, 0.3)

/ --1 br(0.7. 0.2) 1

/'
I b1= (-0.3, -o.4) I

Figure 3.4

The original points are plotted in the above diagram:

Apply the training pattern a1= (-0.5, 0.6)

WTX + b = (0.4)(-0.5) + (0.2)(0.6) + 0 = -0.08.

f(-0.08) = -1, expected +1.

Wn+1 = Wn + 1 (input pattern vector).

Add corresponding components

W1 = 0.4 + (-0.5) = -0.1

W2 = 0.2 + 0.6 = 0.8.

Apply the next pattern

b1 = (-0.3, -0.4)

0 = WTX = (-0.1)(-0.3) + (0.8)(-0.4) = -0.29

f(-0.29) = -1.

Since pattern b1 response should be -1,

Wn+1 = Wn + O(input pattern vector).

(w1, w2) unchanged.

Apply the next pattern a2 = (0.3, 0.3)

WTX - b = (-0.1)(0.3)+ (0.8)(0.3) = 0.21

f(0.21) = + 1.

Since pattern a2 response should be +1,

Wn+1 = Wn + O(input pattern vector).

(w1, w2) unchanged.

Submit pattern b2 (0.7, 0.2)

WTX - b = (-0.1)(0.7) + (0.8)(0.2) = 0.09.

f(0.09) = + 1

Since pattern b2 response should be -1,

Wn+1 = Wn - 1 (input pattern vector).

W1 = (-0.1)- (0.7) = -0.8

W1 = 0.8 - 0.2 = 0.6.

3.1.3 Logic functions by perceptron (linear separation).

a

0

1

0

1

Consider the logic OR function: S = a OR b.

B s
0 0

0 1

1 1

1 1

t
b

1

0

0

Logic OR

Figure 3.5

a 1

The dotted line is one of many that could be used to separate 0 and 1.

53

A

1

2

3

4

5

6

7

A

1

2

3

4

5

6

7

B c D E F G H I

A perceptron program to pertorm the logic OR function

A hard limit function is used

Inputs Connection weights Product Summation Hard limit function

1 0.5 B6*C6

1 0.5 B7*C7 E6+E7 IF(G7<0.5,"0","1 ")

A logic OR formula spreadsheet.

Table 3.2

The Excel spreadsheet gives the following output if formulae are

preceded by an equals sign(=).

B c D E F G H I

~ perceptron program to perform the logic OR function

A hard limit function is used

Inputs Connection weights Product Summation Hard limit function

1 0.5 0.5

1 0.5 0.5 1 1

A logic OR calculations spreadsheet.

Table 3.3

For binary inputs in 86 and 87, 17 gives the OR result.

Simple spreadsheet perceptrons, like the above model, may be used to

model the logic functions: OR, NOR, AND, NANO.

54

Each neuron may be used to produce a straight line. When two or

more neurons form a network layer, the regions between the straight

lines will be convex. Any convex region can be described by a (large

enough)set of straight lines. By definition a convex region is one in

which any two points within the region may be joined by a straight line

that does not leave the region. The region may be open or closed, a

closed region being completely bounded. (see Figure 3.5).

Convex open Convex closed

Convex regions

Figure 3.6

3.1.4 Delta rule training for linear separation

This is a generalization of the perceptron training algorithm of

Rosenblatt (1958) that extends the technique to continuous inputs and

outputs. In perceptron training, sets of inputs are provided, the weights

being adjusted until the required output, or an output within the

permitted error is achieved. The procedure is repeated for a set of

inputs, which may be submitted sequentially or in a random manner.

The delta rule applied for single layer perceptron weight adjustment, is

a simple rule for learning that will converge to a solution in a finite

number of steps regardless of the initial choice of weights. The

knowledge that a result will be achieved in a finite number of steps is

offset by not knowing how many steps.

The delta algorithm for weight adjustment is:

LlWji = 11Sxj.

Example

Where .Liwii is the change in the weight of Xi as used by neuron j,

11 is the learning rate (0 < 11 < 1),

8 is the difference between target T and output value 0 and Xi is the

input value.

Output is given by 0 = f(wT x + b) where b = bias for neuron j and f is

the hard limiting function.

O>O

otherwise.

Weight adjustment Wn+1 = Wn + 118x.

A single layer perceptron as shown in Figure 2.1 has a learning rate 0.35;

inputs x1 = 1; x2 = 1; initially chosen weights are w1 = -4 (inhibitory); w2 = 3

(stimulatory) and the bias b = 1.

If the target value is T = 1then0 = f((-4)(1) + (3)(1) -1) = f(-2) = 0,

8=1-0=1,

W3,1 = -4 + (0.35)(1)(1) = -3.65,

W3,2 = 3 + (0.35)(1)(1) = 3.35.

2nd output with corrected weights,

0 = f((-3.65)(1) + (3.35)(1) -1) = f(-1.3) = 0,

8=1-0=1,

W3,1 = -3.65 + (0.35)(1)(1) = -3.3,

W3,2= 3.35 + (0.35)(1)(1) = 3.7.

3rd output with corrected weights,

0 = f((-3.3)(1) + (3.7)(1)-1) = f(-0.6) = 0,

8=1-0=1,

'N-3,1 = -3.3 + (0.35)(1)(1) = -2.95,

W3,2 = 3.7 + (0.35)(1)(1) = 4.05.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4th output with corrected weights,

0 = f((-2.95)(1) + (4.05)(1)-1) = f(0.1) = 1,

0 = 1 - 1 = 0,

W:3,1 = -2.95 + (0.35)(0)(1) = -2.95,

W3,2 = 4.05 + (0.35)(0)(1) = 4.05.

The first spreadsheet abstract shows the weight updating formulae

used in Excel. The preceding equals sign (=)has been omitted so that

formulae may be shown.

The second spreadsheet shows the results that confirm the previous

calculations.

A 8 c D E F G

Delta rule application

A hard limit function is used

Inputs Weights Product Function 8 a Delta rule

1 -4 A6*86 1-D7 0.35 86+E6*F6*A6

1 3A7*87 IF((C8-1)>0,"1 ", "O") 87+E6*F6*A7

SUM(C6:C7)

1G6 A9*89 1-D10 0.35 89+E9*F9*A9

1G7 A10*810 IF((C11-1)>0,"1 ", "O") 810+E9*F9*A10

SUM(C9:C10)

1G9 A12*812 1-D13 0.35 812+E12*F12*A 12

1 G10 A13*813 IF((C14-1)>O, "1 ","O") 813+E12*F12*A 13

SUM(C12:C13)

1G12 A15*815 1-D16 0.35 815+E15*F15*A15

1 G13 A16*816 IF((C17-1)>0,"1 ","0") 816+E15*F15*A16

SUM(C15:C16)

A formula spreadsheet for updating weights.

Table 3.4

57

A B c D E F G

1 Delta rule application

2

3 ~ hard limit function is used

4

5 Inputs Weights Product Function 8 a. Delta rule

6 1 -4 -4 1 0.35 -3.65

7 1 3 30 3.35

8 -1

9 1 -3.65 -3.65 1 0.35 -3.3

10 1 3.35 3.350 3.7

11 -0.3

12 1 -3.3 -3.3 1 0.35 -2.95

13 1 3.7 3.70 4.05

14 0.4

15 1 -2.95 -2.95 0 0.35 -2.95

16 1 4.05 4.051 4.05

1.1

Spreadsheet confirmation of example results.

Table 3.5

Example

This example is based on an idea from Wasserman (1989). A simple 5 row x

4-column grid of light transmitters may be constructed, so that the lit squares

are seen as one of the numbers O to 9. We need to train a perceptron to

recognise even number patterns by yielding output 1, odd patterns giving no

output.

Picture the lit squares in the following diagram to see the figure 8.

58

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

0 1 1 0

A grid to display 8.

Table 3.6

The diagrammatic arrangement is shown below.

1 or O

Number grid signals.

Figure 3.7

A lit square feeds the corresponding neuron an input of 1; otherwise, that

neuron has input 0. Reading by row, left to right, the number 8 would be

coded 0110 1001 0110 1001 0110 giving the perceptron response as 1.

With ·the appropriate summation of inputs multiplied by weights and bias

added the correct response should be given. The correct weights are

determined from a delta rule training algorithm.

A global training method over a complete number set would be used.

59

In practice the training process starts with all of the weights initialized to small

random numbers. This protects the network against saturation by large values

of the weights, and prevents certain other training pathologies. For example, if

the desired performance is attained by unequal values of the weights and

weights start at equal values, the network will not learn.

Note that a computer program would be more effective for this type of

problem since it would be easy to store all binary patterns and their correct

responses.

A similar technique could be used to represent the letters of the alphabet, or

perhaps another set of ones and zeros that could be used to produce an

output pattern. If one wished to train the network to recognize all the letters of

the alphabet, 26 training vectors would be required.

3.1.5 "n" layer networks

The use of more than one layer in a network permits the linear

separation of more than two classes. In an "n" layer network, selection

of appropriate weights and activation functions can define convex

regions.

We may examine a two-layer network in which two neurons in the first

. layer (hidden layer) feed a single neuron in the second layer (output

layer), as shown in Figure 3.8.

1st layer 2"d layer

A two-layer network.

Figure 3.8

60

Suppose for the output neuron (0) the connection weights from the

hidden neurons (H1, H2) are (0.5, 0.5) with a hard limiting function. The

output neuron bias activation is at 0. 75. for output 1. The hidden

neurons would need to satisfy;

(Y1)(0.5) + (Y2)(0.5) > 0. 75, where (Y1, Y2) are the outputs of (H1, H2),

with Y1 = f(x1 W11 + X2W21) + b1 and

Y2 = f(X1 W12. + X2 W22) + b2,

Therefore f(x1 w11 + x2w21 + b1) = 1 and f(x1 w12. + x2 w22 + b2) = 1

(Since f is a hard limiting function).

Therefore x1 w11 + X2 W21 + b1 > 0 and x1 W12. + X2 w22 + b2 > 0 where

b1 and b2 are biases for the hidden neurons.

Each neuron in the hidden layer will produce a straight line, the output

neuron providing an AND function.

Suppose the first hidden neuron subdivided the xy plane to give 1 to

the right of the line. Suppose the second hidden neuron gave 1 to the

left of the line. (See Figure 3.8). A typical open convex region would be

formed as the output neuron gives the logic AND function.

i
y

x ...

An open convex region.

Figure 3.9

61

3.2 The adaline

The adaptive linear element (adaline) was developed by Widrow (1959). It has

found practical applications in filters, telecommunications, and adaptive

antennas (Widrow and Winter 1988).

To see the adaline in perspective it is useful to contrast it with its predecessor

the perceptron. It differs from the perceptron in that the perceptron feedback

is only for correctness of classification whilst the adaline continuously

measures the error and progressively acts to minimize it.

The perceptron learns only from wrong answers, the adaline learns

continuously. The perceptron changes its weights in response to the truth of

its last classification. The learning process may take a long time to converge

to a set of weights that classify correctly. A perceptron's set of weights that

satisfy pattern requirements is rarely unique and may not be optimal. In

contrast the adaline learns with speed and accuracy.

Initially the adaline was fed an input pattern, from which it produced a

corresponding output classification. Early work assumed binary inputs O or 1

and output values of 1 or - 1.

Bias

An adaline neuron.

Figure 3.10

62

The adaline determines interconnecting weights that minimize the error

between the output and the expected output. The method used to achieve this

·~ is the Widrow-Hoff rule, which is a least mean square (LMS) application. The

rule differs from the delta rule in the manner of error calculation for updating

the weights.

For a single neuron the inner product between the input vector and the related

set of synaptic weights is computed. Computation is simplified if a bias weight

is added, as explained in section 1.2.3. The output of the sum stage feeds the

hard limiting activation function with output states, + 1 and - I, decision point 0.

If at the sum stage the yield is positive output is 1 if not the output is - 1 . The

difference between the adaline and the perceptron is that the supervisor has

access to the output of the sum stage and to the final classification.

The perceptron gives the output state, + 1 or -1, from which the perceptron

learns only correctness of the final state. The internal state of the computing

unit is not known. If the output of the summation stage was available, a

supervisor could compute the error signal between the expected output and

the computed output. This technique may yield a non-zero error, even when

correct classification is achieved. Changes of weights may continue with

correct classification, because the output of the sum stage, the inner product,

is rarely exactly + 1 or - I.

3.2.1 Widrow-Hoff (LMS learning rule):

L'.l Wji = a.8xi where 8i = Yi - w T x

The rule application

For a given vector input x and required scalar output Yi, assume actual

output y'i·

Since y'i = wTx where w is the weight vector, the LMS error minimises

the square of the difference between the required and actual outputs.

e2 (w) = I[(Yi - y'i)2] = I[(Yi - wTx)2] = I[(y? - 2 Yi wTx+ WTX xTw)]

= L [y?] - 2 L [Yi WTX] + WTL [xxT] w]

63

Set L [y?] =a, L [Yi x]= b, and L [xxT] = C (input correlation matrix).

Then e2 (w) =a - 2bwT + wrcw

The LMS rule converges to a minimum error (it is a gradient descent

rule), we may determine its optimal value at the turning point by

differentiating the above expression and equating to zero.

3e2 (w)/ ()w = - 2b +we= 0 then w = C"1b

For a given learning rate a the LMS weight-adjusting rule is:

'1w =a(Yi - wTx)xT

64

Examples

Q1) Give a brief description of the perceptron and the adaline neurons, indicating

their essential differences.

A 1) The key property of a single neuron perceptron is that it is capable of

classifying an input vector into one of two categories. The category decision

boundary is determined by the bias (b) in the equation Wx + b. Where W is

the weight matrix and x the input vector. Since the boundary is linear the

perceptron can only classify linearly separable patterns. Its activation function

is the hard limiting function. In the perceptron feedback is only to determine if

the network made the appropriate classification.

The adaline has the same basic structure as the perceptron, except that it

uses the linear transfer function. It has the same linear separable constraint.

One major advantage is that of its LMS training algorithm. The perceptron

training algorithm converges to a pattern classification solution although near

boundary decisions may be sensitive to "noise". For the adaline the LMS

training algorithm moves decision boundaries from the training patterns by

minimizing the mean square error, reducing the risk of "noise" sensitivity.

Q2 Illustrate the following points on a graph. If a perceptron is used to separate

the groups, a classified 1 and b classified -1, draw a suitable dividing line. For

the chosen dividing line determine weights and a bias value.

Training sets 0 a1 = (0.7, -0.6),

~ b1 = (-0 3 0 8) . , . ,

a2 = (0.4, 0.8),

b2 = (-0.7, -1.2) .

65

A2 Scale 1 square = 0.2 units

!1!111 I i)

(..

..

There are several lines that could be chosen with resulting bias selections

03 What would happen, using a single neuron perceptron, if for the same training

sets a, the b sets were:

b1 = (-0.5, 0.6), b2 = (1, 0.2).

A3 A solution would not be possible with a single neuron perceptron since the

points are not linearly separable.

Scale 1 square = 0.2 units

66

Q4 Do the final set of weights given satisfy all conditions for the worked example

on pages 52 and 53?

A4 Final weight set: wT = (-0.8, 0.6), with a hard limiting function (-1, 1) and bias

(0).

Pattern a1 = (-0.5, 0.6):

f(wTx + b) = f((-0.8)(-0.5) + (0.6)(0.6) + 0) = f(0.76), 0 = 1 (correct).

Pattern a2 = (0.3, 0.3):

f(wTx + b) = f((-0.8)(0.3) + (0.6)(0.3) + 0) = f(-0.06), 0 = -1 (not correct).

b1 = (-0. 3, -0.4):

f(wTx + b) = f((-0.8)(-0.3) + (0.6)(-0.4) + 0) = f(O), 0 = -1 (correct).

b2 = (0. 7' 0.2):

f(wTx + b) = f((-0.8)(0.7) + (0.6)(0.2) + 0) = f(-0.44), 0 = -1 (correct).

Q5 Draw a simple spreadsheet program to compute the final weights that satisfy

the required classification.

A4 The previous weight vector did not satisfy all patterns. A further epoch or

epochs should produce the desired result.

At the second pattern submission:

Pattern a1 = (-0.5, 0.6):

f(wrx + b) = f((-0.8)(-0.5) + (0.6)(0.6) + 0) = f(0.76), 0 = 1 (correct).

Pattern a2 = (0.3, 0.3):

f(wTx + b) = f((-0.8)(0.3) + (0.6)(0.3) + 0) = f(-0.06), 0 = -1 (not correct).

Modified weights

W1 = -0.8 + 0.3 = -0.5

W1 = 0.6 + 0.3 = 0.9

b1 = (-0. 3, -0.4):

f(wrx + b) = f((-0.5)(-0.3) + (0.9)(-0.4) + 0) = f(-0.21), 0 = -1 (correct).

b2 = (0.7, 0.2):

f(wTx + b) = f((-0.5)(0.7) + (0.9)(0.2) + 0) = f(-0.17), 0 = -1 (correct).

Note the new final weights (-0.5, 0.9) do yield correct results with all patterns.

67

A spreadsheet for pattern classification

Pattern x1 x2 w1 w2 bias #VALUE! #VALUE! Expected #VALUE!

a1 -0.5 0.6 0.4 0.2 0 -0.08 -1

a2 0.3 0.3 -0.1 0.8 0 0.21 1 0

b1 -0.3 -0.4 -0.1 0.8 0 -0.29 -1 -1 0

b2 0.7 0.2 -0.1 0.8 0 0.09 1 -1 -1

a1 -0.5 0.6 -0.8 0.6 0 0.76 1 1 0

a2 0.3 0.3 -0.8 0.6 0 -0.06 -1 1 1

b1 -0.3 -0.4 -0.5 0.9 0 -0.21 -1 -1 0

b2 0.7 0.2 -0.5 0.9 0 -0.17 -1 -1 0

Note

spreadsheet

values

Formulae for preceded by

pattern an equals

classification sign

Pattern x1 x2 w1 w2 bias B3*D3+C3*E3+F3 IF(G3>0, 1,-1) Ex pd -0.5*(h3-13)

a1 -0.5 0.6 0.4 0.2 0 -0.08 IF(G4>0, 1,-1) 1 -0.5*(H4-14)

a2 0.3 0.3 D4+J4*B4 E4+J4*C4 0 B5*D5+C5*E5+F5 IF(G5>0,1,-1) 1 -0.5*(H5-15)

b1 -0.3 -0.4 D5+J5*B5 E5+J5*C5 0 B6*D6+C6*E6+F6 IF(G6>0,1,-1) -1 -0.5*(H6-16)

b2 0.7 0.2 D6+J6*B6 E6+J6*C6 0 B7*D7+C7*E7+F7 IF(G7>0,1,-1) -1 -0.5*(H7-17)

a1 -0.5 0.6 D7+J7*B7 E7+J7*C7 0 B8*D8+C8*E8+F8 IF(G8>0,1,-1) 1 -0.5*(H8-18)

a2 0.3 0.3 D8+J8*B8 E8+J8*C8 0 B9*D9+C9*E9+F9 IF(G9>0,1,-1) 1 -0.5*(H9-19)

b1 -0.3 -0.4 D9+J9*B9 E9+J9*C9 0 B10*D10+C10*E10+F10 IF(G10>0, 1,-1) -1 -0.5* (H 10-110)

b2 0.7 0.2 D10+J10*B10 E10+J10*C10 0 B11*D11 +C11 *E11 +F11 IF(G11>0,1,-1) -1 -0.5*(H11-111)

Q6 A two layer perceptron has an input vector x = [2, 0, 3], the matrices of

weights for the hidden layer and output layer respectively are:

0 1 7

3 5 -2

2 3 0

Assume that the hidden layer biases are b Th =[1, 0, 1],

the output layer bias is b0 = [1], Calculate the output.

A6 Let h and o be the hidden and output vectors respectively from the activation

functions.

h = f(xWh+ bh) where Wh is the hidden layer weight matrix

[2, 0, 3] 0 1 7

3 5 -2

2 3 0

+ [1, 0, 1] = [7, 11, 15]

Q7 Suggest a strategy for determination of the optimal number of hidden layer

neurons.

A? Plot the test performance against the number of hidden neurons and select

the number offering the best performance.

For large networks, pre-selection may be made of a practical range of hidden

neurons for the test.

08 Is the delta rule suitable for application to a multi-layer perceptron network?

AS The delta rule may not be used if the error rate from a hidden neuron is not

known, however in a backpropagation network this limitation may be

overcome.

Q9 Can the spreadsheet approach of page 51 be used to model the exclusive OR

(XOR) logic function?

A9 Because of the linear separation requirement with a single perceptron that

spreadsheet approach may not be used.

Q10 With reference to the example on pages 58 and 59, what is the response for:

0110 1001 0010 1001 0110?

A 10 The number is 3, with response 0.

69

011 Draw a diagram for the following three cases, insert a suitable boundary line

to separate the square and round points. Decide suitable weights and biases

that satisfy the separation. Hard limit function (1, 0).

a) Square (3, 2)T and (4, 1)T, round (-2, 3)T and (-1, -3)T,

b) Square (2, -1)T and (1, -3)T, round (-1, 1)T and (-2, 1.S)T,

c) Square (0, 2)T and (-1, 1)T, round (0, -1)T and (1, -2)T.

A11 a)

- ~ .6 - \ II JV
\ IL' '/, l!H

I\.

• \ - \

' \.

The separation line is one of many that could be selected.

One set of weights are: wT = (3, 2), then using wT x + b = 0

For a chosen point on the decision boundary line x =[:], b = -wTx

Whence b = -(3, 2t : 1 = -5

Checking the solution for a)~ (3, 2)T and (4, 1)T,@ (-2, 3)T and (-1, -3)T,

(3, 2) [: 1-5 = 8 for the hard limiting function f(8) = 1 correct

(3, 2) [: J-5 = 9 for the hard limiting function f(9) = 1 correct

(3, 2)[~ J-5 = -5 for the hard limiting function f(-5) = 0 correct

70

(3, 2) [~~ - 5 = -16 for the hard limiting function f(-16) = 0 correct

b) and c) similar approaches.

71

References
,.......~-··\.

~ Hagan MT, Demuth H B, and Beale M. Neural network design, PWS

publishing, Boston Ma. pp 4, 20-21 (1996).

[2] LiMin Fu Neural Networks in Computer Intelligence McGraw Hill

Series in computer science, pp 28-32.(1994).

[3] Rosenblatt, F Psychological review 65 (1958).

[4] Widrow, B. Adaptive sampled-data systems, a statistical theory of

adaptation. IRE WESCON Convention record, part 4. New York:

Institute of Radio Engineers, (1959).

[5] Widrow, B. & Winter, R Neural nets for Adaptive Filtering and Adaptive

Pattern Recognition Computer (1988).

[6] Wasserman, P. D. Neural computing Van Nostrand Reinhold, New

York, pp 48-49, (1989).

72

Chapter 4.

FEEDFORWARD NETWORK DESCRIPTIONS

Summary

Networks may be described by the direction of their connections, or by the

functions they perform. The directions of connections use the terminology

feedforward or recurrent, whilst the function is the description of neural

network use, categories being:

classification, association, optimization and self learning.

This chapter uses practical examples of feedforward networks, in addition it

introduces the categories which describe the functions of a neural network.

4.1 Directional classification

Feedforward neural networks process data from inputs to output(s). These

network types have no feedback, as is the case with recurrent networks.

Commonly used feedforward networks include;

Multi-layer perceptron (MLP).

Kohonen.

Learning vector quantization (LVQ).

Cerebellar model articulation control (GMAC).

Group method data handling (GMDH). This is a special case, which although

classified as feedforward, will be the subject of a separate chapter.

4.1.1 The multi-layer perceptron

The multi-layer perceptron is a feedforward neural network whose

structure has input neurons, one or more hidden layers and an output

layer. It may be used for non-linear classification problems.

73

As mentioned in chapter 3, each neuron in the first hidden layer is

capable of producing a hyper-plane. Each neuron in the output layer is

capable of combining hyper-planes to achieve convex decision regions.

Depending on the bias, an output neuron can act as a logic OR ,

alternatively as a logic AND. A convex region is one in which points

may be joined by straight lines that do not leave the region. Figure 4.1

shows a convex decision region produced by a two layer perceptron

with two neurons in the hidden layer.

Inputs Hidden Output

region is 1

Production of convex regions

Figure 4.1

Following the ideas of weight and bias determination based on the work of

Hagan, Demuth and Beale (1996) in chapter 3. We may choose suitable lines

to divide three, or more, classes. A line is generated by each perceptron in the

hidden layer. The resulting collection of lines separating the various classes.

Example

For four classes of input vectors:

Class 1 D X1 =(:)' X2 = (:)'
Class 3 @ x. =(~)· x. t:)

Design the perceptron network to solve this problem.

74

An n neuron perceptron can categorize 2" classes. The four classes will

require a layer with 2 neurons.

Figure 4.2 gives the classes and their positions. Two decision lines are drawn

that offer possible class separation. The first decision line separates the light

and dark classes. The second decision line separates the circles and squares.

1

It
\ \
\ rh

I
-I h \ ,..,
~ i,.... ...

1 i...- \ i-...... , .. - i...-- \
i,...oo 1 __. -

.db
11' 2 •

•~ \
\
1

Class separation.

Figure 4.2

Weights are chosen that are orthogonal to the decision lines. The first

decision line points in the direction of the light units which should produce

output 1. The dark units produce output 0. The second decision line points in

the direction of the circles to produce output 1. The squares produce 0.

The output layer neuron can offer selection of any set. I.e. w1 AND NOT w2

would select the light squares.

Selecting suitable weights, two possible sets are:

W1T = (-1.5, 4) W2T = (-5, 1)

Selecting the biases:

b1 = -(-1.5, 4) 5.5 = 0.25

2

b2 = -(-5, 1) -5 = -23.5

-1.5

75

For the light square w1 T x1 + b1= (-1.5, 4)~)+ 0.25 = 9.25 ,

f(9.25) = 1.

For the dark circle (-1.5, 4)(:;+ 0.25 = -15. 75,

f(-15.75) = 0.

This network has been designed with graphically defined decision boundaries

that gave clear-cut decisions, in practical circuits this often not the case.

This single layer perceptron example uses a linear decision boundary to

separate input vectors, there are however many problems in which

categorisation is not linear.

Inputs Hidden

layer

Outputs

A perceptron network with a hidden layer.

Figure 4.3

In Figure 4.5 we have a two-layer representation, with four neurons in

the hidden layer and three in the output layer. The input neurons

76

merely distribute data and may be represented by a vector. Each

hidden layer neuron will receive a vector of weights, the combined

effect for the hidden layer will be a matrix in which the columns are the

layer vectors.

W11 W12 W13 W14

W = W21 W22 W23 W24

Each input neuron is connected to all neurons of the two adjacent

layers and to no other neurons. Note that connections within a layer or

from higher to lower layers are not permitted.

c E
....... ::J
0 U) c U)c 0 Weight Q) Weight ::J

0.. >. ·3 ro Outputs c ro >
matrix U) matrix c c (.)

Q) 0 ro
"O
"O ::J "O

I
Q) c
c ro

A block diagram of a feedforward network.

Figure 4.4

Generally the multi-layer perceptron has a different number of neurons

and different weights for different layers. Each neuron of the multi-layer

perceptron is characterised by one output which may be fanned out to

other neurons. There may be many inputs, which may be the outputs of

the neurons in a preceding layer.

Persons building neural networks are faced with the problem of

deciding the number of layers to be used and the number of neurons

required in the hidden layers. Work by commercial packages suggests

that most networks require 3 or less hidden layers. There is still work to

77

Example:

be done on the determination of the number of neurons to be efficient

within a hidden layer. An empirical approach would involve plotting test

performance against the number of hidden units.

The following example shows the use of vectors and matrices in a two

layer perce_Q.tron application.

LiMin Fu, (1994) provided the basis for the following work. Suppose we have

a two layer perceptron with input vector x T = (4, 2, 3), weight matrix Wh for the

connections from inputs to hidden layers is:

wh = 3 2 o
1 0 1

1 1 2

and Wo for the connections from hidden layer to output layer is:

3

1

5

bh = (-1, 0,-1), the thresholds for the hidden layer, bo = (-1) the

threshold forihe output layer.

Using H = f(x Wh + bh) and 0 = f(H Wo + bo) calculate the output

H=f[(17, 11, 9)+(-1, 0,-1)]=f(16, 11, 8)=[1, 1, 1]

0 = f(9 -1) = f(8) = 1

Multi-layer perceptrons are popular feedforward networks. Figure 4.5

shows a multi-layer perceptron with input distributing neurons and two

layers: a hidden layer and an output layer. Neurons associated with

78

inputs act as buffers for distributing the input signals Xi to neurons in

the hidden layer. Each neuron j in the hidden layer sums up its input

signals x1 after weighting them with the strengths of the respective

connections and computes y = f(wr x).

The function 'f may be linear, sigmoid, hyperbolic, or some other

activation function, the output of neurons in the output layer is

computed in the same way.

LiMin Fu (1994) explains, adjustment is given by Wji(t +1) = Wji(t) + Liwii

The change of weight LiWji of a connection between neurons i and j is

given as:

Li Wji = llOi Qi

where 11 is a parameter known as the learning rate, in the range O to 1,

oi is the error gradient factor depending on whether neuron j is a hidden

neuron or an output neuron and Qi is the output from a preceding

neuron.

For hidden neurons oi = Qi(1 - Qi)L:k okwki

where Ok is the error gradient at neuron k with a connection from a

hidden unit .

For output neurons oi = Qi(1 - Qi)(Ti - Qi) where Ti is the target output

and Qi is the actual output at unit j .

When training a neural network, a set of patterns provide the input

vectors. A training epoch is said to have been completed when all

training patterns have been presented once to the multi-layer

perceptron.

For all but the most trivial problems, several epochs are required for

the multi-layer perceptron to be properly trained. A commonly adopted

method to speed up the training uses a "momentum" term (0 < a < 1)

79

added to the weight adjusting equation that effectively lets the previous

weight change influence the new weight change.

Wji(t +1) = Wji(t) + L\wji + u[wji(t) + Wji(t - 1)}.

4.1.2 The first Kohonen network

The first Kohonen (1982) network discussed in this thesis is a one layer

architecture. The distributive input vector feeds an output layer which

has one neuron for each possible output category. Neurons in the

output layer are commonly arranged as a two dimensional array.

Each output neuron is connected to all input neurons and connection

weights form the elements of the reference vector for a particular

output neuron.

0000
00

An early Kohonen network

Figure 4.5

The training patterns are presented to the input layer, then fed forward

to the output layer and evaluated. A lone output neuron is the "winner".

The network weights are adjusted during training. This process is

repeated for all patterns for a number of epochs chosen in advance.

Learning rate affects the network, and a commercial program (Ward

systems, NeuroShell 2 (1996) reduces the learning rate as training

80

progresses, causing progressively smaller weight changes, with

improved network stability.

The network adjusts the weights for the neurons in proximity to the

winning neuron. Initially the neighbourhood boundaries are fairly large

(perhaps close to the number of categories) with increased learning the

boundaries decrease, until during the last training events the

neighbourhood is zero, resulting in changes to the winning neuron's

weights only. When the learning rate is very small, and the clusters are

well defined the clusters suffer only minor alterations.

4.1.3 The Kohonen self organising feature map

The Kohonen (1987) self-organising map network is an output grouping

technique, implying that two or more outputs are required. There are

sets of vectors that feed each output.

The network requires guidance to set parameters such as learning

rate, initial weights, neighbourhood size, and number of epochs. The

success of the network in classifying data is dependent upon how well

these parameters are set.

00000000
0

Hexagonal neighbourhoods.

Figure 4.6

81

The concept of neighbourhood size is illustrated Figure 4.6. Kohonen

(1987) suggested that rectangular or hexagonal neighbourhoods were

an aid to efficient network implementation.

In commercially available programs the neighbourhood size begins

with a relatively high number, such as 90 percent of the number of

neurons in the input layer. The learning rate should begin with a

relatively high number such as 0.5. The number of epochs is

dependent on the size of the problem to be solved.

A typical clustering problem might be the cost grouping for a parcel

delivery service. The inputs could include trade volume, geographical

mean distances, transport medium, cyclic trends, seasonality, weight,

shape and content robustness, outputs may be cost classified into

local, national, and international, each for low, medium, or high tariff.

Wasserman (1989) suggests the following algorithm for self-organizing

map training:

Normalize all input vectors to unit length.

Apply an input vector x,

Calculate the distance Di (in n dimensional space) between x and

weight vectors wi of each neuron. In Euclidean space this is calculated

as:

Di = --J[I(xi - wij}2], where Xi is the ith component of input vector x

wii is the weight from input i to neuron j.

The neuron that has the output vector closest to x is declared the

winner. This weight vector We becomes the centre of a group of weight

vectors that lie within a distance D from We.

Train this neighbourhood group of weight vectors with formula

Wj (t + 1) = Wj (t) + a[x - Wj (t)],

Repeat the steps 1 to 4 through the cycle of input vectors.

S2

As training progresses gradually reduce the values of D and a..

Kohonen recommends that the number of training cycles should be at

least 500 times the number of output neurons.

4.1.4 Learning vector quantization (LVQ)

Kohonen, Barna and Chrisley (1987) suggested a nearest neighbour

classifier in which there are a fixed number of categories located in

state space. The introduction of a new pattern in training, results in it's

classification, which if correct, results in the weights of the nearest old

pattern being adjusted to move closer to the new. In the event of a

wrong classification the old pattern recedes.

Many problems work with noisy data and the distribution of possible

examples may not be clearly bounded to a particular subspace. I e. the

submitted pattern could belong to class A or B or or Z. Analytical

approaches use probabilities to determine the most likely grouping.

Like statistical modelling, vector quantization follows the probability

density function of input patterns. In general, a coarser quantization is

obtained in those areas where inputs are sparse.

Learning vector quantization is an application of competitive learning in

which the input space is divided into disjoint subspaces in order that

each input vector may be represented by its subspace label. I.e. for

input vector A1 presented to the network with nk the winning neuron the

subspace label is A1. The output neuron fed from the subspace

containing the winning neuron produces the. output 1. It may be useful

to have a programme that gives the output neuron values on a

continuous scale, so that runners up can be examined.

These Kohonen networks are unsupervised. they can classify a set of

training patterns into a specified number of categories without being

shown in advance how to categorise. The network does this by

83

clustering patterns. It clusters them by their proximity in N dimensional

space where N is the number of inputs.

The user tells the network the maximum number of categories and it

usually clusters the data into that number of categories. However,

occasionally the network may not be able to separate the patterns into

that many distinct categories.

A practical example, which may be evaluated by this technique, is in

classification of service providers for the internet industry as high,

medium, or low quality. The inputs upon which classification could be

based are:

access, personal contact, facilities offered, user protection, cost of

service, supplied software, technical support times, service expansion

and ca pa bi I ity.

4.1.5 LVQ structure

The essentials of the L VQ structure are:

a) Full connection between inputs and the hidden layer.

b) Partial connection between the hidden and output layers each

weighting being 1.

c) Each output is linked to a different cluster of hidden neurons.

A reference vector is formed by the weights of the input to hidden

neuron connections, these being modified during the training of the

network.

84

0

0

0

An L VQ structure.

Figure 4.7

The hidden (Kohonen neurons) and the output neurons have binary

outputs. When an input pattern is supplied the Kohonen neuron with a

reference vector closest to the input pattern is the winner with

activation 1, all other Kohonen neurons have activation 0.

Pham, and Liu, (1995) offers the following simple LVQ training

algorithm for output neuron determination

1) Initialise the weights of each reference vector.

2) Give an input training vector to the network.

3) Determine the Euclidean distance between the input

training vector and the reference vector.

4) Update the weights of the reference vector having the

least Euclidean value.

5) Recommence the cycle for a new input pattern.

6) Stop when all patterns have been cycled.

4.1.6 Cerebellar model articulation control (CMAC)

This is a class of neural networks that has been designed from

physiological studies to simulate the brain as a controller. The

85

cerebellum is the part of the brain primarily concerned with control of

the motor functions, it is in some respects analogous to the perceptron.

An important idea put forward by Albus (1975) is that it may be

possible to duplicate the functional properties of the brain without

modelling the neuronal substrate.

The networks act as command sequence memories. They store and

replay command sequences. Robotic movements are smoothed by

combining multiple command sequences with different weights. The

networks have been used for control of the motor function of robotic

arms.

The network has been analysed as a supervised feed forward network

with fuzzy memory, in which a series of sensory inputs, vectors Xi, are

mapped through a matrix of weights W, to an output.

Albus (1984), in discussing the CMAC, noted that the manipulator

control problem could be stated in simple terms, whilst its solution was

complicated.

He points out that the simple action of picking up a glass involves the

conscious actions of measuring the position of the hand relative to the

glass and determining the vector direction to move the hand to the

glass. At the sub conscious level we have movements of the shoulder

joint, elbow joint and the muscular forces.

When translated to a manipulator problem, computations are required

of individual joint rates, based on the trigonometric relationships

between the structural members and the manipulator.

Albus (1979) explains, the simple mathematical models to cope with

these states may be :

86

X1

Xn

x = J(e)8 where e is a vector of individual joint velocities and x is a

vector of end point velocities in a Cartesian co-ordinate system, J(S) is

the Jacobian matrix. For inversion of J, a given end point rate x may be

used to determine joint velocities e.
e = S1(8)x.

This simple model does not account for the complexity raised by

gravitational forces, inertial loading and other aspects of a real life

situation.

A CMAC module has Xi input vectors which are mapped to C locations

in the large memory matrix A as shown in Figure 4.9. Pham and Lui

(1995), state that the number of memory locations is large in

comparison to the requirements of a typical control problem. This leads

to the random mapping from the large memory to a smaller memory A'.

There are still C locations in A' which are summed to produce the

CMAC output.

Fixed weights Trainable weights

j \
> >
'-- '--
0 0
E E
Cl> Cl>
E E
Cl>
a ro
'-- E ro

(/)

x x ·;::: ·;::: ro ro
E E
<(<r:

A CMAC module.

Figure 4.8

87

Pham and Lui (1995) give some characteristics of the GMAC module:

1) They have input generalization in that similar inputs produce
similar outputs.

2) A large GMAC can be trained and used in practical time.

3) The GMAC has a unique minimum due to the training rule used.

4) A wide variety of functions can be learned.

CMAC learning.

1) Assume f is a function to be learned and u = f(.) is the required
output.

2) Select the region where u is to be stored and compute the
current value of u' = f(xi).

3) If lu' - b!.I < e (acceptable error), no action.

4) If lu' - b!.I > e, then add to each weight that contributed to u the
quantity a(u' - !:!_)/IA *I,

where IA *I = the number of weights from A' that have
contributed to u' and a is the learning rate.

5) Repeat the above procedure until all inputs are processed.

Manipulator control is expected to be smooth and continuous so

several similar responses are required for particular input space

regions, widely separated regions are expected to be independent.

The perceptron ability to dichotomise over large distances and

generalize close regions gives it potential in this type of control.

88

CMAC
LI Plant to be y

module -~ ... y controlled
i
I
I

Weight -------adjust
+

u'

Direct CMAC based control

Figure 4.9

A more advanced control system due to Miller, Henes, Glanz, and

Kraft, (1990) is illustrated in Figure 4.12.

Reference

output

GMAC ' GMAC u
~ memory ~ training

'l

~ .
GMAC u' .--.
recall

-' Fixed gain - Ir u
~-1

control

t
Advanced CMAC control system

Figure 4.10

Plant
I y

I
-...

The reference output has the desired response for each control cycle

which is fed to the fixed gain control and the CMAC recall. The CMAC

recall sends a supplementary signal to that given by the fixed gain

control, which is a conventional error feedback controller. At the

89

completion of each control cycle a training procedure is used. The plant

output from a previous control cycle is an input to the CMAC module.

The difference between u and u' is used to compute the error. After

training is complete the CMAC module will be the controller.

90

Examples

01 Give a possible instance for each of the following that may be cases for neural

network applications:

Classification

Association

Optimization

Would any of the cases given be better suited to solution by an alternative

approach?

A 1 Classification:

This is placing a given input, or input set into one of several classes. One

example would be estimating value of housing. Classification factors could

include location, property size, features and security. An expert system might

prove to be a better alternative, since judgement could be assisted by market

histories.

Association:

The simplest view of association models relate a given pattern or part pattern

to stored patterns (memory). The common networks for these tasks are

Hopfield, Boltzmann and BSB. The number of neurons decide the storage

capacity.

Anderson (1996) gives an example of the association of antibiotics and

diseases. The neural network is a BSB (Brain State in Box) type and the

network is taught to associate a particular antibiotic with a given input vector

that is symptomatic of a disease. A suggestion is made that a subdivision of

disease characteristics could lead to a more meaningful antibiotic formulation.

In the direct associative state it would seem that a computer programme could

be formulated to perform the association.

Optimization:

The classic traveling salesman problem is an example of optimization. Where

a few nodes are involved the computations can be performed by a computer.

91

With increasing nodes to be visited the neural network may offer a solution

that is acceptable although not necessarily optimal.

02 Suggest a clustering problem for a Kohonen self organizing map, indicate the

potential inputs that may affect the clusters.

A2. To determine leisure activities for the population of a large city we may select

the following output categories. Television viewing, computers, outdoor

activities, cultural activities, social gatherings and cinema.

The inputs on which clustering would be made could include income,

educational level, social status, state of health, environment, safety, available

time and age.

03 Input weight vectors of a Kohonen network's hidden neurons are:

W1 T = (0.451, 0.364, 0. 726),

W2T = (0.380, 0.763, 0.525),

W3 T = (0.852, 0.354, 0.427).

If the input vector x = 0.31 O

0.275

0.650

a) determine the winning neuron,

b) update the winner's weight vector using !l.Wnew = ri(x - Wo1d)

(assume a learning rate ri = 0.25 and neighbourhood (0).

92

References

[1] Albus J.S. A new approach to manipulator control: cerebellar model

articulation control (GMAC) Trans. ASME, Journal of Dynamics

systems, measurement and control, 97, pp 220-227, (1975).

[2] Kohonen, T. Self organization and associative memory 2"d edition

Berlin: Springer Verlag (1987).

[3] Kohonen, T. Self organized formation of topologically correct feature

maps, Biological Cybernetics, 43, pp 59-69, (1982).

[4] Kohonen, T. Barna and Chrisley, (1987).

[5] Hagan M T, Demuth H B, & Beale M. Neural network design, PWS

publishing, Boston Ma.17-6, (1996).

[6] LiMin, Fu. Neural networks in computer intelligence, McGraw Hill, pp.

27, 32, 50, (1994).

[6] Miller Ill, W. T., Henes, RP. Glanz, F. H. and Kraft Ill, LG. Real time

dynamic control of an industrial manipulator using a neural network

based learning controller. IEEE Trans. On Robotics and Automation

6(1) pp 1-9, (1990).

[7] Pham, D, T and Liu, X, Neural Networks for Identification Prediction

and Control, Springer. pp 67-79 (1995).

93

Chapter 5.

GROUP METHOD DATA HANDLING

Summary

This chapter describes a neural network type that may be considered to offer

an alternative to multiple regression methods in certain cases. A major

benefit of this network may be the ability to detect the less important factors in

the generated polynomial.

5.1 Group Method Data Handling (GMDH)

Group Method of Data Handling (GMDH) networks are sometimes referred to

as polynomial nets. They are classified as a feedforward network although

they are not like regular feedforward networks. The invention of lvakhnenko

(1971), the network uses adaline neurons with non-linear pre-processors, that

are called N-adaline neurons.

,... .. - .. ---·-----·--1 . .

\
Non-linear pre-processor Weights

An N-Adaline neuron

Figure 5.1

y

Feedback W<t +1)

94

Each N-adaline neuron in a typical GMDH network usually has two inputs x1

and x2 from which it produces an output y. The output of each neuron is a

quadratic combination of the two inputs, together with the connection weights.

y = X T Qx + q TX + C,

Where xT = (x1 + x2), Q =

The number of neurons used as inputs is dependent on the number of

external inputs available. Each pair of external inputs, requires one neuron.

GMDH networks have structures that grows in training. A network tries to

build a function (called a polynomial model) that would behave in such a way

that the predicted value of the output would be as close as possible to the

actual value of output. The network may be used for modelling or prediction.

Training proceeds with presenting an input pattern as an input vector. The

weights of each neuron are adjusted according to a suitable learning

algorithm, such as the Widrow-Hoff learning rule.

Pham and Liu quote the Widrow-Hoff modified training rule, as modified by

Widrow and Lehr (1990):

W(t + 1) = W(t) + aXtflXtl
2

(Yexpected - WtT Xt).

The application of this rule causes w to be modified to reduce the difference

between the actual and desired outputs.

Training a GMDH network consists of configuring the network starting with the

input vectors and adjusting the weights of each neuron. During training new

layers are formed (Figure 5.2). With each new layer a number of new

neurons are formed from preceding neurons that perform well.

95

Neurons in the preceding layer that have not perform well are discarded. The

new layer formation continues until the accuracy of the mapping achieved with

the network is optimal. I.e. further layers reduce accuracy.

1st Layer 2nd Layer

Inputs

o-----_---_---_-------~~._____.

A network of N-adalines for a required polynomial output.

Figure 5.2

Every neuron in the first batch is targeted to a desired output and is expected

to achieve it. When the batch mean square errors (BMSE), summed over the

desired outputs of the training set of a neuron, reaches a minimum its weight

modification process is stopped. From the now stopped layer, the selection

data set chooses trained neurons for the next stage.

The neurons with squared error below a certain threshold are the post

selection choice for inputs to the next layer, the smallest BMSE is used as the

criterion for stopping the whole network. A new layer is created if the BMSE of

a layer is less than that achieved in a previous layer. When there is no

reduction in BMSE, or if a single neuron remains, training is stopped. Training

a new layer does not affect the results of previously trained layers.

When a layer shows an increase in BMSE the previous layer is the output

layer and its output is that of the best neuron. The final structure is trimmed of

all neurons not connected, directly or indirectly to the final neuron.

96

The output of a GMDH network having m layers can be expressed as a 2m

degree polynomial.

5.1.1 A GMDH training algorithm

Training is summarized by Pham and Lui (1995) as follows:

1) Pre-process the data. This is a data normalizing procedure, for

inputs x and outputs y, use the following equations:

Xnorm = Xj- ~

O'x cry

Where Xi and Yi are the ith input and output experimental data

pair, µx and crx, µy and cry; are the means and standard deviations

respectively of the Xi's and Yi's.

2) Decide the external inputs to the network. For a modelling

application, use m past inputs x(k - 1), x(k - 2), x(k - m), and

n past outputs y(k - 1), y(k - 2), . .. y(k - n). In prediction

applications only n past outputs are used. Duffy and Franklin

(1975) suggested that determination of m and n may be

obtained by calculating correlation coefficients for the input

output data.

3) Separate the experimental data into a training data set and a

selection data set.

4) Create a set of N-Adalines based on the number of inputs, each

pair of inputs produces an N-Adaline.

5) Initialise the weights of the neurons (N-Adalines) to zero.

6) Use the training data set to train all neurons in the created layer

using the following procedure. At time k apply x(k-1), x(k-2),

x(k-m), and y(k - 1), y(k - 2), ... , y(k - n) for a modelling task.

97

Apply y(k - 1), y(k - 2), ... , y(k - n) for a prediction task. Take y(k)

as the desired output of all the neurons. Calculate the output

errors of the neurons and modify their weights once. One epoch

is complete when the whole training set has been presented to

the network.

The squared error of each neuron is summed over the batch to

obtain the BMSE if the result is smaller than that for the previous

batch subject the batch to further training else stop. Current

layer training stops when training for all elements in that layer

stops.

7) Input the selection data set to the network. Obtain the BMSE for

the layer just trained and the ratio of each MSE to the smallest

MSE. From these MSEs assign a threshold, retain those

processing elements whose ratios are below the threshold as

post selection elements for the next layer

8) If the BMSE in the layer selected is larger than that of the

previous layer or if the current layer has a single unit stop

training. If training stops due to an increasing BMSE, or because

a single element remains, use the preceding layer as the output

layer and trim the network. Otherwise use post selection

neurons to create a new layer and return to step 5.

9) Test the network with the evaluation data set, as only the

training set is used in the determination of network weights

generalization may be tested by using the combined training and

- evaluation sets.

A common approach to solving such models is founded in regression

analysis, with the primary step being decision on the type of polynomial

that regression should find.

98

Input variables are selected with their covariants and trivariants as the

terms of the polynomial:

(2 2 2 3 3 3 n n ")
X1, X2, X3, ... , X1 I X2 'X3' ... , X1 I X2 'X3 , ... , ... , X1 'X2 I X3

The next step is to construct a linear combination of all of the

polynomial terms with variable coefficients. The algorithm determines

values of these coefficients by minimizing the squared sum (over all

samples) of differences between sample outputs and model

predictions.

Required complexity is a major aspect of choosing the set of

polynomial terms. If we include in the model, polynomials of one

variable, what should be the largest degree of that polynomial? Should

it be 3, or should the model evaluate terms such as x5? GMDH has in

practice worked better than regression to answer this question if

exhaustive analysis is not used.

5.1.2 Selection Criterion

The relative quality of each prospective model must be evaluated using

some numeric criterion. A simple criterion, with it's origins in linear

regression analysis, is the sum of the squared differences between the

network output and the model prediction divided by the sum of the

squared network output. (Normalized Mean Squared Error called the

Training Squared Error, TSE).

Training square error on practical data, with or without noise factors,

decreases with the addition of extra terms to the model. If you use only

TSE, which determines the quality of the model by evaluating the same

information you have already used to build the model. The results is an

"over complex" model with an inability to generalise effectively because

it pays too much attention to noise in the training data. This is the

equivalent to over training in other neural nets.

99

This problem is negated by, using data other than that which was used

to build the evaluated model. We may compute the squared sum of

differences between the known output and model prediction a test set

of data. An alternative strategy to avoid over fitting is to introduce a

penalty for model complexity, using the Predicted Squared Error (PSE)

criterion introduced by Barron, (1996).

5.1.3 Multi-layer procedure for GMDH

Computation time is reduced by decreasing the number of polynomial

terms (and the number of input variables), used to build the models to

be evaluated. The direct procedure of model selection is changed to a

multi-layer procedure.

(i) The first pair of input variables ,(x1 , x2), yield a simple set of

polynomial terms, (1, x1, x2, x1x2), (1 will represent the constant

term).

(ii) Review all possible models made from these terms, and choose

one which is the best. (Each of the evaluated models is called a

candidate for survival.)

(iii) Repeat steps (i) and (ii) for each variable pair, for n input

variables, n(n - 1)/2 candidates for survival are generated, each

with its own value of the evaluation criterion.

Compare the values from step (iii) choose several candidates for

survival which give the best approximation of the output variable. A

pre-defined number of the best candidates for survival are stored in the

first layer of the net and are preserved for the next layer.

The layer of survivors is used for inputs to build the next layer in the

network. The original network inputs in the first layer may also be

chosen as inputs to this new layer. The next layer is built with

100

polynomials of this broadened set of inputs. Note that since some

inputs are already polynomials, the next layer may contain very

complex polynomials. The layer building GMDH procedure continues

as long as the evaluation criteria continues to diminish.

5.2 Water level prediction using a GMDH network

This example is taken from an analysis Pham and Liu (1995) of data collected

from correlation studies by Weisberg (1985) and Gentry and Lopez-Parodi

(1980) between deforestation and Amazon flooding.

Year High level metres Low level metres

1962 25.82 18.24

1963 25.35 16.50

1964 24.29 20.26

1965 24.05 20.97

1966 24.89 19.43

1967 25.35 19.31

1968 25.23 20.85

1969 25.06 19.54

1970 27.13 20.49

1971 27.36 21.91

1972 26.65 22.51

1973 27.13 18.81

1974 27.49 19.42

1975 27.08 19.10

1976 27.51 18.80

1977 27.54 18.80

1978 26.21 17.57

Amazon flooding data.

Table 5.1

101

For the simulation of high water prediction, using the GMDH network, four

input units were used. The first eleven data being used for training and the full

data set for evaluation.

For the simulation of low water prediction, using the GMDH network, four

input units were used. The first fourteen data being used for training and the

full data set for evaluation.

A comparative evaluation was made using a multi-layer perceptron network,

with four input units, eleven data for training and full data set evaluation at the

high level.

A low level evaluation made using a multi-layer perceptron network, with four

input units, used fifteen data for training and full data set evaluation.

Pham and Liu (1995), provide a group method data handling programme from

which the following graphical data may be obtained. The programme is written

in the 'Microsoft Quick C (version 1.0)' language. The authors do not provide

the GMDH equation.

Group method data handling and multi-layer perceptron network outcomes for

the data favour GMDH. Results are estimated from the graphic plots produced

by Pham, D.T. and Liu, X. (1995) and copied in Microsoft Excel (Office 2000).

102

29

en 28
I» ... - 27 I»
E
a;
>

26
.!

25 .c
-~ ::c 24

23

28
27.5

en 27 ! -26.5 I»
E 26
a; 25.5
> 25 .!
.c 24.5
-~ 24 ::c

23.5
23

GMDH prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

1966-1978

Figure 5.3

Multi-layer perceptron prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

1966-1978

Figure 5.4

--.--- Series 1

-11- Series2

1--.---Series 1 I
i -11- Series2 I

103

25

Ill 20
1:
~ 15
Qi
> J! 10
~
.3 5

0

25

Ill 20 Cl> ... -Cl>
15 E

Qi
> 10 J!
~
0 5 ..J

0

GMDH prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

1966-1978

Figure 5.5

Multi-layer perceptron prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

1966-1978

Figure 5.6

-.-Series1

-11- Series2

-.-Series1

-11- Series2

104

Examples

Q1 What type of neurons are used in the construction of GMDH networks and

what learning rule is generally applied ?

A 1 Use is made of adalines with non linear pre-processors. The Widrow-Hoff

learning rule is used.

Practical examples for this chapter would require the use of a suitable

programme for GMDH.

Available programmes include:

GMDH in Neuroshell 2 Ward Systems

Email: WardSystems@msn.com

A programme has been written in Microsoft Quick C (version 1.0) by OT

Pham and X Lui, Neural Networks for Identification, Prediction and Control,

Publisher, Springer, (1995).

Other programmes in the appendices include:

Multilayer perceptron for identification.

Modified Elman network for identification.

A series of programmes in ANSI C have been written by Karsten Kutza in

June 1996. As a consequence of my computers being stolen I no longer have

direct internet references. My download shows the following programmes.

Adaline, ART 1, BAM, Saltzman, BPN (backpropagation), CPN

(counterpropagation), Hopfield and self organizing maps.

Adam Blum has published Neural networks in C++, Wiley and Sons inc.

(1992). The programmes, written in Turbo C++, include:

A makefile programme for construction of the given networks.

Vector and matrix classes.

An abstract neural network base class.

Backpropagation. Counterpropagation. BAM. Hopfield.

105

References

[1] Duffy, J.J. and Franklin, M.A. A learning identification algorithm and its

application to an environment system. IEEE Trans. Systems, Man ,and

Cybernetics, 5(2), pp 226-240. (1975).

[2] lvakhnenko, AG. Polynomial theory of complex systems, IEEE Trans.

Systems, Man, and Cybernetics, 12, pp 364-378 (1971).

[3] Pham, D.T. & Lui, X. Neural Networks for Identification Prediction and

Control, Springer. pp 67-79 (1995).

[4] Neuroshel/ 2 A proprietary Neural network programme by Ward

systems (1996).

[5] Barron, A R. Neuroshell 2, Ward systems(1996).

[6] Gentry, A.H. and Lopez-Parodi, J. Deforestation and increased flooding

of the upper Amazon, Science 210(19), 1354-1356, (1980).

[7] Weisberg, S. Applied Linear Regression. Wiley, New York, pp 31-32

(1985).

106

Chapter 6

RECURRENT NETWORK DESCRIPTIONS

Summary

Recurrent neural networks have feedforward and feedback connections so

that signals may be propagated in opposite directions. Each pattern passes

through one or more neurons, two or more times, before an output response

is generated in this network.

The networks explained are feedforward backpropagation, Hopfield,

Boltzmann, Bi-directional Associated Memories, Elman and

Counterpropagation.

6.1 Feedforward backpropagation

The network's name is based on its method of handling errors. As we have

already observed, the perceptron network can train the output units to classify

input patterns, subject to the classes being linearly separable.

When the classes are not linearly separable the solution may be found

through a multi-layer network. Minsky and Papert (1948) suggested that

output errors would require adjustment to neurons or adjustments of inter­

connections. Back-propagation offered a solution by apportioning the error to

all neurons and connections. Apportioned error is by propagating output error

backward through the connections to each preceding layer and to the input

vector.

A typical back-propagation network has an input vector, one or more hidden

layer(s) and an output layer. Commercially available networks normally have

three or less hidden layers. Each layer being completely connected to the

107

preceding layer. Whilst the network is being trained the level of error is used

to update the connection weights.

Neurons in the hidden layer "fire" or produce outputs that are based upon the

sum of weighted values passed to them. The hidden layer passes values to

the output layer in the same fashion, and the output layer produces the

desired results (predictions or classifications).

A vector of inputs x is applied to the hidden layer neurons, each of these is

multiplied by a connection weight, and the products are summed. This sum­

mation of products w T x must be calculated for each neuron in the network.

After w T x is calculated, an activation function f is applied to modify it, thereby

producing the signal f(wT x + b). The activation function usually used for back­

propagation is sigmoid, because it has a simple derivative, used in implement­

ing the backpropagation algorithm.

Inputs Hidden Output Comparator

Target

Error to hidden layer

A backpropagation network

Figure 6.1

108

Multi-layer networks have greater representational power than single-layer

networks only if a non-linearity is introduced. The sigmoid (squashing)

function produces the required non-linearity. Other functions maybe used to

satisfy the backpropagation algorithm requirement that the function be

everywhere differentiable. Backpropagation is applicable to networks with any

number of layers.

6.1.1 Backpropagation in multi-layer perceptron training

><
CJ)
::J
a
c

Single layer networks have been trained by use of the delta rule,

Rosenblatt (1975), or the LMS rule Widrow and Hoff (1976). They are

limited in their application to linear separable problems.

The backpropagation algorithm, which is a gradient descent algorithm,

is often used for multi-layer perceptron training. This algorithm was

proposed in a thesis by Werbos (1974). The algorithm was re­

discovered independently by Parker (1985), LeCun (1985) and

Rumelhart, Hinton and Williams (1986).

Layer 1 Layer 2 Layer 3

Y1 = f1 (W1x1+ b1), Y2 = f2 (W2 Y1+ b2), y3 = f3 (W3 Y2+ b3),

A block diagram of a three layer network

Figure 6.2

10C)

6.1.2 Backpropagation training

The backpropagation algorithm for multi-layer networks is a

generalization of the least mean squares (LMS) algorithm. Training

assumes that each input vector Xi is paired with a target vector ti

representing the desired output. (xi, ti) are called a training vector pair.

Usually, a network is trained over a number of training pairs.

The training procedure is as follows:

Procedure

1 Initialise all weights to small random numbers.

2 Select the next training pair from the training set; apply the input

vector to the network.

3 Calculate the output of the network.

4 Calculate the error between the network output and the target

output.

5 Adjust the weights of the network to minimise the error.

Repeat steps 2 to 5 until the error is sufficiently low.

6.1.3 Exclusive OR implementation in backpropagation

This problem was the reason that many researchers abandoned neural

network studies in the 1960's. Some twenty years later the problem

had been solved by several methods including the multi-layer

feedforward backpropagation network.(Li Min Fu, 1994)

The following table indicates for binary inputs a and b the expected

output S.

110

a 8 s
0 0 0

1 0 1

0 1 1

1 1 0

An exclusive OR table.

Table 6.1

Circuit

3

Input b

Figure 6.3

Processing

Randomise initial weights to small values

Wa3 = 0.02, Wb3 = 0.03, W23 = -0.02, Wa2 = 0.01, Wb2 = 0.02,

Wbias3 = -0.01, Wbias 2 = -0.01.

For input pattern x r = (1, 1 }, required output (0) and a sigmoid

activation function, hidden unit 2 is H2 and output is 03 then:
H

2
= 1/(1 +e-f1(0.01)+1(0.02)-1(0.01)J) = 0_505

03 = 11(1 +e-f(0.5CX5)(0.02+1(0.02)+1(0.03) -1(0.01)1) = 0_508

Assume a learning rate Tl= 0.03

~h= 0.508(1-0.508)(0-0.508) = -1.27
111

~W13 = 0.3(-0.127)1 =-0.038

<h= 0.505(1-0.505)(-0.127)(-0.02) = 0.0006

~WZ3 = 0.3(0.0006)1 = -0.0002

After several similar iterations the weights become

Wa3 = 4.98 Wb3 = 4.98 W23 = -11.30 Waz= 5.62 Wb2 = 5.62

Wbias3 = -2.16 Wbias2 = -8.83

This yields a mean square error of less than 0.01

(Li Min Fu, 84, 1994)

6.1.4 Single layer recurrent network.

The following diagram shows a typical single layer recurrent network

having three output neurons that feedback to the inputs.

Y1

Y2

Y3

Single layer recurrent network

Figure 6.4

112

The recurrent networks studied are the Hopfield network, Boltzmann, bi­

direction.al associative memories (BAM), Elman and counter-propagation

networks.

6.2 The Hopfield Network

Neural networks are complex and often contain non-linear components. Their

behaviour is difficult to analyse. Hopfield (1982), applied some ideas to them

from an important and developing area of mathematics called non-linear

dynamical system theory.

Hopfield was able to show that sometimes a non-linear neural network

evolving in time could be analysed qualitatively. As the neural network

evolves, it minimizes a particular function related to what would be called

energy in a physical system.

LiMin Fu (1994) observes that this network may be used for auto-associative

or optimisation tasks. It is a neural network model, which exhibits the

characteristic of associative memory in that, like human memory, a partial

recollection produces a larger related memory. I.e. A few notes may trigger

memory of a musical score.

The system may have n elements with connections between any element

pair. The system energy E is the sum, over the n elements, of the energies of

each unit pair i and j and the strength of their connection. It may be of value to

visualise a mechanical, electrical, or chemical simulation of this concept.

Conceptually the Hopfield network considers that within a single network,

binary valued neurons can store multiple stable states. A network is

constructed of binary valued neurons connected to each other but not self

connected. All connection weights are symmetric (wii = Wji) and the network

may have a set of stable states in which each binary neuron has a value -1

(0) or 1. For a given input pattern the network converges to the stable state

closest to the pattern.

113

6.2.1 A Hopfield auto-associative algorithm.

Example

LiMin Fu provides an auto-associative algorithm form stored patterns

in a Hopfield network:

m

Wji =~ Pj,p Pi,p, i * j else 0

p=1

Wji is the connection weight from neuron i to neuron j and Pi,p is the ith

component in pattern vector p.

Activation calculation

1) At time t = 0 the activation level of neuron j is Oi(O) = Pi the jth

component of the input pattern.

2) At time t > 0, activation level of neuron j is Oi(t+1) = f(~Wji Oi(t))

for a hard limiting function or smooth function.

1

f(~wii Oi(t)) =f(a) =J -1

for a> 0

for a< O

unchanged a = 0

Step 2 is repeated until neurons remain unchanged this is then the best

match for the unknown input.

Note: In a Hopfield network it is desirable that a fixed point satisfies:

x = f(xw)

LiMin Fu shows how a weight matrix may be constructed for an associative

Hopfield network. Xi is an n dimensional bipolar vector to be stored in the

network and In is an n*n identity matrix.

lfX1T =(1, -1, -1), X2T =(-1, 1, -1), X3T =(-1,-1,1),

114

Use W = r XiT Xi - In,

W = (X1 T X1 - b) + (X2 T X2 - b) + (X3 T X3 - b),

0 -1 -1

w = I -1 a -1

-1 -1 0

Using x1 as the probe vector: (The probe vector is one we use to perform

association).

f(x1 W) = f(2,0,0) = (1,-1,-1) which is the x1 vector, in this case a single

iteration only was required. The capacity of the net dictates if all vectors may

be correctly retrieved.

A Hopfield net limitation is that the minimum achieved is not necessarily a

global minimum. A further limitation being that if too many patterns are

stored, the network randomises and can no longer serve as a memory.

6.2.2 Hopfield network capacity

The Hopfield net can be activated either synchronously or

asynchronously. In the synchronous mode, the weights are updated

simultaneously. In asynchronous operation, the network updates only

one neuron at a time. The neuron to be updated is selected from n

neurons with a probability of 1/n of selection.

Defining memory capacity of the Hopfield associative network. If a

binary n-dimensional vector x is a memory, then for neuron i = 1, ... , n:

n

Xi= fh (I WijXj) where fh is the hard-limiting function.

j=1

115

Similar states map to a common memory which leads to it being called

an attractor. If m, n dimensional, memory vectors x1 are to be stored,

each neuron being 1 or -1. The outer product construction method is

used to arrive at the appropriate weight matrix W, the construction

method is used to ensure convergence to a stable state.

The following example was formulated by McEliece (1987)

Three memories of five dimensions are to be stored, their values being:

X1 = (1, 1, 1, 1, 1),

X2 = (1, -1, -1, 1, -1),

v~ = {-1 1 -1 -1 -1) ~ 1 1 , ' •

Asynchronous operation is assumed.

The weight matrix by the outer products method as given by LiMin Fu

is:

0 -1 1 3 1

W= 1-1 0 1 -1 1

-1 1 0 1 3

3 -1 1 0 1

1 1 3 1 0

If the probe vector is x = (1, -1, -1, 1, 1), which has a Hamming

distance of 1 from x2, product xW is calculated, hard-limited to (1, -1) to

then yield x': (The Hamming distance calculates the number of bits that

differ in two vectors).

x' =.(I, -1, 1, 1, -1).

For asynchronous operation, there is no set order of neuron updating.

For this example, let the third element be chosen.

The new vector will be: x' ={I, -1, 1, 1, 1).
116

The steps are repeated until one of the three memories (fundamental

memories) is reached. Eventually the second neuron of x will be

updated to yield x" = (1, 1, 1, 1, 1) which equals x1.

Note, the system does not converge to x2 which is closest to the initial

test vector.

This example reveals one of the problems with the Hopfield net. The

probe may not settle onto one of the memories. If it is a memory, then it

is not necessarily the closest memory.

6.3 Hebb's learning

The foundation for many of the current training algorithms arose from the work

of Hebb (1949). Prior to Hebb's work, it was generally recognised that learning

in a biological system involved some physical change to the neurons, but no

clear idea had been formulated to explain how this could take place. Hebb's

learning proves useful in pattern recognition.

Hebb's postulate:

"When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency, as one of the cells

firing B. is increased."

In neural network terms if neuron A is repeatedly activated by neuron B then

A will become more sensitive to stimuli from B, resulting in a more efficient

synaptic connection from B to A The theory, sometimes known as correlation

learning, involves only local interactions between neurons with no global

teacher; hence, the training is unsupervised.

117

Anderson, (1995), notes that the work by Hebb did not include a mathematical

analysis, but the clarity of the idea received wide acceptance.

This idea is expressed by LiMin Fu in the equation that follows:

Wji(t + 1) = Wji(t) + Ni Ni

where Wij(t) = the synaptic strength from neuron i to neuron j: Ni = the

excitation level of the source neuron Ni = the excitation level of the destination

neuron

Hebb's concept offered an intuitively sound answer to the question of how

learning; could take place without a teacher. In this system, learning involves

only two neurons and the related synapse; a global feedback system is not

required for the neural patterns to develop.

Hebb's learning has resulted in many successes, although it has also

revealed its limitations; some patterns are not able to be learned by this

method. Many learning methods have evolved from this foundation work.

6.3.1 Hebb's Leaming Algorithm

Hebb's learning rule has been used to identify minima to the location of

stored patterns. A network using the sigmoidal activation function with

Hebbian learning is said to employ signal Hebbian learning. In this

case, the Hebbian equations are modified to the form that follows:

Oi = 1(1 +e-N) = f (Nj)

wji(t + 1) = Wji(t) + oi oi

where Wji(t) = the synaptic strength from neuron i to neuron j : Oi = the

output level of the source neuron = f(Ni) and Oi = the output level of the

destination neuron = f(Ni)

118

6.4 Boltzmann Machine.

Constant energy minimization causes the Hopfield network to settle into local

minima, the Boltzmann machine is similar in function and operation to the

Hopfield network. Its advantage is that by the use of a technique known as

simulated annealing it searches the pattern layer's state space for a global

minimum.

In a similar structure to the Hopfield network, the Boltzmann machine has an

associated state space energy dependent on the connection weights in the

pattern layer. Through the submission of a set of training patterns the learning

process minimizes this state space energy. As a consequence of the learning

process the Boltzmann machine will progress to connection weights that

approach a global minimum.

Note: Annealing is a metallurgical process in which a metal is gradually

cooled, successive lower thermal energy states leading to a minimum state

being achieved.

The simulated annealing schedule is an added to the learning process of the

network. In the metallurgical annealing process the high initial temperatures

are decreased over time. The high initial weights in the Boltzmann network act

as noise factors in the processing elements. As the weights reduce, the

network settles to a minimum.

When the machine learns at high weights it behaves as a random movement

model, whilst at low weights it behaves as a deterministic model in moving to

the global minimum.

The initial random movement in annealed learning may mean that a

processing element assumes a state that has increased rather than

decreased the total system energy. This simulation of the metallurgical

process is helpful in escaping local minima and moving toward a global

minimum.

119

When learning is completed for a set of submitted patterns, presentation to

the network of a part of a pattern related to the set results in the net

completing the missing portion.

There is a limitation on the number of classifications, for the Hopfield and

Boltzmann networks being less than fifteen percent of the total processing

elements in the input layer. (Based on downloaded data from internet).

6.5 Bi-directional associative memories BAM

These networks have a two layer recurrent architecture, the forward and

backward information flow between the layers searches for stimulus and

response associations.

Given a partial memory, with or without noise caused by input corruption,

auto-association permits retrieval, the BAM network extends this capability to

relate an input vector to another vector thus permitting a generalization of

outputs for similar inputs.

[Output layer

i--i ---------····--·-
•

Backward connections Forward connections

Input layer

-t

Bi-directional associated memory.

Figure 6.5

120

6.5.1 BAM algorithm

Example

Weight assignments

If the network stores m pairs of patterns, forward weights are given by:

Wji = :EPi,p Qi,q where Wji is the connection weight from i to j, Pi,p is the ith

component in vector pattern p, Qi,q is the jth component in vector

pattern q, patterns p and q form a vector pair.

Activation calculation

Step 1 Initialize the input units at time zero

Oi (0) =Pi,

Step 2 At time= t (t>O)

Oi(t+1) = fh (:EVvJi Oi (t))

Where Oi(t) is the activation level of unit j at time t and fh is a hard

limiting function, or a sigmoid function.

fh (a)=

1 for a> 1

-1 (0) for a < 0

Oi(t) for a= 0 (no state change)

Step 2 is repeated until equilibrium is achieved. LiMin Fu (1994)

This example is taken from LiMin Fu (1995).

Use a bi-directional associative memory to store the following three pairs of

vectors:

Original vector Associated vector

A1 = (1 , -1 , -1) 81 = (1, -1)

A2 = (-1 , 1 , -1) 82 = (-1, 1)

A3=(-1, -1, 1) 83= (1, -1)

A vector storage table.

Table 6.2

121

The outer products are used to construct the weight matrix:

3

W= ~ Air8i

i = 1

1 -1

W= 1-3 3
1 -1

If A1 is used as the probe vector, and f is a bi-polar activation function.

f(A1W) = f(3, -3) = (1, -1) = 81

If 81 is used as the probe vector:

f(81Wr) = f(2, -6, 2) = (1, -1, 1) D A1, more iterations may be required to

retrieve correctly. A complication in this example is that 81= 83.

6.6 Counter-propagation Network.

Combining an unsupervised Kohonen layer with an output layer that was

trained developed the counter-propagation network. This network is able to

process complex classification problems, whilst minimizing the number of

neurons and training time. Hecht-Nielsen, (1987)

The counter-propagation network is similar to the learning vector quantization

network, the Kohonen layer behaves as a comparator, finding the closest fit to

an input stimulus and outputting its equivalent mapping.

The first counter-propagation network used bi-directional mapping between

the input and output layers. The data to the input layer generated an output

classification pattern; the output layer would then receive an additional input

122

vector, from which it would feed an output classification to the network's input

layer. The flow and counterflow of data gave the network its name.

Current development uses a uni-flow variant of this formal representation of

counter-propagation. There is only one feedforward path from input vector to

output layer. The network is shown in Figure 6.5, it is a two layer uni­

directional counter-propagation type.

Inputs Kohonenlayer Grossberg layer

. A counter-propagation Network

Figure 6.6

It is usual practice to normalize inputs, for every combination of input values,

vectors are unit length. The network inputs are then fed to a self-organizing

Kohonen layer, this in turn feeds a Grossberg outstar layer. This layer uses

the delta Rule to modify its incoming connection weights.

The input layer size depends upon the number of parameters that define the

problem. With too few neurons the network may not generalize sufficiently,

too many may cause a lengthy processing time.

When input data has not been normalized a layer may be introduced between

the between the inputs and the Kohonen layer to perform this task. This layer

requires one neuron for each input, plus one more for a balancing element.

123

This pre-processing layer modifies the input sets so that they combine to the

same total, permitting the Kohonen layer to find the correct class for the

problem.

Normalization is necessary with large input vectors to prevent bias of the

Kohonen neurons such that weaker value input sets cannot be properly

classified. The competitive nature of the Kohonen layer results in the larger

value input vectors being dominan~ over the smaller vectors.

Counterpropagation uses a standard Kohonen paradigm, which self-organizes

the input sets into classification zones. It follows the classical Kohonen

learning law, (described in section 4.2). This layer acts as a nearest neighbour

classifier. The neurons in the competitive layer autonomously adjust their

connection weights to divide up the input vector space in approximate

correspondence to the frequency with which the inputs occur.

There need to be at least as many neurons in the Kohonen layer as output

classes. The Kohonen layer usually has many more neurons than classes

simply because additional neurons provide a finer resolution between similar

objects.

The output layer for counter-propagation is basically made up of neurons

which learn to produce an output when a particular input is applied. Since the

Kohonen layer includes competition, only a single output is produced for a

given input vector. This layer provides a way of decoding that input to a

meaningful output class. It uses the delta Rule to. back-propagate the error

between the desired output class and the actual output generated with the

training set. The errors only adjust the connection weights coming into the

output layer, the Kohonen layer is not affected.

Only one output from the competitive Kohonen layer is active at a time and all

other neurons are zero. The only weights adjusted for the output neurons are

the ones connected to the winning neuron in the competitive layer. In this way

the output layer learns to reproduce a certain pattern for each active neuron in
124

the competitive layer. If several competitive neurons belong to the same

class, that output neuron will evolve weights in response to those competitive

neurons and zero for all others.

There is a problem that could arise with this architecture. The competitive

Kohonen layer learns without any supervision. It does not know what class it

is responding to. This means that it is possible for a neuron in the Kohonen

layer to learn to take responsibility for two or more training inputs that belong

to different classes. When this happens, the output of the network will be

ambiguous for any inputs that activate this neuron. To alleviate this problem,

the neurons in the Kohonen layer could be pre-conditioned to learn only about

a particular class.

6. 7 Elman Network

Pham and Lui (1995) describe this simple recurrent network that may be

trained by the backpropagation algorithm. Inputs are fed to the hidden layer,

which may have linear or non-linear activation functions. Feedback occurs

from the hidden layer to context units that then join the input feeds.

Context units memorize some past states of the hidden units so the network

outputs are a function of the current inputs and the previous states, this is

referred to as having dynamic memory capability. The context units may be

viewed as time delays. Outputs are linear from the summed signals to the

output neurons.

Feed forward connection weights may be modified but the recurrent

connections are fixed. The network was originally designed for speech

processing applications.

The Elman network is shown in Figure 6. 7

125

u(k)

uc(k)

Context units

y(k)

0 0

-~--...,<- .-·;;;::::;-,;
. ,'
,~ ,,

... ""' ·;<"'"'
; .

,,/"

,, 0 ~D

i x(k) i
An Elman recurrent network.

Figure 6.7

6. 7 .1 Elman network analysis

Outputs

Hidden

Inputs

Pham and Liu, (1995) offer the following analysis of the network.

Vector and matrix notation have been changed to be in accord with

previous work.

Set the input vector as x(k - 1) and output vector y(k) with hidden units

activation as u(k) with context unit outputs as uc(k). From Figure 6.6

the following equations apply:

u(k) = f(W2 uc(k), W1 x(k-1)),

uc(k) = u(k-1),

y(k) = W3 u(k),

126

Where W1 is the input to hidden layer matrix of weights. W2 is the

context layer to hidden layer matrix of weights. W3 is the hidden layer

to output matrix of weights. f is a non linear activation function.

If the hidden units have linear activation functions, with zero biases for

hidden and output functions, the above equations become:

u(k} = W2 uc(k} + W1 x(k-1}

uc(k} = u(k-1 }

y(k) = Wyx x(k}

The x(k) and y(k) equations, for the linear activation functions describe

standard state space equations of dynamic systems. The order of the

model is dependent on the number of states, which is the number of

hidden units.

6.8 Probabilistic Neural Network.

The probabilistic neural network architecture was presented in two papers by

Specht (1990). This network provides a general solution to pattern

classification problems by following an approach, developed in statistics,

called Bayesian classifiers.

Bayes theory, takes into account the relative likelihood of events and uses a

priori information to improve prediction. The network paradigm also uses

Parzen (1962) estimators, which were developed to construct the probability

density functions required by Bayes theory.

Hagan, Demuth and Beale, (1996) describe it as a parallel implementation of

a standard Bayesian classifier. They then describe it as a three layer network

that can perform pattern classification. (In their work the inputs are a layer).

The statement that follows is that the network is not trained, "training vectors

are the weight vectors in the first layer''. The observation that the probabilistic

neural network does not require training is given as its major advantage.

127

The disadvantage quoted is that the weight matrix can be very large if there

are many vectors in the training set. An offered solution is a clustering

operation to reduce the matrix size.

LiMin Fu, (1994), clarifies the method. The probabilistic neural network

encodes each training pattern as the input weight vector. The net input to unit

i being given by:

Zi = xWi , where x and W are normalized to unit length.

An example of a probabilistic neural network is shown in Figure 6.8. This

network has two layers. The network contains an input vector which has as

many neurons as there are separable parameters needed to describe the

objects to be classified. It has a pattern layer, which organizes the training set

such that each input vector is represented by an individual neuron. Finally, the

network contains an output layer, called the summation layer, which has as

many neurons as there are classes to be recognized. Each neuron in this

layer combines via neurons within the pattern layer which relate to the same

class and prepares that category for output. As with the counter-propagation

network, the input vector must be normalized to provided proper object

separation in the pattern layer.

c - 0
Q) ...--.. '-

(/) ::J c (/) Q) ...--.. x 0 ro '-)(x c 0 ·c .._...
u ·c - '-(/) Q) (.) ro Q) '-'- ro c Q) E >. Q) 0

E 0 > ... ro a. -_... -(.)c ..
c Q) '- ::J

> ..c Q) a. O> ::J 0 O> >. c "Q) a. '-....... ro - ::J ::J Q) ·- $::J Q) a $ '-
0 c Q) c c

'- a. - Q)
...___ ro

a.

The probabilistic neural network.

Figure 6.8

128

LiMin Fu, (1994), summarizes:

Basic structures

Input vectors, a layer of pattern units and a layer of output units.

One to one correspondence between pattern units and training examples,

pattern units = training examples.

Each output unit corresponds to a class (category).

A pattern unit connects to an output unit if and only if the corresponding

example is labelled the corresponding class.

Weight initialisation

The input weight vector of pattern unit i is initialized to the ith pattern vector,

which is normalized to unit length.

The input weight vector of every output unit is initialized to a vector of 1 s.

Calculation of activation

The activation of input units are determined by the pattern presented to the

network. The input vector is normalized to unit length.

The activation of Oi of pattern unit j is given by:

Oi = exp{(LWji Xi - 1)lei

Where Wji is the connection weight from input unit i to pattern unit j and

Xi is the activation of input unit i.

The activation of Oi of output unit j is given by:

Oi = 1 /m P(<X>j)LWji Oi

Where wii is the connection weight from pattern unit i to output unit j, m

is the number of training examples labelled class roi and P(roi) is the

prior probability of roi.

129

The decision of the network is the class corresponding to the network with

maximum activation.

Network learning

The weights are non adjustable.

When a new pattern arrives, a pattern unit is added and the associated

weights are initialized as previously stated. Nothing is said about the addition

of outputs for further classes.

130

Examples

01 This example conveys the concept of associative memory retrieval.

Use the weight matrix (W) construction for an associative Hopfield network.

Inputs are bi-polar, (-1, 1)

determineW ifx1T = (-1, -1, -1, -1, 1)

X2T = (-1 -1 -1 1 -1)
' ' ' '

Y~T: (-1 -1 1 -1 -1) "' , ' , ,

X4T = (1 -1 -1 -1 -1)
' ' ' '

XsT = (1 -1 -1 -1 -1) ' , , ,

Use X3 as the probe vector, is it retrieved on the first iteration?

A 1 Using the outer products to construct the weight matrix:

W = :E(xirXi - In) where Xi is the given n-dimensional bipolar vector (1, -1).

W = (x1 T X1 - Is) + (x2 T X2 - Is) + (X3 T X3 - Is) + (x/ X4 - Is) + (Xs T Xs - Is)

0 -1 -1 -1 -1

-1 0 -1 -1 -1

W= I
-1 -1 0 -1 -1

-1 -1 -1 0 -1

-1 -1 -1 -1 0

Using f(x3W) = f(2, 2, 4, 2, 2) = (1, 1, 1, 1, 1) it is not retrieved.

03 Bi-directional associated memories may be used in pattern relationships.

If a BAM network is used to store the tabled vector pairs, construct the weight

matrix and determine if:

Does A1 used as the probe vector retrieve 81 correctly on the first iteration?

Does 81 used as the probe vector retrieve A1 correctly on the first iteration?

Original vector Associate vector

A1 = (-1 , -1 , 1 , -1) 81 = (-1 , 1 , -1)

A2 = (-1, -1, -1, 1) 82 = (-1, -1, 1)

~= (-1, 1, -1, -1) 83 = (1, -1, -1)

~ = (1, -1, -1, -1) 84 = (-1 , -1 , 1)

131

A3 By outer products W =

4 0 -2

0 0 2

0 0 2

0 4 2

f(A1 W) = f(-4, -4, 0) = (-1, -1, -1) which is not correct.

f(B1WT) = f{-2, -2, -2, 2) = (-1, -1, -1, 1) which is not correct. Note, on this

iteration 81 has retrieved A2.

Q3 Kohonen self-organizing maps cluster results into a specified number of

classes, this example illustrates the clustering concept. This is based on an

unworked and unexplained example from LiMin Fu 1994.

Gluck and Corter, (1985), devised the following formula for comparison of

clusterings with different numbers of categories.

K

2: P(Ck)2: 2: P(Ai =vii I ck)2 - 2: 2: P(Ai = vij)2

k=1 I j I j

K

Where K is the number of clusters, Vii is the jth value for attribute Ai and Ck is

the kth cluster.

Clustering A Clustering B Weight Shape Colour

1 1 light sphere red

1 3 heavy sphere red

1 3 heavy sphere green

1 1 light sphere green

2 2 light sphere blue

2 2 heavy cube blue

2 2 heavy cube red

2 2 heavy sphere blue

2 2 light cube red

132

Compare the clustering schemes and decide which is preferred.

A2 For clustering A

2

L P(Ck)IL P(A = Vij I Ck)2 - LL P(A = Vij)2

k=1 I j I j

K

Table of probabilities.

Cluster P(Ck) P(Ai = VijDCk) P(A =Vii)

Weight Shape Colour Weight Shape

C1 4/9 L 1/2 s 1 R 1/2 L 4/9 s 2/3

H 1/2 c 0 G 1/2

C2 519 L 215 s 215 R 215 H 519

H 3/5 c 3/5 8 3/5 c 1/3

Substituting in the equation:

(4/9}x[4x(1/2)2 + 11+ (5/9)x3[(2/5)2 + (3/5)21- [2x(4/9)2 + (2/3)2 + (5/9)2 +(2/9}2 + 2x(1/3)2J

2

= 0.1679 (rounded)

Colour

R 4/9

G 219

8 1/3

133

For clustering B

Table of probabilities.

Cluster P(Ck) P(Ai = ViiDCk) P(Ai =Vii)

Weight Shape Colour Weight Shape Colour

C1 219 L 1 s 1 R 1/2 L 4/9 s 2/3 R 419

H 0 c 0 G 1/2

C2 519 L 215 s 215 R 215

H 3/5 c 3/5 B 3/5 H 519 G 219

c 1/3 B 1/3

C3 219 L 0 s 1 R 1/2

H 1 c 0 G 1/2

Substituting in the equation:

2x(2/9)xf1+1+2x(1/2)2J+(S/9)x3[(2/5)2+(3/5)2J - f2x(4/9}2 + (2/3)2 + (5/9)2 +(2/9)2 + 2x(1/3)2J

2

= 0.2790 (rounded).

Clustering B offers the higher probability.

134

References

[1] Elman, J. L. Finding structure in time, Cognitive science, 14, 179-211, -

(1990).

[2] Hagan, M.T., Demuth, H.B. and Beale, M.,Neural network design, PWS

publishing, Boston, MA 19-6, (1996).

[3] Hebb, Donald, Organisation of behaviour. New York John Wiley &

Sons, (1949).

[4] Haines, K. and Hecht-Nielsen, R. A BAM with increased information

storage capacity. In Proceedings of the IEEE International conference

on Neural Networks, (San Diego), pp.1-181-190, (1988).

[5] Hopfield, J. J. Neural networks and physical systems with emergent

collective computational abilities. In Proceedings of the National

Academy of Science, 79, pp. 2554-2558, (1982).

[6] LeCun, Y. Une procedure d'apprentissage pour reseau a seuil

assymetrique, Cognitiva, vol 85 pp. 599-604 (1985)

[7] LiMin Fu Neural networks in computer intelligence, McGraw Hill, pp

151-154, 166, (1995).

[8] McEliece, R. J., Posner, E. C.,Rodemich, E. R. and Venkatesh, S. S.

The capacity of Hopfield associative memory, IEEE Transactions on

Information Theory, 33(4), pp. 461-482, (1987).

[9] Minsky, M. and Papert, S. Perceptrons, Cambridge Ma. MIT press,

(1969).

[1 O] Parzen, E. On estimation of a probability density function and mode,

Ann. Math. Stat., 33, pp. 1065-1076, (1962).

135

[11] Pham, D. T. & Lui, X. Neural Networks for Identification Prediction and

Control, Springer. pp 67-79 (1995).

[12] Rumelhart, D. Hinton, G. E. and Williams, R. J. Leaming

representations by back-propagating errors, Nature, vol. 323 pp 533-

536, (1986)

[13] Specht, D.F. Probabalistic neural networks and the polynomial adaline

as complementary techniques for classification. IEEE Transactions on

Neural Networks, 1 (1), pp. 111-121, (1990).

[14] Werbos, P.J. Beyond regression: New tools for Prediction and Analysis

in the Behavioural Sciences. Ph. D. thesis, Harvard University.

136

Chapter 7.

PRACTICAL INPUT METHODS

Summary

When neural networks are moved from the realms of computer models to

practical applications the inputs are obtained from sensors, for which effective

function requires suitable signal strength and response speed. This brief

chapter suggests some mechanisms; some practical examples of sensor use

have been downloaded from the Internet.

7 .1 Data representation

Biologically equivalent inputs are engineered translations of one or more of

the five sensory functions associated with humans. The neural network inputs

can extend the sensitivity beyond the range associated with humans.

The sensory signal may be discrete. The two state signal is described in a

neural network in binary or bipolar terms. Practical circuits may achieve either

discrete state in response to signal strength many ways.

Continuous input data can be voltages, currents, lengths, masses, times,

chemical, optical, or thermal measures. They may be standardized, by some

transformation to the range 0 to 1 .

Sensor output signals are usually transformed to an electrical form for use in

the network. Several electrical devices are included in a text by Chickoki

(1994) that are applied in signal processing.

The following table gives some examples of sensors and the methods of

signal transformation from personal experience.

137

Source Signal transformation

Mechanical, linear Stepping motors, solenoid displacement,

or angular pressure transducers.

movements.

Mechanical, Coanda effect devices, turbulence

fluidics. amplifiers.

Thermal, radiation. Optical pyrometer colour matching, nested

thermopile.

Thermal, Thermocouples, bi-metal strip movement,

convection and fluid movement.

conduction.

Optical. ·· Light intensity, colour gradation.

Electrical. Schmitt trigger, voltage and current

transformers and impedance based

devices.

Time. Clock pulse, capacitor charge and

discharge, divide and count circuits.

Sensors and signal sources.

Table 7.1

7.2 Scent

The equivalent of the olfactory organ is the neural nose, in which "sniffing"

draws an air sample and determines the amount of a particular chemical

present in the sample. This technique may have practical application in the

detection of drugs, freshness of foods and air condition. Police dogs are

thought to track certain criminals by their body odours and the neural nose

was being reviewed for this purpose as reported in Chemistry in Britain July

1995.

138

Limitations of the system will be, the levels at which sensory detection may be

made, the response time for detection and the time taken to produce a

meaningful corrective action.

If for example an volatile petroleum derivative is present in the extraction line

of a fuels plant it may prove a fire hazard at a certain level. The level at which

detection must be made of the substance, is relative to the hazard level, the

surrounding gases and it's current rate of increase.

Recently artificial noses have been developed that measure the amplitude,

intensity, or quality of smell. The potential uses of these "electronic smell

fingerprints", which can run continuously, range from food quality control to

drug detection.

True simulation of the human nose is an impossible task, nature's version

has some 10 million olfactory receptors of 30 different types, which work in

parallel to absorb a range of odour molecules. When an odour molecule

reaches receptors that match its particular pattern, the receptor via the

nervous system sends a signal to the appropriate brain region. It is thought

that the number and location of the engaged receptors is analysed, producing

an odour image, which is compared to images within the brain's memory.

As early as 1990 a prototype olfactroscopy instrument, was produced which

contained sensors based on the conducting polymers of pyrrole and aniline,

which are sensitive to the characteristics of volatile chemicals producing the

aroma. The sensors absorb then quickly desorb the volatiles at the polymer

surface, causing temporary changes in their electrical resistance from which a

digital output may be displayed which is specific to a particular odour.

7.3 Sight

The human eye is limited in it's range of visual detection to a portion of the

spectrum of accessible wavelengths. Neural networks in brain simulation

should offer the ability to detect beyond the range of normal human vision.

139

Limitations may be found when recognition is obscured by optical distortions,

or if fuzziness occurs due to white light interference.

A well known painting by Salvador Dali (Slave market with the disappearing

bust of Voltaire 1940) an illusion was created in which the brain perceives the

face of the philosopher Voltaire or three figures against a light background.

Gilling and Brightwell (1982), observe that when a machine is built that

simulates the brains ability to respond to these illusions we will understand

how human beings see.

140

7.3.1 A potential visual application in flour milling.

In the flour milling industry judgements of mill roll adjustments have

been experience based. Observation of the millers behaviour showed

the adjustments were made after passing the cupped hand under the

lower cutting roll. The miller now compressed the drawn sample

between both hands. He turns the hands over, examines the now

inverted sample and adjusts the gap between the rolls.

The pattern of behaviour was studied so that the a methodical

approach could be substituted for the miller's experience. A watch

glass moved at a constant speed and fixed distance under the roller

was used to gather a similar sample. A second watch class was

pressed into the first and the pair inverted. Examination showed the

sample to change colour in the direction of watch glass movement. The

miller explained that the proportion of bran darkens the flour output. His

adjustments being made to obtain uniform colour.

A neural network could provide the signals that would allow automatic

adjustment to maintain uniform mill output. A set of expected output

patterns could be gathered from the rolls, using pre-set increments of

roll adjustment. Optical scanning for colour density from process

sampling would provide the input signals. A supervised learning

network could be trained, so that when a pattern match was recognised

the appropriate output signal would be given.

7.3.2 Internet visual sensor examples.

The following two examples of sensors that have potential for neural

network inputs have been downloaded from the internet. The request

to the search engine was, sensory detection, electro-mechanical.

Cases are given without modification, although my comment is given

on the potential neural network technique.

141

Case 1

Environmental as well as economic factors are pushing forward the

development of sensors and technologies for precision farming

practice. Selective application of herbicides requires information on the

location of weeds in the field. This information can be supplied as maps

created and maintained by Geographical Information Systems (GIS) or

acquired by sensors during application.

In this work, a sensor for automatic detection of weeds in the field was

developed and tested. Visual detection of weeds requires

discrimination between soil and plants, as well as discrimination

between crop and weeds. The developed sensor was based on a multi­

spectral imaging system in the range of 500-1 OOOnm. An electronically

tunable filter (Acousto-Optic Tunable Filter - AOTF) was coupled with a

high resolution CCD camera and a frame grabber.

The developed sensor was mounted on a mobile platform and a large

database of images was constructed by acquiring images of cotton

plants and weeds in their early stage of development. Images were

acquired from 500 to 1 OOOnm in 5nm increments. Images were then

analyzed and characteristic features of cotton plants and weeds were

calculated. Weeds detection was based on spectral reflectance

properties of their leaves and on shape analysis. (Alchanatis, Hetzroni,

and Edan).

Comment:

This may be a case for data clustering, using a Kohonen network. The

sensors have created a large number of images. An aerial release of

suitable herbicides could be triggered by the trained network as the

terrain scanned is fitted to a particular cluster.

142

7.4 Taste

Case2

Three dimensional information has a major role in the commercial

sorting and grading of fresh produce. The reliable extraction of such

information for machine vision applications is usually accomplished

through stereo vision or structured light. Stereo methods require

multiple cameras or computationally intensive algorithms and are thus

not suitable for a commercial system. As a simple application of

structured light, a low-cost red diode laser with a line generator was

used to project a line on apples, and the images were acquired through

an array CCD camera. The images were then thresholded to extract

the projected curve. The curve was then smoothed using a Savitzky­

Golay filter and 'breaking points' were identified as local maxima of

curvature.

Results show that it is possible to reliably identify a stem or a calyx

using robust and simple criteria. For apple bruises the situation is far

more difficult and at the current stage a detection system has to take

into account spectral information for acceptable reliability. (Lev, Gofer).

Comment:

The observation of the need for "multiple cameras or computationally

intensive algorithms" may indicate the possible use of sample data in a

neural network. A recurrent network using error correction training

could provide real time decisions in production.

Other sight dependent sensors include elevated temperature

evaluation (radiation) by optical pyrometer and interferometry in precise

physical measurement.

The artificial simulation of taste is extremely complex, for a particular problem

such as wine tasting the many factors may include, sweetness, bitterness,

acidity and a range of contaminants associated with the process. The latter

143

may be associated with the cultivar, characteristics of the growing area,

fertilizer chemicals, local water supplies and maturation casks.

The expected output patterns could be provided from wines graded by human

tasters, the submitted wines being classified into a particular pattern. The

benefits could be the elimination of false grading due to human error caused

by age deterioration of taste sensitivity and masking by the presence of

external pollutants.

The sensors may be spectrographic or of a similar nature to those used in the

neural nose.

7.5 Touch

Touch sensitivity may be related to frequency and amplitude, as in vibrating

strings, surface roughness, or machine vibrations. Touch may also be used in

thermal detection, current or voltage probes, or motion sensing .

A typical vibration input might be from the movement of a tracer probe as is

the case with the 'Rank Taylor Hobson Talysurf' surface roughness

measuring machine. Transducers amplify surface irregularities to produce

traces that may be used to detect deviations from expected surface finishes.

Neural networks may find a use in the determination of excessive process, or

machine vibration that could cause premature failures.

Thermal conduction may be detected by thermocouples, or thermometers.

Thermocouples produce continuous electrical signals which may be amplified

for neural network use. Thermometers are unlikely to provide usable sensory

signals for neural networks.

Vibration patterns arise from a wide variety of causes ranging from earth

tremors to machine chatter. The use in neural networks may involve patterns

generated by changing amplitude and frequency.

144

7.6 Sound

The vibrations transmitted through a fluid medium that are received by the

human ear produce sounds. These sounds may be used industrially to detect

potential troubles in process plant or machinery.

The primary considerations are frequency, amplitude, cut off length and the

waveform.

The following two examples were downloaded, without modification, from the

interrnet.

An acoustic impulse method was used for the non-destructive firmness

evaluation of pineapple fruit of a wide range of internal maturity. Batches of

pineapple fruit (cv. Cayenne lisse), from Ivory Coast, were harvested at 140,

143, 145 and 148 days after the floral induction treatment. Mechanical

properties of pineapple fruit were also measured by using a texturometer.

Deformation, tensile and puncture tests were carried out on each pineapple

respectively on the whole fruit, a standard shaped specimen of skin and on

the core part of three slices of each fruit. The chemical composition of the

entire fruit pulp was then analyzed to determine refractometry index, total

sugar content and titratable acidity. Pineapple fruit spectrum displayed three

main resonant peaks for the spherical mode. The resonant frequency of

greatest amplitude and the resulting elasticity coefficient from 420 to 320 Hz

and from 2 to 1.09 MPa respectively as the physiological development of the

fruit increased.

Pineapple stored at 1 OOC for a week exhibited lower resonant frequency and

elasticity coefficient than references of the same maturity. Elasticity coefficient

was found to be highly correlated to mechanical firmness (r=0.80) measured

by deformation on individual whole fruits. The relationship was improved

(r=0.91) by using mean values for the different fruit batches. Elasticity had a

145

significant correlation with titratable acidity (r=-0.69) and refractometry index

(r=-0.58), but was very poorly correlated to puncture core firmness (r=0.24)

Elasticity coefficient, obtained from acoustic measurement, may be

considered as a promising way for non-destructive evaluation of global

pineapple firmness (Valente, M. Duprat, F. Grotte, M)

Defense Research Technologies, Inc. (ORT) and the United States

Department of Agriculture, Agricultural Research Service, entered into a

Cooperative Research and Development Agreement (CRADA) several years

ago to exploit the ultra-high sensitivity and low noise of acousto-fluidic

microphonic sensors in the detection and quantification of insect pests in grain

and stored products.

ARS has developed a technique for quantifying the number of insects

(including internal feeding larvae) in a sample of grain called ALFID (Acoustic

Location Fingerprinting Insect Detector). Individual insect sounds (from

chewing, moving, etc.) are cross-correlated to determine relative times-of­

arrival to multiple sensors.

This data is arranged in vectors, each indicative of a sound source location

(akin to triangulation) and are compared and grouped to identify the number

of sound locations (i.e., insect locations) in the sample. The effectiveness of

this method has been limited due to the inadequacy of conventional

microphones and the high cost of laboratory-grade-sensors.

Initial experiments with acousto-fluidic amplifiers that raise the acoustic

amplitudes to high enough levels where very low cost electret microphones

can readily process the sounds, have been extremely successful. We have

been able to demonstrate a signal-to-noise ratio improvement that has

resulted in an insect detection probability improvement of almost a factor of

three. In fact, in three separate experiments with sample sizes of 64, more

than half of the acousto-fluidic detections could not be discerned

. conventionally.
146

The three-stage acousto-fluidic amplifier, powered by a small aquarium pump

and with an acoustic gain of 56d8 and a bandwidth of 1 -?kHz, driving a pair

Tibbetts 251-01 electret microphones, is able to detect and process sound

levels of less than OdB SPL (referenced to 0.0002 microbar). We have been

able to reliably detect a two-week old rice weevil larva inside a grain of wheat,

in a 1 kg sample of grain, at a distance of over 1 Ocm. Production cost of such

a sensor will be on the order of $100, including the electronics and pneumatic

power supply.

In the next year we are planning to fully instrument an ALFIO system to

demonstrate reliable insect quantification and hope to improve the confidence

levels to better than 95-percent. Since inadvertent infested grain shipments

(shipments that were thought to be clean based on visual insect detection)

account for multi-million dollar annual losses it is anticipated that the acousto­

fluidic version of ALFID system will greatly improve grain export cost

effectiveness.

With future funding of the development of acousto-fluidic devices for the grain

and stored products industry, monitoring of insect infestations in silos and

packaged goods will be possible.

We also hope to be able to advance the technology of infestation

quantification by using large arrays of multiplexed sensors coupled with ARS

developed insect population algorithms.(Drzewiecki, T. M. Shuman, D.)

7.7 Multi-sensing

There may be cases of pattern recognition in which more than one sense is

used.

147

Many modern performers in the arts world rely on optical and sound stimuli to

impact on their audience, it may be that a suitable neural network could

classify patterns in terms of the perceptions of different population sectors.

The following example is downloaded without modification from the internet.

During ageing, fruit and vegetables undergo a process of softening and loss

of weight. A sensory system to monitor the softening of fruit in sealed

commercial controlled atmosphere chambers would be a useful aid to making

decisions on due times for marketing.

In recent years, it has been found that this softening process can be

measured very accurately through the vibration resonance frequency of the

fruit. On the basis of this discovery, a commercial system has been developed

to monitor the firmness of fruit samples in CA storage from a remote point.

Each single monitor contains a flexible piezoelectric film connected to a

central computer and mounted on top of the individual sample fruits during the

entire storage period. The firmness of the sample is calculated from the

resonance frequency of vibrations excited by gentle taps induced on the

cheek of the samples. Operation of the system and the accumulation of data

are fully automated.

Over the 1996-97 season, trials were conducted on four kinds of fruit: Red

and Golden Delicious apples, Spadona pears, Triumph persimmons and

Hayward kiwifruit. These trials were conducted in six commercial CA

chambers in Kiryat Shmona, northern Israel. The monitors for pears were

located in the center of the chamber and by the window, with and without

polyethylene covering. Pears in the center of the chamber maintained their

firmness (26FI - 30FI) for six months, whereas covered pears located by the

window lost some ten units of firmness during the same period and uncovered

pears by the window lost 15 - 20 units. Golden Delicious are sensitive to loss

of moisture, a factor which directly affects their quality.

148

The remote sensing trial showed that this fruit maintained its firmness far

longer when humidity in the chamber is kept high by misters. In Red

Delicious, the results showed that the fruit maintained its firmness over a

period of eight months' CA storage (with a slight rise during the first month) at

25 - 35 Fl. Persimmons softened during storage, and the sensing system

gave an accurate indication of the optimal time to open the chamber to market

the fruit. In the case of kiwifruit, further research is required, over a longer

period of storage.

When pears, Golden Delicious apples and persimmons are put into long-term

storage at an unsuitable state of firmness, they do not maintain their quality.

The ripeness monitoring system shows the state of the fruit in "real time", so

that the fruit can be removed from storage while its quality is still high enough

for the market.(Levin, A Sandler, N. Carmi, Y. Shmulevich, I N. Galili, N.)

For neural network advances the hardware must be capable of replicating the

massive parallelism that exists in the biological neuron. Some research is

devoted to the production of processors that are tailored to performing the

tasks of individual artificial neurons. An alternative is to package several fast

RISC processors to a board, with hardware accelerators, to increase the

parallelism of neural networks.

Fan out, the ability to drive other neurons, is provided by other accelerator

boards for subsequent processing.

DACS homepage reports that accelerator board products are being

developed both independently and. by the makers of neural network

development systems.

149

Examples

Q1 Suggest some practical input devices from which bipolar inputs may be

achieved?

A 1 A wide variety of answers may be given, two examples from my own

background in the mechanical field are:

Fluidics wall attachment devices in which the Coanda effect results in a signal

from one of two exits in the manner of the electrical JK flip-flop.

Go/not go gauging in which the decision of high or low sized components are

discreet results.

Electrical equivalents are available in filtered negative and positive voltages.

Movement detection often results in continuous measurement. Use of fixed

limit stops can turn the motion boundaries into positive and negative signal

generators. This may find use in chemical, electrical and mechanical fields.

150

References

[1] Alchanatis, V. Hetzroni, A Edan, Y. A MUL Tl SPECTRAL IMAGING

SENSOR FOR SITE SPECIFIC APPL/CATION OF CHEMICALS, Institute of

Agriculture Engineering, A.RO., Volcani Center, Bet Dagan, Israel.

Department of Industrial Engineering and Management, Ben-Gurion

University of the Negev, Israel (1999).

[2] Lev, Z. Gofer, Z. /DENT/FICA TION OF FRUIT FEATURES USING

STRUCTURED LIGHT, Fruitonics, Ltd., Israel, (1999)

[3] Valente, M. Duprat, F. Grotte, M. Lasaygues, Ph. NON-DESTRUCTIVE

EVALUATION OF FIRMNESS OF FRESH PINEAPPLE BY ACOUSTIC

METHOD, Departement fruitier, CIRAD-FLHOR, Montpellier, France

Laboratoire de Methodes Physiques d'Etudes, INRA, Avignon, France

Laboratoire de Mecanique et d'Acoustique, CNRS, Marseille, France, (1999).

[4] Drzewiecki, T.M. Shuman, D. ACOUSTO-FLUIDIC DETECTION OF WEEVIL

LARVAE IN WHEAT, Defense Research Technologies, Inc., Rockville, MD,

USA Center for Medical, Agricultural and Veterinary Entomology, Gainesville,

FL, USA, (1999).

[5] Levin, A Sandler, N. Carmi, Y. Shmulevich, I.. Galili, N. AUTOMATIC

REMOTE MONITORING OF RIPENING IN CA CHAMBERS, Israel Fruit

Growers' Assoc., Post-Harvest Research Laboratory, Kiryat Shmona, Israel.

Eshet Eilon, Agro-Industrial Systems, Kibbutz Eilon, Western Galilee, Israel.

Faculty of Agricultural Engineering, Technion-Israel Institute of Technology,

Haifa, Israel, (1999).

[6] Gilling, D. & Brightwell, R. The Human Brain, Orbis Publishing, London,

(1982).

[7] Cichocki, A and Unbehauen, R. Neural networks for Optimization and Signal

processing, Wiley, Stuttgart (1994)

151

Chapter 8.

RECENT DEVELOPMENTS

Summary

The following examples were gleaned from the many cases explained on the

Internet. Students or designers seeking ideas for neural network applications

may find the inspiration needed through the same source.

8.1 General

The renewed interest in neural networks since the 1980's has attracted the

attention of scientists in many fields. An examination of the topic on thia

Internet can reveal many applications and should provide ideas for many

practical applications. On a domestic level a microwave oven has been

developed that has been trained to respond to certain food cooking patterns.

Three practical examples from different spheres are given to illustrate the

versatility of this technology.

8.2 Image segmentation

Closely related to the European Community funded AIR-project "Objective

Plant Quality Measurement by Digital Image Processing", basic research is

carried out to develop smart segmentation procedures. After reporting

successful image segmentation of plants, using supervised trained neural

networks (1), now a new successful unsupervised image segmentation

procedure can be mentioned.

Two approaches are followed during the development: procedures, focusing

on the centres of the clusters to distinguish; procedures, focusing on the

separation of clusters by discovering areas with low occupation in an high

dimensional environment.

152

The first approach did not result in qualitative good segmentation, even with

extreme high investments in computing power. One of the experienced

disadvantages of this approach, comparable to region growing techniques, is

that weak connections between different clusters easily can result in fusing of

clusters. The second approach however has shown to be successful. The

segmentation of colour images (RGB) distinguishing leaves, flowers, stamen,

pot and background, is performed in a 18 dimensional environment,

representing the R, G and 8 values of each image point together with

additional information from the direct environment to achieve separability of

the clusters to distinguish.

At this point in research the method is restricted to linear separability of the

clusters. Considering a two dimensional environment, clusters can be divided

by lines, in a three dimensional environment by planes and in n dimensional

environment by n-1 dimensional structures. Starting with the complete data

set the first neural network represents a seventeen dimensional structure to

divide the data set in two subsets.

By unsupervised training this structure is placed in the eighteen dimensional

space through areas with low image point density. Each distinguished subset

again is divided by an additional neural network: recursive partitioning. This

results in a tree structure with at each branch a neural network.

Partitioning stops as soon as in a branch the separability criterion can't be

fulfilled. After the unsupervised training the neural system can be used for the

segmentation of images. (J. Meuleman, J. & van Kaam, C).

8.3 Insect detection

In agriculture, the detection and identification of insect pests is often car:ried

out manually using trapping methods. Recent advances in signal processing

and low power electronics have introduced the possibility of automatically

identifying species that produce sound either as a communication signal (e.g.

mating) or as a by-product of movement (e.g. flying) or eating. There has

153

been much research into the acoustic detection of insects in stored produce

and successful results have been obtained for a number of species. However,

actual identification of species has received very little attention in entomology

despite recent successful work on bird and amphibian species identification.

This paper is based on work carried out at Hull on the development of an

automated system for the recognition of Orthoptera species (grasshoppers

and crickets) which makes use of advanced signal processing techniques

coupled with an artificial intelligence analyser based on an expert system or

an artificial neural network.

The primary signal processing technique is called time-encoded speech (TES)

which is computationally much less complex than frequency domain methods

such as FFT's and acts as a preprocessor for the artifiicial intelligence

analyser. Over 99% detection accuracy has been obtained with 7 species of

British cricket, bush cricket and grasshopper using a neural network. The

system is based on a personal computer and a low cost sound card thus

allowing portability.

The paper will describe the principles of operation of the system and show

results to date on Orthoptera and other orders. It will also discuss the potential

for insect pest species identification and wider application for other orders,

phyla and acoustic sources such as cavitation. (Chesmore E.D.)

154

References

[1] J. Meuleman, J. & van Kaam, C. European Community funded AIR­

project Objective Plant Quality Measurement by Digital Image

Processing. (1999).

[2] Chesmore E.D. Development of an automated system for the

recognition of Orthoptera species. Hull University, (1999).

155

Chapter 9.

FUTURE TECHNOLOGY

Summary

Future advances in neural network technology will depend on the advances in

hardware, as well as the advances in understanding of the way in which the

brain functions. Considerable funding is available to researchers in the

western world, as evidenced by defence industry investment.

9. 1. Dedicated Neural Processors.

Dedicated neural processors are processors with specific capabilities that

enable their use in neural networks. Several of the large chip manufacturers

have developed neural processors, some of which are processors created

specifically for the development system vendors. Modern technology has

enabled packaging of a number of simplistic neurons onto a single chip. Some

integrated circuits incorporate proprietary concepts, such as creating specific

types of fuzzy neurons. Technologies range through a broad spectrum­

analog, digital, optical, some of which are linked to create hybrids. No single

type appears to have emerged as a clear winner at this time.

9.2 Developmental approaches

The vendors within the industry predict that migration from tools to

applications will continue. In particular, the trend is to move toward hybrid

systems. These systems will encompass other types of processes, such as

fuzzy logic, expert systems, and kinetic algorithms. Indeed, several

manufactures are working on "fuzzy neurons."

The greatest interest is on merging fuzzy logic with neural networks. Fuzzy

logic incorporates the inexactness of life into mathematics. In life most pieces

of data do not exactly fit into certain categories. For instance, a person is not

156

just short or tall. He can be kinda short, pretty tall, a little above average, or

very tall. Fuzzy logic takes these real-world variations into account. In

potential application of neural networks, in systems that solve real problems,

this fuzziness is a large part of the problem. In automating a car, to stop is not

to slam on the brakes, to speed up is not to "burn rubber." To help neural

networks accommodate this fuzziness of life, some researchers are

developing fuzzy neurons. These neurons do not simply give yes/no answers;

they provide a more fuzzy answer.

Systems built with fuzzy neurons may be initialized to what an expert thinks

are the rules and the weights for a given application. This merging of expert

systems and fuzzy logic with neural networks utilizes the strength of all three

disciplines to provide a better system than either can provide themselves.

Expert systems have the problem that most experts don't exactly understand

all of the nuances of an application and, therefore, are unable to clearly state

rules that define the entire problem to someone else. The neural network

doesn't care that the rules are not exact, for neural networks can then learn,

and then correct, the expert's rules. It can add nodes for concepts that the

expert might not understand. It can tailor the fuzzy logic that defines states

like tall, short, fast, or slow. It can tweak itself until it can meet the user­

identified state of being a workable tool. In short, hybrid systems are the

future.

9.3 Hierarchal network application

A mobile robot whose behaviour is controlled by a structured hierarchical

neural network the robot has four wheels that permit free movement using a

drive motor and a steering motor. (Nagata, S. & Sekiguchi, M. & Asakawu, K.)

Twelve sensors monitor internal conditions and environmental changes that

provide the network inputs, the outputs being used as motor control signals.

157

The network is divided into two sub networks connected to each other by

short-term memory units that are used to process time dependent data.

Robot control involves complex motion control, with its associated sensor

signal processing, which is not suited to the sequential processing of von

Neumann type computers.

Mobile robot must be flexible in their learning and adaptation capabilities from

their sensors, so that they may respond to environment changes in real time.

The conventional von Neumann would be programmed in advance so that

environment changes detected by the sensors would be referred to the

higher-level decision maker. By contrast, the neuro-computer would be

flexible to unexpected situations by using learning and interpolation

capabilities.

The robot was designed to move freely in confined spaces and sense

environmental changes.

158

65l

·u1SJUVlf:><JW UO_lJOUJO:JO']

U!'81l JOlOW .
Bupaa1s/ '...;:;.,.&1-

ureJl /
8A!JO

JO\OW

5upaa1s

091

"BlBP l~!dOl JOJ 40Jeas lX9l
Jo 40Jeas l9UJalU! ue apnpu! ll.IB!W UO!pas S!4l JOJ uoqsanb l~!dAl v

a1dwex3

References

[1] Meuleman, J. & van Kaam, C. UNSUPERVISED IMAGE

SEGMENTATION WITH NEURAL NETWORKS, Wageningen

Agricultural University, Wageningen, The Netherlands, (1999).

[2] Chesmore, E.D. ACOUSTIC METHODS FOR THE AUTOMATED

DETECTION AND IDENTIFICATION OF INSECTS. Environmental

Electronics Research Group, School of Engineering and Computing,

University of Hull, Hull, United Kingdom, (1999).

[3] DAC Home pages Internet

[4] A mobile robot controlled by a structured hierarchical neural network

(Nagata, S. & Sekiguchi, M. & Asakawu, K. IEEE Control systems

Magazine, pp 69-76, (April 1990).

161

Chapter 10.

NEURAL NETWORK TYPES

Summary

ART1

ART2

ART3

BAM

The following descriptions of some networks and related applications have

been acquired from a wide variety of published texts.

Adaptive resonance theory initial version for processing binary input patterns

only. This accepts an input vector and classifies it, by similarity, into one of a

number of stored patterns. Patterns that are distant from the stored patterns

lead to the creation of new grandmother cells. Carpenter, and Grossberg,

(1986).

Adaptive resonance theory second version for processing real input patterns.

It is a development that can classify binary and continuous outputs.

Carpenter, and Grossberg, (1987).

Adaptive resonance theory improvements on the second version offering

greater stability for processing real input patterns. Carpenter, and Grossberg,

(1990).

Bi-directional associative memories, the activation resonates between two

sets of processing elements until a stable state is reached. Koska, (1988).

162

Boltzmann machine

A distributed parallel processing algorithm, based on statistical mechanics,

stable solutions being found from simulated annealing.(Ackley, Hinton, and

Sejnowski, (1985).

BSB (Brain state in a box model)

A simple associative network coupled to non linear dynamics, it is unable to

learn difficult discriminations. A group of neurons feeds back on itself.

Anderson, Silverstein, Ritz, and Jones, (1977).

Counter-propagation network

The inputs feed a Kohonen layer to an outstar layer, when the network is

connected it accepts inputs and generates outputs simultaneously, thus

allowing counterflow through the system.

Feed-forward network

A network in which flow is unidirectional from inputs to outputs.

GMDH (Group method data handling)

A network that builds solution equations, (see Chapter 6)

GRNN (General regression neural network).

A three layer network having one hidden neuron for each training pattern,

these networks are used to train quickly with sparse data sets. Useful for

continuous function approximation, reported by Ward Systems to be superior

to backpropagation networks for many types of problems, Specht, (1991).

163

Hopfield networks

Single layer attractor networks in a wide variety of designs. Useful for auto­

association and optimization tasks, the concept is that a single network of

interconnected binary valued neurons can store multiple stable states.

Kohonen self organising network

The network differentiates into multiple regions, each of which is responsive to

a specific stimulus pattern.

PDM (polynomial discriminant method)

Based on the adaline this network uses a polynomial surface to categorise

input patterns.

PNN (probabalistic neural network)

A neural network in which weights on the key layers are established according

to probability based decision theory. A three layer network with as many

hidden layer neurons as there are training patterns and one output neuron for

each possible category. Specht, (1991).

164

References

[1] Carpenter, G. & Grossberg, S. Neural dynamics of category learning and

recognition: Attention, memory consolidation and amnesia. In Brain Structure,

Learning and Memory (AAAS Symposium series) 1986.

[2] Carpenter, G. & Grossberg, S. ART 2 Self organisation of stable category

recognition codes for analog input patterns. (Applied optics 26 (23): 4919-30.

1987).

[3] Carpenter, G. & Grossberg, S. 1990. ART 3 Hierarchical search using

chemical transmitters in self organizing pattern recognition architectures.

Neural networks 3 129-152.

[4] Kosko, B. Bidirectional associative memories. IEEE Trans. Systems, Man,

Cybernetics. SMC-LB 49-60 January/February 1988.

[5] Ackley, D.H. Hinton, G.E. & Sejnowski, T.J.1985 A learning algorithm for

Boltzmann machines. Cognitive Science, 9, 147-169

[6] Anderson, J.A. Silverstein, J.W. Ritz, S.A. & Jones, RS. 1977 Distinctive

features, categorical perception and probability learning. Some applications of

a neural model. Psychological Review 84, 413-451.

[7] Specht, D. & Shapiro, P. Generalization Accuracy of Probabalistic Neural

Networks compared with Back-propagation Networks. Proceedings of the

Joint Conference on Neural Networks July 8-12 1991, 1, 887 -892

[8] Specht, D. A General Regression Neural Network. IEEE Transcript on Neural

Networks, November 1991, 2, 6, 568-576.

165

Appendix A

Portfolio selection

An initial study intended to forecast a stock portfolio based on the

Johannesburg Stock Exchange was well advanced, however the erratic

behaviour of our exchange in this evolving democracy led to the project being

abandoned.

The factors used and the techniques applied may however prove useful at

some future date so they are given as an appendix to this thesis.

A.1 Spreadsheet construction

For ease of interpretation into the commercial statistical and neural network

programs the Excel spreadsheet prqgramme has been used

Portfolio selection has been limited to part of the industrial sector to make a

feasible database for this work. Elements chosen include Electronics &

electrical, Beverages hotels & leisure, Building & construction, Engineering,

Chemicals, oils & plastics, Packaging & printing, Food, Furniture &

Household, Media and Pharmaceuticals.

A.2 Input selection

The inputs have been selected, or derived, from those that are freely available

in South Africa from the following publications

The ASSA Bank Investors' Guide which is published quarterly.

The JSE handbook, which is, published half yearly.

The financial mail reports.

To avoid negative values in the neural network models, an artificial base has

been applied as the ratio of value to the lowest value by sector. In this manner

an across sectors portfolio may be constructed. The following example used a

GMDH network, with some selected inputs to produce an alternative to

regression methods for evaluating shares.

166

The raw data pattern is indicated by the following table abstract, 113 patterns

of the patterns were used as input patterns. Of the chosen patterns 91 were

used for training and 22 for test.

167

JSE Code Company Sector CA/CL R on CE Ron Equity PTP/T Debt to Equity NAV/M pr Liquidity P E ratio

ABI Amalg beverage Ind BH&L 1.6068 25 25 10.8 0.9 29.2 2.12 16.5

DSL Distillers corporation BH&L 2.9266 22.8 14 14 0 64.3 0.75 13.7

ITL lnterleisure BH&L 0.6857 37.4 35.1 16.1 17.1 21.6 1.98 19.3

KER Kersaf Investment BH&L 0.9357 18.5 16.8 25.2 17.3 59.3 3.65 13.2

SAB SA Breweries BH&L 1.2809 23.7 33.4 9.2 53.5 17.5 8.65 20

SFW Stellenbosch farmers BH&L 2.7313 13.7 8.5 7.4 3.2 121 2.74 13.1

SIS Sun International SA BH&L 0.2734 15.6 18.1 18.5 21.2 55.3 15.44 7.6

SPU Spur steak ranches BH&L 1.4375 142.1 106 45.4 2.4 8.5 9.21 12.9

SRG SeNgro International BH&L 1.2495 28 22.6 13 26.2 59 8.42 24.9

SUN Suncrush BH&L 0.9195 25.2 21.7 19.9 7.3 45 15.86 11.7

AAL Alpha B&C 1.4036 17.6 14.7 22.3 8.2 40.1 6.07 9.5

168

The following table shows the approach used to exponentially weight data.

Although this was written for several stock exchange categories only the food sector with a 4 year record is given

JSE Code Company Sector CA/CL CA/CL CA/CL CA/CL wt a4 wt a3 wt a2 Ron CE Ron CE Ron CE Ron CE

Retro years 0. 0.666 0.833
BRL Brenner Mills Food 2.258 2.641 3.946 4.843 1.1290 1.76074 3.2888 47. 37. 24. 2

CSF C&G Smith Foods Food 1.376 1.418 1.392 1.422 0.6883 0.94567 1.16007 17. 14. 15. 20.

CAS Cadbury Schweppes Food 1.0 1.114 1.316 1.386 0.52 0.7428 1.09716 20. 22. 23. 24.
COi Choice H Food 0.719 1.016 1.041 0.954 0.3597 0.67773 0.86816 -4. 7. 14. 2.
CKS Crookes Brothers Food 1.495 0.59 0.93 2.70 0.747 0.39533 0.78249 6. 5. 1 11.
DLF Del Monte Royal Food 1.205 1.201 1.195 1.048 0.602 0.80120 0.99616 10. 6. 6. 4.

FDC Food corp Food 1.192 1.388 1.402 1.741 0.5964 0.92567 1.16882 10. 1 16. 16.
HLH Hunt Leuchars &Hepb Food 1.341 1.264 1.079 1.090 0.6707 0.84327 0.8993 7. 6. 1. 0.

ICS ICS Holdings Food 1.088 1.128 1.05 1.068 0.544 0.75260 0.87749 8. 13. 18. 2
ILV lllovo Sugar Food 1.170 1.150 1.301 1.296 0.585 0.76693 1.08482 11. 6. 7. 14.
IRV Irvin & Johnson Food 2.300 2.556 2.566 2.29 1.150 1.70440 2.13865 1 11. 1 10.

LGB Langeberg Holdings Food 2.826 2.982 2.694 3.005 1.4134 1.98807 2.24574 23. 16. 18. 23.
MOM Macadams Bakery H Food 1.54 1.61 1.821 2.286 0.774 1.07533 1.51816 11. 13. 3
NFH Namibian Fishing Food 1.60 1.358 1.256 1.024 0.802 0.90593 1.04741 7. 7. 14. 4.
NMS Namibian Sea Product Food 0.901 1.132 1.129 1.004 0.4508 0.75473 0.94149 6. 17. 16. 1

NRK Northern Bakeries Food 1.768 1.1 0.917 1.162 0.8842 0.7466 0.7648 34. 1 -1. 8.

OCF Oceana Fishing GroupFood 2.637 1.840 3.515 19.038 1.3189 1.22700 2.92990 37. 44. 53. 49.

PML Premier Group Food 1.227 1.172 1.034 1.000 0.613 0.78193 0.86199 18. 19. 18. 15.
RBW Rainbow chickens Food 0.599 0.6 0.755 1.405 0.2996 0.44000 0.62991 -6. 1. 2. -14.

TIG Tiger Oats Food 1.498 1.544 1.418 1.545 0.7491 1.02953 1.18207 20. 17. 1 21.

TNT Tongaat Hulett Group Food 1.813 1.6 1.705 1.958 0.9069 1.12000 1.42149 7. 8. 13. 16.

WBH W B Holdings Food 1.482 0.166 1.274 1.007 0.7412 0.11120 1.06232 12. -8. 13. 5.

169

A.3 Actual inputs

The selection of inputs that have a high probability of revealing the real state

of the stock, in terms of its potential movement and estimated current value is

critical to forecasting success. Too many inputs are better than too few as

those shown to be of small impact may be eliminated during model

assessment. The downside of a high input volume is the speed of processing

that may be achieved.

The portfolio selection will be a function of knowledge of the stock market

state. Freely available inputs are from the JSE.

Buy sell or hold decision for the acquired portfolio is based on weekly data

from the "Financial mail", daily data is thought to be too noisy for practical use

by the small investor.

Some specialist inputs, that may be discovered, include company

development strategies, staff to staff turnover ratio, export business

proportions, resource investment, loss analysis in labour and materials and

world trends for that industry. These have not been included in this study, as

they require personal research for the selected stock.

Portfolio selection inputs (These are for the past 4 years, weighted.)

Current asset ratio = current assets/current liabilities (Considered to be

reasonable when the ratio >3/2) This reflects the ability to repay short term

debt and may be more valuable if stock could be excluded from assets, as

they are not easily realized.

Return on capital employed % is Pretax profit/Capital employed x 100. This is

a direct measure of profitability.

Return on equity % is Profit after taxation/ Average ordinary shareholders

interest x 100.

171

Cash flow per share % is Net cash generated/ Weighted number of ordinary

shares issued x 100. This would reflect the desirability of the stock to

investors, if achieved without undue risks to the enterprise.

Debt to equity % is Total interest bearing loans/ Total owners interest x 100.

The indicator of how well debt is covered by equity, it may be an indicator of

the ability to borrow for expansion, or new projects.

Effective tax rate % is Current taxation/ Net income before taxation x 100.

NAV/Market price % is Net asset value per share/ Market price per share x

100. Indicates whether the share is correctly priced.

Market capitalization (ordinary shares x current share price.)

Log (market capital at year-end) is Log (Number of shares issued x share

price at the year-end). This is a size measure of a company for which

logarithms have been taken, because of the large range of values.

Profit margin % is Pretax income/ Turnover x 100

Stock decision criteria inputs (4 week weighted decisions are used)

These are from the Financial Mail data. To simplify the inputs, in some cases,

inputs are given weekly data to annual data ratios.

Week advance/(12 month high - low) x 100 (This simplifies the effect of

change with respect to the year's change level, I.e. how important is the

weekly change with respect to the year's change)

Market capitalNolume of shares traded (This factor stabilizes the effect of

company size.

Dividend yield per share

Earnings per share 4 quarters /Earnings per share financial year (Recent

share earnings decline or growth should be revealed in this measurement).

172

A.4 Importance of inputs

In the Neuroshell 2 programme the GMDH network may assist in studying the

most important inputs. It performs a continuous evaluation of the inputs and

excludes those it interprets as having little influence on the prediction of

outputs.

An alternative screening procedure recommended by Ward Systems to use

the smoothing effect of the GRNN and PNN neural networks. From the final

best model the smoothing factors rank variable importance on the scale O to

3, where 0 is little or no importance and 3 is maximum importance.

Input screening techniques decrease in accuracy with increasing numbers of

inputs. It is suggested that for large numbers of inputs they are screened in

sets of 20 with the winners being retained for the final network. In the event

that two or more non-important inputs, in different sets, may be combined to

be important we may re-examine the initial discards.

173

Appendix B

MATHEMATICS FOR NEURAL NETWORKS

This appendix is in the nature of minimum requirements for understanding

published text on neural networks. It gives some of the methods, abstracted

from a large body of linear algebra knowledge, that may be needed for

processing neural network data,.

8.1 Binary data representation

The representation of data in computation has two extreme possibilities, the

grandmother cell concept in which a single neuron of a group represents the

inputs and outputs of an element of a data set, or distributed representation in

which the element is identified by a pattern of activated neurons. The pattern

of grandmother cells representing any numbers 1 to 7 would be:

(1) +------

(2) -+-----

(3) --+----

(4) ---+---

(5) ----+--

(6) -----+-

(7) ------+

A pattern for distributed representation can be achieved using less neuro~s,

e.g.:

1 +

2 +

3 + +

4 +

5 + - +

6 + +

7 + + +

174

In pattern recognition the grandmother cell approach gives conceptual clarity;

when grandmother is recognized a single cell is activated. Distributed

representation on the other hand may use some common activation for two

different patterns. For numbers 5 and 7, neurons 1 and 3 would be activated.

It is thought that biological functions lie between these extreme boundaries.

8.2 Vectors

Computations concerned with inputs to artificial neural networks involve

ordered number sets called vectors. For a given number n of input elements

we may use the designation a to describe a vector of elements.

i1

a= I i2

in

A vector is normally given in column form, transposition turns it into a row

vector.

a=

3

2

-4

-1

2

a T = (3, 2, -4, -1, 2)

8.3 Neural network required vector operations in "R""

The basic operations are those of addition, subtraction, multiplication by a

scalar and multiplication.

175

B.3.1 Addition and subtraction

To add two vectors we add the corresponding terms

3

-4

2

+

1

2

5

4

: I -2

7

Drawing the 1st vector b, then starting the 2nd vector a, from the end of

the 1st vector may illustrate the graphical addition of two vectors. The

line joining the start of the 1st vector to the end of the 2nd vector is the

sum vector a + b.

The same result may be achieved by the parallelogram method

Vector addition is commutative; it is independent of the order of

addition.

a+ b = b +a.

To subtract vector b from vector a we subtract the corresponding terms

3

-4

2

1

2

5

=

2

-6

-3

To show graphically the subtraction of vectors, we add the negative!Of

b to a.

176

These procedures are easily accomplished within a spreadsheet.

8.3.2 Scalar multiplication

For vectors a and b and scalars k, k':

k(a + b) = ka + kb.

(k + k')a = ka + k'a.

(k k')a = k(k'a).

8.3.3 The inner product

For the inner product, or dot product, or scalar product of two vectors,

they are aligned and their corresponding elements are multiplied

together, then the resulting products are summed. At the completion of

this operation we have a single number, which is a scalar.

Example

Given a r = (5, 4, 1) and b=(3, 6, 2)

then ab =(5)(3)+(4)(6)+(1)(2) = 15 + 24 + 2 = 41.

The inner product operation applies only to vectors having the same

number of elements. A practical application of the inner product is the

primary stage of generic network computing in which we relate the

input pattern with the connection strengths.

The scalar product of two vectors is the product of their lengths and the

cosine of the angle between them.

ab = laJ Jblcose where = lal is the vector length

A three-component vector represents a hne in three-dimensional

space, four or more component vectors are not visualized but may be

thought of as line segments in hyperspace.

177

8.3.4 Length and distance in R"

For vectors a r =(a1, az, , an) and b r =(b1, bz, , bn) the distance

between points a and b is given by:

dist(a,b) = '1((a1-b1)2 + (a2-b2)2 + +(an-bn)2
].

Vector length (norm) is defined as the non-negative root of a.a

/a/ = -Va.a = '1(a12 + az2 + +an 2].

8.3.5 Normalizing

The dot product operation applies only to vectors having the same

number of elements. A practical application of the inner product is the

primary stage of generic network computing, in which we relate the

input pattern with the connection strengths.

Geometric vector representations may help to visualise certain

problems. A two element vector represents a point (a, b) on the x y

plane, shown as a line joining the origin to this point.

In certain circumstances it may be convenient to make vectors a unit

length by a process called normalization. Compute the length of a non­

zero vector, then divide each component by that length.

8.3.6 Angle between vectors

Consider a plane on which are two different vectors a and b having the

same origin, as shown.

b

The vector lengths of the sides of the triangle are a, band a - b. From

the Cauchy-Schwarz inequality for any vectors a, b E R"

ab ~ /a/ /b/

178

The angle between vectors is e = cos -i ab.

/a/ /bl

8.3. 7 Orthogonality

Vectors a and b are said to be orthogonal, (perpendicular) if their inner

product is zero. I.e. if ab= 0.

8.3.8 The outer product

Of interest in neural networks is the outer product (cross product) of

two vectors. Whereas the result of the inner product is a scalar the

result of the outer product is a vector.

a= [:l b= ~]
a x b = (a2 b3 - a3 b2)i + (a3 b1 - a1 b3)j + (a1 b2 - a2 b1)k

where i, j, and k are mutually perpendicular unit vectors.

8.4 Matrix operations for neural networks

A group of n weighted connections to a neuron, will be in vector form, form

neurons the result will be a matrix of connection weights. of dimension mn.

I\
II

: ~
I
I
I
I
I
I

~
I
I
I

j~~ "'F:......-----------.. ,.~ v
n \1 m

8.4.1 Addition and scalar multiplication of matrices

For two matrices A and 8 of the same dimensions add their

corresponding elements.

179

Examples

4 -3

A=l-5 -1

1 0

1 -1

A+ B = I -1 -7

3 3

-3 2

B=l4 -6

2 3

For the above matrix A multiplication by a scalar k = 3 yields:

Example

12 -9

3A = 115 -3

3 0

B.4.2 Multiplication of matrices

For matrices in which the number of columns in A is equal to the

number of rows in B, i.e. A is an m x p matrix and B is a p x n matrix,

then the product AB is an m x n matrix.

Product AB is not defined if A is an m x p matrix and B is a q x n

matrix, where p -:;e q.

2 -3 I [5 -1 (2)(5) + (-3)(-2) (2)(-1) + (-3)(1)

AB=I 3 1 I -2 1 = (3)(5)+(1)(-2) (3)(-1) + (1)(1)

-4 2j (-4)(5) + (2)(-2) (-4)(-1) + (2)(1)

I
16 -5

AB= I 13 -2

-24 6
_J

180

B.5 Eigenvalues and Eigenvectors

If we think of a vector as a geometric direction in n-dimensional space,

multiplication of that vector by a matrix redirects the vector in another

direction.

Some vectors have the special property that multiplication by a matrix results

in the product vector pointing in the same direction as the original vector.

Since the new vector points in the same direction as the original it has a

length that is a constant that can be a positive or negative multiple of the

original length. The new vector lies somewhere along the line defined by x

and the origin. The constants are called the eigenvalues or characteristic

values, whilst the vectors are called the eigenvectors of the matrix.

This relationship is expressed formally as: Ax = A.x

Calculation is simplified by the use of eigenvectors, instead of performing the

many operations required to multiply a matrix and a vector, we perform one

multiplication, a vector times a constant. Eigenvectors sometimes may offer

meaningful interpretations of the system the matrix describes.

An example with a simple geometric interpretation is the multiplication of a

vector f with two components x and y by the matrix A

l - [- [-0 1 x y

Af = 1 ~ Y_ = x _

This matrix has interchanged the x and y co-ordinates this reflects the vector

around the 45 degree line through the origin.

Ax.= [~ ~] [: l 1 G]= ha ~th eigenvalue 1

181

Axb= [~ ~ J [~ = [-: J = -1 [-: J = A.x2 with eigenvalue -1

8.6 Lyapunov function

The stability of a network can be achieved if a function is found that

decreases with each network change of state, until no further change occurs,

at which state the function stops. The Lyapunov function behaves in this

manner on some recurrent networks.

Lyapunov's stability theorem

If a positive definite function V (a) can be found such that dV(a)/dt is

negative semi definite, then the origin (a= 0) is stable for the system:

d(a)/dt = g(a).

If a positive definite function V (a) can be found such that dV(a)/dt is

negative definite, then the origin (a =O) is asymptotically stable for the

system.

Conceptually Lyapunov's method is based on the systems energy and

the relationship of the stored energy to the system stability.

Hagan, Demuth, and Beale (1996) give the following excellent

illustration of the Lyapunov stability theorem.

mg

Figure 3.1

For a simple pendulum of mass m, length I, inclined at an angle e to the

vertical with damping coefficient c and gravitational force g. From

Newton's second law.

182

ml d29/dt2 = -cd9/dt - mgsin(e). (1)

ml d29/dt2 + cd9/dt + mgsin(9) = 0 the second term in the equation is

the damping force, the third term is the gravitational force. (2)

Writing a1=9 and a2=d8/dt=da1/dt whence d29/dt2=da2/dt. (3)

da£ = -gsin(a1} - ca£. (4)
dt I ml

Now we want to investigate the stability of the origin (a = 0) for this

pendulum system. (The origin corresponds to a pendulum angle of

zero and a pendulum velocity of zero.) We first want to check that the

origin is an equilibrium point. We do this by substituting a = 0 into the

state equations.

da1 = a2 = 0.

dt

da2 = -gsin(a1} - c a4 .

dt I ml

da2 = -gsin(O) - g_o) = o.
dt I ml

Since the derivatives are zero, the origin is an equilibrium point.

(5)

(6)

(7)

Using the total energy of the system as the Lyapunov function V

including the kinetic and potential energies.

V(a) = %ml2 (a2)2 + mgl(1 - cos(a1)). (8)

In order to test the stability of the system, we need to evaluate the

derivative of V with respect to time.

dV(a) =I av da1 + Gvl da£.
dt j oa1 dt oa2 dt

- - -

(9)

The partial derivatives are found from the preceding V(a) equation.

183

dV(a) = (mgl sin(a1))a2 + (ml2 a2) (-g sin(a1)(-£.. a2).

dt I ml

After cancelling, dV(a) =-cl (a2)
2::;; 0.

dt

(10)

(11)

In order to prove that the origin (a = O) is asymptotically stable, we

must show that this derivative is negative definite. The derivative is

zero at the origin, but it also is zero for any value of a1 , as long as a2 =

O. Thus,

dV(a) is negative semidefinite, rather than negative definite.

dt

From Lyapunov's theorem, then, we know that the origin is a stable

point. However, we cannot say, from the theorem and. this Lyapunov

function, that the origin is asymptotically stable.

Common sense tells us that, due to friction, the pendulum will

eventually settle in a vertical position, therefore the origin is

asymptotically stable. The Lyapunov theorem, using our Lyapunov

function, can only tell us that the origin is stable.

Hagan, Demuth, and Beale (1996) show that the origin is

asymptotically stable, using LaSalle's Invariance Theorem.

The following is a numerical example for the pendulum, based on the

work of Hagan, Demuth, and Beale. (1996)

Given g=9.8, m=1.5, 1=2.5, c = 2.0.

The state equations for the pendulum are:

da1 = a2,

dt

da2 = -9.8sin(a1) -~ = -3.92sin(a1) - 0.5333a2
dt 2.5 (1.5)(2.5)

Expressions for V and its derivative follow

V(a)= (%)(1.5)(2.52>(a2)2 + (1.5)(9.8)(2.5)(1-cos(a1))

=4.685(a2)
2+ 36.75(1-cos(a1))

184

SST

lP

· o = ze se 6uo1 se ~e JO an1eA Aue JOJ oJaz S! /\P ie4i aioN

lP

z(Ze) s -= /\P (~ ~) WOJ.:f

Examples

These are a few simple examples for revision purposes, more challenging

examples are easily formulated from current UNISA curricula.

Q1 Add and subtract the following pairs of vectors:

A1

a) [:- [-:] b)[-:] [~ l
-2_ 7 -4 -1.5_

a) Addition I 5

9

5

b) -7

10

-5.5

a) Subtraction 11 b) 5

-1 I I -6
-9 -2.

Q2 Given two vectors with common origin {0,0) and respective terminations (3.5,

4) and (4, 3) determine their lengths and the angle between them.

A2 Call the respective vectors a and b:

dist{a, o)= "'1[(3.5 - 0)2 + (4 - 0)2 = 5.315

dist{b, o)= "'1[(4 - 0)2 + (3 - 0)2 = 5

dist{a, b)= "'1((3.5-4)2 + (4 - 3)2 = 1.7697 this value was determined so that the

cosine rule could be used to find the angle between vectors.

5.3152 + 52 -1.76972 = Cos 8 = 0.9429 therefore S = 19.44°

2x5,315x5

186

Q3 Which, if any, of the following vectors are orthogonal?

1 5 6

a = 1-2 b = -4 c =

3 5

-4 7

A3 ab = 0, a and b are orthogonal.

ac = 3, a and c are not orthogonal.

be = -7, b and c are not orthogonal.

7

1

Q4 Given aT = (4, 0, -3), bT = (-8, 5, 0), cT = (-4, 1, -2),

Q7

Compute i) 2a -3b ii) a+ 3b-2c

A4 i) 8 -24 32

ii)

o
1
_115

1
= i-15

-6 0 -6

4
1

i -24
0 + 15

-3 0

-28

21 = I 13

-4 1

For the following matrices:

[1 -2 0] --1 2

A= -3 -1 4 B= 1 -3

2 1 -1 2 1
-

a) Compute A + B. b) A- B.

c) AxB. d) Is Ax B =Bx A?

;1
187

What is the outcome when A is multiplied by the identity matrix 13 .

A7 A + 8 = I 0 0 -3

-2 -4 5

4 2 6

A-8= 12 4 3

-4 2 3

0 0 -8

Ax 8 = 1-3 8 -5

10 1 36

-3 0 -12

8 x A = 1-13 -3 11

12 2 -13

13 2 -3

..,

A x 8 is not equal to 8 x A

lxA=A

188

References

[1] Ayres, F. Matrices McGraw-Hill. (1962)

[2] Hagan, M. T. Demuth, H. B. & Beale, M. Neural network design. (1996)

[3] Lipschutz, S. Linear Algebra McGraw-Hill

189

