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Summary 

The thesis is written in chapter form. Chapter 1 describes some of the history 

of neural networks and its place in the field of artificial intelligence. It indicates 

the biological basis from which neural network approximation are made. 

Chapter 2 describes the properties of neural networks and their uses. It 

introduces the concepts of training and learning. 

Chapters 3, 4, 5 and 6 show the perceptron and adaline in feedforward and 

recurrent networks particular reference is made to regression substitution by 

"group method data handling. Networks are chosen that explain the 

application of neural networks in classification, association, optimization and 

self organization. 

Chapter 7 addresses the subject of practical inputs to neural networks. 

Chapter 8 reviews some interesting recent developments. 

Chapter 9 reviews some ideas on the future technology for neural networks. 

Chapter 10 gives a listing of some neural network types and their uses. 

Appendix A gives some of the ideas used in portfolio selection for the 

Johannesburg Stock Exchange. 
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Chapter 1. 

FOUNDATIONS OF NEURAL NETWORKS 

Summary 

This chapter offers some history and a brief description of the field of artificial 

intelligence as the domain in which neural networks function. It further 

describes other artificial intelligence subjects that are related, or interface with 

neural networks. 

The biological basis from which neural network approximations stem are 

described, together with simple artificial neurons to model aspects of these 

cells. 

1.1 Artificial intelligence 

Definition: Artificial Intelligence, is the science of making machines do things 

that would require intelligence if done by human beings. Minsky (1968). 

For many years man has sought to model functions of the brain activities, 

from simple animal forms to the extremely complex human brain. The field of 

artificial intelligence (Al) has developed with increasing knowledge of the way 

in which the brain functions and increasing ability to partially emulate those 

functions through advances in technology. 

John von Neumann (1903 to 1957) pioneered the development of the 

computer to a level at which simple Al models became possible. His work 

evolved the design and application of computing machines. It is he whom, in 

1946, is credited with the proposal for computer working using the binary 

system, and the concept that operating instructions for the machine could be 

stored in memory. Sometime later his team at Princeton University built the 

first computer in which information was processed a 'word' at a time rather 

than serially. 

11 



Traditional Al systems make the important assumption of the physical symbol 

system hypothesis. Newell and Simon ( 1976) contributed to the 

understanding of the physical symbol system. 

Definition: A set of entities, called symbols, which are physical patterns that 

can occur as components of another type of entity, called an expression or 

symbol structure. A physical symbol system is a machine that produces 

through time an evolving collection of symbol structures. 

Newell, Shaw and Simon (1963) used their early Al experiences with a logic 

theory machine to prove theorems from the first chapter of Whitehead and 

Russell (1950) Principia Mathematica. Subsequent attempts to use the 

theorem proving technique to build a general solution system for complex 

problems have not proved successful. 

Gilling and Brightwell, ( 1982) indicate the vast gap that exists between human 

intelligence and Al. They note that since the human brain has an estimated 

1011 nerve cells, it follows that state of the art super computers can only 

display intelligent behaviour in a narrow domain. 

The logic approach to Al thinking moved in the 1970 decade to a knowledge 

approach, human knowledge being represented symbolically. LiMin Fu (1994) 

suggested that it is knowledge that makes the system intelligent and not the 

inference mechanism. 

The artificial intelligence field has inspired several areas of development that 

include, expert systems, optimization, fuzzy logic, and neural networks. 

1.1.1 Expert systems 

Feigenbaum (1982) offers the following definition for an expert system. 

Definition: An expert system is an intelligent computer program that 

uses knowledge and inference procedures to solve problems that are 

difficult enough to require significant human expertise for their solution. 

12 



Expert systems are a significant part of artificial intelligence. Its uses 

differing widely from financial loan appraisal, through to equipment 

replacement and medical diagnosis. 

The system may have a self-learning approach in that feedback of the 

results from an action may influence the later decisions. Most systems 

consist of two principal parts, the first being the experts knowledge 

base which provides the guiding rules or judgments based on the 

chosen expert opinion. The second part interprets the knowledge base 

in relation to the particular problem being presented. 

1.1.2 Optimization 

In the field of "operations research" many methods are used that 

provide reasoned answers to posed problems. The methods attempt to 

obtain an optimal solution to a problem under given constraints. The 

practical problem is modelled mathematically and the model forecasts 

indicate an optimal solution. The system performance is usually 

measured in terms of a minimization or maximization criterion. 

The basic problem of optimization is to arrive at the best decision for a 

given set of circumstances. There may be difficulties in deciding the 

best decision, in the light of the different perspectives that may be 

viewed of the problem. 

Optimization may use the algorithmic approach of the computer, as 

demonstrated in linear and dynamic programming. It may also be 

achieved by the use of neural networks in such varied applications as 

partial pattern recognition and the travelling salesman problem. There 

is a difference in that the neural network optimum would not be a 

proven optimum. 

Note that the knowledge base is in the determination of objectives and 

constraints. If the wrong inputs are given algorithms will not provide 

optimal solutions to the problem. 

13 



1.1.3 Fuzzy logic 

Zadeh (1965) states that the theory of fuzzy logic is primarily 

concerned with clarifying ambiguity in natural language. It has evolved 

from the work done in the theory of fuzzy sets. 

Giarratano and Riley (1994) offer this guidance "Conventional set 

theory defines set membership in terms of characteristic functions (CF) 

in which the CF is 1 if the object is a member and 0 if the object is not a 

member. An object may have partial membersh(p of a fuzzy set, the 

degree of membership being given by the compatibility function". 

Fuzzy logic has been practically applied in many situations from 

camera tracking to environmental decision. Maier and Sherif (1985) 

supply more than 450 references of fuzzy logic applications. 

1.1.4 Neural networks 

This is the aspect of artificial intelligence that is to be the core work of 

this thesis. Neural networks may be described as interconnected 

networks of simple processing units (artificial neurons) that exhibit 

some properties of the biological nervous system. Each processing 

element (neuron) receives a part of the problem to be solved. This 

gives the power of the network which is achieved by a technique 

known in neural networks as parallel processing in which computations 

are spread simultaneously between several processing elements. 

Neural networks have demonstrated an ability to produce good results 

when applied to the tasks of artificial intelligence. Examples include 

pattern recognition in literary styles Aston University (1993), and 

DARPA (1988) list a wide variety of applications ranging from 

Aerospace to Telecommunications. 
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1.2 Biological origins 

Neural network models have evolved from the perceptions of biological 

behaviour, some researchers believing that neurons are the computational 

units of the brain. 

Anderson (1995) explains that knowledge of neuroscience is helpful in 

understanding why models are founded in certain approximations about 

biological neurons and the relative merits of those approximations. 

There are many forms in real neurons following the biological need. The 

following diagram illustrates the classic generic neuron, modelled after spinal 

motor neurons. 

dendrites 

Ji' 
synapses 

_Qi 

A classic generic neuron. 

Figure 1.1 

Neurons are cells with inputs from the dendrites, named because of their tree 

like appearance. The cell body is called the soma, from which the axon serves 

as a transmission line, sometimes with several branches, to the terminal 

arborization. The special terminals are known as synapses and influence the 

activities of other cells. 

Current neural network theory assumes that the varying synaptic strengths of 

several interconnected neurons are the key to the computations performed. 

Anderson (1995) notes that there is a shortage of practical supporting 

15 



evidence for the theory, except for studies such as those on the eye of the 

horseshoe crab (Limulus polephemus) and the abdominal ganglion of the 

gastropod mollusc (Aplysia californica). 

Axoplasmic flow, in. which enzymes and nutrients are moved towards the 

synapses was demonstrated more than 50 years ago by the simple process of 

constricting the axon and observing bulging on the soma side of the 

constriction. Reverse transmission from synapses to soma has also been 

shown to occur. 

Transmission between cells occurs at the synaptic cleft. The transmissions 

may be electrical or chemical. Invertebrates mainly use electrical synapses, 

whilst in the higher vertebrates the transmission is mainly chemical. 

The special structures of chemical synapses make use of molecules called 

neurotransmitters. These synapses are of special significance to the 

modelling of neural networks since they are the information transmitters. 

Attempts to model neuron behaviour are complicated by the complexity of the 

chemical synapse. The many types differ in ion exchange mechanism, time 

constant, change of strength with activity, and environmental influence. 

The two sides of the synaptic junction are known respectively as pre-synaptic 

and post-synaptic sides. The former relates to the input side that is driven by 

the action potential of its cell, whilst the latter refers to the driven cell. 

Chemical synapses that have been meticulously studied by several 

researchers, according to Anderson, (1995), are those on the spinal motor 

neuron. They have been adopted as classical models for the mathematical 

approximations made for artificial neural networks. 

16 



1.3 Computer models 

Due to the great complexity of the neuron, modelling may take place at many 

levels of understanding. Current computers would be unable to cope with the 

full model complexity of the biological neuron at our present state of 

knowledge. The degree of complexity of the neural network is based on the 

particular purpose it is intended to serve, since an artificial neural network is 

structured from several modelled neurons. 

It may be relevant at this time to contrast conventional computer application 

with its use in neural networks. 

1.3.1 Conventional computer behaviour 

A basic conventional computer model due to von Neumann. 

.__c_P_u _ __,I~ 
Data 

Data and "I Memory 

Instruction 

Figure 1.2 

The activated computer performs the following sequence of events: 

1. Receive an instruction from memory. 

2. Retrieve all data required by the instruction from memory. 

3. Execute the instruction. 

4. Store the outcome in memory. 

5. Go to step 1. 

The algorithm is formulated to consist of a set of simple statements, 

which may be processed to the instructions that the central processor 

unit executes. 

Strings of symbols that obey the rules of some formal system, may be 

interpreted conceptually. The dream for artificial intelligence was that 

all knowledge could be structured to permit symbol manipulation on a 

Von Neumann machine. 
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The following are some essential characteristics of the Von Neumann 

machine for comparison with those of neural networks. 

The algorithm to solve the problem must be found, then the machine 

must be given detailed instructions on the exact sequence of steps 

(computer program) required to perform the algorithm. 

Data is required in a precise format; noisy data upsets the machine 

operation. Hardware degradation occurs when a few key memory 

locations are disrupted. 

Objects being processed, such as words or numbers, correspond to 

memory blocks in the machine hardware. 

A conventional database would not have the capacity to account for the 

diversity of recognition that the human brain can make. 

1.3.2 Artificial neural network behaviour 

The main properties of an artificial neural network are: 

a) Topology, organisation, number of layers and the manner of 

connections (structure). 

b) Learning, the storage of information in the network (behaviour). 

c) Recall, the way in which information is retrieved from the network 

(interpretation). 

The neurons act independently, each one's output depending only on 

the inputs received from the connecting neurons. 

The neuron does not need knowledge of the state of any other neuron 

from which there is no explicit connection. The large number of 

connections provide several redundancies in facilitating a distributed 

representation. 

18 



? 
Simpson (1993)

0 

notes that neural networks are advantageous in three 

primary situations. 

a) When a few decisions are required from large amounts of data such 

as pattern and speech processing. 

b) Where non-linear mappings are to be automatically acquired such 

as loan evaluations and robot control. 

c) Where a quick response is needed to a combinatorial optimization 

problem, as encountered in telecommunication and airline 

scheduling, a near optimal solution is usually provided by the neural 

network. 

1.4 Artificial neural networks 

A definition of a neural network (ANN) might be: 

A set of simple processing elements interconnected in a manner that permits 

modelling, at a user-specified level, of the biological neuron. 

Neural networks develop under the premise that, by modelling the physical 

architecture of the brain, within knowledge and capacity constraints, we may 

emulate its decision capability. This brain metaphor suggests that intelligence 

may emerge through the interconnection of several processing elements, 

each of which performs a simple computation, as a part of the total problem. 

The processing capability of this connected network is dependent on the 

connection strengths (weights), the manner of connections, and the learning 

mode. 

1.5 The role of artificial neural networks 

The artificial neural network's role may be of greatest significance where the 

data to be processed is noisy, in the fields of: 

1) Classification, in which data is categorized. 

2) Association, in which a memorized pattern or object is retrieved 

based on recognition of part of the object. 
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3) Optimization, in which the solution found is thought to be the 

best. 

4) Prediction, in which a future value or values are forecast. 

5) Self-organizing, in which the best selection is found from input 

data through self-learning. 

Activity Network type Potential Application 

Classification Learning vector Any best selection from 

quantization (LVQ) scanned data that may be 

Counterpropagation clustered. 

Probabilistic neural 

networks (PNN) 

Association Hamming Although a form of 

Hopfield classification, these nets 

Boltzmann identify data that is close to the 

Bi-directional associative requirement but contains 

memory (BAM) errors. 

Optimisation Hopfield The travelling salesman 

Boltzmann problem. 

Prediction Back propagation For a given set of inputs the 

General regression neural outputs may be grouped for a 

networks (GRNN) decision such as stock 

Group method data selection by predicted 

handling (GMDH) progress. 

Self Kohonen networks Winner selection from given 

Organization LVQ data or clustering outputs 

Activities and network types 

Table 1.1 

The above table lists the activity, possible network and potential application 

gleaned from numerous sources. It is worth noting that the feed forward 

backpropagation network has been used for most tasks. 
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1.6 Analysis of neural network limitations 

Analytical approaches to the understanding of neural networks are inhibited 

by the variations of connecting pathways between neurons. 

To progress in the understanding of artificial neural networks, it is clear that 

the natural behavioural basis of the nervous system must be simplified. Even 

the most sophisticated modern computers will not cope with the astronomical 

number of calculations required to behave as a biological network in a simple 

organism. 

1. 7 Neuron models 

The processing elements of the neural network are the neurons, which are 

interconnected to form a neural network. 

1. 7 .1 The two state neuron 

The concept of the two-state neuron was introduced by McCulloch, and 

Pitts, (1943). This was an early attempt to model the physiological 

properties of the neuron and its connections, using neural computing 

elements, based on their assumptions of the biological neuron's 

behaviour. 

After describing the all or none characteristics of quiescent or excited 

neurons in higher animals, as well as the synaptic delay between the 

receipt of a stimulus and the resultant output stimulus, Von Neumann 

(1945) explained: "Following W Pitts and W S McCulloch we ignore the 

more complex aspects of neuron functioning. It can easily be seen that 

these simplified neuron functions can be imitated by telegraph relays or 

vacuum tubes". 

The McCulloch-Pitts neuron is of historical value, and not thought to be 

an effective model in the light of modern biological knowledge. The 

following diagram is of a two input, x1, x2 neuron, with threshold 

function e = 1. 
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Output 

A simple McCulloch - Pitts neuron. 

Figure 1.3 

This artificial neuron was constructed under the false assumption that 

the brain functions as a logic and computational device. The inputs are 

the outputs of preceding cells. In the absence of inhibitory synapses 

the cell sums its inputs, if this sum exceeds a threshold value the 

neuron becomes active, else it remains in a passive state. 

The McCulloch-Pitts neuron has been known as a threshold logic unit 

(TLU) where the information is processed as follows: 

Each input signal represents the output of a preceding cell, this signal 

being multiplied by a weight representing the strength of the connection 

(synaptic strength). These weighted signals are now summed to 

produce a total processing element activation. If this activation exceeds 

a certain threshold the unit produces an output response. 

0 u 

Hard limiting threshold function 

Figure 1.4 
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The original McCulloch-Pitts model of the neuron produced this binary 

response (hard limiting function), in which the output was 0 or 1. 

f(u) 

A digital neuron model 

Figure 1.5 

Inputs Xi are the outputs of preceding cells, 

0 

~ 

Weights w1 are the strengths of synaptic connections, 

u = 'Lxiwi is the sum of the weighted inputs,, 

o = output of the threshold function f(u), 

This single unit is capable of simulating the OR function, S = x1 OR x2. 

X1 X2 s 
0 0 0 

1 0 1 

0 1 1 

1 1 1 

A two input OR table. 

Table 1.2 

This artificial neuron behaves as a digital-processing unit in that the 

inputs and outputs are of a binary nature. There is no mention of time, 

the unit being assumed to respond instantaneously to its input whereas 

the biological neuron integrates over time and space. 

The logic function produced for a threshold value (bias) 2 is AND. 
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1.7.2 A non-linear threshold neuron 

If in the McCulloch-Pitts neuron we replace the hard limiter function 

with a non-linear function, we may have a more general neuron that 

can have a discrete output (-1 or 1 ), or a continuous output varying 

between Ymin and Ymax-

If the neuron fires, the output Yi is at a high (active) level, if the neuron 

does not fire it is said to be at the low, (quiescent) level. 

W1 f(u) 

X1 u 

I LXiWi 

X2 

A general two input neuron. 

Figure 1.6 

1.7.3 The generic connectionist neuron 

The generic connectionist neuron. 

Figure 1.7 

Activation 

function 

0 

For inputs Xi and connection weights Wi the initial artificial neuron 

function is to sum the products of inputs Xi and associated weights wi. 
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In the biological neuron, activity at the synaptic cleft may be inhibitory, 

simulated by a negative weight or excitatory, modelled by a positive 

weight, this may be simulated in our artificial neurons. 

Each input to a .neuron has exactly one associated weight, so for the 

above model we may represent the inputs and weights as three­

dimensional vectors x and w. 

3 

Y = I, Xi Wi = DX1 W1 + X2 W2 + X3 W3 0 
i=1 

We are sometimes required to bias (provide a threshold weight e for) 

the summation effect, to achieve a particular result, then to simplify 

later computation we have: 

y = I Xi wi + e which if we consider e = X4 W4 and X4 = 1 whilst W4 is the 

bias quantity then: 

4 

I, Xi Wi = DX1 W1 + X2 W2 + X3 W3 + eo 
1=1 

In general: 

n+1 
I, Xi Wi = OX1 W1 + X2 W2+ ....... + Xn Wn + 80 

i=1 
where 8 = Xn+1 Wn+1 and Xn+1 = 1 whilst Wn+1 is the bias quantity. 

An appropriate activation function interprets the sum of these products 

to an output or no output state, dependent on the sum achieving a 

threshold level. 

1.8 Activation functions 

Activation levels of neurons can be discrete or continuous. Discrete examples 

which are used to classify inputs into two categories are the symmetric hard 

limiting function illustrated in (Figure 1.8), (or the hard limiting function O or 1 ). 



1 

-1 

Figure 1.8 

1 for y > O 

f(y) = previous state for y = 0 

-1fory<0 

Where y = 2:1=1 Xi wi. 

1.8.1 Continuous examples 

The common continuous examples are the linear, saturating linear, 

symmetrical linear, sigmoid and hyperbolic tangent, (tanh) functions. 

(1) The linear transfer function has an output that is equal to its 

input. f(y) = y (Figure 1.9a). 

0 for y < 0 

The saturating linear function (Figure 1.9b) f(y) = y for O<y<1 

1 fory>1 

Figure 1.9a Figure 1.9b 

(2) f(y) = a + by (Figure 1.10) 

-1 for y < -1 

The symmetrical linear function f(y) = y for -1 <y<1 

1 for y >1 
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Figure 1.10 

(3) A Sigmoid function typically f(y) = 1/(1 + e-Y) where the function 

f(y) ranges from 0 to 1, as y ranges from -oo to oo.(Figure 1.11) 

---/ 
/ I 

/ 
/ 

I 
/ 

/ 
I v I 

---- I 

A sigmoid function 

Figure 1.11 

The function is valuable in backpropagation because of it's simple 

derivative. 

(4) f(y) = tanh(y) = 1 - e-Y 

1 + e-Y 

where f(y) ranges from -1 to 1 , as y ranges from -oo to oo. This is also 

of sigmoid form. 



/ 
I 

I 
I 
I 

I 

t 
I 

J 
v 

A tanh (y) function 

Figure 1.12 

1.9 Single neuron computation 

Consider the two input neuron, Figure 1 .4, the primary activity is to sum the 

weighted inputs. For given inputs from preceding cells, with weights 

representative of connection strengths, this summation results in a net 

stimulus in which the relative strength of individual weighted inputs is lost. 

A secondary step converts the net stimulus to an activation level for the 

neuron, through the activation function. The tertiary step relates the 

relationship of the activation level to the threshold into an output. If the inputs 

are both 1 and the respective weights are 0.3 and 0.25 with a sigmoid 

activation function, with threshold 0.5 then the output will be 1 if the activation 

level equals or exceeds the threshold value, else output 0. 

Step 1. 

Step 2. 

Step 3 

1 x 0.3 + 1 x 0.25 = 0.55 

0 = 1/(1 + e-0·55
) = 0.6341 

Since 0.6341 > 0.5, output is 1. 



1.10 Requirements for a practical circuit 

To achieve a practical neural network some form of sensory detector will 

transmit a suitable signal(s), as an input to one or more artificial neurons. The 

chosen network will process the signals through it's structure to produce an 

output(s). When comparisons are made between output(s) and expected 

output(s), the circuit may be self-moderating to move closer to the desired 

result(s). 

There are many different networks in use for a wide variety of practical 

applications varying through such diverse fields as drug detection sniffers to 

weather forecasting. 

Recent documentation suggests an exciting prospect of neuron modulation by 

nitric oxide, to more closely simulate synaptic activity in the human brain. 

(Davidson, C.1998) (See chapter 9 on recent advances) 

29 



References 

[1] Anderson, J. An Introduction to Neural Networks pp.7-14 (1995). 

[2] Davidson, C. Gas on the Brain. New Scientist. 3rd October (1998). 

[3] DARPA (Defence Advanced Research Projects Agency) (1996). 

[4] Feigenbaum, E. A The art of artificial intelligence: Themes and case 

studies of knowledge engineering. Proceedings of IJCAl-77 1014-1029 

(1977). 

[5] Gilling, D. & Brightwell, R. The Human Brain pp 17-18 (1982). 

[6] Giarratano, J & Riley, G. Expert Systems pp 8-9 (1994). 

[7] Li Min Fu, Neural Networks in Computer Intelligence. (1994). 

[8] Maier, J. & Sherif, Y.S. Applications of fuzzy set theory. IEE 

Transactions on Systems, Man and Cybernetics (1985). 

[9] Minsky, M. & Papert, S. Perceptrons. Cambridge Ma. MIT Press 

(1969). 

[1 O] McCulloch, W. & Pitts, W. A logical calculus of the ideas imminent in 

nervous activity. Bulletin of Mathematical Biophysics, 5 pp.115-

133.(1943). 

[11] Newell, A., Shaw, J. C. & Simon, H. A Empirical exploration with the 

logic theory machine: A case study in heuristics. Computers and 

thought, McGraw-Hill, New York.(1963). 

30 



[12] Newell, A, and Simon, H. A Computer science as empirical enquiry: 

Symbols and search. Communications of the ACM, 19 (3), pp.113-

126.(1976). 

[13] Whitehead, AN. & Russell, 8. Principia Mathematica 2nd edition 

Cambridge University Press. (1950). 

[14] Zadeh, L. A Fuzzy sets. Information and Control 8 pp.338-353 (1993). 

31 



Chapter 2. 

NEURAL NETWORKS STRUCTURES 

Summary. 

This chapter describes in depth artificial neural network properties and the 

basic construction of networks. lnstars and outstars are described as useful 

elements in many networks. The broad classifications of feedforward and 

feedback networks are illustrated and a simplified diagram method is 

introduced. 

The concepts of training a network and its learning abilities are illustrated. 

2.1 Artificial neural network properties 

The networks are a limited model of the biological brain, with each artificial 

neuron attempting a small partial solution, for a sensory perception problem. 

The neural network is made up of many simple processing elements called 

artificial neurons. They are interconnected by direct links that act to perform 

parallel distributed processing, so that a given computational task may be 

solved. 

Human beings are estimated to function with 10 billion or more neurons, 

differing in their structure dependent on the function they perform. The 

simulation of a small part of these functions is currently being attempted with 

at most a few thousand artificial neurons. 

Artificial neural networks generally share the following features: 

(1) Information processing and memory are distributed among the 

structure creating difficulty in dividing the structure into hardware 

and software. (Networks are trained not programmed). 
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(2) The high level of interconnection is in a form such that the state of 

an artificial neuron affects the potential of others to which it is 

connected in relation to the strengths (weights) of the connections. 

(3) The connection weights, which are a comparable to the real 

neuron synaptic strength, are usually adaptive. Adaptation may 

occur anywhere within the connection, weight adjustment is by 

some algorithm, the result being distributed memory within the 

network. 

(4) The artificial neurons, now called neurons, contain typically non­

linear activation functions. The output of a particular neuron is a 

non-linear function of the input signals of the other fired neurons. 

Neural networks often have elements with high variability that are not reliable. 

The highly redundant distributed structure renders the network insensitive to 

parameter variation (input noise) over a wide range, it is also relatively 

unaffected by individual element failure. 

The total information of the network is distributed among the many artificial 

neurons, so that the losses of a few processing elements, or alteration to 

connections, cause relatively slight performance loss. Computer programmed 

systems are made unreliable by small amounts of memory failure, by contrast 

neural networks are robust. 

Increasing degradation in a network depletes performance but does not cause 

sudden termination. The robust character gives an advantage to neural 

networks where complete failure is a critical hazard, whilst reduced 

performance is major in that it permits some recovery time. In the operation of 

nuclear plant, a changed pattern of behaviour, with regard to the many inputs 

of pressure, temperature, fuel element displacement, coolant flow and 

radiation levels, would still trigger a response in the absence of a few network 

elements. 



In multi-layer networks the activation function must be non-linear, or its 

computational capability will be equivalent to that of a single layer network. 

I.e. it cannot learn non-linear mappings. 

Suppose a linear activation function is used in a two layer network, input 

vector x, layer matrices Wa and Wb, then the output would be (xWa)Wb . Since 

matrix multiplication is associative we may write x(WaWb) which is the 

equivalent of a single layer with weight matrix We= WaWb. 

2.2 Building the network 

The fundamental tasks of network construction are: 

a) The determination of the neural framework, and the pattern of 

connections. 

b) The activation functions and range for the neurons. 

c) The system dynamics in terms of initial weighting, momentum 

and learning rule. 

2.2.1 The framework 

The structure is by the number of layers, and the neurons per layer, a 

group of neurons within a layer is referred to in some commercial 

programmes as a slab. Typically there is an input layer, one or more 

hidden layers and an output layer. 

The input layer neurons function as distributors to other neurons. The 

hidden layer provides the network non-linearities; the output layer 

presents the classified result, which may be used for comparison to an 

expected result. The network can be feedforward, or recurrent, with 

connections between neurons being symmetric or asymmetric. 

Connection types: 

Interlayer between neurons in different layers 

lntralayer connections between neurons in the same layer 
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Self-connection from a neuron to itself 

Supralayer connection is between neurons in non-adjacent layers. 

Jump connections each layer is connected to all other layers. 

2.2.2 lnstars and Outstars 

lnstars and outstars were tile Grossberg (1974) models for certain 

biological functions, they have been interconnected to form many 

complex networks. 

Their description arises from the original form of representation. 

\ I 
lnstar Outstar 

Figure 2.1 

An instar is a pattern recognition device that is trained to respond to a 

specific input vector x, it does not respond to any other vector. In 

training, weights are adjusted to yield likeness to the input vector. 

For inputs Xi and connecting weights Withe output is 2.:xi Wi from which 

the neuron output responds strongly to the input for which it was 

trained. 

Wasserman (1989) describes the instar and outstar performance in the 

following manner. 
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lnstar training modifies individual weights Wi at time t+1 from the state 

at time t according to the formula: Wi (t + 1) = Wi (t) + a(Xi - Wi (t)), a is 

the training coefficient, starting at some small value about 0.1 and 

reducing as training progresses. The instar is triggered in response to a 

specific input pattern. 

The outstar has a complementary function to the instar in that, when 

triggered, it transmits a desired excitation pattern to other neurons. 

Outstar training modifies individual weights Wi at time t+1 from the state 

at time t according to the formula: wi (t + 1) = Wi (t) + j3(yi - Wi (t)), j3 is 

the training coefficient, starting at value near 1 and reducing to zero as 

training progresses. 

2.3 Classification of Neural Networks 

Artificial neuron connection sets are called architecture or circuit structures, 

the two major types being: 

2.3.1 Feed forward (multi-layer) networks 

Networks in which each neuron receives inputs from other neurons or 

from external inputs, all connections are forward, there are no reverse 

(feedback) connections. 

Input Hidden Output 

A feedforward network. 

Figure 2.2 
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A simplified block diagram of the feedforward network shows the 

unidirectional nature of the layers. 

Input 

Vector 

Weight 

Matrix Threshold 

functions 

A feedforward network block diagram. 

Figure 2.3 

Output 

The input layer is a distributive vector, its weighted inputs matrix being 

summed and by application of the transfer functions resulting in the output 

pattern from the hidden layer. Where there are two or more hidden layers their 

inputs are the outputs of the preceding layer. 

2.3.2 Feedback (recurrent) networks 

Networks that have dynamic processing units in the form of integrators, 

or unit delays, that feedback to preceding summation units. 

Input Hidden Output 

A recurrent (feedback) network. 

Figure 2.4 
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A block diagram of a recurrent network. 

Figure 2.5 

2.3.3 The delay unit 

For units in which time events occur in discrete steps, this unit may be 

used to delay the feedback signal that modifies the weights. The delay 

function causes the output to lag the input by one time unit. 

a(t) = u(t-1) 

~~ a(t) 

.; 
a(O) 

Figure 2.6 

The outputs initial condition is t = 0 as indicated by the a(O) condition. 

2.3.4 The integrator 

The integrator in continuous time recurrent n·etworks has an output that 

is dependent on its initial state, the input signal strength and the signal 

application time. 

Input u(t) 

Initial state a(o), 

~o~t) 

i 
a(t) = Jo u(t) + a(O). 

Figure 2.7 
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2.4 Architecture selection 

The problem specification, as stated by Hagan, Demuth, Beale, (1996), 

guides the network determination by: 

Problem inputs = network inputs, 

problem outputs = network outputs. 

The transfer function selection may be partially guided by the output required. 

2.5 Training and learning 

Training is the application of a series of patterns at the input to the artificial 

neural network. Learning is the neural network ability to resolve those 

patterns. I.e. the internal activities that produce the end result of the training. 

2.5.1 Learning 

Adjustment of the interconnection weights between layers is the 

mechanism by which learning occurs. As a network result is produced 

it is compared with the expected result, and the connecting weights are 

adjusted towards the expected results. If learning is possible in finite 

time, a set of weights emerge that will produce acceptable responses 

for sample decisions or predictions. 

The cycles of training are extremely important, since too little training 

does not permit the network to learn the patterns. Too much training 

results in the network learning noise or memorizing the training 

patterns with consequent inability to generalize well with new patterns. 

2.5.2 Supervised learning 

This requires a set of input patterns and the expected output patterns. 

Supervised networks build models, which classify patterns, make 

predictions, or make decisions. The results are in accord with other 

patterns of inputs and outputs they have "learned." They give the 

neural networks deduced answer based upon the variety of learned 

patterns. 



In a supervised network, you show the network how to make 

predictions, classifications, or decisions by giving it a large number of 

correct classifications or predictions from which it can learn. The 

historical data of relative success will provide output patterns. 

There are many supervised network types such as backpropagation, 

general regression neural network (GRNN), and probabilistic neural 

network (PNN). 

2.5.3 Unsupervised learning 

Sets of training patterns are provided, but no target is given, or forward 

path is provided, the network determines it's own output. 

Unsupervised networks can classify a set of training patterns into a 

specified number of categories without being shown in advance how to 

categorize. The network does this by clustering patterns; it clusters 

them by their proximity in n dimensional space where n is the number 

of inputs. The user tells the network the maximum number of 

categories and it usually clusters the data into that number of 

categories. Occasionally the network may not be able to separate the 

patterns into that many distinct categories. 

Kohonen networks are unsupervised. Kohonen networks in some 

proprietary networks (e.g. Neuroshell 2 Ward systems group, inc.) the 

winning neuron is set to 1, all others 0, or we may take the option of 

actual neuron values which will provide a neuron ranking. Pattern feed 

options are the may be in rotation, or random. The relative clustering 

distance may be Euclidean or normalized. 

Euclidean distance, used in this analysis, is the square of the distance 

between pattern and weight vector per neuron. The winning neuron is 

selected as the one with minimum activation. 
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No type of network is guaranteed to always give an absolutely "correct" 

answer, especially if patterns are in some way incomplete or 

conflicting. Results should be evaluated in terms of the percentage of 

correct answers that result from the model. In this regard, the 

technology is similar to biological neural functioning after which it was 

designed, and differs significantly from all other conventional computer 

software. 

Neural networks may not work at all with some applications. Some 

problems are well suited for the pattern recognition capabilities of a 

neural network and others are best solved with more traditional 

methods. 

2.6 Layer designation 

A single layer network is one in which there are only input and output layers, 

since the input vector is distributive only it is not counted in this study. (Some 

texts designate the inputs as a layer). 

A network having an input vector, two hidden layers and an output layer, 

would be conventionally designated a three layer network. 
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Examples 

Q1. What do you perceive as the potential difficulties in the simulation of human 

intelligence by the use of artificial neural networks? 

A 1 The first and most important factor is the current level of understanding of 

human intelligence. Simulation of a process depends primarily on the 

understanding of that process. Gaseous, chemical and electrical effects and 

their interfaces are still the subject of much study. 

The second factor is the limitation of scale, in that the human brain is 

estimated to operate with 1011 neurons whilst the most sophisticated artificial 

neural networks operate with a few thousand neurons. 

A third factor is the diversity of connections in the biological neuron, the 

connections being inhibitory or excitatory. Their strength being dependent on 

their usage. 

Q2. When a network has been structured, explain the differences between 

supervised and unsupervised learning? 

A2 For supervised learning the network is given a set of answers that are the 

expected results, A comparison is made between expectation and actual 

outputs. In a typical classification problem the network may be trained by 

being given a series of scripted letters to be correctly identified as the 

appropriate member of the alphabet. The success of the network is ability to 

classify correctly units not used for training. 

The unsupervised network is not given expected results, its learning is not 

defined in terms of particular correct examples. In a Kohonen network the 

number of outputs describes the expected clusters. The network decides 

which is the correct group for a given vector of inputs. 
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Q3 The following input-weight pairs relate to the connectionist neuron shown in 

figure 1.7, 

(0.1, -0.5); (0.6, -0.3); (0.4, 2.4) 

If a bias of 0.5 is decided, determine the output of this neuron for activation 

function: 

y = f(u) = 1/(1 + e-u) where u = L.xiwi +bias 

A3 u = (0.1 )(-0.5) + (0.6)(-0.3) + (0.4)(2.4) + 0.5 = 1.23 

y = f(u) = 1/(1 + e-1
·
23

) = 0.77382. 

Q4 What would be the effect for question three if a bias weight of -0. 7 was given? 

u = (0.1 )(-0.5) + (0.6)(-0.3) + (0.4)(2.4) - 0.7 = 0.03 

y = f(u) = 1/(1 + e-0.03
) = 0.5075. 

QS A neuron has inputs (x1. x 2) = (2, 3), with weights (w1, w2)T = (-4, 2) and bias 

0.8, determine the output for: 

a) A linear function 

b) A symmetrical hard limit function 

c) A log sigmoid function 

d) A hyperbolic tangent function 

AS a) u = 2(-4) + 3(2) + 0.8 = -1.2 

y = f(-1.2) = -1.2 

y=f(-1.2)=-1 

y = f(u) = 1/(1 + e+1
·
2>) = 0.2315. 

y = f(u) = (e(-12> - e+1·2>)/( e(-1-2> + e+1·2>) = -0.8336. 

Q6 Herbert Simon (1983), made the following statement about machine learning: 

"Learning denotes changes in the system that are adaptive in the sense that they 

enable the system to do the same task, or tasks drawn from the same · 

population, more efficiently and more effectively the next time". 

Comment on the above statement in the context of artificial neural networks. 
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A6 From the input pattern set provided the artificial neural network learns, so that 

it may classify future unseen data. The learning usually takes place over 

several epochs. The network may be trained to a state in which the 

recognition is within an expected error. Over training may result in pattern 

memorizing that reduces the network capacity to classify previously unseen 

data, Herbert Simon has not introduced this aspect of learning. 

In general a plot of error against training epochs in a supervised network 

shows the following behavioural pattern. 

,_ 
0 ,_ ,_ 

LI.I 

Training epochs 

The following question is similar to a question in Hagan, Demuth and Beale (1996). 

Q7 A single layer neural network has 5 inputs and 3 outputs, which are 

continuous in the range (0, 1 ). Answer the following questions about the 

network architecture: 

a) How many neurons are required? 

b) What are the dimensions of the weight matrix W? 

c) What would be the output Wx? 

d) What transfer function would you select? 

e) Would a bias be required? 
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A7 a) Three neurons would be required, one per output. 

The three neurons would each require one matrix row, whilst each input 

would need a matrix column. The weight matrix has three rows and 5 

columns. 

Wx is a three element vector. 

A log sigmoid function is suggested because of the continuity requirement in 

the range O to 1 . 

Additional information would be required to determine the need for a bias. 
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Chapter 3. 

BASIC LINEAR NETWORKS 

Summary 

The basic building blocks of most modern networks, the perceptron and 

adaline are introduced. They are only capable of solving linearly separable 

classification problems. The perceptron has a further severe limitation, in that 

it's potential weights increase is unbounded. The perceptron, Hebbian and 

Widrow-Hoff learning rules associated with these networks are explained. 

3.1 The single neuron perceptron and linear separation 

X1 

W1 

LXjWj 
Hard y 

limiting 

X2 
Wz 

A single neuron perceptron. 

Figure 3.1 

The output y for the simple network in Figure 3.1 is given by y = f(wrx + b) 

with the decision boundary being given by wrx+ b = 0. Above the boundary 

y = 1. On, or below the boundary y = 0. 

For any point on the boundary line, the inner product of the input and weight 

vectors is constant, hence input vector x is orthogonal to the given weight 

vector w. 
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Vectors above the boundary line have an inner product wT x > b, whilst those 

below the line have an inner product w T x < b. 

For a given weight vector wand input vector x, the bias may be calculated 

from wT x + b = 0, using values from the decision boundary line. 

Example 

Suppose we have x T = (x1, x2), wT = (1, 1) and b = -1 then the decision 

boundary is x1 + x2 - 1 = 0 as shown in Figure 3.2. 

1 

0 

Figure 3.2 

The region to the right of the line will give y = 1, to the left or on the line y = 0. 

Neural networks built of perceptrons were the first to interest researchers in 

the possibilities of a true learning machine, and from it several complex 

learning networks have evolved. 

Definition: 

Linear separation occurs when a hyper-plane provides the decision surface 

that separates two pattern classes. 

Suppose we have two pattern classes, Rosenblatt (1958) showed the ability 

of the perceptron to be able to learn to separate given patterns into the two 

classes. For linear separation it is possible to give rules for changing the 

connection strengths so that, in finite time, a set of weights are arrived at that 

will correctly classify the patterns. 
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3.1.1 Selection of weights and bias 

Hagan, Demuth and Beale (1996) have given a method of deciding 

suitable weights and bias values for the single-neuron perceptron. For 

a chosen decision boundary they state that the weight vector will be 

orthogonal to the weight boundary. It must point to the class to have 

the value 1. 

First the points are drawn on a suitable grid. A line is drawn that 

separates two classes. Class a is shown as light circles of value 1. 

Class b is shown as dark circles of value 0. The class point locations 

are shown in Figure 3.3a. The arrow representing the weight vector 

may be of any length. In Figure 3.3a weight vector wr = (3, 2) is given 

as one of a set of choices. 

Figure 3.3a Figure 3.3b 

To determine the bias we pick a point on the decision boundary. We 

then use the equation wrx + b = 0, whence b = -wrx. The values of x 

are given by the relationship of the point on the decision boundary to 

the weight vector start 

In Figure 3.3a, x = 0, then b = - (3, 2) 0 = 0 

0 

In Figure 3.3b, x = 2 , then b = (-3, 3) 2 = -3 

1 1 
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The results may be checked for each class point. 

For dark point -2 and a hard limiting activation function, 

2 

f(wTx + b) = f((3, 2) -2 - 0) = f(-2) = 0, 

2 

For light point 4 and a hard limiting activation function, 

2 

f(wTx + b) = f((3, 2) 4 - 0) = f(16) = 1, 

2 

3.1.2 A training algorithm 

We have two pattern classes a and b, and we have samples 

representative of each class. We shall submit these samples 

sequentially to the perceptron. As the supervisor we know the correct 

response for each pattern submitted. 

If the system makes a correct response nothing is done. If it gives an 

incorrect response we modify the weights. If the output is 1 when it 

should be -1, we decrease the weights. If it is -1 when it should be 1, 

we increase the weights. 

The concept of· training a perceptron to classify patterns can be 

illustrated graphically by the example following the training algorithm. 

This simple training algorithm (based on the work of Rosenblatt 1958) 

forms a new vector of connection weights from the old weights vector, 

based on the response to the training pattern, correctness of response 

and the input vector. 

To start, all network weights are randomized and the bias b is set. 

When no starting values are given, it is recommended that the weights 

are set to small random values. 
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Procedure 

1) Initialize connection weights. 

2) Apply the input pattern (training vector x). 

3) Compute the perceptron output f(wrx + b). 

The response level of output 0 is given by: 

0 = f(wrx + b) 

where b = bias, f is the hard limiting function. 

1 [ 0 (can also be -1 ) for w r x + b ::;; O 

4) Compare the actual output with the expected output 

5) Compute new weights using the following table 

Wn+1 = Wn + ex where Wn+1 is the new weight vector, 

Wn is the previous weight vector . 

Actual Expected 

Output output 

1 1 

1 -1 

-1 -1 

-1 1 

Weight constant table 

Table 3 

c 

0 

-1 

0 

1 

6) Repeat from (2) for the complete pattern set. 

Example 

Suppose we have a series of points capable of representation in two classes 

a and b. We use the perceptron to classify them by assigning the value 1 to 
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points in the a class and -1 to the points in the b class. The hard limiting 

function ( -1 and 1) with bias b = 0 is used. 

Initial weight vector: 

W = (W1, W2) = (0.4, 0.2) 

Training sets a1 = (-0.5, 0.6); a2 = (0.3, 0.3); 

b1 = (-0.3, -0.4); b2 = (0.7, 0.2); 

I a1 =(-0.5. 0.6) 1~ I a2=(0.3, 0.3) 

/ --1 br(0.7. 0.2) 1 

/' 
I b1= (-0.3, -o.4) I 

Figure 3.4 

The original points are plotted in the above diagram: 

Apply the training pattern a1= (-0.5, 0.6) 

WTX + b = (0.4)(-0.5) + (0.2)(0.6) + 0 = -0.08. 

f(-0.08) = -1, expected +1. 

Wn+1 = Wn + 1 (input pattern vector). 

Add corresponding components 

W1 = 0.4 + (-0.5) = -0.1 

W2 = 0.2 + 0.6 = 0.8. 

Apply the next pattern 

b1 = (-0.3, -0.4) 

0 = WTX = (-0.1)(-0.3) + (0.8)(-0.4) = -0.29 

f(-0.29) = -1. 



Since pattern b1 response should be -1, 

Wn+1 = Wn + O(input pattern vector). 

(w1, w2) unchanged. 

Apply the next pattern a2 = (0.3, 0.3) 

WTX - b = (-0.1 )(0.3)+ (0.8)(0.3) = 0.21 

f(0.21) = + 1. 

Since pattern a2 response should be +1, 

Wn+1 = Wn + O(input pattern vector). 

(w1, w2) unchanged. 

Submit pattern b2 (0.7, 0.2) 

WTX - b = (-0.1)(0.7) + (0.8)(0.2) = 0.09. 

f(0.09) = + 1 

Since pattern b2 response should be -1, 

Wn+1 = Wn - 1 (input pattern vector). 

W1 = (-0.1)- (0.7) = -0.8 

W1 = 0.8 - 0.2 = 0.6. 

3.1.3 Logic functions by perceptron (linear separation). 

a 

0 

1 

0 

1 

Consider the logic OR function: S = a OR b. 

B s 
0 0 

0 1 

1 1 

1 1 

t 
b 

1 

0 

0 

Logic OR 

Figure 3.5 

a 1 

The dotted line is one of many that could be used to separate 0 and 1. 
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7 

B c D E F G H I 

A perceptron program to pertorm the logic OR function 

A hard limit function is used 

Inputs Connection weights Product Summation Hard limit function 

1 0.5 B6*C6 

1 0.5 B7*C7 E6+E7 IF(G7<0.5,"0","1 ") 

A logic OR formula spreadsheet. 

Table 3.2 

The Excel spreadsheet gives the following output if formulae are 

preceded by an equals sign(=). 

B c D E F G H I 

~ perceptron program to perform the logic OR function 

A hard limit function is used 

Inputs Connection weights Product Summation Hard limit function 

1 0.5 0.5 

1 0.5 0.5 1 1 

A logic OR calculations spreadsheet. 

Table 3.3 

For binary inputs in 86 and 87, 17 gives the OR result. 

Simple spreadsheet perceptrons, like the above model, may be used to 

model the logic functions: OR, NOR, AND, NANO. 
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Each neuron may be used to produce a straight line. When two or 

more neurons form a network layer, the regions between the straight 

lines will be convex. Any convex region can be described by a (large 

enough )set of straight lines. By definition a convex region is one in 

which any two points within the region may be joined by a straight line 

that does not leave the region. The region may be open or closed, a 

closed region being completely bounded. (see Figure 3.5). 

Convex open Convex closed 

Convex regions 

Figure 3.6 

3.1.4 Delta rule training for linear separation 

This is a generalization of the perceptron training algorithm of 

Rosenblatt (1958) that extends the technique to continuous inputs and 

outputs. In perceptron training, sets of inputs are provided, the weights 

being adjusted until the required output, or an output within the 

permitted error is achieved. The procedure is repeated for a set of 

inputs, which may be submitted sequentially or in a random manner. 

The delta rule applied for single layer perceptron weight adjustment, is 

a simple rule for learning that will converge to a solution in a finite 

number of steps regardless of the initial choice of weights. The 

knowledge that a result will be achieved in a finite number of steps is 

offset by not knowing how many steps. 

The delta algorithm for weight adjustment is: 

LlWji = 11Sxj. 



Example 

Where .Liwii is the change in the weight of Xi as used by neuron j, 

11 is the learning rate (0 < 11 < 1 ), 

8 is the difference between target T and output value 0 and Xi is the 

input value. 

Output is given by 0 = f(wT x + b) where b = bias for neuron j and f is 

the hard limiting function. 

O>O 

otherwise. 

Weight adjustment Wn+1 = Wn + 118x. 

A single layer perceptron as shown in Figure 2.1 has a learning rate 0.35; 

inputs x1 = 1; x2 = 1; initially chosen weights are w1 = -4 (inhibitory); w2 = 3 

(stimulatory) and the bias b = 1. 

If the target value is T = 1then0 = f((-4)(1) + (3)(1) -1) = f(-2) = 0, 

8=1-0=1, 

W3,1 = -4 + (0.35)(1 )(1) = -3.65, 

W3,2 = 3 + (0.35)(1 )(1) = 3.35. 

2nd output with corrected weights, 

0 = f((-3.65)(1) + (3.35)(1) -1) = f(-1.3) = 0, 

8=1-0=1, 

W3,1 = -3.65 + (0.35)(1 )(1) = -3.3, 

W3,2= 3.35 + (0.35)(1)(1) = 3.7. 

3rd output with corrected weights, 

0 = f((-3.3)(1) + (3.7)(1)-1) = f(-0.6) = 0, 

8=1-0=1, 

'N-3,1 = -3.3 + (0.35)(1 )(1) = -2.95, 

W3,2 = 3.7 + (0.35)(1 )(1) = 4.05. 
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6 
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12 

13 

14 

15 

16 

4th output with corrected weights, 

0 = f((-2.95)( 1) + (4.05)(1)-1) = f(0.1) = 1, 

0 = 1 - 1 = 0, 

W:3,1 = -2.95 + (0.35)(0)(1) = -2.95, 

W3,2 = 4.05 + (0.35)(0)(1) = 4.05. 

The first spreadsheet abstract shows the weight updating formulae 

used in Excel. The preceding equals sign (=)has been omitted so that 

formulae may be shown. 

The second spreadsheet shows the results that confirm the previous 

calculations. 

A 8 c D E F G 

Delta rule application 

A hard limit function is used 

Inputs Weights Product Function 8 a Delta rule 

1 -4 A6*86 1-D7 0.35 86+E6*F6*A6 

1 3A7*87 IF((C8-1 )>0,"1 ", "O") 87+E6*F6*A7 

SUM(C6:C7) 

1G6 A9*89 1-D10 0.35 89+E9*F9*A9 

1G7 A10*810 IF((C11-1 )>0,"1 ", "O") 810+E9*F9*A10 

SUM(C9:C10) 

1G9 A12*812 1-D13 0.35 812+E12*F12*A 12 

1 G10 A13*813 IF((C14-1 )>O, "1 ","O") 813+E12*F12*A 13 

SUM(C12:C13) 

1G12 A15*815 1-D16 0.35 815+E15*F15*A15 

1 G13 A16*816 IF((C17-1)>0,"1 ","0") 816+E15*F15*A16 

SUM(C15:C16) 

A formula spreadsheet for updating weights. 

Table 3.4 
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A B c D E F G 

1 Delta rule application 

2 

3 ~ hard limit function is used 

4 

5 Inputs Weights Product Function 8 a. Delta rule 

6 1 -4 -4 1 0.35 -3.65 

7 1 3 30 3.35 

8 -1 

9 1 -3.65 -3.65 1 0.35 -3.3 

10 1 3.35 3.350 3.7 

11 -0.3 

12 1 -3.3 -3.3 1 0.35 -2.95 

13 1 3.7 3.70 4.05 

14 0.4 

15 1 -2.95 -2.95 0 0.35 -2.95 

16 1 4.05 4.051 4.05 

1.1 

Spreadsheet confirmation of example results. 

Table 3.5 

Example 

This example is based on an idea from Wasserman (1989). A simple 5 row x 

4-column grid of light transmitters may be constructed, so that the lit squares 

are seen as one of the numbers O to 9. We need to train a perceptron to 

recognise even number patterns by yielding output 1, odd patterns giving no 

output. 

Picture the lit squares in the following diagram to see the figure 8. 
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0 1 1 0 

1 0 0 1 

0 1 1 0 

1 0 0 1 

0 1 1 0 

A grid to display 8. 

Table 3.6 

The diagrammatic arrangement is shown below. 

1 or O 

Number grid signals. 

Figure 3.7 

A lit square feeds the corresponding neuron an input of 1; otherwise, that 

neuron has input 0. Reading by row, left to right, the number 8 would be 

coded 0110 1001 0110 1001 0110 giving the perceptron response as 1. 

With ·the appropriate summation of inputs multiplied by weights and bias 

added the correct response should be given. The correct weights are 

determined from a delta rule training algorithm. 

A global training method over a complete number set would be used. 
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In practice the training process starts with all of the weights initialized to small 

random numbers. This protects the network against saturation by large values 

of the weights, and prevents certain other training pathologies. For example, if 

the desired performance is attained by unequal values of the weights and 

weights start at equal values, the network will not learn. 

Note that a computer program would be more effective for this type of 

problem since it would be easy to store all binary patterns and their correct 

responses. 

A similar technique could be used to represent the letters of the alphabet, or 

perhaps another set of ones and zeros that could be used to produce an 

output pattern. If one wished to train the network to recognize all the letters of 

the alphabet, 26 training vectors would be required. 

3.1.5 "n" layer networks 

The use of more than one layer in a network permits the linear 

separation of more than two classes. In an "n" layer network, selection 

of appropriate weights and activation functions can define convex 

regions. 

We may examine a two-layer network in which two neurons in the first 

. layer (hidden layer) feed a single neuron in the second layer (output 

layer), as shown in Figure 3.8. 

1st layer 2"d layer 

A two-layer network. 

Figure 3.8 

60 



Suppose for the output neuron (0) the connection weights from the 

hidden neurons (H1, H2) are (0.5, 0.5) with a hard limiting function. The 

output neuron bias activation is at 0. 75. for output 1. The hidden 

neurons would need to satisfy; 

(Y1 )(0.5) + (Y2)(0.5) > 0. 75, where (Y1, Y2) are the outputs of (H1, H2), 

with Y1 = f(x1 W11 + X2W21) + b1 and 

Y2 = f(X1 W12. + X2 W22) + b2, 

Therefore f(x1 w11 + x2w21 + b1) = 1 and f(x1 w12. + x2 w22 + b2) = 1 

(Since f is a hard limiting function). 

Therefore x1 w11 + X2 W21 + b1 > 0 and x1 W12. + X2 w22 + b2 > 0 where 

b1 and b2 are biases for the hidden neurons. 

Each neuron in the hidden layer will produce a straight line, the output 

neuron providing an AND function. 

Suppose the first hidden neuron subdivided the xy plane to give 1 to 

the right of the line. Suppose the second hidden neuron gave 1 to the 

left of the line. (See Figure 3.8). A typical open convex region would be 

formed as the output neuron gives the logic AND function. 

i 
y 

x ... 

An open convex region. 

Figure 3.9 
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3.2 The adaline 

The adaptive linear element (adaline) was developed by Widrow (1959). It has 

found practical applications in filters, telecommunications, and adaptive 

antennas (Widrow and Winter 1988). 

To see the adaline in perspective it is useful to contrast it with its predecessor 

the perceptron. It differs from the perceptron in that the perceptron feedback 

is only for correctness of classification whilst the adaline continuously 

measures the error and progressively acts to minimize it. 

The perceptron learns only from wrong answers, the adaline learns 

continuously. The perceptron changes its weights in response to the truth of 

its last classification. The learning process may take a long time to converge 

to a set of weights that classify correctly. A perceptron's set of weights that 

satisfy pattern requirements is rarely unique and may not be optimal. In 

contrast the adaline learns with speed and accuracy. 

Initially the adaline was fed an input pattern, from which it produced a 

corresponding output classification. Early work assumed binary inputs O or 1 

and output values of 1 or - 1. 

Bias 

An adaline neuron. 

Figure 3.10 
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The adaline determines interconnecting weights that minimize the error 

between the output and the expected output. The method used to achieve this 

·~ is the Widrow-Hoff rule, which is a least mean square (LMS) application. The 

rule differs from the delta rule in the manner of error calculation for updating 

the weights. 

For a single neuron the inner product between the input vector and the related 

set of synaptic weights is computed. Computation is simplified if a bias weight 

is added, as explained in section 1.2.3. The output of the sum stage feeds the 

hard limiting activation function with output states, + 1 and - I, decision point 0. 

If at the sum stage the yield is positive output is 1 if not the output is - 1 . The 

difference between the adaline and the perceptron is that the supervisor has 

access to the output of the sum stage and to the final classification. 

The perceptron gives the output state, + 1 or -1, from which the perceptron 

learns only correctness of the final state. The internal state of the computing 

unit is not known. If the output of the summation stage was available, a 

supervisor could compute the error signal between the expected output and 

the computed output. This technique may yield a non-zero error, even when 

correct classification is achieved. Changes of weights may continue with 

correct classification, because the output of the sum stage, the inner product, 

is rarely exactly + 1 or - I. 

3.2.1 Widrow-Hoff (LMS learning rule): 

L'.l Wji = a.8xi where 8i = Yi - w T x 

The rule application 

For a given vector input x and required scalar output Yi, assume actual 

output y'i· 

Since y'i = wTx where w is the weight vector, the LMS error minimises 

the square of the difference between the required and actual outputs. 

e2 (w) = I[(Yi - y'i)2] = I[(Yi - wTx)2] = I[(y? - 2 Yi wTx+ WTX xTw)] 

= L [y?] - 2 L [Yi WTX] + WTL [xxT] w] 
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Set L [y?] =a, L [Yi x]= b, and L [xxT] = C (input correlation matrix). 

Then e2 (w) =a - 2bwT + wrcw 

The LMS rule converges to a minimum error (it is a gradient descent 

rule), we may determine its optimal value at the turning point by 

differentiating the above expression and equating to zero. 

3e2 (w)/ ()w = - 2b +we= 0 then w = C"1b 

For a given learning rate a the LMS weight-adjusting rule is: 

'1w =a( Yi - wTx)xT 
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Examples 

Q1) Give a brief description of the perceptron and the adaline neurons, indicating 

their essential differences. 

A 1 ) The key property of a single neuron perceptron is that it is capable of 

classifying an input vector into one of two categories. The category decision 

boundary is determined by the bias (b) in the equation Wx + b. Where W is 

the weight matrix and x the input vector. Since the boundary is linear the 

perceptron can only classify linearly separable patterns. Its activation function 

is the hard limiting function. In the perceptron feedback is only to determine if 

the network made the appropriate classification. 

The adaline has the same basic structure as the perceptron, except that it 

uses the linear transfer function. It has the same linear separable constraint. 

One major advantage is that of its LMS training algorithm. The perceptron 

training algorithm converges to a pattern classification solution although near 

boundary decisions may be sensitive to "noise". For the adaline the LMS 

training algorithm moves decision boundaries from the training patterns by 

minimizing the mean square error, reducing the risk of "noise" sensitivity. 

Q2 Illustrate the following points on a graph. If a perceptron is used to separate 

the groups, a classified 1 and b classified -1, draw a suitable dividing line. For 

the chosen dividing line determine weights and a bias value. 

Training sets 0 a1 = (0.7, -0.6), 

~ b1 = (-0 3 0 8) . , . , 

a2 = (0.4, 0.8), 

b2 = (-0.7, -1.2) . 
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A2 Scale 1 square = 0.2 units 

!1!111 I i) 

( .. 

.. 

There are several lines that could be chosen with resulting bias selections 

03 What would happen, using a single neuron perceptron, if for the same training 

sets a, the b sets were: 

b1 = (-0.5, 0.6), b2 = (1, 0.2). 

A3 A solution would not be possible with a single neuron perceptron since the 

points are not linearly separable. 

Scale 1 square = 0.2 units 
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Q4 Do the final set of weights given satisfy all conditions for the worked example 

on pages 52 and 53? 

A4 Final weight set: wT = (-0.8, 0.6), with a hard limiting function (-1, 1) and bias 

(0). 

Pattern a1 = (-0.5, 0.6): 

f(wTx + b) = f((-0.8)(-0.5) + (0.6)(0.6) + 0) = f(0.76), 0 = 1 (correct). 

Pattern a2 = (0.3, 0.3): 

f(wTx + b) = f((-0.8)(0.3) + (0.6)(0.3) + 0) = f(-0.06), 0 = -1 (not correct). 

b1 = (-0. 3, -0.4 ): 

f(wTx + b) = f((-0.8)(-0.3) + (0.6)(-0.4) + 0) = f(O), 0 = -1 (correct). 

b2 = (0. 7' 0.2): 

f(wTx + b) = f((-0.8)(0.7) + (0.6)(0.2) + 0) = f(-0.44), 0 = -1 (correct). 

Q5 Draw a simple spreadsheet program to compute the final weights that satisfy 

the required classification. 

A4 The previous weight vector did not satisfy all patterns. A further epoch or 

epochs should produce the desired result. 

At the second pattern submission: 

Pattern a1 = (-0.5, 0.6): 

f(wrx + b) = f((-0.8)(-0.5) + (0.6)(0.6) + 0) = f(0.76), 0 = 1 (correct). 

Pattern a2 = (0.3, 0.3): 

f(wTx + b) = f((-0.8)(0.3) + (0.6)(0.3) + 0) = f(-0.06), 0 = -1 (not correct). 

Modified weights 

W1 = -0.8 + 0.3 = -0.5 

W1 = 0.6 + 0.3 = 0.9 

b1 = (-0. 3, -0.4 ): 

f(wrx + b) = f((-0.5)(-0.3) + (0.9)(-0.4) + 0) = f(-0.21), 0 = -1 (correct). 

b2 = (0.7, 0.2): 

f(wTx + b) = f((-0.5)(0.7) + (0.9)(0.2) + 0) = f(-0.17), 0 = -1 (correct). 

Note the new final weights (-0.5, 0.9) do yield correct results with all patterns. 
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A spreadsheet for pattern classification 

Pattern x1 x2 w1 w2 bias #VALUE! #VALUE! Expected #VALUE! 

a1 -0.5 0.6 0.4 0.2 0 -0.08 -1 

a2 0.3 0.3 -0.1 0.8 0 0.21 1 0 

b1 -0.3 -0.4 -0.1 0.8 0 -0.29 -1 -1 0 

b2 0.7 0.2 -0.1 0.8 0 0.09 1 -1 -1 

a1 -0.5 0.6 -0.8 0.6 0 0.76 1 1 0 

a2 0.3 0.3 -0.8 0.6 0 -0.06 -1 1 1 

b1 -0.3 -0.4 -0.5 0.9 0 -0.21 -1 -1 0 

b2 0.7 0.2 -0.5 0.9 0 -0.17 -1 -1 0 

Note 

spreadsheet 

values 

Formulae for preceded by 

pattern an equals 

classification sign 

Pattern x1 x2 w1 w2 bias B3*D3+C3*E3+F3 IF( G3>0, 1,-1) Ex pd -0.5*(h3-13) 

a1 -0.5 0.6 0.4 0.2 0 -0.08 IF( G4>0, 1,-1) 1 -0.5*(H4-14) 

a2 0.3 0.3 D4+J4*B4 E4+J4*C4 0 B5*D5+C5*E5+F5 IF( G5>0,1,-1) 1 -0.5*(H5-15) 

b1 -0.3 -0.4 D5+J5*B5 E5+J5*C5 0 B6*D6+C6*E6+F6 IF(G6>0,1,-1) -1 -0.5*(H6-16) 

b2 0.7 0.2 D6+J6*B6 E6+J6*C6 0 B7*D7+C7*E7+F7 IF( G7>0,1,-1) -1 -0.5*(H7-17) 

a1 -0.5 0.6 D7+J7*B7 E7+J7*C7 0 B8*D8+C8*E8+F8 IF( G8>0,1,-1) 1 -0.5*(H8-18) 

a2 0.3 0.3 D8+J8*B8 E8+J8*C8 0 B9*D9+C9*E9+F9 IF( G9>0,1,-1) 1 -0.5*(H9-19) 

b1 -0.3 -0.4 D9+J9*B9 E9+J9*C9 0 B10*D10+C10*E10+F10 IF( G10>0, 1,-1) -1 -0.5* (H 10-110) 

b2 0.7 0.2 D10+J10*B10 E10+J10*C10 0 B11*D11 +C11 *E11 +F11 IF(G11>0,1,-1) -1 -0.5*(H11-111) 

Q6 A two layer perceptron has an input vector x = [2, 0, 3], the matrices of 

weights for the hidden layer and output layer respectively are: 

0 1 7 

3 5 -2 

2 3 0 

Assume that the hidden layer biases are b Th =[1, 0, 1 ], 

the output layer bias is b0 = [1 ], Calculate the output. 



A6 Let h and o be the hidden and output vectors respectively from the activation 

functions. 

h = f(xWh+ bh) where Wh is the hidden layer weight matrix 

[2, 0, 3] 0 1 7 

3 5 -2 

2 3 0 

+ [1, 0, 1] = [7, 11, 15] 

Q7 Suggest a strategy for determination of the optimal number of hidden layer 

neurons. 

A? Plot the test performance against the number of hidden neurons and select 

the number offering the best performance. 

For large networks, pre-selection may be made of a practical range of hidden 

neurons for the test. 

08 Is the delta rule suitable for application to a multi-layer perceptron network? 

AS The delta rule may not be used if the error rate from a hidden neuron is not 

known, however in a backpropagation network this limitation may be 

overcome. 

Q9 Can the spreadsheet approach of page 51 be used to model the exclusive OR 

(XOR) logic function? 

A9 Because of the linear separation requirement with a single perceptron that 

spreadsheet approach may not be used. 

Q10 With reference to the example on pages 58 and 59, what is the response for: 

0110 1001 0010 1001 0110? 

A 10 The number is 3, with response 0. 
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011 Draw a diagram for the following three cases, insert a suitable boundary line 

to separate the square and round points. Decide suitable weights and biases 

that satisfy the separation. Hard limit function (1, 0). 

a) Square (3, 2)T and (4, 1)T, round (-2, 3)T and (-1, -3)T, 

b) Square (2, -1)T and (1, -3)T, round (-1, 1)T and (-2, 1.S)T, 

c) Square (0, 2)T and (-1, 1)T, round (0, -1)T and (1, -2)T. 

A11 a) 

- ~ .6 - \ II JV 
\ IL' '/, l!H 

I\. 

• \ - \ 

' \. 

The separation line is one of many that could be selected. 

One set of weights are: wT = (3, 2), then using wT x + b = 0 

For a chosen point on the decision boundary line x =[:], b = -wTx 

Whence b = -(3, 2t : 1 = -5 

Checking the solution for a)~ (3, 2)T and (4, 1 )T,@ (-2, 3)T and (-1, -3)T, 

(3, 2) [: 1-5 = 8 for the hard limiting function f(8) = 1 correct 

(3, 2) [: J-5 = 9 for the hard limiting function f(9) = 1 correct 

(3, 2)[ ~ J-5 = -5 for the hard limiting function f(-5) = 0 correct 
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(3, 2) [ ~~ - 5 = -16 for the hard limiting function f( -16) = 0 correct 

b) and c) similar approaches. 
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Chapter 4. 

FEEDFORWARD NETWORK DESCRIPTIONS 

Summary 

Networks may be described by the direction of their connections, or by the 

functions they perform. The directions of connections use the terminology 

feedforward or recurrent, whilst the function is the description of neural 

network use, categories being: 

classification, association, optimization and self learning. 

This chapter uses practical examples of feedforward networks, in addition it 

introduces the categories which describe the functions of a neural network. 

4.1 Directional classification 

Feedforward neural networks process data from inputs to output(s). These 

network types have no feedback, as is the case with recurrent networks. 

Commonly used feedforward networks include; 

Multi-layer perceptron (MLP). 

Kohonen. 

Learning vector quantization (LVQ). 

Cerebellar model articulation control (GMAC). 

Group method data handling (GMDH). This is a special case, which although 

classified as feedforward, will be the subject of a separate chapter. 

4.1.1 The multi-layer perceptron 

The multi-layer perceptron is a feedforward neural network whose 

structure has input neurons, one or more hidden layers and an output 

layer. It may be used for non-linear classification problems. 
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As mentioned in chapter 3, each neuron in the first hidden layer is 

capable of producing a hyper-plane. Each neuron in the output layer is 

capable of combining hyper-planes to achieve convex decision regions. 

Depending on the bias, an output neuron can act as a logic OR , 

alternatively as a logic AND. A convex region is one in which points 

may be joined by straight lines that do not leave the region. Figure 4.1 

shows a convex decision region produced by a two layer perceptron 

with two neurons in the hidden layer. 

Inputs Hidden Output 

region is 1 

Production of convex regions 

Figure 4.1 

Following the ideas of weight and bias determination based on the work of 

Hagan, Demuth and Beale (1996) in chapter 3. We may choose suitable lines 

to divide three, or more, classes. A line is generated by each perceptron in the 

hidden layer. The resulting collection of lines separating the various classes. 

Example 

For four classes of input vectors: 

Class 1 D X1 =(:)' X2 = (:)' 
Class 3 @ x. =(~)· x. t:) 

Design the perceptron network to solve this problem. 
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An n neuron perceptron can categorize 2" classes. The four classes will 

require a layer with 2 neurons. 

Figure 4.2 gives the classes and their positions. Two decision lines are drawn 

that offer possible class separation. The first decision line separates the light 

and dark classes. The second decision line separates the circles and squares. 

1 

It 
\ \ 
\ rh 

I 
-I h \ ,.., 
~ i,.... ... 

1 i...- ...... \ i-...... , .. - i...-- \ 
i,...oo 1 __. -

.db 
11' 2 • 

•~ \ 
\ 
1 

Class separation. 

Figure 4.2 

Weights are chosen that are orthogonal to the decision lines. The first 

decision line points in the direction of the light units which should produce 

output 1. The dark units produce output 0. The second decision line points in 

the direction of the circles to produce output 1. The squares produce 0. 

The output layer neuron can offer selection of any set. I.e. w1 AND NOT w2 

would select the light squares. 

Selecting suitable weights, two possible sets are: 

W1T = (-1.5, 4) W2T = (-5, 1) 

Selecting the biases: 

b1 = -(-1.5, 4) 5.5 = 0.25 

2 

b2 = -(-5, 1) -5 = -23.5 

-1.5 
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For the light square w1 T x1 + b1= (-1.5, 4 )~)+ 0.25 = 9.25 , 

f(9.25) = 1. 

For the dark circle (-1.5, 4 )(:;+ 0.25 = -15. 75, 

f(-15.75) = 0. 

This network has been designed with graphically defined decision boundaries 

that gave clear-cut decisions, in practical circuits this often not the case. 

This single layer perceptron example uses a linear decision boundary to 

separate input vectors, there are however many problems in which 

categorisation is not linear. 

Inputs Hidden 

layer 

Outputs 

A perceptron network with a hidden layer. 

Figure 4.3 

In Figure 4.5 we have a two-layer representation, with four neurons in 

the hidden layer and three in the output layer. The input neurons 
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merely distribute data and may be represented by a vector. Each 

hidden layer neuron will receive a vector of weights, the combined 

effect for the hidden layer will be a matrix in which the columns are the 

layer vectors. 

W11 W12 W13 W14 

W = W21 W22 W23 W24 

Each input neuron is connected to all neurons of the two adjacent 

layers and to no other neurons. Note that connections within a layer or 

from higher to lower layers are not permitted. 

c E 
....... ::J 
0 U) c U) ..... ..c 0 ...... Weight Q) Weight ::J ...... ...... 

0.. >. ·3 ro Outputs c ro > 
matrix U) ...... matrix c c (.) 

Q) 0 ro 
"O ..... 
"O ::J "O 

I 
Q) c 
c ro 

A block diagram of a feedforward network. 

Figure 4.4 

Generally the multi-layer perceptron has a different number of neurons 

and different weights for different layers. Each neuron of the multi-layer 

perceptron is characterised by one output which may be fanned out to 

other neurons. There may be many inputs, which may be the outputs of 

the neurons in a preceding layer. 

Persons building neural networks are faced with the problem of 

deciding the number of layers to be used and the number of neurons 

required in the hidden layers. Work by commercial packages suggests 

that most networks require 3 or less hidden layers. There is still work to 
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Example: 

be done on the determination of the number of neurons to be efficient 

within a hidden layer. An empirical approach would involve plotting test 

performance against the number of hidden units. 

The following example shows the use of vectors and matrices in a two 

layer perce_Q.tron application. 

LiMin Fu, (1994) provided the basis for the following work. Suppose we have 

a two layer perceptron with input vector x T = ( 4, 2, 3), weight matrix Wh for the 

connections from inputs to hidden layers is: 

wh = 3 2 o 
1 0 1 

1 1 2 

and Wo for the connections from hidden layer to output layer is: 

3 

1 

5 

bh = (-1, 0,-1 ), the thresholds for the hidden layer, bo = (-1) the 

threshold forihe output layer. 

Using H = f(x Wh + bh) and 0 = f(H Wo + bo) calculate the output 

H=f[(17, 11, 9)+(-1, 0,-1)]=f(16, 11, 8)=[1, 1, 1] 

0 = f(9 -1) = f(8) = 1 

Multi-layer perceptrons are popular feedforward networks. Figure 4.5 

shows a multi-layer perceptron with input distributing neurons and two 

layers: a hidden layer and an output layer. Neurons associated with 
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inputs act as buffers for distributing the input signals Xi to neurons in 

the hidden layer. Each neuron j in the hidden layer sums up its input 

signals x1 after weighting them with the strengths of the respective 

connections and computes y = f(wr x). 

The function 'f may be linear, sigmoid, hyperbolic, or some other 

activation function, the output of neurons in the output layer is 

computed in the same way. 

LiMin Fu (1994) explains, adjustment is given by Wji(t +1) = Wji(t) + Liwii 

The change of weight LiWji of a connection between neurons i and j is 

given as: 

Li Wji = llOi Qi 

where 11 is a parameter known as the learning rate, in the range O to 1, 

oi is the error gradient factor depending on whether neuron j is a hidden 

neuron or an output neuron and Qi is the output from a preceding 

neuron. 

For hidden neurons oi = Qi(1 - Qi)L:k okwki 

where Ok is the error gradient at neuron k with a connection from a 

hidden unit . 

For output neurons oi = Qi(1 - Qi)(Ti - Qi) where Ti is the target output 

and Qi is the actual output at unit j . 

When training a neural network, a set of patterns provide the input 

vectors. A training epoch is said to have been completed when all 

training patterns have been presented once to the multi-layer 

perceptron. 

For all but the most trivial problems, several epochs are required for 

the multi-layer perceptron to be properly trained. A commonly adopted 

method to speed up the training uses a "momentum" term (0 < a < 1) 
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added to the weight adjusting equation that effectively lets the previous 

weight change influence the new weight change. 

Wji(t +1) = Wji(t) + L\wji + u[wji(t) + Wji(t - 1 )}. 

4.1.2 The first Kohonen network 

The first Kohonen (1982) network discussed in this thesis is a one layer 

architecture. The distributive input vector feeds an output layer which 

has one neuron for each possible output category. Neurons in the 

output layer are commonly arranged as a two dimensional array. 

Each output neuron is connected to all input neurons and connection 

weights form the elements of the reference vector for a particular 

output neuron. 

0000 
00 

An early Kohonen network 

Figure 4.5 

The training patterns are presented to the input layer, then fed forward 

to the output layer and evaluated. A lone output neuron is the "winner". 

The network weights are adjusted during training. This process is 

repeated for all patterns for a number of epochs chosen in advance. 

Learning rate affects the network, and a commercial program (Ward 

systems, NeuroShell 2 (1996) reduces the learning rate as training 
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progresses, causing progressively smaller weight changes, with 

improved network stability. 

The network adjusts the weights for the neurons in proximity to the 

winning neuron. Initially the neighbourhood boundaries are fairly large 

(perhaps close to the number of categories) with increased learning the 

boundaries decrease, until during the last training events the 

neighbourhood is zero, resulting in changes to the winning neuron's 

weights only. When the learning rate is very small, and the clusters are 

well defined the clusters suffer only minor alterations. 

4.1.3 The Kohonen self organising feature map 

The Kohonen (1987) self-organising map network is an output grouping 

technique, implying that two or more outputs are required. There are 

sets of vectors that feed each output. 

The network requires guidance to set parameters such as learning 

rate, initial weights, neighbourhood size, and number of epochs. The 

success of the network in classifying data is dependent upon how well 

these parameters are set. 

00000000 
0 

Hexagonal neighbourhoods. 

Figure 4.6 
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The concept of neighbourhood size is illustrated Figure 4.6. Kohonen 

( 1987) suggested that rectangular or hexagonal neighbourhoods were 

an aid to efficient network implementation. 

In commercially available programs the neighbourhood size begins 

with a relatively high number, such as 90 percent of the number of 

neurons in the input layer. The learning rate should begin with a 

relatively high number such as 0.5. The number of epochs is 

dependent on the size of the problem to be solved. 

A typical clustering problem might be the cost grouping for a parcel 

delivery service. The inputs could include trade volume, geographical 

mean distances, transport medium, cyclic trends, seasonality, weight, 

shape and content robustness, outputs may be cost classified into 

local, national, and international, each for low, medium, or high tariff. 

Wasserman (1989) suggests the following algorithm for self-organizing 

map training: 

Normalize all input vectors to unit length. 

Apply an input vector x, 

Calculate the distance Di (in n dimensional space) between x and 

weight vectors wi of each neuron. In Euclidean space this is calculated 

as: 

Di = --J[I(xi - wij}2], where Xi is the ith component of input vector x 

wii is the weight from input i to neuron j. 

The neuron that has the output vector closest to x is declared the 

winner. This weight vector We becomes the centre of a group of weight 

vectors that lie within a distance D from We. 

Train this neighbourhood group of weight vectors with formula 

Wj (t + 1) = Wj (t) + a[x - Wj (t)], 

Repeat the steps 1 to 4 through the cycle of input vectors. 
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As training progresses gradually reduce the values of D and a.. 

Kohonen recommends that the number of training cycles should be at 

least 500 times the number of output neurons. 

4.1.4 Learning vector quantization (LVQ) 

Kohonen, Barna and Chrisley (1987) suggested a nearest neighbour 

classifier in which there are a fixed number of categories located in 

state space. The introduction of a new pattern in training, results in it's 

classification, which if correct, results in the weights of the nearest old 

pattern being adjusted to move closer to the new. In the event of a 

wrong classification the old pattern recedes. 

Many problems work with noisy data and the distribution of possible 

examples may not be clearly bounded to a particular subspace. I e. the 

submitted pattern could belong to class A or B or .... or Z. Analytical 

approaches use probabilities to determine the most likely grouping. 

Like statistical modelling, vector quantization follows the probability 

density function of input patterns. In general, a coarser quantization is 

obtained in those areas where inputs are sparse. 

Learning vector quantization is an application of competitive learning in 

which the input space is divided into disjoint subspaces in order that 

each input vector may be represented by its subspace label. I.e. for 

input vector A1 presented to the network with nk the winning neuron the 

subspace label is A1. The output neuron fed from the subspace 

containing the winning neuron produces the. output 1. It may be useful 

to have a programme that gives the output neuron values on a 

continuous scale, so that runners up can be examined. 

These Kohonen networks are unsupervised. they can classify a set of 

training patterns into a specified number of categories without being 

shown in advance how to categorise. The network does this by 

83 



clustering patterns. It clusters them by their proximity in N dimensional 

space where N is the number of inputs. 

The user tells the network the maximum number of categories and it 

usually clusters the data into that number of categories. However, 

occasionally the network may not be able to separate the patterns into 

that many distinct categories. 

A practical example, which may be evaluated by this technique, is in 

classification of service providers for the internet industry as high, 

medium, or low quality. The inputs upon which classification could be 

based are: 

access, personal contact, facilities offered, user protection, cost of 

service, supplied software, technical support times, service expansion 

and ca pa bi I ity. 

4.1.5 LVQ structure 

The essentials of the L VQ structure are: 

a) Full connection between inputs and the hidden layer. 

b) Partial connection between the hidden and output layers each 

weighting being 1. 

c) Each output is linked to a different cluster of hidden neurons. 

A reference vector is formed by the weights of the input to hidden 

neuron connections, these being modified during the training of the 

network. 
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0 

0 

An L VQ structure. 

Figure 4.7 

The hidden (Kohonen neurons) and the output neurons have binary 

outputs. When an input pattern is supplied the Kohonen neuron with a 

reference vector closest to the input pattern is the winner with 

activation 1, all other Kohonen neurons have activation 0. 

Pham, and Liu, (1995) offers the following simple LVQ training 

algorithm for output neuron determination 

1) Initialise the weights of each reference vector. 

2) Give an input training vector to the network. 

3) Determine the Euclidean distance between the input 

training vector and the reference vector. 

4) Update the weights of the reference vector having the 

least Euclidean value. 

5) Recommence the cycle for a new input pattern. 

6) Stop when all patterns have been cycled. 

4.1.6 Cerebellar model articulation control (CMAC) 

This is a class of neural networks that has been designed from 

physiological studies to simulate the brain as a controller. The 
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cerebellum is the part of the brain primarily concerned with control of 

the motor functions, it is in some respects analogous to the perceptron. 

An important idea put forward by Albus (1975) is that it may be 

possible to duplicate the functional properties of the brain without 

modelling the neuronal substrate. 

The networks act as command sequence memories. They store and 

replay command sequences. Robotic movements are smoothed by 

combining multiple command sequences with different weights. The 

networks have been used for control of the motor function of robotic 

arms. 

The network has been analysed as a supervised feed forward network 

with fuzzy memory, in which a series of sensory inputs, vectors Xi, are 

mapped through a matrix of weights W, to an output. 

Albus (1984), in discussing the CMAC, noted that the manipulator 

control problem could be stated in simple terms, whilst its solution was 

complicated. 

He points out that the simple action of picking up a glass involves the 

conscious actions of measuring the position of the hand relative to the 

glass and determining the vector direction to move the hand to the 

glass. At the sub conscious level we have movements of the shoulder 

joint, elbow joint and the muscular forces. 

When translated to a manipulator problem, computations are required 

of individual joint rates, based on the trigonometric relationships 

between the structural members and the manipulator. 

Albus ( 1979) explains, the simple mathematical models to cope with 

these states may be : 
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X1 

Xn 

x = J(e )8 where e is a vector of individual joint velocities and x is a 

vector of end point velocities in a Cartesian co-ordinate system, J(S) is 

the Jacobian matrix. For inversion of J, a given end point rate x may be 

used to determine joint velocities e. 
e = S1(8)x. 

This simple model does not account for the complexity raised by 

gravitational forces, inertial loading and other aspects of a real life 

situation. 

A CMAC module has Xi input vectors which are mapped to C locations 

in the large memory matrix A as shown in Figure 4.9. Pham and Lui 

(1995), state that the number of memory locations is large in 

comparison to the requirements of a typical control problem. This leads 

to the random mapping from the large memory to a smaller memory A'. 

There are still C locations in A' which are summed to produce the 

CMAC output. 

Fixed weights Trainable weights 

j \ 
> > 
'-- '--
0 0 
E E 
Cl> Cl> 
E E 
Cl> 
a ro 
'-- E ro 

(/) 

x x ·;::: ·;::: ...... ...... ro ro 
E E 
<( <r: 

A CMAC module. 

Figure 4.8 
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Pham and Lui (1995) give some characteristics of the GMAC module: 

1) They have input generalization in that similar inputs produce 
similar outputs. 

2) A large GMAC can be trained and used in practical time. 

3) The GMAC has a unique minimum due to the training rule used. 

4) A wide variety of functions can be learned. 

CMAC learning. 

1 ) Assume f is a function to be learned and u = f(.) is the required 
output. 

2) Select the region where u is to be stored and compute the 
current value of u' = f(xi). 

3) If lu' - b!.I < e (acceptable error), no action. 

4) If lu' - b!.I > e, then add to each weight that contributed to u the 
quantity a( u' - !:!_)/IA *I, 

where IA *I = the number of weights from A' that have 
contributed to u' and a is the learning rate. 

5) Repeat the above procedure until all inputs are processed. 

Manipulator control is expected to be smooth and continuous so 

several similar responses are required for particular input space 

regions, widely separated regions are expected to be independent. 

The perceptron ability to dichotomise over large distances and 

generalize close regions gives it potential in this type of control. 
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Direct CMAC based control 

Figure 4.9 

A more advanced control system due to Miller, Henes, Glanz, and 

Kraft, (1990) is illustrated in Figure 4.12. 

Reference 

output 

GMAC ' GMAC u . .... 
~ memory ~ training .... ... 

'l 

~ . 
GMAC u' .--. 
recall 

-' Fixed gain - Ir u 
~ ... ... ..-1 

control 

t 
Advanced CMAC control system 

Figure 4.10 

Plant 
I y 

I 
-... 

The reference output has the desired response for each control cycle 

which is fed to the fixed gain control and the CMAC recall. The CMAC 

recall sends a supplementary signal to that given by the fixed gain 

control, which is a conventional error feedback controller. At the 
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completion of each control cycle a training procedure is used. The plant 

output from a previous control cycle is an input to the CMAC module. 

The difference between u and u' is used to compute the error. After 

training is complete the CMAC module will be the controller. 
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Examples 

01 Give a possible instance for each of the following that may be cases for neural 

network applications: 

Classification 

Association 

Optimization 

Would any of the cases given be better suited to solution by an alternative 

approach? 

A 1 Classification: 

This is placing a given input, or input set into one of several classes. One 

example would be estimating value of housing. Classification factors could 

include location, property size, features and security. An expert system might 

prove to be a better alternative, since judgement could be assisted by market 

histories. 

Association: 

The simplest view of association models relate a given pattern or part pattern 

to stored patterns (memory). The common networks for these tasks are 

Hopfield, Boltzmann and BSB. The number of neurons decide the storage 

capacity. 

Anderson ( 1996) gives an example of the association of antibiotics and 

diseases. The neural network is a BSB (Brain State in Box) type and the 

network is taught to associate a particular antibiotic with a given input vector 

that is symptomatic of a disease. A suggestion is made that a subdivision of 

disease characteristics could lead to a more meaningful antibiotic formulation. 

In the direct associative state it would seem that a computer programme could 

be formulated to perform the association. 

Optimization: 

The classic traveling salesman problem is an example of optimization. Where 

a few nodes are involved the computations can be performed by a computer. 
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With increasing nodes to be visited the neural network may offer a solution 

that is acceptable although not necessarily optimal. 

02 Suggest a clustering problem for a Kohonen self organizing map, indicate the 

potential inputs that may affect the clusters. 

A2. To determine leisure activities for the population of a large city we may select 

the following output categories. Television viewing, computers, outdoor 

activities, cultural activities, social gatherings and cinema. 

The inputs on which clustering would be made could include income, 

educational level, social status, state of health, environment, safety, available 

time and age. 

03 Input weight vectors of a Kohonen network's hidden neurons are: 

W1 T = (0.451, 0.364, 0. 726), 

W2T = (0.380, 0.763, 0.525), 

W3 T = (0.852, 0.354, 0.427). 

If the input vector x = 0.31 O 

0.275 

0.650 

a) determine the winning neuron, 

b) update the winner's weight vector using !l.Wnew = ri(x - Wo1d) 

(assume a learning rate ri = 0.25 and neighbourhood (0). 
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Chapter 5. 

GROUP METHOD DATA HANDLING 

Summary 

This chapter describes a neural network type that may be considered to offer 

an alternative to multiple regression methods in certain cases. A major 

benefit of this network may be the ability to detect the less important factors in 

the generated polynomial. 

5.1 Group Method Data Handling (GMDH) 

Group Method of Data Handling (GMDH) networks are sometimes referred to 

as polynomial nets. They are classified as a feedforward network although 

they are not like regular feedforward networks. The invention of lvakhnenko 

(1971 ), the network uses adaline neurons with non-linear pre-processors, that 

are called N-adaline neurons. 

,... .. - .. ---·-----·--1 . . 

\ 
Non-linear pre-processor Weights 

An N-Adaline neuron 

Figure 5.1 

y 

Feedback W<t +1) 
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Each N-adaline neuron in a typical GMDH network usually has two inputs x1 

and x2 from which it produces an output y. The output of each neuron is a 

quadratic combination of the two inputs, together with the connection weights. 

y = X T Qx + q TX + C, 

Where xT = (x1 + x2), Q = 

The number of neurons used as inputs is dependent on the number of 

external inputs available. Each pair of external inputs, requires one neuron. 

GMDH networks have structures that grows in training. A network tries to 

build a function (called a polynomial model) that would behave in such a way 

that the predicted value of the output would be as close as possible to the 

actual value of output. The network may be used for modelling or prediction. 

Training proceeds with presenting an input pattern as an input vector. The 

weights of each neuron are adjusted according to a suitable learning 

algorithm, such as the Widrow-Hoff learning rule. 

Pham and Liu quote the Widrow-Hoff modified training rule, as modified by 

Widrow and Lehr (1990): 

W(t + 1) = W(t) + aXtflXtl
2

(Yexpected - WtT Xt). 

The application of this rule causes w to be modified to reduce the difference 

between the actual and desired outputs. 

Training a GMDH network consists of configuring the network starting with the 

input vectors and adjusting the weights of each neuron. During training new 

layers are formed (Figure 5.2). With each new layer a number of new 

neurons are formed from preceding neurons that perform well. 
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Neurons in the preceding layer that have not perform well are discarded. The 

new layer formation continues until the accuracy of the mapping achieved with 

the network is optimal. I.e. further layers reduce accuracy. 

1st Layer 2nd Layer 

Inputs 

o-----_---_---_-------~~._____. 

A network of N-adalines for a required polynomial output. 

Figure 5.2 

Every neuron in the first batch is targeted to a desired output and is expected 

to achieve it. When the batch mean square errors (BMSE), summed over the 

desired outputs of the training set of a neuron, reaches a minimum its weight 

modification process is stopped. From the now stopped layer, the selection 

data set chooses trained neurons for the next stage. 

The neurons with squared error below a certain threshold are the post 

selection choice for inputs to the next layer, the smallest BMSE is used as the 

criterion for stopping the whole network. A new layer is created if the BMSE of 

a layer is less than that achieved in a previous layer. When there is no 

reduction in BMSE, or if a single neuron remains, training is stopped. Training 

a new layer does not affect the results of previously trained layers. 

When a layer shows an increase in BMSE the previous layer is the output 

layer and its output is that of the best neuron. The final structure is trimmed of 

all neurons not connected, directly or indirectly to the final neuron. 
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The output of a GMDH network having m layers can be expressed as a 2m 

degree polynomial. 

5.1.1 A GMDH training algorithm 

Training is summarized by Pham and Lui (1995) as follows: 

1) Pre-process the data. This is a data normalizing procedure, for 

inputs x and outputs y, use the following equations: 

Xnorm = Xj- ~ 

O'x cry 

Where Xi and Yi are the ith input and output experimental data 

pair, µx and crx, µy and cry; are the means and standard deviations 

respectively of the Xi's and Yi's. 

2) Decide the external inputs to the network. For a modelling 

application, use m past inputs x(k - 1 ), x(k - 2), .... x(k - m), and 

n past outputs y(k - 1 ), y(k - 2), . .. y(k - n). In prediction 

applications only n past outputs are used. Duffy and Franklin 

(1975) suggested that determination of m and n may be 

obtained by calculating correlation coefficients for the input 

output data. 

3) Separate the experimental data into a training data set and a 

selection data set. 

4) Create a set of N-Adalines based on the number of inputs, each 

pair of inputs produces an N-Adaline. 

5) Initialise the weights of the neurons (N-Adalines) to zero. 

6) Use the training data set to train all neurons in the created layer 

using the following procedure. At time k apply x(k-1 ), x(k-2), .... 

x(k-m), and y(k - 1 ), y(k - 2), ... , y(k - n) for a modelling task. 
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Apply y(k - 1 ), y(k - 2), ... , y(k - n) for a prediction task. Take y(k) 

as the desired output of all the neurons. Calculate the output 

errors of the neurons and modify their weights once. One epoch 

is complete when the whole training set has been presented to 

the network. 

The squared error of each neuron is summed over the batch to 

obtain the BMSE if the result is smaller than that for the previous 

batch subject the batch to further training else stop. Current 

layer training stops when training for all elements in that layer 

stops. 

7) Input the selection data set to the network. Obtain the BMSE for 

the layer just trained and the ratio of each MSE to the smallest 

MSE. From these MSEs assign a threshold, retain those 

processing elements whose ratios are below the threshold as 

post selection elements for the next layer 

8) If the BMSE in the layer selected is larger than that of the 

previous layer or if the current layer has a single unit stop 

training. If training stops due to an increasing BMSE, or because 

a single element remains, use the preceding layer as the output 

layer and trim the network. Otherwise use post selection 

neurons to create a new layer and return to step 5. 

9) Test the network with the evaluation data set, as only the 

training set is used in the determination of network weights 

generalization may be tested by using the combined training and 

- evaluation sets. 

A common approach to solving such models is founded in regression 

analysis, with the primary step being decision on the type of polynomial 

that regression should find. 
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Input variables are selected with their covariants and trivariants as the 

terms of the polynomial: 

( 2 2 2 3 3 3 n n ") 
X1, X2, X3, ... , X1 I X2 'X3' ... , X1 I X2 'X3 , ... , ... , X1 'X2 I X3 .... 

The next step is to construct a linear combination of all of the 

polynomial terms with variable coefficients. The algorithm determines 

values of these coefficients by minimizing the squared sum (over all 

samples) of differences between sample outputs and model 

predictions. 

Required complexity is a major aspect of choosing the set of 

polynomial terms. If we include in the model, polynomials of one 

variable, what should be the largest degree of that polynomial? Should 

it be 3, or should the model evaluate terms such as x5? GMDH has in 

practice worked better than regression to answer this question if 

exhaustive analysis is not used. 

5.1.2 Selection Criterion 

The relative quality of each prospective model must be evaluated using 

some numeric criterion. A simple criterion, with it's origins in linear 

regression analysis, is the sum of the squared differences between the 

network output and the model prediction divided by the sum of the 

squared network output. ( Normalized Mean Squared Error called the 

Training Squared Error, TSE). 

Training square error on practical data, with or without noise factors, 

decreases with the addition of extra terms to the model. If you use only 

TSE, which determines the quality of the model by evaluating the same 

information you have already used to build the model. The results is an 

"over complex" model with an inability to generalise effectively because 

it pays too much attention to noise in the training data. This is the 

equivalent to over training in other neural nets. 
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This problem is negated by, using data other than that which was used 

to build the evaluated model. We may compute the squared sum of 

differences between the known output and model prediction a test set 

of data. An alternative strategy to avoid over fitting is to introduce a 

penalty for model complexity, using the Predicted Squared Error (PSE) 

criterion introduced by Barron, (1996). 

5.1.3 Multi-layer procedure for GMDH 

Computation time is reduced by decreasing the number of polynomial 

terms (and the number of input variables), used to build the models to 

be evaluated. The direct procedure of model selection is changed to a 

multi-layer procedure. 

(i) The first pair of input variables ,(x1 , x2), yield a simple set of 

polynomial terms, (1, x1, x2, x1x2), (1 will represent the constant 

term). 

(ii) Review all possible models made from these terms, and choose 

one which is the best. (Each of the evaluated models is called a 

candidate for survival.) 

(iii) Repeat steps (i) and (ii) for each variable pair, for n input 

variables, n(n - 1 )/2 candidates for survival are generated, each 

with its own value of the evaluation criterion. 

Compare the values from step (iii) choose several candidates for 

survival which give the best approximation of the output variable. A 

pre-defined number of the best candidates for survival are stored in the 

first layer of the net and are preserved for the next layer. 

The layer of survivors is used for inputs to build the next layer in the 

network. The original network inputs in the first layer may also be 

chosen as inputs to this new layer. The next layer is built with 
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polynomials of this broadened set of inputs. Note that since some 

inputs are already polynomials, the next layer may contain very 

complex polynomials. The layer building GMDH procedure continues 

as long as the evaluation criteria continues to diminish. 

5.2 Water level prediction using a GMDH network 

This example is taken from an analysis Pham and Liu (1995) of data collected 

from correlation studies by Weisberg (1985) and Gentry and Lopez-Parodi 

(1980) between deforestation and Amazon flooding. 

Year High level metres Low level metres 

1962 25.82 18.24 

1963 25.35 16.50 

1964 24.29 20.26 

1965 24.05 20.97 

1966 24.89 19.43 

1967 25.35 19.31 

1968 25.23 20.85 

1969 25.06 19.54 

1970 27.13 20.49 

1971 27.36 21.91 

1972 26.65 22.51 

1973 27.13 18.81 

1974 27.49 19.42 

1975 27.08 19.10 

1976 27.51 18.80 

1977 27.54 18.80 

1978 26.21 17.57 

Amazon flooding data. 

Table 5.1 
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For the simulation of high water prediction, using the GMDH network, four 

input units were used. The first eleven data being used for training and the full 

data set for evaluation. 

For the simulation of low water prediction, using the GMDH network, four 

input units were used. The first fourteen data being used for training and the 

full data set for evaluation. 

A comparative evaluation was made using a multi-layer perceptron network, 

with four input units, eleven data for training and full data set evaluation at the 

high level. 

A low level evaluation made using a multi-layer perceptron network, with four 

input units, used fifteen data for training and full data set evaluation. 

Pham and Liu (1995), provide a group method data handling programme from 

which the following graphical data may be obtained. The programme is written 

in the 'Microsoft Quick C (version 1.0)' language. The authors do not provide 

the GMDH equation. 

Group method data handling and multi-layer perceptron network outcomes for 

the data favour GMDH. Results are estimated from the graphic plots produced 

by Pham, D.T. and Liu, X. (1995) and copied in Microsoft Excel (Office 2000). 
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Examples 

Q1 What type of neurons are used in the construction of GMDH networks and 

what learning rule is generally applied ? 

A 1 Use is made of adalines with non linear pre-processors. The Widrow-Hoff 

learning rule is used. 

Practical examples for this chapter would require the use of a suitable 

programme for GMDH. 

Available programmes include: 

GMDH in Neuroshell 2 Ward Systems 

Email: WardSystems@msn.com 

A programme has been written in Microsoft Quick C (version 1.0) by OT 

Pham and X Lui, Neural Networks for Identification, Prediction and Control, 

Publisher, Springer, (1995). 

Other programmes in the appendices include: 

Multilayer perceptron for identification. 

Modified Elman network for identification. 

A series of programmes in ANSI C have been written by Karsten Kutza in 

June 1996. As a consequence of my computers being stolen I no longer have 

direct internet references. My download shows the following programmes. 

Adaline, ART 1, BAM, Saltzman, BPN (backpropagation), CPN 

(counterpropagation), Hopfield and self organizing maps. 

Adam Blum has published Neural networks in C++, Wiley and Sons inc. 

(1992). The programmes, written in Turbo C++, include: 

A makefile programme for construction of the given networks. 

Vector and matrix classes. 

An abstract neural network base class. 

Backpropagation. Counterpropagation. BAM. Hopfield. 
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Chapter 6 

RECURRENT NETWORK DESCRIPTIONS 

Summary 

Recurrent neural networks have feedforward and feedback connections so 

that signals may be propagated in opposite directions. Each pattern passes 

through one or more neurons, two or more times, before an output response 

is generated in this network. 

The networks explained are feedforward backpropagation, Hopfield, 

Boltzmann, Bi-directional Associated Memories, Elman and 

Counterpropagation. 

6.1 Feedforward backpropagation 

The network's name is based on its method of handling errors. As we have 

already observed, the perceptron network can train the output units to classify 

input patterns, subject to the classes being linearly separable. 

When the classes are not linearly separable the solution may be found 

through a multi-layer network. Minsky and Papert (1948) suggested that 

output errors would require adjustment to neurons or adjustments of inter­

connections. Back-propagation offered a solution by apportioning the error to 

all neurons and connections. Apportioned error is by propagating output error 

backward through the connections to each preceding layer and to the input 

vector. 

A typical back-propagation network has an input vector, one or more hidden 

layer(s) and an output layer. Commercially available networks normally have 

three or less hidden layers. Each layer being completely connected to the 
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preceding layer. Whilst the network is being trained the level of error is used 

to update the connection weights. 

Neurons in the hidden layer "fire" or produce outputs that are based upon the 

sum of weighted values passed to them. The hidden layer passes values to 

the output layer in the same fashion, and the output layer produces the 

desired results (predictions or classifications). 

A vector of inputs x is applied to the hidden layer neurons, each of these is 

multiplied by a connection weight, and the products are summed. This sum­

mation of products w T x must be calculated for each neuron in the network. 

After w T x is calculated, an activation function f is applied to modify it, thereby 

producing the signal f(wT x + b). The activation function usually used for back­

propagation is sigmoid, because it has a simple derivative, used in implement­

ing the backpropagation algorithm. 

Inputs Hidden Output Comparator 

Target 

Error to hidden layer 

A backpropagation network 

Figure 6.1 
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Multi-layer networks have greater representational power than single-layer 

networks only if a non-linearity is introduced. The sigmoid (squashing) 

function produces the required non-linearity. Other functions maybe used to 

satisfy the backpropagation algorithm requirement that the function be 

everywhere differentiable. Backpropagation is applicable to networks with any 

number of layers. 

6.1.1 Backpropagation in multi-layer perceptron training 

>< 
CJ) ....... 
::J 
a 
c 

Single layer networks have been trained by use of the delta rule, 

Rosenblatt (1975), or the LMS rule Widrow and Hoff (1976). They are 

limited in their application to linear separable problems. 

The backpropagation algorithm, which is a gradient descent algorithm, 

is often used for multi-layer perceptron training. This algorithm was 

proposed in a thesis by Werbos (1974). The algorithm was re­

discovered independently by Parker (1985), LeCun (1985) and 

Rumelhart, Hinton and Williams (1986). 

Layer 1 Layer 2 Layer 3 

Y1 = f1 (W1x1+ b1), Y2 = f2 (W2 Y1+ b2 ), y3 = f3 (W3 Y2+ b3 ), 

A block diagram of a three layer network 

Figure 6.2 
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6.1.2 Backpropagation training 

The backpropagation algorithm for multi-layer networks is a 

generalization of the least mean squares (LMS) algorithm. Training 

assumes that each input vector Xi is paired with a target vector ti 

representing the desired output. (xi, ti) are called a training vector pair. 

Usually, a network is trained over a number of training pairs. 

The training procedure is as follows: 

Procedure 

1 Initialise all weights to small random numbers. 

2 Select the next training pair from the training set; apply the input 

vector to the network. 

3 Calculate the output of the network. 

4 Calculate the error between the network output and the target 

output. 

5 Adjust the weights of the network to minimise the error. 

Repeat steps 2 to 5 until the error is sufficiently low. 

6.1.3 Exclusive OR implementation in backpropagation 

This problem was the reason that many researchers abandoned neural 

network studies in the 1960's. Some twenty years later the problem 

had been solved by several methods including the multi-layer 

feedforward backpropagation network.(Li Min Fu, 1994) 

The following table indicates for binary inputs a and b the expected 

output S. 
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a 8 s 
0 0 0 

1 0 1 

0 1 1 

1 1 0 

An exclusive OR table. 

Table 6.1 

Circuit 

3 

Input b 

Figure 6.3 

Processing 

Randomise initial weights to small values 

Wa3 = 0.02, Wb3 = 0.03, W23 = -0.02, Wa2 = 0.01, Wb2 = 0.02, 

Wbias3 = -0.01, Wbias 2 = -0.01. 

For input pattern x r = ( 1, 1 }, required output (0) and a sigmoid 

activation function, hidden unit 2 is H2 and output is 03 then: 
H

2 
= 1/(1 +e-f1(0.01)+1(0.02)-1(0.01)J) = 0_505 

03 = 11(1 +e-f(0.5CX5)(0.02+1(0.02)+1(0.03) -1(0.01)1) = 0_508 

Assume a learning rate Tl= 0.03 

~h= 0.508(1-0.508)(0-0.508) = -1.27 
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~W13 = 0.3(-0.127)1 =-0.038 

<h= 0.505(1-0.505)(-0.127)(-0.02) = 0.0006 

~WZ3 = 0.3(0.0006)1 = -0.0002 

After several similar iterations the weights become 

Wa3 = 4.98 Wb3 = 4.98 W23 = -11.30 Waz= 5.62 Wb2 = 5.62 

Wbias3 = -2.16 Wbias2 = -8.83 

This yields a mean square error of less than 0.01 

(Li Min Fu, 84, 1994) 

6.1.4 Single layer recurrent network. 

The following diagram shows a typical single layer recurrent network 

having three output neurons that feedback to the inputs. 

Y1 

Y2 

Y3 

Single layer recurrent network 

Figure 6.4 
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The recurrent networks studied are the Hopfield network, Boltzmann, bi­

direction.al associative memories (BAM), Elman and counter-propagation 

networks. 

6.2 The Hopfield Network 

Neural networks are complex and often contain non-linear components. Their 

behaviour is difficult to analyse. Hopfield (1982), applied some ideas to them 

from an important and developing area of mathematics called non-linear 

dynamical system theory. 

Hopfield was able to show that sometimes a non-linear neural network 

evolving in time could be analysed qualitatively. As the neural network 

evolves, it minimizes a particular function related to what would be called 

energy in a physical system. 

LiMin Fu (1994) observes that this network may be used for auto-associative 

or optimisation tasks. It is a neural network model, which exhibits the 

characteristic of associative memory in that, like human memory, a partial 

recollection produces a larger related memory. I.e. A few notes may trigger 

memory of a musical score. 

The system may have n elements with connections between any element 

pair. The system energy E is the sum, over the n elements, of the energies of 

each unit pair i and j and the strength of their connection. It may be of value to 

visualise a mechanical, electrical, or chemical simulation of this concept. 

Conceptually the Hopfield network considers that within a single network, 

binary valued neurons can store multiple stable states. A network is 

constructed of binary valued neurons connected to each other but not self 

connected. All connection weights are symmetric (wii = Wji) and the network 

may have a set of stable states in which each binary neuron has a value -1 

(0) or 1. For a given input pattern the network converges to the stable state 

closest to the pattern. 
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6.2.1 A Hopfield auto-associative algorithm. 

Example 

LiMin Fu provides an auto-associative algorithm form stored patterns 

in a Hopfield network: 

m 

Wji =~ Pj,p Pi,p, i * j else 0 

p=1 

Wji is the connection weight from neuron i to neuron j and Pi,p is the ith 

component in pattern vector p. 

Activation calculation 

1) At time t = 0 the activation level of neuron j is Oi(O) = Pi the jth 

component of the input pattern. 

2) At time t > 0, activation level of neuron j is Oi(t+1) = f(~Wji Oi(t)) 

for a hard limiting function or smooth function. 

1 

f(~wii Oi(t)) =f(a) =J -1 

for a> 0 

for a< O 

unchanged a = 0 

Step 2 is repeated until neurons remain unchanged this is then the best 

match for the unknown input. 

Note: In a Hopfield network it is desirable that a fixed point satisfies: 

x = f(xw) 

LiMin Fu shows how a weight matrix may be constructed for an associative 

Hopfield network. Xi is an n dimensional bipolar vector to be stored in the 

network and In is an n*n identity matrix. 

lfX1T =(1, -1, -1), X2T =(-1, 1, -1), X3T =(-1,-1,1), 
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Use W = r XiT Xi - In, 

W = ( X1 T X1 - b) + (X2 T X2 - b) + ( X3 T X3 - b), 

0 -1 -1 

w = I -1 a -1 

-1 -1 0 

Using x1 as the probe vector: (The probe vector is one we use to perform 

association). 

f(x1 W) = f(2,0,0) = (1,-1,-1) which is the x1 vector, in this case a single 

iteration only was required. The capacity of the net dictates if all vectors may 

be correctly retrieved. 

A Hopfield net limitation is that the minimum achieved is not necessarily a 

global minimum. A further limitation being that if too many patterns are 

stored, the network randomises and can no longer serve as a memory. 

6.2.2 Hopfield network capacity 

The Hopfield net can be activated either synchronously or 

asynchronously. In the synchronous mode, the weights are updated 

simultaneously. In asynchronous operation, the network updates only 

one neuron at a time. The neuron to be updated is selected from n 

neurons with a probability of 1/n of selection. 

Defining memory capacity of the Hopfield associative network. If a 

binary n-dimensional vector x is a memory, then for neuron i = 1, ... , n: 

n 

Xi= fh (I WijXj) where fh is the hard-limiting function. 

j=1 
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Similar states map to a common memory which leads to it being called 

an attractor. If m, n dimensional, memory vectors x1 are to be stored, 

each neuron being 1 or -1. The outer product construction method is 

used to arrive at the appropriate weight matrix W, the construction 

method is used to ensure convergence to a stable state. 

The following example was formulated by McEliece (1987) 

Three memories of five dimensions are to be stored, their values being: 

X1 = ( 1, 1, 1, 1, 1 ), 

X2 = ( 1, -1, -1, 1, -1 ), 

v~ = {-1 1 -1 -1 -1) ~ 1 1 , ' • 

Asynchronous operation is assumed. 

The weight matrix by the outer products method as given by LiMin Fu 

is: 

0 -1 1 3 1 

W= 1-1 0 1 -1 1 

-1 1 0 1 3 

3 -1 1 0 1 

1 1 3 1 0 

If the probe vector is x = (1, -1, -1, 1, 1 ), which has a Hamming 

distance of 1 from x2, product xW is calculated, hard-limited to (1, -1) to 

then yield x': (The Hamming distance calculates the number of bits that 

differ in two vectors). 

x' =.(I, -1, 1, 1, -1). 

For asynchronous operation, there is no set order of neuron updating. 

For this example, let the third element be chosen. 

The new vector will be: x' ={I, -1, 1, 1, 1 ). 
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The steps are repeated until one of the three memories (fundamental 

memories) is reached. Eventually the second neuron of x will be 

updated to yield x" = (1, 1, 1, 1, 1) which equals x1. 

Note, the system does not converge to x2 which is closest to the initial 

test vector. 

This example reveals one of the problems with the Hopfield net. The 

probe may not settle onto one of the memories. If it is a memory, then it 

is not necessarily the closest memory. 

6.3 Hebb's learning 

The foundation for many of the current training algorithms arose from the work 

of Hebb (1949). Prior to Hebb's work, it was generally recognised that learning 

in a biological system involved some physical change to the neurons, but no 

clear idea had been formulated to explain how this could take place. Hebb's 

learning proves useful in pattern recognition. 

Hebb's postulate: 

"When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells 

firing B. is increased." 

In neural network terms if neuron A is repeatedly activated by neuron B then 

A will become more sensitive to stimuli from B, resulting in a more efficient 

synaptic connection from B to A The theory, sometimes known as correlation 

learning, involves only local interactions between neurons with no global 

teacher; hence, the training is unsupervised. 
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Anderson, (1995), notes that the work by Hebb did not include a mathematical 

analysis, but the clarity of the idea received wide acceptance. 

This idea is expressed by LiMin Fu in the equation that follows: 

Wji(t + 1 ) = Wji(t) + Ni Ni 

where Wij(t) = the synaptic strength from neuron i to neuron j: Ni = the 

excitation level of the source neuron Ni = the excitation level of the destination 

neuron 

Hebb's concept offered an intuitively sound answer to the question of how 

learning; could take place without a teacher. In this system, learning involves 

only two neurons and the related synapse; a global feedback system is not 

required for the neural patterns to develop. 

Hebb's learning has resulted in many successes, although it has also 

revealed its limitations; some patterns are not able to be learned by this 

method. Many learning methods have evolved from this foundation work. 

6.3.1 Hebb's Leaming Algorithm 

Hebb's learning rule has been used to identify minima to the location of 

stored patterns. A network using the sigmoidal activation function with 

Hebbian learning is said to employ signal Hebbian learning. In this 

case, the Hebbian equations are modified to the form that follows: 

Oi = 1(1 +e-N ) = f (Nj) 

wji(t + 1 ) = Wji(t) + oi oi 

where Wji(t) = the synaptic strength from neuron i to neuron j : Oi = the 

output level of the source neuron = f(Ni) and Oi = the output level of the 

destination neuron = f(Ni) 
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6.4 Boltzmann Machine. 

Constant energy minimization causes the Hopfield network to settle into local 

minima, the Boltzmann machine is similar in function and operation to the 

Hopfield network. Its advantage is that by the use of a technique known as 

simulated annealing it searches the pattern layer's state space for a global 

minimum. 

In a similar structure to the Hopfield network, the Boltzmann machine has an 

associated state space energy dependent on the connection weights in the 

pattern layer. Through the submission of a set of training patterns the learning 

process minimizes this state space energy. As a consequence of the learning 

process the Boltzmann machine will progress to connection weights that 

approach a global minimum. 

Note: Annealing is a metallurgical process in which a metal is gradually 

cooled, successive lower thermal energy states leading to a minimum state 

being achieved. 

The simulated annealing schedule is an added to the learning process of the 

network. In the metallurgical annealing process the high initial temperatures 

are decreased over time. The high initial weights in the Boltzmann network act 

as noise factors in the processing elements. As the weights reduce, the 

network settles to a minimum. 

When the machine learns at high weights it behaves as a random movement 

model, whilst at low weights it behaves as a deterministic model in moving to 

the global minimum. 

The initial random movement in annealed learning may mean that a 

processing element assumes a state that has increased rather than 

decreased the total system energy. This simulation of the metallurgical 

process is helpful in escaping local minima and moving toward a global 

minimum. 
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When learning is completed for a set of submitted patterns, presentation to 

the network of a part of a pattern related to the set results in the net 

completing the missing portion. 

There is a limitation on the number of classifications, for the Hopfield and 

Boltzmann networks being less than fifteen percent of the total processing 

elements in the input layer. (Based on downloaded data from internet). 

6.5 Bi-directional associative memories BAM 

These networks have a two layer recurrent architecture, the forward and 

backward information flow between the layers searches for stimulus and 

response associations. 

Given a partial memory, with or without noise caused by input corruption, 

auto-association permits retrieval, the BAM network extends this capability to 

relate an input vector to another vector thus permitting a generalization of 

outputs for similar inputs. 

[ Output layer 

i--i ---------····--·-
• 

Backward connections Forward connections 

Input layer 

-t 

Bi-directional associated memory. 

Figure 6.5 
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6.5.1 BAM algorithm 

Example 

Weight assignments 

If the network stores m pairs of patterns, forward weights are given by: 

Wji = :EPi,p Qi,q where Wji is the connection weight from i to j, Pi,p is the ith 

component in vector pattern p, Qi,q is the jth component in vector 

pattern q, patterns p and q form a vector pair. 

Activation calculation 

Step 1 Initialize the input units at time zero 

Oi (0) =Pi, 

Step 2 At time= t (t>O) 

Oi(t+1) = fh (:EVvJi Oi (t)) 

Where Oi(t) is the activation level of unit j at time t and fh is a hard 

limiting function, or a sigmoid function. 

fh (a)= 

1 for a> 1 

-1 (0) for a < 0 

Oi(t) for a= 0 (no state change) 

Step 2 is repeated until equilibrium is achieved. LiMin Fu (1994) 

This example is taken from LiMin Fu (1995). 

Use a bi-directional associative memory to store the following three pairs of 

vectors: 

Original vector Associated vector 

A1 = ( 1 , -1 , -1 ) 81 = (1, -1) 

A2 = ( -1 , 1 , -1 ) 82 = (-1, 1) 

A3=(-1, -1, 1) 83= (1, -1) 

A vector storage table. 

Table 6.2 
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The outer products are used to construct the weight matrix: 

3 

W= ~ Air8i 

i = 1 

1 -1 

W= 1-3 3 
1 -1 

If A1 is used as the probe vector, and f is a bi-polar activation function. 

f(A1W) = f(3, -3) = (1, -1) = 81 

If 81 is used as the probe vector: 

f(81Wr ) = f(2, -6, 2) = (1, -1, 1) D A1, more iterations may be required to 

retrieve correctly. A complication in this example is that 81= 83. 

6.6 Counter-propagation Network. 

Combining an unsupervised Kohonen layer with an output layer that was 

trained developed the counter-propagation network. This network is able to 

process complex classification problems, whilst minimizing the number of 

neurons and training time. Hecht-Nielsen, (1987) 

The counter-propagation network is similar to the learning vector quantization 

network, the Kohonen layer behaves as a comparator, finding the closest fit to 

an input stimulus and outputting its equivalent mapping. 

The first counter-propagation network used bi-directional mapping between 

the input and output layers. The data to the input layer generated an output 

classification pattern; the output layer would then receive an additional input 
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vector, from which it would feed an output classification to the network's input 

layer. The flow and counterflow of data gave the network its name. 

Current development uses a uni-flow variant of this formal representation of 

counter-propagation. There is only one feedforward path from input vector to 

output layer. The network is shown in Figure 6.5, it is a two layer uni­

directional counter-propagation type. 

Inputs Kohonenlayer Grossberg layer 

. A counter-propagation Network 

Figure 6.6 

It is usual practice to normalize inputs, for every combination of input values, 

vectors are unit length. The network inputs are then fed to a self-organizing 

Kohonen layer, this in turn feeds a Grossberg outstar layer. This layer uses 

the delta Rule to modify its incoming connection weights. 

The input layer size depends upon the number of parameters that define the 

problem. With too few neurons the network may not generalize sufficiently, 

too many may cause a lengthy processing time. 

When input data has not been normalized a layer may be introduced between 

the between the inputs and the Kohonen layer to perform this task. This layer 

requires one neuron for each input, plus one more for a balancing element. 
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This pre-processing layer modifies the input sets so that they combine to the 

same total, permitting the Kohonen layer to find the correct class for the 

problem. 

Normalization is necessary with large input vectors to prevent bias of the 

Kohonen neurons such that weaker value input sets cannot be properly 

classified. The competitive nature of the Kohonen layer results in the larger 

value input vectors being dominan~ over the smaller vectors. 

Counterpropagation uses a standard Kohonen paradigm, which self-organizes 

the input sets into classification zones. It follows the classical Kohonen 

learning law, (described in section 4.2). This layer acts as a nearest neighbour 

classifier. The neurons in the competitive layer autonomously adjust their 

connection weights to divide up the input vector space in approximate 

correspondence to the frequency with which the inputs occur. 

There need to be at least as many neurons in the Kohonen layer as output 

classes. The Kohonen layer usually has many more neurons than classes 

simply because additional neurons provide a finer resolution between similar 

objects. 

The output layer for counter-propagation is basically made up of neurons 

which learn to produce an output when a particular input is applied. Since the 

Kohonen layer includes competition, only a single output is produced for a 

given input vector. This layer provides a way of decoding that input to a 

meaningful output class. It uses the delta Rule to. back-propagate the error 

between the desired output class and the actual output generated with the 

training set. The errors only adjust the connection weights coming into the 

output layer, the Kohonen layer is not affected. 

Only one output from the competitive Kohonen layer is active at a time and all 

other neurons are zero. The only weights adjusted for the output neurons are 

the ones connected to the winning neuron in the competitive layer. In this way 

the output layer learns to reproduce a certain pattern for each active neuron in 
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the competitive layer. If several competitive neurons belong to the same 

class, that output neuron will evolve weights in response to those competitive 

neurons and zero for all others. 

There is a problem that could arise with this architecture. The competitive 

Kohonen layer learns without any supervision. It does not know what class it 

is responding to. This means that it is possible for a neuron in the Kohonen 

layer to learn to take responsibility for two or more training inputs that belong 

to different classes. When this happens, the output of the network will be 

ambiguous for any inputs that activate this neuron. To alleviate this problem, 

the neurons in the Kohonen layer could be pre-conditioned to learn only about 

a particular class. 

6. 7 Elman Network 

Pham and Lui (1995) describe this simple recurrent network that may be 

trained by the backpropagation algorithm. Inputs are fed to the hidden layer, 

which may have linear or non-linear activation functions. Feedback occurs 

from the hidden layer to context units that then join the input feeds. 

Context units memorize some past states of the hidden units so the network 

outputs are a function of the current inputs and the previous states, this is 

referred to as having dynamic memory capability. The context units may be 

viewed as time delays. Outputs are linear from the summed signals to the 

output neurons. 

Feed forward connection weights may be modified but the recurrent 

connections are fixed. The network was originally designed for speech 

processing applications. 

The Elman network is shown in Figure 6. 7 
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An Elman recurrent network. 

Figure 6.7 

6. 7 .1 Elman network analysis 

Outputs 

Hidden 

Inputs 

Pham and Liu, (1995) offer the following analysis of the network. 

Vector and matrix notation have been changed to be in accord with 

previous work. 

Set the input vector as x(k - 1) and output vector y(k) with hidden units 

activation as u(k) with context unit outputs as uc(k). From Figure 6.6 

the following equations apply: 

u(k) = f(W2 uc(k), W1 x(k-1) ), 

uc(k) = u(k-1 ), 

y(k) = W3 u(k), 
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Where W1 is the input to hidden layer matrix of weights. W2 is the 

context layer to hidden layer matrix of weights. W3 is the hidden layer 

to output matrix of weights. f is a non linear activation function. 

If the hidden units have linear activation functions, with zero biases for 

hidden and output functions, the above equations become: 

u(k} = W2 uc(k} + W1 x(k-1} 

uc(k} = u(k-1 } 

y(k) = Wyx x(k} 

The x(k) and y(k) equations, for the linear activation functions describe 

standard state space equations of dynamic systems. The order of the 

model is dependent on the number of states, which is the number of 

hidden units. 

6.8 Probabilistic Neural Network. 

The probabilistic neural network architecture was presented in two papers by 

Specht (1990). This network provides a general solution to pattern 

classification problems by following an approach, developed in statistics, 

called Bayesian classifiers. 

Bayes theory, takes into account the relative likelihood of events and uses a 

priori information to improve prediction. The network paradigm also uses 

Parzen (1962) estimators, which were developed to construct the probability 

density functions required by Bayes theory. 

Hagan, Demuth and Beale, (1996) describe it as a parallel implementation of 

a standard Bayesian classifier. They then describe it as a three layer network 

that can perform pattern classification. ( In their work the inputs are a layer). 

The statement that follows is that the network is not trained, "training vectors 

are the weight vectors in the first layer''. The observation that the probabilistic 

neural network does not require training is given as its major advantage. 
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The disadvantage quoted is that the weight matrix can be very large if there 

are many vectors in the training set. An offered solution is a clustering 

operation to reduce the matrix size. 

LiMin Fu, (1994), clarifies the method. The probabilistic neural network 

encodes each training pattern as the input weight vector. The net input to unit 

i being given by: 

Zi = xWi , where x and W are normalized to unit length. 

An example of a probabilistic neural network is shown in Figure 6.8. This 

network has two layers. The network contains an input vector which has as 

many neurons as there are separable parameters needed to describe the 

objects to be classified. It has a pattern layer, which organizes the training set 

such that each input vector is represented by an individual neuron. Finally, the 

network contains an output layer, called the summation layer, which has as 

many neurons as there are classes to be recognized. Each neuron in this 

layer combines via neurons within the pattern layer which relate to the same 

class and prepares that category for output. As with the counter-propagation 

network, the input vector must be normalized to provided proper object 

separation in the pattern layer. 
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The probabilistic neural network. 

Figure 6.8 
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LiMin Fu, (1994), summarizes: 

Basic structures 

Input vectors, a layer of pattern units and a layer of output units. 

One to one correspondence between pattern units and training examples, 

pattern units = training examples. 

Each output unit corresponds to a class (category). 

A pattern unit connects to an output unit if and only if the corresponding 

example is labelled the corresponding class. 

Weight initialisation 

The input weight vector of pattern unit i is initialized to the ith pattern vector, 

which is normalized to unit length. 

The input weight vector of every output unit is initialized to a vector of 1 s. 

Calculation of activation 

The activation of input units are determined by the pattern presented to the 

network. The input vector is normalized to unit length. 

The activation of Oi of pattern unit j is given by: 

Oi = exp{(LWji Xi - 1 )lei 

Where Wji is the connection weight from input unit i to pattern unit j and 

Xi is the activation of input unit i. 

The activation of Oi of output unit j is given by: 

Oi = 1 /m P( <X>j)LWji Oi 

Where wii is the connection weight from pattern unit i to output unit j, m 

is the number of training examples labelled class roi and P(roi) is the 

prior probability of roi. 
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The decision of the network is the class corresponding to the network with 

maximum activation. 

Network learning 

The weights are non adjustable. 

When a new pattern arrives, a pattern unit is added and the associated 

weights are initialized as previously stated. Nothing is said about the addition 

of outputs for further classes. 
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Examples 

01 This example conveys the concept of associative memory retrieval. 

Use the weight matrix (W) construction for an associative Hopfield network. 

Inputs are bi-polar, (-1, 1) 

determineW ifx1T = (-1, -1, -1, -1, 1) 

X2T = (-1 -1 -1 1 -1 ) 
' ' ' ' 

Y~T: (-1 -1 1 -1 -1) "' , ' , , 

X4T = (1 -1 -1 -1 -1) 
' ' ' ' 

XsT = (1 -1 -1 -1 -1) ' , , , 

Use X3 as the probe vector, is it retrieved on the first iteration? 

A 1 Using the outer products to construct the weight matrix: 

W = :E(xirXi - In) where Xi is the given n-dimensional bipolar vector (1, -1 ). 

W = (x1 T X1 - Is) + (x2 T X2 - Is) + (X3 T X3 - Is) + (x/ X4 - Is) + (Xs T Xs - Is) 

0 -1 -1 -1 -1 

-1 0 -1 -1 -1 

W= I 
-1 -1 0 -1 -1 

-1 -1 -1 0 -1 

-1 -1 -1 -1 0 

Using f(x3W) = f(2, 2, 4, 2, 2) = (1, 1, 1, 1, 1) it is not retrieved. 

03 Bi-directional associated memories may be used in pattern relationships. 

If a BAM network is used to store the tabled vector pairs, construct the weight 

matrix and determine if: 

Does A1 used as the probe vector retrieve 81 correctly on the first iteration? 

Does 81 used as the probe vector retrieve A1 correctly on the first iteration? 

Original vector Associate vector 

A1 = ( -1 , -1 , 1 , -1 ) 81 = (-1 , 1 , -1 ) 

A2 = (-1, -1, -1, 1) 82 = (-1, -1, 1) 

~= (-1, 1, -1, -1) 83 = (1, -1, -1) 

~ = (1, -1, -1, -1) 84 = ( -1 , -1 , 1 ) 
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A3 By outer products W = 

4 0 -2 

0 0 2 

0 0 2 

0 4 2 

f(A1 W) = f(-4, -4, 0) = (-1, -1, -1) which is not correct. 

f(B1WT) = f{-2, -2, -2, 2) = (-1, -1, -1, 1) which is not correct. Note, on this 

iteration 81 has retrieved A2. 

Q3 Kohonen self-organizing maps cluster results into a specified number of 

classes, this example illustrates the clustering concept. This is based on an 

unworked and unexplained example from LiMin Fu 1994. 

Gluck and Corter, (1985), devised the following formula for comparison of 

clusterings with different numbers of categories. 

K 

2: P(Ck )2: 2: P(Ai =vii I ck)2 - 2: 2: P(Ai = vij)2 

k=1 I j I j 

K 

Where K is the number of clusters, Vii is the jth value for attribute Ai and Ck is 

the kth cluster. 

Clustering A Clustering B Weight Shape Colour 

1 1 light sphere red 

1 3 heavy sphere red 

1 3 heavy sphere green 

1 1 light sphere green 

2 2 light sphere blue 

2 2 heavy cube blue 

2 2 heavy cube red 

2 2 heavy sphere blue 

2 2 light cube red 

132 



Compare the clustering schemes and decide which is preferred. 

A2 For clustering A 

2 

L P(Ck )IL P(A = Vij I Ck)2 - LL P(A = Vij)2 

k=1 I j I j 

K 

Table of probabilities. 

Cluster P(Ck) P(Ai = VijDCk) P(A =Vii) 

Weight Shape Colour Weight Shape 

C1 4/9 L 1/2 s 1 R 1/2 L 4/9 s 2/3 

H 1/2 c 0 G 1/2 

C2 519 L 215 s 215 R 215 H 519 

H 3/5 c 3/5 8 3/5 c 1/3 

Substituting in the equation: 

(4/9}x[4x(1/2)2 + 11+ (5/9)x3[(2/5)2 + (3/5)21- [2x(4/9)2 + (2/3)2 + (5/9)2 +(2/9}2 + 2x(1/3)2J 

2 

= 0.1679 (rounded) 

Colour 

R 4/9 

G 219 

8 1/3 
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For clustering B 

Table of probabilities. 

Cluster P(Ck) P(Ai = ViiDCk) P(Ai =Vii) 

Weight Shape Colour Weight Shape Colour 

C1 219 L 1 s 1 R 1/2 L 4/9 s 2/3 R 419 

H 0 c 0 G 1/2 

C2 519 L 215 s 215 R 215 

H 3/5 c 3/5 B 3/5 H 519 G 219 

c 1/3 B 1/3 

C3 219 L 0 s 1 R 1/2 

H 1 c 0 G 1/2 

Substituting in the equation: 

2x(2/9)xf1+1+2x(1/2)2J+(S/9)x3[(2/5)2+(3/5)2J - f2x(4/9}2 + (2/3)2 + (5/9)2 +(2/9)2 + 2x(1/3)2J 

2 

= 0.2790 (rounded). 

Clustering B offers the higher probability. 
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Chapter 7. 

PRACTICAL INPUT METHODS 

Summary 

When neural networks are moved from the realms of computer models to 

practical applications the inputs are obtained from sensors, for which effective 

function requires suitable signal strength and response speed. This brief 

chapter suggests some mechanisms; some practical examples of sensor use 

have been downloaded from the Internet. 

7 .1 Data representation 

Biologically equivalent inputs are engineered translations of one or more of 

the five sensory functions associated with humans. The neural network inputs 

can extend the sensitivity beyond the range associated with humans. 

The sensory signal may be discrete. The two state signal is described in a 

neural network in binary or bipolar terms. Practical circuits may achieve either 

discrete state in response to signal strength many ways. 

Continuous input data can be voltages, currents, lengths, masses, times, 

chemical, optical, or thermal measures. They may be standardized, by some 

transformation to the range 0 to 1 . 

Sensor output signals are usually transformed to an electrical form for use in 

the network. Several electrical devices are included in a text by Chickoki 

(1994) that are applied in signal processing. 

The following table gives some examples of sensors and the methods of 

signal transformation from personal experience. 
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Source Signal transformation 

Mechanical, linear Stepping motors, solenoid displacement, 

or angular pressure transducers. 

movements. 

Mechanical, Coanda effect devices, turbulence 

fluidics. amplifiers. 

Thermal, radiation. Optical pyrometer colour matching, nested 

thermopile. 

Thermal, Thermocouples, bi-metal strip movement, 

convection and fluid movement. 

conduction. 

Optical. ·· Light intensity, colour gradation. 

Electrical. Schmitt trigger, voltage and current 

transformers and impedance based 

devices. 

Time. Clock pulse, capacitor charge and 

discharge, divide and count circuits. 

Sensors and signal sources. 

Table 7.1 

7.2 Scent 

The equivalent of the olfactory organ is the neural nose, in which "sniffing" 

draws an air sample and determines the amount of a particular chemical 

present in the sample. This technique may have practical application in the 

detection of drugs, freshness of foods and air condition. Police dogs are 

thought to track certain criminals by their body odours and the neural nose 

was being reviewed for this purpose as reported in Chemistry in Britain July 

1995. 
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Limitations of the system will be, the levels at which sensory detection may be 

made, the response time for detection and the time taken to produce a 

meaningful corrective action. 

If for example an volatile petroleum derivative is present in the extraction line 

of a fuels plant it may prove a fire hazard at a certain level. The level at which 

detection must be made of the substance, is relative to the hazard level, the 

surrounding gases and it's current rate of increase. 

Recently artificial noses have been developed that measure the amplitude, 

intensity, or quality of smell. The potential uses of these "electronic smell 

fingerprints", which can run continuously, range from food quality control to 

drug detection. 

True simulation of the human nose is an impossible task, nature's version 

has some 10 million olfactory receptors of 30 different types, which work in 

parallel to absorb a range of odour molecules. When an odour molecule 

reaches receptors that match its particular pattern, the receptor via the 

nervous system sends a signal to the appropriate brain region. It is thought 

that the number and location of the engaged receptors is analysed, producing 

an odour image, which is compared to images within the brain's memory. 

As early as 1990 a prototype olfactroscopy instrument, was produced which 

contained sensors based on the conducting polymers of pyrrole and aniline, 

which are sensitive to the characteristics of volatile chemicals producing the 

aroma. The sensors absorb then quickly desorb the volatiles at the polymer 

surface, causing temporary changes in their electrical resistance from which a 

digital output may be displayed which is specific to a particular odour. 

7.3 Sight 

The human eye is limited in it's range of visual detection to a portion of the 

spectrum of accessible wavelengths. Neural networks in brain simulation 

should offer the ability to detect beyond the range of normal human vision. 
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Limitations may be found when recognition is obscured by optical distortions, 

or if fuzziness occurs due to white light interference. 

A well known painting by Salvador Dali (Slave market with the disappearing 

bust of Voltaire 1940) an illusion was created in which the brain perceives the 

face of the philosopher Voltaire or three figures against a light background. 

Gilling and Brightwell (1982), observe that when a machine is built that 

simulates the brains ability to respond to these illusions we will understand 

how human beings see. 
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7.3.1 A potential visual application in flour milling. 

In the flour milling industry judgements of mill roll adjustments have 

been experience based. Observation of the millers behaviour showed 

the adjustments were made after passing the cupped hand under the 

lower cutting roll. The miller now compressed the drawn sample 

between both hands. He turns the hands over, examines the now 

inverted sample and adjusts the gap between the rolls. 

The pattern of behaviour was studied so that the a methodical 

approach could be substituted for the miller's experience. A watch 

glass moved at a constant speed and fixed distance under the roller 

was used to gather a similar sample. A second watch class was 

pressed into the first and the pair inverted. Examination showed the 

sample to change colour in the direction of watch glass movement. The 

miller explained that the proportion of bran darkens the flour output. His 

adjustments being made to obtain uniform colour. 

A neural network could provide the signals that would allow automatic 

adjustment to maintain uniform mill output. A set of expected output 

patterns could be gathered from the rolls, using pre-set increments of 

roll adjustment. Optical scanning for colour density from process 

sampling would provide the input signals. A supervised learning 

network could be trained, so that when a pattern match was recognised 

the appropriate output signal would be given. 

7.3.2 Internet visual sensor examples. 

The following two examples of sensors that have potential for neural 

network inputs have been downloaded from the internet. The request 

to the search engine was, sensory detection, electro-mechanical. 

Cases are given without modification, although my comment is given 

on the potential neural network technique. 
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Case 1 

Environmental as well as economic factors are pushing forward the 

development of sensors and technologies for precision farming 

practice. Selective application of herbicides requires information on the 

location of weeds in the field. This information can be supplied as maps 

created and maintained by Geographical Information Systems (GIS) or 

acquired by sensors during application. 

In this work, a sensor for automatic detection of weeds in the field was 

developed and tested. Visual detection of weeds requires 

discrimination between soil and plants, as well as discrimination 

between crop and weeds. The developed sensor was based on a multi­

spectral imaging system in the range of 500-1 OOOnm. An electronically 

tunable filter (Acousto-Optic Tunable Filter - AOTF) was coupled with a 

high resolution CCD camera and a frame grabber. 

The developed sensor was mounted on a mobile platform and a large 

database of images was constructed by acquiring images of cotton 

plants and weeds in their early stage of development. Images were 

acquired from 500 to 1 OOOnm in 5nm increments. Images were then 

analyzed and characteristic features of cotton plants and weeds were 

calculated. Weeds detection was based on spectral reflectance 

properties of their leaves and on shape analysis. ( Alchanatis, Hetzroni, 

and Edan). 

Comment: 

This may be a case for data clustering, using a Kohonen network. The 

sensors have created a large number of images. An aerial release of 

suitable herbicides could be triggered by the trained network as the 

terrain scanned is fitted to a particular cluster. 
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7.4 Taste 

Case2 

Three dimensional information has a major role in the commercial 

sorting and grading of fresh produce. The reliable extraction of such 

information for machine vision applications is usually accomplished 

through stereo vision or structured light. Stereo methods require 

multiple cameras or computationally intensive algorithms and are thus 

not suitable for a commercial system. As a simple application of 

structured light, a low-cost red diode laser with a line generator was 

used to project a line on apples, and the images were acquired through 

an array CCD camera. The images were then thresholded to extract 

the projected curve. The curve was then smoothed using a Savitzky­

Golay filter and 'breaking points' were identified as local maxima of 

curvature. 

Results show that it is possible to reliably identify a stem or a calyx 

using robust and simple criteria. For apple bruises the situation is far 

more difficult and at the current stage a detection system has to take 

into account spectral information for acceptable reliability. ( Lev, Gofer). 

Comment: 

The observation of the need for "multiple cameras or computationally 

intensive algorithms" may indicate the possible use of sample data in a 

neural network. A recurrent network using error correction training 

could provide real time decisions in production. 

Other sight dependent sensors include elevated temperature 

evaluation (radiation) by optical pyrometer and interferometry in precise 

physical measurement. 

The artificial simulation of taste is extremely complex, for a particular problem 

such as wine tasting the many factors may include, sweetness, bitterness, 

acidity and a range of contaminants associated with the process. The latter 
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may be associated with the cultivar, characteristics of the growing area, 

fertilizer chemicals, local water supplies and maturation casks. 

The expected output patterns could be provided from wines graded by human 

tasters, the submitted wines being classified into a particular pattern. The 

benefits could be the elimination of false grading due to human error caused 

by age deterioration of taste sensitivity and masking by the presence of 

external pollutants. 

The sensors may be spectrographic or of a similar nature to those used in the 

neural nose. 

7.5 Touch 

Touch sensitivity may be related to frequency and amplitude, as in vibrating 

strings, surface roughness, or machine vibrations. Touch may also be used in 

thermal detection, current or voltage probes, or motion sensing . 

A typical vibration input might be from the movement of a tracer probe as is 

the case with the 'Rank Taylor Hobson Talysurf' surface roughness 

measuring machine. Transducers amplify surface irregularities to produce 

traces that may be used to detect deviations from expected surface finishes. 

Neural networks may find a use in the determination of excessive process, or 

machine vibration that could cause premature failures. 

Thermal conduction may be detected by thermocouples, or thermometers. 

Thermocouples produce continuous electrical signals which may be amplified 

for neural network use. Thermometers are unlikely to provide usable sensory 

signals for neural networks. 

Vibration patterns arise from a wide variety of causes ranging from earth 

tremors to machine chatter. The use in neural networks may involve patterns 

generated by changing amplitude and frequency. 
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7.6 Sound 

The vibrations transmitted through a fluid medium that are received by the 

human ear produce sounds. These sounds may be used industrially to detect 

potential troubles in process plant or machinery. 

The primary considerations are frequency, amplitude, cut off length and the 

waveform. 

The following two examples were downloaded, without modification, from the 

interrnet. 

An acoustic impulse method was used for the non-destructive firmness 

evaluation of pineapple fruit of a wide range of internal maturity. Batches of 

pineapple fruit (cv. Cayenne lisse), from Ivory Coast, were harvested at 140, 

143, 145 and 148 days after the floral induction treatment. Mechanical 

properties of pineapple fruit were also measured by using a texturometer. 

Deformation, tensile and puncture tests were carried out on each pineapple 

respectively on the whole fruit, a standard shaped specimen of skin and on 

the core part of three slices of each fruit. The chemical composition of the 

entire fruit pulp was then analyzed to determine refractometry index, total 

sugar content and titratable acidity. Pineapple fruit spectrum displayed three 

main resonant peaks for the spherical mode. The resonant frequency of 

greatest amplitude and the resulting elasticity coefficient from 420 to 320 Hz 

and from 2 to 1.09 MPa respectively as the physiological development of the 

fruit increased. 

Pineapple stored at 1 OOC for a week exhibited lower resonant frequency and 

elasticity coefficient than references of the same maturity. Elasticity coefficient 

was found to be highly correlated to mechanical firmness (r=0.80) measured 

by deformation on individual whole fruits. The relationship was improved 

(r=0.91) by using mean values for the different fruit batches. Elasticity had a 
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significant correlation with titratable acidity (r=-0.69) and refractometry index 

(r=-0.58), but was very poorly correlated to puncture core firmness (r=0.24) 

Elasticity coefficient, obtained from acoustic measurement, may be 

considered as a promising way for non-destructive evaluation of global 

pineapple firmness (Valente, M. Duprat, F. Grotte, M) 

Defense Research Technologies, Inc. (ORT) and the United States 

Department of Agriculture, Agricultural Research Service, entered into a 

Cooperative Research and Development Agreement (CRADA) several years 

ago to exploit the ultra-high sensitivity and low noise of acousto-fluidic 

microphonic sensors in the detection and quantification of insect pests in grain 

and stored products. 

ARS has developed a technique for quantifying the number of insects 

(including internal feeding larvae) in a sample of grain called ALFID (Acoustic 

Location Fingerprinting Insect Detector). Individual insect sounds (from 

chewing, moving, etc.) are cross-correlated to determine relative times-of­

arrival to multiple sensors. 

This data is arranged in vectors, each indicative of a sound source location 

(akin to triangulation) and are compared and grouped to identify the number 

of sound locations (i.e., insect locations) in the sample. The effectiveness of 

this method has been limited due to the inadequacy of conventional 

microphones and the high cost of laboratory-grade-sensors. 

Initial experiments with acousto-fluidic amplifiers that raise the acoustic 

amplitudes to high enough levels where very low cost electret microphones 

can readily process the sounds, have been extremely successful. We have 

been able to demonstrate a signal-to-noise ratio improvement that has 

resulted in an insect detection probability improvement of almost a factor of 

three. In fact, in three separate experiments with sample sizes of 64, more 

than half of the acousto-fluidic detections could not be discerned 

. conventionally. 
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The three-stage acousto-fluidic amplifier, powered by a small aquarium pump 

and with an acoustic gain of 56d8 and a bandwidth of 1 -?kHz, driving a pair 

Tibbetts 251-01 electret microphones, is able to detect and process sound 

levels of less than OdB SPL (referenced to 0.0002 microbar). We have been 

able to reliably detect a two-week old rice weevil larva inside a grain of wheat, 

in a 1 kg sample of grain, at a distance of over 1 Ocm. Production cost of such 

a sensor will be on the order of $100, including the electronics and pneumatic 

power supply. 

In the next year we are planning to fully instrument an ALFIO system to 

demonstrate reliable insect quantification and hope to improve the confidence 

levels to better than 95-percent. Since inadvertent infested grain shipments 

(shipments that were thought to be clean based on visual insect detection) 

account for multi-million dollar annual losses it is anticipated that the acousto­

fluidic version of ALFID system will greatly improve grain export cost 

effectiveness. 

With future funding of the development of acousto-fluidic devices for the grain 

and stored products industry, monitoring of insect infestations in silos and 

packaged goods will be possible. 

We also hope to be able to advance the technology of infestation 

quantification by using large arrays of multiplexed sensors coupled with ARS 

developed insect population algorithms.( Drzewiecki, T. M. Shuman, D.) 

7.7 Multi-sensing 

There may be cases of pattern recognition in which more than one sense is 

used. 
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Many modern performers in the arts world rely on optical and sound stimuli to 

impact on their audience, it may be that a suitable neural network could 

classify patterns in terms of the perceptions of different population sectors. 

The following example is downloaded without modification from the internet. 

During ageing, fruit and vegetables undergo a process of softening and loss 

of weight. A sensory system to monitor the softening of fruit in sealed 

commercial controlled atmosphere chambers would be a useful aid to making 

decisions on due times for marketing. 

In recent years, it has been found that this softening process can be 

measured very accurately through the vibration resonance frequency of the 

fruit. On the basis of this discovery, a commercial system has been developed 

to monitor the firmness of fruit samples in CA storage from a remote point. 

Each single monitor contains a flexible piezoelectric film connected to a 

central computer and mounted on top of the individual sample fruits during the 

entire storage period. The firmness of the sample is calculated from the 

resonance frequency of vibrations excited by gentle taps induced on the 

cheek of the samples. Operation of the system and the accumulation of data 

are fully automated. 

Over the 1996-97 season, trials were conducted on four kinds of fruit: Red 

and Golden Delicious apples, Spadona pears, Triumph persimmons and 

Hayward kiwifruit. These trials were conducted in six commercial CA 

chambers in Kiryat Shmona, northern Israel. The monitors for pears were 

located in the center of the chamber and by the window, with and without 

polyethylene covering. Pears in the center of the chamber maintained their 

firmness (26FI - 30FI) for six months, whereas covered pears located by the 

window lost some ten units of firmness during the same period and uncovered 

pears by the window lost 15 - 20 units. Golden Delicious are sensitive to loss 

of moisture, a factor which directly affects their quality. 
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The remote sensing trial showed that this fruit maintained its firmness far 

longer when humidity in the chamber is kept high by misters. In Red 

Delicious, the results showed that the fruit maintained its firmness over a 

period of eight months' CA storage (with a slight rise during the first month) at 

25 - 35 Fl. Persimmons softened during storage, and the sensing system 

gave an accurate indication of the optimal time to open the chamber to market 

the fruit. In the case of kiwifruit, further research is required, over a longer 

period of storage. 

When pears, Golden Delicious apples and persimmons are put into long-term 

storage at an unsuitable state of firmness, they do not maintain their quality. 

The ripeness monitoring system shows the state of the fruit in "real time", so 

that the fruit can be removed from storage while its quality is still high enough 

for the market.(Levin, A Sandler, N. Carmi, Y. Shmulevich, I N. Galili, N.) 

For neural network advances the hardware must be capable of replicating the 

massive parallelism that exists in the biological neuron. Some research is 

devoted to the production of processors that are tailored to performing the 

tasks of individual artificial neurons. An alternative is to package several fast 

RISC processors to a board, with hardware accelerators, to increase the 

parallelism of neural networks. 

Fan out, the ability to drive other neurons, is provided by other accelerator 

boards for subsequent processing. 

DACS homepage reports that accelerator board products are being 

developed both independently and. by the makers of neural network 

development systems. 
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Examples 

Q1 Suggest some practical input devices from which bipolar inputs may be 

achieved? 

A 1 A wide variety of answers may be given, two examples from my own 

background in the mechanical field are: 

Fluidics wall attachment devices in which the Coanda effect results in a signal 

from one of two exits in the manner of the electrical JK flip-flop. 

Go/not go gauging in which the decision of high or low sized components are 

discreet results. 

Electrical equivalents are available in filtered negative and positive voltages. 

Movement detection often results in continuous measurement. Use of fixed 

limit stops can turn the motion boundaries into positive and negative signal 

generators. This may find use in chemical, electrical and mechanical fields. 
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Chapter 8. 

RECENT DEVELOPMENTS 

Summary 

The following examples were gleaned from the many cases explained on the 

Internet. Students or designers seeking ideas for neural network applications 

may find the inspiration needed through the same source. 

8.1 General 

The renewed interest in neural networks since the 1980's has attracted the 

attention of scientists in many fields. An examination of the topic on thia 

Internet can reveal many applications and should provide ideas for many 

practical applications. On a domestic level a microwave oven has been 

developed that has been trained to respond to certain food cooking patterns. 

Three practical examples from different spheres are given to illustrate the 

versatility of this technology. 

8.2 Image segmentation 

Closely related to the European Community funded AIR-project "Objective 

Plant Quality Measurement by Digital Image Processing", basic research is 

carried out to develop smart segmentation procedures. After reporting 

successful image segmentation of plants, using supervised trained neural 

networks (1 ), now a new successful unsupervised image segmentation 

procedure can be mentioned. 

Two approaches are followed during the development: procedures, focusing 

on the centres of the clusters to distinguish; procedures, focusing on the 

separation of clusters by discovering areas with low occupation in an high 

dimensional environment. 
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The first approach did not result in qualitative good segmentation, even with 

extreme high investments in computing power. One of the experienced 

disadvantages of this approach, comparable to region growing techniques, is 

that weak connections between different clusters easily can result in fusing of 

clusters. The second approach however has shown to be successful. The 

segmentation of colour images (RGB) distinguishing leaves, flowers, stamen, 

pot and background, is performed in a 18 dimensional environment, 

representing the R, G and 8 values of each image point together with 

additional information from the direct environment to achieve separability of 

the clusters to distinguish. 

At this point in research the method is restricted to linear separability of the 

clusters. Considering a two dimensional environment, clusters can be divided 

by lines, in a three dimensional environment by planes and in n dimensional 

environment by n-1 dimensional structures. Starting with the complete data 

set the first neural network represents a seventeen dimensional structure to 

divide the data set in two subsets. 

By unsupervised training this structure is placed in the eighteen dimensional 

space through areas with low image point density. Each distinguished subset 

again is divided by an additional neural network: recursive partitioning. This 

results in a tree structure with at each branch a neural network. 

Partitioning stops as soon as in a branch the separability criterion can't be 

fulfilled. After the unsupervised training the neural system can be used for the 

segmentation of images. (J. Meuleman, J. & van Kaam, C). 

8.3 Insect detection 

In agriculture, the detection and identification of insect pests is often car:ried 

out manually using trapping methods. Recent advances in signal processing 

and low power electronics have introduced the possibility of automatically 

identifying species that produce sound either as a communication signal (e.g. 

mating) or as a by-product of movement (e.g. flying) or eating. There has 
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been much research into the acoustic detection of insects in stored produce 

and successful results have been obtained for a number of species. However, 

actual identification of species has received very little attention in entomology 

despite recent successful work on bird and amphibian species identification. 

This paper is based on work carried out at Hull on the development of an 

automated system for the recognition of Orthoptera species (grasshoppers 

and crickets) which makes use of advanced signal processing techniques 

coupled with an artificial intelligence analyser based on an expert system or 

an artificial neural network. 

The primary signal processing technique is called time-encoded speech (TES) 

which is computationally much less complex than frequency domain methods 

such as FFT's and acts as a preprocessor for the artifiicial intelligence 

analyser. Over 99% detection accuracy has been obtained with 7 species of 

British cricket, bush cricket and grasshopper using a neural network. The 

system is based on a personal computer and a low cost sound card thus 

allowing portability. 

The paper will describe the principles of operation of the system and show 

results to date on Orthoptera and other orders. It will also discuss the potential 

for insect pest species identification and wider application for other orders, 

phyla and acoustic sources such as cavitation. (Chesmore E.D.) 
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Chapter 9. 

FUTURE TECHNOLOGY 

Summary 

Future advances in neural network technology will depend on the advances in 

hardware, as well as the advances in understanding of the way in which the 

brain functions. Considerable funding is available to researchers in the 

western world, as evidenced by defence industry investment. 

9. 1. Dedicated Neural Processors. 

Dedicated neural processors are processors with specific capabilities that 

enable their use in neural networks. Several of the large chip manufacturers 

have developed neural processors, some of which are processors created 

specifically for the development system vendors. Modern technology has 

enabled packaging of a number of simplistic neurons onto a single chip. Some 

integrated circuits incorporate proprietary concepts, such as creating specific 

types of fuzzy neurons. Technologies range through a broad spectrum­

analog, digital, optical, some of which are linked to create hybrids. No single 

type appears to have emerged as a clear winner at this time. 

9.2 Developmental approaches 

The vendors within the industry predict that migration from tools to 

applications will continue. In particular, the trend is to move toward hybrid 

systems. These systems will encompass other types of processes, such as 

fuzzy logic, expert systems, and kinetic algorithms. Indeed, several 

manufactures are working on "fuzzy neurons." 

The greatest interest is on merging fuzzy logic with neural networks. Fuzzy 

logic incorporates the inexactness of life into mathematics. In life most pieces 

of data do not exactly fit into certain categories. For instance, a person is not 
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just short or tall. He can be kinda short, pretty tall, a little above average, or 

very tall. Fuzzy logic takes these real-world variations into account. In 

potential application of neural networks, in systems that solve real problems, 

this fuzziness is a large part of the problem. In automating a car, to stop is not 

to slam on the brakes, to speed up is not to "burn rubber." To help neural 

networks accommodate this fuzziness of life, some researchers are 

developing fuzzy neurons. These neurons do not simply give yes/no answers; 

they provide a more fuzzy answer. 

Systems built with fuzzy neurons may be initialized to what an expert thinks 

are the rules and the weights for a given application. This merging of expert 

systems and fuzzy logic with neural networks utilizes the strength of all three 

disciplines to provide a better system than either can provide themselves. 

Expert systems have the problem that most experts don't exactly understand 

all of the nuances of an application and, therefore, are unable to clearly state 

rules that define the entire problem to someone else. The neural network 

doesn't care that the rules are not exact, for neural networks can then learn, 

and then correct, the expert's rules. It can add nodes for concepts that the 

expert might not understand. It can tailor the fuzzy logic that defines states 

like tall, short, fast, or slow. It can tweak itself until it can meet the user­

identified state of being a workable tool. In short, hybrid systems are the 

future. 

9.3 Hierarchal network application 

A mobile robot whose behaviour is controlled by a structured hierarchical 

neural network the robot has four wheels that permit free movement using a 

drive motor and a steering motor. (Nagata, S. & Sekiguchi, M. & Asakawu, K.) 

Twelve sensors monitor internal conditions and environmental changes that 

provide the network inputs, the outputs being used as motor control signals. 
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The network is divided into two sub networks connected to each other by 

short-term memory units that are used to process time dependent data. 

Robot control involves complex motion control, with its associated sensor 

signal processing, which is not suited to the sequential processing of von 

Neumann type computers. 

Mobile robot must be flexible in their learning and adaptation capabilities from 

their sensors, so that they may respond to environment changes in real time. 

The conventional von Neumann would be programmed in advance so that 

environment changes detected by the sensors would be referred to the 

higher-level decision maker. By contrast, the neuro-computer would be 

flexible to unexpected situations by using learning and interpolation 

capabilities. 

The robot was designed to move freely in confined spaces and sense 

environmental changes. 
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Chapter 10. 

NEURAL NETWORK TYPES 

Summary 

ART1 

ART2 

ART3 

BAM 

The following descriptions of some networks and related applications have 

been acquired from a wide variety of published texts. 

Adaptive resonance theory initial version for processing binary input patterns 

only. This accepts an input vector and classifies it, by similarity, into one of a 

number of stored patterns. Patterns that are distant from the stored patterns 

lead to the creation of new grandmother cells. Carpenter, and Grossberg, 

(1986). 

Adaptive resonance theory second version for processing real input patterns. 

It is a development that can classify binary and continuous outputs. 

Carpenter, and Grossberg, (1987). 

Adaptive resonance theory improvements on the second version offering 

greater stability for processing real input patterns. Carpenter, and Grossberg, 

(1990). 

Bi-directional associative memories, the activation resonates between two 

sets of processing elements until a stable state is reached. Koska, (1988). 
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Boltzmann machine 

A distributed parallel processing algorithm, based on statistical mechanics, 

stable solutions being found from simulated annealing.(Ackley, Hinton, and 

Sejnowski, (1985). 

BSB (Brain state in a box model) 

A simple associative network coupled to non linear dynamics, it is unable to 

learn difficult discriminations. A group of neurons feeds back on itself. 

Anderson, Silverstein, Ritz, and Jones, (1977). 

Counter-propagation network 

The inputs feed a Kohonen layer to an outstar layer, when the network is 

connected it accepts inputs and generates outputs simultaneously, thus 

allowing counterflow through the system. 

Feed-forward network 

A network in which flow is unidirectional from inputs to outputs. 

GMDH (Group method data handling) 

A network that builds solution equations, (see Chapter 6) 

GRNN (General regression neural network). 

A three layer network having one hidden neuron for each training pattern, 

these networks are used to train quickly with sparse data sets. Useful for 

continuous function approximation, reported by Ward Systems to be superior 

to backpropagation networks for many types of problems, Specht, (1991 ). 
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Hopfield networks 

Single layer attractor networks in a wide variety of designs. Useful for auto­

association and optimization tasks, the concept is that a single network of 

interconnected binary valued neurons can store multiple stable states. 

Kohonen self organising network 

The network differentiates into multiple regions, each of which is responsive to 

a specific stimulus pattern. 

PDM (polynomial discriminant method) 

Based on the adaline this network uses a polynomial surface to categorise 

input patterns. 

PNN (probabalistic neural network) 

A neural network in which weights on the key layers are established according 

to probability based decision theory. A three layer network with as many 

hidden layer neurons as there are training patterns and one output neuron for 

each possible category. Specht, (1991 ). 
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Appendix A 

Portfolio selection 

An initial study intended to forecast a stock portfolio based on the 

Johannesburg Stock Exchange was well advanced, however the erratic 

behaviour of our exchange in this evolving democracy led to the project being 

abandoned. 

The factors used and the techniques applied may however prove useful at 

some future date so they are given as an appendix to this thesis. 

A.1 Spreadsheet construction 

For ease of interpretation into the commercial statistical and neural network 

programs the Excel spreadsheet prqgramme has been used 

Portfolio selection has been limited to part of the industrial sector to make a 

feasible database for this work. Elements chosen include Electronics & 

electrical, Beverages hotels & leisure, Building & construction, Engineering, 

Chemicals, oils & plastics, Packaging & printing, Food, Furniture & 

Household, Media and Pharmaceuticals. 

A.2 Input selection 

The inputs have been selected, or derived, from those that are freely available 

in South Africa from the following publications 

The ASSA Bank Investors' Guide which is published quarterly. 

The JSE handbook, which is, published half yearly. 

The financial mail reports. 

To avoid negative values in the neural network models, an artificial base has 

been applied as the ratio of value to the lowest value by sector. In this manner 

an across sectors portfolio may be constructed. The following example used a 

GMDH network, with some selected inputs to produce an alternative to 

regression methods for evaluating shares. 
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The raw data pattern is indicated by the following table abstract, 113 patterns 

of the patterns were used as input patterns. Of the chosen patterns 91 were 

used for training and 22 for test. 
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JSE Code Company Sector CA/CL R on CE Ron Equity PTP/T Debt to Equity NAV/M pr Liquidity P E ratio 

ABI Amalg beverage Ind BH&L 1.6068 25 25 10.8 0.9 29.2 2.12 16.5 

DSL Distillers corporation BH&L 2.9266 22.8 14 14 0 64.3 0.75 13.7 

ITL lnterleisure BH&L 0.6857 37.4 35.1 16.1 17.1 21.6 1.98 19.3 

KER Kersaf Investment BH&L 0.9357 18.5 16.8 25.2 17.3 59.3 3.65 13.2 

SAB SA Breweries BH&L 1.2809 23.7 33.4 9.2 53.5 17.5 8.65 20 

SFW Stellenbosch farmers BH&L 2.7313 13.7 8.5 7.4 3.2 121 2.74 13.1 

SIS Sun International SA BH&L 0.2734 15.6 18.1 18.5 21.2 55.3 15.44 7.6 

SPU Spur steak ranches BH&L 1.4375 142.1 106 45.4 2.4 8.5 9.21 12.9 

SRG SeNgro International BH&L 1.2495 28 22.6 13 26.2 59 8.42 24.9 

SUN Suncrush BH&L 0.9195 25.2 21.7 19.9 7.3 45 15.86 11.7 

AAL Alpha B&C 1.4036 17.6 14.7 22.3 8.2 40.1 6.07 9.5 
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The following table shows the approach used to exponentially weight data. 

Although this was written for several stock exchange categories only the food sector with a 4 year record is given 

JSE Code Company Sector CA/CL CA/CL CA/CL CA/CL wt a4 wt a3 wt a2 Ron CE Ron CE Ron CE Ron CE 

Retro years 0. 0.666 0.833 
BRL Brenner Mills Food 2.258 2.641 3.946 4.843 1.1290 1.76074 3.2888 47. 37. 24. 2 

CSF C&G Smith Foods Food 1.376 1.418 1.392 1.422 0.6883 0.94567 1.16007 17. 14. 15. 20. 

CAS Cadbury Schweppes Food 1.0 1.114 1.316 1.386 0.52 0.7428 1.09716 20. 22. 23. 24. 
COi Choice H Food 0.719 1.016 1.041 0.954 0.3597 0.67773 0.86816 -4. 7. 14. 2. 
CKS Crookes Brothers Food 1.495 0.59 0.93 2.70 0.747 0.39533 0.78249 6. 5. 1 11. 
DLF Del Monte Royal Food 1.205 1.201 1.195 1.048 0.602 0.80120 0.99616 10. 6. 6. 4. 

FDC Food corp Food 1.192 1.388 1.402 1.741 0.5964 0.92567 1.16882 10. 1 16. 16. 
HLH Hunt Leuchars &Hepb Food 1.341 1.264 1.079 1.090 0.6707 0.84327 0.8993 7. 6. 1. 0. 

ICS ICS Holdings Food 1.088 1.128 1.05 1.068 0.544 0.75260 0.87749 8. 13. 18. 2 
ILV lllovo Sugar Food 1.170 1.150 1.301 1.296 0.585 0.76693 1.08482 11. 6. 7. 14. 
IRV Irvin & Johnson Food 2.300 2.556 2.566 2.29 1.150 1.70440 2.13865 1 11. 1 10. 

LGB Langeberg Holdings Food 2.826 2.982 2.694 3.005 1.4134 1.98807 2.24574 23. 16. 18. 23. 
MOM Macadams Bakery H Food 1.54 1.61 1.821 2.286 0.774 1.07533 1.51816 11. 13. 3 
NFH Namibian Fishing Food 1.60 1.358 1.256 1.024 0.802 0.90593 1.04741 7. 7. 14. 4. 
NMS Namibian Sea Product Food 0.901 1.132 1.129 1.004 0.4508 0.75473 0.94149 6. 17. 16. 1 

NRK Northern Bakeries Food 1.768 1.1 0.917 1.162 0.8842 0.7466 0.7648 34. 1 -1. 8. 

OCF Oceana Fishing GroupFood 2.637 1.840 3.515 19.038 1.3189 1.22700 2.92990 37. 44. 53. 49. 

PML Premier Group Food 1.227 1.172 1.034 1.000 0.613 0.78193 0.86199 18. 19. 18. 15. 
RBW Rainbow chickens Food 0.599 0.6 0.755 1.405 0.2996 0.44000 0.62991 -6. 1. 2. -14. 

TIG Tiger Oats Food 1.498 1.544 1.418 1.545 0.7491 1.02953 1.18207 20. 17. 1 21. 

TNT Tongaat Hulett Group Food 1.813 1.6 1.705 1.958 0.9069 1.12000 1.42149 7. 8. 13. 16. 

WBH W B Holdings Food 1.482 0.166 1.274 1.007 0.7412 0.11120 1.06232 12. -8. 13. 5. 
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A.3 Actual inputs 

The selection of inputs that have a high probability of revealing the real state 

of the stock, in terms of its potential movement and estimated current value is 

critical to forecasting success. Too many inputs are better than too few as 

those shown to be of small impact may be eliminated during model 

assessment. The downside of a high input volume is the speed of processing 

that may be achieved. 

The portfolio selection will be a function of knowledge of the stock market 

state. Freely available inputs are from the JSE. 

Buy sell or hold decision for the acquired portfolio is based on weekly data 

from the "Financial mail", daily data is thought to be too noisy for practical use 

by the small investor. 

Some specialist inputs, that may be discovered, include company 

development strategies, staff to staff turnover ratio, export business 

proportions, resource investment, loss analysis in labour and materials and 

world trends for that industry. These have not been included in this study, as 

they require personal research for the selected stock. 

Portfolio selection inputs (These are for the past 4 years, weighted.) 

Current asset ratio = current assets/current liabilities (Considered to be 

reasonable when the ratio >3/2) This reflects the ability to repay short term 

debt and may be more valuable if stock could be excluded from assets, as 

they are not easily realized. 

Return on capital employed % is Pretax profit/Capital employed x 100. This is 

a direct measure of profitability. 

Return on equity % is Profit after taxation/ Average ordinary shareholders 

interest x 100. 
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Cash flow per share % is Net cash generated/ Weighted number of ordinary 

shares issued x 100. This would reflect the desirability of the stock to 

investors, if achieved without undue risks to the enterprise. 

Debt to equity % is Total interest bearing loans/ Total owners interest x 100. 

The indicator of how well debt is covered by equity, it may be an indicator of 

the ability to borrow for expansion, or new projects. 

Effective tax rate % is Current taxation/ Net income before taxation x 100. 

NAV/Market price % is Net asset value per share/ Market price per share x 

100. Indicates whether the share is correctly priced. 

Market capitalization (ordinary shares x current share price.) 

Log (market capital at year-end) is Log (Number of shares issued x share 

price at the year-end). This is a size measure of a company for which 

logarithms have been taken, because of the large range of values. 

Profit margin % is Pretax income/ Turnover x 100 

Stock decision criteria inputs (4 week weighted decisions are used) 

These are from the Financial Mail data. To simplify the inputs, in some cases, 

inputs are given weekly data to annual data ratios. 

Week advance/( 12 month high - low) x 100 (This simplifies the effect of 

change with respect to the year's change level, I.e. how important is the 

weekly change with respect to the year's change) 

Market capitalNolume of shares traded (This factor stabilizes the effect of 

company size. 

Dividend yield per share 

Earnings per share 4 quarters /Earnings per share financial year (Recent 

share earnings decline or growth should be revealed in this measurement). 
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A.4 Importance of inputs 

In the Neuroshell 2 programme the GMDH network may assist in studying the 

most important inputs. It performs a continuous evaluation of the inputs and 

excludes those it interprets as having little influence on the prediction of 

outputs. 

An alternative screening procedure recommended by Ward Systems to use 

the smoothing effect of the GRNN and PNN neural networks. From the final 

best model the smoothing factors rank variable importance on the scale O to 

3, where 0 is little or no importance and 3 is maximum importance. 

Input screening techniques decrease in accuracy with increasing numbers of 

inputs. It is suggested that for large numbers of inputs they are screened in 

sets of 20 with the winners being retained for the final network. In the event 

that two or more non-important inputs, in different sets, may be combined to 

be important we may re-examine the initial discards. 
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Appendix B 

MATHEMATICS FOR NEURAL NETWORKS 

This appendix is in the nature of minimum requirements for understanding 

published text on neural networks. It gives some of the methods, abstracted 

from a large body of linear algebra knowledge, that may be needed for 

processing neural network data,. 

8.1 Binary data representation 

The representation of data in computation has two extreme possibilities, the 

grandmother cell concept in which a single neuron of a group represents the 

inputs and outputs of an element of a data set, or distributed representation in 

which the element is identified by a pattern of activated neurons. The pattern 

of grandmother cells representing any numbers 1 to 7 would be: 

( 1) +------

(2) -+-----

(3) --+----

(4) ---+---

(5) ----+--

(6) -----+-

(7) ------+ 

A pattern for distributed representation can be achieved using less neuro~s, 

e.g.: 

1 + 

2 + 

3 + + 

4 + 

5 + - + 

6 + + 

7 + + + 
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In pattern recognition the grandmother cell approach gives conceptual clarity; 

when grandmother is recognized a single cell is activated. Distributed 

representation on the other hand may use some common activation for two 

different patterns. For numbers 5 and 7, neurons 1 and 3 would be activated. 

It is thought that biological functions lie between these extreme boundaries. 

8.2 Vectors 

Computations concerned with inputs to artificial neural networks involve 

ordered number sets called vectors. For a given number n of input elements 

we may use the designation a to describe a vector of elements. 

i1 

a= I i2 

in 

A vector is normally given in column form, transposition turns it into a row 

vector. 

a= 

3 

2 

-4 

-1 

2 

a T = (3, 2, -4, -1, 2) 

8.3 Neural network required vector operations in "R"" 

The basic operations are those of addition, subtraction, multiplication by a 

scalar and multiplication. 
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B.3.1 Addition and subtraction 

To add two vectors we add the corresponding terms 

3 

-4 

2 

+ 

1 

2 

5 

4 

: I -2 

7 

Drawing the 1st vector b, then starting the 2nd vector a, from the end of 

the 1st vector may illustrate the graphical addition of two vectors. The 

line joining the start of the 1st vector to the end of the 2nd vector is the 

sum vector a + b. 

The same result may be achieved by the parallelogram method 

Vector addition is commutative; it is independent of the order of 

addition. 

a+ b = b +a. 

To subtract vector b from vector a we subtract the corresponding terms 

3 

-4 

2 

1 

2 

5 

= 

2 

-6 

-3 

To show graphically the subtraction of vectors, we add the negative!Of 

b to a. 
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These procedures are easily accomplished within a spreadsheet. 

8.3.2 Scalar multiplication 

For vectors a and b and scalars k, k': 

k( a + b) = ka + kb. 

(k + k')a = ka + k'a. 

(k k')a = k( k'a). 

8.3.3 The inner product 

For the inner product, or dot product, or scalar product of two vectors, 

they are aligned and their corresponding elements are multiplied 

together, then the resulting products are summed. At the completion of 

this operation we have a single number, which is a scalar. 

Example 

Given a r = (5, 4, 1) and b=(3, 6, 2) 

then ab =(5)(3)+(4)(6)+(1 )(2) = 15 + 24 + 2 = 41. 

The inner product operation applies only to vectors having the same 

number of elements. A practical application of the inner product is the 

primary stage of generic network computing in which we relate the 

input pattern with the connection strengths. 

The scalar product of two vectors is the product of their lengths and the 

cosine of the angle between them. 

ab = laJ Jblcose where = lal is the vector length 

A three-component vector represents a hne in three-dimensional 

space, four or more component vectors are not visualized but may be 

thought of as line segments in hyperspace. 
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8.3.4 Length and distance in R" 

For vectors a r =( a1, az, . . . . , an) and b r =(b1, bz, . . . . , bn) the distance 

between points a and b is given by: 

dist(a,b) = '1((a1-b1)2 + (a2-b2)2 + ..... +(an-bn)2
]. 

Vector length (norm) is defined as the non-negative root of a.a 

/a/ = -Va.a = '1(a12 + az2 + ..... +an 2]. 

8.3.5 Normalizing 

The dot product operation applies only to vectors having the same 

number of elements. A practical application of the inner product is the 

primary stage of generic network computing, in which we relate the 

input pattern with the connection strengths. 

Geometric vector representations may help to visualise certain 

problems. A two element vector represents a point (a, b) on the x y 

plane, shown as a line joining the origin to this point. 

In certain circumstances it may be convenient to make vectors a unit 

length by a process called normalization. Compute the length of a non­

zero vector, then divide each component by that length. 

8.3.6 Angle between vectors 

Consider a plane on which are two different vectors a and b having the 

same origin, as shown. 

b 

The vector lengths of the sides of the triangle are a, band a - b. From 

the Cauchy-Schwarz inequality for any vectors a, b E R" 

ab ~ /a/ /b/ 
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The angle between vectors is e = cos -i ab. 

/a/ /bl 

8.3. 7 Orthogonality 

Vectors a and b are said to be orthogonal, (perpendicular) if their inner 

product is zero. I.e. if ab= 0. 

8.3.8 The outer product 

Of interest in neural networks is the outer product (cross product) of 

two vectors. Whereas the result of the inner product is a scalar the 

result of the outer product is a vector. 

a= [:l b= ~] 
a x b = ( a2 b3 - a3 b2)i + ( a3 b1 - a1 b3)j + ( a1 b2 - a2 b1 )k 

where i, j, and k are mutually perpendicular unit vectors. 

8.4 Matrix operations for neural networks 

A group of n weighted connections to a neuron, will be in vector form, form 

neurons the result will be a matrix of connection weights. of dimension mn. 

I\ 
II 

: ~ 
I 
I 
I 
I 
I 
I 

~ 
I 
I 
I 

j~~ "'F:......-----------.. ,.~ v 
n \1 m 

8.4.1 Addition and scalar multiplication of matrices 

For two matrices A and 8 of the same dimensions add their 

corresponding elements. 
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Examples 

4 -3 

A=l-5 -1 

1 0 

1 -1 

A+ B = I -1 -7 

3 3 

-3 2 

B=l4 -6 

2 3 

For the above matrix A multiplication by a scalar k = 3 yields: 

Example 

12 -9 

3A = 115 -3 

3 0 

B.4.2 Multiplication of matrices 

For matrices in which the number of columns in A is equal to the 

number of rows in B, i.e. A is an m x p matrix and B is a p x n matrix, 

then the product AB is an m x n matrix. 

Product AB is not defined if A is an m x p matrix and B is a q x n 

matrix, where p -:;e q. 

2 -3 I [5 -1 (2)(5) + (-3)(-2) (2)(-1) + (-3)(1) 

AB=I 3 1 I -2 1 = (3)(5)+(1)(-2) (3)(-1) + (1 )(1) 

-4 2j (-4)(5) + (2)(-2) (-4)(-1) + (2)(1) 

I 
16 -5 

AB= I 13 -2 

-24 6 
_J 
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B.5 Eigenvalues and Eigenvectors 

If we think of a vector as a geometric direction in n-dimensional space, 

multiplication of that vector by a matrix redirects the vector in another 

direction. 

Some vectors have the special property that multiplication by a matrix results 

in the product vector pointing in the same direction as the original vector. 

Since the new vector points in the same direction as the original it has a 

length that is a constant that can be a positive or negative multiple of the 

original length. The new vector lies somewhere along the line defined by x 

and the origin. The constants are called the eigenvalues or characteristic 

values, whilst the vectors are called the eigenvectors of the matrix. 

This relationship is expressed formally as: Ax = A.x 

Calculation is simplified by the use of eigenvectors, instead of performing the 

many operations required to multiply a matrix and a vector, we perform one 

multiplication, a vector times a constant. Eigenvectors sometimes may offer 

meaningful interpretations of the system the matrix describes. 

An example with a simple geometric interpretation is the multiplication of a 

vector f with two components x and y by the matrix A 

l - [- [ -0 1 x y 

Af = 1 ~ Y_ = x _ 

This matrix has interchanged the x and y co-ordinates this reflects the vector 

around the 45 degree line through the origin. 

Ax.= [~ ~ ] [: l 1 G ]= ha ~th eigenvalue 1 
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Axb= [ ~ ~ J [~ = [-: J = -1 [-: J = A.x2 with eigenvalue -1 

8.6 Lyapunov function 

The stability of a network can be achieved if a function is found that 

decreases with each network change of state, until no further change occurs, 

at which state the function stops. The Lyapunov function behaves in this 

manner on some recurrent networks. 

Lyapunov's stability theorem 

If a positive definite function V (a) can be found such that dV(a)/dt is 

negative semi definite, then the origin (a= 0) is stable for the system: 

d(a)/dt = g(a). 

If a positive definite function V (a) can be found such that dV(a)/dt is 

negative definite, then the origin (a =O) is asymptotically stable for the 

system. 

Conceptually Lyapunov's method is based on the systems energy and 

the relationship of the stored energy to the system stability. 

Hagan, Demuth, and Beale (1996) give the following excellent 

illustration of the Lyapunov stability theorem. 

mg 

Figure 3.1 

For a simple pendulum of mass m, length I, inclined at an angle e to the 

vertical with damping coefficient c and gravitational force g. From 

Newton's second law. 
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ml d29/dt2 = -cd9/dt - mgsin(e). (1) 

ml d29/dt2 + cd9/dt + mgsin(9) = 0 the second term in the equation is 

the damping force, the third term is the gravitational force. (2) 

Writing a1=9 and a2=d8/dt=da1/dt whence d29/dt2=da2/dt. (3) 

da£ = -gsin(a1} - ca£. (4) 
dt I ml 

Now we want to investigate the stability of the origin (a = 0) for this 

pendulum system. (The origin corresponds to a pendulum angle of 

zero and a pendulum velocity of zero.) We first want to check that the 

origin is an equilibrium point. We do this by substituting a = 0 into the 

state equations. 

da1 = a2 = 0. 

dt 

da2 = -gsin(a1} - c a4 . 

dt I ml 

da2 = -gsin(O) - g_o) = o. 
dt I ml 

Since the derivatives are zero, the origin is an equilibrium point. 

(5) 

(6) 

(7) 

Using the total energy of the system as the Lyapunov function V 

including the kinetic and potential energies. 

V(a) = %ml2 (a2)2 + mgl(1 - cos(a1)). (8) 

In order to test the stability of the system, we need to evaluate the 

derivative of V with respect to time. 

dV(a) =I av da1 + Gvl da£. 
dt j oa1 dt oa2 dt 

- - -

(9) 

The partial derivatives are found from the preceding V( a) equation. 
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dV(a) = (mgl sin(a1) )a2 + (ml2 a2) (-g sin(a1 )(-£.. a2). 

dt I ml 

After cancelling, dV(a) =-cl (a2)
2::;; 0. 

dt 

(10) 

( 11) 

In order to prove that the origin (a = O ) is asymptotically stable, we 

must show that this derivative is negative definite. The derivative is 

zero at the origin, but it also is zero for any value of a1 , as long as a2 = 

O. Thus, 

dV(a) is negative semidefinite, rather than negative definite. 

dt 

From Lyapunov's theorem, then, we know that the origin is a stable 

point. However, we cannot say, from the theorem and. this Lyapunov 

function, that the origin is asymptotically stable. 

Common sense tells us that, due to friction, the pendulum will 

eventually settle in a vertical position, therefore the origin is 

asymptotically stable. The Lyapunov theorem, using our Lyapunov 

function, can only tell us that the origin is stable. 

Hagan, Demuth, and Beale ( 1996) show that the origin is 

asymptotically stable, using LaSalle's Invariance Theorem. 

The following is a numerical example for the pendulum, based on the 

work of Hagan, Demuth, and Beale. (1996) 

Given g=9.8, m=1.5, 1=2.5, c = 2.0. 

The state equations for the pendulum are: 

da1 = a2, 

dt 

da2 = -9.8sin(a1) -~ = -3.92sin(a1) - 0.5333a2 
dt 2.5 (1.5)(2.5) 

Expressions for V and its derivative follow 

V(a)= (%)(1.5)(2.52>(a2)2 + (1.5)(9.8)(2.5)(1-cos(a1)) 

=4.685(a2)
2+ 36.75(1-cos(a1)) 
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Examples 

These are a few simple examples for revision purposes, more challenging 

examples are easily formulated from current UNISA curricula. 

Q1 Add and subtract the following pairs of vectors: 

A1 

a) [:- [-:] b)[-:] [ ~ l 
-2_ 7 -4 -1.5_ 

a) Addition I 5 

9 

5 

b) -7 

10 

-5.5 

a) Subtraction 11 b) 5 

-1 I I -6 
-9 -2. 

Q2 Given two vectors with common origin {0,0) and respective terminations (3.5, 

4) and (4, 3) determine their lengths and the angle between them. 

A2 Call the respective vectors a and b: 

dist{a, o)= "'1[(3.5 - 0)2 + (4 - 0)2 = 5.315 

dist{b, o )= "'1[( 4 - 0)2 + (3 - 0)2 = 5 

dist{a, b)= "'1((3.5-4)2 + (4 - 3)2 = 1.7697 this value was determined so that the 

cosine rule could be used to find the angle between vectors. 

5.3152 + 52 -1.76972 = Cos 8 = 0.9429 therefore S = 19.44° 

2x5,315x5 
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Q3 Which, if any, of the following vectors are orthogonal? 

1 5 6 

a = 1-2 b = -4 c = 

3 5 

-4 7 

A3 ab = 0, a and b are orthogonal. 

ac = 3, a and c are not orthogonal. 

be = -7, b and c are not orthogonal. 

7 

1 

Q4 Given aT = (4, 0, -3), bT = (-8, 5, 0), cT = (-4, 1, -2), 

Q7 

Compute i) 2a -3b ii) a+ 3b-2c 

A4 i) 8 -24 32 

ii) 

o 
1
_115

1 
= i-15 

-6 0 -6 

4
1 

i -24 
0 + 15 

-3 0 

-28 

21 = I 13 

-4 1 

For the following matrices: 

[ 1 -2 0] --1 2 

A= -3 -1 4 B= 1 -3 

2 1 -1 2 1 
-

a) Compute A + B. b) A- B. 

c) AxB. d) Is Ax B =Bx A? 

;1 
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What is the outcome when A is multiplied by the identity matrix 13 . 

A7 A + 8 = I 0 0 -3 

-2 -4 5 

4 2 6 

A-8= 12 4 3 

-4 2 3 

0 0 -8 

Ax 8 = 1-3 8 -5 

10 1 36 

-3 0 -12 

8 x A = 1-13 -3 11 

12 2 -13 

13 2 -3 

.., 

A x 8 is not equal to 8 x A 

lxA=A 
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