
INTEGRATING A SOFTWARE ENGINEERING APPROACH
AND INSTRUCTIONAL FACTORS IN

INSTRUCTIONAL SOFTWARE DEVELOPMENT -
ILLUSTRATED BY

A PROTOTYPE IN THEORETICAL COMPUTER SCIENCE

by

MARY RUTH DE VILLIERS

submitted in part fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: MRS P KOTZe

SEPTEMBER 1995

Combining a Softwar-e- Engineering approacl1 wi't
Factors in Instructional Systems Development

The roles of
Softwar

Engineering,
nstructional Design
and Instructional
Theory as pillars
of Instructional

Systems
Development

A Prototyping
Life-Cycle Model

The factors, both instructional and computer-oriented, that determine the nature of

CAI product and its development process

~.·

,.',Jl!t.

ABSTRACT

This dissertation is a multi-disciplinary study, which integrates a software engineering

approach with instructional factors in the decision-making, analysis, design and development

processes of instructional software. Software engineering models, tools and representations

are used in the process of software construction. With reference to the fundamental

characteristics of the software product, several disciplines and factors, from both instructional

and computing perspectives are considered, and the most appropriate approach/es selected.

Software engineering, instructional design and instructional theory are considered as pillars

of courseware engineering.

The object-oriented design paradigm and a prototyping life-cycle model are found to be most

suitable for development of computer-aided instruction. The conceptual study is illustrated

by prototype development of a component-based multi-activity practice environment in

theoretical Computer Science. It offers perusal or practice, in various instructional modes,

according to the user's preferred learning style or need.

Key terms (in alphabetic order):

Cognitive science; Component-based software; Computer-aided instruction; Courseware

engineering; Instructional design; Instructional systems development; Instructional theory;

' Instructional transactions; Object-oriented design; Practice environment; Prototyping;

·.·Software engineering.

005.1 DEVI

11 ~111111/ llll lllll ~11111111111
01621132

TO ...

FOUR DELIGHTFUL YOUNG PEOPLE,

THE ALPHAMERIC QUARTET

Adrian '72

B

c

Dorothy '74

E

F

Gabrielle '76

H

Jonathan '78.

THANK YOU TO ...

Paula Kotze, my supervisor, for sound advice and guidance, encouragement, effective

chasing, and for consistent prompt returns of the latest version! Also, Paula, for going way

beyond the duties of a supervisor in giving technical help with the production of this

document.

The Head of Department and my colleagues in the Department of Computer Science at Unisa,

for continuous support and encouragement. Particularly, I would like to thank:

• Prof Chris Bornman, Head of the Department,

• Prof Niek du Plooy, the former Departmental Head, for getting me going,

• Prof Willem Labuschagne, the guru of COS101-S, for the pearls of wisdom,

• Prof Martha Pistorius and Prof Lerine Steenkamp for consistent genuine interest.

Malene le Roux, for sterling pioneering efforts in programming the prototype FRAMES.

"Dankie, Malene, ons het baanbrekerswerk gedoen!"

Beatrice van der Westhuizen, for producing the diagrams and patiently working through the

many iterations.

Estelle de Kock, for the graphics in FRAMES.

My son, Adrian, for the photographs of FRAMES, and to my colleague and friend, Trish

Alexander for help and support in producing the colour screen displays.

Elsie Verheem, of the Unisa Science Library, and Hester Mountifield, the Computer Science

Subject-Librarian, for the outstanding quality of their service.

Financial assistance for this research has been provided by the Center for Science

Development of the Human Sciences Research Council of South Africa. Opinions expressed

and conclusions reached in this dissertation, are those of the author and should not

necessarily be attributed to the Center for Science Development.

I greatfully acknowledge this scholarship.

TABLE OF CONTENTS

CHAPTER ONE INTRODUCTION

1.1 AIM OF THIS DISSERTATION AND AREAS OF INVESTIGATION 1

1.2 STRUCTURE OF THE DISSERTATION . 4

1.3 CONTEXT AND SUBJECT-MATIER OF THE PROTOTYPE 6

CHAPTER TWO SOFTWARE ENGINEERING 10

2.1 SOFTWARE LIFE-CYCLE MODELS . 11
2.1.1 The Waterfall Life-Cycle Model . 11
2.1.2 The Prototyping Life-Cycle Model . 13

2.2 SOFTWARE DESIGN PARADIGMS . 16
2.2.1 Various Design Approaches . 16
2.2.2 The Object-Oriented Paradigm (OOP) . 17

2.3 OBJECT-ORIENTED LIFE-CYCLE MODELS . 18

2.4 SOFTWARE ENGINEERING REPRESENTATIONS, TOOLS AND MODELS . . . 20
2.4.1 Booch Diagrams . 20
2.4.2 Mathematical Set Notation . 21
2.4.3 Entity-Relationship-Attribute Diagrams . 21
2.4.4 Coad and Yourdon Notation . 22

2.5 APPLICATION OF SOFTWARE ENGINEERING TO CAI AND
TO FRAMES IN PARTICULAR . 23

2.5.1 Prototyping in CAI . 23
2.5.2 Object-Oriented Design applied to CAI 24
2.5.3 An Object-Oriented Life-Cycle Applied to CAI . 24
2.5.4 SE Representations applied to CAI Development 24

2.6 CONCLUSION . 28

CHAPTER THREE SOFTWARE ENGINEERING AND COMPUTER-AIDED
INSTRUCTION . 30

3.1 GENERAL IMPACT OF SOFTWARE ENGINEERING ON CAI 30

3.2 SYSTEMATIC DEVELOPMENT AND DOCUMENTATION OF CAI 31

3.3 TREND TOWARDS TEAM APPROACH . 33

3.4 ADVOCATION OF SOFTWARE DESIGN METHODOLOGY,
LIFE-CYCLE MODELS AND PROTOTYPING . 33

3.4.1 Software Design Methodology and Life-Cycle Models 33
3. 4.2 Prototyping . 35

3.5 EFFORTS TO ENSURE QUALITY CONTROL . 39

3.6 ADVENT OF AUTHORING SUPPORT ENVIRONMENTS 40
3.6.1 IDEAL .. 40
3.6.2 MCCSE . 40
3.6.3 SCALD ... 41

3.7 APPLICATION TO CAI AND TO FRAMES 42

3.8 CONCLUSION . 43

CHAPTER FOUR THEORIES OF COGNITION AND LEARNING 46

4.1 THEORIES AND MODELS OF HUMAN THINKING . 46
4.1.1 Spiral Model of Thinking . 47
4.1.2 Piagetian Theory . 47
4.1.3 Higher Order Thinking Skills (HOTS) . 48
4.1.4 The Newell and Simon Theory of Human Information Processing 49

4.2 THEORIES, MODELS AND ASPECTS OF HUMAN LEARNING 49
4.2.1 Learning as Human Information Processing . 50
4.2.2 The Gagne-Briggs Model of Learning Outcomes 51
4.2.3 Gagne's Events of Instruction . 51
4.2.4 Behaviouristic Learning Theory . 52
4.2.5 Mastery Learning . 52
4.2.6 The Cognitive Learning Theory . 53
4.2. 7 Constructivism . 54
4.2.8 Higher Order Thinking Skills (HOTS) . 54
4.2.9 Anderson's ACT Model . 56
4.2.1 O Cognition as a Function of Instructional Mode 56
4.2.11 Transfer . 56

4.3 APPLICATION OF THINKING AND LEARNING THEORIES TO
CAI AND TO FRAMES IN PARTICULAR . 57

4.4 CONCLUSION . 58

CHAPTER FIVE LEARNING THEORIES AND INSTRUCTIONAL DESIGN
... 61

5.1 FOUNDATIONS OF INSTRUCTIONAL THEORY . 62

5.2 PROCEDURES OF CONVENTIONAL INSTRUCTIONAL DESIGN 62

5.3 BEHAVIOURISM AND THE MASTERY LEARNING PARADIGM 64
5.3.1 Behaviourism, Learning and Instruction . 64
5.3.2 Impact of Behaviourism on Instructional Design 64
5.3.3 Implications of Behaviourism for CAI . 67
5.3.4 Implementations of Behaviourism . 67

5.4 COGNITIVE LEARNING AND CONSTRUCTIVISM . 68
5.4.1 Cognitive Science, Learning and Instruction . 68
5.4.2 Impact of Cognitive Science on Instructional Design 68
5.4.3 Constructivism in Learning and Instruction . 70
5.4.4 Implications of Cognitive Science and

Constructivism for CAI . 72
5.4.5 Implementation of Cognitive Science and Constructivism

- Merrill's Component Display Theory . 75

5.5 THE COMBINATION OF COGNITIVE LEARNING THEORIES
AND BEHAVIOURISM ... 78

5.5.1 The Cognitive Evolution . 78
5.5.2 Impact of the Combination of Behaviourism and

Cognitive Science on Instructional Design . 78
5.5.3 Implications of the Combined Approach for CAI 79
5.5.4 Implementations of the Combined Approach 79

5.6 FINAL APPLICATION TO CAI AND TO FRAMES . 81

5. 7 CONCLUSION . 82

CHAPTER SIX INSTRUCTIONAL DESIGN AND COMPUTER-AIDED
INSTRUCTION . 86

6.1 KINDS OF CAI . 87

6.2 WHERE COMPUTER APPLICATIONS ARE SUITABLE 88

6.3 HOW THE COMPUTER SHOULD BE USED TO OPTIMIZE LEARNING
(CAI STRATEGIES) . 89

6.4 CONVENTIONAL INSTRUCTIONAL DESIGN FOR CAI 91

6.5 DESIGN FEATURES OF CAI . 92
6.5.1 Instructional Approach . 92
6.5.2 Menus and Directions . 92
6.5.3 Layout and Text . 93
6.5.4 Colour . 93
6.5.5 Graphics and Animation . 93
6.5.6 Interactivity . 94
6.5.7 Individualization and User Control . 94
6.5.8 Question/Answer/Feedback Process . 94
6.5.9 Motivation ... 95
6.5.1 O Scoring and Record-Keeping . 95
6.5.11 Use of Complementary and Supplementary Media 95

6.6 IMPLICATIONS OF LEARNING THEORY FOR INSTRUCTIONAL
DESIGN OF COMPUTER-AIDED INSTRUCTION . 96

6.6.1 Features Desirable to Promote Cognition and Learning 96
6.6.2 Design Practices Based on Learning Principles 98
6.6.3 Instructional Modes for CAI . 98

6.7 IMPLICATIONS OF CDT FOR INSTRUCTIONAL DESIGN
OF COMPUTER-AIDED INSTRUCTION . 100

6.8 APPLICATION TO CAI AND TO FRAMES IN PARTICULAR 102
6.8.1 Kind of CAI Required . 102
6.8.2 Whether or not a Computer Application is suitable 102
6.8.3 How the Computer should be used, i.e. CAI Strategies 102
6.8.4 The Design Process . 102
6.8.5 Design Features . 103
6.8.6 Application of Learning Theory . 103
6.8. 7 Application of CDT . 104

6.9 IMPLICATIONS FOR THE ANALYSIS AND DESIGN PROCESS OF CAI AND
FOR FRAMES IN PARTICULAR . 104

6.9.1 Requirements Analysis . 104
6.9.2 Design . 106

6.10 CONCLUSION . 107

CHAPTER SEVEN ARTIFICIAL INTELLIGENCE AND COMPUTER-AIDED
INSTRUCTION . 112

7.1 GENERATIVE SYSTEMS . 113

7.2 ARTIFICIAL INTELLIGENCE AND COMPUTER-ASSISTED INSTRUCTION
(Al+ CAI= ICAI) ... 113

7.2.1 Deficiencies of Traditional CAI . 113
7.2.2 Al's Contribution: Knowledge Representation . 114
7.2.3 Intelligent CAI (ICAI) . 115
7.2.4 The First Example of Al in CAI . 116

7.3 INTELLIGENT TUTORING SYSTEMS (ITSs) . 117
7.3.1 Characteristics and Components of an ITS . 117
7.3.2 Anderson's ACT* Theory, Cognitive Principles and

Intelligent Tutors . 118
7.3.3 Towards ITS Shells . 120

7.4 PROBLEMS IN ICAI . 121
7.4.1 Problems with Student Modelling . 121
7.4.2 Problems with the Tutoring Module . 121
7.4.3 Problems with Creation of the Knowledge Base

(Expert Model) . 121
7.4.4 Problems with Multiple Solutions . 122
7.4.5 Problems with Evaluation . 122

7.5 EVALUATION OF ICAI . 122

7.6 CURRENT VIEWS ON ICAI AND ITSs . 123
7.6.1 Review of Initial Intentions in the 1980s . 123
7.6.2 Pragmatic Trends in the 1990s . 123
7.6.3 Less Optimistic Outlooks . 124

7.7 APPLICATION TO CAI PRACTICE ENVIRONMENTS AND TO FRAMES IN
PARTICULAR . 125

7. 7.1 Al and the Adult Learner . 125
7. 7.2 Al and Example Practice . 126
7. 7.3 Knowledge Inherent in the Program . 126
7. 7.4 Integration of Al and Gagne's Learning Theory 127
7. 7.5 Re-Use of Content-Free and Domain Independent Modules 127

7.8 CONCLUSION . 128

CHAPTER EIGHT USER-CONTROL, HYPERTEXT AND USABILITY 133

8.1 LOCUS OF CONTROL . 134
8.1.1 Midoro's Classification . 134
8.1.2 Control and Selection in Hypertext . 135
8.1.3 Assessment of Control in Instructional Software,

according to Adaptivity, Reactivity and Navigability 137

8.2 HYPERTEXT AND HYPERMEDIA . 137
8.2.1 Definition of Hypertext . 137
8.2.2 Advantages of Hypertext . 138
8.2.3 Disadvantages of Hypertext . 138

8.3 INTEGRATION OF FEATURES OF Al AND HYPERTEXT 139

8.4 HYPERTEXT IN LEARNING AND INSTRUCTION . 140
8.4.1 The Theoretical Basis of Hypertext . 140
8.4.2 Hypertext and Human Cognition . 140
8.4.3 Basic Hypertext and Learning . 140
8.4.4 Using Learning Need to Determine the Instructional Approach 141

8.5 THE IMPLEMENTATION OF HYPERTEXT-STYLE STRUCTURE 142
8.5.1 Development Characteristics of Hypertext . 142
8.5.2 Additional Features that may be Incorporated 142

8.6 HUMAN-COMPUTER INTERACTION, USABILITY AND USER INTERFACE . . . 143
8.6.1 Human-Computer Interaction (HCI) . 143
8.6.2 Usability . 143
8.6.3 The User Interface . 145

8.7 APPLICATION TO CAI AND TO FRAMES IN PARTICULAR 147
8.7.1 Hypertext-style CAI . 147
8. 7.2 Usability and User Interface in CAI . 150

8.8 CONCLUSION . 151

CHAPTER NINE THE FRAMES PRACTICE ENVIRONMENT 155

9.1 LIFE-CYCLE MODELS . 156
9.1.1 A Life-Cycle Model for CAI . 156
9.1.2 The FRAMES Prototyping Life-Cycle Model . 156

9.2 REQUIREMENTS ANALYSIS . 158
9.2.1 The Problem Domain and the Problem Statement 159
9.2.2 Modelling the Domain with an Era Diagram . 160
9.2.3 Instructional Theory and FRAMES . 161
9.2.4 Artificial Intelligence and FRAMES . 169
9.2.5 Summary of Requirements Analysis . 170

9.3 DESIGN . 171
9.3.1 Design Goals in FRAMES . 171
9.3.2 Content of FRAMES . 177
9.3.3 The Component-Based Structure of FRAMES 183
9.3.4 Software Engineering Methodology applied to FRAMES 187
9.3.5 Instructional Design and FRAMES . 190
9.3.6 The FRAMES Knowledge Base . 198
9.3. 7 Summary of Design Activities . 199

9.4 THE FRAMES PROTOTYPE . 200
9.4.1 The Name "FRAMES" . 200
9.4.2 The Screen Objects of FRAMES . 201
9.4.3 The Programming Code of FRAMES . 204
9.4.4 A Walkthrough of FRAMES . 205
9.4.5 Assessment of FRAMES' Control Structure . 206
9.4.6 Usability Factors of FRAMES . 207
9.4. 7 User Interface of FRAMES . 207
9.4.8 Instructional Events within FRAMES . 211

9.5 FURTHER CHARACTERISTICS OF THE FRAMES PROTOTYTPE 212
9.5.1 Problems and ldiosynchracies of FRAMES . 212
9.5.2 The Prototype and Modification of Requirements 213
9.5.3 Summary of Prototype Construction . 216

9.6 CONCLUSION . 217

CHAPTER TEN CONCLUSION . 219

10.1 WHAT HAS BEEN ACHIEVED? 219

10.2 WHERE DOES IT LEAD? . 222

APPENDIX A ... 223

BIBLIOGRAPHY . 232

LIST OF FIGURES

1.1 The roles of Software Engineering, Instructional Design and
Instructional Theory as pillars of Instructional Systems Development 2

1.2 Structure of the Dissertation . 5

2.1 The Waterfall Model of Software Development . 12

2.2 Impact of Prototyping on Software Development . 14

2.3 Fountain Model for the Object-Oriented Software
Development Life-Cycle . 19

2.4 Booch Model of Object-Oriented Design in the Software
Development Life-Cycle . 19

2.5 A Booch Diagram .. 20

2.6 Entity-Relationship-Attribute Notation . 21

2.7 Coad & Yourdon Representation 22

2.8 (a) The Two Major Factors Impacting on CAI 25
(b) All the Factors Impacting on CAI . 26

3.1 Chen & Shen's Life-Cycle Model for Instructional
Systems Development . 37

3.2 Wong's Prototyping Life-Cycle . 38

3.3 The Combined Paradigm . 38

4.1 General Structure of an Information Processing System . 50

5.1 The Major Fronts of the Cognitive Revolution . 72

5.2 Merrill's Performance-Content Grid for CDT . 76

6.1 The emergent Characteristics of a Practice Environment 105

6.2 Structure Chart to represent Highest Levels of Instructional
Software . 1 06

6.3 The roles of Software Engineering, Instructional Design and Instructional Theory
as pillars of Instructional Systems Development . 108

7.1 Architecture of an ITS . 118

8.1 Diagrammatic Representation of Locus of Control . 136

8.2 Midoro's Interaction Space . 137

8.3 Hammond's Assessment Framework . 149

9.1 The Impact of each Chapter on FRAMES . 155

9.2 The FRAMES Prototyping Life-Cycle Model . 157

9.3 Entities and Relationships in FRAMES . 160

9.4 Structure Chart of FRAMES . 179

9.5 A Performance-Content Matrix for the Components of FRAMES 184

9.6 The Objects, Operations and Messages within FRAMES,
illustrated by a Booch Diagram . 188

9.7 The Screen-related Objects of FRAMES . 201

9.8 FRAMES assessed according to Midoro's Grid and
Hammond's Framework . 206

LIST OF TABLES

1.1 Factors investigated and Relevance to CAI . 3

2.1 The major Purpose of each Phase of the Waterfall Model 12

2.2 Design Decisions for FRAMES . 27

3.1 Principles entailed in Educational Software . 32

3.2 Similarities between Analysis and Design in SE and CAI . 34

4.1 Piaget's Stages of Mental Growth . 47

4.2 Categorization of HOTS According to Function . 55

4.3 Application of Thinking and Learning Theories to Instructional Software 57

6.1 The Pillars of CAI . 86

6.2 CAI Strategies for Instructional Events . 90

6.3 Basic Development Model for CAI . 91

6.4 Active and Passive Processes in a Practice Environment 107

10.1 Factors Investigated and Approaches Selected for FRAMES 221

LIST OF SCREEN DISPLAYS

Screen Display 9.1 163

Screen Display 9.2 164

Screen Display 9.3 167

Screen Display 9.4 168

Screen Display 9.5 173

Screen Display 9.6 174

Screen Display 9.7 175

Screen Display 9.8 176

Screen Display 9.9 180

Screen Display 9.1 O . 181

Screen Display 9.11 . 182

Screen Display 9.12 . 185

Screen Display 9.13 . 186

Screen Display 9.14 . 195

Screen Display 9.15 . 196

Screen Display 9.16 . 197

Screen Display 9.17 . 203

Screen Display 9.18 . 209

Screen Display 9.19 . 21 O

Screen Display 9.20 . 214

Screen Display 9.21 . 215

Screen Display A.1 . 228

Screen Display A.2 . 229

Screen Display A.3. 230

Screen Display A.4. 231

INTRODUCTION

Computer-Aided Instruction (CAI) developed in the 1960s when the computer was perceived

as a presentation medium superior to paper-based programmed instruction. Most early

efforts were little more than electronic page turners, albeit with a degree of branching ability.

The disciplines which impacted most upon CAI were the learning theory of behaviourism, and

later, instructional design. It evolved from an educational perspective, with emphasis on its

role as a medium of instruction and with less attention paid to its role as a computer

applications program.

In recent years the power and performance of computer hardware has increased greatly and

software applications development has become increasingly complex. Running on

sophisticated technology, current software packages (referring to general computer software)

are powerful, slick, graphically aesthetic and user-friendly, with a variety of interaction modes.

These developments in the realm of software engineering have not left CAI behind. In the

1990s some outstanding educational and training packages have appeared on the

marketplace.

Instructional software resides no longer merely in educational territory. CAI

programs, both the tutor- and the tool-variety, can be, in their own right,

sophisticated pieces of software. As such, they should be designed using

state-of-the-art principles of software engineering, as well as a sound

instructional basis.

1.1 AIM OF THIS DISSERTATION AND AREAS OF INVESTIGATION

This MSc half-dissertation investigates the integration of software engineering with instructional

theory and instructional design in Instructional Systems Development (ISO). Instructional

theory and instructional design are used to define the requirements and characteristics of the

product, and software engineering methodologies are combined with instructional design in

the process of developing instructional software. Figure 1.1 illustrates the pillars of

instructional systems development.

1

Introduction

Instructional Software Development
(Courseware Engineering)

Process Product

C> c: ~ c:
"i:: C> "'C 0 <D "Ci) c: <D <D <D ctS ..c: c: 0 I-
C>

«S
C>-

c: c: «S
w c: ·- c:

0 Eo
<D ts ctS ·-
'- <D ts «S :::::J ..J :::::J

~
'- '-- Cl)
Cl) c: c: -en -

Figure 1.1 The roles of Software Engineering, Instructional Design and Instructional

Theory as pillars of Instructional Systems Development.

2

The study is thus multi-disciplinary, breaking new ground in applying software engineering

principles to the design and development of CAI, and systematically investigating the

relevance of various factors, theories, methods and techniques, both instructional and

computer-oriented, to ISO. The application of software engineering to the development of

instructional software can also be termed Courseware Engineering.

Table 1.1 lists the disciplines and factors investigated, relating each to the aspect/s of CAI

which it determines. The study of each main discipline commences with a thorough literature

study, followed by a pertinent investigation of how it can be practically applied in decision­

making. The solution develops as a specific design paradigm and life cycle model are

selected. Software engineering modelling techniques are applied to the problem domain to

facilitate design decisions. An instructional and learning philosophy is chosen for an

educational foundation, and implemented using sound principles of instructional design as

applied to computer courseware. Current developments in fields such as artificial intelligence,

hypertext, and human-computer interaction are investigated to determine their relevance to

the project in hand. Each factor is related to the appropriate phase/s in the systems

development life-cycle.

Decisions are implemented and the process is illustrated by the design and development of

a prototype courseware package called FRAMES, intended for use in distance-education

of tertiary level students in Theoretical Computer Science.

Table 1.1 Factors Investigated and Relevance to CAI

DISCIPLINE/FACTOR ENTAILING

Theories and models of thinking, Behaviourism, cognitive science,
learning and instruction constructivism, events of instruction

Instructional design Procedures and models

Context, subject-matter and target The topic, type of instruction
population and intended learners

Software engineering methodologies, Development paradigms, life-cycle
models and tools models, prototyping, data models,

representations, etc.

The object-oriented design paradigm An object-based approach, where an
object encapsulates both data and
processes on that data

Artificial intelligence Intelligent CAI, intelligent tutoring
systems, knowledge representation

Control, hypertext, usability Human-computer interaction
and user interface factors

RELATIONSHIP TO CAI

Sets underlying philosophy of the instruc-
tional approach

Relates to instructional characteristics and
the instructional development process

Determines content, style, appearance
and level of software

Can expedite the development process,
where CAI programs are complex pieces
of software, offering rich, multi-faceted
learning environments

Applicable to any instructional software
which presents a variety of instructional
components, practice activities, and
utilities

Suitability or not of these techniques must
be determined

Relate to control, interaction,
individualization and ease of use

:s­
~
0 g.
S4. cs·
::J

(,)

Introduction 4

1.2 STRUCTURE OF THE DISSERTATION

Chapter One introduces the study and briefly outlines the subject-matter and target population

of the prototype. In Chapter Two the author takes a view of the latest trends in software

engineering in the realm of software per se (not as related to CAI). In Chapter Three these

fields are once again integrated, but in a different way. It is a literature study on previous

research combining the fields of software engineering and courseware design. Chapter Four

investigates theories of cognition and learning, and Chapter Five relates these theories to

instructional design. Instructional design remains under the spotlight in Chapter Six, where it

is specifically applied to CAI. In Chapter Seven the role of artificial intelligence in CAI is

studied, and Chapter Eight overviews the aspects of user-control, hypertext and human­

computer interaction. A description of the development of the FRAMES prototype, with

appropriate illustrations, is the subject-matter of Chapter Nine. Chapter Ten concludes the

dissertation by referring back to Chapter One and reviewing the major features of the study.

Figure 1.2 sets out the structure of the dissertation and shows the inter-chapter relationships.

Each of Chapters Two to Eight comprises a literature study of the topic, followed by an

application of the relevant theory and procedures to CAI, relating that factor to CAI in general

and, in particular, outlining its role in FRAMES. Chapter Nine sets out the step-by-step

development of the prototype, structuring the chapter according to life-cycle phases. It

integrates the material covered in previous chapters by describing the approach/es selected

for each factor in the context of the appropriate phase.

Introduction

[Ch 1 [Introduction

Ch 2 Software Engineering

Ch 3 Software Engineering
and CAI

Ch4 Learning Theories

Ch5
Learning Theories
and Instructional
Design

Ch6
Instructional Design
and CAI

Ch7 Role of Aritificial
Intelligence

Ch
8

User-control, Hyperte
and Usability

The Prototype
Ch 9 Practice Environment

[ch 10[Conclusion

CAI

FRAMES

Figure 1.2 Structure of the Dissertation

5

Introduction 6

1.3 CONTEXT AND SUBJECT-MATTER OF THE PROTOTYPE

In order to develop the prototype, FRAMES, which illustrates this study, the researcher must

select an appropriate approach for each discipline that impacts on ISO. As described in

section 1.2, each of Chapters Two to Eight investigates a factor by considering its features and

alternative approaches. In the application at the chapter's end, it is related to FRAMES, and

appropriate solutions are recommended. With regard to the factors of context, subject-matter

and target group of FRAMES, however, the parameters are fixed. Thus they do not require

discussion in a separate chapter, and are incorporated into this introduction.

The Tertiary Institution and its CAI development facility

Unisa is a distance-teaching university in Pretoria, South Africa, with over 125 000 students.

Tuition is handled largely by correspondence; students receive their tutorial matter and submit

assignments by mail. Unisa is also a needs-driven pioneer in the development of instructional

multi-media, and written instruction is increasingly supplemented by educational technology

media such as radio, audio-cassettes, video, and CAI. The CAI Unit was established within

the Department of Computer Science in 1989, and is currently based in the department's

Centre for Software Engineering (CENSE). A team-based approach (see section 3.3) is used

for the design and development of CAI. In an unpublished MEd thesis, de Villiers [De Villiers

1989a] of Unisa (not the present author) sets out a strategy for using CAI to supplement

distance education of Computer Science. The initial products were indigenous custom-built

courseware for the Department of Computer Science itself. Contract courseware and

lessonware are now produced for various Unisa departments and bureaux, including the

Faculty of Science, foreign language departments, administrative training sections, and the

Student Services Bureau, for which a study methods package was developed.

The subject-matter

The module COS101-S, Theoretical Computer Science 1 for first-year BSc students, covers

relevant mathematical concepts from the field of discrete mathematics, while the other first-level

Computer Science modules are oriented towards basic computer systems and fundamental

programming concepts. The author, who has a background in mathematics, computer

science, and education is on the lecturing team of COS101-S.

Many students experience problems with COS101-S. The subsection involving analysis of

"Relations and their Properties" has consistently been difficult for the target group. A binary

relation is a set of ordered pairs, where an ordered pair comprises a first co-ordinate and a

second co-ordinate.

Introduction 7

Examples of ordered pairs are: (x,y), (2,2) and (3,1).

An example of a relation is the set: { (1, 1), (1,2), (1,3), (2,2), (2,3), (3,3) }

The author designed a tutorial CAI lesson called RELATIONS [De Villiers, 1993] to supplement

the textbook [Labuschagne 1993]. The lesson incorporates instructional segments and

question segments on what might be described as baby relations, relations such as the

example above, comprising a small number of ordered pairs. This study identified a need for

further CAI to handle more extensive and complex relations defined by a mathematical inter­

relationship or formula, rather than by a list, and which have an infinite number of members.

For example, the given relation, {(1, 1), (1,2), (1,3), (2,2), (2,3), (3,3)}, can be described as:

The set of (x,y) pairs, where xis less than or equal toy, based on the domain set,

{1,2,3}.

Analysis of the relation is relatively straightforward, based on a low number of inter-element

comparisons. Now consider the relation:

The set of (x,y) pairs, where xis less than or equal toy, based on as domain, the

set of all integers.

In this case analysis must be carried out for a generic situation, since the number of inter­

element comparisons is infinite. This type of abstract reasoning is far more complex and is

handled by mathematical proof techniques.

The specific need

The CAI lesson, RELATIONS, handled the former kind of baby relation, but not the latter kind

of infinite relation. Students involved in the formative evaluation and pilot-testing requested

interactive, individualized material to help them with the more complex examples. The

theoretical definitions and principles are the same as those for the elementary examples, hence

the need is not as much for formal instruction as for extensive practice of more complex

exercises where the arguments and developments are in the form of mathematical proofs.

Theorem proving and the assessment of responses to open-ended questions are traditionally

thorny areas in CAI (sometimes treated by artificial intelligence techniques). A prototype in this

area would thus be the precursor of a system to meet an identified need at Unisa.

Introduction 8

The target group

The target group comprises about 1000 students, of whom 90% live in the RSA. It is hetero­

genous with respect to age, race and academic background, comprising young school­

leavers, technicians, teachers, and mid-career professionals requiring upgrading. Although

some join informal study groups, they work largely in isolation, and experience the problems

of a distance education environment. De Villiers, Pistorius, Alexander and du Plooy [De Villiers

1992] mention:

+ No immediate feedback on written assignments; normal turnaround time (including

postal delivery) exceeds three weeks,

+ Irregular study schedules, due to the demands of their employment and/or personal

circumstances, and

+ Isolation.

Many of these problems are alleviated in a CAI milieu, where students may view material and

do exercises in their own time and as often as they wish. Computer Science students,

however, have a further advantage over other Unisa students, since computer access is

compulsory. Not only are they computer-users, but they should be informed computer-users,

and able to navigate through software packages other than merely the most elementary.

The prototype software

The name of the envisaged instructional system is FRAMES; the reasons for which are

outlined in section 9.4.1. A prototype practice environment has been designed and developed:

+ to illustrate the concepts discussed in this dissertation,

+ to implement the solutions recommended,

+ in the context of a real-life need in the Unisa module COS101-S.

Introduction 9

REFERENCES - CHAPTER ONE

[De Villiers 1989a]

[De Villiers 1992]

[De Villiers 1993]

[Labuschagne 1993]

de Villiers, C. (1989). 'n Rekenaargebaseerde onderrigstrategie vir Rekenaar­

wetenskap met besondere verwysing na afstandonderrig. Unpublished MEd

dissertation, University of South Africa, Pretoria.

de Villiers, C., Pistorius, M.C., Alexander, P.M. & du Plooy, N.F. (1992). Constraints

on Computer-Assisted Instruction in a Distance Education Environment. Computing

Control Engineering Journal 3 (1), 11-13.

de Villiers, M.A. (1993). Relations: A CAI Tutorial in Theoretical Computer Science.

Unpublished MEd mini-dissertation, University of Pretoria, Pretoria.

Labuschagne, W. (1993). A User-friendly Introduction to Discrete Mathematics for

Computer Science. Pretoria: University of South Africa.

CHAPTER TWO

SOFTWARE ENGINEERING

The 1950s and 1960s were decades of hardware. The 1970s were years of transition as the

vital role of software was recognized. With the general availability of powerful, cost-effective

micro-computing, the 1980s and 1990s are the decades of software. In the late 1960s

Software Engineering (SE) was proposed - encompassing models, methods, and tools to

enable systematic development and control within the context of burgeoning software

production, thus providing methodologies by which to build high-quality, cost-effective

software. In simpler terms it is the process of designing, building (i.e. programming) and

maintaining application programs, which are computer programs developed to perform a

specific purpose, traditionally in government or business. Software engineering evolved into

a separate discipline within Computer Science, comprising life-cycle models, system modeling,

analysis and design paradigms, programming techniques and tools, quality assurance,

implementation and maintenance, and project management [Sommerville 1992; Conger 1994].

Educational software also proliferated in the 1980s, but quality was lacking, both in software

aspects and in underlying learning theories. However, computer programs for instructional

purposes are currently evolving from their simple beginnings to the realm of complex software,

and the established principles, processes and models of software engineering should also be

applied to CAI processes and products. Opportunities abound for CAI designers to build

packages that optimize the capacities of the processors and peripherals of the 1990s, but

cognisance must be taken of current SE techniques.

The approach in Chapter Two is to take an independent overview of software systems

development, incorporating SE life-cycle models, design and analysis methods, and tools and

representations which are relevant to current CAI. Particular attention is paid to prototyping

life-cycle models and to the object-oriented methodology. The sources consulted are pure

SE literature, rather than material combining the disciplines of SE and CAI, such as those

which are studied in Chapter Three. Thus overlap occurs between the concepts studied in

Chapters Two and Three, but the perspectives are different.

Appropriate software engineering representations are used to demonstrate the

factors impacting on ISO. This approach forms an important part of the

requirements analysis in any process of CAI development. In subsequent

sections of this study SE models are used to facilitate the analysis, design and

development of FRAMES.

10

Software Engineering 11

2.1 SOFTWARE LIFE-CYCLE MODELS

Every software product has a life-cycle, which commences when a need for it is recognized

and ends with its retirement. Various Software Development Life-Cycle (SDLC) models exist,

which describe the different approaches to the process.

2.1.1 THE WATERFALL LIFE-CYCLE MODEL

The conventional SDLC model [Schach 1990; Henderson-Sellers 1990; Booch 1991; Budgen

1994; Conger 1994] is the Waterfall Model, which entails a sequential project life-cycle for the

creation of software. Theoretically it comprises a linear series of events, each of which is

completed and 'signed off" before the next commences. Different authors use different

terminology, but in general it is said to have five phases:

1. Requirements analysis,

2. Functional specification,

3. Design,

4. Development (also termed implementation or programming), and

5. Testing.

Some authors extend the life-cycle beyond initial building to incorporate actual operation, thus

adding phases such as Maintenance.

Figure 2.1 demonstrates the inter-phase relationships of the Waterfall Model and Table 2.1

identifies the major purpose of each phase. It is a so-called waterfall, because the output from

each phase is fed into the next. In practice it is seldom purely sequential or linear:

+ The stages often overlap,

+ The process of executing each phase is often iterative, and

+ The feedback from each phase tends to result in modification to previous phases,

hence the weaker arrows on the left which show feedback links.

The broken line represents the boundary between initial development and actual operation.

Software Engineering 12

Requirements
analysis

* Also termed
Development/
Coding/
Programming

Functional
specification

Design

r
* Implementation

Testing

·····-----·····-·········---------------f-·······-··--····-···----·-·· ··-···

Operation &
Maintenance

Figure 2.1 The Waterfall Model of Software Development

Table 2.1 The major Purpose of each Phase of the Waterfall Model

PHASE PURPOSE

1. Requirements analysis Identifying what is needed from a system.

2. Specification Stating precisely what the system should do in order
to meet the requirements.

3. Design Defining how the system should perform its tasks,
and demonstrating how inputs, outputs and user-
interfaces should appear.

4. Implementation Translating the design into a computer program.

5. Testing Performing a validation of the implementation, to
ensure that it complies with phases 1, 2, and 3.

Software Engineering 13

2.1.2 THE PROTOTYPING LIFE-CYCLE MODEL

Software prototyping

The foundation of successful system development is a reliable set of user requirements. It is

often difficult for a client or user to define precise requirements or to visualize how a proposed

new system will work, and this can result in fundamental changes soon after installation. A

solution is the software development methodology called prototyping [Powers 1990; Ince

1991; Conger 1994], which is the development of a limited working version of a product,

primarily in order 'to obtain a more complete and stable definition of requirements for the new

system"[Powers 1990, p. 55]. It entails the production of "a system or system component in

a short period of time without formal written specifications" and which "circumvents the

overload of documentation from the sequential life-cycle" [Conger 1994, p. 29].

By contrast, traditional software development models emphasize early constraining of design

decisions and the production of exact and detailed specifications prior to any programming.

The advent of powerful and modular development media and software tools has allowed the

prototyping methodology, formerly restricted to fields such as aeronautical engineering, to be

applied to software and courseware development. It is particularly beneficial in certain

situations [Powers 1990; Conger 1994], of which the first four cases are highly relevant to CAI:

+ for on-line interactive systems,

+ when requirements are not well understood or cannot be precisely specified in advance,

+ when the potential capabilities of the system go beyond the user's experience,

+ when the utility or appropriateness of certain software or technology needs to be

demonstrated hands-on,

+ as a visual means of expediting communication between designers, programmers and

end-users, and

+ when rapid development of part of a system is required.

Prototyping is an iterative rather than a sequential process. It commences with the initial user

requirements, which are revised, refined, and extended as the user interacts with the

prototype. The prototype is modified on the basis of the changed requirements. The process

may be repeated several times as the working model is built and modified fairly rapidly.

Figure 2.2 demonstrates how the Waterfall Model of the SDLC is affected by the incorporation

of initial rapid prototyping, with associated modification to the requirements and specification

phases. It is a noticeably cyclic process as operations and maintenance send revised input

into the development phases.

Software Engineering

Requirements Changed
requirements ~ .,

Verify

,, l
Rapid !___.

Specifications prototyping -. + Verify Verify

Design __. • Verify

Implementation ,.
+ Test

Operations

Maintenance

Figure 2.2 Impact of Prototyping on Software Development

[Based on Schach 1990, p. 51]

14

Ideally prototyping requires interactive software development tools that expedite development

of screens, files and routines. A prototype should be produced quickly and cheaply. Various

prototyping approaches are used, and, once again, different authors use different terminology.

The two main thrusts are evolutionary prototyping and throwaway prototyping [Ince 1991].

Evolutionary (or Spiral) Prototyping

Evolutionary prototyping entails building a prototype as a limited version of the final product.

As the prototype is expanded, modified and refined, it gradually evolves towards the final

product. Thus the working model is converted into the production model. The impact upon

the SDLC is that an analysis phase, as such, is eliminated, due to the integration and

iteration of analysis and prototyping. Implementation involves the creation of test data,

user-interface components such as menus, and the addition of system functions. Evaluation

and modification processes follow; and finally the prototype is tuned to enhance efficiency.

In the ideal situation, rapid development occurs, and an executable version of a system is

available throughout the project.

Software Engineering 15

Throwaway Prototyping

Often called rapid prototyping, throwaway prototyping involves the development of a version

of a system which is used to clarify requirements and is then discarded, with conventional

software development following. Lantz [no date) refers to a mock-up, but Powers et al

[Powers 1990) reject this term as a detraction from the prototype's importance as an actual

working model. The life-cycle can be considered similar to the conventional waterfall model,

but with a vitally important prototyping side-cycle impacting particularly on requirements

analysis and design. It is highly beneficial in situations where exact specifications are hard to

formulate, or where optimal requirements cannot even be defined until some experimentation

has been done. A prototype may contain imperfections and inadequacies, so long as it is a

working model demonstrating at least partial functionality of the goal product. The prime aim

is to facilitate communication and agreement between all parties concerned. Once the client

or commissioner is satisfied with the visible aspects and products, conventional development

occurs. Such a prototype is frequently built using a very high level language or a database

query language.

Advantages of Prototyping [Lantz, no date)

+ It produces a tangible entity in a situation where the client has difficulty visualizing what

he wants a system to do.

+ The client may evaluate a "system", rather than a requirements document or

specification.

+ It improves communication between all concerned parties, while simultaneously

reducing documentation.

+ End-users can participate in evaluation and design decisions.

+ Development time and costs are reduced.

+ The discovery of unanticipated problems may force the designer to modify the

objectives, the approach, or the strategies.

+ It produces a system that has been shown to work.

Software Engineering 16

2.2 SOFTWARE DESIGN PARADIGMS

Software design is in essence a problem-solving task. It is more important to design a

solution that will achieve its purpose in doing the required job properly, than to achieve

elegance and efficiency at the expense of accuracy and reliability. A designer needs to

abstract the critical features of a system, so as to concentrate initially on building a logical

model of the system rather than becoming over-involved with detailed design and physical

implementation at an early stage.

2.2.1 VARIOUS DESIGN APPROACHES

Various methodologies and representations are available to facilitate the processes of analysis,

design, and system modeling, in particular, the process-oriented, data-oriented, and object­

oriented approaches [Conger 1994]:

+ The process-oriented paradigm centres around the events, procedures and flows that

comprise a system. It is epitomised by concepts and tools such as top-down design,

functional decomposition, transaction analysis, data-flow diagrams, structure charts and

input-output transformations. It tends to discount evolutionary changes.

+ Data-oriented approaches are based on the philosophy that data is more stable and

unchanging than processes. The underlying theory is that of relational database theory,

and key concepts are entities, attributes, relationships and normalization.

+ The latest emerging methodology is the object-oriented paradigm [Coad 1990; Schach

1990; Bell 1992; Budgen 1994; Conger 1994], which integrates aspects of and uses

formalisms from both the other major methodologies, and uses certain concepts from

object-oriented programming languages. It is based on objects, which encapsulate

both data and operations (processes) on that data. An object is a real-world entity

whose processes and attributes are modeled in a computerized application. In object­

oriented programming languages, computation is achieved when messages are passed

to the objects in the program, and a central aspect is the abstract data type (ADT),

which permits operations to be performed on an object without being implementation­

specific. Objects incorporating data are identified as data entities and not as specific

data structures.

CAI entails little conventional data flow and does not lend itself to the process-oriented

paradigm. When applying software engineering methodologies to CAI the most appropriate

is the object-oriented paradigm, which is discussed in more detail in the next sections.

Software Engineering 17

2.2.2 THE OBJECT-ORIENTED PARADIGM (OOP)

Problems with traditional development based on the classical life-cycle include minimal

iteration, little emphasis on re-use, and no unifying model to integrate the various phases. The

OOP [Coad 1990; Henderson-Sellers 1990; Korsen 1990; Schach 1990; Booch 1991; Atkins

1991; Bell 1992; Budgen 1994; Conger 1994] combines the strengths of other development

methodologies in an effort to overcome their weaknesses. A further advantage of the OOP

is that it projects beyond the pure software components and incorporates elements of the

environment. Specifically, it recognises not only the data and procedures of an implementa­

tion, but also encompasses features such as users and the underlying philosophy as parts

of the system.

Key concepts

The OOP has not achieved maturity or consistency in its practices or in its terminology.

Nevertheless certain key concepts and practices emerge. The key concepts of object-oriented

analysis and design are abstraction, encapsulation, modularity, and inheritance. Abstraction,

which plays a major role in the design process in general, relates to describing the essential

features of an object, its behaviour, and its relationships with other objects, while ignoring

aspects irrelevant to the current perspective or purpose. Encapsulation refers to the

integration of data with processes operating upon it. It also incorporates the concept of

information-hiding whereby the implementation details of an object are concealed. The

concepts of abstraction and encapsulation are closely related. Modularity, the partitioning of

a system into components, is another concept encountered in the other methodologies.

Inheritance is a property unique to the OOP. It allows the generic description of objects, so

that subclasses ·~nherit" the properties of their more general class, but are specializations of

it in some way. Object classes are arranged in hierarchies, with inheritance up the hierarchy.

Software design and program development

Even in the traditional life-cycle, the distinction between the systems design (broad design)

and the program design (detailed design/coding) can become blurred. In the OOP, however,

the boundary is even more indistinct, because both top-down analysis and bottom-up

program development occur simultaneously or, at least, iteratively. The three traditional

activities of analysis, design, and implementation are all present, but the joints between are

seamless. The unifying factor is the prime role played by objects and their inter-relationships.

Modeling is prominent in object-oriented design, the basic architecture being assembled from

models of the entities and the relationships between them.

Software Engineering 18

Object-oriented design and object-oriented programming are often confused. An object­

oriented programming language allows the direct implementation of objects, and provides

classes and inheritance, but object-oriented design is a design strategy and not dependent

on any particular implementation language. An object-oriented design, i.e. a design where a

system is designed as a set of interacting objects, can, in fact, be implemented in conventional

programming languages.

Software re-use in the OOP

As a result of its prominent class and inheritance features, the object-oriented approach lends

itself to code re-use, a characteristic which saves time and increases productivity.

Methods and tools of the OOP

Overlap occurs between the OOP and other development methodologies, therefore several

of the standard methods and tools are appropriate, while others are custom-made for the

OOP analysis and design. Henderson-Sellers & Edwards [Henderson-Sellers 1990] advocate

data-flow diagrams (DFDs), object-relationship diagrams and inheritance charts. Coad &

Yourdon [Coad 1990] include entity-relationship-attribute (ERA) diagrams and semantic data

modeling in the object-oriented analysis process. They also use a graphical representation

tabling the attributes and operations of an object class under its name, a notation re-used by

Sommerville [1992]. Booch Diagrams [Booch 1991] are favoured by Conger [Conger 1994].

Certain applicable representations are described in detail in section 2.4.

2.3 OBJECT-ORIENTED LIFE-CYCLE MODELS

In section 2.1 SDLC models were considered, paying particular attention to prototyping.

Section 2.2 overviewed software development methodologies with particular reference to the

OOP. Concepts from both these methodologies are combined synergistically in this section

on object-oriented life-cycle models. The approaches outlined in this section are particularly

relevant to latest generation instructional software.

In the environment of the object-oriented paradigm, alternative life-cycle models have been

proposed. Henderson-Sellers & Edwards [Henderson-Sellers 1990] developed the Fountain

Model (Figure 2.3). It is characterized by:

+ Inversion, so that requirements analysis and specification are explicitly shown as the

foundation,

+ Clear representation of merging, iteration and overlap,

Software Engineering 19

+ Upward growth culminating in a peak of program use, then "falling" for maintenance

and extension, and

+ Compatibility with prototyping.

Booch [Booch 1991] proposes a simpler life-cycle model (Figure 2.4) for object-oriented

design. It resembles the waterfall model with a few notable differences:

+ The all-embracing feedback loops which indicate the parallel, rather than sequential,

nature of all phases,

+ An "evolution" phase, resulting in high compatibility with prototyping, and

+ Uniform strength of all arrows, granting equal status to both forward and backward

processes.

Figure 2.3

Fountain Model for the Object-Oriented

Software Development Life-Cycle

[Henderson-Sellers 1990, p. 152]

Analysis

~·

-~ ~

f--------•
Design

~

Evolution
;;.

-,
Modification

Figure 2.4

Booch Model of Object-Oriented

Design in the Software Development

Life-Cycle [Booch 1991, p. 200]

Software Engineering 20

2.4 SOFTWARE ENGINEERING REPRESENTATIONS, TOOLS AND
MODELS

This section reviews several SE representations and tools which are applicable to CAI analysis

and design. They are not actually applied at this point, but their notations and functions are

explained.

2.4.1 BOOCH DIAGRAMS

An object is an entity which has a state (whose representation is hidden) and a set of

operations that can be performed on it. Objects communicate by passing messages to each

other. Booch Diagrams [Henderson-Sellers 1990; Conger 1994], also called module structure

diagrams, provide a graphical summary of the objects and messages between them. Problem

domain objects are shown in vertical rectangles, carrying a smaller inset oval naming the

object with small horizontal rectangles beneath to identify the individual processes (operations)

on the object. Service objects appear in vertical rectangles with their names only. Lines

drawn between objects signify message connections.

Figure 2.5 is a schematic representation of a Booch Diagram. A Booch Diagram is used in

section 9.3.4 to demonstrate the objects, operations and messages in FRAMES.

Message from
Operation 2 of Object
to another object

Object

Operation 1

Operation 2

Operation 3

Figure 2.5 A Booch Diagram

Software Engineering 21

2.4.2 MATHEMATICAL SET NOTATION

A set is a list of items separated by commas and contained within curly brackets. Items are

combined within a set on the basis of a certain similarity or membership of a common class;

the relationship may be due to a real life attribute or in terms of a mathematical formula. A set

may have a finite or an infinite number of members. Examples are:

A= {x,y,z}

7L. = { ... ,-2,-1,0,1,2, ... }

Deer = {elk, moose, reindeer}

S = {(x,y) I y = 2x-1, XE7l}

Sets are used in section 9.3.2 to list mathematical concepts used in the FRAMES exercises.

2.4.3 ENTITY-RELATIONSHIP-ATTRIBUTE DIAGRAMS

Chen's entity-relationship notation [Chen 1976] was originally defined for capturing the

relationships between static data objects by means of visual portrayal of entities, characteris­

tics and interrelationships. In particular the Entity-Relationship-Attribute (ERA) Diagram

[Sommerville 1992; Budgen 1994; Conger 1994] plays a major role in database systems and

in general information engineering. The principal symbols of the entity-relationship notation

are shown in Figure 2.6:

(~_)

0

Entity - a real-world object, frequently belonging to a class

Relationship - a link between two or more entities

Attribute - a characteristic of an entity or a relationship that

represents one of its properties

Inheritance relationship [Sommerville 1992] showing that an

entity inherits the attributes of a related entity; the arrow points

towards the subclass.

Figure 2.6 Entity-Relationship-Attribute Notation

Software Engineering

Special relationships are [Bell 1992]:

is-a

is-part-of

is-like

subclass-superclass relationship

component relationship

similarity relationship (useful in abstraction)

22

Extensions permit inclusion of the cardinality of a relationship (e.g. 1 :1, 1 :n, m:n) and, in an

OOP environment, an inheritance relation, indicating a specialization which inherits the

attributes of its superclass. The symbols are linked together to form a graphic representation

of the objects and inter-relationships within a domain or system.

Figures 2.8(a) and 2.8(b) in this chapter use ERA notation to represent the factors impacting

on CAI and the role each plays in determining characteristics of the system. In section 9.2.2

an ERA diagram models the entities and relationships in FRAMES.

2.4.4 COAD AND YOURDON NOTATION

Coad & Yourdon [Coad 1990] and Sommerville [Sommerville 1992] use a graphic

representation based on round-cornered rectangles to set out the attributes of a class of

objects and the services or operations that the class provides. It is particularly useful for

representing objects that model messages or interactions.

Figure 2. 7 illustrates Coad & Yourdon notation, which is used in section 9.4.2 to represent the

screen-related objects of FRAMES.

Object Class

Attribute 1
Attribute 2

Attribute m
Operation 1
Operation 2

Operation n

Figure 2.7 Coad & Vourdon Representation

Software Engineering 23

2.5 APPLICATION OF SOFTWARE ENGINEERING TO CAI AND TO

FRAMES IN PARTICULAR

In this section the most appropriate of the models, paradigms and tools outlined in this

chapter are applied to CAI and to FRAMES in particular.

2.5.1 PROTOTYPING IN CAI

Prototyping in general systems development is discussed in section 2.1.2. The major

purposes of conventional software are data processing and information processing, where

defined activities occur in a predefined sequence. Instructional software, by contrast,

comprises synthesis, presentation, practice and assistance facilities in the complex realm of

human cognition, and has a high level of human-computer interactivity. Whether in a situation

of program-control where the flow depends on user-response, or in a situation of user-control

where the learner may branch or browse at will, the sequence of events and activities varies

greatly. State-of-the-art CAI has several of the characteristics mentioned in section 2.1.2 that

identify situations where prototyping is beneficial. CAI prototypes can play a vital role in

demonstrating proposals on-screen, thus clarifying actual requirements and identifying

misconceptions and potential errors at an early stage. Not only should basic aspects such

as screen layout and colours be scrutinized, but also the strategies for control and navigation

through the material. Usability factors, such as learnability and consistency can be evaluated,

also interface aspects such as coherence of textual and visual displays, and accessibility of

facilities. The development tools or authoring systems should offer:

+ modularity, thus facilitating the removal, addition or adaptation of a segment without

affecting other segments or the unit as a whole.

+ plasticity, the ability to make changes easily.

If exorbitant time and costs are incurred in developing a prototype, the process is not cost­

effective. An ISO prototype may either be evolutionary, i.e. a limited version of the final

product, later developed through to full functionality, or else a throwaway. In the latter case,

the software used to build the prototype may not be the same as that used for the final

system.

FRAMES is intended to be a practice environment that will break new ground in the type of

CAI developed at UNISA. It requires prototyping at the design and programming stages in

order to ensure feasibility of intentions, to refine requirements, to reduce excessive written

descriptions, to determine the optimal navigation and control strategies hands-on, and also

to ensure that an appropriate programming approach is used for implementation.

Software Engineering 24

2.5.2 OBJECT-ORIENTED DESIGN APPLIED TO CAI

The object-oriented paradigm was described in section 2.2.2. Object-oriented development

has been used in large, complex systems, compared to which CAI courseware and

environments comprise relatively few objects and components. Nevertheless the strategies

outlined can be beneficially applied in the analysis, design and development of CAI, and

specifically to FRAMES.

Budgen [Budgen 1994] describes an object as an entity which possesses a state, exhibits

behaviour, and has a distinct identity. Sommerville [Sommerville 1992, p. 194] proposes the

following definition: ·~n object is an entity which has a state (whose representation is hidden)

and a defined set of operations which operate on that state. The state is represented as a

set of object attributes". Analysis of a user-controlled practice environment such as FRAMES

reveals distinct design elements, or objects, which possess unique identities, certain attributes

and relationships, and have operations performed on them. The OOP appears to be the most

appropriate software engineering development methodology for FRAMES.

2.5.3 AN OBJECT-ORIENTED LIFE-CYCLE APPLIED TO CAI

Section 2.3 combined the essence of prototyping (section 2.1.2) with the OOP (section 2.2.2)

by describing the object-oriented life-cycle. The Booch model (Figure 2.4) of an SDLC,

incorporating object-oriented design while emphasizing overlap and evolution, is suitable for

development of instructional systems, and with the explicit incorporation of a prototype, could

be appropriate for the type of development envisaged for FRAMES. FRAMES has well-defined

objects, both concrete and abstract, and with its initial lack of precise specifications, appears

to require a deveropment process incorporating evolutionary prototyping.

2.5.4 SE REPRESENTATIONS APPLIED TO CAI DEVELOPMENT

Chapter Nine sets out a description of the FRAMES development process and the prototype

software, incorporating use of some software engineering tools and representations mentioned

in this chapter. In this section, however, the factors that impact on CAI are set out and an

overview is given of some of the design choices for FRAMES. This "preview" sets the context

for the subsequent chapters where the major factors are considered one by one.

CAI is highly multi-disciplinary. The prime factors impacting upon instructional computing are

the disciplines of learning theory, instructional design and software engineering. Within the

compass of each of these, however, are variables and sub-disciplines presenting options

between which choices must be made. The decisions made here are part of the pre-design

phase of instructional software, and are used in formulating the initial user-requirements.

Software Engineering 25

Figure 2.8 sets out the major factors to be considered prior to the analysis and design of any

instructional software, whether of the tutor- or tool-variety. Each factor has various options,

and the most appropriate for the purpose in hand should be selected. The two major factors

influencing instructional computing are instructional design and software engineering, shown

in Figure 2.8(a). The detailed expansion, Figure 2.8(b), sets out all the factors, sub-disciplines

and variables that must be considered when deciding on the requirements and design of a

CAI system. ERA-style diagrams are used to represent the factors, their possible "values",

and the relationships. Instructionally oriented factors appear in the upper half, and the factors

from a software engineering or Computer Science perspective are in the lower half. Inter­

relationships and inter-dependencies between the factors are also indicated.

available
technology

Instructional
Design

CAI
software

Software
Engineering

visual
principles

Figure 2.8(a) The Two Major Factors Impacting on CAI.

Objectives
Pure instruction

Chapter 8 I Mastery drill
Practice environment
Simulation
Educational game
T 001 provision
Mixed

Chapt Theories of Leaming and Instruction

Chapt: i I Behaviourism~ Mastery !earning I
Cognitive Sclenoe ~ Constructivism

Control Structure

· · - · · · · · 1 Sequential program control
Chapter 6 Branched program control
Chapter 8 User control

Browsing
Mixed lnltlattve

Hypertext

Chapter 8 I Free navigation
Highly varied content

Hardware
Buie
Multimedia
Device-control

Chaoter6

Instructional Design

Component-based
lnatructlonal events
Screen layout

aeblnnines
language, style

and control
litrategy

""-/

Target Group

Primary, secondary or tertiary
AIJe
Basic or vocational culture
Computer literacy

Leaming Context

sets degree ~ Individual
of lndM~uall-""- Co-o 'class-based ~ Olalaperatlve, d ... -bued

/ nee educa!lon

Chapter1

Chapter1

~ '. ~ .//•..•• Mooe
I Pure dldact!C and 1-- • •

Software

Software Doalgn
Prooesa-oriented
Data-oriented
Object-oriented

Chapter2
Chapter3

.___

dtder11ea
11lopment
rooess

degree
!1fld kind of
interactivity

demOnstrative
Guided practice
Open-ended reaponaea
Exploratory miaowor1d

Artificial Intelligence

ICAI
ITS
Microwortd
Support-environment

without K.B.

Chapter2
Chapter3

Chapter6

Chapter7

Figure 2.B(b) All the Factors impacting on CAI

(Instructional above and computer-oriented below)

26

Software Engineering 27

In the ensuing chapters each factor is analyzed and applied to the design of FRAMES.

Bearing in mind the subject matter, environment and goals of FRAMES, appropriate choices

are made for each factor. The decisions made are summarized in Table 2.2. The target

group, context and subject-matter are not considered as variables. They are assumed to be

the starting point, parameters fixed at the time a design is commissioned or when an educator

is motivated to meet an identified need.

Table 2.2 Design Decisions for FRAMES

FACTOR

Target Group (Chapter 1)

Learning Context (Chapter 1)

DESIGN CHOICE

Tertiary-level Computer Science students with
computer-expertise

Distance education; students working in isolation

Software Design Methodology (Chap- Object-oriented
ters 2, 3)

Life-Cycle Model
(Chapters 2, 3)

Learning Theory (Chapters 4, 5)

Instructional Design (Chapters 5, 6)
(a) Kind of CAI/Objectives
(b) Screen Appearance

Artificial Intelligence (Chapter 7)

Control Structure (Chapter 8)

Hypertext (Chapter 8)

Mode (Chapters 6, 8)

Hardware

Evolutionary prototyping

Cognitive science, implemented in a constructivist
approach

Component-based
(a) Practice-environment
(b) Full-screen layout; graphic icons, some

resemblance to windowing environments

Pseudo-intelligent help, minimal knowledge-base

Proactive user-control

Free navigation among varied content

Three modes of doing examples:
Demonstration
Guided practice
Do-it-yourself (D.l.Y.)

Colour monitor, VGA graphics card, 640K mem­
ory, high-density 3,5" or 5,25" diskettes, mouse

Software Engineering 28

2.6 CONCLUSION

The chapter overviewed general software engineering models, tools and techniques, and

investigated their applicability to instructional systems development.

A life-cycle model which includes evolutionary prototyping appears to be most appropriate for

CAI, so that initially fuzzy requirements can be refined and the initial working version can be

modified and expanded towards a final operational CAI product.

The object-oriented methodology proves itself to be, in the terms of Kerson & McGregor

[Korsen 1990], "a unifying paradigm", which is appropriate for the analysis and representation

of CAI. Viewing a system as object-based provides a more versatile foundation than a view

based fundamentally on data modeling or on its functions and procedures. Although user­

input plays a major role in determiming the path through instructional software, there is little

conventional data flow. The concept of an object is a utilitarian approach, which brings under

one umbrella such varied items as concrete objects, abstract objects, data, processes, and

environmental entities external to the software (yet vital components of the system), such as

the human user. Incorporation of the user as an object is particularly beneficial in CAI, due

to its highly interactive and individualized nature. The tools and representations of the OOP

can also be of great value in the analysis and documentation of instructional software.

It is hoped that the object-based control structure developed for FRAMES can eventually be

used as a generic, content-free shell to present practice exercises in different instructional

modes in varying subjects and courses. This would capitalize on the modularity and re-use

potential inherent in an object-oriented design.

Software Engineering 29

REFERENCES · CHAPTER TWO

[Atkins 1991]

[Bell 1992]

[Booch 1991]

[Budgen 1994]

[Chen 1976]

[Coad 1990]

[Conger 1994]

[Henderson-Sellers 1990]

[Ince 1991]

[Korson 1990]

[Lantz??]

[Powers 1990]

[Schach 1990]

[Sommerville 1992]

Atkins, M.C. & Brown, AW. (1991). Principles of Object-Oriented Systems. In:

McDermid, J.A (Ed.), Software Engineer's Reference Book. Oxford: Butterworth­

Heineman.

Bell, D., Morrey, I., & Pugh, J. (1992). Software Engineering: A Programming

Approach (2nd ed.). Hemel Hempstead: Prentice Hall International (UK) Ltd.

Booch, G. (1991). Object-Oriented Design: with Applications. Redwood City, CA:

Benjamin/Cummings Publishing Company, Inc.

Budgen, D. (1994). Software Design. Wokingham: Addison-Wesley.

Chen, P.P. (1976). The Entity-Relationship Model: Towards a Unified View of Data.

ACM Trans. Database Systems 1 (1), 9-36.

Coad, P. & Yourdon, E. (1990). Object-Oriented Analysis. Englewood Cliffs, N.J.:

Prentice Hall

Conger, S.A (1994). The New Software Engineering. Belmont, CA: Wadsworth

Publishing Company.

Henderson-Sellers, B. & Edwards, J.M. (1990). The Object-Oriented Systems Life

Cycle. Communications of the ACM 33 (9), 142-159.

Ince, D. (1991). Prototyping. In: McDermid, J.A (Ed.), Software Engineer's

Reference Book. Oxford: Butterworth-Heineman.

Korson, T. & Mc Gregor, J.D. (1990). Understanding Object-Oriented: A Unifying

Paradigm. Communications of the ACM 33 (9), 40-60.

Lantz, KE. (no date - possibly 1985). The Prototyping Methodology. Englewood

Cliffs, N.J.: Prentice-Hall.

Powers, M.J., Cheney, P.H. & Crow, G.B. (1990). Structured Systems Development:

Analysis, Design, Implementation. Boston, MA: Boyd and Fraser Publishing Co.

Schach, S.R. (1990). Software Engineering. Boston, MA: Aksen Associates Inc.

Publishers.

Sommerville, I. (1992). Software Engineering (4th ed.). Wokingham: Addison-Wesley

Publishing Company.

CHAPTER THREE

SOFTWARE ENGINEERING AND

COMPUTER-AIDED INSTRUCTION

The previous chapter was an independent overview of models and methodologies of

conventional software engineering and a consideration by the author of their applicability to

computer-aided instruction. Designers of instructional software should take cognisance of

current software engineering techniques to improve the quality both of their process and their

product.

Chapter Three also handles the relevance of software engineering to computer-aided

instruction, but with a different approach. It overviews literature and previous research on

combining the disciplines of CAI and SE. Since the mid 1980s it became apparent that the

development procedures of instructional software left much to be desired. Educationalists

involved in the process recognized the need both for participation from computing specialists

as team-mates, and for the adoption of recognized SE procedures in the analysis, design and

development of CAI. The resulting discipline is referred to in some quarters as Courseware

Engineering.

3.1 GENERAL IMPACT OF SOFTWARE ENGINEERING ON CAI

A landmark paper [Mclean 1989] entitled "Megatrends in Computing and Educational

Software Development" followed the pattern of Naisbitt's "Megatrends" [Naisbitt 1982], but

identified envisaged changes in educational computing due to the changed computing

environment, current practices in software design, the user-centred approach, and software

development trends. Reviewing the ever-increasing facilities available to instructional software

designers, Mclean [Mclean 1989, p. 56] believes that "practices from the field of software

engineering are now necessary to produce significant software packages that exploit the

newer hardware and operating systems in a coherent and robust way" (bold font by the

author, not by Mclean).

30

Software Engineering and Computer-Aided Instruction 31

3.2 SYSTEMATIC DEVELOPMENT AND DOCUMENTATION OF CAI

Self [Self 1985] expressed concern about the authoring systems of that time which enabled

non-programmer educationalists to write software. Most were suited merely to the creation

of text-based tutorials with a prespecified pattern, or to rigid programmed-learning dialogues.

A further problem was the implicit pedagogical style - chunks of knowledge are presented to

the learner, without the computer itself having any understanding of the material presented or

the pupil's comprehension of it. Despite the advantages of by-passing software professionals

in the development process, the result was use of the computer mainly as a delivery

mechanism, rather than capitalization on its unique capabilities. Self recognised a need for

substantial design effort to improve the quality of CAI and listed seven major stages in general

software production, namely:

1. Requirements analysis,

2. Specification,

3. Program design,

4. Program implementation (programming),

5. Testing,

6. Debugging, and

7. Publishing.

He stated candidly that this phased process bore little resemblance to the production

processes of most educational software. Referring to the term, "software engineering", he

called on CAI instructional designers to note that programming courseware is indeed

engineering "in that it is concerned with the economical design of a tangible product of

practical value" [Self 1985, p. 89].

An effort was made at the University of Victoria in Canada to develop quality educational

software by collaboration between staff from the Faculties of Education and Computer Science

[Collis 1987]. The educators focused on the specification of pedagogical content, while the

perspective of the computer scientists was to stress software engineering principles. The

result was a multi-participant, multi-version approach to computer-based lesson creation. The

constructs stressed in software development were those SE tenets of the mid-1980s,

documentation and modularization.

An associated development at the same venue was a university course with an educational

and a software engineering orientation to train educators in software development.

Instructional design principles were taught in such a way as to be relevant both to educators

and to software engineers. The prime principles taught are shown in Table 3.1. The

emphasis on documentation and modularization is very clear.

Software Engineering and Computer-Aided Instruction 32

Table 3.1 Principles entailed in Educational Software

INSTRUCTIONAL DESIGN PRINCIPLES SOFTWARE ENGINEERING
PRINCIPLES

Instructional objectives Documentation
Instructional strategies Modular independence
Interaction and feedback Modularity of program
Motivation Development by team
Evaluation Multi-version software products

Bowers [1989] also emphasized written documentation in the development of instructional

software and proposed an extensive "Design Document", incorporating:

+ Description of the purpose and content of the software,

+ Development plan,

+ High-level overview of program operation,

+ Flowchart (or other model),

+ Narrative description of program logic,

+ Narrative description of main routines,

+ Reproductions of discrete screen displays, for example, text, graphics, storyboards, and

+ Description of software testing and evaluation procedures, including their results.

A move in the direction of systematic development of instruction using educational technology

in general was made by Verhagen & Plomp [Verhagen 1988]. They propose that educational

technology should be viewed as the methodology of educational problem-solving, and as

such, should be treated holisticly, with a systems approach. A systems approach entails an

in-depth study of inter-relationships, both those within a product and those between the

product and its environment. It advocates a systematic approach to the planning and

development of computer-assisted learning, as was also advocated by Black [Black 1987].

The Unisa CAI Unit was introduced in section 1.3. Pistorius [Pistorius 1992] describes Unisa's

5-phase courseware development model which consists of:

Phase 1 : Preparation for project

Phase 2: Pre-design

Phase 3: Design

Phase 4: Programming and Formative Evaluation

Phase 5: Summative Evaluation

Phase 4 involves iterative modification based on feedback from the evaluation.

Software Engineering and Computer-Aided Instruction 33

3.3 TREND TOWARDS TEAM APPROACH

As has already been stated, much CAI was developed by educators using authoring systems.

As an alternative, educationalists Black [Black 1987, Black 1988] and Black & Hinton [Black

1989] of the University of Surrey, and Chen & Shen [Chen 1989], advise a multi-disciplinary

team approach to design and implementation, incorporating, for example, an educational

systems analyst or instructional designer (team leader), a subject-matter expert, technical

advisor/s (e.g. hardware system specialist, graphics artist) and a programmer. Gery [Gery

1987], a pioneer of Cortiputer Based Training (CBT) within business organizations, defines

fourteen roles in CBT development! These are project manager, client (or sponsor),

instructional designer, subject matter expert, writer, editor, programmer, data entry specialist,

media expert, graphics designer, technical systems specialist, production administrator, CBT

administrator and a learner. Roles and expectations should be clearly defined. The roles may

not be distinct - in a small project one person may assume several roles; in a larger

development several people may perform the duties entailed in one role.

Courseware development teams have been implemented at the Centre for Software

Engineering (CENSE) in the Department of Computer Science at Unisa [Pistorius 1992], where

CAI is produced for distance education as described in section 1.3. The philosophy of the

CAI Group at CENSE is that its strength lies in its inherent team approach. Teams comprise

a subject matter expert who also takes the role of designer (after suitable training in

instructional design), programmers, a graphics expert, consultants and evaluators. Formative

evaluation is the process whereby objective critics appraise firstly the designs and later the

running product to identify errors, weaknesses and sources of possible confusion. There

should be peer-evaluation by colleagues of the subject-matter expert (such as co-lecturers),

and /earner-evaluation by members of the target group.

3.4 ADVOCATION OF SOFTWARE DESIGN METHODOLOGY, LIFE­

CVCLE MODELS AND PROTOTYPING

3.4.1 SOFTWARE DESIGN METHODOLOGY AND LIFE-CYCLE MODELS

Without actually using the term life-cycle, Self (see section 3.2) was one of the first to

recommend a life-cycle approach to courseware development.

Black [Black 1988] and Black & Hinton [Black 1989] investigate the "message" from Software

Engineering to Courseware Design Methodology. They recommend that, as in conventional

SE, courseware development should be characterized by:

Software Engineering and Computer-Aided Instruction 34

+ Design methodology which is language-independent, and permits the possibility of

changing language within a courseware package.

+ The use of software design tools and representations, for example, high-level structure

charts to represent logic, route charts (e.g. flow charts) and documentation.

+ Structured programming and stepwise-refinement.

They point out the strong similarities which exist between the analysis and design processes

in software engineering and courseware creation. These are shown in Table 3.2.

Table 3.2 Similarities between Analysis and Design in SE and CAI

[Black 1989, p. 29]

SOFTWARE ENGINEERING COURSEWARE DESIGN

Requirements definition, problem-specification: Needs analysis determining training needs
Define problem; collect information about it

Identify performance requirements, standards Identification of aims/objectives of course
for development, and any design constraints and lessons
and systems dynamics

System Design Top down:
Decomposition from a high level; from abstract Selection of teaching/learning mode and
problem definition to a more detailed level context of CAI courseware

Task analysis, selection of CAI modes

Software Design using: Elicitation of skills, teaching/learning style
from subject expert, captured in:

a) data flow charts, structure charts, etc. a) documentation including routing charts,
b) possibly modelling/simulation of final b) a prototype with screen designs

package

Software Implementation: Programming of courseware package

Coding of the final package, trials, debugging, Trial with learners
with continual verification and validation

Integration of courseware into instructional
programme, field trials and evaluation

Orientation of trainers

Software Engineering and Computer-Aided Instruction 35

Tripp & Bichelmeyer [Tripp 1990] also point out that software design (part of software

engineering) and instructional design (part of education) have similar methodologies.

The classic waterfall model of software design has five steps:

Requirements analysis, design, implementation (meaning development), testing, and

maintenance.

Similarly the interservices Instructional Systems Development (ISO) model for instructional

design has five steps:

Analysis, design, development, implementation (in this context referring to operational

use), and control.

Both fields tend to be dominated by individuals, champions, so designers must attempt to

bring about orderly and replicable practices and should emphasize formative evaluation of

products. However, the most fundamental difference between the two is the degree of rigour

required. Conventional software packages are based on mathematical logic, where there is

no error-tolerance and precise-format input is required. Instructional software, on the other

hand, aims to facilitate human cognition and must accept input based upon such. This realm

is inherently broader and must accommodate some ambiguity. Nevertheless, instructional

designers can only benefit by studying and applying methodologies of software engineering.

3.4.2 PROTOTYPING

The research done by Black [Black 1988] and Black & Hinton [Black 1989] at the University

of Surrey strongly advocates the use of a prototyping life-cycle model for computer-aided

learning. They point out how CAI is intrinsically different from other learning media, because

of its dynamic displays and interactivity, overlays, graphics and animation, simulation, and

analysis of user-input. A further inherent characteristic is the dependence of control-flow on

user-input. The need to observe and evaluate these aspects makes software prototyping a

useful component of CAI courseware development. They recommend construction of a limited

version with examples of screen design, route schemes, input and corresponding system

response. Black suggests that subject experts using graphics packages should implement

and demonstrate provisional screens. Authoring systems can be used to experiment with

learning sequences. Control in such prototypes can be activated by simple keyboard

commands, rather than by the actual user-input that would ultimately drive the interactions.

Thus a working model is built that excludes the intricate programming necessary for a finished

and polished version. Team-evaluation provides feedback for modification.

Tripp & Bichelmeyer [Tripp 1990] also note the similarities between software design and

instructional design, and advocate software design methodology and rapid prototyping in

Software Engineering and Computer-Aided Instruction 36

CAI. They refer to Simon [Simon 1981] who proposed the term sciences of the artificial, as

opposed to the natural sciences, to encompass disciplines such as engineering, medicine,

architecture, cognition and instruction. These are the sciences of design - concerned ''not

with how things are but with how they might be" [Simon 1981, p xi]. They encompass

domains where solutions are man-made rather than natural, and where problem-solving can

be characterized in terms of functions, goals and adaptation. Requirements specification and

design of instructional software tends to begin as a conjecture, which, after inspection,

undergoes modification. Rapid prototyping permits the pragmatic design principles of

minimum commitment and concomitant modification [Sakasai 1990]. Tripp & Bichelmeyer

[Tripp 1990] recommend that a prototype should include any required database (or part of

it), major program modules, screen displays, and adequate inputs and outputs for interfacing.

"The use of rapid prototyping in software engineering is essentially the extension of a

successful design methodology into a new domain" [Tripp 1990, p 35].

Lantz [Lantz, no date] draws comparisons between software and courseware production.

In software development explicit logical and physical definitions are necessary. The

corresponding elements in CAI are an instructional objectives and instructional strategy

respectively, concepts that can be hard to specify precisely. Rapid prototyping and the

inclusion of end-users in evaluation enhance communication between all parties. The initially

fuzzy areas evolve into refined definitions and precise designs, and at that stage detailed

coding can be undertaken.

Based on the waterfall model, Chen & Shen [Chen 1989] propose a life-cycle model for

instructional software development (Figure 3.1) with the joint objectives of high-quality

products and development effectiveness. Verification and revision occur after each phase,

resulting in an iterative, cyclic process. In their approach, prototype construction resides after

analysis and before design. Inspection of the model shows a thorough and rigorous

approach to all aspects:

+ the instructional foundation,

+ the instructional development process, and

+ the software development phases.

The waterfall model is extended to seven phases, and the seven boxes on the right list the

activities in each phase respectively. The model shows a comprehensive integration of

traditional instructional design procedures and conventional software engineering operations.

Software Engineering and Computer-Aided Instruction

v
E
R
I
F
I
c
A
T
I
0
N
I
R
E
v
I
s
I
0
N

Educational Product Idea/ Research & ·1 T T~ ~r~
~~------N_eed_an_a_~_si_s ____ ~

Feaslblllty
study

Prototype
-------;i•i construction

Design

1-4---------.ilmplementatlon/
Development

Testing/
14----------~ Evaluation

14--------------1~ Maintenance

Figure 3.1

Major activities

Needs Assessment
Identify Goals & Objectives
Leamer Analysts
Development/ Operating
Environment

Justify solution
Time frame
Costs/Benefits analysis

Conduct task analysis
Conduct instructional
ana~sts

j Build prototype

Sequencing
Storyboarding
Designing saeen/Vlsual
Interactivity, Feedback,
Learner-control

Flowcharting
Authoring
Programming

Testing, debugging
Formative Evaluation

I Documentation ~aintenance

Chen & Shen's Life-Cycle Model for Instructional Systems Development

[Chen 1989, p. 11]

37

In the most recent contributions, Gray & Black [Gray 1994] once again, and also Wong [Wong

1993] advocate quick prototyping of instructional software. Both papers cite the use of

hypermedia packages, with their high-technology graphics facilities, for the rapid presentation

of key concepts and storyboards. In the work of Gray and his colleagues at the University

of Surrey, the prototypes described were built by experienced software developers. Wong,

on the other hand, discusses the creation of quick prototypes by non-computing laymen, such

as teachers, using an object-oriented approach implemented with fourth generation languages

and object-oriented hypermedia. This is the antithesis of the linear structure of the classic

SDLC, which introduces systems to teachers only after development, possibly resulting in an

inflexible gap between the commissioner's or teacher's expectations and the actual product.

Wong suggests that a prototyping life-cycle be incorporated into the overall creation process

of CAI, with prototyping by educationalists preceding the building of the final product by

software professionals using the classic life-cycle. Figures 3.2 and 3.3 demonstrate Wong's

prototyping process and the combined paradigm respectively.

Software Engineering and Computer-Aided Instruction

Requirements
Analysis

~

Requirements ,...
Analysis

'U

"Quick
Design"

,,
Build
Prototype

,,
Ev~luate and
ref me
Requirements

,,
Produce
Software

~

......

~
~

~

,

Definition (Content,
functions,
performance
required,
interfaces)

Development (Appearance,
operation)

Maintenance (Corrections,
adaptations,
enhancements}

Figure 3.2 Wong's Prototyping Life-Cycle

[Wong 1993, p. 157]

:::

: ::prc)t()%Jb9 < · · ·
·.·.:.:.:.:-:.:.:<<·>

>:>:::::::::::::::::: .. ·.·.·.·.·.·.·.·.·.·.
~--~

(by educationalist)

Figure 3.3 The Combined Paradigm

[Wong 1993, p.158]

..... . ..

.. . ..
. . . .

. . .

. Classic
:<: Life

: Cycle
...

.

(by software
professional)

38

Software Engineering and Computer-Aided Instruction 39

The present author also investigated the application of prototyping to CAI (section 2.5.1),

pointing out that latest generation instructional software has many of the characteristics of

situations where prototyping is beneficial. The prototype should either be evolutionary, i.e. a

limited version of the final product which is subsequently developed to full functionality, or else

a throwaway to refine requirements and test feasibility.

3.5 EFFORTS TO ENSURE QUALITY CONTROL

Along the lines of Naisbitt's [Naisbitt 1982] "Megatrends': Mclean [Mclean 1989] identifies

major dimensions along which computing and education may be changing; these serve to

identify megatrends affecting educational computing. He suggests several dimensions of

change within the actual development process of educational software.

From monolithic software to layered software:

The complexity and sophistication of educational software and its environment is on the

increase. Such programs cannot be effectively developed by individuals; a team approach

with layers of expertise and activities is required. Similarly the process and the product are

layered. Within this context, development can be more effective if the principles of software

engineering are applied to develop educational software using modularization, documentation

and object-oriented design. Portability of software across a variety of operating systems is

also desirable.

From testing to quality assurance throughout development:

Current SE practices embody far more than mere testing to identify errors and deviations -

quality assurance and continual verification and validation are the norm. In development of

courseware too, product quality should be ensured throughout the development cycle. To

this end formative evaluation can play a major role.

The matter of quality assurance was also addressed by Christensen & Bodey [Christensen

1990]. To ensure quality courseware, a specific quality assurance audit and evaluation agent

was appointed to review each phase of the life cycle, namely: requirements, high-level design,

low-level design, coding, testing, and monitoring and maintenance. Thus verification and

validation occur throughout the design, development and usage of courseware.

Software Engineering and Computer-Aided Instruction 40

3.6 ADVENT OF AUTHORING SUPPORT ENVIRONMENTS

The original CAI lessons were programmed in conventional programming languages by

computer programmers. Subsequently, high level application systems called authoring

systems enabled non-programmers, usually subject-matter experts or teachers, to create

courseware. A more recent trend is the advent of authoring support environments, similar to

the Computer Aided Software Environment (CASE) tools of conventional software engineering.

An Authoring Support Environment [Kotze 1995] is tailored explicitly to the information transfer

needs of the instructional environment. It is a software tool which supports authors as they

translate their subject knowledge and instructional requirements into computer-based

instructional material. The facilities it offers support the author as he tackles tasks such as

screen design, response analysis and feedback, student data collection and device control.

3.6.1 IDEAL

Ibrahim [Ibrahim 1989] discusses the development of lessons by non-programmers using

authoring systems, and the consequent poor quality. In a gesture towards the team

methodology, his organization initially used a two-phase approach, separating pedagogical

design and coding. Teachers specified lesson behaviour in a detailed script and coders

implemented it in a general-purpose modular programming language. To reduce coding

effort, a set of re-usable packages was developed to handle aspects such as windows, input

devices, message files to separate teaching text from program logic, and pattern-matching

algorithms to analyze learner-input.

This led subsequently to an entire development environment, IDEAL (Interactive Development

Environment for Assisted Learning), which is both functional and user-friendly. Based on a

large screen SUN workstation, and similar to a Computer-Aided Software Engineering (CASE)

environment, it incorporates a coherent set of independent tools: script editor, automatic code

generator, synchronous multi-window editor, message editor, and a lesson supervisor for

network access. IDEAL allows fast prototyping, and facilitates modification.

3.6.2 MCCSE

Approaching the same issue, namely, the lack of reliable high-quality instructional software at

reasonable prices, Chen & Chen [Chen 1990] attached partial blame for the situation on the

authoring systems available. Hence an intelligent courseware production environment was

designed, based both on sound instructional design principles and on software engineering

perspectives. With reference to the instructional design aspects, it was necessary first to

identify the events of instruction usually included within CAI strategies and the various

Software Engineering and Computer-Aided Instruction 41

computer techniques correspondingly used to optimize learning. Gagne's nine events of

instruction [Gagne 1991; Aronson 1983; section 4.2.3], which support the cognitive processes

necessary for learning, are selected as suitable organizing elements for the delivery of CAI.

They are:

1. Gain attention,

2. Inform learner of objectives,

3. Stimulate recall of prerequisites,

4. Present stimulus,

5. Provide learning guidance,

6. Elicit performance,

7. Provide feedback,

8. Assess performance, and

9. Enhance retention and transfer.

Computerized techniques were identified to optimize each event of instruction, thus leading

to the determination of the required system modes for courseware creation in line with sound

principles of instructional design.

With relation to the SE component, functions to attain the desired instructional affects were

identified, refined and incorporated into a portable design environment, Minimal Courseware

Creation Support Environment (MCCSE). The tools in MCCSE are a system interface, graphic

generator, sound generator, frame generator, test generator, statistical generator, sequence

organizer, and the template. MCCSE is based on a bottom-up approach, starting with

preparation of individual elements, and moving on to the creation of the various formats and

frames (e.g. for instruction, testing and feedback). Finally, frames are integrated into

sequences according to results of the instructional analyses. In actual learner-usage

instruction is individualized by an expert system which determines each user's learning needs

and path.

3.6.3 SCALD

Another approach was proposed by Nicholson [Nicholson 1988] who developed an

"intelligent" authoring system (which cannot, however, be considered a CASE environment),

so that quality educational software can be produced by non-programmers. The Scriptal CAL

Designer (SCALD), based upon an expert system and scriptal knowledge representation,

allows educator-users to interactively create limited CAL programs for straightforward

applications. The script formalism represents knowledge about CAL design and pedagogy,

offering a selection of instructional terminology. The standard software development model

of:

Software Engineering and Computer-Aided Instruction

Specification -+ Design -+ Implementation

is once again replaced by:

Prototype -+ Full script -+ Specification -+ Final design

42

Using a program shell and the user's educational content, automatic code generation then

produces the:

. -+ Implementation.

3.7 APPLICATION TO CAI AND TO FRAMES

Chapter Two concluded with the author's personal application of software engineering

methodologies and tools to CAI, and it would be pointless to duplicate the process.

Nevertheless, a few aspects are worth highlighting.

Software engineering techniques are clearly relevant to the procurement of sophisticated

educational software. The new discipline is termed courseware engineering, and it entails a

team approach as well as systematic design and development procedures. The

comprehensive integration of software engineering principles into instructional software

development, as evidenced in the work of Chen and Wong, deserves special mention.

Several life-cycle models have been studied. Section 2.1 introduced the Waterfall Model and

the way it is modified by prototyping; two object-oriented life-cycles were described in section

2.3. The models discussed in section 3.4.2 of this chapter were specifically focused on

instructional systems development. In general, prototyping of educational software has been

rare. However, it is evident that prototyping and evolutionary development are playing an

increasing role, and a trend is clearly emerging towards rapid prototyping in the development

of CAI. Latest generation CAI is highly visual and interactive; therefore mere paper-based

designs or storyboards are inadequate for approval from a commissioning group and for

communication between the parties concerned. The situation is exacerbated by the

sophistication of the software that can be produced by current technology and by graphical

user interfaces. Not only does a prototype clarify requirements and communication of

intentions; it also facilitates experimentation with new ideas and alternatives, and allows hands­

on testing by end-users. It demonstrates weaknesses in a proposed system and, in line with

the principle of constrained design, may result in modification of the original specifications.

Prototyping is even more appropriate to instructional systems development than in general

software development, because it provides the flexibility needed in the complex domains of

human cognition and human-computer interaction. It can bring very real benefits to the

creation of courseware, even in small projects and single lessons. A working model can be

used to refine requirements and to ensure satisfactory styles, formats, and functionality before

Software Engineering and Computer-Aided Instruction 43

developing the complete and final product, which includes all required content and

incorporates robustness and exception handling. A prototyping model should clearly be

used in the development of FRAMES.

The use of hypermedia packages was advocated for the rapid presentation of key concepts

and storyboards within prototypes. Although these are excellent for assessing the impact of

visual displays, they fall short in demonstration of navigation and control.

3.8 CONCLUSION

This chapter overviewed the integration of software engineering principles and methodologies

into the development of instructional software, a combination which commenced in the late

1980s. Creation of educational software, also termed courseware engineering, should be

characterized both by sound instructional principles and by adherence to the established

tenets of the software engineering discipline.

The tendency in ISO has been to emphasize aspects such as learning objectives, instructional

activities, judgement and feedback, and target group analysis. Equal attention should be paid

to all aspects of the requirements analysis, design and development processes; verification

and validation measures should be taken throughout to achieve high quality in the final

product and to ensure that it is in harmony with the requirements (or refined requirements!).

Development by team, systematic development procedures, modularization and re-use,

prototyping life-cycle models, the object-oriented paradigm with its associated modelling tools,

and formative evaluation during development are all approaches that can be used to expedite

the development process and enhance the quality of the final product.

Software Engineering and Computer-Aided Instruction 44

REFERENCES - CHAPTER THREE

[Aronson 1983]

[Black 1987]

[Black 1988]

[Black 1989]

[Bowers 1989]

[Briggs 1991]

[Chen 1989]

[Chen 1990]

[Christensen 1990]

[Collis 1987]

[Gagne 1991]

[Gery 1987]

Aronson, D.T. & Briggs, L.J. (1983). Contributions of Gagne and Briggs to a

Prescriptive Model of Instruction. In: Reigeluth, C.M. (Ed.), Instructional-Design

Theories and Models: An Overview of their Current Status. Hillsdale N.J.: Lawrence

Erlbaum Associates.

Black, T. R. (1987). CAL Delivery Selection Criteria and Authoring Systems. Journal

of Computer Assisted Learning 3, 204-213.

Black, T.R. (1988). Prototyping CAL Courseware: A Role for Computer-Shy Subject

Experts. In: Mathias, H., Rushby, N. & Budgett, R. (Eds), Aspects of Educational

Technology, Vol XX/, Designing New Systems and Technologies for Learning.

London: Kogan Page.

Black, T.R. & Hinton, T. (1989). Courseware Design Methodology: the Message from

Software Engineering. In: Bell, C., Davies, J. & Winders, R. (Eds), Aspects of

Educational and Training Technology, Vol XX/I, Promoting Learning. London: Kogan

Page.

Bowers, D. (1989). The Software Design Document: More than a User's Manual.

Educational Technology 29 (12), 15-18.

Briggs, L.J., Gustafson, KL. & Tillman, M.H. (Eds) (1991). Instructional Design

Principles and Applications. Englewood Cliffs, N.J.: Educational Technology

Publications.

Chen, J.W. & Shen, C. (1989). Software Engineering: A New Component for

Instructional Software Development. Educational Technology 29 (9), 9-15.

Chen, J.W. & Chen, M. (1990). Towards the Design of an Intelligent Courseware

Production System using Software Engineering and Instructional Design Principles.

Journal of Educational Technology Systems 19 (1), 41-52.

Christensen, L. C. & Bodey, M. R. (1990). A Structure for Creating Quality Courseware.

Collegiate Microcomputer 8 (3), 201-209.

Collis, B. & Gore, M. (1987). Combining Software Engineering and Instructional

Design in a New Type of Course for Educators. Journal of Research on Computing

in Education 20 (2), 104-116.

Gagne, R.M., Wagner, W. & Rojas, A. (1991). Planning and Authoring Computer­

Assisted Instruction Lessons. In: Briggs, L.J., Gustafson, KL & Tillman, M.H. (Eds),

Instructional Design Principles and Applications. Englewood Cliffs, N.J.: Educational

Technology Publications.

Gery, G. (1987). Making CBT Happen. Boston: Weingarten.

Software Engineering and Computer-Aided Instruction 45

[Gray 1994]

[Ibrahim 1989]

[Kotze 1995]

[Lantz??]

[Mclean 1989]

[Naisbitt 1982]

[Nicholson 1988}

[Pistorius 1992]

[Reigeluth 1983]

[Sakasai 1990]

[Self 1985]

[Simon 1981]

[Tripp 1990]

[Verhagen 1988]

[Wong 1993]

Gray, D.E. & Black, T.R. (1994). Prototyping of Computer-Based Training Materials.

Computers in Education 22 (3), 251-256.

Ibrahim, B. (1989). Software Engineering Techniques for Computer-Aided Learning.

Education and Computing 5 (4), 215-222.

Kotze, P. (1995). An Option Space for the Authoring of Interactive Tutoring Systems.

Unpublished DPhil Thesis Proposal, Department of Computer Science, University of

York, United Kingdom.

Lantz, KE. (no publication date - possibly 1985). The Prototyping Methodology.

Englewood Cliffs, N.J.: Prentice-Hall.

Mclean, R.S. (1989). Megatrends in Computing and Educational Software

Development. Education and Computing 5, 55-60.

Naisbitt, J. (1982). Megatrends. New York: Warner Books.

Nicholson, B.P. (1988). SCALD - Towards an Intelligent Authoring System. In: Self,

J.A (Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided

Instruction. London: Chapman & Hall.

Pistorius, M.C., de Villiers, C. & Alexander, P.M. (1992). CAI -Alive and Well at Unisa.

CBE in Tertiary Education, Proceedings of the Third CBE/CBT Conference, University

of South Africa, Pretoria.

Reigeluth, C. M. (Ed.) (1983). Instructional-Design Theories and Models: An Overview

of their Current Status. Hillsdale N.J.: Lawrence Erlbaum Associates.

Sakasai, Y. & Watanabe, T. (1990). A CAI System for Software Engineers: SOLAS.

Nippon Telegraph and Telephone Review 2 (2), 81-88.

Self, J. (1985). Microcomputers in Education: A Critical Evaluation of Educational

Software. Brighton: The Harvester Press.

Simon, H.A. (1981). The Sciences of the Artificial (2nd ed.). Cambridge, MA: MIT

Press.

Tripp, S.D. & Bichelmeyer, B. (1990). Rapid Prototyping: An Alternative Instructional

Design Strategy. Educational Technology, Research and Development 38 (1), 31-44.

Verhagen, P.W. & Plomp, T. (1988). Educational Technology: A Dutch Contribution

to the Debate. In: Mathias, H., Rushby, N. & Budgett, R. (Eds), Aspects of

Educational Technology, Vol XX!, Designing New Systems and Technologies for

Learning. London: Kogan Page.

Wong, S. C. (1993). Quick Prototyping of Educational Software: An Object-Oriented

Approach. Journal of Educational Technology Systems 22 (2), 155-172.

CHAPTER FOUR

THEORIES OF COGNITION AND LEARNING

In the previous two chapters CAI was viewed from a software engineering perspective. The

focus in Chapters Four to Six is on the second and third pillars of ISO, namely the instructional

aspects.

Theories of cognition, once the preserve of psychology, have been enriched in the last three

decades due to research by educators and by the Artificial Intelligence (Al) community of

Computer Science. Theories of thinking and cognition lead to learning theories, which in turn

form the basis of instructional models. This chapter overviews both thinking theories and

learning theories, noting the resultant applications to instruction as propounded by

psychologists, educationalists and Al specialists such as Newell, Simon and Minsky. The

application of selected approaches to CAI is also outlined. Chapter Five is a follow-up which

discusses the impact of learning theories on instructional design, since strong associations

exist between instructional theory foundations and practical instructional design. Specific

details relating cognition and instructional design to CAI and to practice-environments in

particular are covered in Chapter Six.

In relation to the software engineering life-cycle models discussed in section 2.1,

the study made in this chapter relates to the requirements analysis phase of

FRAMES. The explicit investigation of cognitive strategies tends to be an

innovative incorporation in this phase. The selected life-cycle model incorporates

a prototype, and thus facilitates evaluation of these strategies.

4.1 THEORIES AND MODELS OF HUMAN THINKING

The components and strategies of human thought and cognition are currently a topic of

discussion and research. The logical outflows of theories and models of human thought

are theories and models of human learning, hence their relevance to this dissertation.

46

Theories of Cognition and Learning 47

4.1.1 SPIRAL MODEL OF THINKING

In the Spiral Model of Thinking Schiever [Schiever 1991] points out how basic cognitive

processes such as association and discernment facilitate the five developmental processes:

1. Classification - combining similar items,

2. Concept development- identifying an entity (concrete or abstract) as a member or non-

member of a class,

3. Deriving principles,

4. Drawing conclusions, and

5. Making generalizations by projecting experience.

Schiever's development spiral emphasizes repetitive encounters with concepts via

experience and instruction. Each re-visitation expands and modifies the five development

processes and fosters application of the knowledge to increasingly complex tasks.

4.1.2 PIAGETIAN THEORY

The educational theories of Piaget [lnhelder 1958; Gruber 1977] stress experiential learning

and step-wise progress as the basis of intellectual development. Piaget defines four major

stages of mental growth, shown in Table 4.1:

Table 4.1 Piaget's Stages of Mental Growth

STAGE THOUGHT PATTERN TYPE OF PERCEPTION

Sensori-motor Develops elementary Perception of objects
schemata for external
objects

Pre-operational Comprehends symbols as Generalization of object
representation of external
objects

Operational Gains ability to do concrete Operational
operations

Pre-adult Can execute formal Operational
operations
(e.g. symbolic manipulations)

Theories of Cognition and Learning 48

Particularly in mathematical education, the needs exist to personalize expertise and to move

from the concrete to the abstract. Piaget conceptualized the human intellect as consisting of

patterns of thought called schemata. When genuine comprehension occurs, it is tantamount

to the re-invention of the theory by the subject, and such personalized comprehension

leads to spontaneous new applications. The teacher becomes less a lesson-giver and more

an organiser of situations that lead to curiosity and solution-seeking on the learner's part. The

ideal is to provide environments in which exploration leads to self-correction of errors [Gruber

1977; Schiever 1991]. An example is Papert's LOGO microworld [Papert 1980] in which

students experiment with graphical geometrical objects, hence discovering concepts for

themselves. Papert explicitly states that the theory behind his problem-solving environment

draws on the Piagetian approach to thinking and on those aspects of artificial intelligence

concerned with thinking about thinking in general. LOGO proponents oppose conventional

CAI activities, believing that the use of computers in education entails the global re-design of

learning environments [O'Shea 1983; Vockell 1989].

4.1.3 HIGHER ORDER THINKING SKILLS (HOTS)

Vockell & von Deusen [Vockell 1989] sum higher order thinking skillls (HOTS) up as

comprising overlapping categories such as metacognition, critical and creative thinking, and

thinking skills (or strategies).

They describe Sternberg's tri-archic theory of intelligence which proposes performance

components, metacognitive components and knowledge acquisition components.

Performance components include the skills typically measured in IQ tests; the components

involving metacognition relate to a learner's ability to plan, evaluate and improve his own

cognitive processes (i.e. thinking about thinking); knowledge acquisition relates to the

processes used for acquiring new information, namely, encoding, combination and

comparison.

Intellectual performance improves when learners are capable both of critical thinking -

reflection on what to believe or do, and creative thinking- the development and use of original

and flexible ideas. Critical thinking and creative thinking complement each other; the first is

primarily evaluative (analytical) and the second primarily generative (focused upon synthesis).

Quality education should set out not only to teach subject content, but also to foster the above

processes and skills. An analytical thinker may automatically reason metacognitively, but, in

general, some of these skills may be actively taught to the learner. HOTS can be taught in

isolation from specific content, but then the learner must generalize and apply them in various

settings. Instructional environments and media should explicitly and implicitly facilitate higher­

order thinking. HOTS are elaborated in section 4.2.8 in the context of human learning.

Theories of Cognition and Learning 49

4.1.4 THE NEWELL AND SIMON THEORY OF HUMAN INFORMATION PROCESSING

The emergence of the computer following World War II was initially focused on its numerical

processing power. In the 1960s its powerful symbol-manipulating capabilities drew attention.

The Al community found in the computer new analogies for human cognitive processes.

Newell and Simon [Newell 1972] postulated a theory that viewed man as a human information

processing system, at least, when he is solving problems. They propose that both the

operation of the human brain and the computer can be represented by the model of an

information processing system shown in Figure 4.1. The short term memory (STM) is a

component of the processor from which all processes take their inputs and leave their outputs.

It has a very small capacity and its information decays quickly. Long term memory (L TM)

selects certain information from STM for long-term encoding; STM in turn retrieves specific

stored data from L TM and combines it with information input via the receptors at execution

time. In short, there is a series of functions:

• sensation from a stimulus

• perception

• encoding in STM

• association

• encoding in L TM

• retrieval.

In section 4.2.1, this perspective is continued as learning is viewed as a human information

processing system, and the process illustrated in Figure 4.1.

4.2 THEORIES, MODELS AND ASPECTS OF HUMAN LEARNING

Since the 1980s there has been intensive research in the realm of cognitive development

applied to learning. There is a dichotomy over whether knowledge attainment comes from

mastering a hierarchy of skills for doing something, or from understanding the underlying

reasons. In general, learning of actions occurs as a by-product of performing them, and

learning of conceptual material occurs as a by-product of understanding. Current trends

emphasize thinking skills and the understanding aspects. Learning theories are related to

thinking and understanding, and their major impact is that they form the basis on which

methods of instruction are developed.

Theories of Cognition and Learning 50

4.2.1 LEARNING AS HUMAN INFORMATION PROCESSING

This is a logical sequel to the Newell & Simon view (section 4.1.4) which proposes that

thinking is analogous to information processing. Gagne and Glaser [Gagne 1987] view

learning as information processing. Input from external sources is received via human

receptors. STM comprises primary memory (PM), where information is stored, but restricted

in space, and limited in time span to about 20 seconds, and working memory (WM), where

the actual recognition and "pattern matching" occurs between incoming information and

stored information retrieved from L TM. A second function of WM is integration of the new

incoming material with existing knowledge structures in L TM, and the third function is

rehearsal, the repetition processes by which material in STM can be maintained for longer

periods. The structures in L TM are mainly concepts and associations between concepts.

Piaget [lnhelder 1958] referred to such associational mental structures as schemata or

schemas. Many theorists assume the concepts to be propositional representations, entities

comprising a subject and a predicate [Anderson 1983]. For instance, "16 is-less-than 17" and

"a relation is an ordered pair with a first co-ordinate and a second co-ordinate" are

propositions. Thus the knowledge representation structures within L TM may be networks of

propositions. Once information has been stored in L TM, it can be considered learned.

Learned material has thus undergone: sensory perception, reception, STM storage,

processing in WM, and semantic encoding in L TM. The process is illustrated in Figure 4.1.

Environment Information Processing System

s timulus Sen~ory STM LTM
receiver

- -
PM Schemas

percep ion encoding - I encodina _

4 .. inSTM
... + inLTM

..
WM~

'----- '-----

Figure 4.1 General Structure of an Information Processing System

Theories of Cognition and Learning 51

4.2.2 THE GAGNe-BRIGGS MODEL OF LEARNING OUTCOMES

The Gagne-Briggs model of instruction identifies five different types of learning which each

require different instructional treatments and different conditions [Aronson 1983; Gagne 1987;

Gagne 1991]. Gagne's work is classified as learning theory, but it contributes strongly to

instructional theory. The five types of learning outcomes are:

1. Verbal information - ability to acquire and recall factual knowledge.

2. Intellectual skills - ability to do mental operations for problem-solving; relating also to

abstract concepts. There are five subordinate types:

+ discrimination,

+ concrete concept,

+ defined concept,

+ rule, and

+ problem solving (rule application).

3. Cognitive strategies - ability to plan and control thinking and problem-solving.

4. Motor skills - ability to execute physical movements.

5. Attitudes - predisposition to a positive or negative approach towards a specific object.

The first two outcomes are brought about largely by direct instruction, and the development

of the third can be explicitly and implicitly fostered. Instruction must be designed both for

initial encoding and to facilitate LTM storage of the specific type of learning. To produce

automaticity of skills requires additional instructional strategies.

4.2.3 GAGNe'S EVENTS OF INSTRUCTION

Once a learning outcome has been specified, the necessary instruction must be designed.

Gagne proposed learning support based on the nine events of instruction [Aronson 1983;

Gagne 1987; Gagne 1991]. Each event serves to provide some external conditions of

learning:

1. Gaining attention,

2. Informing learner of lesson objectives,

3. Stimulating recall of prior learning,

4. Presenting stimuli with distinctive features,

5. Guiding learning,

6. Eliciting performance,

7. Providing informative feedback,

8. Assessing performance, and

9. Enhancing retention and learning transfer.

Theories of Cognition and Learning 52

CAI designers need to pay attention to all nine events, although not all of them will be

applicable to a given lesson. The key factor is to note the effect of the type of learning

outcome (see section 4.2.2) on the form of the event of instruction. In any given situation,

the specific forms of an instructional event and its concomitant procedures depend as much

on the kind of learning outcome required as on the nature of the event itself.

4.2.4 BEHAVIOURISTIC LEARNING THEORY

Behaviouristic learning theory suggests that learning outcomes are demonstrated by

observable behaviour. The stimulus-response pattern of behaviour is manifested in the

learner's overt reactions - a stimulus from the environment results in a response from the

learner. According to Skinner [Skinner 1938], a major protagonist of the theory, the correct

response should be rewarded with immediate reinforcement, leading to a stimulus-response­

reinforcement paradigm. The principle of operant conditioning states that if the occurrence

of an operant is followed by the presentation of a reinforcing stimulus, the strength is

increased [Skinner 1938]. The initial stimulus is typically a question and the response is the

learner's answer. Reinforcement, following the desired behaviour, may be an extrinsic reward

or a positive comment. In pure Skinnerian theory no reinforcement is given for an incorrect

answer.

The theory was derived initially from experiments with animals, and applied later to human

learning. It assumes frequent re-presentation, usually in increasing difficulty levels.

Behaviourism views behaviour of an organism as a function of external stimuli; and learning

is viewed as the construction of a set of stimulus-response associations, induced by

repetition and reinforcement. It avoids consideration of internal cognitive processes , dealing

rather with measurable behaviour [Visser 1995; O'Shea 1983; Venezky 1991], hence the term

'behaviourism". This contrasts with the perspective in section 4.2.1, where learning is viewed

as the storage of information in long term memory.

4.2.5 MASTERY LEARNING

Closely associated to behaviourism is mastery learning [Regian 1992; Venezky 1991; Vockell

1989], which insists that the learner masters each segment of the curriculum before

proceeding to the next. The premise of mastery learning is that, given enough time, nearly

all learners can master objectives. Skinner believed that the only major difference between

learners was their tempo of learning.

Behaviourism and mastery learning are discussed in detail in section 5.3 of Chapter Five.

Theories of Cognition and Learning 53

4.2.6 THE COGNITIVE LEARNING THEORY

Behaviourism focuses on overtbehaviour;cognitive learning theory focuses on covert thought

processes. Learning is viewed as the ability to execute internal cognitive processes, such as

thought, remembering, conceptualization, classification and problem solving [Visser 1995].

Cognitive scientists compare learning to a processor receiving incoming stimuli (see sections

4.1.4 and 4.2.1), and assimilating them into existing schemas. Learning is considered to be

a reorganization of the brain's knowledge structures, which are considered similar to a

semantic network with natural associations as links. The emphasis in cognitive science is on

related concepts rather than on isolated facts. Learning theories result in instructional

strategies, and cognitive science proposes discovery-learning as one of the most appropriate

instructional modes.

As stated in section 4.2.1 on human learning, Anderson [Anderson 1983] considers the units

of human knowledge structures to be propositions. He claims that human cognition is based

on condition-action pairs called productions. A production combines a condition proposition

and an action proposition. If an element, or a set of elements, matching the condition is found

in WM, then the production is applicable, and the action is triggered. The basic action is to

add new elements to WM. For example:

Production rule:

IF a relation is reflexive on itself

and it is symmetric

and it is transitive

THEN the relation is an equivalence relation.

Active elements (propositions) already in WM:

Result:

P is reflexive on itself

Pis symmetric

P is transitive.

The production is activated, and

a new proposition is stored in WM, namely:

P is an equivalence relation.

Theories of Cognition and Learning 54

4.2. 7 CONSTRUCTIVISM

Constructivism is an implementation of cognitive learning theory just as mastery learning is

related to behaviourism. It is based upon the tenet of learners constructing their own

knowledge. Key aspects are anchoring of material in appropriate contexts (i.e. situated

learning), active learning, collaborative learning, transfer and integrated testing. Current

technology offers wide scope for constructivists, but instructional design theory has not kept

up [Mehl 1993], and most CAI is behaviouristic. Software with a constructivist bias would

actively engage learners in the construction of meaning from information by means of

accretion (adding new facts), tuning (modifying categories according to new information) and

restructuring (developing structures to interpret and integrate new material) of internal

knowledge structures. Rather than passively responding to stimuli, the learner activates his

covert mental processes. Mehl & Sinclair [Mehl 1993, p. 13] speculate:

"If learning ... implies the construction of knowledge, will it mean that in future

students will learn less from the computer, but more with the computer?"

In an ideal situation constructivism allows the learner to observe directly and to manipulate a

representation, for example, simulations and tool software. In a similar vein Lesgold et al

[Lesgold 1992] believe in "learning by doing" and recommend coached practice and

apprenticeship environments, which are particularly relevant for situations where an actual

work environment can be simulated. They developed SHERLOCK, an intelligent coached

practice environment which simulated trouble-shooting in electronic circuits.

Cognitive science and constructivism are discussed in detail in section 5.4 of Chapter Five.

4.2.8 HIGHER ORDER THINKING SKILLS (HOTS)

HOTS, introduced in section 4.1.3, are currently at the forefront in cognition and instruction.

The information explosion has led to the realization that it is less important to accumulate

knowledge than to acquire problem-solving expertise. HOTS make up a vital subset of human

cognitive skills, and fall into overlapping categories [Vockell 1989]:

+ Metacognitive skills;

+ Critical and creative thinking;

+ Thinking processes, e.g. concept formation, principle formation, decision-making,

research; and

+ Core thinking skills, e.g. the type of classification, analysis and synthesis skills

typically measured in IQ tests.

Theories of Cognition and Learning 55

HOTS are important in education at all levels. Without them, tertiary levels and probably

academic secondary levels would be unattainable. A competent user of HOTS tends to think

at a conceptual rather than a rote memorization level, and to insert information into a network

(or schema) instead of treating it in isolation. Vockell & van Deusen [Vockell 1989] give an

overview of HOTS, categorizing thinking skills and strategies under the functions, memory,

cognitive discrimination and rules, and cognitive control- see Table 4.2. A single instructional

program could not, of course, embody all the different skills.

Table 4.2 Categorization of HOTS According to Function [Vockell 1989, p. 91]

THE BASIS OF PROBLEM-SOLVING

MEMORY COGNITIVE SKILLS: COGNITIVE
DISCRIMINATION CONTROL STRATEGIES

AND RULES

+ Mnemonic systems + Higher-order rules + Simultaneous scanning
+ Visual association +Rules + Selecting appropriate notation
+ Whole to part + Defined concepts + Identifying multiple solutions
+ Self-testing + Concrete concepts + Working backwards
+ Creating a context + Discrimination + Using a model
+ Personalization + Estimating, predicting,
+ Regrouping projecting
+ Number of items to + Scanning for clues, hints

remember + Restating the problem
+Sequence +Analyzing

+ Seeking a pattern or sequence
+ Brainstorming
+ Openness to insight, flexibility
+ Retrieval strategies
+ Organized fact gathering

Gagne and Glaser [Gagne 1987] believe that the cognitive strategies which control other

processes of thinking and learning can be generally acquired. The question is whether HOTS

should be taught in specific courses on thinking skills, explicitly integrated into content

curriculums, or merely implicitly fostered within subject-matter courseware. Proponents of the

second view believe that the practice facilitates transfer into other domains. Instructors can

actively facilitate the process by pointing out the relationship between those skills and

generalized skills, and by ensuring that learners avoid lower-order skills where possible.

Theories of Cognition and Learning 56

4.2.9 ANDERSON'S ACT MODEL

Anderson [Anderson 1983; Anderson 1992] is a proponent of intelligent tutoring (see Chapter

Seven, in particular section 7.3.2). His tutors are based upon a cognitive model that is itself

capable of solving problems in its domain. Development of such models is complex and time­

consuming, and is a foundation of intelligent tutoring. It is not the aim in this dissertation to

develop an intelligent tutor with its own domain knowledge, but there are still lessons to be

learnt from Anderson's Adaptive Control of Thought (ACT*) Model. Anderson views human

cognitive skills as based upon a set of productions (see section 4.2.6), and the computer

knowledge-bases in his intelligent tutors are analogously comprised of production rules.

Intelligent Tutoring Systems founded on this architecture are the Lisp Tutor, Geometry Tutor

and the Three Programming Languages project. The student is given the opportunity to

compile his declarative knowledge into production rule format and to practice those rules.

4.2.1 O COGNITION AS A FUNCTION OF INSTRUCTIONAL MODE

Comprehension is enhanced or retarded by instructional styles and modes. Some students

have fixed learning styles; others prefer different styles at different times. Various modes of

presentation [Vockell 1989; Venezky 1991] accommodate the different cognitive styles:

+ explanatory approach - direct teaching; explanation of associations and operations,

+ demonstration approach - setting out of an application,

+ problem-solving - encouraging students to do examples or exercises themselves in:

(a) multiple-choice mode,

(b) guided practice mode, or

(c) independent mode.

The explanatory and demonstration approaches are applicable to the learning phase, and the

problem-solving approach to the practice phase. Different types of learning and various

modes of presentation are detailed further in sections 6.6.2 and 6.6.3.

4.2.11 TRANSFER

Transfer [Gagne 1985; Vockell 1989] relates to the use of a concept or skill learned in one

situation in another setting. In flight-training of pilots, it refers to the application of skills

learned in a simulator to a real-life situation. In a mathematical context, transfer occurs when

a student learns to think principially, and extends his acquired problem-solving expertise to

a more complex example. Students should learn to transfer thinking skills and strategies used

in one CAI program to another. True education should be concerned not just with acquisition

of content knowledge, but also with the use and generalization of skills in novel situations.

Theories of Cognition and Learning 57

4.3 APPLICATION OF THINKING AND LEARNING THEORIES TO CAI

AND TO FRAMES IN PARTICULAR

The goal of learning theory is materials that promote learning. The most relevant concepts

are summarized in Table 4.3, and should be used in determining the content of FRAMES.

Table 4.3 Application of Thinking and Learning Theories to Instructional Software

THEORY OR MODEL

Spiral thinking model
(re-visitation)

Piagetian theory
(concrete ~ abstract)

HOTS:
1. Metacognition

2. Knowledge combination

Learning as information
processing

Limitations on STM

Behaviourism and mastery
learning

Cognitive learning and
constructivism

Anderson's ACT* model

Instructional mode

Retention and transfer

APPLICATION

Access to a topic or exercise in different modes,
thus providing multiple encounters; presentation in
textual and in graphic mode

Synthesis of concrete examples for self-discovery,
experiential learning, generalization,
application and retention

Explicit teaching of higher-order thinking skills
User-control of what to do next:

+ which problem
+ what aspects
+ what level

Explicit links between a problem and relevant
definitions

Relating a new situation to stored definitions and
principles

Avoiding overload on learners:
+ simple directions
+ chunking of content

Automaticity in use of sub-skills
Stepwise instructions in order of increasing difficulty
Branching programs
Constructive feedback as reinforcement

Active use of prior knowledge; anchored
instructional contexts; learning by doing

Although rules may not be explicitly "encoded",
there should be implicit mental formulation

Provision of options and multiple perspectives

Repetition, revision and review

Theories of Cognition and Learning 58

4.4 CONCLUSION

The preserve of learning theories and corresponding instructional models has been enriched

by the investigation of a related foundational aspect, namely the realms of thinking and

cognition. Theories of cognition lead to learning theories, which in turn result in instructional

theories and models. This chapter overviewed various perspectives on human thinking, and,

possibly most important, it pinpointed the fundamental difference between the viewpoints of

behaviourism and cognitive science. Behaviourism views learning as the construction of a set

of stimulus-response associations; the cognitive theory views learning as a reorganization of

the brain's knowledge structures. The former has a role to play in instruction, particularly in

facilitating the attainment of automaticity in subskills, but the influence of cognitive science,

with its associated thinking skillls is currently making inroads into the established

behaviouristic educational environment. In addition to theoretical cognitive studies,

educationalists are paying attention to pragmatic aspects. Strategies to encourage situated

and discovery learning, learning by doing, by active thinking and by planning, should be

incorporated into the instructional experience to optimize the learner's cognitive abilities.

In the development of instructional software, it should be an established practice to include

a study of approaches to thinking and learning in the requirements analysis phase.

Appropriate philosophies should be applied when determining the nature of the content and

instructional strategies.

Theories of Cognition and Learning 59

REFERENCES - CHAPTER FOUR

[Anderson 1983]

[Anderson 1992]

[Aronson 1983]

[Gagne 1985]

[Gagne 1987]

[Gagne 1991]

[Gruber 1977]

[lnhelder 1958]

[Lesgold 1992]

[Lippert 1993]

[Mehl 1993]

[Newell 1972]

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard

University Press.

Anderson, J.R., Corbett, AT., Fincham, J.M., Hoffman, D. & Petellier, R. (1992). In:

Regian, J.W. & Shute, V.J. (Eds). Cognitive Approaches to Automated Instruction.

Hillsdale, N.J.: Lawrence Erlbaum Associates.

Aronson, D.T. & Briggs, L.J. (1983). Contribution of Gagne and Briggs to a

Prescriptive Model of Instruction. In: Reigeluth, C.M. (Ed.), Instructional-Design

Theories and Models: An Overview of their Current Status. Hillsdale, N.J.: Lawrence

Erlbaum Associates.

Gagne, R.M. (1985). The Conditions of Learning. New York: Holt, Rinehart and

Winston.

Gagne, R.M. & Glaser, R. (1987). Foundations in Learning Research. In: Gagne, R.M.

(Ed.), Instructional Technology Foundations. Hillsdale, N.J.: Lawrence Erlbaum

Associates.

Gagne, R.M., Wager, W. & Rojas, A (1991). Planning and Authoring Computer­

Assisted Instruction Lessons. In: Briggs, L.J., Gustafson, KL. & Tillman, M.H. (Eds),

Instructional Design Principles and Applications. Englewood Cliffs, N.J.: Educational

Technology Publications.

Gruber, H.E. & Voneche, J.J. (1977). The Essential Piaget. New York: Basic Books,

Inc. Publishers.

lnhelder, B. & Piaget, J. (1958). The Growth of Logical Thinking from Childhood to

Adolescence. New York: Basic Books Inc. Publishers.

Lesgold, A., Eggan, G., Katz, S. & Rao, G. (1992). In: Regian, J.W. & Shute, V.J.

(Eds). Cognitive Approaches to Automated Instruction. Hillsdale, N.J.: Lawrence

Erlbaum Associates.

Lippert, R. C. (1993). Computer-Based Education and Training in South Africa.

Pretoria: J.L. van Schaik Publishers.

Mehl, C.M. & Sinclair A.J.L. (1993). Defining a Context for CAI: In Quest of

Educational Reality. In: Lippert, R.C. (Ed.), Computer-Based Education and Training

in South Africa. Pretoria: J.L. van Schaik Publishers.

Newell, A and Simon, H.A (1972). Human Problem Solving. Englewood Cliffs, N.J.:

Prentice-Hall Inc.

Theories of Cognition and Learning 60

[O'Shea 1983]

(Papert 1980]

(Regian 1992)

[Schiever 1991)

[Skinner 1938]

(Venezky 1991)

(Visser 1995]

[Vockell 1989]

O'Shea, T. & Self, J. (1983). Learning and Teaching with Computers. Brighton: The

Harvester Press.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York:

Basic Books.

Regian, J. W. & Shute, V.J. (1992). Cognitive Approaches to Automated Instruction.

Hillsdale, N.J.: Lawrence Erlbaum Associates.

Schiever, S.W. (1991). A Comprehensive Approach to Teaching Thinking. Boston:

Allyn and Bacon.

Skinner, B. F. (1938). The Behaviour of Organisms: an Experimental Analysis. New

York: Appleton-Century-Crofts.

Venezky, R. & Osin, L. (1991). The Intelligent Design of Computer-Assisted

Instruction. New York: Longman.

Visser, R. (1995). Rekenaarbenutting in die opleiding van inligtingsvaardige

gebruikers aan 'n akademiese inligtingsdiens. Uncompleted DPhil thesis, Department

of Information Science, University of Pretoria, Pretoria.

Vockell, E. & van Deusen, R.M. (1989). The Computer and Higher-Order Thinking

SkJ11s. Watsonville CA: Mitchell Publishing, Inc.

CHAPTER FIVE

LEARNING THEORIES AND INSTRUCTIONAL DESIGN

The discipline of Instructional Design (ID) is concerned with understanding and improving

instruction by applying optimal methods to promote knowledge acquisition and skills in the

learner. There are two major thrusts to instructional design. The first is the methodology used

towards systemization of instructional models, procedures and materials, ie. its contribution

toward the development process. The second is the understanding and promoting of the

learning process, using learning theory as the foundation of instructional theory, and thus

determining inherent characteristics of the product. Thus a variety of theories and models

exist, some founded as explicit prescriptions defining stages and procedures in instruction,

and others based on learning theory [Reigeluth 1983; Dijkstra 1990; Wilson 1992]. Figure 1.1

showed ID's role as the central pillar of ISO, contributing, along with instructional theory, to the

nature of the deliverable product and, together with software engineering, to the procedures

of the development process.

This chapter overviews systematic ID procedures. It re-addresses the two major learning

theories, behaviourism and cognitive science, introduced in the previous chapter. Early CAI

showed a strong behaviouristic influence, but since the 1980s the impact of cognitive

psychology has been evident. Each theory is discussed under corresponding sub-headings,

investigating its relationship to learning, its offshoots in terms of instructional paradigms and

particularly noting its impact on instructional design and on CAI. It also observes the

application and implementation of each, and of a combined approach, in at least one specific

instructional implementation.

Instead of devoting a single section at the end of the chapter to "application", as is the usual

format, application is distributed over relevant sections.

In relation to the life-cycle model, the study undertaken in this chapter is relevant

to the analysis and design phases of instructional software development.

61

Learning Theories and Instructional Design 62

5.1 FOUNDATIONS OF INSTRUCTIONAL THEORY

Reigeluth [Reigeluth 1983] names the three major components of an instructional theory

namely conditions, methods and outcomes. The conditions are the basic instructional

circumstances, such as the type of learner and the situation. The methods relate to the

strategies used to achieve different outcomes under different conditions. The outcomes are

the results of instruction, and must be measurable. Measurement may be in terms of student

achievement but may also be an assessment of the appeal of the instruction and the learner's

tendency to continue.

Major contributions have been made by the combined work of Gagne and Briggs [Aronson

1983]. Briggs is a writer in the area of instructional development procedures, while Gagne is

a specialist in learning theory, who relates the required objectives and type of learning

required to appropriate instructional events [section 4.2.3].

The Gagne-Briggs model of learning outcomes [section 4.2.2] emphasizes the teaching of

intellectual skills. In terms of procedures, it stresses:

1. Identification of prerequisites for each objective.

2. Sequencing, so that prerequisites are taught before superordinate skills.

3. The selection of certain of Gagne's nine events of instruction for teaching each

objective, including the specification of media and strategies.

5.2 PROCEDURES OF CONVENTIONAL INSTRUCTIONAL DESIGN

Briggs & Wager [Briggs 1981] believe that systematic design procedures can make instruction

more effective, efficient and relevant. The key lies in designing the objectives, content,

instructional methods, and evaluation procedures in congruence with one another. It is

important to distinguish between instructional design models and instructional delivery media.

ID as such refers to the process of designing and developing instruction, and need not

necessarily specify the media. They specify distinct stages of design:

1. Assessment of needs, goals and priorities.

2. Assessment of resources and constraints.

3. Identification of curriculum, course scope and sequence.

4. Determination of overall structure of courses.

5. Determination of sequence of units and specific objectives.

6. Definition of performance objectives.

Learning Theories and Instructional Design

7. Preparation of assessments of learner performance

(tests prepared immediately after definition of objectives).

8. Designing detail content of lessons and materials:

a) instructional events

b) media

c) conditions of learning

(similarly, done after objectives).

9. Development of media, materials, and activities.

10. Formative evaluation.

11. Field tests, training, summative evaluation, and implementation.

63

The systems-approach model of Dick and Carey is described by Venezky [Venezky 1991].

It bears many similarities to the Briggs and Wager model, but emphasizes:

+ required entry-level behaviour,

+ development of criterion-referenced tests, and

+ revision.

Both the Briggs & Wager model and the Dick & Carey model, particularly the latter with its

stress on entry-level skills and criterion testing, imply an implicit behaviouristic flavour.

Merrill & Li [Merrill 1990a] developed an expert system to assist instructional designers. Their

simplified process model comprises five decisions, each step being directly related to the

attainment of the previous step:

1. The goal of the instruction.

2. The content which best supports the goal.

3. The modules necessary to teach the content.

4. Which instructional transactions, i.e. strategies and sequences, arethe most appropriate

for each module.

5. The elaboration and implementation of each instructional transaction.

A final methodology is the Instructional Design Template (IDT) of West, Farmer and Wolff

[West 1991]. More than the previous models considered, it bears witness to the influence of

cognitive science. It embodies:

1. Situational audit- assessment of the instruction's purpose, the participants' needs, and

the required perspective.

Learning Theories and Instructional Design 64

2. Aim and objectives - includes decisions regarding the topic, the types of learner and

learning, and specific objectives specifying what the learner should be able to do under

what conditions and at what level; also includes the decision as to whether there will

be a pre-test or entry-level analysis.

3. Content and uses - specifies the content of the instruction and the use to which the

learner will put his knowledge.

4. Cognitive strategies - described in section 5.4.2.

5. Means of instruction - decisions about methods of learning and media to be used.

6. Testing - first decision to be made is whether or not explicit tests will be done. If tests

are included they should be relevant and situationally appropriate.

7. Evaluation - Formative evaluation and resulting revision of the instructional software is

of great importance.

5.3 BEHAVIOURISM AND THE MASTERY LEARNING PARADIGM.

Behaviourism, defined in section 4.2.4, is analysed in this section with reference to its

application to learning and instruction, its impact on ID, and its implications for CAI.

5.3.1 BEHAVIOURISM, LEARNING AND INSTRUCTION

Behaviourism in instruction originated in World War II, when psychologists involved in military

training identified the outcomes in terms of performance. Behaviourist psychology proposes

that learning results from the association of a stimulus and response (S-R unit), with

reinforcement as a third event. It is based on Skinner's operant conditioning [Skinner 1938]

and entails extensive practice and reinforcement. In the 1960s the process was systematized

and formalized as it was integrated into instructional models such as Gagne's. According to

Gagne, learning has occurred when behaviour indicates that a capability has been

acquired, i.e. when a set of stimulus-response associations has been constructed

[Aronson 1983; Gropper 1983]. Behaviourism is not concerned with whybehaviour change

occurs, but rather how to bring about such changes.

5.3.2 IMPACT OF BEHAVIOURISM ON INSTRUCTIONAL DESIGN

Early ID was strongly influenced by behaviourism; in particular the instructional paradigm of

mastery learning bears witness to the kind of behaviouristic principles outlined in this section.

Fleming and Levie [Fleming 1977] investigated the impact of behavioural-science perception

principles and determined:

Learning Theories and Instructional Design 65

+ Human information processing capacity is limited; the learner can absorb only a limited

amount at a time.

+ Perception is organized - humans perceptually construct relationships, groups, objects

and events.

+ The organization of a stimulus or message influences the speed and accuracy of

reception. The simplest perceptual organization is figure and ground. Thus spacial and

temporal arrangements influence perception of relationship.

+ Stimulus figures that are incomplete may be implicitly completed by the perceiver.

+ The more familiar a message, the more readily it is perceived, but on the other hand

attention is drawn to what is novel and which stands out.

+ A moderate degree of uncertainty or anxiety is a strong incentive to resolve a problem

(healthy frustration).

+ A change in stimulation is necessary for sustained attention.

+ The amount processed depends on the number of discrete objects or events, and on

the depth to which each is processed.

+ At one glance humans can perceive up to about seven items.

+ According to their experience, perceivers partition available information into chunks or

clusters.

+ The more accurately an object or event is perceived, the more feasible and reliable will

be further cognitive processing, such as memory and problem solving.

These perception principles have their natural consequences in practical learning principles

[Fleming 1977]:

+ The association of objects or events with each another is facilitated when they are

encountered in spatial or temporal contiguity.

+ Learning is influenced by the frequency with which stimuli are encountered and the

same response made.

+ Learning depends on its consequences. When consequences are explicitly or implicitly

rewarding, learning is faster and lasts longer.

+ The scores obtained by measurement of learning vary as a function of the conditions

of testing.

+ Familiar or attention-gaining cues facilitate learning.

+ The more motivated the learner, the greater can be the size of an instructional unit.

+ Spaced practice is more effective than massed practice.

+ The more meaningful the relationship between things associated, the greater the

learning. Well organized and structured material facilitates knowledge acquisition.

+ When the material is introduced at the beginning of a unit, subsequent learning of detail

is facilitated.

+ Questions inserted within instruction facilitate learning.

Learning Theories and Instructional Design 66

+ Learner-activity and involvement facilitate learning.

+ A wide variety of examples fosters comprehension.

+ Examples and non-examples should be shown.

+ Prior learning of related concepts facilitates learning.

+ Problem solving is helped by situational support which emphasizes crucial elements or

reveals an important relationship.

+ Situational support for problem solving should present relevant information, but should

also provide an opportunity to manipulate various alternatives.

And finally, the two principles most intrinsic to behaviourism:

+ The reinforcement that occurs after an act strongly influences the likelihood of that act

being repeated in the same context, i.e. the likelihood of a stimulus and response

becoming associated is dependent upon consequences.

+ In general it is desirable, during initial learning, to reinforce all correct responses.

Subsequently, fairly frequent feedback is preferable for consolidation and maintenance

of behaviour.

Hannafin & Peck [Hannafin 1988] also derive principles of instructional design using

behavioural learning theory (they are clearly a subset of the Fleming philosophy):

1. Contiguity The response should follow the stimulus without delay.

2. Repetition: Practice strengthens learning and improves retention.

3. Feedback and reinforcement Knowledge concerning the correctness of the response

contributes to learning.

4. Prompting and fading: The student should be led to the desired response under

decreasingly cued conditions.

Gropper [Gropper 1983] mentions four skills which are significant in behaviourism, namely

discrimination, generalization, association, and chaining. The competent performer must be

able to discriminate between one stimulus and another and produce the appropriate response

for each. Generalization occurs when students come to recognize analogous stimuli, and can

transfer the same skill to new relevant situations. Ability to distinguish between stimuli is not

sufficient for mastery performance. The correct response must be associated with each

stimulus. And finally chaining - successful performance in an activity comprises the learning

of all S-R units that comprise it and integrating them into a composite chain. The practical

application is that an instructional designer should provide instructional and practice

opportunities that facilitate acquisition of these four skills.

Learning Theories and Instructional Design 67

5.3.3 IMPLICATIONS OF BEHAVIOURISM FOR CAI

It is clear from the features described that most CAI software incorporates the rudiments of

behaviourism [Gropper 1983; Poppen 1988]. Entry-skills analysis is used to branch to a

section of the lesson appropriate to the student's level. Programs with a linear structure are

sequenced in steps of increasing difficulty. A keystone of behaviourism is the provision of

prompts or cues to promote correct responses, with strong cues early in the shaping

processes, followed by gradual fading. Complex repertoires can be built out of subskills by

shaping and chaining. An important aspect of behaviourism is its goal of automaticity in

subskills, intended to facilitate the acquisition of composite skills. Evaluation of student­

responses and the provision of immediate feedback are important characteristics, and should

supply reinforcement for correct answers and corrective or remedial feedback for

inappropriate or incorrect answers.

A clear example of the implementation of behaviourism is found in mastery learning (see

section 4.2.5). A student is given as much time as required to achieve a given level (mastery

level) in each instructional unit before proceeding to the next. This strategy is particularly

effective where the goal is to teach clear and specific performance objectives, but it does not

appear significantly to reduce individual differences on standard achievement tests and in

general academic performance.

5.3.4 IMPLEMENTATIONS OF BEHAVIOURISM

The programmed instruction of the 1950s and 1960s was based on behaviouristic principles,

and so are most current CAI tutorials. Content is chunked, and ordered according to

increasing level of difficulty. Text and supporting graphics are placed contiguously; thematic

cues are evident; and teaching segments are interspersed with practice opportunities, where

the question-answer-judging-feedback process is clearly indicative of the stimulus-response

paradigm. Material is introduced at the beginning of a unit and reviewed at the end. Stress

is laid on the student's score in the post-test.

Behaviourism is decried by the extreme constructivist viewpoint. The stimulus-response

paradigm apparent in much CAI is criticized by Appel & Appel [Appel 1987] in their discussion

of a behaviouristic mathematics package. They suggest that, in principle, computers cannot

educate, and although acknowledging the software to be a sophisticated application of S-R

conditioning, they claim that conventional CAI "interactivity" is not dialogue at all. Dialogue,

in their view, is open-ended with no preset responses, therefore they do not accept that the

giving of correct answers and achievement of learning objectives demonstrate that learning

has taken place. It is uncertain whether such learning ensures long-term retention.

Learning Theories and Instructional Design 68
~~~~~~~~~~~~~~~~~~~~~~~-

5.4 COGNITIVE LEARNING AND CONSTRUCTIVISM 

Cognitive Science, defined in section 4.2.6, and constructivism, introduced in section 4.2.7, 

are analysed in this section with reference to their application to learning and instruction, their 

impact on ID, and their implications for CAI. 

5.4.1 COGNITIVE SCIENCE, LEARNING AND INSTRUCTION 

In congruence with the behaviourist stance, important factors in instructional design have 

been precise objectives, presentation of stimuli, and preparation for anticipated responses, 

with less concern for the learner's intellectual processing. The emphasis was on performance, 

although a cognitive perspective did exist side by side with behaviourism. With the advent of 

the cognitive revolution [West 1991 ], however, intellectual involvement and active cognitive 

processing have come to the fore. Cognitive theorists believe that learning comprises 

reception, short term storage, encoding, long term storage, and retrieval of information, 

i.e. a reorganization of the brain's knowledge structures, as described and illustrated in 

sections 4.1.4 and 4.2.1. The capacity of STM is limited both in quantity and time-volatility. 

Encoding occurs as the meaningful information moves from STM to L TM where it is 

categorized and stored according to its meaning. 

In the period pre-dating World War II, Gestalt psychologists propounded the figure-ground 

approach which stressed ideas such as wholes and patterns within structures. To Piaget 

[lnhelder 1958] mental growth consisted of the development of logical constructs and 

schemata, which are mental structures used for integrating prior knowledge with new 

knowledge. There are state (or data) schemata and process schemata. In line with the 

analogy between the human mind and the electronic computer, state schemata can be 

compared to data files and process schemata to programs which are executing. 

From the cognitive perspective, perception is considered to be the construction of meaning 

via integration of the new with the old, within the available schemata, and activated by an 

event. When a learner c'an recognize a known concept in a new context, then he is learning 

cognitively and constructing meaning. Mental schemata do not only facilitate perception and 

comprehension, but also aid recall. 

5.4.2 IMPACT OF COGNITIVE SCIENCE ON INSTRUCTIONAL DESIGN 

Hannafin & Peck [Hannafin 1988], derived their first four ID principles (see section 5.3.2) from 

behavioural learning theory. Based upon cognitive learning theory, they derived their fifth, 

sixth and seventh principles: 



Learning Theories and Instructional Design 69 

5. Orientation and reca/t. Learning involves the synthesis of prior information, by recalling 

it from L TM to WM. 

6. Intellectual skills: Learning is facilitated by the use of existing processes or strategies. 

By recalling how similar learning objectives were achieved, the student may employ 

existing methods to learn new information, thus improving learning efficiency. 

7. Individualization: Learning may be more efficient when the instruction is adapted to the 

needs and profiles of individual learners. 

Jonassen [Jonassen 1988] described major learning strategies, and included techniques other 

than those solely content-centred and performance-based. He categorizes material 

processing strategies as including recall, integration, organization, and elaboration. Active 

study strategies entail the use of general study systems. Under meta/earning strategies he 

includes planning, concentrating, encoding, reviewing, and evaluating. Practical issues such 

as goal setting, time management, and relaxation are also mentioned. Instructional designers 

should take cognisance of effective learning strategies, and design so as to facilitate them. 

West et al [West 1991] proposed nine cognitive strategies that can be explicitly incorporated 

within instruction to foster metacognition and facilitate the active creation of schemata: 

1. Chunking: Chunking strategies entail rational ordering and classification of knowledge, 

aiding learners in the intellectual management of large amounts of material or complex 

processes. 

2. Frames, type 1: This relates to the presentation of a matrix in which names of 

concepts, categories and relationships are supplied as column and row headings. 

Information is presented in the various row-column slots. 

3. Frames, type 2 These are similar to type 1, but based on the principle that students 

classify the information and supply material for the slots themselves. 

4. Concept mapping: This is the creation of a visual arrangement to represent the 

relationships between associated concepts. It provides the 'big picture". 

5. Advance organizer. This is a brief introduction presented prior to new material. The 

designer or teacher creates the text of the advance organizer. 

6. Metaphor, analogy, or simile: This strategy provides a bridge from known information 

to new knowledge by explicitly suggesting a comparison. 

7. Rehearsal. This involves revising or reviewing material, asking or answering questions. 

The learner plays a more active role than the instructional designer, but the designer's 

task is to provide opportunities. 

8. Imagery. the mental visualization of objects, events and relationships. Imagery is a 

great asset in the mental storage of knowledge. 

9. Mnemonics: These are artificial memory aids, for example, first letter coding or some 

other verbal string to aid recall. 



Learning Theories and Instructional Design 70 

An instructional approach [West 1991] to Piaget's data schemata and process schemata 

respectively is to train learners in the methods experts use to organize knowledge and the 

strategies they use to solve problems. Cognitive researchers emphasize systematic 

presentation of all the declarative knowledge in a domain and the detailed description of the 

procedural knowledge, i.e. the processes a learner must master. 

Instructional designers should incorporate cognitive strategies within instruction. West's 

techniques can be used to convey content or to activate learning strategies. Whether the 

strategies are implicitly incorporated or taught as an additional learning outcome alongside 

content teaching, they should foster metacognition within the learner. 

5.4.3 CONSTRUCTIVISM IN LEARNING AND INSTRUCTION 

Basic tenets of constructivism 

Constructivism, outlined in section 4.2. 7, is the belief that learners construct knowledge from 

experience. It is closely allied to cognitive philosophy. Fundamental principles of 

constructivist learning [Dick 1991; Merrill 1991] are: 

+ Real world: The problem-solving situation should represent the real world. 

+ Constructed learning: Learning is constructed from experience as the learner 

builds an internal, personal representation of the knowledge. 

+ Active: Learning is an active rather than a passive experience. 

+ Collaborative learning: Education should foster peer-collaboration to promote multiple 

perspectives. 

+ Situated (or anchored) learning: Learning should occur in realistic settings. The 

instruction should be relevant to the context, using learner-control and the facility to 

manipulate information. In certain situations learning can be anchored in contexts which 

simulate apprenticeship learning. 

+ Integrated testing: Testing should be integrated into the task instead of being a 

separate activity. 

+ Transfer. If the above principles are applied the learner should find it easier to transfer 

the skills to other problem solving situations. 

Piaget held a constructivist position [Papert 1988; Pufall 1988], assuming that comprehension 

and problem solving are based on acting upon and interpreting perception, rather than on 

passive reception of knowledge. He viewed learning as assimilation of basic knowledge and 

accommodation of additional knowledge. 



Learning Theories and Instructional Design 71 

Extreme constructivism 

Extreme constructivism argues that content cannot be prespecified, and proposes that 

exploration and discovery-learning are the only type of genuine learning, such as implemented 

in microworlds. Microworlds are not simulations of reality; they are environments that offer 

elements and processes to the learner, so that learning-by-exploration can facilitate 

independent discovery of concepts. They do not prescribe what a learner should learn, rather 

they set the context within which he can construct knowledge. Papert's Logo and Turtle 

Graphics [Papert 1980] embody geometric principles, but do not present them conventionally. 

Children manipulate a "Turtle" with two properties, position and direction, and are intended 

to discover geometric concepts for themselves, such as the fact that the angles of a triangle 

total 180°. 

Extreme constructivism objects to external assessment, i.e. to explicit testing, of 

achievement, and does not include: 

+ specific learning objectives, 

+ practice and feedback focused on desired outcomes, and 

+ criterion-referenced assessment to determine whether learners have mastered the 

desired skill/s. 

Disadvantages of constructivism 

Pure constructivism argues that assessment should be embedded in the context of learning 

[Dick, 1991], and that learning gain should be measured, rather than whether the student has 

achieved a certain standard or attained a particular skill. For the constructivist the focus of 

assessment lies on what has been constructed by the learner as a result of the learning 

situation. Constructivists tend to be weak on assessment, both regarding what to assess and 

how to assess. 

A related problem is the apparent lack of concern for entry behaviour of students. In 

conventional instruction a student is assessed prior to a course to determine what he must 

know, or be able to do, before commencing. But in constructivism there is no assessment 

of entry knowledge and skills and no pretest to determine the level of prior knowledge. 



Learning Theories and Instructional Design 72 

5.4.4 IMPLICATIONS OF COGNITIVE SCIENCE AND CONSTRUCTIVISM FOR CAI 

Evolution from behaviourism to cognitive science 

This sections extends the discussion of the impact of cognitive science on ID in section 5.4.2 

by outlining the combined impact of cognitive science and constructivism on ID and CAI. 

Figure 5.1 [based on West 1991] summarizes the major changes in the way that thinking and 

learning are viewed in the evolution from behaviourism to cognitive science . 

FROM: 

Observable 
behaviour 

Parts 

Concrete 

Information as 
performance/ 
retrieval 

Mind as an 
assembly line 

Outcomes 

Objectives 

.----~> TO: 

Internal 
- refiresentation ""> 
~ o knowledge 

~-~> Wholes 

1---~> Abstract 

Information as 
_:> construction/ - reconstruction 

- Mind as a 
> computer -

1-------.> Processes 

Learning 1--------.> constructed 
from experience 

Figure 5.1 The Major Fronts of the Cognitive Revolution 

[Based on West 1991, p. 12] 



Leaming Theories and Instructional Design 73 

Cognitive science stresses that the perception, comprehension and assimilation of new or 

advanced material depends on the way the learner generalizes and relates it to existing 

internal knowledge. Instructional software designers can facilitate generalization and 

application of principles to new situations by ensuring that the underlying rules are easily 

accessible. Instructional strategies should foster movement between the abstract and the 

concrete. 

Constructivism and instructional software 

Certain positive tenets of constructivism, such as the constructed learning mentioned in Figure 

5.1, should be integrated into instructional software where appropriate. Discovery-learning is 

a personal experience which facilitates retention and transfer. Anchored (s11uated) instruction 

occurs in a context resembling the real-world. Simulations and Intelligent CAI (ICAI), as 

described in Chapter Seven, may be used to represent reality. Anchored instruction can, 

however, be effectively applied without necessarily moving into the preserve of artificial 

intelligence. It can be done using strategies that approach a topic from multiple perspectives 

and offer a variety of activities. Bransford et al [Bransford 1990] suggest the creation of an 

anchor to gain attention and focus the problem. As learners view the anchor-situation from 

various stances, or in different modes, they experience changes in perception. 

Instructional designers are currently being challenged by constructivists to reconsider their 

Skinnerian theories [Skinner 1938] and behaviouristic practices, to present learners with 

relevant tasks, and to provide access to tools. 

Second generation instructional design 

Various authors have examined the potential impact of cognitive science and constructivism 

on instructional design. Merrill [Merrill 1990b, Merrill 1991] states that first generation 

instructional design is limited, because: 

+ it teaches pieces in a linear sequence, 

+ it does not teach integrated wholes, 

+ it does not have a component-based teaching approach, and thus does not prescribe 

the basic subject-matter components necessary to build a complete knowledge base, 

and 

+ it fails to integrate the phases of instructional development. 

Merrill is developing second generation instructional design (ID~, with a cognitive rather than 

a behavioural base. Building on components, 102 aims to teach organized and elaborated 



Learning Theories and Instructional Design 74 

knowledge, and the relationships between knowledge units in such a way as to facilitate the 

development of internal mental models (similar to Piaget's schemata). Although not intended 

solely for CAI, it lends itself to computer-based implementation, hence its discussion in this 

section addressing cognitive science and CAI. 

Merrill builds upon Gagne's different kinds of learning outcomes and the different kinds of 

instructional strategies and learning conditions required to promote them. He also, however, 

considers the implications of constructivism for 102• agreeing that learning is active and 

constructive, but not accepting that interpretation is personal. 102 incorporates both 

collaborative learning and individual learning. With regard to the belief that learning is situated 

and anchored, Merrill is concerned by the extreme constructivist position that authentic 

learning should centre around a real-world task, should be only in context, and should 

incorporate no simplification. Learning from experience only has advantages, but the value 

of learning from instruction cannot be denied. 102 integrates testing, but also approves the 

existence of separate assessment. 

A major contribution is Merrill's assumption that instructional strategy is 

independent of the knowledge to be taught. The same strategy can be used 

to teach different topics and even different subjects, establishing a content­

independent instructional strategy. 

His expert system for instructional designers (see section 5.2) is based on content­

independent instructional strategies. Most topics are comprised of components. The result 

of deconstructing a domain into its components is that a transaction shell can be used to 

structure efficient and effective student interaction, drawing on components to help the learner 

construct a mental model. Each instructional transaction is a learner-interaction using a 

specific component to facilitate the acquisition of a certain kind of knowledge or skill. The key 

fact is that transaction shells can be used with different content topics, each comprised of 

components and requiring similar kinds of activities or skills. The designer selects the most 

appropriate interaction patterns for a given topic, and supplies the subject content to the 

knowledge base in the required form without defining every specific display or determining 

a branching structure. 

Dick [Dick 1991], investigating constructivism from an ID perspective, suggests a 

complementary approach, namely multiple presentation of information. Complex topics should 

be covered several times in different ways, so that there are many concrete examples of a 

concept or process. The best method of presentation for this type of instruction is via 

hypertext-type control (see Chapter Eight), allowing the learner to select from available 

resources both what is studied and how it is studied. 



Learning Theories and Instructional Design 75 

5.4.5 IMPLEMENTATION OF COGNITIVE SCIENCE AND CONSTRUCTIVISM 

Merrill's Component Display Theory (CDT): 

This section overviews two component-based theories, Merrill's Component Display Theory 

and its extension, Merrill's Component Design Theory. Merrill [Merrill 1983] proposed an 

instructional theory, Component Display Theory (CDT}, based upon a set of relationships 

between the content to be taught and the type of performance required. The instruction 

comprises a set of components, and categorizes instructional outcomes on a two-dimensional 

matrix according to content and performance type. 

Content categories: 

Four content dimensions are indicated - fact, concept, procedure and principle. Facts are 

arbitrary associated pieces of information such as names, dates or events. Concepts are 

groups of objects, events or symbols sharing some common characteristic identified by a 

similar class name. A procedure is an ordered sequence of steps necessary to accomplish 

some goal or solve a particular class of problem. Principles are correlational or cause-and­

effect relationships that interpret or predict events or circumstances. 

Performance categories: 

The three performance levels are remember, use and find. Remember is the performance that 

requires a student to recognize, then reproduce, an item of information. Use requires a 

student to apply some abstraction or approach to a specific test, and find requires derivation 

or synthesis of a new abstraction or an independent walkthrough of a process. Reigeluth 

[Reigeluth 1983] suggests that the three levels, remember, use and find, correspond to 

Gagne's three cognitive domains, verbal information, intellectual skills and cognitive strategies, 

respectively. 

CDT is founded on the Gagne-Briggs prescription that there are different kinds of objectives, 

each requiring unique conditions to promote optimal attainment. Each objective is related 

to the required content and to the desired performance outcome, and corresponding 

instructional component thus finds a home in one of the cells on the performance-content grid, 

which is shown as Figure 5.2. By classifying the components and positioning them on the 

grid, the instructional designer can determine how adequately he has addressed his 

objectives, both in terms of the desired type of content and the required performance. 



Learning Theories and Instructional Design 

w 
0 z 
<( 

~ find 
f2 
a: 
~ use 
LL 
0 
Lrl remember 
Gj 
....J 

fact concept procedure principle 

TYPE OF CONTENT 

Figure 5.2 Merrill's Performance-Content Grid for CDT 

[Merrill 1983, p. 286] 

76 

The instruction is designed to cater for individual differences. It stipulates that learner control 

and selection should permit the student to choose from among the available options, and it 

explicitly fosters cognitive processing within the learner by providing an environment in which 

he may select both the instructional strategy and the content. 

In selecting the instructional strategy, i.e. his type of performance, he controls the kind of 

display, the amount of elaboration, and also the number of examples and practice items. 

In selecting content components, he tackles the material which is most appropriate at that 

time. 

If all the CDT prescriptions in a given lesson are implemented, the resulting instructional 

material would be very rich, but it is unlikely that a single student would need all the material 

available. It is equally probable that in a group or class each of the components would be 

used by at least some of the students. Thus CDT is strong on individualization by 

accommodating personal learning styles and needs. This approach also teaches the student 

learning strategies which should be of value in general metacognition. CDT's approach of 

deconstructing a domain into components can be used with a wide variety of subjects and 

contents, and with virtually any delivery medium. However it is highly compatible with CAI, 

and two applications of CDT to courseware design are described in section 6.7. 



Learning Theories and Instructional Design 77 

CDT also stresses relationships, termed constructs, and identifies five major constructs: 

1. ldentity("is-a" relationship), 

2. Inclusion ("is-part-of" or subset relationship), 

3. Intersection ("and" relationship), 

4. The order relationship, and 

5. The causal relationship. 

Merrill's Component Design Theory (new CDT) 

Merrill [Merrill 1987] extended Component Display Theory (CDT) to provide instructional 

design guidance specifically for courseware authoring in computer-based instructional 

systems. The latter ID model is termed Component Design Theory (new CDT), and is 

intended to capitalize on the increased capabilities of hardware and software. 

New CDT proposes infusion of more "intelligent" material into the traditional branched tutorial 

CAI, with its inherenttext-question-response-feedback cycle, by offering experiential instruction 

such as expert demonstrations, simulation of suitable subject matter and coaching as the 

student solves problems. The experiential model replaces the displays of original CDT with 

a variety of active transactions, including demonstration, explanation, prediction, exploration 

and error detection. A student model and an expert model may be added to achieve 

intelligent software (see Chapter Seven). The associated tutorial system incorporates an 

advisor function which monitors the student and provides on-line guidance. A constructivist 

flavour is evident, although then~ is a significant departure from pure learner control in the form 

of the guidance, which suggests the content and form which are most appropriate for certain 

instructional goals. For example, a simple informational component is appropriate for a 

remember fact outcome on the grid, and a completely different experiential component would 

facilitate a use principle outcome. 

The new CDT is intended to provide dynamic monitored practice. It should allow the student 

to demonstrate his learned performance in his selected manner, while being monitored and 

receiving feedback. 



Learning Theories and Instructional Design 78 

5.5 THE COMBINATION OF COGNITIVE LEARNING THEORIES AND 
BEHAVIOURISM 

This section investigates synergistic combinations of cognitive science and behaviourism, with 

reference to their application to learning and instruction, their impact on ID, and their 

implications for CAI. 

5.5.1 THE COGNITIVE EVOLUTION 

The focus in educational psychology has shifted from behaviourism to cognitive science, with 

resulting impacts on learning theories and on instructional design. Some researchers refer 

to the cognitive revolution; West et al [West 1991] prefer the term cognitive evolution, with 

both models co-existing over an extended period. Rather than viewing the two as being in 

opposition, many theorists implement the best of both in parallel. 

5.5.2 IMPACT OF THE COMBINATION OF BEHAVIOURISM AND COGNITIVE SCIENCE 

ON INSTRUCTIONAL DESIGN 

Hannafin, continuing his ID principles (sections 5.3.2 and 5.4.2), lists those which bridge the 

behavioural and cognitive approaches: 

8. Academic learning time: Increasing the time a learner spends actively engaged in 

profitable instructional activity results in more learning. 

9. Affective considerations: The attitude of a participant in a learning activity is important 

to its success. 

Larkin and Chabay [Wilson 1992], offering instructional design guidelines for secondary 

science education, urge both the behavioural and cognitive approaches: 

1. Define a detailed description of the processes to be learned. 

2. Systematically address all the required knowledge. 

3. Conduct instruction primarily through active student involvement. 

4. Give feedback as soon as possible after an error. 

5. Ensure that students encounter each knowledge unit several times, since revision is 

essential. 

6. Limit demands on the student's attention. 



Learning Theories and Instructional Design 79 

5.5.3 IMPLICATIONS OF THE COMBINED APPROACH FOR CAI 

Laridon [Laridon 1989] discusses the combination of mastery learning principles with cognitive 

theories, and outlines the resultant instructional design features. An experiential base should 

be provided from which mathematical concepts can be extrapolated. In this respect graphic 

aids and other visual media can play a major role. The visual elements should be presented 

and re-presented to gain attention, but should simultaneously lead to the construction of 

meaning. Laridon also addresses the problem of the limited STM capacity. Here too, 

graphics can be used to emphasize incoming stimuli so that the images remain longer in STM. 

Various additional aids can gain attention and enhance retention, such as consistent icons and 

other cognitive learning strategies such as mnemonics. 

A CAI course in secondary level mathematics was developed initially on mastery principles, 

but in subsequent redevelopment, use was also made of cognitive instructional design. In line 

with the models of Dick, Briggs and Gagne which stress the instructional events of gaining 

attention and presenting the stimulus, Laridon uses a video sequence to present stimuli. This 

gains attention and also presents a real-life problem related to the content in line with 

anchored instruction mentioned in section 5.4.3. The real-life problem re-appears later in 

order to maintain anchorage and motivation. Cognitive learning theory is used in the 

assumption that as the perception receives incoming stimuli, it depends on anticipatory 

frameworks within the mental models. When new elements are encountered, the learner's 

logico-mathematical experience recalls the relevant schemata to integrate the new knowledge. 

Laridon applies Piaget's belief that perception of space and time is essential for the 

development of mathematical concepts. 

Section 5.4.5 addressed Merrill's CDT and new CDT for instructional software [Merrill 1983; 

Merrill 1987]. Although new CDT emphasizes the cognitive domain, it integrates expertise 

from both the behavioural and cognitive perspectives. It does not explicitly include motivation 

within its instructional design philosophy, an aspect which is important in the classic Gagne­

Briggs model of ID. 

5.5.4 IMPLEMENTATIONS OF THE COMBINED APPROACH 

Laridon's integration of cognitive theories into a mastery learning course was outlined in the 

previous section. Two further implementations are considered, the Collins-Stevens Cognitive 

Theory and Anderson's Programming Tutor. 



Learning Theories and Instructional Design 80 

Collins-Stevens Cognitive Theory of Inquiry Teaching 

This is an implementation of the combined approach [Collins 1983] which, although developed 

from cognitive theory, bears a marked similarity to Gropper's shaping and cuing techniques 

with respect to strategies. The Collins-Stevens instructional theory is one of learning by 

discovery in domains with causal relationships. Students are given data from case-studies 

and learn to induce rules or derive theories, showing how the dependent variable is a function 

of one or more independent variables. The derived rules are then applied to new cases by 

the learners. Collins' and Stevens' strategies are: 

+ Selecting positive and negative (counter) examples. 

+ Investigating the effect of certain factors by varying them while holding others constant. 

+ Generating hypothetical cases. 

+ Forming hypotheses. 

+ Testing hypotheses, i.e. using students' misconceptions to demonstrate how their errors 

lead to wrong predictions. 

+ Considering alternative predictions. 

+ Tracing consequences to a contradiction. 

Anderson et af s ACT Programming Tutor 

Anderson's views on cognition are outlined in sections 4.2.6 and 4.2.9, and his tutors are 

described in section 7.3.2. The three languages programming tutor [Corbett 1993] is a 

practice environment for students learning to program in LISP, Prolog or Pascal, based on 

production rules as a model of human cognition. The significant fact is that, despite its 

cognitive foundation, the tutor contains two features characteristic of behaviourism: 

+ It explicitly attempts to implement mastery learning. The tutor is divided into sections, 

each introducing a small set of programming rules. After completing the basic 

exercises in each section, a student must do remedial exercises until the required 

criterion score is achieved. 

+ The tutor includes post-tests to assess the student's ultimate knowledge state. 



Learning Theories and Instructional Design 81 

5.6 FINAL APPLICATION TO CAI AND TO FRAMES 

Applications to CAI of the two main learning theories and their combination are described in 

detail in sections 5.3.3, 5.4.4 and 5.5.3 respectively. This section merely comments firstly on 

component-based theories, and secondly on the concept of content-independent CAI, 

implemented by means such as transactional shells. 

Merrill's component-based instruction is described in sections 5.4.4 and 5.4.5. Most topics 

can be deconstructed into components, and each component classified according to its 

type of content and the type of performance it exacts from the learner. The instructional 

designer would do well to classify his objectives and proposed content according to these 

categories and position the associated instructional transactions in cells on the performance­

content grid. The discipline entailed in working according to this practice would demonstrate 

gaps in the proposed instruction, thus helping to ensure adequate coverage of the material 

and conformance to the objectives. CDT suggests a set of principles for more effective 

instruction, independent of delivery medium, but it is most appropriate for implementation in 

CAI. 

One of the most important implications of the cognitive learning theory, highly appropriate for 

CAI implementation, is Merrill's belief that there can indeed be content-independent 

instructional strategies, provided that knowledge components and instructional transactions 

can be identified from the subject matter. A complementary suggestion is Dick's advocation 

of multiple presentation of information within instructional transactions to enhance learning. 

It is hoped that the FRAMES software could subsequently lend itself to such content-free 

extension, while maintaining multiple presentation modes. The structure and layout are 

sufficiently general to form the basis of other practice environments in related and in non­

related fields. 

Constructivism has much to offer in today's instructional climate, but holds certain pitfalls, one 

being that there is no prespecified content. A consequence of this pure constructivist 

approach is thatthere cannot be content-independent instructional strategies such as Merrill's 

instructional transactional shell and CDT. 



Learning Theories and Instructional Design 82 

5. 7 CONCLUSION 

This chapter has investigated the impact of the behavioural and cognitive science disciplines 

upon instructional design. Behavioural theory emphasizes performance and observable 

behaviour, attempting to explain why behaviours occur. Cognitive theory sets out to 

determine how learning occurs, based upon internal cognitive processes. Behaviourism 

stresses the product as measured by the learner's performance, and cognitive science the 

process of comprehension. The purist approach to either presents limitations to effective 

instruction. Rather than viewing them as fields in opposition, the instructional designer should 

note the evolution from the one to the other, and use features from both, in tandem, to 

enhance instruction synergistically. Behaviouristic methods can be used to automate 

subskills; cognitive strategies should be employed to encourage active application of known 

laws and principles to new situations. An important point relating to cognitively-based 

instruction is that it should facilitate not only the acquisition of the intended content, but also 

foster cognitive skills and strategies. In other words, learning strategies should be integrated 

with courseware. 

The stance taken in this research is towards experiential construction of knowledge, but 

rejecting extreme constructivism. It is clear that active learning enhances recall and transfer, 

and that user-control of both content and strategy increases learner-involvement. 

The next chapter considers how the principles extracted in this chapter affect the practice of 

instructional design, when specifically applied to CAI. Mehl [Mehl 1993, p. 13] proposes that 

teaching is concerned with the "deconstruction of knowledge", and learning with the 

"construction of knowledge". With reference to the role of the computer in education, he 

suggests that "in future students will learn less from the computer, but more with the 

computer". 

Merrill's instructional theories using the component-based approach and ID with a cognitive 

foundation are of great utility. The component philosophy facilitates classification of objectives 

and promotes organization, both into content units and by varying instructional strategies. 

Using this approach, each unit can be presented in various ways. CDT can make a valuable 

contribution to the needs-analysis and design phases of ISO. 



Learning Theories and Instructional Design 83 

REFERENCES - CHAPTER FIVE 

[Appel 1987] 

[Aronson 1983] 

[Bransford 1990] 

[Briggs 1981] 

[Collins 1983] 

[Corbett 1993] 

[Dick 1991] 

[Dijkstra 1990] 

[Fleming 1978] 

[Forman 1988] 

[Gropper 1983] 

[Hannafin 1988] 

Appel, M. & Appel, S. (1987). A critique of CAI: the case of SEAGO. South Afn'can Journal 

of Education 7 (4), 278-282. 

Aronson, D.T. & Briggs, L.J. (1983). Contributions of Gagne and Briggs to a Prescriptive 

Model of Instruction. In: Reigeluth, C.M. (Ed.) Instructional Design Theories and Models: An 

Overview of their Current Status. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Bransford, J.D., Sherwood, R.D., Hasselbring, T. S., Kinzer, C.K & Williams, S.M. (1990). 

Anchored Instruction: Why We Need It and How Technology Can Help. In: Nix, D. & Spiro, 

R. (Eds), Cognition, Education, Multimedia: Exploring Ideas on High Technology. Hillsdale, 

N.J.: Lawrence Erlbaum Associates. 

Briggs, L.J. & Wager, W.W. (1981). Handbook of Procedures for the Design of Instruction. 

Englewood Cliffs, N.J.: Educational Technology Publications. 

Collins, A & Stevens, AL. (1983). A Cognitive Theory of Inquiry Teaching. In: Reigeluth, C. M. 

(Ed.), Instructional Design Theories and Models: An Overview of their Current Status. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Corbett, AT., Anderson, J.R. & 0 Brien, AT. (1993). The Predictive Validity of Student 

Modeling in the ACT Programming Tutor. Proceedings of Al-ED 93, World Conference on 

Artificial Intelligence in Education. Edinburgh: Association for the Advancement of Computing 

in Education. 

Dick, W. (1991 ). An Instructional Designer's View of Constructivism. Educational Technology 

31 (5), 41-44. 

Dijkstra, S., van Hout Wolters, B.H.A.M. & van der Sijde, P.C. (Eds) (1990). Research on 

Instruction: Design and Effects. Englewood Cliffs, N.J.: Educational Technology Publications. 

Fleming, M.L. & Levie, W.H. (1978). Instructional Message Design: Principles from the 

Behavioural Sciences. Englewood Cliffs, N.J.: Educational Technology Publications. 

Forman, G. & Pufal, P.B. (Eds) (1988). Constructivism in the Computer Age. Hillsdale, N.J.: 

Lawrence Erlbaum Associates. 

Gropper, G.L. (1983). A Behavioral Approach to Instructional Prescription. In: Reigeluth, C.M. 

(Ed.) Instructional Design Theories and Models: An Overview of their Current Status. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Hannafin, M.J. & Peck, KL. (1988). The Design, Development, and Evaluation of Instructional 

Software. New York: MacMillan Publishing Company. 



Learning Theories and Instructional Design 84 

[lnhelder 1958] 

[Jonassen 1988] 

[Laridon 1989] 

[Lippert 1993] 

[Mehl 1993] 

[Merrill 1983] 

[Merrill 1987] 

[Merrill 1990a] 

[Merrill 1990b] 

[Merrill 1991] 

[Nix 1990] 

[Papert 1980] 

[Papert 1988] 

[Poppen 1988] 

lnhelder, B. & Piaget, J. (1958). The Growth of Logical Thinking from Childhood to 

Adolescence. New York: Basic Books. 

Jonassen, D.H. (1988). Integrating Learning Strategies into Courseware to Facilitate Deeper 

Processing. In: Jonassen, D. H. (Ed.), Instructional Designs for Microcomputer Courseware. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Laridon, P.E. (1989). Design Features in Interactive Video Mathematics Lessons. 

Proceedings of the First Southern African Conference on Educational Technology, Human 

Sciences Research Council, Pretoria. 

Lippert, R.C. (Ed.) (1993). Computer-Based Education and Training in South Africa. Pretoria: 

J.L. van Schaik Publishers. 

Mehl, M.C. & Sinclair, A.J.L. (1993). Defining a Context for CAI: In Quest of Educational 

Reality. In: Lippert, R.C. (Ed.), Computer-Based Education and Training in South Africa. 

Pretoria: J. L. van Schaik Publishers. 

Merrill, M.D. (1983). Component Display Theory. In: Reigeluth, C.M. (Ed.), Instructional 

Design Theories and Models: An Overview of their Current Status. Hillsdale, N.J.: Lawrence 

Erlbaum Associates. 

Merrill, M.D. (1987). The New Component Design Theory: Instructional Design for 

Courseware Authoring. Instructional Science 16, 19-34. 

Merrill, M.D. & Li, Z. (1990). An Instructional Design Expert System. In: Dijkstra, S., van Hout 

Wolters, B.H.A.M. & van der Sijde, P.C. (Eds), Research on Instruction: Design and Effects. 

Englewood Cliffs, N.J.: Educational Technology Publications. 

Merrill, M.D., Li, Z. & Jones, M.K (1990). Limitations of First Generation Instructional Design. 

Educational Technology 30 (1), 7-11. 

Merrill, M.D. (1991). Constructivism and Instructional Design. Educational Technology 31(5), 

45-52. 

Nix, D. & Spiro, R. (Eds) (1990). Cognition, Education, Multimedia: Exploring Ideas on High 

Technology. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic 

Books. 

Papert, S. (1988). The Conservation of Piaget: The Computer as Grist to the Constructivist 

Mill. In: Forman, G. & Pufal, P.B. (Eds), Constructivism in the Computer Age. Hillsdale, N.J.: 

Lawrence Erlbaum Associates. 

Poppen, L. & Poppen, R. (1988). The Use of Behavioral Principles in Educational Software. 

Educational Technology 28 (2), 37-41. 



Learning Theories and Instructional Design 85 

(Pufall 1988] 

[Reigeluth 1983] 

[Skinner 1938] 

(Venezky 1991] 

(Vockell 1989] 

(West 1991] 

(Wilson 1992] 

Pufall, P. B. (1988). Function in Piaget's System: Some Notes for Constructors of Microworlds. 

In: Forman, G. & Pufal, P.B. (Eds), Constructivism in the Computer Age. Hillsdale, N.J.: 

Lawrence Erlbaum Associates. 

Reigeluth, C. M. (Ed.) (1983). Instructional Design Theories and Models: An Overview of their 

Current Status. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Skinner, B.F. (1938). The Behaviour of Organisms: An Experimental Analysis. New York: 

Longman. 

Venezky, R. & Osin, L. (1991). The Intelligent Design of Computer-Assisted Instruction. New 

York: Longman. 

Vockell, E. & van Deusen, R.M. (1989). The Computer and Higher-Order Thinking Skills. 

Watsonville, CA: Mitchell Publishing, Inc. 

West, C.K, Farmer, J.A. & Wolff, P.M. (1991). Instructional Design: Implications from 

Cognitive Science. Englewood Cliffs, N.J.: Prentice Hall. 

Wilson, B. & Cole, P. (1992). A Review of Cognitive Teaching Models. Educational 

Technology Research and Development 39(4), 47-64. 



CHAPTER SIX 

INSTRUCTIONAL DESIGN AND 

COMPUTER-AIDED INSTRUCTION 

The previous two chapters overviewed learning theories and their general application to 

instructional design. This chapter investigates the application of sound conventional 

instructional design principles to the production of educational software, incorporating the 

impact of learning and instructional theories. Mehl [Mehl 1993, p. 13] emphasizes the 

synergism that exists between these pillars of Instructional Systems Development (ISO): 

'The successful application of the computer in education is directly dependent 

upon instructional design ingenuity backed by a solid foundation in learning 

theory and learner research. " 

This dissertation, however, incorporates yet a third pillar to the development process, a 

software engineering approach, comprising a design model and a life-cycle model. 

Application of SE principles to courseware is discussed in Chapters Two and Three. The 

relationship between the three pillars is set out in Figure 1.1 in Chapter One, and elaborated 

by Table 6.1, which indicates the role each pillar plays in Instructional Systems Development 

(ISO), by listing the feature/son which it impacts. 

Table 6.1 The Pillars of CAI 

DISCIPLINE ISO FEATURE ON WHICH IT IMPACTS 

Learning and Instructional Theory The philosophy underlying the deliverable product 

Instructional Design Instructional characteristics of the product and the 
instructional development process 

Software Engineering SDLC i.e. the software development process 

86 



Instructional Design and Computer-Aided Instruction 87 

This chapter thus commences with an overview of the kinds of CAI and the utility of the 

computer in instruction, moves on to review generic instructional design for CAI and design 

features characteristic of instructional software, and then investigates the effect of learning and 

instructional theory on CAI. The chapter is concluded by showing how instructional design 

and software engineering (or, more aptly, courseware engineering) methodologies, are 

combined in the process of developing the intended software. 

In relation to the software engineering life-cycle models discussed in section 

2.1, the material in this chapter therefore relates to requirements analysis, but 

particularly to the design phase of the selected SDLC. The analysis is used to 

refine the requirements for a CAI practice-environment. The required features 

are integrated to determine the appropriate design elements. 

6.1 KINDS OF CAI 

Within instructional computing there are two fundamental roles for the computer - didactic and 

exploratory. In the didactic view the computer is used as a tutor to present instruction or 

practice opportunities to the learner in a pre-planned, systematic, individualized way. With this 

approach learning is viewed as acquisition of cognitive structures and procedures. In the 

exploratory view learning is much less systematic. The computer, as a tool, presents 

phenomena that the student can investigate by inquiry and discovery within the domain. In 

this approach cognition is seen as an activity situated in a specific context. 

There are five basic kinds (or modes) of CAI [Hannafin 1988; Jonassen 1988; Kok 1990; Price 

1991]. In the didactic realm there are tutorials, drill-and-practice, simulations, and instructional 

games. The exploratory variety encompasses the fifth kind of CAI, namely, open learning 

environments involving the use of the computer as a tool rather than as a tutor. 

1. Tutorial programs imitate the human tutor, offering one-to-one instruction, and typically 

teaching well defined instructional objectives. A tutorial engages the learner in an 

interactive dialogue by presenting information (skills, information, or concepts), 

providing practice, and then giving feedback to the learner based upon his response 

to the questions or exercises. 

2. Drill and practice programs do not actually teach. They follow up on instruction in 

basic skills by providing extensive practice of sub-skills, often randomly generated. 

The aim is to facilitate proficiency and fluency and thus to transfer knowledge and 

expertise from STM to L TM. 



Instructional Design and Computer-Aided Instruction 88 

3. Simulations offer computerized presentations of real-world problems, which require 

integration and synthesis of the subject matter knowledge. They purport to replicate 

or emulate the features of some task or context, which in real life is hazardous, costly, 

or impossible. The learner manipulates parameters, makes decisions and sees the 

consequences in the simulation. Thus they present the user with experiential 

enrichment in, for example, aeronautical flight simulators, stock-market operations, 

chemical laboratory procedures, and history of the past. 

4. Instructional games are motivational approaches used to reinforce skills and 

information already taught. Their purpose is partially entertainment, but fundamentally 

to develop, reinforce and refine aspects of learning. 

5. The fifth mode of CAI is an open learning environment [Kok 1990] or microworld. The 

purpose is to allow the learner an independent way of acquiring knowledge by means 

of problem-solving. Various concepts and elements are offered to the student, so he 

can manipulate them to learn by exploration. 

6.2 WHERE COMPUTER APPLICATIONS ARE SUITABLE 

Cumming [Cumming 1990] in a discussion of "learning pull or technology push", emphasizes 

that, despite the defensible temptation to experiment with the latest hardware and software, 

the educational priority should be the desired learning goal, and that the tools available should 

be used to achieve it, not the reverse. Course designers should not use computers for the 

sake of computers. They should determine for which: 

+ content areas, 

+ kinds and levels of students (bearing also attitudes in mind), and 

+ kinds of applications 

computers are most effective in developing the selected skill and transferring the required 

content [Roblyer 1988]. 

Kontos [Kontos 1985] proposes some answers. He points out that the computer is more 

effective in raising achievement among high-achievers and low-achievers; it is particularly 

useful in science and mathematics, and it can change a student's attitude. 

An alternative approach [Self 1985; Hannafin 1988] is to investigate the strengths and 

weaknesses of the computer. The computer is relatively inexpensive. It has the ability to 

perform accurately and reliably at high speed, to store and manage information, and to 



Instructional Design and Computer-Aided Instruction 89 

perform repetitive tasks without boredom. Computer-use tends to motivate students, and 

most importantly, it provides interactivity and individualization in a cost-effective manner. It is 

however unable to respond spontaneously or to teach large groups. The best approach is 

to use teachers and computers in combination capitalizing on the strengths and minimizing 

the weaknesses. Thus the computer should be used only in context and to promote learning 

outcomes for which it is ideally suited. 

6.3 HOW THE COMPUTER SHOULD BE USED TO OPTIMIZE LEARNING 

(CAI STRATEGIES) 

Having made the decision to go the computer route in a specific instructional situation, the 

medium must be used so as to optimize learning. In section 6.4 the procedures involved 

in producing CAI are mentioned, and section 6.5 addresses the general features of CAI and 

suggests practical methods of capitalizing on the computer's unique capabilities. However, 

apart from these approaches, research has been done on specific ways of using the computer 

to facilitate instruction [Smith 1984; Self 1985; Price 1991 ]. In particular, various authors 

have applied the computer as an instructional delivery medium to Gagne's classic events of 

instruction. Table 6.2, based on the efforts of Smith & Boyce [Smith 1984, p. 9] and Price 

[Price 1991, p. 92], and augmented by the present author, presents the various CAI 

techniques that can be used to this end. 

The tactics suggested to gain attention (point 1) are less relevant for adult learners, who are 

usually more self-motivated. Point 2, informing the learner of the objectives, is important in any 

CAI, to prepare the learner for the kind of instructional experience. The stimulation of prior 

learning (point 3) can be done either explicitly or implicitly, by making retrieval of background 

material available on demand. The strategies suggested in points 4 and 5 to present the 

content and provide guidance can be great value in effective instruction. Graphic 

representations, portrayal of relationships, good examples, and devices that emphasize key 

concepts will, if well-designed, enhance and expedite comprehension. Points 6, 7 and 8 relate 

to the question/answer/feedback process and to assessment mechanisms. Elicitation of 

performance and supportive feedback are vital in personalizing learning, but formal 

assessment is not essential in all instructional software. The final aspect, enhancing retention 

and facilitating transfer, is one of the most vital in effective instruction. If the strategies 

outlined, such as revision and varied examples, are used in such a way as to help the learner 

to generalize, retain and project understanding to a wider context, then the instruction has 

satisfied the ultimate test of its effectiveness. 



Table 6.2 CAI Strategies for Instructional Events [Based on Smith 1984, p. 9, Price 1991, p. 92, and adapted by present author] 

I Event of Instruction I CAI Strategies II Event of Instruction I CAI Strategies I 
1. Gain attention or engage + Graphics & diagrams (5. continued) • Help facilities 

motivation + Animation • Prompting and fading 
+ Games • Examples and illustrations 
+ Sound 

2. Inform the learner of the objective + Question 6. Elicit performance, response or + Variety of question types -
+ Textual Statement practice yes/no, short answer, multiple 
+ Graphic Illustration choice, etc 
+ Interactive demonstration • New problem-solving context 

3. Stimulate recall of pre-requisite + Questions or pre-test 7. Provide feedback • Review option and help facilities 
skills or earlier learning + Textual review • Correct answer 

• Learner option branching • Reinforcing or remedial feedback 

4. Present the stimulus material + Actions that focus learner's 8. Assess performance • Random and/or stratified 
attention generation of test items 

+ Textual - part-whole or static- + Variable number of items 
dynamic display • Record keeping 

+ Graphic - part-whole, colour, + Acceptance of synonyms 
animation 

• Learner-control over sequence 
and speed 

5. Provide learning guidance + Attention-focusing devices - 9. Enhance retention and transfer • Revise content 
change in speed, inverse video, + Variety of examples 
highlighting, boxing, flashing, 
graphics, animation 

+ Relate to wider context 

5' 
(/) 

~ 

~ 
:::!­o· 

~ 
~ 

cQ" 
:::i 

~ 
tl. 

~ 
~ 
(i)' 

""" :b 
Q: 
<l> 
tl. 
5' 
(/) 
:::;-
~ 
:::i­o· 
:::i 

~ 



Instructional Design and Computer-Aided Instruction 91 

6.4 CONVENTIONAL INSTRUCTIONAL DESIGN FOR CAI 

Procedures of conventional ID, not specifically for CAI, are set out in section 5.2. This section 

applies the models to CAI. Jonassen [Jonassen 1988] describes the instructional software as 

the product and the instructional design as the process. The professional activities and 

processes entailed in producing this "design blueprint" are not fixed; there is a variable 

sequence of design activities. It is important that it should be based on an instructional theory, 

such as those discussed in Chapters Four and Five, rather than just on models or principles, 

or done from a learning perspective. A purpose of this dissertation is also to apply software 

engineering techniques, in particular a certain life-cycle model, to the design and development 

of instructional software. However, from the basis of conventional ID, a variety of instructional 

design theories and models do exist and thus a generic ID model for CAI production can 

be given [Smith 1984; Jonassen 1988; Keller 1988; Morrison 1988: Price 1991 ]. The basic 

phases are: 

1. Analysis 

2. Development 

3. Evaluation 

Table 6.3 outlines the components of each phase. 

Table 6.3 Basic Development Model for CAI 

I PHASE I COMPONENTS I 
Analysis Subject-matter goals and boundaries 
{needs Target population 
assessment) Instructional basis 

Development Performance objectives 
Motivational strategies 
Instructional strategies 
Criterion-referenced tests 
Design of instruction, practice and feedback, and support screens 
{using storyboards, branching-charts, etc) 
Programming 
Revision 

Evaluation Formative {peers, learners) 
Pilot testing 
Revision 
Summative 



Instructional Design and Computer-Aided Instruction 92 

6.5 DESIGN FEATURES OF CAI 

In designing CAI it is important to pay attention to the instructional features unique to or 

particularly relevant for CAI. An instructional designer's goal should be to capitalize on the 

unique capabilities of the computer. Interactive instructional software differs from general 

interactive software systems in various respects. A CAI session seldom comprises a fixed 

schedule of events or sub-procedures. On a macro-level the branching facilities result in an 

individualized set of activities for each user. Furthermore, on a micro-level, the user-input 

anticipated does not comprise fixed-format data entries. 

De Villiers [De Villiers 1993], listed ten features of CAI programs, particularly general tutorial­

and drill-and-practice CAI, and extended the list with an eleventh [Hannafin 1988]: 

1. Instructional approach 

2. Menus and directions 

3. Layout and text 

4. Colour 

5. Graphics and animation 

6. Interactivity 

7. Individualization and user control 

8. Question/Answer/Feedback process 

9. Motivation 

1 O. Scoring and record-keeping 

11. Use of complementary and supplementary media 

These features are described in the ensuing subsections, along with practical suggestions. 

6.5.1 INSTRUCTIONAL APPROACH 

Instructional philosophies and strategies are handled in detail in the chapters on learning and 

instructional theories, along with their impact on instructional design and on CAI. 

6.5.2 MENUS AND DIRECTIONS 

A variety of menu styles are in common use. It is important to achieve consistency in the 

menu-type within a single lesson. A menu should not be over-crowded [Price, 1991 ]; this 

problem can be solved by sub-dividing it into levels, not all of which should be simultaneously 

visible on-screen. Directions should incorporate explicit and detailed directions and offer 

learners only the simplest commands. Certain commands can be entered by means of the 

function keys. Graphically-based menus, activated by mouse-control, are increasingly 



Instructional Design and Computer-Aided Instruction 93 

common. An adult audience, particularly those who are computer literate, as would be 

expected of Computer Science students, can be assumed to have a degree of familiarity with 

windowing packages and consequently may be offered systems involving more complex 

menu- and direction-techniques. Error messages are on-screen messages that respond to 

inappropriate or illegal learner-responses, as distinct from feedback to learner-answers. They 

should appear in a consistent reserved functional area or on a status line. Help facilities 

should be available - both to clarify the lesson operation and navigation through it, and to 

elaborate on the content [Keller 1988]. The methods used to access and operate CAI vary 

from lesson to lesson, therefore clear and concise directions for use should be supplied via 

a reference manual or card as well as on-screen. 

6.5.3 LAYOUT AND TEXT 

Screen presentations should have a balanced format, in particular a good balance between 

text and graphics. The amount of text on the screen should be limited. Ideas should be 

presented in chunks, with the size of an instructional step appropriate to the learner and to the 

content. Functional areas should be consistently located. In conventional CAI a storyboard 

or frame refers to the content of a single screen of information. The three main types are 

[Hannafin 1988]: 

+ Transitional frames - which link different aspects of a lesson, providing contextual 

support, such as menus, directions, or performance reports. 

+ Instructional frames - which present the basic lesson material to the student. 

+ Question frames -frames that offer practice or pose questions (see section 6.5.8). 

6.5.4 COLOUR 

The colours used should support legibility and be appropriate to the target audience. Colour 

coding, that is using corresponding colours in two different regions, such as in text and in a 

diagram to link associated information, can be highly effective. Colour, as well as blocking, 

should be used to highlight important information or key-words. 

6.5.5 GRAPHICS AND ANIMATION 

Lanzing & Stanchev [Lanzing 1994] point out the advantages of visualization in courseware 

engineering to enhance learning. A strong feature of visual presentation is its parallel nature. 

Text entails a sequential mode of presentation and reception, whereas visuals offer no 

predefined directionality and items can be viewed simultaneously. Memory research shows 

that concepts are comprehended from a graphic display far easier than reasoned through 

without any visual aid. Graphic displays have a particular utility for showing relationships. 

Soulier [Soulier 1988] presents guidelines for using graphic illustrations with text: 



Instructional Design and Computer-Aided Instruction 94 

+ Keep illustrations appropriate to the audience. 

+ Place illustrations close to the related text. 

+ Simple drawings are better than complex pictorials. If complex, diagrams should be 

built up step-wise. 

+ Animation should be short, appropriate and learner-controlled. 

6.5.6 INTERACTIVITY 

A salient feature of CAI is its ability to involve the learner. Content-control and sequence­

control are discussed further in the section on individualization. There should be frequent 

active student-participation, an important form being practice, incorporating learner 

participation by the doing of examples and the answering of questions. Participation increases 

attention and facilitates longer learning spans. The interaction should include feedback to the 

student's response for purposes of remediation and reinforcement (see section 6.5.8). 

Interaction strengthens cognition and facilitates recall. A variety of interaction devices are 

available; the mouse, in particular, can be recommended. 

6.5.7 INDIVIDUALIZATION AND USER CONTROL 

In a reactive design the interaction is exclusively program-directed. In a proactive design the 

learner controls both the structure and content of the program. The compromise is a coactive 

interaction where learners do not control the content they view, but do select their own pace 

and sequence of viewing (possibly also structure and style). Factors that impact upon an 

individual's learning style are his attitudes, prior knowledge, personal cognitive style, and 

personality traits [Carrier 1988]. Characteristics that learners can adjust according to personal 

preference or current needs are the pace, the selection of relevant examples, the amount of 

practice, and the amount and nature of feedback. An alternative is learner control with 

advisement, i.e. the provision of advice and prompts informing students about the effectiveness 

of their performance. In general, adult learners can be given more control than juveniles. A 

common form of personalization is a request for and the subsequent use of the learner's 

name. This is seldom appreciated by an adult learner. Price [Price 1991] suggests a useful 

form of individualization - reminding the learner, when appropriate, of a previous response. 

6.5.8 QUESTION/ ANSWER/FEEDBACK PROCESS 

It is important (see section 5.2) to ensure congruence of objectives, instruction and 

assessment items. In conventional mastery CAI, criterion questions are those that test whether 

the learner can perform the skills, procedures and tasks specified in the instructional 

objectives. The student's answers to questions are often used to select individualized 

instruction to meet the learner's specific needs. It should be clear to the learner how to enter 

his answer, and the cursor should indicate where. Consistency is important. The response 

is usually one or several characters, entered via the keyboard or some other device, with 



Instructional Design and Computer-Aided Instruction 95 

completion indicated by pressing <Enter>. The major kinds of questions are true-false and 

yes-no, multiple-choice, completion or short answer, and open-ended. A learner should be 

able to edit his answer. The type and quantity of feedback varies according to the kind of 

learner and stage of learning. It may be a simple "Correct" or "Incorrect", or it may be 

diagnostic and remedial. During an early learning stage, feedback should focus attention 

correctly and clarify misconceptions; during the practice phase, it is less important and may 

arise naturally from the learner's own insight [Hannafin 1988; Vockell 1989; Venezky 1991 ]. 

6.5.9 MOTIVATION 

Extrinsic motivation includes explicit embellishments or rewards, such as the use of the 

learner's name, humour, and games. Intrinsic motivation is based on inherent aspects within 

the instruction that motivate the learner [Alessi 1991; Venezky 1991 ]. Keller's ARCS model of 

motivation [Keller 1988] proposed attention, relevance, confidence, and satisfaction as design 

considerations to create inherent motivation within the learner. Malone, discussed in Alessi & 
Trollip [Alessi 1991 ], suggested challenge, curiosity, control, and fantasy as motivating factors. 

Adult learners usually require less embellishments, and may find extrinsic motivation obtrusive. 

Designers should not overlook affective considerations, and should bear in mind that success 

motivates. Satisfactory progress from simpler to more complex topics, with appropriate step 

sizes, encourages the learner. Students generally have a positive attitude towards CAI, due 

partly to the fact that it is less threatening and embarrassing when they make errors [Hannafin 

1988]. For this reason, some CAI presents no score following question segments, since it is 

an inherent part of the instructional process rather than assessment. 

6.5.10 SCORING AND RECORD-KEEPING 

CAI lessons conventionally keep on-line records, which range from simple score-keeping to 

elaborate tracking systems [Price 1991]. In a classroom-based network situation, overall 

results are processed and statistics maintained. 

6.5.11 USE OF COMPLEMENTARY AND SUPPLEMENTARY MEDIA. 

CAI should seldom be used as a stand-alone educational treatment, but rather as a 

companion medium to paper-based and/or other media. Instructional software should never 

be viewed as an adequate substitute for the human teacher! In a distance education situation, 

where by force of circumstances, students often work in isolation, it is particularly important 

to use instructional software as a supplement to textbooks and study guides. In particular, as 

was stated in section 6.5.2, any piece of CAI should be accompanied by written installation 

instructions and usage guidelines. 



Instructional Design and Computer-Aided Instruction 96 

6.6 IMPLICATIONS OF LEARNING THEORY FOR INSTRUCTIONAL 
DESIGN OF COMPUTER-AIDED INSTRUCTION 

Chapter Five was an in-depth discussion on the general relationship between learning theories 

and instructional design. This section relates those learning and instructional theory to the 

design of CAI, from a base with both behavioural and cognitive foundations. The next section 

singles out one particularly relevant theory, namely, Merrill's CDT [section 5.4.5], and relates 

it to CAI design in a section of its own. 

6.6.1 FEATURES DESIRABLE TO PROMOTE COGNITION AND LEARNING 

Learning theories from a cognitive perspective are related to the instructional design of CAI 

[Wilson 1992; Lesgold 1992]: 

1. Content: Teach both domain knowledge and strategic tactics: 

a. Domain knowledge is the conceptual and procedural knowledge typically found 

in text books and other educational materials. It is important but can be 

insufficient to enable students to approach and solve problems independently. 

b. Strategic tactics include: 

+ Heuristic strategies - ''rules of thumb" and shortcuts typically developed by 

experts through repeated problem-solving practice. 

+ Control strategies, or metacognition, by which students monitor and 

regulate their problem-solving activity and facilitate learning. 

2. Situated /earning: Teach knowledge and skills anchored in experience and context of 

use. 

3. Modelling and explanation: Show development of a process and explain it. By 

exposure to both process modeling and the accompanying explanations students can 

develop the knowledge about how to use their knowledge in problem-solving. 

4. Coaching: Observe students as they tackle tasks, providing hints and help as needed. 

Coaching is the closest to one-on-one tutoring. An interactive relationship and a 

shared load are features of coaching. At present coaching is only fully implemented 

in resource-intensive intelligent tutoring systems. Yet even in less sophisticated 

systems a student can learn-by-doing and the computer can aid by monitoring 

performance and providing on-line help. 



Instructional Design and Computer-Aided Instruction 97 

5. Exploration: Encourage students to try out different strategies and hypotheses and 

observe their effects, in other words, discovery-learning. In order to achieve transfer, 

learners must absorb not only the content, but must also develop an ability to solve 

unfamiliar problems. 

6. Sequence: Present instruction ordered from simple to complex and increase the 

diversity of examples, the aims being to activate cognitive strategies within the student 

and to enhance L TM encoding. West [West 1991] advises designers to use cognitive 

strategies, firstly, to convey the content itself, secondly, to activate learning strategies 

known by the student and thirdly, to explicitly teach strategies along with content. 

Gagne and Glaser [Gagne 1987], from a platform which synergistically combines behaviourism 

and cognitive theory, outline factors that play a role in the design of instruction to facilitate 

encoding and storage in L TM. They view the typical contents of L TM as networks of 

propositions, and emphasize four aspects of L TM content, which should be born in mind when 

designing instruction: 

1. Images: Learners construct internal images of perceived objects and events. Although 

visual imagery is the most common there are also auditory and tactile images. 

2. The distinction between declarative and procedural knowledge: Declarative knowledge 

is knowing what, i.e. facts and concepts, whereas procedural knowledge is knowing 

how. With regard to procedural knowledge, they refer to the work of Newell & Simon 

[Newell 1972] and Anderson [Anderson 1983] who posited the cognitive entity called 

a production to represent an item of procedural knowledge. A production comprises 

a condition and an action (see section 4.2.6) and is similar to a rule. 

3. Schemata: Using the cognitive theories of knowledge representation, Gagne & Glaser 

refer to schemas, scripts and frames. These all fall into the category of schemata 

which are sets of organized knowledge that represent stereotypes and that facilitate the 

retrieval of the various concepts and propositions of which they are composed. 

4. Human capabilities: From a behaviouristic stance it is stated that human learners 

acquire the capability of exhibiting certain classes of performance, and that not only 

knowledge, but also capabilities, are stored in and retrieved from L TM. 



Instructional Design and Computer-Aided Instruction 98 

6.6.2 DESIGN PRACTICES BASED ON LEARNING PRINCIPLES 

Association plays a major role in learning. Gagne and Glaser [Gagne 1987] suggest three 

principles that enhance correct association: 

1. Contiguity: The learner should experience certain objects or events contiguously, in 

order to associate them together in the mind. Contiguity can be related to space or 

time. 

2. The law of effect: This refers to classic behaviouristic learning. Skinnerian philosophy 

states an S-R unit is strengthened if it is associated with certain consequences, such 

as a reinforcing stimulus. 

3. Practice: Practice is optimally effective when each repetition of the learned association 

is carried out with contiguity and reinforcement. The instructional designer should 

provide conditions for practice that personalize rule application and speed up 

automaticity in productions. From the context of developing higher-order-thinking­

skills (HOTS), Vockell & van Deusen [Vockell 1989] also emphasize the importance of 

guided practice at several stages of instruction. 

Designers of instructional software should bear in mind that there are fundamentally four types 

of learning [West 1991]: 

1. Reception learning, where the learner reads or observes what is to be learned in its 

direct form. 

2. Autonomous learning, where the learner acquires knowledge relatively independently, 

often from a different perspective. 

3. Guided enquiry /earning, which combines the characteristic of reception and 

autonomous learning. 

4. Cognftive apprenticeship, which combines all the features above. It incorporates 

modeling, coaching, and scaffolding to support the learner as he starts to perform 

independently. The extent of supervision is lessened (faded) to encourage 

autonomous learning. 

6.6.3 INSTRUCTIONAL MODES FOR CAI 

Microworlds and discovery learning environments have been mentioned. This dissertation, 

however, relates to planned learning experiences and thus the instructional delivery modes 

and strategies mentioned are focused upon the latter approach. Instructional modes can be 

explanatory, demonstration-based, or presentation of a problem-solving experience [Venezky 

1991 ]: 



Instructional Design and Computer-Aided Instruction 99 

1. Explanatory instruction, which is teaching by direct explanation. 

2. Demonstration instruction, namely, the application of a rule, principle or process to 

initiate instruction. Demonstration may be: 

+ abbreviated - a solution presented step by step, 

+ annotated - each step given and explained, or 

+ interactive - each step specified by a student, and executed by a tutor, with or 

without guidance. 

3. Problem solving instruction, where problems are presented for application of principles. 

The fundamental difference between demonstration mode and problem-solving mode 

is that in the former the instructor carries the main burden of presenting the material 

and in the latter the student plays the more active role. 

Black [Black 1987] also lists alternative computer-assisted delivery modes. The computer may 

be used in a variety of contexts, as a tutor, as a tool, or in learning management: 

+ Presentation - display of visual text and/or graphics to illustrate a point. 

+ Computer-based instruction - formal didactic learning or drill and practice, both with 

immediate feedback. 

+ Tutoring - a more flexible approach, less didactic, presenting options, and based upon 

the learner's needs. 

+ Interactive video - incorporation of CD ROM video disks for dynamic sequences. 

+ Record keeping - of student progress and scores. 

+ Simulations - offering learners the opportunity to input data and see the consequences. 

+ Modeling - use of software packages which allow the learner to create his own model 

and test it. 

+ Data retrieval - use by a student of, for example, data base software or an expert 

system. 

+ Data capture -the collection of data from equipment external to the computer, or from 

the real world. 

+ Open-ended problem - the presentation to the student of a problem having multiple 

solutions. The student may use software such as word processors or spreadsheets 

to create a personal solution. 

In section 5.4.2 reference was made to West's nine cognitive strategies, namely, chunking, 

frames (type 1 and type 2), concept maps, advance organizers, metaphors and analogy, 

rehearsal, imagery, and mnemonics. In preparing CAI programs for various applications, and 

in using the different modes, the instructional designer should bear these cognitive strategies 

in mind and, wherever possible, design modes of instruction that enhance cognitive processing 

and metacognition within the learner. 



Instructional Design and Computer-Aided Instruction 

6.7 IMPLICATIONS OF CDT FOR INSTRUCTIONAL DESIGN OF 

COMPUTER-AIDED INSTRUCTION 

100 

The previous section applied the learning theories of Chapter Five to Instructional Design of 

CAI. This section focuses on one particular theory, Merrill's Component Display Theory (CDl) 

[Merrill 1983], described in section 5.4.5, and pursues its application to instructional software. 

Merrill [Merrill 1988] describes two applications of CDT to courseware design. They are the 

TICCIT authoring system and the Eduware Algebra series. Merrill himself was involved in the 

design of the former, simultaneous to the development of CDT, but the latter was implemented 

using CDT independently of Merrill or his associates. 

The TICCIT Authoring System 

For the purposes of a courseware development system, Merrill subdivides the components into 

expository presentation forms and inquisitory presentation forms. Both forms have generality 

and instance variations, an instance being a specific illustration of a generality. 

The expository forms impart instruction relating to Merrill's content types: 

+ definitions of concepts 

+ statements of principles, and 

+ steps and outcomes of procedures. 

The inquisitory forms relate to learner-practice: 

+ of concepts, by requiring synthesis and classification of examples and non-examples, 

+ of procedures, by asking the student to explain a given situation. 

Student-responses to practice are followed by feedback. 

Help components give access to attention-focusing information. This help is not intended to 

be used prior to the student's initial response, and the amount of information provided is 

faded during the later stages of practice. 

The learner-control philosophy of TICCIT allows the student to choose not only which content 

segment, lesson or unit to study, but also which primary (e.g. expository or inquisitory form) 

or secondary (e.g. help, prerequisites, alternative modes) presentation he would like next. 

Thus each user selects the combination of displays that is most appropriate for his own 

aptitude and subject-matter background. 



Instructional Design and Computer-Aided Instruction 101 

The Algebra series 

This series offers tuition and practice opportunities as a supplement to formal mathematics 

teaching. To maximize personal learning management, each algebra unit is divided into 

concepts, and each concept presented in four distinct learning styles: 

1. Definition discovery: discussion about ideas and terminology, in a way that lays a 

foundation for understanding a concept before presentation of specific problems. 

2. Rules: display of all the rules relating to that concept. 

3. Examples: examples available for viewing, as many as required by the student, for rule 

application or problem solving. 

4. Sample problems: problems that test the learner's ability to use the information 

presented in the other modes. 

Feedback to student-responses is "Right" or "Wrong". If a student performs unsatisfactorily 

in the sample problems, he may select another learning style and return to the problem later. 

Further features of TICCIT and Algebra. 

The type of instructional path through TICCIT and Algebra is the antithesis of the branching 

programmed-instruction model, where the student plays a passive role in control. Both TICCIT 

and Algebra have a map structure from which the user selects components. In Algebra the 

student chooses a lesson, then within the lesson, a segment, and once in the segment he 

chooses his own learning mode. The student himself is responsible for quantity of instructional 

material he uses to support his problem-solving effort. 

Referring to the term frame, which in CAI, is considered synonymous with a screen display, 

Merrill recommends the alternative terminology, instructional transaction (also used in section 

5.4.4). A transaction, requiring considerable control and processing by the user, is a more 

active concept than a frame. Each of Merrill's instructional transactions occupies the entire 

screen, so that only one component appears at a time. 



Instructional Design and Computer-Aided Instruction 102 

6.8 APPLICATION TO CAI AND TO FRAMES IN PARTICULAR 

The entire focus of this chapter is application to CAI. Nevertheless, in line with the format of 

other chapters, the topics considered in the chapter are applied to CAI and to the envisaged 

FRAMES practice-environment in particular. Sections 6.1 through to 6.7 are applied to 

FRAMES in sections 6.8.1 to 6.8. 7 respectively. 

6.8.1 KIND OF CAI REQUIRED 

The intention is to produce a practice-environment to supplement written material. Although 

it may incorporate aspects of tutorials, drill-and-practice and open learning environments, it 

should not bear close resemblance to any of them. The aim is not to duplicate written tuition, 

but to present extensive and intensive practice opportunities in subskills and composite 

skills, and also to present other visual aids and learning-events to increase familiarity with the 

domain in general and with the realm of each problem. 

6.8.2 WHETHER OR NOT A COMPUTER APPLICATION IS SUITABLE 

The priority is the educational goal, and appropriate tools and media are to be selected to 

achieve it. For a distance-education student working in isolation on a mathematical module, 

computer-based practice can provide valuable individualization and feedback, particularly when 

the software can be used as desired in terms of quantity, style and type of exercise. 

6.8.3 HOW THE COMPUTER SHOULD BE USED, I.E. CAI STRATEGIES 

Table 6.2 lists CAI strategies for various instructional events. Strategies appropriate for a 

practice environment include graphics to engage attention and clarify descriptions, definitions 

and rules, review of prior learning, /earner-control over content, quantity and sequence, and 

attention-focusing devices ( eg. arrows, boxing) to emphasize relationships and salient points. 

Help facilities, worked-examples, and feedback to user-responses all play a role in providing 

guidance. Practice can be stimulated and encouraged by providing variety of types and 

modes to cater for individual learning styles and for the same learner's needs at different times. 

Finally, the examples presented should be widely varied to enhance retention and transfer. 

6.8.4 THE DESIGN PROCESS 

In the current climate of sophisticated technology and powerful development software it is 

important that the design and development process should be in line with state-of-the-art 

software engineering techniques, and not just instructional design procedures, important 

though they may be. 



Instructional Design and Computer-Aided Instruction 103 

6.8.5 DESIGN FEATURES 

Attention should be paid to the basic design features relevant to CAI: 

+ Colour - good selections and combinations are desirable to enhance aesthetics and 

facilitate perception. 

+ Directions - must be clear, concise and consistent. 

+ Graphics - use visual illustrations to re-present concepts. 

+ Interactivity - user-participation is the mechanism that promotes user-engagement. 

+ Individualization - in a practice environment it is essential that the system behaves as 

a tool presenting each learner with the opportunity to meet his personal needs. 

+ Motivation -for tertiary-level students, this should be intrinsic, obtained by a sense of 

progress. The system should support self-motivation by not frustrating the user. 

6.8.6 APPLICATION OF LEARNING THEORY 

Learning theories give birth to instructional theories, which in turn influence the modes and 

strategies used in the design of instruction. The concepts and techniques advocated by 

various authors in section 6.6 have been considered specifically with reference to a CAI 

practice-environment. The following relevant strategies have been extracted or derived: 

+ Metacognition - learners should be able to monitor and control their own problem­

solving activity. 

+ Heuristics - ways of relating principles directly to the problem on hand. In each 

problem solving situation, a learner should ask himself, "What do the rules say?". 

+ Development of a process - should be demonstrated step by step. 

+ Explanations - should be used for elaboration. 

+ Real-world perception - if a learner has an accurate perception of a domain and its 

elements, it facilitates the answering of principial and generic questions. 

+ Images -graphic aids and the synthesis of examples promote construction of internal 

images. 

+ Schemata - the construction of schemata for each concept should be fostered, ie. the 

organization of knowledge according to relationships such as, for example, mind-maps 

or sets of " if .. . then . .. " rules. 

+ Spatial contiguity - can be implemented, for example, by pull-down elaboration and 

definitions viewed simultaneously with problem-solving. 

+ Different kinds of practice - by combining features from West's four kinds of learning 

and Black's and Venezky's instructional delivery modes, three fundamental 

learning/practice situations can be classified: 



Instructional Design and Computer-Aided Instruction 104 

1. Reception: Learner absorbs information from an explanation or demonstration 

where tutor plays the active role. 

2. Guided practice: Coaching or guided enquiry, where tutor leads or supports 

learner through an exercise. 

3. Autonomous problem-solving: Student plays active role, may tackle open-ended 

problems. 

6.8.7 APPLICATION OF CDT 

The component-based model is most appropriate for CAI, and appears to be an ideal 

approach for the FRAMES practice environment. Simultaneous use of several components is 

required, however, so FRAMES screens should present a window-based appearance, rather 

than single-transaction displays. 

6.9 IMPLICATIONS FOR THE ANALYSIS AND DESIGN PROCESS 

OF CAI AND FOR FRAMES IN PARTICULAR 

6.9.1 REQUIREMENTS ANALYSIS 

Section 9.2 of Chapter Nine addresses the overall requirements analysis phase of FRAMES, 

incorporating all aspects - philosophical and pragmatic. This section merely sets out certain 

required features of a practice environment discussed in this chapter. 

In the preceding six sub-sections certain features have emerged as candidates for 

incorporation in a CAI practice environment. Figure 6.1 sets them out indicating the purpose 

each would serve. Outward arrows indicate desired features and requirements that must be 

provided in a practice environment. Inward arrows show the role that should be played by 

various factors in the context of instructional software. 

To satisfy all these requirements an extensive and varied set of instructional components is 

required. To work through the entire set would be prohibitively lengthy and would entail 

covering material irrelevant or not required by the learner at that time. The implication for the 

design of FRAMES is a component-based system, in which a set of options should be 

presented to the learner. User-control should allow the learner to select instructional 

transactions as advocated by Merrill in CDT and new CDT (see section 5.4.5). 



Individuali­
zation 

Inter­
activity 

User­
control 

'° <$)~· :I~ 

Clear 
directions & 
navigability 

-~o ~~ 
~ 0 
~ ..... 
C!· 0-
~ 

"b. ~ 
$"'o~ ~~ 

~ ~,.. 

to 
le~ ner, s neeas 

'ta\\ze 
~{'S 
on ~~~t\es .,

0 ca:r- ~0 r§. 0 
0 .. ,..9,~ ~c; 
~ c;,v/~O_t'\ ~ ~ 0'"·~,~ ,o 4<_0 0"' ~~ 

Help 
facilities 

~b~,0~ 
'l>~·o<-

~.,,~ 

Component­
based 

Practice 
Environment 

~ 
.~ 

~~ 
:s; ctJ 0 

-§ 0.:€ 
0 §, .... :r: 8 

Heuristic 
strategies 

Aesthetic 
appearance, 
chunked 
content 

~0 
·'$-fl> ~ 

\'l>o ~~o 
,o ~"S 

,o'" 

lo 
l~ift~ .. -
8~~,.IJi~ ~ 1> '.Yle8 '!Jg '!Jt 

%~~6~ ~Sf. ~ 'b ~ <'Pl"L ~fla "'~~~~ ~ 
~ G) 

Varied 
quantity of 
work 

Internal 
schemata 

Variety 
of moaes 

Figure 6.1 The emergent Characteristics of a Practice Environment 

Varied 
examples 

Feedback 

S' 
(/) 

~ 

R o· 
:::i 
~ 

~ 
ces· 
:::i 

~ 
Q. 

~ 

~ 
Ci)' .... 
:i:. 
Q: 
<t> 
Q. 
S' 
(/) 

~ c:: 
~ o· 
:::i 

-@ 



Instructional Design and Computer-Aided Instruction 106 

6.9.2 DESIGN 

A comprehensive study of the design phase of FRAMES is found in section 9.3 of Chapter 

Nine. The top levels of a typical piece of software are represented by a structure chart as 

shown in Figure 6.2. The chart is adapted to represent instructional software rather than 

conventional software. 

Lesson 

Initialization Body of lesson 

where Body of lesson comprises Routine 

Figure 6.2 Structure Chart to represent 

Highest Levels of Instructional Software 

I 

Finalization 

Initialization would comprise the introductory orientation screens and main menu. 

The routines represent the instructional and practice components. In tutorial CAI they would 

consist of teaching segments followed by question-response-feedback segments. In the 

kind of practice-environment envisaged there would be no formal didactic components, the 

emphasis being on exercises in various modes - either worked model-answers or proofs 

to be tackled by the student with varying degrees of assistance. The extent of the exercise 

should be variable, so as to allow the learner either to practice single components of a 

problem or to choose a more extensive proof, comprising composite skills. The 

instructional transactions should also include components aimed at increasing the learner's 

intrinsic grasp of the aomain, such as visuals and concrete examples. 



Instructional Design and Computer-Aided Instruction 107 

Figure 9.4 extends the general structure chart of Figure 6.2 to a particular design for FRAMES, 

showing its specific components and options presented to the learner. Some routines would 

require active involvement from the user; others entail more passive observation. Table 6.4 

lists the active and the passive processes. 

Table 6.4 Active and Passive Processes in a Practice Environment 

I ACTIVE PROCESSES I PASSIVE PROCESSES 

Selection of a component Reading a definition 

Request for help Viewing an illustration or graphic aid 

Development of automaticity in sub-skills Studying a step-by-step problem-solving 
demonstration 

Handling of a composite proof or problem 

Synthesizing concrete examples of an 
abstract problem 

Relating an example to the appropriate 
theory 

6.10 CONCLUSION 

In conventional ISO, instructional design determines characteristics both of the process and 

of the product. The premise in the introduction of Chapter One states that instructional theory 

and instructional design are used to define the requirements and characteristics of the product, 

and software engineering methodologies are combined with instructional design in the 

process of development. Figure 1.1 is repeated as Figure 6.3 to reinforce the statement. 

This chapter stresses the role of ID as the central pillar of instructional systems development, 

which straddles the dividing line between the process and the product, i.e. it relates both to 

the desired characteristics of the end product, and to the tasks and procedures used in 

creating the desired software. With regard to the development process, the procedures of 

conventional ID models are described in sections 5.2 and 6.4. To an extent, these are 

subsumed by, or incorporated within, the software engineering life-cycle approach of this 

dissertation. With relation to the deliverable product, it is important that a designer should not 

overlook the inclusion of valuable instructional and cognitive features, over and above the 

actual content. 

I 



Instructional Design and Computer-Aided Instruction 

Instructional Software Development 
(Courseware Engineering) 

Process Product 

C> c:: ~ c:: ·c:: C> "C 0 CD "Ci) 
C:: CD CD CD as .c: c:: 0 I-

C> as C>-
c:: c:: as 
w c:: ·- c:: 

0 Eo 
CD ·u as ts .... 
as ::::s ~ ::::s 

~ 
.... .... - V) 
V) c:: 0 c:: -en -

Figure 6.3 

The roles of Software Engineering, Instructional Design and Instructional Theory 

as pillars of Instructional Systems Development 

108 

The practical outworkings of learning theories and instructional models reviewed in the 

previous chapters have been applied to the requirements of the prototype. Appropriate 

requirements for the FRAMES practice environment have emerged, and the conceptual design 

of the instructional transactions has been determined. 

Integration of CDT and CAI could be synergistic, producing a component-based environment 

conducive to primary instructional presentation, as well as promoting active mental processing 

and practice on the part of the learner. 



Instructional Design and Computer-Aided Instruction 109 

REFERENCES - CHAPTER SIX 

[Alessi 1991] 

[Anderson 1983] 

[Black 1987] 

[Carrier 1988] 

[Cumming 1990] 

[De Villiers 1993] 

[Gagne 1987] 

(Hannafin 1988] 

[Jonassen 1988] 

(Keller 1988] 

(Kok 1990] 

(Kontos 1985] 

[Lanzing 1994] 

Alessi, S.M. & Trollip, S.R. (1991). Computer-Based Instruction: Methods and Development. 

Englewood Cliffs, N.J.: Prentice Hall. 

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University 

Press. 

Black, T. R. (1987). CAL Delivery Selection Criteria and Authoring Systems. Journal of 

Computer-Assisted Learning 3, 204-213. 

Carrier, C.A. & Jonassen, D.H. (1988). Adapting Courseware to Accommodate Individual 

Differences. In: Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer Courseware. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Cumming, G. (1990). Artificial Intelligence and Images of Natural Learning. In: McDougall, A. 

& Dowling, C. (Eds), Computers in Education. Amsterdam: Elsevier Science Publishers B.V. 

(North Holland). 

de Villiers, M. R. (1993). Relations: A CAI Tutorial in Theoretical Computer Science. 

Unpublished MEd thesis, University of Pretoria. 

Gagne, R.M. & Glaser, R. (1987). Foundations in Learning Research. In: Gagne, R.M. (Ed.), 

Instructional Technology: Foundations. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Hannafin, M.J. & Peck, KL. (1988). The Design, Development, and Evaluation of Instructional 

Software. New York: Macmillan. 

Jonassen, D.H. (Ed.) (1988). Instructional Designs for Microcomputer Courseware. Hillsdale, 

N.J.: Lawrence Er1baum Associates. 

Keller, J.M. & Suzuki, K (1988). Use of the ARCS Motivational model in Courseware Design. 

In: Jonassen, D.H. (Ed.), Instructional Designs for MicrocomputerCourseware. Hillsdale, N.J.: 

Lawrence Er1baum Associates. 

Kok, W. & Poorthuis, G. (1990). The Effects of Different Teaching Strategies in Three CAI 

Programs within the Same Content Area. In: Pieters, J.M., Simons, P.R.J. & de Leeuw, L. 

(Eds), Research on Computer-Based Instruction. Amsterdam: Swets and Leitzinger B. V. 

Kontos, G. (1985). Instructional Computing: In Search of Better Methods for the Production 

of CAI Lessons. Computer Education 49, 16-19. 

Lanzing, J.W.A. & Stanchev, I. (1994). Visual aspects of Courseware Engineering. Journal 

of Computer Assisted Learning 10, 69-80. 



Instructional Design and Computer-Aided Instruction 110 

[Lesgold 1992] 

[Lippert 1993] 

[Mehl 1993] 

(Merrill 1983] 

(Merrill 1988] 

[Morrison 1988] 

(Newell 1972] 

(Price 1991] 

[Regian 1992] 

(Roblyer 1988] 

(Self 1985] 

[Smith 1984] 

[Soulier 1988] 

[Venezky 1991] 

[Vockell 1989] 

Lesgold, A., Eggan, G., Katz, S., & Rao, G. (1992). Possibilities for Assessment using 

Computer-Based Apprenticeship Environments. In: Regian, J.W. & Shute, V.J. (Eds). 

Cognitive Approaches to Automated Instruction. Hillsdale, N.J.: Lawrence Erlbaum 

Associates. 

Lippert, R. C. (Ed.) (1993). Computer-Based Education and Training in South Africa. Pretoria: 

J.L. van Schaik Publishers. 

Mehl, M.C. & Sinclair, A.J.L. (1993). Defining a Context for CAI: In Quest of Educational 

Reality. In: Lippert, R.C. (Ed.), Computer-Based Education and Training in South Africa. 

Pretoria: J.L. van Schaik Publishers. 

Merrill, M.D. (1983). Component Display Theory. In: Reigeluth, C.M. (Ed.), Instructional 

Design Theories and Models: An Overview of their Current Status. Hillsdale, N.J.: Lawrence 

Erlbaum Associates. 

Merrill, M.D. (1988). Applying Component Display Theory to the Design of Courseware. In: 

Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer Courseware. Hillsdale, N.J.: 

Lawrence Erlbaum Associates. 

Morrison, G.R. & Ross, S.M. (1988). A Four-Stage Model for Planning Computer-Based 

Instruction. Journal of Instructional Development 11 (1) 6-14. 

Newell, A. & Simon, H.A. (1972). Human Problem Solving. Englewod Cliffs, N.J.: Prentice-Hall 

Inc. 

Price, R.V. (1991). Computer-Aided Instruction: A Guide for Authors. Pacific Grove, CA: 

Brooks/Cole. 

Regian, J.W. & Shute, V.J. (Eds) (1992). Cognitive Approaches to Automated Instruction. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Roblyer, M.D., Castine, W.H. & King, F.J. (1988). Assessing the Impact of Computer-Based 

Instruction: A Review of Recent Research. New York: Haworth Press. 

Self, J. (1985). Microcomputers in Education: A Critical Evaluation of Educational Software. 

The Harvester Press. 

Smith, P.L. & Boyce, B.A. (1984). Instructional Design Considerations in the Development of 

Computer-Assisted Instruction. Educational Technology 24 (7), 5-11. 

Soulier, J.S. ( 1988). The Design and Development of Computer Based Instruction. Boston: 

Allyn and Bacon, Inc. 

Venezky, R. & Osin, L. (1991). The Intelligent Design of Computer-Assisted Instruction. New 

York: Longman. 

Vockell, E. & van Deusen, R.M. (1989). The Computer and Higher-Order Thinking Skills. 

Watsonville, CA: Mitchell Publishing, Inc. 



Instructional Design and Computer-Aided Instruction 111 

[West 1991] 

[Wilson 1992] 

West, C.K, Farmer, J.A. & Wolff, P.M. (1991). Instructional Design: Implications from Cognitive 

Science. Englewood Cliffs, N.J.: Prentice Hall. 

Wilson, B. & Cole, P. (1992). A Review of Cognitive Teaching Models. Educational 

Technology Research and Development 39 (4), 47-64. 



CHAPTER SEVEN 

ARTIFICIAL INTELLIGENCE 

AND COMPUTER-AIDED INSTRUCTION 

This chapter investigates the application of Artificial Intelligence (Al) techniques to CAI. 

Intelligent Computer-Assisted Instruction (ICAI) has evolved from a base of Computer Science 

and Cognitive Psychology, rather than from the realms of education. It focuses more upon 

subdisciplines of Al, such as knowledge representation, natural language dialogues, and 

inferencing than on instructional features. The origin and kinds of ICAI are investigated. The 

components of Intelligent Tutoring Systems (ITSs) are overviewed. The chapter concludes 

with an historical perspective on ICAI, a discussion of problems incurred, and a view of some 

of its current tendencies. 

In relation to the software engineering life-cycle models, the study in this chapter 

relates to decisions that must be made in the requirements analysis phase. The 

prototype life-cycle permits a degree of experimentation and consequent 

refinements to the requirements specification in situations where initial 

expectations are unrealistic. 

lntelligenttutoring systems differ considerablyfrom conventional computer-assisted instruction 

programs. The two have complementary approaches, which are outlined by Larkin & Chabay 

[Larkin 1991 ]. CAI programs are interaction-centred - the author or designer sets out with 

a definite goal, aiming for a certain type of interaction and specific activities, founded on 

teaching experience and instructional principles. The programs are generally algorithmic, with 

user-input determining branching. Intelligent tutors, in contrast, are knowledge-centred. It is 

not hand-crafted programming code, but a set of knowledge-based models, which determine 

how the software responds to the student. After interaction with the student, the model 

communicates with the interface or another model, which uses its own knowledge to instruct 

the student and convey input back to the central model. The logic of an ITS is not algorithmic, 

but based on repeatedly applying knowledge, encoded as rules, to react to a current 

situation. The rules are often encoded in the classic symbol-processing languages of Al, such 

as LISP and Prolog. 

112 



Artificial Intelligence and Computer-Aided Instruction 113 

7.1 GENERATIVE SYSTEMS 

Generative CAI [Keller 1987; Sleeman 1982; O'Shea 1983] was the precursor to ICAI. In the 

mid 1960s drill-and-practice software was developed which presented a learner with problems 

at an appropriate difficulty-level. The personalized degree of difficulty was determined by task­

selection algorithms which measured the behaviour of the learner and used it to select 

suitable exercises. Such programs were called adaptive, because the problems presented 

were individualized. 

In another form of generative software the computer generates random numbers or words 

(within certain restrictions), and uses them to create specific values for exercises in 

computational and linguistic domains respectively. 

Thirdly, a question bank can be compiled for a particular subject. The random number 

generator can select items at random from the bank for practice-exercises or for testing 

students. 

7.2 ARTIFICIAL INTELLIGENCE AND COMPUTER-ASSISTED 

INSTRUCTION (Al + CAI = ICAI) 

7.2.1 DEFICIENCIES OF TRADITIONAL CAI 

Traditional scripted CAI has deficiencies when compared to an intelligent human teacher 

[Keller 1987; Thomas 1990]. It does not: 

+ have any intrinsic knowledge of the subject matter it teaches, 

+ model students, thus it has no knowledge of the individual student, nor any 

understanding of his kind of error, 

+ permit students to express a full range of variety in their responses, 

+ allow students to talk in natural language, ask questions, or take initiative, or 

+ have the capability to instruct using a variety of instructional strategies and non­

deterministic sequencing. 



Artificial Intelligence and Computer-Aided Instruction 114 

7.2.2 Al~ CONTRIBUTION: KNOWLEDGE REPRESENTATION 

To address these deficiencies and behave intelligently, the program requires knowledge. In 

an effort to produce intelligent CAI, techniques that emerged from the Al knowledge 

representation research of the 1960s and 1970s have been used to provide underlying 

knowledge structures for CAI. The key to intelligent processing is the proper organization of 

knowledge, both declarative and procedural knowledge. Woolf [Woolf 1988, p. 3] explains: 

"Intelligent teaching systems are designed to represent both the concepts to be 

taught and how a student might learn those concepts". 

The major knowledge representation formalisms [de Villiers 1989b] are networks, frames, and 

production rules: 

Networks 

Quillian [Quillian 1968] developed semantic networks of objects and relations between them, 

the term "semantic" being due to their origin in the field of natural language processing. His 

work on semantic memory is based on associative links, and is related to Simon's (section 

4.1.4) model of human information processing. Nodes are related to one another by different 

kinds of links, each having a different meaning. Networks lend themselves to representation 

by diagrams or other notations, and can be encoded using various symbols to represent the 

different kinds of links. 

Frames 

The concepts, terms and techniques of networks paved the way for the subsequent 

development of frames, a variant of network with a more complex structure. Minsky [Minsky 

1975; Minsky 1985] proposed a frame or schema as a method of representing both human 

and machine knowledge. A frame is a data-structure, consisting of nodes and relations, that 

represents a stereotyped object or situation. The various slots (or terminals) have values, and 

where a specific value is not provided, a default assignment exists to cater for the general, or 

typical, case. Frames are stored and can be accessed for inferencing or to retrieve 

information. 

Frames are applied, or instantiated, as follows: on encountering a situation, a frame that fits 

is selected from memory to represent the situation. The default values assigned are used 

where appropriate; other aspects may be adapted to fit reality. In a CAI situation, an author 

may fill a knowledge frame or script with domain material, and be prompted by requests for 



Artificial Intelligence and Computer-Aided Instruction 115 

any information missing [Nicolson 1988]. Once encoded, the knowledge is available for 

retrieval and manipulation by the computer. 

Production Rules 

Production rules, described in section 4.2.6 represent knowledge by 'U ... then ... " 

propositions, formally described as condition-action or antecedent-consequence pairs. 

They are used for inferencing as follows: In forward chaining data patterns are matched 

against the clause/s in the antecedent and the resulting action or consequence is triggered. 

Backward chaining is working backwards from a goal, pattern-matching data against the 

consequence; if found, then the corresponding antecedent holds true [Anderson 1983; 

Fischetti 1990]. 

7.2.3 INTELLIGENT CAI (ICAI) 

The Al techniques outlined above make possible the creation of knowledge platforms on 

which intelligent CAI programs [Kearsley 1987; Kok 1990] can be constructed. The learning 

theories discussed in previous chapters also play a role, in that traditional CAI emerged from 

behaviourism, whereas ICAI has roots in cognitive science. In fact ICAI lies "at the intersection 

of computer science, cognitive psychology, and educational research" [Kearsley 1987, p 3], 

but it is largely the contribution of Al that distinguishes ICAI from traditional CAI and CBE. 

Both CAI and ICAI strive to be adaptive, but the nature of the adaptivity and individualization 

within ICAI is far richer. 

ICAI is a broad field, embodying various paradigms: 

+ Mixed-initiative dialogues: such as SCHOLAR (see section 7.2.4), which could generate 

questions about the material in its knowledge base, but could also answer questions 

posed by students. 

+ Coaches and diagnostic tutors: which observe the learner's performance, providing 

advice, prompts, interrupts, and error-diagnosis. The assessment may be based on a 

comparison of the learner's problem-solving approach with expert strategies. Intelligent 

tutoring systems are discussed in section 7.3. 

+ Microworlds (or open learning environments): which are computational and/or graphic 

tools that allow learners to explore a problem domain. The classic example is Papert's 

Logo (described in section 5.4.3). 



Artificial Intelligence and Computer-Aided Instruction 116 

7.2.4 THE FIRST EXAMPLE OF Al IN CAI 

The first computer-assisted learning system which set out to simulate a human tutor by using 

Al techniques was SCHOLAR [Carbonell 1970; O'Shea 1983; Venezky 1991 ]. SCHOLAR was 

intended to review the student's knowledge of the geography of South America. The system 

itself "knew" the material it was intended to teach. Its database or information structure, 

comprising facts, concepts, relationships and procedures, was a semantic network [Quillian 

1968] from which associations and inferences could be made. No specific pieces of text, pre­

specified questions, or anticipated answers were formulated in advance. The semantic 

network was used in two ways. Firstly, the system could construct text or generate questions 

according to stereotypes. However, SCHOLAR offered the learner a mixed-im1iative dialogue, 

thus students themselves could also pose questions. The system, "knowing" the structure 

of its underlying network and the meaning of the relationships, could make inferences to 

answer the student's queries. 

It had the potential for diagnostic capabilities, although such were not actually incorporated. 

Carbonell believed that, should problems occur, the ultimate objective was [Carbonell 1970, 

p. 198] "for the student to overcome them, not for the teacher to diagnose them". Even a 

human tutor frequently handles student-errors by giving remedial treatment and basic 

instruction, without fully entering into the student's misconceptions. 

Of particular note is the fact that SCHOLAR'S executive program is independent of subject 

matter. The content-free executive program can operate on different applications when the 

subject-matter content of the semantic network is changed. Computational applications can 

be addressed by creating a semantic network that is strong on procedures. With reference 

to the matter of problem-diagnosis in the previous paragraph, it is obvious that this context­

free approach makes it harder to program the computer to diagnose errors. 

SCHOLAR set a precedent, and was a seminal landmark in terms of its influence on the 

developing field of Al within CAI, but the archetypal intelligent system which succeeded it 

seldom incorporated a mixed-initiative strategy. Although intelligent systems, which are 

discussed in detail in the next section, do adapt to the learner, they do so in a context of 

program-iniative. 



Artificial Intelligence and Computer-Aided Instruction 117 

7.3 INTELLIGENT TUTORING SYSTEMS (ITSs) 

7.3.1 CHARACTERISTICS AND COMPONENTS OF AN ITS 

A particular kind of ICAI software is called an Intelligent Tutoring System (ITS) [Self 1979; 

Keller 1987; Self 1988; Fischetti 1990; Kok 1990; Nix 1990; Thomas 1990; Goodyear 1991 ; 

Venezky 1991; Regian 1992]. SCHOLAR, with its underlying information structure containing 

knowledge of the domain, is considered to be the classic from which ITS research evolved. 

An ITS is a limited, or focused, ICAI program, which sets out to instruct and offer practice 

within a specific area of a curriculum, using some of the ICAI techniques outlined above, but 

excluding microworld features. The difference between traditional CAI and ITS is not 

necessarily in their functionality, but in their structure, control and methods. Both strive for 

individualization - adaptation to the individual needs of each learner, but the intelligent 

software has a more powerful approach, based on inferencing and the explicit encoding of 

knowledge, rather than on pre-specified branching. Since the fundamental purpose is to 

emulate a human tutor in a one-to-one relationship, an ITS often emphasizes interactive 

practice of skills more than explicit teaching. An ITS is sensitive and adaptive to the learner, 

in that it knows what is being taught, who is being taught, and how to teach it to him [O'Shea 

1983; Fischetti 1990; Goodyear 1991; Regian 1992]. 

In general an ITS is characterized by a user-interface and a diverse set of knowledge bases, 

being some or all of the following: 

+ Expert model (what): explicit representation of domain knowledge. It knows the facts 

and concepts of the topic, not as a human would, but in terms of the facts and 

concepts of the subject matter and the relationships between them, so that it can solve 

problems in the domain. 

+ Student model {who): representation of the learner and what he knows in terms of 

knowledge and skills; it is constructed and dynamically updated during the interaction. 

One approach is to compare the student-performance with, or to view it as a subset of, 

the expert-model. 

+ Diagnostic model {why): for error-diagnosis and identification of misconceptions. 

+ Tutoring module (how): knowledge about how, what, and when to teach. It uses the 

expert model and the student model to make its decisions; its knowledge is often 

represented as strategy rules. 



Artificial Intelligence and Computer-Aided Instruction 

The inter-relationship between the components of an ITS is illustrated in Figure 7.1. 

Expert Tutorial I 
Model Module N 

T 
E 
R 
F 

Diagnostic Student A 
c Model Model 
E 

Figure 7.1 Architecture of an ITS 

7.3.2 ANDERSON'S ACT* THEORY, COGNITIVE PRINCIPLES AND 

INTELLIGENT TUTORS 

0 

LEARNER 

118 

John Anderson's [Anderson 1983; Anderson 1987; Anderson 1990; Anderson 1992] Adaptive 

Control of Thought (ACT) theory of the operation of the human cognitive system relates to the 

control of higher-level cognition, using production rules to model human memory and 

cognitive skills. A fundamental distinction is drawn between declarative and procedural 

knowledge. Declarative knowledge is largely factual and is that which can be encoded 

quickly; procedural knowledge, on the other hand, is acquired through the use of declarative 

knowledge, thus the theory of procedural learning emphasizes learning by doing. Procedural 

knowledge is represented by a set of production rules. ACT underwent various revisions; the 

final reformulation is called ACT*. ACT* theory in its entirety is complex, but the procedural 

aspects are particularly relevant to the tutoring of cognitive skills. Tutoring principles, listed 

below, have been derived from ACT* theory, and empirically confirmed: 

1. Cognitive tutors should provide an explicit model of the student's ideal behaviour, i.e. 

there should be an ideal model, analogous to an expert model, capable of solving 

problems, and a student mode/that records actual behaviour. In ACT* theory, these 

models should be represented by production systems. The student model is more than 

just an indicator; it sets out the student's errors and the knowledge he is acquiring. 



Artificial Intelligence and Computer-Aided Instruction 119 

2. Human behaviour in problem-solving is based on goals, i.e. a learner believes that 

IF <a certain condition> 

THEN <a certain consequence is the case 

or a certain action must be taken>. 

Production rules are goal-factored and lend themselves to this type of situation. 

Students use rules by backward chaining from the desired consequence to the 

condition/s he must achieve or prove. General goals should be given primacy and the 

appropriate productions communicated to the student. 

3. Students learn more effectively if presented with the necessary information during 

problem-solving. Learning by doing is enhanced by receiving instruction in the problem 

solving-context; this helps the learner form his own more specific productions. 

4. Abstract high-level understanding should be promoted, training the learner to grasp 

general principles and rules, and apply them in the context of a specific example. 

5. Load on working memory should be minimized by providing rapid updates of necessary 

information. 

6. Model-tracing methodologyis applied, using cognitive models to interpret the student's 

problem-solving behaviour and identify the rules he is using. The model-tracing tutor 

incorporates both the correct production rules and a set of buggy rules to account for 

the student's errors. 

7. Rapid feedback should be given when a learner applies an incorrect production. This 

prevents further errors. 

Intelligent tutors in LISP, algebra, geometry, and a multiple programming languages project 

have been built upon the ACT* theory [Corbett 1991; Anderson 1987; Anderson 1990; 

Anderson 1992]. These tutors have been tested and used in a university and in high schools 

over a period of ten years. Some of the implementation issues and practical features of these 

tutors are listed: 

• The tutors are termed "intelligent", because they are capable of generating correct 

solutions to the exercises and helping learners to do so. 

+ The tutor provides an environment, similar to an editor, in which a student can do 

exercises. Unlike an editor, it checks the student's input and ensures that the final 

solution is correct. 



Artificial Intelligence and Computer-Aided Instruction 120 

+ The current state of the student's solution to a problem is stored in a limited capacity 

working memory. 

+ Exchanges between student and tutor are in the context of the problem-solving 

exercises, and occur only when the student is having difficulties or makes a mistake. 

+ Certain exercises have alternative correct solutions. The tutors enforce stylistic 

constraints, but are intended to recognise any reasonable attempts. 

+ Most of the instruction occurs when students request help, but intervention also occurs 

whenever errors are made. 

7.3.3 TOWARDS ITS SHELLS 

An ITS shell[Fischetti 1990] is a domain-independent tutoring system, which can operate over 

a variety of application domains. The domain knowledge for a particular subject or topic is 

used to construct a domain-specific knowledge base (KB). It usually requires an expert Al 

programmer or a knowledge engineer to create the knowledge representation, since no 

adequate tools are available that permit domain experts to construct KBs directly. It is unlikely 

that a general-purpose, domain-independent tutoring system will be available in the near 

future. 

Clancey developed GUI DON, a domain-independent teaching program that instructs students 

in diagnostic strategy [Clancey 1981; Clancey 1982; Clancey 1987]. It originated from the 

knowledge-based expert-system, MYCIN, which diagnoses infectious diseases. An expert­

system is an advisory or decision-making program, with a separate knowledge-base (KB) and 

inference mechanism. An expert system shell is an expert-system without a KB. The expert 

system, MYCIN, spawned the domain-independent expert-system shell, EMYCIN. EMYCIN 

uses MYCIN's production rule language and inferencing mechanisms, but "plugs into" KBs 

custom-built for particular domains. A tutorial, GUI DON, was built to operate on any EMYCIN­

compatible KB, but instead of actually performing diagnosis, it teaches students, by means 

of a tutorial dialogue, how an expert approaches diagnosis and problem-solving. The 

teaching expertise is represented explicitly and is wholly independent of the domain 

knowledge base. 



Artificial Intelligence and Computer-Aided Instruction 121 

7.4 PROBLEMS IN ICAI 

Many of the prototype intelligent tutors are largely experimental; most are limited in domain 

and capabilities. Very few are commercially available [Fischetti 1990]. 

Intense effort is required to create knowledge-based programs to simulate human tutors. 

O'Shea & Self [O'Shea 1983, p. 120] state that it "requires man-years of expert programming". 

Lippert [Lippert 1989] gives a figure of over 1500 hours of development time for one hour of 

ICAI instruction time. 

7.4.1 PROBLEMS WITH STUDENT MODELLING 

In particular there are problems with relation to student modelling [Self 1979; Ridgeway 1988; 

Cumming 1991 b]. A prime purpose of a student model is to represent changes in the 

student's knowledge, and a secondary purpose is to provide an explanation of his errors or 

identify inadequacies in his problem-solving process. Knowledge representation techniques 

simplify the extension or alteration of the student model to record what the learner currently 

knows, but the incorporation of a diagnostic component to identify the actual learning 

processes is not simple. Furthermore, there is a huge range of possible models, and in a 

complex domain it is unlikely that an exhaustive set could be compiled. 

7.4.2 PROBLEMS WITH THE TUTORING MODULE 

Another fundamental problem is the overall control exercised by the tutorial module, and the 

concomitant lack of student-initiative. Learning could possibly be more effective and lead to 

more self-growth if the learner had more control. Cumming & Self describe ITSs as having 

an "authoritarian tutoring style" [Cumming 1991 b, p. 87], and propose instead an intelligent 

educational system, in which the user is a collaborator, sharing even the facility of inspecting 

and changing the user model. Ridgeway [Ridgeway 1988, p. 28] views !CAI as "focused on 

individual tuition for technical mastery". 

7.4.3 PROBLEMS WITH CREATION OF THE KNOWLEDGE BASE (EXPERT MODEL) 

A particular problem in the development of ITSs is the creation of knowledge-bases. The 

question arises as to whether the expert model, i.e. the domain KB, should be created by the 

domain expert himself or by a computer scientist intermediary called a knowledge engineer, 

who is instructed by an expert and then encodes the knowledge. Ideally, knowledge should 

be entered by the domain expert to ensure completeness, accuracy, and the inclusion of 

subtleties, but the programming can be a problem. The tendency, however, in ICAI and ITSs 



Artificial Intelligence and Computer-Aided Instruction 122 

has been development by computer scientists, i.e. Al specialists, with low involvement by 

educational technologists, and little learner-evaluation or thorough testing [Lippert 1989; 

Fischetti 1990]. However, some systems have been developed that allow domain experts to 

enter information into the KB themselves, but in a restricted class of programs. 

A further basic problem is that the domain must be narrow and limited in order for the system 

to incorporate knowledge and intelligence at all. 

Anderson et al [Anderson 1992, p. 83) acknowledge that "the work and difficulty in developing 

an adequate cognitive model (their term for the expert model) are the major obstacle in this 

approach to tutoring". 

7.4.4 PROBLEMS WITH MULTIPLE SOLUTIONS 

Difficulties also arise when different approaches, multiple representations, and alternative 

correct solutions exist for the same problem. Many ITSs (and almost all traditional CAI 

programs) do not provide for an approach or a skill that differs from the expert's model 

solution. When the student diverges from the expert's approach, control is removed from the 

user, and he is prompted or corrected to do as the expert would have done [Keller 1987; 

Ridgeway 1988; Woodroffe 1988; Beder 1990]. 

7.4.5 PROBLEMS WITH EVALUATION 

A general problem with work in intelligent tutoring is that it has tended to progress without 

empirical feedback as to whether the proposed mechanisms work [Anderson 1990, Corbett 

1993]. Notable exceptions are found in the efforts of Anderson and colleagues, whose tutors 

have been systematically tested in the classroom with satisfactory results. 

7 .5 EVALUATION OF ICAI 

Ford [Ford 1988] provides a list of questions developed by Self to appraise the behaviour of 

an ICAI system. They occur in four categories, and some are given below: 

+ Subject knowledge: 

Can the system answer questions from the user? 

Can it give an explanation of a solution? 

+ Student knowledge: 

Can the system report on the user's level of understanding? 

Are explanations tailored to the user? 



Artificial Intelligence and Computer-Aided Instruction 

Does it provide informative feedback? 

Are the tasks adapted to the user's needs? 

+ Control: 

Does the system actively engage the user? 

Can the user initiate a new area? 

If so, does the system monitor the change and comment if unwise? 

Does it intervene when the user has difficulty? 

+ Mode of communication: 

Can user-input be expressed in a natural manner? 

Does the system help if user-input is not understandable? 

Are the system's outputs natural? 

123 

It is clear that few systems can be positively assessed on all criteria. To achieve even a few 

of the above characteristics would be a highly labour-intensive process. 

7.6 CURRENT VIEWS ON ICAI AND ITSs 

7.6.1 REVIEW OF INITIAL INTENTIONS IN THE 1980s 

In 1982 Sleeman and Brown [Sleeman 1982], editing the special landmark issue, Intelligent 

Tutoring Systems, mentioned the intention of ITSs to combine discovery-learning with tutorial 

guidance, objectives often in conflict. They saw the incorporation of the program's own 

problem-solving expertise and modelling capabilities as the way to augment open-ended, 

problem-solving environments with intelligent tutoring. 

However, the discussion in sections 7.4 and 7.5 outlines problems that have been incurred 

in ITSs, despite the idealism that accompanied their advent. 

7.6.2 PRAGMATIC TRENDS IN THE 1990s 

More recent proponents of pure Al, Clancey & Soloway [Clancey 1990], editing the 1990 

special issue, Artificial Intelligence and Learning Environments, point out trends and 

techniques that should shape the field in the 1990s. Some of these are: 

+ use of graphics for explanation, 

+ reconsidering the extent to which student modelling is possible or necessary, 

+ designing shells for use in multiple domains by teachers, and 

+ defining sequences of activities for exploration-learning. 



Artificial Intelligence and Computer-Aided Instruction 124 

The cognitive modelling and ACT* intelligent tutors [Anderson 1990) are compatible with 

content-free use in multiple domains. They incorporate student modules, pedagogical 

modules and the interface for student-interaction. There are three notable issues relating to 

these components: 

+ From a software engineering perspective, the various components can be developed 

separately, increasing the tractability and modularity of such major software projects. 

+ A related implication is re-use of content-free software. Student modules and interfaces 

contain domain knowledge, but the pedagogical strategy which controls the interaction 

is independent of domain material. Anderson and his colleagues hope to build different 

tutors using domain-free tutoring strategies. 

Goodyear [Goodyear 1991) sees future research including: 

+ efforts to solve the problems of learner modelling and domain knowledge, 

+ the use of less didactic teaching styles, as collaborative learning and guided exploration 

play greater roles, and 

+ improved learner-computer communication, such as via graphic interfaces. 

7.6.3 LESS OPTIMISTIC OUTLOOKS 

Certain schools of thought query whether ITSs can live up to their promise. Winograd & 

Flores [Winograd 1986) doubt that symbolic representations can ever truly embody 

intelligence, and suggest that computer systems should be designed to be of practical value 

in a relevant context, requiring common sense and general problem-solving abilities from the 

user. 

Cumming [Cumming 1991 a) and Cumming & Self [Cumming 1991 b] believe that it is 

extremely difficult to build effective intelligent tutors for any but restricted domains and narrow 

learning. Cumming's view [Cumming 1991 a, p. 52) is that 

'Under the new thinking, systems may be less ambitious and rely more on 

human collaboration, but they will be more practically useful than the artificial Al 

systems of the past". 

In some quarters the acronym ICAI is now considered to stand for Interactive CAI rather than 

Intelligent CAI. In posing and answering the question, "What makes CAI intelligent?", Lippert 

[Lippert 1990) suggested the three characteristics of adaptability, individualization and 

interactivity. 



Artificial Intelligence and Computer-Aided Instruction 125 

Keller [Keller 1987] proposes Intelligent Support Systems (ISSs), which cannot solve problems 

themselves, but can help a student to do so by, for example, presenting a relevant rule. The 

learner takes an active role and the ISS acts as a support, an intelligent assistant monitoring 

progress, rather than a master. 

7.7 APPLICATION TO CAI PRACTICE ENVIRONMENTS AND TO FRAMES 

IN PARTICULAR 

7.7.1 Al AND THE ADULT LEARNER 

The instructional context of FRAMES is tertiary-level distance education. Cumming [Cumming 

1991 a] discusses the preferred learning style of adult learners, which includes: 

+ choice between redundant diversity, 

+ meaningful activities, and 

+ availability of advice and guidance on request. 

The relevance to instructional computing is that attempts to channel the adult's learning model 

into a rigid path and close convergence with an expert's approach are likely to frustrate the 

learner. An ideal is the provision of variety and "apprenticeship" situations in a context that 

offers a combination of learner-control with advice and guidance. Diversity should be 

available, and the mature learner permitted to choose between: 

+ practice of lower-level skills and sub-components of tasks, 

+ guidance by an expert leading to self-evaluation, 

+ increasingly complex tasks. 

The learner is expected progressively to undertake more planning, control and evaluation. 

Note that the above range implicitly incorporates both behaviouristic and cognitive learning 

theories, behaviouristic in the trend towards attainment of automaticity in low-level skills, and 

cognitive as the learner is encouraged to modify and multiply his own mental models. 

This approach blends with the philosophy of Winograd & Flores [Winograd 1986] that effective 

computer systems need not be inherently intelligent, but should rather be intelligently 

embedded within their context. Keller's intelligent support systems (section 7.6.3), similarly, 

monitor and help but do not control the learner. 



Artificial Intelligence and Computer-Aided Instruction 126 

7.7.2 Al AND EXAMPLE PRACTICE 

Where the domain can be formalized and a "best path" through it exists, intelligent tutoring 

may be the most a'ppropriate modus operandi [Hammond 1992a]. However the archetypal 

ITS model would be inefficient for a practice-environment such as FRAMES which incorporates 

wide diversity in domain examples. The varied examples cannot be solved by a formalized 

generic procedure or a sufficiently general algorithm. 

Generative software, whereby examples for learner-practice are automatically generated and 

assessed according to a general algorithm, is described in section 7.1. The usual alternative 

is explicit encoding of each problem and its solution. A compromise is courseware 

abstraction [Webb 1989], where a general parameterized segment of CAI material is 

applied to multiple prespecified examples. This provides the learner with a varied series 

of concrete examples, rather than randomly generated examples, but all within the context of 

a single treatment structure. It is an ideal approach for the material covered in FRAMES, 

where the manipulations involve the same set of tests and steps, but the internal logic of each 

problem-relation entails rich variation. To automatically generate and process the detailed 

material required for the varied relations would be extremely difficult; it is far simpler to create 

explicit example descriptions and apply the abstracted processing structure to them. In short, 

generative exercises would not be appropriate, but a generated structure has high utility -

it should simplify development and expedite abstraction within the student. 

7.7.3 KNOWLEDGE INHERENT IN THE PROGRAM 

Following the discussion of knowledge-based modules in this chapter, the optimum situation 

for a mathematics practice environment appears to be a program with knowledge of: 

+ the overall structure of the domain and its major problem-solving steps, for the purpose 

of structuring and sub-dividing the problem-solving process, and 

+ the general content of each domain element, in order to facilitate limited exploration and 

discovery-learning. 

Due to the intense effort required and the wide variety of examples, there should not be 

detailed problem-solving knowledge, nor an expert model, student model or diagnostic model. 



Artificial Intelligence and Computer-Aided Instruction 127 

7.7.4 INTEGRATION OF Al AND GAGNe'S LEARNING THEORY 

Lavoie et al [Lavoie 1991] express concern about the dichotomy between Al researchers on 

the one hand, and educational psychologists and instructional designers on the other. Al 

tools are developed to build knowledge-based instructional software. Those skilled in using 

these tools are seldom qualified educationalists, but the tools are too technical to be used by 

general developers of instructional software. 

Basing their work on Gagne's learning theory (see section 4.2.2), they developed an authoring 

system for the design and construction of knowledge-based instructional software. The 

system architecture incorporates the usual kind of module generally found in an intelligent 

tutor, but also takes into account the subject matter, its comprehensibility, and the various 

kinds of activities entailed. Particular attention is paid to prerequisites needed before 

attainment of the final objectives. The content material is subdivided into the smallest possible 

learning situations, so as to increase flexibility. In order to achieve Gagne's different kinds of 

learning outcomes, the knowledge module comprises activities geared to: 

• initial subject appropriation . 

• strengthening of learning . 

• Gagne's lower intellectual skills: 

(a) discriminations, and 

(b) concrete and defined concepts. 

• Gagne's higher order intellectual skills: 

(a) rules, and 

(b) higher-order rules. 

• Gagne's cognitive strategies . 

These are all aspects that should be fostered in a practice environment, whether or not it is 

knowledge-based. 

7.7.5 RE-USE OF CONTENT-FREE AND DOMAIN INDEPENDENT MODULES. 

Section 5.6 advocated the use of content-free instructional strategies, a concept which re­

occurred in sections 7.3.3 and 7.6.2 where shells were proposed for use in multiple domains. 

Section 7.6.2 also advocated the re-use of content-free modules of intelligent tutors. Trends 

towards development and re-use of modular content-independent structural components 

would optimize the efforts entailed in producing complex instructional software. 



Artificial Intelligence and Computer-Aided Instruction 128 

7.8 CONCLUSION 

In this chapter the application of Al to CAI was investigated. Particular attention was paid to 

the adaptive instructional systems known as intelligent tutoring systems. Most of the power 

of an ITS comes from its inherent knowledge, and most of the development effort goes into 

formalization of the relevant knowledge. The question arises whether ICAI, with its heavy time­

investment, is largely an academic research effort, or whether it is instructionally effective and 

accompanied by concomitant educational progress. There is a current belief that the most 

effective and "intelligent" role of computers in education is their use as tools. 

An ITS is strong on individualization, largely by means of adaptivity and program-control, 

based upon its knowledge of the student and knowledge of tutorial strategies. It is possible, 

with current trends away from authoritarianism and autocracytowards democracyand people­

empowerment, that the pendulum could be swinging towards a more flexible approach of 

individualization by means of learner-control, rather than individualization by program control. 

The next chapter takes an in-depth view of concepts such as user-control and human­

computer interaction. 



Artificial Intelligence and Computer-Aided Instruction 129 

REFERENCES - CHAPTER SEVEN 

[Anderson 1983] 

[Anderson 1987] 

[Anderson 1990] 

[Anderson 1992] 

[Boder 1990] 

[Carbonell 1970] 

[Clancey 1981] 

[Clancey 1982] 

[Clancey 1987] 

[Clancey 1990] 

[Corbett 1991] 

[Corbett 1993] 

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University 

Press. 

Anderson, J.R., Boyle, C.F., Farrell, R. & Reiser, B.J. (1987). Cognitive Principles in the 

Design of Computer Tutors. In: Morris, P. (Ed.) Modelling Cognition. Chichester: John Wiley 

& Sons. 

Anderson, J.R., Boyle, C.F., Corbett, AT. & Lewis, M.W. (1990). Cognitive Modelling and 

Intelligent Tutoring. Artificial Intelligence 42, 7 -49 

Anderson, J.R., Corbett, AT., Fincham, J.M., Hoffman, D. & Pelletier, R. (1992). General 

Principles for an Intelligent Tutoring Architecture. In: Regian, J.W. & Shute, V.J. (Eds). 

Cognitive Approaches to Automated Instruction. Hillsdale, N.J.: Lawrence Erlbaum 

Associates. 

Bod er, A & Cavallo, D. (1990). An Epistemological Approach to Intelligent Tutoring Systems. 

Intelligent Tutoring Media 1 (1), 23-29. 

Carbonell, J.R. (1970). Al in CAI: An Artificial-Intelligence Approach to Computer-Assisted 

Instruction. IEEE Transactions on Man-Machine Systems 11 (4), 190-202. 

Clancey, W.J. & Letsinger, R. (1981). Neomycin: Reconfiguring a Rule-Based Expert System 

for Application to Teaching. Proceedings of the Seventh International Joint Conference on 

Artificial Intelligence, Volume ff. Los Altos, CA: William Kaufman Inc. 

Clancey, W.J. (1982). Tutoring Rules for Guiding a Case Method Dialogue. In: Sleeman, D. 

& Brown, J.S. (Eds), Intelligent Tutoring Systems. London: Academic Press. 

Clancey, W.J. (1987). Methodology for Building an Intelligent Tutoring System. In: Kearsley, 

G. (Ed.), Artificial Intelligence and Instruction: Applications and Methods. Reading, MA: 

Addison-Wesley. 

Clancey, W.J. & Soloway, E. (Eds) (1990). Artificial Intelligence and Learning Environments. 

Cambridge, MA: MIT Press. 

Corbett, AT. & Anderson, J.R. (1991). LISP Intelligent Tutoring System: Research in Skill 

Acquisition. In: Larkin, J.H. & Chabay R.W. (Eds), Computer Assisted Instruction and 

Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Corbett, AT., Anderson, J.R. & O'Brien, AT. (1993). The Predictive Validity of Student 

Modelling in the ACT Programming Tutor. Proceedings of At-ED 93, World Conference on 

Artificial Intelligence in Education. Edinburgh: Association for the Advancement of Computing 

in Education. 



Artificial Intelligence and Computer-Aided Instruction 130 

[Cumming 1991a] 

[Cumming 1991 b] 

(De Villiers 1989b] 

(Fischetti 1990] 

(Ford 1988] 

[Goodyear 1991] 

[Hammond 1992a] 

[Kearsley 1987] 

(Keller 1987] 

(Kok 1990] 

[Larkin 1991] 

[Lavoie 1991] 

(Lewis 1991] 

Cumming, G. (1991). Using Artificial Intelligence to Achieve Natural Learning. In: Lewis, R. 

& Otsuki, S. (Eds), Advanced Research on Computers in Education, Proceedings of the IFIP 

TC3 International Conference on Advanced Research on Computers in Education. 

Amsterdam: North-Holland. 

Cumming, G. & Self, J. (1991). Learner Modelling in Collaborative Intelligent Educational 

Systems. In: Goodyear, P. (Ed.), Teaching Knowledge and Intelligent Tutoring. Norwood, 

N.J.: Ablex. 

de Villiers, M. R. (1989). Structured Knowledge Representation with Particular Reference to 

Frames. Unpublished Special Topic Report, University of South Africa, Pretoria. 

Fischetti, E. & Gisolfi, A (1990). From Computer-Aided Instruction to Intelligent Tutoring 

Systems. Educational Technology 30 (8), 7-17. 

Ford, L. (1988). The Appraisal of an ICAI System. In: Self, J.A. (Ed), Artificial Intelligence and 

Human Learning. London: Chapman and Hall. 

Goodyear, P. (Ed.) (1991). Teaching Knowledge and Intelligent Tutoring. Norwood, N.J.: 

Ab lex. 

Hammond, N.V. (1992). Learning with Hypertext: Problems, Principles and Prospects. In: 

McKnight, C., Dillon, A & Richardson, J. (Eds), Hypertext: A Psychological Perspective. 

Chichester: Ellis Horwood. 

Kearsley, G. (Ed.) (1987). Artificial Intelligence and Instruction: Applications and Methods. 

Reading, MA: Addison-Wesley. 

Keller, A (1987). When Machines Teach: Designing Computer Courseware. New York: 

Harper and Row. 

Kok, W. & Poorthuis, G. (1990). The Effects of Different Teaching Strategies in Three CAI 

Programs within the Same Content Area. In: Pieters, J.M., Simons, P.R.J. & de Leeuw, L. 

(Eds), Research on Computer-Based Instruction. Amsterdam: Swets & Zeitlinger. 

Larkin, J.H. & Chabay, R.W. (Eds) (1991). Computer Assisted Instruction and Intelligent 

Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Lavoie, M., Gagne, M. & Jacques, A (1991). Specifications of a Software System which 

assists in the Design and Construction of Knowledge-Based Instructional Software. In: Lewis, 

R. & Otsuki, S. (Eds), Advanced Research on Computers in Education, Proceedings of the 

IFIP TC3 International Conference on Advanced Research on Computers in Education. 

Amsterdam: North-Holland. 

Lewis, R. & Otsuki, S. (Eds) (1991). Advanced Research on Computers in Education, 

Proceedings of the IFIP TC3 International Conference on Advanced Research on Computers 

in Education. Amsterdam: North-Holland. 



Artificial Intelligence and Computer-Aided Instruction 131 

[Lippert 1989] 

[Lippert 1990] 

[Minsky 1975] 

[Minsky 1985] 

[Morris 1987] 

[Nicholson 1988] 

[Nix 1990] 

[O'Shea 1983] 

[Quillian 1968] 

[Regian 1992] 

[Ridgeway 1988] 

[Self 1979] 

[Self 1988] 

[Sleeman 1982] 

[Thomas 1989] 

[Venezky 1991] 

Lippert, R. C. (1989). Expert Systems: Tutors, Tools, and Tutees. Journal of Computer-Based 

Instruction 16 (1), 11-19. 

Lippert, R.C. (1990). Wat maak RGO Intelligent? Paper at the INSTRUCTA 90 Seminar, 

Rand Afrikaans University, Johannesburg, South Africa. 

Minsky, M.L. (1975). A Framework for Representing Knowledge. In: Winston, P.H. (Ed.), The 

Psychology of Computer Vision. New York: McGraw-Hill. 

Minsky, M.L. (1985). The Society of Mind. New York: Simon and Schuster. 

Morris, P. (Ed) (1987). Modelling Cognition. Chichester: John Wiley & Sons. 

Nicholson, R. (1988). SCALD - Towards an Intelligent Authoring System. In: Self, J.A. (Ed), 

Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London: 

Chapman and Hall. 

Nix, D. (1990). Should Computers Know what you can do with Them? In: Nix, D. & Spiro, 

R. (Eds), Cognition, Education, Multimedia: Exploring Ideas in High Technology. Hillsdale, 

N.J.: Lawrence Erlbaum Associates. 

O'Shea, T. & Self, J. (1983). Learning and Teaching with Computers. Brighton: The 

Harvester Press. 

Quillian, M.R. (1968). Semantic Memory. In: Minsky, M. (Ed), Semantic Information 

Processing. Cambridge, MA: MIT Press. 

Regian, J.W. & Shute V.J. (1992). Automated Instruction as an Approach to Individualization. 

In: Regian, J.W. & Shute V.J. (Eds), Cognitive Approaches to Automated Instruction. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Ridgeway, J. (1988). Of course ICAI is Impossible ... Worse though, it might be Seditious. In: 

Self, J.A. (Ed), Artificial Intelligence and Human Learning. London: Chapman and Hall. 

Self, J.A. (1979). Student Models and Artificial Intelligence. Computers and Education 3, 309-

312. 

Self, J.A. (Ed.) (1988). Artificial Intelligence and Human Learning: Intelligent Computer-Aided 

Instruction. London: Chapman and Hall. 

Sleeman, D. & Brown, J.S. (Eds) (1982). Intelligent Tutoring Systems. London: Academic 

Press. 

Thomas, T.A. (1989). Intelligent Tutoring Systems. Proceedings of the First Southern African 

Conference on Educational Technology. Human Sciences Research Council, Pretoria. 

Venezky, R. & Osin, L. (1991). The Intelligent Design of Computer-Assisted Instruction. New 

York: Longman. 



Artificial Intelligence and Computer-Aided Instruction 132 

[Webb 1989] 

[Winograd 1987] 

[Winston 1975] 

(Woodroffe 1988] 

(Woolf 1988] 

Webb, G.I. (1989). Courseware Abstraction: Reducing Development Costs while Producing 

Qualitative Improvements in CAL. Journal of Computer Assisted Learning 5 (2), 103-113. 

Winograd, T. & Flores, F. (1987). Understanding Computers and Cognition: A New 

Foundation for Design. Reading, MA: Addison-Wesley. 

Winston, P.H. (Ed.) (1975). The Psychology of Computer Vision. New York: McGraw-Hill. 

Woodroffe, M.R. (1988). Plan Recognition and Intelligent Tutoring Systems. In: Self, J.A. 

(Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Ajded Instruction. 

London: Chapman and Hall. 

Woolf, B.P. (1988). Representing Complex Knowledge in an Intelligent Machine Tutor. In: 

Self, J.A. (Ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided 

Instruction. London: Chapman and Hall. 



CHAPTER EIGHT 

USER-CONTROL, HYPERTEXT, 

AND USABILITY 

The theme of this chapter is the interaction of the user with instructional systems. It overviews 

various locus of control styles and investigates hypertext with its characteristic free-browsing 

presentation style. The issues of human-computer interaction, usability and the nature of the 

user interface are also briefly addressed. 

Various kinds of control are overviewed, paying particular attention to hypertext, which offers 

a high degree of user-control and is the epitome of a proactive design. Although there is an 

inherent structure and subdivision in the presentation of the material, there is no enforced 

sequence. The learner may browse or interact in a non-linear fashion and select text­

segments in the order of his choice, moving directly from section to section, or delving deeper 

into a particular concept. 

This study considers hypertext in the context of instruction, and suggests various extensions 

to basic hypertext in order to enhance learning. The locus of control in hypertext is in line with 

the current tendency towards learner control of instructional activities. 

Attention is also paid to the discipline of human-computer interaction and the associated 

usability factors. Usability factors are the software design requirements which are particularly 

related to the needs of the human user rather than to technical aspects. The user interface 

of instructional software is discussed, outlining current requirements and features. The 

chapter concludes by applying the concepts to the design of CAI practice environments. 

The factors studied in this chapter relate to design stage of an ISO life-cycle. 

Once the requirements have been set out, a design must be generated to meet 

them. The designer must determine whether or not hypertext-style control is 

appropriate. With reference to the aspect of human-computer interaction, the 

standard of usability should be high and the user interface should be 

conducive to enjoyable learning. 

133 



User-control, Hypertext and Usability 134 

8.1 LOCUS OF CONTROL 

Locus of control in CAI refers to whether control of the sequence, content, methodology and 

other factors is determined by the learner, the lesson, or a combination of the two. Various 

kinds of control have been mentioned in sections 6.5.7 & 7.3.1, and fundamentally fall into the 

following, not necessarily exclusive, categories. 

1. Program control, either 

• non-adaptive linear presentation, 

• adaptive, by branching in reaction to the learner's performance, or 

• "intelligently" adaptive, where a tutoring module makes inferences using 

information from a student model. 

2. Mixed-initiative strategies, e.g. SCHOLAR [Carbonell 1970]. 

3. Coactive control, in which the learner must tackle fixed content, but selects his own 

sequence, pace, and possibly, presentation style. 

4. Proactive (learner) control, where the learner chooses or omits content at will, guiding 

the system to respond to his own ability, preferred learning style or current need. 

Hasselerharm & leemkuil [Hasselerharm 1990] examined the effect of learner control, adaptive 

program control and non-adaptive program control on the achievement and attitude of 

secondary level scholars. They determined that learner control resulted in a positive attitude 

in learners, but was not effective for low achievers. Despite the individualization offered by 

adaptive systems, they tend to make the learner's role too passive. Adults and mature 

students, in particular, benefit by active decision-making. Alessi & Trollip [Alessi 1991] 

propose that adult learners be given more control than children. 

In the classic CAI model program control leads the learner through an instructional path. 

Mclean 's "Megatrends" [Mclean 1989], in their identification of major changes in educational 

computing, anticipate increasing learner-initiative in CAI and note the trend towards software 

environments that the user can explore or exploit. 

8.1.1 MIDORO'S CLASSIFICATION 

Midoro et al's classification of system control differs from the foregoing. Their pure adaptive 

and pure proactive categories correspond closely to tutor- and tool-software respectively. 



User-control Hypertext and Usability 135 

Pure adaptive systems 

The major feature of a pure adaptive system [Midoro 1991] is a set of predetermined teaching 

rules based on input from the student, largely comprised of user-responses to questions, or 

questions from the user to the system. Parts of instruction that can be adapted are: 

+ amount of material, 

+ sequence, 

+ mode of instruction (expository, inquisitory, general or specific), 

+ feedback, 

+ reading or response time, and 

+ orientation activities. 

The term, adaptive, traditionally refers to program control, but this definition could incorporate 

aspects of program control, mixed initiative, and learner control. Depending on the nature of 

the "questions from the user", the learner may have a degree of control. 

Pure proactive systems 

According to Midoro et a/'s definition [Midoro 1991 ], the major feature of a pure proactive 

system is that learning actions are determined by the student, selecting from the available 

system functions. The student gives commands to activate system functions, and information 

from the system is the result of computations or processes activated by the student. 

This classification is restricted, including microworlds, simulations, and programming 

environments, but excluding most software which offers practice opportunities as a learner­

option, such as the type of development envisaged for FRAMES. 

8.1.2 CONTROL AND SELECTION IN HYPERTEXT 

Hypertext, which is described in detail in section 8.2, offers the user total freedom in selecting 

content from the software package. It could well be a suitable medium for offering learner­

centred control over activities both active and passive, creative and responsive. 

Hammond [Hammond 1992b] outlines the dichotomy whereby computer-based learning is 

traditionally divided into systems supporting tutoring and systems offering exploration facilities. 

The tutoring side constrains the learner's instructional path (either by branching in tutorials, 

or by ITSs driven by explicit learner-models and expert-models), whereas hypertext-based free 

browsing offers maximum freedom, which, its proponents believe, expedites effective learning. 

Figure 8.1 demonstrates this dichotomy. 



User-control, Hypertext and Usability 

• Branched tutorial 
~' 

•Tutoring 

Constraint 

,.: 
• Model-driven ITS 

•Hypertext 

Control axis Freedom 

Figure 8.1 Diagrammatic Representation of Locus of Control 

136 

Recent approaches are steering between these extremes. Hypertext is strong on navigability 

and on presentation of material from its database. It is traditionally an information source that 

does not tutor the learner nor offer practice-opportunities. However, there is no reason why 

such should not be incorporated. Hypertext advocates acknowledge the problems, and are 

aiming for a happy medium by providing a range of activities - active, passive, creative, 

reactive and directed. Hammond argues that hypertext can provide the framework for a 

range of tools supporting the multiple learning activities necessary for effective CAI. The 

system can be tailored both to the generic requirements of the population of users and to the 

learning activities of the domain. 

In the same spirit, Merrill's Component Display Theory [see section 5.4.5], pre-dating 

hypertext, describes a conceptual learner-controlled system, not necessarily on the computer 

as delivery medium, offering a range of instructional components. Learners control content, 

strategy, and the number of examples and items which they choose to do for practice of skills. 

The instructional environment is rich in variety and it is unlikely that an individual student would 

use all the material available. Section 6.7 described applications of CDT to CAI, in which a 

range of content units and learning styles were presented. 

Spiro & Jehng [Spiro 1990] developed hypertext programs to help learners acquire 

knowledge in complex, ill-structured domains. A cornerstone is multiple representation of 

knowledge. They do not include typical practice of skills, but permit students to assemble 

material by juxtaposing given information schemas. 



User-control, Hypertext and Usability 137 

8.1.3 ASSESSMENT OF CONTROL IN INSTRUCTIONAL SOFTWARE, ACCORDING 

TO ADAPTIVITY, REACTIVITY AND NAVIGABILITY 

Midoro et al [Midoro 1991] present a three-dimensional measuring instrument which rates 

interactive instructional software according to adaptivity, reactivity (termed proactivity by the 

researcher), and navigability. Figure 8.2 shows standard software types positioned on the 

axes of Midoro 's interaction space. 

database 

hypertext 

encyclopedia 

simulation 

microworld 

programming 
envtronment 

game 

Reactivity 

book 

Navigability 

diagnostic drill & 
test practice tutorial ITS 

Adaptivity 

Figure 8.2 Midoro's Interaction Space 

8.2 HYPERTEXT AND HYPERMEDIA 

8.2.1 DEFINITION OF HYPERTEXT 

Hypertext [Jonassen 1989; Nielsen 1990, Hammond 1992a] presents information to the learner 

in the form of a linked network of displays. Its control structure, which was outlined in section 

8.1.2, is such that material is available to the learner for browsing or interaction in a non-linear 

fashion. He may move directly from one section to another, or while within a section, go 

deeper into a particular concept. Hypertext consists of nodes, which are chunks of text or 

other information, and associative links to interrelate the nodes. The nodes, or units, may be 

accessed in any sequence, serialistic or holistic, as required by an individual user, and at 

varying depths. Pure hypertext is thus a mechanism for creating non-sequential texts, where 

alternative paths potentially link any object (word, paragraph, etc) to any other object in the 



User-control, Hypertext and Usability 138 

text [Venezky 1991 ]. In hypermedia objects can be linked to multi-media objects outside the 

text, such as audio and video. In both hypertext and hypermedia the user may browse, 

consult reference material, or participate in selected learning activities. Links are followed from 

anchor points to relevant elaborations, from detail to its greater context, or to re-visit the same 

content in different contexts (multiple representation). This resembles the associative manner 

in which humans think, or as Jonassen [Jonassen 1989, p.12] suggests, "reflects the user's 

semantic network". 

More sophisticated systems include additional facilities, such as search mechanisms, tutoring 

information or support for problem solving. Some even permit users to generate their own 

materials by interlinking and synthesis. 

8.2.2 ADVANTAGES OF HYPERTEXT 

For the learner, the chief advantage of hypertext is his freedom to select the viewing path or 

the approach of his preference. He can explore and interlink materials at will. From the 

hypertext author's viewpoint, he is not restricted to a linear presentation of a topic [Barrow 

1989b]. Supplementary items such as elaborations, glossaries, etc. can be incorporated 

without interfering with the flow. 

8.2.3 DISADVANTAGES OF HYPERTEXT 

For the user the increased flexibility may be accompanied by frustration. He may feel 

overwhelmed by the volume of material available, battle to ascertain his exact whereabouts, 

or struggle to locate information [Barrow 1989a; Tang 1991 ]. 

Hammond & Allinson [Hammond 1989] and Hammond [Hammond 1992b] list some specific 

problems that occur with hypertext: 

1. Users get lost or disoriented in large hypertext structures. 

2. Learners may find it difficult to gain an overview of the material and its inter­

relationships. 

3. Even if a user knows specific information to be present, he may have difficulty finding 

it. It is possible to miss out relevant sections. 

4. Learners may ramble through the knowledge base, making haphazard choices in an 

instructionally inefficient fashion. 

5. Hypertext tends to have a complex user interface, which may hinder the learner and 

interfere with the primary tasks of exploration and learning the content. 



User-control, Hypertext and Usability 139 

From a designer's viewpoint, hypertext is intricate to create; it requires careful planning of 

structure and complete sets of content [Vockell 1989]. From a programming perspective 

complexities arise, since few fixed screen layouts exist. Hypertext, and in particular, 

hypermedia, have disadvantages in that some systems are technology-driven, with little 

regard for learning theory. This problem is addressed in section 8.4, which discusses the 

role of hypertext in learning and instruction. 

8.3 INTEGRATION OF FEATURES OF Al AND HYPERTEXT 

In the current climate of cross-fertilization and lateral, multi-disciplinary approaches, it is 

inevitable that the contrasts and comparisons between Al and hypertext should lead to 

research on combination of and possible synergism between these fields. 

The greatest contrasts are in the areas of control and engagement, where ITSs and hypertext 

lie at opposite ends of the spectrum. Hammond [Hammond 1992a, p. 52]: 

"While proponents of the intelligent tutoring systems may claim that the course 

of learning must be driven by explicit models of learners' and experts' states 

of knowledge, the hypertext philosophy assumes that there is no need to 

model the student, and that effective learning is achieved by allowing learners 

maximum freedom to explore ... to discover relationships for themselves ... ". 

In his discussion Hammond points out that pure ITSs fall short by failing to give the learner 

an active role, but that strict hypertext-based learning, despite learner-control, is unlikely to be 

effective if the learner views the material in a passive, unmotivated and haphazard way. 

The problems of student-modelling have already been mentioned in section 7.4.1, and in 

general, student-modelling in a hypertext-based learning system would be considered out of 

place. Tang et al [Tang 1991], however, innovatively took the strengths of both ITS and 

hypertext technologies, combined with techniques to reduce their weaknesses, and developed 

HITS, an authoring environment usable by experts and educators. Midoro et al [Midoro 1991] 

used an ITS, based on a learner model, to guide navigation through a multimedia data base 

of learning material. This approach was stronger on adaptivity than on learner-control. 

An alternative approach is the use of Al knowledge representation techniques to facilitate 

organization and retrieval in hypertext. The representations used in hypertext and hypermedia 

systems are compatible with frame-based representations (Minsky-type frames), which are 

more rigorous than the usual hypertext linking structures. Al rule-based search techniques 

may be used to reduce complexity in navigation and retrieval [Woodhead, 1991 ]. 



User-control, Hypertext and Usability 140 

8.4 HYPERTEXT IN LEARNING AND INSTRUCTION 

8.4.1 THE THEORETICAL BASIS OF HYPERTEXT 

Hypertext, and in particular, hypermedia, have disadvantages in that some systems are 

technology-driven, with little regard for learning theory [Spiro 1990; Dick 1991]. Spiro and 

Jehng describe hypertext as atheoretical, disregarding stages of learning and the cognitive 

psychology of non-linear learning. It is the antithesis of traditional CAI which typically provides 

learners only with the choices that ensure stepwise mastery performance. Dick [Dick 1991] 

suggests that constructivism [sections 4.2.7 & 5.4.3] is an appropriate theoretical foundation 

for computer-based hypertext, because constructivism, as does hypertext, tends to offer the 

learner discretion to choose from available resources what to study and how to approach it. 

8.4.2 HYPERTEXT AND HUMAN COGNITION 

Despite the theories and models of human cognition, the detailed mechanisms of learning are 

not understood [Hammond 1992a]. Nevertheless, the more educationalists attend to the 

practical aspects of instructional design, the less important this ignorance becomes. Provided 

there is understanding of the situations and conditions that promote effective learning, 

sound instructional materials can be developed, even without a precise model of cognition. 

When hypertext-style software is to be used in education and training, it is important that 

principles of instructional design should be incorporated into the design, and care should be 

taken that it is not driven merely by a desire to exploit current technology. 

8.4.3 BASIC HYPERTEXT AND LEARNING 

Barrow [Barrow 1989a] describes two ways in which students can learn using basic hypertext. 

The first is free browsing, where the user follows links of interest in an associative, discovery­

learning process. The second approach is more focused, in that the learner has a precise 

goal and aims to access specific material. 

Hammond & Allinson [Hammond 1989] and Hammond [Hammond 1992a] discuss the role 

of hypertext in learning. Learning, particularly initial learning, is most effective when the 

freedom of the learner is restricted to a relevant and helpful subset of activities. Hammond 

also points out that clear and explicit goals on the learner's part can prevent haphazard 

meandering in a user-controlled situation. Conventional hypertext has certain inadequacies 

that mitigate against educational effectiveness. Section 8.5.2 describes how basic hypertext 

can be adapted or extended to enhance learning. 



User-control, Hypertext and Usability 141 

8.4.4 USING LEARNING NEED TO DETERMINE THE INSTRUCTIONAL APPROACH 

Different types of instruction 

Learning situations differ [Hammond 1992a] and the various types of CAI, such as intelligent 

tutoring, programmed learning, drill-and-practice and microworlds, are appropriate for different 

situations. Hypertext is particularly suitable when the following characteristics are required: 

+ flexibility in sequence, 

+ choice of learning activity, and 

+ variety of instructional approaches within a single package. 

Factors which influence learning and instruction 

Instruction is most effective when matched to learning need. In general, actions are learned 

by performing them and concepts are learned by understanding. Instructional materials can 

be made more meaningful by considering the following factors [Hammond 1992a 1]: 

+ Prior knowledge: Mental schemas, or frameworks of existing knowledge, aid 

understanding and memorization by facilitating the processes of slotting new facts into 

existing structures, and correspondingly elaborating the knowledge structure. Simply 

put, if a fact is relevant to the learner, he will retain and retrieve it better than the 

learner who has no foundation in that material. 

+ Situational dynamics: Learning action tends to be situated, i.e. determined by a 

combination of the learner's goals and the circumstances of a particular situation. 

Instructional software should therefore be structured in a task-based fashion. 

+ Processing depth: This relates to the extent to which a learner processes the meaning 

of the instructional material. Cursory browsing results in shallow processing, few 

elaborations and poor retention. The relevance to CAI is that the instructional designer 

should aim for active engagement of the learner as well as task relevance. 

+ Learning-by-doing: Performing an action or participating in a process leads to far 

better retention of material than merely reading or observing. 

+ Learning styles: Different individuals adopt different learning styles for the same 

material, and a single individual may change learning styles according to the 

circumstances and stage of learning. For example, a learner will use the same material 

in totally different ways on first encounter and in examination preparation. 

+ Metacognition: Extent of learning is affected by a learner's level of metacognitive skills. 

1 Extracted from draft version of paper, not final version as in McKnight 1992. 



User-control, Hypertext and Usability 142 

8.5 THE IMPLEMENTATION OF HYPERTEXT-STYLE STRUCTURE 

It is difficult to design and program good hypertext, as stated in section 8.2.3. 

8.5.1 DEVELOPMENT CHARACTERISTICS OF HYPERTEXT 

When segments of text and graphics are integrated on-screen according to pure user-control, 

the resultant combinations and screen structures may be unique to each user. In a windowing 

system users can juxtapose different items for comparative purposes [Barrow 1989b]. The 

ideal languages or authoring systems to implement such non-prespecified formats are those 

of the object-oriented paradigm. Such a program consists of scripts associated with a 

particular object, rather than a line-by-line or screen-by-screen sequence. User-control should 

be via text or graphical icons to the object to which the script is attached [Bowers 1989]. 

8.5.2 ADDITIONAL FEATURES THAT MAY BE INCORPORATED 

It was pointed out in section 8.4 that hypertext can include facilities to enhance its instructional 

utility and to promote learning. Hammond [Hammond 1992a; Hammond 1992b] suggests: 

Navigation Aids: 

A map or graphical browser can be incorporated to provide the user with a diagrammatic 

representation of the overall system structure. Indexes of keywords and guided tours would 

ensure exposure to all the basic material. Such navigation aids prevent haphazard browsing 

and help the learner to control effectively, particularly on first exposure to a topic. At a later 

stage, a learner may exercise pure proactive control, both in the content selected and in 

sequence control. 

Active Engagement: 

Educational hypertext should go beyond the mere provision of content material to be passively 

imbibed; it should also embody tasks that encourage students to participate actively. 

Techniques that promote active engagement are exercises, interactive demonstrations and 

problem-solving activities. A system can incorporate editing facilities that permit learners to 

synthesize material, which vary from a limited set of options to a full authoring system. 

Hammond & Allinson [Hammond 1989, Hammond 1992b] developed a Learning Support 

Environment which augmented hypertext by providing the additional facilities of directed 

access, guidance and a variety of learning activities, including quizzes and problem-solving 

for active engagement of the learner. 



User-control, Hypertext and Usability 

8.6 HUMAN-COMPUTER INTERACTION, USABILITY AND 
USER INTERFACE 

8.6.1 HUMAN-COMPUTER INTERACTION (HCI) 

143 

Human-Computer Interaction (HCI) [Dix 1993; Preece 1993] is the multi-disciplinary study of 

the human factors in the interaction between people and computer systems, incorporating the 

study of the physical, psychological and theoretical aspects. It draws on disciplines such as 

computer science, cognitive psychology, ergonomics, engineering, graphics, design and 

sociology. It involves the design, development and evaluation of interactive systems in the 

context of the user's task. The purpose of HCI studies is to improve system design, so that 

it better meets user needs. In order to achieve this user-centred design, designers need 

precise information about the users, the task, and the work context, as well as technical 

aspects. 

HCI takes cognisance of the human information processing model of cognitive psychology 

(see 4.1.4 & 4.2.1). The stages are: 

+ encoding information from the environment into an internal representation, 

+ comparing this with stored mental representations, 

+ determining a response, 

+ organizing the necessary action, and 

+ remembering and retrieval (which are closely related to the way information was initially 

encoded). 

Viewing the mind in terms of this model has had many implications for HCI and has provided 

the theoretical basis from which design and evaluation tools have evolved. 

8.6.2 USABILITY 

The goals of HCI are to develop and improve systems so as to meet users' needs; i.e. the 

priority of HCI is usability by the human agent, rather than technical issues. Usability [Dix 

1993; de Wet 1994] is defined as the quality of the interaction between the user and the other 

parts of the system, including aspects such as system design in relation to users and the 

environment, and also the nature of the user-support (training, manuals, etc.). 



User-control, Hypertext and Usability 144 

Dix et al [Dix 1993] subdivides the principles of usability into three main categories: 

1. Learnability: 

This relates to the ease with which users can commence interaction and achieve 

optimal performance. Characteristics that contribute towards learnability are familiarity, 

namely the extent to which the user's experience with other systems is applicable to 

the new, and predictability, the support for the user to determine the effect of actions 

and operations. Other aspects are generalizability, which should help the user to 

apply his knowledge of specific interactions to other similar situations and the related 

factor of consistency between similar situations and objectives. 

2. Flexibility: 

Flexibility refers to the variety of ways in which the user and the system exchange 

information. Once again the characteristic is supported by several principles. 

Dialogue initiative allows the user freedom from artificial constraints on the input 

dialogue. Multi-threading refers to the system's ability to support user interaction with 

more than one task at a time, and substitutivity allows the output of one task to 

become input of another. Task migratability is the ability to pass control of a specific 

task between user and system or to share it. Finally customizability is the facility which 

permits the user or system to modify the user interface. 

3. Robustness: 

This entails the level of support given to the user to help him achieve his goals by 

means of the system. Characteristics that contribute to robustness are observability, 

the degree to which the user can determine internal status of a task or system from 

the perceived state, and the level of recoverability, or corrective action, from an error. 

Responsiveness is the user's perception of the rate of communication with the system. 

An important aspect is task conformance, referring to how well the services of the 

system support the user in the tasks he performs and in the way he understands 

them. 

Preece [Preece 1993] defines usability as collectively comprising the attributes which allow 

users to carry out their tasks safely (e.g. in medical systems), effectively, efficiently, and 

enjoyably. In order to achieve the latter three characteristics, the system should have 

learnability to simplify the process of reaching a satisfactory level of user performance, and 

flexibility to expedite adaptation of the system to new ways of interaction. Other criteria of 

usability are the attitude of users to the system and the system's throughput, i.e. its capacity 

in terms of tasks accomplished and execution speed. 



User-control, Hypertext and Usability 145 

Measurement of usability [Bevan 1991; Chapanis 1991; de Wet 1994] is related to the 

system's: 

+ Goal achievement (accuracy and effectiveness), 

+ Work rate (start-up, productivity and efficiency), 

+ Knowledge acquisition (learnability and learning rate), 

+ Operatability (error-score and function usage), and 

+ Versatility (features and facilities available). 

8.6.3 THE USER INTERFACE 

User interface refers specifically to the communication means between the user and the 

computer. The aspects that affect the user's interaction with the system are [Ravden 1989; 

Brown 1989]: 

1. Computer-to-user functions: 

+ Information display, and 

+ Presentation of options. 

2. User-to-computer functions: 

+ Control actions, 

+ Manipulation of displayed information, and 

+ Entry of data and other information. 

There are two fundamental types of user-interface, character-based and graphical user 

interfaces. 

Character-based user interfaces 

Character-based user interfaces [Gomer 1992] include low-level general purpose textual styles 

such as command language, menu selection (via non-device access), question-answer, and 

form-filling. In response to system-generated prompts, the user types in commands, 

responses or data. Certain command languages have been developed to deal specifically 

with business information systems. The user and the system communicate through a series 

of messages which cannot be changed or undone once sent. 



User-control, Hypertext and Usability 146 

Graphical user interfaces 

The Graphical User Interface (GUI) [Gomer 1992, Dix 1993], presenting information in visual, 

non-textual forms such as symbols, pictures and icons, is increasingly common. Some are 

purely graphical; others display the same information in both graphic and text-based forms. 

Particular mention must be made of the WIMP Interface, a common environment for interactive 

computing. WIMP stands for windows, icons, menus and pointers (alternatively, windows, 

icons, mouse and pull-down menus). Windows are screen regions, containing text or 

graphics, that behave as though they were independent terminals. More than one can be 

simultaneously on display and functional. In sophisticated systems windows can be scrolled 

or re-sized. An icon is a small picture that represents a closed window, or serves as a 

symbolic representation of some other aspect of the system. Pointers, in the form of arrows 

or fingers, are used to select icons, and are increasingly accessed by mouse-control. Menus, 

common to most systems, present a choice of operations, information or services available. 

Pull-down menus appear when called, often overlapping other areas, and can be removed 

when their purpose is fulfilled. 

An associated concept is the metaphor [Dix 1993; Preece 1993]. In any interaction with a 

person, a process, or object, a human forms an internal mental model of that system or 

object. A user's mental model of a computer system, called a system image, is built up from 

experience of its user interface, its behaviour and its documentation. People involved with the 

same system, but in different ways, have different mental models due to their personal 

perspectives. For example, the designer's model of a system is quite different from the end­

user 's perception. 

The relevance of this to software design, and particularly to the user interface, is the 

importance of "steering" the system image in a way that facilitates development of appropriate 

mental models. This can be done by designing explicit metaphors that correspond to the 

system, ensuring that the procedures and concepts of the familiar domain, used as a 

metaphor, map as closely as possible to the structures represented at the user interface. 

Characteristics of a good interface 

Brown & Cunningham's [Brown 1989] user interface principles define its purpose as facilitating 

computer use in a consistent yet flexible manner that can accommodate a range of users. 

The user should be constantly aware of the status and stage of the program, and should have 

access to help. The interface should be robust and, where possible, should be perceived to 

operate like other similar programs. 



User-control, Hypertext and Usability 147 

The appearance of screen displays is vital in user-communication [Bodker 1991; Preece 1993]. 

A good user interface allows the user to focus on the objects currently relevant. Information, 

whether relating to directions or to the task in hand, should be easy to read, comprehensible 

and clearly distinguishable from its background. Although it is important that screen layout 

should be uncluttered, the tendency is away from low-density displays, and towards increased 

resolution screens on which the information is well structured. Humans exhibit selective 

attention, filtering out certain perceptions and limiting the ability to do more than one task at 

a time. Screens should be designed so as to remove distraction, focus attention on important 

information, and to help the users in multi-tasking. Techniques to achieve these goals include 

screen partitioning into sub-areas or windows (which may be overlapping), and the use of 

visual cues and/or icons. 

The user should be supported by the availability of an undo or redo facility, which makes it 

possible to cancel or change a command or an operation [Thimbleby 1990]. 

User interface in hypertext 

Discussing user interfaces in the context of hypercourseware, where the many levels of 

interaction cause added complexity, Siviter & Brown [Siviter 1991] also advocate the use of 

existing standard interface techniques, rather than the creation of obscure new approaches. 

The main challenge in user interface design for hypertext is how to achieve consistency of 

style across the range of content, yet how, when appropriate, to develop innovative interface 

ideas which remain within the spirit of the guidelines. 

8.7 APPLICATION TO CAI AND TO FRAMES IN PARTICULAR 

8. 7.1 HYPERTEXT -STYLE CAI 

Taking cognisance of current trends in education, hypertext-style software has a useful role 

to play. Disadvantages of traditional programmed instruction, both as implemented on paper 

and in behaviouristic CAI, were outlined in section 5.3.4. Problems incurred in the 

development and use of ITSs were discussed in section 7.4. It has been shown that hypertext 

supports a mode of learning which contrasts both with programmed instruction and with 

model-driven intelligent tutoring. The pendulum is swinging towards more pragmatic 

approaches based on exploratory styles of learning, yet avoiding excessive freedom, the 

disadvantages of which are given in section 8.2.3. 

This author's approach to the hypertext versus intelligent tutor debate is a decision not to 

embark upon labour-intensive student modelling with its associated limits on proactivity, but 



User-control, Hypertext and Usability 148 

rather to provide an environment which facilitates learner-initiative, various usage-modes and 

limited exploration. It should include adequate user support in the form of help facilities and 

visualization [Lanzing 1994 & section 6.5.5]. 

Understanding domain relationships is vital in any kind of learning. Hypertext displays 

relationships explicitly [Barrow 1989a], in that, as a viewer moves between detail and its 

context, he works tangibly with these relationships. Such zooming in and out in a CAI 

situation, along with the various views on a topic afforded by hypertext, should improve 

integration and retention of material. 

Section 8.4.4 investigates hypertext in the context of the relationship between learning need 

and instructional approach. Various aspects are considered and applications to instructional 

software, particularly hypertext-style software, are listed: 

+ Prior knowledge - review of prior learning and pre-requisites should be available. 

+ Situational dynamics - the content and context should be task-based. 

+ Processing depth- active engagement and task relevance promote deep processing. 

+ Learning-by-doing- hypertext for educational purposes should include exercises and 

other user-activities. 

+ Learning styles - the multi-perspective selection features of hypertext facilitate foster 

the user's ability to choose material and mode according to personal preference and 

stage of study. 

+ Metacognition - hypertext facilitates metacognition by allowing the learner to plan his 

own instructional experience. 

The goal of the FRAMES practice-environment is to offer the learner a variety of activities and 

interaction modes, in keeping with the above instructional approaches. Although the 

prototype would not qualify as a hypertext system, its desired navigation structure is in 

harmony with the hypertext style. Hammond [Hammond 1992a, p. 56] advises: 

"Hypertext seems particularly suited to learning situations where flexibility in 

sequencing of exposure to materials and in the choice of learning activity is 

required". 

FRAMES should meet these criteria. Flexibility in learning style is also required, in the form 

of different modes; different users should find them appropriate for their personal learning 

style, and the same user may change mode for different occasions and stages of learning. 



User-control, Hypertext and Usability 149 

Hammond [Hammond 1992a; Hammond 1992b] proposes a cubic framework for analyzing 

hypertext-based learning systems. Following his observation that more is known about 

providing appropriate environments for learning than about the details of learning processes, 

he presents a three-dimensional framework of principles that contribute towards effective 

learning. Control refers to the degree of learner-control versus program-control. If the kind 

of learning requires thought, then a measure of restriction and guidance may well be 

integrated into the freedom of action. Engagement relates to the nature of processing done 

by the learner - active or passive. Unless a learner possesses the internal intrinsic motivation 

to apply himself assiduously to the task, some form of external motivation, or else an inbuilt 

learning challenge could be offered. This occurs automatically when the system provides a 

range of learning activities outside of strict hypertext, such as demonstrations and problems 

to solve. The level of synthesis indicates whether the learner creates material and 

relationships, or merely observes them. Allowing a novice learner access to a full authoring 

system, however, is unlikely to be productive and would also create problems in assessment. 

Figure 8.3 shows Hammond's framework. 

Passive~-------~ Teacher/system 

Engagement - - - - - - - 7 - - - - - - - . 

I 

Active 1-------+--------{ 

/ Control 
I I 

I I 

/ I 

I I 

I 
- - - - - - - - - - - - - - -

I Leamer 

Presentation Synthesis Creation 

Figure 8.3 Hammond's Assessment Framework 

[Hammond 1992a, p. 65] 



User-control, Hypertext and Usability 150 

8.7.2 USABILITY AND USER INTERFACE IN CAI 

Section 8.6 overviews human-computer interaction, usability criteria, and the kinds and 

requirements of a user interface. 

To achieve a high usability level, educational software should be learnable so as not to 

frustrate the student, effective, efficient, and robust to perform its tasks accurately on a 

continuing basis. Learnability can be enhanced by the provision of training, manuals, on-line 

and off-line help. In a situation of distance-learning, training courses as such are impossible, 

thus placing the onus on written and on-line training materials. The functionality and versatility 

should be such that it meets the learner's needs, both explicit and implicit, accurately and 

effectively. Robustness is of great importance in a distance-education situation, where a 

system-crash would cause severe frustration. 

Application of the principles for a good user interface would ensure a simply functioning user 

interface with commands and interaction modes that are consistent across the program, 

effective system-response, aesthetic screen presentation, a crashproof system, and availability 

of help facilities. 

Segregation of the screen into functional areas or windows [Bodker 1991; Preece 1993] 

fosters an environment which presents multiple facets or differing aspects of a topic. It 

enables presentation of large quantities of information without the appearance of screen 

clutter, particularly when a small, yet legible font is used. In the instructional context, screen 

subdivision is of great utility, since it permits form to follow function, as the various commands, 

components and utilities acquire their own consistent locations. 

For reasons given in section 9.4.1, the name "FRAMES" was selected for the accompanying 

CAI prototype. Subsequently the researcher found that Jonassen in defining hypertext units 

[Jonassen 1989, p. 7], used the same term: "these nodes, cards, or units may also be 

referred to as frames". This was an apt confirmation, since the researcher had been 

concerned about possible confusion with the term as used in knowledge representation 

(section 7.2.2), and its use in conventional CAI, where it refers to a fixed screen layout. The 

frames to be used in FRAMES are not full-screen displays, but juxtaposed components, 

combining on-screen to give a window-based appearance. 

In the highly visual environment of current software, it is clear that graphics should be used 

both in instructional and in control aspects. Similarities to standard interface techniques are 

to be recommended, particularly where the user can be assumed to be familiar with current 

software systems. 



User-control, Hypertext and Usability 151 

8.8 CONCLUSION 

Chapter Seven stated that the strength of an ITS lies in its individualization by adaptivity, 

but that its weakness is lack of learner participation in the selection of instructional material. 

Designers of ITSs should reconsider the roles of expert- and student-models, to what extent 

the system should generate new examples, and how and when it should intervene [Keller 

1987]. Hypertext, on the other hand, gives control of the learning process to the learner, 

individualization by learner-control. In the hands of an academically mature learner, one 

who can independently plan and organize his own learning, hypertext-style control can be a 

powerful tool. 

The ultimate question is whether hypertext is effective in meeting instructional goals. The most 

natural mode of hypertext use is browsing. Proponents of hypertext assume that the freedom 

to select material, exploration within a conducive environment and the self-discovery of 

relationships, with the consequent formation of integrated structures, result in effective 

learning. However it is uncertain whether unconstrained browsing and mere information 

retrieval can support deep processing and result in meaningful learning [Jonassen 1992; 

Hammond 1992a; Hammond 1992b]. While pure hypertext and hypermedia have an 

inimicable role to play as reference material, a solely read-and-look format is inadequate for 

full and formal learning. Active learner-control alone is insufficient; there must be learner­

participation in the activities or components presented. 

A general problem with most CAI software systems is that their approach supports only a 

subset of the desirable learning activities for that particular domain. Under varying 

circumstances it may be appropriate for learners to browse, to interact, to explore a 

microworld, to follow a fixed route through a linear domain, to be guided by an intelligent tutor, 

to practice subskills, to solve problems, to synthesize materials, or to assess their knowledge. 

The open philosophy and navigation structure of hypertext makes it a suitable medium to 

"support a range of learning activities" [Hammond 1992a, p. 55]. 

Regardless of how appropriate and instructionally beneficial the activities in a CAI package 

may be, the system cannot realize its potential unless it meets the various· usability criteria. 

It should also have an interactive user-interface which facilitates use of the system by a range 

of users, and has a structure compatible with the functions of the software. 



User-control, Hypertext and Usability 152 

REFERENCES - CHAPTER EIGHT 

[Alessi 1991] 

[Barrow 1989a] 

[Barrow 1989b] 

[Bevan 1991] 

[Bedker 1991] 

[Bowers 1989] 

[Brown 1989] 

[Carbonell 1970] 

[Chapanis 1991] 

[De Wet 1994] 

[Dick 1991] 

[Dix 1993] 

[Gomer 1992] 

Alessi, S.M. & Trollip, S.R. (1991). Computer-Based Instruction: Methods and Development 

Englewood Cliffs, N.J.: Prentice Hall. 

Barrow, J. (1989). Hypertext as an Educational Medium. Proceedings of the First Southern 

African Conference on Educational Technology. Pretoria: Human Sciences Research Council. 

Barrow, J. (1989). Structuring Hypertext. Proceedings of the Fifth South African Computer 

Symposium. Johannesburg, South Africa. 

Bevan, N., Kirakovski, J. & Maissel, J. (1991). What is Usability? In: Bullinger, H.J. (Ed), 

Human Aspects in Computing: Design and Use of Interactive Systems and Work with 

Terminals. Amsterdam: Elsevier Science Publishers B.V .. 

Bedker, S. (1991). Through the Interface: A Human Activity Approach to User Interface 

Design. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Bowers, D. (1989). The Software Design Document: More than User's Manual. Educational 

Technology 29 (12), 15-18. 

Brown, J.R. & Cunningham, S. (1989). Programming the User Interface: Principles and 

Examples. New York: John Wiley and Sons, Inc. 

Carbonell, J.R. (1970). Al in CAI: An Artificial-Intelligence Approach to Computer-Assisted 

Instruction. IEEE Transactions on Man-Machine Systems 11 (4), 190-202. 

Chapanis, A. (1991). Evaluating Usability. In: Shackel, B. & Richardson, S.J. (Eds), Human 

Factors for Informatics Usability. Cambridge: Cambridge University Press. 

De Wet, L. (1994). A Comparison of the Usability Properties of Character-based and 

Graphical-based User Interfaces. Unpublished MSc thesis, University of South Africa, 

Pretoria. 

Dick, W. (1991). An Instructional Designer's View of Construction. Educational Technology 

31 (5), 41-44. 

Dix, A., Finlay, J., Abowd, G. & Beale, R. (1993). Human-Computer Interaction. Heme! 

Hempstead: Prentice Hall International (UK). 

Gomer, C., Vossen, P. & Ziegler, J. (1992). Direct Manipulation User Interface. In: Galer, M., 

Harker, S. & Ziegler, J. (Eds), Methods and Tools in User-Centred Design for Information 

Technology. Amsterdam: Elsevier Science Publishers B.V. 



User-control, Hypertext and Usability 153 

[Hammond 1989) 

[Hammond 1992a) 

[Hammond 1992b] 

[Hardman 1988) 

Hammond, N.V. & Allinson, L.J. (1989). Extending Hypertext for Learning: An Investigation 

of Access and Guidance Tools. In: Sutciffe, A. & Macauly, L. (Eds}, People and Computers 

V. Cambridge: Cambridge University Press. 

Hammond, N.V. (1992). Learning with Hypertext: Problems, Principles and Prospects. In: 

McKnight, C., Dillon, A & Richardson, J. (Eds}, Hypertext: A Psychological Perspective. 

Chichester: Ellis Horwood. 

Hammond, N.V. (1992). Tailoring Hypertext for the Learner. In: Kommers, P.A.M., Jonassen, 

D.H. & Mayes, J.T. (Eds}, Cognitive Tools for Learning. Berlin: Springer-Verlag. 

Hardman, L. (1988). Hypertext Tips: Experiences in Developing a Hypertext Tutorial. In: 

Jones, D.M. & Winder, R. (Eds}, People and Computers tv. Cambridge University Press. 

[Hasselerharm 1990] Hasselerharm, E. & Leemkuil, H. (1990). The Relation between Instructional Control Strategies 

and Performance and Attitudes in Computer-Based Instruction. In: Pieters, J.M., Simons, 

P.R.J. & de Leeuw, L. (Eds}, Research on Computer-Based Instruction. Amsterdam: Swets 

and Zeitlinger B. V. 

[Jonassen 1989) 

[Jonassen 1992) 

[Keller 1987) 

[Lanzing 1994] 

[McKnight 1992] 

[Midoro 1991] 

[Nielsen 1990] 

[Nix 1990) 

[Pieters 1990] 

Jonassen, D.H. (1989). Hypertext / Hypermedia. Englewood Cliffs, N.J.: Educational 

Technology Publications. 

Jonassen, D.H. (1992). Effects of Semantically Structured Hypertext Knowledge Bases on 

Users' Knowledge Structures. In: McKnight, C., Dillon, A & Richardson, J. (Eds), Hypertext: 

a Psychological Perspective. Chichester: Ellis Horwood. 

Keller, A. (1987). When Machines Teach: Designing Computer Courseware. New York: 

Harper and Row. 

Lanzing, J.W.A. & Stanchev, I. (1994). Visual Aspects of Courseware Engineering. Journal 

of Computer Assisted Learning 10, 69-80. 

McKnight, C., Dillon, A. & Richardson, J. (Eds} (1992}. Hypertext: a Psychological 

Perspective. Chichester: Ellis Horwood. 

Midoro, V., Olimpo, G., Persico, D. & Sarti, L. (1991). Multimedia Navigable Systems and 

Artificial Intelligence. In: Lewis, R. & Otsuki, S. (Eds}, Advanced Research on Computers in 

Education, Proceedings of the IFIP TC3 International Conference on Advanced Research on 

Computers in Education. Amsterdam: North-Holland. 

Nielsen, J. (1990). Hypertext and Hypermedia. Boston: Academic Press. 

Nix, D. & Spiro, R. (Eds} (1990). Cognition, Education, Multimedia: Exploring Ideas in High 

Technology. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Pieters, J.M., Simons, P.R.J. & de Leeuw, L. (Eds} (1990). Research on Computer-Based 

Instruction. Amsterdam: Swets and Zeitlinger B.V. 



User-control, Hypertext and Usability 154 

[Preece 1993] 

[Ravden 1989] 

[Regian 1992] 

[Siviter 1992] 

[Spiro 1990] 

[Tang 1991] 

[Thimbleby 1990] 

[Venezky 1991] 

[Vockell 1989] 

[Woodhead 1991] 

Preece, J. (Ed.) (1993). A Guide to Usability: Human Factors in Computing. Wokingham: 

Addison Wesley. 

Ravden, S.J. & Johnson, G.I. (1989). Evaluating Usability of Human-computer Interfaces: A 

Practical Method. Chichester: Ellis Horwood. 

Regian, J.W. &Shute V.J. (1992). Automated Instruction as an Approach to Individualization. 

In: Regian, J.W. & Shute V.J. (Eds), Cognitive Approaches to Automated Instruction. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Siviter, D. & Brown, K (1992). Hypercourseware. In: Kibby, M.A. & Hartley, J.R. (Eds). 

Computer Assisted Learning: Selected Contributions from the CAL91 Symposium. Oxford: 

Pergamon Press. 

Spiro, R.J. & Jehng, J. (1990). Cognitive Flexibility and Hypertext: Theory and Technology 

for the Nonlinear and Multidimensional Traversal of Complex Subject Matter. In: Nix, D. & 

Spiro, R.J. (Eds), Cognition, Education and Multimedia: Exploring Ideas in High Technology. 

Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Tang, H., Barden, R. & Clifton, C. (1991). A New Learning Environment Based on Hypertext 

and its Techniques. In: Lewis, R. & Otsuki, S. (Eds), Advanced Research on Computers in 

Education, Proceedings of the IFIP TC3 International Conference on Advanced Research on 

Computers in Education. Amsterdam: North-Holland. 

Thimbleby, H. (1990). User Interface Design. Wokingham: Addison Wesley. 

Venezky, R. & Osin, L. (1991 ). The Intelligent Design of Computer-Assisted Instruction. New 

York: Longman. 

Vockell, E. & van Deusen, R.M. (1989). The Computer and Higher-Order-Thinking Skills. 

Watsonville, CA: Mitchell Publishing, Inc. 

Woodhead, N. (1991). Hypertext and Hypermedia: Theory and Applications. Wokingham: 

Addison-Wesley. 



CHAPTER NINE 

THE FRAMES PRACTICE ENVIRONMENT 

Various broad factors which determine the basic characteristics of a piece of instructional 

software, have been investigated and applied to the prototype implementation, FRAMES. 

Each factor was considered with relation to the task in hand, and the most appropriate 

approach/es selected to optimise that factor for a practice environment. Chapters Two to Eight 

addressed the issues factor by factor and Figure 9.1 shows which aspect/s of CAI each 

chapter addresses. 

2 3 

Software 
engineering 

4 5 

lnstru ional 
desi n 

6 8 

FRAMES 

7 

Influence of 
artificial 
intelligence 

Figure 9.1 The Impact of each Chapter on FRAMES 

The subdivision of this chapter, however, is: 

+ not factor by factor, emphasizing the characteristics of the product, 

+ but step by step through the process, according to the phases of an SDLC model. 

It shows how the various issues, instructional and computer-oriented, can be integrated into 

the appropriate phases of a life-cycle model. 

155 



The FRAMES Practice Environment 156 

9.1 LIFE-CYCLE MODELS 

Every software product has a life-cycle spanning the period from its earliest inception to its 

retirement. Sections 2.1 and 3.4 overviewed various SOLCs in the contexts of different 

software development methodologies. 

9.1.1 A LIFE-CYCLE MODEL FOR CAI 

A suitable choice for the life-cycle factor in instructional software was found to be a 

prototyping model. Lantz advocated rapid prototyping (section 3.4.2) for CAI, in order to 

enhance communication and to facilitate refinement of requirements and design. Section 2.1.2 

listed situations where prototyping is particularly beneficial, four cases of which are most 

relevant: 

+ highly interactive programs, 

+ cases where requirements cannot be precisely specified in advance, 

+ occasions when the system goes beyond the users experience, and 

+ situations where the utility of software needs to be demonstrated hands-on. 

For ISO evolutionary prototyping (section 2.1.2) appears to be more cost-effective than throw­

away. The initial portions of the envisaged system, once satisfactorily complete, can be used 

as part of the final product. 

9.1.2 THE FRAMES PROTOTYPING LIFE-CYCLE MODEL 

FRAMES breaks new ground in the type of software developed by CENSE at Unisa. A highly 

interactive practice environment entails innovative instructional strategies, which call for new 

programming techniques. Initially, even the technical feasibility of the desired features had 

to be assessed. The logical requirements were imprecise, requiring testing. With the premise 

of form follows function, screen layouts need to evolve, rather than adhere to precise 

specifications. A prototyping life-cycle is the ideal route, since it is conducive to modification 

of the approach, the strategies, and even of the objectives. Evaluation of a prototype prior 

to final development of a production model can only enhance the products of analysis and 

design. Prototyping is much more appropriate for interactive ISO than a development 

methodology which uses rigid paper-based specifications and design. In the development 

of FRAMES, a prototype is needed to: 



The FRAMES Practice Environment 157 

+ discover unanticipated problems and misconceptions, 

+ determine an optimum control strategy, 

+ consolidate the combined roles of keyboard and mouse in user-control and response, 

+ develop consistent standards for each mode of doing exercises, 

+ validate visual and perception aspects in screen layouts, 

+ check interaction between help facilities and RAM control, 

+ take cognisance of possible user-input, and 

+ ensure instructional utility. 

In Chapters Two and Three various ISO life-cycle models were investigated. The Booch model 

for object-oriented design was introduced in section 2.3 (see Figure 2.4) and, in section 2.5.3, 

was shown to be suitable for ISO. Another candidate is the comprehensive Chen & Shen life­

cycle model for ISO (see Figure 3.1 in section 3.4.2). It tends to emphasize specific ID 

procedures and activities, not all of which are relevant to FRAMES. The most suitable life­

cycle model for the development of FRAMES appears to be the Wong prototyping life-cycle 

(see Figure 3.2 in section 3.4.2). Slightly modified and tuned, it is reproduced as Figure 9.2. 

There is, however, a major difference between Wong's suggested approach and the 

methodology used in FRAMES. Wong refers (Chapter Three, section 3.4.2) to "quick 

prototypes by non-computing laymen", whereas the FRAMES prototype is designed and 

programmed by professionals. 

Requirements 
Analysis 

Design 

Prototype 
Construction 1----~ 

Evaluation and----. 
~---i Refinement of 

Requirements 

Software 
Production 

Figure 9.2 The FRAMES Prototyping Life-Cycle Model 



The FRAMES Practice Environment 158 

The life-cycle is similar to the Booch Model, but includes prototyping explicitly. It emphasizes 

evaluation and refinement of requirements to such an extent that it is perceived as an 

additional process (appearing in a round-cornered rectangle to distinguish it from the true 

phases), rather than just being represented by feedback links into basic requirements 

analysis. 

The next three sections discuss FRAMES under headings that correspond to the first three 

steps in Wong's model, namely requirements analysis, design and the prototype respectively. 

The final step, namely, software production, is beyond the scope of this dissertation. 

9.2 REQUIREMENTS ANALYSIS 

Conventional requirements analysis for instructional software incorporates analysis of the topic 

and the target group's performance, tending to focus on aspects such as: 

+ identification of a problem-area in a curriculum, 

+ definition of aims and objectives of a course and its lessons, 

+ definition of course structure, 

+ resources, 

+ needs analysis of the target group and their performance in the identified area, and 

+ instructional activities. 

This dissertation proposes requirements analysis, but of a different kind. It assumes the 

above needs-identification to be complete, and uses its results as a fixed parameter for the 

starting point. The type of premise on which a study such as this is founded could be, for 

example: 

+ A bank, as the client, has commissioned an educational software developer to produce 

CST courseware to train bank staff in the use of a new online teller system. 

+ A school teacher points out a commonly occurring spelling problem in the use of 

English as a second language. 

+ A certain area in a Unisa distance-education module creates problems, evidenced by 

an excessive number of student-enquiries and by poor examination performance. 



The FRAMES Practice Environment 159 

Thus the need is identified and delimited, and the target population is fixed. How then does 

the designer decide on the most appropriate CAI or CBT to address the problem? 

In section 3.4.2 it was noted how Lantz compared the logical definitions in SE to the 

instructional objectives in CAI. The instructional objectives and requirements addressed here 

are not categorical statements of intended learner performance over specific subject matter. 

The requirements analysis phase for ISO is far broader, embracing the general 

characteristics, both instructional and computing-oriented, of a desired instructional 

experience to address the specific problem area. Chapters Two to Eight discussed various 

issues that impact on instructional software. In the requirements analysis step of FRAMES 

these issues are investigated and the most suitable approaches selected. 

9.2.1 THE PROBLEM DOMAIN AND THE PROBLEM STATEMENT 

The problem domain, as outlined in Chapter One, is the section on relations in the Unisa 

module COS101-S, Theoretical Computer Science 1. The target group comprises first year 

BSc students, studying by distance education, who, in general, experience problems in the 

analysis of relations with an infinite number of members. The subject matter of FRAMES is 

relations, their properties, and special kinds of relations. A need is evident for practice 

exercises that firstly increase the learner's overall familiarity with the domain, and secondly 

help him gain experience in the mathematical proofs required. Familiarity can be enhanced 

by a system that facilitates visualization and exposure to examples within the domain. The 

proofs entail several steps; students require both the experience of studying worked examples 

and the opportunity to practice. In the realm of mathematical proofs, student-responses 

cannot be assessed by the conventional techniques used in judging short answers and 

multiple choice options. 

The goal is to produce a practice-environment, a kind of activity box 

providing a variety of useful instructional activities, and to design and 

develop this instructional software system using a software engineering 

approach. 



The FRAMES Practice Environment 160 

9.2.2 MODELLING THE DOMAIN WITH AN ERA DIAGRAM 

ERA diagrams (section 2.4.3) are used to show the properties, or attributes, of domain entities, 

and to model the relationships between entities. ERA Diagrams are used in database design, 

but are generally applicable to any domain that incorporates inter-relationships. Figure 9.3 

shows the most important entities, relationships, and attributes (properties) to be learned and 

practiced using FRAMES. It sets out the six mathematical properties of the entity relation, as 

taught in COS101-S, and shows other entities relating to the study of relations. The 

inheritance relationship demonstrates the existence of various special kinds of relations, as a 

specialized subclass of the class, relation. The values of the six property attributes of relation 

are boolean, i.e. true or false. 

Definition 

Reflexivity 

( lrreflexivity 

Symmetry 

of 

) 

Graphic 
aid 

illustrating 

Example 
synthesis 

to anchor 

/ Antisymmetry 

Relation 

I 

0 
Special kind 
of relation 

Figure 9.3 

c Transitivity) 

Trichotomy 

Entities and Relationships in FRAMES 



The FRAMES Practice Environment 161 

9.2.3 INSTRUCTIONAL THEORY AND FRAMES 

Chapters Four and Five investigated the factors of cognition and learning and their impact on 

instruction. This section applies them to FRAMES and extracts appropriate approaches. It 

outlines the chosen premises of FRAMES and does not go into design details, but, in 

appropriate places, includes additional information in parentheses to relate the required 

feature to its implementation in FRAMES, or illustrates salient points by means of screen 

displays. 

Cognition and Learning 

Certain aspects of Schiever's Thinking Model (section 4.1.1) could be applied directly to 

FRAMES. Concept development in learners can be fostered by example-synthesis exercises, 

where entities are identified as members or non-members of a class. The making of 

generalizations by projecting experience should be a fundamental goal of FRAMES, achieved 

by choosing as examples relations that differ markedly, so that no single algorithm could be 

used to tackle the same aspect of each problem. Instead, re-application of the same 

principles would be required, but in varying contexts. The repetitive encounters emphasized 

by Schiever should be inherent in FRAMES, and can be achieved by various modes of doing 

each exercise and by approaching a topic or aspect from multi-perspectives. 

Although not explicitly teaching them, FRAMES should develop Higher Order Thinking Skills 

(sections 4.1.3 & 4.2.8) within the learner, in particular metacognition, by providing an 

environment conducive to planning his own learning experience. Problem-solving strategies 

should be implicit in the exercises. This can be done by including complete worked-examples, 

i.e. read-only proofs. Critical thinking is to be encouraged by giving the learner the 

opportunity to consider properties of the relation and develop proofs, both by filling in blanks 

and by supplying entire steps. 

Behaviourism and Mastery Learning 

Sections 4.2.4 & 4.2.5 introduced behaviourism and mastery learning, and section 5.3 follows 

on by relating them directly to instruction, ID and CAI. Although the instructional approach 

of FRAMES is to be fundamentally cognitive, certain behaviouristic principles are valuable. 

Fleming's behaviouristic perception and learning principles were examined and several are 

appropriate as instructional requirements. The learner should: 



The FRAMES Practice Environment 162 

+ Attain such familiarity with basic messages like definitions that automaticity is achieved 

(done by the regular presentation of property definitions in each Mode 2 exercise). 

+ Develop familiarity in problem-solving techniques (achieved by Mode 1 which presents 

complete worked-proofs, and by repetitive encounters due to the three modes of proof 

presentation). 

+ Human information processing capacity is limited, so step-wise strategies should be 

used. The command structure and navigation system must be simple, avoiding 

cognitive overload. 

+ Spatial and temporal arrangements influence perception of relationship. The FRAMES 

screen layout should permit simultaneous viewing of the definition and visual aid along 

with a problem-solving exercise. The material is to be presented in a well-structured 

manner that supports knowledge acquisition. 

+ It is important to indicate relationship between associated objects. For example, arrows 

can be used to facilitate the contextualization of a generic definition into the current 

relation (done in Mode 2). 

+ Change in stimulation is necessary for sustained attention. This is up to the learner who 

should be able to change the content or approach any time he likes. Another aspect 

of change is variety in the examples and exercises. 

+ Situational support for problem-solving is necessary to emphasize crucial definitions 

and reveal important relationships (limited cuing occurs due to the line lengths supplied 

in Mode 2 exercises and the proof structure supplied; cues are faded in Mode 3, where 

the learner works more independently). 

+ The interactive question-response-judgment process should be characterized by 

contiguity- having filled in a blank or typed a complete line, the learner should receive 

immediate feedback. In the case of incorrect or inappropriate responses a second 

chance ought to be given before the remedial feedback appears. 

+ Examples and non-examples should be demonstrated (since the tests for all six 

properties are to be done on every relation, whether or not the property holds true, a 

good selection of examples and non-examples will be shown). 

+ However, out of congruence with the fundamental stance of behaviourism, there are to 

be no scores, rewards or reinforcement other than feedback. Pre-tests and post-tests 

are deliberately excluded. 

Several of these features are clearly illustrated in Screen Displays 9.1 and 9.2. 



The FRAMES Practice Environment 

Screen Display 9.1 

163 

E:-;;;;)V//.13-

= ~ < > ~ I 1 

1ilx!Jzlcm 
R 

nenu CO 

The FRAMES screen layout permits simultaneous viewing of the definition and visual aid 
along with the component currently selected. The material is chunked, for example, the 
definitions of "P" and "irreflexivity" at the head of this Mode 2 exercise appeared in a 
step-wise manner before the appearance of the actual fill-in-the-blank proof. 

Relationship is emphasized by arrows and by the instruction, "Relate the definitions", 
which encourages the student to contextualize the general definition of irreflexivity. 

Feedback is geared to handle inappropriate, as well as incorrect, entries. In this case an 
alphabetic character is rejected as being illegal; the learner is told, "You must enter a 
number". The colour of feedback has subsequently been changed to white. 



The FRAMES Practice Environment 

liiil Is P symmetric? 
Cartesian product • 
Relation • 

ie if (x , I)) E P then is (!J ,X ) E P 
Take a counte r-example : 

Reflexivitl) • Suppose x = 4 and I) = 7 
Irrefl exivity • 4 ~ 7 i e (4, 7) E P 

Sl)mmetrl) • bu t 7 ~ 4 i e {7,4) € P 
P is not s ummelric 

A ntisl)mmetq,1 • 
T ransitivitl) • Is 0 symmetric? • 

11ath-Sl)mbo ls 

.,__.,.....,.._~he~_et of po~i~iw inl:_e~_i:_s _ _..,.,...__._ 

. ~l_le ~et __ ~!__~ega~~~ ~!!~~9er~ 
the set of an integers 
the set of r.tlonel nuabers 

.. th& Ht of ..... numbers - - -

(l) , X) E Q ? 
I) = 3k k E Z 

- (3k) = 3( - k) 

Screen Display 9.2 

Situational support for problem-solving is available from : 

1. Help Components 

164 

=~<>~~:a 

~!l xy zkm 
IP IN Z 10 JR X R 
PQ STUWTR 

{><,x) {>< , I)) {x , z) 
(l),X) (!),I)) (y , z) 

E ><i'l 11c.nu GO 

Mouse-clicking on 'Definitions" and "Math-symbols" on the right produces overlay­
menus at top and bottom left respectively. Selecting an option on the right 
highlights the appropriate switch or character/s in red - compare with Screen 
Display 9.1. Further clicking on these submenus provides overlay elaboration of the 
selection (shown later in Screen Displays 9.8 & 9.16). 

2. Cuing 
Mode 2 exercises cue by providing a blank with the appropriate number of spaces 
for the correct answer (see Screen Display 9.1). Mode 3, shown in this Screen 
Display, fades the cue by presenting continuous lines for the student's answers. 

Non-examples play an important role. In both Screen Displays 9.1 and 9.2, counter­
example proofs are necessary. 



The FRAMES Practice Environment 165 

Cognitive learning and constructivism 

Sections 4.2.6 & 4.2. 7 introduced cognitive learning and constructivism, and section 5.4 

followed on by relating them directly to instruction, ID and CAI. With reference to learning and 

instructional factors, the better approach for FRAMES seems to be cognitive science, 

implemented with a constructivist flavour, thus viewing thinking and learning as human 

information processing (sections 4.1.4 & 4.2.1). Important aspects are the integration of new 

information with old, and the limitations on STM The structural templates for problem solving 

and the help facilities in FRAMES should facilitate the former. STM limits can be addressed 

by chunking and by a simple command structure. Desirable cognitive features are: 

+ Active participation - the learner must play a highly active role, both in control of his 

practice experience, and in participation in the exercises. 

+ Integration of new with prior knowledge - the learner's perception of the new should 

occur in a context of ancillary support. This should foster construction of internal 

schemata to facilitate comprehension and recall. 

+ Accretion, tuning and restructuring- these should occur as the learner works through 

FRAMES (moving between modes when his coaching needs vary, changing from one 

problem relation to another, and tackling the composite problems presented under the 

option kinds of relations). 

+ Transfer of skills from one setting to another - is likely to occur as a consequence of the 

three processes above. 

+ Integrated testing - there is to be no formal testing or scoring, but the student ought to 

apply his knowledge and skills continuously in problem-solving. 

+ Anchored instruction - to relate abstraction to reality (can be achieved by the permanent 

on-screen appearance of the current relation's definition and by graphic aids to 

promote visual perception of a problem domain). 

+ Learning by experience - there should be visual aids and integration of examples (as 

stated above there are graphic aids; there are also exercises involving synthesis of 

concrete examples). 



The FRAMES Practice Environment 166 

+ Strategies to develop general intellectual skills- should be fostered by associational and 

mapping techniques explicitly and implicitly incorporated in FRAMES. 

+ Real world relationship - should be clearly set out (done by the visual aid and by 

example synthesis). 

+ Multiple presentation of information-to expedite comprehension and recall (by different 

instructional modes). 

+ West's cognitive strategies (section 5.4.2) - four of these, in particular, should be 

included in FRAMES: 

1. Rehearsal, as the same material is approached in various ways and from different 

perspectives. 

2. Concept mapping, to show relationships. 

3. Imagery, in diagrams and graphic aids to illustrate the concepts. 

4. Mnemonics, to aid recall and simplify usage (occurs in the letters RAM, used 

in the control structure and described in section 9.4.1). 

Several of these features are clearly illustrated in Screen Displays 9.3 and 9.4. 



The FRAMES Practice Environment 167 

Screen Display 9.3 

• • 
EC)'lf// 1.J­

"' s < >~il"J 
;te x!,lzlcm 

IPINZIQIR XR 

PQSTUWTR 

Exit 11enu GO 

The learner plays an active role both in control and in participative problem-solving. The 
screen above shows how, empowered by user-control, the learner selected three 
components relating to Relation Q. He chose the Attributes: 

• visual aid Graph, which along with the definition, anchors the relation by relating it 
to reality. 

• a Prop (property), in this case irreflexivity, and 
• Eg, the opportunity of synthesizing concrete examples of Q. 

The most recent selection set is highlighted in red in the right-hand control area. A Mode 
selection is not highlighted, because mode is not applicable to a graphic aid or an 
example. As the user applies knowledge and learns by experience by setting up ordered 
pairs for Q, where the first and second components differ by a multiple of three, his 
efforts are met by appropriate feedback. Example synthesis helps a learner to establish 
a real world relationship. 



The FRAMES Practice Environment 168 

Screen Display 9.4 

• • 
EC)0'//.13-

=~ < >2: ;fl l-

~ e x "' z 1c • 

IPINZQIR X ~ 

P Q S T U W TR 

Exi'l nenu GO 

Tuning and restructuring occur as the learner tackles the same problem, changing from 
Mode 1, where a complete proof is demonstrated step by step, to Mode 2, where a 
skeleton is provided and he fills in the blanks. This also illustrates multiple presentation 
of the same proofs. 

Transfer occurs when the learner can successfully handle the proof for the same property 
test in a different setting, i.e. with a different relation. 

This display illustrates two further points: 

1. The student decided to be individualistic, and used c and e in his definition of 
trichotomy instead of the usual x and y. His alternative was, however, internally 
consistent and was acceptable to the judgement procedure. 

2. The Mode 2 proof skeleton is shown at an early stage. 

All four of West's cognitive strategies listed under the heading "Cognitive learning and 
constructivism" in section 9.2.3 are used in this screen display. 



The FRAMES Practice Environment 169 

9.2.4 ARTIFICIAL INTELLIGENCE AND FRAMES 

This section discusses the approach to FRAMES with relation to some of the factors 

considered in Chapter Seven on Artificial Intelligence. FRAMES is in no way intended to be 

an ITS or ICAI system, but it should embody a limited theoretical knowledge base. In section 

7.6.3 Lippert's suggested characteristics, namely, adaptability, individualization and 

interactivity, were mentioned. FRAMES is not adaptable, but it is highly interactive and strong 

on individualization. It will not be inherently intelligent, but can be perceived by the learner as 

a source of intelligent support. 

Example practice 

The idea is to expose the learner to wide diversity by judicious selection of the seven relations 

presented as learner-exercises in FRAMES. Relations are based on a mathematical formulae 

or relationships, which should differ to such an extent that the property tests cannot be solved 

by a general algorithm. This works against possible incorporation of a problem-solving expert 

model, and necessitates explicit encoding of each proof or disproof in all three modes, 

although a generic problem-solving format can be supplied. The situation is a little different 

for the tests for kinds of relations where courseware abstraction, as described in section 7. 7.2, 

should be applied to the composite skills. Each test for a kind can be handled within the 

context of a general parameterized structure that "knows" and automates the overall process, 

accessing the concrete exercises already coded as single property tests. 

The adult learner and FRAMES 

Section 7. 7.1 discusses the case of the adult learner. FRAMES, with its audience of tertiary­

level students, should offer the user meaningful activities and choice between redundant 

diversity, diverse both in terms of content and strategy. Help should be available on request, 

but no advice or explicit guidance. (The cuing and prompting that occurs in Mode 2 

exercises, in the form of arrows and line-lengths, can be considered a form of implicit 

guidance.) The adult learner may not appreciate a form of instruction that guides his problem­

solving strategy into close convergence with a fixed model, preferring rather to develop his 

own methods. Alternative correct responses to questions and entries within proofs must be 

acceptable. This calls for considerable effort in designing judgement and feedback modules. 

In general the adult learner does not appreciate gimmicks and graphics other than those 

related to elaboration of the material. FRAMES should have a purely functional approach, with 

no name personalization or theme characters. 



The FRAMES Practice Environment 170 

9.2.5 SUMMARY OF REQUIREMENTS ANALYSIS 

Contribution of SE: 

Use of an ERA model to represent domain entities, their attributes, and relationships 
between them. 

Stimulation of cognitive thinking: 

An environment that 
• develops concept awareness, 
• fosters generalization, 
• presents repetitive encounters, 
• instils metacognitive skills. 

Aspects of behaviourism: 

Learner should 
• achieve automaticity in the basics. 

System should 
• use step by step strategies, 
• set visual aid alongside text, 
• ensure change in stimulation, 
• provide situational support, 
• use examples and non-examples. 

Aspects of cognitive science: 

System should promote 
• active participation, 
• inte9ration of new with old, 
• accretion, tuning and restructuring, 
• generalization and transfer, 
• integrated testing, 
• anchored instruction, 
• experiential learning, 
• multi-perspective presentation, 
• imagery, 
• mnemonics. 

Aspects of artificial intelligence: 

Environment should include 
• limited knowledge base, 
• intelligent support for learners. 



The FRAMES Practice Environment 171 

9.3 DESIGN 

9.3.1 DESIGN GOALS IN FRAMES 

FRAMES breaks new ground in the development of instructional software at Unisa: 

+ It is not a tutorial. It assumes a subject-matter grounding from the textbook, the study 

guide, and the CAI tutorial RELATIONS, and in no way sets out to re-teach the basic 

definitions and principles. 

+ Help facilities are, however, accessible in the form of on-line reference to relevant 

definitions, rules, and elaboration of mathematical symbols. 

+ There is no underlying sequence either explicitly or implicitly. 

+ There is an inherent screen layout in terms of consistent functional areas for certain 

objects, such as the control buttons and the definition of the current relation, but there 

are no fixed combinations of on-screen units; a variety of objects are available as 

options, and the student makes his own selection in his own sequence, thus 

constructing a screen comprising his own chosen set of components. The selected 

exercises appear in the central portion and a step-wise scrolling mechanism moves the 

topmost exercise off-screen, as new exercises move in underneath. 

+ Responses, particularly mathematical symbols, may be clicked in via a mouse. 

FRAMES is a practice environment, making available to the student a variety of features and 

problems from the relations section of COS101-S. A student may select components from a 

variety of instructional transactions: 

1. Synthesis and keying in examples of ordered pairs as members of the relation selected 

as the current problem. This is an exploratory facility, whereby the student can check 

whether his intuitive understanding of the relation is correct. 

2. Viewing a graphic aid as a visual representation of the relation. 

3. Viewing or doing exercises, in the form of mathematical proofs, to determine whether 

a relation satisfies a certain selected property. 



The FRAMES Practice Environment 172 

4. Similar subsections of several varying relations (i.e. the same property-test on different 

relations). Sequential analysis of the same property across different relations 

consolidates the learner's grasp of that property. 

5. Several subsections of one relation (i.e. different property-tests on the same relation). 

Comprehensive analysis of a relation deepens understanding of that relation. 

6. Similar subsections of one relation from multi-perspectives (i.e. the same property of the 

same relation, done in different modes). When a practice mode follows directly after 

a presentation mode, the former can be used as a model. 

7. Composite analysis of a relation, determining whether it is of a particular kind by testing 

a set of specific properties. 

Thus the student can select whether to practice single components of tasks or more 

complex integrated problems. The exercises mentioned in points 3 - 7 may be done 

in three different modes of approach, offering varying degrees of support. It is even 

possible to change modes during the composite test for a kind, described in point 6. 

In section 3.4.2 it was noted how Lantz compared the physical definitions in SE to the 

instructional strategies in CAI. Modes, or instructional strategies were investigated in 

sections 4.2.1 o, 6.6.2 and 6.6.3. The three modes of FRAMES cover the same content, 

but in different ways. 

The approaches listed in points 1 - 7 above are implicitly portrayed by previous Screen 

Displays, and are explicitly illustrated in Screen Displays 9.5 - 9.8. 



The FRAMES Practice Environment 

Screen Display 9.5 

This screen shows several interesting features: 

173 

E<;~-+~#.LJ 

=~<>~IJ 

~-t:xyzkn 

:c .:~ XR 

S T U 

• Once again the user is tackling example synthesis (point 1, section 9.3.1), this time 
on relation S, where y is a multiple of x. The system processes the student's entry 
by doing the appropriate calculation itself, and providing intelligent support by well­
designed feedback. 

• The graphic aid (point 2, section 9.3.1) helps to anchor the abstract formula in 
reality by visual portrayal of the concepts of multiple and factor. 

• The first instructional transaction shown on the screen is the property test to 
determine whether Relation P satisfies reflexivity (point 3, section 9.3.1 ). Thus this 
screen depicts frames relating to two different relations, although not analysis ofthe 
same property across them, as advised in point 4 of section 9.3.1 and shown in 
Screen Display 9.2. 



The FRAMES Practice Environment 

ie if (x,x) E P then is (u,x) E P 
Take a counter-example : 
Suppose x = 4 and y = 7 

4 ~ 7 ie (4,7) E P 
7 i 4 ie (7,4) ti! P 

P is not 

Screen Display 9.6 

174 

=~()~;i'!:;J 

~ ti! >< I) z k: m 
IPINZtQIRXR 
P Q STUWTR 

(x , x) (x,I)) (x,z) 
, (l) , X) ( l) ,I)) (l),Z) 

Exi t Me n u C:,:O 

Point 5 in section 9.3.1 refers to analysis of several subsections of one relation, i.e. 
different property tests on the same relation. This is shown on relation P above, where 
tMe Attribute Prop is .selected in the right-hand control area. From the property submenu 
which appears below, three different property tests were chosen in Mode 3. Red 
highlighting in the control area shows the set currently selected, i.e. which Relation, which 
Attribute, and which Mode. It is possible to change modes between proofs (point 6 in 
section 9.3.1) as was shown in Screen Display 9.4. 

Notice that the user opted to do these exercises without the support of a graphic aid. 



The FRAMES Practice Environment 

I s Q a Heak total order on Z? 

To be a weak total order . Q nus t be 

ref l xi ve 

1 hcton" 

Screen Display 9. 7 

175 

} 

) 2: -/. -

i '2'. Xl)Z Kn 

i ~. ::. . X R 

FRAMES is equipped to test for a particular Kind of relation (point 7 in section 9.3.1) by 
analyzing a specific set of properties. If the relation satisfies each of them, then it is a 
relation of that particular kind. 

Selection of the attribute kind produces a submenu for kind (see Screen Display 9.1 O). 
On selecting a particular kind, in this case, WTO (a weak total order analysis for Q), a 
question component appears, which asks the user to name the necessary properties. The 
user1esponseisjudged: 

• Certain spelling errors, e.g. "antisimmetric", are accommodated 
• Wrong answers are replaced by correct answers, e.g. "transitive", in red to focus 

attention. 



The FRAMES Practice Environment 

Antis9mmetr9 

Otf. phrHtd ;os (!)or (2) 

Let R be o reJotion 
on a set X. 
Ris anti~ic 
lefW: 
lff Nheneuer X"'J 

•(x,9) ER 
then (9,x) f R. 

and . is (y.x) 
rl { ount er 1>x<1np ~ 

Suppose '~ and v I 
~I 1 - j e >~ 

~ l ie 
I I 1 ----

r PflexiuP not .11d i 1J111wt1 11 

Screen Display 9.8 

176 

> ~ 
~ i x 1,1 z k n t:·.= .. 'J: XR 

• PQSTUIJTR 
i ( x x~~ ( x . 1,d ( x • z ) 
· (1,1 . x) (y.y) (1,1.z): 

This follows on from Screen Display 9.7. The system "knows" the set of specific 
properties for each kind, and automates presentation of the relevant property tests. Mode 
can be changed between tests by the user, as was done here, where the reflexivity test 
was done in Mode 1 and the antisymmetry test in Mode 3. 

The first proof component overlays the question component.shown in Screen Display 9.7, 
except for the top line which remains visible as a heading. 

Should any property test turn out negative, it is clear that the relation is not of that kind, 
and the composite analysis is terminated immediately with an apt conclusion. 

In doing the test for antisymmetry, the user accessed Help for definitions and clicked on 
the antisymmetry elaboration, which appeared as an overlay. 

• 



The FRAMES Practice Environment 177 

9.3.2 CONTENT OF FRAMES 

Mathematical set notation (see section 2.4.2) is used to list the required subject-matter of 

FRAMES, i.e. the relations, attributes and special kinds of relations shown in Figure 9.3. 

Seven relations are introduced, but only two are comprehensively treated in the prototype. 

A mnemonic occurs in the name, RA M control, given to the control structure, reminding the 

user to select each exercise by choosing a Relation, an Attribute and a Mode. The R A M 

control structure is illustrated in Screen Displays 9.9 and 9.1 O. 

1. The Relations selected for exercises, each one a situational problem, comprise the set: 

{P, Q, S, T, V, W, TR} where: 

P is the set onZ of all (x,y) pairs such that x ~ y 

(the domainZ is the set of integers, the set { ... ,-2, -1, 0, 1, 2, ... } ). 

Q is the set onZ of all (x,y) pairs such that x - y = 3k 

i.e. the difference between x and y is a multiple of 3. 

S is the set on IP of all (x,y) pairs such that x I y 

i.e. x is a factor of y, and y is a multiple of x 

(the domain IP is the set of positive integers, the set { 1, 2, 3, ... } ) . 

T is the set on '.PU of all (A,B) pairs such that A !;;;;; B 

i.e. A is a subset of B 

(the domain '.PU is the universal set, the set of all sets). 

V is the set on 0 of all ( C , ~ ) pairs such that ad - be = O 

i.e. x and y are equivalent fractions 

(the domain 0 is the set of rational numbers, the set of numbers that can be written in 

the form -e- where a,b E Z). 

Wis the set onZ xZ, or on the set of two-letter words, of all ( (a,b),(c,d)) pairs 

such that either a< c 

or a = c and b ~ d 

i.e. numeric order of two-digit numbers, or alphabetic order of two-letter words. 

TR (Tennis Rankings) is the set on TP, the set of tennis players, of all (x,y) pairs 

such that x is ranked higher than y. 



The FRAMES Practice Environment 178 

2. The Attributes available for learners to "VIEW or DO" are: 

{Examples, Graphic, Property, Kind} abbreviated to {Eg, Graph, Prop, Kind} where: 

The Example attribute gives the learner the opportunity to synthesize example members 

of the current relation. 

The Graphic attribute shows a visual representation of the relation: 

The Property attribute presents proofs of: 

{reflexivity, irreflexivity, symmetry, antisymmetry, transitivity, trichotomy}, 

abbreviated in the right hand control area to {Ref, Irr, Sym, As1, As2, Tra, Tri}, 

where As1 and As2 are tests for antisymmetry, according to its first and second 

definitions respectively. 

The special Kinds of Relations occurring are: 

{equivalence, weak-partial-order, weak-total-order, 

strict-partial-order, strict-total-order}, 

abbreviated to {Eq, WPO, WTO, SPO, STO} respectively. 

(Screen Display 9.1 O shows the submenu that presents these options) 

A special kind of relation is one for which certain properties hold, i.e. a specific subset 

of the properties should be satisfied. For each kind the necessary properties are listed: 

Kind of Relation Necessary Properties 

Eq {Ref, Sym, Tra} 

WPO {Ref, Asm, Tra} 

WTO {Ref, Asm, Tra, Tri} 

SPO {Irr, Asm, Tra} 

STO {Irr, Asm, Tra, Tri} 

(Asm could be As1 or As2) 

The knowledge of these five definitions is inherent in the system's knowledge base (see 

section 9.3.6), so that it can check the student's response and select the relevant set 

of exercises for the composite analysis. 



The FRAMES Practice Environment 179 

3. The Modes for doing property and kind exercises are {1, 2, 3} where: 

Mode 1 presents the user with a read-only proof, 

Mode 2 is guided practice presenting a structure in which the learner completes blanks, 

Mode 3 intersperses linking-structure with blank lines on which the learner inputs a 

0.1. Y. (do-it-yourself) proof. 

Figure 9.4 extends the general structure chart of Figure 6.2 to the particular design of 

FRAMES, showing the components that comprise its instructional content. 

Introduction 
and menu 

FRAMES 

Body of practice 
environment 

Graphic Kind 

Example Property 

Figure 9.4 Structure Chart of FRAMES 

Exit 



The FRAMES Practice Environment 

x P y iff x.!y 

X Q. IJ iff 
x-IJ =Multiple 

of 3 

xSy itl 
x =factor of IJ 

flTB iff fl ~ B 

-6-1.1 ~ itl 
ad-bc = 8 

abllcd if£ 
ab precedes cd 
in order 

Properties 
of relations 
Kinds of 

Screen Display 9.9 

180 

This is the FRAMES main menu screen, listing the relations, attributes and modes 
described in section 9.3.2. 

The user composes a frame/component by clicking on: 

• a Relation 
• an Attribute 
• a Mode. 
• <GO>, to activate the selection. 

Each use of a component is referred to as an instructional transaction. Once into the 
system, further selections are executed using the reduced menu in the right-hand control 
area and shown in the preceding Screen Displays. 



The FRAMES Practice Environment 

xPy ;rr x.5.y 

xQ.11 irr 
x - 11 = Hulliple 

or 3 

XSIJ ill 
x =factor or !I 

RTB iff ft t;;; B 

~ u -a iH 

ad - b e = 8 

ab Mcd iH 
;ib precede 5 cd 
in order 

181 

Click on Elil:] options to compose selected 
frame. Vou ma9 make changes. When certain 
click on GO or press Enter to continue. 

Screen Display 9.1 O 

Here is the main menu after composition of the selected frame, but before activation of 
<GO>. 

Clicking on Attributes produces an elaboration of the selection. Selection of Properties 
of relations and Kinds of relations produces lower-level submenus, showing the 
expansions set out on page 178 and portrayed in Figure 9.4. Clicking on a Mode, in this 
case Mode 2, sets out an elaboration of the strategy used by that mode. 

Selected options are highlighted in red. 



The FRAMES Practice Environment 182 

Screen Display 9.11 

Whenever the user's selection calls in a component of a new/changed relation, a 
"definition blackboard", describing the selected relation appears at the top left. The 
relation definitions are similar to those on page 177. 

This Screen Display is not an official screen in the FRAMES practice environment. It was 
created to collate all the "blackboards" for interest's sake, and has been left in place as 
part of the <Exit> path. 



The FRAMES Practice Environment 183 

9.3.3 THE COMPONENT-BASED STRUCTURE OF FRAMES 

Frames is designed in the spirit of Component Display Theory (sections 5.4.5 & 6.7). In 

Chapter Six (sections 6.8. 7, 6.9.1 & 6.9.2) the researcher's decision to design FRAMES as a 

component-based system was outlined. The three modes, read, guided-practice, and DIY, 

are similar to Merrill's remember, use and find performances respectively. Other performances 

required of students are the contextualization of definitions and the synthesis of examples. 

The type of content to be learned includes Merrill's facts and concepts (for example the 

definitions), procedures (the proof- and disproof-techniques used in tests for properties), and 

principles (the rules used in individual tests for properties, and in the classification of the 

overall relation as a particular kind). The final envisaged FRAMES system will incorporate an 

extensive library of components: 

7 relation definitions 

7 visual aids 

7 example-synthesis exercises 

7 relations x 6 properties x 3 exercise-modes 

Total 

= 7 components 

= 7 components 

= 7 components 

= 126 components 

= 147 components 

There are actually 21 more, making a total of 168, since the antisymmetry property has two 

alternate definitions and the test can be done in two different ways, termed antisymmetry (1) 

and (2). Since antisymmetry(2) is also to be done for seven relations in three different modes, 

it adds 21 extra components. 

The prototype includes all seven relation definitions, seven visual aids, and six example­

synthesis components. The property exercise components have been designed for three of 

the seven relations and programmed for two. There are also ancillary components, such as 

the nine definitions of properties and the twelve mathematical terms available as <Help> 

facilities. In total the prototype FRAMES comprises 69 components. 

By supplying a test for each property for every relation, a rich environment of examples and 

non-examples is provided. It is unlikely that a single student would, at one sitting, tackle all 

the 126 property components in the final package, but whatever the preferred learning style 

or stage of learning, material would be available to meet his current needs. 



The FRAMES Practice Environment 184 

User-control permits the learner to select his own components, both with respect to content 

and instructional strategy. Figure 9.5 categorizes the components of FRAMES according to 

Merrill's performance-content matrix. 

w 
(.) 
z 
<( 

find :E 
Property- Exam~le 
mode3 synth sis 

a: 
0 
LL a: use w 

Definition Help - maths, Property-
Help - definitions, 
Example syn-

blackboard Graphic aid mode2 thesis, 
CL Kind of relation 

LL 
0 
...J remember 
w 

Definition Graphic aid Property- Kind of relation 
blackboard mode1 

> w 
...J fact concept procedure principle 

TYPE OF CONTENT 

Figure 9.5 A Performance-Content Matrix for the Components of FRAMES 

Use of a component by a user is called an instructional transaction. 

The goals of the practice environment are general domain familiarity, exposure to worked 

examples, and experience in independent exercises. To achieve these, the environment 

should incorporate rich variety in instructional transactions, and the broad coverage of the 

matrix in Figure 9.5 shows that this is the case. 

Many of these components have been illustrated in previous Screen Displays, for example, 

"definition blackboards" (Screen Display 9.11), example synthesis (Screen Displays 9.3 and 

9.5), Modes 1, 2 & 3 (Screen Displays 9.1, 9.2, 9.4, 9.6 & 9.8), and kind of relation (Screen 

Displays 9.7 & 9.8). Screen Displays 9.12 and 9.13 focus on graphic aids and <Help> 

elaborations. 



The FRAMES Practice Environment 185 

.. - .. 
• 2.t - :t.6 
• ll - 11 
• • 

Screen Display 9.12 

Each relation is illustrated by a graphic aid. Visualization plays an important part in 
facilitating perception, application and retention of a concept or principle (see Figure 9.5). 

As with the definitions, a screen was compiled comprising all seven graphic aids. For 
interest's sake, it has also been left in place on the <Exit> path. 

Notice the colour coding in each graphic aid, relating the text or mathematical 
representation to the diagram. 



The FRAMES Practice Environment 

et of all inte r s 
npt is s lh nu b 1 s 

... 2. - 1, . 1. 2, ... 

Screen Display 9.13 

186 

In Figure 9.5 Help components are positioned in the cells relating to the use or application, 
level of performance. In FRAMES they provide situational support for problem solving. 

Screen Display 9.2 shows the two kinds of Help available, namely, Definitions and Math­
symbols. Screen Display 9.8 shows, as elaboration, a definition of the antisymmetry 
property, and the screen above demonstrates an expansion of a mathematical notation, 
namely, the set! of integers. Should the user require a different elaboration, he clicks on 
the close slot at top left of Z to clear the current elaboration then accesses another. 
Clicking on the close slot at top left of a Help menu clears the entire overlay menu. 

Also of interest in this screen is the portrayal of the first stage in a Mode 2 property test, 
presenting the two definition blocks which must subsequently be related to one another. 



The FRAMES Practice Environment 187 

9.3.4 SOFTWARE ENGINEERING METHODOLOGY APPLIED TO FRAMES 

Software engineering entails the development methodology of a system. Analysis and design 

in conventional SE includes extensive attention to data- and process flows. In the CAI milieu, 

there is little data to flow, and in the FRAMES environment, most processes (instructional 

transactions) are complete in themselves. The major processing activities are the calling of 

components (usually by the learner; occasionally by another component) and the assessment 

of learner-responses. The selected life-cycle model, namely prototyping, was discussed in 

section 9.1. The SE methodology followed is the object-oriented design paradigm. 

The team approach 

The team approach advocated in section 3.3, although desirable in courseware engineering, 

was not used because of the nature of this project as part of a post-graduate study course. 

A programmer coded the prototype, but otherwise it is the unaided work of the researcher, 

and appropriate for submission as partial fulfilment of the requirements for the MSc degree. 

The object-oriented design paradigm 

The object-oriented paradigm, viewing a domain as being comprised of entities and inter­

relationships, was discussed in section 2.2.2 and identified as being appropriate for CAI. The 

OOP projects beyond the pure software components and incorporates features from the 

environment. Objects play a unifying role as top-down analysis and bottom-up program 

development occur simultaneously, with the activities of analysis, design and implementation 

merging into one another. It is highly compatible with prototyping. As was stated in section 

2.5.2 and in the conclusion to Chapter Two, FRAMES, with its innovative structure and content, 

lends itself to an object-oriented approach. 

Software engineering representations and tools 

SE representations and tools facilitate the analysis process. Various analysis and design tools 

introduced in section 2.4 can be used to represent the structure and objects of FRAMES. 

Since the domain objects in ISO are quite different from those in conventional Information 

Systems (ISs), the application of SE tools tends to be somewhat unconventional. 

Booch Diagrams (see section 2.4.1) depict the problem-domain objects, their operations, and 

messages between them. Objects are shown in vertical rectangles, carrying an inset oval to 

identify the object and small horizontal rectangles to identify its operations. Service objects 

appear in vertical rectangles without inset ovals. Lines between objects signify message 

connections. Figure 9.6 represents the objects, operations and messages of FRAMES. 



l *Relation 

Relation 

Create 

Display definition 

Display graphic aid 

Provide environment 
for synthesis of 
examples 

Assess trial Input 

* Help faclllty 

__.., 
Display theoretical 
definitions 

I 
Display meanings 
of math-symbols 

I 

Figure 9.6 

i *Property 

Property 

Create mode 1 

Create mode 2 

Create mode 3 

Prese.nt mod•~ 
exercise _ __J 

Present mode 2 
exercise 
Assess responses 

Prese~ mod. e 3 : exerctse 
~es Assess resp<>n~ 

* Kind of Relation 

Kind of Relation 

Introduce 

Conduct series 
of exercise;~ 

Conclude 

t 

Human User l 
...._ ..... 

Human user 

Select R (Relation) 

Select A (Attribute) 

Select M (Mode) 

Respond as required 

Use help facilities 

Knowledge Base (KB) 

Compare synthesized 
examples with 
correct atructures 

Compare counter­
examples with appro­
priate structures 

ompare user's entered 
properties for a Kind of 
Relatlon with correct set 

i 
The Objects, Operations and Messages within FRAMES, illustrated by a Booch Diagram 

188 



The FRAMES Practice Environment 189 

The problem domain objects are: 

1. Relation: 

The relations available to the student for problem-solving exercises were defined in 

section 9.3.2. The relevant operations include the necessary step/s by the designer, 

as well as the its use by the learner. 

2. Property: 

The properties for which the relation must be tested are listed in section 9.3.2. 

Assessment of the learner's response and determination of appropriate feedback 

accounts for a major share of the effort in producing FRAMES. 

3. Human User: 

The learner participates actively, calling components by R A M control. The calls are 

shown as messages. In this respect the system differs notably from conventional data 

processing where modules call each other. 

4. Kind of relation: 

These are outlined in section 9.3.2. The object kind communicates with the object 

property, calling in the necessary property tests. 

The service objects are: 

1. Help facility: 

This comprises a library of theoretical definitions and mathematical elaborations to be 

displayed on demand. Help is illustrated in Screen Displays 9.2, 9.8 and 9.13. 

2. Knowledge base (KB): 

The required knowledge, described in section 9.3.6, is knowledge of the composition 

of each kind and of the internal structure (relationship between first co-ordinate and 

second co-ordinate) of each relation. Messages are passed between the KB and other 

objects in the response-judging task. The manipulations involved in checking 

mathematical interrelationships are the closest FRAMES comes to conventional data 

processing. 



The FRAMES Practice Environment 190 

9.3.5 INSTRUCTIONAL DESIGN AND FRAMES 

Classical ID emphasises assessment of needs and goals, explicit objectives, and a sequential, 

step-wise instructional strategy geared specifically towards the achievement of those 

objectives. Branching is used to facilitate differentiation between individual learners. Testing, 

both pre-testing of prior knowledge, and assessment-testing after the instruction, is of prime 

importance. 

FRAMES is more in line with the current shift in emphasis towards flexible educational 

software. It is essentially intended for the presentation of instructional components that offer 

students the options of perusal, application of principles and skill-practice. However the 

classic ID principles for CAI apply to its design. The ten design features outlined in section 

6.5 are listed one by one, followed by a brief description of their application in FRAMES. 

1. Instructional approach 

This was discussed and illustrated in section 9.2.3 where it was stated that the 

instructional philosophy of FRAMES was to be primarily cognitive, but that aspects of 

behaviourism play important roles. Some further practical design implications of 

cognitive theory, as applied in FRAMES, are: 

+ The load on working-memory is variable, in that the learner can reference relevant 

definitions and rules via the <Help> facility shown in several Screen Displays. 

+ Cognitive theory aims for learner-comprehension of a concept by integration with 

existing knowledge structures or schemata. This is often achieved when a 

learner can backward-chain from the goal. When asked to demonstrate or prove 

something, the learner should be able to determine the "second-last step", i.e. 

a necessary and sufficient condition, which, if true, would make the overall goal 

true too. Mode 2 encourages this kind of reasoning: 

(a) The proof forces retrieval of prior knowledge by commencing with a fill-in 

definition of the appropriate property. This definition is the general case 

for a relation R on a set X, so as to encourage the learner to move from 

the general to the particular, as he applies the abstract definition of the 

property to the concrete definition of the relation (see Screen Displays 9.13 

and 9.14). 

(b) The next step is the R. T.P. (required-to-prove) step, i.e. the learner's aim, 

the subgoal/s to be proved in order to achieve the main proof. A 

completed R.T.P. step is shown in Screen Display 9.14. 



The FRAMES Practice Environment 191 

(c) This is followed by the actual Proof, which is done step by step. In each 

line the learner completes several blanks and, in order to keep the 

procedure on track, judgement occurs at the end of each major step. The 

student is given two chances for each step; should the student-response 

still be incorrect after the second try, the system supplies the correct 

values, terms, etc. In such cases the underscore place marker remains in 

place (see Screen Display 9.14) to denote steps where misconceptions or 

errors occurred, and to distinguish them from those which the learner got 

right independently. 

A further practical illustration of implementation of behaviourism is: 

+ Cuing and fading: 

(a) The line lengths for fill-in responses in Mode 2 serve as cues to the type 

of response required; this is shown in Screen Display 9.14. 

(b) Mode 3 provides long lines for each step, deliberate fading of the cue, 

which can be seen in Screen Display 9.6. 

2. Menus and directions 

FRAMES commences with a series of introductory screens: 

1 . Title screen 

2. A VIEW of what YOU can DO with FRAMES (Screen Display A.1 in Appendix A): 

Outlines user-control and briefly introduces the RAM system. It serves as an 

advance organiser for the subsequent screens. 

3. What YOU can DO with FRAMES (Screen Display 9.14): 

• Expands on previous screen, defining the seven relations and elaborating on 

each attribute and mode, and 

• Offers a branching option to: 

4. Demo screens (Screen Display 9.18 and Screen Display 9.19): 

Demonstrate the three modes of doing exercises (eliciting user-interaction in 

Modes 2 and 3), encourage practice with <Help>, and require the entering of 

mathematics characters by mouse-clicking on the symbol pad. The demo 

returns control to the calling screen. 



The FRAMES Practice Environment 192 

5. Menu (Screen Displays 9.9 and 9.1 O): 

User clicks on RAM, then on <GO> to call a component. Should the selected 

attribute be property or kind, a lower level menu appears. 

The two kinds of Help components, definitions and mathematical aid, which are called 

in from the right hand control area, appear as overlay menus on the left and are shown 

in Screen Display 9.2. Using these menus, the user can click on the definition or 

mathematical symbol he would like elaborated. Elaborations of definitions and 

mathematical notations are shown in Screen Displays 9.8 and 9.13 respectively. 

3. Layout and text 

The screen is subdivided, with the functional area on the right dedicated to user-control. 

Having called the first component via the main menu, the user can access further 

components using R A M control (Relation, Attribute, Mode) in the mini-menu on the 

right, followed by a click on <GO>. The upper-left region is devoted to the definition 

"blackboard" of the most recently called relation, and the space below it is reserved for 

the corresponding graphic aid component, when called. Central screen is the working 

area where the main action happens. All other interaction and exercise components 

appear here and a step-scroll mechanism moves each component up as the next is 

called. Depending on their depth, up to three components can be simultaneously on­

screen. Elaborations called by <Help> overlay the components on the left, and can 

be cleared by clicking on the close slot at their top left (see Screen Display 9.13). 

4. Colour 

Consistent colour standards are used in the components: 

+ Definitions - a "blackboard" appearance, with red and white "chalk". 

+ Ref and Irr properties - black and white fonts on red background. 

+ Sym and Asm properties - blue and red fonts on white background. 

+ Tra property - black and white fonts on dark blue background. 

+ Tri property - black and yellow fonts on sky-blue background. 

+ Kind of relation - black font on yellow background for introduction and 

conclusion. 

+ Example synthesis - black and white fonts on green background. 

The question heading each property test is in bold black font. Reverse video is used 

at the end of each Mode 1 proof to emphasize the conclusion (Screen Display 9.16). 

Colour coding is used in the graphic aids to relate each diagram to the associated 

formula or text. 



The FRAMES Practice Environment 193 

5. Graphics and animation 

Visualizing the relationship between the first and second co-ordinates of a relation helps 

the learner gain a feel for the domain. The graphic aid components depicted in Screen 

Displays 9.12 and others portray diagrammatic representations of the relation's 

definition. 

Graphic icons are used to indicate the types of interaction in Modes 1, 2 and 3. 

Student participation in Mode 2 and 3 proofs entails the entry of mathematical symbols 

and characters not available on the keyboard. Both these modes provide a symbol 

pad, technically termed a soft keyboard, in the right-hand functional area. This is shown 

in Screen Displays 9.1 and 9.2 respectively. Mode 3 requires an extended pad 

including objects such as (x,y) pairs. These characters are imported into the proof by 

mouse-clicking. 

6. Interactivity 

The first aspect of interactivity is control. The learner holds total control of his practice 

experience, and may select from the available components. He may choose to re-visit 

the same problem, or an aspect of that problem (e.g. a specific attribute) in various 

modes to enhance cognitive processing. Conversely, the learner may work on different 

problems, tackling, for example, the same property of different relations to obtain 

multiple perspectives on that property. 

The second aspect is active participation. FRAMES permits interactivity at a level far 

surpassing yes/no, multiple choice, and simple fill-in-the-blank answers. Mode 2 

requires the user to fill in several blanks in each step of the proof, and in Mode 3 the 

user supplies the entire proof, one step at a time. 

7. Individualization 

FRAMES incorporates individualization, but not personalization (i.e. addressing the user 

by first name). The user-control system allows the learner to plan his own learning and 

practice experience, in terms of content, sequence, quantity and instructional style. 



The FRAMES Practice Environment 194 

8. Question/Answer/Feedback process 

There are very few questions as such in FRAMES. Instead, the learner responds by 

participating in example synthesis and in mathematical proofs. As described, he 

completes the proofs in Mode 2 by filling in the blanks, and in mode 3 by supplying 

entire steps. Each step taken by the learner is monitored, and each student-response 

followed by a system-response in the form of appropriate feedback. Forethought has 

been given to typical errors, and remedial feedback prepared, as shown in various 

Screen Displays. 

In a multiple fill-in-the-blank situation, the backspace key permits a user to backtrack 

over fixed text to rewrite in previous blanks. Once an answer has been accepted as 

correct, however, it is protected and a user cannot backspace over it. A response 

judged incorrect is treated by appropriate feedback, and the wrong answer replaced 

by the correct version, so that the user can continue. 

Although a mature learner appreciates total freedom in determining his proof strategy, 

there is no alternative in the design of FRAMES other than to work according to a 

relatively fixed solution path, because the assessment of open-ended answers is a 

complex task, and the proof strategies entailed are fairly rigid, permitting only minor 

deviations in terms of sequence and structure. Nevertheless, response judging is one 

of the major processing events in FRAMES, as the learner's input is assessed. 

Provision is made for correct alternative answers and alternative spellings. 

9. Motivation 

FRAMES engenders intrinsic motivation. The learner should obtain satisfaction from 

organizing his own learning experience and gain increased self-confidence as his 

performance improves. There are no "bells and whistles", such as themes or rewards. 

10. Complementary and supplementary media 

FRAMES complements the text book and the study guide for COS101-S. To facilitate 

use, it is accompanied by a how-to-use card. 



The FRAMES Practice Environment 

What YOU can DO in FRAMES 

xPOJ itt x .i \j 

x Q.'J itt 
x- IJ = t1Ult ipl e 

of 3 

XS\I iff 
x = £actot' of g 

ATB itt R kB 

~ u ~ iff 

ad - bc=e 

abUcd iff 
ab precedes cd 
in order 

Screen Display 9.14 

195 

On starting up the FRAMES practice environment, the user is presented with the 
introductory screens described in point 2 of section 9.3.5. The third screen, shown above, 
appears before the main menu, and sets the scene for it due to its analogous appearance 
and elaboration facilities. Its other main purpose is to offer access to a demo of the three 
instructional modes. Screen Displays 9.18 & 9.19 describe the demo. After using the 
demo, the user returns to this screen. 

Note the elaboration of a graphic aid and the explanation of 0.1.Y. 



The FRAMES Practice Environment 

a nli s ymmetri c(1)? 

If XII) and (x,y) E P, then is 

let x t I} and (x,9) E :S ie x :s: I} 

But x I I) ie x < I) 

ie I) > x 
ie I)~ x ie (l),x) ~ P 

Thus P is antis9mmetric. 

Is P anlisymmetr i c (1)? 

of P: 
p iff X:'>!) 

X,I) E ~ 

Relate the definitions: 

Def. of antisl}mmetrl} 1 
If x;ty and ( x , I) ) E R 

then (l),x) ~ R 

R T P · If x t 1J and (x,9) € P, 
then (IJ , x) r/. P 

if x t I) and ~.::. .~: then 
x t I) and _ means 

i e I} i e 
ie ( ) 

p is 

Screen Display 9.15 

Mode 1 perusal is followed by Mode 2 practice of the same problem. 

196 

• • 
Eo;;;;)lf//.LJ­

=:s:<>?:;!} 

;trf.X!}Zl::m 

fP~ Z IQ IR X R 

STUWTR 

Exit ""'nu 

The first stage of a Mode 2 proof presents two definitions to be related to each other as 
described in Screen Display 9.13. The second stage, the R.T.P. (required to prove), 
entails supplying the content ·for an infrastructure. This forces the student to consider his 
overall aim, so that he can work in a goal-directed manner. The proof is shown, 
completed up to the end of the R.T.P. stage. 

The actual proof remains to be done. Prior context-setting and goal-definition put the 
learner in a position to work in an efficient and focused fashion. Note that the number of 
spaces cue the user as to the exact length of the answer. After every step the student 
has a second chance, if his first answer is wrong. Should the second answer also be 
wrong, the correct response is supplied, so that he can continue, and the underscore 
place-marker remains in place to denote that an error occurred. See ~ ~ y_ in the third line 
of the R.T.P. 

Two further points about proof-completion: 

• The red place-marker is a cursor. 
• Use of the symbol pad (soft keyboard) for entry of mathematical characters has bee 

mentioned. This screen shows the mouse-arrow in position at .$.• the most recentl 
clicked-in character (second-last character in line above Proof). 



The FRAMES Practice Environment 197 

Is P a 1o1eak par-t ia 1 or-der 

Is P antisymmetric(l)? 

If XII) and (x , l)) E: P, then is 

Let x # I) and (x,l)) E ::> ie 
But x I y ie x < I) 

ie I) > )( 

ie I) '$ )( ie 

Thus P is antisl)mmetric. 

Screen Display 9.16 

on Z? 

x ::;: I) 

(l),X) (/_ p 

.) \( ii l. 3-

= :S () 2: ;ol )-

~flXl)Zkm 

rPINZIQIRXR ' 

PQSTUW 

Colour standards are described in point 4 of section 9.3.5. All the components have 
appeared in previous Screen Displays, except the transitivity property shown above. This 
screen also displays Mode 1 conclusions in reverse video. 

A further aspe.ct of note is the treatment of a Kind analysis. Screen Displays 9. 7 and 9.8 
showed a WTO analysis of relation Q, which was found not to be of that kind, and 
terminated immediately a test turned out negative. The WPO analysis of P in this Screen 
Display shows that P meets all the requirements and is a WPO. The analysis involved 
tests for reflexivity, antisymmetry and transitivity. The reflexivity test has been moved off­
screen, but the others are shown, along with the introductory question and conclusion for 
a Kind. As has been pointed out, conclusions are not pre-specified or hard-coded, but 
determined by FRAMES during its composite analysis of multi-properties when testing for 
a particular kind. 

FRAMES has a step-scroll mechanism, which builds up the central screen-display as new 
instructional transactions are initiated by the student. It moves components off-screen 
when full. Centre screen can generally accommodate two components, and sometimes 
three (see Screen Display 9.6) . Selection of the Kind option clears the screen and starts 
at the top. Should a user wish, at any time, to start with a clear screen, he can do so by 
using the main menu, which can be clicked-in from bottom right. 



The FRAMES Practice Environment 198 

9.3.6 THE FRAMES KNOWLEDGE BASE 

FRAMES needs both macro-knowledge and micro-knowledge. 

+ The macro-knowledge relates to the characteristics of the five special kinds of relation, 

knowing which set of properties must test positive for each. It judges the learner's 

version of these properties, and then guides him step by step through the composite 

proof. 

+ The micro-knowledge relates to the mathematical relationship within each domain 

element, i.e. knowledge of the internal structure of the ordered pairs in each of the 

seven relations. This knowledge is used when the system judges the learner's 

examples, entered in the example-synthesis exercise, and also when it judges his 

counter-examples in a proof. It knows the correct relationship between the first and 

second co-ordinates of the ordered pairs, and tests the user's entries against this 

structure. 

Screen Displays 9. 7, 9.8 and 9.16 show the system's knowledge of the characteristics of the 

wro kind. The introductory question and conclusion are not hard-coded; the text, reasoning 

and conclusion of each composite analysis for a kind are not pre-specified, but are inserted 

at use-time into a parameterized structure, using underlying knowledge of the requirements 

for that kind. This would facilitate inclusion of new relations. The intelligent feedback to 

incorrect calculations in Screen Displays 9.3 and 9.5 demonstrates knowledge of the 

mathematical inter-relationships inherent in each relation. 



The FRAMES Practice Environment 199 

9.3.7 SUMMARY OF DESIGN ACTIVITIES 

Type of software: 
Component-based practice environment. 

Subject-matter: 
Relations - domain perception, their properties and special kinds. 

Nature of instructional transactions: 
• some for passive perusal, 
• others facilitating perception, and most 
• ensuring active participation. 

Basic components for each relation: 
• definition, 
• visual aid, 
• example-synthesis, 
• seven properties, each in three modes, 
• five analyses for kind. 

Help components: 
• nine definitions, 
• twelve math-symbol elaborations. 

Courseware Engineering using SE principles: 
• object-oriented design paradigm, 
• appropriate representations. 



The FRAMES Practice Environment 200 

9.4 THE FRAMES PROTOTYPE 

Some prototypes are implemented by an author-developer actually designing on-screen. 

This methodology was not followed in FRAMES, where the project was too complex and 

comprehensive for omission of traditional design. Several conceptual ideas were tested for 

feasibility and aesthetics by the author-designer and programmer sitting together at a 

computer, but all components, instructional transactions, feedback and control strategies were 

designed on paper by the researcher before implementation by the programmer. 

This section outlines the features of FRAMES not incorporated in previous sections. It 

describes the prototype, refers to installation instructions, suggests a walk-through path, and 

discusses control and usability factors. The prototype is used to implement a "design-and­

refine" paradigm, and the section goes on to describe its role in the refinement of 

requirements and design. 

9.4.1 THE NAME "FRAMES" 

A FRAMES user makes three decisions each time he selects a component to "view or to do": 

1. Which Relation to choose: When the user selects a relation as the current problem, its 

comprehensive definition component appears on-screen in a "blackboard" form. 

2. Which Attribute to view, apply or test: The attributes options include viewing the 

graphic aid, synthesizing example members for the relation, doing an exercise to test 

a property of the relation, or testing several properties to determine the kind of relation. 

Should a learner opt to test a property of the relation, he is offered six from which to 

choose; should he select the option to test for a particular kind, he is shown five kinds 

from which to choose and is then presented with a composite problem, integrating the 

appropriate property tests for that kind. 

3. In which Mode to do the exercise: Mode 1 presents a read-only proof; Mode 2 offers 

guided practice, giving the learner the opportunity to fill in blanks in the definition, in an 

R.T.P and in final proofs; Mode 3 (DIY) encourages a more independent approach 

where the learner supplies complete steps of a proof for line-by-line assessment. 

In CAI terminology a frame refers to a screen presentation. The acronym above, R A M, was 

set within frame to name the system, "FRAMES". Its frames, however, are not full-screen 

presentations, but window-style components, combining to form a screen display. 



The FRAMES Practice Environment 201 

9.4.2 THE SCREEN OBJECTS OF FRAMES 

Coad & Yourdon notation sets out the attributes and services of an object class. It is 

particularly useful in modelling both concrete and abstract objects, and not just direct classes 

of software objects. Figure 9. 7 represents and models interaction (messages) between, the 

user, the functional area of the screen, the concept of exercise practice, and certain features 

of the relation description. None of these correspond precisely to previously identified objects. 

Description of 
Relatlon 

Definition 
Graphic aid 
Help overlays 

Display 

0 

Exercise Practice 

Relation 
Attribute 
Mode 

Display 
Response 
Response judgment 
(Feedback) 

User 

Level of expertise 
Preferred learning style 
Self confidence 
Stage of study 
Browse 
Synthesize examples 
View graphic aid 
Do single exercise by 

• reading (mode 1) 
• guided practice, 

filling in blanks 
(mode 2) 

•independently, DIV 
(mode3) 

Do integrated exercise 
Get help 

• definitions 
• elaboration of 

math concepts 

Figure 9.7 

Functional Area 

Menus 
Graphic icons 
Symbol pad 
Help facilities 

Selection 
Indication 

The Screen-related Objects of FRAMES 



The FRAMES Practice Environment 202 

FRAMES screen layouts have clean lines and a well-structured aesthetic appearance. The 

right hand side is a functional area dedicated to control options and utilities. The R A M 

options are available as a mini-menu in a curtailed control area. The proofs in modes 2 and 

3 require mathematical manipulations, so the functional area includes a symbol pad of 

mathematical operators and notations on which the user can click to enter them in his proof. 

Access to the <Help> components is also controlled from this right hand functional area. 

At the extreme bottom right are the <GO>, <Menu> and <Exit> buttons. 

The left hand region of the screen is devoted to description of the current relation, displaying 

the definition 'blackboard" and, if called up by the user, the graphic aid which portrays that 

relation visually. Further facilities available are <Help> utilities that present concept definitions 

and mathematical definitions on request. These appear as overlay menus and elaborations 

on the left, and can easily be cleared. 

The central region presents the user's requested components. He can select several relating 

to the same relation, in which case the left region remains static, while the chosen exercises 

scroll up the central region. Selecting the kind of relation option automatically produces the 

necessary series of tests. Changing the relation produces a new screen configuration as the 

new definition appears. The 0.1.Y. (do-it-yourself) exercises in Mode 3 demand considerable 

independent manipulation from the student, and are accompanied by a more extensive 

symbol pad on the right. The example-synthesis exercise occurs in a standard mode only. 

Screen Display 9.17 shows how Figure 9.7 is in congruence with the actual FRAMES screen 

design, subdivided into distinct left hand, central and right hand functional areas. 



The FRAMES Practice Environment 

Def . of Q: 
(x ,y)EQ iff x-9=3k 
where x,y, k E Z 

Relate the definitions: 

Def. of antisymmetry 1 
If xi'9 and (x ,9) E R 

then (9,x) rt. R 

R.T.P.: If x ~ 9 and (x,9) E Q, 
then (y , x) fl Q. 

Proof : Take a £!!!!.!:!!~r=~.!:!~!!!J!!g : where x19 
22- 10 = 12 = 4 ( 3 ) ie (22 , 10 )EQ 

but ( ) ie ( _ , __ )EQ 
Q is 

Screen Display 9.17 

203 

• 
E~)'lf//.13-

=s < >2'. ;if J­

$ fl x 9 z le m 
IPINZQIRXR 

P~ S T U W TR 

Exi~ nenu GO 

Most of the screen objects listed in Figure 9. 7 are encountered in this Screen Display. 

The left-hand functional area, dedicated to Description of the Relation, shows a graphic 
aid and the definition 'blackboard". Use of <Help> is not depicted here, but is shown 
in Screen Displays 9.2, 9.8 & 9.13. 

The central region, devoted to Exercise components, shows two instructional transactions. 
The second is incomplete, showing a user-response to a step in the proof and the 
feedback that resulted from its judgement. This screen demonstrates two different kinds 
of mathematical proof techniques: 

1. A proof for the general case, used to prove that something is true. 
See the proof that Q is reflexive. 

2. A counter-example disproof, used to prove something is not true. 
See the uncompleted proof to show that Q is not antisymmetric. 

3. The right-hand functional area is a compact control area, offering all the 
functionality of the main menu, but in reduced space. In addition it presents a 
symbol pad (or soft keyboard) of mathematical symbols not available on the hard 
keyboard. Help facilities are also accessed here, although they appear on the left. 

The final object, the external user, must be imagined. 



The FRAMES Practice Environment 204 

9.4.3 THE PROGRAMMING CODE OF FRAMES 

The major modules, programmed in TenCORE 5.0, are listed below. The body of the program 

comprises interactive modules, all simultaneously active: 

+ Initialization - presents introductory screens; sets up physical screen structures. 

+ RA M executive control - Accepts user's input from main menu or from abbreviated 

right hand control area and accesses module/s for selected component; the control 

module has submodules for: 

• highlighting and de-highlighting selected options 

• step-scrolling mechanism for use when centre-screen is full. 

+ Help modules - to access, elaborate and clear Help components. 

+ Symbol pad control - to import math symbols into cursor position, by mouse-clicking 

on the symbol pad. 

+ Modules for relation definitions (top left components). 

+ Modules for relation graphic aids (bottom left components). 

+ Modules for relation example synthesis (a central component). 

+ Modules for "property" components in Modes 1, 2 and 3-

• A single module for each Mode 1 proof. 

• Two modules for each Mode 2 proof: 

proof framework 

student-interaction handler. 

• Two modules for each Mode 3 proof: 

proof framework 

student-interaction handler. 

• Two further modules for each Mode 2 proof: 

relation-definition-block handler 

property-definition-block handler. 



The FRAMES Practice Environment 205 

+ Judgement and feedback modules -

• Module to assess student-response in Mode 2 

• Module to provide feedback to student-response in Mode 2 

• Module to assess student-response in Mode 3 

• Module to provide feedback to student-response in Mode 3. 

+ Modules for "kind of relation" components -

(The kinds are five composite components, each calling a set of property components) 

• Module to assess and provide feedback to student-response in regard to 

definition of the kind 

• Module to call the appropriate property test modules. 

+ The FRAMES program has knowledge (see section 9.3.6) of: 

• composition characteristics of each special kind of relation, 

• structure of the ordered pairs of each relation, and 

• physical screen size of each component (knowledge necessary for scrolling 

mechanism). 

9.4.4 A WALKTHROUGH OF FRAMES 

Installation and usage instructions are supplied with the FRAMES diskette in the back cover 

of this dissertation. 

In Appendix A the same information is provided, along with a suggested walkthrough path of 

FRAMES, designed to give the reader a representative overview of the content of the 

prototype. 



The FRAMES Practice Environment 206 

9.4.5 ASSESSMENT OF FRAMES' CONTROL STRUCTURE 

The philosophy underlying navigation through the FRAMES environment and the selection of 

sequence, content and style is non-sequential user-control. The only instance of program­

control occurs when a user selects the attribute kind, opting to test whether the relation is an 

equivalence relation, a weak partial order, a strict partial order, a weak total order or a strict 

total order. In these cases the respective sets of property tests are presented automatically, 

although the user reserves the right to change mode between tests. 

FRAMES is assessed according to Midoro's measuring grid (see section 8.1.3) which rates 

the criteria of navigability, adaptivity and reactivity, and positioned within Hammond's 

framework (see section 8. 7.1) which assesses the dimensions of control, engagement and 

synthesis. Due to the practical implications of effectively portraying a three-dimensional 

representation on a two-dimensional medium, the control- and navigation-related factors of 

FRAMES are assessed by linear ratings in Figure 9.8. 

Navigability 

Adaptivity 

Reactivity 

Engagement 

Control 

Synthesis 

Low High 

f------------------1 

Passive Active 

Program Learner 

I 
Presentation Creation 

Figure 9.8 

FRAMES assessed according to Midoro's Grid and Hammond's Framework 

It rates high on navigability, fairly high on reactivity, and low on adaptivity, due to the complete 

absence of program control. There is total learner-control and highly active engagement. The 

system also offers limited opportunities for creative synthesis. 



The FRAMES Practice Environment 207 

9.4.6 USABILITY FACTORS OF FRAMES 

Usability relates to the quality of interaction between the user and the system. Several of the 

criteria given in section 8.6.2 apply to conventional information systems processing data­

streams and are not relevant to FRAMES, but others are desirable in instructional software. 

The system portrays a certain familiarity, in that the <Help> facilities have some resemblance 

to a windowing environment. The command structure and operation of FRAMES are 

predictable and consistent. Should unanticipated key actions on the user's part cause error 

conditions or interrupt flow of a proof, recoverability is attained by clicking on <Menu> and 

recommencing the component. A user who is "bogged down" in a proof and does not wish 

to complete it can click on <Menu> at any time to quit that component and start another. 

With regard to learnability, the system is easy to operate: 

+ An interactive "demo" introduces the user to the three modes of operation (Screen 

Display 9.19). 

+ The first component, or frame, is accessed via the main menu by R A M selection, 

activated by a click on <GO> when the user is certain of his choice. 

+ Further components are selected from the curtailed control area, or mini-menu, on the 

right, again using RAM plus <GO>. They are added cumulatively to the screen. 

9.4.7 USER INTERFACE OF FRAMES 

FRAMES lies on the spectrum between a character-based and a graphically-based user 

interface (see section 8.6.3), but closer to the latter. Where possible, visual icons are used, 

but most concepts are better represented by concise text. Navigation is by mouse control. 

FRAMES has similarities to a WIMP environment, with its full, yet sub-divided screens, its 

icons, mouse-control and clicked-in menus. The exit techniques from Help facilities, by means 

of mouse-clicks on a slot, are similar to those in the Microsoft Windows interface. Computer 

Science students should have no difficulty in running it. A read-and-write metaphor is used 

in the icons for the three modes and depicted in Screen Display 9.18: 

MODE USER-ACTION PICTORIAL ICON INDICATING 

1 Read-only Open book Straight reading of a proof 

2 Guided practice Written page with blanks Blanks to be filled in by user 

3 D.l.Y Pen to paper Largely independent action 



The FRAMES Practice Environment 208 

Even a Mode 1 "read-only" perusal requires a measure of interactivity- proofs are presented 

step-wise, and the student must mouse-click or press <Enter> to move on. Student 

responses in Mode 2 and 3 exercises are input by a combined strategy, using the keyboard 

for standard text and mouse-clicks on a symbol pad to import mathematical symbols. The 

learner adjusts easily to this joint action of key strokes with the left hand and mouse-clicks on 

the right. 

The discussion in section 8.6.3 of the characteristics of a good user interface described the 

current tendency away from low-density screen displays, and towards increased resolution 

screens with well-structured information. FRAMES screens are in line with this trend and, as 

recommended, the screen is partitioned to minimize distraction and focus attention on the task 

in hand. The structure is as congruent as possible to the underlying structure of the problem 

to be solved. Control is to the right, reference material appears to the left on request, and the 

format of the proof structure is as in a written proof. As far as space permits, appropriate 

alignment is used. These points are evident from the proofs shown in Screen Displays. 

The user can easily change his selection of a component, since selection is not binding until 

he clicks on <GO>. The only selections activated immediately, without being on hold for 

<GO>, are the definition "blackboards". As the user clicks on a relation (any one of P, Q, 

S, T, V, W or TR), its definition appears instantly at top left. This enables him to browse and 

inspect prior to selecting a component for his next instructional transaction. 

If he wishes to cancel a transaction during use, he can do so by clicking on <Menu> and 

making another selection. To quitthe FRAMES session altogether, he must click on <Exit>. 

The system is highly responsive as described in point 6 of section 9.3.5. Feedback is 

provided for each intermediate stage of a proof, correcting errors before the learner proceeds 

to the next step. 

To familiarize the user with the environment, a demo in each of the three modes is available. 

Screen Displays 9.18 and 9.19 show how the user accesses and uses a demo. 



The FRAMES Practice Environment 

Read- example 

Gui ded- practice 

D.l.Y. (Do-It-Yourself) 

for Help , click on the aspect 
where i nfot·mat ion is needed. 

Screen Display 9.18 

209 

The graphic icons used as a metaphor to represent the three instructional strategies, or 
modes, appear on the main menu (Screen Display 9.9) and in the mini-menu on other 
screens. 

Screen Display 9.14 shows the screen entitled "What YOU can DO in FRAMES", which 
0ffers access to the /earn-by-doing demos. On calling the demos, but prior to actual use, 
the user is presented with the screen above, which introduces the three modes: 

Mode 1 - read-only, is symbolized by an open book 

Mode 2 - guided practice, is represented by a printed page with blank spaces 

Mode 3 - D.l.Y. (do-it-yourself) is indicated by a pen-to-paper graphic. 

Selection of a mode from the right-hand control area produces a worked-proof for Mode 
1, and interactive proofs for modes 2 and 3. Screen Display 9.19 shows the Mode 2 
version. 



The FRAMES Practice Environment 

Screen Display 9.19 

The Mode 2 demo offers a limited symbol pad, but full Help facilities. 

210 

P Q S T U W TR 

$i xyzkn 

While doing a demo, the user is compelled to complete the proof; clicks on <Menu> or 
<Exit> are not accepted. In real usage of the FRAMES system, however, he may quit 
during an instructional transaction by going to the menu or exiting from the practice 
environment. 

Meaningful, specific feedback is provided as shown above, where the user clicked on the 
symbol for perpendicular instead of parallel 



The FRAMES Practice Environment 211 

9.4.8 INSTRUCTIONAL EVENTS WITHIN FRAMES 

Gagne's nine events of instruction, intended to provide external conditions of learning, are 

introduced in section 4.2.3 and applied to CAI in section 6.3. Several are incorporated in 

FRAMES. Examples are: 

3. Stimulating recall of prior /earning: 

Definitions are accessible via <Help>; context setting is provided in Mode 2. 

4. Presenting stimuli with distinctive features: 

Proof structures and cuing in Modes 2 and 3 provide an infrastructure for problem­

solving. 

5. Guiding learning: 

Worked examples in Mode 1 demonstrate exactly how to test relations for particular 

properties. 

6. Eliciting performance: 

A prime aim of the environment is active participation. 

7. Providing feedback 

As stated, remedial feedback is provided in Mode 2 and more limited feedback is 

available in Mode 3. 

9. Enhancing retention and transfer. 

Variety of examples exposes the learner to similar analyses in different contexts, as he 

tests the same property in different relations. 

These strategies should help the student to think principially and to contextualize initially 

abstract concepts. 



The FRAMES Practice Environment 212 

9.5 FURTHER CHARACTERISTICS OF THE FRAMES PROTOTYPE 

Many features of FRAMES and its behaviour have been mentioned in this chapter. This 

section complements the previous ones by mentioning aspects not discussed elsewhere. 

9.5.1 PROBLEMS AND IDIOSYNCRASIES OF FRAMES 

+ Some unpredictable behaviour by <Help> when it is called or dismissed at 

unanticipated times. 

+ In student-response to first question in a kind of relation attribute, the theoretically 

correct response, "reflexive on Z", can't fit in, so "reflexive" is acceptable. 

+ A double <Enter> or a double mouse-click is necessary to continue with an exercise 

after use of Help. 

+ An apparent weakness that is actually a deliberate strength: When the learner moves 

on to a different relation, the new definition appears in the blackboard position, but the 

exercise/s from the previous relation remain on-screen in the central exercise region. 

This is done so that the learner may, if he wishes, compare the same exercise, proof 

or disproof from two different relations. 

+ Space was sometimes a problem and various subtle omissions were made to fit in 

essential material. As an example, in one case, the period, ".",was omitted after the 

"P" in "R.T.P. ", in order to fit in the words "that if" to emphasize it was, in that case, a 

goal rather than a consequence. 

+ On rare occasions an unpredictable "execution error" occurs and terminates the run. 

+ Spelling tolerance can cause its own problems. In the tests for "Kinds of relations", 

reflexive and irreflexive are considered synonymous by the spelling-tolerator, and both 

are accepted as a valid condition for an equivalence relation, whereas only reflexive is 

correct. The solution was to exclude spelling tolerance, and to build in a set of 

acceptable mis-spellings. 

+ Mode 3 presents the learner with continuous lines for his response, so as not to 

implicitly prompt. On occasions two short lines are separated by an adverb or a 

conjunction. If a user erroneously mouse-clicks in a large element, e.g. " (x,y) ",so that 

it exceeds the response area and overwrites a hard-coded word, then <Backspace> 

will not clear it and the line will be judged "Incorrect". 



The FRAMES Practice Environment 213 

9.5.2 THE PROTOTYPE AND MODIFICATION OF REQUIREMENTS 

As discussed in section 3.4.2, Lantz describes how initially fuzzy areas can evolve into refined 

definitions and precise designs by using a prototype. The construction and evaluation of 

FRAMES has demonstrated the truth of this statement. The prototype has been tested, but 

not exhaustively. The aim was to demonstrate the feasibility of presenting a variety of activities 

in a practice environment and not, at this stage, to create a robust product for release among 

the target population. Errors and inadequacies are present, which would have to be corrected 

before any release as a production model. 

Initial feasibility testing, shown in Screen Displays 9.20 and 9.21, was done on a pre-prototype 

mock-up. 

• to implement the step-scrolling mechanism, and 

• to perfect mouse click access and importation of mathematical operations and symbols. 

A prime purpose of a prototype is the modification of imprecise or unrealistic requirements. 

On actually running courseware, problems show up that were not evident on a paper-based 

design. Some examples from FRAMES were: 

• The relations were originally called P, R, S, T, V, W and TR. The name R was also used 

for the general case, appearing in definitions of properties and Mode 2 tests. This 

caused confusion and ambiguities, so the name of the second relation was changed 

to Q. 

• The definition of anti-symmetry can be phrased in two ways. Different learners feel 

intuitively more comfortable with different definitions, so the designer, in a magnanimous 

spirit of individualization, opted to incorporate both in FRAMES and to present all 

antisymmetry exercises in two alternative ways. On viewing the prototype this appears 

cumbersome and confusing. In retrospect it was somewhat of an over-kill. It would 

have been better had the designer cum lecturer cum subject-matter expert selected a 

single approach and stuck to it. 

+ Obtrusive interactions occurred between <Help> and exercise components when 

<Help> was called at unanticipated times. 

• There are inadequacies in the feedback to Mode 3 examples. Feedback was partially 

redesigned after tests with the prototype, but anticipation of all possible responses is 

a huge task, beyond the scope of this study. 

Evaluation of the prototype has been system-oriented, towards usability and general 

instructional factors. It has not been focused on the strictest purity of the mathematical 

aspects. Still required are assessment of the material by a subject-matter expert to ensure 

utmost mathematical precision in all details, and learner-evaluation to identify ambiguities and 

possible weaknesses in control and content. 



Read ·ans • ____ .._ __ 
Read an swer node Di scover • 

Oi sc:uverv node 

~ 

Dfscouer11-den 
I•i 'Jftift41-i .. W.f 

R ll!'ot d 1r1!JO • 

• 
ll:~•d •n • 

Ke11 In the enSMer In the •lank spece . • 

Screen Display 9.20 

The left-hand screen display shows initial feasibility testing of user-control by mouse-clicking. The mouse-arrow remains in place where 
the "user" selected the second mode, discovery. 

The screen was also used to experiment with fonts and colours. FRAMES was dependent on a satisfactory small font for its very 
existence. The version at bottom right is the style adopted for the FRAMES control area. 

These issues, as well as the importation of mathematical characters from the symbol pad, had to be resolved before even the most 
rudimentary development could take place. 

The right-hand display depicts the screen structure experiment which was used to perfect the step-scroll mechanism. 

:;1 
<I> 

~-
ffl 
CJ) 

~ 
Q) 
(') 

~ 
<I> 

~ 
~· g 
3 
~ ..... 

l\l -~ 



The FRAMES Practice Environment 215 

S1,1mrnetr1,1 of R: i.e . if (x , 1,1) E: R is (y,x) E R? 

(x,1,1) E R i.e. x- 1,1 = 3k 
Consider 1,1-x 
1)-X = -( X- 1) ) = - (Jk) = J ( - k) [Associative .ind COHMut.; 1ve I His] 

So 1,1 - x is a multi p 1 e of 3 [A ssoci ative and C0'1'1Ulalive laws] 

R is symmetric . 

R i . 1·eflexive on = · s1,1111netric and 
o R is an equivalence relation . 

Screen Display 9.21 

This initial presentation of an equivalence relation analysis differs greatly from the ultimate 
FRAMES screen design. The viewer perceives a whole, rather than components, and the 
concept of left-hand and right-hand functional regions had not begun to evolve. Once 
again, various fonts and styles were tested. 

The similarity to a flag is not an accident. The original intention was that a completed 
proof would appear in such a form, but in line with the considered policy of "no gimmicks, 
bells and whistles" the researcher threw this one out! 



The FRAMES Practice Environment 216 

9.5.3 SUMMARY OF PROTOTYPE CONSTRUCTION 

CYCLIC ITERATION OF THE FOLLOWING STEPS: 

Study of requirements 

Design of: 

• instructional strategies, 
• control logic, 
• screen objects and design. 

Prototype Implementation of above using: 

• Tencore 5.0, 
• graphics software. 

Hands-on testing and evaluation of: 

• control system, 
• instructional strategies and activities, 
• user interface and other usability factors. 

Revision entailing: 

• refinement of requirements, 
• modification and expansion of design, 
• associated changes to program code. 



The FRAMES Practice Environment 217 

9.6 CONCLUSION 

This chapter was a phase by phase account of the courseware engineering life-cycle model 

of FRAMES, i.e. a description of the development process comprising requirements analysis, 

design and prototype construction. There were two fundamental goals in the research and 

development process. The first was the implementation of an object-oriented design and the 

second was development by a prototyping life-cycle model. 

With reference to the first factor, the component-based approach lends itself to an object­

oriented implementation. The prototype FRAMES system is perceived as being object­

oriented, yet it was built using the non-object-oriented authoring language, TenCORE 5.0. 

Although this situation was successfully achieved, it was somewhat "forced". The ideal case 

would be definition of the components and instructional transactions as object classes with 

set standards. Instead, each instance of a class is separately coded. For example, on 

changing colour standards in a certain type of exercise, the change has to be made for each 

of the fourteen instances in the prototype. 

A further frustrating process occurred in positioning exercise components on the screen. 

Their step-scroll mechanism is implemented by separately re-positioning each line of text, 

instead of treating the entire block as an object and supplying a single set of co-ordinates. 

This problem occurs as a result of the non-windowing authoring environment. 

A strong features of the OOP, the class feature, is not fully utilized. FRAMES bears no 

resemblance to, for example, the archetypal bank account example used to demonstrate the 

utility of a multiclass- and inheritance-based structure. The "kinds of relations" are, however, 

subclasses or specializations of relations, and inherit existing code for the required tests. 

A further characteristic of the object-oriented paradigm is software re-use, and this has been 

achieved. The program is coded in a structured, modular fashion, and modules are 

continually re-used. A simple example is re-use of the fill-in-the-blank property definitions used 

in Mode 2, which are coded once for each property and called by every relation. Similarly, 

as mentioned in section 9.5.1, the tests for kinds use existing modules for all their constituent 

components except the brief introductory and concluding sections. Content-free re-use of the 

software structure is a long term goal, discussed further in Chapter Ten. 



The FRAMES Practice Environment 218 

The second engineering goal, namely to develop instructional software by prototyping, was 

successful. Due to factors such as the new ground broken by FRAMES, the full, yet compact, 

and highly interactive screens, the roles of both keyboard and mouse in user-control and user­

response, and the three different modes for doing exercises, the prototyping life-cycle proved 

to be of far more value than a development methodology with a detailed paper-based 

specification and design. Evaluation and empirical use of the prototype resulted in many 

changes to the visual, functional and instructional aspects. TenCORE proved itself an 

excellent authoring system for rapid prototyping. 

In the conclusion of Chapter Five reference was made to 

+ teaching as the deconstruction of knowledge 

+ learning as the construction of knowledge. 

The component-based approach permitted decomposition of the topic of relations into its 

constituent parts, with relation both to content and to the type of performance expected. The 

prototype is a working model of the envisaged FRAMES practice environment, and an 

extended system will be released as a production model for use by the target population. 

The nature of the envisaged conversion is addressed in Chapter Ten. It is hoped that the 

software will facilitate analysis and synthesis of the topic by the learner, and result in 

construction of his own experiential knowledge. 



CHAPTER TEN 

CONCLUSION 

This MSc half-dissertation was a multi-disciplinary study, which aimed to integrate a software 

engineering approach with instructional factors in the decision-making, analysis, design and 

development processes of instructional software. Software engineering models, tools and 

representations were used in the process of software construction. With reference to the 

fundamental characteristics of the software product, several disciplines and factors, from both 

instructional and computing perspectives were considered, and the most appropriate 

approach/es selected. Software engineering, instructional design and instructional theory 

fulfilled their stated roles (Figure 1.1) as pillars of courseware engineering. 

The object-oriented design paradigm and a prototyping life-cycle model were found to be 

most suitable for development of computer-aided instruction. The conceptual study was 

illustrated by prototype development of a component-based multi-activity practice environment 

that offers the learner perusal or practice according to his preferred learning style or need. 

In conclusion, two questions can be posed: 

"What has been achieved?" and "Where does it lead?". 

10.1 WHAT HAS BEEN ACHIEVED? 

The research makes three main contributions: 

1. Application of SE to CAI - the process 

The study integrated software engineering principles with instructional factors in the 

development process of instructional software, using a prototyping life-cycle model. 

Each of the multi-disciplinary factors considered, as well as conventional instructional 

design procedures, were related to the appropriate phase/s of the courseware life-cycle. 

The use of software engineering practices and the application of object-oriented design 

in ISO are in line with the "Megatrends of Instructional Computing" identified by Mclean 

[Mclean 1989]. 

219 



Conclusion 220 

The prototyping life-cycle demonstrated its worth in the context of instructional software 

and is recommended for CAI development. 

2. Application of Merrill's CDT to CAI - the product 

The primary goal of the research, point 1 above, was successfully attained. However 

the researcher feels equally enthusiastic about the component-based, user-controlled 

instructional software product developed to accompany the theoretical study. The 

resulting FRAMES prototype is a breakthrough in the type of software developed in 

South Africa, an androgogic activity box of varied instructional transactions driven by 

user-initiative, another of Mclean 's envisaged "megatrends". The application of 

Component Display Theory and the consequent deconstruction of material into 

components is an excellent starting point for any instructional development. The 

components can be categorized according to type of content and the strategies used 

for presentation or elicitation of performance from the student. 

3. Development of a prototype practice environment for COS101-S at Unisa 

The situation selected for development of prototype software to illustrate the concepts 

and principles encountered in the study is a practice environment in the topic of 

relations in Theoretical Computer Science. An extensive literature survey was 

undertaken of each factor impacting on instructional software and, in each case, an 

appropriate approach was selected for the identified need in COS101-S. Table 10.1, 

a sequel to Table 1.1, shows the factors and approach/es. 

It is hoped that the system will fulfil its promise and meet the identified need. 

Depending on the authoring system used, the decision must be made whether to: 

+ extend the existing FRAMES into the final version, thus using it as an evolutionary 

prototype, or 

+ build a new system, using an object-oriented development environment, in which 

case the initial FRAMES would play the role of throwaway prototype. 

The final production system would include a complete set exercises for all seven 

relations, more extensive feedback for exercises in Mode 3, and correction of errors and 

inadequacies. Its development process should also incorporate pilot testing by end­

users. 



Table 10.1 Factors Investigated and Approaches Selected for FRAMES 

DISCIPLINE/FACTOR APPROACH USED IN FRAMES 

Theories and models of thinking, learning and Cognitive science, implemented with a constructivist approach; 
instruction aspects of behaviourism. 

Instructional design Practice environment with a component-based design; 
highly interactive; strong on user-control and individualization; 
presenting different activities in a variety of modes, offering lesser or greater 
support, providing perusal and practice in subskills and composite skills. 

Context, subject-matter and target population Distance education of tertiary-level Computer Science students 
on relations, a topic from discrete mathematics. 

Software engineering methodologies, models and Object-oriented paradigm; prototyping life-cycle model; 
tools use of software engineering tools and representations; 

development of prototype in TenCORE 5.0. 

The object-oriented design paradigm Object-oriented design; 
components viewed as objects, non-prespecified screen composition. 

Artificial intelligence Not an ICAI or ITS; 
an intelligent support environment with limited knowledge. 

Control, hypertext, usability and User-control, high navigability; object-based control structure; 
user interface factors usability features and user interface resembling windowing environment. 

' 

~ 
~ 
() 

~ 
(/) 

o· 
~ 

~ ..... 



Conclusion 

10.2 WHERE DOES IT LEAD? 

The project opens further research opportunities: 

1. Investigation into use of the software structure as a shell 

Using Merrill's assumption [Merrill 1990b; Merrill 1991] that instructional strategy is 

independent of the knowledge to be taught, it is hoped that the object-based 

design and control structure developed for FRAMES can be used as a generic, 

content-independent she/Ito present tuition, exercises, and graphic representations 

for varying subjects and content, and in different modes or instructional strategies. 

Such use, both of the content structure and the control structure, would capitalize on 

the modularity and re-use aspects of the object-oriented design, but could be 

implemented more efficiently in an object-oriented development environment. 

2. Research into alternative programming techniques 

The concluding phrase of the previous paragraph points to the need for investigation 

into alternative authoring environments, optimal for the creation of dynamic 

instructional systems with window-based screen layouts, such as FRAMES. 

222 



APPENDIX A 

1. HARDWARE REQUIREMENTS 

Computer with a mouse and a colour monitor, DOS operating system, at least a VGA graphics 

card, hard disk with at least 1 Mb available, 640K memory and a high-density 5.25" or 3.5" 

diskette drive. FRAMES looks particularly good on a 17" Pentium screen. 

2. INSTALLATION 

The CAI lesson FRAMES and a TenCORE driver are available on a high density diskette. 

1. Create a hard disk subdirectory. Key in: 

md frames 

2. Change to that directory: 

cd frames 

3. Insert the diskette into the A drive (or B): 

4. Copy the contents of the diskette into the subdirectory. 

copy a:*.* (or copy b:*.*) 

5. Start the session by keying in: 

frames 

223 



3. USING THE PRACTICE ENVIRONMENT 

A recommended walkthrough of FRAMES follows. It suggests a path through the prototype 

which exposes the user to representative functionality of the environment. Since the entire 

walkthrough may take up to two hours, you may prefer doing it in stages. 

3.1 The FRAMES demo 

Work through the introductory screens as far as the screen, "A VIEW of what YOU can DO 

with FRAMES", shown in Screen Display A.1. At this screen , click on ">"to continue with 

introductory screens. 

At the demo screen "What YOU can DO with FRAMES", click on any of the RAM options 

to read their elaborations. Then click on the demo request for a learn-by-doing 

demonstration. 

From the screen "Demo of an exercise", please access all three modes in order, and read 

all the information on the screen. Note the instructional strategies of the three modes: 

Mode 1: Read-only 

Mode 2: Guided practice (filling in blanks) 

Mode 3: 0.1.Y. (Do-it-yourselij 

In the Mode 2 demo, click on Help\Definitions and elaborate Symmetry, so that you can 

answer the first question! Remember the double click or double <Enter> after using Help. 

In completing the proof, import some of the necessary characters by mouse-clicks on the 

symbol pad. Feel free to use Help\Math as well. 

224 



3.2 The real thing - Mode 1 (Read-Only) 

When finished with demos, go to Menu. Use the main Menu for your first selection. 

(After this a mini-menu appears in right-hand control area. Continue by using the mini-menu, 

except when the screen must be cleared, in which case, return to main-menu.) 

Compose each frame by clicking on RAM control, followed each time by <GO> to activate 

the selection. 

A suggested list follows: 

Relation Attribute Mode Comments 

p Graphic aid None No mode applicable 

p Eg None No mode applicable. 

You don't need to re-click on a non-

change aspect, such as P. 

p Prop\Ref 1 

p Prop\As1 1 

p Prop\ Tra 1 Use Help if required. 

Q Graph None Note that definition blackboard changes. 

Q Prop\Tra 1 Same property, different relations 

Browse through the relation definitions, clicking on P, Q, S, T, V, W, TR and note the 

instant appearance of each "blackboard". This is the only function activated 

immediately, without a <GO> click; it permits inspection of the relations prior to 

deciding on component selection. 

225 



3.3 Mode 2 - Guided Practice 

Return to main Menu to clear screen. Select: 

Relation Attribute Mode Comments 

Q Graphic aid None No mode applicable 

Q Prop\lrr None Follow the resulting prompt and choose 

any mode. 
Note the counter-example proof style for a 
property test that is negative. 

Q Prop\ Tri 1 

Q Prop\Sym 1 

Q Prop\Sym 2 Same property, different mode. Use Mode 

1 above as a guide. 
Remember to enter your goal in the R.T.P. 
area. Use Help\Def to access the 
definition of symmetry, remembering that 

the "Def of symmetry" required on the right 
is the general case for R on X. See 
Screen Display A.2 for comments on the 
definition blocks. 

Q Prop\ Tri 2 Hit any key/s then Enter Enter to move 

fast. If you decide not to complete a 
transaction, click on menu, then re-select. 

Q Eg None Try some more Example synthesis 

s Graph None 
exercises, and view more graphic aid 

components. 

s Eg None 

T Graph None 

T Eg None 

v Graph None See Screen Display A.3 

v Eg None 

w Graph None 

w Eg None 

226 



3.3 Mode 3 - Do-it-yourself 

Now for some Mode 3 instructional transactions: 

Relation Attribute Mode Comments 

p Graph None 

p Prop\Sym 3 Hit any key/s + Enter Enter to move fast. 

p Prop\Ref 3 

p Prop\ Tra 3 Note pleasing appearance of a full screen, 

and refer to Screen Display A.4. 

p Prop\ Tri 3 

Finally, some Kind attributes: 

Relation Attribute Mode Comments 

Q Kind\Eq 1 See the Prop tests presented 

automatically. 

Q Kind\Eq 3 Same kind, different mode 

Q Kind\WTO 3 After reflexivity test, change to mode 2, to 

use different modes within the same 

analysis. 

The antisymmetry test was negative, so the 

proof ends. 

If ready to quit, click on Exit. 

227 



A VIEW of what YOU can DO with FRAMES 

in charge? 
You! You, the user are the boss. 
FRAMES works b~ user-control. 

FRAMES is a practice-environment, 
auailable? presenting exercises in trick9 relations. 

You can UIEW, or DO, FRAMES. 

Screen Display A.1 

The "VIEW of what YOU can DO with FRAMES" screen briefly introduces: 

+ FRAMES' purpose 
+ RAM control. 

228 



Def. of P: 
(x , 1,1 ) E P iff X~!} 

where x,1,1 E ~ 

Relate the definitions: 

Def. of antis9mmetr9 2 
If ( x , I) ) E R] then 
and ( 1,1 , x) E R x=1,1 

R.T.P : If both (x, 1,1 ) E P and ( 1,1 , x) E P 
then x = I) 

ie both x ~ I) and I) ~ x , then x 
Proof: If x ~ 1,1 and 9 ~ x, it can 

onl~ mean that __ _ 
p is 

Screen Display A.2 

• 
E<;;;;)'ii// 1. 3-

~:S: < >2:iil 1 

~tl~!,JZlcm 

IPIN Z~ IRXR 

P Q S T U W TR 

Exit nenu GO 

These frames illustrate problem -solving with the graphic aid on view. 

P Tra Mode 3 

P As2 Mode 2 

Note that the user's close spacing in line 4 is as acceptable to 
FRAMES as the more spread-out entries above. 

This shows use of As2, the alternative definition of antisymmetry 
(which may be preferred by some users), instead of As1 as in 
Screen Displays 9.8 and 9.15. 

It can be seen how the two Definition blocks, the relation on the 
left and the property on the right, are related to contextualize the 
general definition for a particular relation. 
The user can follow the "blackboard" at top left to fill in the P 
definition, and Help can be used to fill in the definition of 
antisymmetry 2 (see Screen Display 9.17). The student then 
deduces the content of the R.T.P., i.e. the subgoal, by integrating 
the two definitions. 

The guided practice of Mode 2 is faded in Mode 3. 

On a correct response, FRAMES requests the user to 'Press Enter" to continue. 

229 



Screen Display A.3 

This screen shows the selection V Eg at a completed stage. 

The user got the second example wrong on both attempts and was presented with 
feedback in the form of a calculation (not shown) to explain why his response was 
unacceptable, followed by a correct version in red. 

At the end of an example frame, a concluding sentence provides additional information 
about the relation to anchor it in its real-world meaning. 

(The colour of feedback has subsequently been changed to white). 

230 



Screen Display A.4 

The user selected: 

Q Tri Mode 1 and Q Ref Mode 3. 

Note the: 

+ aesthetic balance of a full screen layout 

= ~ < > ~ I ) 
;t~xyzkm 
IPINZCQIRXR 
PQSTUWTR 

(x,x) (x ,l)) (x ,z) 
(l) ,X) (l),l)) (l) , Z) 

+ symbol pad (soft keyboard) of Mode 3; compare this extended symbol pad with 
that of Mode 2 shown in Screen Display A.2. 

Two different proof structures, a counter example and a general proof, are shown. They 
are appropriate for tests which turn out negative and positive respectively. 

On conclusion, the user is prompted to select his next frame. 

231 



[Alessi 1991] 

[Anderson 1983] 

(Anderson 1987] 

[Anderson 1990] 

[Anderson 1992] 

[Appel 1987] 

[Aronson 1983] 

[Atkins 1991] 

[Barrow 1989a] 

(Barrow 1989b] 

[Bell 1992] 

[Bevan 1991] 

(Black 1987] 

[Black 1988] 

[Black 1989] 

(Boder 1990] 

BIBLIOGRAPHY 

Alessi, S.M. & Trollip, S.R. {1991). Computer-Based Instruction: Methods and Develop­
ment. Englewood Cliffs, N.J.: Prentice Hall. 

Anderson, J.R. {1983). The Architecture of Cognition. Cambridge, MA: Harvard 
University Press. 

Anderson, J.R., Boyle, C.F., Farrell, A. & Reiser, B.J. (1987). Cognitive Principles in the 
Design of Computer Tutors. In: Morris, P. (Ed.) Modelling Cognition. Chichester: John 
Wiley & Sons. 

Anderson, J.R., Boyle, C.F., Corbett, A.T. & Lewis, M.W. (1990). Cognitive Modelling and 
Intelligent Tutoring. Artificial Intelligence 42, 7-49 

Anderson, J.R., Corbett, A.T., Fincham, J.M., Hoffman, D. & Pelletier, A. (1992). General 
Principles for an Intelligent Tutoring Architecture. In: Regian, J.W. & Shute, V.J. (Eds), 
Cognitive Approaches to Automated Instruction. Hillsdale, N.J.: Lawrence Erlbaum 
Associates. 

Appel, M. & Appel, S. (1987). A critique of CAI: the case of SEAGO. South African 
Journal of Education 7 (4), 278-282. 

Aronson, D.T. & Briggs, L.J. (1983). Contribution of Gagne and Briggs to a Prescriptive 
Model of Instruction. In: Reigeluth, C.M. (Ed.), Instructional-Design Theories and Models: 
An Overview of their Current Status. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Atkins, M.C. & Brown, A.W. (1991). Principles of Object-Oriented Systems. In: 
McDermid, J.A. (Ed.), Software Engineers Reference Book. Oxford: Butterworth­
Heineman. 

Barrow, J. (1989). Hypertext as an Educational Medium. Proceedings of the First 
Southern African Conference on Educational Technology. Human Sciences Research 
Council, Pretoria. 

Barrow, J. (1989). Structuring Hypertext. Proceedings of the Fifth South African 
Computer Symposium. Johannesburg. 

Bell, D., Morrey, I., & Pugh, J. (1992). Software Engineering: A Programming Approach 
(2nd ed.). Hamel Hempstead: Prentice Hall International (UK) Ltd. 

Bevan, N., Kirakovski, J. & Maissel, J. (1991). What is Usability? In: Bullinger, H.J. (Ed), 
Human Aspects in Computing: Design and Use of Interactive Systems and Work with 
Terminals. Amsterdam: Elsevier Science Publishers B.V .. 

Black, T. R. (1987). CAL Delivery Selection Criteria and Authoring Systems. Journal of 
Computer-Assisted Learning 3, 204-213. 

Black, T.R. (1988). Prototyping CAL Courseware: A Role for Computer-Shy Subject 
Experts. In: Mathias, H., Rushby, N. & Budgett, A. (Eds), Aspects of Educational 
Technology, Vol XX/, Designing New Systems and Technologies for Learning. London: 
Kogan Page. 

Black, T.R. & Hinton, T. (1989). Courseware Design Methodology: the Message from 
Software Engineering. In: Bell, C., Davies, J. & Winders, A. (Eds), Aspects of Educational 
and Training Technology, Vol XX/I, Promoting Learning. London: Kogan Page. 

Soder, A. & Cavallo, D. (1990). An Epistemological Approach to Intelligent Tutoring 
Systems. Intelligent Tutoring Media 1 (1), 23-29. 

232 



[Bedker 1991] 

[Booch 1991] 

[Bowers 1989] 

[Bransford 1990] 

[Briggs 1981] 

[Briggs 1991] 

[Brown 1989] 

[Budgen 1994] 

[Carbonell 1970] 

[Carrier 1988] 

[Chapanis 1991] 

[Chen 1976] 

[Chen 1989] 

[Chen 1990] 

[Christensen 1990] 

[Clancey 1981] 

[Clancey 1982] 

[Clancey 1987] 

[Clancey 1990] 

Bedker, S. (1991). Through the Interface: A Human Activity Approach to User Interface 
Design. Hillsdale, N.J.: Lawrence Ertbaum Associates. 

Booch, G. (1991). Object-Oriented Design: with Applications. Redwood City, CA: 
Benjamin/Cummings Publishing Company, Inc. 

Bowers, D. (1989). The Software Design Document: More than a User's Manual. 
Educational Technology 29 (12), 15-18. 

Bransford, J.D., Sherwood, R.D., Hasselbring, T. S., Kinzer, C.K & Williams, S.M. (1990). 
Anchored Instruction: Why We Need It and How Technology Can Help. In: Nix, D. & 
Spiro, R. (Eds), Cognition, Education, Multimedia: Exploring Ideas on High Technology. 
Hillsdale, N.J.: Lawrence Ertbaum Associates. 

Briggs, L.J. & Wager, W.W. (1981). Handbook of Procedures for the Design of 
Instruction. Englewood Cliffs, N.J.: Educational Technology Publications. 

Briggs, L.J., Gustafson, KL. & Tillman, M.H. (Eds) (1991). Instructional Design Principles 
and Applications. Englewood Cliffs, N.J.: Educational Technology Publications. 

Brown, J.R. & Cunningham, S. (1989). Programming the User Interface: Principles and 
Examples. New York: John Wiley and Sons, Inc. 

Budgen, D. (1994). Software Design. Wokingham: Addison-Wesley. 

Carbonell, J.R. (1970). Al in CAI: An Artificial-Intelligence Approach to Computer-Assisted 
Instruction. IEEE Transactions on Man-Machine Systems 11 (4), 190-202. 

Carrier, C.A. & Jonassen, D. H. (1988). Adapting Courseware to Accommodate Individual 
Differences. In: Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer 
Courseware. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Chapanis, A (1991). Evaluating Usability. In: Shackel, B. & Richardson, S.J. (Eds), 
Human Factors for Informatics Usability. Cambridge: Cambridge University Press. 

Chen, P.P. (1976). The Entity-Relationship Model: Towards a Unified View of Data. ACM 
Trans. Database Systems 1 (1), 9.J6. 

Chen, J.W. & Shen, C. (1989). Software Engineering: A New Component for Instructional 
Software Development. Educational Technology 29 (9), 9-15. 

Chen, J.W. & Chen, M. (1990). Towards the Design of an Intelligent Courseware 
Production System using Software Engineering and Instructional Design Principles. 
Journal of Educational Technology Systems 19 (1), 41-52. 

Christensen, LC. & Bodey, M.R. (1990). A Structure for Creating Quality Courseware. 
Collegiate Microcomputer B (3), 201-209. 

Clancey, W.J. & Letsinger, R. (1981). Neomycin: Reconfiguring a Rule-Based Expert 
System for Application to Teaching. Proceedings of the Seventh International Joint 
Conference on Artificial Intelligence, Volume fl Los Altos, CA: William Kaufman Inc. 

Clancey, W.J. (1982). Tutoring Rules for Guiding a Case Method Dialogue. In: Sleeman, 
D. & Brown, J.S. (Eds), Intelligent Tutoring Systems. London: Academic Press. 

Clancey, W.J. (1987). Methodology for Building an Intelligent Tutoring System. In: 
Kearsley, G. (Ed.), Artificial Intelligence and Instruction: Applications and Methods. 
Reading, MA: Addison-Wesley. 

Clancey, W.J. & Soloway, E. (Eds) (1990). Artificial Intelligence and Learning Environ­
ments. Cambridge, MA: MIT Press. 

233 



[Coad 1990) 

[Collins 1983) 

[Collis 1987) 

[Conger 1994] 

[Corbett 1991) 

[Corbett 1993] 

[Cumming 1990) 

[Cumming 1991a) 

[Cumming 1991b] 

[De Villiers 1989a) 

[De Villiers 1989b] 

[De Villiers 1992] 

[De Villiers 1993) 

[De Wet 1994] 

[Dick 1991) 

[Dijkstra 1990] 

Coad, P. & Yourdon, E. (1990). Object-Oriented Analysis. Englewood Cliffs, N.J.: 
Prentice Hall. 

Collins, A. & Stevens, A.L. (1983). A Cognitive Theory of Inquiry Teaching. In: Reigeluth, 
C. M. (Ed.), Instructional Design Theories and Models: An Overview of their Current Status. 
Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Collis, B. & Gore, M. (1987). Combining Software Engineering and Instructional Design 
in a New Type of Course for Educators. Journal of Research on Computing in Education 
20 (2), 104-116. 

Conger, S.A. (1994). The New Software Engineering. Belmont, CA: Wadsworth 
Publishing Company. 

Corbett, A.T. & Anderson, J.R. (1991). LISP Intelligent Tutoring System: Research in Skill 
Acquisition. In: Larkin, J.H. & Chabay R.W. (Eds), Computer Assisted Instruction and 
Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Corbett, A.T., Anderson, J.R. & O'Brien, A.T. (1993). The Predictive Validity of Student 
Modelling in the ACT Programming Tutor. Proceedings of Al-ED 93, World Conference 
on Artificial Intelligence in Education. Edinburgh: Association for the Advancement of 
Computing in Education. 

Cumming, G. (1990). Artificial Intelligence and Images of Natural Learning. In: McDougall, 
A. & Dowling, C. (Eds), Computers in Education. Amsterdam: Elsevier Science Publishers 
B.V. (North Holland). 

Cumming, G. (1991). Using Artificial Intelligence to Achieve Natural Learning. In: Lewis, 
R. & Otsuki, S. (Eds), Advanced Research on Computers in Education, Proceedings of 
the IFIP TC3 International Conference on Advanced Research on Computers in Education. 
Amsterdam: North-Holland. 

Cumming, G. & Self, J. (1991). Learner Modelling in Collaborative Intelligent Educational 
Systems. In: Goodyear, P. (Ed.), Teaching Knowledge and Intelligent Tutoring. 
Norwood, N.J.: Ablex. 

de Villiers, C. (1989). 'n Rekenaargebaseerde onderrigstrategie vir Rekenaarwetenskap 
met besondere verwysing na afstandonderrig. Unpublished MEd dissertation, University 
of South Africa, Pretoria. 

de Villiers, M. R. (1989). Structured Knowledge Representation with Particular Reference 
to Frames. Unpublished Special Topic Report, Department of Computer Science, 
University of South Africa, Pretoria. 

de Villiers, C., Pistorius, M.C., Alexander, P.M. & du Plooy, N.F. (1992). Constraints on 
Computer-Assisted Instruction in a Distance Education Environment. Computing Control 
Engineering Journal 3 (1), 11-13. 

de Villiers, M.A. (1993). Relations: A CAI Tutorial in Theoretical Computer Science. 
Unpublished MEd mini-dissertation, University of Pretoria, Pretoria. 

De Wet, L. (1994). A Comparison of the Usability Properties of Character-based and 
Graphical-based User Interfaces. Unpublished MSc thesis, University of South Africa, 
Pretoria. 

Dick, W. (1991). An Instructional Designer's View of Construction. Educational 
Technology 31 (5), 41-44. 

Dijkstra, S., van Hout Wolters, B.H.A.M. & van der Sijde, P.C. (Eds) (1990). Research on 
Instruction: Design and Effects. Englewood Cliffs, N.J.: Educational Technology 
Publications. 

234 



[Dix 1993) 

[Fischetti 1990] 

[Fleming 1978) 

[Ford 1988) 

[Forman 1988] 

[Gagne 1985) 

[Gagne 1987) 

[Gagne 1991] 

[Gery 1987) 

[Goodyear 1991) 

[Gomer 1992] 

[Gray 1994) 

[Gropper 1983] 

[Gruber 1977] 

[Hammond 1989) 

[Hammond 1992a) 

[Hammond 1992b] 

[Hannafin 1988] 

Dix, A., Finlay, J., Abowd, G. & Beale, R. (1993). Human-Computer Interaction. Hemel 
Hempstead: London: Prentice Hall International (UK). 

Fischetti, E. & Gisolfi, A. (1990). From Computer-Aided Instruction to Intelligent Tutoring 
Systems. Educational Technology 30 (8), 7-17. 

Fleming, M.L. & Levie, W.H. (1978). Instructional Message Design: Principles from the 
Behavioural Sciences. Englewood Cliffs, N.J.: Educational Technology Publications. 

Ford, L. (1988). The Appraisal of an ICAI System. In: Self, J.A. (Ed), Artificial Intelligence 
and Human Learning. London: Chapman and Hall. 

Forman, G. & Pufal, P.B. (Eds) (1988). Constructivism in the Computer Age. Hillsdale, 
N.J.: Lawrence Erlbaum Associates. 

Gagne, R.M. (1985). The ConditionsofLearning. New York: Holt, Rinehart and Winston. 

Gagne, R.M. & Glaser, R. (1987). Foundations in Learning Research. In: Gagne, R.M. 
(Ed.), Instructional Technology: Foundations. Hillsdale, N.J.: Lawrence Erlbaum 
Associates. 

Gagne, R.M., Wager, W. & Rojas, A. (1991). Planning and Authoring Computer-Assisted 
Instruction Lessons. In: Briggs, L.J., Gustafson, KL. & Tillman, M.H. (Eds), Instructional 
Design Principles and Applications. Englewood Cliffs, N.J.: Educational Technology 
Publications. 

Gery, G. (1987). Making CBT Happen. Boston: Weingarten. 

Goodyear, P. (Ed.) (1991). Teaching Knowledge and Intelligent Tutoring. Norwood, N.J.: 
Ab lex. 

Gomer, C., Vossen, P. & Ziegler, J. (1992). Direct Manipulation User Interface. In: Galer, 
M., Harker, S. & Ziegler, J. (Eds), Methods and Tools in User-Centred Design for 
Information Technology. Amsterdam: Elsevier Science Publishers B.V. 

Gray, D.E. & Black, T.R. (1994). Prototyping of Computer-Based Training Materials. 
Computers in Education 22 (3), 251-256. 

Gropper, G.L. (1983). A Behavioral Approach to Instructional Prescription. In: Reigeluth, 
C. M. (Ed.) Instructional Design Theories and Models: An Overview of their Current Status. 
Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Gruber, H.E. & Voneche, J.J. (1977). The Essential Piaget. New York: Basic Books, Inc. 
Publishers. 

Hammond, N.V. & Allinson, L.J. (1989). Extending Hypertext for Learning: An Investiga­
tion of Access and Guidance Tools. In: Sutciffe, A. & Macauly, L. (Eds), People and 
Computers V. Cambridge: Cambridge University Press. 

Hammond, N.V. (1992). Learning with Hypertext: Problems, Principles and Prospects. 
In: McKnight, C., Dillon, A & Richardson, J. (Eds), Hypertext: A Psychological Perspective. 
Chichester: Ellis Horwood. 

Hammond, N.V. (1992). Tailoring Hypertext for the Learner. In: Kommers, P.A.M., 
Jonassen, D.H. & Mayes, J.T. (Eds), Cognitive Tools for Learning. Berlin: Springer­
Verlag. 

Hannafin, M.J. & Peck, KL. (1988). The Design, Development, and Evaluation of 
Instructional Software. New York: MacMillan Publishing Company. 

235 



[Hardman 1988] 

[Hasselerharm 1990] 

Hardman, L. (1988). Hypertext Tips: Experiences in Developing a Hypertext Tutorial. In: 
Jones, D.M. & Winder, R. (Eds), People and Computers IV. Cambridge University Press. 

Hasselerharm, E. & Leemkuil, H. (1990). The Relation between Instructional Control 
Strategies and Performance and Attitudes in Computer-Based Instruction. In: Pieters, 
J.M., Simons, P.R.J. & de Leeuw, L. (Eds), Research on Computer-Based Instruction. 
Amsterdam: Swets and Zeitlinger B.V. 

[Henderson-Sellers 1990] Henderson-Sellers, B. & Edwards, J.M. (1990). The Object-Oriented Systems Life Cycle. 

[Ibrahim 1989] 

[Ince 1991] 

[lnhelder 1958] 

[Jonassen 1988] 

[Jonassen 1989] 

[Jonassen 1992] 

[Kearsley 1987] 

[Keller 1987] 

[Keller 1988] 

[Kok 1990] 

[Kontos 1985] 

[Korson 1990] 

[Kotze 1995] 

[Labuschagne 1993] 

[Lantz??] 

Communications of the ACM 33 (9), 142-159. 

Ibrahim, B. (1989). Software Engineering Techniques for Computer-Aided Learning. Edu­
cation and Computing 5 (4), 215-222. 

Ince, D. (1991). Prototyping. In: McDermid, J.A. (Ed.), Software Engineers Reference 
Book. Oxford: Butterworth-Heineman. 

lnhelder, B. & Piaget, J. (1958). The Growth of Logical Thinking from Childhood to 
Adolescence. New York: Basic Books Inc. Publishers. 

Jonassen, D.H. (1988). Integrating Learning Strategies into Courseware to Facilitate 
Deeper Processing. In: Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer 
Courseware. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Jonassen, D.H. (1989). Hypertext/ Hypermedia. Englewood Cliffs, N.J.: Educational 
Technology Publications. 

Jonassen, D.H. (1992). Effects of Semantically Structured Hypertext Knowledge Bases 
on Users' Knowledge Structures. In: McKnight, C., Dillon, A & Richardson, J. (Eds), 
Hypertext: a Psychological Perspective. Chichester: Ellis Horvlood. 

Kearsley, G. (Ed.) (1987). Artificial Intelligence and Instruction: Applications and Methods. 
Reading, MA: Addison-Wesley. 

Keller, A. (1987). When Machines Teach: Designing Computer Courseware. New York: 
Harper and Row. 

Keller, J.M. & Suzuki, K (1988). Use of the ARCS Motivational model in Courseware 
Design. In: Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer Courseware. 
Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Kok, W. & Poorthuis, G. (1990). The Effects of Different Teaching Strategies in Three CAI 
Programs within the Same Content Area. In: Pieters, J.M., Simons, P.R.J. & de Leeuw, 
L. (Eds), Research on Computer-Based Instruction. Amsterdam: Swets and Leitzinger 
B.V. 

Kontos, G. (1985). Instructional Computing: In Search of Better Methods for the 
Production of CAI Lessons. Computer Education 49, 16-19. 

Korson, T. & Mc Gregor, J.D. (1990). Understanding Object-Oriented: A Unifying 
Paradigm. Communications of the ACM 33 (9), 40~0. 

Kotze, P. (1995). An Option Space for the Authoring of Interactive Tutoring Systems. 
Unpublished DPhil thesis proposal, Department of Computer Science, University of York, 
United Kingdom. 

Labuschagne, W. (1993). A User-friendly Introduction to Discrete Mathematics for 
Computer Science. University of South Africa, Pretoria. 

Lantz, KE. (no publication date - possibly 1985). The Prototyping Methodology. 
Englewood Cliffs, N.J.: Prentice-Hall. 

236 



[Lanzing 1994) 

[Laridon 1989] 

[Larkin 1991] 

[Lavoie 1991) 

[Lesgold 1992) 

[Lewis 1991) 

[Lippert 1989] 

[Lippert 1990] 

[Lippert 1993] 

[McKnight 1992] 

[Mclean 1989] 

[Mehl 1993] 

[Merrill 1983] 

[Merrill 1987) 

[Merrill 1988] 

[Merrill 1990a] 

[Merrill 1990b] 

Lanzing, J.W.A. & Stanchev, I. (1994). Visual aspects of Courseware Engineering. 
Journal of Computer Assisted Learning 10, 69-80. 

Laridon, P.E. (1989). Design Features in Interactive Video Mathematics Lessons. 
Proceedings of the First Southern African Conference on Educational Technology, Human 
Sciences Research Council, Pretoria. 

Larkin, J.H. & Chabay, R.W. (Eds) (1991). Computer Assisted Instruction and Intelligent 
Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Lavoie, M., Gagne, M. & Jacques, A. (1991). Specifications of a Software System which 
assists in the Design and Construction of Knowledge-Based Instructional Software. In: 
Lewis, R. & Otsuki, S. (Eds), Advanced Research on Computers in Education, 
Proceedings of the IFIP TC3 International Conference on Advanced Research on 
Computers in Education. Amsterdam: North-Holland. 

Lesgold, A., Eggan, G., Katz, S., & Rao, G. (1992). Possibilities for Assessment using 
Computer-Based Apprenticeship Environments. In: Regian, J.W. & Shute, V.J. (Eds). 
Cognitive Approaches to Automated Instruction. Hillsdale, N.J.: Lawrence Erlbaum 
Associates. 

Lewis, R. & Otsuki, S. (Eds) (1991). Advanced Research on Computers in Education, 
Proceedings of the IFIP TC3 International Conference on Advanced Research on 
Computers in Education. Amsterdam: North-Holland. 

Lippert, R.C. (1989). Expert Systems: Tutors, Tools, and Tutees. Journal of Computer­
Based Instruction 16 (1), 11-19. 

Lippert, R. C. (1990). Wat maak RGO Intelligent? Paper at the INSTRUCT A 90 Seminar, 
Rand Afrikaans University, Johannesburg, South Africa. 

Lippert, R.C. (Ed.) (1993). Computer-Based Education and Training in South Africa. 
Pretoria: J.L. van Schaik Publishers. 

McKnight, C., Dillon, A. & Richardson, J. (Eds) (1992). Hypertext: a Psychological 
Perspective. Chichester: Ellis Horwood. 

Mclean, R.S. (1989). Megatrends in Computing and Educational Software Development. 
Education and Computing 5, 55-60. 

Mehl, M.C. & Sinclair, A.J.L. (1993). Defining a Context for CAI: In Quest of Educational 
Reality. In: Lippert, R.C. (Ed.), Computer-Based Education and Training in South Africa. 
Pretoria: J. L. van Schaik Publishers. 

Merrill, M.D. (1983). Component Display Theory. In: Reigeluth, C.M. (Ed.), Instructional 
Design Theories and Models: An Overview of their Current Status. Hillsdale, N.J.: 
Lawrence Erlbaum Associates. 

Merrill, M.D. (1987). The New Component Design Theory: Instructional Design for 
Courseware Authoring. Instructional Science 16, 19-34. 

Merrill, M.D. (1988). Applying Component Display Theory to the Design of Courseware. 
In: Jonassen, D.H. (Ed.), Instructional Designs for Microcomputer Courseware. Hillsdale, 
N.J.: Lawrence Erlbaum Associates. 

Merrill, M.D. & Li, Z. (1990). An Instructional Design Expert System. In: Dijkstra, S., van 
Hout Wolters, B.H.A.M. & van der Sijde, P.C. (Eds), Research on Instruction: Design and 
Effects. Englewood Cliffs, N.J.: Educational Technology Publications. 

Merrill, M.D., Li, Z. & Jones, M.K (1990). Limitations of First Generation Instructional 
Design. Educational Technology 30 (1), 7-11. 

237 



[Merrill 1991] 

[Midoro 1991] 

[Minsky 1975] 

[Minsky 1985] 

[Morris 1987] 

[Morrison 1988] 

[Naisbitt 1982] 

[Newell 1972] 

[Nicholson 1988} 

[Nielsen 1990] 

[Nix 1990] 

[O'Shea 1983] 

[Papert 1980] 

[Papert 1988] 

[Pieters 1990] 

[Pistorius 1992] 

[Poppen 1988] 

[Powers 1990] 

[Preece 1993] 

[Price 1991] 

Merrill, M.D. (1991). Constructivism and Instructional Design. Educational Technology 
31(5). 45-52. 

Midoro, V., Olimpo, G., Persico, D. & Sarti, L. (1991). Multimedia Navigable Systems and 
Artificial Intelligence. In: Lewis, R. & Otsuki, S. (Eds), Advanced Research on Computers 
in Education, Proceedings of the IFIP TC3 International Conference on Advanced 
Research on Computers in Education. Amsterdam: North-Holland. 

Minsky, M.L. (1975). A Framework for Representing Knowledge. In: Winston, P.H. (Ed.), 
The Psychology of Computer Vision. New York: McGraw-Hill. 

Minsky, M.L. (1985). The Society of Mind. New York: Simon and Schuster. 

Morris, P. (Ed) (1987). Modelling Cognition. Chichester: John Wiley & Sons. 

Morrison, G.R. & Ross, S.M. (1988). A Four.Stage Model for Planning Computer-Based 
Instruction. Journal of Instructional Development 11 (1) 6-14. 

Naisbitt, J. (1982). Megatrends. New York: Warner Books. 

Newell, A. & Simon, H.A. (1972). Human Problem Solving. Englewod Cliffs, N.J.: 
Prentice-Hall Inc. 

Nicholson, R. (1988). SCALD - Towards an Intelligent Authoring System. In: Self, J.A. 
(Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. 
London: Chapman & Hall. 

Nielsen, J. (1990). Hypertext and Hypermedia. Boston: Academic Press. 

Nix, D. (1990). Should Computers Know what you can do with Them? In: Nix, D. & 
Spiro, R. (Eds), Cognition, Education, Multimedia: Exploring Ideas in High Technology. 
Hillsdale, N.J.: Lawrence Erlbaum Associates. 

O'Shea, T. & Self, J. (1983). Learning and Teaching with Computers. Brighton: The 
Harvester Press. 

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: 
Basic Books. 

Papert, S. (1988). The Conservation of Piaget: The Computer as Grist to the 
Constructivist Mill. In: Forman, G. & Pufal, P.B. (Eds), Constructivism in the Computer 
Age. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Pieters, J.M., Simons, P.R.J. & de Leeuw, L. (Eds) (1990). Research on Computer-Based 
Instruction. Amsterdam: Swets and Zeitlinger B.V. 

Pistorius, M.C., de Villiers, C. & Alexander, P.M. (1992). CAI - Alive and Well at Unisa. 
CBE in Tertiary Education, Proceedings of the Third CBE/CBT Conference. University of 
South Africa, Pretoria. 

Poppen, L. & Poppen, R. (1988). The Use of Behavioral Principles in Educational 
Software. Educational Technology 28 (2), 37-41. 

Powers, M.J., Cheney, P.H. & Crow, G.B. (1990). Structured Systems Development 
Boston, MA: Boyd and Fraser Publishing Co. 

Preece, J. (Ed.) (1993). A Guide to Usability: Human Factors in Computing. Wokingham: 
Addison Wesley. 

Price, R.V. (1991). Computer-Aided Instruction: A Guide for Authors. Pacific Grove, CA: 
Brooks/Cole. 

238 



[Pufall 1988] 

[Quillian 1968] 

[Ravden 1989] 

[Regian 1992] 

[Reigeluth 1983] 

[Ridgeway 1988] 

[Roblyer 1988] 

[Sakasai 1990] 

[Schach 1990] 

[Schiever 1991] 

[Self 1979] 

[Self 1985] 

[Self 1988] 

[Simon 1981] 

[Siviter 1992] 

[Skinner 1938] 

[Sleeman 1982] 

[Smith 1984] 

[Sommerville 1992] 

[Soulier 1988] 

Pufall, P.B. (1988). Function in Piaget's System: Some Notes for Constructors of 
Microwortds. In: Forman, G. & Pufal, P. B. (Eds), Constructivism in the Computer Age. 
Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Quillian, M.R. (1968). Semantic Memory. In: Minsky, M. (Ed), Semantic Information 
Processing. Cambridge, MA: MIT Press. 

Ravden, S.J. & Johnson, G.I. (1989). Evaluating Usability of Human-computer Interfaces: 
A Practical Method. Chichester: Ellis Horwood. 

Regian, J. W. & Shute V.J. (1992). Automated Instruction as an Approach to 
Individualization. In: Regian, J.W. & Shute V.J. (Eds), Cognitive Approaches to Automated 
Instruction. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Reigeluth, C.M. (Ed.) (1983). Instructional-Design Theories and Models: An Overview of 
their Current Status. Hillsdale N.J.: Lawrence Erlbaum Associates. 

Ridgeway, J. (1988). Of course ICAI is Impossible ... Worse though, it might be Seditious. 
In: Self, J.A. (Ed), Artificial Intelligence and Human Learning. London: Chapman and 
Hall. 

Roblyer, M.D., Castine, W.H. & King, F.J. (1988). Assessing the Impact of Computer­
Based Instruction: A Review of Recent Research. New York: Haworth Press. 

Sakasai, Y. & Watanabe, T. (1990). A CAI System for Software Engineers: SOLAS. 
Nippon Telegraph and Telephone Review 2 (2), 81-88. 

Schach, S.R. (1990). Software Engineering. Boston, MA: Aksen Associates Inc. 
Publishers. 

Schiever, S.W. (1991). A Comprehensive Approach to Teaching Thinking. Boston: Allyn 
and Bacon. 

Self, J.A. (1979). Student Models and Artificial Intelligence. Computers and Education 
3, 309-312. 

Self, J. (1985). Microcomputers in Education: A Critical Evaluation of Educational 
Software. Brighton: The Harvester Press. 

Self, J.A. (Ed.) (1988). Artificial Intelligence and Human Learning: Intelligent Computer­
Aided Instruction. London: Chapman and Hall. 

Simon, H.A. (1981). The Sciences of the Artificial (2nd ed.). Cambridge, MA: MIT Press. 

Siviter, D. & Brown, K (1992). Hypercourseware. In: Kibby, M.R. & Hartley, J.R. (Eds). 
Computer Assisted Learning: Selected Contributions from the CAL91 Symposium. 
Oxford: Pergamon Press. 

Skinner, B.F. (1938). The Behaviour of Organisms: An Experimental Analysis. New York: 
Longman. 

Sleeman, D. & Brown, J.S. (Eds) (1982). Intelligent Tutoring Systems. London: Academic 
Press. 

Smith, P.L. & Boyce, B.A. (1984). Instructional Design Considerations in the Development 
of Computer-Assisted Instruction. Educational Technology 24 (7), 5-11. 

Sommerville, I. (1992). Software Engineering (4th ed). Wokingham: Addison-Wesley 
Publishing Company. 

Soulier, J.S. ( 1988). The Design and Development of Computer Based Instruction. 
Boston: Allyn and Bacon, Inc. 

239 



[Spiro 1990] 

[Tang 1991] 

[Thimbleby 1990] 

[Thomas 1989] 

[Tripp 1990] 

[Venezky 1991] 

[Verhagen 1988] 

[Visser 1995] 

[Vockell 1989] 

[Webb 1989] 

[West 1991] 

[Wilson 1992] 

[Winograd 1987] 

[Winston 1975] 

[Wong 1993] 

[Woodhead 1991] 

[Woodroffe 1988] 

[Woolf 1988] 

Spiro, R.J. & Jehng, J. (1990). Cognitive Flexibility and Hypertext: Theory and Technology 
for the Nonlinear and Multidimensional Traversal of Complex Subject Matter. In: Nix, D. 
& Spiro, R.J. (Eds), Cognition, Education and Multimedia: Exploring Ideas in High 
Technology. Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Tang, H., Barden, R. & Clifton, C. (1991). A New Learning Environment Based on 
Hypertext and its Techniques. In: Lewis, R. & Otsuki, S. (Eds), Advanced Research on 
Computers in Education, Proceedings of the IFIP TC3 International Conference on 
Advanced Research on Computers in Education. Amsterdam: North-Holland. 

Thimbleby, H. (1990). User Interface Design. Wokingham: Addison Wesley. 

Thomas, T.A. (1989). Intelligent Tutoring Systems. Proceedings of the First Southern 
African Conference on Educational Technology. Human Sciences Research Council, 
Pretoria. 

Tripp, S.D. & Bichelmeyer, B. (1990). Rapid Prototyping: An Alternative Instructional 
Design Strategy. Educational Technology, Research and Development 38 (1), 31-44. 

Venezky, R. & Osin, L. (1991). The Intelligent Design of Computer-Assisted Instruction. 
New York: Longman. 

Verhagen, P.W. & Plomp, T. (1988). Educational Technology: A Dutch Contribution to the 
Debate. In: Mathias, H., Rushby, N. & Budgett, R. (Eds), Aspects of Educational 
Technology, Vol XX/, Designing New Systems and Technologies for Learning. London: 
Kogan Page. 

Visser, M.S.P. (1995). Rekenaarbenutting in die opfeiding van inligtingsvaardige 
gebruikers aan 'n akademiese inligtingsdiens. Uncompleted DPhil thesis, Department of 
Information Science, University of Pretoria, Pretoria. 

Vock ell, E. & van Deusen, R. M. (1989). The Computer and Higher-Order Thinking Skills. 
Watsonville, CA: Mitchell Publishing, Inc. 

Webb, G.I. (1989). Courseware Abstraction: Reducing Development Costs while 
Producing Qualitative Improvements in CAL. Journal of Computer Assisted Learning 5 
(2), 103-113. 

West, C.K, Farmer, J.A. & Wolff, P.M. (1991). Instructional Design: Implications from 
Cognitive Science. Englewood Cliffs, N.J.: Prentice Hall. 

Wilson, B. & Cole, P. (1992). A Review of Cognitive Teaching Models. Educational 
Technology Research and Development 39 (4), 47-64. 

Winograd, T. & Flores, F. (1987). Understanding Computers and Cognition: A New 
Foundation for Design. Reading, MA: Addison-Wesley. 

Winston, P.H. (Ed.) (1975). ThePsychologyofComputerVision. NewYork: McGraw-Hill. 

Wong, S. C. (1993). Quick Prototyping of Educational Software: An Object-Oriented 
Approach. Journal of Educational Technology Systems 22 (2), 155-172. 

Woodhead, N. (1991). Hypertext and Hypermedia: Theory and Applications. 
Wokingham: Addison-Wesley. 

Woodroffe, M.R. (1988). Plan Recognition and Intelligent Tutoring Systems. In: Self, J.A. 
(Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. 
London: Chapman and Hall. 

Woolf, B.P. (1988). Representing Complex Knowledge in an Intelligent Machine Tutor. 
In: Self, J.A. (Ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided 
Instruction. London: Chapman and Hall. 

240 


	Button27: 
	Button28: 
	Button29: 
	Button30: 
	Button31: 
	Button32: 
	Button33: 
	Button34: 
	Button35: 
	Button36: 
	Button37: 
	Button38: 
	Button39: 
	Button40: 
	Button41: 
	Button42: 
	Button43: 
	Button44: 
	Button45: 
	Button46: 
	Button47: 
	Button48: 
	Button49: 
	Button50: 
	Button51: 
	Button52: 
	Button53: 
	Button54: 
	Button55: 
	Button56: 
	Button57: 
	Button58: 
	Button59: 
	Button60: 
	Button61: 
	Button62: 
	Button63: 
	Button64: 
	Button65: 
	Button66: 
	Button67: 
	Button68: 
	Button69: 
	Button70: 
	Button71: 
	Button72: 
	Button73: 
	Button74: 
	Button75: 
	Button76: 
	Button77: 
	Button78: 
	Button79: 
	Button80: 
	Button81: 
	Button82: 
	Button83: 
	Button84: 
	Button85: 
	Button86: 
	Button87: 
	Button88: 
	Button89: 
	Button90: 
	Button91: 
	Button92: 
	Button93: 
	Button94: 
	Button95: 
	Button96: 
	Button97: 
	Button98: 
	Button99: 
	Button100: 
	Button101: 
	Button102: 
	Button103: 
	Button104: 
	Button105: 
	Button106: 
	Button107: 
	Button108: 
	Button109: 
	Button110: 
	Button111: 
	Button112: 
	Button113: 
	Button114: 
	Button115: 
	Button116: 
	Button117: 
	Button118: 
	Button119: 
	Button120: 
	Button121: 
	Button122: 
	Button123: 
	Button124: 
	Button125: 
	Button126: 
	Button127: 
	Button128: 
	Button129: 
	Button130: 
	Button131: 
	Button132: 
	Button133: 
	Button134: 
	Button135: 
	Button136: 
	Button137: 
	Button138: 
	Button139: 
	Button140: 
	Button141: 
	Button142: 
	Button143: 
	Button144: 
	Button145: 
	Button146: 
	Button147: 
	Button148: 
	Button149: 
	Button150: 
	Button151: 
	Button152: 
	Button153: 
	Button154: 
	Button155: 
	Button156: 
	Button157: 
	Button158: 
	Button159: 
	Button160: 
	Button161: 
	Button162: 
	Button163: 
	Button164: 
	Button165: 
	Button166: 
	Button167: 
	Button168: 
	Button169: 
	Button170: 
	Button171: 
	Button172: 
	Button173: 
	Button174: 
	Button175: 
	Button176: 
	Button177: 
	Button178: 
	Button179: 
	Button180: 
	Button181: 
	Button182: 
	Button183: 
	Button184: 
	Button185: 
	Button186: 
	Button187: 
	Button188: 
	Button189: 
	Button190: 
	Button191: 
	Button192: 
	Button193: 
	Button194: 
	Button195: 
	Button196: 
	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button9: 
	Button10: 
	Button11: 
	Button12: 
	Button13: 
	Button14: 
	Button15: 
	Button16: 
	Button17: 


