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Abstract 

Redundancy in plaintext is a fertile source of attack in any encryption system. 

Compression before encryption reduces the redundancy in the plaintext, but this does not 

make a cipher more secure. The cipher text is still susceptible to known-plaintext and 

chosen-plaintext attacks. 

The aim of homophonic coding is to convert a plaintext source into a random sequence by 

randomly mapping each source symbol into one of a set of homophones. Each homophone 

is then encoded by a source coder after which it can be encrypted with a cryptographic 

system. The security of homophonic coding falls into the class of unconditionally secure 

ciphers. 

The main advantage of homophonic coding over pure source coding is that it provides 

security both against known-plaintext and chosen-plaintext attacks, whereas source 

coding merely protects against a ciphertext-only attack. 

The aim of this dissertation is to investigate the implementation of an adaptive 

homophonic coder based on an arithmetic coder. This type of homophonic coding is 

termed universal, as it is not dependent on the source statistics. 

Keywords: arithmetic coding; adaptive models; cryptography; data compression; homophonic coding; 

homophonic substitution; modelling; randomness; statistical testing; secrecy; unconditional security. 
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Universal Homophonic Coding 

Chapter 1 

INTRODUCTION 

I.I Background 

The security of a large number of cryptographic systems is based on the computational complexity of 

certain mathematical algorithms. Unconditionally secure systems are preferable [Gunther, p.406]. 

These are cryptographic systems which are not dependent on computational complexity issues or limited 

to cipher-text only attacks [Rueppel, p.73]. This can be achieved by conditioning the plaintext (the 

message before encryption) by reducing the redundancy with data compression and increasing the 

entropy by means of a randomising process. 

Redundancy in plaintext is a fertile source of attack in any encryption system. Compression before 

encryption reduces the redundancy in the plaintext message, but it has been shown that this does not 

make a cipher more secure [Boyd 1992, p.10], [Irvine]. The cipher text is still susceptible to a known 

plaintext attack. 

The aim of homophonic coding is to convert a plaintext source into a completely random sequence. It 

has been shown [Jendal, Kuhn & Massey, p.383] that when a random sequence is encrypted by a non­

expanding cipher, then the ciphertext is completely random and independent of the key. This is achieved 

by randomly mapping each source symbol into one of a set of homophones. Each homophone is then 

encoded by a source coder after which it can then be encrypted with a conventional cryptographic 

system. 

The main advantage of homophonic coding over pure source coding is that it provides security both 

against known-plaintext and chosen-plaintext attacks [Penzhorn]. On the other hand, source coding 

merely protects against a ciphertext-only attack. 

The aim of this report is to investigate the implementation of an adaptive homophonic coder based on an 

arithmetic coder. This type ofhomophonic coder is termed universal as it is not dependent on the source 

statistics of the message. 



Chapter l Introduction 

1.2 Statement of the Problem 

Homophonic coding based on a fixed model of the message source, (the source statistics used in the 

model are fixed) does not provide optimal results when used to encode a source with varying statistics. 

1.3 Hypothesis 

The hypothesis is made that arithmetic coding can be used in combination with homophonic coding to 

implement a homophonic coder which can adapt to source statistics. This hypothesis has been proposed 

by Penzhorn [Penzhorn]. However, no record of any implementation could be found. 

A second hypothesis is that no special form of homophonic arithmetic decoding is required. The 

arithmetic decoder will follow the homophonic coder without having to know anything about the 

homophones. 

1.4 Objectives of this Study 

1. To gain an understanding of data compression. 

2. To gain an understanding of cryptography. 

3. To gain an understanding of homophonic coding. 

4. To investigate the topic of randomness and tests for detecting non randomness in a sequence. 

5. To implement a universal homophonic coder. 

6. To evaluate the results from the implementation. 

7. To state the difference between homophonic substitution and homophonic coding. 

1.5 Scope of this Investigation 

The scope of this dissertation is the implementation of universal homophonic coding. We consider two 

forms of homophonic coding: one based on a conventional methods which merely expands the source 

alphabet and a second form based on dyadic 1 homophones. The real test of the theory would be to 

1 Homophones with probabilities based on negative integer powers of two (binary powers). 
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Chapter 1 Introduction 

subject the output of the homophonic coder to cryptanalytic attacks. These forms of attack are not 

covered in this research. 

The order of the adaptive model will be limited so that it can easily fit into the memory available. 

Optimisation and speed do not receive direct attention in this dissertation. 

1.6 Relevance of the Research 

Compression before encryption does not increase the security as the system is still weak against a 

chosen-ciphertext attack [Bergen & Hogan 1993]. This is especially true with redundant sources such as 

English text. Boyd [Boyd 1991, p.275] investigated homophonic substitution and source coding and 

tabled a question whether homophonic coding had any advantages over conventional data compression. 

This research will try to justify homophonic coding in conjunction with an arithmetic coder. 

An important aspect of the form of homophonic coding together with an encryption system is that it 

provides security against both known-plaintext and chosen-plaintext attacks [Penzhorn, p.343]. 

1.7 Previous Work 

The concept of homophonic coding is not new. [Massey] and [Gilnther] have introduced the ideas of 

variable length homophonic coding. [Penzhorn] introduced the use of a fast shift and add arithmetic 

coder to the homophonic interval based on a static model. 

1.8 Methodology 

The following methodology was employed in conducting the research for this dissertation. 

• Initially, an in depth study was made into the subject of lossless data compression [Stevens 1992]. 

The result of this study was the development of V.42 bis data compression for commercial use in 

modems2
• 

• Cryptography was studied and the investigation of "randomness" was undertaken [Stevens 1994]. 

The results of this randomness investigation and the necessary code to perform randomness tests 

2 Duxbury 996 and Bell Atlantic managed modem range. 
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Chapter 1 Introduction 

were released on the Internet newsgroup sci.crypt. This code is now available at major cryptographic 

Internet sites3
. 

• A prototype system based on an adaptive model was implemented. 

• Tests were carried out on the output of the prototype. 

• The results were evaluated. 

1.9 Organisation of this Document 

Universal homophonic coding comprises of a number of distinct elements. For this reason, this 

document is divided into a number of sections. These sections are data compression, cryptography and 

homophonic coding. 

Chapter 2 deals with the meaning and measuring of "randomness" to ensure the perfect cipher. This 

chapter is complex and may be skipped when initially reading this dissertation. 

Chapters 3 and 6 are basic introductions to the subjects of data compression and cryptography 

respectively. Chapter 3 reviews entropy and arithmetic coding that are fundamental requirements in 

later chapters. Furthermore, it shows how redundancy is removed and introduces the reader to the topic 

of modelling. 

Chapter 4 describes arithmetic coding in further detail. Arithmetic coding is the key concept in the form 

of homophonic coding discussed in this dissertation. Modelling the input source is a key concept in any 

form of data compression system. This is discussed in chapter 5. 

Chapter 6 reviews cryptography in which the subject of a classical homophonic cipher is introduced. 

Other forms of ciphers are also discussed. The information theory of cipher security is discussed for 

later analysis of homophonic coding. 

Chapters 7 and 8 consider homophonic coding in detail. Chapter 7 introduces the subject and shows the 

state of the current published research. Chapter 8 discusses the form of homophonic coding used in this 

dissertation. 

3 University of Milan, Italy: ftp.unimi.dsi.it in /pub/security/cryptanalysis/alltests.tar.zip and University of Oxford, 

U.K.: ftp.ox.ac.uk in /pub/cryptanalysis/alltests.tar.gz 
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Chapter 1 Introduction 

Chapter 9 discusses the implementation of the universal homophonic coder and finally Chapter 10 

reviews the results. 

All the necessary source code is to be found in the appendix. A glossary of terms is given in an 

appendix. 

5 



Universal Homophonic Coding 

Chapter 2 

RANDOMNESS 

2.1 Introduction 

This chapter reviews the controversial topic of randomness. The output of the homophonic coder must 

pass some of the standard statistical tests. These tests will detect non randomness in a sequence. There is 

no single test that can prove randomness. Testing will only increase the confidence in the security of the 

system. 

Randomness is used in numerous fields such as cryptography, simulation, computational number theory, 

computational geometry, VLSI testing, parallel and distributed computing. This chapter addresses 

randomness for cryptographic purposes. 

In the field of cryptography, unpredictability is a key criterion. The sequence must be unpredictable to 

the left and also unpredictable to the right. This means that given any portion of the sequence, it must be 

impossible to determine either the past sequence or to determine the next portion of the sequence. 

Cryptanalysis uncovers either a structural or statistical weakness in a cryptographic algorithm. In theory, 

every cipher can be broken once it exceeds its unicity distance (this term will be explained in a later 

section), e.g., by an exhaustive key (brute force) search. A major design goal of a cipher system is to 

make it secure against every feasible attack. 

2.2 What is Randomness? 

Maurer defines randomness "as a property of an abstract mathematical model characterised by 

probabilities" [Maurer, p.90]. Whether this model can give an exact description is a philosophical 

question. 

Randomness is said to be endemic in many physical processes such as shot noise or even quantum 

mechanics. This is known as true or. abstract randomness. Pseudo random sources try to imitate true 

random sources. 

6 



Chapter 2 Randomness 

In this study, pseudo-random sequences are the main focus for three main reasons. 

l. A pseudo-random bit generator produces from a short seed, a longer sequence of pseudo-random 

bits from a deterministic algorithm. 

2. The sequence is easily reproducible given the knowledge of the seed. 

3. They are extensively used in cryptography for key sources. 

Randomness is related to the ability to predict the next outcome in a sequence [Feder, Gerhav & 

Gutman, p.5]. True random sources can be considered unconditionally unpredictable. If the outcome can 

be predicted, then the sequence cannot be considered random. The problem of predicting the next bit in 

a sequence has intrigued information theorists for many years. The complexity of the source is related to 

the amount of information in it (measured by the entropy) and how well it can be compressed. A 

sequence is totally unpredictable if and only if it is incompressible [Feder, Merhav & Gutman, p.9]. 

The following section will give some of the many definitions and notions of randomness. 

2.2.1 Intuitive Definitions 

Intuitively, the probability of predicting the next bit of a random sequence is 1/2 as in the coin tossing 

experiment. Given full knowledge of all preceding bits, is it computationally infeasible to predict the 

next bit with better than 50% accuracy. Each bit of the sequence should be unpredictable and the 

sequence must pass several statistical tests [Knuth]. 

2.2.2 Kolmogorov Definition 

Kolmogorov showed that a string of bits is random if it cannot be described by a string shorter than 

itself. The Kolmogorov complexity4 K, of a binary string x is defined as the length l of the shortest 

program p to print out this string on a universal computer U. [Cover & Thomas, p.147]. 

Ku (x) = minl(p) 
p:U(p)=x 

If the string is random, the Kolmogorov complexity is close to the entropy [Cover & Thomas]. This 

implies that the string cannot be compressed, i.e. there is no redundancy assuming perfect compression. 

7 



Chapter 2 Randomness 

A sequence x1 ,x2 ,. .. ,xn is said to be algorithmically random [Cover & Thomas, p.157] if: 

K( XJX2···Xnln) ~ n 

An infinite string x is incompressible [Cover & Thomas, p.157] if: 
lim 

n~oo 

K( XJX2X3···Xnln) = ] 
n 

If a string x 1 , x 2 , •.. , xn is incompressible, then it satisfies the law of large numbers, so that: 

!_ i.x;=t 
n i=I 

Therefore, the number of ones and zeros in an incompressible string (and thus a random sequence) is 

almost equal. A proof of this fact5 is given by [Cover & Thomas, p.157]. 

Although the Kolmogorov complexity is interesting for its definition of randomness and compressibility, 

the function is not computable. Therefore, it does not provide a practical test for randomness. 

2.2.3 Complexity Definition 

The randomness of an event is relative to a specific model of computation with a specified amount of 

computing resources [Blum & Micali]. This definition is not considered in this report. 

2.2.4 Golomb's Randomness Postulates 

Golomb proposed three randomness postulates for a binary sequence of period p, i.e. a pseudo-random 

sequence such that Sm+p =Sm [Beker & Piper, p.169]. 

RI. If p is even then the length of p shall contain an equal number of ones and zeros. If p is odd, 

the number of zeros shall be one more or one less than the number of ones. 

R2. In the cycle of length p, half the runs have length 1, a quarter have length 2, and an eighth 

have length 3 and, in general, for each i for which there are at least i+1 runs, zi of the runs 

4 
The Kolmogorov complexity concept, was independently and almost simultaneously discovered by Kolmogorov, 

Solomnoff and Chai tin. 

5 In practice, the number of ones and zeroes has been found to be a strong indicator of non randomness [Stevens 

1994]. 
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Chapter 2 Randomness 

have length i. Moreover, for each of these lengths, there are equally many gaps (runs of zeros) 

and blocks (runs of ones). 

R3. The out-of-phase correlation is a constant. 

Sequences satisfying these criteria are known as G-random or PN-sequences (PN is the term for pseudo 

noise). 

2.2.5 Binary Symmetric Sources 

Any form of a random bit generator is designed to output a sequence of statistically independent and 

symmetrically distributed random variables. A pseudo-random bit generator outputs a sequence so that it 

appears that it was generated by a binary symmetric source (BSS). This sequence is often used as a 

synonym for random [Maurer, p.90). 

When this definition of randomness for a sample sequence is used, it is then possible to form a known 

distribution so that the acceptance and rejection regions can be specified. 

2.3 Statistical Testing For Randomness 

In this section, several standard tests for randomness are discussed. Statistical tests detect a possible 

statistical defect in a random bit generator, that is that statistical model describing the sequence deviates 

from a binary symmetric source. A test examines sequence of length N. [Knuth] is one of the definitive 

works for statistical testing of random number generators (RNG). 

Tests can only highlight a particular bias in the binary sequence. They are not conclusive. No single test 

can prove randomness. Finding the bias is not easy as most deterministic (pseudo random6
) generators 

are designed to pass the usual statistical tests. For example, the binary representation of ;r passes most 

statistical tests but is deterministic. 

Tests fail for two reasons, a sequence may deviate from an expected outcome or it may be too close to the 

expected outcome. Sub sequences should also be tested for local randomness as sometimes the 

cryptanalyst will have some of the sequence. 

6 Pseudorandom distributions are those distributions which cannot be efficiently distinguished from the uniform 

distribution on strings of the same length [Goldreich & Krawczyk, p.114] 
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Chapter 2 Randomness 

2.3.1 Analysing different distributions 

This section discusses how the actual test results are analysed. The test result is compared with a known 

statistical model. Samples are tested if they are from the similar populations. 

Data is continuous or binned (a finite number of categories). Continuous data converted into binned data 

by grouping entries into specified ranges of continuous variables. Binning involves the loss of 

information. The chi-square test is used on binned data and the Kolmogorov-Smirnov (K-S) test is 

generally used on continuous data as a function of a single variable. 

The next section considers two methods, the chi-square and the Kolmogorov-Smirnov tests, to compare 

distributions. There are many other tests and to name but a few; Neyman-Pearson, Student-t, and 

Kull back. 

23.1.1 Chi-square Test i 
The chi-square test x2 measures the goodness-of-fit between some known distribution and the 

distribution of the sample. Let o; be the event observed at the i'h bin and e; is the number expected 

according to some known distribution, then: 

The chi-square probability function Q( z21v) is an incomplete gamma function [Press, Teukolsky & 

Vettering, p.621]. Q( z2 1v) is the probability that the sum of the squares of v random normal variable 

of zero mean will be greater than x2
. A low value obtained from Q( z21v) suggests a significant 

difference in the distributions. 

The degree of freedom v is usually the number of bins minus one. The expected value is close to the 

degree of freedom, i.e., E[x2
] "' V. The x2 statistic can be looked up in tables for different significance 

levels. The significant level is the total probability of all the outcomes contained in the critical region. 

The X2 test is used to decide between the null hypothesis, i.e., the observation does not fall in the critical 

region, 

• Ho:{pG):O '.>: j < m} is the probability distribution of X0, X 1, .•. Xn-l; and the alternate 

hypothesis, 

• H1: {p(j):O '.>: j < m} is not the probability distribution of Xo, Xi, .. .Xn-I 

10 



Chapter 2 Randomness 

The null hypothesis is made assuming that the samples are from the same population and the difference 

has arisen purely by chance. If the probability of getting two samples is less than, say 5%, the hypothesis 

can be rejected. 

There are two versions of the x2 test to test the significance levels. The x2 value based on the degrees of 

freedom is viewed with the percentage points and the random test results are based on the deviations 

[Knuth]. 

2.3.1.1.1 One-Tailed 

Using a single significance level is not used in this report as the results may be too good, i.e. an equal 

number of ones and zeros (i.e. not only are large x2 values improbable, so are small values). 

2.3.1.1.2 Two-Tailed 

The significance levels at each end of the x2 distribution are tested. An example of the critical regions 

are: 

0-1% 

1-5% 

5-10% 

99-100% 

95-99% 

90-95% 

2.3.1.2 Kolmogorov-Smirnov Test 

Reject 

Suspect 

Almost suspect 

The K-S measure is the maximum value of the absolute difference between two cumulative distribution 

functions. It is applicable to unbinned functions that are functions of a single independent variable 

[Press, Teukolsky & Vettering, p.620]. 

Large values of n will average out local non-random behaviour and therefore the data should be blocked. 

The K-S test should then be applied to the results of the blocks. 

As in the X2 test, the same hypothesis testing is applicable to the K-S test. 

The K-S test is mentioned here for completeness and it not used in any of the tests in this report. 
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2.3.2 Empirical Tests 

Empirical tests [Knuth] require computation to evaluate the data. There are many different empirical 

tests that can be performed, a few being given below. Many of the tests are limited by processing time 

and memory requirements. The majority of the tests use the chi-squared distribution to detect a bias. 

2.3.2.1 Frequency or Equi-distribution Test 

The frequency test, tests the hypothesis that the sequence is uniformly distributed, i.e. the number of 

ones and zeros is approximately equal. This test is a good indicator on non randomness. Previous testing 

has shown [Stevens, 1994] that if a sequence fails this test, it will fail all other tests. 

Some tests that can be done: 

Normal distribution [Maurer] given by f TF = ~(£ x; - N) 
-vN 1=0 2 

For a normal distribution with a large Nanda zero mean with variance 1, the rejection thresholds are 

12.5 ... 3.01. 

Chi-square i' 
Testing the number of ones (n1) and the number of zeros (n0) in a sequence is approximately the same, 

i.e. p(O) = p(l) = 0.5: 

2 ~ ( n- - 0.5 )2 

x = L..-'-'-'-''----'-
i=O 0.5 

[Beker & Piper, p.171] and [Gustafson, Dawson & Caelli, p.122] give the following which can be 

derived from the above equation: 

With one degree of freedom and 5% significance levels, 0.00393 < x2 < 3.841 

Increase the bin size: 

Choose d to be a multiple of the word size, e.g. 256. For each value of r (0 ~ r ~ d), count the number of 

times that oi = r for 0 ~ i ~ N. Apply the x2 test with v = d - 1 and the probability of d-1
• 

With d = 256, 255 degrees of freedom and 25% significance levels, the critical region bounds are 

239.39 < x2 < 269.88 
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2.3.2.2 Serial Test 

The serial test checks that the consecutive entries are distributed uniformly and independently. This 

ensures that the transition probabilities are similar suggesting that each bit be independent of its 

predecessor. 

From [Beker & Piper, p.172] and also [Gustafson, Dawson & Caelli, p.122]: let nij be the number of 

consecutive runs, i.e. n00 is the number of 00 runs. 

noo + no1 = no-1, n10 + n11 = n1-l and noo=no1=n10=n11 

4 I 1 2 1 

X
2 

= --L.L.<nijl--L,(n;f+l withv = 2 
N -1 i=O j=O N i=O 

With two degrees of freedom and 5% significance levels, 0.1026 < x2 < 5.991 

With three degrees of freedom, the standard chi-squared equation is 

2 4 1 1 N 2 
x = - I. I.< nij - - > 

N i=O j=O 4 

N-1 

4 

Neither of these two distributions follow the restriction of [Knuth] that n2;,2;+J should be the order of the 

test. 

2.3.2.3 Poker Test 

The poker test counts the number of similar patterns in a block of chosen length. 

Partition the sequence into blocks (hands) of length m. For any integer m there are 2m different 

possibilities in this block. Count the frequency of each type, i.e. f 0 ,f 1, ••• ,J 
2

m_1 

The degree of freedom, v = 2m - 1 

The test can be applied for different values of m and can be based on the word size, e.g. if using 5-bit 

Baudot code, let m = 5. 
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2.3.2.4 Autocorrelation Test 

The autocorrelation tests for periodicity in a block by comparing the sequence with a shift of itself. It is a 

measure of how dependent bits of sequence are on each other. 

A delay 1: is used to detect a possible correlation between bits at a distance 1:. Consider a binary sequence 

Sn of period p. For any fixed 1:, the first p terms of sn and its translate sn+r are compared to test how many 

positions are the same. The autocorrelation function is (simplifying the formula given in [Beker & Piper, 

p.173]: 

C(
"") __ 2(number of coincident bits) -I 
• forO <r < p 

p 

When C(HO), out-of-phase correlation occurs which will satisfy Golomb's postulate R3. 

A sequence, a 1 , •.. ,an is tested by the following [Beker & Piper, p.173]: 

n 

A(d) = Laia;+d 0 ::;; d::;; n-1 
i=l 

n](n-d) 
The expected value of A(d) is µ = 

This a computationally intensive test and is a good test to ensure that the sequence is not too random. 

2.3.2.5 Runs Test 

A run is a consecutive string of identical sequence elements. A run of zeros ( r0 ) is known as a gap and a 

run of ones ( r1 ) is known as a block. This test is only applied after the serial test has been passed. 

N N 

blocks = Lr 1; and gaps = L r0; where r; are blocks or gaps of length i 
i=l i=l 

From the serial test it can be seen, no1 = ro, nio = n, noo = no - ro and nn = ni - n 

Golomb's postulate R2 can be tested, i.e. half the runs (blocks or gaps) will have length one, quarter of 

the runs will have length two, etc. A chi-squared statistic can be obtained in the following manner: 

k ( 2-i )2 

X
2 _ ~ ru - rz d _ k 1 - L..J . an V- -

i=l T' n 

Furthermore, the number of runs is normally distributed with: 
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µ = l+ 2non1 
N 

and a 2 

The standardised normal score 

= 
( µ-1)( µ-2) 

N-1 

X-µ 17 
z = -- where X = runs and a = v a 2 

(j 

The z scores can be looked up in a table of a normal distribution N(µ, o2
) 

2 . 3 . 2 . 6 Binary Derivative Test 

Randomness 

A binary derivative is the exclusive-or of adjacent bit pairs in a string [Gustafson, Dawson & Caelli, 

p.123), [Carroll & Robbins, p.255). This means that if the adjacent bits are the same (00 or 11) they are 

replaced by zero and if they are different (01 or 10) they are replaced by a one. Each successive binary 

derivative drops one bit. For example, consider the sequence: 

1 0 0 0 1 0 1 1 1 0 the first derivative will be: 

100111001 

The test function divides the number of ones by the total number of bits. A ratio from p(O) to p(n) is 

established. The results follow the pattern as given by [Carroll & Robbins, p.257): 

p(O) = ~ 

average = I __!!fjJ_ 
i=O (n+ 1) 

range = p( max) - p( min) 

variable 

low 

high 

The binary derivative test is not part of the usual statistical tests. 

2.3.2.7 Universal Entropy related Statistical Test 

close to 0.5 

close to 0.5 

low 

Maurer's universal bit test is discussed in a separate section because it is both a recent innovation, and 

can be used independently of preceding tests, it. See Maurer's universal bit test on page 16. 
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2.4 Universal Source Coding 

This section discusses the idea of universal source coding and leads to the idea of Maurer's universal bit 

test. If a source can be compressed, it cannot be considered random. 

2.4.1 U Source Coding 

The Ziv-Lempe! (LZ) algorithm is an example of a universal source code. The term universal in the 

sense that the code can be used without the knowledge of the source distribution. The algorithm has an 

asymptotic rate that approaches the entropy of the source. The LZ universal compression algorithm has 

become a standard for file compression on computers. 

A binary string is parsed into the shortest distinct phrases so that there are no identical phrases. For 

example, the string 1011010100010 is parsed into seven distinct phrases 1,0,11,01,010,00,10. 

It can be shown [Cover & Thomas, p.320] that the number of phrases c(n) in a distinct parsing of a 

binary sequence of length n satisfies: 

c(n) can be regarded as the threshold of complexity. From the Kolmogorov complexity issues, a string is 

incompressible if it is random. This occurs when c(n) > _n_ 
log2 n 

It is difficult to compute c(n) especially when n is large, therefore the idea of Maurer's universal test. 

The LZ compression algorithms do compute c(n), but with the following restrictions: usually the bit size 

is initially 8 bits and the number of distinct phrases is limited (by the dictionary size). This is not the 

case when the complexity must be calculated, thus making it difficult to compute. 

2.4.2 Maurer's Universal Bit Test 

According to Maurer [Maurer, p.90], this test can detect any one of the general class of statistical defects 

that can be modelled by an ergodic stationary source with finite memory. It is not tailored to detect a 

specific statistical defect. It is also measures the amount of security by which a cipher system would be 

reduced when this sequence is used as a key source. 
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2.4.2.1 Definition of Maurer's Universal Bit Test 

A statistic is computed based on the distance between each occurrence of the same L-bit code value for 

each n-bit sequence. The statistic is normally distributed with the expectation and variation being 

functions of the L-bit code size. This test requires large amounts of data, especially as the L-bit size 

increases. 

The test quantity h is closely related to the per bit entropy H. of the source when it is modelled by a 

binary ergodic 7 stationary source with finite memory M ~ L. The total length of the sample sequence sN 

is: 

N = ( Q+ K)L, where 

Lis the length of the non overlapping blocks into which the sequence is divided, 

K is the number of steps of the test, 

Q is the number of initialisation steps. 

J Q+K-1 

The test function is defined by f Tu ( sN) = - L log2 An ( sN) 
K n=Q 

where for Q :": n :": Q+K-1, A0 (sN) is defined by an integer valued function 

bn( sN) = [ SLn,. .. ,SLn+L-11 denotes the nth block of length L. The sequence is scanned for the 

most recent occurrence of block bn ( sN) . 

A distribution of a random sequence is used to specify the acceptance or rejection regions. The mean and 

variance ofa single term log2 An( RN) off TJ RN) can be computed as Q - co [Maurer]. The expected 

value of the random sequence is the same as the expected value of the test sequence, i.e. 

E[ f Tu( RN)] = E[log2 An( RN)]. 

7A . process is stationary when all the probability densities of a random process are time independent. An ergodic 

process has the property that a random process observed for a fixed time is identical to observing one sample 

function all the time. A process cannot be ergodic unless it is stationary. Whereas, a stationary process is not 

necessarily ergodic. 

17 



Chapter 2 Randomness 

The resulting threshold is then t = E[ f Tu (RN)]± y<J. Maurer gives all the values for 1-bit blocks in 

the range 8 to 16. 

When the per-bit entropy is close to one, the test requires a much longer sample sequence than the 

frequency test or other similar test. Increasing the length of the sample sequences reduces the standard 

deviation and therefore allows detection of smaller deviations from a binary symmetric source. Another 

reason that the LZ source coding algorithm is not used, is that is difficult to define a test function so that 

f Tu (RN) can be computed [Maurer, p.101]. 

2.4.21 The "Universality" of the Test 

There is a known failure of this test as it will pass the RANDU8 algorithm. If L can be such that L = 31, 

then the test will fail RANDU and other similar generators. With L = 31, an array of 231 elements is 

required and the algorithm must also test so may iterations. This would take a very long time on current 

computer technology. 

2.5 Conclusion 

There are many methods to check the randomness properties. This research has mentioned a few of the 

more well known methods. There is much ongoing research in the field, e.g. Yao's next bit test, 

spectrum analysis and avalanche testing. 

A suite of tests has been developed based on the methods described to detect non randomness [Stevens 

1994]. 

The question of why "randomness" is so hard to reproduce or measure can be summed by the following 

quotation of John Taber on the newsgroup sci.crypt: 

Attempting to observe randomness in any way distorts random events. Randomness 

exists so long as you can't see it. When you see it, it is no longer random. 

8
RANDU is a linear congruential RNG of the form Xn+I = (65539 * Xn) mod 231

, [Knuth]. RANDU is known to be 

a particularly poor generator. 
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Chapter 3 

DATA COMPRESSION 

3.1 Scope 

This chapter introduces the concepts of lossless data compression. It is not intended as an in depth 

discussion, but merely to lay the ground work for later chapters. 

3.2 Introduction 

Data can be compressed whenever some events (or symbols) are more likely than others. The basic idea 

of compression is to assign shorter codewords to more probable events and longer codewords to less 

probable events. Compression removes some of the redundancy from a source or message. 

3.2.1 Types of Data Compression 

There are two forms of data compression, namely: lossless and lossy. 

3.2.1.1 Lossless 

No information is lost in the compression process. The original source data is reproduced exactly by 

decompressing the compressed stream. In this report, only lossless compression is considered and thus 

all references to compression refer to lossless compression. 

3.2.1.2 Lossy 

Information is discarded in the compression process and thus the original data cannot be recovered by 

the decompression process. Instead, decompression produces an approximation to the original data. The 

compression ratio is then dependent on the degree of approximation. Generally, this type of compression 

is used for compressing wave form data, e.g. audio and video. 

Some forms of lossy compression rely on the perceptive techniques of the human senses. An example of 

this is the standard telephony codecs to fit a speech signal into a limited bandwidth and the speech 

compression method used in cellular telephones. 
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3.2.2 Entropy 

In the field of Information Theory, entropy represents the intrinsic information content of the source. In 

this case predictable events convey no information, whereas unpredictable events convey a large amount 

of information. Entropy is thus the measurement of the information content in a message. The higher 

the entropy, the greater the information content of the message. 

Entropy is the lower bound for compression [Bell, Cleary & Witten, p.47]. With lossless compression, 

the source cannot be compressed below its entropy because it must have at least that amount of 

information content. This is known as the Noiseless Source Coding Theorem which was proved by 

Shannon [Shannon: Mathematical Theory of Communication, p27]. 

Shannon defined entropy as the smallest number of bits required to encode an event. The entropy of a 

discrete random variable Xis defined by [Cover & Thomas, p.13]: 

H(X)= -2,p(x)log2 p(x) 

The entropy can also be considered in terms of uncertainty [Lucky]. Low predictability (thus high 

uncertainty) results in a high entropy. 

3.3 Data Compression = Modelling + Coding 

The data compression function can be broken into two separate entities10
, namely the model and the 

coder [Rissanen & Langdon]. This insight was considered a major advance in the field of data 

compression. 

• Modelling is the process of representing the source to be compressed by assigning probabilities 

to the source symbols. 

• Coding is the process of mapping the model's representation of the source into a compressed 

bitstream. 

9 
In physics, entropy is a measure of the amount of disorder or uncertainty in a system [Irvine]. 

10 This heading "Data Compression = Modelling + Coding" is taken from [Nelson] as it clearly shows the 

components of the data compression function. 
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3.3.1 Modelling 

Modelling is the key to effective data compression. In general, entropy is based solely on the model. The 

amount of compression (or how well the source can be compressed) is directly related to how well the 

model represents the entropy of the source. Incorrect statistics can lead to a code string with more bits 

than the original. 

The following diagram indicates the relationship between the model and coder. Both the encoder and 

decoder models must follow one another, otherwise synchronisation will be lost between the models. 

Source : 

Model 

P(u n+l I u0) 

Encoder Compressed 
Bit Stream 

Model 

P(u 0• 1 I u,) 

Decoder 

Figure 1. Relationship between the model and coding sections 

Recovered 
Source 

A model is an estimator which provides the encoder with the conditional probabilities for the next 

symbol. The decoder model makes the same estimation based on the symbol which has been decoded. 

A simple model has a fixed probability for a symbol irrespective of its position in the message. This type 

of model is referred as an order-0 model. Models may have different contexts associated with each 

symbol. In an order-I model, the context of the current symbol depends on the immediate previous 

symbol, e.g. in English, it is highly probable that a 'u' will follow a 'q'. 

Models may be adaptive, semi-adaptive or non adaptive. In the adaptive model, the symbol probabilities 

will change dynamically as the source text is processed. A semi-adaptive model may make a preliminary 

pass of the source to gather statistics. This model data must then be transferred to the decompressor. A 
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non-adaptive model uses fixed probabilities that are hard coded into the compressor and decompressor. 

Any deviations of the source from this predefined model will cause a loss in compression. 

The type of compression technique will influence the complexity of the model. These techniques will be 

discussed in the following section. For example: 

• Updating an adaptive Huffman coder is processor intensive [Nelson, p.83], 

• Dictionary based methods have the model closely intertwined with the coder, and 

• The arithmetic coder has a clean separation between the model and coder. 

Modelling will be discussed in more detail in Chapter 5. 

33.2 Coding 

The coder accepts the events to be encoded. A prime feature of any coder is that it should have the first­

in-first-out (FIFO) property [Langdon, p.136]. This means that events can be decoded in the same order 

as they were encoded. 

Another desirable feature is that of incremental coding [Bell, Cleary & Witten, p.114]. The coder can 

output codewords before it has processed the entire input stream. A codeword can be output as soon 

there are no bits that might change i.e. it no longer has any influence on the calculations. A similar 

process also applies to the decode process. 

The next section on Compression Techniques will show some of the many forms of coding. 

3.4 Compression Techniques 

There are several compression techniques that fall under three classes. These include the intuitive 

ad hoc methods, the statistical methods and the dictionary (also known as textual substitution) methods 

[Bell, Cleary & Witten, p.206]. 

3.4.1 Ad Hoc Coding Methods 

These coding methods do not fall into one of the two main methods of compression, namely statistical 

and dictionary methods. Some of these ad hoc methods include run length, move to the front, 

differential, bit mapping, packing, special data types and even irreversible compression (e.g. removable 

of white spaces in text) [Bell, Cleary & Witten, p.20]. A few of these methods will now be described. 
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3.4.1.1 Run Length Encoding (RLE) 

This is a simple method where runs of identical symbols are encoded as a symbol and a count. It is often 

a precursor to additional compression methods. 

3.4.1.2 Move To Front (MTF) 

The appearance of a word in the input makes it more likely to occur in the near future. This is known as 

locality of reference. Each word is put on a stack, with words near the top assigned shorter codes. If the 

word is already on the stack, its position (code) is output and it is moved to the top of the stack. 

3.4.1.3 Burrows Wheeler Transform 

This method is a relatively recent development [Fenwick, 1996]. The Burrows Wheeler Transform 

(BWT) transforms a block of data into a format that is well suited to compression. The text is processed 

in blocks and reordered. The resulting output block contains the same bytes as in the input block but 

with a different byte ordering. This ordering is reversible. The text is then compressed with standard 

compressors. Usually the first compression step is to apply run-length encoding or move-to-the-front and 

follow this by some standard entropy encoder such a Huffman source coder. 

The BWT uses the following context in contrast with other adaptive methods which use the preceding 

context. This means that the transform can only operate on blocks that are resident in memory in 

contrast to other methods which can operate on a stream. 

The compression performance is comparable with the best higher order statistical compressors. 

3.4.2 Statistical Coding Methods 

These are compression methods where the code is determined by the estimated probability of the input 

symbol. Given these probabilities, a code table can be generated with some important properties: 

• Different codes have different numbers of bits. 

• Low probability codes have more bits than high probability codes. 
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• As codes have the prefix free11 property [Cover & Thomas, p.81), they can be uniquely decoded 

although they have different numbers of bits. No codeword is a prefix of another code word, i.e. 

the decoder cannot confuse two codewords as each codeword is uniquely decodable. 

These methods can be considered as the coder section of the whole compression process. The model has 

assigned the necessary symbol probabilities. A few statistical methods will be described in the following 

sections. 

3.4.2.1 Shannon-Fano Coding 

Messages are coded according to their probabilities. This algorithm builds the tree from the root [Bell, 

Cleary & Witten, p.103). 

1. In decreasing probability order, list all possible messages. 

2. Divide the list into two sections with equal probabilities. 

3. Start the code for the first section with a 'O' bit and those in the second section with a '1' bit. 

4. Recursively apply the above procedure until each section contains a single message. 

The average code length lies between [H, H + 1) where H is the entropy12 [Bell, Cleary & Witten, 

p.104). 

3.4.2.2 Huffman Coding 

Huffman codes are similar to Shannon-Pano codes. A Huffman tree is built from the leaves in contrast 

to the Shannon-Pano which builds the tree from the root [Bell, Cleary & Witten, p.105). 

1. List all possible messages with their probabilities. 

2. Locate the two messages with the smallest probabilities. 

3. Replace these by a single set containing both, whose probability is the sum of both. 

4. Repeat until the list contains one member. 

11 
A prefix code is a code which satisfies the Kraft inequality. The Kraft inequality provides the proof that a code is 

uniquely decodable if the code lengths are greater or equal to that determined by the entropy. For a D-ary 

alphabet the lengths l, of the codewords must satisfy L D-1
; $; 1 [Cover & Thomas, p.82]. 

i 

12 The notation [a, b) denotes a half open interval such that a$; x < b. 
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As each list contains only two members it can be represented by a binary tree with the original message 

at the leaves. The tree is then traversed from the root to the message outputting a 'O' for left branch and 

a '1' for a right branch. 

An example of Huffman coding (based on a fixed model) is as follows: 

Consider a message of ABABA CA, that is four As, two Bs and one C. 

4 2 1 

A B c 

Combine the least probable symbols into one, i.e. B and C with a new count of 3. 

4 3 

A B+C 

Combine the least probable symbols into one, i.e. A and B+C with a new count of 7. 

0 1 

Figure 2. Example of a Huffman Tree 

Starting at the root of the tree, encode a zero bit for left traversal and a one bit for right traversal. So A is 

encoded as a 0 and a B is encoded as a 10. The entire message is encoded by a bit stream of length ten 

bits, 0100100110. A binary code would generate a message of fourteen 13 bits long. 

13 Message length of seven characters each requiring two bits to uniquely represent each character. 
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The code generated is prefix free and can be uniquely decoded. It is also instantaneous as decoding can 

take place without look ahead, that is a symbol can be recognised as soon as it is complete. 

Like Shannon-Fano Coding, Huffman Coding can take up to one extra bit per symbol (unless 

probabilities are exact powers of Y2). The average code length is bounded by [H, p + 0.086) where p is 

the probability of the most likely symbol and His the entropy [Bell, Cleary & Witten, p.107]. 

Huffman coding is usually done over blocks of bits. This blocking [Bell, Cleary & Witten, p.107] allows 

the entropy to be approached when the symbol probabilities are not binary powers. In practice, ideal 

blocking is difficult to achieve in real-time. Large blocks are required to get optimal compression. These 

problems can be solved with arithmetic coding. 

3.4.2.3 Arithmetic Coding based on Floating Point Arithmetic 

Arithmetic coding14 forms the basis of this research and as such will be presented in more detail than 

any of the other compression coding methods. Chapter 3 will consider the subject in more detail. This 

section will introduce the concept of arithmetic coding. 

Arithmetic coding falls into the class of statistical coding methods. It is a method of writing a code in a 

non-integer length allowing the code to approach the ideal entropy. Arithmetic coding is superior in 

most respects to Huffman coding for the following reasons: 

• It is a true entropy coder as it achieves the theoretical entropy bound for any source [Bell, Cleary 

& Witten, p.108] and [Howard & Vitter 1992, p.86]. No blocking of input data is required so that 

the entropy of the source can be attained (assuming that the model is entirely representative of 

the source). 

• The probabilities are not required to be arranged in any order (as in Huffman Coding or 

Shannon-Fano) [Bell, Cleary & Witten, p.108]. 

• Codes do not have to be an integer number of bits long [Nelson, p.123]. 

• There is a clear separation between the model representing the data and the coder. The 

complexity of the model has no affect on the coder. 

• It lends itself towards adaptive models (because of the above point) [Bell, Cleary & Witten, 

p.121]. 

• Code symbols can be continuously generated for infinitely long source sequences. 

14 
It is interesting to note that virtually all forms of arithmetic coding are protected by patents. 
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However, arithmetic coding does have some disadvantages. 

• Arithmetic coding tends to be slow due to the arithmetic15 operations and the need to maintain a 

cumulative16 probability table. 

• It does not produce prefix free codes and thus does not allow parallel processing [Howard & 

Vitter, p.86]. 

• It requires an end of stream indicator [Howard & Vitter, p.86]. 

• There is poor error resistance17 as the code is not a prefix free code. This fact is prevalent in most 

compression methods18 as well. 

Codewords representing source symbols can be viewed as code points in the half open unit interval 

[0,1). These code words divide the unit interval into non-overlapping sub intervals. Each code word is 

equal to the cumulative sum of the preceding symbols. As each code word is transmitted, the range is 

narrowed to the portion of it allocated by the symbol. The reduction of the interval is based on the 

probability of the symbol generated by the model. More likely symbols will result in a smaller reduction 

of the interval than less likely symbols. 

Incremental coding is performed without enumerating all the messages in advance. This means that as 

soon as the number of bits that uniquely represent the code point are generated, they can be sent to the 

decoder. 

The basic algorithm (given by [Howard & Vitter 1992, p.87]) is as follows: 

1. Begin with the current interval initialised to [O, 1) 

2. For each event in the file perform these two steps: 

• Subdivide the current interval into a subinterval, one for each possible event, 

15 
Some of the arithmetic multiply and divide operations can be replaced with shift and add operations with some 

compression loss. This concept will be explained in the following chapter. 

16 
A recent innovation speeds up this table manipulation with a new data structure [Fenwick 1994]. Implementors 

refer to it as the Fenwick tree [Bloom]. 

17 
Arithmetically coded bit streams can be protected against channel errors by adding in controlled redundancy 

[Boyd, Cleary, Irvine, Rinsma-Melchert & Witten]. 

18 
In contrast, a fixed model Huffman coder can recover after an error. As soon as the next prefix code is found 

synchronisation will be attained with only the loss of some input symbols. 
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• Select the subinterval corresponding to the event that occurs next and make this the new 

current interval. 

3. Output event bits to distinguish the final interval from all other possible final intervals. This does 

lead to a small message termination overhead that is insignificant [Bell, Cleary & Witten, 

p.121]. 

Longer messages result in a smaller interval and thus require more bits to represent this smaller 

interval than a large interval. The encoding example in the next section shows how the interval is 

split into smaller and smaller intervals. 

3.4.2.3.J Arithmetic Encode 

The pseudo code for this encode operation is as follows [Nelson, p.126]: 

range= high - low 

high =low+ range x cumulative probability[ upper] 

low =low+ range x cumulative probability[ lower] 

where upper is the upper limit of the symbol's probability, and lower is lower limit. These three steps 

are collectively known as the coding step. 

Using the same probabilities as in the Huffman example and the same message, ABABACA, an 

arithmetic coding example based on a fixed model using the above algorithm is as follows: 

Character Probability Interval - cumulative probability 
A. t = 0.5714 [O, 0.5714) 

B + = 0.2857 [0.5714, 0.8571) 

c t = 0.1428 [0.8571, 1) 

Each time the algorithm is applied, the following steps take place for the message. 
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Character New Interval [low, high) Range 

A [O, 0.5714) 1.0 

B [0.3265, 0.4897) 0.5714 

A [0.3265, 0.4197) 0.1632 

B [0.3797, 0.4064) 0.0932 

A [0.3797, 0.3950) 0.0267 

c [0.3928, 0.3950) 0.0153 

A [0.3928, 0.3941) 0.0022 

Any value in the interval [0.3928, 0.3941) will represent the entire message. The message can be 

represented by the binary fraction (0110010011)2 which is equivalent19 to the decimal fraction value of 

(0.3935)10. As can be seen, each successive character will narrow down the interval. In this particular 

example, ten bits are used to represent the message as in the Huffman example. 

The following figure shows part of the interval shrinking process for the message portion ABABAC. 

Initially A B A B 

. 8 n 
B B 

.5 + 
I 

A A 

0 

Figure 3. Shrinking the arithmetic coding interval 
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In the case of adaptive arithmetic coding with the above example, the probabilities of a character would 

be different the next time the same character is coded. 

19 The value of 0.3935 is determined by summing the binary fractions until a value within the final interval is 

~ d F 1 . 0 . I I I I I 1oun . or examp e. 110010011 1s represented by 4 + 8 + 64 +ill+ 1024 
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3.4.2.3.2 Arithmetic Decode 

Decoding applies the reverse operation. Find the first symbol in the message by investigating what 

symbol owns the space within the interval. From the example, 0.3935 falls in the interval [O, 0.5714), so 

A is the first character. Since the range of A is known, A can be removed. The interval will now 

encompass B and thus the entire process can be reversed. 

The reverse decoding step algorithm [Nelson, p.127] is: 

symbol = symbol which is straddling the input value 

range =cumulative probability[upper]- cumulative probability[ lower] 

value =(value -cumulative probability[lower]) I range 

Although the above examples are explained in terms of floating point arithmetic, standard integer 

arithmetic is used in practice. There are a number of different forms of the arithmetic coder. Some of 

these methods are given by [Ekstrand]. The next chapter will describe a shift and add arithmetic coder. 

This implementation requires neither multiplication nor division. 

3.4.3 Dictionary Methods 

The main concept of the dictionary method is that phrases (substrings) of the text are replaced by tokens 

[Bell, Cleary & Witten, p.207]. The value of the token is assigned from a dictionary of tokens. Although 

there are static, semi-adaptive and adaptive dictionary coders, we will only consider the adaptive 

versions. Two key papers by Ziv & Lempel were the cornerstones of the dictionary methods. The LZ77 

method is adopted from their paper in 1977 and the LZ78 methods from their paper in 1978 [Bell, 

Cleary & Witten, p.217] 

In general, these methods replace phrases with a pointer to where they have previously occurred in the 

text. Ziv-Lempel methods adapt easily to new text and novel words and phrases are constructed from 

parts of earlier words. The LZ methods achieve good compression and are fast in comparison to the 

standard statistical coders. The LZ methods are a class of asymptotically optimal20 codes. 

There are many variants of the LZ methods, the list of which is continually growing. Most differences 

arise in the parsing strategy, and the method of constructing and refreshing the dictionary. Although the 

20 A code is asymptotically optimal when H ~ 1 as the length approaches infinity for a given probability 

distribution. 
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Ziv-Lempel21 concept seems vastly different from the statistical coding methods, there is an algorithm to 

convert any dictionary coder to that of a statistical coder [Bell, Cleary & Witten, p.248]. 

Most commercial compression packages are based on one of the LZ variants. Often dictionary methods 

are referred to as textual substitution, codebook coding or macro coding schemes. 

3.4.3.1 U77 Based (Sliding Window) 

This was the first form of LZ compression. The main data structure is a text window divided into two 

parts. The first part consists of a large block of recently decoded text. The second (normally much 

smaller) is the look ahead buffer that contains input symbols not yet encoded. The algorithm tries to 

match the contents of the look ahead buffer to a phrase in the dictionary. The longest match is coded 

into a triple containing: an offset to the phrase in the text window, the length of the phrase and the first 

symbol in the look-ahead buffer that follows the phrase. 

LZ77 has a performance bottleneck as it has to do string comparisons against the look ahead buffer for 

every position in the text window. Increasing the size of the dictionary further decreases performance. 

Decoding is faster than encoding. [Bell, Cleary & Witten, p.219], [Nelson 1992]. 

3.4.3.2 U78 Based 

The input source is parsed into phrases where each phrase is the longest matching phrase encountered 

previously plus one character. Each phrase is encoded as an index to its prefix plus the additional 

character. The new phrase is added to the list of phrases. As there is no text window, there is no 

restriction on how far back the pointer can reach. 

LZW - This adaptation was described by Welch [Welch 1984]. Only the pointer is sent as the explicit 

character is eliminated. This method is popular as it is simple to implement and is not processor 

intensive. 

The LZW algorithm begins by initialising the dictionary with every character in the input alphabet. 

Thus, with an 8 bit character, there will be 256 characters in the alphabet and the first 256 entries in the 

dictionary will correspond to these characters. LZW always outputs tokens for phrases (strings) that are 

already in the dictionary. The last character (symbol) of each new phrase is encoded as the first 

character of the next phrase. 

21 
Authors tend to refer to Ziv-Lempe! when writing their names in full and to LZ when describing a particular 

method. 
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A simple example explains this concept. Consider the sentence THIS IS 

Input Dictionary Output 

1 T Tis in dictionary as initial token 

2 H Search for 'TH'. Not found, add 256 = 'TH' T token 

3 I Search for 'HI', not found, add 257 = 'HI' H token 

4 s Search for 'IS', not found, add 258 = 'IS' I token 

5 sp Search for 'Ssp', not found, add 259 = 'Ssp' S token 

6 I Search for 'spl', not found, add 260 = 'spl' sp token 

7 s Search 'IS', found 

8 sp Search 'ISsp', not found, add 261 = 'ISsp' token 258 

Figure 4. Example of LZW compression 

The token bit size depends on the dictionary size. LZW uses a fixed token size of 12 bits that results in a 

dictionary of 4096 entries. 

Other variations of LZ78 include: 

• LZC, LZT, LZMW, LZJ, LZFG and hosts of others. V.42 bis (modem compression standard) uses a 

mixture of most of these methods including LZW. 

• LZC - UNIX compress is based on this method. The tokens represent pointers of various bit lengths. 

• LZT- Once the dictionary is full, LRU replacement is employed to recover dictionary entries. 

• LZJ - The string length is limited which means that the trie22 is depth limited. 

3.5 Conclusion 

This chapter has considered a number of different forms of compression. Both statistical and dictionary 

methods were shown. Arithmetic coding will be discussed in more detail in the following chapter. The 

concept of arithmetic coding will be used for the coder section in the implementation of the universal 

homophonic coder. 

22 A trie is a multi way digital search tree with a path from a root to a node for each string in the tree. 
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Chapter 4 

ARITHMETIC CODING 

4.1 Introduction 

The previous chapter considered. various forms of lossless compression techniques. This chapter will 

consider arithmetic coders in more detail. The concept of arithmetic coding was introduced with floating 

point values. This chapter will show how the implementation can be achieved with integer arithmetic. 

4.2 Binary Arithmetic Coding 

In the floating point description of arithmetic coding, the interval [0.00, 1.00) was considered. This can 

be written as [0.00, 0.99 ... ) since it has been shown23 (by many mathematicians) that 

1=0.9999999 ......... The same fact applies when the interval is considered as a binary range [0.00, 

0.111111). 

Consider three symbols A, B, C from a three symbol alphabet with probabilities Vi, 1A, and 1A 

respectively. The binary representation of Y2 is 0.1 and that of 1A is 0.01. This is shown in the initial 

interval diagram as 

c 0.11to1.00 

+ 
3/4 t 

B 0.10 to 0.11 

1/2 

t 
A o.o to 0.1 

0 l 
~ 9 m 9 

23 0.999 ... = L,-n = lim L,-n 
n=JlO n~~n=JlO 
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Any interval in the binary range 0.0 to 0.1 can specify the symbol A. For example, the first quarter is 

still in the range of symbol A and can be represented by binary 0.01. However, this would mean 

outputting extra bits. The shortest number of bits is always sent and in this case 0.0 would be sent. (The 

splitting of the interval was perceived as an important concept for homophonic coding, e.g. the symbol 

A, can be represented by any code word as long as it is in the range of 0 to Vi). 

It should be noted that the symbol ranges and the coding interval are not the same. They are both 

different I-dimensional spaces. Any part of the range may be used to specify the current symbol. 

However, any part of the range cannot be used in the coding step to calculate the new range. This means 

that the decoder must know about the range for a symbol. 

4.2.1 Practical arithmetic coding 

To ensure fast compression or decompression using fixed point arithmetic, the precision required to 

represent the [low, high) interval increases with the length of the message. The interval should be kept 

within the word size of the computer. As the number of input symbols increases, the interval decreases 

and becomes too small to fit in the finite word size of the machine. 

We show this with the following example. Consider a machine with a word size of 32 bits, the precision 

is limited to 2·32
. With each byte being represented by eight bits and having an equal probability of 2; 6 , 

encoding the first event will result in an interval of 
2

;
6 

or r 8 
. The second byte will reduce the interval 

to r 16
• After three bytes the interval is r 24 and after four bytes the interval is r 32

. The fifth byte will 

cause an overflow. 

Incremental operation will help to overcome this precision problem. The most significant bits can be 

output whenever they are no longer susceptible to further change. This normalisation operation of 

scaling the interval when the bits are output raises potential underflow and overflow problems. 

These issues and how to signify the end of the input stream will have to be solved as discussed below. 

4.2.1.1 Scaling 

When the code range narrows, the most significant bits of the interval high and low will become the 

same. Bits are output when any of the upper bits of both low and high are the same. The interval can 

now be scaled by a left shift (multiply by two). 
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4.2.1.2 Underflow 

The scaling operation can cause the low and high to become very close to each other. For example: the 

interval may become [0.011111, 0.100001). No matter how the interval is scaled, the most significant 

bits will never become the same (in a finite word length register) and the encoding operation would not 

be able to continue. 

The encoder must guarantee that the interval is large enough to prevent this underflow problem. Bell, 

Cleary & Witten proposed a unique method to overcome this problem [Bell, Cleary & Witten, p.116]. 

They constrain the maximum allowed cumulative frequency count so that is always less than the 

interval. 

4.2.1.3 Overflow 

Integer multiplication can cause an overflow in the coding step with the range as one of the 

multiplicands. The maximum allowed symbol frequency multiplied by the range must fit into the integer 

word of the machine [Bell, Cleary & Witten, p.118]. 

4.2.1.4 Word Length Constraints 

The constraints imposed on the finite machine word by the underflow and overflow can be represented 

by the following equations [Bell, Cleary & Witten, p.118]. The frequency counts are represented by f, the 

machine word length by c, and the precision by p: 

f ::;c-2 

f +c::;p 

If p is restricted to a precision of 16 bits, then c = 9 and f = 7 making it impossible to encode a 256 

symbol alphabet. 

Generally, the word length is sixteen bits, soc= 16. In this case the maximum frequency count will be 

limited to fourteen bits, f = 14. Thus for the precision, p ~ 30, the computer must support 32-bit signed 

integers. 

4.2.1.5 End of the stream 

The decoder needs to know when to stop decoding. This can be done in one of three ways: 

1. Passing the length of the message to the decoder before decompression takes place. This method is 

not well suited to adaptive methods as the whole input stream must be parsed before compression can 

take place. 
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2. Ensuring that the final decode arithmetic operations on the coding step terminate in a null. 

3. The compressor sends an EOF (end of file) symbol to the decompressor at the end of the message. 

This is the most effective method in an adaptive system. 

4.2.1.6 Compression Efficiency 

In theory, arithmetic coding should be virtually perfect and match the entropy of a given model exactly. 

There are some factors which can cause a reduction in the compression performance. 

• Message termination overhead. After the final symbol is encoded, additional bits must be output to 

disambiguate the final symbol. In practice, the stream is usually blocked into 8-bits and will have to 

be flushed with additional bits when the output is not a multiple of this size. This may then cause an 

overhead of 9-bits [Bell, Cleary & Witten, p.129]. 

• Use of fixed length arithmetic. The scaling of the counts so that f ~ c - 2 is satisfied. Bell, Cleary & 

Witten [Bell, Cleary & Witten, p.129] showed that the loss of compression was negligible and in the 

order of 10-14 bits per symbol. 

4.2.2 Fast arithmetic coding without multiplication or divide operations 

Langdon [Langdon, p.137] described a form of arithmetic coding based on shift and add operations for 

the encode process and shift and subtract operation for the decode process. Any integer is the sum of the 

powers of two. It is easy to apply this fact to only use shift operations. 

As in the previous method, codewords (representing source symbols) can be viewed as code points in the 

half open unit interval [O, 1). These code points divide the unit interval into sub intervals, with the 

following properties: [Langdon, p.138] 

• Each code point is the sum of the probabilities of the preceding symbols (cumulative 

probabilities). Each code point will be referred to by the letter C. 

• The width or size of each subinterval corresponds to the probability of the symbol. This interval 

will be referred to by the letter A (other authors use the symbol R to denote the range). 

• By restricting the interval widths to negative integer powers of two, multiplication is replaced 

by a shift to the right. These negative integer powers of two probabilities will be referred to by 
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the term dyadic probabilities. This restriction will cause a loss in compression of less than four 

percent [Williams, p.56]. 

4.2.2.1 Fast Arithmetic Encode 

A new code point is the sum of the current code point C, and the product of the interval width and 

cumulative probability P(v;) of the symbol v; being encoded. The operation can be written as 

ck= ck-I+ Ak-1xLP(v;),k=1,2,3, ... with Co= 0andAo=1 

The interval width A of the current interval is the product of the probabilities of the symbols already 

encoded. The new interval width of the symbol v; is then Ak = Ak-I x P(v;), k = 1,2,3, ... Ao= 0 

The value Ak-I x L P(v;) is often referred to as the augend [Langdon, p.138]. 

4.2.2.2 Fast Arithmetic Decode 

The decode process is the reverse of the encode process and consists of the following steps: 

Step 1: Decoder C comparison. The codeword is examined to determine in which interval it lies. This 

interval represents the symbol. 

Step 2: Decoder C adjust. The augend value for the symbol is subtracted from the codeword, 

Step 3: Decoder C scaling. C must be rescaled by undoing the multiplication for A. 

4.2.2.3 Problems with the shift and add method 

Rubin [Rubin, p.673] showed that this shift and add method had a number of problems which would 

increase the encoding computation time to O(n2
) for a string of length n. The arithmetic operations 

must be carried out with n digits of accuracy, or multiple precision techniques must be used. 

Rubin proposed a new algorithm for this method. Unfortunately, this algorithm makes the 

implementation non-dyadic and drastically increases the number of arithmetic operations. 

Langdon extended the basic shift and add algorithm into the skew coder algorithm, which has been 

patented and is known as the Q-coder. 
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4.3 Conclusion 

This chapter considered arithmetic coding in more detail. Adaptive arithmetic coding relies on the 

model for accurate prediction of probabilities. The coder unit is totally independent of the model and any 

form of model may be used; e.g. static, semi-static or adaptive. Modelling will be considered in the next 

chapter. 
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Chapter 5 

MODELLING 

5.1 Introduction 

The data compression function comprises two separate functions: modelling and coding. The coder will 

only code what is presented by the model. To achieve maximum compression of a source, both a good 

model and a way of representing the model are required. To achieve this a model must accurately 

predict the probabilities in the input stream [Nelson, p.167]. This prediction must deviate from a 

uniform24 distribution. 

5.2 Models 

A model provides the probability distribution of the next character in any context. The simplest models 

are insensitive to the next character and give the same distribution regardless of the next character. 

These models are known as order-0 models or memoryless models [Langdon, p.135]. 

There is no obvious mathematical relationship between the probabilities of different characters and 

therefore most models estimate the character probabilities individually. The estimate for the probability 

is given by estimate of the number of occurrences of the character: 

weight of character 
p =---.::.._--'-------

total weight of all characters 

Any loss in compression is attributed to the modelling overhead [Boyd 1991, p.276]. Modelling 

overhead is due to incorrect probabilities being assigned by the model. Perfect compression could be 

attained with no modelling overhead and an entropy coder such as arithmetic coding. In practice perfect 

compression is not achievable. 

24 If the model assigned the same probability, say 2-8 for each input character of a 256 character alphabet, then there 

would be no compression as the output will be the same size as the input. Each character will still require eight 

bits. 
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The encoder and decoder must maintain synchronisation at all times. There are three methods of 

achieving this: fixed, semi adaptive or adaptive. Each one of these model may be of different orders, i.e. 

based on the conditional probabilities of the current symbol. A model that always uses i previous 

characters to predict the current character is referred to as an order-i context model [Hirshberg & 

Lelewer, p.115]. This model consumes more memory as i increases and its efficiency decreases [Bell, 

Cleary & Witten, p.155]. 

Each context consumes a large amount of processor memory. For example, an order-I model with an 

alphabet of 256 characters will required 256 contexts for each character, resulting in a memory size of 

65535 characters. 

An order-(-1) model has all the symbols assigned the same probabilities [Bell, Cleary & Witten, p.34]. A 

model need not be character based, words and bits can be used as well. 

In all discussions of models, the same model will be used in the encoder and decoder. 

5.2.1.1 Fixed or Static Model 

This model does not change while the stream of symbol is coded and the same model is used for all 

different types of input. For example, a fixed model for English will have a high probability of the letter 

e occurring. Deviations of the input text based on the model will cause a loss of compression. 

5.2.1.2 Semi-adaptive or Hybrid Model 

In this form of model, multiple passes of the source are required. The first pass will identify a suitable 

model. The second pass will use the model for optimum coding. The model produced (or selected) for 

the input is transmitted to the decoder before the compressed stream is sent. The decoder can now use 

the same model to restore the source stream. 

Long input streams may cause a loss of compression due to the averaging effect of the counting the input 

symbols. 

5.2.1.3 Adaptive or Dynamic Model 

The adaptive model adapts to the input source during a single pass (i.e. in effect learning the model). 

The adaptation process is achieved by increasing the probability of each symbol encoded. Both the 

encoder and decoder models must be initialised to use the same model. As the code is decoded, the 

decoder alters the model accordingly and in sequence with the new probability assignments of the 

encoder model. 
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A simple order-0 model may assign an initial value to all symbols in the alphabet, for example unity. 

For each new symbol read, the probability for that symbol is incremented. Initially, the model will track 

the source slowly and for short input sequences the compression will not be as good as longer sequences. 

In an adaptive model there are two items that can be altered: the probabilities associated with a 

particular conditioning class and the set of conditioning classes. [Rissanen & Langdon 1981, p.12]. 

The block diagram of the adaptive model is repeated here. 

Input 
character· 

Model 

Encoder Compressed 
Bit Stream 

Model 

Decoder 

Adaptive compression steps are given with the following pseudo code: 

InitialiseM odel () 

while(input characters are available) 

encode(input character) 

UpdateModel(input character) 

The decompression function is applied in reverse as follows: 

InitialiseM odel () 

while( decode symbols available) 

OutputCharacter( decode symbol) 

UpdateModel(output character) 
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An model must consider the following issues: 

5.2.1.3.1 Locality of reference 

Strings tend to occur in clusters. What has been seen in the recent past is more likely to be seen again. 

This is known as locality of reference or recency effect [Howard & Vitter 1992, p.94]. Thus more weight 

can be assigned to recent occurrences of the symbols. 

5.2.1.3.2 Rescaling 

In the normal operation of an adaptive model, the count values associated with each context are being 

incremented and stored as fixed binary integers. Before any of these values overflow, they must be scaled 

down, e.g., by halving the count [Nelson, p.95] and [Bell, Cleary & Witten, p.151]. 

Scaling often improves compression and locality of reference ensures that recent statistics are given 

more weight. 

5.2.1.3.3 Zero frequency problem 

A symbol will have a zero probability when it not yet been encountered and since symbols are encoded 

in -log p bits, the code length approaches infinity. This means that all counts for a context must be 

initialise to some value other than zero. In our implementation we initialise the adaptive model so that 

each symbol has a count of one. 

5.2.1.4 Entropy differences between Adaptive and Non Adaptive Models 

There is a perceived impression that adaptive models will cause a loss of compression in the adaptation 

of the source. Generally, it can be proven that there is an adaptive model that is only slightly worse than 

the static model [Bell, Cleary & Witten, p.56]. Conversely, it can be shown that a static model can be 

arbitrarily worse than an adaptive model. 

Proposition that adaptive models can only be a little worse than the best non adaptive model: [Bell, 

Cleary & Witten, p.56] 

Given a set of conditioning classes with K members, an alphabet of q symbols and a message 

length of n, there are models that will take at most Kq log n bits more than the best possible non 

adaptive model. 

The difference Kq log n is approximately the number of bits required to represent the model. This means 

that in a semi-adaptive model (where the model must be sent with the message), the same number of bits 

will be used for the adaptive model. 
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Corollary: 

There is an adaptive model where the compressed string will be at most (q + l) bits longer than 
2logn 

the original string [Bell, Cleary & Witten, p.56]. 

Conversely it can be shown that for any message, the static model may arbitrarily expand it, and by the 

corollary above be worse than a good adaptive model. 

5.2.2 Types of Models 

There are many different forms of models some if which will be described below. These models may be 

fixed, semi-adaptive or adaptive models. 

5.2.2.1 Finite State Model or Markov Model 

These models are based on finite state machines (FSM's). They have a set of states together with a set of 

transition probabilities [Bell, Cleary & Witten, p.35]. These models are deterministic and can implement 

a finite context model. The probability of the entire message is the product of probabilities out of each 

state. 

A well known model of this form is Dynamic Markov Coding (DMC) [Bell, Cleary & Witten, p.191]. 

Initially this model is small but grows as new states are dynamically added. Frequency counts are 

maintained at each node and when this transition becomes popular a new state is cloned. 

5.2.2.2 Finite Context Model 

Context modelling is a special case of Markov modelling. The term Markov modelling is often used to 

refer to context modelling. A context model predicts successive characters taking into account characters 

already seen. Probabilities computed of symbols will differ depending on the symbol that precedes it, i.e., 

the probability of the incoming symbol is calculated based on the context in which the symbol appears. 

These models are usually implemented by finite state machines. 

Well known finite context models are the prediction by partial matching (PPM) models. There are many 

variants of PPM. Ideally one would like to use the highest order model possible, but initially there is not 

enough statistical information for efficient representation of the input source. A higher order model will 

give the best compression but does require more time to gather these statistics. In contrast, a lower order 

model will gather the statistics quicker. The solution [Cleary & Witten, p.396] is to use a partial match 
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where a higher order model is formed, but a lower order model is used when the high order predictions 

are not available. 

5.2.2.3 Grammar Models 

In this type of model, probabilities are associated with productions in the language. Formal languages 

can easily be compressed but it is difficult to model a natural language. 

5.2.3 Channel Error Recovery 

With effective data compression, no redundancy remains in the compressed stream to permit the receiver 

to recover synchronisation once it has been lost. As part of the modelling process, both the encoder and 

decoder model must maintain synchronisation. Any form of error will cause the decode process to 

incorrectly update the model. It is the responsibility of the channel to provide an error free transport of 

the bit stream. 

This loss of synchronisation was thought to increase the security of a cipher [Witten & Cleary, p.400]. 

However, it was shown that this added no additional security to a cipher [Boyd 1992]. Other researchers 

showed that the keyspace was only as large as the model. (This paragraph will be explained in 

Chapter 6 on cryptography basics). 

A controlled amount of redundancy may be added to arithmetic coding [Boyd, Cleary, Irvine, Rinsma­

Melchert & Witten] by adding an additional error symbol. When the decoder detects this error symbol it 

knows that an error has occurred. 

5.3 Conclusion 

This chapter has reviewed some of the more common modelling ideas. There is currently much research 

in this area, especially with variants of PPM. 
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Chapter 6 

CRYPTOGRAPHY 

6.1 Introduction 

Cryptography deals with the transformation of a plaintext message into a reversible ciphertext message 

by encryption. Recovery is done by decryption of the ciphertext. The aim of cryptography is the keep the 

plaintext secret from the enemy. 

Some services that are offered by cryptographic systems are [Haykin, p.816]: 

• Secrecy, which denies unauthorised access to the contents of a message. 

• Authentication, which is the validation of the source of the message. 

• Integrity, which ensures that the message has not been modified while in transit. 

• Non repudiation, which ensures that the sender cannot alter the contents at a later time, or to 

deny transmitting the message. 

6.1.1 Cryptanalysis 

Cryptanalysis is the science of recovering the plaintext or the key without having access to the key 

[Schneier 1994, p.4]. Cryptanalysis is achieved by determining the key from the ciphertext and the 

a priori probabilities of the various plaintext and keys. This is known as an attack. It is always assumed 

that the cryptanalyst has full details of the encryption algorithm25
. An attack may either be passive or 

active. The cryptanalyst will monitor the cipher channel in a passive attack. The active attack will 

attempt to alter data on the cipher channel. 

The type and form of the cryptanalytic attack is important when the security of any cryptosystem is being 

considered. The general types of cryptanalytic attacks are [Haykin, p.819]: 

25 Kerckhoffs Principle: "The security of a cryptosystem must not depend on keeping secret the crypto algorithm. 

The security depends only on keeping secret the key". [Beutelspacher, p.15] 
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1. Ciphertext-only attack. The cryptanalyst only has the ciphertext from several messages all encrypted 

with the same algorithm. Use is made of the statistical knowledge of the structure of a language. 

2. Known-plaintext attack. The cryptanalyst has both the plaintext and the corresponding ciphertext 

formed by the same secret key. For example, certain plaintext pairs maybe common, i.e. a destination 

header on a message. 

3. Chosen-plaintext attack. The cryptanalyst has both the plaintext and ciphertext and the ability to 

choose the plaintext. For example, each time the plaintext message is sent, the corresponding 

ciphertext message is received. 

4. Chosen-ciphertext attack. The cryptanalyst chose the ciphertext and obtain the corresponding 

plain text. This attack is mainly applicable to public key algorithms [Schneier 1995, p. 7]. 

In general, a ciphertext-only attack can be viewed as the weakest form of attack that the cryptographic 

system can be subjected to. Ideally the cryptographic system must withstand both known-plaintext and 

chosen-plaintext attacks. 

An unconditionally secure cipher is one in which it is impossible to recover the plaintext given all the 

ciphertext and computing resources [Schneier 1994, p.7]. The one time pad (OTP)26 is of this class. 

A computationally secure cipher is one that cannot be broken with current available resources. There is 

no bound paced on the amount of computation. For example, the well known ciphers; DES27 and 

RSA 28 fall into this class. 

6.1.2 Forms of Cryptography 

Cryptographic systems that rely on the use of a single and private piece of information known as the key 

is referred to as secret key cipher systems. Public key cryptographic systems have two keys, one being a 

private key and the other known as a public key. 

26 The one time pad is a method whereby the ciphertext is generated by XORing the plaintext with a random key 

which is of the same length of the ciphertext. This random key is used only once and then discarded. 

27 Data Encryption Standard. DES is symmetric secret key block cipher of 64 bits and a key of 56 bits. A complete 

description is given in any standard text [Schneier 1995, p.270]. 
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6.1.2.1 Secret Key 

A secret key or symmetric cryptographic system is shown in Figure 5. The message source generates the 

plaintext, X which is encrypted into the ciphertext, Y based on the single secret key, Z. A weakness of 

the secret key system is that the common secret key must be passed on to the decrypter by some secure 

channel (Public key systems overcome this problem). Usually the enemy cryptanalyst will have access to 

the ciphertext channel as shown in the figure. 

Enemy 

Message Source ~x Encrypter y Decrypter x-. 

z z 

Encrypt Key Decrypt Key 

Figure 5. Secret Key Cipher System 

Encryption and decryption are performed with a symmetric algorithm denoted by: 

E2 (X) = Y and D2 (Y) = X 

Symmetric key algorithms can be of two categories: 

• Stream ciphers, which operate on the plaintext on a bit per bit basis [Schneier 1994, p.170], 

e.g. RC4, video or data streams, or 

• Block ciphers, where the bits of the plaintext are grouped into blocks [Schneier 1994, p.219], 

e.g. RC2, DES, IDEA, Blowfish. 

28 RSA is named after the inventors, Rivest, Shamir & Adelman. This public key cipher will be described in a later 

section. 
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6.1.2.2 Public Key 

A public key algorithm uses different keys for encryption and decryption [Schneier 1994, p.273]. The 

encryption key is usually called the public key and the decryption key, the private key. In contrast, 

authentication systems use the private key to generate the signature and the public key for verification of 

the signature. 

Public key algorithms are based on computationally hard problems. Generally the algorithms get their 

security from calculating discrete logarithms in a finite field or by factoring large prime numbers. The 

RSA algorithm [Schneier 1994, p.283] is very common and is as follows: 

Public Key: 

Choose n, a product of two secret primes, p and q 

so that e is relatively prime to (p-1)( q -1) 

Private Key: 

Use Euclid's algorithm to compute the private key, d = e-1(mod(p- l)(q- l)) 

Encrypting: 

c = m"(modn) 

Decrypting: 

m = cd(modn) 

Public key algorithms are not suited to bulk encryption as their algorithms are computationally 

intensive. They have an encryption and decryption rate which is much slower than the symmetric 

methods. 

6.1.3 Information Theoretic Approach 

Shannon considered two notions of security [Shannon 1949]. These are: 

• Theoretical security. The enemy cryptanalyst is assumed to have unlimited time and computing 

resources. As will be shown in this information theoretic approach, this leads to a pessimistic 

conclusion that the amount of secret key required to build a secure cipher will be impracticably 

large. 

• Practical security. The cryptanalyst has limited computing resources and time. Another way to 

consider the problem is in terms of the value of the information. Is the value of the information 

less than the cost to break the cipher? Public key algorithms are intended to provide practical 

security. 
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The rest of this section will consider aspects of theoretical security. 

Let xn = ( x 1 ,x2 ,x3 , ... ,xn) be a plaintext message of length n, and yn = (y 1,y2 ,y3 , ... ,yn) be the 

corresponding ciphertext message of the same length. The secret key, Z is based on some probability 

distribution. For clarity purposes, the superscript n will be dropped. 

The uncertainty about X is expressed as the entropy H( X), and the uncertainty about X given the 

knowledge of Y is the conditional entropy H( XI Y) . 

The reduction in uncertainty is called the mutual information. The mutual information between X and Y, 

(measure of dependence between X and Y) is given in equation I and defined [Cover & Thomas, p.20] 

by: 

I(X;Y) = H(X)-H(XIY) ............. ! 

Shannon defined this mutual information as a basic measure of secrecy. 

6.13.I Perfect Secrecy 

Perfect secrecy [Shannon] is obtained when the a posteriori probabilities of the ciphertext are identical 

to the a priori probabilities of the plaintext. The plaintext, X and the ciphertext, Y must be statistically 

independent of each other. This means that the mutual information I(X;Y) = 0 '\In. From equation 1, 

H(XIY) = H(X) ............. 2 

Thus the cryptanalyst can only guess the plaintext X, given the ciphertext Y, according to the probability 

distribution of all possible messages. 

Given the key Z, the joint probability is H( X ,Zif). From equation 2, 

H( XI Y) ~ H( X, ZI Y) and from the Chain Rule, 

H(XIY) = H(ZIY)+H(XIY,Z) 

The conditional entropy H( XIY) = 0, if and only if Y and Z together uniquely determine the plaintext X. 

Hence from equation 2 and substituting for H( XI Y, z) yields: 

H( XIY) ~ H(ZIY), and because they are statistical independent, 

H(X)~H(Z) 
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Shannon's bound for perfect secrecy is H(Z) ~ H( X). With the Vernam cipher or one-time-pad, the key 

is as long as the plaintext, so the conditions for perfect secrecy will be met, providing that the key is 

random (the key sequence is comprised of statistically independent and uniformly distributed bits). This 

is the prime motivation for homophonic coding [Jendal, Kuhn & Massey, p.382]. 

6.13.2 Key Equivocation 

Shannon defined the key equivocation function, or conditional entropy of the key, given the first n digits 

of ciphertext, as f(n) = H(ZnlY~). 

The key equivocation function is a measure of the number of values of the secret key Z that are 

consistent with the first n digits of the ciphertext. 

Because f(n) can only decrease as n increases, Shannon called a cipher system ideal if f(n) approaches a 

non-zero value as n ~ oo, and strongly ideal if f(n) is constant, i.e. H(ZIY) = H(Z) Vn. 

This implies that in a strongly ideal cipher, the ciphertext sequence is statistically independent of the 

secret key. This is illustrated in the figure below. 

Strongly-ideal Cipher 

Ideal Cipher 

Number of bits in ciphertext, N 

Figure 6. Key Equivocation Function 
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6.1.3.3 Unicity Distance 

The unicity distance is an approximation of the amount of ciphertext such that the sum of the real 

information (entropy) in the corresponding plaintext plus the entropy of the key equals the number of 

ciphertext bits used [Schneier 1994, p.192]. From a theoretical point of view, the unicity distance is 

amount of ciphertext required for there to be only one reasonable solution for cryptanalysis. 

Unicity distance is defined [Schneier 1994, p.192] as the entropy of the cryptosystem divided by the 

redundancy of the language, U = H(Z) 
D 

The rate of a language is defined as r = H(X) and represents the average number of bits of information 
N 

in each letter. For English the value of r ranges from 1.0 to 1.5 bits per letter. 

The absolute rate R of a language is defined as the maximum number of bits of information that could be 

encoded, assuming that all possible sequences of letters are equally likely. If there are L letters in the 

language, then the absolute rate is given by R = log2 L which is equal to the maximum entropy of the 

individual letters. For a 26-letter alphabet, R = log2 26 =4.7 bits per letter. 

The redundancy of a language with rate rand absolute rate R is defined as D = R - r = log2 L- H(X) 
N 

D H(X) 
The percentage redundancy is defined as p = -

1 
-- = 1 -

og2 L Nlog2 L 

With a strongly ideal cipher system the redundancy r = 0, so that the unicity distance tends to infinity, 

as illustrated in Figure 5. This implies that the message source emits completely random plaintext, so 

that H(X) = N log2 L. 

Unicity distance guarantees insecurity if it is too small, but does not guarantee security if it is large 

[Schneier 1994, p.193]. 

6.1.3.4 Unconditional Security 

When a cipher is ideal it is not necessarily unconditionally secure. It may be unconditionally secure in a 

cipher-text attack but fail in a known-plaintext attack [Rueppel, p.73]. The security of an ideal cipher 

depends on the complete confidentiality of the plaintext. What is required to make a cipher 
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unconditionally secure is both a perfect and strongly ideal cipher. This is the goal of homophonic 

coding. 

6.1.4 Diffusion and Confusion 

Shannon suggested two principles in the design of practical ciphers, confusion and diffusion [Schneier 

1994, p.193]. 

• Confusion uses transformations that complicate the determination of how the statistics of the 

ciphertext depend on the statistics of the plaintext by spreading the redundancy. Confusion is 

achieved by substitution. 

• Diffusion spreads the influence of a single plaintext letter over many ciphertext digits. This 

hides the statistical structure of the plaintext. Diffusion is achieved through transposition (also 

known as permutation). 

6.2 Classical Cipher Methods Of Substitution And Transformation 

There are many forms of ciphers and only a few will be mentioned. The presence of redundancy allowed 

many of the classical cipher methods to be successfully attacked [Irvine]. 

6.2.1 Substitution Ciphers 

There are four types of classical substitution ciphers [Schneier 1994, p.8]: 

1. Mono alphabetic or simple substitution where a character of plaintext is replaced with a 

corresponding character of cipher text. 

2. Homophonic substitution in which one character of plaintext can map to one of several characters 

of ciphertext. For example, the symbol A, could map to any one of the set {l, 5, 9, 11, 30}. 

Homophonic substitution is discussed in more detail in Section 6.3 because it forms a major part 

of this dissertation. 

3. Polyalphabetic substitution cipher that consists of multiple simple substitution ciphers. The 

cipher used by Julius Caesar29 was of this type. 

29 Each plaintext character in the Caesar cipher is substituted with the character three to right modulo 26. (For 

example, character A is replaced by D) [Schneier 1995, p.11 ]. 
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4. Polygram cipher where blocks of characters are substituted in groups. For example ABC could be 

replaced with ZIQ. 

6.2.2 Transposition Ciphers 

The characters of the plaintext remain the same but their order is changed [Schneier 1994, p.10]. 

6.3 Homophonic Substitution 

Homophonic substitution is a one-to-many mapping of the source symbol. The term homophone means 

"sound the same" which implies that different codewords are assigned to the same source symbol. The 

idea is to flatten the frequency distribution of the ciphertext. 

A homophonic substitution cipher [Welsh, p.213] encrypts a message from alphabet Lt into a random 

cipher text from alphabet Lz where I Lzl .<: I Lt I· There is a one-to-many mapping and the codewords 

from alphabet I,2 are known as homophones. A codeword from the one-to-many mapping of alphabet Lz 
is picked at random to represent a symbol from alphabet Lt· There is a bandwidth expansion associated 

with homophonic substitution. 

This form of homophonic substitution is referred to as classical or conventional homophonic substitution 

in this document. Homophonic substitution will be considered in more detail in the following chapters. 

We make a distinction between homophonic substitution and homophonic coding. To clarify later 

descriptions we use the term homophonic substitution to refer to a complete cipher, that is, it produces 

ciphertext. Whereas with homophonic coding we imply that the output will be conditioned with a source 

coder to produce random plaintext which is then expected to encrypted. Homophonic coding thus 

conditions the plaintext. 

In a theoretical sense, homophonic coding allows the achievement of ideal ciphers because it can achieve 

an infinite unicity distance by having zero redundancy [Boyd 1991, p.273]. 

6.4 The Role of Data Compression in Cryptography 

Lossless data compression, before encryption, will remove some redundancy. Besides the obvious 

reduction in the length of the message to be encrypted, it will increase the unicity distance making the 

cipher somewhat more secure. If it were possible to have perfect compression and remove all 

redundancy, the plaintext would be completely random. Unfortunately, even though is there a negligible 

amount of coding overhead, there is always some form of modelling overhead [Boyd 1991, p.276]. 
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However, the compressed output is not uniformly distributed and cannot withstand a known-plaintext or 

chosen-plaintext attack [Bergen & Hogan 1993]. 

With dictionary based compression methods, for example L'ZW, some plaintext forms part of the 

message30 (see the L'ZW example, where the dictionary token can be followed by a token comprising the 

source language.). 

Adaptive text compression does give the idea that it may provide a good cryptosystem [Boyd 1992, p.5], 

[Witten & Cleary] for the following reasons: 

1. A single bit change in the stream changes the encoded stream. 

2. Removal of redundancy implies that the encoded stream has a random appearance. 

3. The adaptive model will be different for each stream encoded. 

4. A large keyspace is available. The model becomes the effective key. 

Boyd [Boyd 1992, p.10] showed that none of these factors below contributed to the security of the 

cryptosystem. 

1. An error in the bit stream is a problem for adaptive compression and encryption. An error free 

channel is required. 

2. There is a weakness in a known or chosen plaintext attack when the encryption is initiated. (The 

model has not yet seen sufficient input to adapt to the source). 

3. A large keyspace is no guarantee of security. 

Irvine showed [Irvine] the compression methods of arithmetic coding, Huffman, semi-splay tree and Ziv­

Lempel all contained security flaws. Furthermore, even an adaptive arithmetic coding compression 

algorithm fails under a chosen-plaintext attack [Bergen & Hogan 1993]. Compression provides a 

deterministic mapping between the message source and the output of the compressor [Penzhorn, p.343]. 

30 Note: this fact became apparent to the author in developing software for V.42 bis compression in modems. 
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6.5 Conclusion 

This chapter has provided an introduction to the subject of cryptography and laid the groundwork for the 

information theoretic treatment of homophonic coding. We also showed why compression alone is not 

suitable for increasing the security of a cipher. Unconditional security requires both a perfect and a 

strongly ideal cipher. 
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Chapter 7 

HOMOPHONIC CODING 

7.1 Introduction 

This chapter will discuss the theoretical aspects of homophonic coding. The previous chapter provided 

the necessary background and the strongly-ideal concept of Shannon. Four forms of homophonic 

substitution are apparent from the literature: 

1. The classical definition as given in the previous chapter in Section 6.3. 

2. Variable length homophonic coding based on Huffman codes [Gi.inther] (to be described). 

3. Arithmetic coding of homophones with dyadic (negative integer powers of two) probabilities 

[Penzhorn]. 

4. Universal or multiplexed homophonic coding [Massey] (to be described). 

In practice, it is impossible to design a perfect source coding (compression) scheme [Massey, p.12/426] 

and thus to design a strongly ideal cipher. 

The aim of homophonic coding is to convert a plaintext source into a random source. It will be shown 

that any secret key cipher may then be used to create a strongly ideal cipher system. The cipher is then 

able to withstand both cipher-text and known-plaintext attacks. 

In all our discussions of homophonic coding, a homophonic coding system is never used in a standalone 

mode. It will always be used together with an encrypter. Figure 7 indicates how the homophonic coder is 

placed in relationship to the general purpose non-expanding encryptor. 
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7 .2 Information Theoretic Analysis of Homo phonic Coding 

7 .2.1 Background 

Consider a plaintext message that produces a sequence of random variables, denoted as UpU2 ,U3 ,. ••• 

The U; take values in an alphabet of L letters, where 2::; L < oo • Assume that the source is memoryless 

and stationary, which implies that the source sequence consists of independent and identically 

distributed L-ary random variables. Since the message source is memoryless, the coding problem for the 

given message source then reduces to the coding problem for the single variable U = U;. The U; are 

coded into a D-ary sequence X1, X2 , X3 ,. .. [Penzhorn, p.331] ], [Jenda!, Kuhn & Massey, p.385]. 

When L = Dw for some positive integer wand all the values of U are equally likely, randomly assigning 

one of the different D-ary sequences of length w to each value of U, makes Xp X2 , X3 ,. .. completely 

random [Jenda!, Kuhn & Massey, p.385]. When Dw > L we have conventional homophonic 

substitution. Usually, L = 256, D = 2, w = 8 for an eight bit ASCII representation. 
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The following propositions and corollaries were cited and proved by [Jenda!, Kuhn & Massey] and as 

such are stated here without proof, although some of proofs follow directly from the previous chapter. 

Definition 1: [Jenda!, Kuhn & Massey, p.383] 

A cipher is non-expanding when the plaintext and the ciphertext take values from the same 

alphabet, so that when the key is known, the ciphertext and plaintext uniquely determine each 

other. 

Proposition 1: [Jenda!, Kuhn & Massey, p.383] & [Shannon] 

If the plaintext sequence encrypted by a non-expanding secret-key is completely random, then 

the ciphertext sequence is also completely random, and is also statistically independent of the 

secret key. 

This is readily apparent from the information theoretic treatment (Shannon's bound for perfect secrecy) 

in the previous chapter. 

Corollary 1 to Proposition 1: [Jenda!, Kuhn & Massey, p.384] 

If the plaintext sequence encrypted by a non-expanding secret-key cipher is completely random, 

then the cipher is strongly ideal (regardless of the probability distribution for the secret key). 

A non-expanding cipher has a property known as non-degeneracy [Massey]. This property will cause a 

change in the ciphertext when the key is changed and the plaintext is kept constant. 

Corollary 2 to Proposition 1: [Jenda!, Kuhn & Massey, p.384] 

If the plaintext sequence encrypted by a non-expanding secret-key cipher is completely random 

and all possible key values are equally likely, then the conditional entropy of the plaintext 

sequence, given the ciphertext sequence, satisfies 

H( xn1yn) "' H(Z) for all n sufficiently large. 

Corollary 2 implies that the cipher system is unbreakable in a ciphertext-only attack when the number of 

possible key values is large [Jenda!, Kuhn & Massey, p.384]. The cryptanalyst can only find xn by 

guessing at random from the many possibilities of the secret key Z. 

7.2.2 Perfect and Optimum Homophonic Coding 

A homophonic scheme is perfect when the coded D-ary is completely random. In this dissertation we 

will restrict D = 2. 
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Definition 2: [Jenda!, Kuhn & Massey, p.388] 

A Homophonic coding scheme is perfect if the encoded binary sequence X1,X2 ,X3 , ... is 

completely random. 

Proposition 2: [Jenda!, Kuhn & Massey, p.388] 

For a homophonic coder as in Figure 7, the expression 

H( U) ~ H(V) ~ E[W] Iog D 

holds with equality on the left if and only if the homophonic channel is deterministic, and with 

equality on the right if and only if the homophonic coder is perfect. Moreover, there exists a 

D-ary prefix-free coding of V such that the scheme is perfect if and only if p(v) is a negative 

integer power of D for all possible values of Vi of V, i.e. if and only if P(V = Vi) = Th holds 

for all values Vi of V where li is the length of the D-ary codeword assigned to Vi . 

Definition 3: [Jenda!, Kuhn & Massey, p.389] 

A homophonic coding scheme is called optimum if it is perfect and minimises the expected length 

E [ W] of the binary codeword assigned to the homo phonic channel output V, when the input is 

the message source output U. 

Proposition 2 shows that the task of designing an optimum homophonic coder is equivalent to finding a 

homophonic channel that minimises the entropy V. 

Proposition 3: [Jenda!, Kuhn & Massey, p.390], [Penzhorn, p.333] 

A homophonic channel is optimum if and only if, for every value u of U its homophones equal (in 

some order) the terms in the unique dyadic decomposition 

P(U = ui)= L p{ 
j'?.I 

where the dyadic decomposition is either a finite or an infinite sum. 

Proposition 4: [Jenda!, Kuhn & Massey, p.390] 

For an optimum binary homophonic coder holds: 

H(U) ~ H(V) = E[W] < H(U) + 2 

Proposition 4 shows that the entropy of the input U of an optimum homophonic channel never increases 

by more than 2 bits. 
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Any secret key cipher system can be used for the cipher in a strongly ideal system provided that the 

plaintext source emits a random sequence [Massey], [Penzhorn]. This exactly what homophonic coding 

attempts to achieve. 

7.3 Variable Length Homophonic Coding based on Huffman Coding 

This form of homophonic substitution is attributed to Giinther [Giinther, p.407]. The homophonic coder 

consists of three elements: a binary memoryless message source (BMS), a homophonic channel and a 

Huffman source encoder. 

The operation may best be explained by a simple example as given by Giinther. The message source U 

produces symbols from the two symbol alphabet with probabilities u1 = ± and u.i = f. The homophonic 

channel then substitutes the U; for homophones from the alphabet V = { v1 , v2 , v3} • The selected 

homophones are encoded as binary codewords in the alphabet X by means of a Huffman source coder. 

In this example, u1 is always represented by v1 • Symbol u.i is represented by a random selection of 

either v2 or v3 . 

u1 _L_. v1 v1 _____. 11 
P(U=u 1)=1/4 

-u 

l v2 v v2---. 10 x-. 
P(U=u 2)=3/4 To 

u2 0 
encrypter 

v3---. 
2/3 V3 

Memoryless Homophonic Huffman Source 
Message Source Channel Coder 

Figure 8: Variable length Homophonic Coding 

This scheme cannot adapt to changing31 source statistics [Penzhorn, p.331] and precludes its use as a 

practical method for creating strongly ideal ciphers. Hence the proposal to use arithmetic coding 

[Penzhorn]. 

31 The plaintext source statistics must be known exactly. 
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7 .4 Homophonic Coding based on Arithmetic Coding 

A novel concept of using homophonic coding based on arithmetic coding was proposed by Penzhorn. 

This method is based on the shift and add concept of Langdon [Langdon, p.137] and is described in 

Chapter 4. The idea is to combine the work of Jenda!, Kuhn & Massey together with the dyadic 

arithmetic coder of Langdon. The algorithm [Penzhorn, p.339] comprises the following steps: source 

modelling, design of the homophonic channel, random selection of the homophones and arithmetic 

coding of these homophones. Each of these steps will now be described. 

7.4.1 Encoding Process 

7.4.1.1 Source Modelling 

The proposed implementation of Penzhorn [Penzhorn] used a fixed semi-adaptive model, but placed 

some limitations on the implementation. For example; scaling of the range can be undertaken after the 

creation of the model. 

7.4.1.2 Design of the homophonic channel 

The probabilities from the model are approximated by dyadic homophones. The estimated probability 

from the model is approximated by a series comprised of negative powers of two. This approximation 

process will cause a small error e . The size of this error is reduced by increasing the word size, which 

will increase the number of homophones generated and thus a larger symbol alphabet. 

For example, consider a symbol with a probability of 0.22. This can be dyadically approximated by 

0.22 =f + 1~ + 3~ +e = 0.21875+e 

Then each of dyadic probabilities can be used as the randomly selected homophones. Using a word size 

of five bits, the homophones become: 

.!. 00100 
8 

_!_ 00010 
16 

...!._ 00001 
32 

Now any one of the three words can be used to represent the symbol of probability 0.22 
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7.4.13 Random selection of the homophones 

The homophones are selected by an external randomiser which introduces additional randomness into 

the message. This randomness accounts for the increase in entropy of 2 bits per symbol as stated in 

proposition 4. 

An external randomiser using a binary symmetric source (BSS) can be used to transfer subliminal 

information [Penzhorn, p.341]. 

7.4.1.4 Arithmetic encoding of the homophones 

The final step is to encode each randomly selected homophone by any arithmetic coder. In this case the 

shift and add arithmetic coder was proposed [Penzhorn]. 

7.4.2 Decoding Process 

The decoding process applies the reverse coding step. It is still important that the decoder model knows 

the mapping of U to V. The same model must still be used with the same homophones and the range 

must still be re-calculated in the same manner as the encoder. 

Consider the following example. The interval for symbol A is split into three homophones, Ai. A2 & A3. 

The message A2BA1 is sent. From the final interval, the first symbol to be decoded will be A2, followed 

by B. The example in Figure 9, shows that a new range must be split up for each symbol, causing a 

much smaller interval that would be required with normal arithmetic coding. These results are 

demonstrated in Appendix B, Page 93. 

c 

Decoding message: A, B Ax 

B 

A, 

A2 l A, 
A2 
A, 

:r 
Final interval after J\ 

A, 

Figure 9. Decoding the final homophonic interval 
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7 .5 Multiplexed Homophonic Coding 

Massey [Massey, p.13/427] introduced a form of universal homophonic coding or generalised plaintext 

stuffing which does not require the exact knowledge of the source statistics. This method comprises a 

multiplexor which multiplexes the data between the message source and a BSS. The output of the 

multiplexor is compressed and then encrypted with any non expanding cipher as shown in Figure 10. 

SSS 

--u 
Information 

Source 

v Source 
Coder 

X~ Cipher 

z 

G 
Figure 10. Homophonic coder based on a 2 input multiplexor 

y~ 

This system operates by outputting m random bits from the BSS followed by n digits from the message 

source. The sequence then repeats. The universal homophonic output is achieved by compressing the 

multiplexed stream V with any universal source coder. 

The information is recovered by reversing the compression. Since m and n are known, the m random bits 

can be discarded and the n bits will represent the message. Even with a discrete stationary and ergodic 

input source, the multiplexor introduces non-stationarity. This means that the output will only be 

stationary with multiples of m+n [Massey, p.12/427]. 

7 .6 Conclusion 

Homophonic coding converts a source having a non uniformly distributed alphabet into one that is 

uniformly distributed. Unicity distance is increased by reducing the redundancy of the language. This is 

achieved by data compression and homophonic coding. Homophonic coding is necessary as it impossible 

to have perfect source compression. Perfect compression converts the output into a BSS [Massey, 

p.12/426]. 
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Furthermore, homophonic coding together with an encryption system will provide security against a 

known or chosen plaintext attack because it provides a probabilistic mapping between the message 

source and the output of the source coder [Penzhorn, p.343]. 

64 



Universal Homophonic Coding 

Chapter 8 

UNIVERSAL HOMOPHONIC CODING 

8.1 Introduction 

In the previous chapter we considered a number of different homophonic coding paradigms. One major 

disadvantage of these methods (with the exception of plaintext stuffing of Massey) was that they were 

not universal. The aim of this chapter is to discuss such a universal homophonic coding system. 

Penzhorn showed [Penzhorn] that a homophonic coder can be based on a number of separate entities: 

• A model, 

• The homophonic channel, which contains the randomiser and homophone generator, 

• An arithmetic coder, 

• Non expanding encryptor, 

• Communication channel. 

To make this homophonic coder universal, the source statistics must be adaptively modelled. In practice 

this system must be able to follow any message source. 

We consider two forms of universal homophonic coding. One is based on a conventional method and the 

other on the dyadic probabilities of Penzhorn. 

8.2 Conventional Universal Homophonic Coder based on Arithmetic Coding 

In the conventional homophonic coding system of Figure 11, the alphabet is expanded to a desired 

number of homophones per input character, of the input sequence U. The randomiser will randomly 

select one of these expanded homophones v; , from the sequence V. The effect of the good randomiser is 

to flatten the probability distribution of each character by making each selection of the input character 

equally likely. The encoder will encode this new symbol v;, and the model will also assign new 

probabilities to this symbol v;. The decoder will receive this new symbol and because it knows how may 

homophones are related to each input character it will be able to convert this symbol to a character. 
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There is an obvious loss in compression with this scheme due to the bandwidth expansion of the one-to­

many mapping. There will be a point at which the number of homophones selected will cause an 

expansion of the original message. The output, however, will still be random. 

Homophonic Channel 

Randomiser 1-----. 

---u 
Plain text 

Alphabet 
Expander, 

U to V 

p 

Model 

Arithmetic 
Encoder 

v 

p 

Arithmetic 
Decoder 

Model 

v VG 
u Plain text 

B-z 
x x 

Encryptor Channel Y Decryptor 

Cipher text 
communicatio~n---~ 

channel 

z-B 

Figure 11. Conventional Universal Homophonic Coder based 
on Arithmetic coding 

• 

The alphabet expander can dynamically assign a set of homophones based on the probability of U; . This 

means that there will be a different number of homophones for each U; , so that the overall frequency 

distribution can be flattened. This dynamic assigned of homophones is not considered in this 

implementation and the term universal applies to fact that the model will adapt to the source statistics. 

8.3 Dyadic Probability Universal Homophonic Coder 

The dyadic or split probability homophonic coder shown in Figure 12 is based on the concept described 

by Penzhorn [Penzhorn] on page 61 of Section 7.4, Chapter 7. 
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Figure 12. A Universal Homophonic Coder based on 
Arithmetic Coding with dyadic probabilities. 

83.1.1 Source Modelling 

Model 

u 
U---+ 

Plain text 

z-G 

An order-0 model will be used to simplify the explanation. A higher order model may be used with an 

associated increase in complexity. Initially an order-0 adaptive model will have all symbol probabilities 

set to unity, that is; all symbols have the same probability. No homophonic coding is necessary as 

distribution is equal, i.e. all homophones have probability of 1. 

When a new symbol is processed, the count associated with this symbol is incremented and the 

cumulative probability increased as well. The homophonic channel will use this information to update 

the homophones of this symbol. 

The model will also organise all the symbols so that those with the highest probabilities will always be 

first in the search order. The nature of locality of reference will cause these more frequent symbols to be 

accessed more often. 

83.1.2 Design of the homophonic channel 

The design of the homophonic channel is closely coupled with the model. Each symbol has a number of 

homophones associated with it. Initially with an adaptive order-0 model there will only be one 

homophone with a unity probability. 
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When a new symbol occurs and the model updates the probability, the homophonic channel will assign a 

new homophone to that symbol. At the same time it will update a cumulative probability entry for this 

new homophone. 

Because the arithmetic coder cannot use an updating homophone for shrinking the interval, the model 

will update a standard model. After an update count is exceeded, the homophones are updated based on 

the current state of the model and the process is repeated until there are no further input symbols. The 

arithmetic decoder must keep track of the same set of homophones. 

8.3.1.3 Random selection of the homophones 

A random selection of one of the homophones associated with the symbol is required. This random 

symbol is passed to the arithmetic coding function. 

8.3.1.4 Arithmetic encoding of the homophones 

As long as the probability and cumulative probability for a symbol are updated correctly, any standard 

arithmetic coder may be used. 

Arithmetic coding allows dual homophone selection. The encoder always calculates the interval from the 

coding step: 

range= high - low 

high = low+ range x cummulative probability[ upper] 

low =low+ range x cummulative probability[ lower] 

The upper cumulative probability is given by the random homophone. The lower cumulative probability 

is usually given by the previous symbol. 

8.3.1.S Non expanding cipher 

Any non expanding cipher is suitable. This implementation is based on the IDEA block cipher. 

8.3.2 Decoding Process 

The decoding process is much simpler than the encoding process as there is no random selection of the 

homophones. The compressed and encrypted bit stream is first passed to the block cipher which decrypts 

the stream. The stream can now be passed to a matching arithmetic decoder based on the same model as 

the encoder. This model must maintain the same homophones as that of the encoding model. 
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8.4 Conclusion 

This chapter explained the concept of a universal homophonic coder based on an adaptive order-0 

arithmetic coder. These systems will be implemented and described in the chapter on implementation. 
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Chapter 9 

IMPLEMENTATION 

9.1 Introduction 

This chapter describes the implementation of the universal homophonic coder. Both universal 

homophonic coders will be implemented. All implementation is based on the C programming language. 

9 .2 Implementation 

After many attempts and deliberation, the arithmetic coder of [Bell, Cleary & Witten, p.133], [Witten, 

Neal & Cleary] was selected. The reason being that there is a well described implementation which has 

solved many of the problems related to arithmetic coding. The interface to the model is loosely coupled 

and thus the model and coder sections are independent of each other. The shift and add method 

described by Langdon could be used with the modifications by Rubin. However, it was deemed that this 

increased the complexity of the method. It is to this general implementation of [Bell, Cleary & Witten, 

p.133], [Witten, Neal & Cleary] that the homophonic coder is added. 

All the arithmetic coding methods based on the Bell, Cleary & Witten [Bell, Cleary & Witten, p.133], 

[Nelson, p.148] and the DCC95 code suite32 [Bloom] use a common method of interfacing with the 

model. 

9.2.1 Interfacing the Homophonic Coder and the Arithmetic Coder 

The following common routines of arithmetic encoder and decoder cleanly interface the model and 

coder. All functions names are based on those of Bell, Cleary, Witten & Neal. 

1. start_model(). This functions assigns the initial probabilities and the translation tables between the 

input characters and symbols. 

32 Data Compression Conference (Snowbird, Utah 1995). 
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2. update_model(symbol). This function updates the frequency counts for the new symbol and sorts the 

cumulative frequencies into ascending order to increase coding speed by ordering the translation 

tables between the input characters and symbols. 

3. encode_symbol(symbol, cumJreq). This function applies the standard coding step and outputs the 

bits. 

4. decode_symbol( cumJreq). This function applies the standard coding step and returns the new 

symbol from the input stream. 

This implementation will not alter these functions but add new and similar functions for adaptive 

homophonic coding. Only the main calling routine will be adapted to include these new functions. 

9.2.2 Conventional Universal Homophonic Coding 

This implementation requires a small modification of the memory allocated for the cumulative 

frequency, frequency, index to character and character to symbol arrays. The following simple changes 

implement this method: 

#define Num_of_chars 256 * NumberOfHomophones 

InputCharacter (ch* NumberOfHomophones) + random(NumberOfHomophones); 

symbol char_to_index[InputCharacter); 

The rest of the code remains unchanged. The lnputCharacter is now converted to symbol before it is 

encoded with encode_symbol(symbol, cumJreq). A major advantage of this method is that the model 

need not be altered and any model may be used. 

The decoding side is equally trivial. Each decoded symbol is divided by the number of homophones. 

9.2.3 Universal Dyadic Homophonic Coding 

The source code for this method can be found in Appendix C. Figure 13 indicates the data flow (without 

showing termination of the message). Initially the homophonic coder operates without outputting 

homophones until the model has some input statistics. 

71 



Chapter 9 

9 .2.3.1 Model 
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Use 
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Figure 13. Universal homophonic coder flow diagram 

An order-0 model was selected. The main reason for using a low order model was to make the 

implementation and testing of the distribution of the homophones much easier. Any modelling overhead 

should be detectable as redundancy will be added by the homophonic coding. It would also require less 

memory. The order-0 model has all probabilities initially set to unity. 

InitModelHC(). This function is similar to start_model() and does the initialisation. 

CreateHomophonicModel(). This function is similar to update_model(symbol, character) and maintains 

the adaptive homophonic model. This model can be updated for every input character. This does cause a 

considerable overhead as the frequencies must be scaled and then for each symbol a new set of 

homophones must be generated. To alleviate this problem, homophones can be updated after a certain 

number of input characters have been processed. For this reason two models are maintained, one being 

the standard order-0 model with the update_model function call and the second being the homophonic 

model. 
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This function will call the necessary functions ScaleToBinary() and GenerateHomophones(symbol) to 

build up a list of homophones. 

9.2.3.2 Selecting the Homophones 

Selecting the homophones is trivial in the test implementation. No BSS was used. The random function 

of the compiler was used. The fixed compile time parameter NumOfHomophones is the argument to the 

random function which in turn returns a pseudo random number which can be used as an index to select 

a new homophone. 

9.2.3.3 Homophonic Coder 

EncodeCharacter(InputCharacter). This functions takes a character from the input stream and finds the 

associated symbol based on the character. It will now call the standard encode function 

encode_symbol( symbol, cumJreq). 

9.2.4 Cryptosystem 

The symmetric key block cipher IDEA was used. This cipher was previously in randomness testing 

[Stevens 1994]. The final results will not include the cryptosystem as the focus of this dissertation is on 

the conditioned plaintext. 

9 .3 Implementation Problems 

9 .3.1 Complexity of the Model 

With conventional homophonic coding, the model is very similar to the model of the base 

implementation. In contrast, dyadic homophonic coding requires an additional model to store the 

working set of homophones and frequency tables. 

9.3.2 Efficiency 

• Arithmetic coding. No loss in efficiency was detected in the encoder functions are they were 

unchanged. 

• Homophone selection. Scaling the frequency counts to a binary power and then splitting the scaled 

count into dyadic homophones increases the workload. 
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• Updating the homophonic model. Model update is the major loss in efficiency as it must maintain a 

new set of cumulative frequencies based on the homophone selection. 

9.3.3 Memory Requirements 

Homophonic coding consumes a large amount of memory. With an order-0 model, enough memory must 

be allocated for every homophone to be associated with each character. This means that for, say a 256 

symbol alphabet, the memory size in bytes is at least 256 times the number of homophones. 

The dyadic implementation requires more memory than the conventional homophonic coder as separate 

frequency, cumulative frequency, indices and homophonic tables must be maintained. 

9 .4 Conclusion 

A conventional homophonic coder using arithmetic coding was successfully implemented. Although the 

model was restricted to an order-0, this was purely for ease of the implementation and the testing phase. 

The PPM models could be adapted or even the adaptive dependency model [Abrahamson]. This is an 

order-1 model designed to be implemented with the same arithmetic coding routines of Bell, Cleary, 

Witten & Neal. 
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Chapter JO 

RESULTS 

10.1 Introduction 

The chapter presents the results of the universal homophonic coder described in the previous chapters. 

10.2 Randomness Tests 

A suite of tests to detect non randomness was developed and used to report the following results [Stevens 

1994]. The source code is available at: ftp.ox.ac.uk /pub/cryptanalysis/alltest.tar.gz 

These tests are the frequency, serial, runs, poker and Maurer' s bit test. The randomness test result will 

indicate either a pass or fail result. A pass indicates that all the tests do not detect any non randomness. 

(The actual test results were not included in this dissertation and they would considerably lengthen this 

document.) The results are shown in the following tables and are tabulated in columns to indicate the 

type and size of the original source file, the resultant file size and whether non randomness was found: 

• Standard implementation of an arithmetic coder. 

• Homophonic channel together with the arithmetic coder. 

10.2.1 Results of Conventional Homophonic Coding 

The number of homophones per character was changed to note the difference in compression and to 

detect any bias in the conditioned plaintext. Table 2 indicates these results. The random number 

generator is of the linear congruential type and part of the compiler library. Although this generator is 

known to be poor for cryptographic purposes, it did not affect the non "randomness". 
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Text 8568 

Text 243862 

Binary 58616 

Results 

Table 2: Test results for an adaptive arithmetic and 
conventional homophonic coders 

' )i~:t 

Fail 5233 Fail 7655 

Fail 150164 Fail 213513 

Fail 38676 Fail 53480 

··· ·· • · Nie& ARITHMrnttiiei,,, 
in0\\~1;6.hol1JC1ph~Jlfar ;: 

. -~~'~"~i· 
Pass 10379 Pass 

Pass 282964 Pass 

Pass 69247 Pass 

Note how compression is reduced with the homophonic coding and even expanded when the number of 

homophones is increased. This is to be expected as this is not an optimum homophonic coder. Therefore, 

the entropy will be increased by more than 2 bits per symbol as D w > L . 

10.2.2 Results of Dyadic Homophonic Coding 

Table 3: Test results for an adaptive arithmetic and dyadic 
probability homophonic coders 

.HOMOPHONlfARITKHETIC> 
N . CODER .. 

Text 8568 Fail 5233 Fail 10231 Fail 

Text 243862 Fail 150164 Fail 283434 Fail 

Binary 58616 Fail 38676 Fail 71308 Fail 

The results of dyadic universal homophonic coding were not satisfactory. Generally all files were 

significantly expanded in contrast to the theory. Consider the text file of 243863 bytes in length. An 

order-0 model reduced this to 150164 bytes. From the theory, we expected an expansion of not more 

76 



Chapter 10 Results 

than two bits per symbol. This theory would then have predicted a file with a length of not more than 

211130 bytes33
• In our case, the file was expanded to 283434 bytes, considerably more. 

The expansion is to be expected in arithmetic coding as smaller ranges are used to encode a symbol. 

This causes the overall range to narrow considerably and thus require more bits for its representation. 

The theory of Jendal, Kuhn & Massey state in Proposition 2 (Page 59) than there will be an expansion of 

no more than 2 bits per symbol. This proposition only applies to prefix-free codes. Although arithmetic 

coding produces an uniquely decodable code, it is not prefix-free. 

Although the number of ones and zeroes were close, the runs test and Maurer's test failed the sequence 

indicating some form of non randomness. 

10.3 Known Plaintext Attacks 

These tests are complex and were not considered in the scope of this dissertation. 

10.4 Conclusion 

Conventional universal homophonic coding performed as expected. There was a loss in compression 

related to introduction of multiple symbols and the associated loss in stationarity. Although this 

implementation of a conventional homophonic coder suffered from considerable modelling overhead, the 

randomness test results were satisfactory. 

Universal dyadic homophonic coding did not perform as expected from the theory, but did perform as 

expected in terms of arithmetic coding. 

We did not include the randomness results with the IDEA cryptosystem. The reason for this is that we 

are primarily interested in the randomness of the homophonic coder. 

150164 x 8 = 1201312bits 
33 243862 x 2 = 487724 bits as per theory 

f (1201312 +487724) +8 = 211 BOlbytes 
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Chapter 11 

CONCLUSION 

II.I Hypotheses 

In Section 1.3, two hypotheses were made. Based on the research undertaken, the following conclusions 

about these hypotheses can be made: 

1 a) The conventional homophonic coder which was implemented and tested, produced satisfactory 

results. The results of Section 10.2.1 clearly show that universal conventional homophonic coding 

can indeed be implemented together with arithmetic coding. 

1 b) The implementation of universal dyadic homophonic coding based on arithmetic coding did not 

produce satisfactory results. 

• The output was non random indicating a cryptological weakness, and 

• The output was considerably expanded in contrast to the theory on of Jenda!, Kuhn and 

Massey (Proposition 4 on page 59). 

The reasons for the poor results will be given in the following section (11.3). 

2. We did not uphold our second hypothesis, that no special form of arithmetic decoder was required for 

homophonic coding based on arithmetic coding. This was proved in the test implementation and 

proved by simple arithmetic (given on Page 90) based on the decoding inequality [Witten, Neal & 

Cleary, p.539]. The decoder model of a homophonic coder based on arithmetic coding must always 

follow the encoder model and use exactly the same homophones. 

The concept of universal dyadic homophonic coding appears to be a feasible implementation when 

discussing arithmetic coding (see Page 34). But as in author's case, the concept of symbol 

probabilities and coding interval was thought to be the same. This is not the case. 
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11.2 Objectives 

A number of objectives were considered in this research. Data compression and cryptography were 

investigated and used as introductory chapters for this document. Randomness was investigated and a 

suite of tests was developed for use in this research. Various forms of universal homophonic coders 

based on arithmetic coding were implemented and their results evaluated. The terms of homophonic 

substitution and homophonic coding were defined to alleviate confusion between them. 

11.3 Reasons for the results of universal dyadic homophonic coding 

This implementation of universal dyadic homophonic coding does not function as expected and produces 

considerable expansion of the output in comparison to the original message. Furthermore, it does not 

make the output more random. The following reasons are apparent: 

• Arithmetic coding reduces the range for symbol with smaller probabilities. When a symbol, for 

example, u; = i is converted into dyadic homophones, say v;1 = t and v;2 = ±, both of these 

homophones now have a lower probability. When v;2 =±is coded, the range is reduced and when 

another homophone is used, the arithmetic coder will use this previous range and further reduce this 

already small interval. The arithmetic coder now requires more bits to represent is this smaller 

interval. Hence, the considerable data expansion. Furthermore, the very small interval eventually 

causes representation problems with fixed word length implementations. 

• Proposition 2 [Jendal, Kuhn & Massey, p.388] states H(U)~ H(V)~ E[W]logD. This equation 

applies to prefix free codes which implies that each distinct D-ary sequence is a codeword [Jenda!, 

Kuhn & Massey, p.389]. Although arithmetic coding produces an uniquely decodable code, it is not a 

prefix free code [Howard & Vitter 1992, p.86]. The statement that no more than two bits will be 

added onto the entropy of the symbol, applies to prefix free codes. Therefore, the result of 

Proposition 4 [Jenda!, Kuhn & Massey, p.390] (page 59 of this dissertation) may not apply to this 

implementation. 

11.4 Is Universal Homophonic Coding worthwhile? 

Penzhorn [Penzhorn, p.343] stated that a combination of homophonic and arithmetic coding did provide 

security against a known-plaintext and a chosen-plaintext attack when used together with a non 

expanding cipher. Compression can only provide a deterministic mapping between the plaintext and 

ciphertext whereas homophonic coding provides a probabilistic mapping. 
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Homophonic coding causes a loss in compression due to the addition of randomness and the modelling 

overhead. It is expensive in terms of memory and computing resources. Boyd [Boyd 1991, p.276] stated 

"equally other methods of adding randomness may be just as effective". This statement is justified based 

on the results of this dissertation. It may be more effective to have conventional adaptive data 

compression with a high order model followed by a stream cipher before the block enciphering process. 

This super-enciphering mechanism is used in practice, e.g., DVB scrambling of a MPEG 2 compressed 

video stream. 

11.5 Future Research 

During this research into universal homophonic coding, many concepts for improvements and future 

investigation were evident. These include the areas of: 

• Formal mathematical proof of why dyadic homophonic coding with arithmetic coding does not 

adhere to the theory of Massey, Jenda! & Kuhn. 

• Cryptanalysis. One can never prove complete security, however, it is necessary that some form of 

attack be undertaken on the homophonic coder and cipher system. 

• Fast coding. The range of the arithmetic coder can be constrained to binary powers. This will 

eliminate some of the divide operations. 

• Modelling. Use of a higher order of modelling. This is quite memory intensive as by nature 

homophonic coding by itself does consume large amounts of memory. As previously mentioned, the 

addition of complex model to a conventional homophonic coder based on arithmetic coding should 

not present a problem besides the memory requirements. 

• Dynamically assigning homophones in a conventional homo phonic coder. Vary the number of 

homophones per character to ensure a flat probability distribution. Even though our results pass the 

standard non-randomness tests, flattening the distribution should make cryptanalysis more difficult. 

• Use of conventional homophonic coding when initialising the model. When the adaptive model is 

initialised, all the probabilities are the same. While statistics are being gathered, conventional 

homophonic coding can be used until the model has sufficient statistical data to calculate the 

homophones. A fixed model tends to have repeating binary patterns [Bergen & Hogan 1992]. 
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• Memory requirements. This research is closely associated with the model and form of data structure 

selected. There would be some processing speed in dynamically allocating memory. This may resolve 

some of the memory requirements. 

• Data structures. Select an efficient form of a data structure. Some programming languages are 

inefficient in accessing34 members of a structure. 

• Subliminal transfer of information. The random homophone selection can be used as a subliminal 

channel to transfer other information on top of the homophonic channel. The decoder function is no 

longer trivial. 

34 
C uses multiplication to access elements in a structure. 
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Universal Homophonic Coding 

Appendix A 

GLOSSARY 

asymptotically optimal code. A code is asymptotically optimal when H ~ 1 as the length approaches 

infinity for a given probability distribution. 

a priori. Before an event. 

a posteriori. After an event. 

Blending. In an adaptive model, as the size of the sample increases, it becomes more meaningful to use 

a higher order model. When the sample is small, it is better to use a lower context. Blending is the 

combining of these two contexts. 

Blending strategies use a number of model of different order. Predictions can be combined by assigning 

a weight to each model and calculate the weighted sum of the probabilities. This important for escaping 

from a context. [Bell, Cleary & Witten] 

Binary Symmetric Source (BSS). A source which outputs a sequence of statistically independent and 

symmetrically distributed random binary variables. 

Channel Coding. The means by which the information is transferred from the sender to the receiver. 

For example: Trellis coding. (Note the difference to source coding). 

Code Space. The estimated probability of the symbol . 

Codeword. The output of a compression encoder of some form of data compression on the input symbol. 

Conditioning Classes. Conditioning classes are a context for each symbol which consists of a collection 

of probability distributions. They condition the probability estimates. [Bell, Cleary & Witten]. 

DES. Data Encryption Standard. 

Deterministic Processes. A deterministic process can be predicted on the basis of past data. 
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Arithmetic Coding Calculations 

Discrete Channel. All input and output symbols are part of a finite alphabet of symbols. 

Discrete Memoryless Channel. A discrete channel in which each output symbol is statistically 

dependant only on the corresponding symbol of the input sequence. 

Entropy. Measurement of the information content in a message. The higher the entropy, the more 

information it contains. 

Enumerative Codes. The text is compressed by enumerating (listing) the entire set of possible strings. 

[Bell, Cleary & Witten] and [Rissanen 1981]. 

Ergodic Processes. An ergodic process has the property that a random process (ensemble) observed for 

a fixed time is identical to observing one sample function all the time. A process cannot be ergodic 

unless it is stationary. A stationary process is not necessarily ergodic. 

Escape Contexts. Escape probability is the probability that a previously unseen symbol will occur 

(manifestation of the zero-frequency problem). This governs whether the system escapes to a smaller 

context to determine its probabilities. 

Homophonic substitution. A one to many mapping of a symbol thus expanding the possible alphabet. 

Keyspace. A finite set of possible keys. 

LRU. Least Recently Used. 

Markov Processes. A Markov process depends only on the preceding discrete sample. 

Noiseless Source Coding Theorem. This theorem states that a message cannot be encoded so that the 

average length is less than the entropy of the message. 

Noiseless Channel. The reception of data over the channel is identical to that transmitted. 

Order of the Model. The order refers to how many previous symbols are taken into account. An order-0 

ignores all previous symbols. With an order-I (di-gram) model the previous symbol is used, for example, 

if the symbol was a 'q', the probability that the next symbol would be a 'u' is high. 

Phrase. A string of symbols of arbitrary length. 
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Glossary 

Prefix free codes. A code used in the compressed representation may not be a prefix of any other code. 

The code can then be uniquely decoded. They are also known as instantaneous codes [Welch]. However, 

an instantaneous code is not necessary a prefix code. 

Source Coding. In terms of information theory, a source deals with a stream of symbol from a finite 

alphabet. The source has some random mechanism based on the statistics of the event being modelled. 

Stationary Processes. A process is stationary when all the probability densities of a random process are 

time independent. 

Symbol. An atomic unit of information, e.g. a character, a pixel, number, etc. 

Token. In terms of dictionary based compression, it is an object used to decode a phrase derived from 

the dictionary. 

Trie. Derived from the word reTRIEval. A trie is a multiway digital search tree with a path from a root 

to a node for each string in the tree. This means that there is no single root, but multiple roots. 

Zero-frequency Problem. If a symbol has never been observed (by an adaptive model) it has a zero 

probability and since symbols are encoded in -log p bits, the code length approaches infinity. 
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Universal Homophonic Coding 

Appendix B 

ARITHMETIC CODING CALCULATIONS 

The following data is taken from the example in [Penzhorn, p.340]. These calculations show the 

encoding and decoding of a message using the standard coding step as given on Page 28. All the 

calculations are done with floating point arithmetic for easy calculation. The final example uses a 

message encoded with homophones and uses the original symbol probabilities to try to decode the 

message. 

Table 4. Arithmetic coding calculations - symbol probabilities. 

,.~phones 

Symbol P(u;) P(u;) P(u;) Cum. Prob. Symbol P(vij) Cum. Prob. 

(decimal) (binary) (truncated) 

U1 0.3333 0.01010101 0.0101 0.0 V - 1 
11-4 

0.01 0.0 

- I 
Viz - 16 0.0001 0.25 

0.2 0.00110011 0.0011 0.3333 
Vz1 =t 0.001 0.3125 

V - I 
22 -16 0.0001 0.4375 

0.1333 0.00100010 0.0010 0.5333 V _l 
31 -8 0.001 0.5 

U4 0.2 0.00110011 0.0011 0.6666 - I 
V41 -8 0.001 0.625 

V - I 
42 -16 0.0001 0.75 

U5 0.1333 0.00100010 0.0010 0.8666 
V51 =t 0.001 0.8125 

0.9375 
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Coding Calculations 

Consider these messages which will be encoded from the statistics in the previous table: 

1. The original message: u1 u1 u2 u3 u3 u5 u2 is encoded as follows: 

.. · .......• ;'.'.~-[; 

0.0 0.3333 1.0 

0.0 0.111089 0.3333 

0.0370259 0.0592437 0.111089 

0.0488747 0.0518363 0.0222178 

0.0504541 0.0508489 0.00296163 

0.507962 0.0508489 0.000394784 

0.0508138 0.0508243 5.26644e-5 

Thus, the message u1 u1 u2 u3 u3 u5 u2 can be represented by 0.050814 which is within the final 

interval. 

2. Homophonic coding the original message with v12 v11 v21 v31 v31 v51 v22 respectively. The encoding 

process is given in the following table. 
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V12 

V11 

V21 

V31 

V31 

V51 

V22 

Arithmetic Coding Calculations 

·.Ra!'~e .. 

0.25 0.3125 

0.25 0.265625 0.0625 

0.254883 0.256836 0.015625 

0.255859 0.256104 0.00195312 

0.255981 0.256012 0.000244141 

0.256006 0.25601 3.05176e-5 

0.256008 0.256008 3.8147e-6 

The message, v12 v11 v21 v31 v31 v51 v22 can be represented by 0.256008. Notice how small the range 

becomes and how close together the low and high become. This is expected as we have coded 

symbols with much smaller values than the original message. If more symbols were to be encoded, 

the range would be reduced even further and require more digits to be represented. 

3. Homophonic decoding the message v12 v11 v21 v31 v31 v51 v22 , but using the original message for the 

cumulative probabilities. The decoding process is given in the following table. 

0.256008 0.3333 0.0 0.768101 0.3333 

0.768101 0.8666 0.6666 0.507504 0.2 

0.507504 
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Coding Calculations 

These results show that the decoder model must know all the homophones for correct decoding. Only 

the first symbol will be decoded correctly. The symbol u4 is decoded incorrectly (we expected to 

receive u1 again) and thus the remainder of the message will also be incorrect. 
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Universal Homophonic Coding 

Appendix C 

SOURCE CODE 

The source code for the implementation of universal dyadic homophonic coding comprises are three 

modules. The encoder module, the standard model and the homophonic model for generating the 

homophones. Due to the unsatisfactory results of the encoding process, the decoder source code is not 

included in this dissertation. 

Encoder 

/************************************************************************ 
HOMOPHONIC ARITHMETIC ENCODER 

Arithmetic encoder implementation of Bell, Cleary & Witten. 

File: hce.cpp 
Author: C.C. Stevens 

*************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include "modelhc.h" 

I* DECLARATIONS USED FOR ARITHMETIC ENCODING AND DECODING */ 

#define Top_value (((long)l<<Code_value_bits)-1) /* Largest code value */ 

/* HALF AND QUARTER POINTS IN THE CODE VALUE RANGE. */ 

#define First_qtr (Top_value/4+1) 
#define Half {2*First_qtr) 
#define Third_qtr {3*First_qtr) 

void start_encoding(void); 

/* Point after first quarter 
/* Point after first half 
/* Point after third quarter 

void encode_symbol(int symbol, int cum_freq[]); 
void done_encoding(void); 
void done_outputing_bits(void); 

long winputByteCounter; 

static int fUseHomophonicModel; 

/* BIT OUTPUT ROUTINES. */ 

/* THE BIT BUFFER. */ 

int buffer; /* Bits buffered for output 
int bits_to_go; /* Number of bits free in buffer 

/* INITIALIZE FOR BIT OUTPUT. */ 
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void start_outputing_bits(void) 
{ 

buffer 
bits_to_go 

O; 
8; 

/* OUTPUT A BIT. */ 

inline void output_bit(int bit) 
{ 

buffer >>= l; 
if (bit) 

buffer I= Ox80; 

bits_to_go--; 
if (bits_to_go == 0) 
{ 

putc((char) buffer, stdout); 
bi ts_to_go = 8; 

/* FLUSH OUT THE LAST BITS. */ 

void done_outputing_bits(void) 
{ 

putc((char) (buffer>> bits_to_go), stdout); 

/* CURRENT STATE OF THE ENCODING. */ 

/* Buffer is empty to start */ 
/* with. */ 

/* Put bit in top of buffer.*/ 

/* Output buffer if it is 
/* now full. 

*/ 
*/ 

code_value low, high; 
long bits_to_follow; 

/* Ends of the current code region */ 
*/ 
*/ 

/* Number of opposite bits to output after 
/* the next bit. 

/* OUTPUT BITS PLUS FOLLOWING OPPOSITE BITS. */ 

void bit__plus_follow(int bit) 
{ 

output_bit(bit); 
while (bits_to_follow > 0) 
{ 

output_bit (!bit); 
bits_to_follow l; 

int main(int argc, char *argv[]) 
{ 

int ch, symbol; 

winputByteCounter = O; 

fprintf (stderr, "Arithmetic coding on "); 
if (argc > 1) 
{ 

else 

freopen(argv[l], "rb", stdin); 
fprintf ( stderr, "%s", argv [l]) ; 

fprintf(stderr, "stdin"); 

fprintf ( stderr, " to ") ; 

if (argc > 2) 
{ 

else 

freopen(argv[2], "wb", stdout); 
fprintf(stderr, "%s", argv(2]); 

fprintf(stderr, "stdout"); 
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/* Output the bit. */ 

/* Output bits_to_follow */ 
/* opposite bits. Set */ 
/* bits_to_follow to zero. */ 

Source Code 



fprintf(stderr, "\n"); 

InitModelHC(); 
fUseHomophonicModel FALSE; 

start_model(); 
start_outputing_bits(); 
start_encoding(); 
for (;;) 
{ 

ch getc(stdin); 
if (ch == EOF) 

break; 

winputByteCounter++; 

symbol= char_to_index[ch); 
if (!fUseHomophonicModel) 

encode_symbol(symbol, cum_freq); 
else 

EncodeCharacter(ch); 

/* Init. homophonic model */ 

/* Set up other modules. */ 

/* Loop through characters. */ 
/* Read the next character. */ 

/*Exit loop on end-of-file.*/ 

/* xlate to an index */ 

/* Encode that symbol. */ 

update_model(symbol); /*Update the model. */ 
fUseHomophonicModel = CreateHomophonicModel(); 

} 

if (!fUseHomophonicModel) 
encode_symbol(EOF_symbol, cum_freq); 

else 
encode_symbol(wEOF, wCumFreqHC); 

done_encoding(); 
done_outputing_bits(); 
putc ( '\n', stderr); 
return O; 

/* ARITHMETIC ENCODING ALGORITHM. */ 

/* START ENCODING A STREAM OF SYMBOLS. */ 

void start_encoding(void) 
{ 

low 
high 
bits_to_follow 

/* ENCODE A SYMBOL. */ 

O; 
Top_ value; 
0; 

void encode_symbol(int symbol, int cumfreq[]) 
{ 

/* Encode the EOF symbol. */ 

/* Encode the EOF symbol. */ 

/* Send the last few bits. */ 

/* Full code range. */ 

/* No bits to follow next. */ 

unsigned long range; 
unsigned int count = Oxffff; 

/* Size of the current code region */ 

range (long) (high - low) + l; 

/* Narrow the code region to that allotted to this symbol. */ 
high low+ (range* cumfreq[symbol-1)) I cumfreq[OJ-1; 
low low+ (range* cumfreq[symbol)) I cumfreq[O); 

for (;;) 
{ 

if (high < Half) 
{ 

bit_plus_follow(O); 

else if (low >= Half) 
{ 

bit_plus_follow(l); 
low Half; 
high -= Half; 

/* Loop to output bits. */ 

/* Output 0 if in low half. */ 

/* Output 1 if in high half.*/ 

/* Subtract offset to top. */ 
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else if (low >= First_qtr 
&& high<Third_qtr) 

/* Output an opposite bit */ 

/* later if in middle half. */ 
bits_to_follow += l; 
low First_qtr; 
high -= First_qtr; 

/* Subtract offset to middle*/ 

else break; 

low = 2*low; 
high = 2*high+l; 
count --; 
if (count == 0) 
{ 

fprintf(stderr, "Hanging, count 
exit (-1);} 

!* FINISH ENCODING THE STREAM. */ 

void done_encoding(void) 
{ 

/* Otherwise exit loop. */ 

/* Scale up code range. */ 

%d", winputByteCounter); 

bits_to_follow += l; /* Output two bits that */ 
if (low < First_qtr) 

bit_plus_follow(O); 
else 

bit_plus_follow(l); 

/* select the quarter that */ 

/* the current code range */ 
/* contains. */ 

Order-0 Model 

/************************************************************************ 
HOMOPHONIC BASED ARITHMETIC ENCODER 

ORDER-0 ADAPTIVE MODEL 

Based on the arithmetic encoder implementation of Bell, Cleary & Witten. 

File: modelhc.h 
Author: C.C. Stevens 

*************************************************************************/ 
#define FALSE 
#define TRUE 
#define RefreshModel 
#define HC_BitSize 

0 
1 
10 
4096 //8192 

!* SIZE OF ARITHMETIC CODE VALUES. */ 

#define Code_value_bits 16 
typedef unsigned long code_value; 

/* Number of bits in a code value */ 
/* Type of an arithmetic code value */ 

#define 
#define 
#define 

#define 

#define 

void 
void 

NumOfHomophones 16 /* Number of homophones per char 
No_of_chars 256 /* Number of character symbols 
EOF_symbol (No_of_chars+l) /* EOF symbol */ 

No_of_symbols (No_of_chars+l) /* Total number of symbols 

Max_frequency 16383 /* Maximum allowed frequency count 

start_model(void); 
update_model(int symbol); 

/* TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. */ 

extern 
extern 

int 
int 

char_to_index[No_of_chars]; 
index_to_char[No_of_symbols + l]; 
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extern int 
extern int 

cwn_freq[No_of_symbols + l]; 
freq[No_of_symbols + 1]; 

extern 
extern 

int 
int 

wCurnFreqHC[No_of_symbols * NwnOfHomophones + NwnOfHomophones]; 
wEOF; 

extern 
extern 
extern 

void 
int 
void 

InitModelHC(void); 
CreateHomophonicModel(void); 
EncodeCharacter(int ch); 

/************************************************************************ 
HOMOPHONIC BASED ARITHMETIC ENCODER 

ORDER-0 ADAPTIVE MODEL 

Arithmetic encoder implementation of Bell, Cleary & Witten. 

File: model.cpp 
Author: C.C. Stevens 

*************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include "modelhc.h" 

I* TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. */ 

/* To index from character */ 
int char_to_index[No_of_chars]; 

I* To character from index */ 
int index_to_char[No_of_symbols + l]; 

/* ADAPTIVE SOURCE MODEL */ 

/* Symbol frequencies 
int freq[No_of_symbols + l]; 

/* Cumulative symbol frequencies 
int cwn_freq[No_of_symbols + 1]; 

/* THE ADAPTIVE SOURCE MODEL */ 

/* INITIALIZE THE MODEL. */ 

void start_model(void) 
{ 

int i; 

*/ 

*/ 

/* Set up tables that translate between symbol 
for (i = O; i < No_of_chars; i++) 
{ 

char_to_index[i] i+l; 
index_to_char[i+l] i; 

/* Set up initial frequency counts to be one for all 
for (i = O; i <= No_of_symbols; i++) 
{ 

l; freq[i] 
cum_freq[i] No_of_symbols - i; 

/* Freq(O] must not be the same as freq[NEXT SYMBOL]. 
freq[O] = O; 

/* UPDATE THE MODEL TO ACCOUNT FOR A NEW SYMBOL. */ 

void update_model(int symbol) 
{ 
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int i; /* New index for symbol */ 

if (cum_freq(O] >= Max_frequency) 
{ 

int cum; 
/* See if frequency counts */ 
/* are at their maximum. */ 

cum = O; 
/* If so, halve all the counts (keeping them non-zero). 
for (i = No_of_symbols; i >= 0; i--) 
{ 

freq[i] 
cum_freq [ i l 
cum 

(freq(i]+l)/2; 
cum; 

+= freq(i]; 

/* Find symbol's new index. 
for (i =symbol; freq(i] == freq[i-1]; i--) 

if (i < symbol) 
{ 

int ch_i, ch_symbol; 

/* Update the translation tables if the symbol has moved */ 
ch_i index_to_char(i]; 
ch_symbol index_to_char[symbol]; 
index_to_char[i] ch_symbol; 
index_to_char[symbol] ch_i; 
char_to_index[ch_i] symbol; 
char_to_index[ch_symbol]= i; 

freq[i]++; 
while (i > 0) 
{ 

i = i-1; 
cum_freq[i]++; 

Homophonic Model 

/* Increment the frequency */ 

/* count for the symbol and */ 
/* update the cumulative */ 
/* frequencies. */ 

/************************************************************************ 
HOMOPHONIC BASED ARITHMETIC ENCODER 

ORDER-0 HOMPHONIC MODEL 

Based on the arithmetic encoder implementation of Bell, Cleary & Witten. 

File: hcmodel.cpp 
Author: C.C. Stevens 

*************************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "modelhc.h" 

extern void 
extern long 

encode_symbol(int symbol, int cum_freq[]); 
winputByteCounter; 

int wCumFreqHC[No_of_symbols * NumOfHomophones + NumOfHomophones]; 
unsigned int wFreqHC[No_of_symbols + NumOfHomophones]; 

static unsigned int wHomophones[No_of_symbols] [NumOfHomophones]; 

int windexToChar[No_of_symbols * NumOfHomophones + NumOfHomophones]; 
int wCharToindex[No_of_chars * NumOfHomophones]; 
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Source Code 

static unsigned int wFreqSort[No_of_symbols * NumOfHomophones + NumOfHomophones]; 
static unsigned int wCharCounter; 
static unsigned int wLargestFreq; 
static int fUseHomophonicModel; 

int wHomophonesPerSymbol[No_of_symbols]; 
int wEOF; 

static void 
static void 

ScaleToBinary(void); 
GenerateHomophones(int symbol); 

int debug; 

void 
{ 

InitModelHC(void) 

inti, j; 

randomize(); 
wCharCounter 
fUseHomophonicModel 

O; 
FALSE; 

for (i = O; i < No_of_symbols; i++) 
{ 

/* start the insecure RNG */ 

wHomophonesPerSymbol(iJ = 1; /* always at least one homophone */ 
wFreqHC(i] = O; 
for (j = O; j < NumOfHomophones; j++) 
{ 

wHomophones(i] [j] = O; 

for (i = O; i < (No_of_symbols * NumOfHomophones + NumOfHomophones); i++) 
{ 

wCumFreqHC(i] = O; 

int CreateHomophonicModel(void) 
{ 

int 
unsigned int 

i' j' k; 
cum; 

wCharCounter++; 
if (wCharCounter > RefreshModel) 
{ 

wCharCounter = O; 
if (fUseHomophonicModel == FALSE) 

fUseHomophonicModel = TRUE; 

ScaleToBinary(); 

/* time to generate homophones */ 

/* from now on, use homophones */ 

/* convert to binary powers */ 

for (i = 1; i < (No_of_symbols); i++) 
{ 

windexToChar[i] = index_to_char(i]; 
wCharToindex[i] = char_to_index(i]; 
GenerateHomophones(i); 

wCharToindex(OJ= char_to_index[O]; 

/* Calculate a new set of cumulative frequencies for all homophones */ 
cum = O; 
for (i = l, k = l; i < No_of_symbols; i++) 
{ 

for (j = wHomophonesPerSymbol(iJ-1; j >= O; j--) 
{ 

if (k<S) 
j=k; 

k--; 

wFreqSort[k++] = wHomophones[i] [j]; 

wEOF k; 
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wCumFreqHC[wEOF] = O; 

for (; k > O; k--) 
{ 

} 

cum= cum+ wFreqSort[k]; 
wCurnFreqHC[k-1] = cum; 

if (cum >= Ox8000) 
{ fprintf ( stderr, "\nCum freq overflow %d", cum) ; 

exit (-1); 

return (fUseHomophonicModel); 

void EncodeCharacter(int ch) 
{ 

int symbol, i; 

symbol = wCharToindex[ch]; 

Source Code 

i = {symbol* wHomophonesPerSymbol[symbol]) + random(wHomophonesPerSymbol[symbol]); 
encode_symbol(i, wCurnFreqHC); 

/* Based on the cumulative frequency total - select a power of 2 value. This 
value is used to scale all the frequency counts so that they are all based 
on a power of 2 value. */ 

static void ScaleToBinary{void) 
{ 

double scale; 
unsigned int i, cum; 

if (cum_freq[O] <= 512) 
wLargestFreq = 512; 

else if (cum_freq[O] <= 1024) 
wLargestFreq = 1024; 

else if (cum_freq[O] <= 2048) 
wLargestFreq = 2048; 

else if (cum_freq[O] <= 4096) 
wLargestFreq = 4096; 

else if (cum_freq[O] <= 8192) 
wLargestFreq = 8192; 

else if (cum_freq[O] <= 16384) 
wLargestFreq = 16384; 

else 
{ 

wLargestFreq = 16384; 
fprintf(stderr,"\nScaling error cum freq %x", cum_freq[O]); 

scale 
cum 

(double)wLargestFreq I (double)cum_freq[O]; 
O; 

for (i = l; i < (No_of_symbols); i++} 
{ 

wFreqHC[i] = floor((double)freq[i] *scale); 
if (wFreqHC[i] == 0) 

wFreqHC[i] = 1; 
cum =cum+ wFreqHC[i]; 

} 

if (cum >= Ox8000) 
{ 

for (i = 1; i < (No_of_symbols); i++) 
{ 

wFreqHC[i] = (wFreqHC[i] + 1) I 2; 

/* Generate homophones use binary powers 
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static void 
{ 

unsigned int 

GenerateHomophones(int symbol) 

i, count, homophone; 

homophone 
count 

wLargestFreq I 2; 
wFreqHC[symbol]; 

/* init to largest power of 2 value */ 

for (i=O; i < NumOfHomophones; i++) 
wHomophones[symbol] [i] = O; /*debug clearing */ 

i O; 
while (count) 
{ 

while (homophone > count) 
{ 

homophone >>= l; 

wHomophones[symbol] [i++] 
if (i > NumOfHomophones) 
{ 

/* reduce count to powers of 2 

/* get new possible homophone 

homophone; 

fprintf(stderr, "\nToo many homophones for memory alloced"); 

count -= homophone; 

wHomophonesPerSymbol[symbol] i; 
if (i == 0) 

/* remove selected homophone and 
/* search for the next homophone 

fprintf(stderr, "\nNo Homophones!"); 
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