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INTRODUCTION 

This dissertation is based on a paper ([HSS]) of HERRLICH, H, 

SALICRUP, G and STRECKER, G. E of which the motivation were the 

facts that: 

(a) the category Top of topological spaces and continuous functions 

has a (dense, closed embedding)-factorization for single continuous 

functions. 

(b) Hausdorff spaces are precisely those which are 'dense-separated', 

2 that is; those for which the diagonal 11x : X --> X is a 

closed embedding . 

(c) a space Y is compact if, and only if, for each space Z, the 

projection 7rz : VxZ --> Z is closed. 

(d) A map X _f_> Y is perfect if, and only if, for each space Z, 

fxidz 
the product map XxZ > YxZ is closed. 

Herrlich et al. gave analogous situations in Top as well as in a more 

general categorical context. However, they often did not give proofs of 

their results and, in the cases that they did, the proofs are sketchy. 

The objective of this dissertation is to supply proofs to their paper. 

There are a few results that we include from other sources and as far 

as possible, such sources have been indicated. 



Vll 

In Chapter 1 (FACTORIZATION SYSTEMS FOR MORPHISMS, SOURCES 

AND SIN KS), we characterize (E, M)-factorization structures for (f, M)­

categories. It is shown that the classes f and M of X-morphisms 

determine each other through the unique diagonalization property or 

equivalently, that f and M are duals of each other. We also show 

that f ~ Epi(X) if and only if the diagonals lie in M. We show that 

the factorization structures in a category X which can be extended to 

factorization structures (f, M') for set-indexed sources are precisely 

those for which X has products. Swell epimorphisms are discussed 

and, on a suitable category, are shown to be the extremal 

epimorphisms. We also discuss (in detail) examples of (f, M) 

-factorization structures on the categories Set, Grn and Top (section 

1.2). 

Chapter 2 (GALOIS CORRESPONDENCE, f-SEPARATED OBJECTS AND 

A-EPIMORPHISMS) concerns itself with the Pumpfun-Rohrl ([PR]) Galois 

Correspondence. It is shown that diagonals belonging to M denote the 

objects that are f-separated in a category X relative to an (f, Ml 

-factorization structure on X (Theorem 2.4.1 ); that A-epimorphisms 

satisfy Bousfield's Characterization Theorem (Theorem 1 .4.1) and that 

on a suitable category X, there is a class M' such that (A-epi, M') 

is a factorization structure on X (Proposition 2.5.3); and, finally, that if 

X has an (epi, mono-source)-factorization for sources, the f-separated 

objects form a (swell epi)-reflective subcategory of X (Proposition 

2.5.5), and further, that the class f-Sep is M-hereditary (Proposition 

2.5.7). Examples of f-separated objects and A-epimorphisms are also 

provided. 



Vlll 

The concept of a strong limit operator on a category X that is a 

hereditary construct is introduced in Chapter 3 (STRONG LIMIT 

OPERATORS). It is shown that (surjection, embedding) is a 

factorization structure on such a category (Lemma 3.1.4); it is proved 

that such an operator is a closure operator (Propositions 3.2.1 and 

3.2.2) even if it is not a Kuratowswki Closure Operator, and further, 

that such operators are in one-one correspondence with (f, M)­

factorization structures, where M is contained in the class of all 

embeddings. (See Propositions 3.2.9 and 3.2.11) 

Chapter 4 (M-PERFECT MORPHISMS AND RELATIVELY COMPACT 

OBJECTS) is devoted to the concepts of M-preserving morphisms, 

M-perfect morphisms and M-compact objects in a morphism (f, M)­

category which is a hereditary construct. We add properties of 

M-preserving morphisms and M-perfect morphisms which were not 

discussed in [HSS] (for example, Remarks 4.1.3, Propositions 4.1.4, 

4. 1 . 5 and Lemma 4.1 . 7). We also show (Example 4. 2. 2) that for the 

(dense, closed embedding)-factorization structure on Top, M­

compactness coincides with (topological) compactness. It is shown that 

M-compact objects are both M-perfect hereditary and M-hereditary 

(Proposition 4.2.5). We also establish results that are analogous to the 

topological ones; for instance, that a compact subspace of a 

Top2-space is closed (Corollary 4.2.8). The rest of the chapter is 

devoted to the relationship between M-compact objects and M-perfect 

morphisms. At the end of this chapter, we indicate other approaches 

(by some authorities) to categorical compactness. 
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NOTATION 

We will use the following definitions and notations for the following 

categories: 

Grn: The category of groups and group homomorphisms. 

Pos: The category of partially-ordered sets and order-preserving maps. 

Set: The category of sets and functions. 

Top: The category of topological spaces and continuous functions. 

Haus: The subcategory of Top which consists of Hausdorff spaces and 

continuous functions. 

Top0 : The subcategory of Top which consists of T 0-spaces and 

continuous functions. 

Top1: The subcategory of Top which consists of T 1-spaces and 

continuous functions. 

In this dissertation, Mor(X), Mono(X), Epi(X) and lso(X) shall denote 

the classes of morphisms, monomorphisms, epimorphisms and 

isomorphisms, respectively, in a category Throughout the 

dissertation, unless stated, the subcategories are assumed to be 

isomorphism-closed. 
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CHAPTER 1 

FACTORIZATION SYSTEMS FOR MORPHISMS, 

SOURCES AND SINKS 

1 .1 DEFINITIONS 

Definition and Notation 1.1.1 ([BO, p. 208]) 

An X-morphism A L> B is said to have the unique left lifting 

property (the ULLP) for an X-morphism C g > D if, for each 

commutative square in X 

A __ .f _ ___,I B 

k 

c ------1 

g 
D 

h 

there exists a unique (diagonal) X-morphism B ....!l___> C such that do.f = k 

and god = h. (If f has the ULLP for g, we also say that g has 

the unique right lifting property (the URLP) for f. ) We shall denote the 

fact that f has the ULLP for g by fl g. 

Definition 1 . 1 .2 

Let X be any category. We define .E and M to be classes of X-

morphisms which are closed under composition with isomorphisms in 

the following sense (provided that these compositions make sense): 

(a) If e E .E and h E lso(X), then hoe E f. 

(b) If m E M and h E lso(X), then moh E M. 

1 



2 

Definition 1.1.3 (See also [AHS, Definition 14.1] ) 

Given a category X, the pair (f, M) is called a factorization structure 

on X provided that the following two conditions are satisfied: 

(1) X has (f, M)factorizations of morphisms in the sense that each 

X-morphism X J_> Y has a factorization 

X J_> Y = X _e_> B _!!!:__> Y, 

where e E f and m E M. 

(2) X has the unique (f, M)-diagonalization property; in other words, 

e ! m, for each e E f and each m E M. 

Remark 1 .1 .4 

(a) If X has an (f, M)-factorization structure , then X is called an 

(f, M)-category. It must be observed that f (respectively, M) is 

not necessarily the class Epi(X) (resp., Mono(X)). 

(b) If we denote by f ! M the fact that each e E f diagonalizes 

over every m E M, then, given an (f, M)-category X, the 

unique (f, M)-diagonalization property is equivalent to saying that 

f! M. 

1.2 EXAMPLES OF {E, M)-FACTORIZATION 

STRUCTURES 

Example 1 .2. 1 

For any category X, 

(a) the pair (lso(X), Mor(X) ) is a factorization structure on X. 

(b) the pair (Mor(X), lso(X) ) is a factorization structure on X. 



3 

Proof of (a) 

Since lso(X) is closed under composition, it follows that lso(X) 

satisfies Definition 1 .1 .2(a). Since lso(X) c Mor(X), and since Mor(X) 

is closed under composition, it follows that Mor(X) satisfies Definition 

1.1.2(b). 

(1) For any X-morphism XL> Y, the factorization 

is an (lso(X), Mor(X) )-factorization of f. 

(2) Suppose the following square in X is commutative with 

h E lso(X) and g any X-morphism: 

x h y 

v w 

M 
g 

N 

d -1 Define a diagonal morphism Y -> M by d = voh . Then 

doh = (voh- 1 )oh = vo(h- 1 oh) = voidx = v 

and 

god = go(voh-1 ) = (gov)oh-1 = (woh)oh-1 

wo(hoh-1 ) woidy = w, 

hence the diagram 



x 

v 
/ 

M 

h 

/ 
d/ 
/ 

g 

4 

y 

w 

N 

commutes. To prove uniqueness, suppose Y __}£_> M is another 

X-morphism such that koh = v and gok = w. Then 

doh = v = koh, so k = d, since, being an isomorphism, h is 

an epimorphism. 

(b) That (Mor(X), lso(X) ) is a factorization structure on X follows 

in a similar way. D 

Example 1 .2.2(a) 

(Epi, Mono) is a factorization structure on Set. 

We recall that in Set epimorphisms (respectively, monomorphisms or 

isomorphisms) are precisely surjections (resp., injections or bijections) 

(see, for example, [HS
1

, 6.10(2), 6.3(2) and 5.14(2)]). Since 

isomorphisms are epimorphisms, and since epimorphisms are closed 

under composition, it follows that Epi satisfies Definition 1 .1 .2(a). 

Since isomorphisms are monomorphisms and monomorphisms are closed 

under composition, Mono satisfies Definition 1 .1.2(b). 

(1) If X J_> Y is a morphism in Set, then 

i 
xL> v = xL> /(X) f (X) > v, 



5 

where ~ (X) is the inclusion of f (X) into Y, is an (Epi, Mono)­

factorization of f. 

(2) Suppose the square in Set 

x -~f _ ___,, y 

s t 

A B g 

is commutative with f E Epi(Set) and g E Mono(Set). Define 

Y _1:___> A as follows: for each y E Y, d(y) = s(x), whenever 

y = f (x). We must show that d is well-defined. Suppose x EX 

also satisfies f (x) = f (x). Then 

t(f (x)) = t(f (x)) ~ g(s(x)) = g(s(x)) ~ s(x) = s(x), 

since g is injective. 

Then, if x EX, we have (do/)(x) = d(y) = s(x), where y = f (x); 

thus dof = s. On the other hand, if y E Y, we find that 

(god) (y) = g(d(y)) = g(s(x)) = (gos) (x) = (tof )(x) = t(y), 

for some x such that y = f (x) I thus god = t. And d is 

unique such that dof = s and god = t. For, if y _ff_> A is 

another function in Set such that d'of = s and god' = t, 

then dof = s = d' of and, since f is surjective, d = d'. o 

Example 1.2.2(b) 

(Epi, Mono) is a factorization structure on Grn. 
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Proof 

In Grp, monomorphisms (respectively, epimorphisms) are precisely the 

homomorphisms which are injective (resp., surjective) on the underlying 

sets (see, for example, [HS
1

, 6.3(2) and 6.10(2)]). That the pair (Epi, 

Mono) satisfies Definition 1 .1 .2 follows by an argument similar to that 

in the proof of the previous example. 

(1) If (G, <>) __!L> (H, *) is a group homomorphism, then 

(G, <>) __!L> (H, *) = (G, <>) __!L__> G/Ker rp__!L> (H, *) 

is an (Epi, Mono)-factorization of rp. Here the homomorphisms 

rp' and rp are defined as follows: For each g E G, set 

rp' (g) = gKer rp, 

rp(xKer rp) = rp(x). 

and, for each xKer rp E G/Ker rp, set 

(2) Now consider a commutative square in Grn 

(G, <>) e 

r s 

(K, 0) 
m 

(M, ED) 

where e E Epi(Grp) and m E Mono(Grn). We define 

(H, *)_A_> (K, 0) as follows: For each x E H, set d(x) = r(y) 

iff e(y) = x. (This makes sense because e is an epimorphism.) 

The map d is well-defined, since if also satisfies 

e(y) = e(y), then 

s(e(y)) = s(e(y)) ==> m(r(y)) = m(r(y)) ==> r(y) = r(y), 

since m is a monomorphism. 
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Given g E G, we find that (doe)(g) = d(e(g)) = r(g), so 

doe = r. On the other hand, for each y EH, we have 

(mod)(y) = m{d(y)) 

= m(r(x)) (where x is such that e(x) y) 

= (mor) (x) 

= (soe) (x) (since the square commutes) 

= s(e(x)) 

= s(y)' 

so that mod = s. By [HS 1, 32.9], the map d is a group 

homomorphism. The homomorphism d is unique such that 

doe = r and mod = s: For, if d' is another morphism 

satisfying d' oe = r and mod' = s, then doe = r = d' oe, 

and, since e is an epimorphism, we have d = d'. D 

Example 1.2.3 

Apart from the three factorization structures given in Examples 1 .2.1 

and 1 .2.2(a) above, Set has the following (f, M)-factorization 

structure: 

.E = { x _e_> v I x = 0 ~ v = 0 } 

and 

M = { X __!!!:__> Y I m is a bijection or X = 0 }. 

Proof 

Given X _e_> Y E .E and an isomorphism (a bijection!) Y __l!:__> Z in 

Set, it must be shown that hoe E .!;. If X = 0, then Y = 0 (since 

e E f). Since h is bijective, we must have Z = 0. Hence hoe E .!;. 
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Now let Z ~> X E lso(Xl and let X _!!!:_> Y E M. Then h is a 

bijection. If m is a bijection, then the composition moh is a bijection; 

hence moh E M. On the other hand, if X = 0, then Z = 0 (since 

h is a bijection), hence moh E M. 

satisfies Definition 1 .1 . 2. 

Consequently, the pair (E, Ml - -

(1 l If X _J_> Y is a morphism in Set with X = 0, then f has 

the (E, Ml-factorization 0 _J__> Y = 0 - 0-> 0 _J__> Y. Otherwise 

a function X _J_> Y in Set has an (E, Ml-factorization 

satisfying the definitions of f and M above. 

(2l Now suppose that the square in Set 

x e y 

r s 

A m B 

commutes with e E f and m E M. If X = 0, then Y = 0, by 

definition of f above, so the unique morphism 0 --> A is the 

desired diagonal morphism. We shall assume that X f: 0. Then 

A f: 0, since r is a function. So, by definition of M, the 

function m is a bijection. So, we define y --1:___> A to be the 

function -1 m os. Then 

-1 . = (m omlor = zdA or r 

and 
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mod = mo(m- 1 os) = (mom- 1 )os = id8os = s. 

And d is unique with this property since m is a bijection. o 

Example 1 .2.4(a) 

{Surjection, embedding) is a factorization structure on Top. 

In Top, isomorphisms are the homeomorphisms {see e.g. [HS 1, 

5.14(4)]). Since homeomorphisms are surjections and surjections are 

closed under composition, surjections satisfy Definition 1 .1 .2{a). Also, 

homeomorphisms are embeddings and embeddings are closed under 

composition, embeddings satisfy Definition 1 .1.2{b). 

(1) If {X, TX) _J_> {Y, Ty) is a continuous function between 

topological spaces, then the factorization 

{where Tf is the relative topology induced on f (X) by Ty and 

~X) is the inclusion of f {X) into Y) is a {surjection, 

embedding)-factorization of f. The map {X, TX) _J__> {f {X), Tj is 

continuous since the continuous function ~ {X) is initial. 

(2) Let the following square in Top be commutative with s 

surjective and e an embedding: 
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s 

p q 

e 

The existence of a unique function (Y, r y) _1_> (K, r K) 

completing the above square follows as in Example 1 .2.2(a). So, 

we need only show that d E Mor(Top), that is, d is continuous. 

Since eod = q and since q is continuous and e is is initial, 

it follows that d is continuous. D 

Example 1.2.4(b) 

(Quotient, one-one) is factorization structure on Top. 

Proof 

Given a quotient map X __!!____> Y, let Y _f!:__> Z be a homeomorphism 

(between topological spaces). By [WI, 9.2], the space Z is a quotient 

space, so the composition hoe is a quotient function; so Definition 

1 .1 .2(a) is satisfied. Since homeomorphisms are one-one and one-one 

functions are closed under composition, one-one functions satisfy 

Definition 1 . 1 .2(b). 

(1) A continuous function (X, r X) _i_> (Y, r y) in Top has the 

following (quotient, one-one)-factorization: 

where u is the quotient topology induced on f (X) by f and 
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~ (X) is the inclusion of f (X) into Y. The continuity of the 

function ~ (X) follows from [WI, 9.4]. 

(2) If the square in Top 

s r 

g 

commutes with f a quotient function (and then, Tf is the 

quotient topology induced on Y by f ) and g is a one-one 

function, then f is surjective, being a quotient. Thus we define 

d (Y, r1 ) -> (P, rp) as in Example 1.2.2(a). By a similar 

argument, the map d is unique such that dof = s and god = r. 

Continuity of d follows from the fact that dof = p and the 

fact that p is continuous and f is a quotient. D 

Example 1 .2.4(c) 

(Dense, closed embedding) is a factorization structure on Top. 

Proof 

If X _e_> Y is a dense continuous map and Y ......!!:__> Z is a 

homeomorphism, then hoe is a dense continuous map; for, we have 

(hoe)(X) = h(e(X)) = h(e(X)) = h(Y) = Z. So dense continuous maps 

satisfy Definition 1.1.2(a). Since homeomorphisms are closed 

embeddings, and since closed embeddings are closed under composition, 

it follows that closed embeddings satisfy Definition 1 .1 .2(b). 
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(1) Given a continuous function (X, 7) _i_> (Y, <r) in Top, consider 

TOO, the closure Cly(f(X)) of f(X) in (Y, <r). Then f has the 

following (dense, closed embedding)-factorization: 

(X, 7) _i_> (Y, <r) = (X, 7) __!!__> (T00, <r') __!!i_> (Y, <r), 

where e is the codomain restriction of f, m is the inclusion of 

TOO into Y and <r' is the relative topology induced on TOO by 

<r. Since Clw(e(X)) = Cly(/ (X)) (where W = Cly(/ (X))), the 

map e is dense. By construction, the map m is an embedding. 

To see that the inclusion m is closed, let C be closed in 

TOO. Then there exists C' which is closed in Y such that 

C = TOO n C' (see [WI, 6.3(b)]), so C is closed in Y. 

(2) Suppose the following square in Top is commutative, with d a 

dense map and c a closed embedding in Top: 

( x, 7) d (Y, <r) 

(W, p) 
c 

(Z, ,\) 

Observe that c(h(X)) ~ c(h(X)), so 

c(h(X)) ~ c(h(X)) 

= c(liOO) ( c is closed ) 

~ c(h(X)) ( c is continuous, [WI, Theorem 7.2(d)] ). 

Hence c(h(X)) = c(h(X)). Choose any y E Y. Then 
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k(y) E k(Y) = k(d(X)) (since d is dense) 

~ k(d(X)) (since k is continuous) 

= c(h(X)) (since the square is commutative) 

= c(h(X)). 

Hence there exists w E h(X) c W such that c(w) = k(y). We 

thus define a map Y _l_> W as follows: Given y E Y, let 

l(y) = w, where w is such that c(w) = k(y). The map l is 

well-defined; for if w also satisfies c(w) = k(y), then w = w, 

since c is injective. Given x E X, we have 

(co (lad)) (x) = (c(l(d(x))) = c(t) ( where t is such c(t) = k(d(x)) ) 

= k(d(x)) = c(h(x)), 

hence co(lod) = coh. But c is an embedding, so lad = h. 

And for each y E Y, we have 

(col) (y) = c(l(y)) = c(w) (where w is such that c(w) = k(y) ) 

= k(y), 

so that col = k. Therefore, l completes the above square. 

Uniqueness of l follows from the fact that c is an embedding, 

and l is continuous by continuity of k and initiality of c. o 

Example 1 .2.4(d) 

(Front dense, front-closed embedding) is a factorization structure on 

Top. (The definitions of front-dense maps and front-closed maps 

follow.) 
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Definitions: ([NW, p. 68]) 

(a) If (X, 7) is a topological space and A c X, the front-closure 

(b) 

b(A) of A (also called the b-closure of A) is defined as 

follows: 

b(A) = {x E X I for each nhood N of x it holds that 

N n {XJ n A :f 0 }. 

Under this definition, a new topology which is called the 

front-topology (or the b-topology) is formed on the space X. 

(i) A continuous function f: X -> Y between topological 

spaces is said to be b-dense provided that b( f (X)) = Y. 

(ii) An embedding f: X -> Y is called b-closed if 

b(f (X)) = f (X). 

Some properties (without proof) of the b-closure operator are the 

following (see [SK, 2.1]): 

Lemma 1 

Given a topological space (X, 7), let A, B c X. Then 

( 1) 

(2) 

(3) 

(4) 

A c b(A) c A. - -

If A ~ B, then b(A) C b(B). 

b(A) = b(b(A)). 

b(A U 8) = b(A) U b(B). 

* Remark 1 

(a) It is immediate from this lemma that, for any topological 

space (Y, 7), it holds that Y = b(Y). For, 
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Y C b(Y) C Y = Y ==} Y = b(Y). - -

(b) If f: X -> Y is a homeomorphism (between topological 

spaces), then b( f (X)) = b(Y) = Y = f (X); so a 

homeomorphism is both a b-dense map and a b-closed 

embedding. 

Lemma 2 

(1) If f: (X, 7) -> (Y, IT) is a continuous function, then 

f (b(V)) ~ b( f (V)) I 

for each V ~ X. 

(2) If m: (X, 7) -> (Y, IT) is a b-closed embedding, then, for each 

V ~ X, it holds that 

b(m(b(V))) = m(b(V)). 

(1) Let y Ef (b(V)). It must be shown that y Eb(/ (V)). Suppose that 

N is any nhood of y. Then there is some x E b(V) such that 

y = f (x). Since f is continuous, there is a nhood U c X of 

x such that f (U) c N. Since x E b(V), it follows that 

un{XJnv :/: 0, 

and so 

f (Ul nf ({XJl nf (Vl :/: 0. 

By continuity of f, we have 

f (U) nf ({XJ) nf (V) c N n { f (xl}l nf (V), 

which implies that 
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NnTYJn/(Vl :/= 0. 

Hence y E b(/ (V)). 

(2) From (1), we have m(b(V)) c b(m(V)). But 

V C b(V) (Lemma 1(1)) 

:::::} m(V) c m(b(V)) 

:::::} b(m(V)) c b(m(b(V))), (Lemma 1 (2)) 

so m(b(V)) ~ b(m(b(V))). To prove the reverse inclusion, we note 

that since m is a b-closed embedding, it follows that 

b(m(b(V))) c b(b(m(V))) 

= b(m(V)) 

~ b(m(X)) 

= m(X). 

(by (1)) 

(Lemma 1 (3)) 

(since V ~ X) 

Now let y E b(m(b(V))). It needs to be shown that y E m(b(V)); 

that is, we must find x E b(V) such that m(x) = y. By the 

above observation, we have y E m(X); so there is some x E X 

such that m(x) = y. Then we need only show that x E b(V). 

To this end, let N E r with x E N. Since m is an embedding, 

it follows that there is some U E rr such that N = m- 1 ( U). 

Therefore x E m- 1 (U), and U is a nhood of y. But y E b(m(V)), so 

Un TYJ n m(V) :/= 0. Application of m-1 to this relation gives: 

m- 1 (U) n m-1 (TYJ) n m-1 (m(V)) :/= 0. 

But m is continuous, so 

N n m- 1 (TYJ) n m- 1 (m(V)) c N n {m- 1 (yl} n V, 
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and, therefore, N n {m-1 (y)} n V f. 0. Since m is one-one, it 

follows that -1 m (y) = x, thus {m- 1 (y)} = {XJ. Then 

N n TXJ n v f. 0. Hence x E b(V), that is, y E m(b(V)). 

Consequently, we have proved that m(b(V)) = b(m(b(V))). o 

Lemma 3 

If f: X --> Y is a homeomorphism between topological spaces, and 

V ~ X is any subset of X, then b(f(V)) = f(b(V)). 

Since f is continuous, it follows from Lemma 2 that f (b(V)) ~ b(f (V)). 

To prove the reverse inclusion, let y E b( f (V)). To prove that 

y E f (b(V)), we must find x E b(V) so that f (x) = y. Since f is 

bijective, there exists a unique x E X such that f (x) = y. So it 

needs to be shown that x E b(V). Let N be a nhood of x. Then 

f (N) is a nhood of f (x) = y. Since y E b( f (V)), it follows that 

f(N) nfilnf(Vl f. 0. 

Applying f-1 to this relation, we find that 

Since f is bijective, it follows that f- 1 ( f (W)) = W, for all W c X. 

Since f-1 is a continuous bijection, it follows that 

f-1 lYJ = { f -1 (yl} = TXJ. 

Hence N n TXJ n V f. 0, for each nhood N of x; that is, x E b(V). 

Consequently, b( f (V)) = f (b(V)). D 

Let us denote by 6 the family of all b-dense continuous maps, and 

by .Jt the family of all b-closed embeddings. 



18 

Lemma 4 

Each of 6 and .At is closed under composition with isomorphisms, as 

specified in Definition 1 .1 .2. 

Proof 

In Top, isomorphisms are the homeomorphic functions (see, for example, 

[HS 1], Examples 5 .4 ) . 

Let X _e_> Y __!!:__> Z be continuous maps in Top with e E 6 and h 

a homeomorphism. It must be shown that b((hoe)(X)) = Z. We have 

b[(hoe)(X)] = b[h(e(X))] 

= h[b(e(X))] 

= h(Y) 

= Z, 

so hoe is b-dense. 

(Lemma 3) 

(e is b-dense) 

(h is surjective) 

On the other hand, if A__!!:__> B __!!!:____> C are continuous maps in Top 

with m E .At and h a homeomorphism, we shall show that 

b[ (moh)(A)] = (moh)(A). We have 

b[(moh)(A)] = b[m(h(A))] 

= b[m(B)] (h is surjective) 

= m(B) (m is a b-closed embedding) 

= m[h(A)] 

= (moh)(A), 

thus moh E .At. D 
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To complete the example, we proceed as follows: 

(1) A function (X, T) J_> (Y, IT) in Top has the following (b-dense, 

b-closed embedding)-factorization: 

(X, T) J_ > (Y, IT) = (X, T) __!!._ > (b ( f (X)), IT 1
) _!!!____ > (Y, IT), 

IT 

where m is the inclusion of the b -closure b (f (X)) into Y, e is 
IT IT 

the codomain restriction of f (i .e, e(x) = f (x), for each x E X ) 

and 1T
1 is the relative topology induced on b(f (X)) by IT. (Here 

the subscripts on the h's indicate in which topology the b-closure 

is being taken.) Since (blT( f (X)), IT') is a topological space, 

we must have 

We also have 

f(X) ~ blT(f(X)) 

::=} blT,(e(X)) = blT,(f(X)) 

C blT,(blT(f(X))) 

= blT(f(X)). 

(Lemma 1 (1 )) 

(Lemma 1 (2)) 

To prove the reverse inclusion, let y E blT(f (X)), and let U E IT' 

with y E U. Then there is some V E IT such that U = V n b IT( f (X)). 

Now 

u n clb (f(X))({y}) nf(X) = v n blT(f(X)) n cly({y}) nf(X) 
IT 

= v n cly({y}) nf (X) * 0, 

because yEblT(f(X)); thus yEblT,(f(X)), and so 

blT(f(X)) ~ blT,(f(X)). Hence e is b-dense. Since m is an 

inclusion, we have m(b( f (X)) = b( f (X)); it is also b-closed 

because 
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b[m(b( f (X) ))] = b[b( f (X))] 

= b(f (X)) 

= m[b(f (X)]. 

(since m is an inclusion) 

(Lemma 1 (3)) 

(2) We consider a commutative square in Top, with e E 6 and m E .At. 

( X, T) __ e_--t (Y, tr) 

p q 

(A, p) --m-- (8, ,\) 

Observe that 

p(X) ~ b{p(X)) (Lemma 1 (1 )) 

==* m{p(X)) ~ m(b(p(X))), 

so b(m(p(X))) ~ b(m(b(p(X)))) 

= m(b(p(X))) 

~ b(m(p(X))) 

Hence 

m(b(p(X))) = b(m(p(X))). 

Now choose y E Y. Then 

q(y) E q(Y) = q(b(e(X)) 

~ b(q(e(X))) 

= b(m(p(X))) 

= m(b(p(X)). 

(Lemma 1 (2)) 

(Lemma 2(2)) 

(Lemma 2(1 )) 

(e is b-dense) 

(Lemma 2(1 )) 

(the square is commutative) 
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Hence there exists a E b(p(X)) ~ A such that m(a) = q(y). 

Define d: Y --> A as follows: for each y E Y, set d(y) = a 

if and only if q(y) = m(a). Then d is well-defined because m 

is an injection. That d is unique such that doe = p and mod = q 

follows exactly as in Example 1.2.4(c). 

1.3 PROPERTIES OF (E, M)-FACTORIZATION 

STRUCTURES 

D 

In this section, we show (Proposition 1.3.1) that in an (f, Ml-category 

X, the classes .E and M determine each other through the unique 

diagonalization property; that each of .E and M contains lso(X) and 

also that M is closed under the formation of all limits. It is shown 

that the factorization structures (f, M) in X which can be extended 

to factorization structures (f, M 1 ) for set-indexed sources are precisely 

those for which X has products (Proposition 1 .3.5). 

Proposition 1.3.1 (cf. [HSV], 1 .2) 

Let (f, Ml be a factorization structure on X. Then 

(1) (M, E) is a factorization structure on X 0 P. 

(2) If the diagram 

e A---....... B 

A -~f~-11 C 

commutes, where e E .E and m E M, then f E M. In particular, 

d is an isomorphism. 
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(3) An X-morphism f: C --> D belongs to M if, and only if, for 

(4) 

(5) 

each commutative diagram 

A e B 

c --f~__,1 D 

with e E f, there exists a (not 

B __4_> c such that doe 

_En M lso(X). 

Each of the classes .E and M 

necessarily unique) morphism 

r and fad = s. 

is closed under composition. 

(6) Each (E, M)-factorization is unique up to a unique commuting 

isomorphism. 

(7) If nof E M and n E M or n is a monomorphism, then f E M. 

(8) The class M is closed under the formation of products, 

pullbacks, multiple pullbacks, and limits. 

Definitio11S: 

(a) The class M is said to be closed under the formation of 

(b) 

multiple pullbacks provided that, if a source (ki : S -> Si) 1 

is a multiple pullback of a sink (g. : s. --> T) 1 with each 
I I 

gi in M, then ki E M, for each i E I. 

The class M is said to be closed under the 

formation of limits if, whenever A is a small category, 

(L, lA) and ([, I A) are limits of functors D : A-> X 

and F : A--> X, respectively, and (71 A) : D --> F is a 

natural transformation with each 71 A in M, then 

k : L --> [ belongs to M, where k is the unique 

morphism making the following diagrams (one for each 
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A E Ob(All commutate: 

L k [ 

D(Al 
'f/A 

F(Al 

For the proofs of (2l, (4l, (5l, (6l and (7l, see [AHSJ, Chapter 14. 

(1 l (See also [AHSJ, Proposition 14.3.l Let f: X --> Y be an 

X 0 P-morphism. Then f: Y -> X is an X-morphism, so it has an 

(f, Ml-factorization 

where m E M and e E f. But then 

x f > y = X-m--> A-e __ > y 

is an (M, fl-factorization of f in X 0 P. 

To show that X 0 P has the unique (M, fl-diagonalization 

property, consider a commutative square X 0 P 

m A ____ __, B 

c D 
e 

with m E M and e E f. Then there exists a unique X-morphism 

C --1:_> B such that the following diagram commutes in X: 
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D e c 

B m A 

Associated with d is a unique X 0 P-morphism d : B --> C 

such that the diagram in X 0 P 

A m B 

c D 
e 

commutes. This follows from the fact that doe = s and mod = r. 

(3) (See also [AHS], 14.6(3).) Suppose that C _f_> D E M. Since 

e E f, the unique (f, M)-diagonalization property implies 

that there exists a B __1__> C such that r = doe and fod = s: 

A e B 
/ 

/ 

r d / s 
/ 

/ 
./ 

c --f~---11 D 

Conversely, suppose the condition is satisfied, and let f = m' oe' 

be an (f, M)-factorization of f. But f = foidc is also a 

factorization of f, so the following diagram is commutative: 
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c -----l. e' 

c f --i D 

By hypothesis, there exists an X-morphism d' such that 

d' oe' z'd = c and fod' = m'. The result follows from (2) 

above. 

(8) (i) That M is closed under the formation of products and 

pullbacks follows from [AHS, Proposition 14. 1 5). 

(ii) Let the source (li : L -> Xi)I be a multiple pullback of a 

sink ( fi : Xi-> A)
1
• Suppose each fi E M. It must be shown 

that each l. E M. Then, since f'.ol. d, for some fixed 
I - Ji I 

morphism d : L --> A, we need only show that d E M, for 

then it will follow from (7) that f. E M, for each 
I -

consider the following commutative diagram 

e A ------1 B 

d L -------1 A 

l~x~ 
I 

i E I. We 

where e E _!;. Since each fi E M, it follows that there is a 

r. 
unique morphism B _ _!__> \ which makes the following diagram 

commutative, for each i E I: 
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A e B 

l;oh J 
/ 

Jk 
r. / 
I/ 

/ 
,/ 

x. 1A 
I f. I 

Thus f;or. = k 
I I 

and r.oe = [.oh, 
I I 

for each 

is a multiple pullback for the sink 

unique morphism B ___!:'.____> L such that 

Now we have 

/.o(voe) = {/.ov)oe = r.oe = [.oh, 
I I I I 

i E I. Since 

f; 
I (Xi -> A) 1, there is a 

/.ov r., for each i E I. 
I I 

for each i El. Since (L, (li) 1, d) is a mono-source, it follows that 

voe = h. We also have 

so v makes diagram (*) commute and, by (7), each li E M. 

(iii) We shall now show that M is closed under the formation of 

limits. Suppose each 'f/ A E M. It must shown that k E M. Given 

a commutative square 

x e y 

r s 

L --kr----11 [ 

with e E f, we have 
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TJAo(lAor) = (TJAolA)or = (lAok)or 

= lAo(kor) = IAo(soe) = (lAos)oe, 

from which the (£, M)-diagonalization property implies 

d 
existence of a unique X-morphism Y~> D(A) making 

following diagram commutative, for each AEOb(A): 

x e 
--1 y 

/ 
/ 

lAor 
dA / I A os 

/ 
/ 

,/ 

D(A) -i F(A) 
Tl A 

Since (L, /A) is a limit of D, there is a unique X-morphism 

Y --1!:__> L such that l A oh = d A' for each A E Ob(A): 

y 

I 
hi 
I 
! 
L -r; __ ___, D(A) 

A 

the 

the 

It remains to be shown that koh = s and hoe = r. But, for 

each A E Ob(A), we have · 

Since limits are mono-sources (see, for example, [HS 1], 20.4 ) , 

it follows that koh = s. In the same way, 

implies hoe = r. So by (3), it follows that k E M. D 
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Definition 1.3.2 ([HS
1

], 37 .8) 

Let A be a subcategory of a category X. An X-morphism 

X _l_> Y is called an A-extendable morphism if, for each X-morphism 

X _g_> W, where WE Ob(A), there is an X-morphism Y _!__> W 

such that the following triangle is commutative: 

x y 

k 

w 

Proposition 1.3.3 

If X has a terminal object T, (J;, M) is a factorization structure on 

X and .6 is the full isomorphism-closed subcategory of X which 

consists of all objects BE Ob(X) for which the unique morphism 

B -> T belongs to M, then 

( 1) .6 is f-reflective in X. 

(2) If A is a subcategory of X such that 

.E = {! E Mor(X) If is A-extendable }, 

then .6 is the f-reflective hull of A in X. 

Proof 

(1) Let XE Ob(X). Then there exists a unique X-morphism X _t_> T. 

Suppose that 

t e m X-> T = X-> Y--> T 

is an (f, Ml-factorization of t. Since m EM, we must have 

Y E Ob(_6). If X _l_> Z E Mor(X) with Z E Ob(.6), there is a 

unique z .l I > T belonging to M. Then f 'of = moe, so 
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since fl M, there is a unique morphism Y _.1_> Z making the 

following diagram commutative: 

x e y 

/ 

lm 
- / 
!/ 

/ 
,/ 

z !' iT 

Therefore, (e, Y) is a universal map for X, so the category .6 is 

reflective in X. But e E f and the X-object X was arbitrary, 

so .6 is ];-reflective in X. 

(2) To show that A is a subcategory of _6, choose A E Ob(A). It 

needs to be shown that A E Ob(.6). To do this it must be 

shown that the unique X-morphism A _J__> T belongs to M. 

Let 

be an (f, Ml-factorization of f. We also have foid A = moe. 

Since e E f, it follows that e is an A-extendable X-morphism, 

so there exists an X-morphism B ....!l.___> A which makes the 

following diagram commutative: 

A e B 

A --f~__,i T 

(That m = fod follows from the fact that T is a terminal 

object.) It follows from Proposition 1 .3.1 (2) that f E M, hence 

A ~ _6. 
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To complete the proof, we show that if C is any f-ref!ective 

full isomorphism-closed subcategory of X which contains A, 

then .6 ~ C. Choose any B E Ob(B). Then the unique morphism 

belongs to M. There also exists a universal 

e 
morphism B -

8-> Be with Be E Ob(C} and e8 E f. If k is 

the unique morphism from Be to T, then it holds that koe8 = m. 

Since J; l M, there is a morphism Be _1._> B so that the 

following diagram commutes: 

B 
es 

Be 

id81 d 

lk 
B m T 

This shows that e8 is a section and hence an isomorphism 

(see, for example, [HS 1 ], 36.8). Since Be E Ob(C} and C 

is isomorphism-closed, we get that B E Ob(C), as desired. o 

Definitlon 1.3.4 ([HSV, 1 (2)]} 

Let .E be a class of X-morphisms and let M be a collection of 

sources in X and suppose that both .E and M are closed under 

composition with X-isomorphisms. Then (f, M) is a factorization 

structure for sources on X if and only if the following conditions hold: 

(1} Each source (X, ( ~)) 1 in X has an (f, M}-factorization; that is, 

there exist e X --> Y E f and a source (Y, (m.}}
1 

in M such 
I -

that ( ~) 
1 

= (lni} 
1
oe. 

(2) X has the (£, M}-diagonalization property; that is, e l (mi)I, i.e. 

given commutative squares with e E f and (mi) E M, 
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A e y 

x m. 
I 

x. 
I 

there, exists a unique X-morphism d such that doe = g and 

miod = Ii, for each i E I. 

Proposition 1.3.5 (See e.g. [HSV, Remark (2}] and [AHS, 15.19(1 )]) 

In any category X, each of the following statements implies those that 

follow it. If X has an initial object, the three statements are 

equivalent: 

(a) X has products (respectively, finite products). 

(b) In X, every morphism factorization structure (E, M) - - can be 

extended to a factorization structure (f, M') for set-indexed 

sources (resp. finite sources). 

(c) The trivial morphism factorization structure (Mor(X), lso(X)) can 

be extended to a factorization structure for set-indexed sources 

(resp., finite sources). 

Proof 

(a) ~ (b). Assume that X has products and that (f, M) is a morphism 

factorization structure on X. Given a set-indexed source 

(f;: X -> Y.)
1
, if (flY., 7f.) is the product of (Y.

1
)
1
, then there is 

I I I I 

<f;> 
a unique X-morphism X 1 > flY.

1 
such that 7f.o <f; > = f;, 

I I I 

for each i E I. Now let <f; > = moe be an (E, M)-factorization 
I 
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x 

71~ 
Y. I <f; > z 

I~ l/. 
rry, 

I 

The factorization ( ~) 1 = ((7riom)oe) 1 is an (J;, M' )-factorization of 

(~) 1 , where 

M' = {(mi : w -> Bi)I I there exists m : w --> rrsi E .!\II 

such that mi = 1fiom, for each i E I }. 

We will show that (£, M 1 ) is a factorization structure for 

set-indexed sources in x. Firstly, M' is closed under 

composition with X-isomorphisms as required by Definition 1.1 .2. 

Consider commutative squares (where X, e, ~' etc. are not 

necessarily those in the first part of the proof.) 

x e y 

pl 1~ <f;> 
I 

A ----------l A. m. I 
I 

~fIA. m 
I 

with e E J; and (mi)I E M'. By definition of M', mi = 1fiom, for 

some m E M, where (I!Ai' 1fi) is the product of (Ai)I. There is a 

unique X-morphism <Ji> such that ?rio <~ > = ~' for each i E I. 

We have 

'lf.omop = m.op = f;oe = 1f.O <f; > oe, 
I I I I I 
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for each i E I, so mop = <f; > oe. 
I 

Since e 1 m, there is a 

unique X-morphism d such that mod = <f; > and doe = p: 
I 

x e y 

p 1 ~ / d / / / 1 <f; > 

A m T 

We need only show that miod = Ji• for each i E I. But this 

follows from the equalities 

m.od = 7f.omod = 7f.O <f; > = f;
1
, 

I I I I 

for each i E I. Hence (f, M') is a factorization structure for 

set-indexed sources in X. (Similarly, if X has finite products, 

then (E, M) can be extended to a factorization structure for finite 

sources.) 

(b) ==:::} (c). (Mor(X), lso(X)) is a particular instance of the factorization 

structure (f, M). 

Now we assume that X has an initial object J. 

(c) ==:::} (a). Given the trivial factorization structure (Mor(X), lso(X)), let 

(Mor(X), M) be its extension. Suppose that is a 

set-indexed class of X-objects. For each i E I, there exists a 

e. 
I unique X-morphism J --> Xi. Let 

e. 
J-'-> x. 

I 

ex m. 
= J--> x-1-> x. 

I 

be a (Mor(X), M)-factorization of (ei) 1. It is asserted that 
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m i 
(X -

1-> Xi) is a product of (Xi)I. For, if (Y -
1 > Xi)I is any 

indexed family of X-morphisms, then the following squares (one 

for each i E I) commute, 

J y 

x m. 
I 

x. 
I 

where ey is the unique morphism from J to Y. Since ey ! (mi)I, 

there is a unique X-morphism Y ____!!:..__> X such that doey = ex 

and miod = fi, for each i E I. D 

Definition 1.3.6 (See e.g. [HS 1], 6.27) 

A category X is called a co-{well-powered) category provided that each 

X-object X has a representative class of quotient objects which is a 

set. 

Proposition 1.3.7 (See also [HSV], 3(a) ) 

Let X be a co-(well-powered) category and let (f, M) be a 

factorization structure for set-indexed sources. Then the following 

statements are equivalent: 

(a) There exists an M' such that (f, M') is a factorization 

structure for arbitrary sources. 

(b) f ~ Epi(X). 

(c) If (X, (m)) E M, then (X, (m, m)) E M. 

(d) Every X-section belongs to M. 

Proof. See [AHS], Proposition 15.20. 
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1 .4 EXISTENCE OF FACTORIZATION STRUCTURES 

In this section, we shall give an existence theorem (Theorem 1 .4.1) for 

factorization structures. Swell epimorphisms are defined and it is shown 

that on a category X which has (epi, mono-source)-factorizations for 

2-sources, swell epimorphisms are the extremal epimorphisms. (Lemma 

1 .4.5). In Theorem 1.4.7, we show that an (epi, mono-source)-

factorizable category is one which is (extremal epi, mono-source)­

factorizable, or equivalently, one which is (swell epi, mono-source)-

factorizable. Here follows the result due to Bousfield ([BO, 3.1 ]): 

Theorem 1 .4. 1 

Let X be a cocomplete category and let .E be a family of 

X-morphisms. Then, for some class M of X-morphisms, (f, M) is a 

factorization structure on X if, and only if, .E has the following 

properties: 

(a) lso(X) ~ f. 

(b) .E is closed under composition. 

(c) If e = foe with e, e E f, then f E f. 

(d) .E is closed under the formation of pushouts. 

(e) .E is closed under the formation of colimits. 

(f) Solution set condition {SSC}: Each X-morphism f has a set of 

e g 
factorizations { X _a_> Ba _a_> Y }, with ea E .E for all a E J6 

and such that any factorization of f, X _!!_> B _g_> Y with 

e E f, can be mapped (in the category f.f below) to some 

member of this set. 

Proof 

If (f, M) is a factorization structure on X, then (a) through (e) 
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follow from Theorem 1 .3.1 (dual). So, we need only establish the SSC. 

Given a f E Mor(X), the representative set required by the SSC can be 

taken to be any singleton set consisting of an (f, M)-factorization of f. 

Conversely, suppose that the conditions of the theorem are satisfied. 

We define M as follows: 

M = { g E M or(X) I f ! g, V f E f } . 

By [AHS, Proposition 14. 7], we need only establish the following 

conditions: 

(1) lso(X) c f n M. 

(2) Each of f and M is closed under composition. 

(3) X is (.!;, M)-factorizable, and each (f, M)-factorization of an 

X-morphism is unique up to a commuting isomorphism. 

For these we proceed as follows: 

(1) Consider a commutative diagram 

• e • 

') 
• f • 

with e E f and f E lso(X). Define d = f-1 os. Then 

-1 and fod = fo(f os) = s. And d is unique such that 

doe = r and fod = s because f is a monomorphism; so e ! f, 

hence fEM. By (a), fEf, thus fE.t;nM. 
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(2) Given morphisms m1, m2 E M such that m2om1 is defined, 

consider the following commutative diagram, with e E .E: 

• e • 

• • • 

Then there is a unique morphism d1 with m2od1 = q and 

d1 oe = m1 op. Also there is a unique morphism d2 such that 

m1 od2 = d1 and d2oe = p. Therefore 

and d2oe = p. If d were another morphism satisfying the 

conditions that (m2om1 )od = q and doe = p, then 

(m
2

om
1 

)od
2 

= (m
2

om
1 

)od =::} m
2

od
1 

= m
2

o(m
1 

od) 

=::} q = m
2

o(m
1 

od), 

and (m1 od)oe = m1 op. But d1 is unique such that 

q = m2 od1 and d 1 oe = m1 op, so m1 od = d 1 . Since d2 

is unique such that m, od2 = a, and d2oe = p, it follows 

that d2 = d. Hence e ! (m2om1), thus m2 om1 E M. 

(3) Given an X-morphism f: X -> Y, let ff be the category 

whose objects are factorizations X __!!____> B .....!!!:..__> Y of f with 

e E f, and whose morphisms are commutative diagrams: 



38 

X----t B1 e1 

h 

x ------. 82-----1 y 
e2 m2 

We will show that f.f is cocomplete. Hence let D : I --> f.f be 

a functor, where I is a small category. Define functors 

o1 : I -> X and o2 : I-> X as follows: 

and 

while 

o1 (i) = X, for each i E Ob(I) 

o1 (m) = idx, for each m E Mor( I); 

e. m. 
= X - 1-> B. - 1-> Y, 

I 

and if m : i -> j E Mor(I), then 

h = 8.->B. 
I J 

whenever 

X -----. B . __ __, Y 
e. 1 m. 

I I 

D(m: i-> j) = idx h 

x e. 
J 

B. 
J m. 

J 

y 

/. 
Let Colim o1 

I = (X -> W)i E Ob(I) 

k. 
and Colim o2 

I = (Bi-> A)i E Ob(I)' 
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Consider the following diagram: 

e. 
x I ________. B. 

j I; (1) F~ I (3) 

idx (2) w e A m _.,y (*) 

j I !k/ (4) 

e X--- B 

~ 
z. k. 

Since (X-' > W)i E Ob(I) and I 
(Bi-> A)i E Ob(I) are colimits, 

there is a unique X-morphism e : W --> A such that square 

m. 
I 

(1) commutes. But (Bi-----> Y)i E Ob(I) 
idx 

and (X > X)i E Ob(I) 

are natural sinks for o2 and o1, respectively; so, by the 

universal property of colimits, there are unique X-morphisms 

l : W ---> X and m : A --> Y such that squares (2) and (3) 

commute. By condition (e), the morphism e belongs to f since 

each ei E f. Square (4) is a pushout diagram. Since e E E, it 

follows from condition (d) that e E E. Now for each i E I, it 

holds that 

moeol. = mok.oe. = m.oe. = foidx = fofol.
1

• 
I I I I I 

Since colimits are (extremal epi)-sinks (see, for example, [HS
1

, 

20.4(dual)]), we have moe = fol. But square (4) is a pushout, 

so there is a unique X-morphism m : B --> Y such that 

fizok = m and moe = f. It is asserted that the following sink 

in ff is a colimit of 0: 
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X----1B. 
I 
__ _,y 

m. 
I 

e. 
I 

kok. 
I 

e m X ----1 B __ ____, Y i E Ob(I) 

We have, for each i E I, 

and 

kok.oe. = koeof. = eolof. = eoidx, 
I I I I 

so both squares commute. We first show that this sink is natural 

for D. Hence let m: i --> j be a morphism in I. Its image 

under D is 

X ___ __, B. __ ___, Y 
e. 1 m. 

I I 

h 

x B. y 
e. 
J J m. 

J 

It needs to be shown that kok.oh 
J 

= kok.. But because 
I 

(ki: Bi-> A)i E Ob(I) is natural for 02, we have k.oh 
J 

= k., 
I 

and then kok.oh 
J 

= kok.. 
I 

Now suppose that the diagram 

X __ ______, B . -----. Y 
e. 1 m. 

I I 

h. 
I 

e m x ___ __, c ----1 y i E Ob(I) 
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is also a natural sink for 0. We seek a unique X-morphism 

d : B --> C such that the digram 

x e ·----;B rn ___ ___,y 

d 

e m x ___ ___, c - -----; y 

commutes, and dokok. = h., for each i E Ob(I). Now 
I I 

h. 

(**) 

I 
(Bi--> C)i E Ob(I) is a natural sink for o2, so we obtain a 

unique X-morphism c: A--> C such that the triangle 

B. 
I 

k. 
I --->A 

le 
c 

commutes, for each i E Ob(I). 

W--·e 

c 
l k (***) 

e d X --------! B __, C 

~~ 
For each i E Ob(I), we have that 

coeol. = cok.oe. = h.oe. = e 
I I I I I 

eolol .. 
I 

Since colimits are epi-sinks, it follows that coe = eol. But 

square (4) is a pushout, so there is a unique X-morphism 
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d: B --> C such that dok = c and doe e (in diagram (***) 

above). For each i E Ob(I), we also have 

modokok. = mocok. = moh. = idxom. = mok .. 
I I I I I 

But (ki : Bi--> A)i E Ob(I) is a colimit (and so, an epi-sink), so 

modok = m. Also modoe = moe = f. By the uniqueness of m 

such that mok = m and moe = f (see diagram (*)), it follows 

that mod = m. Hence d is such that the squares in diagram 

(**) commute. We also have that dokok. = cok. = h., for each 
I I I 

i E Ob(I). 

Finally, suppose that d is also such that doe = e, mod = m 

and dokok. 
I = h., 

I 
for each i E Ob(I). Now, for each i E Ob(I), 

we have dokok. = dokok.. Since colimits are epi-sinks, it follows 
I I 

that dok = dok = c. Since doe = e also, and d is unique 

such that dok = c and doe = e {in diagram (***)), we have 

d = d. By the dual of the existence theorem of ([MAC, p. 

11 6]), it follows that f.f has a terminal object, i.e. there exists 

a factorization X _J_ > B m > Y of f with e E f, such that if 

X _e_> B' ~> Y is any factorization of f with e E f, then 

there is a unique X-morphism h : B' --> B so that the 

following diagram commutes: 

X __ e _ ___, B' 

h 

m ___ _,y 

e m X------rB------rY 
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It must now be shown that m belongs to M as defined above. 

To do this, it is enough to prove the existence of a unique 

diagonal morphism in diagrams of the form: 

( 1 ) 

where e E f. This will follow from the equivalence of the 

following statements: 

(i) A unique diagonal morphism exists for commutative 

diagrams of the form 

D e' c 

/j lk 
(2) 

m B y 

where e' E f. 

(ii) A unique diagonal morphism exists for commutative squares 

of the form (1 ), where e E f. 

That (i) =:::) (ii) is obvious. 

(ii) =:::) (i). Suppose we have a commutative square, as given in 

(i). We form a pushout square as indicated in (#) below: 
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By condition (d), we have e' 1 E f. By the pushout property, 

there is a unique X-morphism l'' : C --> Y such that the 

triangles in diagram (3) above commute. From triangle (*), we 

have a commutative square of the form given in (ii): 

so there is a unique diagonal X-morphism d : C --> B such 

that mod l' I and doe' I = ids. Put a = dol'. Then 

fizod mo(dol') (inod)ol' l' I 0[ 1 k 

and 

doe' = (dol' )oe' = do(l' oe') = do(e' 1 ol) = idxol = l. 

But pushouts are colimits, and therefore they are epi-sinks (see, 

for example, [HS1 I 20.4(dual)]); so a is the unique diagonal 

X-morphism for square (2). 

Now it remains to show that there is a unique diagonal 

X-morphism for a commutative diagram of the form (1 ). By 

condition (b), we have a factorization X eoe > C _J__> Y of the 

morphism f with eoe E f, which we may assume comes from 

the representative set: 
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X---e- ___, B 

x 

__ e_---1 C ___ k ___ -i y 

h 

B fil --------1Y 

By what we proved initially, there is a unique X-morphism h 

which makes the above diagram commutative. It must be shown 

that h is also that unique diagonal X-morphism for diagram ( 1); 

so it also needs to be shown that hoe = id8 . But hoe makes 

the following diagram commute: 

X e____, B koe ( = m)~ y 

e m X --------1 B ______ ____, Y 

Since id8 also makes this diagram commutative, it follows from 

the fact that e fn X ---> B --> Y is a terminal object that 

Now let m1 oe1 = f = m
2

oe
2 

be any two (f, M)-factorizations 

of f. Then there exist unique X-morphisms h and g such 

that each of the following diagrams commutes: 

e2 
• ------! • 

and ,, L ; / / lm2 
• ------1. 

h/ m1 

• 
/ 

.,( 



46 

Since e. l m., 
I I 

for each 1 t 2, we must have goh = id 

and hog = id. Hence h is an isomorphism. Consequently, (J;, M) 

is a factorization structure on X. D 

Definition 1.4.2 (See also [HS
1

, 17 .15(4)]) 

Let M be a class of sources in X. The category X is called an 

M-well-powered category provided that each X-object has a 

representative set of M-subobjects. (An M-subobject is a pair (X, f), 

where X is the domain of f and f E M. ) 

Proposition 1 .4.3 

Let (fi' Mill be a family of factorization structures on a cocomplete 

M-well-powered category x for which (f, M) is also a factorization 

structure with .E ~ E, for each i E I. Then there is some family M' -1 

of X-morphisms such that (n .Ei' M') 
I 

is also a factorization structure 

on x. 

In view of Bousfield's Characterization Theorem, we need only show 

that n .Ei satisfies conditions (a) through (f) of Theorem 1 .4. 1 . 
I 

(a) Since (f, M) is a factorization structure on X, .E satisfies the 

(b) 

conditions of Theorem 1 .4.1. Since .E ~ .Ei' for each i E I, we 

have .E ~ n J;i. Since lso(X) ~ I;, so lso(X) ~ n J;i. 
I I 

Suppose e1, e2 E n fi. 
I 

Since each is closed under 

composition, it follows that e2 oe1 (when defined) belongs to 

each E., thus e2oe1 E n E.. 
I -1 

I 
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(c) Suppose that e = foe', where e, e' E n fi. Then e, e' E fi' 
I 

(d) 

(e) 

for each i, so f E fi, for each i (Theorem 1 .4.1 (c) ) , hence 

fE n fi. 
I 

Given a pushout diagram in x 

• • 

hl le 

• • 

with h E n fi' we have h E fi, for each i, so that e E fi, for 
I 

each (Theorem 1.4.1 (d)), hence e E n fi. 
I 

Since each is a factorization structure on by 

Proposition 1 .3.1 (8) (dual) each is closed under colimits. 

Consequently, n fi is closed under colimits. 
I 

(f) Given an X-morphism X _i_> Y, we consider all factorizations 

of f, where each m. 
J 

belongs to the representative set of 

M-subobi'ects and each h. E n E.. We assert that this is a solution 
J I -1 

for f. For suppose, 

X _i_> Y = X _e_> M __p__> Y 

with e E n fi and p = moe is an (.!;, M)-factorization of p. 
I 

Then e E fi' for each i E I, so that e E n fi and (by (b) above) 
I 
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eoe E n fi. Hence the factorization mo{eoe) of f is isomorphic 
I 

to one of the factorizations of f in the set above. D 

Definition 1 .4.4 

(a) An X-morphism e is called a swell epim01phism provided that it 

diagonalizes over mono-sources; that is, whenever (mi) 
1 

is a 

mono-source and kioe = mioh, for each i E I, then el (mi)I; that 

is, there exists an X-morphism d such that the following 

diagram is commutative: 

• e • 

• • m. 
I 

(b) A monomorphism f is called an extremal monorrwrphism if it 

satisfies the condition that: If f = hoe with e E Epi(X), then 

e E lso(X). 

Dually: An extremal epimorphism. 

Lemma 1.4.5 

Suppose a category has (epi, mono-source)-factorizations for 

2-sources. Then in X the extremal epimorphisms are the swell 

epimorphisms. 

Given a swell-epimorphism A _e_> 8, 

morphisms such that hoe = koe. 

h 
let s-> c 

r> be a pair of X-

In the following commutative 
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idc idc 
diagrams, the pair (C > C, C > C) is a mono-source: 

A e B 

c c 

Since e is a swell epimorphism, there is an X-morphism B _!}_> C 

which completes the above diagram, hence h = k. To establish the 

extremal condition, let e = moh with m E Mono(X). Since m is a 

mono-source, there is an X-morphism d 1 making the following 

diagram commutative: 

• e • 

• • m 

Hence m is a retraction, so m is an isomorphism (see e.g [HS 1], 

Proposition 6. 7 ). 

Conversely, suppose that A _e_> B is an extremal epimorphism and 

suppose that the diagram 

A e B 

hl 1 k; 

c m. 
I 

D. 
I 

m. 
commutes, for each i E I, where (C-'-> Di)I is a mono-source. Let 

(e1' {m1, m2)) be an {epi, mono-source)-factorization of the two-source 
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(e, h). We have 

m.om2oe 1 = m.oh = k.oe = k.om1 oe 1
, 

I I I I 

and, since e1 is an epimorphism, it follows that miom2 = kiam1, for 

each i. To show that m1 is a monomorphism, we assume that 

m1 al m1 al, for some X-morphisms l and I. Then, for each i E I, 

and, since (mi)I is a mono-source, m2ol = m2ol. But (m1, m2) is 

a mono-source, so l = I. Hence m1 is a monomorphism. Since e 

is an extremal epimorphism, it follows that m1 is an isomorphism. 

- 1 Hence the morphism m2am1 satisfies the relations: 

( - 1 ) I = m2o m1 am1 oe m oe 1 

2 = h 

and 

- 1 so (since e is an epimorphism) mio(m2am1 ) = ki, for each i E I. 

- 1 
Consequently, m2am1 is the required diagonal morphism. Thus e is 

a swell epimorphism, and the lemma is proved. a 

Theorem 1 .4. 6 

Every category that has (epi, mono-source)-factorizations is an 

(extremal epi, mono-source)-category. 

Proof. See ([AHS], p. 244). 

Theorem 1 .4. 7 

In any category X, the following statements are equivalent: 

(1) X is (epi, mono-source)-factorizable. 

a 
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(2) X is (extremal epi, mono-source)-factorizable. 

(3) (Swell epi, mono-source) is a factorization structure for sources in 

x. 

(4) (Extremal epi, mono-source) is a factorization structure for 

sources in X. 

(5) (f, M) is a factorization structure for sources in X, for some 

class f of morphisms and collection M of mono-sources. 

(1) ==:) (2). Suppose that X is (epi, mono-source)-factorizable. By 

Theorem 1 .4.6, X is an (extremal epi, mono-source)-category, 

hence (extremal epi, mono-source)-factorizable. 

(2) ==:) (3). If X is (extremal epi, mono-source)-factorizable, then, by 

Lemma 1 .4.5, every source in X is (swell epi, mono-source)­

factorizable. 

It must be shown that mono-sources and swell epimorphisms are 

closed under composition with X-isomorphisms as required by 

Definition 1.3.4. Given a mono-source and an 

X-isomorphism h, let r and s be X-morphisms such that 

(ham.Jar = (hom.)os, for each i E I. Then ho(m.or) = ho(m.os), 
I I I I 

for each i E I. Since h is an X-monomorphism, it follows that 

r = s; i.e. (ham.) is a mono-source. That 
I 

h. is an isomorphism) is also a mono-source is equally easy. 
I 

Now Let X __!!__> Y be a swell epimorphism, let Y -1!:.._> Z be 

an X-isomorphism and consider the following commutative squares 

(one for each i E I): 
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e X-------i h 
Y----~z 

k. 
I 

A------------+ B. 
I m. 

I 

where {mi)I is a mono-source. Then there is an X-morphism 

d: Y-> A such that doe = g and m.od = k.oh, 
I I 

i E I. Define Z __!___> A to be the X-morphism k 

Then k satisfies 

and 

ko(hoe) -1 = (doh )ohoe = doe = g 

m.ok 
I 

-1 -1 -1 = m.o(doh ) = (m.od)oh = {k.oh)oh = k., 
I I I I 

for each 

-1 = doh . 

for each i E I. And k is unique such that ko {hoe) = g and 

miok = ki, for each i E I, because {mill is a mono-source. In a 

similar way, we can show that swell epimorphisms are closed 

under composition with X-isomorphisms on the right. 

Now let the following square be commutative with e a swell 

epimorphism and {mill a mono-source: 

• e • 

hi jk; 

• • m. 
I 

By definition, there is a diagonal morphism d which completes 

the above diagram, for each i. If d' also makes this diagram 

commute, then doe = h = d' oe implies that d = d' I since e 
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(being a swell epimorphism) is an epimorphism. Consequently, 

(swell epi, mono-source) is a factorization structure for sources in 

x. 

(3) ::::::} (4). If (swell epi, mono-source) is a factorization structure for 

sources in X, then, in particular, we have an (epi, mono-source)-

factorization for 2-sources, so the swell epimorphisms and the 

extremal epimorphisms coincide by Lemma 1 .4.5. 

(4)::::::} (5). This is obvious. 

(5)::::::} (1). By ([AHS], 1 5.4), f is a class of X-epimorphisms, and so 

(f, M) is an (epi, mono-source)-factorization structure for sources 

in X (also see e.g. [HSV], 1 .2(3) ). 

1.5 OTHER PROPERTIES OF (E, M)­

FACTORIZATION STRUCTURES 

We start with the following: 

Definition 1 . 5. 1 

D 

Assume that X has finite products. Let X E Ob(X). The unique 

X-morphism AX : X --> x2 such that the following diagram 

commutes (?r 1 and 1f 
2 

are the projections x2 -> X) is called the 

diagonal m01phism: 
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We prove that on an (.!;, M)-category X with products of pairs, the 

class .E consists of epimorphisms if and only if, for each X E Ob(X), 

~X E M (Theorem 1.5.7). 

Definitiorl_J_.5.2 ([CA), p. 289) 

Let M be a class of X-morphisms. We define {M) l and (M)l 

follows: 

as 

(a) = { f E Mor(X) I f l g, for each g E M }. 

{b) (M)l = { g E Mor(X) If lg, for each fE M }. 

In view of this definition, we have 

[ Epi(X} ll = { g E Mor(X) I el g, for each e E Epi(X} }. 

Definition 1.5.3 ([CA], p. 292) 

An X-morphism f is called a strong mononw1phism if it is a mono­

morphism and belongs to the class [ Epi(X} ll; that is, f is a strong 

monomorphism provided that f E Mono(X) n [ Epi(X) Jl. This means that 

a monomorphism f is a strong monomorphism if, whenever 

fov = uoe and e E Epi(X}, there is an X-morphism d which makes 

the following diagram commutative: (See (KE], p. 129. ) 
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e • • 

vl 

/ 

1· 
d / 
/ 

/ 11 
,/ 

• f 
) . 

In this case, uniqueness of d fallows from the fact that e E Epi(X). 

Note also that, if triangle (I) commutes in the above diagram with 

e E Epi(X), then ( fod)oe = fo(doe) = fov uoe, so that fod = u. 

Thus triangle (II) commutes as well. Dually, triangle (I) commutes 

whenever (II) does with f a strong monomorphism. 

Definition 1.5.4 ([HS 1], 16.13) 

Let X _J_> A be an X-morphism. The pair (X, f) is called a regular 

subobject of A (and f is then called a regular monom01phism) if (X, f) 

equalizes some pair A _g_> B of X-morphism. 
n> 

Lemma 1.5.5 

(a) Every X-regular monomorphism is a strong monomorphism. 

(b) Every strong monomorphism is an extremal monomorphism; in 

(a) 

particular, a regular monomorphism is an extremal monomorphism. 

Let (X, f) 

morphisms 

be a regular subobject of A E Ob(X). 

t 
A -> B such that (X, f) ~ Equ(t, w). --> w 

Pick X-

To begin 

with, f is an X-monomorphisms ([HS 1 ], 16.15). Let e E Epi(X). 

We need only show that elf; that is, given a commutative 

square 
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K e H 

x --1~---+I A 

there is a unique X-morphism H ---1:___> X which completes the 

above square. Now commutativity of the square yields: 

(tos)oe = to(soe) = to(fok) = (tof )ok = (wof)ok 

= wo(fok) wo(soe) (wos)oe 

and, since e is an epimorphism, tos = wos. Since 

(X, f) ~ Equ(t, w), there exists a unique X-morphism H ---1:___> X 

such that fod = s. That doe = k follows from the commutat­

ivity of triangles (I) and (II) in Definition 1.5.3 above. 

(b) Let f be a strong monomorphism and suppose that f = moe, 

where e is an epimorphism. We need only show that e is an 

isomorphism. Since e is an epimorphism, there exists a unique 

X-morphism h which renders the following diagram commutative, 

since f E [Epi(X)]!: 

• e • 

• --1.,......--tl • 

Thus hoe = id, so e is a section and, being an epimorphism, 

it is an isomorphism (see, for example, [HS 1, 6.15]). Hence f is 

an extremal monomorphism. The second assertion is immediate 

from the first and part (a). D 
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Definition 1.5.6 

Suppose that the category x has products of pairs. If xL> y is 

an X-morphism, we define the graph of f to be the unique X-

morphism <idx, f> : X --> XxY: 

x 

id I 
< idx, !>I f 

1 
x XxY y 

;rx 'Iy 

Let (f, M) be a morphism factorization structure on a category X 

which has products of pairs. Then the following statements are 

equivalent: 

(1) f ~ Epi(X). 

(2) Every X-extremal monomorphism belongs to M. 

(3) Every X-strong monomorphism belongs to M. 

(4) Every X-regular monomorphism belongs to M. 

(5) Every X-section belongs to M. 

(6) If X J_> Z E M and X J_> Y E Mor(X), then 

X _:S!!!:_J> >ZxY E M. 

(7) For each X J_> YE Mor(X), <idx, f> E M. 

(8) If X __!!!__> Z E M, then X <m, m> > z2 E M. 

!J. 
(9) For each XE Ob(X), X ~> x2 E M. 

(10) If gof E M, then f E M. 

(11) If goe E M and e E f, then e E lso(X). 

(12) M = {f E Mor(X) If = goe, e E f implies e E lso(X) }. 
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The implications 

(9) ~ (10) ~ (11) ~ (12) ~ (1) 

follow from [AHS, Proposition 14.11]. 

We shall only establish the chain 

(1) ~ (2) ~ (3) ~ (4) ~ (5) ~ (7) ~ (6) ~ (8) ~ (9). 

The implications (2) ~ (3) ~ (4) follow from Lemma 1.5.5. 

(1) ~ (2). Given an X-extremal monomorphism f, let f = moe be 

its (f, M)-factorization. By ( 1), e E Epi(X), so, since f is extremal, 

e is an isomorphism. But M is closed under composition on 

the right with isomorphisms, so f E M. 

(4) ~ (5). An X-section is a regular monomorphism (see, for example, 

[HS 1L 16.15(1)) and, by (4), it must belong to M. 

(5) ~ (7). Given the projection 
1fx 

XxY --> X, we have 

?rxo <idx,f> = idx, so <idx, f> is an X-section. By (5), the 

morphism <idx, f> belongs to M. 

(7) ~ (6). Let X ___!!!:__> Z E M and let X _1_> YE Mor(X). Suppose 

that (Xx Y, / X' / y) and (Zx Y, Pz' Py) are the products of the 

pairs (X, Y) and (Z, Y), respectively. By commutativity of the 

following diagram 
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x----

:~ 
<m,f> I XxY 

f 

l ~dy~ 
Z t---- Z xY Y 

Pz Py 

we have 

p2 o[ (mxidy)o<idx, f>] = [pzo(mxidy) ]o<idx, f> 

and 

= (moTX)o<idx,f> = mo(Txo<idx,f>) 

= moidx = PzO <m, f> 

= idyopyo < m, f> = Pyo< m, f>. 

But (p2 , Py) is a mono-source, so we must have 

(mxidy)o <idx,f> = <m,f>. 

Since idy E M (Proposition 1 .3.1 (4)), we have mxidy E M 

(Proposition 1 .3.1 (8)), so belongs to M 

{Proposition 1.3.1 (5)), i.e <m, f> EM. 

lQE--=}_181. Clear. 

i8} =::=} Lfil. Since idx E M (Proposition 1.3.1 (4)), we have 

The theorem is now proved. D 
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CHAPTER 2 

GALOIS CORRESPONDENCE, E-SEPARATED 

OBJECTS AND A-EPIMORPHISMS 

In this chapter, we give a Galois Correspondence between the collection 

of all subclasses of X-morphisms, and the collection of all subclasses 

of X-objects (Proposition 2.2.2); we show that the class A-Epi of 

A-epimorphisms are those morphisms that diagonalize over A-regular 

morphisms (Proposition 2.1 .3); A-Epi contains the class Epi(X) of 

X-epimorphisms (Lemma 2.5.2); it is also shown that there is some 

class M' of X-morphisms such that (A-Epi, M') is a factorization 

structure on an M-well-powered (f, M)-category X with f ~ Epi(X) 

(Theorem 2.5.3). 

It is shown that if (f, M) is a factorization structure on a finitely 

complete category X, then .!;-separated objects are precisely those 

X-objects Y for which the diagonal Ay : Y --> v 2 belongs to M 

(Theorem 2.4.1); that for a suitable category X, f-Sep is a (swell 

epi)-reflective subcategory (Proposition 2.5.5) and, further, that f-Sep 

is M-hereditary (Proposition 2. 5. 7) on an (f, M)-category X. 

2.1 DEFINITIONS 

Definition 2.1.1 ([HS
1

], 270) 

Let (A, <) and (8, ~) be quasi-ordered classes and let 

G 
(A, <) <-=-->- (8, ~) 

F 

be order-reversing functions. If, for all a E A and b E 8, a < F(G(a)) 
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and b ~ G(F(b)), then the quadruple ((A, <), (8, ~), G, F) is called a 

Galois correspondence between A and B. 

Definition 2.1 .2 (cf. [PR], p. 1 80; [L02], 1. 7) 

(a) For any category X, we define the relation 

(J c Mor(X) x Ob(X) 

as follows: (e, Y) E (J if, and only if, for each pair f, g of 

X-morphisms with common codomain Y, the relation foe = goe 

implies that f = g. 

(b) Given a class .E of X-morphisms, the class 

.E-Sep = { Y E Ob(X) I (e, Y) E (J, for all e E .E} 

of all X-objects which are (!-related to each f-morphism is 

called the class of .E-separated objects in X. 

(c) Given a class A of X-objects, the class 

A-Epi = { e E Mor(X) I (e, Y) E (J, for all Y E A} 

of all X-morphisms which are (!-related to each A-object is 

called the class of A-epimorphisms in X. 

(d) Let A be a subcategory of a category X. An X-morphism e 

is called an A-regular morphism if there is a pair ( f, g) of 

X-morphisms whose codomain is in A such that e ~ Equ(f, g). 

A-epimorphisms are characterized by the following: 
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Proposition 2.1 .3 ([L03 , 2.1 ]) 

Suppose that a category X has equalizers. Given a subcategory A of 

the category X, a morphism e is an A-epimorphism if and only if 

el m, for all A-regular morphisms m. 

Proof 

Suppose that e is an A-epimorphism, m is an A-regular morphism, 

let mof = goe and let m ~ Equ(h, k), where h and k have a 

common codomain in A: 

• e • 

f g 

• • m 

We have 

(hog)oe ho(goe) = ho(mof) = (hom)of 

= (kom)of = ko(mof) = ko(goe) = (kog)oe. 

But e E A-epi, so hog kog. Since m ~ Equ(h, k), there exists a 

morphism d with mod = g, and then, mof = goe = modoe. But 

m is a monomorphism (see, for example, [HS 1, 16.4]), so f = doe; 

thus both triangles in the following diagram commute: 

• e • 
/ 

/ 
f d/ g 

/ 
/ 

,/ 

• • m 
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Uniqueness of d such that the two triangles commute follows from 

the fact that m is a monomorphism. 

Conversely, suppose that e uniquely diagonalizes over A-regular 

morphisms. Let foe = goe, where f and g have a common 

codomain in A, and let m ~ Equ( f, g). Then m is an A-regular 

morphism, by definition. Since m ~ Equ(f, g), there is a morphism h 

such that moh = e = idoe. By hypothesis e diagonalizes over 

A-regular morphisms, so there exists a unique morphism d such that 

the following diagram commutes: 

• e • 
/ 

/ 
h d / id 

/ 
/ 

,/ 

• • m 

Thus (mod)oe = mo(doe) = moh = idoe = e. Since m is a 

retraction (as mod = id), it is an epimorphism, so, by ([HS
1

J, 16.7), 

we have f = g. Thus, e E A-epi. D 

2.2 A GALOIS CORRESPONDENCE 

Lemma 2.2.1 (See also [L0 2, 2.9]) 

For any f c Mor(X) and A c Ob(X), we have 

(i) f ~ (f-Sep)-Epi. 

(ii) A ~ (A-Epi)-Sep. 
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Proof 

(i) Given a morphism e E f, assume that foe = goe where f and 

g have a common codomain belonging to f-Sep. Then (by 

definition) f = g, so e E (f-Sep)-Epi. 

(ii) If e E A-Epi, suppose that foe = goe with A E A a common 

codomain of f and g. Then f = g, so A E (A-Epi)-Sep. o 

The following proposition describes the Galois (or Hausdorjj) corre­

spolldence between the classes Mor(X) and Ob(Xl of X-morphisms 

and X-objects, respectively. (This correspondence has been called the 

Hausdorff Correspondence by Pumplun and Rohrl ([PR]), and the PumplUn­

Rohrl Galois connection in [CS].) A similar correspondence was also 

found by Dikranjan and Giuli in terms of some subclasses of M 

(defined differently from Definition 1 .1 .2) and some (closure) operators 

on M. (See [DG 2, Theorem 3.4]). And (in 1992) other Galois 

Connections were discovered by Castellini et al. See [CKS]. 

Proposition 2.2.2 

Let 6 be the collection of all subclasses f of X-morphisms and let 

.A be the collection of all subclasses A of X-objects. Suppose these 

collections, 6 and .A, are ordered by inclusion. Define two functions 

G : 6 --> .A and F : .A--> 6 as follows: 

f i----+ f-Sep and Ai----+ A-Epi, 

for each f E 6 and A E .A. Then the quadruple ( 6, .A, G, Fl is a 

Galois correspondence. 

Proof. 

Given f 1 c .I;2 in 6, we find that 
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For, suppose Y E .t;2 -Sep. Then, for each e E .1;2 , (e, Y) E rr. Pick e 

in .t;1 . Then e E .t;2, so (e, Y) E rr, hence Y E .t;1 -Sep. Thus G is 

order-reversing. In a similar way, we can show that F is order-

reversing. 

That E C F(G(E)) for each EE 6 and A C G(F(A)) for each A E .A -- - - - -- - - -

follow from Lemma 2.2.1. Thus ( 6, .A, G, F) is a Galois 

Correspondence as asserted. 

2.3 EXAMPLES OF E-SEPARATED OBJECTS AND 

A-EPIMORPHISMS 

Example 1 

D 

Let X = Top and let f be the class of all dense continuous maps. 

Then f-Sep = Haus. 

Proof. 

To prove that f-Sep = Haus, we make use of a latter result 

(Theorem 2.4.1). From this result and Theorem 13. 7 of [WI], it follows 

that a topological space Y E f-Sep if and only if {(y, y) I y E Y} is 

closed in YxY if and only if YE Ob(Haus). 

Example 2 

Let X = Unit and let f be the class of all dense uniformly 

continuous maps. Then f-Sep is the family of all separated uniform 

spaces. 
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Proof. 

Suppose that (Y, ~) is not a separated uniform space, where ~ is 

a uniformity on Y. Then there exist x, y E Y with x f. y such that 

(x, y) E D, for each D E ~ We put X = { x, y } and give X the 

uniformity ~' which is initial with respect to the inclusion 

X --> (X, ~). Let X _e_> X be the constant map with value y; let 

X _L> Y be the inclusion map and let X _g_> Y be the constant 

function with value y. Then these three functions are uniformly 

continuous. Observe also that the topology 7' corresponding to ~ is 

{X, 0, {y}}. Moreover, e(x) = e(y) = y so that e(X) = WJ = X; 

thus e is a dense uniformly continuous map. We also have foe = goe 

but f f. g, so (Y, ~) ~ f-Sep. 

Conversely, suppose that (Y, ~) is a separated uniform space and let 

f, g : (X, {) --> (Y, ~) be uniformly continuous maps, and let 

e: (W, jf) --> (X, {) be a dense uniformly continuous map so that 

(W, jf) ~> (X, e) _L> (Y, ~) = (W, jf) ~> (X, e) _g_> (Y, ~). 

Now if (Z, re) is any uniform space, let (Z, 7( re)) denote the 

corresponding topological space. By [WI, Theorem 35.6(b)], the space 

(Y, 7(~)) is Hausdorff, and in Top we have the following: 

(W,7(j1")) ~> (X,7(e)) J.> (Y,7{~)) = (W,7(j1")) ~> (X,7({ )) _g_> (Y,7(~)). 

Since e : (W, 7(j1")) --> (X, 7({ )) is a dense continuous map, it 

follows from Example 1 that f = g. Hence, (Y, ~) E f-Sep. o 

Example 3 

Let X = Top and let .E be the family of all front-dense continuous 

maps. Then f-Sep = Ob(Top
0

). 
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Proof. 

Let Y ¢ Top0 . Then there are distinct points y 1 , y 2 E Y such that for 

each open set U it holds that {y 1, y 2 } ~ U or {y1, y2 } n U = 0. 

Put X = {y1, y2} and give it the indiscrete topology. Define a 

function X ____!!__> X to be the constant map with value y2 . Then e 

is continuous; it is also front-dense, since b(e(X)) = b({y1 }) = X. 

Define f: X --> Y to be inclusion, and g : X --> Y to be the 

constant map with value y 2 . Then f and g are continuous. We 

also have foe = goe, but f f g. Thus Y ¢ .E-Sep. 

Conversely, suppose that Y E Ob(Top0 ). In order to prove that 

Y E .E-Sep, we use the characterization given by a later result (Theorem 

2.4.1). According to this theorem, we need to show that b(ll.) = fl., 

where fl. is the set {(y, y) I y E Y}. Since fl. ~ b(ll.), we just need to 

show that b(ll.) ~ fl.. So suppose that (x, y) E b(ll.), but x f y. Then 

there exists an open set U in Y such that x E U, say, but y ¢ U. 

Since (x, y) E b(ll.), it follows that 

(UxX) n {(x, y)} n fl. f 0. 

Hence, there exists w E U such that, for each nhood W of (w, w) 

in YxY, we have (x, y) E W. But UxU is a nhood of (w, w), so (x, 

y) E UxU, which is impossible. Consequently x = y. D 

Example 4 

Let X = Top and let .E be the family of all back-dense continuous 

maps, where a continuous map X _i_> Y between topological spaces 

is back-dense iff, for each y E Y, there is some x E X such that 

{ y, f (x) } is indiscrete. Then .E-Sep = Ob(Top0l. 
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Suppose Y ¢ Ob(Top
0

). Then there exist y 1 , y 2 E Y with y 1 j y 2 

such that for every open set U it holds that { y 1 , y 2 } c U or 

{y1, y2 } n U = 0. Let X = { y 1, y2 } have the indiscrete topology, 

let X _j_> Y be the inclusion map, and let X _g_> Y be the 

constant map with value y 1 . Then both j and g are continuous. 

Let X _e_> X be the constant map with value y 1. Then e is 

continuous and back-dense, and Joe = goe. Since j j g, it follows 

that Y ¢ .!;-Sep. 

Conversely, suppose YE Ob(Top0), A _e_> BE .E and let f, g: B -> Y, 

be continuous functions such that foe = goe. If f j g, then there 

exists b E B such that f (b) j g(b). Since Y is a T 0-space, there is 

some open set U in Y with, say,/(b)EU but g(b)¢U; so bE/- 1(U). 

Since e is back-dense, there exists a E A such that the set { b, e(a) } 

is indiscrete. We note that to say that { b, e(a) } is indiscrete is the 

same as saying that every open set in B which contains one of the 

points b or e(a), must contain the other point as well. Since each of 

f and g is continuous, each of the sets f-1 (U) and g- 1 (U) is 

open. Since { b, e(a)} is indiscrete and since b Ef-1 (U), we must 

have e(a) E f- 1 (U). But then f (e(a)) E U; and so (by hypothesis) 

g(e(a)) E U - which means that e(a) E g- 1 (U). But since { b, e(a)} is 

indiscrete and i 1 (U) is open, we also have b E i 1 (U), i.e. g(b) E U, 

which contradicts our choice of U. Hence f = g; that is 

(Y, r) E .!;-Sep. a 

Example 5: 

Let X = Top and let .E be the family of all c-dense continuous 

functions, where a function X _l_> Y is said to be c-dense if for each 
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y E Y, there exists an x E X such that f (x) E { y }. Then 

.!;-Sep = Ob(Top1 ). 

Suppose Y ¢ Ob(Top1). Then there are y 1 , y 2 E Y with y 1 * y 2 such 

that for each nhood U of y 2 , say, it holds that { y 1, y 2 } ~ U. Put 

X = { y 1 , y 2 } and assume X has the subspace topology. Now 

W1J = { y 1, y 2 }, otherwise W1J = {y1 }, and then {y2} is open in X. 

Hence {y2} = X n K, for some open set K containing y2 , which 

contradicts the fact that { y
1

, y
2

} ~ K. Define X _e_> X to be the 

constant function with value y 2 , define X _J_> Y to be the inclusion 

of X into Y and define X _g_> Y to be the constant function with 

value Y2· We find that these functions are continuous. And e is 

c-dense: For y 1 EX, we have e(y2) = Y2 E W1J. and for y2, we 

find that e(y2) = Y2 E W2J' as indicated above. Then foe = goe but 

f * g, so Y ¢.!;-Sep. Hence .!;-Sep ~ Ob(Top1). 

__[__ 
Conversely, suppose that YE Ob(Top

1
) and let A _e_> X -~ Y be 

g 

continuous functions such that foe = goe, where e is a c-dense 

function. It must be shown that f = g. If not, there is an x E X 

such that f (x) * g(x). Since Y is a T 1-space, each of { f (x) } and 

{ g(x) } is closed. Since e is c-dense, there exists a E A such that 

e(a) E '{XJ, so by continuity of f, we must have that 

foe( a) E f'{XJ ~ lf (x)} = {f (x)}; 

that is, foe( a) = f (x). In a similar way, we can show that 

goe(a) = g(x). But foe(a) = goe(a), so f (x) = g(x) - a contradiction. 

Thus f = g and so Y E .!;-Sep. D 
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Example 6 

Let X = Top and let .E be the family of all d-dense continuous 

functions, where a function X _i_> Y between topological spaces is 

said to be d-dense, if, for each y E Y, there is some x E X such that 

y E { f (xl}. Then f-Sep = Ob(Top1). 

We proceed as in Example 5, except that we define e : X --> X 

and g : X --> Y to be the constant functions with value y 1 . Then 

the functions e, f and g are continuous. The function e is d-dense: 

Given y 1 E X, we have y 1 E {e(y 2)} = TY,J and for y 2 E X, we have 

y 2 E {e(y 1 l} = TY,l· Therefore foe = goe but f -:/= g. Hence Y ¢ f-Sep. 

Conversely, suppose that Y E Ob(Top1) and assume that foe = goe 

as in Example 5, where e is d-dense. If f -:/= g, then there is some 

x E X with f (x) -:/= g(x). Since e is d-dense, there is some a E A 

such that x E {e(al}. By continuity of f and since Y is a 

T 1-space, we have 

f(x) Ef{e(al} ~ lf (e(a)l} = {f(e(a))}, 

hence f (x) = f (e(a)). And similarly, we have g(x) = g(e(a)), so that 

f (e(a)) -:/= g(e(a)), a contradiction. Hence f = g as desired. D 

Example 7 

Let X = Pos, and let .E be the class of all lower-dense order-preserving 

maps. (A function X _i_> Y between partially ordered sets is lower­

dense iff for each y E Y, there is an x EX such that f (x) ~ y.) Then 

.E-Sep is the class of all partially-ordered sets whose order is equality. 
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Proof 

Suppose that Y E Pos, where the partial order < y is not equality. Then 

there exist Y1 f Y2 in y such that Y1 <y Y2· We consider the 

partially ordered set x = { y 1 I y 2} with the induced order <x· 
Define {y

1
} _e_> x to be the inclusion function, let xL> v be 

the constant function with value y1 and let X _g_> Y be the 

inclusion of X into Y. Then e is lower-dense and order-preserving, f 

and g are order-preserving and foe = goe. But f :f g, so 

Y ~.!;-Sep. 

Conversely, suppose that (A, ~A), (X, ~X), (Y, ~yl E Ob(Pos), where 

the partial order 

A-e-> x_L> Y 
-> g 

~y is equality. Assume that foe = goe, where 

and f and g are order-preserving maps with e E f. 

It is asserted that f = g. For, suppose x E X. Since e is 

lower-dense, there exists a E A such that e(a) :$X x, i.e. e(a) = x, 

since the order is assumed to be equality. Hence 

f (x) = f (e(a)) = g(e(a)) = g(x). Thus f = g, 

so YE .!;-Sep. D 

Example 8 

Let X = Top and suppose that A consists of only the two-point 

discrete space A = {O, 1 }. Then A-Epi is the family of all q-dense 

continuous functions. (A function f : X --> Y between topological 

spaces is said to be q-dense if each clopen neighborhood of each y E Y 

meets f [X].) 

Proof 

Suppose that X _e_ > Y is not q-dense. Then there is some y E Y 

such that e[X] n U = 0, for some clopen nhood U of y, and so 
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y ¢ e[X]; thus e(r) = y, for no r E X. Define f: Y -> { 0, 1 } 

to be the constant function with value 1 and define Y _g_> { 1, 0 } 

as follows: 

g(r) = {o ~f r E U; 
1 If r ¢ U. 

Since A has the discrete topology, the sets 0, A, {O} and {1} are the 

open sets in A. Since their inverse images g- 1 (0) = 0, g- 1 (A) = Y, 

i 1 ({0}) = U and g- 1 ({1 }) = Y - U are open in Y, it follows that g 

is continuous. The constant function f is (trivially) continuous. Then 

foe = goe but f f. g. Hence e ¢ A-Epi. 

Conversely, suppose the continuous functions 
_j_> 

X _!!____> Y -> {O, 1} 
g 

satisfy foe = goe, where X and Y are topological spaces and e is 

q-dense. If f f. g, there is y E Y with f (y) f. g(y). We 

assume, without loss of generality, that f (y) = 0 and g(y) = 1. 

Since {O, 1} has the discrete topology, each of the subsets {O} and 

{1} is clopen, and therefore y belongs to the clopen nhood 

f-1({0}) ng-1({1}). Since e is q-dense, it follows that 

Choose p E e[X] n f -1 ({0}) n i 1 ({1 }), and find x E X such that 

e(x) = p. Then 

0 = f (p) = foe(x) = goe(x) = g(p) = 1, 

which is impossible. Therefore, f = g. D 

Example 9 

Let X = Top and suppose that the two-point indiscrete space 

A = {O, 1} belongs to A. Then A-Epi is the family of all surjective 

continuous maps. 
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Proof 

If a continuous function X ___.!!..__> Y is not swjective, there exists some 

y E Y such that e(x) f y, for all x EX. Define 

follows: 

f(t) = g(t) = 1, whenever t f y; 

f(y) = 0; 

g(y) 1 . 

_J_> 
Y_> A 

g 
as 

Then f and g are continuous, and for each x E X, we have 

e(x) f y, so f (e(x)) = g(e(x)) = 1. Hence foe = goe, but f f g. 

The converse follows from the fact that in Top, the surjective 

continuous maps are precisely the epimorphisms (see, for example, 

[HS1, 6.10(2)]). D 

Example 10 

In Example 1, we showed that if X = Top and e is a dense 

continuous map, then e E Haus-Epi. Now, we shall show that not 

every map in Haus-Epi is a dense continuous map. 

Consider, for instance, the Sierpinski space X = { 0, 1 } with the 

topology { 0, X, { 0} }. Given any YE Ob(Haus), then any continuous 

function X _i_> Y is constant. (Otherwise, Y would no longer be T 2 .) 

The inclusion { 1 } _)__> X is not dense since j({ 1 }) = { 1 } . But 

j E Haus-Epi, since if foj = goj, then f = g. D 

Example 11 

Let X = Top and let f be the family of all c-dense (or d-dense) 

continuous maps. 
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By Examples (5) and (6), we know that f-Sep = Ob(Top1) and, 

consequently, (f-Sep)-Epi = (Top1 )-Epi. By Lemma 2.2.1, we have 

.E ~ (f-Sep)-Epi, for each class f of X-objects. Hence, if e is a 

c-dense (or d-dense) continuous map, then e E Top1 -Epi. D 

2.4 HAUSDORFF CHARACTERIZATION THEOREM 

It is a well-known fact that Hausdorff spaces are precisely those 

2 
topological spaces X for which the diagonal Ax : X --> X is 

closed. In this theorem, we prove that an X-object Y is ];-separated if 

and only if the diagonal Ay : Y -> v 2 belongs to M, for an (f, 

M)-factorization structure on a finitely complete category X. 

Theorem 2.4.1 (cf. [PR, A.2]; [MA, 4.5]) 

Let (f, M) be a factorization structure on a finitely complete category 

X. Then for any X-object Y, the following are equivalent: 

(1) YE f-Sep. 

(2) For each X _J_> Y, the graph of f is in M. 

(3) For each X _J_> Y and X ___!!!___> Z E M, it holds that <m,f> EM. 

(4) For each X ___!!!__> Y E M, it holds that <m, m> E M. 

(5) Ay : Y -> Y2 
E M. 

(6) If r, s : X -> Y, then Equ(r, s) E M. 

(1) ===) (2). Let soe = < idx, f> or, with e E f: 
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e A--------! 

r 

B 

s 

By Lemma 2.2.1 (i), f ~ (f-Sep)-Epi, so e E (f-Sep)-Epi. By Pro-

position 2.1 .3, e diagonalizes over (f-Sep)-regular morphisms, so 

it is enough to show that < idx, f> is (f-Sep)-regular. We have 

where 7f 1 and 7f 2 are the projections XxY --> X and 

XxY --> Y, respectively. Given a morphism K __!!___> XxY with 

7f 2oh = ( fo7r 
1 

)oh, define a morphism K ____£_> X by k = 7f 1 oh. 

Then 

and 

7r 1o<idx,f>ok = idxo1[1oh = 7f 1 oh, 

so, since (7r 1, 7f 2i is a mono-source, we have < idx, f> ok = h. 

If r also satisfied < idx, f> or = h, then < idx, f> or = < idx, f> ok. 

Since < idx, f> is a section (since 7f 1 o < idx, f> = idxl, it is a 

monomorphism, hence r = k. Since we proved that k is 

unique such that the triangle 
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K 

k h 

x 

commutes, it follows that (X, < idx, f>} ';:;! Equ(;r 2 , fo;r 1), so 

el < idx, f>. By Proposition 1.3.1 (3), we have < idx, f> E M. 

{2} =} (3). Given a morphism X J_> Y, let X ___!!!__> Z E M and let 

o-X and o-y be the projections XxY --> X and XxY --> Y, 

respectively. Then 

= moidx = m, 

where 1rz and 1ry are the projections ZxY -> Z and ZxY -> Y, 

respectively. Then the following diagram commutes: 

z 

<m,f> f 

---------1 y 
'lfy 

In particular, uniqueness of <m, f> such that 1rzo<m,f> = m 

and 7ryo<m,f> = f, ensures that <m, f> = (mxidy)o<idx, f>. 

By hypothesis, we have m E M, so mxidy E M (Proposition 

1.3.1 (4), (8)). We also have <idx, f> EM, so the composition 

<m,f> = (mxidy}o<idx,f> belongs to M (Proposition 1.3.1(5)). 
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(3) ~ (4). With Z = Y and f = m in (3), we obtain <m, m> E M. 

(4) ~ (5). With X = Y and m = idy, it will follow from (4) that 

<idy, idy> = /J.y E M. 

(5) ~ (1). Suppose that X _e_> Z E .E and 
_r_> 

Z -> Y are such that 
s 

roe = soe. Then 

= <roe, soe > = < r, s > oe, 

and so the following diagram commutes: 

x e z 

roe <r, s> 

y 

Put p = roe = soe. By (5), /J.y E M, so by the unique 

diagonalization property there exists a unique X-morphism 

Z ___!!:___ > Y such that doe = p and /J.yod = < r, s >. Since 

(where p 1, p 2 are the usual projections v2 --> Y ), we must 

have r = s, hence Y E f-Sep. 

r 
(1) ~ (6). Given a pair X =~ Y of X-morphisms, let (C, c) ~ Equ(r, s). 

s 
By Lemma 2.2.1 (i), we have .E c (f-Sep)-Epi. Since Y E .E-Sep, 

it follows that (C, c) is (f-Sep)-regular. By Proposition 2.1 .3, the 
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equalizer (C, c) diagonalizes under all morphisms in f, hence 

(C, c) E M. 

(6) ~ (1). Suppose that foe = goe, where e E .E and Y is the 

codomain of both f and g. Let m ~ Equ( /, g) - so that m 

diagonalizes under f; in particular, m diagonalizes under the 

element e of f. By an argument similar to the second part of 

the proof of Proposition 2. 1 . 3, it can be shown that m is an 

isomorphism, so f = g. Hence YE .E-Sep. D 

2.5 PROPERTIES OF E-SEPARATED OBJECTS AND 

A-EPIMORPHISMS 

Proposition 2.5.1 (cf. [PR], Lemma A.2) 

Let .E be a class of X-morphisms. Then, for each family A of 

X-objects; 

(1) A-Epi satisfies conditions (a) through (e) of Bousfield's 

Characterization Theorem (Theorem 1 .4.1). 

(2) .E-Sep is closed under the formation of all mono-sources, and 

thus under the formation of all limits. 

Proof. 

(1 )(a) Let f E lso(X) and let Y E A be the codomain of a pair of 

X-morphisms h and g such that hof = gof. Since f is an 

epimorphism, we have h = g, hence ( f, Y) E rr Thus 

lso(X) ~ A-Epi. 
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(b) Let f: A-> B and g : B -> C be A-epimorphisms. We 

(c) 

(d) 

want to show that gof is an A-epimorphism. Suppose a pair of 

r 
C -> D with DE A satisfies ro(gof) = qo(gof ). -> X-morphisms 

q 

Then (rog)of = (qog)of, so (since f E A-Epi) rog = qog. But 

again g E A-Epi implies that r = q, hence gof E A-Epi. 

Given e = foe with e, e E A-Epi, let g, h be X-morphisms 

with gof = hof. Then 

goe = go(foe) = (gof)oe 

= (hof )oe = ho(foe) = hoe, 

and, since e E A-Epi, we must have g = h. Therefore, f E A-Epi. 

Let 

A .f I B 

h) )e 

c 
g 

D 

be a pushout diagram with h E A-Epi. It must be shown that 

r 
e E A-Epi. Let o-> x be two X-morphisms such that 

-> s 
roe = soe and X E A. Put roe = soe = d. Then 



(e) 

80 

(rog)oh = ro(goh) 

= ro (eof) 

= (roe) of 

= (soe)of 

= so(eoj) 

= so(goh) 

= (sog)oh, 

so rog = sag, since h E A-Epi. We also have (rog)oh - (roe)of. 

But the given square is a pushout, so there exists a unique 

X-morphism D _if_> X such that the two triangles in the 

diagram 

A 

d 

C -- g 1 D d' 

~~~x 
commute. But r and s are also two such morphisms, so 

r = d' = s, hence e E A-Epi. 

_F_> 
Given functors Y -a-> X, let (kA, K) and (kA, Kl be colimits 

of G and F, respectively, and let (0 : G ---> F be a natural 

transformation. We must show that if each e A : GA --> FA 

belongs to A-Epi, then so does the unique X-morphism e 

which makes the following diagram commutative: 
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K e K 

Let L E A and 
_J_> 

let K -> L be X-morphisms such that 
g 

foe = goe. Then, for each A E Ob(Y), it holds that 

= (goe)okA 

= go(eokA) 

= go(kA oeAl 

= (gokAJoeA. 

But each eA E A-Epi, so fokA = gokA. Put fokA = rA = gokA. 

Since (kA, K) is a colimit of F, there is a unique morphism 

K ....!!____ > L with hok A = r A. But each of f and g is also 

such an h, hence f = g. 

(2) Suppose that (~ : X --> Xi)I is a mono-source, where each Xi 

belongs to f-Sep. Suppose e E .E satisfies roe = soe, where r 

and s have a common codomain x. Then f;oroe = f;osoe, 
I I 

and so f;or = f;os, for each i E I (since each (e, X
1
.) E o-). But 

I I 

(~) 1 is a mono-source, so r = s, hence X E .E-Sep. 

Finally, limits are mono-sources (see, for example, [HS 1, 20.4]), 

so .E-Sep must be closed under the formation of limits. o 



82 

Lemma 2.5.2 (cf. [PR, Lemma A. 2]) 

Epi(X) ~ A-Epi, for any category X and A c Ob(X). 

Proof. This is obvious. D 

Proposition 2.5.3 

If (f, M) is a factorization structure in an M-well-powered cocomplete 

category X and f ~ Epi(X), then, for each family A of X-objects, 

there exists a family M' of X-morphisms such that (A-Epi, M') is a 

factorization structure on X. 

Proof. 

In view of Theorem 1.4.1 and Theorem 2.5.1 (1 ), we need only 

show that A-Epi satisfies the Solution Set Condition. Since (f, M) is a 

factorization structure on X and f ~ Epi(X), and since Epi(X) ~ A-Epi 

(Lemma 2.5 .2), it follows that an (f, M)-factorization of an X-morphism 

is also its (A-Epi, M)-factorization. So, given a morphism f: C --> D, 

we consider all factorizations 

e. m. 
= C - 1-> Y. - 1-> D 

I 

of f, where each mi belongs to the representative set of M-subobjects 

of D and ei E A-Epi, for each i E I. We assert that this is a Solution 

Set for f. For, suppose f = noe is a factorization of f with e E 

A-Epi, and let n = moe be an (f, M)-factorization of n. Since f ~ 

Epi(X) and Epi(X) ~ A-Epi (Lemma 2.5.2), we have eoe E A-Epi, by 

Proposition 2. 5. 1 ( 1). Therefore, f = mo (eoe) is isomorphic to one of 

the factorizations of f, and so A-Epi satisfies Bousfield's 

Characterization Theorem 1 .4.1. Thus there is a class M' of X-

morphisms such that (A-Epi, M') is a factorization structure on X. o 
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Remark: In [L0 3, Theorem 2.3], it was shown that if x has 

intersections and equalizers, then, for any subcategory A of x, 

(A-Epi, MA) is a morphism factorization structure on x, and MA 

consists of extremal monomorphisms. Here 

See [L03 , 2.2]. 

Definition 2.5.4 

If X is a category and A is a class of X-objects, then, given an 

X E Ob(X), the source of all X-morphisms from X to A-objects is 

called the total source from X to A. 

Proposition 2.5.5 

If each source in X has an (epi, mono-source)-factorization, then, for 

each family .E of X-morphisms, .E-Sep is a (swell epi}-reflective 

subcategory. 

Proof. 

By Theorem 1.4.7, (swell epi, mono-source) is a factorization structure 

f; 
for sources in X. Given x E Ob(X), let (/; : x - 1 > X.)I be the total 

I I 

source from X to .E-Sep, and consider its (swell epi, mono-source)-

factorization: 

/; 
X-1 -> X. 

I 

m. 
X _e_> A - 1-> X .. 

I 

By Proposition 2.5.1 (2), A E .E-Sep. For each i E I, it must be shown 

that m
1
• is unique such that f; = m.oe. So, suppose n. is also such 

I I I 

that each f; = n.oe. Then n.oe = m.oe. Since a swell epimorphism is 
I I I I 

an epimorphism (by Lemma 1 .4.5), we have mi = ni. Thus e is a 
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(swell epi)-reflection morphism corresponding to X, so _!;-Sep is a 

(swell epi)-reflective subcategory. D 

The following definition has been slightly altered to suit the proposition 

that follows: 

Definition 2.5.6 (See, for example, [L02, Definition 1 .9].) 

Let A be a subclass (not necessarily a subcategory) of objects in X, 

and let M be a class of morphisms in X. The class A is said to be 

M-hereditary in X if, for each X-morphism 

A E A, we have that X E A. 

X __!!!___> A E M with 

Proposition 2.5.7 (See also [L0 2, Lemma 2.4].) 

If (f, M) is a factorization structure on X, then _!;-Sep is 

M-h ered itary. 

We want to show that 

XE _!;-Sep. Hence suppose 

if X __!!!___> B E M and B E _!;-Sep, then 

_f_ 
Y -~ X and e: A--> YE f are such 

g 

that foe = goe. Then (mo/ )oe = (mog)oe. Since (e, 8) E (J, it follows 

that mof = mog. Put mog = s and foe = r. Then the following 

diagram commutes: 

A e y 

'1 ls 
x m B 

Since eEf and m EM, the unique (f, M)-diagonalization property 

implies that there exists a unique diagonal X-morphism d: Y-> X 
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such that mod = s and doe = r. But f and g also satisfy 

foe = goe = r, and mof = mog = s, so uniqueness implies that 

f = d = g, hence X E f-Sep. o 

REMARK 

The subcategory f-Sep is also mono-hereditary. (See [L0 2, 2. 5]) 

Corollary 2.5.8 (See [L02, Lemma 2.8]) 

The factorization structure (f, M) on X induces a factorization 

structure (f', M') on f-Sep (when f-Sep is considered a full 

subcategory of X). 

Proof 

Let f: X --> Y be a morphism in f-Sep. (Thus X, Y belong to 

Ob(f-Sep).) Let 

x .f > y = X-e-> z_m __ > y 

be its (f, M)-factorization in X. Since f-Sep is M-hereditary, 

Z E f-Sep. We then put 

f' = { e : X -> Z I X, Z E f-Sep, e E f} 

and 

M' = { m : Z -> Y I Y E f-Sep, m E M }. o 

Proposition 2.5.9 

Let A be a family of X-objects, let .6 its Pumplun-Rohrl closure; 

that is, .6 = (A-Epi)-Sep, let C be such that A ~ C ~ .6 and let D 

be any reflective subcategory of X with A ~ D ~ _6. Then, for any 

X _e_> Y in X, the following statements are equivalent: 
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(1) e E A-Epi. 

(2) e E C-Epi. 

(3) 
r 

If X _x_> x
0 

and 
r 

y _y_> YD are D-reflections and 

eD . x0 --> Y 0 1s the unique morphism such that the diagram 

x e y 

commutes, then eD is an epimorphism in D. 

(4) If the square 

x e y 

el 1· 
y 

b iW 

is a push-out and 
r 

w _Y:!_> w 
D is the D-reflection map for W, 

then r oa w = r ob. 
w 

(1) ==) (2). Suppose that e E A-Epi. Let foe = goe, where Z E C is 

the common codomain of both f and g. We assert that f = g. 

For, since C c (A-Epi)-Sep, it is implied by Z E C that 

Z E {A-Epi)-Sep. Since e E A-Epi, we must have (e, Z) E fl, so 

that f = g. Hence e E C-Epi. 
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(2} ~ (3}. Let foeD for pair 
_J_> 

in Mor(D). = goe
0

, some YD-> C 
g 

By hypothesis, A~ C, so (by Proposition 2.2.2) C-Epi ( A-Epi. 

Since e E C-Epi, it follows that e E A-Epi. With C E Ob(D), we 

have C E (A-Epi)-Sep (since D ~ _6), so (e, C) E fl. But then 

implies that for y = gory· Put for y = p = gory· 

r 
Since Y _y_> Y 0 is a D-reflection for Y, there exists a 

unique morphism Y 0 __!!_> C such that hor y = p. But each of 

f and g is such a morphism, so f = h = g, hence e0 is an 

epimorphism in D. 

(3) ~ (4). Let the square 

x e y 

y -~b _ __,, w 

r 
be a pushout square with W ____::!:!.__> W 0 the D-reflection map for 

W. Let r and r be the D-reflection morphisms for X and Y, x y 

respectively. Then the morphisms e0 , a0 and b0 are the 

unique morphisms such that each of the outside squares in the 

following diagram commutes: 
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XO 
eO 

Yo 

~x e A 
x y 

eO le l a 
aO 

b y w 

/Y r~ 
YO bo 

J WO 

Put aoe t boe. We have 

(b0 oe0 )or x b0 o(oe0 orx) = b0 o(r y°e) = (b0 or y)oe = (r ob)oe 
w 

= r o(boe) = r ot w w 

and in a similar way, we find that (a0 oe0 )or x = r of. Since w 

r x and r w are the D-reflection morphisms for X and W 

k respectively, there is a unique morphism x0 -> W 0 such that 

the following rectangle commutes: 

x t w -----1 

'x l l'w 
XD k 

-; WO 

Since each of the morphisms b0 oe0 and a0 oe0 also makes 

the same rectangle commutative, it follows by uniqueness of k 

that b0 oe0 = k = a0 oe0 , thus b0 = a0 (since e0 is an 

epimorphism). We have 

r oboe = r oaoe w w 

so there exists a unique morphism W L> W 0 such that 

b0 or y = fob and a0 or y = Joa. 
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y b w a y 

!! 
ho 

I WO f-----

aO 
0 

But r w also satisfies 

b0 or y = r wob and a0 or y = r woa, hence f = r w· 

Thus rwob = r oa, w as desired. 

(4} =::1lll. Suppose we have the pushout square 

x e y 

y b-----1 w 

of the diagram 
X-e-> y 

el 
Assume that foe = goe, 

y 

where 

f, g : Y --> A with A E A. By definition of a pushout, there is 

a unique morphism W __!_> A such that the triangles in the 

following diagram commute: 

x e y 

( *) 

r 
Since W ~> w0 is a D-reflection morphism for W, there is 
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a unique morphism W k > A such that kor D w k. By (4), 

we have r oa = r ob, so by the commutativity of (*) we w w 

have that 

f = koa = (kor )oa = ko(r oa) w w ko(r ob) = (kor )ob = kob = g. w w 

Hence e E A-Epi. D 
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CHAPTER 3 

STRONG LIMIT OPERATORS 

In this chapter, X is assumed to be an hereditary construct, that is, a 

concrete category U : X ---> Set together with the property that 

the inclusion of each subset Y into the underlying set U(X) of any 

X-object X has a unique initial lift (defined below). Such initial lifts 

will be called embeddings, and if Z --> X is an embedding, then Z 

will be called a subobject of X. 

In this chapter, we show, amongst others, that (surjection, embedding) 

is a factorization structure on X (Lemma 3.1.4); that a strong limit 

operator is both a prelimit operator (Remark 3.1 .3(1 )) and a closure 

operator (Propositions 3.2.1 and 3.2.2). We also show that there is a 

one-to-one correspondence between the class of all strong limit 

operators and the class of all factorization structures (f, M), where 

M is contained in the class of all X-embeddings (Theorem 3. 2.11). 

Specifically, that function which assigns to each factorization structure 

the strong limit operator 'f/ (Theorem 3.2.10), and that which assigns 

to each strong limit operator l (Theorem 3.2.8), the (l-dense, 

l-closed)-factorization structure are inverses of each other. 

3. 1 DEFINITIONS 

Definition 3.1.1 ([AHS, 10.57]) 

Let X F > A be a functor. 

f; 
(a) A I in x is called initial provided that for source (X--> Xi)I 

g. 
each source (Y I 

> Xi)I in x and each A-morphism 
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F(Y) J__> F(X) with F{ f:)of = F{g.), 
I I 

for each i E I, there exists 

a unique X-morphism Y __ L> X such that F{ J) = f and f;o] = g., 
I I 

for each i E I: 

F{Y) 

F(]) = !) F(gi) 

F(X) 
F( ji) 

• F(X.) 
I 

A source in X lifts a source 

A provided that there is an A-isomorphism 

that F(/i)oh = gi, for each i EI: 

y 

hi 
I 
l 

g. 
I 

F{X) -F(j~ F(Xi) 
I 

g. 
{Y-

1-> F{Xi))I in 

Y _!J,_> F{X) such 

A concrete category X can be regarded simply as a category where 

the objects are just sets with structure, the morphisms f: X --> Y 

are simply ordinary maps f: UX --> UY between the underlying sets 

which are somehow structure-compatible; and composition of 

morphisms is sirnply ordinary composition of maps. Further, no 

notational distinction will be made between an X-morphism and its 

underlying map. No confusion should result. 

Hence a source in a concrete category X is initial 

provided that if YE Ob(X), and g: U(Y) --> U{X) is a map such that 

fiog : Y ---> Xi is an X-morphism for each i E I, then g : Y --> X 

is an X-morphism. Thus an hereditary construct X is characterized by 
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the following property: If XE Ob(X), and Y is a subset of U(X), then 

there is a unique X-structure on Y (denote the corresponding X-object 

by Y, say) such that the inclusion map Y -> U(X) is an initial 

X-morphism Y --> X. (This X-structure on Y is called an initial 

structure.) 

Definition 3.1 .2 

By a strong limit operator on X we mean a family l = (lX)X E Ob(X)' 

where for any object X E Ob(X), lx assigns to each embedding Y ~ X 

an embedding lx(Y) ~ X such that the following conditions are satisfied: 

(1) Y ~ lx(Y). 

(2) If z ~ lx(Y) = w, then lx(Z) ~ lw(Z). 

(3) For each X-morphism XL> Y and Z ~ X, we have 

f (lx(Z)) ~ ly(f (Z)). (Note: If Y, XE Ob(X), the notation Y ~ X 

means that U(Y) c U(X), and the inclusion map U(Y) -> U(X) 

is an embedding Y -> X in X. The use of notation such as 

f (Z) should be clear. This notation just means the set f (Z) 

endowed with the X-structure to give the X-embedding f (Z) ~ Y. 

Such (ab)uses of notation will be made frequently, but where 

they do occur, their meanings should be evident.) 

Remarks 3.1 .3 (See [HE 1, Method 3]) 

(1) A strong limit operator is a prelimit operator; that is, if X _l_> Y 

-1 -1 and A c Y is such that ly(A) = A, then lx(f (A)) = f (A). 

For, 1-1 (A) ~1- 1 (A)===> lx(f- 1 (A) ~1- 1 (A) and 1-1 (A) ~ lx(f-1 (A)) 

by Definition 3.1.2(1). Hence f- 1(A) = lx(f-1(A)). (See (4) 

below.) 
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(2) It is immediate from Definition 3.1 .2(1) that lx(X) = X. 

(3) If X J_> Y is an X-morphism, then the inclusion map 

(Uf )(UX) -> UY is an embedding f (X) --> Y. By initiality, it 

follows that X --> f (X) is an X-morphism. It follows from 

condition (3) that if Z ~ X, then f (lx(Z)) ~ y (X) ( f(Z)). 

(4) If A and B are subobjects of X E Ob(X), and A ~ B and B ~ A, 

then A = B: From A~ B and B ~ A one deduces that U(A) ~ U(B) 

and U(B) c U(A), so U(A) = U(B). Hence the initial inclusion 

A --> B actually has as underlying map, the identity idU(A). 

Since the identity X-morphism id8 : B --> B is initial, and initial 

structures are assumed to be unique, it follows that A = 8. 

Lemma 3.1.4 

(Surjection, embedding) is factorization structure on X. 

Proof 

Given an X-morphism then at Set-level, f has a 

(surjection, injection)-factorization, say: 

UX _1JL_> UY = UX _1JL_> (Uf )(UX) __!!!___> UY, 

where m is the inclusion of (Uf )(UX) into UY. Give (Uj)(UX) the 

X-structure (denoting the corresponding object by f [X]) so that 

f [X] --> Y becomes an embedding in X. By initiality of this 

embedding, it follows that X --> f [X] is an X-morphism. It follows 

that the X-morphism f : X --> Y has the following (surjection, 

em beddi ng)-f actorization: 

XJ_> Y = X-> f[X]-> Y. 
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(Hereafter, we shall denote by f [X] the middle object of the 

(surjection, embedding)-factorization of an X-morphism X _J__> Y .) 

Now consider a commutative square in X 

• .t I e 

hl lk 

• • m 

where f is surjective and m is an embedding. In Set, injective maps 

are monomorphisms and surjections are epimorphisms. Since Set is an 

(epi, mono)-category, there is a diagonal morphism d such that the 

following diagram commutes in Set: 

• U(.[) 
I e 

Ulhll 
,/ 

/d/ / / lUlkl 

• U(m) • 

By initiality of m, there exists an X-morphism d such that U(d) = d 

and mod = k. We need to show that dof = h. But doU(f) = U(h) 

yields U(d)oU( f) = U(h) or U(dof) = U(h), hence dof = h by 

faithfulness of U. And if w also satisfies wot = h and mow = k, 

then wof = dof, and Since f is surjective, W = d. D 

3.2 PROPERTIES OF STRONG LIMIT OPERATORS 

In the following proposition we show that a strong limit operator is 

idempotent and monotone (order-presrving). 
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Proposition 3.2.1 

For every strong limit operator l, 

(1 l ZxUx(Yll = lx(Y). 

(2) If v ~ z ~ x, then lx(Y) c lx(Z). 

(1) We have lx(Y) ~ lx(Y), so from condition (2) of Definition 

3.1 .2, it follows that lx(lx(Y)) ~ lz (Y)(lX(Y)) = lx(Y). Also, 
x 

from condition (1) of that definition it follows that 

(2) Let y ~ z ~ x be given. Then, y ~ lx(Y) and Z ~ lx(Z), so 

we have y c lx(Z). Put lx(Z) = T. By condition (2) of 

Definition 3.1 .2, we have lx(Y) c lT(Y). We need only show 

that lT(Y) c T. We find that lT takes y c lx(Z) = T to 

lT(Y) ~ T = lx(Z). The proof is complete. D 

We shall need the following observation: Given embeddings Z ~ X and 

W ~ X, we can obtain the embedding Z U W ~ X, where the domain 

Z U W has underlying set U(Z) u U(W). 

Proposition 3.2.2 (See e.g [DG
2

, 1 .2]) 

If l = (lxlx E Ob(X) is a strong limit operator, the following 

statements hold, where Y 1 and Y 2 are subobjects of X. 

( 1 ) y 1 ~ lx (Y 1 ) . 

(2) lx(Y 1 l u lx(Y 2J ~ lx(Y 1 u v 2J. 

(3) lx[ lx(Y 1lulx(Y2J 1 = lx(Y 1 u v 2 J. 
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Proof 

(1) Follows from Definition 3.1 .2(1 ). 

(2) We have that U(Y 1) ~ U(Y 1 U Y 2) = (UY 1) U (UY 2). Since 

Y 1 ~ X is an X-morphism and Y 1 U Y 2 ~ X is initial, it follows 

that the inclusion map U(Y 1) -> U(Y 1 u Y 2) is an X-morphism 

Y 1 --> Y 1 u Y 2 . But the first factor of an embedding is an 

embedding, so we obtain an embedding Y 1 ~ Y 1 u Y 2 . In a 

similar way, we obtain an embedding Y 2 c Y 1 U Y 2 . By Pro­

position 3.2.1 (2), it follows that lx(Y 1) c lx(Y 1 u Y 2) and 

lx(Y 2) ~ lx(Y 1 u Y 2). Now we find that 

U(lx(Y 1 )) u U(lx(Y 2)) ~ U(lx(Y 1 u y 2)). 

Since lx(Y 1) u lx(Y 2) ~ X is an X-morphism and lx(Y 1 u Y 2) c X 

is initial, it follows that the inclusion map 

is an X-morphism lx(Y 1) u lx(Y 2) -> lx(Y 1 u Y 2). 

As a first factor of an embedding, this X-morphism is an 

embedding, so we obtain lx(Y 1) u lx(Y 2) ~ lx(Y 1 u Y 2). 

(3) We apply lx to (2) and use the fact that lx is idempotent; so 

we have 

By Definition 3.1.2(1), we have Y 1 ~ lx(Y 1) and Y 2 ~ lx(Y 2). 

These embeddings give rise to the inclusion maps 

UY 1 ~ U(lx(Y 1)) and UY 2 ~ U(lx(Y 1)); 

so we have an inclusion 
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From the embeddings lx(Y 1) c X and lx(Y 2) ~ X, we obtain 

an embedding lx(Y 1) u lx(Y 2) c X where the domain 

lx(Y 1) u lx(Y 2) has underlying set (U(lx(Y 1 ))) u (U(lx(Y 2))). Since 

lx(Y 1 UY 2) -> X is an X-morphism and since 

lx(Y 1) u lx(Y 2) -> X is initial, it follows that the inclusion map 

is an X-morphism Y 1 u Y 2 --> lx(Y 1) u lx(Y 2L and being a 

first factor of an embedding, this X-morphism is an embedding; 

thus Y 1 u Y 2 ~ lx(Y 1) u lx(Y 2). By Proposition 3.2.1 (2), it 

follows that 

D 

Remark 3.2.3: 

The above two propositions show that a strong limit operator is a 

closure operator; that is, the operator is expansive (extensive), 

monotone (order-preserving) and idempotent. (See also [DG 1], [GH], 

[CM], [L0 1] and [SA].) However, a strong limit operator is not 

necessarily a Kuratowski closure operator. (Because it is not necessarily 

additive, that is, it need not necessarily hold that 

(See [SA, p. 252]) 

We now give an example of a strong limit operator. 
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Example 3.2.4 

The b-closure operator is a strong limit operator. (See Example 

1 .2.4(d) .) 

Proof. Let A ~ (X, 7) where (X, 7) E Ob(Top). (Note that Top is an 

hereditary construct.) Then the b-closure operator transforms A into 

b(A) c (X, 7). When endowed with the relative topology, the inclusion 

b(A) c (X, 7) is an embedding. 

( 1 ) That A ~ b(A) follows from the properties of the b-closure 

operator (see Example 1.2.4(d)). 

(2) Suppose that B ~ bx(A) = W. It needs to be shown that 

bx(B) = { x E X I for each nhood Nx in X of x, Nx n TXJ n B -f 0 } 

~ { y E bx(A) I for each nhood UY in bx(A) of y, UY n ty} n B -f 0} 

= bw(B). 

Let x E bX(B). Now, for any nhood N in bX(A) x of X, we 

have Nx = bx(A) n ux, where ux is a nhood in x of x. 

Since x E bx(B), it follows that ux n TXJ n s f 0. Note that 

bx(Al n TXJ = TXJ in bx(A), so we have 

That is, Nx n TXJ n B -f 0, and so y E bw(B). 

(3) Consider a continuous function f: X -> Y between topological 

spaces with A ~ X. We will show that f (bx A) ~ by f (A). But 

this follows from Lemma 2(1) of Example 1.2.4(d). 

Hence, the b-closure operator is a strong limit operator. D 
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Remarks 3.2.5 

(a) Nakagawa defined a closure operator cl in terms of an (f, M)­

factorization for an extremal subobject A c X in an (f, M)­

category ~ Such a closure operator satisfies the "continuity" 

property, it is idempotent, monotone and expansive. (See [NA, 

pp.146 - 147].) It was further shown that a certain type of 

factorization structure gives rise to a bireflective subcategory of 

the category Top1 of T 1-spaces and continuous functions 

([NA, Proposition 11 ]) . And conversely ([NA, Proposition 1 2]), a 

(b) 

bireflective subcategory of Top1 which is closed under 

embeddings gives rise to some factorization structure on Top1. 

Given a complete, well-powered concrete category ~ with 

forgetful functor U : ~--> Set that preserves monomorphisms, 

there is a one-one correspondence between the following three 

families: 

(i) The class of hull operators on ~ 

(ii) The class of hull subobject operators on ~ 

(iii) The class of strong factorization structures on ~ 

(For definitions and for the correspondence, see [L0 1 ].) 

(c) In [CM, Proposition 3.6], Cagliari and Mantovani proved that 

there exists a bijective correspondence between the (f, 

M)-factorization structures on a co-well-powered epireflective 

subcategory ~ of Top or of a topological category 

U : A--> Set and the semiclosure operators in 'G, where M 

is contained in the class of all embeddings. A semiclosure operator 

is defined as follows: 
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Definition (See [CM, 3.5]) 

Let ~ be a co-well-powered subcategory of the category Top 

of topological spaces and continuous functions. A semiclosure 

operator 1 in ~ is an operator which associates, to every 

subspace Y of X, with X in ~ a subspace 1 x(Y) of X 

such that the following properties hold: 

(i) A ~ 1 X(A) ~ X; 

(ii) the inclusion from Y into 1 X(Y) is in Epi( ~); 

(iii) if z ~ v ~ x, then 1 x(Z) ~ 1 x(Y); 

(iv) 1 x(1 x(Yll = 1 x(Y); 

(v) if xL> YE Mor(~), then f(1x(A)) ~ 1y(f(A)), for each 

A~ X. 

As in [CM], we prove in theorem 3.2.11 that if M is contained in 

the class of all embeddings, then there is a bijective correspondence 

between the class of all strong limit operators and the class of all 

(f, Ml-factorization structures on a hereditary construct. 

Definition 3.2.6 

Let l be a strong limit operator on X. 

(a) An X-morphism X L> Y is called l-dense provided that 

ly(f [X]) = Y. 

(b) An embedding X ___!!!:___> Y in X is called l-closed provided that 

ly(m[X]) = m[X]. (Here "an embedding" means "an initial 

injection".) 

(c) A sink ( f; : X. --> Y)
1 

is said to be l-dense provided that 
I I 

ly (Uf [Xi]) = Y. 
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Lemma 3.2.7 

(1) If X -1!:.__> Y is an X-morphism and Z ~ W ~ X, then h(Z) ~ h(W). 

(2) If X -1!:.__> Y is an X-isomorphism, then, whenever Z ~ X, it 

follows that h(lx(Z)) = ly(h(Z)). 

(1) This is easy. 

(2) By Definition 3.1.2(3), we have h(lx(Z)) c ly(h(Z)). Since 

h-1 : Y --> X is also an X-morphism and h(Z) ~ Y, it follows 

that 

h-1 (ly(h(Z))) ~ lx(h- 1 (h(Z))) 

= lx(Z). 

(Definition 3.1.2(3) 

Applying h to this relation, we find that 

ly(h(Z)) = h(h- 1 (ly(h(Z)))) ~ h(lx(Z)), (By (1 )) 

thus h(lx(Z)) = ly(h(Z)). o 

Proposition 3.2.8 

If l is a strong limit operator on X, then (l-dense, l-closed 

embedding) is a morphism factorization structure on X. 

We first show that [-closed embeddings and l-dense morphisms are 

closed under composition with X-isomorphisms, as specified in 

Definition 1.1 .2. By [AHS, 8.14), an X-isomorphism is both an initial 

morphism and an isomorphism in Set. But in Set, isomorphisms are the 

bijective maps (see, for example, [HS 1, 5.14(2)]); so X-isomorphisms 

are the initial bijections. Since embeddings are initial by assumption, 

and since initial morphisms are closed under composition (see, for 
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example, [AHS, 8.9]), it follows that embeddings are closed under 

composition with X-isomorphisms. 

Now let X --1!:_> Y E lso(X) and let Y __!!!:_> Z be an I-closed 

embedding. It must be shown that moh is I-closed; that is, 

I
2

((moh)[X]) = (moh)[X]. 

Note that (moh)[X] ~ Z. So, by Definition 3.1 .2(1), we have 

(moh)[X] ~ Iz((moh)[X]). 

Put W = (moh)[X]. Then Definition 3.1 .2(2) ensures that 

I2 ((moh)[X]) ~ Iw((moh)[X]) = Iw(W) = W = (moh)[X]. 

Hence I2 ((moh)[X]) = (moh)[X], thus moh is an I-closed embedding. 

On the other hand, if X _e_> Y is an I-dense X-morphism and 

Y -1.!:_> X is an X-isomorphism, we have 

I2 ((hoe)[X]) = Iz(h(e[X])) = h(ly(e[X])) (Lemma 3.2. 7) 

= h(Y) (e is I-dense) 

= Z, (h is an X-isomorphism) 

and so hoe is I-dense. 

Given an X-morphism X _J_> Y, we form its (surjection, embedding)-

factorization, say moe: 

X _J_ > Y = X __!!___ > f [X] __!!!:_ > Y. 

The embedding m is the same as f [X] ~ Y. Applying Iy to f [X], 

we have Iy(f [X]) ~ Y, say, an embedding m' : Iy(f [X]) -> Y. Let 
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e' be the composition of e and the embedding f [X] ~ ly(f [X]): 

--------"-----------+ y x 

~/[XI 
e' 

l 
m' 

ly( f [X]) = W 

Since m' is initial, it follows that e' is an X-morphism. 

(1) It is asserted that the factorization 

f I I 

X __J_> Y = X-e-> ly(f [X]) __.!!}__> Y 

is an (I-dense, l-closed embedding)-factorization of f. 

(i) m' is I-closed: (Note that m' is just inclusion.) We have 

m'(ly(f[X))) = ly(f[X]). 

Now it follows that 

ly{m'(ly(f[X]))} = ly{ly(f[X]l} 

= ly{ f [X]) 

= m' {ly(f [X])}. 

Hence m' is [-closed. 

(Proposition 3.2.1) 

(ii) e' is I-dense: Put ly(f [X))) = W. To show that e' is 

I-dense, it must be shown that 

lw(e' [X]) = W = ly( f [X]). 

Since e is the restriction of f, it fallows that 
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e(X) = f [X], so it will be shown that 

lw(f[X]) = ly(f[X]). 

Since f [X] c ly( f [X]) = W, it follows from Definition 

3.1 .2(2) that 

On the other hand, applying lw to the embedding 

Now 

j[X] ~ ly(f[X]) = W, we obtain 

Zw(f [X]) ~ Zw(W) = w 

= ly(f [X]). 

Hence e' is /-dense. 

consider a commutative square 

/-dense morphism and m is an /-closed 

x e y 

pl lq 
A m B 

Note that p[X] ( l A (p[X]) :::::} m{p[X]) 

(Remark 3.1 .3(2)) 

in x, where e is an 

embedding. 

~ m(l A (p[X])) 

::::} /B(m(p[X])) ~ ls(m(/A (p[X]))) 

= m(/A(p[X])) 

(Proposition 3.2.1 (2) 

c t8 (m(p[Xlll 

Hence m(l A (p[X])) = z8 (m(p[X])). 

(Definition 3.1 .2(3)) 

In what follows, no notational distinction is made between an 

X-object and its underlying set. Given y E Y, we have 
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q(y) E q(Y) = q(ly(e[X]) 

C t8(q(e[X])) 

= t8 (m(p[X])) 

= m(/A(p[X]). 

(e is /-dense) 

(Definition 3.1 .2(3)) 

Therefore, there is some t E l A (p[X]) ~ A such that m(t) = q(y). 

We therefore define d: Y --> A as follows: For each y E Y, 

put d(y) = t provided that q(y) = m(t). The morphism d is 

well-defined because m is an injection. Uniqueness of d such 

that doe = p and mod = q follows from the fact that m is 

an /-closed embedding (and so, a monomorphism). D 

Corollary 3.2.9 

If X is well-powered and has concrete coproducts, then for each 

strong limit operator l, X is an (/-dense sink, /-closed embedding)-

category. 

Proof 

Since X has coproducts, it follows from the dual of Proposition 1 .3.5 

that the factorization (f, M), with .E the class of all /-dense 

morphisms, and M the class of all /-closed embeddings, can be 

extended to a factorization structure (f', M) for set-indexed sinks. 

Now, since X is well-powered and M is contained in the class of all 

embeddings, and hence in Mono(X), it follows from the dual of 

Proposition 1.3.7 that (f', M) can be extended to a factorization 

structure (J;' ', M) for arbitrary sinks. It remains to be shown that the 

class .E'' so obtained is precisely the class of all /-dense sinks. 

Given a sink (gi : Xi--> X)
1 

in X (where we can assume that I is a 

set), let (µ., U.X.) be the coproduct of the family (X.)
1
• By the 

I iE I I I 
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universal property of coproducts, there is a unique X-morphism 

[g.] : ux. -> x 
I . I I IE 

= g., 
I 

for each 

[gi] = moe be the (_J;' ', Ml-factorization of [gi]: 

_____ _____, Y. 
e I 

Then (mo(eoµiJJ 1 is the (f' ', Ml-factorization of the sink 

(gi: Xi--> X)I' Now 

i E I. Let 

lx([g.J(,LJX.ll = lx([g.](U µ.(X.ll) (since the coproduct is concrete) 
1 i EI 1 1 i EI 1 1 

= lx(U ([g.Joµ.)(X.)) 
i EI I I I 

= lx(Ug.(X.)) . 
. I I I IE 

Hence [gi] is an l-dense morphism if and only if (gi)I is an l-dense 

sink. Thus if (gi)I is /-dense, then it belongs to E' ', and vice versa. 

D 

Prg_Qosition 3. 2. 1 0 

If (f, Ml is a factorization structure on X, where M is contained in 

the class of all X-embeddings, and for each embedding Y c._> X, 

TJx Y is the middle object of its (f, Ml-factorization (where we can 

assume that U(TJxYl ~ U(X)), then TJ = is a strong limit 

operator on X. 
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(1) Let Y --> 'fix Y --> X be an (f, M)-factorization of the 

embedding Y ~ X. Since the first factor of an embedding is 

an embedding, it follows that Y ~ 'fix Y. 

(2) Given an embedding Y c X, form its (f, M)-factorization m1 oe1 

and let z c nxY: 

e1 m1 Y c:...._> X = Y .___> 'fJxY > X 

Form an (f, M)-factorization m2oe2 of the embedding 

m: z c nxY = W: 

Now, we form the (f, M)-factorization m3oe3 of the embedding 

m1 om: Z C X: 

diagonalization property, there is a unique X-morphism 

commutative: 

z 

/ 

which makes the following diagram 

/ 
/ 

d / 
/ 

/ 
/ 

x 

Since m3 = (m1 om2 )od is an embedding, it follows that its first 
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factor d is an embedding; so we must have 'f/xZ c "'wZ, and 

condition (2l follows. 

We consider an X-morphism X _J_> Y with an embedding z c x. 

Let m
1 

oe1 be the (f, Ml-factorization of z ( x. 

z c__> x z e1 
> "lxZ 

m1 
>X = 

and let moe be the (f, Ml-factorization off (Zl ~ Y: 

f (Zl c__> Y = f (Zl ~> 'f/y(f (Zll c...!!!:___> Y. 

Then the following diagram commutes: 

z 

f 

'T/yf (Zl--m----1 y 

If we chase elements, we find the inclusion 

U(j ('f/xZll ~ U('f/y/ (Zll. 

Since f ('f/xZl -> Y is an embedding and 'T/yf (Zl ~ Y is initial, 

it follows that the inclusion U( f ('f/xZll ~ U('f/yf (Z)) is an 

X-morphism. Being the first factor of an embedding, this inclusion 

is an embedding, hence f ('f/xZl ~ 'f/yf (Zl. D 

Theorem 3.2.11 

There is a bijective correspondence between the class of all (E, Ml­

factorization structures on X with the class M contained in the class 

of all X-embeddings, and the class of all strong limit operators "Ix 

on X. 
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Proof 

Given an (f, M)-f actorization on X, with M contained in the class of 

all embeddings, we obtain a strong limit operator TJ as in Proposition 

3.2.10 on X. From this strong limit operator we now obtain a 

factorization structure (f', M') = (TJ-dense, n-closed embedding) as in 

Proposition 3.2.8. We shall show that (f, M) = {f', M'). Suppose 

m: X --> YEM' and factorize m as an isomorphism followed by an 

initial inclusion: 

X _!!!___> Y = X m' > m(X) c.J__> Y, 

where m' denotes the codomain restriction of m, and j denotes the 

inclusion map. By Theorem 1 .3.1 (4), (5), it follows that j E M'. 

Consider the (f, M)-factorization of j: 

m(X) c.J__> Y = m(X) c....!!_> Z c....!!_> Y, 

where e and n are again initial inclusions. Now 

Z = TJy(m(X)) 

= m(X) 

(by definition of TJy) 

(since j is n-closed). 

Hence e is the identity morphism, and so j 

that m EM. 

n E M. It follows now 

On the other hand, suppose m : X --> Y E M. To form the (n-dense, 

n-closed embedding)-factorization, we first form the (surjection, 

embedding)-factorization of m, namely: 

where m' is the codomain restriction of m, and j is the inclusion 

map. Observe that j E M. We then apply T/y to m(X) to get the 

{TJ-dense, n-closed embedding)-factorization. Thus: 
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But T/y(m(X)) is the middle object in the (f, M)-factorization of 

j : m(X) ~> Y which itself belongs to M. Hence T/y(m(X)) = m(X). 

Thus m E M'. Consequently, M = M', and so (f, M) = (f', M'), 

by the dual of Theorem 1 .3.1 (3). 

On the other hand, if l is a strong limit on X, we form a 

factorization structure (f, M) = {/-dense, /-closed embedding) 

(Proposition 3.2.8). From this factorization structure, we obtain a 

strong limit operator rt on X (Proposition 3.2.10). It must be shown 

that l = rt· Given an embedding j : Y ~ X, we obtain rtx Y as the 

middle object in the {/-dense, /-closed embedding)-factorization of j as 

follows: First construct the (surjection, embedding)-factorization of j, 

which is just 

id 
y ci_> x = y y > y J_> x. 

Then applying l to this, we obtain the required factorization: 

The middle object is lx Y, so rtx Y = lx Y, hence l = rt· D 
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CHAPTER 4 

M-PERFECT MORPHISMS AND RELATIVELY 

COMPACT OBJECTS 

We shall assume that the category X is a morphism (f, M)-hereditary 

construct with finite products. That is, X is a morphism (f, M)­

category and is a hereditary construct (as defined in Chapter 3). 

In this chapter, we define M-compactness and M-perfectness in the 

category X. Section 4. 1 deals with the properties of M-preserving 

and M-perfect morphisms; both classes of morphisms are closed under 

composition (Proposition 4.1 .6), and they are also closed under 

composition with isomorphisms (Lemma 4.1 .2 and Proposition 4.1.4). In 

Proposition 4.1 .8, we shall show that the class of M-perfect X­

morphisms is finitely productive. In Section 4.2, properties of 

M-compact X-objects are presented, and it is shown, amongst others, 

that the class Comp(X) of M-compact X-objects is closed under the 

formation of finite (nonempty) products (Proposition 4.2.3), and that 

Comp(X) is both M-perfect hereditary and M-hereditary. See 

Proposition 4.2.5. 

4.1 PROPERTIES OF M-PERFECT MORPHISMS 

We recall that (surjection, embedding) is a factorization structure on 

every hereditary construct (Lemma 3.1.4). 
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DEFINITION 4.1 .1 (cf. [BR, 2.1 ]) 

Let J: X --> Y be an X-morphism. 

( 1 ) J is called an M-preserving morphism provided that, for each 

m : B --> X in M, if 

B m>X J >Y 

'(fom)[B]~ 
is the (surjection, embedding)-factorization of Jorn, then s E M. 

(2) J is called an M-perfect nwrphism provided that, for each X-object 

Z, the product morphism Jxidz : XxZ --> YxZ is M-preserving. 

Lemma 4.1.2 

If J: X --> Y is M-preserving and B __!!!_> X E M, then Jorn is 

M-preserving. 

Proof 

Suppose that m
1 

: C --> B E M, and let sor = ( Jom)om 1 be the 

(surjection, embedding)-factorization of ( Jom)om1. Since M is closed 

under composition (Proposition 1.3.1 (5)), we have mom1 E M. Since J 

is M-preserving, we must have s E M. Hence Jorn is M-preserving. o 

Remarks 4.1.3 

(1) Since X-isomorphisms belong to M (Proposition 1.3.1 (4)), it 

follows that M-preserving morphisms are closed under composition 

with X-isomorphisms on the the right. 

(2) M-preserving morphisms are also closed under composition with 

X-isomorphisms on the left. 
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Proof 

Let X _J_> Y be an M-preserving and let Y _g_> Z E lso(X). 

Given a morphism B ___!!!____> X in M, we consider the (surjection, 

embedding)-factorization (gof )om = sor of (gof)om. Then 

fom = (g- 1 os)or. Since i 1 is an embedding and embeddings are 

-1 closed under composition, it follows that (g os)or is the 

(surjection, embedding)-factorization of fom. Since f is M-preserving, 

we have g-1 os E M. But i 1 E M (Proposition 1.3.1 (4)), so s E M 

(Proposition 1.3.1 (7)). Hence gof is M-preserving. a 

Proposition 4. 1 .4 

If X _J_> Y is M-perfect and B ___!!!____> XE M, then fom is M-perfect. 

For any X-object Z, we have ( fom)xidz = ( fxidz)o{mxidz). Since f 

is M-perfect, it follows that fxidz is M-preserving. Since idz E M 

(Proposition 1 .3.1 (4)), it follows that mxidz E M (Proposition 1 .3.1 (8)). 

By Lemma 4.1 .2, we find that ( fxidz)o{mxidz) is M-preserving, hence 

fom is M-perfect. a 

Proposition 4.1.5 

If X _J_> Y is M-perfect, then the product morphism idwxf is 

M-preserving, for any W E Ob(X). 

and {XxW, p , p ) be the products of (W, X) 
x w 

and (X, W), respectively; and let (YxW, 'Y' 'w) and (WxY, 'lfW, 1fy) 

be the products of (Y, W) and (W, Y), respectively. Then there are 
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(unique) morphisms h : WxX --> XxW and YxW _g_> WxY which 

make the following diagram commutative: 

x y 

uX 
Ip x I Ty 

h Jxi d W g WxX -l xx w Yx W WxY 

uw 1 p w 1 TW 7fw 
w 

idw 
--l w 

Also there is a (unique) morphism r : XxW --> WxX such that 

= p and fJXor = p . Then 
w x 

But (p , p ) is a mono-source, so hor = idXxW' And in a similar 
w x 

way, we find that rah = idwxx· Consequently, the morphisms h and 

g are isomorphisms. By uniqueness of the product morphism idwxf 

such that 

it follows from the above diagram that 

Since f is M-perfect, the product morphism fxidw is M-preserving. 

By Lemma 4.1 .2, the morphism ( fxidw)oh is M-preserving (since 

h E M). By Remark 4.1.3, the composition go( fxidw)oh = idwxf is 

M-preserving as was to be shown. o 
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Proposition 4.1 .6 

The classes of M-preserving morphisms and M-perfect morphisms are 

closed under composition. 

Proof 

(1) Let X _j_> Y and Y _g_> Z be M-preserving X-morphisms. 

(2) 

Given 8 _11}__> XE M, let 

nnf'om r s 
8 _ __fL,)_:. __ > z = 8 --> • -> z 

be the (surjection, embedding)-factorization of (gof )om, let 

s 1or1 be the (surjection, embedding}-f actorization of fom, and 

let s2or2 be the (surjection, embedding)-factorization of gos1. 

Since f is _M-preserving, we have s 1 E M. Since g is 

M-preserving, we have s2 E M. But s2o(r2or1) and sor are 

both (surjection, embedding)-factorizations of gofom. By 

Proposition 1 . 3. 1 ( 6), there is an isomorphism k with sok = s 2 

and kor 2or 1 = r: 

x 

m 
A 

B 
r 

f y 

'2 
----~c 

By Proposition 1.3.1(4), we have k- 1 EM _, 

belongs to M (Proposition 1.3.1(5) ). 

D 

hence 

Given M-perfect X-morphisms X _j_> Y and it 

must be shown that (gof )xidw : XxW --> ZxW is M-preserving. 
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Since 

and since each of f and g is M-perfect, it follows by 

definition that both fxidw and gxidw are M-preserving, so by 

(1) their composition (gxidw)o(fxidw) is M-preserving. D 

In the next proposition we shall need the following: 

Lemma 4.1.7 

If X _J__> Y is M-perfect, so is the product morphism fxid2 , for 

every X-object Z. 

Given W E Ob(X), we have 

which is M-preserving by M-perfectness of f. Thus fxidz is 

M-perfect. D 

Proposition 4.1.8 (cf. [BR, 2.3]) 

The class of M-perfect morphisms is finitely productive; that is, given 

f; 
a finite set I with x. - 1 > Y. an M-perfect morphism, for each i E I, 

I I -

then the product morphism Il.fi : IlXi -> IlYi is M-perfect. 

Proof 

It suffices, by induction, to establish the result for = { 1, 2}. 

Let J1 : x1 --> Y 1 and f 2 : x2 -. > Y 2 be M-perfect morphisms 

and let Z be an X-object. We need to show that the morphism 
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/ 1xf2xidz is M-preserving. But we have 

is M-perfect, it follows that f 1 xidy xidz 
2 

Since each f; 
I 

is 

M-preserving (Lemma 4.1. 7) and f 2xidz is M-perfect (Lemma 4.1. 7). 

By Proposition 4.1 .5, the product morphism idx xf2 xidz is M-
1 

preserving. By Proposition 4.1 .6, the composition 

is M-preserving. D 

Proposition 4.1.9 

If every surjective morphism is in f, then 

(1) M is the family of M-preserving embeddings. 

(2) M is contained in the family of M-perfect morphisms. 

Proof 

(1) Let X J_> YE M and let 

X J_> y = X-r-> f[X] _s_> y 

be its (surjection, embedding)-factorization. It needs to be shown 

that s E M and f is an embedding. By hypothesis, we have 

r E f, so it follows from the unique diagonalization property that 

there is a morphism d : f [X] --> X such that dor = idx and 

fod = s; that is, the following diagram commutes: 
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x r j[X] 
/ 

/ 
idx d / s 

/ 
/ 

.I' 

x !---I y 

From Proposition 1.3.1 (2), it follows that f is an embedding, 

and d is an isomorphism. Consequently, the morphism r = d-1 

is an isomorphism. By Proposition 1.3.1 (4) and (5), the 

morphism s = for -1 belongs to M. 

is an M-preserving Conversely, suppose that 

embedding, and let sor be its (surjection, embedding)-

factorization. Since idx E M, it follows from the definition of an 

M-preserving morphism that s E M: 

idX F x ----l x __ _,/_----; y 

~/ 
• 

Now r is a surjection and an embedding (being the first factor 

of an embedding), so by Proposition 1.3.1 (4), r is an 

isomorphism. But then this also means that r E M. Consequently, 

the morphism f belongs to M, by Proposition 1.3.1 (5). 

(2) Let X _[_> Y E M. It will be shown that, for any Z E Ob(X), 

the product morphism fxidz : XxZ --> YxZ is M-preserving. 

Since idz E M, we have fxidz E M (Proposition 1 .3.1 (8)). By (1 ), 

M is the family of M-preserving embeddings, so fxidz is 

.M-preserving. Hence f is M-perfect. D 
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Proposition .4. 1 . 1 0 

If X has a terminal object, then in X every M-perfect morphism is 

M-preserving. 

Proof 

Let X J__> Y be an M-perfect morphism and let T be a terminal 

object of X. In the following commutative diagram, defining the product 

morphism fxidT; 

x _J_ y 

'x l 
fx idT 

l •y 

XxT YxT 

1 idT 1 
T --------+ T 

the projections 1fX and (fy are isomorphisms: for, the diagram 

idx 
(X r---- X -L T) 

is a product of X and T, so there is a morphism k making the 

following diagram commutative: 

We have 

Since (1fX, 1fT) is a mono-source, it follows that ko1fX = idXxT' Since 
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it also holds that 7rxok = idx, it follows that 7fX is an isomorphism. 

And in a similar way, we can show that rry is an isomorphism. Since 

f is M-perfect, it follows that fxidT is M-preserving. By Remark 

4.1 .3, we must have that the morphism 

is M-preserving. D 

Corollary 4. 1 . 11 

If X has a terminal object and .E contains all surjective morphisms, 

then, for any X-morphism f, each condition below implies those that 

follow it; in particular, for X-embeddings f, all three conditions are 

equivalent: 

(1) fE M. 

(2) f is M-perfect. 

(3) f is M-preserving. 

Proof 

(1) ~ (2). Follows from Proposition 4.1 .9(2). 

(2) ~ (3). Follows from Proposition 4.1.10. 

If f is an embedding, then (3) ~ (1) follows from Proposition 4.1 .9(1). 

D 
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4.2 PROPERTIES OF M-COMPACT OBJECTS 

I 

In this section, we use the following theorem (due to Mrowka) to 

obtain a (relative) categorical notion of compact objects in a morphism 

(f, M)-hereditary construct X. 

I 

Mrowka's Theorem: (cf. [MR, p. 20] and [MA, 1 .1 ]) 

Let (X, 1) be a topological space. Then (X, 1) is a compact 

space if and only if, for every topological space (Y, 8), the 

projection 

7r 
1 

: (Y, 8)x(X, 1) -> (Y, 8) 

is a closed mapping. 

Proof 

Suppose that S ~ YxX is closed and let 7r 1 : S --> Y be the 

projection of S to Y. Let y 0 be any point of 1i11ST· Then 

there exists a net {yr I r E IR} of points of 7r 1 (S) which 

converges to y 0. Now, for each r E IR we can find xr E X such 

that <yr, xr> ES. Since X is compact, it follows that the net 

{xr I r E IR} contains a convergent subnet {xr I q E Q } . Then the 
q 

net {<yr q, xr q > I q E Q } is also convergent; so let us denote 

its limit by p0 . Then Po E S and Yo is the projection of p0, 

so Yo E 7r 1 (S). 

Conversely, suppose that the projection 7r 1 : (Y, 8)x (X, 1) -> (Y, 1) 

is a closed mapping and let {JX be the set of ultrafilters on the 

set X. For each A c X, set 

* A = { UE (JX I A E U}. 
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* Then {A I A c X} is a base for a topology ff on /]X. Let 

e c fJXxX be the convergence relation of (X, 7) defined by 

e = { ( 'l4 x) I u converges to x in 7} 

Then, for any topology 7, e is closed (see [MA, Lemma 1.2]). 

Now, let C be the set of all ultrafilters which converge in 7 

* to at least one point. C is dense in /]X; for, if A is 

nonempty, there exists x E A and the principal ultrafilter 

* princ(x) = { A c X I x E A} E A n C. 

But C is the image of e under the projection 

7r 1 : (fJX, ff) x (X, 7) --> (/JX, ff). 

Therefore, if 7r 1 is closed, then all ultrafilters converge, thus 

(X, 7) is compact. And this completes the proof. D 

Definition 4.2.1 

An X-object X is called an M-compact object provided that, for each 

X-object Z, the projection map 7rz : XxZ --> Z is M-preserving; that 

is, if B __ m_> XxZ belongs to M and 7rzom has the following 

(surjection, embedding)-factorization, then the embedding s E M: 

We shall denote by Com12(X) the class of all M-compact X-objects. 
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EXAMPLE 4.2.2 

Let X = Top and let (f, M) be the (dense, closed embedding)-

factorization structure on Top. Then the M-compact objects are the 

compact spaces; so M-compact n f-Sep is the family of all compact 

Hausdorff spaces. 

Proof. 

Observe that in Top, the closed continuous functions are precisely the 

M-preserving continuous functions, where M is the family of all closed 

embeddings in Top. Given a compact space X, let Y E Ob(Top). Then 

the projection 7ry: XxY --> Y is closed ([MA, Theorem 1 .1 ]). Now let 

m 7ry r s 
B-->XxY-->Y = X->Z->Y 

be the (surjection, embedding)-factorization of 7ryom, where m is 

a closed embedding. Then 1fyom is closed, so the composition sor is 

closed, and since r is continuous and surjective, it follows that s is 

closed, hence s is a closed embedding. Consequently, X is M-compact. 

I 

The converse is just a reformulation of Mrokwa's theorem. 

Since M-compact spaces are the compact spaces and f-separated 

spaces are the Hausdorff spaces (Examples 2.3(1 )), it follows that 

Comp(X) n f-Sep is the class of all compact Hausdorff spaces. o 

Proposition 4.2.3 (cf. [L0 1, 4.3]) 

Comp(X) is closed under the formation of finite (nonempty) products. 

Suppose A, B E Comp(X). It must be shown that Ax B E Comp(X). 
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Given Z E Ob(X), we have (AxB)xZ ~ Ax(BxZ), say 

h : (AxB)xZ --> Ax(BxZ) is an isomorphism such that, if (JZ' 7fBxZ 

and Pz are the projection morphisms (AxB)xZ --> Z, 

Ax(BxZ) --> BxZ and BxZ --> Z, respectively, then 

(JZ = (Pz0 7r BxZ)oh: 

(Jz 
( AxB) xZ-------+ z 

h Pz 

Ax ( BxZ) ____ ___, 
7fBxZ 

BxZ 

Since A is M-compact, the projection morphism 7fBxZ is M-

preserving. But B is M-compact, so the projection Pz is M-

preserving, hence the composition Pz0 7rBxZ is M-preserving (Pro-

position 4.1.6). Since h EM (Proposition 1.3.1(4)), it follows that 

(pzo7r8xzloh = (JZ is M-preserving (Lemma 4.1.2). Hence AxB is 

M-compact as was to be shown. D 

Remark: 

In [HSS, Proposition 4.11], it is assumed that X has a terminal object 

and that all surjective morphisms belong to the class of 

X-morphisms. In the following proposition, we shall prove a similar 

result without the assumption on the surjective morphisms but the 

existence of a terminal object. 

Proposition 4.2.4 (cf. [L0 1, 4.2]) 

If X has a terminal object T, then an X-object Y is M-compact if, 

and only if, Y _i_> T is M-perfect. 
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Suppose that Y is M-compact. By an argument similar to that used in 

the proof of Proposition 4.1.10, we can show that the projection 

flz : TxZ --> Z in the following commutative diagram - defining the 

product morphism fxidz - is an isomorphism: 

T 

l (J T 

fxidz 
-----~TxZ 

1 'z 
----.--.------II z 

idz 

- 1 
Thus fxidz = (JZ o1f2 . Since Y is M-compact, it follows that the 

projection 7rz is M-preserving, for each Z E Ob(X). By Remark 4.1 .3(2), 

-1 0 the composition (JZ 01fz = fxidz is M-preserving, for each Z E b(X); 

that is, f is M-perfect. 

Conversely, 

morphism 

Since (Jz 

suppose that Y _J__> T is M-perfect. Then the product 

fxidz 
VxZ > TxZ is M-preserving, for each Z E Ob(X). 

is an isomorphism, it follows from Remark 4.1 .3(2) that 7rz 

is M-preserving. Hence Y is M-compact. D 

Proposition 4.2.5 (cf. [MA, Theorem 4.4 (1 )] ) 

The class Comp(X) of M-compact objects is M-perfect hereditary and 

M-hereditary. (A class A of X-objects is said to be M-hereditary 

(respectively, M-peifect hereditary) if, whenever f : X --> A belongs to 

M (resp. f is M-peifect) and A E A, then X is an object in A.) 

Proof 

Let X _J_> Y be M-perfect with Y an M-compact X-object. We 
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wish to show that X is also M-compact. Let Z be any X-object. 

Since f is M-perfect, Jxidz : XxZ --> YxZ is M-preserving. Since Y 

is M-compact, the projection p : YxZ --> Z is M-preserving. 
z 

XxZ 
fxidz 

YxZ 

'/[ z Pz 

z z 

Therefore, the projection 

is M-preserving, by Proposition 4.1 .6. So X is M-compact, by 

definition. 

Now suppose X _g_> C belongs to M with C an M-compact 

X-object. For any X-object Z with B ____!!!____> XxZ E M, let qor = 'lfzom 

be the (surjection, embedding)-factorization of 'lfzom, where 'lfz is the 

projection XxZ --> Z. We assert that q E M. By Proposition 1 .3.1 (8), 

the product morphism 

qor = 

belongs to 

ffzo((gxidz)om) 

gxidz : XxZ --> CxZ belongs to M, so 

M as well (Proposition 1.3.1 (5)). Hence 

is the (surjection, embedding)-factorization of 

(Jzo(gxidz)om, where fJZ is the projection CxZ --> Z: 
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But C is M-compact, hence q E M. Thus X is M-compact. o 

CorQl!ary__4.2.6 

If Y is a compact topological space and X L> Y is a closed 

embedding or a perfect continuous map, then X is compact. 

(A function f : X --> Y between topological spaces is peifect if, for 

each topological space Z, the product function 

fxidz : XxZ --> YxZ 

is a closed function (see [MA, p. 346] ) ) . 

Let X = To_Q with the factorization structure (£, M) = (dense, closed 

embedding). We have that Y is a compact space. By Example 4.2.2, it 

follows that Y is an M-compact space. By Proposition 4.2.5, since 

X __ J_> Y is a closed embedding, it follows that X is M-compact, and 

accordingly, X is a compact space. 

On the other hand, f is a perfect continuous function if and only if 

fxidz : XxZ --> YxZ is a closed continuous function; i.e. fxidz is 

M-preserving, for each topological space Z. Hence the perfect 

continuous functions are precisely the M-perfect ones, with M the 
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class of all closed embeddings. If Y is compact (i.e. M-compact), then 

it follows from Proposition 4.2.5 that X is compact. 0 

Proposition 4.2. 7 (cf. [MAJ, 4.6.) 

Suppose is finitely complete. Given an X-morphism 

where X is M-compact and YE £-Sep, then f must be M-perfect. 

Let Z E Ob(X). Since X is M-compact, it follows that the projection 

f!yxz : Xx(YxZ) --> YxZ is M-preserving. Since Y is in .E-Sep, we 

must have <idx, f> : X -> XxY E M, by the Hausdorff 

Characterization Theorem 2.4.1. Since idz E M, the product morphism 

<idx,f>xidz E M (Proposition 1.3.1(8)). Let (XxZ, TX, Tz) be the 

product of {X, Z}, let ((XxY)xZ, rXxY' rz) be the product of {XxY, Z} 

and let (YxZ, 8y, 8z) be the product of {Y, Z}. If h is an 

isomorphism from (XxY)xZ to Xx(YxZ) such that the upper and the 

lower right-hand triangles in the following diagram commute (where p 
y 

is the projection XxY --> Y), then ho(< idx, f> xidz) E M, by 

Proposition 1.3.1(5): 

~---? y ~-------

! p y 
XxY 

< idx, f> 
x 

r 1 XxY h 
(JYxZ 

----------1 (XxY) xz-~ Xx(YxZ)-----~YxZ 
TX r < i d z, f > x l dz 
XxZ--

Tz j l'z 
z -----l z (;----

Thus, the composition is M-preserving 

(Proposition 4.1.2). By uniqueness of the product morphism fxidz, it 
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follows that fxidz = rryxzoho(<idx,f>xidz). It has been proved that 

fxidz is M-preserving. Hence f is M-perfect. o 

Corollary 4.2.8 

Every compact subspace of a Hausdorff topological space is closed. 

Let X = Top with the factorization structure (f, M) (dense, closed 

embedding). Suppose Y is a Hausdorff space and let X be a compact 

subspace of Y. By Example 4.2.2, the space X is M-compact, and, 

by Example 2.3(1 ), YE J;-Sep. By the proposition, the inclusion function 

X _j_> Y is an M-perfect embedding. The category Top has a terminal 

object, namely, a singleton {*}. By Proposition 4.1.10, the inclusion j 

is M-preserving and, thus closed. In particular, the space X is closed 

in Y. D 

Proposition 4.2.9 (cf. [BR, 2.2]) 

Suppose X has concrete pullbacks and let X ~ Y ~ Z be any 

X-morphisms. 

(1) If gof is M-preserving and g is an embedding, then f is 

M-preserving. 

(2) If gof is M-perfect and g is an embedding, then f is 

M-perfect. 

(3) If gof is M-perfect, Y E J;-Sep and every surjective morphism is 

in f, then f is M-perfect. 

(1) If gof : X --> Z is M-preserving, g is an embedding and 

B __!!!:_> X E M, let sor = fom be the (surjection, embedding)­

f actorization of fom: 
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B __!_?!__> X J_> Y = B _!_> P _ __!__> Y 

Then (gos) or = (gof )om, and gos is an embedding (since it is 

a composition of embeddings), so (gos) or is a (surjection, 

embedding)-factorization of (gof )om: 

But gof is M-preserving, so gos E M. Since g is an 

embedding, it follows from Proposition 1 .3.1 (7) that s E M. 

(2) Given that gof is M-perfect and g is an embedding, we need 

to show that fxid is M-preserving. Since gof is M-perfect, we 

have (gof )xid is M-preserving. But (gof )xid = (gxid)o( fxid). 

Since gxid is an embedding (Proposition 1 .3.1 (8}), it follows by 

( 1) that fxid is M-preserving. Hence f is M-perfect. 

(3)) We shall refer to the following commutative diagrams, where 

(XxY, ffx ffy) is the product of {X, Y}, (ZxY, 'lfz, 'lfy) is the 

product of {Z, Y}, and p 1, p 2 are the usual projections 
y y 

2 y --> Y: 

x f 1Y g 1Z 

id x 

i'x Ip . i 'z 
g 

<idx,f> foidy Y gx i dy <g, idy> 
x ----------t xx y YxY __ _____, ZxY y 
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We have 

and 7rzo <g, idy >of = gof is immediate. Hence 

We also have 

But (7r2, 7ry) is a mono-source, so 

that is, the following diagram commutes: 

x y 

<g, idy> 

XxY (goj )xidy 1 Zx Y 

Since X has pullbacks, it follows that X is finitely complete; 

so Hausdorff Characterization Theorem 2.4.1 applies. Now since 

YE f-Sep, it follows that <idx, f> E M. Since every surjective 

morphism is in f, it holds that <idx, f> is M-perfect 

(Proposition 4.1.9(2)). By hypothesis, gof is M-perfect, so 
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(gof)xidy is M-perfect (Lemma 4.1.7). Thus the composition 

is M-perfect (Proposition 4.1.6), hence <g, idy>of is M-perfect. 

Since <g, idy> is an embedding (being a section), it follows 

from (2) that f is M-perfect. D 

4.3 OTHER NOTIONS OF COMPACTNESS 

(a) Compactness in categories can be approached via closure 

operators; see for instance, Castellini, G: 

Castellini, G: Compact objects, surjectivity of epimorphisms and 
I 

compactifications, Cahiers Top. Geom. Diff. Cat. 31 (1990), 

53 - 65. 

Castellini, G: Regular closure operators and compactness, Cahiers Top. 
I 

Geom. Diff. Cat. 31 (1992), 21 - 31. 

(b) Categorically compactness in an algebraic setting was extensively 

studied by Fay and Walls: 

T. H. Fay: Compact modules, Comm. Alg. 16 (1988), 1209 - 1219. 

T. H. Fay and G. L. Walls: Compact nilpotent groups, Comm. Alg. 

17(9) (1989), 2255 - 2268. 

T. H. Fay and G. L. Walls: Categorically compact locally nilpotent 

groups, Comm. Alg. 18 (1990), 3423 - 3435. 

T. H. Fay: Remarks on the Mal' cev completion of torsionfree locally 

nilpotent groups, to appear. 
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(c) Another type of categorical compactness is that introduced by 
I 

Anh and Wiegandt ([AW]) in terms of a functor: 

I 

Anh, P. N and Wiegandt, R: Compactness in categories and 

interpretations, Proc. EECS ( 1990), to appear. 
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