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SUMMARY

We define morphism (E, M)-structures in an abstract category, develop

their basic properties and present some examples. We also consider the

existence of such factorization structures, and find conditions under

which they can be extended to factorization structures for certain

classes of sources.

There is a Galois correspondence between the collection of

subclasses of X-morphisms and the collection of all subclasses of

X-objects. A-epimorphisms diagonalize over A-regular morphisms. Given

an (E, M)-factorization structure on a finitely complete category,

E-separated objects are those for which diagonal morphisms lie in M.

Other characterizations of E-separated objects are given.

We give a bijective correspondence between the class of all (E, M)-

factorization structures with M contained in the class of

X-embeddings and the class of all strong limit operators.

We study M-preserving morphisms, M-perfect morphisms and M-compact

objects in a morphism (E, M)-hereditary construct, and prove some of

their properties which are analogous to the topological ones.



"l declare that: On factorization structures, denseness, separation and
relatively compact objects is my own work and that all the sources
that | have used or quoted have been indicated and acknowledged by

means of complete references.”

Signature: )gﬂw@ﬁﬁﬁ .....
/4 L



ON FACTORIZATION STRUCTURES, DENSENESS,
SEPARATION AND RELATIVELY COMPACT OBJECTS

by

HLENGAN! JAMES SIWEYA

submitted in part fulfilment for the requirements

for the degree of

MASTER OF SCIENCE

in the subject

MATHEMATICS

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: Professor [.W. Alderton

Date: APRIL 1994



i1

ACKNOWLEDGEMENTS

My sincere gratitude goes to my supervisor, Professor |. W. Alderton,
for his guidance and helpful suggestions in the writing of this
dissertation. | must also thank him for his encouragement when the
going was rough. Professor S. J. R. Vorster is thanked for providing
the necessary course-work whose examination led to this dissertation

with Professor Alderton.

I wish to thank the University of the North for financial support in this
research. | must express my appreciation to colleagues in the

Department of Mathematics for their encouragement.

| am also indebted to my wife, Tintswalo, and my children, Rhulani,
Vonani and Hlawulani, for their support and understanding throughout

my studies.

‘}“‘

i

(393 U1~ ¢ f
512 siwg )

i

01556423



il

SUMMARY

We define morphism (E, M)-structures in an abstract category, develop
their basic properties and present some examples. We also consider the
existence of such factorization structures, and find conditions under
which they can be extended to factorization structures for certain

classes of sources.

There is a Galois correspondence between the collection of all
subclasses of X-morphisms and the collection of all subclasses of
X-objects. A-epimorphisms diagonalize over A-regular morphisms. Given
an (E, M)-factorization structure on a finitely complete category,
E-separated objects are those for which diagonal morphisms lie in M.

Other characterizations of E-separated objects are given.

We give a bijective correspondence between the class of all (E, M)-
factorization structures with M contained in the «class of all

X-embeddings and the class of all strong limit operators.

We study M-preserving morphisms, M-perfect morphisms and M-compact
objects in a morphism (E, M)-hereditary construct, and prove some of

their properties which are analogous to the topological ones.
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INTRODUCTION

This dissertation is based on a paper ([HSS]) of HERRLICH, H,
SALICRUP, G and STRECKER, G. E of which the motivation were the

facts that:

(a) the category Top of topological spaces and continuous functions
has a (dense, closed embedding)-factorization for single continuous
functions.

{b) Hausdorff spaces are precisely those which are ‘dense—separated’,
that is; those for which the diagonal AX X —> X2 is a

closed embedding .

(c) a space Y is compact if, and only if, for each space Z, the

> 7 is closed.

projection wZ:YxZ
{d) A map Xt>v is perfect if, and only if, for each space Z,

fxidZ
> YxZ is closed.

the product map XxZ
Herrlich et al. gave analogous situations in Top as well as in a more
general categorical context. However, they often did not give proofs of
their results and, in the cases that they did, the proofs are sketchy.
The objective of this dissertation is to supply proofs to their paper.
There are a few results that we include from other sources and as far

as possible, such sources have been indicated.
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In Chapter 1 (FACTORIZATION SYSTEMS FOR MORPHISMS, SOURCES
AND SINKS), we characterize (E, M)-factorization structures for (E, M)-
categories. It is shown that the classes E and M of X-morphisms
determine each other through the unique diagonalization property or
equivalently, that E and M are duals of each other. We also show
that E C Epi(X) if and only if the diagonals lie in M. We show that
the factorization structures in a category X which can be extended to
factorization structures (E, M’) for set-indexed sources are precisely
those for which | X has products. Swell epimorphisms are discussed
and, on a suitable category, are shown to be the extremal
epimorphisms. We also discuss (in detaill examples of (E, M)

-factorization structures on the categories Set, Grp and Top (section

1.2).

Chapter 2 (GALOIS CORRESPONDENCE, E-SEPARATED OBJECTS AND
A-EPIMORPHISMS) concerns itself with the Pumplin—Rohrl ([PR]) Galois
Correspondence. It is shown that diagonals belonging to M denote the
objects that are E-separated in a category X relative to an (E, M)
-factorization structure on X (Theorem 2.4.1); that A-epimorphisms
satisfy Bousfield’s Characterization Theorem (Theorem 1.4.1) and that
on a suitable category X, there is a class M’ such that (A-epi, M’)
is a factorization structure on X (Proposition 2.5.3); and, finally, that if
X has an (epi, mono-source)-factorization for sources, the E-separated
objects form a (swell epi)-reflective subcategory of X (Proposition
2.5.5), and further, that the class E-Sep is M-hereditary (Proposition

2.5.7). Examples of E-separated objects and A-epimorphisms are also

provided.
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The concept of a strong limit operator on a category X that is a
hereditary construct is introduced in Chapter 3 (STRONG LIMIT
OPERATORS). It is shown that (surjection, embedding) is a
factorization structure on such a category (Lemma 3.1.4); it is proved
that such an operator is a closure operator (Propositions 3.2.1 and
3.2.2) even if it is not a Kuratowswki Closure Operator, and further,
that such operators are in one-one correspondence with (E, M)-
factorization structures, where M is contained in the class of all

embeddings. (See Propositions 3.2.9 and 3.2.11)

Chapter 4 (M-PERFECT MORPHISMS AND RELATIVELY COMPACT
OBJECTS) is devoted to the concepts of M-preserving morphisms,
M-perfect morphisms and M-compact objects in a morphism (E, M)-
category which is a hereditary construct. We add properties of
M-preserving morphisms and M-perfect morphisms which were not
discussed in [HSS] (for example, Remarks 4.1.3, Propositions 4.1.4,
4.1.5 and Lemma 4.1.7). We also show (Example 4.2.2) that for the
(dense, closed embedding)-factorization structure on Top, M-
compactness coincides with (topological) compactness. It is shown that
M-compact objects are both M-perfect hereditary and M-hereditary
(Proposition 4.2.5). We also establish results that are analogous to the
topological ones; for instance, that a compact subspace of a
Egz—space is closed (Corollary 4.2.8). The rest of the chapter is
devoted to the relationship between M-compact objects and M-perfect
morphisms. At the end of this chapter, we indicate other approaches

(by some authorities) to categorical compactness.
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NOTATION

We will use the following definitions and notations for the following

categories:

Grp: The category of groups and group homomorphisms.

Pos: The category of partially-ordered sets and order-preserving maps.

et: The category of sets and functions.

Top: The category of topological spaces and continuous functions.

Haus: The subcategory of Top which consists of Hausdorff spaces and

continuous functions.

Togo: The subcategory of Top which consists of To-spaces and

continuous functions.

Tog1: The subcategory of Top which consists of T.l—spaces and

continuous functions.

In this dissertation, Mor(X), Mono(X), Epi(X) and Iso(X) shall denote
the cllasses of morphisms, monomorphisms, epimorphisms and
isomorphisms, respectively, in a category X. Throughout the
dissertation, unless stated, the subcategories are assumed to be

isomorphism-closed.
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SUMMARY

We define morphism (E, M)-structures in an abstract category, develop
their basic properties and present some examples. We also consider the
existence of such factorization structures, and find conditions under
which they can be extended to factorization structures for certain

classes of sources.

There is a Galois correspondence between the collection of all
subclasses of X-morphisms and the collection of all subclasses of
X-objects. A-epimorphisms diagonalize over A-regular morphisms. Given
an (E, M)-factorization structure on a finitely complete category,
E-separated objects are those for which diagonal morphisms lie in M.

Other characterizations of E-separated objects are given.

We give a bijective correspondence between the class of all (E, M)-
factorization  structures with M contained in the class of all

X-embeddings and the class of all strong limit operators.

We study M-preserving morphisms, M-perfect morphisms and M-compact
objects in a morphism (E, M)-hereditary construct, and prove some of

their properties which are analogous to the topological ones.
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This

INTRODUCTION

dissertation is based on a paper ([HSS]) of HERRLICH, H,

SALICRUP, G and STRECKER, G. E of which the motivation were the

facts that:

(a)

(b)

(c)

(d)

the category Top of topological spaces and continuous functions
has a (dense, closed embedding)—factorization for single continuous
functions.

Hausdorff spaces are precisely those which are ‘dense—separated’,
that is; those for which the diagonal AX X —> X2 is a

closed embedding .

a space Y is compact if, and only if, for each space Z, the

projection 5! YxZ —> Z is closed.

A map XL> Y is perfect if, and only if, for each space Z,

indZ

the product map XxZ > YxZ is closed.

Herrlich et al. gave analogous situations in Top as well as in a more

general categorical context. However, they often did not give proofs of

their results and, in the cases that they did, the proofs are sketchy.

The objective of this dissertation is to supply proofs to their paper.

There are a few results that we include from other sources and as far

as possible, such sources have been indicated.



vii

In Chapter 1 (FACTORIZATION SYSTEMS FOR MORPHISMS, SOURCES
AND SINKS), we characterize (E, M)-factorization structures for (E, M)-
categories. It is shown that the classes E and M of X-morphisms
determine each other through the unique diagonalization property or
equivalently, that E and M are duals of each other. We also show
that E C Epi(X) if and only if the diagonals lie in M. We show that
the factorization structures in a category X which can be extended to
factorization structures (E, M’) for set-indexed sources are precisely
those for which X has products. Swell epimorphisms are discussed
and, on a suitable category, are shown to be the extremal
epimorphisms. We also discuss (in detaill examples of (E, M)
-factorization structures on the categories Set, Grp and Top (section

1.2).

Chapter 2 (GALOIS CORRESPONDENCE, E-SEPARATED OBJECTS AND
A-EPIMORPHISMS) concerns itself with the Pumplin—Rohrl ([PR]1) Galois
Correspondence. It is shown that diagonals belonging to M denote the
objects that are E-separated in a category X relative to an (E, M)
-factorization structure on X (Theorem 2.4.1); that A-epimorphisms
satisfy Bousfield’s Characterization Theorem (Theorem 1.4.1) and that
on a suitable category X, there is a class M’ such that (A-epi, M’)
is a factorization structure on X (Proposition 2.5.3); and, finally, that if
X has an (epi, mono-source)-factorization for sources, the E-separated
objects form a (swell epi)-reflective subcategory of X (Proposition
2.5.5), and further, that the class E-Sep is M-hereditary (Proposition
2.5.7). Examples of E-separated objects and A-epimorphisms are also

provided.
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The concept of a strong limit operator on a category X that is a
hereditary construct is introduced in Chapter 3 (STRONG LIMIT
OPERATORS). It is shown that (surjection, embedding) is a
factorization structure on such a category (Lemma 3.1.4); it is proved
that such an operator is a closure operator (Propositions 3.2.1 and
3.2.2) even if it is not a Kuratowswki Closure Operator, and further,
that such operators are in one-one correspondence with (E, M)-
factorization structures, where M is contained in the class of all

embeddings. (See Propositions 3.2.9 and 3.2.11)

Chapter 4 (M-PERFECT MORPHISMS AND RELATIVELY COMPACT
OBJECTS) is devoted to the concepts of M-preserving morphisms,
M-perfect morphisms and M-compact objects in a morphism (E, M)-
category which is a hereditary construct. We add properties of
M-preserving morphisms and M-perfect morphisms which were not
discussed in [HSS] (for example, Remarks 4.1.3, Propositions 4.1.4,
4.1.5 and Lemma 4.1.7). We also show (Example 4.2.2) that for the
(dense, closed embedding)-factorization structure on Top, M-
compactness coincides with (topological) compactness. It is shown that
M-compact objects are both M-perfect hereditary and M-hereditary
(Proposition 4.2.5). We also establish results that are analogous to the
topological ones; for instance, that a compact subspace of a
Epz-space is closed (Corollary 4.2.8). The rest of the chapter is
devoted to the relationship between M-compact objects and M-perfect
morphisms. At the end of this chapter, we indicate other approaches

(by some authorities) to categorical compactness.
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NOTATION

We will use the following definitions and notations for the following

categories:

Grp: The category of groups and group homomorphisms.

Pos: The category of partially-ordered sets and order-preserving maps.
Set: The category of sets and functions.

Top: The category of topological spaces and continuous functions.

Haus: The subcategory of Top which consists of Hausdorff spaces and

continuous functions.

Togo: The subcategory of Top which consists of TO~spaces and

continuous functions.

Top1: The subcategory of Top which consists of T1-spaces and

continuous functions.

In this dissertation, Mor(X), Mono(X), Epi(X) and Iso(X) shall denote
the classes of morphisms, monomorphisms, epimorphisms and
isomorphisms, respectively, in a category X. Throughout the
dissertation, unless stated, the subcategories are assumed to be

isomorphism-closed.



CHAPTER 1

FACTORIZATION SYSTEMS FOR MORPHISMS,
SOURCES AND SINKS

1.1 DEFINITIONS

Definition and Notation 1.1.1 ({[BO, p. 208])
An  X-morphism A—L> B is said to have the unique Ileft lifting
property (the ULLP) for an X-morphism cC—& > D if for each

commutative square in X

A——L—iB

[ ——

g

there exists a unique (diagonal) X-morphism B—d—> C such that dof = k
and god = h. (If f has the ULLP for g, we also say that g has
the unique right lifting property (the URLP) for f.) We shall denote the
fact that f has the ULLP for g by flg.

Definition 1.1.2

Let X be any category. We define E and M to be classes of X-
morphisms which are closed under composition with isomorphisms in
the following sense (provided that these compositions make sense):
(a) If eecE and he€lso(X), then hoe€ E.

(b) If meM and helso(X), then mohe M.



Definition_1.1.3 (See also [AHS, Definition 14.1])

Given a category X, the pair (E, M) is called a factorization structure

on X provided that the following two conditions are satisfied:

(1) X has (E, kM)-factorizations of morphisms in the sense that each
X-morphism X—L> Y has a factorization

XL>y =xtsplsy,
where ee E and me M.

(2) X has the unique (E, M)-diagonalization property; in other words,
el m, for each e€ E and each me M.

Remark 1.1.4

(a) If X has an (E, M)-factorization structure , then X is called an
(E, M)-category. It must be observed that E (respectively, M) is
not necessarily the class Epi(X) (resp., Mono(X)).

(b) If we denote by E| M the fact that each e € E diagonalizes
over every me€ M, then, given an (E, M)-category X, the
unigue (E, M)-diagonalization property is equivalent to saying that
ElM.

1.2 EXAMPLES OF (E, M)-FACTORIZATION

STRUCTURES

Example 1.2.1

For any category X,

(a)
(b)

the pair (150(5); Mor(X) ) is a factorization structure on X.

the pair (Mor(X), Iso{X}) is a factorization structure on X.



Proof of ({(a)
Since Iso(X} is closed under composition, it follows that Iso(X)
satisfies Definition 1.1.2(a). Since Iso(X) C Mor(X), and since Mor(X)

is closed under composition, it follows that Mor(X) satisfies Definition

1.1.2(b).

(1) For any X-morphism X—L> Y, the factorization

idy

xf >v = x > x-Ls v

is an (lso(X), Mor{X) )-factorization of f.
{2) Suppose the following square in X is commutative with
helso(X) and g any X-morphism:

_— 3 Y

M —— N

g

Define a diagonal morphism Y —> M by d = voh™ V. Then

doh = (voh oh = volh'Voh) = veidy = v

and

ged go{voh-1) = (gov)ohw’] = (woh)oh—‘I

— wolhoh 1) = woidy, = W,

hence the diagram



e}

X —" v
e
d,

1% / w
/

"

M —-——g————» N
commutes. To prove uniqueness, Suppose YL> M is another
X-morphism such that koh = v and gok = w. Then

doh = v = koh, so k = d, since, being an isomarphism, & is

an epimorphism.

(b) That (Mor(X), Iso{X) ) is a factorization structure on X follows

in a similar way. o

Example 1.2.2(a)

(Epi, Mono) is a factorization structure on Set.

Proof
We recall that in Set epimorphisms (respectively, monomorphisms or
isomorphisms) are precisely surjections (resp., injections or bijections)

(see, for example, [HS,, 6.10(2), 6.3(2) and 5.14(2)]). Since

1r
isomorphisms are epimorphisms, and since epimorphisms are closed
under composition, it follows that Epi satisfies Definition 1.1.2(a).
Since isomorphisms are monomorphisms and monomorphisms are closed

under composition, Mono satisfies Definition 1.1.2(b).

(1) If X—-L> Y is a morphism in Set, then

I
x>y = X—L>f(X) S X S Y,



where if(X) is the inclusion of f(X) into Y, is an (Epi, Mono)-

factorization of f.

(2) Suppose the square in Set

X —fF v

A—mm—

8

is commutative with f € Epi(Set) and g € Mono(Set). Define
Y—d——> A as follows: for each yeY, dly) = s(x), whenever
y = fi(x). We must show that 4 is well-defined. Suppose x¢€ X

also satisfies f(x} = f(X). Then
HEx) = dfx) = gls(x)) = glslx) = s(x) = s(x),

since g is injective.

Then, if x€ X, we have (dof)(x) = dly) = s(x), where y = f(x);

thus dof = 5. On the other hand, if yeY, we find that
(god)ly) = gldly)) = gls(x)) = (gos)(x) = (tof }(x) = tly),

for some x such that y = f(x), thus god = ¢t. And d is

/
unique such that dof = s and god = t. For, if Y—d——> A is
another function in Set such that d'of = s and god’ = ¢,

then dof = s = d’of and, since f is surjective, d = d’. O

Example 1.2.2(b)

(Epi, Mono) is a factorization structure on Grp.



Proof

In  Grp, monomorphisms {respectively, epimorphisms) are precisely the
homomorphisms which are injective (resp., surjective) on the underlying
sets (see, for example, [HS1, 6.3(2) and 6.10(2)]). That the pair (Epi,
Mono) satisfies Definition 1.1.2 follows by an argument similar to that

in the proof of the previous example.

(1) If (G, o) L—> (H, % is a group homomorphism, then

G, o) L->H, x = (G, o) £ —> G/Ker p—£—> (H,

is an (Epi, Mono)-factorization of ¢. Here the homomorphisms
p' and y are defined as follows: For each ge G, set
p'(@0 = gKer y, and, for each xKer y € G/Ker y, set

o(xKer ) = p(x).

(2) Now consider a commutative square in Grp

(G, o ¢ » (H, %)
r s
(K, 8 m -+ (M, @)
where e € Epi(Grp) and m € Mono(Grp). We  define
(H, *)L> (K, #) as follows: For each xe€eH, set d(x) = rly)
iff ely)l = x. (This makes sense because e is an epimorphism.)

The map d is well-defined, since if y also satisfies

ely) = ely), then
se(y)) = slely)) = mlr(y) = mirly)) = rly) = rly),

since m is a monomorphism.



Given g€ G, we find that (dee)lg) = dlelg)) = rig), so
doce = r. On the other hand, for each y € H, we have
(mod)(y) = midl(y))
= m(r(x)) (where x is such that e(x) = vy)
= (mor)(x)
= (soe)(X) (since the square commutes)
= sle(x))
= sly),

so that mod = s. By [HS1, 32.9], the map d is a group

homomorphism. The homomorphism d is unique such that

doe = r and mod = 5. For, if d is another morphism
satisfying d'oe = r and mod’ = s, then dee = r = d'oe,
and, since e is an epimorphism, we have d = d’. O

Example 1.2.3

Apart from the three factorization structures given in Examples 1.2.1

and 1.2.2(a) above, Set has the following (E, M)-factorization

structure:

E={XE£>Y|X =¢0=Y =0)
and

M = {X-2>Y|m is a bijection or X = §}.
Proof
Given X -£-> Y€E and an isomorphism (a bijection!) Yi—> Z in
Set, it must be shown that hoeeE. If X = @, then Y = @ (since

ec E). Since h is bijective, we must have Z = ®. Hence hoe € E.



Now let Z—h-> X € lso(X) and let X s YeM. Then h is a

bijection. If m is a bijection, then the composition moh is a bijection;
hence moh € M. On the other hand, if X = @, then Z = @ (since
h is a bijection), hence moh € M. Consequently, the pair (E, M)

satisfies Definition 1.1.2.

(1) |If x-L >y is a morphism in Set with X = @, then f has
the (E, M)-factorization 0L >y = @L> 9 L >vY. Otherwise
a function X—L>Y in Set has an (E, M)-factorization

id

Y

x>y = xLsy > Y

satisfying the definitions of E and M above.

(2) Now suppose that the square in Set
X Y
r’ ‘s
A B

commutes with ee E and meM. If X =@, then Y = @, by

(4

SO §

—_—
m

definition of E above, so the unique morphism § —> A is the
desired diagonal morphism. We shall assume that X # §. Then

A+ 0, since r is a function. So, by definition of M, the

function m is a bijection. So, we define YL> A to be the
function m'1os. Then
_ -1 -1 A1
doe = (m osloe = m ofsoe) = m o(mor)

1

= (m om)or = idAor = r

and



1

mod = mo(m os) = (mom_1)os = idBos = g,

And d is unique with this property since m is a bijection. o

Example 1.2.4{(a)

(Surjection, embedding) is a factorization structure on Top.

Proof

In  Top, isomorphisms are the homeomaorphisms (see e.g. [HS1,
5.14(4)]}. Since homeomorphisms are surjections and surjections are
closed under composition, surjections satisfy Definition 1.1.2(a). Aiso,
homeomorphisms are embeddings and embeddings are closed under

composition, embeddings satisfy Definition 1.1.2(b).

(M (X, 1y L5y, ry) is a continuous function between

topological spaces, then the factorization

[
X, 7 L> v, = X, r) L px, T LBy, )

(where Tf is the relative topology induced on f(X) by Ty and
iﬂX) is the inclusion of f(X) into Y) is a (surjection,
embedding)-factorization of f. The map (X, TX)—'L> {f(X), Tf) is

continuous since the continuous function if(X) is initial.

(2) Let the following square in Top be commutative with s

surjective and e an embedding:
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S b
(X, TX) + (Y, TY)
p q
(K, ) — (M, 1)
The existence of a unique function (Y, TY) —d—> (K, TK)

completing the above square follows as in Example 1.2.2(a). So,
we need only show that d€ Mor(Top), that is, d is continuous.
Since eod = g and since ¢ is continuous and e is is initial,

it follows that d is continuous. 1]

Example 1.2.4(b}

(Quotient, one-one) is factorization structure on Top.

Proof

Given a quotient‘map X-£>V, let Y—}—‘——> Z be a homeomorphism
(between topological spaces). By [WI, 9.2], the space Z is a quotient
space, so0 the composition hoe is a quotient function; so Definition
1.1.2(a) is satisfied. Since homeomorphisms are one-one and one-one

functions are closed under composition, one-one functions satisfy

Definition 1.1.2(b).

(1) A continuous function (X, ) LSy, ry) in Top has the

following (guotient, one-one)-factorization:

i
(X, ry) L> (v, 7 (X, 7y -L> (Fx), 0 =L (v, 4

Y) = Y) '

where ¢ is the quotient topology induced on f(X) by f and
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if(X) is the inclusion of f(X) into Y. The continuity of the

function lf(x) follows from [WI, 9.4].

(2) [f the square in Top

f .
(X, Tx) (Y, Tf)
k) r
(P, Tp) g s (Q, Tq)

commutes with f a quotient function {and then, ¢ is the
quotient topology induced on Y by f) and g is a one-one
function, then f is surjective, being a quotient. Thus we define
{y, Tf)i> (P, Tp) as in Example 1.2.2(a). By a similar

argument, the map d is unique such that dof = s and god =r.

Continuity of d follows from the fact that dof = p and the

fact that p is continuous and f is a quotient. o

Example 1.2.4{c)

(Dense, closed embedding) is a factorization structure on Top.

Proof

If X-£>Y is a dense continuous map and Y—h—> Z is a
homeomorphism, then hoe is a dense continuous map; for, we have
hoe)(X) = hlelX)] = h(elX)) = h(Y) = 2. So dense continuous maps
satisfy Definition 1.1.2(a). Since homeomorphisms are closed

embeddings, and since closed embeddings are closed under composition,

it follows that closed embeddings satisfy Definition 1.1.2(b).
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(1) Given a continuous function (X, 7) —L> (Y, o) in Top, consider
f (X), the closure CLy(f (X)) of f(X) in (Y, ¢). Then f has the

following (dense, closed embedding)-factorization:

X, 1) L-> (Y, o) = (X, 1) <&=> (FIXT, ¢/) 2> (v, 0),

where e is the codomain restriction of f, m is the inclusion of
F X} into Y and ¢’ is the relative topology induced on f {X] by
¢. Since CLyy(elX)) = CL,(f(X)) (where W = CL,(f (X)), the
map e is dense. By construction, the map m is an embedding.
To see that the inclusion m is closed, let C be closed in
f X). Then there exists C’ which is closed in Y such that
C = fXInC’ (see [WI, 6.3(b)]), so C is closed in Y.

(2)  Suppose the following square in Top is commutative, with d a
dense map and ¢ a closed embedding in Top:

d

(X, 1) ——— (Y, g)

(W, p) ——— (Z, )

Observe that c(h(X)) C ch(X)), so

c{n(X)) C c(h(X))

= c(h(X)) (¢ is closed)

M

cl ) { ¢ is continuous, [WI, Theorem 7.2(d)]).

Hence c¢(h{X)) = c(h{X)). Choose any ye€ Y. Then
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kly) € kY) = k(dX) (since d is dense)
¢ kd(X)} (since & is continuous)
= clhiX)) (since the square is commutative)
= c(h(X)).
Hence there exists w € A(X) C W such that c(w) = kly). We

thus define a map Y—l--> W as follows: Given yeY, let

ly) = w, where w is such that c{w) = kly). The map [ is

well-defined; for if W also satisfies c{w}) = kly), then w = w,

since ¢ is injective. Given x € X, we have

(collod))(X) = (cllld(x))) = cl{t) {(where t is such c(t) = kl(d(x)))
= kld(x)) = cl(h(x)),
hence co(lod) = coh. But ¢ is an embedding, so ldd = h.

And for each y €Y, we have

{col)ly) = cllily)) = ciw) (where w is such that c(w) = kly))

= kly),

so that c¢ol = k. Therefore, | completes the above square.
Uniqueness of [ follows from the fact that ¢ is an embedding,

and [ is continuous by continuity of k& and initiality of c. o

Example 1.2.4{(d)

(Front dense, front-closed embedding) is a factorization structure on
Top. (The definitions of front-dense maps and front-closed maps

follow.)
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Definitions: ([NW, p. 68])
(a) If (X, 7) is a topological space and A C X, the front-closure
b(A) of A (also called the b-closure of A) is defined as

follows:

b(A) = {xe X | for each nhood N of x it holds that

Nn{xfnA # 0}.

Under this definition, a new topology which is called the

front-topology (or the b-topology) is formed on the space X.

(b) (i) A continuous function f: X —> Y between topological

spaces is said to be b-dense provided that b{f(X)) = Y.
(ii) An embedding f:X—> Y s called b-closed if

blf{X)) = fX).

Some properties (without proof) of the b-closure operator are the

following (see [SK, 2.1]):

Lemma 1

Given a topological space (X, 7), let A, B C X. Then

(1) A CT b(A) T A.

(2) If A C B, then b(A) C b(B).
(3)  b{A) = b(b(A)).

(4)  b(AUB) = b(A)UDb(B).

*
Remark 1 :
(a) It is immediate from this lemma that, for any topological

space (Y, 7), it holds that Y = b{Y). For,
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YCbhYYCY =Y = Y = bY).

(b) if f:X——> Y is a homeomorphism (between topological
spaces), then b{f (X)) = blY) = Y = f(X); so a
homeomorphism is both a b-dense map and a b-closed

embedding.

lemma 2

(1) If f:(X,7)——> (Y, s) is a continuous function, then
FBV)) € blfV),
for each V C X.

(2) it m: (X, 1) —> (Y, s) is a b-closed embedding, then, for each
V C X, it holds that

bim(b(V}))) = mib(V)).

Proof

(1)  Let yef(b(V)). It must be shown that yeb(f(V})). Suppose that
N is any nhood of y. Then there is some x € b(V) such that
y = f(x). Since f is continuous, there is a nhood U C X of

x such that f(U) ¢ N. Since xe€ b(V), it follows that

unixinv # 9,

and so

FnfPnfv) ¢ 0.

By continuity of f, we have

fFnfxhnfvy ¢ Nn{TF XD nfV),

which implies that



(2)
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NnlyInfv) ¢ 0.

Hence vy € b(f(V)).

From (1), we have m(b(V)) C b(m(V)). But

V

M

b(V) (Lemma 1(1))
= m(V) C mb(V))

= bim(V)) C b(m(b(V))), (Lemma 1(2))

so m(b(V)) C b(m(b(V))). To prove the reverse inclusion, we note

that since m is a b-closed embedding, it follows that

bim(b(V))) C b(b(m(V))) (by (1))
= b(m(V)) (Lemma 1(3))
C bim(X)) (since V C X)
= m(X).
Now let y € b(m(b(V))). It needs to be shown that vy € m{b(V));
that is, we must find x € b(V) such that m(x) = y. By the

above observation, we have vy € m(X); so there is some x € X
such that m(x) = vy. Then we need only show that xe€ b(V).
To this end, let Ner with x€e N. Since m is an embedding,
it follows that there is some U € ¢ such that N = m'1(U).
Therefore xEm"1(U), and U is a nhood of y. But y € b(m(V)), so

unly}fnm(V) ¢ ¢. Application of m ! to this relation gives:
-1 -1 -1
m (U)nm ({yhnm (mV)) ¢ 0.

But m is continuous, so

N @R e m(v) ¢ Na{m Ty} n v,
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and, therefore, NN {m'1(y)}nV + #. Since m is one-one, it

{ {x}

1 m ly)} =

follows that m '{y) = x, thus Then

Nn{x} nV # 0. Hence x € b(V), that is, y € m(b(V)).

Consequently, we have proved that m(b(V)) = b(m(b(V))). o
Lemma 3
If f:X——>Y is a homeomorphism between topological spaces, and

V € X is any subset of X, then b(f(V)) = f(b(V)).

Proof

Since f is continuous, it follows from Lemma 2 that f(b(V)) C b(f(V)).

To prove the reverse inclusion, let y € b(f(V)). To prove that

y € f(b(V)), we must find x € b(V) so that f(x}) = y. Since f is
bijective, there exists a unique x € X such that f(x) = y. So it
needs to be shown that x e b(V). Let N be a nhood of x. Then

f(N) is a nhood of f(x) = y. Since yeb(f(V)), it follows that

FINNNTyInF(v) # 0.

Applying f'1 to this relation, we find that

Flirmmar T @part e ¢ 0.
Since f is bijective, it follows that f'1 (fFIW) = W, for al W C X.
Since f_1 is a continuous bijection, it follows that

=4 Ty = w
Hence Nn{x}nV # 0, for each nhood N of x; that is, x € b(V).
Consequently, b(f(V)) = f(b(V)). o

Let us denote by & the family of all b-dense continuous maps, and

by 4 the family of all b-closed embeddings.
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Lemma 4
Each of & and 4 is closed under composition with isomorphisms, as

specified in Definition 1.1.2.

Proof

In Top, isomorphisms are the homeomorphic functions (see, for example,

[HS1], Examples 5.4 ).

et X 2> Y-h—> Z be continuous maps in Top with e€ & and A

a homeomorphism. It must be shown that b((hoe)(X)) = Z. We have

bl(hoe)(X)] = blhle(X))]

= hl[b(e(X))] (Lemma 3)
= h(Y) (e is b-dense)
= Z, (h is surjective)

So hoe is b-dense.
On the other hand, if AL> B-_> C are continuous maps in Top
with me £ and h a homeomorphism, we shall show that

bl{moh)(A)] = (moh){A). We have

bl{moh){A)] = blmih{A)}]
= b[m(B)] (h is surjective)
= m(B) (m is a b-closed embedding)
= mlh(A)]
= (moh){A),

thus moh\ € K. 1]
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To complete the example, we proceed as follows:

(1)

A function (X, 7) —L> (Y, 7) in Top has the following (b-dense,

b-closed embedding)-factorization:
X -L>w, 0 = X 1-E> b (X0, ) TL> (Y, ),

where m is the inclusion of the ba—closure ba(f(X)) into Y, e is
the codomain restriction of f(i.e, e(x}) = f(x), for each x¢€ X)
and ¢’ is the relative topology induced on b(f (X)) by o¢. (Here
the subscripts on the b's indicate in which topology the b-closure
is being taken.) Since (ba(f(X)), c’) is a topological space,

we must have
ba,(ba(f(X))) = ba(f(X)).
We also have

X ¢ ba(f(X)) (Lemma 1(1))

= by, (eX) = by, (f(X)

el

ba/(ba(f(X))) (Lemma 1(2))

by (f (X)).

To prove the reverse inclusion, let yeba(f(X)), and let Ueg ¢’
with y € U. Then there is some V € ¢ such that U =V nba(f(X)).

Now

un clba(f(x))({y}) NFIX) = Vb (f(X)0ch{yhnfx)

= vV e (yh nfixi ¢+ ¢,
because y€eb (f(X)); thus yEbJ,(f(X)), and so
ba(f(X))Qba,(f(X)). Hence e is b-dense. Since m is an
inclusion, we have m(b( f (X)) = b(f (X)), it is also b-closed

because
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blmb( f (X)N] = blb(f (X)) (since m is an inclusion)
= b(f (X)) (Lemma 1(3))
= mlb(f (X)].

(2) We consider a commutative square in Top, with e€¢ & and me K.

(X, 1) —E—s (Y, o)

(A, p) —m—-‘““" (B, A)

Observe that
piX) € bip(X)) {Lemma 1(1))

= mip(X)) € m(b(p(X))),

so  bimi(p(X))) € blm(bip(X)))) (Lemma 1(2))
= m({b(p(X))) (Lemma 2(2))
C b(m(p(X))) (Lemma 2(1))
Hence

m(b(p(X))) = bim(p(X))).

Now choose yeY. Then

qly) € glY) = gq(ble(X)) (e is b-dense)
C blgle(X))) (Lemma 2(1))
= b(m(p(X))) (the square is commutative)

mib(p(X)).
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Hence there exists a € b(p(X)) C A such that m{a) = gly).
Define d:Y——> A as follows: for each yeY, set dly) = a
if and only if gly) = mla). Then d is wvell-defined because m

is an injection. That d is unique such that doe = p and mod = ¢

follows exactly as in Example 1.2.4(c). o

1.3 PROPERTIES OF (E, M)-FACTORIZATION
STRUCTURES

In this section, we show (Proposition 1.3.1) that in an (E, M)-category
X, the classes E and M determine each other through the unique
diagonalization property; that each of E and M contains Iso(X) and
also that M is closed under the formation of all limits. It is shown
that the factorization structures (E, M) in X which can be extended
to factorization structures (E, M’) for set-indexed sources are precisely

those for which X has products (Proposition 1.3.5).

Proposition 1.3.1 (cf. [HSV], 1.2)

Let (E, M) be a factorization structure on X. Then

(1) (M, E) is a factorization structure on X°P.

(2) If the diagram

A ——7—4 C
commutes, where e¢ € E and m € M, then f € M. In particular,

d is an isomorphism.



(3)

(4)
(5)
(6)

(7)
(8)
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An X-morphism f:C——> D belongs to M if, and only if, for

each commutative diagram

with e € E, there exists a (not necessarily unigue) morphism
B ~--(-i——> c such that doe = r and fod = .
EnM = Iso(X).

Each of the classes E and M is closed under composition.
Each (E, M)-factorization is unique up to a unigue commuting
isomorphism.

If nofe M and neM or n is a monomorphism, then f e M.
The class M is closed under the formation of products,

pullbacks, multiple pullbacks, and limits.

Definitions:

(a) The class M is said to be closed under the formation of
multiple pullbacks provided that, if a source (ki 1S —> Si)l
is a multiple puliback of a sink (gi : Si—> T)l with each

8 in M, then kiEM' for each i€l.

(b} The <class M is said to be closed wunder the
formation of limits if, whenever A is a small category,
(L, 14) and (L, 7A) are limits of functors D: A —> X
and F: A—> X, respectively, and (r;A) :D—> F is a
natural transformation with each A in M, then
k:L—>1L belongs to M, where &k is the unigue

morphism making the following diagrams (one for each
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A € Ob(A)) commutate:

‘a

D(A) —— F(A)
Ta

Proof

For the proofs of (2), (4), (B), (6) and (7), see [AHS], Chapter 14.

(1) (See also [AHS], Proposition 14.3.) Let f:X—>Y be an
X°P-morphism. Then f:Y —> X is an X-morphism, so it has an
(E, M)-factorization
vyLsx = vl s a M,
where m € M and e € E. But then

XL sy = x M s al Sy

is an (M, E)-factorization of f in X°P,

To show that X° has the unique (M, E)-diagonalization

property, consider a commutative square X°P

with meM and ee E. Then there exists a unique X-morphism

C—d-> B such that the following diagram commutes in X:

e
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Associated with d is a unique X°P-morphism d:B-—> C

such that the diagram in X°P

commutes. This follows from the fact that doe = s and mod = r.

(3) (See also [AHS], 14.6(3).) Suppose that CL> D e M. Since
e € E, the unique (E, M)-diagonalization property implies

that there exists a B——d—> C such that r = doe and fod = s:

A—¢ B
/
/
r d” 5
7
/

C ——7——» D
Conversely, suppose the condition is satisfied, and let f = m’oe’

be an (E, M)-factorization of f. But f = foz'dC is also a

factorization of f, so the following diagram is commutative:



(8)(i)

(ii)
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C LA

C M‘?*——"
By hypothesis, there exists an X-morphism d’ such that
d'oe’ = ia'C and fod’” = m’. The resuit follows from (2)
above.

That M is closed under the formation of products and

pulibacks follows from [AHS, Proposition 14. 15].

Let the source (Zi L > Xi)l be a multiple pullback of a

sink (fi : Xi —> A)}. Suppose each ]}EM' It must be shoWn

that each li € M. Then, since inIi = d, for some fixed
morphism d: L——> A, we need only show that de M, for
then it will follow from (7) that li € M, for each i€l We

consider the following commutative diagram

A—Ff B
h k (5]
L—9 A

|

N

where e € E. Since each fiEM’ it follows that there is a

r,
unique morphism B—> Xi which makes the following diagram

commutative, for each ie€l:



(iii)

A
liohl
X

.
Thus for, = k and roe = Loh, for each i€l Since (L > X,
is a multiple pullback for the sink (X, ——> A, there is a
unique morphism B——> L such that liov = Ty for each i€l

Now we have

liO(voe) = (liov)oe = roe = liOh,
for each i€l. Since (L, (li)l’ d) is a mono-source, it follows that
voe = h. We also have

doy = (fioli)ov = fio(liov) = fi°ri = Kk,

s0 v makes diagram (x) commute and, by (7), each liEM.

We shall now show that M is closed under the formation of

limits. Suppose each nAEM. It must shown that ke M. Given

a commutative square

X —¢ v

L—T——éL

with e€e E, we have
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UAO(IADT) = (nAolA)or = (fAOk)or

= IAO(](OI‘) = ZAO(SOe) = (ZAOS)Oer

from which the (E, M)-diagonalization property implies the
ap
existence of a unique X-morphism Y ——> D{(A} making the

following diagram commutative, for each A € Ob{A):

X - Y
/
J /s
A7 [, os
[por P A°
/
e
D(A) -————— F(A)
A

Since (L, lA) is a limit of D, there is a unique X-morphism

Y--":‘~—> L such that leh = dA’ for each A € Ob{A):

—Tm-——a D(A)
A

It remains to be shown that koh = s and hoe = r. But, for

each A € Ob(A), we have

ZAo(koh) = (ZAok)oh = (nAolA)oh = r]Ao(leh) e nAodA = ZAOS'

Since limits are mono-sources (see, for example, [HS1], 20.4 ),

it follows that koh = s, In the same way,
ZAO(hoe) = (leh)oe = dAoe = ler

implies hoe = r. So by (3), it follows that ke M. 0
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Definition 1.3.2 ([HS1], 37.8)

Let A be a subcategory of a category X. An X-morphism
X—L> Y is called an A-extendable morphism if, for each X-morphism
X £ > W, where W ¢ Ob(A), there is an X-morphism Y —%-> w

such that the following triangle is commutative:

Proposition 1.3.3

If X has a terminal object T, (E, M) is a factorization structure on
X and B is the full isomorphism-closed subcategory of X which
consists of all objects B € Ob(X) for which the unique morphism

B—> T belongs to M, then

(1) B is E-reflective in X.

(2) If A is a subcategory of X such that
E = {feMor(X) | f is A-extendable },

then B is the E-reflective hull of A in X.

Proof
(1) Let X € Ob(X). Then there exists a unique X-morphism X -t>T.

Suppose that
XL sT = xfl sy "™
is an (E, M)-factorization of ¢. Since me M, we must have

Y € Ob(B). If x 1> Z € Mor(X) with Z € Ob(B), there is a
unique Z—L>T belonging to M. Then f’of = moe, soO
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since E | M, there is a unique morphism Y—L> Z making the

following diagram commutative:

Therefore, (e, Y) is a universal map for X, so the category B is
reflective in X. But e€ E and the X-object X was arbitrary,

so B is E-reflective in X.

(2) To show that A is a subcategory of B, choose A € Ob(A). It
needs to be shown that A € Ob(B). To do this it must be
shown that the unique X-morphism A—L> T belongs to M.

Let
AL sT = a7

be an (E, M)-factorization of f. We also have foidA = moe.
Since ecE, it follows that e is an A-extendable X-morphism,
so there exists an X-morphism B L> A which makes the

following diagram commutative:

(4

A ——M

(That m = fod follows from the fact that T is a terminal
object.) It follows from Proposition 1.3.1(2) that fe€ M, hence
A C B.



To complete the proof, we show that if C is any E-reflective
full isomorphism-closed subcategory of X which contains A,
then B C C. Choose any B € Ob(B). Then the unique morphism
B> T belongs to M. There also exists a universal

‘B

morphism B >BC with BCEOb(_C_) and eBEE. If k is

the unique morphism from BC to T, then it holds that koeB = m.
Since E | M, there is a morphism BC -d—> B so that the

following diagram commutes:

B
idB]
B

This shows that g is a section and hence an isomorphism

' Be
[k
.

e}
m

_ ‘B
d

(see, for example, [HS1], 36.8). Since BCeOb(Q) and C

is isomorphism-closed, we get that B € Ob(C), as desired. a

Definition 1.3.4 ([HSV, 1(2)])

Let E be a class of X-morphisms and let M be a collection of
sources in X and suppose that both E and M are closed under
composition with ~ X-isomorphisms. Then (E, M) is a factorization

structure for sources on X if and only if the following conditions hoid:

(1) Each source (X, (fi))l in X has an (E, M)-factorization; that is,
there exist X -&£-> Y € E and a source (Y, (mi))l in M such
that (fi)l = (mi)loe.

(2) X has the (E, M)-diagonalization property; that is, e | (mi)l’ i.e.

given commutative squares with e € E and (mi) eEM,
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¢ v

.

m; Xi

A
|
X
there, exists a unique X-morphism d such that doe = g and

miOd = fi’ for each i€l

Proposition 1.3.5 (See e.g. [HSV, Remark (2)] and [AHS, 15.19(1)])
In any category X, each of the following statements implies those that

follow it. If X has an initial object, the three statements are

equivalent:

(a) X has products (respectively, finite products).

(b) In X, every morphism factorization structure (E, M) can be
extended to a factorization structure (E, M’} for set-indexed
sources (resp. finite sources).

(c) The trivial morphism factorization structure (Mor(X), Iso(X)) can
be extended to a factorization structure for set-indexed sources

(resp., finite sources).

Proof
(a) = (b). Assume that X has products and that (E, M) is a morphism
factorization structure on X. Given a set-indexed source

(fi: X—> Yi)l’ if (]—[Yi’ ﬁ'i) is the product of (Yi)l, then there is

<f>
a unigue X-morphism X —1 > ]—[Yi such that 7rio<fi> =t

for each i€el. Now let <fi> = moe be an (E, M)-factorization

of <fi>:



Yi <f§> Z
\ /
ITY,
The factorization (f), = ((r,om)oe); is an (E, M')-factorization of

(fi)i' where

M = {(mi W —> Bi)! | there exists m: W —> HBS EM

such that m. = w=om, for each iel}.

We will show that (E, M’) is a factorization structure for
set-indexed sources in X. Firstly, M’ is closed under
composition with X-isomorphisms as required by Definition 1.1.2.
Consider commutative squares (where X, e, f’ etc. are not

necessarily those in the first part of the proof.)

X € .Y

i i T
\
m

with ee E and (mi)iEMI' By definition of M’, m.

= mom, for

some m¢ M, where (HAS’ wi) is the product of (Ai)l' There is a
unigque X-morphism <fi> such that wio<fi> mfi, for each i€i.

We have

xiomop e miop == fioe = 7ri0<fi>oe,
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for each i€l so mop = <fi>oe. Since el m there is a

unigue X-morphism d such that mod = <fi> and doe = p:

X————Y

A —m

We need only show that miod =fi’ for each i€ l. But this

follows from the equalities

miod = riomOd = 7rio<fi> = fi’

for each iel. Hence (E, M’) is a factorization structure for
set-indexed sources in X. (Similarly, if X has finite products,

then (E, M) can be extended to a factorization structure for finite

sources.)

b) = (c}. (Mor{X), Iso(X)) is a particular instance of the factorization

structure (E, M).
Now we assume that X has an initial object J.

(c) = (a). Given the trivial factorization structure (Mor(X), Iso(X)), let
(Mor(X), M) be its extension. Suppose that (Xi)l is a

set-indexed class of X-objects. For each i€, there exists a
4
unique X-morphism J——> Xi' Let

e 4 m.
X

J——i—>xi=J > X l>Xi

be a (Mor(X), M)-factorization of (ei)l. it is asserted that
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m. i
(X ——> X) is a product of (X),. For, if (¥ s X,), is any

indexed family of X-morphisms, then the following squares (one

for each i€el) commute,

where ey is the unique morphism from J to Y. Since eYl(mi)‘,
there is a unique X-morphism Yi> X such that doeY = ey

and miod = fl for each i€|l. o

Definition 1.3.6 (See e.g. [HS1], 6.27)
A category X is called a co-(well-powered) category provided that each
X-object X has a representative class of quotient objects which is a

set.

Proposition 1.3.7 (See also [HSV], 3{a))

Let X be a co-{well-powered) category and let (E, M) be a

factorization structure for set-indexed sources. Then the following

statements are equivalent:

(a) There exists an M’ such that (E, M’) is a factorization
structure for arbitrary sources.

(b) E C Epi(X).

(c) f (X, (m) € M, then (X, (m, m)) € M.

(d) Every V_X_-section belongs to M.

Proof. See [AHS], Proposition 15.20.
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1.4 EXISTENCE OF FACTORIZATION STRUCTURES

in this section, we shall give an existence theorem (Theorem 1.4.1) for
factorization structures. Swell epimorphisms are defined and it is shown
that on a category X which has (epi, mono-source)-factorizations for
2-sources, swell epimorphisms are the extremal epimorphisms. (Lemma
1.4.5). In Theorem 1.4.7, we show that an (epi, mono-source)-
factorizable category is one which is (extremal epi, mono-source)-
factorizable, or equivalently, one which is (swell epi, mono-source)-

factorizable. Here follows the result due to Bousfield ([BO, 3.1}:

Theorem 1.4.1

Let X be a cocomplete category and let E be a family of
X-morphisms. Then, for some class M of X-morphisms, (E, M) is a
factorization structure on X if, and only if, E has the following

properties:

(@) Iso(X) C E.

(b) E is closed under composition.

(c) If e = foe with ¢, ¢ € E, then f € E.
(d) is closed under the formation of pushouts.

E
(e) E is closed under the formation of colimits.

(f) Solution set condition (SSC): Each X-morphism f has a set of

e 8
factorizations { X —& ¢

> B, > Y}, with e, €E for all eec 4
and such that any factorization of f, X --> B-£-> Y with
ec E, can be mapped (in the category Ef below) to some

member of this set.

Proof

if (E, M) s a factorization structure on X, then (a) through (e)
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follow from Theorem 1.3.1 (dual}. So, we need only establish the SSC.
Given a fe€ Mor(X), the representative set required by the SSC can be

taken to be any singleton set consisting of an (E, M)-factorization of f.

Conversely, suppose that the conditions of the theorem are satisfied.

We define M as follows:

M = {geMor(X) |flg VfeE}.

By [AHS, Proposition 14.7], we need only establish the following

conditions:

(1) Iso(X) € ENM.
(2) Each of E and M is closed under composition.

(3) X is (E, M)-factorizable, and each (E, M)-factorization of an

X-morphism is unique up to a commuting isomorphism.

For these we proceed as follows:

(1)  Consider a commutative diagram

.—-——?——4.

with e€ E and fe€lso{X). Define d = f"1os. Then

doe = (f losloe = flolsoe) = flo(for) = r

and fod = fo(f'1os) = 5. And d is unique such that
doe = r and fod = s because f is a monomorphism; so e]f,

hence fe M. By (a), feE thus fe ENM.
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(2) Given morphisms mq, m2EM such that moom, is defined,

consider the following commutative diagram, with e € E:

[ ] — 8
° . =L
mq Mo
Then there is a unique morphism al1 with m20d1 = g and
d1oe = myop. Also there is a unique morphism d2 such that

mqed, = d, and dyoe = p. Therefore
(moemqledy = myolmqody) = myedy = g

and dzoe = p. If d were another morphism satisfying the

conditions that (m20m1)od = q and doe = p, then

(m20m1)od2 = (m20m1)od = m20d1 = m20(m1od)

= q = m20(m10d),

and (m.I od)oe = m,op. But d1 is unique such that
q = m2od1 and d1oe = mqop, SO m1od = d,. Since d,
is unique such that m1od2 = d1 and dzoe = p, it follows

that d, = d. Hence el(m20m1), thus myom, € M.

(3) Given an X-morphism f: X —> Y, let Ef be the category
m

€

whose objects are factorizations X > B

>Y of f with

eec E, and whose morphisms are commutative diagrams:
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X B —+Y
€, 1 m,
z'dX h idY
X -+ B » Y
€s 2 My
We will show that Ef is cocomplete. Hence let D : | ——> Ef be

a functor, where | is a small category. Define functors

D1 :l—> X and D2 ] ——> X as follows:
D1(i) = X, for each i€ Ob{l)
and
D1(m) = idx, for each me Mor(l);
while
D2(i) = Bi' whenever D{(i) = X ——> Biu—-u—-—-> Y,
and if m:i——> j€ Mor(l), then
Dom:i—>i = B> B
2\ J i j
whenever
X e, }Bi m Y
Dim:i—>|j) = idX h idY
X — B. Y
G
. h
Let Colim D1 = (X —> W)i e Ob(l)
. ki
and Colim D2 = (Bi__> A)i € Ob(l)’
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Consider the following diagram:

z'dX (2) (%)
. h k -
Since (X ——> W)i € Ob(l) and (Bi —> A)i ¢ Ob(y 2re colimits,
there is a wunique X-morphism e: W ——> A such that square
m, l'dX
(1) commutes. But (Bi —_— Y)i € Ob(l) and (X —>—-> X)i € Ob(l)

are natural sinks for D2 and D1' respectively; so, by the
universal property of colimits, there are unique X-morphisms

[ W ——> X and m:A-——>Y such that squares (2) and (3)
commute. By condition (e}, the morphism e belongs to E since
each eieﬁ. Square {(4) is a pushout diagram. Since e € E, it
follows from condition (d) that € € E. Now for each i€, it

holds that
moeol, = mokoe, = moe, = feidy, = fOL’o{i.

Since colimits are (extremal epi)-sinks (see, for example, [HS

‘II
20.4(dual}]}, we have moe = fol. But square (4} is a pushout,
so there is a unique X-morphism m:B——> Y such that
mok = m and meé = f. It is asserted that the following sink

in Ef is a colimit of D:
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id

X—& B Y JieoObll)

We have, for each i€l,

mokoki = mOki =m = idYomi,

and
kokioei = koeoli = EOlOli = Eoidx,

so both squares commute. We first show that this sink is natural
for D. Hence let m:i——>j be a morphism in 1. Its image

under D is

id

It needs to be shown that kijoh = koki. But because

(ki : Bi—> A)ie Ob(l) is natural for D2, we have ijh = ki'

and then kijOh = koki. Now suppose that the diagram

id

x
ol

1l

O
I
L

<

Ji e Ob(l)
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is also a natural sink for D. We seek a unique X-morphism

d:B-——> C such that the digram

id d ia’Y (#k)

X— € . CcTm Ly

commutes, and dokoki = hi’ for each i€ Ob{l}. Now

h.
i . , .
(Bi R— C)i e Obl(l) is a natural sink for D2, so we obtain a

unique X-morphism c¢: A——> C such that the triangle

commutes, for each ie Ob{l}.

w € —~+ A
c
[ k (k)
X B a_ ¢
\;
For each i€ Ob{l), we have that
coeoli = cokioei = hioei = g = éololi.
Since colimits are epi-sinks, it follows that c¢oe = ‘éol. But

square {4) is a pushout, so there is a unique X-morphism
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d:B——> C such that dok = ¢ and doe = (:3 (in diagram (x%x)

above). For each i€ Ob(l}), we also have

r%’tOdOkOki = r%oco}’ci = ﬁ*whi = idxomi = mOki.

But (ki : Bi > A)i € Ob(l) is a colimit (and so, an epi-sink), so
r%odok = m. Also r%odoé = 1310: = f. By the uniqueness of m
such that mok = m and moe = f (see diagram (x}), it follows
that r%od = m. Hence d is such that the squares in diagram
(%) commute. We also have that dOkOki = co}’ci = hi’ for each
i € Ob(l).

Finally, suppose that d is also such that doe = ¢z, fod = W

and c_io}’co}’ci = hi’ for each i€ Ob{(l}. Now, for each i€ Obl(l},

we have c_iokoki = dOkoki. Since colimits are epi-sinks, it follows
that dok = dok = c¢. Since doz = e also, and d is unique
such that dok = ¢ and doe = (:3 (in diagram (x%xx}), we have

d = d. By the dual of the existence theorem of (IMAC, p.

116]), it follows that Ef has a terminal object, i.e. there exists

a factorization X—_e—> Bi> Y of f with e€E, such that if
X-£>B ™ > Y is any factorization of f with e€E, then
there is a unique X-morphism A : B’ —> B so that the

following diagram commutes:

id

X
Q
1l
o
I
L
<
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[t must now be shown that m belongs to M as defined above.
To do this, it is enough to prove the existence of a unique

diagonal morphism in diagrams of the form:

C
‘q 0
Y

where e € E. This will follow from the equivalence of the

€

idg

_m

e

following statements:

(i) A unique diagonal morphism exists for commutative

diagrams of the form

l k (2)

where e’ € E.

(i) A unique diagonal morphism exists for commutative squares

of the form (1), where e€E.

That (i) = (ii} is obvious.

ii) = (i}. Suppose we have a commutative square, as given in

(i). We form a pushout square as indicated in (#) below:



»v-—————-—_————-i

W O

C

} (3)
_._m.___“__,(‘;

\Y

By condition (d), we have e’’’ € E. By the pushout property,
there is a unique X-morphism [’/ : C ——> Y such that the

triangles in diagram (3) above commute. From triangle (%), we

have a commutative square of the form given in (ii):

C
ll//
Y

—y

id

98]
® D

m

so there is a unique diagonal X-morphism d:C —> B such
that fed = '’ and doe’’ = idg. Put d = dol’. Then

mod = mo(dol’) = (mod)ol’ = ["'ol’ = k
and

doe’ = (dol')oe’ = do(l’0e’) = dole’’ol) = idyol = L

X

But pushouts are colimits, and therefore they are epi-sinks (see,
for example, [HS1, 20.4(dual)l); so d is the unique diagonal

X-morphism for square (2).

Now it remains to show that there is a unique diagonal

X-morphism for a commutative diagram of the form (1). By

condition (b), we have a factorization X eoe > C k >Y of the

morphism f with ece € E, which we may assume comes from

the representative set:
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id

(4 B m LY

By what we proved initially, there is a unique X-morphism &
which makes the above diagram commutative. It must be shown
that A is also that unique diagonal X-morphism for diagram {(1);
so it also needs to be shown that hoe = idB. But hoe makes

the following diagram commute:

al
L
vs]
>
(o]
Q
il
3
L
<

id

Since idB also makes this diagram commutative, it follows from

the fact that X -%> B-"-> Y s a terminal object that

hoe = idB.
Now let mioey = f = Moo es be any two (E, M)-factorizations
of f  Then there exist unique X-morphisms h and ¢ such

that each of the following diagrams commutes:
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Since eilmi, for each i = 1, 2, we must have gh = id
and hog = id. Hence & is an isomorphism. Consequently, (E, M)

is a factorization structure on X. o

Definition 1.4.2 (See also [HS1, 17.15(4)])

Let M be a class of sources in X. The category X is called an
M-well-powered  category provided that each X-object has a
representative set of M-subobjects. (An M-subobject is a pair (X, f),

where X is the domain of f and feM.)

Proposition_1.4.3

Let (Ei, Mi)l be a family of factorization structures on a cocomplete
M-well-powered category X for which (E, M) is also a factorization
structure with E C Ei' for each i€ l. Then there is some family M’

of X-morphisms such that (n -Ei' M’) is also a factorization structure
I

on X.

Proof

In view of Bousfield’s Characterization Theorem, we need only show

that n_Ei satisfies conditions (a) through (f) of Theorem 1.4.1.
|

(a) Since (E, M) is a factorization structure on X, E satisfies the
conditions of Theorem 1.4.1. Since E C Ei’ for each i€el, we
have E C ngi. Since Iso(X) C E, so lIso(X) C ngi.

I |
(b) Suppose €qr €y € nEi. Since each Ei is closed under
!
composition, it follows that €50€4 (when defined) belongs to

each Ei’ thus €50€4 € TEi.
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(c) Suppose that e = foe’, where e, e’ EnEi' Then e, e’ eEi,
|

for each i, so fe€ Ei’ for each i (Theorem 1.4.1{c}), hence

e ngi.
I

(d) Given a pushout diagram in X

with hengi, we have hegi, for each i, so that eeEi, for
|

each i {Theorem 1.4.1(d)), hence eengi.
|

(e} Since each (Ei’ _M_i) is a factorization structure on X, by
Proposition 1.3.1(8) (dual) each Ei is closed under colimits.

Consequently, ngi is closed under colimits.
I

() Given an X-morphism X—L> Y, we consider all factorizations
yl i "
X-L>y = x—1L> A — >y

of f, where each mj belongs to the representative set of
M-subobjects and each hje ngi. We assert that this is a solution
I

for f. For suppose,

XLs>sy = x£smL >y

with e E and p = moe is an (E, M)-factorization of p.

€N
|
Then ee_Ei, for each iel, so that eenEi and (by (b} above)
|
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eoéengi. Hence the factorization meo(ece) of [ is isomorphic
|

to one of the factorizations of f in the set above. 1]

Definition _1.4.4

(a) An  X-morphism e is called a swell epimorphism provided that it
diagonalizes over mono-sources; that is, whenever (mi)l is a
mono-source and kioe = mioh, for each i€l, then e (mi)l; that
is, there exists an X-morphism d such that the following

diagram is commutative:

(b) A monomorphism f is called an extremal monomorphism if it
satisfies the condition that: If f = hoe with e € Epi(X), then
e € Iso(X).

Dually:  An extremal epimorphism.

Lemma 1.4.5

Suppose a category X has (epi, mono-source)-factorizations for
2-sources. Then in X the extremal epimorphisms are the swell

epimorphisms.

Proof

h
Given a swell-epimorphism A-£ >B, let B ;C be a pair of X-

morphisms such that hoe = koe. In the following commutative
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diagrams, the pair (C c > C, C- c > C) is a mono-source:
B N -
hoe = koe h| |k
ldC
C C
—la——_—)
e
Since e is a swell epimorphism, there is an X-morphism B-———‘-ié—~> C
which completes the above diagram, hence h = k. To establish the
extremal condition, let e = moh with me€ Mono(X). Since m is a

mono-source, there is an X-morphism d’ making the following

diagram commutative:

Hence m is a retraction, so m is an isomorphism (see e.g [HS1],

Proposition 6.7 ).

Conversely, suppose that A-£>B is an extremal epimorphism and

suppose that the diagram

m.
commutes, for each iel, where {(C 1> Di)i is a mono-source. Let

(e, (m1, m2)) be an (epi, mono-source}-factorization of the two-source
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(e, h). We have

— J— — /
miomzoe’ = miOh = kioe = kiom1oe .
and, since e’ is an epimorphism, it follows that mom, = kiom1, for
each i. To show that my is a monomorphism, we assume that
mqol = m107, for some X-morphisms [ and [. Then, for each i€l,
miomzol = kiom101 = kiom101 = miomzol
and, since (mi)| iS a mono-source, mzol = mzol. But (m1, m2) is
a mono-source, so [ = [. Hence m, is a monomorphism. Since e

is an extremal epimorphism, it follows that mq is an isomorphism.

Hence the morphism mzomi1 satisfies the relations:

(mzomﬂ)oe = mzo(mﬂoe) = mzo(mﬂom.l)oe’ = mzoe’ = h
and
miO(mzom.ﬂ)oe = mio(m20m1'1om1e’) = miO(mzoe’) = miOh = kioe,
so (since e is an epimorphism) mio(mzomi1) = ki’ for each i€l

Consequently, mzcvm{1 is the required diagonal morphism. Thus e is

a swell epimorphism, and the lemma is proved. o

Theorem 1.4.6

Every category that has (epi, mono-source)-factorizations is an

(extremal epi, mono-source)-category.

Proof. See ([AHS], p. 244). o

Theorem 1.4.7

In any category X, the following statements are equivalent:

(1) X is (epi, mono-source)-factorizable.



(2)
(3)

(4)

()

Proof

1

2
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X is (extremal epi, mono-source)-factorizable.

(Swell epi, mono-source) is a factorization structure for sources in
X.

(Extremal epi, mono-source) is a factorization structure for
sources in X.

(E, M) is a factorization structure for sources in X, for some

class E of morphisms and collection M of mono-sources.

2). Suppose that X is (epi, mono-source)-factorizable. By
Theorem 1.4.6, X is an (extremal epi, mono-source)-category,

hence (extremal epi, mono-source)-factorizable.

3). If X is (extremal epi, mono-source)-factorizable, then, by
Lemma 1.4.5, every source in X is (swell epi, mono-source)-
factorizable.

It must be shown that mono-sources and swell epimorphisms are
closed under composition with X-isomorphisms as required by
Definition 1.3.4. Given a mono-source (mi)I and an
X-isomorphism h, let r and s be X-morphisms such that
(homi)or = (homi)os, for each i€l. Then ho(mior) = ho(mios),
for each i€el. Since h is an X-monomorphism, it follows that
mor = mos, for each i€l. But (mi)! iS a mono-source, SO
r = §; i.e. (homi) is a mono-source. That (miohi)l (where each
hi is an isomorphism) is also a mono-source is equally easy.
Now Let X-4->Y be a swell epimorphism, let Y—h—> Z be
an X-isomorphism and consider the following commutative squares

(one for each iel):
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e v h
8 ki
A m, BI
where (mi)l is a mono-source. Then there is an X-morphism

d:Y——> A such that doe = g and mod = kioh, for each

i € 1. Define Z-ik—»> A to be the X-morphism &k = doh'1.
Then &k satisfies

ko(hoe) = (do}z'1)ohoe = doe = g
and

mok = moldoh™") = (modioh| = (kohloh | = k,
for each i€el. And &k is unique such that ko(hoe) = g and
miok = k., for each i€, because (m;)k iS a mono-source. In a

similar way, we can show that swell epimorphisms are closed

under composition with X-isomorphisms on the right.

Now let the following square be commutative with e a swell

epimorphism and (mi)| a mono-source:

By definition, there is a diagonal morphism 4 which completes
the above diagram, for each i. If d’ also makes this diagram

commute, then doe = h = d’oe implies that d = d’, since e
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(being a swell epimorphism) is an epimorphism. Consequently,
(swell epi, mono-source) is a factorization structure for sources in

X.

3) = {4). If (swell epi, mono-source) is a factorization structure for
sources in X, then, in particular, we have an (epi, mono-source)-
factorization for 2-sources, so the swell epimorphisms and the

extremal epimorphisms coincide by Lemma 1.4.5.
{4) = (5}). This is obvious.
(6) = (1). By ([AHS], 15.4), E is a class of X-epimorphisms, and so

(E, M) is an (epi, mono-source)-factorization structure for sources

in X (also see e.g. [HSV], 1.2(3)). O

1.5 OTHER PROPERTIES OF (E, M)-
FACTORIZATION STRUCTURES

We start with the following:

Definition 1.5.1

Assume that X has finite products. Let X € Ob(X). The unique

2 such that the following diagram

X-morphism AX X —> X
commutes (7r1 and T, are the projections X2 —> X) is called the

diagonal morphism:
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We prove that on an (E, M)-category X with products of pairs, the
class E consists of epimorphisms if and only if, for each X e Ob(X),

AX € M (Theorem 1.5.7).

Definition 1.5.2 ([CA], p. 289)

Let M be a class of X-morphisms. We define (_M_)T and (M_)l as

follows:
(a) (M)T = { fe MoriX} | f| g for each g € M }.
(b) (M)l = {geMor(X)|flg for each feM}.

In view of this definition, we have

[ Epi(X) }l = {geMor(X)|elg for each ee Epi(X)}.

Definition_1.5.3 (ICA], p. 292)

An  X-morphism f is called a srfong monomorphism if it is a mono-
morphism and belongs to the class [ Epi(X) ]l; that is, f is a strong
monomorphism provided that f € Mono(X) n [ Epi(X) ]l. This means that
a monomorphism f is a strong monomorphism if, whenever
fov = woe and e € Epi(X), there is an X-morphism d which makes

the following diagram commutative: (See [KE], p. 129.)
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In this case, uniqueness of d follows from the fact that e € Epi(X).
Note also that, if triangle () commutes in the above diagram with
e € Epi(X), then (fodloe = foldoe) = fov = wuoce, so that fod = u.
Thus triangle (lI) commutes as well. Dually, triangle (I) commutes

whenever (Il) does with f a strong monomorphism.

Definition 1.5.4 ([HS1], 16.13)
Let X—L> A be an X-morphism. The pair (X, f) is called a regular

subobject of A (and f is then called a regular monomorphism) if (X, f)

. . - .
equalizes some pair AT> B of X-morphism.

Lemma 1.5.5

(a) Every X-regular monomorphism is a strong monomorphism.
(b) Every strong monomorphism is an extremal monomorphism; in

particular, a regular monomorphism is an extremal monomorphism.

Proof

(a) Let (X, f) be a regular subobject of A € Ob(X). Pick X-

t
morphisms A
w

with, f is an X-monomorphisms ([HS1], 16.15). Let e € Epi(X).

>

S B such that (X, f) = Eqult, w). To begin

We need only show that e | f; that is, given a commutative

square
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K —EX— + H
(%)

X —-——f———+ A
there is a unique X-morphism H—d—> X which completes the

above square. Now commutativity of the square yields:

(fos)oe = fo(sog) = to( fok) = (tof Jok = (wof )ok

= wo( fok)} = wo(soe) = (wos)oe

and, since e is an epimorphism, tos = wos. Since
(X, f} = Equl(t, w}), there exists a unique X-morphism H—i> X
such that fod = s. That doe = k follows from the commutat-

ivity of triangles (I} and (ll) in Definition 1.5.3 above.

Let f be a strong monomorphism and suppose that f = moe,
where e is an epimorphism. We need only show that e is an
isomorphism. Since e is an epimorphism, there exists a unique
X-morphism &k which renders the following diagram commutative,

since f € [Epi(_)g)]l:

Thus hoe = id, so e is a section and, being an epimorphism,
it is an isomorphism (see, for example, [HS1, 6.15]). Hence f is
an extremal monomorphism. The second assertion is immediate

from the first and part (a). O
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Definition _1.5.6

Suppose that the category X has products of pairs. If X—f—-> Y is
an  X-morphism, we define the graph of f to be the unique X-

morphism <z'dX, > i X > XxY;

Theorem 1.5.7

Let (E, M) be a morphism factorization structure on a category X
which has products of pairs. Then the following statements are

equivalent:

(1} E C Epi(X).

(2) Every X-extremal monomorphism belongs to M.
(3) Every X-strong monomorphism belongs to M.
(4) Every X-regular monomorphism belongs to M.

{5) Every X-section belongs to M.
) If XL>zeM and X-L->Y € Mor(X), then

X __S.’ZL_J:L> ZxY € M.

(7) For each X—f—-> Y € Mor(X), <idx, f> € M.

8) If X5 7 e M, then XM M> o 72 ¢ pm

Ax 2
(9)  For each Xe€ObX, X—2-> x2 ¢ M.

{10} if gof € M, then f e M.
(11) If goe € M and e € E, then e € Iso(X)

(12) M = {feMor(X)|f = goe, ec€E implies ee€ lso(X)}.
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Proof
The implications
9 =010=(11)= (12) = (1)
follow from [AHS, Proposition 14.11].
We shall only establish the chain
(1)=(2) = (3) = (4) = (B) = (7) = (6) = (8) = (9).

The implications (2) = (3) = (4) follow from Lemma 1.5.5.

1) = (2). Given an X-extremal monomorphism f, let f = moe be
its (E, M)-factorization. By (1), e € Epi(X), so, since f is extremal,
e¢ is an isomorphism. But M is closed under composition on

the right with isomorphisms, so fe M.

(4) = (5). An X-section is a regular monomorphism {see, for example,

[HS1]’ 16.15(1) ) and, by (4), it must belong to M.

T
5) = (7). Given the projection XxY X > X, we have

7rXo<z'dX,f> = idy,, SO <idx, f> is an X-section. By (b}, the

morphism <z‘dx, f> belongs to M.

(Z)= (6). Let X—->ZeM and let X -L-> Y e Mor(X). Suppose
that (XxY, Ty TY) and (ZxY, Pz pY) are the products of the
pairs (X, Y) and (Z, Y), respectively. By commutativity of the

following diagram
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we have

pZO[(mXidY)o <1’dx, f>1 = [pZO(mxidY) ]o<idx, >

= (morx)o<idx,f> = mo(rxo<idx,f>)

il

moz'dx = pyo<m, >
and
[pYO(mxidY) ]o<idx, f> = idYOTYo<idX, f> = idYof
= ddyopyo<m, f> = pyo<m, f>.
But (pz, pY) is a mono-source, so we must have

(mxz’dY)o <idx,f> = <m,[f>.

Since idYEM (Proposition 1.3.1(4)), we have mxidYE___

{(Proposition 1.3.1(8)), so (mxz‘dy)o <1‘dx, > belongs to
(Proposition 1.3.1(5)), i.e <m, f> e M.

{6) = (8). Clear.

{8} = (9). Since z'dx € M (Proposition 1.3.1(4)), we have

<idX, z‘dx> = AXEM.

The theorem is now proved.
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CHAPTER 2

GALOIS CORRESPONDENCE, E-SEPARATED
OBJECTS AND A-EPIMORPHISMS

In this chapter, we give a Galois Correspondence between the collection
of all subclasses of X-morphisms, and the collection of all subclasses
of X-objects (Proposition 2.2.2); we show that the class A-Epi of
A-epimorphisms are those morphisms that diagonalize over A-regular
morphisms (Proposition 2.1.3); A-Epi contains the class Epi(X) of
X-epimorphisms (Lemma 2.5.2); it is also shown that there is some
class M’ of X-morphisms such that (A-Epi, M’) is a factorization
structure on an M-well-powered (E, M)-category X with E C Epi(X)

(Theorem 2.5.3).

It is shown that if (E, M) is a factorization structure on a finitely

complete category X, then E-separated objects are precisely those

X-objects Y for which the diagonal Ay :Y —> Y2

(Theorem 2.4.1); that for a suitable category X, E-Sep is a (swell

belongs to M

epi)-reflective subcategory (Proposition 2.5.5) and, further, that E-Sep

is M-hereditary (Proposition 2.5.7) on an (E, M)-category X.

2.1 DEFINITIONS

Definition 2.1.1 ([HS.I], 27Q)
Let (A, <) and (B, <) be quasi-ordered classes and let

G

(A, <) .

(B, <)

be order-reversing functions. If, for all ae A and beB, a < F(G(a))
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and b < G(F(b)}), then the quadruple ({A, <}, (B, &}, G, F) is called a

Galois correspondence between A and B.

Definition 2.1.2 (cf. [PR], p. 180; [L02], 1.7)

(a)

(b)

(c)

(d)

For any category X, we define the relation
¢ € Mor(X) x Ob(X)

as follows: (e, Y)e s if, and only if, for each pair f, g of
X-morphisms with common codomain Y, the relation foe = goe

implies that f = g.

Given a class E of X-morphisms, the class

E-Sep = {Y€eOb(X)| (e, Y)eq, for all eecE}

of all X-objects which are o¢-related to each E-morphism is

called the class of E-separated objects in X.

Given a class A of X-objects, the class
A-Epi = {eeMor(X)| (e, YIer, for all YEA}

of all X-morphisms which are o¢-related to each A-object is

called the class of A-epimorphisms in X.

Let A be a subcategory of a category X. An X-morphism e
is called an A-regular morphism if there is a pair (f, g} of

A such that ewx Equ(f g).

X-morphisms whose codomain is in

A-epimorphisms are characterized by the following:
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Proposition 2.1.3 ([LO3, 2.1

Suppose that a category X has equalizers. Given a subcategory A of
the category X, a morphism e is an A-epimorphism if and only if

e | m, for all A-regular morphisms m.

Proof
Suppose that e is an A-epimorphism, m is an A-regular morphism,
let mof = goe and let m =~ Equlh, k), where h and k have a

common codomain in A:

We have

(hogloe = ho(goe) = ho(mof) = (hom)of

= (kom)of = ko(mof) = ko(goe) = (kog)oe.

But e€ A-epi, so hog = kog. Since m =~ Equlh, k), there exists a
morphism d with mod = g, and then, mof = goe = modoe. But
m is a monomorphism (see, for example, [HS1, 16.4]), so f = doe;

thus both triangles in the following diagram commute:
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Uniqueness of d such that the two triangles commute follows from

the fact that m is a monomorphism.

Conversely, suppose that e uniquely diagonalizes over  A-regular
morphisms. Let foe = goe, where f and g have a common
codomain in A, and let m % Equ(f, g). Then m is an A-regular
morphism, by definition. Since m % Equ(f, g), there is a morphism #
such that moh = e = idoe. By hypothesis e diagonalizes over
A-regular morphisms, so there exists a unique morphism d such that

the following diagram commutes:

Thus (mod)loe = moldoe) = moh = 1idoe = e. Since m is a
retraction (as mod = id), it is an epimorphism, so, by ([HS1]’ 16.7),

we have f = g. Thus, e€ A-epi. o

2.2 A GALOIS CORRESPONDENCE

Lemma 2.2.1 (See also [L02, 2.9])
For any E C Mor(X) and A C Ob(X), we have

(i) E C (E-Sep)-Epi.
(i) A € (A-Epi)-Sep.
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Proof
(i) Given a morphism e € E, assume that foe = goe where f and
g have a common codomain belonging to E-Sep. Then (by

definition) f =g, so e € (E-Sep)-Epi.

(ii) If e e A-Epi, suppose that foe = goe with A€ A a common

codomain of f and g. Then f = g, so A € (A-Epi)-Sep. u!

The following proposition describes the Gualois (or Hausdorff) corre-
spondence between the classes Mor(X) and Ob(X} of X-morphisms
and X-objects, respectively. (This correspondence has been called the
Hausdorff Correspondence by Pumplin and Rohrl ([PR]), and the Pumplin-
Rohrl Galois connection in [CS].) A similar correspondence was also
found by Dikranjan and Giuli in terms of some subclasses of M
(defined differently from Definition 1.1.2) and some (closure) operators
on M. (See [DGZ’ Theorem 3.4]). And (in 1992) other Galois

Connections were discovered by Castellini et al. See [CKS].

Proposition 2.2.2

Let & be the collection of all subclasses E of X-morphisms and let
£ Dbe the collection of all subclasses A of X-objects. Suppose these
collections, & and .€, are ordered by inclusion. Define two functions

G: d—> £ and F: £ ——> & as follows:

E— E-Sep and A+— A-Epi,

for each E € & and A€ 4. Then the quadruple (&, £, G, F) is a

Galois correspondence.

Given E.I QEZ in &, we find that
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E,-Sep = G(E,) ¢ G(E;) = E,-Sep.

For, suppose Y € §2-Sep. Then, for each ec€ I_Ez, (e, Y)€e . Pick e
in E‘I’ Then éc¢€ -EZ' so (e, Y)eeg, hence Y€ 51—Sep. Thus G is
order-reversing. In a similar way, we can show that F is order-

reversing.

That E C F(G(E)) for each Ee & and A C G(F(A)) for each A€ £
follow from Lemma 2.2.,1. Thus (&, A, G, F) is a GQGalois

Correspondence as asserted. o

2.3 EXAMPLES OF E-SEPARATED OBJECTS AND

A-EPIMORPHISMS

Example 1
Let X = Top and let E be the class of all dense continuous maps.

Then E-Sep = Haus.

Proof.

To prove that E-Sep = Haus, we make use of a latter resuit
(Theorem 2.4.1). From this result and Theorem 13.7 of [WI], it follows
that a topological space Y € E-Sep if and only if {ly,y) | yeY} is

closed in YxY if and only if Y € Ob(Haus).

Example 2
let X = Unif and let E be the class of all dense uniformly

continuous maps. Then E-Sep is the family of all separared uniform

spaces.



66

Proof.

Suppose that (Y, &) is not a separated uniform space, where 9 is
a uniformity on Y. Then there exist x, YE€Y with x#y such that
(x,y)eD, for each De & We put X = {x,y} and give X the
uniformity 4’ which is initial with respect to the inclusion

X —> (X, D). Let X-5-> X be the constant map with value vy; let
X—L> Y be the inclusion map and let X € > Y be the constant
function with value y. Then these three functions are uniformly
chtinuous. Observe also that the topology 7’ corresponding to 9 is
{X, 0, {y}}. Moreover, e(x) = ely) = y so that eX] = {y}J = X;
thus e is a dense uniformly continuous map. We also have foe = goe

but f# g so (Y, @) ¢ESep.

Conversely, suppose that (Y, &) is a separated uniform space and let
frg: (X, £€)—> (Y, @) be uniformly continuous maps, and let

e: (W, F) —> (X, {) be a dense uniformly continuous map so that
W, 3 —£> X, 6)-L> (v, 9) = (W, 5-E> X, £)-E> (v, 9.

Now if (Z, €) is any uniform space, let (Z, 7(€)) denote the
corresponding topological space. By [WI, Theorem 35.6(b)], the space

(Y, 7(9)) is Hausdorff, and in Top we have the following:

(W, () &> (X, 7(6) L> (Y, 7(D) = (W,1(F) &> (X,7(¢ ) &> (Y,7( D).

Since e : (W, 7(&F)) —> (X, 7(¢£)) is a dense continuous map, it
follows from Example 1 that f = g. Hence, (Y, &) € E-Sep. o
Example 3

Let X = Top and let E be the family of all front-dense continuous

maps. Then E-Sep = Ob(Top).
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Proof.

Let Yzmo. Then there are distinct points Yq- Yo € Y such that for
each open set U it holds that {y1, y2} CU or {y1,y2} nu = 4.
Put X = {y1,y2} and give it the indiscrete topology. Define a
function X —£~> X to be the constant map with value Yo Then e
is continuous; it is also front-dense, since ble(X)) = b({y1}) = X.
Define f: X —> Y +to be inclusion, and g: X——> Y to be the
constant map with value Yo- Then f and g are continuous. We

also have foe = goe, but f # g. Thus Y ¢ E-Sep.

Conversely, suppose that Y € Ob(T_ogO). In order to prove that
Y € E-Sep, we use the characterization given by a later result (Theorem
2.4.1). According to this theorem, we need to show that b(a) = a,
where a is the set {ly,y) | yeY}. Since a C b(a), we just need to
show that b(a) C A, So suppose that (x, y) e bla), but x # y. Then
there exists an open set U in Y such that x€ U, say, but y¢U.

Since (x, y) € b(a), it follows that

(UsX)N{lx, YIIna ¢ 0.

Hence, there exists w e U such that, for each nhood W of (w, w)

in YxY, we have (x,y)eW. But UxU is a nhood of (w, w), so (x,

y) € UxU, which is impossible. Consequently x = vy. o
Example 4
Let X = Top and let E be the family of all back-dense continuous

maps, where a continuous map X—L> Y between topological spaces
is back-dense iff, for each vy eY, there is some x € X such that

{y, f(x)} is indiscrete. Then E-Sep = Ob(Top,).
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Proof

Suppose Y ¢ Ob(hpo). Then there exist Yqs yZEY with Yy $ Yo
such that for every open set U it holds that {y1, y2} c U or
{y1,y2}nU = 0. Let X = {y1, Y5} have the indiscrete topology,
let X—j—> Y be the inclusion map, and let X £ >Y be the
constant map with value Y1 Then both j and g are continuous.
Let X -£-> X be the constant map with value Yq- Then e is
continuous and back-dense, and  joe = goe. Since j # g, it follows

that Y ¢ E-Sep.

Conversely, suppose Y € Ob(mpo), A-£->BeE and let fig:B—>Y,
be continuous functions such that foe = goe. If f # g, then there
exists b€ B such that f(b) # g(b). Since Y is a To—space, there is
some open set U in Y with, say, f(b)e U but g(b)gU; so bef"1(U).
Since e is back-dense, there exists a € A such that the set {b, ela)}
is indiscrete. We note that to say that { b, e(a)} is indiscrete is the
same as saying that every open set in B which contains one of the
points b or e(a), must contain the other point as well. Since each of

T s

f and g is continuous, each of the sets f'1(U) and g
open. Since {b, e(a)} is indiscrete and since bef'1(U), we must

have e(a) € f 1(U). But then f(e(a)) € U; and so (by hypothesis)
1

glef@)) e U - which means that e(a) € g " (U). But since {b, ela)} is
indiscrete and g"1(U) is open, we also have bEg'1(U), i.e. g{b)eU,
which contradicts our choice of U. Hence f = g  that is
(Y, 7) € E-Sep. o
Example 5:

let X = Top and let E be the family of all c-dense continuous

functions, where a function X—L> Y is said to be c-dense if for each
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y €Y, there exists an x € X such that f(x) € {y }. Then

E-Sep = Ob(m1).

Proof

Suppose YﬂOb(Epﬂ. Then there are y1,y2€Y with \Z %yz such
that for each nhood U of Yo, Sy, it holds that {y1,y2} C U. Put
X = {y1, y2} and assume X has the subspace topology. Now

{VT}' = {vq. vy}, otherwise {y } = {y;}, and then {y,} is open in X.
Hence {y2} = XNK, for some open set K containing y,, which
contradicts the fact that {y1, y2} C K. Define X-£> X to be the
constant function with value Yo define X—L> Y to be the inclusion
of X into Y and define X-8-> Y to be the constant function with
value Yo We find that these functions are continuous. And ¢ is
c-dense: For Yy € X, we have e(y2) = Yo €1Yq1 and for Yo, we
find that e(yz) = VZEWE} as indicated above. Then foe = goe but
[+ g so Y¢ESep. Hence E-Sep C Ob(LQQ1).

>

Conversely, suppose that Y € Ob(Tog1) and let A-9-> X 3 Y be
g

continuous functions such that foe = goe, where e is a c-dense

function. It must be shown that f = g. If not, there is an x¢€ X

such that f(x) # g{x). Since Y is a T1—space, each of {f(x)} and
{glx)} is closed. Since e is c-dense, there exists a € A such that

ela) € {x}, so by continuity of f, we must have that

feea) e fIXF ¢ TF Y = {fix)};

that is, foefa) = f(x). In a similar way, we can show that
goela) = g(x). But foe(a) = goela), so f(x}) = g(x) - a contradiction.

Thus f = g and so Y € E-Sep. o



70

Example 6
Let X = Top and let E be the family of all d-demse continuous

functions, where a function X—L> Y between topological spaces is

said to be d-dense, if, for each ye€Y, there is some x¢€ X such that

ye{ Ff X)}. Then E-Sep = Ob(l(m-l).

Proof
We proceed as in Example 5, except that we define e: X —> X
and g: X —>Y to be the constant functions with value Yq- Then

the functions e, f and g are continuous. The function e is d-dense:

Given \Z € X, we have yqE€ {elyzif = ]y1} and for L X, we have

Yo € {e(y.')} = {y1}. Therefore foe = goe but f # g. Hence Y ¢ E-Sep.

Conversely, suppose that Y € Ob(lcm.') and assume that foe = goe
as in Example 5, where e is d-dense. If f # g, then there is some
x € X with fi(x) # g(x). Since e is d-dense, there is some ac€A
such that x € {e(a)}. By continuity of f and since Y is a

T1 -space, we have

fx)efiel@} ¢ {f lelaN} = {flela))},

hence f(x) = flela)). And similarly, we have g(x) = glela)), so that

fle(a)) # gle(a)), a contradiction. Hence f = g as desired. O
Example 7
Let X = Pos, and let E be the class of all lower-dense order-preserving

maps. (A function X—L> Y between partially ordered sets is lower-
dense iff for each yeY, there is an x€ X such that f(x) < y.) Then

E-Sep is the class of all partially-ordered sets whose order is equality.
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Proof

Suppose that Y € Pos, where the partial order <y is not equality. Then
there exist Y1 $ Yo in Y such that Y1 <y Yo We consider the
partially ordered set X = {y1,y2} with the induced order <.
Define {y1}~£—> X to be the inclusion function, let x L >y be
the constant function with value Yq and let X 2> Y be the
inclusion of X into Y. Then e is lower-dense and order-preserving, f
and g are order-preserving and foe = goe. But f # g, so
Y ¢ E-Sep.

Conversely, suppose that (A, SA), (X, <X), (Y, SY) € Ob(Pos), where

the partial order gY is equality., Assume that foe = goe, where
e  -L> . .
A—> X S Y and f and g are order-preserving maps with e € E.
4
It is asserted that f = g. For, suppose x € X. Since e is
lower-dense, there exists a € A such that e(a) SX X, i.e. ela) = Xx,

since the order is assumed to be equality. Hence

fIxX) = flela)) = glela)) = g(x}). Thus f = g,

so Y € E-Sep. o

Example 8

Let X = Top and suppose that A consists of only the two-point
discrete space A = {0, 1}. Then A-Epi is the family of all g-dense
continuous  functions. (A function f: X ——> Y between topological
spaces is said to be g-dense if each clopen neighborhood of each yeY

meets f[X].)

Proof

Suppose that X —£-> Y is not g-dense. Then there is some yeY

such that e[X]InU = @, for some clopen nhood U of vy, and so
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y £ e[X]; thus el = vy, for no reX. Define f:Y—>{0,1}
to be the constant function with value 1 and define Y —8—> {1,0}

as follows:

g(r)

_ JO ifreuy;
11 if rg u.

Since A has the discrete topology, the sets @, A, {0} and {1} are the

A = v,

open sets in A. Since their inverse images g'1((b) =9, g
g“l({O}) = U and g'1({1}) = Y-U are open in Y, it follows that g
is continuous. The constant function f s (trivially) continuous. Then

Joe = goe but f+ g. Hence eg A-Epi.

Conversely, suppose the continuous functions X >y i {0, 1}
4
satisfy foe = goe, where X and Y are topological spaces and e is

gdense. If f + g there is yeY with fiy) # gly). We
assume, without loss of generality, that f(y) = O and gly) = 1.
Since {0, 1} has the discrete topology, each of the subsets {0} and
{1} is clopen, and therefore y  Dbelongs to the clopen nhood

1on ng 1 ({1)). Since e is g-dense, it follows that
exing oy ng M1y ¢ .

Choose p € elXINf 1({O) ng ({1}, and find x € X such that

e(x) = p. Then

0 = fip) = foelx) = goelx) = glp) = 1,

which is impossible. Therefore, f = g. o
Example 9
let X = Top and suppose that the two-point indiscrete space

A = {0, 1} belongs to A. Then A-Epi is the family of all surjective

continuous maps.
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Proof
If a continuous function X -9->Y is not surjective, there exists some
>

—_—>
g

y €Y such that e(x) # y, for all x¢€ X. Define Y A as

follows:

fit) = g(t) = 1, whenever t # vy;
fly) = 0;
glyl = 1.

Then f and g are continuous, and for each x € X, we have

e(x) # y, so flelx)) = gleix)) = 1. Hence foe = goe, but f # g.

The converse follows from the fact that in Top, the surjective

continuous maps are precisely the epimorphisms (see, for example,

[HS1, 6.10(2)]). o
Example 10
In Example 1, we showed that if X = Top and e is a dense

continuous map, then e € Haus-Epi. Now, we shall show that not

every map in Haus-Epi is a dense continuous map.

Consider, for instance, the Sierpinski space X = {0, 1} with the

topology {®, X, {0}}. Given any Y € Ob(Haus), then any continuous

function X—L> Y is constant. (Otherwise, Y would no longer be T2.)
The inclusion {1} -~> X is not dense since J§{ T P = {1}. But

J € Haus-Epi, since if foj = goj, then f = g. o

Example 11
Let X = Top and let E be the family of all c-dense (or d-dense)

cantinuous maps.
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By Examples (5) and (6), we know that E-Sep = Ob(Tog1) and,
consequently, (E-Sep)-Epi = (Tog1)—Epi. By Lemma 2.2.1, we have

E C (E-Sep)-Epi, for each class E of X-objects. Hence, if e is a

c-dense (or d-dense) continuous map, then eeTop1 -Epi. o

2.4 HAUSDORFF CHARACTERIZATION THEOREM

It is a well-known fact that Hausdorff spaces are precisely those

topological spaces X for which the diagonal AX X —> X2 is
closed. In this theorem, we prove that an X-object Y is E-separated if
and only if the diagonal AY Y ——>> Y2 belongs to M, for an (E,

M)-factorization structure on a finitely complete category X.

Theorem 2.4.1 (cf. [PR, A.2]; [MA, 4.5])

Let (E, M) be a factorization structure on a finitely complete category

X. Then for any X-object Y, the following are equivalent:

(1) Y € E-Sep.

(2)  For each X-L->Y, the graph of f is in M.

(3) For each X-L-> VY and X > Ze M, it holds that <m, f> € M.
(4) For each X-—>Y ¢ M, it holds that <m, m> € M.

2

(5) AY:Y-——>Y € M.

(6) If r, s:X——>Y, then Equir, s) € M.

Proof

{11=1{2). Let sog = <z'dX,f>or, with e € E:



75

- XxY

< idX, >

By Lemma 2.2.1(i), E C (E-Sep)-Epi, so e € (E-Sep)-Epi. By Pro-
position 2.1.3, e diagonalizes over (E-Sep)-regular morphisms, so

it is enough to show that <idX,f> is (E-Sep)-regular. We have
(f07r1)o<idx,f> = fOidX = f = 7r20<idx,f>,

where T4 and T, are the projections XxY —> X and
XxY ——> Y, respectively. Given a morphism KL> XxY with
7rzoh = (fo7r1)0h, define a morphism KL> X by k = 7r10h.
Then

7rzo<idx,f>0k = f07r10h = 120h

and

7r1o<idx,f>0k idX07r10h = 7r10h,

so, since (7r1, 12) is a mono-source, we have <idX,f>ok = h.
If r also satisfied <idX,f>or = h, then <idX,f>or = <idX,f>ok.
Since <z'dX,f> is a section (since 7r1o<idx,f> = idX), it is a
monomorphism, hence r = k. Since we proved that &k is

unique such that the triangle
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X XxY

<idx, >

commutes, it follows that (X, <idx,f>) ® Equ(wz,for1), S0

el <z‘a’x,f>. By Proposition 1.3.1(3), we have <z’dX,f> e M.

2) =3 (3). Given a morphism X -L-> Y, let X->ZeM and let

Oy and Ty be the projections XxY —-> X and XxY —>Y,

respectively. Then
rzo(mxidy)o <z'dx,f> = Modyo <z'dx,f> = mO(axo<idx,f>)
= moz'dx = m,
and JrYO(mxidY)o<idx,f> = aYo<z'dx,f> = f,

where T~ and Ty are the projections ZxY —> Z and ZxY —> Y,

respectively. Then the following diagram commutes:

In particular, uniqueness of <m, f> such that rZo<m,f> = m
and rYo<m,f> = f, ensures that <m, f> = (mxidY)o<idx, f>.
By hypothesis, we have m ¢ M, so mxz’dY € M (Proposition
1.3.1(4), (8)). We also have <idx, f> € M, so the compaosition

<m, f> = (mxidY)o <idx,f> belongs to M (Proposition 1.3.1(5}).
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in (3}, we obtain <m, m> € M.

(3)=(4). With Z=Y and f = m

=Y and m = idy,, it wil follow from (4} that

(4) = (5). With X =

<l'dY, z'dY> = AY € M.
r

(5) = (1). Suppose that X -£-> Z ¢ E and 2 ; Y are such that
s

roe = gsoe. Then
AYo(roe) = <idY, z'dY>0(roe) = <roe, roe>

= <roe, soe> = <r,s>oe,

and so the following diagram commutes:

X —& 7z
roel |<r,s>
oy —— v 2
so by the unique

= gsoe. By (5}, AYEM,

Put p = roe
there exists a unique X-morphism

diagonalization property
= <r,§>. Since

Z—‘L> Y such that doe = p and AYOd

r = p1o<r,s> = p1oAYod = d and

§ = pyo<r,s> = pyodyod = d,

(where pq. Py are the usual projections Y2——> Y ), we must

hence Y € E-Sep.

have r = s,

.

(1) = (6). Given a pair X:; Y of X-morphisms, let (C, ¢) » Equlr, s).
s

By Lemma 2.2.1(i), we have E C (E-Sep)-Epi. Since Y € E-Sep,

it follows that (C,c) is (E-Sep)-regular. By Proposition 2.1.3, the
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equalizer (C, ¢} diagonalizes under all morphisms in E, hence

(C, c) e M.

{6) = (1). Suppose that foe = goe, where e€ E and Y is the
codomain of both f and g. Let m = Equ(f, g) -so that m
diagonalizes under E; in particular, m diagonalizes under the
element e of E. By an argument similar to 'the second part of
the proof of Proposition 2.1.3, it can be shown that m is an

isomorphism, so f = g. Hence Y € E-Sep. o

2.5 PROPERTIES OF E-SEPARATED OBJECTS AND

A-EPIMORPHISMS

Proposition 2.5.1 (cf. [PR], Lemma A.2)

Let E be a class of X-morphisms. Then, for each family A of

X-objects;

(1)  A-Epi satisfies conditions (a) through (e} of Bousfield’s
Characterization Theorem (Theorem 1.4.1).
(2) E-Sep is closed under the formation of all mono-sources, and

thus under the formation of all limits.

Proof.

(1M{a) Let felso(X) and let Y e A be the codomain of a pair of
X-morphisms &2 and g such that hof = gof. Since f is an
epimorphism, we have h = g hence (f Y) € ¢ . Thus

Iso(X)} € A-Epi.
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let f:A—>B and g:B—> C be A-epimorphisms. We

want to show that gof is an A-epimorphism. Suppose a pair of

,
X-morphisms C___; D with D€ A satisfies ro(gof) = go{gof).
q

Then (rog)of = (goglof, so (since f € A-Epi) rog = gog. But

again g € A-Epi implies that r = g, hence gof € A-Epi.

Given e = foe with e, ¢ € A-Epi, let g, h be X-morphisms
with gof = hof. Then
goe = go(foé) = (gof)oé
= (hof)oe = ho(foe) = hoe,

and, since e € A-Epi, we must have g = h. Therefore, f€ A-Epi.

Let

C——— D

8

be a pushout diagram with h € A-Epi. It must be shown that

NLAIES
s 2
§

e € A-Epi. let D X be two X-morphisms such that

roe = soe and X € A. Put roe = soe = d. Then
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(rogloh = ro(goh)
= roleof )
= (roe)of
= (soe)of
= soleof)
= so(goh)
= (sog)oh,

SO rog = sog, since h¢€ A-Epi. We also have (rogloh = (roe)of.

But the given square is a pushout, so there exists a unigue

X-morphism D d’

> X such that the two triangles in the

diagram

A—L B
hl
C —

commute. But r and s are also two such morphisms, so

e

£ D
N
sog Y

r = d = s, hence e€ A-Epi.

F

Given functors Y ; X, let (ky, K} and (I_cA, K) be colimits
5

of G and F, respectively, and let ({): G——> F be a natural

transformation. We must show that if each {A : GA —_— FA

belongs to A-Epi, then so does the unique X-morphism e

which makes the following diagram commutative:
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i
K= 72
g

foe = goe. Then, for each A € Ob(Y), it holds that

Let Le A and let L be X-morphisms such that

(fokplobp = folkpoba) = fo(eol_cA) = (foelok,
= (goe)olEA
= go(eo/_cA)
= golkpof )
= (gokp)oé,.

But each {, € A-Epi, so foky = gok,. Put fok, = r, = gok,.

Since (kA, K) is a colimit of F, there is a unigqgue morphism

h

K——> L with hokA = Th- But each of f and g is also

such an A, hence f = g.

Suppose that (fi P X e > Xi)l is a mono-source, where each Xi
belongs to E-Sep. Suppose e € E satisfies roe = soe, where r
and s have a common codomain X. Then fioroe = fiosoe,

and so fior = fios, for each i€l (since each e, Xi) € 7). But

(fi)l is a mono-source, so r = s, hence X € E-Sep.

Finally, limits are mono-sources (see, for example, [HS1, 20.41},

so E-Sep must be closed under the formation of limits. o
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Lemma 2.5.2 (cf. [PR, Lemma A. 2]

Epi(X) C A-Epi, for any category X and A C Ob(X).

Proof. This is obvious. O

Proposition 2.5.3

If (E, M) is a factorization structure in an M-well-powered cocomplete
category X and E C Epi(X), then, for each family A of X-objects,
there exists a family M’ of X-morphisms such that (A-Epi, M’} is a

factorization structure on X.

Proof.

In view of Theorem 1.4.1 and Theorem 2.5.1 (1), we need only
show that A-Epi satisfies the Solution Set Condition. Since (E, M) is a
factorization structure on X and E C Epi(X), and since Epi(X) C A-Epi
(Lemma 2.5.2), it follows that an (E, M)-factorization of an X-morphism
is also its (A-Epi, M)-factorization. So, given a morphism f:C—> D,
we consider all factorizations
cL>p=cs Yi—n—ﬁ—~> D

of f, where each m, belongs to the representative set of M-subobjects
of D and € € A-Epi, foreach i€el. We assert that this is a Solution
Set for f. For, suppose f = noe is a factorization of f with e¢€
A-Epi, and let n = moe be an (E, M)-factorization of n. Since E C
Epi(X) and Epi(X) C A-Epi (Lemma 2.5.2), we have ece € A-Epi, by
Proposition 2.5.1{(1). Therefore, f = mo{éoe) is isomorphic to one of
the factorizations of 1, and so A-Epi satisfies Bousfield's
Characterization Theorem 1.4.1. Thus there is a class M’ of X-

morphisms such that (A-Epi, M’) is a factorization structure on X. 0O
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Remark: In [LO3, Theorem 2.3], it was shown that if X has
intersections and equalizers, then, for any subcategory A of X,
(A-Epi, MA) is a morphism factorization structure on X, and _M_A

consists of extremal monomorphisms. Here

M = (A-Epi)l.

A

See [L03, 2.2].

Definition 2.5.4

If X is a category and A is a class of X-objects, then, given an
X € Ob(X), the source of all X-morphisms from X to A-objects is

called the total source from X to A.

Proposition 2.5.5

If each source in X has an (epi, mono-source)-factorization, then, for
each family E of X-morphisms, E-Sep is a (swell epi)-reflective

subcategory.

Proof.

By Theorem 1.4.7, (swell epi, mono-source) is a factorization structure

f;
for sources in X. Given X € Ob(X), let (fi:X——'—> Xi)l be the total
source from X to E-Sep, and consider its (swell epi, mono-source)-
factorization:

m.

“fi e |
X1 >x = x—£>A—1>x.

By Proposition 2.5.1(2), A € E-Sep. For each i€ l, it must be shown
that m; is unigue such that fI = mpe. So, suppose n; is also such
that each fI = noe. Then noe = moe. Since a swell epimorphism is

an epimorphism (by Lemma 1.4.5), we have m.o = n. Thus e is a
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(swell epi)-reflection morphism corresponding to X, so E-Sep is a

(swell epi)-reflective subcategory. , o

The following definition has been slightly altered to suit the proposition

that follows:

Definition 2.5.6 (See, for example, [L02, Definition 1.9].)

Let A be a subclass (not necessarily a subcategory) of objects in X,
and let M be a class of morphisms in X. The class A is said to be
M-hereditary in X if, for each X-morphism XM 5 A €M with

A €A, we have that X e A.

Proposition 2.5.7 (See also [L02, Lemma 2.41.)
if (E, M) is a factorization structure on X, then E-Sep s

M-hereditary.

Proof

We want to show that if X "> BeM and B e ESep, then

S

X € E-Sep. Hence suppose Y > X and e: A——> Y e E are such
4

that foe = goe. Then (mof)oe = (mog)oe. Since (e, B) € 7, it follows

that mof = mog. Put mog = s and foe = r. Then the following

A€ vy

Since e€e E and me M, the unique (E, M)-diagonalization property

diagram commutes:

implies that there exists a unique diagonal X-morphism d:Y —> X
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such that mod = s and doe = r. But f and g also satisfy
foe = goe = r, and mof = mog = §, SO uniqueness implies that
f =d = g, hence Xe¢E-Sep. o
REMARK

The subcategory E-Sep is also mono-hereditary. (See [L02, 2.5])

Corollary 2.5.8 (See [LO Lemma 2.8])

2l
The factorization structure (E, M) on X induces a factorization

structure (E’, M’} on E-Sep (when E-Sep is considered a full

subcategory of X).

Proof
Let f: X——>Y be a morphism in E-Sep. (Thus X, Y belong to
Ob(E-Sep).) Let

XL sy =x—€ sz_m vy

be its (E, M)-factorization in X. Since E-Sep is M-hereditary,

Z € E-Sep. We then put

E = {e:X—>Z|X, ZeESep, ecE}

and

M = {m:Z—>Y|YeESep, meM}.

Proposition 2.5.9

Let A be a family of X-objects, let B its Pumplin-Réhrl closure;

that is, B = (A-Epi)-Sep, let C be such that A C C C B and let D

X-£->Y in X, the following statements are equivalent:
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(1)  ee€ A-Epi.
(2) ee€ C-Epi.
I‘X r
(3) I X > X, and Y —Y-> Y, are D-reflections and
e
XD D > YD is the unique morphism such that the diagram

X —¢% vy
XD en YD
commutes, then p is an epimorphism in D.
X —¢ v
r

w

(4) If the square

is a push-out and W

> WD is the D-reflection map for W,

then ra08 = rWOb.

Proof

(1) = (2). Suppose that e¢¢€ A-Epi. Let foe = goe, where ZeC s
the common codomain of both f and g. We assert that f = g.
For, since € C (A-Epi)-Sep, it is implied by Z € C that

Z € (A-Epi)-Sep. Since e € A-Epi, we must have (e, Z) € ¢, sO

that f = g. Hence e € C-Epi.
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>
e 33
8

By hypothesis, ACC, so (by Proposition 2.2.2) C-Epi C A-Epi.

2) = (3). Let foeD = goep, for some pair Yp C in Mor(D).

Since e € C-Epi, it follows that e € A-Epi. With C e Ob(D), we

have C € (A-Epi)-Sep (since DCB), so (e, C)€os. But then

foryoe = foeDorX == goeDorX e goryoe

implies that fory = gor, Put fory =P = g,

p
Since Y —Y> YD is a D-reflection for Y, there exists a
unique morphism YD —'-h-—> C such that hory = p. But each of
f and g is such a morphism, so f = A = g, hence ep is an

epimorphism in D.

(3) = ({4). Let the square

X —& v
e[ [a
Y——b——-—vw
rW

be a pushout square with W > WD the D-reflection map for

W. Let - and r, be the D-reflection morphisms for X and Y,

\
respectively. Then the morphisms ep Ip and bD are the
unique morphisms such that each of the outside squares in the

following diagram commutes:
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e
D
XD YD
r
e Y
e X e Y a
D le 1 a D
Y mwlzm—-} w
Y ‘/y r W
D bD D
Put ace = t = boe. We have
(bDoeD)orX = bDo(oeDorx) = bDo(ryoe) = (bDory)ue = (rWob)oe
= rWO(boe) = ot
and in a similar way, we find that (aDoeD)orx = r,ob Since

-~ and T are the D-reflection morphisms for X and W

respectively, there is a unique morphism XD ——l‘«~> WD such that

the following rectangle commutes:

X t_ww.,w

Xp——% " Wp
Since each of the morphisms bDoeD and apeen also makes
the same rectangle commutative, it follows by uniqueness of %
that b = k=

D°€D ap°en, thus bD = ap {since ep is an

epimorphism). We have
bDoryoe = rwoboe = r,oace = aDoryoe,

so there exists a unigue morphism Wu-’f—> WD such that

bDory = fob and aDory = foq.
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W o —% Yy

Y

YD -T-~«»D WD as D
But T also satisfies
bDory = rwob and aDory = rao hence f = o
Thus rWob = r,°4 as desired.
{4} == (1), Suppose we have the pushout square
X —Ff 4y
el la
Y — w
e
of the diagram BT > Y. Assume that foe = goe, where
Y
fg:Y—>A with AeA. By definition of a pushout, there is
k

a unigue morphism W ——> A such that the triangles in the

following diagram commute:

X by Y

f
M_W,_;W
&MA

r
Since W —Y_> WD is a D-reflection morphism for W, there is
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a unique morphism Wp k> A such that }'_corW = k. By (4),
we have Wt = rWob, so by the commutativity of (*) we
have that

f =koa = (I—corw)oa = kolr, 0a) = ’_CO(rWOb) = (kor,, Job = kob = g.

Hence e € A-Epi. o
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CHAPTER 3

STRONG LIMIT OPERATORS

In this chapter, X is assumed to be an hereditary construct, that is, a

concrete category U : X > Set together with the property that
the inclusion of each subset Y into the underlying set U(X) of any
X-object X has a unique initial lift (defined below). Such initial lifts
will be called embeddings, and if Z——> X is an embedding, then Z

will be called a subobject of X.

In this chapter, we show, amongst others, that (surjection, embedding)
is a factorization structure on X (Lemma 3.1.4); that a strong limit
operator is both a prelimit operator (Remark 3.1.3(1)) and a closure
operator (Propositions 3.2.1 and 3.2.2). We also show that there is a
one-to-one correspondence between the class of all strong limit
operators and the class of all factorization structures (E, M), where
M is contained in the class of all X-embeddings (Theorem 3.2.11).
Specifically, that function which assigns to each factorization structure
the strong limit operator 75 (Theorem 3.2.10), and that which assigns
to each strong Ilimit operator [ (Theorem 3.2.8), the (l-dense,

l-closed)-factorization structure are inverses of each other.

3.1 DEFINITIONS

Definition 3.1.1 ([AHS, 10.571)
F

Let X > A be a functor.

(a) A source (X —i—> Xi)l in X is called initial provided that for

g.
each source (Y > Xi)l in X and each A-morphism
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F(Y) L> F(X) with F(fi)of = Flg), for each i€, there exists

a unique X-morphism vy L5 X such that F(f) = f and flof = &

for each i€l

F(Y)

Fify = f Flg.)

H
FIX) —pry— FOX)

f; g
(b) A source (X-——> XJ) in X lifis a source (Y ——=> F(XJ), in
A provided that there is an A-isomorphism Yll—--} F(X) such

that F(fi)oh = & for each iei:

Y
W TN

1
l

F{X) —--—FT?TT-“» F(Xi)

A concrete category X can be regarded simply as a category where
the objects are just sets with structure, the morphisms f: X ——>Y
are simply ordinary maps f:UX-——> UY between the underlying sets
which are somehow structure-compatible; and composition of

morphisms is simply ordinary composition of maps. Further, no
notational distinction will be made between an X-morphism and its

underlying map. No confusion should result.

Hence a source (X -—--j-—> Xi)i in a concrete category X is inftial
provided that if Y € Ob(X), and g : U{Y) ——> U{(X) is a map such that
fiog Y > Xi is an X-morphism for each i€l, then g:Y —> X

is an X-morphism. Thus an hereditary construct X is characterized by
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the following property: If X € Ob(X), and Y is a subset of U(X), then

there is a unique X-structure on Y (denote the corresponding X-object
by \_( say) such that the inclusion map Y —> U(X) is an initial

X-morphism Y —> X, (This X-structure on Y is called an initial

structure.)

Definition 3.1.2
By a strong limit operator on X we mean a family [ = (lX)X € Ob(X)’
where for any object X € Ob(X), lX assigns to each embedding Y C X

an embedding IX(Y) C X such that the following conditions are satisfied:

(1) Y € LY.

(2) If Z C lX(Y) = W, then lX(Z) C lW(Z).

(3)  For each X-morphism X-L> Y and Z ¢ X, we have
f(lX(Z)) C lY(f(Z)). (Note: If Y, X e Ob(X), the notation Y C X
means that U(Y) € U(X), and the inclusion map U(Y) —2> U(X)
is an embedding Y —> X in X. The use of notation such as
f(Z) should be clear. This notation just means the set [ (Z)
endowed with the X-structure to give the X-embedding f(Z) C Y.

Such (ab)uses of notation will be made frequently, but where

they do occur, their meanings should be evident.)

Remarks 3.1.3 (See [HE,, Method 31)
(1Y A strong limit operator is a prelimit operator; that is, if X—L> Y

Tia).

and A C Y is such that L(A) = A, then L (f (A) = f
For, £ (A Cf 1A = I (F 7 A CFTHA) and £TNA) € nr A

by Definition 3.1.2(1). Hence f_1(A) = lX(f'1(A)). (See (4)

below.)
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(2) It is immediate from Definition 3.1.2(1) that lX(X) = X,

(3) If X —L> Y is an  X-morphism, then the inclusion map
(UFHUX) ——> UY is an embedding f(X) —> Y. By initiality, it
follows that X ——> f(X) is an X-morphism. It follows from

condition (3) that if Z C X, then f(L(Z)) ¢ lf(x)(f(Z)).

(4) If A and B are subobjects of X € Ob(X), and A € B and B C A,
then A = B: From ACB and BCA one deduces that U(A) C U(B)
and U(B) C U(A), so U(A) = U(B). Hence the initial inclusion
A ——> B actually has as underlying map, the identity idU(A)'
Since the identity X-morphism z'dB : B——> B is initial, and initial

structures are assumed to be unique, it follows that A = B.

Lemma 3.1.4

(Surjection, embedding) is factorization structure on X.

Proof
Given an  X-morphism X—L> Y, then at Set-level, f has a

(surjection, injection)-factorization, say:

ux 4> uy = ux 4 urux) 2> oy,

where m is the inclusion of (Uf)(UX) into UY. Give (Uf}{UX) the
X-structure (denoting the corresponding object by f[X]}) so that

fIXI —> Y becomes an embedding in X. By initiality of this
embedding, it follows that X ——> f[X] is an X-morphism. [t follows
that the X-morphism f: X —> Y has the following (surjection,

embedding)-factorization:

XL>yY = X—> fIX]—> V.
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(Hereafter, we shall denote by fI[X] the middle object of the
(surjection, embedding)-factorization of an X-morphism X—L> Y.)

Now consider a commutative square in X

where f is surjective and m is an embedding. In Set, injective maps
are monomorphisms and surjections are epimorphisms. Since Set is an
(epi, mono)-category, there is a diagonal morphism d such that the

following diagram commutes in Set:

U(f)

/7
U(h) d, U(k)

/7
4

e —F

U(m) ¢

By initiality of m, there exists an X-morphism d such that U(d) = d
and mod = k. We need to show that dof = h. But doU(f) = U(h
yields U(d)oU(f) = Uk or Uldof) = U(), hence dof = h by
faithfulness of U. And if w also satisfies wef = h and mow = Kk,

then wof = dof, and since f is surjective, w = d. o

3.2 PROPERTIES OF STRONG LIMIT OPERATORS

In the following proposition we show that a strong limit operator is

idempotent and monotone (order-presrving).
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Proposition 3.2.1

For every strong limit operator [,

(1) Ll (V) = Ly (V).

(2) If Y CZCX, then lX(Y) C I (2).

Ix

Proof

(1) We have lX(Y) C lX(Y), so from condition (2) of Definition
3.1.2, it follows that lX(lX(Y)) C llX(Y)(lX(Y)) = lX(Y). Also,

from condition (1) of that definition it follows that

L) € Lty (Y)). Hence [ (Y) = L (L (Y)).

(2) Let Y C Z C X be given. Then, Y C lX(Y) and Z C lX(Z), SO
we have Y C lX(Z). Put lX(Z) = T. By condition (2) of
Definition 3.1.2, we have ZX(Y) C lT(Y). We need only show
that lT(Y) C T. We find that lT takes Y C ZX(Z) = T to

lT(Y) CT = lX(Z). The proof is complete. o
We shall need the following observation: Given embeddings ZC X and
W C X, we can obtain the embedding ZUW C X, where the domain

ZUW has underlying set U(Z) U U(W).

Proposition 3.2.2 (See e.g [DGZ’ 1.2])

If [ = (ZX)XE Ob(X) is a strong limit operator, the following

statements hold, where Y1 and Y2 are subobjects of X.

(1) Y1 C lX(Y.]).
(2) lX(Y.]) U lX(Y2) C ZX(Y1 UY,).
(3) lX[ lX(Y.]) U lX(Yz) 1 = lX(Y1 uy,).
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(1)

(2)

(3)
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Follows from Definition 3.1.2(1).

We have that U(Y1) C U(Y1 UY2) = (UY1) U (UY2). Since
Y1 € X is an X-morphism and Y1 UY2 € X s initial, it follows
that the inclusion map U(Y1)—> U(Y1 UY2) is an X-morphism
Y

—_—> Y1 UY2. But the first factor of an embedding is an

1
embedding, so we obtain an embedding Y1 §Y1 UY2. In a
similar way, we obtain an embedding Y2 C Y1 UY2. By Pro-
position 3.2.1(2), it follows that lX(Y1) C lX(Y1 UY2) and

lX(Y2) C lX(Y1 UY2). Now we find that

U(lX(Y1)) U U(lx(Yz)) C U(lX(Y1 U Y2))-
Since lX(Y1) le(Yz) € X is an X-morphism and lX(Y1 UY2) c X

is initial, it follows that the inclusion map

Uy (Y 1)) U Ul (Y 5)) —> Ul (Y4 U Y,))

is an X-morphism lX(Y1) UlX(Yz) _ lX(Y1 UY2).
As a first factor of an embedding, this X-morphism is an

embedding, so we obtain lX(Y1) UlX(Yz) C lX(Y1 UY2).

We apply lX to (2) and use the fact that lX is idempotent; so

we have
lX{ lX(Y1) U lx(Yz)} C lX{ lX(Y1 U Y2)} = X(Y1 U Y2).

By Definition 3.1.2(1), we have Y1 C lX(Y1) and Y, C lX(Y

2 2).

These embeddings give rise to the inclusion maps

UY, C Ul (Y,) and UY, C Ul (Y, );

so we have an inclusion

U(Y,I U Y2) = (UY1) U (UY2) C U(lX(Y,I)) U U(lX(Yz)).
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From the embeddings lX(Y.I) C X and lX(Yz) C X, we obtain
an embedding lX(Y_I) UlX(Yz) C X where the domain

LY q) le(Yz) has underlying set (U(ZX(Y.I))) U (U(ZX(YZ))). Since
ZX(Y1 UY2) ——> X is an X-morphism and since

lX(Y1) le(Yz)——> X is initial, it follows that the inclusion map
is an X-morphism YU Y2 e > lX(Y1) U lX(Yz), and being a

first factor of an embedding, this X-morphism is an embedding;

thus Y1 UY2 C lx(Y1) UlX(Yz). By Proposition 3.2.1(2), it

follows that
l)((Y1 U Y2) C lX{ lX(Y1) U lX(Yz) }.

Hence [y {1l (Y )U Iy (Y o) } = L (YUY, o

Remark 3.2.3:

The above two propositions show that a strong limit operator is a
closure operator; that is, the operator is expansive (extensive),
monotone (order-preserving) and idempotent. (See also [DG1], [GH],
[CM], [LO1] and [SA].) However, a strong limit operator is not
necessarily a Kuratowski closure operator. (Because it is not necessarily

additive, that is, it need not necessarily hold that
lX(Y1) UlX(Yz) = lX(Y1 UY2).)

(See [SA, p. 252))

We now give an example of a strong limit operator.
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Example 3.2.4

The b-closure operator is a strong limit operator. (See Example

1.2.4(d).)

Proof. Let A C (X, 7) where (X, 7) € Ob(Top). (Note that Top is an
hereditary construct.) Then the b-closure operator transforms A into
b(A) C (X, 7). When endowed with the relative topology, the inclusion
b(A) C (X, 7} is an embedding.

(1) That A C b(A) follows from the properties of the b-closure

operator (see Example 1.2.4(d)).

(2) Suppose that B C bX(A) = W. It needs to be shown that

by (B) = { xe X | for each nhood N_in X of x, an{?}nB $ 0}

€ {y € by(A) | for each nhood Uy in by(A) of y, Uy n{y}nB#0}

Let xebX(B). Now, for any nhood NX in bX(A) of x, we
have NX = bX(A)nUX, where UX is a nhood in X of x
Since x € by(B), it follows that anmn B # 0. Note that
bX(A)nm = {x} in by(A), so we have

U nby (A n{xfnB # 0.
That is, N n{xfnB ¢ 6, and so vy &b, (B).
(3) Consider a continuous function f: X ——> Y between topological

spaces with A C X. We will show that f(bx A) C be(A). But

this follows from Lemma 2(1) of Example 1.2.4(d).

Hence, the b-closure operator is a strong limit operator. ]
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Remarks 3.2.5

(a)

(b)

(c)

Nakagawa defined a closure operator cl in terms of an (E, M)-
factorization for an extremal subobject A ¢ X in an (E, M)-
category % Such a closure operator satisfies the ‘‘continuity’”’
property, it is idempotent, monotone and expansive. (See [NA,
pp.146 - 1471.) It was further shown that a certain type of
factorization structure gives rise to a bireflective subcategory of
the category Eg1 of T1—spaces and continuous functions
(INA, Proposition 11]). And conversely ([NA, Proposition 12]), a
bireflective subcategory of Ep1 which is closed under

embeddings gives rise to some factorization structure on Top1.

Given a complete, well-powered concrete category € with
forgetful functor U : #——> Set that preserves monomorphisms,
there is a one-one correspondence between the following three

families:

(i) The class of hull operators on €
(i) The class of hull subobject operators on €

(iiiy  The class of strong factorization structures on &

(For definitions and for the correspondence, see [LO,I].)

In [CM, Proposition 3.6], Cagliari and Mantovani proved that
there exists a bijective correspondence between the (E,
M)-factorization structures on a co-well-powered epireflective
subcategory ¥ of Top or of a topological category

U: A——> Set and the semiclosure operators in 6 where M
is contained in the class of all embeddings. A semiclosure operator

is defined as follows:
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Definition (See [CM, 3.5])

Let ¥ be a co-well-powered subcategory of the category Top

of topological spaces and continuous functions. A semiclosure

operator 1 in ¥ is an operator which associates, to every

subspace Y of X, with X in € a subspace 1X(Y) of X

such that the following properties hold:

(i) A C 1y (A) C X

(ii) the inclusion from Y into 1X(Y) is in Epi(¥);

(iii) if ZCY CX, then Ty (@) € 1y (YY)

(vl 15 (15 (Y) = 1X(Y);

v if X-L> Y e Mor(#), then f(1,(A) C 1y(f(A), for each
ACX.

As in [CM], we prove in theorem 3.2.11 that if M is contained in
the class of all embeddings, then there is a bijective correspondence
between the class of all strong limit operators and the class of all

(E, M)-factorization structures on a hereditary construct.

Definition 3.2.6

Let ! be a strong limit operator on X.

(a) An  X-morphism X—f—> Y is called [-dense provided that
lY(f[X]) =Y.

(b) An embedding X > v in X is called I[-closed provided that
lY(m[X]) = m[X]. (Here "an embedding" means "an initial

injection".)

(c) A sink (fi : Xi —_— Y)I is said to be [-dense provided that
lY (Uf[Xi]) = Y.
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Lemma 3.2.7

(1) If X-2-> Y is an X-morphism and ZCW CX, then A(Z) C h(W).

(2) If X—}i—> Y is an X-isomorphism, then, whenever Z C X, it

follows that h(lX(Z)) = lY(h(Z)).

Proof
(1) This is easy.
(2) By Definition 3.1.2(3), we have h(lX(Z)) C lY(h(Z)). Since

B1:Y—>X is also an X-morphism and A(Z) C Y, it follows
that
R @) ¢ LT () (Definition 3.1.2(3)
= 1 (2).

Applying h to this relation, we find that

-1
WRZ) = kiR (L (2D € Ry (2D, By (1)

thus Al (2)) = [, (h(Z)). o

Proposition 3.2.8

If [ is a strong limit operator on X, then (l-dense, I[-closed

embedding) is a morphism factorization structure on X.

Proof

We first show that [-closed embeddings and [-dense morphisms are
closed under composition with X-isomorphisms, as specified in
Definition 1.1.2. By [AHS, 8.14], an X-isomorphism is both an initial
morphism and an isomorphism in Set. But in Set, isomorphisms are the
bijective maps (see, for example, [HS1, 5.14(2)]); so X-isomorphisms
are the initial bijections. Since embeddings are initial by assumption,

and since initial morphisms are closed under composition (see, for



103

example, [AHS, 8.9]), it follows that embeddings are closed under

composition with X-isomorphisms.

Now let XL> Y € Iso(X) and let Y ™ > Z be an [-closed

embedding. It must be shown that moh is [-closed; that is,
lz((moh)[X]) = (moh)[X].

Note that (moh)[X] C Z. So, by Definition 3.1.2(1), we have

(moh)[X] C lz((mOh) (X1).

Put W = (moh)[X]. Then Definition 3.1.2(2) ensures that

I(mon)[XT) € [, (moh)[X]) = [ (W) = W = (moh)[X].

Hence IZ((mOh)[X]) = (moh}[X], thus moh is an [-closed embedding.

On the other hand, if X -.-> Y is an [dense X-morphism and

Y—@—> X is an X-isomorphism, we have

lZ((hoe)[X]) = lz(h(e[X])) = h(lY(e[X])) (Lemma 3.2.7)
= AY) (e is [-dense)
= Z, (h is an X-isomorphism)

and so hoe is [-dense.

Given an X-morphism X—L> Y, we form its (surjection, embedding)-

factorization, say moe:

XL>y = x> fx1-2> v,

The embedding m is the same as fI[X] C Y. Applying [, to fIX],
we have lY(f[X]) C Y, say, an embedding m’ :IY(f[X]) —> Y. Let
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e’ be the composition of e and the embedding f{X] € lY(f[X]):

WOFDXT = W

Since m’ is initial, it follows that e’ is an X-morphism.

(1) It is asserted that the factorization

XL>v = x> x>y

is an (/-dense, I-closed embedding)-factorization of f.

(i) m’__is_l-closed: (Note that m’ is just inclusion.) We have

m’(lY(f[X])) = lY(f[X]).
Now it follows that

L (L (FIXINY = Ly {iF XD}

i

lY(f[X]) (Proposition 3.2.1)

i

m’ {lY(f [X1)}.
Hence m’ is [-closed.

(i) e’ _is Ldense: Put [ (fIX]) = W. To show that e’ is

[-dense, it must be shown that

Iwle' XD = W = I (fIX]).

Since e is the restriction of f, it follows that
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e(X) = fI[X], so it will be shown that
I FIXD = LAFIXD.

Since fIX] C lY(f[X]) = W, it follows from Definition
3.1.2(2) that

lY(f[X]) C lW(f[X]).
On the other hand, applying lW to the embedding

FIX1 € L(fIX) = W, we obtain

M

lW(f[X]) C lW(W) = W (Remark 3.1.3(2))

I LFIXD).

Hence ¢’ is [-dense.

(2) Now consider a commutative square in X, where e is an

I-dense morphism and m is an [-closed embedding.

X —E Y

A m

Note that p[X] C [,({p[X]) = mip[X]) C mil,(p(X]))

= lB(m(p[X])) C lB(m(lA(p[X]))) (Proposition 3.2.1(2)

mil 5 (pIX1))

gl

lB(m(p[X])) (Definition 3.1.2(3))

Hence mll,(pIX]) = lB(m(p[X])).

in what follows, no notational distinction is made between an

X-object and its underlying set. Given ye€Y, we have
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qly) € glY) = q(lY(e[X]) (e is l-dense)
C lB(q(e[X])) (Definition 3.1.2(3))
= Ig(m{pIXI)
= m(lA(p[X]).

Therefore, there is some telA(p[X]) C A such that m(t) = gqly).
We therefore define d:Y —> A as follows: For each yeY,
put dly) = t provided that gly) = m(t). The morphism d is
well-defined because m is an injection. Uniqueness of d such
that doe = p and mod = q follows from the fact that m s

an [-closed embedding (and so, a monomorphism]. o

Corollary 3.2.9
If X is well-powered and has concrete coproducts, then for each
strong limit operator [, X is an (/-dense sink, [-closed embedding)-

category.

Proof

Since X has coproducts, it follows from the dual of Proposition 1.3.5
that the factorization (E, M), with E the class of all [-dense
morphisms, and M the class of all [-closed embeddings, can be
extended to a factorization structure (E’, M)} for set-indexed sinks.
Now, since X is well-powered and M is contained in the class of all
embeddings, and hence in Mono(X), it follows from the dual of
Proposition 1.3.7 that (E’, M) can be extended to a factorization
structure (E’’, M) for arbitrary sinks. It remains to be shown that the
class E’’ so obtained is precisely the class of all [-dense sinks.
Given a sink (gi : Xi_—> X)[ in X (where we can assume that | is a

set), let (g, ]__IlXi) be the coproduct of the family (X),. By the
i€
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universal property of coproducts, there is a wunique X-morphism

[g;] :L-lxi ——> X such that [glog; = g, for each i€l Let
i€l

[gi] = mee be the (E’’, M)-factorization of [gi]:

X, ey X
i g
A
A
Then (mo(eoui)h is the (E"’, M)-factorization of the sink

(gi : Xi ——> X)|. Now

lx([g.](j_lx.)) = [, ([g.}\Ju.(X.))) (since the coproduct is concrete)
T -

1, (\J g.(X.)).
Xt

Hence [gij is an [-dense morphism if and only if (gi)] is an [-dense
sink. Thus if (‘gi)i is [-dense, then it belongs to E’’, and vice versa.

a

Proposition _3.2.10

If (E, M) is a factorization structure on X, where M is contained in
the class of all X-embeddings, and for each embedding Y =—> X,
ﬂxY is the middle object of its (E, M)-factorization (where we can
assume that U(nXY) C U(X)), then g = (nx) is a strong limit

operator on  X.
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Let Y —> ﬂXY —> X be an (E, M)-factorization of the
embedding Y C X. Since the first factor of an embedding is

an embedding, it follows that Y C nXY.

Given an embedding Y C X, form its (E, M)-factorization mqoe,
and let Z C r;xY:

e.l m.l
Ye—>X = Ye—>p Y

> X

Form an (E, M)-factorization myoe, of the embedding

m:Z C ﬂXY = W:

€ Mo
Z —> r]XY = I e—=D> r;WZC-—>W

Now, we form the (E, M)-factorization mgoeq of the embedding
mqom: Z C X:

e m
Ze—>X =23 >q27<3>X

Note that Mg0€q = Mi0m = mqom,oe,. By the (unique) (E, M)-
diagonalization  property, there is a unique X-morphism
d : nXZ —_— nWZ which makes the following diagram

commutative:

'4
Z — Y e&=—— X

Tw Mo Tx m,

Since My = (m1om2)od is an embedding, it follows that its first
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factor d is an embedding; so we must have nXZ C nWZ, and

condition (2) follows.

We consider an X-morphism X—L> Y with an embedding Z C X.

Let mqoeq be the (E, M)-factorization of Z C X,

€1 my
Ze—>X = Z—-> g Z—>X

and let moe be the (E, M)-factorization of f(Z) C Y:
Fl2)—>Y = f@ <&> n (f@2) =2> V.

Then the following diagram commutes:

€1

} nXZ

f f°m1

If we chase elements, we find the inclusion
U(f(nXZ)) C U(fin(Z)).

Since f(nXZ) ——> Y is an embedding and an(Z) C Y is initial,
it follows that the inclusion U(f (ny,Z) C Ulnf(Z) is an

X-morphism. Being the first factor of an embedding, this inclusion

is an embedding, hence f(r,'XZ) € 1yf (2). o

Theorem 3.2.11

There is a bijective correspondence between the class of all (E, M)-

factorization structures on X with the class M contained in the class

on X.

of all X-embeddings, and the class of all strong limit operators %
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Proof
Given an (E, M)-factorization on X, with M contained in the class of
all embeddings, we obtain a strong limit operator 7 as in Proposition

3.210 on X. From this strong limit operator we now obtain a

factorization structure (E’, M’) = (7-dense, 7-closed embedding) as in
Proposition 3.2.8. We shall show that (E, M) = (E’, M’). Suppose
m: X——>YeM’ and factorize m as an isomorphism followed by an

initial inclusion:
XM sy = X om m(X) =L-> v,

where m’ denotes the codomain restriction of m, and j denotes the
inclusion map. By Theorem 1.3.1(4), (b), it follows that j & M’'.

Consider the (E, M)-factorization of j:

mX) =L->Y = mX) =f->z<"2 >y,

where e and n are again initial inclusions. Now

Z = nyimX) (by definition of 7,/
= m(X) {since j is 7p-closed).
Hence e is the identity morphism, and so j = ne M. It follows now

that me M.

On the other hand, suppose m: X——> Ye M. To form the (5-dense,
n-closed embedding)-factorization, we first form the (surjection,

embedding)-factorization of m, namely:

X sy = x5 x>y,

where m’ is the codomain restriction of m, and j is the inclusion
map. Observe that je M. We then apply ny to m{X) to get the

(n-dense, p-closed embedding)-factorization. Thus:



111

X> Y = X5 m(x) e—> gy (mX) <> V.

But nY(m(X)) is the middle object in the (E, M)-factorization of
J:m{X) =——> Y which itself belongs to M. Hence nY(m(X)) = m(X).
Thus me M’. Consequently, M = M’, and so (E M) = (E', M),
by the dual of Theorem 1.3.1(3).

On the other hand, if [ is a strong limit on X, we form a
factorization structure (E,, M) = ({l-dense, [-closed embedding)
(Proposition 3.2.8). From this factorization structure, we obtain a
strong limit operator 7 on X (Proposition 3.2.10). It must be shown
that [ = 9. Given an embedding j:Y C X, we obtain NxY as the
middle object in the (/-dense, Il-closed embedding)-factorization of j as
follows: First construct the (surjection, embedding)-factorization of j,
which is just

iy,

Yel sx =y >y <l > X

Then applying [ to this, we obtain the required factorization:

Y

> ZXY > X,

The middle object is lXY, SO T]XY = ZXY, hence [ = 1. o
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CHAPTER 4

M-PERFECT MORPHISMS AND RELATIVELY
COMPACT OBJECTS

We shall assume that the category X is a morphism (E, M)-hereditary
construct with finite products. That is, X is a morphism (E, M)-

category and is a hereditary construct (as defined in Chapter 3).

In this chapter, we define M-compactness and M-perfectness in the
category X. Section 4.1 deals with the properties of M-preserving
and M-perfect morphisms; both classes of morphisms are closed under
composition (Proposition 4.1.6), and they are also closed under
composition with isomorphisms (Lemma 4.1.2 and Proposition 4.1.4). In
Proposition 4.1.8, we shall show that the class of M-perfect X-
morphisms is finitely productive. In Section 4.2, properties of
M-compact X-objects are presented, and it is shown, amongst others,
that the class Comp(X) of M-compact X-objects is closed under the
formation of finite (nonempty) products (Proposition 4.2.3), and that
Comp(X) is both M-perfect hereditary and M-hereditary. See

Proposition 4.2.5.

4.1 PROPERTIES OF M-PERFECT MORPHISMS

We recall that (surjection, embedding) is a factorization structure on

every hereditary construct {(Lemma 3.1.4).
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DEFINITION 4.1.1 (cf. [BR, 2.1])

Let f: X——> Y be an X-morphism.
(1) f is called an M-preserving morphism provided that, for each

m:B-—->X in M, if

is the (surjection, embedding)-factorization of fom, then se M.

{2) f is called an M-perfect morphism provided that, for each X-object

Z, the product morphism fxidz:XxZ ——> YxZ is M-preserving.

Llemma 4.1.2

if f: X——>Y is M:-preserving and B-"_.> XeM, then fom s

M-preserving.

Proof

Suppose that my C-—>Be€eM, and let sor = (fom)om.I be the
{surjection, embedding)-factorization of {fom)om1. Since M is closed
under composition {Proposition 1.3.1(5)), we have mom, € M. Since f

is M-preserving, we must have se¢ M. Hence fom is M-preserving. 0o

Remarks 4.1.3

{1) Since  X-isomorphisms belong to M (Proposition 1.3.1(4)), it
follows that M-preserving morphisms are closed under composition

with X-isomorphisms on the the right.

{2)  M-preserving morphisms are also closed under composition with

X-isomorphisms on the left.
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Proof

Let X—L> Y be an M-preserving and let Y £ > 7€ Iso(X).
Given a morphism B-™ > X in M, we consider the (surjection,
embedding)-factorization (gof)om = sor of (gof)om. Then

fom = (g'1os)or. Since g'1 is an embedding and embeddings are
closed under composition, it follows that (g_1os)or is the
(surjection, embedding)-factorization of fom. Since f is M-preserving,

-1

we have g lose€ M. But g ' € M (Proposition 1.3.1(4)), so se M

(Proposition 1.3.1(7)). Hence gof is M-preserving. o

Proposition 4.1.4

If X—L> Y is M-perfect and B > X e M, then fom is M-perfect.

Proof

For any X-object Z, we have (fom)xidz = (fxidz)o(mxidz). Since f
is M-perfect, it follows that fxidz is M-preserving. Since idZEM_
(Proposition 1.3.1(4)), it follows that mxidZEM (Proposition 1.3.1(8)).
By Lemma 4.1.2, we find that (fxidz)o(mxidz) is M-preserving, hence

fom is M-perfect. o

Proposition 4.1.5
If X—L> Y is M-perfect, then the product morphism z’dfo is

M-preserving, for any W € Ob(X).

Proof

Let (WxX, g, 0y} and (XxW, p ,p ) be the products of (W, X)
W "X x "W

and (X, W), respectively; and let (YxW, Ty ‘TW) and (WxY, W 7rY)

be the products of (Y, W) and (W, Y), respectively. Then there are
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(unique) morphisms h : WxX —> XxW and YxW —8—> WxY which

make the following diagram commutative:

X f
X
fxid
WxX b Xew W
P
T\W w
W .
de
Also there is a (unique} morphism r : XxW ——> WxX such that

nwer = P and Iy or = px. Then

pWohor = opor = pWoidXxW and pxohor = gyor = pxozdx*w.

But (p ,p ) is a mono-source, so hor = ia’x W And in a similar
W X )

way, we find that roh = idWxX' Consequently, the morphisms A and
g are isomorphisms. By uniqueness of the product morphism idwxf

such that

TYO(deKf) = fory and ‘A’WO(idWXf) = idWan,
it follows from the above diagram that

idWXf = gO(fxidW)Oh.

Since f is M-perfect, the product morphism fxidW is  M-preserving.
By Lemma 4.1.2, the morphism (fxidW)oh is  M-preserving (since
h e M). By Remark 4.1.3, the composition go(fxidW)oh = idfo is

M-preserving as was to be shown. 0
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Proposition 4.1.6

The classes of M-preserving morphisms and M-perfect morphisms are

closed under composition.

Proof

Let X—L>Y and Y -2->7Z be M-preserving X-morphisms.

Given B> XeM, let

g &om o 7 _ gl S5 57

be the (surjection, embedding)-factorization of (gof Jom, let
§q°74 be the (surjection, embedding)-factorization of fom, and
let 5507, be the (surjection, embedding)-factorization of 8054
Since f is M-preserving, we have 51 e M. Since g is

M-preserving, we have S, € M. But szo(r20r1) and sor are

both  (surjection, embedding)-factorizations  of gofom. By
Proposition 1.3.1(6), there is an isomorphism k& with sok = Sn
and kor20r1 = r
- Z
m
s
r/
B
By Proposition 1.3.1(4), we have K1 e M, hence s = szok'1

belongs to M (Proposition 1.3.1(b) ).

Given M-perfect X-morphisms X—L>Y and Y -$-> Z, it

must be shown that (gof)xia’W : XeW ——-> ZxW  is  M-preserving.
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Since
(gof )xidW = (gxidw)o( fxidW)
and since each of f and g is M-perfect, it follows by
definition that both fxidW and gxidW are M-preserving, so by
(1) their composition (gxz’dw)o(fxidw) is M-preserving. 1}

In the next proposition we shall need the following:

Lemma 4.1.7

If X—L> Y is M-perfect, so is the product morphism fxid,, for

every X-object Z.

Progf

Given W e Ob(X), we have
(fxidz)xidw = f“idsz’

which is  M-preserving by M-perfectness of f. Thus fxidz is

M-perfect. 0

Proposition 4.1.8 (cf. [BR, 2.3])

The class of M-perfect morphisms is finitely productive; that is, given

a finite set | with Xi s Yi an M-perfect morphism, for each i€l,

then the product morphism Tf:TIX,—> I1LY; is M-perfect.

Proof
It suffices, by induction, to establish the result for | = {1, 2}.
Let f1 : X1 —_—> Y‘I and f2 : X2 — Y2 be M-perfect morphisms

and let Z be an X-object. We need to show that the morphism
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f1 xf2x1d is M-preserving. But we have
f1 xfled = (f1 xid. 2xtd )o (zd xfzxzd
Since each fI is M-perfect, it follows that f1xidY xidz is
2
M-preserving {(Lemma 4.1.7) and f2><idZ is M-perfect (Lemma 4.1.7).

By Proposition 4.1.5, the product morphism id,, *f,xid is M-
X1 277z

preserving. By Proposition 4.1.6, the composition

(fyxidy, 2x1d )olidy, xfzxzd

is M-preserving. o

Proposition 4.1.9
If every surjective morphism is in E, then
(1) M is the family of M-preserving embeddings.

(2) M is contained in the family of M-perfect morphisms.

Proof

1) Let X-L>YeM and let
XLy = xL>fx-S>vy

be its (surjection, embedding)-factorization. It needs to be shown
that s €M and f is an embedding. By hypothesis, we have
re E, so it follows from the unique diagonalization property that
there is a morphism d: f[X] —> X such that dor = idx and

fod = s; that is, the following diagram commutes:
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X s fIX]
s
i /
zdx d , s
s
/
/
From PFProposition 1.3.1(2), it follows that f is an embedding,
and d is an isomorphism. Consequently, the morphism r = a’
is an isomorphism. By Proposition 1.3.1{(4) and (5), the

morphism s = for'1 belongs to M.

Conversely, suppose that X —f—> Y is an M-preserving
embedding, and let sor be its (surjection, embedding)-
factorization. Since r'deM_, it follows from the definition of an

M-preserving morphism that se M:

Now r is a surjection and an embedding (being the first factor
of an embedding), so by Proposition 1.3.1(4), r is an
isomorphism. But then this also means that re M. Consequently,

the morphism f belongs to M, by Proposition 1.3.1(5).

let X-£-> Y € M. it will be shown that, for any Z € Ob(X),
the product morphism fxz’dz 1 XxZ —> YxZ is M-preserving.
Since idzeM, we have fxidz € M (Proposition 1.3.1(8)). By (1},
M is the family of M-preserving embeddings, so fxz'dz is

M-preserving. Hence f is M-perfect. 0
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Proposition 4.1.10

If X has a terminal object, then in X every M-perfect morphism is

M-preserving.

Proof
Let Xl—> Y be an M-perfect morphism and let T be a terminal
object of X. In the following commutative diagram, defining the product

morphism fxz'dT;

X f LY
T UY
fridy
XxT o T yxT
id
T r 7

the projections T and oy are isomorphisms: for, the diagram

is a product of X and T, so there is a morphism k making the

following diagram commutative:

We have
TyokeTy = mxoidy,p and mpokomy = fomy = wyoidy,y.

Since (wx, 7rT) is a mono-source, it follows that kowx = idXxT' Since
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it also holds that wxok = z'dx, it follows that T is an isomorphism.
And in a similar way, we can show that Ty is an isomorphism. Since
f is M-perfect, it follows that fxidT is M-preserving. By Remark

4.1.3, we must have that the morphism
f = ayolfxid )01(-1
Y T "X

is M-preserving. o

Corollary 4.1.11

If X has a terminal object and E contains all surjective morphisms,
then, for any X-morphism f, each condition below implies those that

follow it; in particular, for X-embeddings f, all three conditions are

equivalent:

(1) fe M.
(2) f is M-perfect.

(3) f is M-preserving.

Proof

1) = (2). Follows from Proposition 4.1.9(2).

2) = {3). Follows from Proposition 4.1.10.

If f is an embedding, then (3) = (1) follows from Proposition 4.1.9(1).

o
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4.2 PROPERTIES OF M-COMPACT OBJECTS

f
In this section, we use the following theorem (due to Mrowka) to
obtain a (relative) categorical notion of compact objects in a morphism

(E, M)-hereditary construct X.

/
Mrowka’s Theorem: (cf. [MR, p. 20] and [MA, 1.1])

Let (X, 7} be a topological space. Then (X, 7} is a compact
space if and only if, for every topological space (Y, 8), the

projection
Tyt (Y, 8)x(X, 1) ——> (Y, &)

is a closed mapping.

Proof

Suppose that S C YxX is closed and let T :S—> Y be the
projection of S to Y. Let y5 be any point of '1r1_(ST. Then
there exists a net {y, | r € R} of points of r,(S) which
converges to Yo Now, for each reR we can find X € X such
that <yr, X > € S. Since X is compact, it follows that the net

{x, | re R} contains a convergent subnet {x, | geqQ}. Then the
q

net {<y_, x > | q€Q} is also convergent; so let us denote
q q

its limit by Po- Then pOeS and Yo is the projection of Por
S0 Yq € 1r1(S).

Conversely, suppose that the projection PR (Y, 8)x(X, 7) —> (Y, 7)
is a closed mapping and let X be the set of ultrafilters on the

set X. For each A C X, set

AT = { e fX | Ae %}.
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*
Then (A | A ¢ X} is a base for a topology ¢ on AX. Let

{ € AXxX be the convergence relation of {X, 7) defined by
¢ = {(% x)| %converges to x in 7}

Then, for any topology 7, ¢ is closed (see [MA, Lemma 1.2]).

Now, let C be the set of all ultrafilters which converge in

*

to at least one point. C is dense in fAX; for, if A is

nonempty, there exists x € A and the principal ultrafilter
princ(x) = {ACX]|x€eA}eA nC.
But C is the image of ¢ wunder the projection
Ty (OX, a}x{X, 1) ——> (OX, 7).
Therefore, if T is closed, then all ultrafilters converge, thus

(X, 7} is compact. And this completes the proof. v}

Definition 4.2.1

An X-object X is called an M-compact object provided that, for each

X-object Z, the projection map rZ:XxZ > Z is M-preserving; that

is, if B-> XxZ belongs to M and T50m has the following

{surjection, embedding)-factorization, then the embedding s € M:

XxZ
// K
B z
\\ (Tzom)[B]/

We shall denote by Comp(X} the class of ali M-compact X-objects.
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EXAMPLE 4.2.2

let X = Top and let (E, M) be the (dense, closed embedding)-
factorization structure on Top. Then the M-compact objects are the
compact spaces; so M-compact N E-Sep is the family of all compact

Hausdorff spaces.

Proof.

Observe that in Top, the closed continuous functions are precisely the
M-preserving continuous functions, where M is the family of all closed
embeddings in Top. Given a compact space X, let Y € Ob(Top}. Then
the projection Ty XxY ——> Y is closed ([MA, Theorem 1.1]). Now let
Ty

BT > XxY >Y = XL >z 3>y

be the (surjection, embedding)-factorization of T\ om, where m s
a closed embedding. Then Tyom is closed, so the composition sor is
closed, and since r is continuous and surjective, it follows that s is

closed, hence s is a closed embedding. Consequently, X is M-compact.
The converse is just a reformulation of Mrokwa’s theorem.

Since M-compact spaces are the compact spaces and E-separated
spaces are the Hausdorff spaces (Examples 2.3(1)), it follows that

Comp(X) n E-Sep is the class of all compact Hausdorff spaces. o

Proposition 4.2.3 (cf. [LO1, 4.3])
Comp(X) is closed under the formation of finite (nonempty) products.

Proof

Suppose A, B € Comp{X). It must be shown that AxB ¢ Comp(X].
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Given Z € Ob(X), we have (AxB)xZ N Ax(BxZ), say
h : (AxB)xZ ——> Ax(BxZ) is an isomorphism such that, if 05 TB.7
and py are the projection morphisms (AxB)xZ —> Z,

Ax(BxZ) —> BxZ and BxZ

> Z, respectively, then

77 = Wz°Tg. R

a
( AxB) xZ Z__, z

Ax (BxZ) - —~+ BxZ
BxZ

Since A is M-compact, the projection morphism TBxZ is M-
preserving. But B is M-compact, so the projection P2 is M-
preserving, hence the composition P7°Tg, 7 is M-preserving (Pro-

position 4.1.6). Since h € M (Proposition 1.3.1(4)), it follows that

(pzoerz)Oh = 05 is M-preserving (Lemma 4.1.2). Hence AxB s
M-compact as was to be shown. 1]
Remark:

In [HSS, Proposition 4.11], it is assumed that X has a terminal object
and that all surjective morphisms belong to the class E of
X-morphisms. In the following proposition, we shall prove a similar
result without the assumption on the surjective morphisms but the

existence of a terminal object.

Proposition 4.2.4 (cf. [LO1, 4.2])

If X has a terminal object T, then an X-object Y is M-compact if,

and only if, Y—L> T is Me-perfect.
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Proof

Suppose that Y is M-compact. By an argument similar to that used in
the proof of Proposition 4.1.10, we can show that the projection
75 TxZ —> Z in the following commutative diagram - defining the

product morphism fxidz - is an isomorphism:

Y A ST
ﬂ'Y O'T
fxidz
YxZ - TxZ
1
T Z
Z . Z
zdz
Thus fxidz = a;owz. Since Y is M-compact, it follows that the

projection T2 is M-preserving, for each Z € Ob(X). By Remark 4.1.3(2),
the composition a;ovrz = fxidz is M-preserving, for each Z e Ob(X);

that is, f is M-perfect.

Conversely, suppose that Y—L> T is M-perfect. Then the product
fxidz

morphism YxZ ——=—> TxZ is M-preserving, for each 2Z ¢ Ob(X}.

Since 0 is an isomorphism, it follows from Remark 4.1.3(2) that 5

is M-preserving. Hence Y is M-compact. ]

Proposition 4.2.5 (cf. [MA, Theorem 4.4 (1)])

The class Comp(X) of M-compact objects is M-perfect hereditary and
M-hereditary. (A class A of X-objects is said to be M-hereditary
(respectively, M-perfect hereditary) if, whenever f: X —> A belongs to

M (resp. f is M-perfect) and A€ A, then X is an object in A.)

Proof

Let X—L>Y be M-perfect with Y an M-compact X-object. We
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wish to show that X is also M-compact. Let Z be any X-object.

Since f is M-perfect, fxidz:XxZ > YxZ is M-preserving. Since Y

is M-compact, the projection p :YxZ—> 27 is M-preserving.

feidy

XxZ —+ YxZ

"7 Pz

id
Therefore, the projection
TS = idzowz = ,aZO(fxidZ)

is M-preserving, by Proposition 4.1.6. So X is M-compact, by

definition.

Now suppose x££ >cC belongs to M with C an M-compact
- X-object. For any X-object Z with B-™ > XxZeM, let gor = T 0m
be the (surjection, embedding)-factorization of TZom, where 5 is the
projection XxZ ——> Z. We assert that g€ M. By Proposition 1.3.1(8),
the product morphism gxidZ:XxZ —> CxZ belongs to M, so
(gxidz)om belongs to M as well (Proposition 1.3.1(5)). Hence

gor = azo((gxidz)om) is the (surjection, embedding)-factorization of

JZO(gxz’dZ)om, where o5 is the projection CxZ > Z:
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(rzxm)[B]

/ X
"z

B-Wﬁz—*—> XxZ = 7

gxzdz zdz

CxZ2 ———— Z
2
z

But C is M-compact, hence ge¢ M. Thus X is M-compact. o

Corollary 4.2.6

If Y is a compact topological space and X—L> Y is a closed
embedding or a perfect continuous map, then X is compact.
(A function f: X —>Y between topological spaces is perfect if, for

each topological space Z, the product function

fxid, 1 XxZ ——> YxZ

z

is a closed function (see [MA, p. 346])).

Proof

let X = Top with the factorization structure (E, M) = {(dense, closed
embedding). We have that Y is a compact space. By Example 4.2.2, it
follows that Y is an M-compact space. By Proposition 4.2.5, since
X-~f—> Y is a closed embedding, it follows that X is M-compact, and

accordingly, X is a compact space.

On the other hand, f is a perfect continuous function if and only if
fxz’dz : XxZ ——> YxZ is a closed continuous function; i.e. fxidz is
M-preserving, for each topological space Z. Hence the perfect

continuous functions are precisely the M-perfect ones, with M the
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class of all closed embeddings. If Y is compact (i.e. M-compact), then

it follows from Proposition 4.2.5 that X is compact. o

Proposition 4.2.7 (cf. [MA], 4.6.)

Suppose X is finitely complete. Given an X-morphism X~L> Y,

where X is M-compact and Y € E-Sep, then f must be M-perfect.

Proof
Let Z€ Ob(X). Since X is M-compact, it follows that the projection
U7 Xx(YxZ) ——> YxZ is M-preserving. Since Y is in E-Sep, we

must have <id > : X —> XxY € M, by the Hausdorff

XI
Characterization Theorem 2.4.1. Since idZEM_, the product morphism
<zdx, f>xid

5 € M (Proposition 1.3.1(8)). Let (XxZ, 7 be the

X TZ)

product of {X, Z}, let {{XxY)xZ, 75) be the product of {XxY, Z}

)

TXxY’

and let (YxZ, § be the product of {Y, Z}. If h is an

yr 07)
isomorphism from (XxY)xZ to Xx{(YxZ} such that the upper and the

lower right-hand triangles in the following diagram commute (where p
Y

is the projection XxY ——> YY), then ho(<z'dx, f>xidz) € M, by
Proposition 1.3.1(5):

/f">Y4"“”
1o
<idy, f[> Y )
X X XY Y
Tr
T . . XxY
X <id-,, f>xid Iy
XxZ Z 2 (XxY)xZ B Xx(Yx2) Y2 Yz
"z "z
: 62
z . ~ L
zdz
Thus, the composition anZOh0(<idx, f>xz'dz) is M-preserving

(Proposition 4.1.2). By uniqueness of the product morphism fxid-, it
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follows that fxidz = 0y,z0ho(<idy, f>xid;). It has been proved that

fxia"z is M-preserving. Hence f is M-perfect. 1}

Corollary 4.2.8

Every compact subspace of a Hausdorff topological space is closed.

Proof

Let X = Top with the factorization structure (E, M) = A(dense, closed
embedding). Suppose Y is a Hausdorff space and let X be a compact
subspace of Y. By Example 4.2.2, the space X is M-compact, and,
by Example 2.3(1), Y € E-Sep. By the proposition, the inclusion function
X—j—> Y is an M-perfect embedding. The category Top has a terminal
object, namely, a singleton {x}. By Proposition 4.1.10, the inclusion j
is M-preserving and, thus closed. In particular, the space X is closed

in Y. o

Proposition 4.2.9 (cf. [BR, 2.2])

Suppose X has concrete pullbacks and let X—z—aY—g———»Z be any

X-morphisms.

(1) If gof is M-preserving and g is an embedding, then f s
M-preserving.

(2) If gof is M-perfect and g is an embedding, then [ is
M-perfect.

(3) If gof is M-perfect, Y € E-Sep and every surjective morphism is

in E, then f is M-perfect.

Proof
(1) If gof: X —> 2 is M-preserving, g is an embedding and
B > XeM, let sor = fom be the (surjection, embedding)-

factorization of fom:
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B-Mm s xtsy = BLspS sy

Then (goslor = (gof)om, and gos is an embedding (since it is
a composition of embeddings), so (gesler is a (surjection,

embedding)-factorization of (gof)om:
B x-f yv_& .7
\ /
P

But gof is M-preserving, so gos € M. Since g is an

embedding, it follows from Proposition 1.3.1(7) that s¢€ M.

Given that gof is M-perfect and g is an embedding, we need
to show that fxid is M-preserving. Since gof is M-perfect, we
have (gof )xid is M-preserving. But (gof )xid = (gxid)o{ fxid).
Since gxid is an embedding (Proposition 1.3.1(8)), it follows by

(1) that fxid is M-preserving. Hence f is M-perfect.

We shall refer to the following commutative diagrams, where
(XxY, I U'Y) is the product of {X, Y}, (ZxY, T, wY) is the

product of {Z, Y}, and pt, p? are the usual projections
Y

Y2 —> Y




132

We have
Tool(gof )xidylo <idy, f> = r,0lgxid\)ol frid\)o <idy, f>
= gop\l(o(fxidY)o<idx,f> = goforyo<idy, f> = gof,
and T70<g, idY>of = gof is immediate. Hence
rollgof )xid\Jo <idy,f> = 750<g, idy>of.
We also have
ryoligof)xidylo<idy,f> = m\o0lgxidy)ol fxidy)o <idy,f>
= idYop\‘b’(o(fxidY)o<idX,f> = idoryo <idy,f> = idof
= Tyo<g, idy>of
But (wz, IY) iS a monoc-source, SO
ligef )xidyle <idy, f> = <g, idy>of,

that is, the following diagram commutes:

X f y Y

<idy, f> <g idy>

XXY WZXY
8 Y

Since X has pullbacks, it follows that X is finitely complete;
so Hausdorff Characterization Theorem 2.4.1 applies. Now since
Y € E-Sep, it follows that <idx, f> € M. Since every surjective
morphism is in E, it holds that <idx, > is M-perfect

(Proposition 4.1.9(2)). By hypothesis, gof is M-perfect, so
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(a)

(b}
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(g':Jf)xz'dY is M-perfect (Lemma 4.1.7). Thus the composition
[(gOf)xidY]o <idx,f>

is M-perfect (Proposition 4.1.6), hence <g, z'dY>of is M-perfect.
Since <g, idY> is an embedding (being a section), it follows

from (2) that f is M-perfect. n]

OTHER NOTIONS OF COMPACTNESS

Compactness in categories can be approached via closure
operators; see for instance, Castellini, G:
Castellini, G: Compact objects, surjectivity of epimorphisms and
7
compactifications, Cahiers Top. Geom. Diff. Cat. 31 (1990},

53 - 65.

Castellini, G: Regular closure operators and compactness, Cahiers Top.

Geom. Diff. Cat. 31 (1992), 21 - 31.

Categorically compactness in an algebraic setting was extensively

studied by Fay and Walis:
T. H. Fay: Compact modules, Comm. Alg. 16 (1988), 1209 - 1219.

T. H. Fay and G. L. Walls: Compact nilpotent groups, Comm. Alg.
17(9) (1989), 2255 - 2268.

T. H. Fay and G. L. Walls: Categorically compact locally nilpotent
groups, Comm. Alg. 18 (1990}, 3423 - 3435.

T. H. Fay: Remarks on the Mal’cev completion of torsion-free locally

nilpotent groups, to appear.
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(c) Another type of categorical compactness is that introduced by

Anh and Wiegandt ([AW]) in terms of a functor:

/,\nh, P. N and Wiegandt, R: Compactness in categories and

interpretations, Proc. EECS (1990), to appear.



[AHS]

[BA]

[BO]

[BR]

[CM]

[CHK]

[CS]

[DG1]

[DG,]

[FK]

[GH]

135

BIBLIOGRAPHY

ADAMEK, J, HERRLICH, H and STRECKER, G. E:
Abstract and concrete categories (John Wiley & Sons, 1990).
BARON, S: Note on Epi in Ty, Can. Math. Bull. 11
(1968), 503-504.

BOUSFIELD, A. K: Constructions of factorization systems in
categories, J. Pure Appl. Algebra 9 (1977), 207-220.
BROWN, R:  On sequentially proper maps and sequential
compactification, J. London Math. Soc. (2), 7 (1973),
5156-5622.

CAGLIARI, F and MANTOVANI, S: Factorizations in
topological categories and related topics, unpublished paper.
CASSIDY, C, HERBERT, M and KELLY, G. M: Reflective
subcategories, localization.é and factorization systems, J. Austral.
Math. Soc. (1985), 287-329.

CASTELLINI, G and STRECKER, G. E: Global closure
operators vs. subcategories, Quaest. Math. 13 (1990},
417 -424.

DIKRANJAN, D and GIULI, E: Closure operators induced by
topological epireflections, Collog. Math. Soc. Jénos Bolyai 41
(1983), 233-246.

DIKRANJAN, D and GIULI, E: Closure operators I, Top. &
Appl. 27 (1987), 129-143.

FREYD, P. J and KELLY, G. M: Categories of continuous
functors I, J. Pure Appl. Algebra 2 (1972), 169-191.

GIULl, E and HUSEK, M: 4 diagonal theorem for epireflective
subcategories of Top and cowellpoweredness, Ann. di Mate.

Pura e Appl. 145 (1986), 337 - 346.



[HE, ]

[(HE,]

[HS,]

HS ]

[HSS]

[HSV]

[KE]

[MAC]

[MR]

136

HERRLICH, H: Limit  operators and  topological co-
reflections, Trans. Amer. Math. Soc. 146 (1969), 203-210.
HERRLICH, H: Topological functors, Top. Appl. 4 (1974),
125-142.

HERRLICH, H and STRECKER, G. E: Category theory
(Heldermann-Verlag, Berlin, 2nd ed. 1979).

HERRLICH, H and STRECKER, G. E: Semi-universal maps
and universal initial completions, Pac. J. Math. 82 (1979),
407-428.

HERRLICH, H, SALICRUP, G and STRECKER, G. E:
Factorizations, denseness, separation, and relatively compact
objects, Top. Appl. 27 (1987), 157-169.

HERRLICH, H, SALICRUP and VAZQUEZ, R: Dispersed
factorization structures, Can. J. Math. 31 (1979}, 1059-1071.
KELLY, G. M: Monomorphisms, epimorphisms and pullbacks,

J. Austrl. Math Soc. 9({1969), 124-142.

LORD, H. L: A note on hull operators in (E, M)-categories,
Top. Appl. 19 (1985}, 1-11.

LORD, H. L: Factorizations, M-separation, and extremal-
epireflective subcategories, Top. Appl. 28 (1988), 241-253.
LORD, H. L: Factorization, diagonal separation, and dis-
connectedness, Top. Appl. 47 (1992), 83-96.

LORD, H. L: Functionally Hausdorff spaces, Cahiers Top.
Geom. Diff. Cat. 33 (1989), 247-256.

MANES, E. G: Compact Hausdorff objects, Gen. Top. Appl.
4 (1974) 341-360.

MACLANE, S: Categories for the working mathematician,
(Springer-Verlag, New York, 1971).

MRéWKA, S: Compactness and product spaces, Collog. Math.
7 {1959), 19-22.



[NA]

[INWI

[PR]

[SA]

[SKI

[Wi]

137

NAKAGAWA, R: Factorization structures and subcategories of
the category of toplogical spaces, J. Austral. Math. Soc. 21
(1976), 144-154.

NEL L. D and WILSON, R. G: Epireflections in the category
of To—spaces, FUND. MATH. 75 (1972), 69-74.

PUMPLUN, D and ROHRL, H: Separated totally convex
spaces, Manu. Math. 50 (1985), 145-183.

SALBANY, S: Reflective subcategories and closure operators, in
DOLD, A and ECKMANN, B: Proc. Conf. Cat. Top. LNM 540
(Springer-Verlag, 1976), 548-565.

SKULA, L: On a reflective subcategory of the category of all
topological spaces, Trans. Amer. Math. Soc. 142 (9169),
31-41.

WILLARD, S: General Topology (Addison-Wesley, 1970).



	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button9: 
	Button10: 
	Button11: 
	Button12: 
	Button13: 
	Button14: 
	Button15: 
	Button16: 
	Button17: 
	Button18: 
	Button19: 
	Button20: 
	Button21: 
	Button22: 
	Button23: 


