
A METHODOLOGY FOR INTEGRATING LEGACY SYSTEMS WITH THE
CLIENT/SERVER ENVIRONMENT

by

MELINDA REDELINGHUYS

submitted in partial fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

VISOR: PROFESSOR A.L. STEENKAMP

June 1996

ii

ABSTRACT

The research is conducted in fue area of software methodologies with the emphasis on the

integration of legacy systems with the client/server environment. The investigation starts with

identifying the characteristics of legacy systems in order to determine the features and technical

characteristics required of an integration methodology. A number of existing methodologies are

evaluated with respect to their features and technical characteristics in order to derive a synthesis

for a generic methodology. This evaluation yields the meta primitives of a generic methodology.

The revised spiral model (Boehm, 1986; Du Plessis & Van der Walt, 1992) is customised to arrive at

a software process model which provides a framework for the integration of legacy systems with

the client/server environment. The integration methodology is based on this process model.

Key Terms:

Methodology; Integration; Legacy System; Client/server Environment; Object-Orientation;

Software Process Model; Software Development Life-cycle; Mainframe Environment; Integration

Trends; Project Management

iii

ACKNOWLEDGEMENTS

To my Lord, Jesus Christ, all the glory for giving me the strength to do this work and for providing

in all my needs.

A special word of thanks to my husband, Johan, for his generous support and encouragement

throughout the course of my studies.

Sincere thanks to my supervisor, Professor A L. Steenkamp, for her invaluable advice, guidance

and helpful attitude throughout this project.

Finally, a word of thanks to all my colleagues at SASOL for their help and interest in my studies.

iv

TABLE OF CONTENTS

ABSTRACT ii

ACKN"OWLEDGEMENTS iii

PREFACE ix

LIST OF FIGURES : ·····-······ - x

LIST OF TABLES xi

LIST OF EXIIlBITS xii

LIST OF ACRONYMS xiii

GLOSSARY OF TERMINOLOGY··-········ ····· .. . - xvi

TRADEMARKS xviii

CHAPTERl CONTEXT OF RESEARCH

1.1 Introduction , ... 2

1.2 Problem Statement and Relevance ofSolution ... 2

1.2.1 Problem Statement 3

1.2.2 Relevance of Solution 4

1.3 Hypotheses and Objectives 4

1.3.1 Hypotheses .. 4

1.3 .2 Objectives 6

1. 4 Constraints ... 6

1.5 AssUIIlptions 7

1.6 Method of Investigation 7

1. 7 Structure of the Dissertation s·

v

CHAYfER2 LEGACY SYSTEMS

2.1 Introduction : 12

2.2 Mainframe Environments 13

2.3 Questionnaire Design 14

2.4 Questionnaire Procedure 15

2.5 Presentation of Questionnaire Results 15

2.5.1 TheMMS System : 20

2.5.2 The FS System 22

2.5.3 The GL System 24

2.5.4 The PAMM System 26

2.5.5 The MIMS System 28

2.6 Summary and Interpretation of Results 30

2.7 Trends in the IS!T Industry 37

2.7.1 Downsizing 37

2.7.2 Re-engineering 38

2.7.3 Object-Orientation : 39

2.7.4 Middleware 40

2.7.5 Standards 41

2.7.6 Open Systems 42

2.7.7 GUI'S 43

2.8 Client/server Environments 44

2.9 Strategies for Integrating with Client/server Environments46

2.9 .1 Eliminate Legacy System. 46

2.9.2 Redesign Business Process 47

2.9.3 Replace Legacy System with Packaged Software47

2.9.4 Redesign and Develop Legacy System47

2.9.5 Downsize Legacy System 48

2.9.6 Renovate Legacy System 48

2.9.7 Restrict.Legacy System 49

2.9.8 Restructure Legacy System 50

2.10 Summary and Conclusion 51

vi

CHAPfER3 METHODOLOGIES FOR SOFTWARE DEVELOPMENT

3 .1 Introduction 54

3.2 The Basic Concepts ofMethodologies 54

3.3 Methodology Classification 57

3.3.1 Process-oriented 59

3.3.2 Data-oriented 60

3.3.3 Behaviour-oriented .. 61

3.3.4 Cross-references between Perspectives ... 62

3.3.5 Meta-methodologies 62

3.3.6 Object-oriented 63

3.4 The Software Process Model and SDLC ... 65

3.5 TheCMM .. 68

3.6 Summary .. 70

CHAPTER 4 THE INTEGRATION METHODOLOGY

4.1 Introduction .. 74

4.2 Requirements of the Integration Methodology ... 74

4.3 The Integration Methodology .. 77

4.3.1 Generic tasks of the Integration Life-cycle 78

4 .3 .2 The Enhanced Spiral Model for Integration 81

4.3.3 The Representation Schema 89

4.3.4 TheMethods 90

4.3.5 The Techniques ... 90

4.3.6 The Procedures 91

4.3.7 The Deliverables 91

4.4 Project Management. 97 ·

4.5 Summary 103

vii

CHAPTER 5 MEIBODS, TECHNIQUES, PROCEDURES AND AUTOMATED

SUPPORT FOR mE ESMI

5 .1 Introduction 107

5 .2 Methods for the ESMI' ... 108

5.2.1 Object-Oriented Analysis (OOA) 108

5.2.2 Object-Oriented Design (OOD) 113

5.2.3 Object-Oriented Programming (OOP) 117

5.3 Techniques for the ESMI 11.8

5.3.1 Cost-Benefit Analysis 119

5.3.2 Risk Management 123

5.3.3 Rapid Prototyping 129

5.3.4 Software Quality Assurance (SQA) 132

5.3.5 Software Reuse ~ 138

5.4 Procedures for the ESMI 139

5.4.1 Modelling .. 139

5.4.2 Cost Estirnation ... 1-41

5.5 Automated Support for the ESMI 142

5.5.1 The Repository 148

5.6 Summary .. 148

CHAPTER 6 SUMMARY AND CONCLUSIONS

6.1 Introduction .. 154

6.2 Summary of Investigation 154

6.3 SummaryofResults and Conclusions 155

6.4 Areas for Further Investigation , 157

LITERATURE REFERENCES 158

viii

APPENDIX A.

Legacy System Questionnaire 168

APPENDIX B

Questionnaire Results ... 179

APPENDIX C

Object-Oriented (00) Principles 184

APPENDIX D

Risk Assessment Questionnaire 193

ix

PREFACE

This dissertation is done in partial fulfilment of the MSc-degree in Information Systems at the

University of South Africa. The MSc-degree in Information Systems has a total weight of ten

modules, the dissertation representing a weight of five modules and course work comprising the

additional five modules. The latter includes:

INF417-N

INF483-Y

INF404-H

INF414-K

INF416-K

Software Engineering

Software Engineering Environments

Data Communication and Network Design

Object-Orientation

A special topic module on Open Systems

The study forms part of the Object-Oriented Information Systems Engineering Environment

(OOISEE) project in the Department of Computer Science and Information Systems at the

University of South Africa. The objective of the study is to develop a methodology which can be

. used to integrate legacy systems with the client/server environment. The masculine form of the

third person is used throughout this dissertation to represent both genders.

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

· Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure C.1

Figure C.2

Figure C.3

Figure C.4

x

LIST OF FIGURES

Conceptualisation oflntegration 5

Critical Factors ofMMS 21

Critical Factors ofFS : 23

Critical Factors of GL 25

Critical Factors ofPAMM 28

Critical Factors ofMIMS 30

Size of Systems 32

Cost ofSystems 32

Quality ofSystems 33

Critical Factors of Systems 34

Business Support of Systems 34

Skill Availability ofSystems : 35

Con:iplexity of Systems · 3 6

Uniqueness of Systems 36

Maintenance History ofSystems 37

A Meta Model for a Generic Methodology 56

The Refined Conceptual Model 72

The Generic Tasks of the Integration Life-cycle 80

The Enhanced Spiral Model for Integration 82

Outline ofa SPMP 95

Software Risk Management Steps 124

Risk Management Planning Process 127

An Instance of the Conceptual Model 152

An Object ~ 186

A Class with two Object Instances 188

Inheritance 189

A Polymorphic retire Operation : 190

Table 2.1

Table B.1

Table B.2

Table B.3

Table B.4

Table B.5

Table B.6

Table B.7

xi

LIST OF TABLES

Summary of Questionnaire Results 16

Quality 180

Critical Factors 181

Business Support 181

Available Skills 182

CoII1plexity 182

Uniqueness 183

Maintenance History 183

xii

LIST OF EXHIBITS

Exhibit D.1 Risk Assessment Questionnaire 194

x iii

LIST OF ACRONYMS

4GL 4th Generation Language

ANSI American National Standards Institute

API Application Programming Interface

BPR Business Process Re-engineering

CAD Computer-aided Design

CASE Computer-aided Software Engineering

CBS Cost Breakdown Structure

CEN Comite European de Normalisation

CICS Customer Information Control System

CLOS Common Lisp Object System

CMM Capability Maturity Model

COBOL Common Business-Oriented Language

COCO MO Constructive Cost Model

CRC Class I Responsibilities I Colla~rators

DAD ES Data Oriented Design

DBMS Database Management System

DDE Dynamic Data Exchange

DFA Data Flow Analysis

DFD Data Flow Diagram

DOS Disk Operating System

DSS Decision Support System

EDFD Entity Data Flow Diagram

EIS Executive Information System

ER Entity-relationship

ERA Entity Relationship Analysis

ESMI Enhanced Spiral Model for Integration

FS Sastech Financial

GB

GL

GUI

1FD

IPC

IS ff

ISO

JCL

LAN

MB

MIMS

MIPS

MMS

MVS

ODBC

OMf

00

OOA

OOD

OOISEE

OSF

PAMM

PERT

RE

PRMP

RPC

RRL

SASOL

SASTECH

SDLC

SEE

SPMP

Gigabyte (= 1000 MB)

General Ledger

Graphical User-Interface

Information Flow Diagram

Interprocess Communication

Information Systems and Technology

International Organisation for Standardisation

Job Control Language

Local Area Network

Megabyte

Maintenance Information Management System

Million Instructions Per Second

Sastech Material Management

Multiple Virtual Storage

Open Database Connectivity

Object Modeling Technique

Object-Orientation

Object-Oriented Analysis

Object-Oriented Design

Object-Oriented Information Systems Engineering Environment

Open Software Foundation

Purchase Ordering Accounts Payable Material Management

Program Evaluation and Review Technique

Risk Exposure

Project Risk Management Plan

Remote Procedure Call

Risk Reduction Leverage

South African Coal, Oil and Gas Corporation

SASOL Technology (Pty) Ltd

Software Development Life-Cycle

Software Engineering Environment

Software Project Management Plan

xiv

xv

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SQL Structured Query Language

SSF SASOL Synthetic Fuels (Pty) Ltd

V&V Verification and Validation

WBS Work Breakdown Structure

xvi

GLOSSARY OF TERMINOLOGY

Client/server Environment: a computer environment where application processing is split

between a client and a server, i.e. two or more computers work together across a network to

provide a user-friendly interface residing on the desktop, application functionality shared across

multiple machines as required, and database capabilities residing on the more powerful non-desktop

machine or machines (servers). It provides a decentralised architecture that enables users to gain

transparent access to information within a multi-vendor environment.

BPR: the restructuring of organisational (business) processes through the innovative use of

information systems and technology (IS!f) in order to secure an organisation's economical survival

and competence.

DBMS: a structured software component designed to coordinate and facilitate the management of

data for multiple applications. DBMS products usually conform to one of several models:

hierarchical, relational, object-oriented, or network.

Downloading: the process of sending software or data from a central source (e.g. a mainframe

computer) to remote stations.

GUI: a user-interface for a terminal or PC built with menus, windows and pointing devices.

LAN: a data communications system confined to a limited geographic area with moderate to high

data rates.

Legacy System: in the context ofthis dissertation, a mainframe-based computer application.

xvii

Integration Trend: in the context of this dissertation, a tendency in the ISff industry towards

using capable downsizing and client/server- enabling platfonns, tools and applications for the

purpose of integrating legacy systems with client/server environments.

Methodology: a collection of methods and techniques which provides a systematic, unifying

approach coordinated by management techniques to guide the developing and improving of

software. It is usually based upon an underlying intellectual model (the paradigm).

SDLC: in the context of this dissertation, an instance of a software process model.

Software Process Model: a phased or cycled development framework for a series of orderly,

interrelated activities which facilitates the development, implementation and maintenance of a

software system.

SQA: in the context of this dissertation, the process of ensuring the extent or degree to which an

integrated system is in conformity with established requirements.

SQAP: in the context of this dissertation, the plan to determine and measure the extent of SQA in

an integration life-cycle.

SQL: a standard, widely accepted relational database management language for data definition and

manipulation. It is used in varying fonns by most vendors ofrelational DBMS products.

WBS: a hierarchical structure useful for organising project activity elements for the purposes of

project budgetary planning and control.

xviii

TRADEMARKS

All trademarks are those of their respective owners, including:

Activity Modeling I Behavior Modeling is a registered trademark of the Nmwegian Institute of

Technology, Noiway

Ada is a registered trademark of the US Department of Defense

Application-to-Application Interlace is a registered trademark of Micro Focus Limited

C++ is a registered trademark of AT&T Bell Laboratories

Compuware XA is a registered trademark of Compuware Corporation

Crystal Reports is a registered trademark of Crystal Computer Services

DADES is a registered trademark of the University of Barcelona, Spain

Data com is a registered trademark of Computer Associates Incorporation

Delphi is a registered trademark of Borland Incorporation

Easel is a registered trademark of Easel Corporation

Ehllapi is a registered trademark of International Business Machines

Eiffel is a registered trademark of Interactive Software Engineering Incorporation

Evolutionary Technologies Toolset is a registered trademark of Extract Corporation

Excel is a registered trademark of Microsoft Corporation

Excelerator is a registered trademark oflntersolv Corporation

Forte' is a registered trademark of Forte' Software Incorporation

HP-Ux is a registered trademark of Hewlett-Packard Company

IBM is a registered trademark of International Business Machines

Ideal is a registered trademark of Computer Associates Incorporation

Lightship is a registered trademark of Pilot Software

Macintosh is a registered trademark of Apple Computer Incorporation

MERISE is a registered trademark of Sema-Metra, France and Gamma International, France

Method/l is a registered trademark of Arthur Anderson Corporation

MVS is a registered trademark of International Business Machines Corporation

Object Management Workbench is a registered trademark oflntellicorp Corporation

OMTool is a registered trademark of OMf ool Incorporation

Open Server is a registered trademark ofSybase Incor?oration

Oracle is a registered trademark of Oracle Corporation

OS/2 is a registered trademark of International Business Machines Corporation

PARTS is a registered trademark ofDigitalk Incorporation

Powerbuilder is a registered trademark of Powersoft Incorporation

xix

Presentation Manager is a registered trademark of International Business Machines Incorporation

Prism Warehouse Manager is a registered trademark of Prism's Warehouse Manager

Projects is a registered trademark of Microsoft Corporation

PSUPSA is a registered trademark of the University of Michigan, USA

Ramba is a registered trademark of Wall Data Incorporated

REMORA is a registered trademark of the University of Paris-1, France

Renaissance is a registered trademark ofViasoft Incorporation

Rose is a registered trademark of Rational Software Corporation

Simula is a registered trademark of the Norwegian Computing Centre, Norway

Smalltalk is a registered trademark of Xerox Corporation

SQL Connect is a registered trademark of Oracle Corporation

Sybase is a registered trademark ofSybase Incorporation

Unix is a registered trademark of Unix System Laboratories Inc., a subsidiary of AT & T

VIA/Insight is a registered trademark ofViasoft Incorporation

Visual Basic is a registered trademark of Microsoft Corporation

Visual Reengineering Toolset and Visual Testing Toolset are registered trademarks of McCabe

and Associates 'Incorporation

Windows and Windows NT are registered trademarks of Microsoft Corporation

X-Windows is a registered trademark of the Massachusetts Institute of Technology (MIT)

A Methodology for Integrating Legacy Systems with the ClienUserver Environment

CHAPTER I

CONTEXT OF RESEARCH

1.1 Introduction

1.2 Problem Statement and Relevance of Solution

1.2.1 Problem Statement

1.2.2 Relevance of Solution

1.3 Hypotheses and Objectives

1.3 .1 Hypotheses

1.3 .2 Objectives

1.4 Constraints

1. 5 Assumptions

1.6 Method of Investigation

1. 7 Structure of the Dissertation

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 2

1.1 Introduction

Most organisations have large investments in traditional legacy systems1 and as a result

organisational strategies usually do not totally eliminate them High maintenance costs, which are

constantly rising and which include the cost of the large personnel component necessary to operate

the computer system, are significant with legacy systems. These systems are furthermore inflexible,

difficult to maintain and their data is inaccessible. Insufficient, or a total lack of documentation

adds to the difficulty of maintaining legacy systems and usually very few, if any, of the system

analysts and programmers involved in the development of these systems are still employed at the

time that maintenance is required.

Since the l 990's many organisations have based strategic information system decisions on

client/server computing. The primary focus of new systems development is on client/server

applications designed to run on more cost-effective platforms. A. powerful driver behind

client/server computing has been the promise of cost savings through the downsizing of corporate

legacy systems. Client/server computing exploits the relative advantages of each type of platform

while maximising an organisation's investments in existing systems.

As a result of the large capital investments represented by legacy systems as well as tight time

schedules, it is not always feasible to replace these systems without delay. Interoperability with

these legacy systems is required. Interoperability in this context refers to the ability to interconnect

platforms in order to be able to exchange data. Organisations are therefore in need of user­

interfaces to legacy systems.

1.2 Problem Statement and Relevance of Solution

Different strategies for integrating legacy systems with the client/server environment exist

(Simonds, 1992; Xephon, 1993; Forge, 1995; Kavanagh, 1995). Decisions regarding a strategy for

integrating a specific legacy system with the client/server environment are mainly influenced by the

1 In the contex1 of this dissertation, a legacy system is a mainframe-based computer application.

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 3

characteristics of the relevant legacy system In order to manage and control the integration

process, a methodology is needed.

1.2.1 Problem Statement

This research project proposes to explore the requirements of a methodology for integrating legacy

systems with the client/server environment in a petrochemical organisation, the petrochemical

organisation being South African Coal, Oil and Gas Corporation (SASOL).

The following subproblems were identified:

1. _ the construction of a reliable questionnaire to identify the characteristic properties of the

legacy systems existing within SASOL;

2. the identification of the main trends for integrating legacy systems with the client/server

environment in the Information Systems and Technology (ISff) industry;

3. the identification of the basic concepts of a generic methodology as well as the various

modelling perspectives which methodologies allow;

4. the identification of the meta-primitives of a methodology for integrating legacy systems

with the client/server environment;

5. the proposal of a software process model on which the integration methodology will be

based;

6. the identification and description of the most relevant methods, techniques, procedures and

deliverables for an integration methodology.

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 4

1.2.2 Relevance of the Solution

IS!f managers and engineers need a methodology to guide them through the process of integrating

legacy systems with the client/server environment. The methodology must assist the IS!f managers

and engineers in making decisions regarding a specific integration with a client/server environment,

guide them during the migration process as well as highlight possible pitfalls. It should include a

description of methods, techniques, associated deliverables as well as activities and their sequence.

In addition it should have a degree of generality as it should be possible to apply or adapt to a

variety of business domains.

1.3 Hypotheses and Objectives

In terms of the context of the problem statement the following hypotheses and oQjectives were

formulated:-

1.3.1 Hypotheses

1. As illustrated in Figure 1.1, a methodology for integrating legacy systems with the

client/server environment can be developed.

2. It is possible to define a software process model on which such a methodology is

based.

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 5

[ITO 1
LEGACY SYSTEM

CLIENT/SERVER ENVIRONMENT

INTEGRATION
METHODOLOGY

Figure 1.1 Conceptualisation of Integration

Chapter 1 - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 6

1.3.2 Objectives

1. The strengths and weaknesses of both mainframe and client/server environments

will be detennined.

2. The characteristic properties of legacy systems existing within SASOL will be

detennined.

3. The generic concepts of methodologies as well as the various perspectives taken by

particular methodologies will be considered.

4. A methodology as well as a software process model for integrating legacy systems

with the client/server environment will be proposed.

1.4 Constraints

The following factors constrained the investigation:-

1. The application of the proposed methodology to a real world application will not

form part of the investigation.

2. The research is to be done within the parameters of the OOISEE project in the

Department of Computer Science and Information Systems at the University of

South Afuca. Object-oriented software development is a parameter of the OOISEE

project which influenced the investigation.

3. The scope of the research is to meet the requirements for a partial dissertation.

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 7

1.5 Assumptions

Th~ following assumptions were made:

1. Business Process Re-engineering (BPR) has been done (using a specific

methodology) for all divisions within SASOL which are currently using the

involved legacy systems as informational resources;

2. legacy systems are to be found in most application domains and these systems have

characteristic properties.

1.6 Method of Investigation

Based on the context of the problem statement the hypotheses and objectives of the research were

formulated. The investigation was conducted in terms of the constraints and assumptions outlined

above, and proceeded in the following way:-

1. The relevant issues of the problem domain were identified. These · were legacy

systems, methodologies, trends for integrating legacy systems with the client/server

environment in the ISff industry, object-orientation (00) as well as client/server

environments.

2. The literature survey of the identified topics yielded a large number of references,

which were analysed and interpreted for their relevance.

3. A preliminary screerung of all legacy systems within SASOL yielded the

identification of five legacy systems in various application domruns. A

questionnaire was devised for identifying the characteristic properties of these

systems. The purpose here was to use this data, along with data from the literature,

to determine the features and technical characteristics required of an integration

methodology.

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 8

4. A number of methodologies were evaluated with respect to their features and

technical characteristics in order to derive a synthesis for an integration

methodology. This evaluation yielded the meta primitives of the integration

methodology.

5. A software process mode~ for integration was proposed.

6. The hypotheses and objectives of the research were validated.

1. 7 Structure of the Dissertation

The dissertation consists of six chapters.

Chapter 1 defines the context of research and includes the statement of the problem as well as the

relevance of the solution. The hypotheses and objectives are formulated in the context of the

problem statement. Constraints of the investigation are defined and assumptions are made. This is

followed by the method of investigation which guided the research. The chapter concludes with an

overview of the content of the dissertation.

Chapter 2 deals with legacy systems and their characteristic properties. The mainframe

environment is briefly discussed with emphasis on its strengths and weaknesses. The design aspects

and distribution procedure of the questionnaire are presented after which the results of the

questionnaire are presented, analysed, interpreted and summarised. A few relevant integration

trends in the IS!f industry are reviewed. The client/server environment is briefly discussed with

emphasis on its strengths and shortcomings. In the final section of this chapter several strategies for

the integration of legacy systems with client/server environments are reviewed.

Methodologies for software development are covered in Chapter 3. The basic concepts of a sound

generic methodology are identified after which the various perspectives taken by existing

methodologies are discussed. The roles of both the software process model and software

Chapter I - Context of Research

A Methodology for Integrating Legacy Systems with the Client/server Environment 9

development life-cycle (SDLC) are explained after which the different levels of the Capability

Maturity Model (CMM) proposed at the Carnegie-Mellon University, are summarised.

Chapter 4 is devoted to the integration methodology. The features and technical requirements of

the integration methodology are identified. A presentation of the generic tasks to be undertaken

during the integration life-cycle follows. The Enhanced Spiral Model for Integration (ESMI) is

proposed as a software process model for integrating legacy systems with the client/server

environment, followed by a synopsis of the representation schema as well as the most relevant

methods, techniques, procedures and deliverables of this . software process model. Project

management is addressed in the final section of the chapter.

In Chapter 5 the most relevant methods, techniques and procedures of the ESMI are discussed in

detail. Automated support for the ESMI is covered in the final section of the chapter.

The research results are summarised and the conclusions drawn during the investigation are stated

in Chapter 6. Areas for further investigation are proposed.

Chapter 1 - Context of Research

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

A Methodology for Integrating Legacy Systems with the ClientJserver Environment

Introduction

Mainframe Environments

Questionnaire Design

Questionnaire Procedure

CHAPTER2

LEGACY SYSTEMS

Presentation of Questionnaire Results

2.5.1 The MMS System

2.5.2 The FS System

2.5.3 The GL System

2.5.4 The P AMM System

2.5.5 The MIMS System

Summary and Interpretation of Results

Trends in the ISff Industry

2.7.1 Downsizing

2.7.2 Re-engineering

2.7.3 Object-Orientation

2.7.4 Middleware

2.7.5 Standards

2.7.6 Open Systems

2.7.7 Gill's

Client/server Environments

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment

CHAPTER2

LEGACY SYSTEMS (CONTINUED)

2.9 Strategies for Integrating with Client/server Environments

2.9.1 Eliminate Legacy System

2.9.2 Redesign Business Process

2.9.3 Replace Legacy System with Packaged Software

2.9.4 Redesign and Develop Legacy System

2.9.5 Downsize Legacy System

2.9.6 Renovate Legacy System

2.9.7 Restrict Legacy System

2.9.8 Restructure Legacy System

2.10 Summary and Conclusion

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 2

2.1 Introduction

The investigation of the business processes, the legacy application systems that support these

processes as well as the technology supporting these systems are all prerequisites for deciding on an

integration strategy for a legacy system with the client/server environment. Kavanagh (1995)1

suggests that the following questions be answered for each business process:-

1. Is the basic business process necessary?

2. Is it working well enough?

3. Is the legacy application working well?

4. Is additional functionality needed?

5. Is additional ease of use needed?

6. Is the underlying technology working well?

7. Is the technology expensive or obsolete?

The investigation of the business processes, i.e. Business Process Re-engineering (BPR), was

outside the scope of this investigation, but an empirical survey was conducted focusing on five

legacy systems which exist in various application domains within SASOL. This was done by means

of a questionnaire which aimed at answering the above set of questions for the five legacy systems,

as well as identifying their characteristic properties.

In this chapter the strengths and shortcomings of mainframe environments are discussed. The

design of the questionnaire and the procedures for distributing it are explained, followed by a

presentation of the results that were obtained. These results are summarised and interpreted after

1 Many of the ideas regarding the integration oflegacy systems with client/server environments were derived
from those of Kavanagh (1995) .

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 3

which trends in the IS!f industry relevant to integrating legacy systems with the client/server

environment, are considered. The strengths and weaknesses of client/server environments are

reviewed. An overview of the different strategies for integrating legacy systems with the

client/server environment follows.

2.2 Mainframe Environments

Mainframe environments are host-based and are generally considered "old technology". They have

existed since the late 1960's. They represent large investments in application software, networks,

staff, system software and hardware in organisations.

They are known for their stability and secure nature. The data to be protected is centralised and

practices and tools have evolved to defend this security. Mainframe system software (e.g. the

MYS operating system, CICS database management system and COBOL compiler) are mature and

well-understood. Terminals are cheaper than workstations and they provide for the limited, fixed

computing needs of users at a reasonable price. Mainframes offer easy organisation-wide

communications without the need for intercomputer communication. Mainframe systems' strengths

are batch processing and automated job scheduling.

A major problem with mainframe environments is the high maintenance costs involved. The large

number of personnel necessary to operate the computer can be up to 60% of the total IS!f budget

(Kavanagh, 1995). Legacy systems are inflexible and the data is inaccessible. The lack of user­

friendly and mouse-driven graphical user-interfaces (GUI's) is another major disadvantage.

Companies are frequently locked into a particular vendor's technology with the concomitant

disadvantage of being unable to consider competing technologies. In such an environment it is not

possible to entertain the options offered by open systems offerings in the marketplace.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 4

2.3 Questionnaire Design

The questionnaire was based on information obtained from the literature survey (Simonds, 1992;

Xephon,1993; Grosvenor,1994; Kavanagh,1995) as well as six years of personal experience

maintaining legacy systems. It was designed to elicit information in thirteen broad areas:

• personal details;

• legacy system details;

• stze;

• growth;

• integration with other systems;

• cost;

• quality;

• critical factors;

• business support;

• available skills;

• uniqueness;

• maintenance history, as well as

• a comments area .

The questionnaire comprised a total of 45 questions. Even numbers of alternate response options

were given to avoid neutral answers thereby ensuring that the expression of views were either

negative or positive. A respondent was either a user of the system or responsible for maintaining

the system. A user of the system was requested only to complete the questions in the sections on

personal details, cost, quality, critical factors, business support, uniqueness, maintenance history

and comments. A person responsible for maintaining the system was requested to complete all

sections. The questionnaire is presented in Appendix A

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 15

2.4 Questionnaire Procedure

As a result of the limited time available, the survey was conducted in the form of a questionnaire.

This approach was deemed adequate within the context of this dissertation. The questionnaire

shown in Appendix A was given to the project leaders of the five identified legacy systems, namely

the Sastech Material Management System (MMS), the Sastech Financial System (FS), the General

Ledger System (GL), the Purchase Ordering Accounts Payable Material Management System

(P AMM) as well as the Maintenance Information Management System (MIMS). After discussing

the questionnaire with these project leaders, they were asked to distribute copies of the

questionnaire among a few users whom they regard as having a thorough knowledge of the system

involved, as well as among the maintenance personnel of the system. The project leaders were also

prepared to assist users and maintenance personnel in the completion of the questionnaire.

A total of 39 questionnaires were sent out and respondents were given six weeks for the

completion and return of the questionnaires. When considering the number of users of the five

systems, the number of questionnaires sent out may seem very small. Very few users, however, are

able to answer questions regarding factors such as cost, critical factors, business support,

uniqueness and maintenance history, the reason being that most users only use a small part of a

legacy system and they therefore do not have the global view of the system which was required to

complete the questionnaire.

2.5 Presentation of Questionnaire Results

A total of 26 responses were received of which seven were for the MMS System, six for the FS

System, three for GL System, four for the PAMM System and six for the MIMS System. The

questionnaire responses are presented in Appendix B and the results are summarised in Table 2.1.

The results for each of the five systems will now be considered.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 16

Criteria MMS FS GL PAMM MIMS

Response Profile

• Users (Nbr) 5 4 1 2 5

• Maintenance

Personnel (Nbr) 2 2 2 2 1

Legacy System Details

• Hardware IBM IBM IBM IBM IBM

• Operating System MVS MVS MVS MVS MVS

• DBMS Datacom Datacom Datacom Datacom Data com

• Application Language Ideal Ideal COBOL COBOL COBOL

• Methodology Method/l Method/1 None Method/1 None

Size

• Users (Nbr) 69 58 160 1 600 1 200

• Online Programs(Nbr) 541 466 236 460 527

• Batch Programs (Nbr) 129 161 140 30 180

• Database (MB) 935 747 5 269 6 160 8 645

• Transactions I Day

(Nbr) 5 182 3 273 5 000 2 500 130 000

Growth

• Monthly Database

Growth (%) 15 13 6 9,75 5

• High Volume Updates Yes Yes Yes Yes No

Integrated with:

• Legacy Systems FS MMS PAMM GL GL

GL MIMS MIMS PAMM

FS

• Other Systems (Nbr) 1 2 10 1 2

Table 2.1 Summary of Questionnaire Results

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 7

Criteria MMS FS GL PAMM

Cost

• Age of System

(Years) 7 7 8 8 to 9

• Annual Operating

(Rm) 1,4 2,9 3,4 5,7

• Total Development &

Maintenance (Rm) 14,7 21,0 6,4 10,0

• Total Hardware (Rm) 2,7 3,8 14,6 30,5

Quality

• Satisfaction of

Requirements GS GS GS GS

• Accuracy of Original

Specifications GS GS GS GS

• Need for Additional

Functionality Yes No Yes Yes

• Need for Additional

of Use Yes Yes No .
. Ease

• Underlying

Technology GS GS GS GS

• System Documentation GS GU to GS cs GS to CS

• Data GS GS cs GS

Table 2.1 Summary of Questionnaire Results (Continued)

Responses varied to such an extent that a result cannot be given.

U - Unsatisfactory
GU - Generally Unsatisfactory
GS - Generally Satisfactory
CS - Completely Satisfactory

Chapter 2 - Legacy Systems

MIMS

6

10,0

30,0

50,0

GS

GS

Yes

Yes

u

*

*

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 8

Criteria MMS FS GL PAMM

Critical Factors

• Cost c EC FC to c c

• Security NC to FC c to EC c c
* • Availability c c to EC c to EC

• System Performance c to EC c c to EC c

Business Support

• Support for

Organisational GS GS GS GS

Processes

• Mission-critical Yes Yes No Yes

Available Skills

• Difficulty to obtain

internally skilled FD FD FD VE

people

• Difficulty to obtain

externally skilled FD FD FD FD

people

Table 2.1 Summary of Questionnaire Results (Continued)

Responses varied to such an extent that a result cannot be given.

U - Unsatisfactory
GU - Generally Unsatisfactory
GS - Generally Satisfactory
CS - Completely Satisfactory

VE - Very Easy
FE - Fairly Easy
FD - Fairly Difficult
ED - Extremely Difficult

NC - Not Critical
FC - Fairly Critical
C - Critical
EC - Extremely Critical

Chapter 2 - Legacy Systems

MIMS

FC

c

c to EC

c to EC

*

Yes

FD

ED

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 9

Criteria MMS FS GL PAMM

Uniqueness

• Complexity Fair to Medium Medium Fair to

Medium Medium

Functional Aspects FU to U FU * FU •
• Existence of

Packaged Software No No Yes No

Maintenance History

• Corrective FS FS * FO

Maintenance

• Limited to Certain Yes No No Yes

Parts

Table 2.1 Summary of Questionnaire Results (Continued)

J

Responses varied to such an extent that a result cannot be given

NU - Not Unique
FU - Fairly Unique
U - Unique
EU - Extremely Unique

VS - Very Seldom
FS - Fairly Seldom
FO - Fairly Often
VO - Very Often

Chapter 2 - Legacy Systems

MIMS

Medium

*

Yes

FO

No

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 0

2.5.1 The MMS System

The MMS System has a material management nature and is used for the purchase, procurement

and management of project material within SASOL Technology (SASTECH) which is a member

of the SASOL Group of Companies.

Legacy System Details: the MMS System is running on an IBM mainframe computer, with

operating system MVS and DBMS, the latest version of Datacom The application language is

Ideal, which is a 4GL. Method/1 was used as methodology for development.

Response Profile: five users and two employees responsible for maintaining the system responded.

Si7.e: the system has 69 users and consists of 541 online and 129 batch programs. The size of the

database is 935 MB and there are 5 182 transactions a day.

Growth: the database grows at a rate of 15% a month and high volume updates are a characteristic

of the system

Integration with Other Systems: the system is tightly integrated with the FS System as well as

with a DOS-based decision support system which runs on a LAN.

Cost: the MMS System has be~ in use in a production environment for about seven years. Some

respondents reckoned it to be less, but that may be because they have used the system for less than

seven years. The annual total cost to run the system amounts to at least 1,4 million rand. The

estimated total cost of development and maintenance to date amounts to 14, 7 million rand with a

total expenditure on hardware for 2, 7 million rand.

Quality: as far as requirements are concerned, all respondents felt the system to be generally .

satisfactory and that original specifications describe the existing functionality of the system fairly

accurately. Four users reckoned that additional functionality was needed whereas the two

employees responsible for maintenance as well as one user felt there was no need for additional

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 1

functionality. The vote for additional ease of use was four against one, with the maintenance

personnel voting one in favour and the other against additional ease of use. Four respondents

(including one maintenance employee - the other one left this answer blank) reckoned the

underlying technology to be obsolete but satisfactory, while two users felt it was current and

satisfactory. In general, it was felt that system documentation was satisfactory. All respondents

agreed that the quality of the data was generally satisfactory.

Critical Factors: as illustrated in Figure 2.1, system performance is critical to extremely critical

while the co.st of.running the system is regar-ded .as -Critical.

GI

50.0%

45.0%

40.0%

35.0%

g 30.0%

~ 25.0%

a:: 20.0%
~ 0

15.0%

10.0%

5.0%

-

-

oCost

- oSecurity

D A-.eilability

o Performance
- ~

'--------~

0. 0% +---.l---'---'---+---J'--'-----'---'---'--+--'----J'--.l---'---'--l-----"---'-'----~""--1

Not Critical Fairly Critical Critical Extremely Critical

Figure 2.1 CriticalF.actors ofMMS

Business Support: all respondents considered the support provided by the system to

organisational processes to be generally satisfactory. The system is mission-critical to SASOL.

Available Skills: less than 50% of the employees involved in the original development and

maintenance of the system is still employed by SASOL and the same percentage with the necessary

skills to maintain the system is still employed by SASOL. It is fairly difficult to find people with the

appropriate skills to maintain the system in the external market.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 2

Uniqueness: the MMS System has fair to medium complexity and the functional aspects of the

system are fairly unique to unique to SASOL. Packaged software with similar functionality is

available but satisfies only 80% of the requirements.

Maintenance History: corrective maintenance is fairly seldom required and is limited to certain

parts of the system.

2.5.2 The FS System

The FS System has a financial nature and is used for accounts payable and project accounting

within SASTECH. All material ordered and received through the MMS System is payed through

the FS System.

Legacy System Details: the FS System is running on an IBM mainframe, with operating system

MVS and DBMS, the latest version of Datacom. The application is developed in Ideal. Methdd/1

was used as a methodology for development.

Response Profile: four users and two employees responsible for the maintenance of the system

responded.

Size: the system has 58 users and consists of 466 online and 161 batch programs. The size of the

database is 747 MB and there are 3 273 transactions a day.

Growth: the database grows at a rate of 13% a month and high volume updates are a characteristic

of the system.

Integration with Other Systems: the system is tightly integrated with the MMS System and

supplies data to the GL System as well as two DOS-based systems running on LAN's.

Cost: the FS System has been in use in a production environment for about seven years. The

annual total cost to run the system amounts to 2,9 million rand. The estimated total cost of

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 3

development and maintenance to date amounts to 21 million rand with a total expenditure on

hardware of approximately 3,8 million rand.

Quality: as far as requirements are concerned, the system is generally satisfactory and original

specifications describe the existing functionality of the system fairly accurate. Little additional

functionality is needed, but the ease of use can be improved. The underlying technology is

satisfactory. System documentation is generally unsatisfactory to satisfactory and the quality of the

data is satisfactory.

Critical Factors: as illustrated in Figure 2.2, the cost of running the system is extremely critical

while security is critical to extremely critical. Availability and system performance are also regarded

as critical.

70.0% oCost
- -

60.0% oSecurity

50.0% -
oAvailability -

GI o Perfonnance Ill
c 40.0% 0 a.
Ill

&! - - -
30.0%

~ 0

20.0%

10.0%

0.0%

Not Critical Fairly Critical Critical Extremely Critical

Figure 2.2 Critical Factors of ES

Business Support: the support provided by the system to organisational processes is generally

satisfactory and th~ -syst~ 1s regar-ded as mission--eritical to SAS-OL 's business.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the ClientJserver Environment 2 4

Available Skills: less than 50% of the employees involved in the original development and

maintenance of the system is still employed by SASOL and the same percentage with the necessary

skills to maintain the system is still employed. It is fairly difficult to find people with the appropriate

skills to maintain the system in the external market.

Uniqueness: the system is of medium complexity. The functional aspects of the system are fairly

unique to SASOL, therefore packaged software with similar functionality only satisfies 60% of the

requirements.

Maintenance History: corrective maintenance is fairly seldom required and is not limited to

certain parts of the system.

2.5.3 The GL System

The GL System has a financial application domain and is used within SASOL Synthetic Fuels

(SSF) which is a member of the SASOL Group of Companies.

Legacy System Details: the GL System is packaged software which was customised for SASOL's

business. It is running on an IBM mainframe computer, with operating system MVS and DBMS

Datacom. The application language is COBOL.

Response Pn)file: one user and two employees responsible for the maintenance of the system

responded.

Size: the system has 160 users and consists of 236 online and 140 batch programs. The size of the

database is 5 269 MB and there are an average of 5 000 transactions a day.

Growth: the database grows at a rate of 6% a month and high volume updates are a characteristic

of the system.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the ClientJserver Environment 2 6

Business Support: the support provided by the system to organisational processes is generally

satisfactory and the system is not regarded mission-critical to the business.

Available Skills: less than 50% of the employees involved in the original development and

maintenance of the system is still employed by SASOL and the same percentage with the necessary

skills to maintain the system is still emploY,ed. It is fairly difficult to find people with the appropriate

skills to maintain the system in the external market.

Uniqueness: GL is of medium complexity. Some parts of the system are not unique to SASOL

whereas other parts are unique and packaged software exists for a large part of the system.

Maintenance History: some respondents reckoned corrective maintenance to be required fairly

often whereas others were of the opinion that it was required very seldom. It was, however, not

limited to certain parts of the system.

2.5.4 The PAMM System

The P AMM System has a material management application domain and is used within SSF for the

purchase, procurement and management of material. In contrast with the MMS System which only

provides for project stores (i.e. only material ordered for a project is kept in store), the PAMM

System supports full store maintenance and management (i.e. material is reordered whenever a

predefined level is reached). All material ordered and received through the P AMM System is paid

through the GL System.

Legacy System Details: the P AMM System is packaged software which was customised for

SASOL's business. It is running on an IBM mainframe computer, with operating system MVS and

DBMS Datacom. The application language is COBOL, which is not the latest version available.

Method/I was used as methodology for customising the system. One respondent commented that

in practice no methodology was used.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the ClientJserver Environment 2 7

Response Profile: two users as well as two employees responsible for maintaining the system

responded.

Siz.e: the system has 1 600 users and consists of 460 online and 30 batch programs. The size of the

database is 6 160 MB and there are 2 500 transactions a day.

Growth: high volume updates are a characteristic of the system

Integration with Other Systems: the system is tightly integrated with both the GL and MIMS

Systems as well as with one PC application.

Cost: P AMM has been in use in a production environment for eight to nine years. The annual total

cost to run the system amounts to 5~7 million rand. The estimated total cost of development and

maintenance to date amounts to ten million rand with a total expenditure on hardware of 30,5

million rand.

Quality: as far as requirements are concerned, the system is generally satisfactory and original

specifications describe the existing functionality of the system fairly accurate. However, additional

functionality is needed in the system The underlying technology is satisfactory. System

documentation is satisfactory to completely satisfactory and the quality of the data is satisfactory.

Critical Factors: availability is regarded as critical to extremely critical while performance, cost

and security are critical. The critical factors are illustrated in Figure 2.4.

Business Support: the support provided by the system to organisational processes is generally

satisfactory and the system is regarded as mission-critical to the business.

Available Skills: more than 75% of the employees involved in the original development and

maintenance of the system is still employed by SASOL and the same percentage with the necessary

skills to maintain the system is still employed by SASOL. It is fairly difficult to find people with the

appropriate skills to maintain the system in the external market.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 8

100.0% oCost

90.0% osecurity
80.0%

70.0%
oAvailability

QI
Ill 60.0% o Performance c
&.
Ill 50.0% - -QI
a::
~

40.0% .
30.0%

20.0%

10.0%

0.0%

Not Fairly Critical Extremely
Critical Critical Critical

Figure 2.4 Critical Factors of P AMM

Uniqueness: P AMM is of fair to medium complexity. The functional aspects of the system are

fairly unique to SASOL and packaged software which satisfies all requirements does not exist.

Maintenance History: corrective maintenance is required fairly often and is limited to certain parts

of the system

2.5.5 The MIMS System

The M1MS System has a maintenance information nature and is used within SSF for the capturing

of plant maintenance information as well as for providing management information concerning

plant maintenance.AlLmaterialrequired for plant maintenance is-0rder.ed-and receiv.ed tbr-0ugh the

P AMM System and paid through the GL System

Legacy System Details: the M1MS System is packaged software which was customised for

SASOL's business. It is running on an IBM mainframe computer, with operating system MYS and

DBMS Datacom version 3.010, which is not the latest version available. The application language

is COBOL.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 9

Response Profile: five users and the project leader responsible for the maintenance of the system

responded.

Si7.e: the system has 1 200 users and consists of 527 online and 180 batch programs. The size of

the database is 8 645 MB and there are 130 000 transactions a day.

Growth: the database grows at a rate of 5% a month and high volume updates are not a

characteristic of the system.

Integration with Other Systems: the system is tightly integrated with other systems which include

both the GL and P AMM Systems as well as two other, one which is Unix-based and one which is

DOS-based.

Cost: MIMS has been in use in a production environment for about six years. The annual total

cost to run the system amounts to ten million rand. The estimated total cost of development and

maintenance to date amounts to 30 million rand with a total expenditure on hardware of at least 50

million rand.

Quality: as far as requirements are concerned, the system is generally satisfactory and original

specifications describe the existing functionality of the system fairly accurate. However, additional

functionality and ease of use are needed in the system. The underlying technology is unsatisfactory .

.
Critical Factors: system performance and availability are regarded as critical to extremely critical

while security is critical. The cost of running the system is fairly critical. The critical factors are

illustrated in Figure 2.5.

Business Support: the support provided by the system to organisational processes is generally

unsatisfactory to completely satisfactory and the system is regarded as mission-critical to the

business.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 2 5

Integration with Other Systems: the system is tightly integrated with both the MIMS and

P AMM Systems as well as with various other PC applications. A monthly data file supplied by the

FS System is processed.

Cost: GL has been in use in a production environment for eight years. The annual total cost to run

the system amount,S to 3,4 millionrmid. The estimated total cost of-development .and maintenance

to date amounts to 6,4 million rand with a total expenditure on hardware of at least 14,6 million

rand.

Quality: as far as requirements are concerned, the system is generally satisfactory and original

specifications describe the existing functionality of the system fairly accurate. However, additional

functionality _is needed m the system Little .additional-ease of use is required. The underlying

technology is satisfactory. The quality of the data as well as system documentation are completely

satisfactory.

Critical Factors: system performance and availability are regarded as critical to extremely critical.

Security is critical while the cost of running the system is fairly critical to critical. The critical

factors are illustrated in Figure 2.3.

10Cl0% - oCost

90.0% oSecurity

80.0%

70.0%
oAvailability

-Cll
Cll 60.0% o Performance c
&.
Cll 50.0%
Cll
0::

40.0%
~ 0

30.0% --
20.0%

10.0%

0.0%

Not Fairly Critical Extremely
Critical Critical Critical

Figure 2.3 Critical Factors of GL

Chapter 2 - Legacy Systems

80.0%

70.0%

60.0%

3: 50.0%
c
8. &! 40.0%

-;!. 30.0%

20.0%

10.0%

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 0

Not
Critical

Fairly
Critical

-

,_____

Critical

Figure 2.5 Critical Factors of MIMS

Extremely
Critical

oCost

osecurity

oAwilability

O Perfonnance

Available Skills: less than 50% of the employees involved in the original development and

maintenance of the system is still employed by SASOL and the same percentage with the necessary

skills to maintain the system 1s still employed by SASOL. It js extremely -difficult t-0 fuid pe-0ple

with the appropriate skills to maintain the system in the external market.

Uniqueness: the functional aspects of MIMS are of medium complexity whereas the technical

aspects are of high complexity. Responses received with respect to the functional aspects of the

system varies from not unique to extremely unique to SASOL and packaged software exists with

similar functionality.

Maintenance History: corrective maintenance is required fairly often but is not limited to certain

parts of the system

2.6 Summary and Interpretation of Results

Before the results are summarised and interpreted, the reason for the widely distributed answers

obtained in certain areas should be given. The involved legacy systems support a variety of

functions within arp1pplication-domain .and respondents .could .answer -a question with r.eg-ard t-0 the

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 1

single function or set of functions that he1 was primarily concerned with. Consider for example the

widely distributed answers obtained regarding the criticality of availability for the MMS System

(Table 2.1). Availability is critical for the receiving function of the MMS System as material can be

delivered at any time of day or night and the system has to be available to allow for the receiving of

the material. For other functions of the system (e.g. purchase ordering), however, availability is not

that critical. A respondent primarily concerned with the receiving function might therefore regard

availability as critical whereas a respondent concerned with purchase ordering might regard

availability as not critical.

As indicated in Figure 2.6, the legacy systems which exist within SASOL are relatively large. They

consist of an average of 574 programs each. On average 22% of these programs are batch. The

average size of the databases is 4 351 MB with an average of 29 191 transactions per day. The

average monthly growth percentage of the databases is 9,75%. The systems have an average of

617 users.

All legacy systems considered are at least integrated with one other legacy system as well as with

various LAN or PC based systems. All the systems have been in use in a production environment

for at least six years. The GL, P AMM and MIMS systems are used by SSF. If considered that

according to SASOL's annual report for 1995, the total profit for SSF was R709,8 million rand,

then the total annual cost to run only three of their systems amounts to 2, 7% of the profit made in

1995. The annual cost to run the MMS and FS systems of SASTECH amounts to 10,7% of

SASTECH's total profit for the year 1995. In the light of these facts it is clear that the costs

involved to run these systems are relatively high. The costs involved with the systems are

illustrated in Figure 2.7.

1
The masculine form of the third person is used throughout to represent both genders.

Chapter 2 - Legacy Systems

1600

1400

i!!
1200

QI 1000 ..
:>

800 0
.Ci 600
z 400

200
0

10000

~ 8000

ii: 6000 .. .a
~ 4000
c
0 2000
QI
N
iii 0

Ill
'ti c
~
c
~
~

A Methodology for Integrating Legacy Systems with the Client/server Environment

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

Systems

Systems

Annual Total

CMMS

CFS
600

CGL 500
CPAMM ..

E 400 CMIMS !!
tJI e 300 a.
0
.Ci 200
z

100

0

DMMS

DFS 140000

DGL
.. 120000 c:

DPAMM .2 100000
~ >.

DMIMS 80000 c: c .. ~
60000 ~ QI

I- CL

0 40000
.Ci 20000 z

0

Figure 2.6 Size of-Systems

Development &
Maintenance to

Date

Figure 2.7 Costs of Systems

Chapter 2 - Legacy Syst!:ms

Online Batch

Systems

Hardware

32

CMMS

CFS

CGL

CPAMM

CMIMS

CMMS

DFS

DGL

DPAMM

DMIMS

oMMS

OFS

oGL

oPAMM

OMIMS

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 3

As indicated in Figure 2.8, the quality of the systems are generally satisfactory, except for the

MIMS System where most respondents indicated that the quality of the system was unsatisfactory.

cu
Ill

70.0%

60.0%

50.0%

[40.0%
Ill cu
a: 30.0%
:.!! 0

20.0%

10.0%

Unsatisfactory Generally
Unsatisfactory

Generally
Satisfactory

Figure 2.8 Quality-of-Systems

Completely
Satisfactory

oMMS

oFS

OGL

oPAMM

oMIMS

Figure 2.9 summarises the critical factors of the five legacy systems. System performance and

availability were considered most critical for all systems, whereas cost was the least critical.

All systems provide satisfactory support to SASOL's business and all systems, except the GL

System, are unanimously considered to be mission-critical. Figure 2.10 illustrates the business

support provided by the involved legacy systems. People with the appropriate skills to maintain the

systems are usually fairly difficult to find. The P AMM System is the exception here as it is very easy

to find people with the appropriate skills to maintain this system within SASOL. The ease with

which the necessary skills for maintaining the involved legacy systems can be attained is indicated in

Figure 2.11.

Chapter 2 - Legacy Systems

60.0%

50.0%

GI 40.0%
Ill c
0 c.

30.0% Ill

~
~ 0 20.0%

10.0%

0.0%

70.0%

60.0%

50.0%
GI
Ill c 40.0% 0 c.
Ill
GI a: 30.0%
~ 0

20.0%

10.0%

0.0%

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 4

Not
Critical

Unsatisfactory

Fairly
Critical

Critical

Figure 2.9 Critical-Factors ufS-ystems

Generally
Unsatisfactory

Generally
Satisfactory

Extremely
Critical

oCost

oSecurity

o Availability

o Performance

oMMS

oFS

oGL

oPAMM

oMIMS

Completely
Satisfactory

Figure 2.10 Busipess Support uf Systems

Chapter 2 - Legacy Systems

11

I

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 5

';/!.
30.0%

- -

20.0%

10.0%

0.0% +---'~~~~~·~-t-..__......._..__.......__.__-'---4--'---'------+-----'---'-------4

Unavailable Fairly Available Available Highly Available

Figure 2.11 Skill AYailahility of_Systems

As indicated in Figure 2.12, the systems are of fair to medium complexity. The uniqueness of the

legacy systems is illustrated in Figure 2.13. In some cases packaged software with similar

functionality exists (the GL and MIMS systems), whereas in other cases the existing packaged

software does not satisfy total requirements (the MMS, FS and PAMM systems). Some

respondents commented that it was easier to adjust business processes to packaged software than

vice versa. As indicated in Figure 2.14, corrective maintenance is not required very often on any of

the systems. With some of the systems maintenance is limited to certain parts (the MMS and

· P AMM systems) while with the other -systems it is not limited to certain parts.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 6

100.0%

90.0%

80.0%

70.0%
Cll en 60.0% c
0 c.

50.0% en
&!
;:,!! 40.0%
0

30.0%

20.0%

10.0%

0.0%

80.0%

70.0%

60.0%

3: 50.0%
c
&.
en 40.0%
&!
~ 30.0%

20.0%

10.0%

Low Fair Medium

Figure 2.12 Complexity of Systems

Not Fair Medium

Figure 2.13 Uniqueness of Systems

Chapter 2 - Legacy Systems

High

Extremely

oMMS

oFS

oGL

oPAMM

oMIMS

oMMS

oFS

oGL

oPAMM

oMIMS

80.0%

70.0%

60.0%

~ 50.0%
c

~ 40.0%
ti
~ 30.0%

20.0%

10.0%

0.0%

A Methodology for Integrating Legacy Systems with the Client/server Environment

-
- -

-

- -

- -

- - -

Very Seldom Fairly Seldom Fairly Often Very Often

Figure 2.14 Maintenance History of Systems

2. 7 Trends in the IS!f Industry

37

oMMS

oFS

oGL

oPAMM

oMIMS

Trends in the IS!f industry which are applicable to integrating legacy systems with client/server

environments include downsizing, re-engineering, object-orientation (00), middleware, standards,

open systems and graphical user-interfaces (GUI's). Each of these trends are reviewed next,

outlining the implications for dealing with legacy systems.

2.7.1 Downsizing

Downsizing involves the moving of mainframe-based applications to more cost-effective mid-range

and minicomputer platforms without significant change. A driver for downsizing is the expensive

proprietary mainframe million instructions per second (MIPS). In the integration of a legacy

system with a client/server environment, there is usually some functionality or data that has to be

off-loaded from the mainframe and which can be viewed as downsizing.

The greatest challenge of downsizing is the transition from the old to new approaches. The

mainframe systems have to maintain the business support as usual, while skills migrate to

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 8

client/server. During the transitional period the investment in client/server environments has to

increase while the investment in the mainframe environment has to be maintained. This has major

cost implications, as the cost of a mainframe-only environment is less than that of a mainframe

combined with client/server environment. Savings in costs will therefore only be perceivable in the

longer term (Xephon,1993).

In the IS!f industry the choice of platforms, tools and applications adequate for downsizing and

client/server environments is expanding rapidly. Primary mainframe software vendors, including

Computer Associates, Dun & Bradstreet, Lawson Software Inc and Pilot Software, are moving

their applications and tools to Unix. The mainframe vendors IBM and Amdahl have announced

hardware and software to ease LAN-mainframe connectivity.

2. 7.2 Re-engineering

Re-engineering is the process of reverse engineering followed by forward engineering. Reverse

engineering is the process of recreating design documents or even specifications from source code.

Forward engineering is the usual development process within the context of re-engineering that

proceeds from specifications through design to code. Reverse engineering therefore takes the

product from a lower level of abstraction to a higher level of abstraction whereas forward

engineering takes the product from a higher level of abstraction to a lower level (Schach, 1996).

Re-engineering can be used to provide legacy systems with a migration path to client/server

environments. It aims at expressing existing legacy code in a clearer form - ideally at a higher levei

e.g. in a 4GL-like environment which is easier to understand and therefore easier to maintain. The

application is then taken forward again from the 4GL-like environment with the client/server

platform in mind. Sneed (1995) highlights important aspects when planning the re-engineering of

legacy systems.

Re-engineering tools to achieve this goal are available (Xephon,1993). One of the simplest is a

pretty printer (or formatter) which can help to display code more clearly. Tools to construct

diagrams (e.g. flowcharts or structure charts) directly from source code, also exist (Schach, 1996).

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 3 9

2. 7.3 Object-Orientation (00)

00 allows the interpretation of an application as a collection of objects that interact with one

another, change as a result of those interactions and yet maintain identity through change. This

allows for the creation of a library of standard objects that can be reused to build many different

applications. Reusability improves productivity, saves money, shortens development time and

increases system reliability. Software reuse is discussed in Section 5 .3 .5. The principles of 00 are

discussed in Appendix C.

00 can be regarded as the inherent basis of a client/server environment. 00 seeks to model the

"real world" in terms of objects which may request certain services from other objects as well as

provide certain services to other objects. In the client/server environment the object making a

request can be considered to be the client, whereas the object that receives the request and provides

the service can be regarded as the server.

Wrappering allows for the integration of legacy systems and their data with the client/server

environment without discarding their existing platform. By making use of wrappering, non-00

systems and data can be integrated with 00 applications. Rumbaugh (1991) defines a wrapper as:

"a class or operation that encapsulates a call to library routines or some other code that

is being reused. "

The wrapper specifies the valid operations on the non-00 system. The non-00 system becomes

just another object that can both send and receive messages.

Forge (1995) gives an example of interfacing successfully to a certain airline reservation system by

means of encapsulating required sections of the code as objects by "wrapping" them in an object

layer. These sections oflegacy code were linked to a new 00 application program as objects. This

exercise was considerably more cost-effective than it would have been, had the legacy system been

rewritten. The Forte' application development environment, Easel, as well as the PARTS Wrapper

from Digitalk allow for the encapsulation of non-00 systems by making use of wrappering.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 0

2.7.4 Middleware

According to Watterson (1995), middleware refers to a variety of different software applications

for establishing communication between client applications and host servers. It is a kind of

protocol which connects different GUI's (front-ends) and DBMS's (back-ends). In the context of

integrating legacy systems with the client/server environment, a mainframe computer can be

regarded as just another host server if the appropriate middleware is available for establishing

communication to the client application.

As a result, an application programmer does not have to be concerned with the details of making

the physical and logical connection to the target data source as the middleware will take care of

that. Three categories ofmiddleware are distinguished (Watterson,1995):

1. network or messaging middleware shields programmers from networking details

(but not from database details) and includes remote procedure call (RPC) and

interprocess communication (IPC);

2. database middleware shields front-ends from the technical details of the database

back-ends and includes application programming interfaces (API's) and gateways.

The middleware translates incoming requests into database-specific commands.

API's are an agreed-upon set of functions that perform common tasks such as

opening a connection with the database and finding out the names of databases and

tables. The most commonly used database API middleware is open database

connectivity (ODBC) which was originally developed by Microsoft for Windows.

SQL gateways also provide links between client applications and back-end

databases, although they are proprietary and DBMS specific. They usually provide

gateways to both SQL (relational) and non-SQL legacy data. Examples include

Sybase's Open Server and Oracle's SQL Connect;

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 1

3. replication server middleware is used to copy databases or parts of databases. It

can usually be programmed to replicate copies of the data either at fixed intervals,

when an event occurs, or on demand.

2.7.5 Standards

A standard is a point of reference. It is an industry-accepted way of doing business that does not

impede innovation or represent the narrow interests of any one single vendor or user. Reasons for

the creation of standards are for variety contra~ usability, compatibility, interchangeability,

portability and interoperability (Schroen & Meltz, 1992).

Usability refers to the provision of the same look and feel to different applications across different

operating system environments.

Compatibility is the capability to use applications and subsystems over time. Backward

compatibility ensures that later releases of products are capable of accessing, interpreting and

presenting information prepared with earlier versions.

Interchangeability allows a free choice of applications developed to the standards from the

market, therefore giving the user a safer investment.

Portability refers to the capability of moving software applications from one operating

environment or platform to another at minimal cost. When environments become more uniform,

the cost of moving should decrease dramatically (Simonds, 1992) as the need to rewrite applications

that may run on multiple platforms will be eliminated.

Interoperability refers to the ability to interconnect computers that use different operating systems

so that they can exchange information. At the most basic level, it involves the ability to transfer

files, exchange electronic mail and conduct remote login sessions from one system to another. At

the most sophisticated leve~ it may involve the ability to distribute an application between

computing systems in such a way as to be transparent to the user (Simonds, 1992).

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the ClienUserver Environment 4 2

De facto and de jure standards are distinguished. A de facto standard is the term, applied to a

product or system from a vendor that has captured a large share of the market and which other

vendors tend to emulate, copy or use in order to obtain market share.

A de jure standard is created by a formally recognised standards developing organisation. The

International Organisation for Standardisation (ISO), Comite European de Normalisation (CEN),

American National Standards Institute (ANSI) and the Open Software Foundation (OSF) are

respectively examples of international, regional, national and consortia (associations between

companies, vendors or users) standards developing organisations.

A de jure standard is developed under rules of consensus in ari open forum, in which everyone has a

chance to participate. De jure standards cannot be changed without going through the consensus

process monitored by the standards developing organisation. The open systems interconnection

(OSI) standard is an example of a de jure standard.

2. 7.6 Open Systems

An open system is a set of standard relationships which enable different computers, subsystems,

applications and system software to operate together (Wessels,1992). Open systems are designed

to conform to standards which allow it to easily interface with products from other vendors.

Wheeler (1992) defines open systems as

"hardware and software implementations that conform to the body of standards that

permit free and easy access to multiple vendor solutions. "

The objectives of open systems are to provide portability, scalability, interoperability and

compatibility (Simonds, 1992; Wheeler, 1992). Portability, interoperability and compatibility are

defined in Section 2.7.6. Scalability refers to the capability of changing the overall capacity of an

application and utilising processing power as needed. This allows for expansion to meet the needs

of a growing organisation as well as scaling down to fit independent business units in a

decentralised organisation (Simonds, 1992).

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 3

Wessels (1992) states that a system is not either "open" or "closed'', but that the degree to which a

system is open, depends on the degree to which the system conforms to industry standards. By

analysing the openness of the interfaces that a system utilises, a system can be placed on a scale of

openness.

The OSF is a major initiative in the IS!f industry to establish open systems. OSF aims at, among

other things, establishing standards for an open operating system Enterprise computing has the

same oQjectives as open systems, but where the focus of open systems is on future systems, the

focus of enterprise computing is on existing proprietary systems. Enterprise computing offers a

means to overcome a legacy of incompatible systems whereas open systems have the same goals

but accomplish this task by establishing standards for new systems (Marion, 1994).

2.7.7 GUl's

A GUI refers to a user-friendly "point and click" type of user-interface usually present in a

client/server environment. By simply selecting the application of choice from a set of graphical

images (icons) on the screen, the program is executed. The user may select options or input data by

using pop-up menus, buttons and scroll boxes.

00 user-interfaces such as Macintosh, are a form of GUI in which iGons represent real-world

business objects. The user instigates system actions by direct manipulation of the icons. For

example, a product item can be added to a customer order by selecting the icon which represents

the item and "dragging and dropping" it onto the icon representing the order. It is claimed that

such interfaces have a closer correspondence to the end-user's mental model of the application than

conventional GUI's (where icons represent application functions) and are hence easier to learn and

therefore more efficient and accurate in use.

The development of GUI's has resulted in standards to be developed for application program

interfacing. Standardisation of GUI's allows users to make a quick transition to different GUI

applications. Microsoft's Windows is a very popular GUI which has captured a large share of the

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 4

Gill market. Other Gill's include OS/2 Presentation Manager from IBM as well as X-Windows

for Unix platforms (Marion,1994).

2.8 Client/server Environments

McFadden and Hoffer (1991) define a client/server environment as:

"a co-operative processing environment in which the logic of an application is divided

between a front-end computer (the client) and a back-end computer (the server). The

client generally manages the user-interface and other user-specific computations, while

the server provides database management and related functions. "

Client/server computing refers to the relationship between two processes which are cooperating in

the performance of some task. The client requests that some function be performed and the server

must perform the function. A network connects the client to the server. In the world of computing

clients and servers are executable programs (Loftus et al,1995).

A client/server architecture allows developers to take the best advantage of the different types of

computers available. The user-interface can be placed on a PC which offers access to information

in an efficient, intuitive manner. Client/server systems may also be developed without a Gill. Each

workstation requires less memory since a complete copy of the DBMS is only required at the

server. The central server containing the databases can have the appropriate security.

The network is one of the most important elements of a client/server architecture. Client/server

applications use the network infrastructure to distribute processing appropriately and to provide

users-with user-friendly interfaces, quick response and access to data and applications. Network

traffic is minimised since only qualified data is passed through the network. Network traffic can be

further reduced by storing highly used and non-volatile data at individual workstations.

Systems can be built for a fraction of the cost by makiiig use of off-the-shelf software components.

Kavanagh (1995) identifies good candidates for the client/server architecture:

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 5

• data entry and editing systems e.g. order entry;

• interdepartmental work flow systems;

• sales and marketing information systems;

• information access and presentation systems in support of strategic and tactual decision

making e.g. executive information systems (EIS's) and decision support systems

(DSS's);

• compute-intensive systems e.g. scheduling;

• human resources systems;

• financial, mathematical statistical and pricing analysis systems;

• professional support systems e.g. Computer-Aided Design (CAD), engineering and

medical.

Existing techniques and tools for client/server systems are not robust and mature enough for large

transactional systems. As a result transactional systems are usually poor candidates for a

client/server approach. There is a lack of client/server tools to control large system development

projects (Redelinghuys & Nienaber, 1994). Client/server tools, such as 4GL's with GUI's allow for

a rapid prototyping approach to application design. The type of system being built is often suitable

for evolutionary development. Many smaller client/server systems can be developed entirely with

rapid prototyping, but large transactional systems development, such as the legacy systems

involved, need a complete methodology due to immature client/server tools and inexperienced

developers.

A client/server system can, however, be used as a front-end to a transactional system, e.g. for order

entry. Kavanagh (1995) identifies poor candidates for total client/server architecture:

• very large or complex systems;

• systems with high-volume centralised 1/0 processing;

• systems that require centralised control and security;

• systems which are tightly integrated with other legacy systems.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 6

Due to their transactional nature and tight integration with each other, the five legacy systems of

SASOL may consequently be considered poor candidates for total client/server architecture. A

discussion of this matter is outside the scope of this investigation and it is sufficient to say that an

integration project involving one of these systems will have high inherent risk

Organisations are considering client/server technology to improve productivity and efficiency as

well as optimise the support provided by IS!T resources for business needs. A client/server

solution provides the flexibility of PC application development with mainframe-level control over

data. It provides a decentralised architecture that enables users to gain transparent access to

information within a multi-vendor environment.

The mainframe still has a role to play in client/server environments. Database vendors, e.g. Sybase,

provide integration facilities and products for the mainframe to become a super-server

(Xephon,1993). Integrated CASE tools from Andersen Consulting and Texas Instruments are

being announced which support both client and server development with the same CASE tool

repository. Conversion tools for transporting custom CICS Cobol code to other platforms are

already available and IBM is porting its CICS transaction processing environment to both IBM

Unix and HP-Ux.

2.9 Strategies for Integrating with Client/server Environments

In order to decide on an integration strategy for a legacy system, the business processes supported

by the legacy system as well as the technology supporting the legacy system need to be

investigated. For the integration of a single legacy system, multiple approaches may need to be

combined. Eight approaches were distinguished (Simonds,1992; Xephon,1993; Forge,1995;

Kavanagh, 1995-) and are reviewed below.

2.9.1 Eliminate Legacy System

Eliminating the legacy system involves abandoning, outsourcing or manually performing a function.

This approach may be followed if the purpose of a legacy system is part of the history of an

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 7

organisation. An inventory of a legacy system may reveal programs that are nev~r used or have a

few users who could use a different program to obtain the same results, as well as reports

generated by the system which are never read.

2.9.2 Redesign Business Process

This approach involves analysing the business and designing new procedures and systems to

support current needs. Many legacy systems support business processes which are neither

necessary nor efficient. These business processes will need to be examined and streamlined. This

will often result in either a change of scope or a reduction in the scope of the legacy system which

supports the business process.

2.9.3 Replace Legacy System with Packaged Software

If a function is not unique to an organisation, similar solutions must exist (Xephon,1993).

Packages have become more powerful, easily customised, accessible from other applications as well

as available for client/server environments. As commented by some respondents of the

questionnaire, it may be advantageous to redesign business processes around a state-of-the-art

package solution. Customising the packaged software to support business needs can, however, be

very difficult.

2.9.4 Redesign and Develop Legacy System

Redesigning and developing the legacy system with new client/server tools involves the building of

a new client/server system to replace the legacy system (Xephon, 1993). If the business processes

have changed to such an extent that the existing legacy system is obsolete and no packages with

adequate functionality exist, the system will have to be redesigned and developed.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 8

2.9.5 Downsiz.e Legacy System

Downsizing is regarded as a first step in integrating a legacy system with a client/server

environment. However, the downsized system will not be a client/server system unless it is

restructured, as all processing will still occur on the server. A "move off and then replace"

downsizing integration strategy provides for a more gradual integration path. This will also allow

for more flexibility in the transition of skills to client/server.

Downsizing the legacy system involves the moving of the current software to a new platform

without significant change (Simonds, 1992). Software products which can run the same application

code on a variety of platforms do exist, e.g. CA's Datacom/Ideal and Oracle's Oracle. A very

successful downsized project has been completed at SASOL. The project involved the downsizing

of a legacy application in Datacom/Ideal on an IBM mainframe computer to a Unix HP9000

platform.

Complications with downsizing may include one or more upgrades of the legacy system to the

current version before it can be downsized. The code needs to be analysed with respect to screen

management, database and file management, add-on function libraries as well as access to system

features in order to prepare an integration plan. Downsizing was discussed in Section 2. 7 .1.

2.9.6 Renovate Legacy System

Renovating the legacy system implies keeping the software on the current platform while improving

its appearance or maintainability as appropriate (Simonds, 1992). The user-interface, database as

well as business rules may be renovated. As in the case of downsizing, the renovated system will

not be a client/server system unless it is restructured into client and server components. The

restructuring of legacy systems into client and server components is discussed in Section 2.9.8.

Disadvantages of this approach include the continued mainframe costs and the fact that the legacy

code still needs to be maintained. This approach can, however, be a good integration stage as a

component of a larger strategy.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 4 9

Without changing the original application code, a tool can be used to improve the appearance of

the user-interface. For on-line systems, several tools use the IBM Ehllapi interface to access the

system through a dumb terminal, allowing the development of graphical front-ends. This enables

legacy applications to conform to the standards which users of newer systems expect, e.g. Micro

Focus Application-to-Application Interface and Wall Data Ramba. Wall Data's Ramba can work

with Powerbuilder and other client/server development tools to access mainframe screens. It acts

as a DDE server and can therefore be integrated into many applications.

The database can be refurbished by cleaning up the data and making it accessible to other

applications. Legacy data can be missing or corrupt, data items can be embedded in nonexplicit

· ways and the data can require business rules for interpretation. Making it accessible may involve

integrating to a relational database or using timed replication to copy the data to such a repository.

Renovating the application code involves reverse engineering of the data and process models,

design recovery in order to recover business rules as well as recovering screen design and

transaction integrity. Typical items to be recovered for a mainframe system include COBOL items,

JCL and database catalogs.

Tools to assist in understanding the system include Visual Reengineering Toolset and Visual

Testing Toolset (McCabe, 1990) which compile metrics and group non-00 code into classes as

well as the Viasoft products (VINinsight and Renaissance) which analyse the code, i.e. flagging

bad statements and unexecutable code. Tools to improve the system include Compuware XA and

Knowledgeware LTl which "beautify'' and restructure the code. Tools which reverse engineer the

system for replacement include those available from Cadre and ProCASE which recover the design

of a system into structure charts or data models. This is an extremely complex task.

2.9. 7 Restrict Legacy System

This approach involves keeping the legacy system, while all new development is done in the new

environment. It implies an incremental integration to a client/server environment. Continuous or

periodic data exchange between the new system and the legacy system is established while the use

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 0

of existing hardware, software and staff are continued and all new technology capabilities are added

incrementally (Simonds, 1992). The Evolutionary Technologies toolset or the Prism Warehouse

Manager can be used to perform the extracts on the mainframe.

2.9.8 Restructure Legacy System

Restructuring a legacy system involves the modifying of the application code to reside on client and

server components. Forge (1995) identifies the following steps in restructuring a legacy system:-

• Clearly identify aims and targets in business terms of new functionality, performance or

reduced costs.

• Gather as much information as possible on the application, particularly its high-level

application logic and the business of reasoning originally behind it.

• Analyse the application logic and identify key functions and the processes that execute

each function. In order to restructure the code a strong differentiation of functions is

necessary, e.g. an aircrew scheduling system identified the functions of local data

access, data storage and update as the key functions, and restructuring was done

accordingly.

• Compare the original application logic and verify that it maps to the current business

logic. If not, this could be the appropriate time to change it.

• Determine which parts of the application could be restructured into client and server

components.

• Ensure the dispersed parts are modular in coding, e.g. front-end user-interface functions

for the client and back-end database application functions for the server. If the existing

code is not modular, it will have to be rewritten.

Object wrappering can be very useful in the restructuring approach. Object wrappering is the

encapsulation of an existing system and then restricting its interface to a set of inbound and

outbound messages. Object wrappering was discussed in Section 2.7.3. The maintenance on the

legacy system will need to be done in the traditional manner and it will not benefit from the

characteristic advantages of 00.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 51

2.10 Summary and Conclusion

The major problems of mainframe environments are high maintenance costs, inaccessible data and a

lack of user-friendly graphical user-interfaces. These environments are stable and mature and their

strengths include batch processing and automated job scheduling.

The questionnaire yielded the most dominant characteristics of the five identified legacy systems.

They are:

• a relatively high number of daily transactions;

• tight integration oflegacy systems with each other;

• large capital investments;

• high annual costs;

• high quality;

• critical availability and system performance;

• providing excellent business support;

• medium complexity.

Various integration trends were highlighted. They were downsizing, re-engineering, 00,

middleware, standards, open systems and GUI's. Downsizing a legacy system involves the moving

of the existing software to a new platform without significant change. It can be considered a first

step in integrating a legacy system with the client/server environment. Re-engineering is the

process of recreating design documents or specifications from source code, followed by the usual

development process proceeding from specifications through design to code. Re-engineering aims

at expressing existing legacy code in a form which is easier to understand and maintain and which

can then be re-developed according to the requirements of the client/server environment.

00 allows the interpretation of an application as a collection of objects that interact with each

other by means of messages, change as a result of those interactions and yet maintain identity

through change. By making use ofwrappering, a legacy system becomes an object which can both

send and receive messages and which can be integrated with the client/server environment without

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 2

discarding its existing platform. The term middleware refers to a variety of software applications

for establishing communication between different client applications and host servers. A mainframe

computer can be regarded as just another host server if the appropriate middleware is available for

establishing communication to the client application.

A standard is an industry-accepted means of doing business that does not impede innovation or

represent the narrow interest of any one single vendor or user. Standards are essential for ensuring

usability, compatibility, interchangeability, portability as well as interoperability and should be

adhered to when integrating a legacy system with the client/server environment. Open systems are

designed to conform to standards in order to allow easy interfacing with products from other

vendors. As a result, open systems have a high degree of portability, scalability, interoperability as

well as compatibility.

A GUI is the term used to refer to a user-friendly "point and click" type of user-interface usually

present in a client/server environment. The major weaknesses of client/server environments include

the lack of both mature client/server techniques and tools as well as experienced professionals.

Strengths include increased cost-effectiveness, improved productivity, excellent graphical user­

interfaces as well as reduced network traffic.

Different approaches (which may be combined into a single strategy) for integrating legacy systems

and client/server environments were reviewed. They included eliminating the legacy system,

redesigning the business processes which the legacy system supports, replacing the legacy system

with packaged software, redeveloping the legacy system, downsizing the legacy system to a new

platform, renovating the legacy system, restricting the legacy system as well as restructuring the

legacy system into client and server components.

As a last comment it should be emphasised that decisions regarding integrating legacy systems with

the client/server environment should aim at solving business problems and should not only be done

for the sake of technology.

Chapter 2 - Legacy Systems

A Methodology for Integrating Legacy Systems with the Client/server Environment

CHAPTER3

METHODOLOGIES FOR SOFTWARE DEVELOPMENT

3.1 Introduction

3.2 The Basic Concepts ofMethodologies

3.3 Methodology Classification

3.3.1 Process-oriented

3.3.2 Data-oriented

3.3 .3 Behaviour-oriented

3.3.4 Cross-references between Perspectives

3.3 .S Meta-niethodologies

3.3.6 Object-oriented

3.4 The Software Process Model and SDLC

3.5 TheCMM

3.6 Sullllllary

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 4

3.1 Introduction

A methodology for software development provides an overall systematic approach to the

production and improvement of software, using a collection of methods and techniques, each with

their predefined notational conventions and representation schemes. A life-cycle methodology

consists of methods to support each of the phases of the life-cycle of software development. It is

usually presented as a series of steps, with techniques and representation schemes associated with

each step.

This chapter is devoted to methodologies for software development. The basic concepts of a

·generic methodology are identified. They are the paradigm, representation schema, methods,

techniques, procedures and deliverables. The various perspectives supported by existing

methodologies are described after which the roles of the software process model and software

development life-cycle (SDLC) are reviewed. The different levels of the Capability Maturity Model

(CMM) (Humphrey,1989) are explained in the final section of this chapter.

3.2 The Basic Concepts of Methodologies

A generic methodology is conceptualised by means of a meta model in Figure 3.1. The building

blocks of software methodologies are now explained in general terms with examples to illustrate

their roles.

A paradigm is an abstract or intellectual model or pattern on which the methodology is based, e.g.

the structured paradigm and the object-oriented (00) paradigm

The representation schema based on some paradigm, should provide a precise, consistent,

unambiguous and semantically complete notation for the graphical representation of the system

under development. It provides a means of effective communication between the user and the

system developer as well as between system developers. The representation schema contributes to

the structuring of the knowledge about the system under development, it is usually easy to

Chapter 3 - Methodologies for Software Development

A Methodology for httegrating Legacy Systems with the Client/server Environment 5 5

understand and helps in correctness and consistency checking. Examples include activity graphs,

data structure diagrams and data flow diagrams (DFD's).

Methods are explicit, orderly, definitive prescriptions for achieving an activity or set of activities

and are usually based on a paradigm. A way of carrying out the work steps of a complete phase of

software development, e.g. design or integration, is often termed a method. It is implemented by

utilising procedures, techniques and tools. Examples include structured and 00 design (OOD).

Techniques are used by methods. The term technique refers to a part of a methodology which

may employ a well-defined set of concepts and a way of handling them in a step of the work. A

technique is often used for a portion of a phase of software development. Examples of techniques

include entity relationship modelling, functional decomposition, data flow analysis and transition

nets.

Procedures are manners of carrying out processes. It refers to the manual activity or set of

activities and steps required to implement methods. An example is the procedure to perform

requirements and specification, followed by design, implementation and . integration usually

accommodated in any methodology.

Deliverables are produced as a result of development tasks and activities and should be well­

defined for each phase of development. Two types of deliverables exist, i.e. the software models

and the documentation describing the software. Examples of deliverables include the software

project management plan (SPMP), the system design and the test plan.

Automated tools provide computer assistance to the methods and techniques of a methodology.

Examples include online editors as well as a planning tool such as Microsoft Projects.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment

MANAGE!MENT controls , SOF1WARE!
· DEVE~OPMENT

Tl!CHNIQUE PRO.ECT

prescribes

co-ordinates
based_on

,.
M!THOOOLOGY SOF1WAR!

PROCESS
MODEL

PROCEDURE! implements 1 instantiat ed_by
1:

~

consists_of

DELIVERABLE
produced_by

n guides
. ·,,

based_on
METHOD --

""
AUTOMATl!D supports

TOOL composed_ of

supports . Tl!CHNIQUE based_ on

CLASS

ASSOCIATION

ASSOCIATION

~Cl.A~SS~-1~1~NA~ME~~~---1.._Cl.A~SS~·-2~

MULTIPLICITY OF ASSOCIATIONS

EXACTLY ONE ---u
MANY(ZEROORMORE) ~

I\ SOLC

'

1 consist

LIFE-CYCLE
PHASE

PARADIGM

l visuali

REPRESENTATION
SCHl!ME

Figure 3.1 A Met-a Mt'ldel for-a-Generic Methodology

Chapter 3 - MethodoloNes for Software Development

s_of

sed_by

56

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 7

3.3 Methodology Classification

Methodologies are not appropriate for all application domains, e.g. for some small, highly

mathematical applications. A methodology which is appropriate for one situation may be

inadequate for another as application domains differ and every project has unique characteristics. A

major aspect of any methodology is the degree to which the information system's life-cycle is

supported (Olle,1988, Conger,1994). Ifit is felt to be important to carry out information systems

planning, then a methodology covering this phase will be preferable to one which does not. After

experience with several methodologies, it is possible to think in terms of the underlying concepts

and techniques. The approach to analytic data modelling promoted in one methodology may be

combined with the approach to data flow analysis in another methodology, and cross-referencing

the results of the two analyses in a way not suppported in either.

Methodologies which are supported by the techniques of simulation and prototyping exist

(Alavi,1984; Lantz,1985; Conell & Shafer,1989). Computer-aided simulation techniques are

important for the verification of the feasibility and evaluation of the performance of the target

system. Prototyping can complement the functions of a simulation facility and assist in evaluating if

the requirements specification conforms to the user needs.

Prototyping allows for the rapid creation of a working model that is functionally equivalent to a

subset of the system under development. It is useful for gathering requirements but is usually not

intended to evolve into a final product. An evolutionary prototype is one with incomplete scope

which is, however, intended for eventual production. Advanced automated tools exist to build a

quick version of all or part of the target system. The speed and flexibility of developing prototypes

offer the advantage that users can experience and test the application (in particular, the user­

interface) early and allow changes to be made to a system based on their feedback. Prototyping

gives executives a concrete model to look at, and it is efficient to access each version as often as

needed to satisfy requirements. The interaction between the user and the software developer when

a prototype is involved, is often referred to as iterative prototyping.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 8

A major strength of the rapid prototyping SDLC is that the development of the system is essentially

linear, proceeding from the rapid prototype to the delivered system. (The role of the SDLC is

discussed in Section 3.4.) Feedback loops (as in the Waterfall Model, Section 3.4) are less likely to

be needed because it is reasonable to expect that the specification document will be correct as the

working rapid prototype, which has been used to construct the specification document, has been

validated through interaction with the user. Rapid prototyping is discussed in Section 5.3.3 within

the context of the Enhanced Spiral Model for Integration (ESMI).

Some methodologies provide support for incremental and iterative development (Currit et al,1986;

Selby et ai 1987; Gilb, 1988). Iterative development allows for the repetition of the development

steps at progressively finer levels of detail. Each iteration adds or clarifies features rather than

modifies work that has already been done. There is therefore less chance of introducing

inconsistencies and errors.

Incremental development allows the target system to be developed in small, manageable

increments, where each new increment is the previous increment with additional functionality. The

target system is not viewed as a monolithic entity with a single delivery date, but as an integration

of the outputs of successive steps of each iteration. Large systems are usually developed in

increments because of their size.

When an application is developed without making use of a methodology there are no prescribed

activities and reliance on the individual's experience and problem-solving ability is inevitable. A lack

of methodology results in a lack of rigour and a trial-and-error problem-solving strategy.

The various perspectives which are taken in established methodologies for software development

are now reviewed. Six classes of methodologies are distinguished, i.e. process-orientation, data­

orientation, behaviour-orientation, cross-references between perspectives, meta and object­

orientation (00).

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 5 9

3.3.1 Process-oriented Methodologies

The earliest perspective to be recognised during the evolution of information systems

methodologies was the process-oriented perspective (Gane & Sarson, 1979; Y ourdon &

Constantine, 1979). In the early days of data processing, the computer was regarded as a

convenient and quantifiably cost-effective tool for performing specific processes, such as generating

a payroll or producing a set of invoices. The need to analyse the process which the computer was

required to perform was dominant, and the programming languages available for constructing the

application programs reflected this emphasis. Many methodologies moved away from any

emphasis on the computerisable process towards an analysis of the "real world" activity as

performed in the business, the Wlderstanding being that this activity could conveniently be

computerised.

Process methodologies (e.g. Method/I) require a structured, top-down approach to evaluating

processes and the data flows with which the processes are connected. Documentation includes

DFD's and data store definitions.

The process-oriented perspective can be broken down into four distinct aspects, the first two

respectively relating to the business analysis and system design phases, and the remaining two

aspects relating to the construction design phase:

1.

2.

3.

4.

business activity;

user perceivable task;

computerisable process and

a compilable unit of programming.

An activity is performed in a business area. Recognition of each activity is quite independent of the

presence or absence of a computerised system. However, how it is performed may depend heavily

on an information system.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 0

A user perceivable task is a piece of work which is supported by a computerised infonnation

system. A list of tasks is typically to be found on a menu of such tasks, as presented to a user. The

user understands these tasks and is able to select from the menu any of the tasks which he is

authorised to initiate.

A computerisable process is an executable piece of software built by the developer, using whatever

tools are appropriate. The computerisable process may support one or more user perceivable

tasks, but the user does not have and does not need knowledge or understanding of the nature of

the process. A typical computerisable process may consist of one or more compilable units of

progrannmng.

A compilable unit of programming is several lines of source code, prepared by a programmer using

some programming language, which is prepared as part of the construction phase.

Most legacy systems (including the five which were investigated) were developed using either no

methodology or a process-oriented methodology. The lack of a methodology can be regarded as

the major reason for the introduction of errors caused by unrelated changes to legacy applications

as well as the corruptness oflegacy data.

3.3.2 Data-oriented Methodologies

The advent of database technology in the mid-1960's was responsible for the data-oriented

perspective (Orr,1981; Warnier,1981; Jackson,1983). The radical data-oriented perspective

seemed, in some cases, to ignore the significance of processes to be performed on the data.

The data-oriented perspective places emphasis on a complete and thorough analysis of the data and

its relationships. After the evaluation of the data and their relationships, outputs are mapped onto

inputs in order to determine processing requirements. There was an early emphasis on the

provision of access paths to optimise performance of selected programs, but the accept~ce of

relational theory during the 1970's moved the consideration towards retrievability of all

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 1

information, independently of storage representation, and subsequently towards the expressibility of

the integrity constraints which the data must satisfy.

The data-oriented perspective is seen to concentrate on the following aspects:

1.

2.

3.

4.

business data;

prescriptive, but construction and performance independent, data

(sometimes called logical database design);

prescriptive data, taking into account the construction tool to be used;

stored representation of data, including indexes and access paths. This may

be either the only option available with the construction too~ selected by

the construction tool or, alternatively, selected by the construction designer.

'
These four aspects correspond to three phases in the infomiation system life-cycle - the first to

business analysis, the second to system design, and the third and fourth to construction design

(Olle, 1988). Documentation of data methodologies include entity relationship diagrams (ERD) and

entity hierarchy diagrams. Data Oriented Design (DADES) is an example of a methodology with a

data-oriented perspective.

3.3.3 Behaviour-oriented Methodologies

More recent trends in information systems methodologies focus on the need to analyse and

understand events in the real world which impact data recorded in the information system e.g. the

second part of Activity Modeling I Behavior Modeling (Gomaa, 1986; Hatley & Pirbha~ 1987).

It is often difficult to combine the behaviour and process-oriented perspectives in a single

methodology. Application areas which are "event intensive" require careful analysis to determine

which sequences of events are permissible and which are inadmissible. The behavioural perspective

is important for the design of systems in certain computerised application areas, e.g. process

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 2

control. Events happening in the "real world", e.g. "Receipt of a sales order", can trigger a

requirement for appropriate action in the computerised system.

Some existing information systems methodologies recognize the importance of the behavioural

per~pective and the problems it tackles. There is a preference for analysing business events as part

of data analysis and for prescribing the events which can happen while the information system is

running as part of the design of the computerisable processes. Only limited experience with the

behavioural perspective exists.

3.3.4 Methodologies with Cross-references between Perspectives

These methodologies integrate two or more of the, above-mentioned perspectives (Olle,1988), e.g.

REMORA and MERISE. The balance of importance among the perspectives varies according to

the specific methodology. REMORA supports the business analysis and system design phases.

Basic concepts are those of object, operation and event. REMORA integrates the three

perspectives, with some emphasis on the behavioural perspective. MERISE uses all three the

above-mentioned perspectives. It combines an entity-relationship (ER) approach for data and a

Petri net based approach for processes.

3.3.5 Meta-methodologies

A meta-methodology is not bound to any perspective and offers the possibility of customising a

methodology for a specific application to be developed (Davis et al,1983; Du Plessis et al,1986;

Wasserman et al, 1986). Meta-methodologies are methodologies used to develop methodologies,

e.g. System Descriptor and Logical Analyser (SDLA). Automated environments such as Problem

Statement Language I Problem Statement Analyser (PSL/PSA), a Requirements Engineering

Environment, is methodology independent and the environment has been customised for various

methodologies. It is based on an Entity Relationship Analysis (ERA) type modelling schema.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 3

3.3.6 Object-oriented Methodologies

Since 1967 a variety of techniques have been suggested to help solve the software crisis. Since that

time there has been the awareness that the quality of software was generally unacceptably low and

that deadlines and cost limits were not being met. The development of the structured paradigm led

to significant improvements in the software industry with methods such as structured systems

analysis, structured design, structured programming and structured testing. However, these

methods were unable to manage software systems of increasing size and could not solve the

problem that two-thirds of the software budget was being devoted to maintenance. This realisation

lead to a continued search for alternative paradigms which could solve the essential problems of

software development.

According to Coad and Yourdon (1991) 00 concepts were first used by the development group of

the Simula language in the late 1960's. In the 1970's these concepts were adopted by the Xerox

PARC development team who developed the Smalltalk programming language. Although 00

programming was used in these developments, 00 analysis and design as known today were not

used because the functional approach to system design was the norm and the 00 approach was not

established. Korson and McGregor (1990) as well as Schach (1993) describe the 00 design

paradigm as the next logical step in a progression which has led from a purely procedural approach

to an object-based approach and to the 00 approach. This progression is the result of a gradual

shift in the point of view regarding the development process.

The reason for the limited success of the structured paradigm is that structured techniques are

either process-oriented or data-oriented, but not both. The basic components of a software system

are the processes and the data on which the processes operate. Some structured techniques, e.g.

Data Flow Analysis (DF A), concentrate on the processes of the system, whereas the data is of

secondary importance. Other structured methods, e.g. Jackson System Development

(Jackson, 1983), concentrate on the data of the system whereas the processes that operate on the

data are of secondary importance. In contrast, the 00 paradigm (Wrrfs-Brock et al, 1990;

Rumbaugh, 1991; Booch, 1994; Capper et al, 1994), consider both data and processes to be of equal

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 4

importance as an object is a unified software component that encapsulates both the data and the

processes that operate on that data.

The essential concepts of 00 are objects, classes, links, associations and messages. Central to the

00 paradigm is the notion of an object. An object is a concept, abstraction or entity with crisp

boundaries and meanings which is denoted by a name and consists of attributes and operations.

The object Person may have attributes name and age and operations change-job and change­

address. Objects communicate by means of messages. An object requests a service from another

object by sending a message to the server object. A class is an abstract data type that describes a

group of objects with similar attributes, common operations, common relationships to other objects

as well as common semantics. An object is an instance of a class. A link is a physical or

conceptual connection between object instances. An association describes a group of links with

common structure and common semantics. A link is an instance of an association. These concepts

are not described in detail in this dissertation but may be referenced in an acknowledged source

such as Rumbaugh et al (1991). The principles ofOO are summarised in Appendix C.

The 00 paradigm facilitates a reduced level of complexity of a software system and simplifies both

development and maintenance. 00 designs are more likely to result in applications with desirable

properties, e.g. modularity, information hiding, functional cohesion and minimal coupling

(Appendix C). In addition, it promotes the reuse of objects. As a result, programmer productivity

is increased, which results in a reduction of both development and maintenance costs as well as the

implementation of reliable software systems.

Various 00 methodologies were developed during the 1980's and 1990's (Booch,1986;

Rumbaugh et al,1991; Monarchi & Puhr,1992; Berard,1993; Wilkie,1993; Booch,1994;

Schach,1996). These methodologies require a top-down view of data objects, their allowable

actions as well as the underlying communication requirement in order to d~fine a system

architecture. Well-defined graphical notation in the form of representation schema, based on the

00 paradigm, allow for precise and complete descriptions of the perspectives taken of the

underlying problem area.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 5

Henderson-Sellers and Edwards (1990) proposed a seven-point methodological framework for 00

systems development in which entity-data flow diagrams (EDFD) or information flow diagrams

(IFD) are used as representation schema. The life-cycle is graphically represented by the fountain

model. Entity-relationship diagrams, state transition diagrams and DFD's are respectively used in

the Object Modeling Technique (OMf) of Rumbaugh et al (1991) for the representation of the

object, dynamic and functional models. Booch (1994) describes a methodology for 00 analysis

and makes use of round-trip gestalt design, i.e. a style of design that emphasises the incremental and

iterative development of a system through the refinement of different yet consistent logical and

physical views of the system as a whole. Class diagrams, object diagrams, module diagrams,

process diagrams, state transition diagrams as well as interaction diagrams are used to represent the

underlying problem area. ,

The 00 software development process is iterative and incremental because it is neither a strictly

top-down nor a strictly bottom-up process. Each iteration allows the adding or clarifying of

features. Products of high quality are therefore possible. This process is seamless as there are no

discontinuities in which a notation in one phase is replaced by a different notation in another phase.

A complete 00 methodology includes methods for 00 analysis (OOA), e.g. such as proposed by

Jacobson et al (1992), 00 design (OOD), e.g. such as proposed by Wirfs-Brock et al (1990) as

well as 00 programming (OOP), e.g. such as proposed by Cox (1986).

3.4 The Software Process Model and SDLC

In order to manage a software development project it is necessary to adopt an appropriate

software process model. The primary functions of a software process model are to determine the

order of the phases involved in software development and evolution, and to establish the transition

criteria for progressing from one phase to the next. These include completion criteria for the

current phase as well as choice criteria and entrance criteria for the next phase. Software process

models therefore provide guidance regarding the order in which a project should carry out its major

tasks.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 6

Various interpretations of the software process model exist, such as Stagewise Models, the

Waterfall Mode~ Evolutionary Development or Incremental Models, Transform or Prototyping

Models and more recently the Spiral Model as well as 00 models. Each of these models are briefly

reviewed below.

As early as 1956, experience on large software systems had led to the development of a Stagewise

Model (Benington, 1956). This model stipulated that software be developed in successive phases.

The Waterfall Model (Royce, 1970) was a refinement of the Stagewise Model. It provided two

primary enhancements to the Stagewise Mode~ i.e. the recognition of the feedback loops between

phases as well as an initial incorporation of prototyping in the software life cycle.

The phases of the Evolutionary Development Model (McCracken & Jackson,1982) consist of

expanding increments of an operational software product, with the directions of evolution being

determined by operational experience. It gives the user a rapid initial operational capability and

provides a realistic operational basis for determining subsequent product improvements.

The Transform Model (Balzer et ~1983) provides for the automatic convertion of a formal

specification of a software product into a program satisfying the specification and then, improving

and exercising the software product in an iterative loop.

The Spiral Model (Boehm, 1986) of the software process can accommodate most previous models

as special cases and further provides guidance as to which combination of previous models best fits

a given software situation. The model reflects the underlying concept that each cycle involves a

progression. that addresses the same sequence of steps, for each portion of the product and for each

of its levels of det~ from an overall concept down to the coding of each individual program. The

spiral model applies equally well to development or maintenance.

The development spiral is initiated by a hypothesis that a specific operational mission could be

improved by a software effort. At specific times during the spiral process, if the hypothesis fails

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 7

certain prescribed tests, the spiral is terminated. If not, it tenninates with the installation of new or

modified software and the hypothesis is tested by observing the effect on the operational mission.

Each cycle of the spiral begins with the identification of

• the objectives of the portion of the product being elaborated (e.g. functionality,

performance);

• the alternative means of implementing this portion of the product (e.g. buy, reuse,

design), and

• the constraints imposed on the application of the alternatives (e.g. cost, schedule).

The alternatives relative to the objectives and constraints are then evaluated. This process will

identify areas of uncertainty that are significant sources of project risk.

If necessary, the next step should involve the formulation of a cost-effective strategy for resolving

the sources of risk. This may involve the use of risk-resolution techniques such as prototyping,

simulation, benchmarking or combinations of these. Risk considerations can lead to a project

implementing only a subset of all the potential steps in the mode~ e.g. if performance or user­

interface risks strongly dominate program development, an evolutionary development approach

could be followed: a minimal effort to specify the overall nature of the product, a plan for the next

level of prototyping as well as the development of a more detailed prototype to continue to resolve

the major risk issues. In this case, specification writing might be addressed but not exercised.

Each cycle is completed by a review involving the role players concerned with the product. The

review covers all deliverables developed during the previous cycle, including the plans for the next

cycle and the resources required to carry them out. The major objective of the review is to ensure

that all concerned parties are mutually committed to the approach for the next cycle.

00 models include the fountain model (Henderson-Sellers & Edwards, 1990), the

recursive/parallel life-cycle (Berard,1993), the revised spiral model (Van der Walt,1993) as well as

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 8

the round-trip gestalt design (Booch,1994). The revised spiral model is based upon the spiral

model (Boehm, 1986) and was revised for 00 development.

In this dissertation a software development life-cycle (SDLC) model is interpreted as an instance

of a software process model. It provides a framework according to which software development,

and in this case the integration of legacy systems with the client/server environment, should be

performed. A complete software life-cycle spans from initial formulation of the problem, through

analysis, design, implementation and testing of the software, followed by an operational phase

during which maintenance and enhancement are performed.

3.5 TheCMM

The CMM was first proposed by Humphrey (1989) of the Software Engineering Institute at the

Carnegie-Mellon University. It is a strategy for improving the software process which is

independent of the actual SDLC model used. It is based on the belief that problems regarding

software development are caused by improper management of the software process and therefore

the use of new software techniques cannot be solely responsible for increased productivity and

profitability (Paulk, 1995).

The CMM assists organisations in the incremental improvement of the management of the software

process and it is believed that as a result, improvements in techniques will be a natural consequence.

Five different levels of process maturity (level one being the lowest and level five the highest) are

defined. An organisation advances in a series of small, evolutionary steps towards the higher levels

of maturity. The five levels of process maturity are:-

1. The Initial Level, i.e. there are no sound software engineering management

practices in place within the organisation.· Time and cost overruns are at the order

of the day and are caused by a lack of planning in particular. The software process

is unpredictable as it depends totally on the current staff, i.e. the process changes as

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 6 9

the staff changes. It is therefore impossible to predict the time and cost associated

with a product with accuracy. SASOL is without doubt a level one organisation.

2. The Repeatable Level where the basic software project management practices are

in place. Management and planning techniques are based on previous experience

with similar products. Measurements (e.g. of costs and schedules) are taken.

These measurements can be used to draw up realistic duration and cost schedules

for future projects. Problems are identified by managers as they arise and

immediate corrective action is taken to prevent crises.

3. The Defmed Level where the process for software development is fully

documented, i.e. both the managerial and technical aspects of the process are

defined. Wherever possible, efforts (e.g. reviews) are continuously made to

improve the process. Schach (1996) is of the opinion that new technology such as

a software engineering environment (SEE) (discussed in Section 5.5), can be

introduced at this level in order to increase quality and productivity.

4. The Managed Level where quality and productivity goals are set for each project.

These two quantities are continually measured and corrective action is taken

whenever unacceptable deviations from the goal occurs. According to Schach

(1996) individual projects have reached this levei but no organisation has yet

reached it. It can be regarded as a target for the future.

5. The Optimising Level where an organisation is continually improving the

processes by making use of statistical quality and process control techniques. The

knowledge gained from projects is utilised in future projects. This will result in a

consistent improvement in productivity and quality. In order to improve its

software process, an organisation should start off by attempting to gain an

understanding of its existing process. The intended process should then be

formulated after which the actions that will result in achieving the intended process

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 0

are determined and prioritised. A plan to achieve the improvement is drawn up and

executed. By repeating this series of steps an organisation · will be successively

improving its software process. No organisation has yet reached level five.

3.6 Summary

A methodology for software development is an overall systematic approach to the production of

software, which is based upon a paradigm, representation schema, methods, techniques, procedures

as well as deliverables. A paradigm is an abstract model on which the methodology is based such

as the structured and 00 paradigms. The representation schema is based on the paradigm and

provides a notation for the graphical representation of the system to be developed. A method

provides a manner of carrying out the work steps of a complete phase of software development.

Techniques are used by methods and are often utilised for a portion of a phase of software

development. Procedures refers to the set of activities and steps required to implement methods.

Deliverables are produced as a result of development tasks and activities.

Six classes of methodologies were distinguished according to the various perspectives taken by

established methodologies. These classes are process-oriented, data-oriented, behaviour-oriented,

cross-references between perspectives, meta as well as 00. The shortcomings of the process- and

data-oriented perspectives are that they are either action-oriented or data-oriented, but not both.

Process-oriented methodologies concentrate on the actions of the system under development while

the data is of secondary importance. With data-oriented methodologies the emphasis is on the data

while the actions that operate on the data are of less significance. In contrast, 00 methodologies

consider both data and actions to be of equal importance as an object is a unified software

component that incorporates both the data and the actions that operate on that data.

00 methodologies are based on the 00 paradigm which promises reduced complexity of software

systems, reusable objects, increased programmer productivity as well as the ability to manage the

increasing size of software systems. This results in reduced development and maintenance costs as

well as the implementation of reliable software systems. 00 methodologies will therefore make a

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 71

significant contribution to solving the software crisis, namely, that the quality of software is

generally unacceptably low and that deadlines and cost limits are not met.

Legacy systems were developed by making use of either a process-oriented methodology · or no

methodology at all. The use of no methodology explains the presence of corrupt data and the

difficulty of maintenance oflegacy systems.

A software process model should be adopted to prescribe the order of the different phases involved

in software development as well as to establish the transition criteria for progressing from one

phase to the next. In the context of this dissertation, a SDLC model is an instance of a software

process model In Figure 3.2 the conceptual model for integration (Chapter 1) is refined. As

illustrated in this figure, the techniques of the integration methodology are based on a paradigm.

These techniques are used by methods which are in turn, implemented by procedures. The

integration methodology is based on a software process model and the paradigm is visualised by

means of the representation schema. Automated tools provide for computerised support for the

integration methodology. Deliverables are produced as a result of the integration process.

The CMM is based on the belief that problems regarding software development are caused by

improper management of the software process and it was therefore developed to assist

organisations in the incremental improvement of software process management. Five different

levels of process maturity are defined. They are from the lOwest to the highest the initial,

repeatable, defined, managed and optimising levels. An organisation advances in a series of small,

evolutionary steps towards the higher levels of maturity. SASOL can be considered to be a level

one organisation as no sound software engineering management practices are in place within the

organisation. This situation partly motivated the context of this investigation as outlined in Section

1.3 of Chapter 1.

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 2

[ITID l
LE-OA<:Y SYSTEM

AUTOMATED
TOOLS

REPRESENTATION
SCHEMA

CLIENT/SERVER ENVIRONMENT

INTEGRATION
METHODOLOGY

Figure 3.2 The ~ed-Conceptuai Model

Chapter 3 - Methodologies for Software Development

A Methodology for Integrating Legacy Systems with the Client/server Environment

CHAPTER4

THE INTEGRATION METHODOLOGY

4.1 Introduction

4.2 Requirements of the Integration Methodology

4.3 The Integration Methodology

4.3.1 Generic Tasks of the Integration Life-cycle

4.3.2 The Enhanced Spiral Model for Integration

4.3.3 The Representation Schema

4.3.4 The Methods

4.3 .5 The Techniques

4.3.6 The Procedures

4.3.7 The Deliverables

4.4 Project Management

4.5· Summary

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 4

4.1 Introduction

The existence of legacy systems, which usually represent large capital investments, complicates the

integration with client/server environments. A methodology for integrating legacy systems with the

client/server environment should include the methods, procedures and techniques used to direct the

activities of each phase of integration, the deliverables for each phase as well as a representation

schema.

The methodology should ensure that project objectives are well-defined and understood by all

project staff, tasks are fully defined and assigned to staff with the appropriate skills and quality

reviews are conducted throughout each phase of the project. The methodology should be well­

manageable so that the integration process can be controlled and measured but not so rigid that it

fails to provide sufficient degrees of freedom to encourage creativity and innovation.

In this chapter, the features and technical requirements of an integration methodology are identified

in the context of the most dominant characteristics of the legacy systems investigated in Chapter 2.

The generic tasks to be undertaken during the integration life-cycle are presented. The Enhanced

Spiral Model for Integration (ESMI) is proposed as a software process model for integrating legacy

systems with the client/server environment. It embodies many of the features of other software

process models and adds risk-driven and prototyping strategies. The representation schema,

methods, techniques, procedures as well as cycle deliverables of the ESMI are summarised. Project

management is covered in the final section of the chapter. Project management should ensure that

the integration project is completed on time, within budget and that the resultant integrated system

satisfies user requirements.

4.2 Requirements of the Integration Methodology

Kavanagh (1995) expects more risks with the integration of legacy systems to client/server

environments when there are more than a thousand users, more than 100 000 transactions per day

and a monolithic database of more than 20 gigabyte (GB). Risks are also hi~er for centrally

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 5

managed services such as security, when there is tight integration with other legacy systems, large

batch components, the availability requirement is 24-hours, 7-days, and high investment in

equipment. All the legacy systems within SASOL identified in Chapter 2 have at least two of these

characteristics.

According to Boehm (1989), important dimensions which influence the risk inherent in a project

include:-

1. Project si7.e. The larger the project with regard to cost, staffing levels, elapsed

time and number of departments affected, the greater the risk.

2. Experience with the technology. As the technical knowledge (regarding the

project's hardware, operating system, DBMS and application language) of the

project team and the IS organisation decreases, project risk increases. By making

use of consultants with the necessary skills, risks can, however, be reduced.

3. Project structure. Structured projects pose lesser risk than non-structured

projects. In the case of structured projects the outputs are defined completely by

the very nature of the task, and are fixed without being subject to change during the

life of the project. The outputs of non-structured projects are more dependent on

the manager's judgement and hence vulnerable to change.

The five legacy systems which were identified within SASOL range from 376 to 707 programs with

the number of users ranging from 58 to 1 200. A project to integrate one of these systems with the

client/server environment will take a significant amount of time and also cost a significant amount

of money. Moreover, limited . experience of client/server technology exists within SASOL.

According to Boehm's (1989) criteria, a project to integrate one of these legacy systems will have

high inherent risk.

McFarlan (1989) identifies the degree of structure and level of technology of a project to influence

the project's risk. High structure implies that the outputs of the project are very well-defined by the

nature of the task and that the possibility of the users changing the output requirements is

Chapter 4 - Tue Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 6

essentially non-existent. Projects which are highly structured and which present technology familiar

to the organisation (low level of technology), have the lowest risk. Highly structured projects

which present unfamiliar technology (high level of technology) are vastly more complex, e.g. the

moving of a system to a different computer platform without significant enhancements. Projects

which have low structure and a low level of technology, have a reduced risk if managed effectively.

An explicit effort to involve the users is critical to the success of these projects. Projects with low

structure and high technology involve the highest risks. These projects are complex and their

managers need both technical experience as well as the ability to communicate with users.

Integration projects for the identified legacy systems will involve high technology as little

experience in client/server technology is available within SASOL. It is therefore evident that an

integration project is one of extremely high risk and the integration methodology should therefore

have a risk-driven approach.

One of the most prominent characteristics of the legacy systems of SASOL was their tight

integration with both other legacy systems as well as various non-legacy systems. Client/server

technology is furthermore relatively new and immature and experienced professionals are difficult

to find. The US Air Force handbook on software risk abatement (1988) assesses the probability

that a system with strong interdependencies, new technology or a lack of skilled staff will overrun

its budget at between 0, 7 and 1,0, which indicates that such an outcome occurs frequently. An

integration project is therefore likely to overrun its budget. The 00 paradigm is considered to

solve the problems of the structured paradigm by contributing to a solution of the software crisis,

discussed in Chapter 3.

The 00 principles, summarised in Appendix C, have the potential for significant support for the

integration of legacy systems with the client/server environment. By isolating important aspects

and suppressing irrelevant aspects until a later stage, data abstraction can be used to master

complexity during the integration process. Data encapsulation allows for the hiding of the detail of

complex classes making them easy to l:!Se. Information hiding prevents small changes from having

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 7

large ripple effects and as a result reduces maintenance time and cost of the integrated system. It

ensures data integrity as data structures can only be accessed via its own methods.

Classification also contributes to a reduction in complexity during the integration process. The

creation of class libraries containing reusable classes will result in integrated systems which are

reliable and easy to maintain.

Inheritance provides conceptual simplification and reduces the amount of redundant code in the

integrated system. Maintenance of a system developed by making use of inheritance, will only

affect an isolated area instead of being carried through the whole system. This results in reduced

maintenance costs.

Polymmphism provides a type of operation reuse which increases the reliability of the integra~ed

system because software which makes use of well-proven and stable operations is likely to have less

errors. Modularity improves ease of maintenance on the integrated system.

Th~ proposed integration methodology should therefore be based on the 00 paradigm. 00

software development requires iteration among life-cycle phases, a prototyping strategy as well as

the incremental building of a product (Du Plessis & Van der Walt,1992). As a result of the inherent

risk involved in an integration project, it is, however, not recommended to start with such a project

as a pilot 00 project. An integration project's team should be well-trained in 00 and client/server

technology and, if possible, be given support by appropriate outside help from experienced

consultants.

4.3 The Integration Methodology

The reasons for having originally adopted the Spiral Model (Boehm, 1986) for the OOISEE project

at UNISA are the 00 requirements of iteration among life-cycle phases, a prototyping strategy as

well as the incremental building of a software product. The revised spiral model for 00

development (Du Plessis & Van der Walt,1992; Van der Walt,1993) was customised during this

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 8

investigation to provide a framework for integrating legacy systems with the client/server

environment. This software process model was chosen for its 00 and risk-driven strategies. It

consists of five cycles: the Feasibility, Architecture, Analysis, Design and Implementation Cycles.

The integration project starts with the first cycle from the centre of the spiral. As integration

progresses, consecutive cycles are completed until the final acceptance and completion of the

project. Generic tasks to be undertaken during each of the quadrants have been identified following

Sage and Palmer's system approach (Sage & Palmer, 1990), i.e. tasks concerned with Issue

Formulation and Assessment, Risk Analysis and Evaluation of Alternatives, Development as well as

Review I Planning.

In order to reduce the chance of project failure, strong emphasis is put on risk analysis before the

actual beginning of the integration process during the Implementation Cycle. Various reviews are

held throughout the integration life-cycle at checkpoints to ensure control of the integration

process. The integration process may move to a previous cycle when needed.

The generic tasks relevant for the integration of a legacy system with the client/server environment

are now explained in the context of the five cycles of the Enhanced Spiral Model for Integration

(ESMI).

4.3.1 Generic Tasks of the Integration Lif e--cycle

The identified generic tasks to be undertaken during each of the quadrants of a systems integration

life-cycle are illustrated in Figure 4.1. These tasks are summarised here.

Quadrant 1 - Issue FormuJation and Assessment during which the following tasks are

performed:-

1.

2.

3.

Identify the objectives of the cycle.

Formulate a strategy to reach the identified objectives according to plan.

Assess existing assets.

Chapter 4 - The Integration Methodology

4.

5.

6.

A Methodology for Integrating Legacy Systems with the Client/server Environment 7 9

Identify alternative strategies to reach the identified objectives.

Identify the applicable constraints.

Establish quality metrics.

Quadrant 2 - Analysis and Evaluation of Alternatives imply the following:-

1.

2.

3.

4.

5.

Analyse results of assessment.

Risk analysis, i.e. evaluate the identified alternative strategies according to

the risks involved in terms of technical aspects, costs, schedule and support.

The strategy with the lowest risk should be chosen. The lowest risk is

defined according to priorities set on the evaluated risk areas.

Risk avoidance planning, i.e. planning should be done to lower the

identified risks.

Prototyping, i.e. test areas of risk by making use of modelling techniques

such as prototyping, simulation and analytic modelling. In this way areas of

risk are reduced.

Commit to a specific strategy.

Quadrant 3 -Development comprises:-

1. Development activities and tasks. Provision is made for evolutionary

development and this cycle can be entered for either a module of code or a

subsystem under development.

Quadrant 4 - Review and Planning imply the following:-

1. Evaluation, i.e. the deliverables produced during the third quadrant are

verified against the specifications and quality metrics. A decision whether

to update the project baseline is made. Quality related activities (e.g. code

walkthroughs and reviews) are performed. The evaluation ends with the

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 0

product development revtew. The result of this evaluation IS the

acceptance of the developed product.

2. Planning for the next cycle of development is done. A review of the work

breakdown structure (WBS) and cost breakdown structure (CBS) is done.

The schedule for the next cycle is drawn up. This quadrant ends when the

user is presented with a software development plan for the next cycle and

the commitment to continue with the next cycle is obtained from the user.

ISSUE FORMULATION
AND ASSESSMENT

•Identify Objectives
•Formulate Strategy
•Assess Existing Assets
•Identify Alternative Strategies
•Identify Constraints
•Establish Quality Metrics

•Evaluation of deliverables
•Planning for Next Cycle

REVIEW/PLANNING

ANALYSIS AND EVALUATION
OF ALTERNATIVES

•Analyse Assessment Results
•Risk Analysis
•Risk Prevention Planning
•Prototyping
•Commit to Specific Strategy

•Development Activities and Tasks

DEVELOPMENT

Figure 4.1 The Generic Tasks of the Integration Life-cycle

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 81

4.3.2 The Enhanced Spiral Model for Integration (ESMI)

As illustrated in Figure 4.2, the ESMI consists of five cycles, namely the Feasibility, Architecture,

Analysis, Design and Implementation Cycles. Work in each quadrant of the cycles follows the

generic format outlined in Section 4.3.1 and is now presented.

(i) Feasibility Cycle

The Feasibility Cycle commences with the need to integrate a legacy system with a client/server

environment. The Feasibility Cycle is traversed only once. During issue formulation, a business

case for integration is determined. Strategic, business and technical objectives of the project are

determined and quantified as accurately as possible. This enables the scope to be defined. A

problem statement is formulated which includes the constraints relevant to the project. A strategy

is formulated for reaching the objectives according to plan.

The legacy system is assessed in terms of the application, infrastructure, skills of maintenance staff,

maintenance history as well as costs and problems. The application is assessed in terms of size,

performance, complexity, condition, subsystem integration, the functions it performs as well as the

data it maintains. The maintenance history is assessed in order to calculate the staff complement

required to do basic maintenance as well as to identify potential components of the application for

termination or redesign. System problems which require maintenance are assessed from both IS!f

as well as user's perspectives. The results of the assessment are documented in the Legacy System

Description Document.

Alternative strategies for integration are identified. Quality metrics, i.e. of technical performance,

cost!bellefit performance as well as operating performance, for the integrated system are

determined.

Chapter 4 - The Integration Methodology

Commit
to Next
Cycle

A Methodology for Integrating Legacy Systems with the Client/server Environment 82

ISSUE FORMULATION
AND ASSESSMENT

4

STRATEGY REVIEW

/

/

I

/ Review

ANALYSIS AND
EVALUATION
OF ALTERNATIVES

Commitment
to Strategy ·

REVIEW I PLANNING DEVEWPMENf

Product
Development
Review CYCLES

I. FEASIBILITY CYCLE
2. ARCIUfECTIJRE CYCLE
3. ANALYSIS CYCLE
4. DESIGN CYCLE
5. IMPLEMENTATION CYCLE

Figure 4.2 The Enhanced Spiral Model for Integration

During analysis and evaluation, the alternative strategies for integration are evaluated. The legacy

system assessment results are analysed. A feasibility study, involving the first cost-benefit analysis

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 3

(discussed in Section 5.3.2) of a chosen alternative strategy is conducted in the development

quadrant. Feasibility, in respect of integration comprises (Kavanagh, 1995):

• technical feasibility, i.e. is it possible to do;

• economic feasibility, i.e. is it worth doing;

• operational feasibility, i.e. will it work in the organisation concerned;

• schedule feasibility, i.e. is it possible to do it in the required time;

• political feasibility, i.e. will it be acceptable in practice in the organisation concerned.

At the end of the Feasibility Cycle the chosen strategy is reviewed. A commitment to a specific

strategy is made. The feasibility study culminates in a Preliminary Project Proposal.

(ii) Architecture Cycle

Once the Preliminary Project Proposal is accepted and authorised by management, the Architecture

Cycle is entered. The Software Quality Assurance Plan (SQAP), the Project Risk Management

Plan (PRMP) as well as the Software Project Management Plan (SPMP) are deliverables of this

cycle.

During the Architecture Cycle the top level hardware and system software architectures are

defined. This will allow for a more accurate cost estimation. Hardware architecture includes

network hardware, server hardware and workstations. System software architecture includes

communications protocols, network operating systems, server operating systems, DBMS's,

client/server tools, development tools and personal workstation applications.

Server hardware includes the file servers, resource servers,. database servers and application servers.

File servers make files available to client systems, so that users can share their data and software as

well as rely on scheduled maintenance. A resource server manages specific resources which are too

expensive to dedicate to a single client, e.g. a print server. A server is needed to run a database

management system (DBMS). The DBMS should be manageable, i.e. have high availability, data

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 4

integrity and security. An application server runs application software and may be the same server

as the database server. For advanced uses, e.g. graphically intensive work, a dedicated application

server may be necessary. The types of possible workstations include Microsoft Windows,

Macintosh, OS/2, Unix, Windows NT as well as X-Windows or dumb terminals.

Development tools can be classified into query and report tools (e.g. Crystal Reports), EIS tools

(e.g. Lightship), client/server development tools with flexible GUI's for general application

development (e.g. Visual Basic) as well as PC business tools (e.g. Excel).

In order to select the most suitable client/server tools, the application systems for which the tools

will be employed, the environment where the tools will be used as well as the technological

direction of the organisation need to be considered. When defining the top level hardware and

system software architectures, it is important to conform to standards where possible. Standards

were discussed in Section 2.7.5 of Chapter 2.

The existing infrastructure is assessed in terms of all processor and network hardware as well as

system software (operating system, database, security and management packages). Alternative

architecture strategies are identified which include issues such as the type of network and hardware

platform. The applicable constraints as well as quality metrics are identified. Metrics include those

of technical performance, cost/benefit performance and operating performance. Results of the

assessment are documented in the Legacy Infrastructure Description Document.

In the second quadrant, the results of the assessment of existing hardware and system software

architectures, are analysed. Risk analysis is performed on all the identified strategies and results are

documented in the Architecture Strategy Evaluation Report. During the risk review, the strategy

with the smallest risk is selected for further evaluation. Risk avoidance planning is done and risk

areas identified in the risk analysis may be simulated or prototyped to reduce risk and to enhance

the understanding of the proposed system. Risk analysis and risk avoidance planning are discussed

as steps of risk management in Section 5.3.2 of the next chapter. Prototyping is discussed in

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 5

Section 5.3.3. At the end of the second quadrant a commitment to a specific hardware and system

software strategy is made.

In the third quadrant top level analysis is done. The Architecture Document, which forms the basis

of the contract between the user and the software developer and which includes the user

requirements and acceptance criteria, is compiled. Top level class diagrams, data flow diagrams

(DFD's) and state diagrams are produced. Subsystems are identified which models the top level

object, functional and dynamic perspectives respectively. Subsystems are seen as very high level

objects with a specific function and with low coupling to other high level objects. The hardware

configuration, which involves the definition of the required hardware, is defined.

In the fourth quadrant, the chosen strategy is reviewed. The hardware architecture is evaluated in

order to make sure that all issues are covered and that the hardware architecture ties up with the

software architecture. The Architecture Cycle ends after the planning of both the Analysis Cycle as

well as the rest of the integration project. The WBS, CBS and schedules are updated and the

Project Proposal for the rest of the system is compiled. The Software Project Management Plan

(SPMP) is defined for the rest of the project. The Architecture Cycle ends when the Project

Proposal is accepted by the user. This cycle may be traversed more than once, if it is realised

during the Analysis or Design Cycles that the hardware specification will not meet system demands.

(iii) Analysis Cycle

The analysis strategy is defined in detail during the Architecture Cycle. During the first quadrant of

the cycle, objectives, strategies and constraints for the analysis of the subsystems are considered. If

a subsystem strategy includes object wrappering or the improvement of the user-interface without

changing the original application code, existing subsystems must be assessed and documented in a

Legacy Subsystem Description Document. Object wrappering is the encapsulation of an existing

system and the restriction of its interface to a set of inbound and outbound messages. Wrappering

of non-00 systems was discussed in Section 2.7.3. The first quadrant yields a strategy definition

review.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 6

During the second quadrant risk analysis is performed for the alternative subsystem strategies. The

results are documented in a Subsystem Strategy Evaluation Report. The subsystem strategies with

the lowest risk are identified and risk avoidance planning is done for the identified high risk areas of

these strategies. Risk analysis and risk avoidance planning are steps of risk management discussed

in Section 5.3.2 of Chapter 5. Prototyping (discussed in Section 5.3.3) may be done to resolve

uncertainties of risk areas. This quadrant ends with a commitment to a strategy for every

subsystem

The third quadrant involves detailed OOA. OOA is discussed in Section 5.2.1 of the next chapter.

The top level class diagrams, DFD's and state diagrams of the Architecture Document are used as

the starting point in the definition of the Object, Dynamic and Functional Models. This cycle results

in the Object, Dynamic and Functional Models for the system which are documented in the

Analysis Document. The procedures for constructing these models are reviewed in Section 5. 4 .1.

During the fourth quadrant the Object, Dynamic and Functional Models are evaluated to ensure

that they are complete· and consistent. The SPMP is updated. OOA is completed after the

approval of the Analysis Document. The Design Cycle is planned, the WBS, CBS as well as the

SPMP are updated. The Analysis Cycle ends when the user agrees to the continuation of the

Design Cycle.

(iv) Design Cycle

During the Design Cycle the system is designed and organised into subsystems which are to be

developed. In the first quadrant the objectives for the Design Cycle are defined. The design

strategy is formulated. If a subsystem strategy involves object wrappering or the improvement of

the user-interface without changing the original application code, the existing application code must

be assessed. The physical views of the system are modelled and the design alternatives as well as

constraints are identified. Design quality metrics are established. The order in which the

subsystems and parts within subsystems are designed, will be influenced by the integration and test

plan. The classes which form the kernel of the system must be designed and developed first as they

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 7

will be used in subsequent development. Testing should be done throughout the Design and

Implementation Cycles and is regarded the primary tool of Software Quality Assurance (SQA).

SQA is discussed in Section 5.3.4. The first quadrant ends with a software development strategy

review.

During the second quadrant the design alternatives are analysed in order to determine the risks of

each alternative. Risk analysis (discussed in Section 5.3.2) is performed on the alternative design

strategies. The solution strategy with the smallest risk and which satisfies the user constraints are

chosen. Prototyping of high risk areas reduces uncertainty and enhances the understanding of the

system. Incremental prototyping may be used as part of the iterative and evolutionary strategy of

OOD, referred to by Booch (1994) as "round-trip gestalt design". Prototyping is covered in

Section 5.3.3 of the next chapter. The quadrant ends with the acceptance of a design strategy

which will be documented in the System Design Document.

00 design (OOD) is performed during the third quadrant and is discussed in Section 5.2.2.

Rumbaugh (1991) identifies the following steps for OOD:-

1. Combine the three models obtained in the Analysis Cycle to obtain operations on classes.

2. Design algorithms to implement operations.

3. Optimise access paths to data.

4. Implement control for external interactions.

5. Adjust class structure to increase inheritance.

6. Design associations.

7. Determine object representation.

8. Package classes and associations into modules.

00 programming (OOP) is an incremental process and the steps ofthis quadrant may therefore be

re-iterated before a subsystem is completed. OOP is covered in Section 5.2.3 of Chapter 5. The

detailed physical design is documented in the Detailed Design Document. Incremental prototyping

may be used as part of the iterative and evolutionary strategy of OOD. Throughout the Design

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 8

Cycle the completed prototypes are evaluated in order to determine whether user requirements are

met and whether they may be integrated into the evolving product.

Regular design reviews are held to measure progress towards the final product. Once a subsystem

is completed, verification testing (discussed as part of SQA in Section 5.3.4) is done on the

subsystem as a whole and a test report is drawn up. The code is accepted after the product

development review. In case of a need to re-iterate the Analysis Cycle, the development strategy is

revised.

As subsystems are completed, planning for subsystem integration and system implementation is

done. The SPMP is updated. WBS, CBS and cost estimations are reviewed. The Design Cycle

ends when the user agrees to the continuation of the Implementation Cycle.

(v) Implementation Cycle

The Implementation Cycle is usually traversed only once. During the first quadrant, various

strategies for subsystem integration, integration testing and conversion are identified and

documented in the Integration Strategy Evaluation Report. Conversion may imply the transferring

of data from the legacy system to the client/server environment. Different hardware installation

plans are identified. The training schedule, training programme and user manual for new system

users are drawn up.

During analysis and evaluation of alternatives, the risks involved in the different subsystem

integration strategies are identified. Risk avoidance planning is done to lower the identified risks.

Risk avoidance planning is considered a step of risk management and is covered in Section 5 .3 .2.

The quadrant ends with the review of the hardware installation layout, software packaging as well

as contents of the training programme.

During the development quadrant, subsystem integration is performed and tested. Incompatibilities

between subsystem interfaces may require the Design Cycle to be repeated. Volume testing is done

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 8 9

for those facets of the system which are peculiar to large volumes, including the storage allocations

for the database and the service constraints. Volume testing of the storage allocations ensures that

the system will handle its expected activity. Volume testing to verify that the system meets the

service constraints ensures that the system does not exceed the allowable response times for

updating the database, responding to enquiries or producing reports.

A successful parallel test is often a prerequisite for system acceptance. System acceptance testing is

the verification that the system meets the user requirements and results are documented in the

Acceptance Test Reports. Parallel testing compares the processing of the same data through both

the new system and the legacy system Testing is the primary tool of SQA discussed in Section

5.3.4. Once the user is satisfied that the integrated system can take over the functions of the legacy

system and that the system runs according to specifications, the system is considered completed.

4.3.3 The Representation Schema

The Object Modeling Notation (Rumbaugh et al,1991) is used to represent the system to be

integrated from three related, but different viewpoints, each capturing important aspects of the

system, but all required for a complete description.

The Object Model which represents the static, structural, "data" aspects of the system is

represented graphically with object diagrams containing object classes. The classes are arranged

into hierarchies sharing common structure and behaviour and are associated with other classes.

The Dynamic Model describes the behavioural control aspects of the system to be integrated.

These aspects are concerned with time and the sequencing of operations. The Dynamic Model is

represented graphically with state diagrams which shows the state and event sequences permitted

for classes of objects. Actions in the state diagram correspond to functions in the Functional Model

while events in the state diagram become operations on objects in the Object Model.

The Functional Model describes the functional aspects of a system which are concerned with the

transformations of values. It is represented with DFD's. DFD's show the dependencies between

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 0

values and the computational structure of a system without regard for when or if the functions are

executed.

4.3.4 The Methods

The methods which form part of the ESMI are:

• OOA which is a method for analysis used during the Analysis Cycle;

• OOD which is a method for design used during the Design Cycle, as well as

• OOP which is a method for programming used during the Design Cycle.

These methods are discussed in the next Chapter in Sections 5.2.1, 5.2.2 and 5.2.3 respectively.

4.3.S The Techniques

The following techniques for the ESMI were identified:

• Software cost estimation techniques are used when performing a cost-benefit analysis

to project future costs;

• risk management techniques to identify, address and eliminate risk items;

• Rapid prototyping is used for the gathering of requirements as well as for reducing the

risk areas during risk analysis;

• Software Quality Assurance (SQA) techniques are essential to ensure an integrated

system of high quality;

• Software reuse allows for the creation of libraries with reusable components, ensures

software of high quality as well as shortens the integration process.

These techniques are discussed in the next Chapter in Sections 5.3.1, 5.3.2, 5.3.3, 5.3.4 and 5.3.5

respectively.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 91

4.3.6 The Procedures

The ESMI starts with a Feasibility Cycle during which the feasibility of integration is addressed,

followed by an Architecture Cycle during which the top level hardware and system software

architectures are defined. The Architecture Cycle may be entered more than once, if during the

next two cycles it is realised that the hardware specification will not meet system demands.

The Analysis Cycle deals with the analysis of the problem domain and can also be re-iterated. The

Design Cycle which follows the Analysis Cycle is re-iterated numerous times to complete a

subsystem and deals with constructing both the logical and physical designs.

The last cycle to be completed is the Implementation Cycle which is usually traversed only once

and which deals with the integration of subsystems and the implementation of the integrated

system Work in each quadrant of all cycles follows the generic format outlined in Section 4 .3 .1 .

Apart from the overall procedure, procedures for constructing the Object, Dynamic and Functional

Models as well as for cost estimation were also distinguished. These procedures are discussed in

the next chapter in Sections 5.4.1 and 5.4.2 respectively.

4.3. 7 The Deliverables

The deliverables for the five cycles of the ESMI are now summarised.

(i) Feasibility Cycle

During the first quadrant a Problem Statement containing the constraints relevant to the

integration project, is formulated. The results of the legacy system assessment should be

documented by means of schematic diagrams, document description worksheets, DFD' s and notes

to form the Legacy System Description Document. Schematic diagrams depicts the information

flow, timing and volumes in chart form Document description worksheets describe the documents

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 2

of the legacy system. DFD's depicts the functions and the files used by the legacy system. Notes

should be organised by information element, function and document.

During Analysis and Evaluation, a Feasibility Report is compiled. A typical Feasibility Report will

include:

• a summary of the scope of the integration and the recommendations;

• a problem statement containing the objectives and requirements of the integration

project;

• a cost-benefit analysis;

• a risk analysis;

• an analysis on the probable effects on the organisation, intemally as well as externally;

• specification of departmental and individual responsibilities for the implementation of

the integrated system;

• the criteria by which successful implementation will be measured, e.g. cost/saving, as

well as

• a detailed action plan showing how, when and by whom each measurable unit will be

completed.

The feasibility study culminates in the Preliminary Project Proposal which contains:

• a detailed problem definition within the business context;

• a high level strategy which describes the planned approach to be followed in order to

address the problem definition;

• an overall estimate of software and hardware resources needed;

• an analysis of the cost-effectiveness of the proposed system, as well as

• an indication whether the existing time and budget constraints will be acceptable.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 3

(ii) Architecture Cycle

The results of the assessment of existing infrastructure are documented in the Legacy

Infrastructure Description Document. During the second quadrant the results of analysis are

documented in the Architecture Strategy Evaluation Report.

The Architecture Document forms the basis of the contract between the user and software

developer and includes:

• the user requirements;

• acceptance criteria;

• class diagrams;

• DFD's;

• state diagrams;

• subsystem specification, and

• hardware definition specification.

The SPMP which describes the integration process in fullest detail and should conform to IEEE

standards, is compiled. It is successively refined as the project progresses. The SPMP is updated

at each cycle review. In addition to defining the work to be done, the SPMP provides management

with the basis against which progress can be periodically reviewed and tracked. It includes aspects

such as the life-cycle model to be used, project responsibilities, managerial objectives and priorities,

the techniques and tools to be used as well as resource allocations. The SPMP reflects the separate

phases of the integration project, the people involved in each task as well as the deadlines for

completing that task.

It contains the technical and managerial work breakdown structure (WBS) to be performed,

estimations of resource and budget requirements, the cost breakdown structure (CBS) as well as

the development schedule based on these estimates. Major components of the SPMP are therefore

the deliverables (what the user is going to get), the milestones (when the user gets them) and the

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 4

budget (how much it is going to cost). In addition it should contain the test plan and system

maintenance plan. The test plan describes the procedure for testing the deliverables of the

integration project. The system maintenance plan includes the backup, corrective maintenance and

disaster recovery procedures. According to Humphrey (1989) the elements of a SPMP are the

goals and objectives, a sound conceptual design, the WBS, product size estimates, resource

estimates as well as the project schedule.

The IEEE Standard 1058.1 (IEEE 1058.1 ,1987) prescribes an outline of a SPMP (Figure 4.3).

There are distinct advantages to following this standard. These advantages include the fact that the

standard incorporates the experience of representatives of major organisations involved in software

as well as input from both industry and universities. Another advantage is that the IEEE SPMP is

designed for use with all types of software products, irrespective of size and functionality. The plan

framework is, however, not described in detail here.

A PRMP consists of each of the individual risk management plans for each risk item as well as an

overview of how the individual plans fit together with each other and with the overall integration

project plan. It ensures that each integration project makes an early identification of its top risk

items, develops a strategy for resolving the risk items, identifies and sets down an agenda to resolve

new risk items as they surface as well as highlights progress versus plans in periodical reviews. It

establishes the necessary budgets and schedules for risk reduction activities and ensures that they

are compatible with those in the integration project's SPMP.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 5

1. Introduction

1.1 Project Overview

1.2 Project Deliverables

1.3 Evolution of the SPMP

1.4 Reference Materials

1.5 Definitions and Acronyms

2. Project Organisation

2.1 Process Model

2.2 Organisational Structure

2.3 Organisational Boundaries and Interfaces

2.4 Project Responsibilities

3. Managerial Process

3 .1 Managerial (l)jectives and Priorities

3 .2 Asruntptions, Dependencies and Constraints

3.3 Risk Management

3.4 Monitoring and Controlling Mechanisms

3. 5 Staffing Plan

4. Technical Process

4.1 M~ ToolsandTechniques

4.2 Software Documentation

4.3 Project Support Functions

5. Work.Packages, Schedule and Budget

5.1 Work.Packages

5.2 Dependencies

5.3 Resource Requirements

5.4 Budget and Resource Allocation

5.5 Schedule

Additional Components

Figure 4.3 Outline of a SPMP (IEEE 1058.1 ,1987)

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 6

The SQAP comprises SQA monitoring procedures, practices and policies for assuring compliance

with the various SQA standards. Sage and Palmer (1990) identify the essential components of the

SQAP:

• identification and implementation of the scope and purpose of the plan;

• identification and implementation of the organisational structure for implementing the

plan, including specific tasks to be performed by members of the SQA group;

• identification and implementation of documents that need to be prepared as well as

methods to determine quality and adequacy of documentation;

• identification and implementation of metrics, standards, procedures and practices that

will be used in implementing the plan, and

• identification and implementation of methods to be used in collecting, maintaining and

recording SQA information.

At the end of the fourth quadrant the Project Proposal, which must be accepted by the user in

order to proceed with the integration project, is compiled for the rest of the system

(iii) Analysis Cycle

The Legacy Subsystem Description Document contains a description of existing legacy

subsystems. The Subsystem Strategy Evaluation Report is compiled after risk analysis is

performed on the alternative subsystem strategies. The Analysis Document containing the logical ·

design of the subsystems, is compiled in the third quadrant and consists of the Object, Dynamic and

Functional models for the system The SPMP is reviewed and u}Xiated with more accurate

information.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 7

(iv) Design Cycle

The System Design Document should contain a description of the design strategy which has the

smallest risk and which satisfies the constraints of the user. The Detailed Design Document

contains the detailed physical design. OOP results in both Source and Object Code Listings.

The completed Subsystems are verified to satisfy requirements and Test Reports containing the

results of the verification testing, are compiled. The SPMP is updated with the latest available

information.

(v) Implementation Cycle

During the first quadrant the alternative strategies for subsystem integration, integration testing and

conversion are documented in the Integration Strategy Evaluation Report. The Traini,ng

Schedule, Training Programme and User Manual for the new system users are compiled. The

Training Schedule contains the the names of the users to be trained, the locations where training

will be given as well as the dates and time when training will be given. The Training Programme

contains the contents of the training. The User Manual contains a description of the procedures

necessary to operate the system from a user's perspective. The System Maintenance Plan

includes the backup, corrective maintenance and disaster recovery procedures. The results of

acceptance testing are documented in the Acceptance Test Reports. The final deliverable of the

integration project is an Integrated System.

4.4 Project Management

Managers need different styles and approaches to manage different types of projects effectively.

The right approach flows from the specific project rather than the other way around. The

corporate culture in which the project is performed should influence the management approach

followed, e.g. the use of formal project planning and control tools is more likely to produce

successful results in a highly formal environment than in an environment where the prevailing

culture is more personal and informal. Skills needed with high risk projects, such as an integration

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 8

project, include technical and administrative experience and knowledge, the ability to establish and

maintain teamwork as well as the ability to communicate with clients.

The major categories of project management tasks are project planning, project organisation,

project directing, project control and report writing (Sommerville,1989; Van der Walt,1993; Shtub

et al, 1994). The ESMI facilitates the management of integration projects by dividing the

integration process into cycles, each with a prescribed WBS, deliverables, review points and

management procedures for planning, monitoring and controlling a project. All project

management tasks are completely dependent on the availability of proper information regarding the

integration process. Some of the management tasks are unique to a cycle whereas others are

generic, i.e. they should be done during every cycle of the ESMI. The various management

activities within each of the above-mentioned task categories will now be reviewed within the

context of integration.

Thorough planning of an integration project ensures that the project is completed on time and

within budget. Planning detail is documented in the SPMP and is revised as the project provides

better information. Planning activities for an integration project includes:

• establishing the boundaries and scope of the project during the Feasibility Cycle;

• · identifying the objectives and applicable constraints for each cycle of the integration

project;

• analysing the Problem Statement within the context of the business and conducting an

overall estimation of whether the identified requirements can be satisfied using the

existing software and hardware resources during the Feasibility Cycle;

• identifying the top-level hardware and system software architectures (e.g. the hardware

and software platforms, implementation ,language and compilers) during the

Architecture Cycle;

• defining milestones;

• identifying the standards, methods, techniques and automated tools to be used during

the integration life-cycle;

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 9 9

• compiling the Work Breakdown Structure (WBS) of the project during the

Architecture Cycle. A WBS allows for the hierarchical breakdown of the work to · be

accomplished to complete a project into smaller manageable tasks, thereby providing a

greater probability that every major and minor activity will be accounted for. It is a

planning tool which links objectives with resources and activities in a logical framework

and acts as a starting point for other management activities such as size and cost

estimation, scheduling, staffing as well as project control. A Cost Breakdown Structure

(CBS) are obtained by associating a cost with each of the WBS elements and can be

used as a controlling tool;

• determining the skills required to perform the identified tasks of the WBS;

• estimating and allocating the resources required to meet the objectives of each cycle of

the integration project. Resources include time, money, personnel and equipment;

• scheduling the tasks identified in the WBS during the Architecture Cycle;

• reviewing and updating the WBS, CBS and schedules after each cycle of integration;

• updating the SPMP as well as scheduling and allocation for the next cycle of

integration.

Project organisation comprises project structuring, the enforcement of standard procedures and

logistical support. Project structuring involves the organisation of human resources in order to

indicate functional relationships, delegate responsibility and authority as well as establish

communication channels (Roman,1986). This includes decisions regarding organisation structure,

control structure, interfaces with sections within the organisation and external contractors, as well

as the structuring of both development and SQA teams. Project structuring is usually performed

during the Architecture Cycle. The following three levels of management are distinguished for

large projects such as an integration project:

• top level management, e.g. the project manager;

• middle management is typically responsible for a functional group within an integration

project, e.g. the person reponsible for SQA;

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 0

• junior management is responsible for one of the tasks within a functional group, e.g. the

person responsible for the development of data communications as part of the total

integration project.

Procedures necessary for sound software engineering practice as specified by standards for

software development (SABS ISO 9000,1987; OOD-STD-2176A,1988), must be enforced by

project management throughout the integration life-cycle. Logistical support aims at providing all

resources (e.g. personnel, hardware and automated tools) needed to ensure a cost-effective

integrated system Activities oflogistical support are performed throughout the cycles of the ESMI

and may include:

• hardware benchmarking in order to identify the hardware that will deliver the best

performance within the allocated budget during the Architecture Cycle;

• the acquisition, installation and support of hardware and software necessary for the

development of a software system;

• · the compiling of a System Maintenance Plan which includes the backup, corrective

maintenance and disaster recovery procedures during the Implementation Cycle.

Project directing entails the management of people involved in a project and giving direction to the

software development process in order to deliver a high quality integrated system Directing is

performed throughout the integration project and includes:

• leading the project team in achieving goals;

• giving direction in fluid situations;

• motivating individuals and groups;

• team building by making use of techniques such as team building meetings;

• managing conflict among team members;

• user liaison.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 1

Charette (1986) is of the opinion that it is management's responsibility to motivate and encourage

technical members of the integration team to apply reuse whenever possible. Software reuse is

discussed in Section 5.3.5.

Project control involves monitoring the progress of an integration project to date and talcing

corrective action when integration does not proceed according to the SPMP, configuration

management, quality management as well as risk management. Monitoring the progress focuses on

meeting the objectives of each cycle (established during Issue Formulation and Assessment and

documented in the SPMP). Configuration management in terms of an integration project involves

the identification, organisation and control of software modifications done by an integration team

Quality management ensures that quality issues are specifically addressed during all .the cycles of the

ESMI. It involves the measuring of the quality of the deliverables to date, the quality of the

integration process as well as the adherence to standards. Risk management aims at identifying,

addressing and eliminating risk items throughout the cycles of the ESMI. Risk management is

discussed in Section 5.3.2.

Report writing includes:

• formulating a Problem Statement as well as compiling both the Feasibility Report and

· the Preliminary Project Proposal during the Feasibility Cycle;

• compiling the Architecture Document, SPMP, PRMP, SQAP as well as the Project

Proposal during the Architecture Cycle;

• updating the SPMP during the Analysis and Design Cycles.

Humphrey (1989) proposes three levels of software process modelling:-

• The Universal level provides a global view of a project to be taken by top level

management.

• The Worldly level guides middle management through the sequence of working tasks

for each development phase. It also defines prerequisites and results of tasks.

Chapter 4 - Tue Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 2

• The Atomic level provides a detailed description of how the individual tasks of the

Worldly level must be performed. The format of deliverables is specified. Junior

management uses this level of information to guide a group of project participants to

complete a specific task.

These three levels of process modelling provide the information needed by the different levels of

management. The Universal Level provides an overall view of an integration project in the form of

all the cycles of the ESMI. Top level management, (usually the project manager) is involved in the

planning and scheduling of tasks, the allocation of manpower and the budgeting of the project

throughout its life-cycle. This level of management is also responsible for monitoring the progress

of the tasks of an integration project to assure that the project stays on schedule and within budget.

In large projects such as an integration project, the project manager is assisted by middle

management to coordinate the different lower level tasks such as system integration, test~g,

customer training and system implementation.

Each cycle of the ESMI comprises a number of management and technical tasks to be performed

and which represents the Worldly Level. Middle management (e.g. the software manager) is

concerned with the Worldly Level issues of integration. At this level the software solution is

modelled on an abstract levei providing the logical structure of the software problem. Task

prerequisites and task deliverables for each cycle of the ESMI are identified, i.e. for each task to be

performed the inputs, the resources required or participants involved and the deliverables produced

should be modelled. The deliverables of the Worldly Level contributes to the baseline of

deliverables on the Universal Level. Middle management is concerned with the scheduling of

resources to complete the set milestones and the monitoring of the integration process to assure

that the integration stays within the schedule and budget. Middle management requires input from

both top and junior management in order to perform these tasks.

A phase is further decomposed into Atomic Level activities. At the Atomic Level data structures

and logical design of objects are of importance. Junior management (e.g. a group leader of a

software development team) reports on the progress of integration to middle management and is

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 3

involved in the planning and execution of the techniques and procedures of the methods chosen to

perform Atomic Level tasks such as the COCOMO estimation technique (Du Plessis & Van der

Walt,1992). The COCOMO technique is discussed in Section 5.3.1.

4.5 Summary

The integration methodology should have a risk-driven approach and should be based on the 00

paradigm. 00 software development requires iteration among life-cycle phases, a prototyping

strategy and incremental building of the product. The ESMI conforms to these requirements. In

order to reduce the chance of project failure, strong emphasis is laid on risk analysis throughout the

integration life-cycle. Various reviews held throughout the life-cycle, ensure deliverables of high

quality as well as control of the integration process. The ESMI makes provision for evolutionary

development and consists of five cycles: the Feasibility, Architecture, Analysis, Design and

Implementation Cycles.

Work in each quadrant of the cycles follows a generic format. During Issue Formulation and

Assessment (Quadrant 1) the objectives of the cycle are identified and a strategy formulated to

reach the objectives according to plan. Existing assets are assessed and alternative strategies

identified to reach the objectives. Constraints are identified and quality metrics established.

During Analysis and Evaluation of Alternatives (Quadrant 2) the results of the assessment in

Quadrant 1 are analysed. Risk analysis is performed on the identified alternative strategies. Risk

avoidance planning is done and areas of risk are reduced by making use of modelling techniques

such as prototyping and simulation. At the end of this quadrant a commitment is made to the

strategy with the lowest risk.

Development activities and tasks are performed during the Development Quadrant. During Review

and Planning (Quadrant 4) the deliverables of the third quadrant are verified against specifications

and quality metrics. Planning for the next cycle is done.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 4

The ESMI was presented followed by a synopsis of the representation schema, methods,

techniques, procedures as well as cycle deliverables. The Object Modeling Notation (Rumbaugh et

al, 1991) is the representation schema recommended for use with the ESMI. The most relevant

methods include OOA for analysis, OOD for design as well as OOP for programming. Relevant

techniques include those for performing a cost-benefit analysis, for risk management and SQA as

well as rapid prototyping and software reuse. Procedures for cost estimation (an integral task of

cost-benefit analysis) as well as for the modelling of the system were identified. The various cycle

deliverables of the ESMI were summarised in Section 4.3.7. The integration methodology is based

on the ESMI but due to the limited scope of this dissertation, it will not be covered in further detail

here.

Project management was covered in the final section of the chapter. Project management should

ensure that the integration project is completed on time, within budget and that the requirements of

the user are satisfied. Major categories of project management tasks were identified. They are

project planning, project organisation, project directing, project control as well as report writing.

Project planning comprises activities to ensure that the integration project is completed on time

and within budget such as the compiling of the WBS and CBS during the Architecture Cycle.

Project organisation entails project structuring, the enforcement of standard procedures as well as

logistical support. Project structuring is usually performed during the Architecture Cycle whereas

the enforcement of standard procedures and logistical support are activities of all cycles of the

ESMI.

Project directing comprises the management of people involved in a project as well as ensuring an

integrated system of high quality. Project directing is performed throughout the integration life­

cycle. Project control involves monitoring the integration project and taking corrective action

when integration does not proceed according to the SPMP. In addition, it also involves

configuration management, quality management and risk management which is performed

throughout the cycles of the ESMI. Report writing entails the compilation and updating of the

various reports to be delivered during the integration process.

Chapter 4 - The Integration Methodology

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 5

Some management tasks are unique to a cycle of the ESMI whereas others are generic and should

be done during every cycle. Management of a large project such as the integration project, cannot

be seen as a task of a single member of the development team Instead, the management of an

integration project should be seen as a task performed at the different levels of software

development, i.e. at the Universal, Worldly and Atomic Levels. The Universal Level provides a

global view of an integration project to be taken by top management. The Worldly Level guides

middle management through the sequence of tasks for each cycle of the ESMI. The Atomic Level

provides junior management with a detailed description of the individual tasks of the Worldly Level

in order to guide a group of integration project participants to complete a specific task.

Chapter 4 - The Integration Methodology

5.1

5.2

5.3

5.4

A Methodology for Integrating Legacy Systems with the Client/server Environment

CHAPTERS

METHODS, TECHNIQUES, PROCEDURES AND AUTOMATED

SUPPORT FOR THE ESMI

Introduction

Methods for the ESMI
..

:•. ..

5.2.1 Object-Oriented Analysis (OOA)

5.2.2 Object-Oriented Design (OOD)
;

5.2.3 Object-Oriented Programming (OOP)

Techniques for the ESMI

5.3.1 Cost-Benefit Analysis

5.3.2 Risk Management

5.3.3 Rapid Prototyping

5.3.4 Software Quality AssUrance (SQA)

5.3.5 Software Reuse

Procedures for the ES.MI

5.4.l Modelling

5.4.2 Cost Estimation

5. 5 Automated Support for the ESMI

5.5.1 The Repository

5.6 Summary

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 7

5.1 Introduction

The ESMI is supported by various methods, techniques and procedures. As a result of the limited

.scope of this dissertation only a few of these are discussed here. The most relevant methods of the

ESMI include OOA, OOD and OOP. OOA is used during the Analysis Cycle to provide an 00

description of the problem domain in order to obtain a complete and consistent statement of the

requirements. OOD is a method for design which involves the refinement of the analysis models to

obtain a detailed basis for implementation. OOP is used for implementing the design in order to

obtain an executable software system

The most relevant techniques of the ESMI include those for cost-benefit analysis, risk management,

Software Quality Assurance (SQA) as well as rapid prototyping and software reuse. A cost-benefit

analysis involves the comparison of estimated future benefits against projected future costs. ~k

management is performed throughout the integration project and is essential in order to prevent risk

items from becoming either threats to the successful outcome of an integration project or to result

in rework during the integration project. Risk assessment is a step of risk management performed

during the second quadrant of all the cycles of the ESMI and it comprises risk identification, risk

analysis and risk prioritisation. Rapid prototyping is used during risk analysis as well as for the

gathering of requirements. SQA techniques should be performed throughout all cycles of the

ESMI, but it is particularly used during the regular reviews of the fourth quadrant of all cycles. It is

essential to ensure an integrated system of high quality. Software reuse results in a shorter

integration process as well as more reliable software and technical members of the integration team

should be encouraged to reuse software components whenever possible.

Procedures for both the modelling of the system to be integrated as well as cost estimation are

reviewed. The methods, techniques and procedures of the ESMI should be automated as far as

possible. Automated support including a repository, will increase productivity during the

integration life-cycle.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 0 8

5.2. Methods for the ESMI

OOA, OOD and OOP are now discussed as methods for the ESMI.

5.2.1 Object-Oriented Analysis (OOA)

Analysis is the study of a problem domain leading to a complete, consistent and feasible s!atement

of the requirements of the system, prior to taking some action. Requirements include functional

operations as well as non-functional requirements in the form of quantified operational

characteristics such as ease of use, reliability, availability, maintainability and performance.

Requirements also include any applicable design constraints. 00 shifts development effort into

analysis. Traditional approaches to analysis map from problem domain indirectly to functions and

subfunctions (functional decomposition) or from problem domain to data flows and bubbles (data

flow approach). OOA directly maps the problem domain and system responsibility into a model. It

is used during the third quadrant of the Analysis Cycle of the ESMI (Section 4.3.2).

Booch (1994) defines OOA as

" a method of analysis that examines requirements from the perspecnve of the classes

and objects found in the vocabulary of the problem domain. "

OOA is based on the uniform application of the principles of 00 (reviewed in Appendix C). With

OOA, the domain of discourse in the real world is modelled in terms of object types and what

happens to those object types. OOA is intended to facilitate the understanding, formulation and

communication of 00 descriptions of the problem domain. It increases the internal consistency of

analysis results by treating the different analysis activities as a natural whole. Inheritance is used to

explicitly represent commonality. Specifications build with OOA are resilient to change and

analysis results can be reused. In addition, OOA provides for a continuum and consistent

underlying representation for analysis and design. According to Coad and Y ourdon (1991), OOA

is very useful for systems with extensive responsibilities as well as for systems with many classes

and objects. The legacy systems of Chapter 1 are likely to have these characteristics.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 10 9

Many authors hold the view that the boundaries between OOA and OOD are blurred (Wnfs-Brock

et al 1990; Stroustrup, 1991; Schach, 1996). The focus of each is, however, quite distinct. During

OOA the real-world is modelled by discovering the classes and objects that form the vocabulary of

the domain of discourse whereas during OOD the abstractions and mechanisms that provide the

behaviour which this model requires, are invented (Booch,1994). OOA therefore deals with

"problem-domain" objects whereas OOD expands these objects into "solution domain" objects.

Shlaer et al (1988) describes an approach to OOA which consists of three phases: static modelling

of objects, dynamic modelling of states and events as well as functional modelling. According to

Rumbaugh et al (1991) OOA comprises:

1. writing a problem statement;

2. building an Object Model which consists of the object model diagram and _the

repository;

3. developing a Dynamic.Model which consists of state diagrams and a global event

flow diagram;

4. constructing a Functional Model which consists of data flow diagrams (DFD's) as

well as constraints;

5. verifying, iterating and refining the three models.

Coad and Yourdon (1991) identify five major activities ofOOA:

1. finding classes and objects;

2. identifying structures;

3. identifying subjects;

4. defining attributes;

5. defining services.

These activities are not sequential steps and there is no significant order in which one should move

from one activity to the next. The activities guide the analyst from high levels of abstraction (e.g.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 11 0

problem domain classes and objects) to increasingly lower levels of abstraction (structures,

attributes and services). The OOA model is presented in five layers:

1. Subject Layer;

2. Class-&-Object Layer;

3. Structure Layer;

4. Attribute Layer;

5. Service Layer.

The five layers gradually present more and more detail. The Subject Layer is useful for more

complex problem domains, to guide readers through a larger model and partition work into

packages.

Booch (1994) emphasises that analysis focuses upon behaviour and the objective is to identify

classes and objects (as well as their roles, responsibilities and collaborations) which form the

vocabulary of the problem domain. It is inappropriate to address issues of class design,

representation or other tactical decisions during this phase.

By focusing on behaviour, the function points of the system may be identified. Function points

denote the external observable and testable behaviours of a system which are often the mappings of

inputs to outputs. From a user's perspective, a function point represent some primary activity of a

system in response to some event whereas from an analyst's perspective, it represents a fixed

measure of behaviour.

The two primary activities of the method of Booch (1994) are domain analysis and scenario

planning. Domain analysis seeks to identify the classes ~d objects that are common to a specific

problem domain. Scenario planning is the central activity of Booch's method and makes use of

techniques such as Use-Case and Behaviour Analysis as well as Class I Responsibilities I

Collaborators (CRC) Cards. Quality-assurance personnel should participate in scenario planning,

since scenarios represent behaviours that can be tested.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 111

Jacobson et al (1992) defines Use-Case as

"a particular form or pattern or exemplar of usage, a scenario that begins with some

user of the system initiating some transaction or sequence of inte"elated events. "

Use-Case Analysis may be applied as early as requirements analysis and it involves the enumeration

of the scenarios (without elaborating upon them) which are fundamental to the operation of the

system by users, domain experts and the development team Each scenario is then studied by

means of storyboard techniques, i.e. the objects which participate in the scenario, the

responsibilities of each object as well as the operations invoked by the objects to collaborate with

other objects, are identified (Booch, 1994).

Behaviour analysis focuses upon dynamic behaviour as the primary source of classes and objects,

i.e. classes are based upon groups of objects that exhibit similar behaviour. A CRC Card is a 3x5

index card used by an analyst to write the name of a class, its responsibilities and its collaborators

(Beck & Cunningham, 1989). One card is created for each class identified as relevant to the

scenario. As the integration team walks through the scenario, new responsibilities may be assigned

to an existing class, certain responsibilities may be grouped to form a new class and the

responsibilities of one class may be divided into more refined classes. The CRC cards can be

arranged according to the generalisation I specialisation or aggregation hierarchies among classes to

reflect the static semantics of the scenario, as well as according to the flow of messages among

prototypical instances of each class to reflect the dynamic semantics of the scenario (Booch, 1994).

Scenario planning typically involves:

• the identification of all primary function points of the system, where possible, grouped

into clusters of functionally related behaviours according to hierarchies of functions;

• the capturing of the descriptions of the functions of the system by making use of

scenarios. Each scenario represents some particular function point. Techniques such

as Use-Case and Behaviour Analysis as well as CRC Cards are used to storyboard

scenarios. Document the scenarios by means of object diagrams which illustrate the

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 112

objects that initiate or contribute to behaviour and that collaborate to complete the

activities of the scenario. Documentation should include a script, showing the events

that trigger each scenario and the resulting ordering of actions as well as assumptions,

constraints and performance issues of each scenario;

• the generation of secondary scenarios which illustrate behaviour under exceptional

conditions, if needed;

• the development of a finite state machine for the classes of objects which are significant

or essential to a scenario. A finite state machine shows the life-cycle of certain objects;

• the search for patterns among scenarios and the expression of these patterns in terms of

more abstract, generalised scenarios or in terms of class diagrams showing the

associations among key abstractions;

• the update of the evolving repository to include the new classes and objects identified

for each scenario, along with their roles and responsiblities.

All the above-mentioned methods for OOA have their strengths and weaknesses. Iivari (1995)

compares six methods for OOA. He is of the opinion that OOA should cover structure abstraction

(i.e. object classes and subsystems), their functionality (i.e. operations, methods and responsibilities)

as well as their interaction. The method proposed by Rumbaugh et al (1991) conforms to these

requirements. According to Iivari (1995) the strengths of Rumbaugh et al's (1991) method are:

• the balanced attention to the three perspectives of structure, function and behaviour;

• the support provided for object modelling, as well as

• the fact that the method is generally well-defined.

Iivari (1995) regards the facts that the perspectives taken are not clearly integrated and that minima]

support is provided for modelling at the organisational level as weaknesses of the method. The

advantages (which are corroborated by the author's study of Rumbaugh et al's method as part of a

special topic module on 00), however, outweigh these disadvantages and despite the existence of

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 113

the latter, the method of Rumbaugh et al (1991) will be recommended for use with the ESMI.

Other methods for OOA, such as the method of Booch (1994), are also considered good

candidates which can be used with the ESMI.

The process and notations used by an OOA method should assist in the production of a coherent

set of models which constitute a reasoned and convincing description of the problem domain and

from which a software system can be developed. The notations used should ensure precise

communication about complex domains. Consequently the notations should be:

• unambiguous, i.e. the models should have a single discernible meaning;

• abstract, i.e. a model should not be cluttered with unnecessary detail;

• consistent, i.e. it should be possible to check whether different models of the same

system conflict.

The logical model is the result of analysis. OOA ends when the resulting analysis deliverables have

been validated by the user, domain expert, integration team as well as the SQA team The

deliverables of OOA serve as the models from which an OOD may be started.

5.2.2 Object-Oriented Design (OOD)

Reasons for distinguishing a design phase are the following:-

• In order to seamlessly change the analysis models to source code, the objects should be

refined.

• . The actual system must be adopted to the implementation environment. Issues such as

performance requirements, concurrency, the DBMS to be used, should be considered.

During design the physical issues of the solution are addressed. The analysis models will be further

refined in the light of the actual implementation environment. OOD is used during the third

quadrant of the Design Cycle of the ESMI (Sect~on 4.3.2) and involves determining the

implementation of each class, association, attribute and operation. The analysis classes are

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 114

tr~formed into a computerised model that belongs to the solution domain. In general, OOD is

concerned with the dynamic behaviour of objects.

Booch (1994) defines OOD as

" a method of design encompassing the process of object-oriented decomposition and a

notation for depicting both logical and physical, as well as stati.c and dynamic models of

a system."

Wirfs-Brock et al (1990) propose an OOD method which consists of an exploratory phase followed

by an analytical phase. The exploratory phase involves the finding of the classes from the problem

domain, the determination of the knowledge and operations for which each class is responsible as

well as the determination of the collaborations between classes. During the analytical phase ~he

inheritance relationships between classes are examined in order to build class hierarchies and the

collaborations between objects are streamlined. Wirfs-Brock et al (1990) are of the opinion that

this method will provide a complete set of class specifications to be implemented. Hierarchy graphs

are used to show the inheritance relationships between classes, Venn diagrams are used to show

which responsibilities are common between classes and Collaboration graphs are used to show the

classes and subsystems within a system and the paths of collaboration between them

The method of Rumbaugh et al (1991) implies the elaboration of the analysis models in order to

provide a detailed basis for implementation. Design documentation includes the detailed Object,

Dynamic and Functional Models. The method involves:

• obtaining the operations for the Object Model from the other models, i.e. each process

in the Functional Model as well as each event in the Dynamic Model represent an

operation;

• designing algorithms to implement operations at minimal cost, i.e. selecting data

structures for the algorithms, defining new internal classes and operations, and

assigning responsibility for operations not associated with a single class;

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 115

• optimising access paths to the data, i.e. adding redundant associations to minimise

access cost and maximise convenience, rearranging computations for greater efficiency,

and saving derived values to avoid recomputation of complicated expressions;

• implementing software control;

• increasing inheritance by adjusting class structure, i.e. rearranging and adjusting classes

and operations, abstracting common behaviour out of groups of classes as well as using

delegation to share behaviour where inheritance is semantically invalid;

• designing the implementation of associations, i.e. analysing the scope of associations

and implementing each association either as a distinct object or by adding object-valued

attributes to the classes of the association;

• determining the precise representation of object attributes, as well as

• packaging classes and associations to form modules.

According to Booch (1994), primary activities of OOD include Architectural Planning, Tactical

Design and Release Planning. Architectural Planning involves planning the layers and partitions of

the overall system and includes a logical decomposition which represents a clustering of classes, as

well as a physical decomposition which represents a clustering of modules and the allocation of

functions to different processors. The objective is to create a domain-specific application

framework which can be successively refined. Architectural Planning comprises:-

• Allocate the clustering of function points from the analysis products to layers and

partitions of the architecture. Functions that build upon one another should fall into

different layers whereas functions that collaborate to produce behaviours at a similar

level of abstraction should fall into partitions which represent peer services.

• Validate the architecture by creating an executable release which partially satisfies the

semantics of a few system scenarios as derived from analysis.

• Instrument that architecture and assess its weaknesses and strengths. Identify the risk

of each key architectural interface so that resources can be allocated meaningfully as

evolution commences.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 11 6

Tactical Design involves making decisions regarding policies. Tactical Design typically comprises:-

• List the common policies that must be addressed by disparate elements of the

architecture. Some policies are foundational, i.e. they address domain-independent

issues such as error handling and memory management whereas other are domain­

specific, i.e. they include idioms and mechanisms which are relevant to the specific

domain such as database management in information systems.

• Develop a scenario for each common policy in order to describe the semantics of that

policy.

• Document each policy and complete a peer walkthrough in order to broadcast its

architectural vision.

Release Planning serves to identify a controlled series of architectural releases, each growing in

functionality. A typical order of events includes:

• organise the scenarios identified during analysis, in order of foundational to subordinate

behaviours;

• allocate the related function points to a series of architectural releases whose final

delivery represents the production system;

• adjust the goals and schedules of this stream of releases so that delivery dates are

sufficiently seperated to allow adequate development time and to ensure that releases

are synchronised with other development activities, such as documentation;

• do task planning, i.e. identify a WBS and identify development resources which are

necessary to achieve each architectural release.

Once again the method of Rumbaugh et al (1991) is recommended for use with the ESMI but other

good candidates such as the method ofBooch (1994) can also be used. Rumbaugh et al's (1991)

method for OOD provides a multi-dimensional perspective which is required by large legacy

systems and it involves the elaboration of the models of his OOA method.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 11 7

The products of OOD can be used as "blueprints" for completely implementing a system using

OOP methods (Booch,1994).

5.2.3 Object-Oriented Programming (OOP)

OOP is a method which makes use of packaging technology. It allows the packaging of

functionality so that it can be reused in different applications. OOP is used during the third

quadrant of the Design Cycle (Section 4.3.2). According to Cox (1986) conventional

programming tools emphasise the relationship between a programmer and his code, while OOP

emphasises the relationship between suppliers and consumers of code. Cardelli and Wegner (1985)

reckon an OOP language should satisfy the following requirements:

• provide support to objects that are data abstractions with an interface of named

operations and a hidden local state;

• each object is an instance of an associated class;

• classes may inherit attributes from superclasses.

Booch (1994) defines OOP as

"a method of implementation in which programs are organised as cooperative

collections of objects, each of which represents an instance of some class, and whose

classes are all members of a hierarchy of classes united via inheritance relanonships. In

such programs, classes are generally viewed as static, whereas objects typically have a

much more dynamic nature, which is encouraged by the existence of dynamic binding

and polymorphism. "

Flow of control through a program is achieved by means of the invocation of the methods of

objects. Objects communicate with one another by passing messages. A message is a request for

an object to carry out the sequence of actions in one or more of the methods of its class. A

message contains a name which identifies its destination, and may also contain some arguments or

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 118

parameters. This is similar to a traditional function or procedure call. In the language Smalltalk a

message can be defined as (Rumbaugh et al,1991):

" an invocation of an operation on an object, comprising an operation name and a list

of argument values. "

The message, when received, will cause the invocation of an appropriate method within the

receiving object. For example, a manager may be responsible for increasing the salaries of his sul:r

ordinate employees. This would involve an object of the class Manager sending a message

Increase_ Sal to each object of the class Employee for which that manager has responsibility. When

a message is sent, the sender object may stop processing and pass control to the receiver object.

When the receiver completes processing it may send a response to the originator. Responses may

be synchronous (single thread of control) or asynchronous (multiple threads of contro~ as in a

parallel processing system). The sending object is often referred to as the client and the receiving

object as the server.

Object-based programming languages such as earlier versions of Ada, provide direct support for

data abstraction and classes, but not for inheritance. In order to be 00, a language must be object­

based as well as provide support for inheritance and polymorphism Eiffel and Smalltalk

(developed by the Software Concepts Group at Xerox PARC) are considered 00 languages. In

the context of client/server development, the trend in the IS!f industry is towards visual

programming environments supporting 00 such as Delphi. Such an environment is a good ·

candidate for use with the ESMI. The final deliverable of OOP is an executable software system

5.3 Techniques for the ESMI

Techniques of the ESMI include those for cost-benefit analysis, risk management, rapid

prototyping, Software Quality Assurance (SQA) as well as software reuse.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 11 9

5.3.1 Cost-Benefit Analysis

The evaluation of economic feasibility requires the organisation to conduct a cost-benefit analysis of

the integration project based on the scope and objectives that have been determined. A cost-benefit

analysis involves the comparison of estimated future benefits against projected future costs. A

procedure for cost estimation is presented in Section 5.4.2.

Two types of cost must be considered, namely:

• one-time costs associated with the integration project, and

• recurring costs.

One-time costs associated with the integration project include the time of users and syst~ms

personnel devoted to the integration project as well as computer hardware and software needed for

developing and implementing the integration project. Recurring costs include the time of personnel

needed to operate and manage the integrated systems as well as hardware and software acquisition

costs, if new technology must be obtained.

During the Feasibility Cycle, the costs of integration versus non-integration are analysed. Non­

integration costs include the costs of upgrades, differential cost of software licencing and the

differential cost of service and support over the period considered. During all cycles of the

integration project the costs and benefits of various alternative strategies are compared. The

strategy with the largest difference between benefits and costs should be selected as the optimal

strategy.

Once the costs are determined, they are weighed against the expected benefits. Intangible benefits,

such as the increased availability of information, are difficult to measure in rands and cents.

Assumptions must be made in order to assign a rand value to intangible benefits. However, certain

direct benefits can be measured, including decreases in personnel and faster response time.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 0

Major classes of techniques available for software cost estimation include (Boehm, 1984;

Marco, 1990; Lederer & Prasad, 1992):-

1. Algorithmic Models provide one or more algorithms which produce a software cost estimate as

a function of a number of variables which are considered to be major cost drivers. Numerous

models have been suggested for the estimation of costs and schedules (Wolverton,1974;

Myers,1978; Goldberg & Lorin,1980; Boehm,1984). A problem with all these models is that

they depend on past experience for calibration. If the data was gathered only on small product

developments, then estimating the cost and schedule for the integration project becomes

suspect. The Putnam model (Meyers, 1978) works reasonably well for very large projects,

although the model's estimates lack precision.

In the Constructive Cost Model (COCOMO) equations based upon size, program, computer,

personnel and project attributes are used to determine software costs. The Basic, Intermediate

and Detailed COCOMO's are distinguished. The Intermediate COCOMO and Detailed

. COCOMO are significantly more accurate than the Basic COCOMO. After investigating the

project data and related COCOMO estimates for the 63 projects in the COCOMO database,

Boehm (1984) concludes that COCOMO estimates are reasonably accurate for traditional,

single increment software developments, but considerably below actuals for incremental

development projects. The COCOMO model does not make provision for more than one cycle

of integration to be executed concurrently and it does not take into account the reuse of

software components promoted by 00 (Van der Walt,1993). With large projects such as an

integration project, the concurrent execution of cycles is essential as some subsystems may be

in the Design Cycle while others are in the Implementation Cycle. Balda & Gustafson (1990)

propose extensions of the Intermediate COCO MO that consider reuse and rapid prototyping.

2. Expert Judgement techniques involve consulting one or more experts, who use their experience

and understanding of the proposed project to arrive at an estimate of its cost. The wideband

Delphi technique (Farquhar, 1970; Boehm et aL 1974) can assist in combining the estimates of a

number of experts into a single estimate. It comprises the following steps:

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 1

(i) a coordinator presents each expert with a specification and an estimation form;

(ii) the coordinator organises a group meeting in which the experts discuss

estimation issues with the coordinator and each other;

(iii) the experts fill out estimation forms anonymously;

(iv) the coordinator prepares and distributes a summary of the estimates on an

iteration form;

(v) the coordinator organises a group meeting to allow the experts to discuss points

where their estimates varied widely;

(vi) the experts fill out estimation forms anonymously and Steps (iv) to (vi) are

iterated for as many rounds as appropriate.

3. Estimation by Analogy involves deducing by comparing with one or more completed projects

to relate their actual costs to an estimate of the cost of a similar new project. It is equivalent to

the similarities and differences estimating technique of Wolverton (1974). A main strength is

that the estimate is based on actual experience in a previous project. It is, however, difficult to

determine the degree to which the previous project is representative of the constraints,

techniques, personnel and functional aspects of the new project.

4. Parkinsonian estimation is based upon Parkinson's Law (Parkinson,1957) which states that

work expands to fill the time budgeted for it. The following is an example of a Parkinsonian

estimate:

"This flight control software must fit on a 65 536-word machine; its size will

therefore be roughly 65 000 words. It must be done in 18 months and there are 10

people available to work on it It will therefore take roughly 180 man-months. "

Parkinsonian estimation is not recommended as it is not accurate and reinforces poor software

development practices.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 2

5. Price-to-Wm estimation involves the adjustment of the cost estimate in order to meet the

constraints of a project. As a result the money or schedule usually runs out before the project is

completed. This type of estimation iS not recommended as it generally produces large

overruns.

6. Top-Down estimation comprises the derivation of an overall cost estimate for the project,

based upon the global properties of the software product. The total cost is then split among the

various components. The system level focus of top-down estimating is a major advantage and

as it is based upon previous experience on completed projects, it is likely to estimate the costs

of system level functions (e.g. the compilation of user manuals and configuration management)

accurately. Disadvantages include the lack of a detailed basis for cost justification, difficult low

level technical problems that are likely to escalate costs and are often not identified, and

components of the software to be developed are sometimes ignored.

7. Bottom-Up estimation comprises the estimation of the cost of each software component by an

individual who is usually responsible for developing the component. In order to obtain an

estimated cost for the overall product, these costs are summed. Disadvantages are that system

level costs associated with software development, e.g. project management, configuration

management and SQA, are often ignored and Bottom-Up estimation therefore often results in

underestimation. Advantages are that the estimates will be based on a more detailed

understanding of the components as they are done by the person responsible for the success of

the involved component. Bottom-Up estimation complements Top-Down estimation as the

one's weaknesses tends to be the other's strengths, and vice versa.

Although the Parkinson and Price-to-Win methods are unacceptable and do not produce sound

cost estimates, none of the above-mentioned alternatives is better than the others in all respects and

their strengths and weaknesses are complementary. It is therefore important to use a combination

of techniques and to iterate the estimates obtained from each.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 3

5.3.2 Risk Management

The objectives of Risk Management, with respect to the integration oflegacy systems with the

client/server environment, are to identify, address and eliminate risk items before they become

either threats to the successful operation of the integrated system or major sources of rework

during the integration process (Charette,1991). As illustrated in Figure 5.1, Boehm (1989)

considers the primary steps of Risk Management to be Risk Assessment and Risk Control.

Risk Assessment involves Risk Identification, Risk Analysis and Risk Prioritisation, whereas Risk

Control involves Risk Management Planning, Risk Resolution and Risk Monitoring. Risk

Assessment is a task of the second quadrant of all cycles of the ESMI whereas Risk Control is a

management task performed throughout the integration project. Project Management is covered in

Section 4.4.

Risk Identification will result in lists of specific risk items likely to endanger the successful

outcome of an integration project. Risk_ Identification techniques include risk identification

checklists, comparison with previous experience, decomposition and the examination of decision

drivers. Decomposition involves the identification of poorly-described areas within the integration

project's plans and specification as well as the decomposition of these areas into their constituent

elements. Frequently these areas contain serious project risk items.

Decision Driver Analysis involves the analysis of the sources of key decisions regarding the

integration project. If a decision has been driven by factors other than technical and management

achievability (e.g. politically-driven or marketing-driven decisions), it will frequently be the source

of a critical software risk item.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 4

CHECKLISTS

RISK DECISION DRIVER
IDENTIFICATION ANALYSIS

ASSUMPTION ANALYSIS

DECOMPOS_ITION

PERFORMANCE MODELS

COST MODELS

RISK RISK NETWORK ANALYSIS
ASSESSMENT ANALYSIS

DECISION ANALYSIS

QUALITY FACTOR
ANALYSIS
RISK EXPOSURE

RISK RISK LEVERAGE
PRIORITISATION

COMPOUND RISK
REDUCTION

RISK
MANAGEMENT

BUYING INFORMATION

RISK RISK AVOIDANCE
MANAGEMENT
PLANNING RISK TRANSFER

RISK REDUCTION

RISK ELEMENT PLANNING

RISK PLAN INTEGRATION

RISK RISK PROTOTYPES
CONTROL RESOLUTION

SIMULATIONS

BENCHMARKS

ANALYSES

STAFFING

MILESTONE TRACKING

RISK TOP-10 TRACKING
MONITORING

RISK REASSESSMENT

CORRECTIVE ACTION

Figure 5.1 Software Risk Management Steps

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 5

One large company developed a list of 54 questions for measuring the risk of a project after

analysing its experience with successful and unsuccessful projects. Some of these questions are

presented in Appendix D. These questions highlight the risks as well as suggest alternative ways of

conceiving and managing a project. If the initial aggregate risk score seems high, analysis of the

answers may suggest ways oflessening the risk, for example through reduced scope or lower-level

technology. These questions should be answered both prior to senior management's approval of

the proposal as well as periodically during implementation to reveal any major changes. The higher

the aggregate risk score, the higher should the level of approval be. This approach will ensure that

top managers are aware of significant risks and are making appropriate risk strategic-benefit trade­

offs.

Risk Analysis involves the assessment of both the probability and magnitude of loss associated

with each of the identified risk items as well as the assessments of composite risks involved in risk­

item interaction (Charette,1989). Risk analysis techniques include network analysis, decision tree

analysis and cost risk analysis. Network analysis involves the breaking down of schedule areas into

an activity network or PERT chart of its constituent tasks. A PERT chart is a network or graph

whose nodes represent project activities and their associated durations, and whose links represent

precedence relations between pairs of activities, i.e. if there is a link (arrow) from node A to node

B, then activity A must be completed before activity B can start. Various aspects of the PERT

chart, such as the presence of highly overlapping paths and multiple critical-path situations, are then

analysed for high-risk features. The decision tree structures risk situations in terms of the possible

decisions one can make and in terms of the risk exposure factors associated with each decision

option. The various options are characterised by their possible outcomes, with their probabilities of

occurence as well as the resulting cost or benefit of each outcome.

Cost risk analysis makes use of a software cost estimation model such as the Constructive Cost

Model (COCOMO) (discussed in Section 5.3.1). Most software cost models use a series of

parameters called cost drivers, e.g. product size, personnel experience and capability as well as

hardware constraints, which describe aspects of the project determined to significantly affect its

cost. The COCOMO estimates the nominal project effort in man-months as a function of the

estimated size of the software product in thousands of delivered source instructions. The nominal

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 6

effort is the amount of effort a project of this size would take if it was perfectly average with

respect to the other cost drivers. The effects of the project, not being perfectly average in all

dimensions, are then calculated by using a set of project effort multipliers as functions of the

project's ratings for a set of cost driver variables. A revised COCOMO man-month estimate is then

obtained by multiplying together the individual effort multipliers for each of the cost drivers into an

overall effort adjustment factor, and multiplying the nominal man-months by the effort adjustment

factor. The project's estimated cost can be determined by multiplying the estimated project man­

months by an average rand cost per man-month.

Risk Prioritisation will produce a prioritised ordering of the risk items identified and analysed.

Techniques for the prioritising of risk items include Risk Exposure (RE) analysis and Risk

Reduction Leverage (RRL) analysis (Boehm, 1989). The quantity RE is defined by the relationship:

RE = Prob(UO) * Loss(UO),

where Prob(UO) is the probability of an unsatisfactory outcome and Loss(UO) is the loss to the

parties affected if the outcome is unsatisfactory. RE contours can be presented graphically as

functions of Prob(UO) and Loss(UO), where Loss(UO) is assessed on a scale of 0 (no loss) to 1

(complete loss). A project with a risk item in the critical RE area, should attempt to reduce its RE

by reducing the Prob(UO) or the Loss(UO).

RRL is a measure of the relative cost-benefit of performing various candidate risk reduction

activities. The RRL quantity is defined by:

RRL =RE (before)- RE (after) I Risk Reduction Cost,

where RE (before) is the RE before initiating the risk reduction effort and RE (after) is the RE after

the reduction effort has been completed.

Risk Management Planning will produce plans for addressing each risk item and includes the

coordination of the individual risk-item plans with each other as well as with the overall integration

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 7

project plan (Charette,1989). Techniques include checklists of risk resolution techniques, cost­

benefit analysis as well as decision analysis of the relative cost and effectiveness of alternative risk­

resolution approaches. Boehm (1989) illustrates the Risk Management Planning process as in

Figure 5.2. Inputs to the process are:

• the list of prioritised risk items resulting from the risk assessment process;

• the candidate risk resolution techniques considered in determining the RRL quantities

for each risk item, and

• the results of the RRL cost-benefit analyses, including the budget, schedule and

resources required to achieve the corresponding reductions in RE.

PRIORITISED
RISK ITEMS

CANDIDATE
RM TECHNIQUES

RISK LEVERAGE
ANALYSES

e CHOOSE BEST COST-BENEFIT MIX OF RM
ACTIVmEs

• DEVELOP INDIVIDUAL RM PLANS
FOR EACH RISK TEAM

e COORDINATE RM PLANS WITH
EACH OTHER, PROJECT PLAN

Figure 5.2 Risk Management (RM) Planning Process

INDIVIDUAL
RM PLANS

PROJECT
RM PLAN

Steps of the Risk Management Planning process proceed in a concurrent and interactive manner.

They include choosing the best cost-benefit mix of risk resolution activities, developing individual

risk management plans for each risk item as well as coordinating individual risk management plans

with each other and with the integration SPMP. All the individual risk management plans are

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 12 8

documented in the Project Risk Management Plan (PRMP) together with an overview of how the

individual plans fit together.

Fundamentally, the Risk Resolution process involves executing the PRMP, i.e. communicating

objectives, establishing responsibilities and performing to satisfy the milestone criteria in the plan.

Risk Resolution results in either the elimination or the resolution of risk items. Risks can be

resolved by relaxing requirements. Techniques include prototyping (discussed in Section 5.3.3),

simulations, benchmarks, design-to-cost approaches as well as incremental development.

Risk Monitoring during the integration project involves keeping track of both the progress

towards risk resolution as well as appropriate corrective action taken (Charette, 1991). Techniques

include milestone tracking and a top-10 risk-item list which is highlighted at regular project

reviews. Risk management plan milestone tracking involves the monitoring of both the milestones

in each individual risk item's risk management plan as well as in the PRMP. This can be done by

regular reviews to ensure that the milestones have been accomplished and, if needed, corrective

action determined and effected. Project top-10 risk-item tracking involves ranking the project's

most significant risk items, establishing· a regular schedule for reviewing the project's progress by

higher management, beginning each review with a summary of the progress on the top-10 risk

items and focusing the review on dealing with problems in resolving the risk items.

Evaluating the risks involved in the integration of a legacy system with the client/server

environment, should be seen as a standard part of the feasibility study. According to Peppard et al

(1993), direct risks are those that operate to defeat a project before it becomes operational,

whereas indirect risks are those generated by the success of a project after it becomes operational.

Direct risks can be further sulxlivided into those that are inherent to the situation and those that are

a result of poor management practices. Direct management-type risks with regard to integration,

include:

• cost overruns, because of the considerable associated financial uncertainty of systems

integration;

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 2 9

• overreliance on consultants. They should be chosen with great caution as they make

their money up front and seldom have to live with their failures.

Direct integration-inherent risks include:

• resistance to change, i.e. the integration of systems may result in major changes

throughout an organisation; schemes need to be implemented to minimise resistance

associated with change;

• changing circumstances and requirements; change is the only constant in organisations,

and it should be possible to adapt integration projects to changing requirements;

• uncertainties with emerging technology; integration often involves new technology,

coupled with a lack of skills within the organisation.

Indirect risks associated with systems integration include:

• insatiability, i.e. the increased availability and quality of information can result in greater

demands for a more extensive usage of the systems involved, and

• easy access, i.e. the increased availability of information, provided by integration, may

simplify access to data and therefore increase the possibility of abuse.

Boehm (1989) distinguishes between generic risks and project-specific risks. Generic risks are

common to all projects and are covered by standard development plan techniques. Project-specific

risks are addressed by project-specific risk management plans and reflect a specific aspect of a given

project. The most common project-specific risks are personnel shortfalls, unrealistic schedules and

budgets, inappropriate requirements, shortfalls in external components and tasks as well as

technology shortfalls.

5.3.3 Rapid Prototyping

Rapid prototyping is an iterative technique that allows for the rapid creation of a working model of

the system under development. It is useful for gathering requirements and to enhance the

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 3 0

understanding of the proposed system Prototypes of critical areas and areas identified in the risk

analysis of the system may be done to reduce risk.

Lantz (1985) defines software prototyping as

"a collection of information system development methods based on building and using

a model of a system for designing, implementing, testing, and installing the system. "

An assumption of prototyping is that it is not necessary to know the full requirements of a system in

order to build the model. The full requirements are an important product of prototyping. The

initial version of the model does not contain all the processing and validation rules that the system

will finally have. The model is used for designing, implementing, testing and installing the system,

i.e. as those working with the prototype modify it and add to it, they will be completing the design

of the system as well as implement and test the system The prototype is therefore a vehicle for

designing the final version of the system

As the prototyping process continues, newer versions of programs, that perform more closely to

those of the final system, will replace the original versions. The model is therefore used to

implement as well as test the system The prototype eventually becomes the system

Although prototyping is sometimes regarded as a "quick and dirty'' approach used for urgent

systems development projects, it has significant advantages. The advantages of prototyping include

the improvement of communication between the software engineer and the user. Users usually

have difficulty visualising what they want a system to do. Prototyping allows the user to be more

involved in the integration process and therefore ensures the delivering of functionally correct

software that meets the user's true requirements. For this reason prototyping could also be

considered a SQA technique. Prototyping will reduce the total cost of system development and

maintenance because errors are detected early in the development process. It contributes to

producing the right system the first time (Connell & Shafer,1989).

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 1

The advantages of prototypes from the viewpoint of enhancing system quality through better

requirements specification, can be categorised into improved functional requirements, improved

interaction requirements and easier evolution of requirements (Keen & Gambino, 1980; Connell &

Shafer, 1989). The prototype system reflects the developer's interpretation of the user's needs and

will reveal misunderstanding as well as uncover errors in functional logic. The GUI requirements

for a system are not always directly addressed in requirements specification. As a consequence, the

resultant system may often contain the correct functions, but the GUI may either discourage its use

or introduce errors in usage. A prototype is useful to convey the nature of a proposed interactive

system. The evolution of requirements is most important in environments like Decision Support

Systems (DSS's), where the user needs to employ the system in open-ended ways and no pattern of

use can be accurately predicted until some experience is available.

lbree categories of prototyping techniques are identified. They are scenarios or simulations,

demonstration systems and "version O" limited working systems. A scenario or simulation presents

the user with an example of actual system usage, but only simulates the processing of user data or

queries. The eventual application logic is not developed, but some of the development work on the

scenario may be applied to the production system. It is used for addressing GUI and some

functional requirements. A demonstration system processes a limited range of user queries or data

and uses limited files. Either the entire demonstration can be coded as a throw-away or some

portion of the system can be applied to the production system. A demonstration provides more

insight into processing logic but, because of the limited exposure of the user, it may not be as useful

for evolutionary requirements. A "version O" prototype is a working release of the system intended

to be used under conditions of the production environment. It is designed as a test release, but the

final system is usually built on version 0 by converting the prototype into a production system, i.e.

completing the implementation of functions, adding requested alterations and generating the

required documentation.

Prototyping was discussed in Section 3.3 in the context of software methodologies. In the

integration process prototyping will be used as a risk-resolution technique during the second

quadrant of all cycles of the ESMI (Section 4.3.2). In addition, it will be used for the development

of GUI's as well as for a package selection process, where required. Installing the candidate

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 3 2

packages first as prototypes with test data, allows for the evaluation of their strengths and

weaknesses and assists in detennining how they meet requirements. Prototyping is useful if

enhancements and/or modifications to the legacy system are required. Only the part of the system

which is planned to be changed needs to be prototyped, e.g. in a test environment with test data.

After system testing and acceptance testing in the test environment, the changes become part of the

production legacy system

The use of prototypes has been advocated as cost-effective even without the presence of support

tools. Carey and Mason (1983) distinguish a variety of tools which were employed in different

situations. They include 4GL's and relational DBMS's.

5.3.4 Software Quality Assurance (SQA)

The quality of the integrated system is reflected by the extent to which the integrated system

satisfies or exceeds its specifications. The IEEE Standard for SQA (IEEE/ ANSI 730-1984, 1984)

defines quality assurance as:

"a planned and systematic pattern of all actions necessary to provide adequate

confidence that the item or product conforms to established technical requirements. "

Quality should be the primary driver of the entire integration process. SQA involves those system

management processes, systems design methods as well as software development techniques and

tools that act to ensure that the resulting integrated system meets or exceeds a set of multi­

attributed standards of excellence. It involves the examination of deliverables at all cycles of the

life-cycle of the integration process, to determine concordance with requirements and

specifications. The specifications include system and· software requirements specifications,

documentation specifications as well as specifications for design and management. The various

requirements must be examined with respect to their concordance with various standards as well as

with environmental and user needs. Appropriate attributes as well as quantifiable metrics of

software quality are needed in order to obtain an early warning indicator of potential difficulties and

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 3

to make appropriate design changes early in the integration process. The use of appropriate metrics

supports better responsiveness to the needs of users.

Quality infusion into the integration process involves identifying quality attributes important for a

specific situation, determining importance weights for these attributes as well as defining and

instrumenting operational methods of determining the attribute scores for specific integration

approaches. Sage and Palmer (1990) suggest the construction of an attribute tree which will enable

the meaning of each software quality attribute to become apparent through the hierarchical

structure. This is the equivalent of Boehm's (1976) software quality characteristic tree. The detail

of the construction of such an attribute tree is not discussed here, but can be referenced in one of

the above-mentioned sources.

SQA is primarily concerned with the detection of the existence of faults as well as with the

diagnosis of faults (i.e. the determination of the location and type of fault). SQA indicators should

lead to the detection of errors, if any, and the diagnosis of these, such as to identify them as coding

errors or logic errors. SQA and associated error detection, diagnosis and correction should be

accomplished very early in the integration life-cycle.

Sage and Palmer (1990) state that although it is important to detect and correct errors, it is much

better to establish life-cycle design and development procedures so that error occurrence is

minimised. Every software professional involved in the integration process, is responsible for

ensuring high quality software at all times, whereas the SQA group has additional responsibilities

with regard to software quality.

The SQA group is responsible for ensuring the quality of the integration process, thereby ensuring

the quality of the integrated system The group should ensure the correctness of the integrated

system as a whole, once it is completed. Members of the SQA group use verification techniques

during each cycle's fourth quadrant to verify the deliverables produced during the involved cycle

against the specifications and constraints, and to ensure that software is developed according to

prescribed quality standards. The advantage of reviews done by a SQA group is that the different

skills of the SQA group increase the chances of finding faults. Their responsibilities include:

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 4

• the development and implementation of the various SQA standards to which the

deliverables must conform, as well as the establishment of the monitoring procedures,

practices and policies for assuring compliance with those standards. These standards,

procedures, practices and policies are documented in the Software Quality Assurance

Plan (SQAP);

• the development and implementation of metrics, testing tools and other SQA

techniques;

• the implementation of the resulting SQAP, which includes the documentation of a final

SQAreport.

There should be managerial independence between the integration team and the SQA group, i.e.

the integration and SQA teams report to different managers, neither of whom are able to overrule

the other. If serious faults are found in the integrated system as the delivery date approaches,

managerial independence will prevent both the manager responsible for development from deciding

to deliver faulty software on time, as well as the SQA manager from deciding to deliver the

integrated system late while performing further testing.

The notion.of testing is the primary tool of SQA. This includes the notion of software design for

testability. Verification and validation (V & V) activities that are conducted throughout all cycles

of the integration life-cycle are quality control techniques and are part of SQA. SQA is concerned

with ensuring that the deliverable adheres to pre-defined standards, while V & V is concerned with

how well the deliverable performs. Verification seeks to determine whether the software product is

being built correctly whereas validation seeks to determine whether the correct product has been

produced from an assumed set of correct specifications.

Execution-based and nonexecution-based testing are distinguished (Goodenough, 1979;

Schach, 1996). Execution-based testing is used for testing executable code. Nonexecution-based

testing is used to review deliverables, e.g. an Analysis Document as well as executable code.

Goodenough (1979) defines execution-based testing as a process of inferring certain behavioural

properties of executable code, based partially on the results of executing the code in a known

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 5

environment with selected inputs. Behavioural properties of code that must be verified includes

utility, reliability, robustness, performance and correctness (Schach,1993).

Utility is the extent to which a user's needs are met when a correct product is used under

conditions permitted by its specifications. Reliability is a measure of the frequency and criticality

of product failure. Robustness is a function of a number of factors including the range of operating

conditions, the possibility of unacceptable results with valid input and the acceptability of effects

when the product is given invalid input. Penormance refers to the extent to which the product

meets its constraints with regard to response time or space requirements. A deliverable is correct if

it satisfies its output specifications, independent of its use of computing resources, when operated

under permitted conditions (Goodenough,1979).

According to Sage and Palmer (1990), SQA and associated testing can be conducted from either a

structural, functional or purposeful perspective. From a structural perspective, software would be

tested in terms of micro-level details such as programming language style, control and coding

particulars. From a functional perspective, SQA and testing involves treating the software as a

blackbox and determining whether the software performance conforms to the software technical

requirements specification. From a purposeful perspective software must be tested to determine

whether it does what the user really wishes it to do.

Inspections (Fagan,1976; Ackerman,1989) and walkthroughs (Dunn,1984; Schach,1996) are two

types of nonexecution-based techniques. The inspection team should include a representative of

the team responsible for the current cycle, a representative of the team responsible for the next

cycle, a member of the SQA group (tester) as well as a moderator who is the manager and leader of

the inspection team An inspection involves five formal steps:

1. an overview of the document is given by an individual responsible for producing the

involved deliverable;

2. the document is distributed to the participants for detailed preparation and to

compile checklists of unclear items and possible faults;

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 6

3. a participant walks through the document with the inspection team while the

participants present their checklists and fault finding commences;

4. the moderator compiles a report of the inspection which is used by the individual

responsible for the document to rework and solve all faults and problems noted in

the report;

5. the moderator must ensure that all issues raised are followed up and are

satisfactorily resolved without introducing new faults.

The group involved in a walkthrough should consist of four to six individuals which include the

manager of the group responsible for producing the deliverables, one representative from the group

responsible for producing the deliverables, a user representative, a representative of the team who

will perform the next cycle of integration as well as a member .of the SQA group who will chair the

· walkthrough.

Once a time and a venue for the walkthrough have been arranged, the material for the walkthrough

are distributed to the participants in order to allow for preparation. Each participant should study

the material and identify the aspects that he does not understand as well as the aspects that he

believes to be incorrect. It is not the task of the walkthrough team to correct faults, but merely to

record them for later correction.

The walkthrough can either be participant-driven or document-driven. When participant-driven,

participants present their lists of unclear and possibly incorrect items while a person responsible for

the deliverables responds to each query, i.e. clarifying unclear aspects as well as either agree that a

fault exists or explain why it does not exist. When document-driven, a person responsible for the

deliverables, walks the participants through the deliverables with the reviewers interrupting either

with their prepared comments or with comments triggered by the presentation. A document-driven

walkthrough is likely to be more thorough and is the technique prescribed in the IEEE standard for

software reviews (IEEE 1028, 1988). Walkthroughs are less formal than inspections and are mainly

used as a review technique when integrating legacy systems with the client/server environment.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 7

Boehm (1984) suggests an evaluation criteria for performing V & V which compnses

completeness, consistency, feasibility and testability. Completeness demonstrates that all product

components are present, i.e. no non-existent references, missing functions or missing deliverables.

Consistency implies that deliverables are traceable, i.e. that no cycle deliverable has conflicting

interpretations with the previous cycle deliverable. Feasibility implies that the deliverable will save

more than it costs to build, irrespective of the cost criteria. Testability implies the ability to find an

economical method to test the products which will exhibit whether or not they meet the

specifications. With the ESMI the issue of software reuse is added to this evaluation criteria of V

& V. Reusability is the extent to which a deliverable or part of a deliverable can be reused.

Software reuse is discussed in Section 5.3.5.

During the first quadrant of all cycles of the ESMI, the SQA criteria, standards and metrics for the

involved cycle are formulated. During the second quadrant testing tools and other SQA techniques

are analysed for use in the measurement of the quality criteria for the involved cycle. V & V

activities performed during regular reviews in the fourth quadrant of every cycle of the ESMI

include:-

• During the Feasibility Cycle the Problem Statement, Legacy System Description

Document, Feasibility Report and Preliminary Project Proposal are evaluated.

• During the Architecture Cycle the Legacy Infrastructure Description Document,

Architecture Strategy Evaluation Report, Architecture Document SPMP, PRMP as well as

the SQAP are evaluated.

• During the Analysis Cycle the Legacy Subsystem Description Document, Subsystem

Strategy Evaluation Report as well as the Analysis Document which include the Object,

Dynamic and Functional Models, are evaluated.

• During the Design Cycle the System Design Document, Detailed Design Document,

Source and Object Code Listings and Test Reports are evaluated and completed

subsystems are tested.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 13 8

• Review techniques used during the fourth quadrant of the Implementation Cycle are known

as validation techniques. These techniques involve the testing of the integrated legacy

system as a whole to ensure that the specifications and user requirements are met. Program

testing is used as a validation technique. It involves the running of a program, the

inspection of its input and output as well as the observation of unexpected results. The

Integration Strategy Evaluation Report, Training Schedules and Programmes, User

Manual, System Maintenance Plan as well as the Acceptance Test Reports are evaluated.

5.3.5 Software Reuse

Software reuse refers to an approach to software development in which software is not developed

from scratch, but software components of other products are used to facilitate the development of a

different product with different functionality. Software is reused when it is used as part of software

other than that for which it was initially designed. Software reuse encompasses source code, object

code, requirement specifications, design specifications, physical designs, test and development plans

and automated documentation (Horowitz & Munson, 1984; Jones, 1984).

Schach (1996) distinguishes between accidental reuse and deliberate reuse. Accidental reuse

happens if the developers of a new product realise that a component of a previously developed

product can be reused in the new product. Deliberate reuse imply the utilisation of software

components constructed specifically for the purpose of possible reuse in future products. The

advantage of deliberate reuse is that software components specially constructed for use in future .

products are more likely to be well-documented and thoroughly tested.

Wegner (1984) categorise reusable elements into: those elements that can be reused in a number of

applications (e.g. a math function); those that are used in successive versions (e.g. a new version of

an application based on a previous version); those that are reused whenever the program containing

the element is executed (e.g. a compiler); and those that are reused in a program (e.g. a subroutine).

A high degree ofreuse results in less code to be written for each new application and consequently

there is less code to maintain and the development process is shortened. In order to attain

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 3 9

reusability, modules should be designed to have high cohesion and low coupling (Schach, 1996).

Cohesion refers to the degree of interaction within a module and coupling refers to the degree of

interaction between different modules. For the highest degree of reusability, modules should have

functional cohesion and data coupling. A module that performs exactly one action or achieves a

single goal has functional cohesion. Two modules are data-coupled if all parameters are

homogeneous data items.

The main goal of 00 development is to achieve reusability (Rumbaugh, 1991). Reusability is

enhanced by means of the 00 principles, i.e. data encapsulation, classification, inheritance,

polymorphism, data abstraction and modularity. Class libraries consisting of reusable classes can

assist users of 00 languages. Development environments which support class libraries such as the

environment for the language Eiffel which incorporates seven libraries of classes (Meyer, 1990), are

available in the IS!f industry. Reusability will be implemented in the ESMI by making use of th~se

reusable component libraries, as well as by adding the issue of reuse to the quality evaluation

criteria (Section 5.3.4). Motivating and encouraging technical members of the integration team to

apply reuse whenever possible are considered project management tasks (Section 4.4).

Prerequisites for the development of reusable components include standards for the development of

the component, quality metrics for components and evaluation criteria for acceptability of

components for a component library.

5.4 Procedures for the ESMI

Procedures for the modelling of the system to be integrated, as well as for cost estimation are now

discussed.

5.4.1 Modelling

During OOA the system to be integrated is modelled in terms of Object, Dynamic and Functional

Models. A summary of the different steps for constructing these models as presented by

Rumbaugh et al (1991), follows.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 0

Building an Object Model comprises:

1. the identification of object classes;

2. the creation of a data dictionary which contains descriptions of classes, attributes

and associations;

3. the addition of associations between classes;

4. the addition ofattributes for objects and links;

5. the use of inheritance to organise and simplify object classes;

6. the testing of access paths using scenarios and the iteration of the above-mentioned

steps as needed, as well as

7. the grouping of classes into modules.

Constructing a Dynamic Model involves:

1. the preparation of scenarios of typical interaction sequences;

2. the identification of events between objects and the preparation of an event trace

for every scenario;

3. the preparation of an event flow diagram for the system;

4. the development of a state diagram for each class which has important dynamic

behaviour, and

5. the verification for consistency and completeness of events shared among the state

diagrams.

Developing a Functional Model comprises:

1. the identification of input and output valu~s;

2. the use of DFD's to show functional dependencies;

3. the description of each function;

4. the identification of constraints, and

5. the specification of the optimisation criteria.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 141

5.4.2 Cost Estimation

Cost estimation forms an integral part of a cost-benefit analysis (Section 5.3.1). A procedure for

software cost estimation comprises the following steps (Boehm, 1984; Lederer & Prasad, 1992):-

1. Establish objectives of the cost estimate. These objectives should determine the

level of detail and effort required to perform the subsequent steps.

2. Plan for required data and resources. Compile a software cost estimating

miniproject plan which includes the purpose of the estimation, the products and

schedules of the estimation, the responsibilities for each product, the procedures

and cost estimating tools and techniques to be used, the required resources (e.g.

data, time, money) needed to complete the estimate as well as the assumptions (e.g.

availability of key personnel) under which the above estimates are to be delivered,

given the above resources.

3. Ensure software requirements are specific, unambiguous and quantitative wherever

possible (i.e. with respect to estimating objectives). This will allow for a more

accurate cost estimation.

4. Determine as much technical detail as is consistent with cost estimating objectives.

The more detail explored, the better the understanding of the technical aspects of

the software and the more accurate the estimates will be.

5. Make use of a combination of independent techniques and sources to avoid the

weaknesses of any single method and to utilise their joint strengths.

6. Compare and iterate estimates, i.e. determine reasons for different estimate values

with different cost-estimation techniques by identifying the components of the cost

in each.

7. Regularly review the estimates once the integration project has started to compare

these estimates to actual costs and progress. A useful technique is the cost­

schedule-milestone chart which involves the graphical representation of both the

estimated number of months required to achieve major project milestones as well as

the actual cost and schedule associated with the achievement of these milestones.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 2

·In the case of a significant difference between the estimates and the actuals, an

investigation can be initiated and corrective action taken.

5.5 Automated Support for the ESMI

The term Computer-aided Software Engineering (CASE) in the context of integration refers to the

ability of computers to assist software engineers in every step of the integration project by helping

to carry out much of the drudge work associated with an integration project.

The simplest form of CASE is the software tool which assists in only one aspect of the integration

project. A variety of such tools are available in the market, e.g. report generators and screen

generators to assist in the construction of a rapid prototype.

A CASE workbench is the term used for a collection of tools supporting one or two tasks (each

comprising a collection of activities) of the integration project. Commercially available

workbenches include Analyst I Designer and Excelerator.

The next item in the progression of CASE is the Software Engineering Environment (SEE) which

supports either the complete software process or a large portion of it. Charette (1986) defines a

SEE as being

"The process, methods, and automation required to produce a software system. "

The basic function of the process for integrating a legacy system with a client/server environment,

is to describe the sequence of events required to integrate a specific legacy system The methods

include all those required to define, describe, abstract, modify and document the integrated legacy

system and are defined by the process. Automation involves the use of the computer to implement

the necessary methods. According to Charette (1986) an "ideal" SEE consists of a complete

process model which is fully supported by methods which are in turn fully automated.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 3

Language-centered, structure-oriented and toolkit environments are distinguished (Dart et a~l987;

Fugetta,1993).

Language-centered environments are built around a single programming language and are generally

designed for rapid development. Examples include the Smalltalk environment (Goldberg,1984) for

. the Smalltalk language. Disadvantages of these environments are that they usually only provide

support for the implementation phase of a SDLC, that there is a lack of support for programming­

in-the-large and that there is usually no support for project management. A major strength is their

support for rapid prototyping.

Structure-oriented environments are constructed around · a structure editor and are tied to the

specific programming language whose structure is built into the editor. Examples include the

FLOW environment (Doodley & Schach,1985). Disadvantages of these environments are that they

usually only provide support for the implementation phase of a SDLC and that there is a lack of

support for programming-in-the large. These disadvantages are, however, not applicable to the

FLOW environment.

Toolkit environments consist of a collection of tools combined to provide support to a variety of

activities. These environments are not limited to a specific programming language. Examples

include the Unix Programmer's Workbench (Dolotta et ~1984). A disadvantage of toolkit

environments is that the tools are usually not integrated. A strength is the ability to add any

required tool to the environment.

Charette (1986) is of the opinion that a large software system such as the legacy systems identified,

cannot be built without a SEE. The use of a SEE during the integration project is aimed at

integrating the integration process with the techniques used to integrate legacy systems with

client/server environments and automating the result. It will reduce variation in practice, increase

productivity as well as reduce costs. According to Charette (1986) information that is transparent

to all methods, automatically produced documentation and a database with good performance are

the minimum requirements a SEE should have.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 4

The word integrated within the context of an environment may comprise the integration of the

user-interfaces, processes, tools, teams as well as management (Schach, 1996). User-interface

integration results in a common user-interface shared by all tools in the environment. Process

integration refers to an environment which supports a specific software process. Tool integration

refers to the ability of all tools to communicate via the same data format. Team integration

promotes effective team coordination and communication within an environment. Management

integration refers to an environment which provides support to the management of the software

process, e.g. reports with management information are generated directly from a software project

database.

An environment which provides integrated computer support for an 00 methodology is termed an

00 Information Systems Engineering Environment (OOISEE), also referred to as an 00

Computer-aided Software Engineering (00-CASE) environment. OMTool is a process integrated

environment for the Object Modeling Technique (OMT) of Rumbaugh et al (1991)1 which is a

good candidate for use with the ESMI. The Rose environment supports the methodology of

Booch (1994). Other integrated development environments supporting 00 are emerging, e.g. the

Object Management Workbench (OMW) of Intellicorp. These 00 environments include a

repository, 00-CASE tools as well as a powerful code generator. The term 00-CASE is,

however, often used when referring to 00 software tools which support only some of the methods

and techniques of an 00 methodology.

OOISEE tools should provide support for the entire methodology, all project participants, methods

and techniques, integration of tools, reuse, prototyping as well as SQA Inclusion of computer­

aided simulation techniques are important for the verification of the feasibility and evaluation of the

performance of the target system So is an automated prototyping tool to be used during the

second quadrant of the ESMI in order to complement the functions of a simulation facility and to

assist in evaluating whether the requirements specification conforms to the user needs. Advanced

tools are used to build a quick version of all or part of the target system The speed and flexibility

of prototypes enable users to experience the application (in particular, the user-interface) early and

1 The methods of Rmnbaugh et al (1991) for OOA and OOD are collectively known as the OMf.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 5

allow changes to be made based on their feedback. Prototyping is discussed in Section 5.3.3.

Lantz (1985) identifies the following tools to assist in prototyping:

• a repository to record and organise information about data (repositories are discussed

in Section 5 .5 .1);

• an interactive testing system which allows the use of a terminal to change programs

quickly, the submission of frequent tests and the review of test session results without

having to wait for batch outputs;

• a test data generator for producing test data to exercise the prototype;

• library control of program modules to aid in making quick changes to the prototype and

in moving data between system components by providing version control of programs

and database definitions;

• a report writer, screen painter and query language for the quick modification of the

prototype.

An OOISEE should include an integrated set of software tools to store requirements specification .

and design information, and to produce and maintain documentation. Tools should also be

available to assist in the verification of the consistency and completeness of the specification

through static and dynamic analysis of the specifications already contained in the centralised

database. Analysis for completeness, redundancy and consistency of software requirements and

design specifications normally requires that the specifications be formulated in a computer­

processable form, such as formal specification language statements.

OOISEE tools should perform integrity and consistency checks in order to ensure a fully validated

design, e.g. when an object diagram is used to show a scenario with a message being passed from

one object to another, a tool can ensure that the message is part of the object's protocol. Constraint

checking should be done by tools, e.g. a tool should enforce conventions such as "there are no

more than three instances of this class". A tool should indicate if certain classes or methods of a

· given class are never used, i.e. completeness checking should be done.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 4 6

An ideal OOISEE for the ES:MI should enforce the procedures and standards of this software

process model and facilitate its application. It should provide automated support for the

techniques, tools and procedures of the ESMI, and make this as well as other software utilities

available to the user at an appropriate workstation. It should be convenient to use, support

customisation, have an open architecture and have a comprehensive conceptual schema that

encompasses the database, process data, tool interfacing and environment evolution

(Humphrey, 1989).

In addition to the above, it is also most important that the environment should support project

management. As discussed in Section 4.4, the tasks for managing projects fall into four categories

and OOISEE tools should provide support to all these categories of managing tasks:

1. tools to support project organisation tasks include organisational and other

communication devices which link the project team's work to the users at both the

managerial and lower levels, e.g. the creation of a user steering committee and

progress reports prepared for corporate steering committee;

2. tools which support project directing ensure that the team operates as an integrated

unit, e.g. the preparation and distribution of minutes within the integration team on

key design evolution decisions;

3. formal planning tools for structuring the sequence of tasks in advance and

estimating the time, money and technical resources needed to execute these tasks,

e.g. Program Evaluation and Review Technique (PERT);

4. formal control tools for assisting in the evaluation of progress and the location of

potential discrepancies so that corrective action can be taken as well as a

configuration management tool;

5. tools to assist in the writing and updating of the various reports of the ESMI.

Nonprocedural languages, including Structured Query Language (SQL) and report generators

should be integrated into this OOISEE environment. Most important in the environment is the

ability.to generate 00 code directly from the design tool. The OOISEE tools for planning, data

and process modelling and for creating designs must be integrated with code generators. The

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 7

OOISEE tools -should support the ESMI and should be used to draw explicit, detailed diagrams

and schematics from which code can be generated.

Booch (1994) identifies seven different kinds of tools that are applicable to 00 development:

1. a graphics-based tool supporting the 00 notation to be used during analysis to capture

the semantics of scenarios, as well as early during development to capture strategic and

tactical design decisions, maintain control over the design products and coordinate the

design activities of a team of developers;

2. a sophisticated browser that embodies the class structure and module architecture of a

system;

3. an incremental compiler which can compile single declarations and statements to assist

with debugging;

4. a debugger that embodies class and object semantics, stress testers which stress the

capacity of the software in terms of resource utilisation as well as memory-analysts

which identify violations of memory access (such as writing to deallocated memory or

reading and writing beyond the boundaries of an array);

5. configuration management and version-control tools;

6. a class librarian tool that allows developers to locate classes and modules in the class

library according to different criteria and add useful classes and modules to the library

as they are developed;

7. a GUI builder to assist in interactively creating dialogs and other windows.

When building an OOISEE for integrating legacy systems with the client/server environment, the

emphasis should be on the deliverables required, rather than on the methods and automation of the

environment (Charette,1986). A central repository of information about the target system is

fundamental to an OOISEE, and should be maintained during each cycle of the integration project.

A repository contains metadata (i.e. data about data) regarding systems. Repositories are now

discussed.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 8

5.5.1 The Repository

McFadden and Hoffer (1991) define a repository as:

" a centralised knowledge base that contains all data definitions, screen and report

formats, and definitions of other organisational and system components. "

A repository stores all the information about systems, designs and code in a basically nonredundant

fashion for use by all developers. Descriptions regarding classes, associations, attributes and

operations of systems, as well as the meaning represented in 00-CASE diagrams are included in

the repository. According to Martin (1992):

"The repository is a mechanism for defining, storing and managing information about

an organiwtion, its data and systems. "

The developers employ the informatio~ in the repository and create new information that, in turn, is

placed in the repository. The developers create designs with the help of information from the

repository.

Maintaining a repository helps to establish a common and consistent vocabulary that can be used

throughout an integration project. A repository can serve as an efficient vehicle for browsing

through all the elements of a software project in arbitrary ways. This feature is particularly useful ·

as new members are added to the integration team, who must quickly orientate themselves to the

solution already under development. A repository permits architects to take a global view of a

software project, which may lead to the discovery of commonalities that otherwise might be

missed.

5.6 Summary

The most relevant methods, techniques and procedures for the ESMI were discussed. OOA is an

00 method for analysis which directly maps the problem domain into a coherent set of models

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 14 9

which constitute a convincing description of the problem domain and from which a software system

can be developed. OOD is an 00 method for design which implies the refinement of the analysis

models in order to provide a detailed basis for implementation. OOP is a method for

implementation which implies the conversion of the design into an executable software system

Rumbaugh et al's (1991) OMf was recommended for use with the ESMI.

Techniques used during a cost-benefit analysis are classified into Algorithmic Models, Expert

Judgement, Estimation by Analogy, Parkinsonian Estimation, Price-to-Win Estimation, Top-down

Estimation as well as Bottom-up Estimation. A combination of these techniques should be used for

a single cost-benefit analysis (second quadrant) in order to ensure accurate cost estimations.

Risk management techniques reduce the chance of risk items becoming either threats to the

successful integration of a legacy system or to result in rework during an integration project. ~k

Management comprises Risk Assessment and Risk Control. Risk Assessment involves Risk

Identification, Risk Analysis and Risk Prioritisation. Risk Control involves Risk Management

Planning, Risk Resolution and Risk Monitoring. Risk assessment is a task of the second quadrant

of all cycles of the ESMI whereas riSk control is a management task performed throughout the

integration project.

Rapid prototyping allows for the rapid creation of a working model of part of the system to be

integrated. It is a technique useful for the gathering of requirements as well as for reducing risk by

prototyping risk areas during the second quadrant of all cycles of the ESMI.

SQA comprises all management processes, analysis, design and programming techniques as well as

tools which ensure that the resulting integrated system meets or exceeds a predetermined set of

standards. The testing of executable code as well as walkthroughs and inspections during regular

reviews are techniques used to examine deliverables of the integration life-cycle to ensure that

requirements are met and to detect and diagnose faults. The SQA group is primarily concerned

with ensuring an integrated system of high quality.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 0

Software reuse allows for the reuse of software components in different products with different

functionality than the product for which they were initially designed. Reusable components include

object code, source code, requirement specifications, physical designs as well as documentation.

The advantages of software reuse include a shorter integration process due to less components to

be developed from scratch as well as increased reliability because components reused in different

applications will have less faults. Reusability will be implemented in the ESMI by making use of

reusable component libraries, as well as by adding the issue of reuse to the quality evaluation

criteria (Section 5.3.4). Motivating and encouraging technical members of the integration team to

apply reuse whenever possible are considered project management tasks (Section 4.4).

Procedures for the modelling of the system to be integrated as well as for cost estimation (an

integral part of a cost-benefit analysis) were reviewed after which automated support for the ESMI

was discussed. As recommended in Section 3.5, the use of a SEE in an organisation should be

postponed until the organisation has reached CMM level 3. For CMM level 3 organisations, an

integrated environment which supports the methods of the ESMI should be used. OMTool which

supports the Object Modeling Technique of Rumbaugh et al (1991) is a good candidate for this

type of organisations. Additional tools will be needed for the activities of the ESMI not supported

by OMTooi e.g. management tools to assist in planning and scheduling. If the use of a SEE is not

feasible, the next best alternative is a CASE workbench (a collection of appropriate tools) that

provides support to some of the activities of the ESMI. The workbench should at least include the

following:

• a tool that supports the graphical aspects of OOA;

• tools such as report and screen generators to speed up rapid prototyping;

• a tool built around a repository, to ensure that every record in the repository occurs in

the design and that all aspects of the Analysis Jylodel are incorporated in the design;

• coding tools for OOP which simplify the programmer's task and increase productivity

such a text editors and debuggers;

• version control and configuration management tools to ensure that the appropriate

version of each module is compiled and linked after faults have been corrected during

the Implementation Cycle, as well as

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMl

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 51

• management information tools such as a scheduling tool to keep track of the

assignment of tasks to project members, a tool which generates PERT charts, tools to

assist with planning as well as to monitor the development process as a whole.

It is recommended that the utilisation of the ESMI for integrating a legacy system with the

client/server environment within an organisation, is postponed until the organisation involved has

reached CMM level 3. An instance of the conceptual model of Chapter 3 (Figure 3.2) for such an

organisation is illustrated in Figure 5.3. As illustrated in this figure, the techniques of the ESMI are

based on the 00 paradigm. These techniques are used by Rumbaugh et al's (1991) OMT, which

is, in turn, implemented by the procedures of the ESMI. The integration methodology is based on

the ESMI and the 00 paradigm is visualised by means of the Object Modeling Notation

(Rumbaugh et al,1991) discussed in Section 4.3.3. The OMTool environment provides for

computerised support for the integration methodology. The deliverables of the ESMI (Section

4.3.7) are produced as a result of the integration process.

Chapter 5 - Methods, Techniques, Procedures and Automated Support for the ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 2

f IJTI J

LEGA'CY "SY"SIBM

OMTool

OBJECT MODELING
NOTATION

CLIENT/SERVER ENVIRONMENT

INTEGRATION
METHODOLOGY

Figure 5.3 An Instance of the Conceptual Model

Chapter 5 - Methods,_ Techniques, Procedures and Automated SJ!P_potl for the .ESMI

A Methodology for Integrating Legacy Systems with the Client/server Environment

6.1 Introduction

CHAPTER6

SUMMARY AND CONCLUSIONS

6.2 Summary of Investigation

6.3 Summary of Results and Conclusions

6.4 Areas for Further Investigation

Chapter 6 - SlllllIIlary and Conclusions

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 5 4

6.1 Introduction

In this chapter, the investigation is reviewed in tenns of the objectives of the study as envisaged in

Chapter 1. A summary of the work is presented after which the research results are summarised

and conclusions are stated. Proposed areas for further investigation are given in the last section of

the chapter.

6.2 Summary of Investigation

The investigation was based on the hypotheses that a methodology as well as a software process

model on which the methodology is to be based for integrating legacy systems with the client/server

environment, can be developed. A method of investigation was established to guide the

investigation in tenns of the objectives, assumptions and constraints as outlined in Chapter 1.

A literature survey concerning legacy systems, client/server environments and trends for integrating

legacy systems with the client/server environment in the IS!f industry, resulted in the compilation

of a questionnaire for identifying the characteristic properties oflegacy systems. After a preliminary

screening of all legacy systems within SASOL, five legacy systems in various application domains

were identified. The questionnaire was used for identifying the characteristic properties of these

systems.

A second literature survey regarding established methodologies, their features and technical

characteristics as well as the various perspectives taken by them, was conducted. This information

was used, along with the most dominant characteristics yielded by the questionnaire, to derive a

synthesis for an integration methodology. The investigation culminated in the proposal of a

software process model on which the integration methodology will be based. Due to the limited

scope of this dissertation, the integration methodology was not prescribed in full detail.

Chapter 6 - Summary and Conclusions

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 5

6.3 Summary of Results and Conclusions

Legacy systems represent large investments in application software, staff skills, system software and

hardware in organisations. Major problems of these systems include the high maintenance costs of

mainframe environments, inaccessible data as well as the lack ofGUI's. The primary focus of new

software development is on client/server computing which provides for more cost-effective

platforms, excellent GUI's as well as reduced network traffic. A need to integrate legacy systems

with the client/server environment therefore exists within organisations. Different strategies to

accomplish this integration exist and decisions regarding a strategy for integrating a specific legacy

system with the client/server environment are primarily influenced by the characteristics of the

involved legacy system. A methodology is essential in order to manage and control the integration

process.

Despite the above-mentioned problems of mainframe environments, they are known for their

stability, maturity and secure nature. Strengths of these environments include batch processing and

automated job scheduling. Weaknesses of client/server environments include the lack of both

mature client/server techniques and tools as well as experienced professionals. Poor candidates for

a total client/server architecture are:

• very large or complex systems;

• systems with high-volume centralised 1/0 processing;

• systems that require centralised control and security;

• systems which are tightly integrated with other legacy systems.

The questionnaire yielded the most dominant characteristics of the five legacy systems of SASOL:

• a relatively high number of daily transactions;

• tight integration oflegacy systems with each other;

• large capital investments;

• high annual costs;

• high quality;

Chapter 6 - Swnmary and Conclusions

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 6

• critical availability and system performance;

• providing excellent business support;

• medium complexity.

As a result of the tight integration of these systems with each other, they are categorised as poor

candidates for a total client/server architecture. A discussion of this matter is outside the scope of

this investigation and it is sufficient to say that an integration project involving one of these systems

will have high inherent risk.

A methodology is an overall systematic approach to the production of software with basic concepts

being a paradigm, representation schema, methods, techniques, procedures as well as deliverables.

Six classes of methodologies were distinguished according to the various perspectives taken by

established methodologies. They are:

• process-orientation;

• data-orientation;

• behaviour-orientation;

• cross-references between perspectives;

• meta;

• object-orientation.

Legacy systems were usually developed by making use of either a process-oriented methodology or

no methodology at all. The use of no methodology explains the presence of corrupt data and the

difficulty with which maintenance is usually performed on these systems.

Chapter 6 - Summary and Conclusions

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 7

The above-mentioned characteristic properties of the legacy systems determined the features and

technical requirements of an integration methodology. They are:-

• The methodology should be based on the 00 paradigm. 00 software development

requires iteration among life-cycle phases, a prototyping strategy as well as the

incremental building of a product.

• The methodology should provide for a risk-driven approach.

The revised spiral model for 00 development (Du Plessis & Van der Walt,1992; Van der

Walt,1993) conforms to these requirements and was customised to derive the Enhanced Spiral

Model for Integration (ESMI). The most relevant methods, techniques and procedures of the

ESMI were identified and discussed. It is recommended that the utilisation of the ESMI for

integrating a legacy system with a client/server environment within an organisation, is postponed

until the involved organisation has reached Capability Maturity Model (CMM) level 3. It remains

to be seen if the ESMI, on which the integration methodology will be based, can be successfully

applied in practice to integrate a legacy system with the client/server environment.

6.4 Areas for Further Investigation

The following areas for further investigation were identified:

• the identification of the characteristic properties of more legacy systems by means of

structured interviews rather than questionnaires;

• the detailed definition of the deliverables of the ESMI (Section 4.3.7);

• prescription of the detail Work Breakdown Structure (WBS) of the integration

methodology;

• empirical studies applying the integration methodology and the ESMI;

• the development of a Software Engineering Environment (SEE) to support the

integration oflegacy systems with the client/server environment.

Chapter 6 - Smnmary and Conclusions

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 8

LITERATURE REFERENCES

Ackerman AF., Buchwald L. S. & Lewski F. H., "Software Inspections: An Effective Verification

Process," IEEE Software, Vol. 6, May 1989, pp. 31-36.

Alavi M., "An Assessment of the Prototyping Approach to Information Systems Development,"

Communications of the ACM, June 1984, pp. 556-563. ·

Balda D. M. & Gustafson D. A , "Cost Estimation Models for the Reuse and Prototype Software

Development Life Cycles," ACM SIGSOFI' Software Engineering Notes, Vol. 15, July 1990, pp.

42-50.

Balzer R., Cheatham T.E. & Green C., "Software Technology in the 1990s: Using a New

Paradigm," Computer, November 1983, pp. 39-45.

Beck K & Cunningham W., "A Laboratory for Teaching Object-Oriented Thinking," SIGPLAN

Notices, Vol. 24(10), October 1989.

Benington H.D., "Production of Large Computer Programs," Proceedings of ONR Symposium

Advanced Programming Methods for Digital Computers, June 1956, pp. 15-27.

Berard E.V., Essays on Object-Oriented Software Engineering, Volume I, Prentice-Hall, 1993.

Boehm B. W., Bosch C. A., Liddle A S. & Wolverton R. W., 'The Impact of New Technologies

on Software Configuration Management," TRW Report to USAF-ESD, June 1974.

Boehm B. W., "Software Engineering," IEEE Transactions on Computers, December 1976, pp.

1226-1241.

Boehm B. W., "Software Engineering Economics," IE~E Transactions on Software Engineering,

Vol. SE-10, January 1984, pp. 4-21.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 15 9

Boehm B. W., "Verifying and Validating Software Requirements and Design Specifications," IEEE

Computer, Vol.17No. l,Januaryl984.

Boehm B. W., "A Spiral Model for Software Development and Enhancement," ACM Sigsoft

Software Engineering Notes, Vol. 11No.4, 1986.

Boehm B. W., Tutorial : Software Risk Management, IEEE Computer Society Press, 1989.

Booch G., "Object-Oriented Development," IEEE Transactions on Software Engineering, Vol.

SE-12, No. 2, 1986, pp. 211-221.

Booch G., Object-Orientation Analysis and Design, The Benjamin I Cummings Publishing

Company Inc, 1994.

Capper N. P., Colgate R. J., Hunter J. C. & James M. F., "The Impact of Object-Oriented

Technology on Software Quality: Three Case Histories," IBM Systems Journal 33, No. 1, 1994,

pp. 131-157.

Cardelli L. & Wegner P., "On Understanding Types, Data Abstraction and Polymorphism," ACM

Computing Swveys, Vol. 17(4), 1985, p. 481.

Carey T. T. & Mason R. E. A., "Information System Prototyping: Techniques, Tools and

Methodologies," The Canadian Journal of Operational Research and Information Processing,

August 1983, pp. 177-191.

Charette R. N., Software Engineering Environments - Concepts and Technology, McGraw-Hill,

1986.

Charette R. N., Software Engineering Risk Analysis and Management, McGraw-Hill, 1989.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 6 0

Charette R. N., "Risk Management to Maximise Commercial Opportunities," Proceedings of the

Software Tools Conference, Blenheim Online England, 1991.

Coad P. & Yourdon E., Object-Oriented Analysis, Prentice-Hall, 1991.

Conger S., The New Software Engineering, International Thomson Publishing, 1994.

Connell J. L. & Shafer L., Structured Rapid Prototyping, Prentice-Hall, 1989.

Cox B. J., Object-Oriented Programming -An Evolutionary Approach, Addison-Wesley, 1986.

Currit P. A, Dyer M. & Mills H. D., "Certifying the Reliability of Software," IEEE Transactions

on Software Engineering, January 1986, pp. 3-11 .

Dart S. A, Ellison R J., Feiler P.H. & Habermann AN., "Software Development Environments,"

IEEE Computer, November 1987, pp. 18-28.

Davis G., Block C., Kang K C., Chikofsky E. & Teichroew D., "Usage of the System

Encyclopedia Manager (SEM) System with the System Analysis and Design Language for Ada

(SALA)," IFIP TC-2 Conference on System Description Methodologies, Hungary, 1983, pp. 157-

207.

Department of Defence, "Military Standard - Defence System Software Development - OOD­

STD-2176A," Department of Defence, Washington, 1988.

Dolotta T. A, Haight R C. & Mashey J. R., UNIX !'ime-sharing System: The Programmer's

Workbench in : Interactive Programming Environments, Barstow D. R., Shrobe H. E. &

Sandewall E. (Editors), McGraw-Hill, 1984, pp. 353-369.

Doodley J. W. M. & Schach S. R, "FLOW: A Software Development Environment Using

Diagrams," Journal of Systems and Software, August 1985, pp. 203-219.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 61

Dunn R. H., Software Defect Removal, McGraw-Hill, 1984.

Du Plessis A L., Bornman C. H. & Teichroew D., "ELSIM SEE: A Software Engineering

Environment for Real-Time Systems," Proceedings of !SEIT Conference, Italy, May 1986.

Du Plessis AL. & Van der Walt E., "Modeling the Software Development Process," Conference

Proceedings on Information Systems Concepts: Improving the Understanding, Alexandria, Egypt,

April 1992.

Fagan M. E., "Design and Code Inspections to Reduce Errors in Program Development," IBM

Systems Journal, No. 3, 1976, pp. 182-211.

Farquhar J. A, "A Preliminary Inquiry into the Software Estimation Process," The Rand

Corporation, August 1970.

Forge S., Developing Cooperative and Client/server Systems, McGraw-Hill, 1995.

Fuggetta A, "A Classification of CASE Technology," IEEE Computer, Decembef 1993, pp. 25-

38.

Gane C. & Sarson T., Structured Systems Analysis: Tools and Techniques, Prentice-Hall, 1979.

Gilb T., Pn'nciples of Software Engineen'ng Management, Addison-Wesley, 1988.

Goldberg A., Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, 1984.

Goldberg R. & Lorin H., The Economics of Information Processing - Vol. 2, John Wiley & Sons,

1980.

Gomaa H., "Software Development of Real-Time Systems," Communications of the ACM, July

1986, pp. 657-668.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 6 2

Goodenough J. B., "A Survey of Program Testing Issues, Research Directions in Software

Technology," The MIT Press, 1979, pp. 316-340.

Grosvenor J. B. M., Mainframe Downsizing to Upsize your Business, Prentice-Hall, 1994.

Hatley D. J. & Pirbhai I. A, Strategies for Real-Time System Specification, Dorset House, 1987.

Henderson-Sellers B. & Edwards J.M., ''The Object-Oriented Systems Life-Cycle,"

Communications of the ACM, September 1990, pp. 142-159.

Horowitz E. & Munson J., "An Expansive View of Reusable Software," IEEE Transactions on

Software Engineering, Vol. SE-10, No. 5, September 1984.

Humphrey W. S., Managing the Software Process, Addison-Wesley, 1989.

Institute of Electrical and Electronic Engineers, "Standard for Software Quality Assurance Plans,"

IEEE/ANSI Std. 730-1984, 1984.

Institute of Electrical and Electronic Engineers, "Standard for Software Project Management

Plans," IEEE 1058.1, 1987.

Institute of Electrical and Electronic Engineers, "Standard for Software Reviews and Audits,"

IEEE 1028, 1988.

Iivari J., "Object-Orientation as Structural, Functional and Behavioural Modelling: A Comparison

of Six Methods for Object-Oriented Analysis," Information and Software Technology, Vol. 37,

No. 3, 1995.

Jackson M. A, System Development, Prentice-Hall, 1983.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 6 3

Jacobson I., Christerson M., Jonsson P. & Overgaard G., Object-Oriented So/mare Engineering,

Addison-Wesley, 1992.

Jones T. , "Reusability in Programming: A Survey of the State-of-the-Art," IEEE Transactions on

So/mare Engineering, Vol. SE-10, No. 5, September 1984.

Kavanagh P., Downsizing for Client!Sel1ler Applications, Academic Press Inc, 1995.

Keen P. & Gambino T. J. , 'The mythical man-month revisited," Proceedings of APL, 1980, pp . . ·

630-48.

Kerson T. & McGregor J. D., "Understanding Object-Oriented: A Unifying Paradigm,"

CommunicationsoftheACM, September 1990, Vol. 33, No. 9.

Lantz KE., The Prototyping Methodology, Prentice- Hall, 1985.

Lederer A L. & Prasad J., "Nine Management Guidelines for Better Cost Estimating,"

Communications of the ACM, Vol. 35, February 1992, pp. 51-59.

Loftus C. W. et al, Distributed So/mare Engineering, Prentice Hall, 1995.

M~co A , So/mare Engineering - Concepts and Management, Prentice-Hall, 1990.

Marion W., Client!Sel1ler Strategies - Implementations in the IBM Environment, McGraw-Hill,

1994.

Martin J. , Object-Oriented Analysis and Design, Prentice Hall, 1992.

McCabe T. J. , "Reverse Engineering, Reusability, Redundancy: The Connection," American

Programmer, October 1990.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 16 4

McCracken D. D. & Jackson M. A, "Life-Cycle Concept Considered Harmful," ACM Software

Engineering Notes, April 1982, pp. 29-32.

McFadden F. R. & Hoffer J. A, Database Management 3rd Edition, Benjamin/Cummings, 1991.

McFarlan F. W., Tutorial: Software Risk Management, IEEE Computer Society Press, 1989 . .

Meyer B., Object-Oriented Software Construction, Prentice-Hall, 1988.

Meyer B., "Lessons from the Design of the Eiffel Libraries," Communications of the ACM, Vol.

33, September 1990, pp. 68-88.

Monarchi D. & Puhr G. I., "A Research Typology for Object-Oriented Analysis and Design,"

Communications of the ACM, Vol. 35, No. 9, 1992.

Myers W., ''The Need for Software Engineering," IEEE Computer, Vol. 11 No. 2, February 1978.

Olle T. W., Infonnation Systems Methodologies - A Frame'Aflrk for Understanding, Addison­

Wesley, 1988.

Orr K, Structured Requirements Definition, Ken Orr and Associates, 1981.

Parkinson G. N., Parkinson's Law and Other Studies in Administration, Houghton-Mifllin, 1957.

Paulk M. C., "How ISO 9001 compares with the CMM," IEEE Software, Vol. 12, No. 1, 1995.

Peppard J., I. T. Strategy for Business, Pitman Publishing, 1993.

Redelinghuys M. & Nienaber R., "Planning and Implementing a Strategy for Open Systems,"

Special Topic Module, UNISA, 1994.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 165

Roman D. D., Managing Projects: A Systems Approach, Elsevier Science, Amsterdam, Nederland,

1986.

Royce W. W., ''Managing the Development of Large Software Systems: Concepts and

Techniques," Proceedings of Wescon, August 1970.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. & Lorensen W., Object-Oriented Modeling and

Design, Prentice-Hall, 1991.

Sage A P. & Palmer J. D., Software Systems Engineering, Wiley Interscience, New York, 1990.

Selby R. W., Basili V. R. & Baker F. T., "Cleanroom Software Development: An Empirical

Evaluation," IEEE Transactions on Software Engineen·ng, September 1987, pp. 1027-1037.

Schach S., Software Engineering 2nd Edition, Aksen Associates, 1993.

Schach S., Classical and Object-Oriented Software Engineering 3rd Edition, Aksen Associates,

1996.

Scroen R. & Meltz M., "Office Systems - Issues and Standards," Proceedings of the South African

Client/server Conference, 1992.

Shlaer S., Mellor S. J., Ohlsen D. & H}Wari W., The Object-Oriented Method for Analysis,

Proceedings of the Tenth Structured Development Forum, 1988.

Shtub A, Bard J. & Globerson S., Project Manag_ement - Engineering, Technology and

Implementation, 1994 .

. Simonds D., "Client/server Migration Strategies," Proceedings of the South African Client/server

Conference, 1992.

Literature References

A Methodology for Integrating Legacy Systems with the ClieiitJserver Environment 1 6 6

Sneed H. M., "Planning the Re-engineering of Legacy Systems," IEEE Softvvare, January 1995, pp.

24-34.

Sommerville I., Softvvare Engineering, 3rd Edition, Addison-Wesley, 1989.

South African Bureau of Standards, "Code of Practice for Quality Systems - Model for Quality

Assurance in Design I Development, Productivity, Installation and Servicing," SABS IS0(9001),

The Council of the SABS, 1987.

Stroustrup B., The C+ Programming Language, 2nd Edition, Addison-Wesley, 1991.

US Air Force Systems Command, "Software Risk Abatement," AFSC/AFLC pamphlet, pp.800-

845, Andrews AFB, 1988.

Van der Walt E., "Software Project Management for Object-Oriented Development," MSc

Dissertation, University of South Africa, 1993.

Warnier J. D., Logical Construction of Systems, Van Nostrand Reinhold, 1981.

Wasserman A I., Pircher P. A., Shewmake D. T. & Kersten M. L., "Developing Interactive

Information Systems with the User Software Engineering Methodology," IEEE Transactions on

Softvvare Engineering, Vol SE12, No. 2. February 1986, pp. 326-345.

Watterson K, Client/server Technology for Managers, Addison-Wesley, 1995.

Wegner P., "Capital-Intensive Software Technology," IEEE Softvvare, Vol l, No. 3, July 1984.

Wheeler T, Open Systems Handbook, Bantam Books, 1992.

Wessels W., 'The New Way of Computing Demystified," Proceedings of the South African

Client/server Conference, 1992.

Literature References

A Methodology for Integrating Legacy Systems with the Client/server Environment 1 6 7

Wilkie G., Object-Oriented Software Engineering, Addison-Wesley, 1993.

Wirfs-Brock R., Wilkerson B. & Wiener L., Designing Object-Oriented Software, Prentice-Hall,

1990.

Wolverton R. W., ''The Cost of Developing Large-Scale Software," IEEE Transactions on

Computers, June 1974, pp. 615-636.

Xephon (Firm), The Mainframe in Open Systems, Berkshire England Xephon, 1993.

Y ourdon E. & Co~tantine L. L., Structured Design: Fundamentals of a Discipline of Computer

Program and Systems Design, Prentice-Hall, 1979.

Literature References

APPENDIX

A

The Questionnaire I

169

The purpose of this questionnaire is to determine the characteristics of the legacy systems existing

within SASOL. The following legacy systems were identified: the Sastech Financial System, the

Sastech Material Management System, the GL System, the P AMM System and the MIMS System.

Please complete one questionnaire, as thoroughly as possible, for each system that you are

involved with. . Enter an X in the correct box where appropriate. Questionnaires should be

returned to Linda Redelinghuys, IB 4185, Tel. 492628.

*1. PERSONAL DETAILS

1.1 Name:

1.2 Telephone Number:

1.3 Are you :

A User of the System Responsible for

Maintaining the System

17 0

NOTE: A user of the system should only complete the sections marked with an * (i.e.

Sections 1, 2.1 , 6 to 9 and 11 to 13). If you are responsible for maintaining the

system, please complete all sections.

2. LEGACY SYSTEM DETAILS

*2.1 Name of the System:

2.2 Platform:

2.3 Operating System:

2.4 DBMS:

Version: Latest version available: --
2.5 Application Language: ________ _

Version: Latest version available:

2.6 The software methodology used for development: ____ _

171

3. SIZE

3.1 Number of Users:

3.2 Number of Online Programs:

· 3.3 Number of Batch Programs:

3.4 Size of the Database:

3.5 Number of Transactions per Day:

4. GROWTH

4 .1 Monthly Growth Percentage of the Database:

4.2 Are high volume database updates typical of the system?

5. INTEGRATION WITII OTHER SYSTEMS

5. I With which other systems is the relevant system integrated, or to which other systems do

interfaces exist?

(i)

(ii)

(iii)

(iv)

(v)

Name Platform Operating

System

172

*6. COST

6.1 The time (in years and months) that the system has been in use m a production

environment: ----

6.2 The annual total cost to run the system: ----

6.3 The cost of development and maintenance to date: ___ _

6.4 The cost of hardware (including ~upport) to date: ___ _

*7. QUALITY

7 .1 The degree to which the system satisfies user requirements:

Unsatisfactory Generally

Unsatisfactory

Generally

Satisfactory

Completely

Satisfactory

7.2 How accurate are the original specifications, i.e. how accurate do the original specifications

describe the existing functionality of the system?

Unsatisfactory Generally

Unsatisfactory

7.3 Is additional functionality needed in the system?

I YES

Generally

Satisfactory

Completely

Satisfactory

7.4 Is additional ease of use needed?

7.5 Is the underlying technology working well or is it obsolete?

Obsolete

Unsatisfactory

Obsolete

Satisfactory

7. 6 How accurate is system documentation?

Unsatisfactory Generally

Unsatisfactory

Current

Unsatisfactory

Generally

Satisfactory

Current

Satisfactory

Completely

Satisfactory

173

7.7 What is the quality of the data, i.e. is it missing, incorrect or corrupt, does it require

business rules for interpretation?

Unsatisfactory Generally

Unsatisfactory

Generally

Satisfactory

Completely

Satisfactory

*8. CRITICAL FACTORS

Indicate the criticality of the following factors:

8.1 Cost of running the system:

Not

Critical

8.2 Security:

Not

Critical

8.3 Availability:

Not

Critical

I Fairly
Oitical

Fairly

Critical

I FWrly
Critical

8.4 System Performance:

Not

Critical

Fairly

Critical

I Critical

I Critical I

I Critical

Extremely

Critical

Extremely

Critical

Extremely

Critical

Extremely

Critical

174

8.5 Others:

*9. BUSINESS SUPPORT

9 .1 How well are organisational processes supported by the system:

Unsatisfactory Generally

Unsatisfactory

Generally

Satisfactory

Completely

Satisfactory

175

9.2 Is the system mission-critical for the user's business, i.e. will money be lost if the system

fails?

10. AVAILABLE SKILLS

10.1 What percentage of the employees involved in the development and maintenance of the

· system, is still employed by the organisation?

<=25% <=50% <=75% >75%

176

10.2 What percentage of the employees with the necessary skills to maintain the system is still

employed by the organisation?

<=25% <=50% <=75% >75%

10.3 How difficult is it to find people with the appropriate skills to maintain the system in the

external market?

*11. UNIQUENESS

~
~
~
~

Extremely

Difficult

11 .1 What is the nature of the system, e.g. financial, material management?

11.2 How complex is the system?

Low Fair

Complexity Complexity

Medium

Complexity

High

Complexity

11 .3 Are the functional aspects of the system unique to the organisation?

Not

Unique

Fairly

Unique

11 .4 Does packaged software exist with similar functionality?

I.YES

*12. MAINTENANCE IIlSTORY

12.1 How often is corrective maintenance required?

Very

Seldom

Fairly

Seldom
~
~

12.2 Is the corrective maintenance limited to certain parts of the system?

Extremely

Unique

~
~

177

17 8

*13. OTHER

Please add any other comments you regard as interesting and/or relevant (use another page

if necessary):

THE END Thank you for your time and co-operation!

APPENDIX

B

Questionnaire Results I

Question System Unsatisfactory Generally Generally Completely No
No Unsatisfactory Satisfactorv Satisfactorv Resoonse
7.l MMS 0 0 7 0 0

FS 0 0 6 0 0
GL 0 1 2 0 0
PAMM 0 0 3 1 0
MIMS 0 0 5 1 0

7.2 MMS 0 0 7 0 0
FS 0 1 4 0 1
GL 0 1 2 0 0
PAMM 0 0 4 0 0
MIMS 0 0 5 1 0 .

7.3 MMS 4 0 0 3 0
FS 2 0 0 4 0
GL 3 0 0 0 0
PAMM 4 0 0 0 0
MIMS 6 0 0 0 0 .

7.4 MMS 5 0 0 2 0
FS 4 0 0 2 0
GL 1 0 0 2 0
PAMM 2 0 0 2 0
MIMS 6 0 0 0 0

7.5 MMS 0 0 4 2 1
FS 0 1 1 2 2
GL 0 0 1 2 0
PAMM 0 0 0 4 0
MIMS 3 1 0 2 0

7.6 MMS 0 1 4 1 1
FS 1 2 3 0 0
GL 0 1 0 2 0
PAMM 0 0 2 2 0
MIMS 1 2 2 1 0

7.7 MMS 0 0 6 0 1
FS 0 0 5 1 0
GL 0 0 0 3 0
PAMM 0 0 4 0 0
MIMS 3 0 2 1 0

TOTAL MMS 9 1 28 8 3
FS 7 4 19 9 3
GL 4 3 5 9 0
PAMM 6 0 13 9 0
MIMS 19 3 14 6 0

Table B.1 Quality

·"Yes" to the answer was regarded as "Unsatisfactory" whereas "No" was
regarded as "Completely Satisfactory".

180

Total

7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
49
42
21
28
42

Question System Not Critical Fairly Critical Critical Extremely No
No Critical Response

8.1 MMS 0 2 3 1 1
FS 0 2 0 4 0
GL 0 2 1 0 0
PAMM 0 1 3 0 0
MIMS 0 3 1 0 2

8.2 MMS 2 2 1 1 1
FS 0 1 3 2 0
GL 0 0 3 0 0
PAMM 0 1 3 0 0
MIMS 1 0 4 1 0

8.3 MMS 2 1 2 l 1
FS 0 1 4 1 0
GL 0 0 2 1 0
PAMM 0 0 2 2 0
MIMS 1 0 3 2 0

8.4 MMS 0 1 3 2 1
FS 0 2 3 1 0
GL 0 0 2 l 0
PAMM 0 0 4 0 0
MIMS 1 0 3 2 0

Table B.2 Critical Factors

Question System Unsatisfactory Generally Generally Completely No
No Unsatisfactory Satisfactory Satisfactory Response

9.1 MMS 0 0 7 0 0
FS 0 0 5 0 l
GL 0 0 3 0 0
PAMM 0 0 3 1 0
MIMS 0 2 2 1 1 .

9.2 MMS 0 0 0 6 1
FS 0 0 l 0 6 0

GL 2 0 0 1 0
PAMM 0 0 0 4 0
MIMS 0 0 0 5 1

TOTAL MMS 0 0 7 6 1
FS 0 0 5 6 1
GL 2 0 3 1 0
PAMM 0 0 3 5 0
MIMS 0 2 2 6 2

Table B.3 Business Support

"Yes" to the answer was regarded as "Completely Satisfactory" whereas
"No" was regarded as "Unsatisfactory".

181

Total

7
6
3
4
6
7
6
3
4
6
7
6
3
4
6
7
6
3
4
6

Total

7
6
3
4
6
7
6
3
4
6
14
12
6
8
12

182

Question System Unavailable Fairly Available Highly No Total
No Available Available Response

10.1 MMS l 1 0 0 0 2
FS l 0 1 0 0 2
GL l 1 0 0 0 2
PAMM 0 0 0 2 0 2
MIMS 0 1 0 0 0 1

10.2 MMS 0 2 0 0 0 2
FS 0 1 1 0 0 2
GL 0 2 0 0 0 2
PAMM 0 0 0 2 0 2
MIMS 0 l 0 0 0 l

10.3 MMS 0 2 0 0 0 2
FS 0 2 0 0 0 2
GL 0 2 0 0 0 2
PAMM 0 2 0 0 0 2
MIMS 1 0 0 0 0 1

Total MMS 1 5 0 0 0 6
FS 1 3 2 0 0 6
GL 1 5 0 0 0 6
PAMM 0 2 0 4 0 6
MIMS 1 2 0 0 0 3

Table B.4 Available Skills

Qu.estion System Low Fair Medium High No Total
No Complexity Complexity Comolexitv Comolexitv Resoonse
11.2 MMS 0 3 2 1 1 7

FS 0 1 4 1 0 6

GL 0 0 3 0 0 3
PAMM 0 2 2 0 0 4

MIMS 0 0 4.5° o.s· 1 6

Table B.5 Complexity

' An answer was split between two alternate response options.

Question System Not Unique Fairly Unique Unique Extremely No
No Unique Response

11.3 MMS 0 2 3 0 2
FS 0 4 2 0 0
GL u· 0 l 0.5· 0
PAMM 0 3 l 0 0
MIMS 3 0 2 l 0

11.4 .. MMS l 0 0 3 3
FS l 0 0 4 l
GL 2.5· 0 0

.
0.5 0

PAMM l 0 0 2 l
MIMS 6 0 0 0 0

Total MMS l 2 3 3 5
FS l 4 2 4 l
GL 4 0 l l 0
PAMM l 3 l 2 l
MIMS 9 0 2 l 0

Table B.6 Uniqueness

Question System Very Seldom Fairly Seldom Fairly Often Very Often No
No Resnonse

12. l MMS 0 4 2 0 l
FS 0 4 l 0 l
GL u· 0 u· 0 0
PAMM 0 l 2 0 l
MIMS l l 3 0 l

12.2 ... MMS 4 0 0 2 l
FS l 0 0 4 1
GL l 0 0 2 0
PAMM 2 0 0 0 2
MIMS 2 0 0 3 4

Total MMS 4 4 2 2 2
FS 1 4 1 4 2
GL 2.5 0 1.5 2 0
PAMM 2 1 2 0 3
MIMS 3 1 3 3 2

Table B. 7 Maintenance History

• An answer was split between two alternate response options.

"Yes" to the answer was regarded as "Not Unique" whereas "No" was
regarded as "Extremely Unique".

**lo: "Yes" to the answer was regarded as "Very Seldom" whereas "No" was
regarded as "Very Often".

183

Total

7
6
3
4
6
7
6
3
4
6
14
12
6
18
12

Total

7
6
3
4
6
7
6
3
4
6
14
12
6
8
12

1 84

APPENDIX

c

Object-Oriented (00) Principles I

185

C.1 Introduction

00 principles, which are excellent for managing complexity, are applied throughout all cycles of

the integration methodology. The fundamental principles of 00 are identity, data abstraction, data
.r

encapsulation, information hiding, classification, inheritance, association, polymorphism and

modularity. Some of these principles, i.e. data encapsulation, information hiding and modularity,

are derived from traditional structured principles. Each of the principles of 00 can be used in

isolation, but together they complement each other synergistically. The interpretation of these

concepts varies and varying degrees of 00 are distinguished. Wilkie (1993) distinguishes:

1. object-based systems, which support the functionality of objects without

supporting classes and inheritance;

2. class-based systems, which support the functionality of objects and classes without

supporting inheritance;

3. 00 systems, which support objects, classes and inheritance.

The above-mentioned principles, as well as the 00 relationships for structuring are now reviewed.

C.2 00 Principles

Identity is the property of an object that distinguishes it from all other objects. Identity means that

data is quantised into discrete, distinguishable entities called objects. Each object has its own

unique inherent identity. This identity never changes and does not depend on the object's name or

location. The identity is implemented through an object identifier attribute during object creation.

An object consists of a data structure (attributes) and operations. Two objects are distinct, even if

all their attribute values (such as name and age) are identical. In Figure C.1 the object Person has

attributes name and age and operations change-job and change-address. Identity allows the view

of both concrete and abstract entities, together with their relevant operations, as a modelling

primitive.

Person

name

age

change -job
change - address

Figure C.1 An Object

186

Data abstraction refers to the selective examination of certain aspects of a complex problem, in

order to isolate those aspects that are important for some purpose, and suppress those aspects that

are unimportant until a later stage (Rumbaugh et al,1991). It allows the designer to think at the

level of the data structure and the operations performed on it, and only later to be concerned with

the details of how that data structure and operations are to be implemented. It is a technique used

to master complexity by identifying the important aspects of a phenomenon and ignoring its details.

Booch (1994) defines abstraction as:

" An abstracnon denotes the essential characteristics of an object that distinguish it

from all other kinds of objects and thus provide crisply defined conceptual boundaries,

relative to the perspecnve of the viewer. "

187

Procedural abstraction allows the designer to conceptualise the product in terms of high-level

procedures, which will only at a later stage be defined in terms of lower-level procedures, until

finally, the lowest level is reached. The designer can therefore, at any levei ignore the levels above,

as well as the levels below and only be concerned with expressing the product in terms of

procedures appropriate to that specific level (Schach, 1993).

Iteration abstraction allows a programmer to specify, at a higher levei that a loop is to be used, and

then to describe, at a lower levei the exact elements over which the iteration is to be performed, as

well as the order in which the elements are to be processed (Schach,1993).

Data Encapsulation refers to a data structure, together with the operations to be performed on

that data structure. It is a modelling and implementation technique which allows the designer to

think at the level of the data structure and its operations, and only later be concerned with the

details of how that data structure and operations are to be implemented. Various authors refer to

encapsulation and infonnation hiding as if they are synonyms (Meyer,1988; Rumbaugh et ~1991;

Booch, 1994). However, for the purpose of this dissertation, data encapsulation is considered to be

an example of abstraction.

Inf onnation hiding is a modelling and implementation technique that separates the external

aspects (the interface), from the int~ implementation details of the object. The external aspects

of an object are accessible to other objects whereas the internal details of an object are hidden from

other objects. Users understand what operations (services) may be requested of the object but do

not know the details of how the operation (service) is performed (Cox,1986). The data of an

object is accessed via its own methods. This protects an object's data from corruption.

As the implementation of an object can be changed without affecting the application that use it, it

prevents a program from becoming so interdependent that a small change has massive ripple

effects. Although not unique to 00 languages, the combination of data structure and behaviour

(operations) in a single entity makes encapsulation more powerful than in conventional languages

where the data structure and behaviour are separated (Rumbaugh et ~ 1991). Procedural and

iteration abstraction are instances of infonnation hiding.

188

Classification means that objects with the same data structure (attributes) and behaviour

operations are grouped into a class (Rumbaugh et al, 1991 ; Booch, 1994). A class is an abstract

data type that supports inheritance. It describes properties important to an application and ignores

the rest. In 00 languages, object types are implemented as classes. Each object forms a unique

instance of its class. In Figure C.2 there are two object instances of the class person. By the

grouping of uniform objects, complexity is reduced.

Person

Name: String

Age : Integer

CLASS

OBJECT INSTANCE

Figure C.2 A Class with Two Object Instances

Inheritance is a mechanism that permits classes to share attributes and operations based on a

hierarchical relationship (usually generalisation) (Rumbaugh et al,1991; Booch,1994). The

superclass is the class being refined and each refined version is called a subclass. Subclasses inherit

both the structure (i.e. the concrete representation of the state of an object) as well as the behaviour

of their superclasses. When a class is refined or specialised into successively lower level subclasses,

each subclass inherits all the attributes of its superclass and in addition may add its own features.

This phenomena is referred to as specialisation. An object which is a member of a class, inherits all

the properties of the class. In Figure C.3 the subclasses employee and student inherits the attributes

name and address from its superclass.

Inheritance provides conceptual simplification that comes from reducing the number of independent

features of a system and allows the definition of new data types as extensions of previously defined

types in a hierarchical relationship. It reduces the amount of redundant code in a system Multiple

189

inheritance pennits a class to have more than one superclass and to inherit features from all

ancestors (Rumbaugh et al, 1991). Inheritance is a key reusability principle that is unique to the

00 paradigm.

Person

Name SUPERCLASS
Address

Change - address

/ "'\.
I I

EmployH
Student

EmployHno
Student no

Department Course no

Position SUBCLASSES Course year

Get - promolled
Pass - subject

Figure C.3 Inheritance

Polymorphism means that the same operation may behave differently on different classes, i.e. an

operation takes on many forms of implementation, depending on the type of object. Meyer (1988)

views polymorphism in 00 programming as the ability to refer at run-time to instances of various

classes. A strength of polymorphism is that a request for an operation can be made without

knowing which method should be invoked. These implementation details are hidden from the user.

In Figure C.4 the Employee class defines a retire operation. In 00 implementations, this operation

is automatically inherited by all the subclasses of employee. An organisation may have different

methods for retiring an executive than for retiring an employee. In this situation, the method for

190

retiring executives overrides the method for retiring employees in general. The example is

polymorphic, because the retire operation has a different method of implementation depending on

whether an object is an employee or an executive.

Employee

Position
Salary Amount
Phone Extension

SUPERCLASS

Promote
Change Phone Extension
Retire

________J
Executive

Authorisation Level SUBCLASS
Pointer to Reporting Employees

Set Authorisation Level
Retire

Figure C.4 A Polymorphic retire operation

Object classes provide a natural unit of modularity. Booch (1994) defines modularity as:

"the property of a system that has been decomposed into a set of cohesive and loosely

coupled modules. "

A module is a logical construct for grouping classes that captures some logical subset of the entire

model. Modules provide an intermediate unit of packaging between an entire object model and the

191

basic building blocks of class and association. It allows the partitioning of a model into manageable

pieces (Rumbaugh et al, 1991).

C.3 Relationships for Structuring

Structural concepts relate to a description of aspects of a system concerned with relationships

amongst classes. A relationship represents some logical connection between classes. A class is a

description of a group of instances with similar properties, common behavioural semantics and

relationships. A class represents a particular implementation of a type. 00 provides three basic

types of class relationships for structuring:

1. the generalisation I specialisation relationship;

2. the whole I part relationship;

3. association.

In a generalisation I specialisation relationship, a subclass specialises the more general structure or

behaviour of its superclasses. "Is a" hierarchies therefore denote generalisation I specialisation

relationships.

Whole I part relationships are described by "part of' hierarchies, e.g. a petal is not a kind of flower,

it is a part of a flower. In terms of its "is a" hierarchy, a high-level abstraction is generalised

whereas a low-level abstraction is specialised. A person class is at a higher level of abstraction than

a student class. In terms of its "part of' hierarchy, a class is at a higher level of abstraction than any

of the classes that make up its implementation. The class garden is at a higher level of abstraction

than the class plant, upon which it is built.

Association denotes some semantic dependency among otherwise unrelated classes, e.g. the classes

roses and candles are largely independent, but they both represent things that might be used to

decorate a dinner table.

192

According to Booch (1994), the approaches which have evolved in programming languages to

capture these generalisation I specialisation, whole I part and association relationships, include:-

1. Association, i.e. a relationship among instances of two or more classes describing a

group of links with common structure and common semantics, e.g. a person oorks­

for a company. It is used to tie together certain events that happen at some point in

time or under similar circumstances. An association describes a set of potential

links in the same way that a class describes a set of potential objects.

2. Inheritance implies a generalisation I specialisation hierarchy. Semantically,

inheritance denotes an "is a" relationship, e.g. a student "is a" kind of person.

3. Aggregation, i.e. a special form of association, between a whole and its parts, in

which the whole is composed of the parts (Rumbaugh et al,1991). Although not

unique to 00 programming languages, the combination of inheritance with

aggregation is very powerful. Aggregation allows the physical grouping of

logically related structures and inheritance allows these common groups to be easily

reused among different abstractions (Booch, 1994).

4. Using, i.e. a relationship denoting that an instance of one class makes use of an

instance of another. Objects interact by means of sending messages to one another.

These messages may be asynchronous or synchronous, depending on the

multitasking capabilities of the system under design.

5. Instantiation, ie. the process of creating instances from classes, e.g. John Smith

and Mary Bence are instances of class Person.

6. Metaclass, i.e. the class of a class. This concept allows for the treatment of classes

as objects and is explicitly supported by languages such as Smalhalk and CLOS.

APPENDIX

D

Risk Assessment Questionnaire I

llisk HSHsmut !UHtionuir• sample from a total of 54 questions

Size risk assessment

1. Total development man-hoss fa system•

100 to 3,000 Low-1

3.000to15.000 Medum-2

15.000 to 30 .000

More than 30.000 High-4

2. What is estimated project Implementation time?

12 months or less Low-1

13 months to 24 months Medium-2

More than 24 months High-3

3. Number of departments {other than IS) lnvQved

One Low-1

Two Medium-2

Three or more High-3

Structure rtsk assessment

1. If replacement system is proposed, what percentage
of existing l.nctions ere replaced on a one-to-one
basis?

0% to 25% High-3

25% to 50% Medium-2

50% to 100% Low-1

2. What is severity of procecU'al changes in user
department caused by proposed system?

Low-1

Medium-2

High-3

3. Does user orgarisation have to change strucb.Jrally
to meet requirements of new system?

4.

5.

6 .

1.

No -0

Minimal Low-1

Somewhat Medium-2

Major High-3

What is general attitude of user?

Poor-anti data-processing sduticri High-3

Fair-some reluctance Medium-2

Good-uiderstands value of DP sotution -0

How committed Is upper·level user management to
system?

Somewhat reluctant or l.nknown High-3

Adequate Medium-2

Extremely enthusiastic Low-1

Has a joint data processingA.iser team been
estabUshed?

No High-3

Part. time user representative
appointed Low-1

Full·lime user representative appointed -0

Technology risk assessment

Which of the hardware is new to the company?

None -0

CPU High-3

Weight

Weight

Weight

Peripheral and/or additional storage High-3

TerminaJs High-3

t.tni or micro High-3

2. Is the system software (naioperating system) new to
IS project team?\fl

No -0

Programming language High-3

Data bmse High-3

Data commll'lications High-3

Other - specify High-3

3. How knowledgeable ls user in area of 1$7

First expOSlle High-3

Pre\Aous expOSU'e but limited knowtedge
Mecium-2

High degree of capobility Low-1

4. How knowledgeable is user representative in
proposed appUcation area?

Limited High-3

Understands concept but no
experience Medum-2

Has been invdved in prior implementation

efforts ·

5. How knowledgeable is IS team in proposed
application area?

limited

Understands concept but no
experience

Has been lnvdved in prior implementation

efforts

High-3

Medlum-2

Low-1

Not•: Since the questions vary in importance, the
company assigned wei!ltts to them subjecti,....y.
The numerical answer to the questims is multiplied
by the question weis;,t to calculate the question's
contribution to the projects risk. The numbers are
then added togethw to produce a risk score number
for the project. Projects with risk scores within 1 O
points of each other are indistinguishable but those
separated by 100 points or more are very different to
even the casual observer.
*Time to develop indudes system design,
programming, testing and installatim.
'l'This ~estim is scored by multipl~ng the sum of
the numbers attached to the positive response by the
weight .
Source: This C1iJestiornaire is adapted from the
Dallas Tire care no. 9-180..006 (Baston Mass: HBS
Case SerAce, 1980).

194

	Button3:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:
	Button9:
	Button10:
	Button11:
	Button12:
	Button13:
	Button14:
	Button15:
	Button16:
	Button17:
	Button18:
	Button19:
	Button20:
	Button21:
	Button22:
	Button23:
	Button24:
	Button25:
	Button26:
	Button27:
	Button28:
	Button29:
	Button30:
	Button31:
	Button32:
	Button33:
	Button34:
	Button35:
	Button36:
	Button37:
	Button38:
	Button39:
	Button40:
	Button41:
	Button42:
	Button43:
	Button44:
	Button45:
	Button46:
	Button47:
	Button48:
	Button49:
	Button50:
	Button51:
	Button52:
	Button53:
	Button54:
	Button55:
	Button56:
	Button57:
	Button58:
	Button59:
	Button60:
	Button61:
	Button62:
	Button63:
	Button64:
	Button65:
	Button66:
	Button67:
	Button68:
	Button69:
	Button70:
	Button71:
	Button72:
	Button73:
	Button74:
	Button75:
	Button76:
	Button77:
	Button78:
	Button79:
	Button80:
	Button81:
	Button82:
	Button83:
	Button84:
	Button85:
	Button86:
	Button87:
	Button88:
	Button89:
	Button90:
	Button91:
	Button92:
	Button93:
	Button94:

