
OBJECT ORIENTED

DATABASE MANAGEMENT SYSTEMS

by

ANTONIOS NASSIS

submitted in part fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

in the subject of

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROFESSOR C H BORNMAN

NOVEMBER 1995

SUMMARY

Modem data intensive applications, such as multimedia systems, require the ability to

store and manipulate complex data. The classical Database Management Systems

(DBMS), such as relational databases, cannot support these types of applications

efficiently.

This dissertation presents the salient features of Object Database Management Systems

(ODBMS) and Persistent Programming Languages (PPL), which have been developed to

address the data management needs of these difficult applications.

An 'impedance mismatch' problem occurs in the traditional DBMS because the data and

computational aspects of the application are implemented using two different systems, that

of query and programming language.

PPL's provide facilities to cater for both persistent and transient data within the same

language, hence avoiding the impedance mismatch problem.

This dissertation presents a method of implementing a PPL by extending the language

C++ with pre-compiled classes. The classes are first developed and then used to implement

object persistence in two simple applications.

KEYWORDS

• Database Management Systems

• Database Programming Languages

• Object Oriented Management Systems

• Object Oriented Technology

• Object Persistence

• Persistence

• Persistent Programming Languages

• Pointer Persistence

2

CADICAE

CAM

COM

CO RB A

DBMS

OID

00

OOA

OOD

ODBMS

ODMG

OMG

OMT

OLE

PPL

SDLC

ABBREVIATIONS

Computer Aided Design/Engineering

Computer Aided Manufacturing

Component Object Model

Common Object Request Broker Architecture

Database Management System

Object Identifier

Object Orientation

Object Oriented Analysis

Object Oriented Design

Object Oriented Database Management System

Object Database Management Group

Object Management Group

Object Modeling Technique

Object Linking and Embedding

Persistent Programming Languages

Software Development Lifecycle

3

TABLE OF CONTENTS

1. INTRODUCTION 9

2. DATABASE MANAGEMENT SYSTEMS 11

2.1 INTRODUCTION 11

2.2 HISTORICAL PERSPECTIVE 11

2.2.1 lST GENERATION: FILE SYSTEMS 12

2.2.2 2ND GENERATION: NETWORK & HIERARCIDCAL DBMS 13

2.2.3 3RD GENERATION: RELATIONAL DBMS's 13

2.2.4 4TH GENERATION: OBJECT ORIENTED DBMS 14

2.3 THE CHARACTERISTICS OF A DBMS 14

2.4 LEVELS OF ABSTRACTION IN A DBMS 15

2.5 DATA INDEPENDENCE 16

2.6 DBMS LANGUAGES 17

2.6.1 DATA DEFINITION LANGUAGES 18

2.6.2 DATA MANIPULATION LANGUAGES 18

2.6.3 HOST LANGUAGES 19

2. 7 CLASSICAL DBMS DATA MODELS 20

2.7.1 HIERARCIDCAL 20

2.7.2 NETWORK 20

2.7.3 RELATIONAL 20

2.8 WEAKNESSES OF THE RELATIONAL MODEL 22

2.8.1 NORMALISATION 22

2.8.2 INTEGRITY AND BUSINESS RULES 23

2.8.3 NULL VALUES p

2.8.4 COMPLEX OBJECTS 24

2.8.5 RECURSIVE QUERIES 25

2.8.6 IDENTITY 26

2.8. 7 IMPEDANCE MISMATCH 26

2.9 CONCLUSIONS 27

3. MODERN DATABASE APPLICATIONS 29

4

3.1 INTRODUCTION

3.2 COMPOUND 'MULTIMEDIA' DOCUMENT STORAGE

3.3 DBMS REQUIREMENTS FOR ENGINEERING APPLICATIONS

3.4 CONCLUSIONS

4. DATABASE PROGRAMMING LANGUAGES

4.1 INTRODUCTION

4.2 DATABASE PROGRAMMING LANGUAGES

4.3 PERSISTENT PROGRAMMING LANGUAGES

4.3.l GENERAL PRINCIPLES

4.3.2 REPRESENTING THE PERSISTENT DATA

4.3.3 COMPUTATIONAL FEATURES

4.3.4 DATA STORAGE FEATURES

4.3.5 METHODS OF PROVIDING PERSISTENCE

4.4 OBJECT ORIENTED DATABASES

4·.5 CONCLUSIONS

5. THE OBJECT ORIENTED TECHNOLOGY

5.1 INTRODUCTION

5.2 HISTORICAL PERSPECTIVE

5.2.l THE GENERATION OF PROGRAMMING LANGUAGES

5.2.2 EMERGENCE OF OBJECT ORIENTED LANGUAGES

5.3 THE OBJECT MODEL

5.3.1 ELEMENTS OF THE OBJECT MODEL

5.3.2 OBJECTS

5.3.3 CLASSES

5.3.4 CLASS RELATIONSHIPS

5.4 COMPOUND DOCUMENTS

5.5 COMPONENT SOFTWARE

5.6 DISTRIBUTED OBJECT COMPUTING

5. 7 OBJECT ORIENTED DATABASES

5.8 CONCLUSION

29

30

32.

35

36

36

37

39

39

40

41

41

41

42

43

44

44

45

45

46

47

47

49

51

51

52

53

54

55

55

5

6. OBJECT ORIENTED DATABASE MANAGEMENT SYSTEMS

6.1 INTRODUCTION

6.2 CHARACTERISTICS OF ODBMS .

6.2.1 ESSENTIAL FEATURES

6.2.2 FREQUENT FEATURES t
6.2.3 THE ODBMS THRESHOLD REFERENCE MODELS

6.2.4 OTHER THRESHOLD MODE

6.3 TAXONOMY OF DATABASE DATA MODELS

6.3. l OVERVIEW

6.3.2 VALUE ORIENTED MODELS

6.3.3 OBJECT-BASED DATA MODELS

6.3.4 OBJECT ORIENTED DATA MODELS

6.4 OBJECT PROGRAMMING AND DATABASE MANAGEMENT

6.4.1 PROGRAMMING LANGUAGE PERSPECTIVE

6.4.2 THE DATABASE MANAGER'S PERSPECTIVE

6.5 PERSISTENT DATABASE ARCHITECTURES

6.5.1 OVERVIEW

6.5.2 CATEGORIES OF STORAGE SERVERS

6.6 CONCLUSIONS - ODBMS STRENGIBS AND WEAKNESSES

6.6.1 STRENGIBS

6.6.2 WEAKNESSES

7. EMERGING ODBMS STANDARDS

7.1 OVERVIEW

7.2 THE OBJECT MANAGEMENT GROUP

7.3 THE ODMG-93 STANDARD

7.3.1 OVERVIEW

7.3.2 ARCHITECTURE

7.3.3 DEVELOPMENT

7.3.4 BASIC ELEMENTS OF THE OBJECT MODEL

7.3.5 OBJECT LIFETIME

7.3.6 OBJECT PROPERTIES AND OPERATIONS

7.4 CONCLUSIONS

57

57

58

58

59

60

62

62

62

63

64

64

65

66

69

69

69

70

72

73

73

75

75

76

77

77

77

77

78

79

80

81

6

•

•

•

8. PERSISTENT OBJECTS IN C++

8.1 INTRODUCTION

8.2 EXTENSIONS TO C++ FOR OBJECT PERSISTENCE

8.2.1 OVERVIEW

8.2.2 OBJECTS WITH SIMPLE DATA STRUCTURES

8.2.3 PERSISTENT COMPLEX OBJECTS

8.2.4 POINTER PERSISTENCE USING THE OID APPROACH

82

82

82

82

82

84

87

8.3 PERSISTENCE IN C++ - STRENGTHS AND WEAKNESSES 92

8.4 THE EMPLOYEE-DEPARTMENT APPLICATION 93

8.4.l OVERVIEW 93

8.4.2 THE EMPLOYEE-DEPARTMENT RELATIONSHIP 93

8.4.3 THE PERSIST CLASS 94

8.4.4 THE DBASE CLASS 95

8.4.5 IMPLEMENTATION OF PERSISTENT POINTERS 95

8.4.6 PHYSICAL STORAGE STRUCTURE 97

8.4. 7 RUNNING THE APPLICATION 98

8.5 THE REAL-TIME SIMULATION APPLICATION 101

8.5.1 OVERVIEW 101

8.5.2 THE SIMULATOR 101

8.5.3 THE SIMULA TOR IMPLEMENTATION 102

8.5.4 CONCLUSION 104

8.6 IMPLEMENTATION OF PERSISTENT OBJECTS INC++ - CONCLUSIONS 108

9. CONCLUSIONS 109

10. REFERENCES 110

APPENDIX A:

THE EMPLOYEE-DEPARTMENT APPLICATION SOURCE CODE 116

APPENDIX B:

THE REAL-TIME SIMULATION APPLICATION SOURCE CODE 127

7

•
LIST OF FIGURES

Figure 2.1- DBMS Generations 12

Figure 2. 2 - The 3-Schema Architecture of a DBMS 16

• Figure 2. 3 - Decomposition of Aggregate Association into Relational Tables 25

Figure 3.1 - A Compound Document 31

Figure 3. 2 - Class Hierarchy of a Compound Document 31

Figure 5.1 - Compound Document 53

Figure 5. 2 - The use of Component Software 54

Figure 5.3 -Distributed Objects 55

Figure 6.1 - A Taxonomy of Data Models 63

Figure 6. 2 - Object Persistence using Files 67

Figure 6.3 - Object Persistence using a Relational DBMS 67

Figure 6. 4 - Passive & Active Object Servers [WILCOX, 94 J 72

Figure 7.1 - Developing Applications with ODEMS 78

Figure 8.1 - Persistent Pointers using the OID Approach 89

Figure 8. 2 - Instantiation of the Employee & Department Classes 96

Figure 8. 3 - Employee and Department Object Physical Object Structure 97

Figure 8. 4 - Employee and Department Application Object Model 99

Figure 8.5 - The Employee Application 100

Figure 8. 6 - Structure of Disk File after the Feeder and Silo Objects are Saved 103

Figure 8. 7 - Simulation of a Coke Supply System 104

Figure 8.9 - The Simulation Application Object Model 105 • Figure 8.10- Running the Simulation 107

•
8

•

•
~

•

•

•

1. INTRODUCTION

Database Management Systems (DBMS) are used extensively throughout the computer

industry. They are utilised in many organisations that have to store, manage and

manipulate large quantities of data. They have grown out of the need to be able to

manage efficiently and accurately the vast amounts of data, that typical organisations

have to process in their everyday life.

DBMS system developers have, with few exceptions, concentrated in the past on

commercial applications. This resulted in the conception and subsequent development of

some very powerful models, such as the Hierarchical, Network and Relational Models,

which a.re particularly suitable for such applications.

Recently, however, some applications have been emerging, that require the services of

DBMS's with the ability to handle more complex data. Examples of such applications are

CADICAE, Multimedia, Simulation Systems and Software Engineering Environments.

All these 'modern' applications require the ability to merge complex data. Existing

'classical' DBMS technology cannot support these types of applications efficiently.

Object Database Management Systems (ODBMS) have been developed to address the

data management needs of these difficult applications.

The main aim of this dissertation is to present an overview of the present status of this
-

ODBMS technology and particularly, the introduction of object persistence to the

existing programming language C++.

The dissertation covers both the theoretical and implementation details of persistent

objects. The study methodology adopted was to first perform a literature survey on the

theoretical aspects of ODBMS's and then to implement some of the techniques of

introducing object persistence in C++ using small but non-trivial examples .

9

•

•

•

•

•

Techniques of providing object persistence to the programming language C++ are

presented and demonstrated using two examples. One example shows how an 'employee­

department' relation is saved to disk, while another shows the application of these

techniques to the development of engineering applications, such as that of real-time

simulators .

An outline of current DBMS practice is first presented as an introduction in Chapter 2.

Chapter 3 then follows with the DBMS requirements of complex modern applications.

Chapter 4 introduces the important developments of Database Programming Languages,

with particular reference to Persistent Programming Languages.

Chapter 5 follows with the basic principles of Object Oriented Technology, which forms

the foundation of ODBMS's. This leads to Chapter 6, which presents the characteristics

and fundamental principles of ODBMS's .

Chapter 7 outlines some of the emerging ODBMS standards.

Chapter 8 is more language dependent, as it presents the implementation details of object

persistence in the programming language C++. Two examples are also given which

demonstrate the application of these techniques. The appendices includes the complete

source code of these examples.

The literature consulted during this study is listed in the reference section .

10

•

•

•

•

•

2. DATABASE MANAGEMENT SYSTEMS

2.1 Introduction

A Database Management System (DBMS) is an important software system used

extensively throughout the computer industry.

As for other major software systems, such as compilers and operating systems,

fundamental principles have evolved over the years to help engineers and users to

understand and use this technology in an efficient manner.

This chapter introduces the fundamental concepts ofDBMS's.

A historical perspective is first given, followed by Chapters which deal with the

concepts in more depth.

2.2 Historical Perspective

Database Management Technology has evolved through three generations1 in the last

twenty-five years. Successive generations have not replaced their predecessors

entirely. Most of the older technologies continued to exist along with the new.

The generations ofDBMS's are briefly outlined below and in figure 2.1 [LOOMIS,

90.5] . Further details can be found in other ~hapters ofthis dissertation .

1 The literature is inconsistent with the identification of DBMS generations. In certain
cases, the lsi Generation is identified as navigational i.e. Network and Hierarchical,
and the 2nd generation as Relational. No definitive 3rd generation database has been
identified, but in most cases, it is assumed to be an advanced DBMS that addresses the
weaknesses of the previous generations.[PATON, 96]

11

•

•

•

•

•

DBMS GENERATIONS

4- Object Oriented

3- Relational

2- Net & Hierarchic

1- File Systems

1960

Figure 2.1- DBMS Generations

2.2.1 1st Generation: File Systems

1970 1980 1990

)

2000

In the absence of a DBMS, an application program uses the language features to store

information in file systems provided by the computer's operating environment.

The early file systems provided only sequential data access. i.e. the records could only

be read in their physical sequence. This method is sufficient for batch processing of

data.

The introduction of more powerful processing hardware, introduced the need for more

complex applications. These applications required direct and random access of stored

data. Sequential processing was no longer efficient.

The need for random access of stored data was addressed by the introduction of

indexing , hashing and other access techniques.

The continual quest for more powerful data processing applications and the use of file

systems, precipitated to a plethora of files within organisations. Very often, the same

data was held on more than one file, since more than one department had to have

access to this data .

12

•

•

•

•

•

Soon, data inconsistency across the file systems of an organisation became a major

problem. This problem pre-empted the development of database management systems

and the concept of a central database to be shared by the entire organisation.

2.2.2 2nd Generation: Network & Hierarchical DBMS

These systems were developed in the late 1960' and early 1970's to address the

problems with file systems mentioned above. [DATE, 86]

The systems offered central data storage management, concurrency control and data

recovery. They were mainly developed for the main-frame environment.

2.2.3 3rd Generation:. Relational DBMS's

In the 1960's and l 970's, the network and hierarchical databases were dominating the

industry. From the late l 970's however, the relational model started to gain some

acceptance.

The main disadvantage and criticism of 2nd Generation DBMS's was the complexity

involved in using them to create database application. In particular, the models could

not accommodate changes easily.

It was for the above reason that alternatives were sought.

The relation model was conceived in the ear!y l 970's. The success and acceptance of

the relational model was its simplicity. It views data as records (or tuples) in tables.

Furthermore, the relational model is based on sound formal concepts, that of predicate

logic. [DATE; 86] [ELMASRI, 89]

13

•

•

•

•

•

2.2.4 4th Generation: Object Oriented DBMS

- This technology has started to appear in commercially available products during the

early 1990' s.

The ODBMS has its roots in both database technology and object oriented techniques.

It was developed essentially to address the problems of using DBMS technology in

applications that handle complex data. Examples of such applications are: CAD, CAE,

CAM, Software Engineering Environments, Simulation Tools etc.

2.3 The Characteristics of a DBMS

There are two fundamental characteristics that distinguish database management

systems from other software systems [ULLMAN, 88]:

• The ability to manage persistent data, and

• The ability to access large amounts of data efficiently.

The first characteristic above states that there exists a database in which data is stored

permanently. The DBMS will access and manipulate this data.

The second characteristic distinguishes a DBMS from a pure file storage system. A

pure file system does not, in general, provide facilities to access arbitrary data fast ,

although it will support permanent storage .

A DBMS is most useful, when large amounts of permanent data must be managed. If

the data is not large, a simple linear access technique will suffice.

While the above two characteristics can be regarded as fundamental, there are a

number of other facilities which typical commercial DBMS's provide. Some of these

facilities are given below:

14

•

•

•

•

•

• Support for at least one data model to be used by the implementor and user as an

abstraction mechanism.

• Support for a Data Definition Language (DDL) whereby the user can define the

data structures used.

•

•

Support for Data Manipulation Language (DML) or Query Languages. The

most common query language for relational DBMS's is SQL.

Transaction Management and Concurrent Access to the database by many

users.

• Security and Access Control to inhibit illegal access of data.

• Data integrity and Validity Checks

• Resiliency and the ability to recover from system failures without loss of data.

2.4 Levels of Abstraction in a DBMS

The average user of a DBMS does not get concerned with how the data is physically

stored on the permanent media (i.e. hard disk). Hence, levels of abstraction have been

introduced to hide storage implementation details from the users.

The Codasyl DBTG2 report of 1971 recognised the need of a two-level approach. The

levels proposed were as follows [DEEN, 85]:

• Schema - which was the system view

• Subschema - which was the user view

The 2-level approach introduced by Codasyl·was further expanded to 3-levels by the

ANSI/SPARC3 proposal ofFebruary 1975. [ELMASRI, 89] [ULLMAN,88]:

2 Codasyl (Conference on Data Systems Languagess) is an international organisation of
computer users, manufacturers, software houses and other interested groups. Its
principal objective is the design, development and specification of common user
languages. It has produced the Cobol language. Codasyl' s involvement in databases is
a direct consequence of its interest in the extension of Cobol. [DEEN, 85]

15

•

•

•

•

•

External

View

Conceptual External

Schema View

External

View

Figure 2.2 - The 3-Schema Architecture of a DBMS

The goal of the three schema architecture, shown in figure 2.2, is to hide the physical

implementation details from the user. The three levels are [ELMASRI, 89]:

• Internal Schema: which describes the physical storage structure of the database .

• Conceptual Schema: which describes the structure of the whole database. The

description hides the details of physical storage structures and presents the data in

the format of the high-level data model used by the DBMS.

• External View Schema: which presents the data to a particular group of users in a

way that is most useful to them. External views can be created per group of users

with particular needs.

2.5 Data Independence

The DBMS architecture given above provides, what is known as, data independence.

Two types of data independence can be defined [ELMASRI, 89]:

3 ANSI (American National Standards Institute) is responsible for the standardisation
of products in the USA. Its subcomitte X3 deals with data processing systems and has
a committee called SPARC (Standards Planning And Requirements Committee) which
conceived the ANSVSPARC 3-level architecture. [DEEN, 85]

16

•

•

•

•

•

• Logical Data Independence: which is the capacity to change the conceptual

schema without having to change the external view or application programs.

• Physical Data Independence: which is the capacity to change the internal or

physical schema without having to change the conceptual schema. This implies that

optimisation can be carried out at the physical level without the need of modifying

any of the above levels .

Data independence provides an isolation between the database system implementors

and the programmers that are coding the DBMS itself

2.6 DBMS Languages

In ordinary programming languages, the declaration and executable statements are all

part of the same language. In DBMS's, it is common to separate the declarative part

into a different language. [ULLMAN, 88]

Hence a DBMS usually has provision for the following languages:

• Data Definition Language (DDL)

• Data Manipulation Language (DML) (e.g. SQL)

• Host language (i.e. Cobol, C, Pascal)

The concept behind this separation is that in a database, the data persists and hence

should be declared only once, while in an ordinary program, the data exist only while

the program is running4
.

DBMS language concepts are further expanded below:

4 This separation, however, leads to the 'impedance mismatch' problem which is
discussed in section 2.8.7 .

17

•

•

•

•

•

2.6.1 Data Definition Languages

DDL is used to define the conceptual schema. This is a notational language which is

used when the database is designed or when it is modified.

In relational databases, a subset of SQL is used to implement the DML .

2.6.2 Data Manipulation Languages

DML is used to perform operations on the data of the database. SQL is a DML

language used most often on relational databases.

SQL is a declarative query language. This means that the user need only specify what

the data query is and not how to obtain it.

As an example, consider a database containing a list of employee names and their

manager:

EMPLOYEES[Name, Manager]

This is represented as a table of Employee names with the name of their manager.

An SQL query to extract the manager of employee 'Kent' is:

SELECT MANAGER

FROM EMPLOYEES, .

WHERE EMPLOYEES.NAME= 'Kent'

The types of operations that can be performed include:

• Update

• Retrieval

• Query

18

•

•

•

•

•

2.6.3 Host Languages

DML is limited to the few fundamental operations given above. It is usually necessary,

however, to perform more complex operations that simply manipulate the data in the

database .

For this reason, DBMS's provide links to procedural host languages.

The host language is used to implement the required functionality of the system, except

the actual querying and modification of the database .

19

•

•

•

•

•

2.7 Classical DBMS Data Models

Four generations ofDBMS's have been given in the section above dealing with

Historical Perspectives. Three of the generations are referred to as 'Classical' in the

current literature. The Data Models used in the classical DBMS's are outlined below:

2. 7 .1 Hierarchical

A hierarchy (or tree) is a network in which nodes are connected by links such that all

links point in the direction from child to parent. Hence every node has a parent node

except for the single root node of the hierarchy.

In a hierarchical database, the nodes of the hierarchy consist of records which are

connected to each other via links.

Hierarchical databases often exhibit poor flexibility, but because of the 'hard-wired'

access paths, they often provide very good performance.[DATE, 86]

2.7.2 Network

The network model uses additional pointers to add flexibility to the hierarchical model.

In its most general form, a network is a collection of nodes with links possible between

any of the nodes.

Network databases have the same performance advantage of hierarchical databases .

.[DATE, 86]

2. 7 .3 Relational

A relational database consists of a set of tables. Each row in a relation represents a

relationship between a set of values .

20

•

•

•

•

•

One reason for the widespread acceptance of relational databases is that they are based

on an easily understood model. This model is given below. [ELMASRI, 89]

The relational model represents the data in a database as a collection of relations. Each

relation resembles a table or, to some extend a file.

In relational database terminology, a row is called a tuple, a column name is called an

attribute and the table is called a relation. A domain is a set of atomic values and is

usually allocated a name such that it can be referenced. An atomic value is a value

which is indivisible. A data type and/or format is also specified per domain. Examples

of acceptable domains and their data types are given below:

Domain Name

SA Phone no
- -

Salary

Name

Data Type & Format

(ddd)ddd-dddd, d is a decimal digit

float

string[20]

The following rules are strictly enforced by the Relational Model:

• The domain of the column (or attribute) values is a set of Atomic values. This

means that each attribute value is indivisible. i.e. composite and multivalued

attributes are not allowed. This has the disadvantage that structures cannot be

stored directly, they have to be decomposed: This decomposition leads to_ a loss of

semantic information .

• A relation is defined as a set of tuples. Mathematically, elements of a set have no

order among them. Hence tuples do not form an ordered set.

• A tuple however, is defined as an ordered list of 'n' values where 'n' is the degree

of a relation.

• A relation is defined as a set of tuples. By definition, all elements of a set are

distinct. ·Hence, all tuples in a relation must also be distinct. This means that no

two tuples in a relation can have the same values for all their attributes .

21

•

•

•

•

•

The relational model is based on mathematically precise concepts. This means that

relational algebra can be used to define operations on the data in a declarative way.

The ability to use mathematics on this model enables the implementation of declarative

query languages and the automatic optimisation of such queries. This ability, together

with the models inherent simplicity, has been one of the main reasons for its wide

support and acceptance across the industry.

2.8 Weaknesses of the Relational Model

The great strength of the relational model is its basis in formal theory, that of predicate

logic. This is what makes it possible to have a relationally complete5
, declarative query

language.

This formal basis of the relational model also allows automatic optimisation of queries

and rigorous normalisation theory to be applied.

Although currently the relational data model predominates this market, there are

instances were this model cannot be applied. Some of its shortcomings are given

below. [GRAHAM, 91]

2.8.1 Normalisation

Normalisation is a process during which relation schemas are decomposed by breaking

up their attributes into smaller relations schemas which possess desirable properties .

This decomposition ensures that certain update anomalies and data redundancy is

avoided.

5 A language that can express all of the safe tuple calculus or equivalently, relational
algebra operations, is said to be relationally complete. [ULLMAN, 88]

22

•

•

•

•

•

The problem, however, is that normalisation is driven by computational or logic

considerations rather than the structure of the application, The end-result often does

not resemble the real world and the semantics and structure of the data is lost.

2.8.2 Integrity and Business Rules

The relational model usually provides two integrity rules:

• Entity Integrity: No primary key may include an attribute which may take null as a

value.

• Referential Integrity: A tuple in one relation that refers to another relation must

refer to an existing tuple in the relation.

Business rules are statements such as

If (employee has over five years service) then

(award extra day leave)

Most relational DBMS's today have provision for stating entity and referential integrity

rules.

Business rules, however, have to be coded using SQL or the host language. This

makes understanding and changing of these rules difficult.

2.8.3 Null Values

Null values in tuples present difficulty in interpretation. A null can be taken to mean

either,

• the value is not applicable to a particular tuple, or

• the value has not been supplied .

23

•

•

•

•

•

The above is as a result of the relational model formal basis. Formal relational theory

cannot deal easily with null values if this value form part of the Primary Key.

2.8.4 Complex Objects

The first normal form forbids the storage of complex objects. Hence abstract data

types (i.e. lists, trees etc.) cannot be represented directly by the relational model and

have to be decomposed into individual atomic values. Semantic information, such as

inheritance hierarchy, is therefore lost

An example of this decomposition is given in figure 2.3

The figure represents an aggregation (which is a 'part-of association) of Motor Vehicle

parts.

The usage of 'tables' to represent the data, results in a loss of semantic information. i.e .

there is no way that the aggregation can be derived directly from the tables. Hence,

applications usually depend on the use of a richer model, such as the Entity­

Relationship conceptual model, to capture the original semantic information.

[ELMASRI, 89]

24

•

•

•

•

•

Motor Vehicl

Engine Body

Fuel Ignition Transmitio

Decomposition into Relational Tables:

ENGINE[Part_ No, Price, ...]

FUEL[Part_No, Price, ...]

TRANSMITION[Part_No, Price, ...]

Figure 2.3 - Decomposition of Aggregate Association into Relational Tables

2.8.5 Recursive Queries

Another limitation of the relational model, is that recursive queries cannot be handled.

A recursive query is a query about relationships that an entity has with itself For

example in the Employee/Manager relationship shown below:

El\1PLOYEES[Name, Manager]

it is impossible to ask, in one query, for all employees who are managers of a particular

employee, at all levels in the hierarchy .

25

•

•

•

•

•

2.8.6 Identity

In a relational table, all tuples must be distinct. In cases where the possibility exists for

duplicate tuples, another unique attribute must be defined to provide this tuple

umqueness.

For example, in the EMPLOYEE(Name, Manager) relation, if two employees have the

same name, then employee Identification Numbers must be given in order to satisfy the

relational model's needs. (even if such numbers are not required by the organisation)

Systems based on the relational model are called 'Value Oriented' since identification is

based purely on the value of the attributes. [ULLMAN, 88]

In contrast, Object Oriented Systems are not 'Value-Oriented', since object identity is

inherent to the object and is not based on the 'state' of the object i.e. not based on the

value of its attributes .

Hence, systems based on the relational model might appear less natural, since artificial

attributes have to be attached to their tables to make them conform to the relational

model's requirements.

2.8. 7 Impedance Mismatch

As mentioned in the sections above, a host language is often used together with the

DBMS in order to provide more computational power to the application than is

normally available by the declarative query language .

This secondary language leads to a few problems collectively referred to as the

'impedance mismatch6
'.

6 The term 'impedance mismatch' is borrowed from electrical engineering and refers to
the problem of terminating transmission lines with the same impedance of the line .

26

•

•

•

•

•

There are two type of impedance mismatch as shown below [PATON, 96]:

• Data Type Mismatch

The data types stored in the database are not directly supported by the

programming language. Hence transformations are required by all data that has to

be both stored by the database and manipulated by the host language.

The host language cannot support strong type checking, since it does not support

the data type of the DBMS.

• Evaluation Strategy Mismatch

Database query languages act on sets of tuples, whereas host languages act on one

record at a time.

Hence, when a retrieval is requested by the host language, a set of tuples will be

returned. This set is then stored by the system such that the host language can

process it one record at a time. This process leads to a degradation of efficiency .

2.9 Conclusions

Most data intensive applications are developed using a DBMS together with a host

language.

The relational DBMS continues to predominate this market since its inception during

the late 1970's. The main strengths of this data model is its simplicity and its

mathematical basis, which enables the implementation and use of declarative query

languages.

The relational model, however, has two major weakness in that it cannot represent

complex objects directly and it introduces an impedance mismatch between the

database and the host language .

27

•

•

•

•

•

The chapters that follow expand on the above issues and present alternative DBMS' s

that have been developed to eliminate the weaknesses of the classical data models .

28

•

•

•

•

•

3. MODERN DATABASE APPLICATIONS

3.1 Introduction

The classical DBMS's described in chapter 2 were designed to fulfil the need of the

business community with important but limited capability applications. Applications

such as pay-roll systems, employee databases and store systems have been successfully

developed using commercially available relational databases.

The common characteristics of these commercial applications are that they have large

amounts of data to be stored, but the required operations to be performed are relatively

simple. In such database systems, insertion, deletion and retrieval, together with the

simple data queries provided by a declarative DML, is all that is required.

There are however applications that are distinct from the above mentioned ones in the

following ways:

• Applications that require large amounts of complex (but structured) data.

• Applications that require complex database queries and manipulations.

Examples of the above are:

• Computer Aided Design, Engineering and Manufacture (CAD, CAE & CAM)

• Very Large Scale Integration (VLSI) Circuits Design e.g. design of

microprocessors.

• Multi-Media Applications

• Central Repository for Software Engineering Environments.

In the systems mentioned above, current classical database technology has been found

to be limited and in most cases, inappropriate to use .

29

•

•

•

•

•

This chapter presents two examples of complex data intensive applications, that of

multimedia and CAD/CAE. Alternative data models developed to address such

applications are described in the chapters that follow.

3.2 Compound 'Multimedia' Document Storage

Figure 3. 1 is an example of a compound document which, in this case, is a

memorandum sent interactively to someone using multimedia technology. [KIM, 93]

The document consists of many objects including sound-clips, visual images and text.

Figure 3 .2 is an aggregation hierarchy that models the document.

30

•

•

•

•

•

MEMORANDUM

TO : John Smith

FROM : Errol White

SUBJECT : Meeting on Database Strategy

Please note that there will be a meeting on 14/8/94 at l 4h00 to discuss the

'future database strategy' presentation to management.

Click here to view the video clip that I have made : 0

Click her to view the graphic slides made by Jane: 0

Regards,

Errol.

Figure 3.1 - A Compound Document

Figure 3.2 - Class Hierarchy of a Compound Document

31

•

•

•

•

•

Storing this data in a relational database, will necessitate the decomposition and hence

the loss of semantic information. i.e. The semantic meaning of the hierarchical

aggregation will be lost.

Although the images and sound clips can be stored in a relational database as 'Blob'

(Binary Large Objects) fields, it will be impossible for someone to edit and modify

these images. This is because a 'Blob' field can only store an image in binary 'pixel'

format. The image can never be decomposed into lines segment , as it was originally,

and hence cannot be edited.

3.3 DBMS Requirements for Engineering Applications

A large multi-disciplinary engineering project will involve a group of engineers

working co-operatively on complex designs. [AHMED, 92]

Sophisticated CAD/CAE tools, running on distributed workstations, are typically used

in such projects, in order to handle the complexity and to improve the quality and

productivity of the team.

The designers and engineers in such a project will require to closely interact amongst

themselves and dynamically share design data amongst themselves as well as with

outside contractors.

Such design tools necessitate complex data modelling and handling capabilities which

cannot be found in the 'classical' DBMS .

The DBMS features required for such tools or environments are listed below:

32

•

•

•

•

•

• Complex Information Modelling Capabilities

•

•

•

Engineering data representation is complex because of the complexity of the

physical systems that have to be modelled and designed.

Semantic Schema Design

Large database schemas must reflect and preserve the semantics and hierarchy

of the original design data.

Dynamic Schema Evolution

Engineering design applications require constant and frequent modifications to

the structure of the data. This necessitates the on-line schema modification

capability. [AHMED, 92]

Rigorous Constraint Management

Due to the size and complexity of engineering databases, consistency of data

state must be maintained by enforcing rigorous design constraints as the data

evolves.

For example, in positioning of equipment in a 3-dimensional space, the system

must check if clashes with other equipment exist.

• Efficient Management of Large Volumes of Data

Engineering design applications are highly data intensive and hence require

efficient management of data .

In addition, management efficiency is very critical in interactive, high-resolution

graphic based CAD transactions.

Relational databases have proven to be Very slow for such applications .

33

•

•

•

• Data Versioning

•

Data must also be versionable so that different versions coexist in the database

and data updates do not result in the overwriting of old data.

Interclient Communications

Designers need to be aware of each others design state. This prevents repetition

and inconsistent designs.

Facilities and communication protocols must hence be provided and supported

by the system.

For example, someone that is designing the civil work for the plant's building

needs to know whether the mechanical engineers have finalised their selection

arid placing of equipment.

• Computationally Complete Database Programming Language

Engineering applications require complex mathematical transformations. These

cannot be done using SQL.

Ideally, the database language must be computationally complete in order to

avoid the 'impedance mismatch'. i.e. combination of two languages, host and

database.

• Compatibility, Extensibility and Integration

• Such an engineering environment will necessitate the integration of many tools

and facilities. The DBMS will hence have to be flexible, extensible and have the

capability of integrating many foreign systems.

•

This could be accomplished by having a standard public interface to its data and

facilities .

34

•

•

•

•

•

From the above, it can be concluded that the 'classical' DBMS systems cannot meet the

requirements of engineering applications.

Recently, 4th Generation DBMS's have evolved to address such needs. These systems

are described in the sections that follow .

3.4 Conclusions

The classical relational DBMS cannot meet the demands of complex data intensive

applications, such as multimedia and engineering applications presented in this chapter.

These applications require the direct representation of complex data whereas the

relational model will normalise the data into flat tables. The structure of this data will

not, therefore, be directly represented .

Fourth generation DBMS's have evolved to address such needs .

35

•

•

•

•

•

4. DATABASE PROGRAMMING LANGUAGES

4. 1 Introduction

Traditionally, applications that required the handling and storing of large amounts of

data tended to be developed using a database system, such as a relational database

management system (DBMS) and a programming language.

The use of a programming language was necessary because the computational power

available in the traditional DBMS' s was not sufficient to handle complex data

computation and processing.

As mentioned in chapter 2, this has led to what is known as the 'impedance mismatch7
'

between programming language and database management systems .

Attempts to alleviate the above mismatch problem has led to the following approaches

[PATON, 96]:

• Extend the relational model such that more complex data and computation can be

handled without the need of an external programming language. Examples of this

approach is the proposed extended SQL model and query language.

• Develop a programming language that can handle both the database needs of the

application as well as the computational needs. These languages aim to fully and

transparently integrate the computational power of a programming language with

the database requirements of a DBMS. These languages are called 'Database

Programming Languages'.

There is no single universally accepted approach to the implementation of such

languages, but the sections that follow expand on some of the issues of the

implementation and usage of such languages.

7 See section 2.8.7 for the definition of this term .

36

•

•

•

•

•

4.2 Database Programming Languages

The requirements of a database language are as follows [PATON, 96]:

• It must increase the computational power of the typical database manipulation

language, such as SQL. This language should avoid the need of using separate

programming environments for the database and computational needs of the

application, thus avoiding the impedance mismatch problem .

• It must provide a richer data model than the relational model such that complex data

structures can be represented without the need of disassembling them into atomic

entities.

Current research in this direction has led to the following database language

developments:

• Deductive Database Systems

In these systems, the logic programming paradigm is combined with the relational

data model.

The database can store facts and rules using 1st order logic, which can then be used

to derive new information.

These systems, which were developed mainly from the programming language

Prolog, have the following advantages [PATON, 96]:

• They are a natural extension to the relational model.

• They are founded on a sound theoretical model which is an extension of the

relational data model.

• They can represent and manipulate knowledge and data in a natural way.

• Functional Database Systems

In these systems, the functional programming paradigm is used together with either

the relational or the object oriented data models .

37

•

•

•

•

•

These systems have the following benefits as a result of their functional

programming paradigm:

• Ease of reasoning.

• Freedom from a detailed execution order.

• Freedom from side-effects.

• Persistent Programming Language

These are programming languages that support mechanisms that allow all data types

defined by the language to be stored directly on disk.

Hence, programs do not have to use an external database system to access data i.e.

there is no impedance mismatch.

The data structures available are more complex than the ones provided by the

relational model.

The imperative programming paradigm is usually implemented.

• Object Oriented Database Systems

These are usually persistent programming languages that support the object oriented

programming paradigm.

Richer data structures and hierarchies can be directly implemented and stored on

disk with no need for data model translation .

The sections that follow expand on the principles of both persistent programming

languages and object oriented databases .

38

•

•

•

•

•

4.3 Persistent Programming Languages

Traditional programming languages, such as C, C++ and Pascal , have been developed

with an aim to provide elegant structures and computational features. Programming

paradigms such as Structured Programming and Object Orientation have been

developed specifically to enable efficient representation of the problem domains to be

solved .

The elegance of the above mentioned paradigms diminishes when the problem domain

requires the long-term storage of data to a device such as a hard-disk. Such persistent

data requirement must be implemented either by using a file system or an external

DBMS.

A language that supports both DBMS features and computational features of an

accepted programming paradigm seamlessly is called a Persistent Programming

Language. [PATON,96]

The desirable features of such languages are presented below. [PATON,96]

4.3.1 General Principles

The following are some general guidelines used in the design of programming

languages[PATON, 96] [SEBESTA,93]:

• Principle of Correspondence

This states that the ways in which named objects are introduced should be the same

everywhere.

• Principle of Abstraction

Abstraction means the ability to define and then use complicated structures or

operations in ways that allow many of the details to be ignored.

• Principle of Data-Type Completeness

39

•

•

•

•

•

This states that every data type should have the same rules for manipulation, with

no exceptions.

4.3.2 Representing the Persistent Data

In a data intensive application, the need often arises to treat two types of data as

follows:

• transient data

This data ceases to exist once the program is out of execution scope.

• persistent data

This data will have to be kept on a non-volatile media, such as a disk, for further

use beyond the current execution.

Traditionally the representation and implementation of persistent data was achieved

by using data models and DBMS's whereas type systems and host programming

languages were used to handle the temporary data. This implied that the programmer

had to continually convert between the two data representation systems.

Database Programming Languages aim to avoid this difference by having only one

representation within the language. Hence the real-world data is represented using the

same data model whether it is persistent or transient.

Some of the desirable data representation features of such languages are as follows:

• Rich support for complex data structures·

• Strong Typing

• The possibility of user-requested run-time type checking i.e. support for variant data

types .

40

•

•

•

•

•

4.3.3 Computational Features

Some of the desirable computational features that a persistent programming language

should have are:

• The language should be computational complete. i.e. be able to compute

expressions of any complexity.

• Support for functions and/or subprograms.

4.3.4 Data Storage Features

The following are the preferred features of data persistence:

• The same data structure should be used for both the transient and persistent data.

• The type constraints of a value should be retained and not violated whether the data

is persistent or transient.

• The same identifier (or name) should be retained throughout the lifecycle of a

persistent or transient data element.

• It should be possible to make any data type persistent. This is the principle of

orthogonal persistence.

4.3.5 Methods of Providing Persistence

The following methods of providing data persistence in a language can be used:

• File Persistence

Persistent values are simply written in a disk file.

• Session Persistence

All the values in a program are saved to disk at the end of the program execution

and read back at the beginning of execution.

This presents the following disadvantages:

41

•

•

•

•

•

• Usually it is not required for all data values to be persistent. Hence the

technique is not space efficient.

• It is also impossible to save or load values to and from the disk incrementally.

Again this results in inefficient use of both memory and persistent store.

• Concurrent access to data is also not possible.

• Orthogonal Persistence

This allows the incremental saving and loading of data elements to the persistence

store, thus greatly enhancing the space efficiency of both the persistent store and the

system memory.

This feature can be provided in a language in the following ways:

• By variable Declaration e.g.:

persist int x;

• By an explicit language operator e.g.:

save x;

• By identifying a structure that can hold many elements as persistent. Data

values entered in this structure become persistent. The structure will be

traversed by the system in order to extract and save all elements. This is called

persistence by reachability.

4.4 Object Oriented Databases

Object Oriented Databases are usually persistent programming languages that support

the object oriented paradigm .

42

•

•

•

•

•

They can be implemented by using the following techniques:

• Extend an existing Programming Language

Both C++ and Smalltalk have been used to implement persistent objects. Usually

classes or frameworks are created which are then inherited by the objects that need

to be persistent.

• Create a new language

A completely new language can be created to provide both object oriented

programming and persistent storage.

Chapter 6 describes the ODBMS in more detail and chapter 7 presents techniques for

implementing persistent objects in the existing programming language C++.

4.5 Conclusions

Database Programming Languages have been developed as an attempt to eliminate the

impedance mismatch and the complex data representation problems experienced by

classical relational DBMSs.

These languages integrate fully the computational power of a programming language

with the data processing features of a DBMS.

Although there is no single universally accepted. database programming language, the

following systems have been devefoped:

• Deductive Database Systems

• Functional Database Systems

• Persistent Programming Languages

• Object Oriented Database Systems

43

•

•

•

•

•

5. THE OBJECT ORIENTED TECHNOLOGY

5. 1 Introduction

The Object Oriented Technology has steadily been gaining acceptance in the

commercial and industrial software industries. Some of the object oriented

technologies that are emerging are as follows:

• Object Oriented Programming Languages

• Compound Documents

• Component Software

• Object Oriented Database Management Systems (ODBMS)

The methodology used for the analysis and design of object oriented systems is

applicable to both the design of applications that are data intensive (using ODBMS and

object persistence) and those that are not.

The most common programming languages are C++ and Smalltalk.

Compound Documents have been introduced recently with the aim of integrating

different types of documents into a single document. For example, a report file could

contain a number of different types of documents, such as graphs, images and other

multi-media data. Prior to this technology, a number of different files had to be kept,

one for each type of document.

Component Software has the main aim of code re-use. For example, a number of

applications, such as spread-sheet, word-processor etc., could share one spelling

correction application. The alternative would be for each of the applications to embed

their own spelling checker.

Both compound documents and component software have to use persistent object

storage, which is a central part of an ODBMS .

44

•

•

•

•

•

The above technologies are presented in more detail in the sections that follow.

5.2 Historical Perspective

5.2.1 The Generation of Programming Languages

As we look back into the history of software engineering, two significant trends

emerge:

• The shift in focus from small program development to large and complex

program requirements.

• The evolution of high-level Programming Languages.

The evolution of languages and their abstraction mechanisms can be categorised as

follows [BOOCH, 94]:

1st Generation Languages (1954-58)

FORTRAN I math expression

ALGOL 58 math expression

2nd Generation Languages (1959-61)

FORTRAN II subroutines

ALGOL 60

COBOL

LISP

data types

data description, file handling

list processing, pointers

3rd Generation Languages (1962-70)

PL/l . FORTRAN+ ALGOL+ COBOL

PASCAL

SIMULA

simple successor to ALGOL

classes, data abstraction

The level and kind of abstraction was changed in each generation .

45

•

•

•

•

•

First Generation languages were designed to solve mathematical problems. Hence the

kind of abstraction was mathematical. The languages therefore represented a step

- closer to the problem space and a step further away from the computing machine.

In the second generation languages, algorithmic abstraction was introduced. This

presented a step closer to the problem domain, as it allowed programmers to 'tell' the

machine what to do. (e.g. read records first, sort them and print them)

As larger and more complex programs begun to emerge, data became more complex to

manipulate. This prompted the conception of data abstraction languages, such as

PASCAL. Hence the third generation oflanguages again moved the software a step

closer to the problem domain.

The drive for new generations of languages has therefore been mainly as an aid to the

programmer for managing complexity .

5.2.2 Emergence of Object Oriented Languages

The term 'object' emerged almost independently and simultaneously in the 1970s, to

refer to notions that were different in their appearance but mutually related. [BOOCH,

94]

The language SIMULA 67 was the first language to be based on the fundamental ideas

of classes and objects.

SMALLT ALK-80, took Simula's object-oriented paradigm to its natural conclusion by

making everything in the language an instance of a class.

What followed then was an emergence of 00 Languages e.g. C++ (derived from C)

and ADA.

46

•

•

•

•

•

5.3 The Object Model

Object Oriented Techniques are built upon a sound foundation whose elements are

called the Object Model. The elements of this model are presented in this section.

[BOOCH, 94]

5.3.1 Elements of the Object Model

This Object Oriented Conceptual Model has the following major elements8

[BOOCH,94]:

• Abstraction

• Encapsulation

• Modularity

• Hierarchy & Inheritance

• Classification

The above major elements must be present in the model for it to be called 'object

oriented' .

The following minor elements are useful but not essential to the model. This means

that it is not necessary for a model to support the minor elements for it to be called

'Object Oriented'.

• Typing

• Polymorphism

• Concurrency

• Persistence

·Each of these elements are now described in detail:

8 There is some dispute in the literature about exactly what the minimum characteristics
are of an Object Model. For example, some proponents (eg J.Rumbaugh) argue that
'polymorphism' is an essential property. [RUMBAUGH, 91] [SOMMERVILLE, 89]

47

•

•

•

•

•

• Abstraction

Abstraction is a means that humans use to cope with complexity. For example,

to teach a person how to drive a car, it is not necessary to refer to the car as a

collection of machinery (e.g. carburettor, cylinder etc.). Rather the car is

introduced as containing the essential objects for driving i.e. brake pedal, gas

pedal, gears etc .

Hence a simplified representation is abstracted from a complex object.

An abstraction focuses on the relevant view of an object and so serves to

separate an object's essential behaviour from its implementation.

• Encapsulation

Encapsulation is used to hide the abstraction's implementation from its users.

The benefits of encapsulation is that users of the abstraction do not depend on

its internal details (i.e. abstraction implementation details are hidden). Changes

to these details will then not affect other users. This also prevents a program

from becoming so interdependent such that a small change has massive ripple

effects.

• Modularity

This is a process of dividing the program into separate compilable sections.

These sections (or modules) should be cohesive and loosely coupled. -

• Hierarchy and Inheritance

Hierarchy is used to manage large systems containing a large amount of

abstractions. A set of abstraction often form a hierarchy and by a process of

classification, the abstractions can be grouped in hierarchical way.

Hence hierarchy is a ranking or ordering of abstractions .

48

The property of Inheritance enables subclasses to inherit behaviour and

e attributes from their parent classes.

• Classification

A Class is a collection of objects which share common behaviour and attributes.

Classification refers to the ability of first declaring object classes and then

e instantiating these classes into objects.

• Typing

This is the enforcement of the class of an object, such that objects of different

types may not be interchanged.

• Polymorphism

This refers to the ability to use the same message for similar operations. For

example, the same message, 'draw', can be sent to a 'square' and to a 'circle'

e object. Each object will know how to draw itself

•

•

• Concurrency

Concurrency enables the concurrent execution of different objects.

• Persistence

An object with this property continues to exist after its creator ceases to exist

(e.g. exists after the program is terminated)

Persistent objects are used in the implementation of object oriented database

systems, and will be discussed in later sections of this dissertation.

5.3.2 Objects

An object can be any of the following:

• A tangible and/or visible thing

49

•

•

•

•

•

• Something that may be apprehended intellectually

• Something toward which a thought or actions can be directed.

Hence an object is something that has crisply defined boundaries.

A more formal definition of an object is [BOOCH 90]:

• An object has State, Behaviour and Identity

• The structure and behaviour of similar objects are defined in their common class

• The terms instance and object are interchangeable.

The terms used in the above definition are now described in more detail:

• State

The state of the· object describes the object properties and their current value.

For example, a class 'person' could be defined to have the following properties:

•

Name

Address

Age

An object of the above class, if it exists at some time 't', must have values

associated with the above properties. These properties and values together

constitute the State of the Object.

Behaviour

The behaviour of an object is described by how an object acts and reacts, in

terms of its state changes and message passing.

The methods of an object are the operations that clients may perform on that

object.

• Identity

Identity is that property of an object that distinguishes it from other objects .

50

•

•

•

•

•

5.3.3 Classes

Objects get created as belonging to a particular class. By means ofthis mechanism, the

methods of similar objects do not have to be defined every time an object gets created.

For example, in a personnel database system a 'PersonRecord' class can be defined to

hold all the properties and methods required to store and process personnel data. An

object of class 'PersonRecord' then gets created for every employee .

Hence, a Class is a set of objects that share a common structure and a common

behaviour.

A Class has two portions as follows:

• The Interface Portion which provides the outside view of the class. This portion

consists of the method declarations and interface properties applicable to instances

of this class .

• The Implementation Portion which provides the inside view of the class. This

portion contains the hidden implementation of its behaviour.

5.3.4 Class Relationships

Through a process of classification, different classes can be related to each other.

There are two types of relationships as follows:

• Inheritance Relationship

• Using Relationship

'Inheritance relationships' can be used to express generalisations and associations.

'Using Relationships' can be used to express aggregation. These concepts are described

below [ELMASRI, 89]:

• Generalisation

51

•

•

•

•

•

Generalisation is the process of generalising several classes into a higher level

abstract class.

For example, the classes 'CAR' and 'TRACK' are generalisations of the class

'VEHICLE'.

• Association

This is used to associate a class with several independent classes .

• Aggregation

Used for building composite objects from their component objects. e.g. the

classes 'CARBURETTOR', 'CYLINDER', 'RADIATOR' can be aggregated

to the class 'CAR ENGINE'.

Through the above processes, classes can inherit structure and methods from higher

order classes. This means that code does not have to be re-generated for every new

class required .

Hence code re-usability and extensibility is possible in 00 Programs through the use of

inheritance.

5.4 Compound Documents

Compound Document technology transforms the way software applications interact

and appear on the screen. Previously, if users needed to create documents which

contained heterogeneous data such as text, graphic picture~, graphs etc., they first had

to use different applications to generate these different sets of data and then attempt to

·integrate them into a single document. [ADLER, 95]

For example, it was common to first use a graphics package to generate the different

drawings required in the document and then, using an appropriate word-processor, to

integrate these drawings into one document.

52

•

•

•

•

•

Compound Document Technology alleviates these laborious steps by focusing on the

data to be created, rather than the applications required to generate this data. In

essence, a compound document is a container for sharing heterogeneous data. The

mechanisms that manage this integration of data, maintain associations between the

data and the application that created it. This specific application is executed

transparently when the user needs to update the specific data.

The net result, is that the primary document application appears functionally and

seamlessly integrated with all other relevant applications. e.g. if the main application is

a Word-processor, a user can draw and edit figures and charts using transparently a

drawing application.

Multi-Media Drawing
Program Program

" /
Compound
Document

I \
Text Editor Spread

Program Sheet

Figure 5.1- Compound Document

5.5 Component Software

Component Software technology addresses fhe general problem of developing systems

from application elements (components) that were constructed independently by

different developers using different languages, tools and development platforms.

[ADLER, 95] [BETZ, 94]

The aim of this technology is to increase the re-usability of applications. This will result

in the reduction of development time and resources .

53

•

•

•

•

•

As an example of the potential of this technology, a Word-processor development

company might decide to use a Spelling Checker which exists, instead of developing

their own. Component technology will enable this seamless integration between the

different products.

Spelling Checker
~

W ordprocessor
Component Application

I
USER

Figure 5.2 - The use of Component Software

5.6 Distributed Object Computing

Component Software Technology will enable the seamless use and integration of

objects, thereby drastically reducing development costs.

Distributed Object Technology enables the use and integration of component objects

across a network of different application environments and operating systems. This will

enable the sharing of applications across different architectures, operating systems and

geographically remote platforms.

Using the above example of the Word-processor application, the Speller application

can reside anywhere on the network, as shown below:

54

•

•

•

•

•

Speller
Application

I Network

l
juserj W ordprocessing

Application

Figure 5.3 - Distributed Objects

5. 7 Object Oriented Databases

This technology closely resembles the Distributed Component Software technology.

The main difference is that the focus is on the persistent storage and subsequent

retrieval of objects, rather than the sharing of application objects .

Object Oriented Databases aim to solve the problems experienced by Relational

databases in the representation and storage of complex data, such as that found in

engineering applications (CAD, CAE etc.)

5.8 Conclusion

Object Oriented Technology can provide the means to handle large, comple:l_(software

projects, in a rhore efficient and productive way .

This technology, although very.young and relatively immature, ·is continuing to gam

wide acceptance in the software industry.

Object Oriented Programming Languages (Smalltalk and especially C++) are readily

available on many hardware platforms and international standards for these are in the

process of being introduced .

55

•

•

•

•

•

The chapters that follow provide a more detailed discussion of ODBMS's and the

implementation of object persistence within the C++ programming language .

56

•

•

•

•

•

6. OBJECT ORIENTED DATABASE MANAGEMENT SYSTEMS

6.1 Introduction

As mentioned in chapter 2, during the past three decades the database technology has

evolved from being pure file oriented to relational.

The relational model currently predominates, but there are certain applications that

cannot use it effectively.

These applications include CAD, CAE, knowledge based systems, multimedia systems,

graphic applications, statistical and scientific modelling and analysis programs.

All the above difficult database applications have one thing in common; they all

demand the representation of complex structured data. The relational and other

classical database models cannot express this demanded complexity.

The developers of these difficult applications, had therefore to resort to using their

own developed systems in order to save and manage their data. This resulted in

incompatibility, inefficiency and low productivity of such applications9
.

Hence, a new breed of databases have recently emerged to try and solve some of the

problems of existing database technologies. These new databases have their roots in

both object ,oriented concepts (analysis, design and programming) as well as classical

database technology .

The Object Oriented Database Technology is still very young and is in the process of

accelerated growth.

9 This is similar to the state of commercial database applications somewhere in the
l 960's prior to the development of the 'classic' standard data models .

57

•

•

•

•

•

The sections that follow first present the characteristics and salient features of this

technology. A taxonomy of the different data model is then given, followed by some

ODBMS implementation issues.

The current strengths and weaknesses of this technology are then presented as a

conclusion .

6.2 Characteristics of ODBMS

In this section, the essential features of Object Oriented Database Management

Systems will be presented. [ZDONIK, 90] [BROWN, 91]

The predominant requirement of an ODBMS is that it must be a Database

Management System and as such it must provide the essential features and

functionality expected of such systems .

Secondly, it must support the concepts of Object Orientation, as defined elsewhere in

this dissertation.

The features and characteristics of a DBMS are given in chapter 2 of this dissertation.

They are repeated below, as a summary and with particular reference to ODBMS's.

6.2.1 Essential Features

To qualify as a DBMS an ODBMS must have tlie following minimum features:

• Model and Language:

A DBMS has a non-trivial model and language. That is, the DBMS understands

some structure on the data it contains and provides a language for manipulating

this structured data. This structure is often called 'data model'.

• Relationships

58

•

•

•

•

•

A DBMS can represent relationships between entities, the relationships can be

named, and the language can query this relationship.

• Permanence

A DBMS provides a persistent and stable store.

Persistence, means that data can exist and is accessible past the end of the

process that created it.

Stable, means that data has some resilience in the face of process failure.

• Sharing

A DBMS permits data to be shared amongst many users. This sharing does not

have to be concurrent.

• Arbitrary Size

The address space must not be constrained by limitations in the physical

processor or the amount of processor memory.

6.2.2 Frequent Features

These features are not considered essential, but are highly desirable.

• Integrity Constraints

A DBMS can help to ensure the correctness and consistency of the data it

contains by enforcing integrity constraints. These are statements that must

always be true for data items in the database.

• Access Control

This provides security in terms of unauthorised database access .

59

•

•

•

•

•

• Querying

A declarative query language is often provided such that easy access to data

can be give to many users. In relational databases, the SQL query language is

often given.

• Report and Form Management

These are tools which are used to generate reports .

• Distribution

Distributed databases have been developed such that data can be distributed

over multiple computers, which could be geographically distant. In general, this

provides improved availability, security and performance.

6.2.3 The ODBMS Threshold and Reference Models

The unique characteristics of an ODBMS are now presented with the aid of three

models. [ZDONIK, 90]

The Threshold Model can be used as a yardstick to determine whether a DBMS can be

considered to be Object Oriented. i.e. it presents the essential features of ODBMS's.

Although the Threshold Model presents the minimum features, a system with only

these features would not be very useful. The Reference Model therefore is a proposal

for a more 'complete' ODBMS.

These models are briefly presented below : ·

6.2.3.1 The Threshold Model

As mentioned above, this model presents the minimum features required of a DBMS in

order to be considered Object Oriented.

These features are:

60

•

•

•

•

•

• It must provide database functionality. This means it must comply with the

essential DBMS features listed above.

•

•
•

The database must support Object Identity .

The database must provide encapsulation .

It must support objects with complex state. The state of an object may refer to

other objects, which in tum may have incoming references from elsewhere .

Inheritance is not considered to be essential, although it is a very useful property.

6.2.3.2 The Reference Model

A system satisfying only the threshold minimum requirements can be called ODBMS,

but will not be able to give good support for most of the complex database

applications .

The proposed reference model given below, attempts to define some more necessary

properties which will enable an ODBMS to be applied successfully in many

applications.

By definition, the Reference Model must include all the features of the Threshold

Model including the following:

• Structured Representation of Objects

•

The objects and their inheritance or class hierarchy must be represented and

stored persistently

Polymorphism

The actual method executed at run-time for a message expression will depend

on the type of the receiver of the message.

• Collections

61

•

•

•

•

•

The model has a collection of built-in types such as lists, sets and arrays .

• Query Language

Ideally, this should be a declarative language. Since the object model, unlike the

relational, does not have a mathematical basis, this feature is difficult to

implement.

6.2.4 Other Threshold Models

Since the ODBMS is a recently conceived technology, complete standards are not

available but many are proposed. The Object Management Group (OMG) has

recently proposed an Object Model which could be used as a standard. This model is

called the OMG Object Model and is presented in chapter 7. [OMG, 93] [CATTELL,

94]

Other proposed 'threshold models' that depict the minimum requirements for an

ODBMS have been published in a paper during 1989 called "The ODBMS System

Manifesto". [ATKINSON, 89]

6.3 Taxonomy of Database Data Models

6.3.1 Overview

All DBMS's are based on a specific data model. This data model provides the

necessary abstraction and data independence .

.
.Many data models have emerged to fulfil the need of a DBMS. These models can be

categorised into two major groups (see Figure 6.1) [JOSEPH, 91]:

• Value-Oriented and

• Object Oriented

62

•

•

•

•

•

The sections that follow expand on these categories and specifically on the Object

Oriented one.

Data Models

Value Oriented Object Based

Logic

Extended
Relational

I Relational I

Figure 6.1 - A Taxonomy of Data Models

6.3.2 Value Oriented Models

Entity-Relatfonship

Semantic

Object Oriented

Query Based

Persistent Language
Based

!New Language I

Existing Language

In value-oriented data models, the relationships _between objects are stored implicitly

by comparison of values of attributes. [KIM, 90]

For example in the following relationships:

EMPLOYEE[id, name, .. ,department] and

DEPARTMENT[department, name,]

a 'match' is-made by.comparing the value of attribute 'department' in the two

relationships .

63

•

•

•

•

•

The Relational Model is an example of 'value-oriented' models. Other models include

'extended relational' and 'Logic'.

6.3.3 Object-Based Data Models

These data models have an inherent 'entity' or 'object' identity and hence relationships

between two entities can be explicitly defined. e.g. in the above example, each

employee object could reference the department object directly.

Object Based models can be further categorised as follows:

• Entity Relationship

• Semantic

• Object Oriented

6.3.4 Object Oriented Data Models

These models can be further split into two types:

• Persistent Language Based .

The main objective of these models is to provide seamless integration with the

application's programming language used. In order to achieve this integration, both

the application language and the data model should use the same data types.

The above can be achieved by either creating a new language with persistent object

capability or augment an existing language with persistent storage capability .

An example or'the first method, that of creating a new language, is

TRELLIS/OWL. [SCHAFFERT, 86]

The method of providing object persistence by extending an existing language is

more popular and has been used in the following commercial products:

• ZEITGEIST, which is based on Lisp. [FORD, 88]

64

•

•

•

•

•

• GEMSTONE, which is based on Smalltalk. [GUPTA, 91]

• ONTOS, which is based on C++. [GUPTA,91]

• 02, which is based on C. [DEUX, 90]

• Query Language Based.

In this approach, no attempt is made to provide a seamless integration with the

application programming language. Instead, a set-oriented query language is

provided to retrieve and update database objects.

The main advantage of this approach is the provision of a declarative query

language to perform database interactions. The disadvantage of this method is the

'impedance mismatch' obtained between application and database software.

ODBMS which use the above approach are IRIS [FISHMAN,87] and

POSTGRES. [STONEBRAKER, 90]

Recent ODBMS developments have incorporated the advantages of both schemes by

providing a declarative query language within a persistent language-based ODBMS.

6.4 Object Programming and Database Management

One of the aspects of Object Technology is the way it blurs the boundaries between

software disciplines within the SDLC. [LOOMIS, 93.5]

Object Technology is based on the use of a common, unified model in all phases of the

SDLC. An object model developed during tlie analysis phase, is re-used in the. design

and implementation phases.

This synergy provided by the common model is one of the reasons that object

technology can enhance and improve the efficiency of software development.

65

• Object Database Management Systems (ODBMS) have their roots in both

- programming languages and database management systems. Programmers and

database developers have different views and expectations ofthis technology. Some of

these expectations are presented below: [LOOMIS, 93.5]

6.4.1 Programming Language Perspective

From the programmers perspective, the most important feature of an ODBMS is the

provision of integrated support for persistent object storage.

In a programming language such as C++, objects are created and destroyed in

memory. This means that the lifetime of an object cannot be extended beyond the

lifetime of the program. (unless they are stored on some other media)

The ODBMS provides the means of extending the life of objects beyond the

termination of the program. Such 'permanent' objects are called 'persistent'.

There are several ways of achieving object persistent and they include the following:

• The use of files

• The use of a relational DBMS

• The use of Object Databases

1. File Systems

This solution requires the programmer to write code which transforms the objects to

structures that can be written into files.

In addition, code must also be written to read these files and transform them back into

objects. (See figure 6.2)

66

•

•

•

•

•

'\
Convert File to

' FILE / Object /

SYSTEM

/ Convert Object
/

' to File '
Objects in Memory

Figure 6.2 - Object Persistence using Files

The disadvantage of this persistence method is the extra code and hence cost and

inefficiency that has to be implemented.

2. Relational Database

This persistence method involves the conversion of the object structure into a structure

which is supported by the relational model. (see figure 6.3)

This is not a trivial task, as the relational model is far more constrained than the object

model. Object have to be 'flattened' and normalised. This transformation will result in

the loss of semantic information captured by the object model i.e. hierarchy etc.

"
Convert Relation

' Relational ,
to Object /

Database

Management

System
/

Convert Object
/

' to Relations '
Objects in Memory

Figure 6.3 - Object Persistence using a Relational DBMS

67

•

•

•

•

•

3. Object Database

In this implementation, the programmer does not have to write any transformation

code. This is because the ODBMS can understand the in-memory object & class

structure.

The ODBMS uses the same representation as the programming language. Hence, not

having to deal with SQL and object transformation to other structures, the productivity

of the programmer is increased.

In addition, the developed system is bound to have less errors since errors resulting

from transformations have been eliminated.

A further advantage of the Object Database approach is that type-checking can be

performed across the system boundaries, whereas in the previous two methods, type

information is not available once transformed and hence cannot by verified by the

system .

4. Persistence with Seamless Integration

In order to enhance the use of persistent objects, an ODBMS interface must fit

seamlessly into the programming language environment.

This means that to the programmer, the ODBMS must be 'invisible'.

ODBMS's achieve this tight integration by using the language of the enviroilill.ent as

their sole interface. Hence Smalltalk is used as an interface to ODBMS's based on

Smaltalk and C++ for databases based on c++.

This is in contrast to Relational Databases, which use SQL for data access and another

procedural language, such as Cobol, as a host language.

This integration of object programming language and ODBMS's enables all objects to

be treated with a single syntax, a unified model and one type/class system .

68

•

•

•

•

•

6.4.2 The Database Manager's Perspective

Database Managers usually deal with data abstractions only. Hence the most important

feature they like to see in ODBMS's is the support of Object Models rather than

Relational Models .

In addition, the database manager's perspective imposes the following requirements on

ODBMS's:

• Concurrency Control

• Transaction Management

• Schema Management and Evolution

• Recovery

• Query Processing

• Access Control

• Database Administration Tools

Hence the database perspective, emphasises the need of ODBMS's to have the

behaviour, functionality and resources of classical databases.

6.5 Persistent Database Architectures

6.5.1 Overview

There are two main methods of implementing object persistence [JOSEPH, 91]:

• Persistent Memory or

• Storage Server

Persistent Memory ODBMS' s use virtual memory to store all the objects and rely on

this memory to remain indefinitely in the execution environment of the application.

This type of ODBMS will not be discusses further in this dissertation .

69

•

•

•

•

•

Storage Servers, which are also called '2-level storage environments', physically

manage and store objects on secondary non-volatile storage facilities such as hard­

disks.

If a network and a separate environment is used to execute the ODBMS, then the

facility is also called 'client-server' , where the database is the server and the

application software is the client.

6.5.2 Categories of Storage Servers

Storage Servers can be classified according to the following criteria[JOSEPH, 91]

[WILCOX, 94]:

• Execution of Object Methods - client or server.

• Type oflnteractions - Navigation or Query

• Unit of Transfer and Control

• Level of Semantics associated with Objects managed.

The following are the main categories of storage servers:

• Passive Servers which do not execute the object's methods directly.

• Active Servers which can execute the object's methods directly

The basic functions of these types of storage servers are depicted in figure 6.4 .

• Typeless Page Server

These servers manipulate pages of memory where instances of objects reside,·

instead of manipulating objects directly. In this way, they tend to be more efficient

in their transfer speed.

They do not understand any of the object's semantics and hence cannot execute

methods directly .

70

•

•

•

•

•

• Typeless Object Servers

These servers can manipulate objects directly. However, they only understand a

minimum of the objects semantics, that of:

• Object Identity (OID)

• The fact that an object has a type

• Inter-Object Relationships using embedded OID's

This servers cannot execute the object's methods or access states directly.

• Class Based Servers

These servers, in addition to object manipulation, can interpret and use the object's

state to provide additional services i.e. queries.

In order to address queries, they are usually built on top of relational databases .

• Type Based Servers

These servers have the ability to manipulating individual objects and to execute the

object's methods.

This ability of accessing and executing methods allows the server to perform query

processing and optimisation .

71

•

•

•

•

•

lcLIENTI

Execute

Method

lcLIENTI

Execute

I Request Object I

Deliver

Passive Server

I Request Object I

Deliver

I SERVER I

Instance

Data

I SERVER I

Instance
Data

and

jRequest Method j Methods

I Deliver Method I
I Passive Server with Method Storage I

lcLIENTI Request Object
& Method

I Deliver Result I

Active Server

lsERVERI

Instance

Data&

Execute

Figure 6.4 - Passive & Active Object Servers [WILCOX, 94]

6.6 Conclusions - ODBMS Strengths and Weaknesses

ODBMS's have the following Strengths and Weaknesses with respect to the 'Classical'

DBMS's. [KIM, 93]

72

•

•

•

•

•

6.6.1 Strengths

• An object can encapsulate both state and behaviour.

In contrast, a tuple in a relational database cannot hold 'behaviour'.

• Inheritance and classification can be used to express the structure of complex

data .

The relational model allows only 'flat' relationships, which completely eliminate

data semantics.

• The domain of an attribute of a class may be any class. This allows complex

objects to be represented in a similar manner to real-life objects.

In relational databases, the domain of an attribute is restricted by definition, to

a small set of primitive types and an attribute may have only one value .

• An ODBMS's language is the same as the host language.

In contrast, the declarative query language of a relational database (SQL) is

different to the host (procedural) language used. This is called an 'impedance

mismatch'.

Since the language used in ODBMS is homogeneous, the efficiency, quality and

integrity of the software generated increases .

6.6.2 Weaknesses

• The ODBMS's are not based on formal mathematical theories or models.

In contrast, the relational model is based on formal mathematical principles.

This· enables the use of declarative query languages that can be formally proved

to be correct and can be optimised .

73

•

•

•

•

•

• The ODBMS's lack standardisation and are immature. (This is currently been

rectified by the efforts of the Object Management Group. [OMG, 93])

The relational model has been established as an industry standard and has

matured to the degree whereby few experts will dispute its power .

• Object Models are inherently more complex than the simple table relational

models.

Their complexity, however, allows the representation of semantic information,

which the relational model cannot represent.

Current indications are that the state of this technology and in particular the

weaknesses, could change in the near future. Some of the emerging ODBMS standards

are presented in the chapter that follows .

74

•

•

•

•

•

7. EMERGING ODBMS STANDARDS

7.1 Overview

One of the major weaknesses of Object Databases is the non-existence of standards. In

order to rectify this deficiency, a number of authorities and organisations have

undertaken the creation and proliferation of standards. Some of these standards are

listed below:

Table 1 - Object Technology Standards

Abbreviati Standard Organisation Description

on

COM Common Object Microsoft Storage of Object

Model

CO RB A Common Object Object Distributed Object

Request Broker Management Standard

Group (OMG)

OLE Object Linking and Microsoft Component &

Embedding Compound Document

Software

ODMG-93 · Object Database Object Standard of Object

Management Group-93 Database Database Management

Management Systems

Group &

OMG

SOM System Object Model IBM Object Model

CORBA compliant

OMG Object Model OMG Object Model, modified

Model proposed by OMG byODMG

75

•

•

•

•

•

7.2 The Object Management Group

The lack of standards in the Object Oriented Database Technology is one of the factors

that retard its acceptance in the industry .

The Object Data Management Group was formed as an independent organisation to

propose and promote ODBMS standards. [OMG, 93] [LOOMIS, 93.6]

This organisation has recently published a proposal for a standard to be adopted. This

standard is called the 'OMG Object Model'.

The OMG Object model specifies a standard model for the semantics of database

objects .

This standard model is important because it determines the built-in semantics that the

ODBMS understands. Adopting a standard model ensures that the design of class

libraries and applications that use the model are portable across the various ODBMS

products.

The Object Database Management Group (ODMG), which is a working committee of

the OMG, was formed during the year 1991 with the exclusive purpose ~f accelerating

the development of ODBMS standards. They subsequent succeeded in publishing a

standard during the year 1993. This standard is called ODBMS-93 and some of the

·details are presented below .

76

•

•

•

•

•

7.3 The ODMG-93 STANDARD

7 .3.1 Overview

This standard was developed by the Object Database Management Group (ODMG) ,

which was formed for the exclusive purpose of developing a standard for Object

Database Management Systems (ODBMS). [CATTELL, 94]

7 .3.2 Architecture

The major components of the standard are as follows:

• Object Model

The OMG Object Model was used as a basis for developing this Object Model.

• Object Definition Language (ODL)

ODL is used to define the schema of the database. This language is

implementation independent and can be transported into any programming

language or development platform. Currently only C++ and Smalltalk bindings

are supported.

• Object Query Language (OQL)

•

This is a declarative language used for querying and updating database objects.

The relational SQL standard was used as a basis for developing this language.

Objed Manipulation Language (OML)

C++ and Smalltalk is available as an OML. The OML is in fact the language

used for programming the application, hence offering a seamless integration of

database and application programming.

7 .3.3 Development

Figure 7.1 outlines the development process of an application using this database to

manage the persistent storage and retrieval of objects. [CATTELL, 94]

77

•

•

•

•

•

First the programmer writes declarations for the database schema (both data and

interface) and a source program for the application implementation.

The source program can be written in C++ or Smalltalk and the database schema in

ODL.

The declarations and source code are then compiled and linked with the ODBMS to

produce a running application.

Schema Declaration in Application Source in C++

ODL or Smalltalk

•
ODL Preprocessor C++ or Smalltalk

Compiler

ODBMS Linker
Runtime

•• '
DATABASE RUNNING

APPLICATION

Figure 7.1- Developing Applications with ODBMS [CATTELL, 94]

7.3.4 Basic Elements of the Object Model

The ODMG Object Model defines the following basic semantic elements:

• Objects

• Types

: these are the basic modelling primitives.

: these are categories of objects

78

•

•

•

•

•

• Behaviour : the set of operations that can be performed on objects

• State : these are the values objects carry for a set of properties

Two basic kinds of objects are distinguished:

• Mutable Objects and

• Immutable Objects

The value of a Mutable Object's property may change. In contrast, an Immutable

Object's property value cannot change.

Immutable Objects are also called 'literals' and include objects of type integer, float,

character etc.

Mutable Objects are also referred to as simply 'objects' .

When it is necessary to refer to both kinds of objects, then the term 'denotable object'

is used.

All denotable objects have unique, immutable identity.

7.3.5 Object Lifetime

Every object has a lifetime which must be specified at creation time. The lifetime of

the object cannot be changed.

The intent of the Object Model is to enable object programmers to deal with all objects

in a manner consistent with the programming language conventions, regardless of the

object's lifetime.

Three lifetimes are recognised by the object model as follows:

79

•

•

•

• Coterminus with Procedure

This object exists only as long as the procedure that created it exists.

• Coterminus with Process

The object exists as long as the program or process that created it exists .

• Coterminus with Database

The object's storage is allocated from the segment, page or cluster managed by the

ODBMS runtime.

7.3.6 Object Properties and Operations

The following properties are defined on type 'Object':

• has name? which is either True or False

• names a set of strings

• type the name of the object's type/class

Type 'object' also has the following operations:

• create

This operations takes a list of property_ name, property_ value pairs and

allocates storage for the representation of the object.

• delete

e Deletes an object and frees the storage used by the representation.

• exists?

Tests for an objects existence

• same as?

Tests to see if two names refer to the same object.

•
80

•

•

•

•

•

7.4 Conclusions

The wide acceptance of ODBMS standards by the industry is necessary for the success

and proliferation of this technology. The OMG has been responsible for pursuing and

supporting this task.

A working committee of the OMG, named ODMG, has published an ODBMS

standard which is called the ODBMS-93 .

81

•

•

•

•

•

8. PERSISTENT OBJECTS IN C++

8. 1 Introduction

As discussed in chapter 6, one of the ways of achieving object persistence is to extend

an existing object oriented language by means of pre-defined classes .

The C++ language does not support the ability to store objects created at run-time

directly to a persistent store. The only mechanism supported is that of serialising data

and storing it to disk.

The sections that follow describe different methods of extending the C++ language,

such that object persistence can be achieved. The choice of method will depend on

what needs to be achieved .

8.2 Extensions to C++ for Object Persistence

8.2.1 Overview

The method used will depend on the complexity of the objects to be saved. For

example, if the objects contain only simple data types e.g. integers and characters, then

the existing mechanisms will suffice, if however, the objects contain pointers to other

objects, then more complex mechanisms have to be developed, as shown in the

sections below.

8.2.2 Objects with Simple Data Structures

If the objects that are required to be made persistent contain only simple data

structures, then persistence can be achieved simply by serialising and storing the

object's data members to disk. [SHILLING, 94] [LAURENT, 93] [STEVENS, 94]

Simple data structures are integers, float values and characters .

82

•

•

•

•

•

As an example, in the following class:

class simpleClass

};

public:

int getNumb();

int setNumb(int);

private:

int Numb;

simpleClass simpleObject;

In the 'simpleClass' above, persistence can be achieved by saving the private data

member 'Numb' to disk before the program is terminated. The member can then be

restored when the program is re-executed .

This disk 'read/write' operation can be further simplified if a base class (called

'persist') can be created which holds the relevant member functions. Any class that

requires to be persistent can then inherit from this 'persist' class. For example:

class simpleClass public: persist

{ .. }

The object can then be written or read from disk as follows:

simpleObject.read(); or

simpleObject. write() .

83

•

•

•

•

•

8.2.3 Persistent Complex Objects

Complexities arise in saving and restoring objects when these objects contain complex

structures and pointers.

The types of problems that can be experienced are as follows:

• If the object contains a list of data values, then when this objects is read back, the

memory space required needs to be dynamically obtained from the operating

system, prior to re-initialisation of its data values.

• If the object contains pointers to other objects, then when the object is read from

the store, the pointers need to be re-initialised such that they point to the relevant

existing objects. Hence the system must provide pointer persistence as well as data

persistence.

The various techniques of dealing with complex object are described

below.[SHILLING, 94][LAURENT, 95]

• Flatten Structure

This is a simple technique which can be used to avoid the problems mentioned

above.

The complex structure is 'flattened' such that it can be serialised and saved in the

usual manner onto disk. For example, consider the following object which contains

an embedded object.

class complex

{

};

private:

int

int

r
'

84

•

•

•

class comObjectClass

{

private:

complex cNumber;

float area;

} ;

comObjectClass complexObject;

11 embedded object of type complex

11 float value

The object complexObject can be saved to disk as follows:

J !class name

"comObjectClass" area "complex"

The embedded object of class

'complex' has been 'flattened'

In the example above, the class name is also saved such that the system can identify

and instantiate each class during the 'reading' phase.

• Include the Object's size.

If data from the heap needs to be saved, then the memory must be re-allocated

prior to performing a disk 'read' operation. This can be achieved by saving an

additional integer value· which indicated the number of bytes that are required to be

allocated. As example follows:

class big

{

private:

85

•

•

•

•

•

int Numb;

char* pHeap; //pointer to heap

};

big BigObject;

The object 'BigObject' contains data which has been dynamically allocated form

the heap.

Saving of this data can be achieved as follows:

1
I size of data that follows in bytes

'big' I Numb I 256 I <--- 256 bytes of data ----->

When the system reads this back from disk, the correct memory allocation can be

achieved before the object is re-initialised .

• The Object Identifier (OID) Approach

This technique can be used to handle pointer persistence. An OID is a system

generated number that identifies each persistent object in the system uniquely .

[VADAPARTY, 95]

In this approach, the system handles pointers to persistent objects differently to

ordinary 'transient' pointers. When a persistent pointer is de-referenced, the system

checks to see if this object exists. If the object referenced does not exist, then it is

explicitly called from the persistent store. (see figure 8 .1)

86

•

•

•

•

•

• The Virtual Memory Mapping Approach

In this approach, the system treats all pointers as if they are transient. If the object

does not exist in the system's memory pool, then a hardware interrupt is generated.

The interrupt routine will then be responsible for loading that object to the memory

pool.

Although the two persistent pointer methods above achieve the same objectives, their

implementation is different. The OID approach is implemented using the C++ language

features whereas the Virtual Memory Mapping approach depends on Operating

System support, and hence is not fully transportable to other systems.

The OID approach is described in more detail below.

8.2.4 Pointer Persistence using the OID Approach

As described briefly above, this is a technique that can be used to achieve pointer

persistence.[V ADAPARTY, 95]

Before the details of this approach are presented, the requirements and objectives of

pointer persistence are first given:

• When objects that contain pointers to other objects are recalled back from store, the

system must initialise these pointers such that they point to the correct o?jects.

• If the referenced objects do not exist, then the system must take appropriate action.

i.e. either inform the user appropriately oi: load the missing objects back into the

memory pool. (also called object pool below)

The following 'employee-department' relationship highlights these requirements:

87

•

•

•

•

•

Name: John · I DepName: Finance

I Dep I

I

;

I Name: Peter I """ !Pointers to objects of ty
I Dep: I

pe 'department'

In the example above, two 'employee' objects are referencing the same 'department'

object.

The issues to be considered with respect to the above example are the following:

• Flattening the structure ofJohn and Peter will necessitate the saving of the

department object 'Finance' twice. This introduces problems with updating the

department object, that existed prior to the conception of databases .

• Saving the actual pointer contained in John and Peter is meaningless, since pointers

refer to physical memory addresses that are different for every run-time

environment. i.e. there is no guarantee that the next time this program will run, the

physical addresses will be the same.

• How do we guarantee that the object 'Finance' exists prior to calling member

function from John and Peter?

The method explained below addresses all the above issues .

1. The Object Identifier (OID)

Each persistent object is given a unique identifier, normally called the OID. This

identifier is created by the system. (see figure 8.1) [V ADAPARTY, 95]

88

•

•

•

•

•

(employee)

oid 3
1 name: john

salary: 1000
depOid: oid2

HANDLE TABLE

OID pHANDLE

oid1
oid2
oid3

DISK TABLE

OID DiskPtr

oid1
oid2

.oid3

-~

HANDLE 1

HANDLE 2

HANDLE 3

I/)
I/)

~ Q)
() 0)

co~
ts 9
Q) I/)
0

Object Pool (objects in memory)

(department)

oid1
finance

(department)

oid2
name: planning

(department)

oid3
name: marketing

Object can be Swapped in/
out of Object Pool to make

space

FIGURE 8.1 PERSISTENT POINTERS USING THE 010 APPROACH

89

•

•

•

•

•

Once the OID is created, objects can use it to reference other objects. e.g. for the

employee-department relationship above, an OID can be used in the employee object

to reference a department object, instead of using a physical address.

The physical addresses to the actual object in the object pool can then be obtained

indirectly by the use of the 'Handle Table' or the 'Disk Table', depending on whether

the object is in the memory pool or in the persistent store.

The two tables created by the system are described below.

2. The Handle Table

This contains a pointer to a handle per OID that exists in the system. If the object does

not exist, then the pointer value is a 'null' .

The 'handle to the Object' contains the following additional information:

• A pointer to the object that exists in the memory space. (also called object pool)

• Additional information such as a reference count.

3. The Disk Table

This contains the physical disk address of each object in the persistent store. It is used

to access an object directly from store .

4. The Object Handle

Each persistent object that has been called into the object pool by the system has a

handle. This handle is used by the system for the following reasons:

• Managing the Object Pool

90

•

•

•

•

•

As objects get called and created from the persistent store, the system's memory

can become congested with no available space for more objects. These will

necessitate the removal of objects that are not currently referenced back into the

persistent store.

Instead of removing the 'handle', however, the physical disk location of the

referenced object is stored as a data member of the handle .

When access to the object is again requested, the system can obtain the physical

location directly, rather than searching the Disk Table.

• Reference Counting

The handle keeps track of how many users are currently accessing this object. If the

reference count is zero and memory from the pool is required, then this object is

picked for transfer back to the persistent store .

The operation of the OID approach is then as follows:

Instead of saving direct pointers to object that need to be referenced, the system saves

instead the OID of that object.

For example, in fig 8.1, the 'employee' object references the department by means

storing the OID of that department in its private data .

When the pointed object needs to be accessed, first the 'Handle Table' is referenced to

find the relevant pointer to the handle, and then the pointer to the actual object,

existing in the object pool, is located.

If the pointer to the handle is nil, then a further search is made in the Disk Table. This

will obtain the physical address of the object in the persistent store. The object is then

loaded into the object pool for access and manipulation .

91

•

•

•

•

•

8.3 Persistence in C++ - Strengths and Weaknesses

This section has described a number of techniques in introducing object persistence in

the C++ programming language.

Using an existing language, such as C++, for object persistence has the following

strengths and weaknesses: [PATON, 96]

1. Strengths

• Existing programs can use persistent object techniques without major

modifications.

• Programs and persistent data can be organised using the same language, hence

avoiding the 'impedance mismatch' problem described in other sections ofthis

dissertation.

• The low-level nature of such systems can result in very efficient code, especially

for time-critical and real-time applications .

2. Weaknesses

• There is no support for 'query-languages', hence no access to data by non­

programmers.

• The methods used, as is evident from the above sections, is low-level and hence

time consuming for programmers to implement.

• There is limited support for data independence, since it is up to the programmer

to define how the data will be physically stored on disk.

From the above, it is evident that using persistent objects in C++ is applicable for

applications that contain embedded databases which can be completely hidden from the

user and where data access must be fast and efficient.

Since the language provides very limited support for implementing persistent objects, it

is highly advisable to implement and adhere to international standards. The Object

Database Management Group (ODMG) has developed such a standard, which. is

called ODMG-93 .

92

•

•

•

•

•

8.4 The Employee-Department Application

8.4.1 Overview

This is a simple application developed to illustrate the technique of using object

persistence in storing objects directly to disk. The application was developed using the

programming language C++ .

First the generic classes 'persist' and 'dbase' are developed to support object

persistence.

The employee-department relationship is implemented using pointers to objects.

Pointer persistence is implemented using system generated Object Identifiers (OID's).

The Borland C++ Version 4.0 running on the Windows-95 environment was used,

although any advanced implementation of C++ can be used to compile the source

code, provided the compiler supports 'run-time type identification' (RTTI).

8.4.2 The Employee-Department Relationship

The relationship is implemented using a pointer from the employee to the department

that the employee is working in. This can be shown as follows:

name: John
salary: 1000 ;Jde
Dept :

.

1
l•mployee objects I

partment object

DepName: Finance
TelNo: 453455

name: Peter
salary: 2000
Dept:

93

•

•

•

•

•

The relationship is implemented by means of one pointer in each 'employee' object.

The implementation of these persistent pointers is described in the sections that follow.

8.4.3 The Persist Class

All classes in the application that require to be persistent must be derived from the pre­

defined 'persist' class.(see figure 8.4)

This class defines the following virtual functions 10
:

virtual void write(op stream&)

virtual void read(ipstream&)

virtual char* classN ame()

The above pure virtual functions need to be re-defined on every child class. The

function must perform the following:

write() This function must serialise the object's data members and store them

to disk.

read() This function must first read the data members from disk and then

initialise the object's data appropriately.

className() This function returns that object's class.

The read/write operations are performed by overloading the operators<< and>>.

[LAURENT,93]

The persist class holds a number, which is called the OID, as a private data

member.[V ADAPARTY, 95]

The OID can be read by any external function but no object has access to it except the

'dbase' object which is defined as a 'friend' to the persist class. A class defined as a

10 An explanation of C++ virtual functions can be found in the following reference:
[LIPPMAN, 91]

94

•

•

•

•

•

friend can gain access to the private members, whereas any other class has no access .

Hence the class 'dbase' can access all the data members of the 'persist' class.

8.4.4 The Dbase Class

The following are the most important functions defined for this class:

openDbase()

saveDbase()

opens the database with the given file name (DOS file name)

and reads all the objects in it. The objects are then created

dynamically.

Saves all the persistent objects to disk.

insertObj(persist*) Inserts an object of type persist to the database.

getPointer() Returns a pointer to the object with the given OID .

The private data members are as follows:

fileName:

maxObjects

persist* pPObj[]

this is the name of the DOS file used for the database

this is an integer whose value is the number of persistent

objects that currently exist in the object pool (or system

memory)

This is an array of pointers to the class persist that relate the

object's OID to the objects pointer in the object pool.

8.4._5 Implementation of Persistent Pointers

The OID approach is used to implement the persistent pointers in the employee class.

This means that the physical pointer which points to the relevant department object is

replaced with an identifier called OID. (see figure 8.2)

95

•

•
Employee Objects

/ (employee)

oid 4
name: john
salary: 1000
depOid: 2

/ (employee)

oid 5

• name: peter
salary: 2000
depOid: 1

/ (employee)

oid 6
name: hein
salary: 3000
depOid: 3

/

•

•

Department Obj

(department)

Dbase Object - oid 1
~

name: finance
Array 'pPObjO' in class Dbase telNo: 1234

010 POINTER

-~ 1 x1 (department)

~ 2 x2 - oid 2
~

sales name:
,-----__. 3 x3 telNo: 2345

4 x4
(department)

oid 3 -r name: marketing
telNo: 3456

Figure 8.2 Instantiation of the Department and Employee Classes
-Showing how the CID/Pointer table is used to define

relationships

ects

96

•

•

•

•

•

As described in section 8.2.4, a table is used to relate the OID to be referenced with its

physical pointer (i.e. physical address in the object pool)

The technique, however, has been simplified by not implementing 'object handles' and

'disk tables'. Hence no memory optimisation has been implemented and the program

assumes that all objects can reside in memory simultaneously .

The table that relates OID's to addresses is in the generic 'dbase' object and is called

pPObj[].

This is simply an array of pointers to the persistent objects that exist in the object pool.

8.4.6 Physical Storage Structure

The storage structures are shown in figure 8.3. The class name as well as the OID of

the object to be stored is saved on disk prior to saving the object's data members .

The class name and OID is saved automatically be the generic classes 'persist' and

'dbase'. i.e. this is hidden from the programmer.

When the object is read from disk, first the object is created dynamically using the

class name read.

The OID table is then initialised with the physical address of the object crea_ted. The

object's data members are then initialised according to the data read from disk.

I ClassID I OID lNamel DepOid I Salary I ClassID I..

I ClassID I OID I Name I Te!No I ClassID I

Figure 8.3 Employee and Department Object Physical Object Structure

97

•

•

•

•

•

8.4. 7 Running the Application

In order to demonstrate the use of this limited application, a simple menu has been

implemented. (see figure 8.5)

The user must first enter the department data prior to the employee data. When the

user enters the employee's department, the data is rejected if the department object

does not exist. This ensures referential integrity.

Once the data has been entered, the user can save this data for later usage.

Printing the Employee and Department data is also possible. In the example execution,

the object's OID is also printed .

98

•

•

•

•

•

friend:
dbase

public:
OID getOidQ

persist

virtual char* classNameQ
protected:
virtual void write(opstream&)
virtual void read(ipstream&)

private:
OIDoid

I
employee

public:
char* getNameQ
char* getDepartmentO
float getSalaryQ
void setName(char *)
void setDepartment(char *)
void setSalary(float)
char* classNameQ

protected:
void write(opstream&)
void read(ipstream&)

private:
char name[MAXNAME]
OID depOid
float salary

' I

i
I

department

public:
char* getNameQ
char* getTelNoO

void setName(char *)
void setTelNo(char *)
void setSalary(float)
char* classNameQ

protected:
void write(opstream&)
void read(ipstream&)

private:
char name[MAXNAME]
int telNo (dbase)

t
I I- - - - - - - - ..-l.. - - - - - - - -I l ______ ..J. _______ I

I I I I
I

((empl
1

oyee)) ((employee))
I

((depa~ment)) ((department))

dbase

public:
·int openDbaseQ
int saveDbaseQ ·
int insertObj(persist *)
int deleteObjQ

i'4
int deleteAllO
persist* getObject(int n)

----~----~

int getMaxObjQ
persist* getPointer(OID)

private:
char fileName[14]
int maxObjects
persist *pPObj[MAXOBJ]

Figure 8.4 Employee and Department Application 99

•

•

•

•

•

ii C-\Cll5'15\SIM\E MPL2 EXE l!!lliJ Ef ii r. \COS95\SIM\EMPL2 EXE l!!lliJEf
1. Enter Depart1J1ents
2. Enter E111ployees
3. Saue Database
4. Read Database
5. Print E111ployees
6. Print Depart1J1ent
16. Exit
6

DEPARTMENTS
Ha"e DID

finance 1
sales 2

111arketing 3

MAIN MEHU
1. Enter Depart-.ents
2. Enter Employees
3. saue Database
4. Read Database
5. Print Employees
6. Print Depart1J1ent
10. Exit

TelHo
1231'
231JS
3.lt56

~ 1. Enter Depart111ents

)

2. Enter E"ployees
3. Saue Database
4. Read Database
5. Print E"ployees
6. Print Depart111ent
10. Exit
5

EMPLOYEES
Hallle
john

peter
hein

MAIH MEHU

OID
2
1
3

1. Enter Depart111ents
2. Enter E"ployees
3. Saue Database
4. Read Database
5. Print E"ployees
6. Print Depart..-nt
10. Exit

Dep"t
sales

finance
marketing

Figure 8.5 The Employee Application

Salary
1006
2006
3006

)

100

•

•

•

•

•

8.5 The Real-Time Simulation Application

8.5.1 Overview

An area where persistent objects and ODBMS's are useful is in engineering

application. In these application, the data is more complicated than the typical

commercial applications, such as the 'employee-department' example given above .

An example of such an application is that of real-time simulators. Here the objects

represent complex structures such as conveyors, vibratory feeders and silos of specific

geometric shape.

The application described below is a real-time simulator oflirnited scope.

8.5.2 The Simulator

The simulator implemented can be used to simulate the real-time operation of a typical

materials handling plant, such as a coal supply system in a colliery.

The following pieces of equipment (objects of the simulation) can be created:

• Source

This object can supply material at a fixed rate. Flow rates are expressed as kg/sec

but any unit can be used.

• Silo
.

Only a cylindrical silo is implemented, but by using inheritance, any other shape can

be easily implemented by deriving it from the base class 'silo'.

The silo has the following attributes:

level : which is dynamically determined by the simulator

diameter: which must be supplied by the user

height : which must be supplied by the user

101

•

•

•

•

•

overflow : a Boolean attribute indicating an overflow condition

• Feeder

A feeder feeds material at a rate determined mathematically by the simulation

The feeder has the following attributes:

maxFlow : the maximum possible flowrate

: this determines the linear characteristic of the controller slope

set point : the setpoint of the controller determines the final desired feedrate

The actual feedrate is calculated as follows:

Feed rate

Setpoint

Ft

T

Ft is the calculated feedrate at time T.

• Conveyor

Time

The conveyor has the following user defined attributes:

speed : the fixed speed of the conveyor in [mis]

length : the length of the conveyor in [m]

The system calculates the delay and the feedrate at the end of the conveyor relative

to time. This is implemented in the simulator by means of a shift register, which is a

private array in its class.

8.5.3 The Simulator Implementation

A simple menu has been implemented as a user interface in order to demonstrate the

application. (see figure 8.7 and 8.10)

102

•

•

•

•

•

First the user enters the objects to be simulated. The order of entry determines the

linear flow of material. It is assumed the material flows from one device to the other.

e.g. that a feeder feeds only one conveyor.

The above limitation implies that the relationships between the objects can be simply

determined at run-time by following the sequence. Hence no complex relationships

need be saved persistently on disk.

Hence, the application is simplified by not implementing OID's as in the employee­

department application presented in the previous section.

The persist and dbase classes are used in a similar fashion to the one described in the

previous section.

The class of its object is also saved on disk followed by the object's data members that

need to be persistently stored. (see figure 8.6 and 8.9)

I feeder I coke I 100.0 I 20.0 I 0.5 I silo silo a 0 10.0 I 50.0 I. ...

Figure 8.6 Structure of disk file after the feeder and silo objects are saved

103

•

•

•

•

•

~ e

•
height

diameter
silo_a r level

setpoint~
slope ~

feeder_a ~

c51 (J
conv_a

speed flow out

length

Figure 8. 7 Simulation of a Coke Supply System

8.5.4 Conclusion

The simulator application represents a set of applications that can benefit from this

persistent object technology. The data cannot easily be converted to relational tables,

especially when the application is expanded to more complex objects by using

inheritance hierarchies.

Furthermore, there is no need for non-programmers to query the database, as is the

case with most commercial applications.

This is therefore a data intensive application, which requires the persistent storage of

· complex objects that do not have to be directly queried by the user.

For a large plant, the simulator might be required to handle thousands of objects wlrlch

implies that efficiency in both memory space and speed is required.

From the above it is evident that applications of this category are particularly

applicable to this persistent object technology .

104

•

•

•

•

•

I persist

virtual void write(opstream&)
virtual void read(ipstream&)
virtual char *classNameQ

- .,.

simObject

virtual float getFinO
virtual float getFoutQ
virtual void cycleO
virtual void setPin(simObject *)
virtual void setPout(simObject *)
virtual void output(opstream&)
void setName(char *)
void getName(char *)
virtual void write(opstream&)
virtual void read(ipstream&)
virtual void *classNameQ

char pName[MAXNAMELEN]
float fin
float tout
simObject *pObjln
simObject *pObjOut

i
I

Silo

float getLevelO
void setlnitlevel(float)
void setDiameter(float)

1 void setHeight(float)

~
float getDiameterQ
int is<?\,'~rfle>vvin-90 ____ _
void setPin(simObject *)
void setPout(simObject *)
float getFinQ
float getFoutQ
void cycleO
void output(ostream&)
void write(opstream&)
void read(ipstream&)

I char *classNameQ

1 float level
float diameter
float height
int overflow

I
feeder

void setMaxFlow(float)
void setSlope(float)
void setlnitFlow(float)
void setSetPoint(float)

void setPin(simObject*)
void setPout(simObject*)
float getFinO
float getFoutQ
void cycleO
void output(ostream&)
void_ write(opstream&)
void read(ipstream&) -
char *classNameQ

float maxFlow
float slope
float setpoint

dbase

int openDbaseQ
int saveDbaseQ
int insertObj(persist *)
int deleteObjQ
int deleteAllO
persist *getObject(int n)
int getMaxObjQ

char fileName[14]
int maxObjects
persist *pPObj[MAXOBJ]

I I
conveyor source

conveyor(speed, length)
float getSpeedQ
float getLengthO

void setPin(simObject*)
void setPout(simObject*)
float getFinO
float getFoutQ
void cycleO
void output(ostream&)
void write(opstream&)
void read(ipstream&)
char *classNameO

float speed
float length
float shiftReg[MAXLEN]
int delay

void setFeedRate(float)

,_void-setF>ln(simob]eci*> - -
void setPout(simObject*)
float getFinO
float getFoutQ
_void cycleO
void output(ostream&)
void write(opstream&)
void read(ipstr~am&)

char *classNameQ -

Figure 8.9 The Simulation Application Object Model

105

• The Objects currently in Simulation are:

name : coke
feedrate: 100.00

name : silo a
level : 0.00
diamt : 10. 00
height: 50.00

• name : feeder a
maxFlow: 100.00
slope: 20.00
setpoint: 0.50

name : conv a
speed : 1. 00
delay: 10
length: 10.00

Simulation Results:

Time Name Fin Fout Level

1 coke 0.00 100.00
1 silo a 100.00 0.00 1.27

• 1 feeder a 20.00 20.00
1 conv a 20.00 0.00

2 coke 0.00 100.00
2 silo a 100.00 20.00 2.29
2 feeder a 40.00 40.00
2 conv_a 40.00 0.00

3 coke 0.00 100.00
3 silo a 100.00 40.00 3.06
3 feeder a 60.00 60.00
3 conv a 60.00 0.00

4 coke 0.00 100.00
4 silo_a 100.00 60.00 3.57
4 feeder_a 40.00 40.00
4 conv_a 40.00 0.00

• 5 coke 0.00 100.00
5 silo_a ·100.00 40.00 433
5 feeder a 60.00 60.00
5 conv a 60.00 0.00

6 coke 0.00 100.00
6 silo_a 100.00 60.00 4.84
6 feeder a 40.00 40.00
6 conv a 40.00 0.00

106

•

• 7 coke 0.00 100.00
7 silo a I00.00 40.00 5.61
7 feeder a 60:00 60.00
7 conv a 60.00 0.00
8 coke 0.00 I00.00
8 silo a I00.00 60.00 6.11
8 feeder a 40.00 40.00
8 conv a 40.00 0.00

9 coke 0.00 I00.00

• 9 silo a I00.00 40.00 6.88
9 feeder a 60.00 60.00
9 conv a 60.00 0.00

IO coke 0.00 I00.00
IO silo a I00.00 60.00 7.39
IO feeder a 40.00 40.00
IO conv a 40.00 20.00

Figure 8.10 Running the Simulation

•

•

I07

•

•

•

•

•

•

8.6 Implementation of Persistent Objects in C++ - Conclusions

This chapter described various techniques which can be used to add object persistence

in the programming language C++.

If the objects to be saved contain only simple data types, then this data can simply be

saved by using the language standard serialisation facility. If, however, the objects

contain pointers or other objects, then more complex techniques must be used.

The Object Identifier (OID) approach, which is presented in this chapter, can be used

to save objects that contain pointers. Two examples are given in this chapter which

demonstrate the OID technique.

The examples help to demonstrate that object persistence can be obtained by extending

the C++ language using classes. These techniques are, however, only applicable for the

use of programmers and not for the general database user. In contrast to the relational

DBMS, no facilities are available for the average user to interrogate the database using

declarative query languages .

108

•

•

•

•

•

9. CONCLUSIONS

Object Oriented Database Management Systems and Persistent Programming

Languages, although in their infancy, will in the future play a major role in data

intensive software applications .

One major weakness of ODBMS technology, is the lack of internationally accepted

standards. There is evidence that this will, in the near future, be eliminated by the

acceptance of the work performed by organisations such as the Object Management

Group (OMG).

Object and pointer persistence can be introduced in the existing and well supported

programming language C++. Although this method has the advantage of using a well

known and accepted programming language, it has the disadvantage, however, that the

data management support is low-level. This means that non-programmers cannot

manipulate or interrogate the data directly.

Chapter 8 presented two complete examples which illustrate the support of persistent

objects in C++, by developing classes that help to augment the language. These

examples also show that such techniques are only applicable for the use of

programmers. Relational DBMS' s, however, can be interrogated by the non­

programmer by means of external views and query languages.

Hence, the use of object persistence using C++ methods is applicable only to data

intensive applications that require to store complex data structures, in the form of

objects, and require the computational power of C++. If, in addition, users also require

access to this data, then such access must be provided by means of a specially

developed user interface .

109

•
[ADLER, 95]

• [AHMED, 92]

[ATKINSON,89]

[ATWOOD, 91]

•
[BERTINO, 93]

[BETZ, 94]

[BLAIR, 94]

•
[BOOCH, 94]

[BROWN, 91]

•

10. REFERENCES

Emerging Standards for Component Software. RM Adler.

IEEE Computer, V28,N3, March 1995.

Object Oriented Database Management Systems for

Engineering: A Comparison, Ahmed, JOOP, V3 N3, June

1992.

Object-Oriented Database System Manifesto. Proceedings of

the First International Conference on Deductive and Object­

Oriented Databases, Kyoto, Japan, December 1989.

Why the OMG Object Request Broker should be good news

for Object Databases Atwood T, JOOP, V3 N4, July 1991.

Object Oriented Database Systems. Concepts & Architectures.

Bertino E. Addison Wesley , 1993.

Inter-Operable Objects. M.Betz. Dr Dobb's Journal, No220,

Oct 1994.

Integrated Support for·Complex Objects in a Distrib~ted

Multimedia Design Environment Blair G. JOOP, VS Nl,

January 1994.

Object-Oriented Analysis and Design. 2nd Edition. G.Booch.

The Benjamin/Cummings Publishing Co., 1994.

Object Oriented Databases. AW Brown. McGrawhill Book

Co., 1991.

110

• [CATTELL, 94]

[CHENG, 93]

• [DATE, 86]

[DEEN, 85]

[DEUX, 90]

• [ELMASRI, 89]

[FISHMAN, 87]

[FORD, 88]

•
[GRAHAM, 91]

[GUPTA, 91]

•

The Object Database Standard: ODMG-93. Releasel.1. Cattell

RGB, Atwood T, Duhl J, Ferran G, Loomis M, Wade D,

Morgan Kaufinan Publishers, 1994.

Distributed Object Database Management Systems. Cheng

WK. JOOP, V4 N2, March 1993 .

An Introduction to Database Systems. 4th Edition. CJ Date.

Addison-Wesley Publishing Co., 1986.

Principles and Practice of Database Systems. S.M.Deen.

Mackmillan, 1985.

The Story of02. O.Deux. IEEE Transactions on Knowledge

Data Engineering, Vol 2, March 1990 .

Fundamentals of Database Systems. 4th Edition. Elmasri

R.Benjamin Cumming, 1989.

IRIS: An Object Oriented Database Management System.

D.Fishman, D.Beech, H.Cate. ACM Trans. Office Information

Systems vol 5. January 1987.

Zeitgeist: Database Support of Object-Oriented Programming.

S.Ford, J.Joseph. Proc. Second International Workshop on

Object-Oriented Database Systems. 1988.

Object Oriented Methods. I.Graham. Addison-Wesley. 1991.

Object Oriented Databases with Applications to CASE,

Networks and VLSI CAD Gupta R .Prentice Hall, 1991 .

111

•

•

•

•

•

[JOSEPH, 91]

[KAPPEL, 94]

Object Oriented Databases: Design and Implementation. N

Joseph, SM Thatte, CW Thompson, DL Wells. Proc of IEEE,

V79 Nl, January 1991.

TriGS: Making a Passive OODBS active. Kappel G .JOOP, V5

N4, July 1994 .

[KHOSHAFIAN, 93] Object Oriented Databases. Khoshafian S. John Wiley &

Sons,1993.

[KIM,90]

[KIM, 93]

[LAURENT, 93]

[LIPPMAN, 91]

[LOOMIS, 90.5]

[LOOMIS, 90. 7]

[LOOMIS, 90.9]

[LOOMIS, 91.1]

Architectural Issues in Object Oriented Databases. Kim W.

JOOP, Vl N2, March 1990.

Object Oriented Database Systems - Strengths & Weaknesses.

Kim W JOOP, V4 N4, July 1993 .

Persistence in C++. Laurent P.JOOP, V4 N4, October 1993.

C++ Primer, 2nd Edition. SB Lippman. Addison Wesley

Publishing Co.,1991.

ODBMS -The Basics. Loomis MES. JOOP, 5/1/90, Vl, N3,

May 1990.

ODBMS vs Relational. Loomis MES. JOOP, Vl N4, July

1990.

Database Transactions. Loomis MES.JOOP, Vl N5,

September 1990.

More on Transactions. Loomis MES.JOOP, V2 Nl, January

1991 .

112

•
[LOOMIS, 93.2]

[LOOMIS, 93.3]

• [LOOMIS, 93. S]

[LOOMIS, 93.6]

[LOOMIS, 93. 7]

• [LOOMIS,93.10]

[LOOMIS, 94.1]

[LOOMIS, 94.7]

• [MILLER, 91]

[OMG-93]

•

Object Programming & Database Management. Loomis MES.

JOOP, V4 Nl, February 1993.

Distibuted Object Databases. Loomis MES. JOOP, V4 N2,

March 1993 .

Object Programming & Database management - Differences in

Perspective. Loomis MES. JOOP, V4 N2, May 1993.

The ODMG Object Model Loomis MES. JOOP, V4 N3, June

1993.

Object Database Semantics Loomis MES.JOOP, V4 N3, July

1993 .

Making Objects Persistent Loomis MES.JOOP, V4 N4,

October 1993.

Hitting the Relational Wall Loomis MES.JOOP, VS NI,

Janauary 1994.

ODBMS - Myths and Realities Loomis MES.JOOP, VS N4,

July 1994 .

The Active KDL ODBMS & its Application to Simulation

Support. Miller JOOP, V3 N4, July 1991.

A Component Technology for the Future - An OMG White

Paper, OMG Headquarters, 1993 .

113

•

•

•

•

•

[PARSA YE, 89]

[PATON, 96]

Intelligent Databases, Object Oriented, Deductive Hypermedia

Technologies Parsaye K .John Wiley & Sons, 1989.

Database Programming Languages. N.Paton, R.Cooper,

H.Williams, P.Trinder. Prentice Hall, 1996.

[RUMBAUGH, 91] Object-Oriented Modeling and Design. J.Rumbaugh, Prentice­

Hall. 1991.

[SCHAFFERT,86]

[SEBESTA, 93]

[SHILLING, 94]

An Introduction to Trellis/OWL. C. Schaffert, T. Cooper,

B.Bullies. OOPSLA '86 Conference Proc., 1986.

Concepts of Programming Languages. 2nd Edition. RW

Sebesta. The Benjamin/Cummings Publishing Co. 1993.

How to roll your own Persistent Objects in C++ Shilling JJ.

JOOP, VS, N4, July 1994.

[SOMMERVILLE, 89]Software Engineering, 3rd Edition. I.Sommerville. Addison­

Wesley Publishing Company, 1989.

[STEVENS,94] C++ Database Development . 2nd Edition. Stevens AL .MIS

Press, 1994.

[STICKLAND, 94] The guts of an Object Database Strickland H C++ Report,

June 1994.

[STONEBRAKER,90] The Implementation of Postgres. M.Stonebraker, L.Rowe,

M.Hirohama. IEEE Transactions on Knowledge Data

Engineering, Vol 2, March 1990 .

114

•

•

•

•

•

[ULLMAN, 88] Principles of Database and Knowledge Base Systems - Vol 1

Ullman Computer Science Press, 1988.

[V ADAPARTY, 95] Persistent Pointers 1. Kumar Vadaparty. JOOP, V6 N4, July­

August 1995.

[WILCOX, 94]

[ZDONIK, 90]

Object Databases Wilcox J. Dr Dobbs Journal, November

1994.

Readings in ODBMS Zdonik, Morgan Kaufinan Pub., 1990.

115

•

APPENDIX

•

•

•

•

•

•

•

•

•

APPENDIX A - THE EMPLOYEE-DEPARTMENT APPLICATION
SOURCE CODE

/**
* file persistl.h
*
* contains
*
*
* purpose
*
*
*
*
*

persist class
dbase class

This file must be included in the applications
that require persistant objects.

All persistant classes are derived from the 'persist'
class.

*
*

The 'dbase' class provides additional database functionality
ie read,write, insert get objects from disk.

*
* rev 1=>(20/9/95) => created separate .h file
* 2=>(25/9/95) => added macro definitions
* 3=>(1/11/95) =>implemented OID's as an alternative to
* handling persistent pointers
***/
#include <iostream.h>
#include <fstream.h>
#include <string .h> ·

#define MAXCLASSNAME
#define MAXOBJECTS
typedef int

30
30
OID;

/***
*
*
* macro
*
* use
*
*
* x
*
* macro
*
* use
*
*

MACRO DEFINITIONS

PERSIST_OP(X)

macro to define persistent operators
used in derived persistent classes

is replaced with the derived class

PERSIST FRIEND(X)

to define the persistent operators as friends to
the derived persist classes.

* X is replaced with the derived class
........... · · .. *I

#define PERSIST_OP(X) opst:i:eam& operator<<(opstream& os, X *c) \
(return os << (persist*)c;}; \
ipstream& operator>>(ipstream& is, X *&c) \
{ return is>> (persist*)c;}

#define PERSIST FRIEND(X) friend opstream& operator <<(opstream&, X ~);\
friend ipstream& operator >>(ipstream&, X *&)

1/--
class ipstream: public ifstream {}; // persistent streams
class opstream: public ofstream {}; // inherit form iosteams
class dbase;

116

•

•

•

•

•

/***
* class persist
*
*
*

provide·s persistance to objects that inherit from .it

***/
class persist
{

II declare the persistant i/o operators as friends
II such that they can have access to private data members
II of the class
friend ipstream&
friend opstream&
friend dbase; //

operator >>(ipstream&, persist*
operator <<(opstream&, persist*
class dbase can set the objects

&) ;

) ;
oid

public:
OID getOid() {return oid;}
virtual char *className() =O;

protected:
II the following virtual functions
II derived persistant objects.
virtual void write(opstream&) =0;
virtual void read(ipstream&) =O;

private:
OID oid;

//returns OID of object
//returns class name

must be defined for all

//write object to disk
//read object from disk

//holds the OID for all
//persistent objects

} ;
/***
* function create(char *s)
*
* purpose function must be defined by the application
* Its purpose is to create objects according to the
* class name 'className' which is passed as a string .
. *I
persist *create{char *className);

/**
* Persitent Operators
*
* <<
*

this operator will first write the class name to disk
and then the object.

*
*
*
*

To write the object, it calls the polymorpic function
'write(os)' which takes as a parameter a reference
to the output persistent stream.

* >>
*

This operator will read an object from the persistent stream
It first reads the class name

* then it creates an object of that class
* then it reads and initialises the data members of that object.
*
***/
opstream& operator<<(opstream& os, persist *psObj)
{ .

} ;

os << psObj->className();
os << ' ' << psObj·->oid;
psObj->write(os);
return os;

//first write name of class
//then write OID
//then write data members

ipstream& operator>>(ipstream& is, persist *&psObj)
{

char
OID

className[MAXCLASSNAME];
oidRead;

is >> className;
is.get(); is>> oidRead;
is.get{);
psObj = create(className);
psObj->oid = oidRead;
psObj->read{is);

//read class name from.disk
II read objects oid

//create object
//set objects oid
//read data members of object from disk

117

•

•

•

•

•

return is;
} ;

/**
* class dbase ·
*
*
*
*
*
*
*
*
*
*
*

This class is responsible for the general handling of
the database.

It contains member functions to open, read, write, and close
the database.

The database contains an array of pointers to objects,
which is kept as a private data member.
This array defines the objects that exist in the memory space
of the running application.

**/
class dbase
{

public:
dbase(char *fname}; II constructor-> supply file name

int
int

openDbase(};
saveDbase(};

II opens file and reads all records
II save all records to disk

} ;

int
void
void
persist*
int

persist*

private:
char
int
persist

insertObj (persist *pObj};
deleteObj (};

II inserts object in dbase
II deletes last Object

deleteAll (};
getObject(int n};
getMaxObj (}

II deletes all objects
II get object n=l .. last

{return maxobjects;}
getPointer(OID objectOid};

II get number of objects
II get the pointer of object with
II given oid.

fileName[14];
maxObjects;
*pPObj[MAXOBJECTS];

II contains dbase file name
II contains no. of objects
II contains pointers to objects
II that have been read from disk and
II created in the memory space of the
II application.

I*---
* function
*

Constructor

* pa rams fName => the file name to be created
*
* purpose Initialise the database
.. *I
dbase::dbase(char *fName} II constructor
{

} ;

strcpy(fileName, fName};
maxObjects=O;

I*--------~--------------------------------------
* function insertObj
*
*
*
*
*

pa rams

pupose

pObj => pointer to the object that
must be stored.

will store this pointer to the array
which holds all pointer to persistent

... *I
int dbase::insertObj (persist *pObj}
{

if (maxObjects < MAXOBJECTS}
{

maxObjects++; II this object's oid

objects

pPObj [maxObjects] = pObj;
pObj->oid = maxObjects;
return 1;

II save the object's pointer to the array
JI define the object's OID
II l==> OK

else
return O; II O==> not ok

118

•

•

•

•

•

} ;

I*---
* functions : dateteObj => deletes last object
* : deleteAll => deletes all objects
* · *I
void dbase::deleteObj ()
{

} ;

pPObj[maxObjects] = 0;
maxObjects--;

void dbase::deleteAll()
{

for (int i=O; i<=maxObjects; i++) II make all object pointers nil
pPObj [i] = O;

maxObjects =0;
} ;
I*--
* function openDbase()
* returns 1 => all ok
* 0 => could not open file
*
* purpose opens disk file and reads all objects
*
*
*

the >> operator will create the objects in
the applications memory space.

*
*
*

the private array of pointers to existing objects
pPObj[] is also initialised accordingly.

*
* Finally the disk file is closed
.. *I

int dbase::openDbase(}
{

} ;

ipstream inFile;
persist *pObj;

inFile.open(fileName);

maxObjects = O;
while{inFile.peek() != EOF)
{

} ;

inFile >> pObj;
maxObjects++;
pPObj[maxObjects] pObj;

inFile.close();
return 1;

I*---
* function getObject(int h)
*
* pa rams n =>object number (sequ~nce number 1->last)
*
* returns pointer to nth object read from disk
* 0 => could not get the object
*
* purpose to get a pointer to the nth object read .
. *I

persist* dbase::getObject(int n)
(-

} ;

if (n <= maxObjects)
return pPObj[nJ;

else.
return O;

119

•

•

•

•

•

/*---
* function getPointer(OID oid)
*
*
*

pa rams oid =>object's oid

* returns
*

pointer to object of given oid
0 => could not get the object

*
* purpose to get a pointer to the object with given oid .
. *I

persist* dbase::getPointer(OID oid)
{

} ;

if (oid <= maxobjects)
return pPObj[oid);

else
return O;

/*--
* function saveDbase()
* returns 1 => all ok
* O => could not save file
*
*
*
*
*
*

purpose opens disk file and write all objects

the << operator will read the objects in
the applications memory space and save them to disk.

* Finally the disk file is closed
........ • ... *I

int dbase::saveDbase()
{

} ;

opstream outFile;

outFile.open{fileName);

for(int i=l; i<=maxObjects; i++)
outFile << pPObj [i);

outFile.close();
return l;

//===

120

•

•

•

•

•

/**
* File empl2.cpp
*
*
*
*
*

demons.trates the application of the
'persist' class by storing and retrieving
objects from disk storage.

* date 5/10/95 => rev 1
* 1/11/95 =>added support for OID's
* 1/11/95 => added the department class
***/

#include <strstrea.h>
#include <stdlib.h>
#include <iomanip.h>
#include <typeinfo.h>

#include "persistl.h" II contains the persistent class definition

#define
#define

MAXNAME
MAXDEP

30
30

II maximum employee name length
II maximum depertment name length

II ----- global variables ---------------------------­
dbase emplDbase("emp.dat"); //create database object

class department;
class employee;

II forward declarations

/***
* class department
* contain5 all data relevent to the department:
* name, telephone number
... *I
class department: public persist
{

PERSIST FRIEND(department); //macro defined in file 'persist.h'

public:
II public function
char *getName ()
int getTelNo ()
void setName(char
void setTelNo(int

to gain

*pName)
iTelNo)

access to the object's private data
{return name;} //returns dep name
{return telNo;} //returns tel number
{strcpy(name, pName);}
{telNo = iTelNo;}

protected:
II definition of virtual function that provide object persistance
void write(opstream&);
void read(ipstream&);
char *className();

private:
II private data (attributes) stored per object
char n~e[MAXNAME]; //holds the department name
int telNo; //holds the telephone number

} ;
PERSIST OP(department); //macro defined in 'persist.h'
//-----=-~--~-~--
void department: : write (opstream& os)
(

} ;

II the 'write' virtual function defines the method of storing
II this object to disk
os <<' ' << name

<<' ' << telNo
<<endl;

void department: :.read (ipstream& is)
{

II the 'read' virtual function defines the method of reading
II the object. This method has to correspond to the way the object
II has been serialised and stored on disk.
is. get (name, MAXNAME, '); is. get ();
is>> telNo; is.get();

121

•

•

•

•

•

} ;
char* department::className()
(

} ;

II the virtual function reurns the class name
return "department";

//--
/***
* class employee
* contains all data relevent to the employee:
* name, depertment & salary
... *I
class employee: public persist
{

PERSIST_FRIEND(employee); //macro defined in file 'persist.h'

public:
II public function to gain access to the object's private data
char* getName() {return name;} //name
OID getDepOid() {return depOid;} //depart oid
char* getDepartment(); //depart name
float getSalary() (return salary;} //empl salary
void setName(char *pName) {strcpy(name, pName);}
void setDepOid(OID oid) {depOid oid;}
void setSalary{float fSalary) {salary= fSalary;}

protected:
II definition of virtual function that provide object persistance
void write(opstream&);
void read(ipstream&);
char *className();

private:
II private data (attributes) stored per object
char name[MAXNAME]; //holds the employee name
OID depOid ; //holds the department OID
float salary; //holds the salary

} ;
PERSIST OP(employee); //macro defined in 'persist.h'
//-----=---

char* employee::getDepartment()
{

II function to return the department name as a string
II the function first gets a pointer from the dbase object
II using the OID that it contains

persist* pPObj;
department* pDepObj;

pPObj
pDepObj

emplDbase.getPointer(depOid); //get pointer to persist object
dynamic_cast<department*> (pPObj); //cast to department

return pDepObj->getName(); //return the dap. name

} ;
1/---
void employee::write(opstream& os)
{

} ;

II the 'write' virtual function defines the method of storing
II this object to disk
os <<' ' << name

<<' ' << depOid
<<' ' << salary
<<endl;

void employee:.:read(ipstream& is)
{

II the 'read' virtual function defines the method of reading
II the object. This method has to correspond to the way the object
II has been serialised and stored on disk.
is. get (name, MAXNAME, '); is. get ();

122

•

•

•

•

•

is
is

} ;

>> depOid;
>> salary;

is.get();
is.get();

char* employee::className()
{

} ;

II the virtual function reurns the class name
return "employee";

11--

/**
* function : create

in char *s: s is a class name *
*
*
*

return: pointer to the dynamic object created
the pointer return is of type 'persist'

* creates an object dynamically according to the supplied
* class name
.. *I
persist *create(char *s)
{

} ;

if (strcmp(s, "employee") == 0)
return new employee;

else if (strcmp (s, "department") 0)
return new department;

else
return O;

11--

//**+***************************
void depMenu ()
{

II menu to obtain the department details and

char pName[MAXNAME];
int telNo;
char ch='y';

while (ch== 'y')
{

II get data from user
cout <<endl<< "enter department's name: ";
cout <<endl<< "enter telephone no: "

cin >> pName;
cin >> telNo;

department *pdepartment =new department; II create new object
pdepartment->setName(pName); II and set its private data
pdepartment->setTelNo(telNo);

emplDbase.insertObj (pdepartment); II insert this object in the
II database

cout <<endl<< " More departments? <yin>: "; cin >>ch;
} ;

} ;

11--
void emplMenu ()
{

II Menu to obtain the employee data
II The function also checks for referntial integrity of the
II department entered. If Department does not exist, the data is

discarded

char
char
char
int
OID
char
persist*
employee*

pName[MAXNAME];
pDepName[MAXDEP];
pDepTemp[MAXDEP];
fSalary;
depOid;
Ch = I y';
pPObj;
pEmpl;

123

•

•

•

•

•

department* pDep;

while (ch== 'y')
{

II get data from user
cout <<endl<< "enter employee's name:
cout <<endl<< "enter department
cout <<endl<< "enter salary: "

"; cin >> pName;
cin >> pDepName;
cin >> fSalary;

II search the dapartments for exist dep. name
depOid = 0;
int n=l;

while(pPObj = emplDbase.getObject(n))
{

} ;

if (strcmp(pPObj->className(),"department")
{ //if pointing to a department object

pDep = dynamic_cast<department*> (pPObj);

0)

} ;

strcpy(pDepTemp, pDep->getName());
if(strcmp(pDepName,pDepTemp)== 0) // if department exists
{

} ;

depOid = pDep->getOid(); //get department's oid
break;

n++;

if (depOid != 0)
{

employee *pEmployee = new employee;
pEmployee->setName(pName);
pEmployee->setDepOid(depOid);
pEmployee->setSalary(fSalary);

II create new object .
II and set its private data

emplDbase.insertObj (pEmployee); II insert this object in the
II database

else
cout<< "Department does not exist!" <<endl;

cout <<endl<< "More Employees? <y/n>: "; cin >>ch;
} ;

} ;

1/---
void printEmployees()
{

//Print the employees data obtained from the database

persist *pPObj; // pointer to persist objects
employee *pEmpl; // pointer to employee objects
int n=l;

cout << endl <<setw (20) << "EMPLOYEES" << endl;
cout << setw(lO) << "Name"

<< setw(lO) << "OID"
<< setw(lO) << "Depmt"
<< setw (10) << "Salary"
<< endl;

124

•

•

•

•

•

} ;

while(pPObj = emplDbase.getObject(n)) //read object 'n'
{

} ;

if (strcmp(pPObj->className() ,"employee") == 0)
{ //if pointing to an employee object

pEmpl = dynamic_cast<employee*> (pPObj);

II print data read from disk
cout <<setw(lO)<< pEmpl->getName()

<<setw(lO)<< pEmpl->getDepOid()
<<setw(lO)<< pEmpl->getDepartment()
<<setw(lO)<< pEmpl->getSalary()

} ;
n++;

<< endl;

//--

void printDepartments()
{

} ;

II Print the department's data from the database

persist
department
int

*pPObj; // pointer to persist objects
*pDep; II pointer to department objects
n=l;

cout << endl <<setw (20) << "DEPARTMENTS" << endl;
cout << setw(lO) << "Name"

<< setw(lO) << "OID"
<< setw (10) << "TelNo"
<< endl;

while(pPObj = emplDbase.getObject(n)) //read object 'n'
{

} ;

if (strcmp(pPObj->className(),"department") 0)
{ //if pointing to an department object

pDep = dynamic_cast<department*> (pPObj);

II print data read from disk
cout << setw(lO)<< pDep->getName()

<< setw(lO)<< pDep->getOid()
<< setw(lO)<< pDep->getTelNo()
<< endl;

} ;
n++;

//--

void mainMenu ()
{

II This is the main menu
int ans=O;

while(ans != 10\
{

cout <<endl <<setw(15) <<"MAIN MENU" <<endl;

cout << "1. Enter Departments" << endl;
cout << "2. Enter Employees" << endl;
cout << "3. save Database" << endl;
cout << "4. Read Database" << endl;
cout << "5. Print Employees" << endl;
cout << "6. Print Department" << endl;endl;
cout << "10. Exit" << endl;

cin >> ans;

125

•

•

•

•

•

switch (ans)
{

case 1:
depMenu();
break;

case 2:
emplMenu ();
break;

case 3: //save database
emplDbase.saveDbase(); //save data to disc and close file
break;

case 4: //read database
emplDbase.deleteAll(); //delete database from RAM.
emplDbase.openDbase(); //open database & read all objects from

II disk

} ;
} ;

} ;

break;
case 5:

printEmployees();
break;

case 6:
printDepartments();
break;

default:;

!!---

/*******************~***

*
*
*
*
*
*
*
*
*
*
*
*

MAIN PROGRAM

This program perform the following tasks:

- get employee's and department's data from user
- create an object per employee and department and

initialise the objects private data
- save these objects to disk
- detete all data from memory space
- open database and read all objects
- display all objects private data

* Relationships between employee and department are represented by
pointers
... *I

void main()
{

} ;

char pName[MAXNAME];
char pDep[MAXDEP];
float fSalary;

mainMenu();

//*******~**~********

126

•

•

•

•

•

APPENDIX B - THE REAL-TIME SIMULATOR APPLICATION
SOURCE CODE

/***
* file persist.h
*
* contains
*
*
* purpose
*
*
*
*
*

persist class
dbase class

This file must be included in the applications
that require persistant objects .

All persistant classes are derived from the 'persist'
class.

*
*

The 'dbase' class provides additional database functionality
ie read,write, insert get objects from disk.

*
*
*

rev 1=>(2019195) => created separate .h file
2=>(2519195) => added macro definitions

***/
#include <iostream.h>
#include <fstream.h>
#include <string.h>

#define MAXCLASSNAME 30
#define MAXOBJECTS 30

/***
* MACRO DEFINITIONS
*
* macro PERSIST_OP(X)
*
* use macro to define persistent operators
* used in derived persistent classes
*
* x is replaced with the derived class
*
* macro PERSIST _FRIEND (X)
*
* use to define the persistent operators as friends to
* the derived persist classes.
*
* X is replaced with the derived class
... *I

#define PERSIST_OP(X) opstream& operator<<(opstream& os, X *c) \
{ return os << (persist*)c;}; \
ipstream& operator>>(ipstream& is, X *&c) \
{ return is>> (persist*)c;}

#define PERSIST_FRIEND(X) friend opstream& operator <<(opstream&, X *);\
friend ipstream& operator >>(ipstream&, X *&)

11--
class ipstream: public ifstream {}; II persistent streams
class opstream: public ofstream (}; II inherit form iosteams

/***
* class persist
*
*
*

provides persistance to objects that inherit from it

~**********/

class persist
{

II declare the persistant ilo operators as friends
II such that they can have access to private data members
II of the class
friend ipstream& operator >>(ipstream&, persist* &);

127

•

•

•

•

•

friend opstream& operator <<(opstream&, persist*) ;

protected:

} ;

II the following virtual functions
II derived persistant objects.
virtual void write(opstream&) =O;
virtual void read(ipstream&) =O;
virtual char *className() =0;

must be defined for all

//write object ~o disk
//read object from disk
//returns class name

/***
* function create(char *s)
*
* purpose function must be defined by the application
* Its purpose is to create objects according to the
* class name 'className' which is passed as a string .
. .. *I
persist *create(char *className);

/**
* Persitent Operators

*
* <<
*

this operator will first write the class name to disk
and then the object.

*
*
*
*

To write the object, it calls the polymorpic function
'write(os)' which takes as a parameter a reference
to the output persistent stream.

* >>
*

This operator will read an object from the persistent stream
It first reads the class name

* then it creates an object of that class

* then it reads and initialises the data members of that object.

*
***/
opstream& operator<<(opstream& os, persist *psObj)
{

} ;

os << psObj->className();
psObj->write(os);
return os;

//first write name of class
//then write data members

ipstream& operator>>(ipstream& is, persist *&psObj)
{

} ;

char className[MAXCLASSNAME];
is >> className;
is.get();
psObj = create(className);
psObj->read(is);
return is;

//read class name from disk

//create object
//read object from disk

/**
* class dbase
*
*
*
*
*
*
*

This class is responsible for the general handling of
the database.

It contains member function~ to open, read, write, and close
the database.

* The database contains an array of pointers to objects,
* which is kept as a private data member.
* This array defines the objects that exist in the memory space
* of the running application.
**/
class dbase
{

public:

int
int
int
void

dbase(char *fname);

openDbase();
saveDbase();
insertObj (persist *pObj);
deleteObj ();

II constructor -> supply file name

// opens file and reads all records
II save all records to disk
II inserts object in dbase
II deletes last Object

128

•

•

•

•

•

void
persist
int

deleteAll () ;
*getObject(int n);
getMaxObj ()

II deletes all objects
II get object n=l .. last

(return maxobjects;} II get number of objects

private:
char
int
persist

fileName [14];
maxObjects;
*pPObj[MAXOBJECTS];

II contains dbase file name
II contains no. of objects
II contains pointers to objects
II that have been read from disk and
II created in the memory space of the
II application.

} ;

I*---
* function
*

Constructor

*
*

pa rams fName => the file name to be created

* purpose Initialise the database
.. *I
dbase::dbase(char *fName) II constructor
{

} ;

strcpy(fileName, fName);
maxobjects=O;

I*---
* function insertObj
*
*
*
*
*

pa rams

pupose

pObj => pointer to the object that
must be stored.

will store this pointer to the array
which holds all pointer to persistent

... *I
int dbase: :insertObj (persist *pObj)
(

} ;

pPObj[maxObjects] = pObj;
maxObjects++;
return 1;

I*---
* functions : dateteObj => deletes last object
* : deleteAll => deletes all objects
* .. *I
void dbase::deleteObj ()
{

maxObjects--;
} ;
void dbase::deleteAll()
{

maxObjects =0;
} ;
I*---
* function openDbase()
* returns 1 => all ok
* 0 => could not open file
*
* purpose opens disk file and reads all objects
*

objects

*
*

the >> operator will create the objects in
the applications memory space.

*
*
*
*

the private array of pointers to existing objects
pPObj[] is also initialised accordingly.

* Finally the disk file is closed
.......... ,· ... *I

int dbase::openDbase()
(

ipstream inFile;
persist *pObj;

129

•

•

•

•

•

} ;

inFile.open(fileName);

maxObjects = 0;
while(inFile.peek() != EOF)
{

) ;

inFile >> pObj;
pPObj [maxObjects] pObj;
maxObjects++;

inFile.close();
return l;

/*---
* function getObject(int n)
*
*
*
*
*
*

pa rams

returns

n =>object number (sequence number !->last)

pointer to nth object read from disk
O => could not get the object

* purpose to get a pointer to the nth object read .
. *I

persist* dbase: :getObject(int n)
{

} ;

if (n <= maxObjects)
return pPObj [n-1];

else
return 0;

/*---
* function saveDbase()
* returns 1 => all ok
* 0 => could not save file
*
*
*
*
*
*

purpose opens disk file and write all objects

the << operator will read the objects in
the applications memory space and save them to disk.

* Finally the disk file is closed
.. *I

int dbase::saveDbase()
{

} ;

opstream outFile;

outFile.open(fileName);

for(int i=O; i<maxObjects; i++}
outFile << pPObj[i];

outFile.close();
return l;

//===

130

•

•

•

•

•

/***
* file: simio4.cpp
* dynamic simulation of silo and feeder
* added user interface to enter simulation params
* added object persistance
* added persist class
* added dbase class
* added print file generation
* added macro processing
***/
#include <strstrea.h>
#include <stdlib.h>

#include <iomanip.h>
#include <typeinfo.h>
#include "persist.h"

#define MAXCONVEYORLEN 30
#define MAXNAMELEN 30

class simObject: public persist
{

PERSIST_FRIEND(simObject);

public:
virtual float getFin ()
virtual float getFout ()
virtual void cycle ()
virtual void setPin(simObject
virtual void setPout(simObject

*pin)
*pout)

virtual void displayDyn(ostream&, int
vars

virtual void output(ostream&)

O;
O;
O;
O;
O;

time)

= O;

void setName(char *pBuf) {strcpy(pName, pBuf);)
void getName(char *pBuf) {strcpy(pBuf, pName);}

protected:

O; //displays

virtual void write(opstream&) {;}
virtual void read(ipstream&) {;}
virtual char *className () {;}

//write to disk
//read from disk
//returns class name

} ;

char
float
float
simObject
simObject

pName[MAXNAMELEN];
fin;
fout;
*pObjin;
*pObjOut;

II name of object

//---

PERSIST_OP(simObject);

class silo :public simObject
{ .

PERSIST FRIEND(silo);
public: -

float
void
void
void
float
int

iilo() {fin=O; fout=O;
getLevel ()
setinitLevel(float 1)
setDiameter(float d)
setHeight(float h)
getDiameter ()
isOverflowing ()

.
level=O;}
{return(level) ;}
{level =l;}
{diameter= d;}
{height = h;}
{return(diameter);}
{return(overflow);}

void
void

setPin(simObject *pin)
setPout(simObject *pout)

(pObjin
(pObjOut

pin; }
pout;}

float getFin ()
float getFout ()
void cycle();

{return(fin);}
{return(fout);}

virtual void displayDyn(ostream& os, int time);

dynamic

131

•

•

•

•

•

virtual void output(ostream& os)
{

OS << setprecision(2)
<< setfill('. ')
<< setw(lO) << setiosflags(ios::left)
<< setw(lO) << resetiosflags(ios::left)
<< setw (10) << setiosflags(ios::left)
<< setw (10) << resetiosflags(ios::left)
<< setw (10) << setiosflags(ios::left)
<< setw (10) << resetiosflags(ios::left)
<< setw(lO) << setiosflags(ios::left)
<< setw(lO) << resetiosflags(ios::left)

} ;

protected:
virtual void write(opstream& os)
{

OS <<' I << pName
<<' I << level
<<' I << diameter
<<' ' << height << endl;

} ;
virtual void read(ipstream& is)
{

} ;

is.get(pName, MAXNAMELEN, ' ');
is.get(); is>> level;
is.get(); is>> diameter;
is.get(); is>> height;
is.get();

virtual char* className() {return "silo";}

private:

} ;

float level;
float diameter;
float height;
int overflow;

void silo::displayDyn(ostream& os, int time)
{

<<
<<
<<
<<
<<
<<
<<
<<

OS II << resetiosflags(ios::left)
<< setw(S) << time
<< setw(lO) << pName
<< setprecision(2)
<< setw(lO) << fin
<< setw(lO) << fout
<< setw(lO) << level
<< endl;

} ;
void silo::cycle()
{

if (pObjin)
fin = pObjin->getFout();

else
fin = O;

if (pObjOut)
fout pObjOut->getFin();

else
fout 0;

"name
pName
"level
level
"di amt
diameter
"height:
height

llcout << "fin: " << fin << " fout: " << fout << endl;

level= (fin-fout)*4.0l(3.14*diameter*diameter) +level;

II check for overflowing silo
if (level > height)
{

level = height;
overflow = l;

else
overflow O;

<<endl

<<endl

<<endl
"

<<endl;

132

•

•

•

•

•

PERSIST_OP(silo);

/**
* class: feeder
.. *I

class feeder : public simObject
{

PERSIST FRIEND(feeder);
public: -

void
void
void

void
void
void

feeder() {fin=O; fout=O;}
setMaxFlow (float f) {maxFlow
setSlope{float s) {slope
setinitFlow(float f) {fout = f;

f;}
s;}
fin=f;}

setPin (simObject *pin)
setPout{simObject *pout)
setSetpoint(float sp)

{pObjin = pin; }
{pObjOut =pout;}
{ setpoint = sp; }

float getFin ()
float getFout ()
void cycle();

{return(fin);}
{return(fout);}

virtual void displayDyn(ostream&
virtual void output(ostream& os)
{

os, int time);

OS << setprecision(2)
<< setfill (' . ')
<< setw (10) << setiosflags(ios::left)
<< setw (10) << resetiosflags(ios::left)
<< setw(lO) << setiosflags(ios::left)
<< setw(lO) << resetiosflags(ios::left)
<< setw(lO) << setiosflags(ios::left)
<< setw(lO) << resetiosflags(ios::left)

<< "name
<< pName
<< "maxFlow
<< maxFlow
<< "slope:
<< slope

"

<< setw(lO) << setiosflags(ios::left) << "setpoint:
<< setw(lO) << resetiosflags(ios::left)

<<endl;

} i

protected:
virtual void write{opstream& os)
{

OS <<' I << pName
<<' I << maxFlow
<<' I << slope
<<' I << setpoint << endl;

} i
virtual void read(ipstream& is)
{

} i

is.get(pName, MAXNAMELEN, ');
is.get(); is>> maxFlow;
is.get(); is>> slope;
is.get(); is>> setpoint;
iS. get();

virtual char* className() {return "f~eder";}

private:

} i

float maxFlow;
float slope;
float setpoint;

void feeder::displayDyn(ostream& os, int time)
{

os << resetiosflags(ios::left)
<< setw(5) << time
<< setw(lO) << pName
<< setprecision(2)
<< setw(lO) << fin
<< setw(lO) << fout
<< endl;

<< setpoint

<<endl

<<endl

<<endl
II

133

•

•

•

•

•

} ;
void feeder::cycle(}
{

float desiredFlow;

desiredFlow = setpoint * maxFlow;

if (fout < desiredFlow)
fout = fout + slope;

else if (fout > desiredFlow)
fout = fout - slope;

if (fout > maxFlow)
fout = maxFlow;

if (fout < 0)

//check for max/min values

fout = O;

fin = fout;

} ;
PERSIST_OP(feeder);

//--
class conveyor : public simObject
{

PERSIST_FRIEND(conveyor);

public:
conveyor(float s, float 1) // constructor
{

if (s !=0}
delay = (int)l/s; // set private vars

else
delay = O;

speed
length
fin

s;
l;
O; fout = O;

II clear shift register
for(int i=delay; i>= l; i--)

shiftReg[i] = O;

float getSpeed () {return(speed);}
float getLength () {return(length) ;}
int getDelay () {return(delay) ;}

void set Pin (simObject *pin) {pObjin pin; }
void setPout(simObject *pout) {pObjOut pout; l

float getFin (}
float getFout ()
void cycle();

{return(fin);}
{return(fout);}

virtual void displayDyn(ostream&
virtual void output(ostream& os)
{

os, int time);

OS <<
<<
<<
<<
<<
<<
<<
<<
<<
<<

} ;

protected:

setprecision(2)
setfill (' . ')
setw(lO) << setiosflags(ios::left)
setw(lO) << resetiosflags(ios::left)
setw(lO) << setiosflags(ios::left)
setw(lO) << resetiosflags(ios::left)
setw(lO} << setiosflags(ios: :left)
setw(lO) << resetiosflags(ios::left)
setw(lO) << setiosflags(ios::left)
setw(lO) << resetiosflags(ios::left)

<< "name
<< pName <<endl
<< "speed
<< speed <<endl
<< "delay: "
<< delay <<endl
<< "length: "
<< length <<endl;

134

•

•

•

•

•

virtual void write(opstream& os)
{

} ;

OS <<' I << pName
<<' ' << speed
<<' ' << delay
<<' ' << length << endl;

virtual void read(ipstream& is)
{

} ;

is.get(pName, MAXNAMELEN, ' ');
is.get(); is>> speed;
is.get(); is>> delay;
is.get(); is>> length;
is.get();

virtual char* className() {return "conveyor";}

private:

} ;

float
int
float
float

speed;
delay;
length;
shiftReg[MAXCONVEYORLEN];

void conveyor::displayDyn(ostream& os, int time)
{

} ;

os << resetiosflags(ios::left)
<< setw(S) << time
<< setw(lO) << pName
<< setprecision(2)
<< setw(lO) << fin
<< setw(lO) << fout
<< endl;

void conveyor: :cycle()
{

II get input flow
if (pObjin)

fin = pObjin->getFout();
else

fin = O;

shiftReg[O] = fin;
for(int n=delay; n >= l; n--)

shiftReg[n] = shiftReg[n-1];
II shift register

fout = shiftReg[delay];

} ;
PERSIST_OP(conveyor);

class source : public simObject
{

PERSIST FRIEND(source);
public: -

source() {fin=O; fout=O;}
float getFin() {return(0.0);}
float getFout() {return(fout);}
void cycle(){;} II do nothing

void setPin (simObject *pin) {pObjin = pin; }
void setPout(simObject *pout) {pObjOut =pout;}
void setFeedrate(float fr) {fout =fr;}
virtual void displayDyn(ostream& os, int time);
virtual void output(ostream& os)
{

OS << setprecision(2)
<< setfill('. ')
<< setw(lO) << setiosflags(ios: :left)
<< setw(lO) << resetiosflags(ios::left)
<< setw(lO) << setiosflags(ios::left)
<< setw (10) << resetiosflags(ios::left)

<<
<<
<<
<<

"name : II

pName <<endl
"feedrate: II

fout <<endl;

135

•

•

•

•

•

} ;

protected:
virtual void write(opstream& os)
{

os <<' ' << pName
<<' ' << fout <<endl;

} ;
virtual void read(ipstream& is)
{

} ;

is.get(pName, MAXNAMELEN, ' ');
is.get(); is>> fout;
is.get();

virtual char* className (){return "source";}
} ;
PERSIST_OP(source);

void source::displayDyn(ostream& os, int time)
{

OS << resetiosflags(ios::left)
<< setw(S) << time
<< setw (10) << pName
<< setw (10) << fin
<< setw (10) << fout
<< endl;

} ;

1/--
class sink : public 3imObject
{

PERSIST FRIEND(sink);

public:
sink() {fin=O; fout=O;}

float getFin () {return (0. 0);}
float getFout() {return(0.0);}
void cycle () {;} I I do nothing

void setPin (simObject *pin) {pObjin = pin; }
void setPout(simObject *pout) {pObjOut =pout;}

virtual void displayDyn(ostream& os, int time);
virtual void output(ostream& os)

{
os << "name: " << pName

} ;

protected:
virtual void write(opstream& os)
{

os <<' ' << pName << endl;

} ;
virtual void read(ipstream& is)
(

<< endl;

is.get(pName, MAXNAMELEN, ' ');
is.get();

} ;
virtual char* className() {return "sink";}

} ;
PERSIST_OP(sink);

void sink::displayDyn(ostream& os, int time)
{

os << resetiosflags(ios::left)
<< setw(S) << time
<< setw(lO) << pName
<< setprecision(2)
<< setw(lO) << fin
<< setw(lO) << fout

136

•

•

•

•

•

<< endl;
} ;

11************* Simulation Global Vars ********************·*************

simObject
int
dbase
of stream

void
void
void
void
void
void
void
void
void
void
void

*pSimObj[MAXOBJECTS];
maxSimObj= 0;
simDbase ("sobj. dat") ;
prtFile("prt.txt");

appendMenu () ;
createNewMenu();
createSource();
createSilo();
createFeeder();
createConveyor();
createSink();
simulate();
saveObjects();
readObjects();
printObjects();

II array of pointers to ~im objects
II no of sim objects in simulation

II create the database object

11---------- Set Object Pointers to point according to
II array pSimObj[] which defines relationships

void setObjPointers()
(

pSimObj [0]->setPin(O); II set first object
pSimObj[O]->setPout(pSimObj[l]);

for(int n = l; n < maxSimObj-1; n++)
{

} ;

pSimObj[n]->setPin(pSimObj[n-1]);
pSimObj[n]->setPout(pSimObj[n+l]);

pSimObj [maxSimObj-1]->setPin(pSimObj [maxSimObj-2]); II set last object
pSimObj [maxSimObj-1]->setPout(O);

} i

11---
void mainMenu ()
{

int ans=O;
while (ans != 7)
{ cout <<endl<<endl<< "************ Main Menu ****************"<<endl;

cout Create New Simulation System" <<endl; << "1.
cout Append New Simulation Objects" <<endl; << "2.
cout Save Simulation Objects" <<endl; << "3.
cout Read Simulation Objects" <<endl; << "4.
cout Print Simulation Objects" <<endl<<endl; << "5.
cout Run Simulation" <<endl; << "6.

cout << "7. Quit" << endl<<endl;

cout << "Enter Choice: ";

cin >> ans;

switch (ans)
{

case 1:
. createNewMenu();
break;

case 2:
appendMenu();
break;

case 3:
saveObjects();
br.eak;

case 4:
readObjects();
break;

case 5:
printObjects();

137

•

•

•

•

•

) ;
} ;

} ;

break;
case 6:

simulate();
break;

default:;

11---
void createNewMenu()
{

for(int i=O; i < maxSimObj; i++) II clear ram object space
delete pSimObj [i];

maxSimObj = O;
appendMenu();

II reset object counter

}
11--
void appendMenu()
{

int ans=O;

while (ans !=
{

cout << "l.
cout << "2.
cout << "3.
cout << "4.
cout << "5.

6)

Create Source" << endl;
Create Silo" << endl;
Create Feeder" << endl;
Create Conveyor" << endl;
Create Sink" << endl;

cout << endl << endl << "6. Quit back to Main Menu" << endl;
cout << endl << endl << "Enter Choice: ";

} ;

} ;

cin >> ans;

switch (ans)
{

} ;

case 1:
createsource();
break;

case 2:
createSilo();
break;

case 3:
createFeeder(};
break;

case 4:
createConveyor();
break;

case 5:
createSink();
break;

default:;

11--
void createSource()
{

char pBuf[MAXNAMELEN];
float feedrate;

cout << "enter source name: ";
cin >> pBuf;

cout << "enter feedrate [m3lsJ: ";
cin >> feedrate;

source *pSourceObj new source;

138

•

•

•

•

•

} ;

pSourceObj->setFeedrate(feedrate);
pSimObj[maxSimObj] = pSourceObj;

pSourceObj->setName(pBuf);
char pBufRead[MAXNAMELEN];
pSourceObj->getName(pBufRead);

cout << "name is " << pBufRead <<endl;

maxSimObj++;

1/--
void createSilo()
{

char pBuf[MAXNAMELEN];
float initLevel;
float diameter;
float height;

cout << "enter source name:
cin >> pBuf;
cout << "enter diameter of
cin >> diameter;

". I

silo [m]:

cout << "enter height of silo [m]: ".

} ;

cin >> height;
cout << "enter initial level of silo
cin >> initLevel;

silo *pSiloObj = new silo;
pSiloObj->setDiameter(diameter);
pSiloObj->setHeight(height);
pSiloObj->setinitLevel(initLevel);
pSimObj[maxSimObj] = pSiloObj;
pSiloObj->setName(pBuf);

maxSimObj++;

I

". I

[m]: ". I

1/---
void createFeeder()
(

char pBuf[MAXNAMELEN];
float initFlow;
float gain;
float maxFeed;
float setpoint;

cout << "enter Feeder name: ";
cin >> pBuf;

cout << "enter feeder acceleration [m3/s2]:

} ;

cin >> gain;
cout << "enter maximum feedrate [m3/s]_:
cin >> maxFeed;
cout << "enter initial flowrate [m3/s]:
cin >> initFlow;
cout << "enter feeder setpoint [O •• ll:
cin >> setpoint;

feeder *pFeederObj = new feeder;
pFeederObj->setSlope(gain);
pFeederObj->setMaxFlow(maxFeed);
pFeederObj->setinitFlow(initFlow);
pFeederObj->setSetpoint(setpoint);
pFeederObj->setName(pBuf);

pSimObj[maxSimObj] = pFeederObj;

maxSimObj++;

". I

"i

". I

";

//--~
void createConveyor()
{

139

'

•

•

•

•

} i

char pBuf(MAXNAMELEN];

float length;
float speed;

cout << "Enter
cin >> pBuf;
cout << "Enter
cin >> length;
cout << "Enter
cin >> speed;

Conveyor

Conveyor

Conveyor

Name: ";

Length [m]: ". ,

Speed [mis]: ". ,

conveyor *pConveyorObj = new conveyor(speed, length);

pSimObj[maxSimObj] = pConveyorObj;
pConveyorObj->setName(pBuf);

maxSimObj++;

1/---
void createSink()
{

} i

char pBuf[MAXNAMELEN];

cout << "enter sink name: ";
cin >> pBuf;

sink *pSinkObj = new sink;
pSimObj[maxsimObj] = pSinkObj;
pSinkObj->setName(pBuf);

maxSimObj++;

1/---
void simulate ()
{

int tPeriod;
char temp;

if (maxSimObj)
setObjPointers(); II set sim object pointers

cout << "enter time period [s]: ";
cin >> tPeriod;

II get number of simulation secs

cout << setfill (' ') ; prtFile << setfill (' ') ;

cout <<endl << "Simulation Results:"<< endl;
prtFile <<endl << "Simulation Results:" << endl;

cout << setw(5) << "Time"
<< setw (10) << "Name"
<< setw (10) << "Fin"
<< setw(lO) << "Fout"
<< setw(lO) << "Level"
<< endl;

prtFile << setw(5) << "Time"
<< setw (10) << "Name"
<< setw(lO) << "Fin"
<< setw(lO) << "Fout"
<< setw(lO) << "Level"
<< endl;

for (int t =1; t <=tPeriod; t++)
{

II

for(int i=O; i < maxSimObj; i++)
pSimObj(i]->cycle();

cout <<endl; prtFile <<endl;
for (int n=O; n<maxSimObj; n++)
{

print title

//cycle all sim objects

II display dyn vars for
II all objects

pSimObj[n]->displayDyn(cout, t);

140

•

•

•

•

•

) ;

} ;

pSimObj[n]->displayDyn(prtFile, t);
) ;

cout <<endl << "Press <enter> to continue: ";
cin.get();

I******* Create Function ****************************
* creates an object dynamically according to what the read
* name is
... *I
persist *create(char *s)
{

} ;

if (strcmp(s, "silo")
return new silo;

else if(strcmp(s, "feeder")
return new feeder;

else if(strcmp(s, "conveyor")
return new conveyor(O,O);

else if(strcmp(s, "source")
return new source;

else if (strcmp (s, "sink")
return new sink;

else return 0;

0)

0)

0)

0)

0)

11---
void saveObjects()
{

simDbase.deleteAll(); II clear database

for(int i=O; i<maxSimObj; i++) II insert all new objects
simDbase.insertObj (pSimObj [i]);

simDbase.saveDbase();
} ;

11---
void readObjects()
{

} ;

persist
int

*psObj;
n;

II open and read all records from disk
simDbase.openDbase();

II-­
II
II
II
II
II
n=l;

get all the object pointers & store them on an array
pSimObj []
use dynamic casting to cast dbase persist pointers to
simObject pointer types - This allows caaling all functions
defined in simObject, even the ones that all not declared as
virtual in persist.

while(psObj = simDbase.getobject(n))
{ .

pSimObj [n-1] dynamic_cast<simObject*> (psObj);
n++;

} ;
maxSiI!lObj n-1; II contains max number of objects in simulation

cout <<endl <<"Number of Objects Read: "<<maxSimObj <<endl;

11---
void printObjects()
{

cout << endl << "The Objects currently in Simulation are: " <<endl;
prtFile << endl << "The Objects currently in Simulation are: " <<endl;

for(int i=O; i<maxSimObj; i++)
{

cout <<endl; prtFile <<endl;
pSimObj[i]->output(cout);

141

•

•

•

•

} ;

} ;

pSimObj[i]->output(prtFile);
cout << endl << "Press <enter> to continue: ";
cin.get();

II===

void main ()
{

}

II set floating point number precision
II cout for console output
II prtFile for log file

cout << setprecision(2) << setiosflags(ios::fixed);
prtFile << setprecision(2) << setiosflags(ios::fixed);

II call main menu
mainMenu () ;

II==

142

	Button1:
	Button4:
	Button5:
	Button6:

