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SUMMARY 

Two well-known methods of improving the reliability of a system are 

(i) provision of redundant units, and 

(ii) repair maintenance. 

In a redundant system more units made available for performing the system function 

when fewer are required actually. There are two major types of redundancy -

parallel and standby. In this dissertation we are concerned with both these types. 

Some of the typical assumptions made in the analysis of redundant systems are 

(i) the repair facility can take up a failed unit for repair at any time, if no other 

unit is undergoing repair 

(ii) the system under consideration is needed all the time 

However, we frequently come accross systems where one or more assumptions have 

to be relaxed. This is the motivation for the detailed study of the models presented 

in this dissertation. 

In this dissertation we present models of redundant systems relaxing one or more of 

these assumptions simultaneously. More specifically it is a study of stochastic 

models of redundant systems with 'vacation period' for the repair facility (both 

standby and parallel systems), and intermittently used systems. 

The dissertation contains five chapters. Chapter 1 is introductory in nature and 

contains a brief description of the mathematical techniques used in the analysis of 

redundant systems. 
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In Chapter 2 assumption (i) is relaxed while studying a model of cold standby 

redundant system with 'vacation period' for the repair facility. In this model the 

repair facility is not available for a random time immediately after each repair 

completion. Integral equations for the reliability and availability functions of the 

system are derived under suitable assumptions. 

In Chapter 3, once again assumption (i) is relaxed while studying a model of parallel 

redundant systems with the same 'vacation period' for the repair facility, explained 

in the above paragraph. 

In Chapter 4, the detailed review of intermittently used systems have been studied. 

In Chapter 5, assumption (ii) is relaxed. This chapter is devoted to the study of an 

intermittently used 2-unit cold standby system with a single repair facility. This 

study was carried out using the 'correlated alternating renewal process' and the joint 

forward recurrence times. 

All the above models have been studied, when some of the underlying distributions have 

a non-Markovian nature. They have been analysed using a regeneration point technique. 
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INTRODUCTION 



CHAPTER 1 

Introduction 

1.1 Introduction 

The past two decades have witnessed an upsurge in technological activity due to 

rapid advancements in the computer and telecommunication industries. As a result 

there has been a vast increase in the complexity of various systems and in the 

number of such complicated systems. 

The performance of these systems is very important and therefore the functioning 

of these systems is required to be of a very high standard. 

To ensure high system performance, the behaviour of various systems under normal 

operational conditions had to be examined. Any system analysis in order to be 

complete must pay due attention to system measures, such as, reliability, 

availability, mean-time to system failure (MTSF), etc. Advice as to how overall 

system performance can be enhanced is also required due to the behaviour of such 

systems. The methods of probability theory and mathematical statistics may be 

applied to obtain various measures which would reflect on the functioning of the 

system under study. 
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Many mathematical models have been proposed in the literature to evaluate 

measures of system performance and provide methods of improving it. These 

models describe the operational characteristics of a system taking into account its 

essential features and can be solved only by stochastic methods. With the recent 

remarkable advances in electronic engineering and its pervasive applications in 

modem society, systems have become more sofisticated and their reliability are more 

crucial. The present work is a stochastic analysis of some mathematical models 

representing the behaviour of a few complex systems. 

1.2 Redundant Systems 

One of the principal methods for improving the performance of a system is the 

introduction of "Redundancy". A redundant system is one in which more system 

components or units are available for performing the system function when fewer 

are required actually. Gnedenko, Belyayev and Solovyev ( 1969) provides an 

extensive introduction to such systems. 

There are several kinds of redundant systems. In this section we describe some 

important variations of such systems. There are two major types of redundancy: 

"standby redundancy" and "parallel redundancy". 

Standby Redundant Systems 

A standby redundant system is one in which one unit is engaged in the actual system 

function whilst being backed by a number of spares, the unit engaged in the system 
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function is termed the 'online unit' and the spares 'standbys'. Upon failure of the 

online unit, a standby (if operable) is switched online. The standbys are classified 

as cold, warm or hot depending on how they are loaded in the standby state. Hot 

standbys are those in which the standby units are loaded in the same way as the 

operating unit. Warm standbys have a diminished load and cold standbys are 

completely unloaded. Thus the probability of failure of a hot standby is the same 

as that of a unit operating online. Warm standbys may fail but their probability of 

failure is less than that of a online unit whilst cold standbys never lose their 

operational ability in the standby state. 

Parallel Redundant Systems 

An n-unit parallel redundant system is one in which all n-units operate 

simultaneously but the system function requires only one of these units, hence a 

system failure occurs only when all n-units are in a failed state. 

k out of n: F system 

The system which consists of n units is failed if and only if at least k units are failed. 

k out of n: G system 

The system which consists of n units is good if and only if at least k units are good. 
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1.3 Repairable Systems 

In order to improve system performance failed units may be replaced by new ones. 

The unit which has failed may now be discarded or restored to an operable 

condition. This restoration process is called repair, and a system which possesses 

this feature is called a repairable system. The decision to repair a unit is usually 

taken when the procuring of new units prove to be comparatively expensive or 

infeasible. Upon failure, the unit is sent to the repair facility for repair. If the 

repair facility is not available, the unit will wait for repair. The life time of a unit 

while online, while in standby, and the repair time are taken to be stochastically 

independent random variables. It is also assumed that the distribution functions of 

these random variables exist and that they possess probability density functions. 

Barlow ( 1962) considered some repairman problems which bore some feautres of 

queueing problems. Rau ( 1964) discussed the problem of finding the optimum 

value of min an m out of n: G system for maximizing reliability. Ascher (1968) 

pointed out some inconsistencies in the modelling of repairable systems by renewal 

theory. Several authors, notably Barlow and Proschan (1965), Sandler (1963), 

Shooman (1968), Buzacott (1970) and Doyan and Berssenbrugge (1968) have used 

continuous time discrete state space Markov renewal process models for describing 

the behaviour of a repairable system. These methods, however, are not practically 

feasible for systems with large numbers of states. Gaver ( 1963 ), Gnedenko et al 

(1969), Osaki (1969; 70 a,b) and Srinivasan (1966) have employed the techniques 

of semi-Markov processes for finding the reliability of a system with exponential 

failure times. Srinivasan and Subramanian ( 1977), Subramanian et al ( 1976), 

Ravichandran (1979), Natarajan (1980), and Sanna (1982) have used regeneration 

point technique to analyse repairable systems with arbitrary distributions. 
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More references in related topics can be found in review papers and books by Subba 

Rao and Natarajan (1970); Osaki and Nakagawa (1976); Pierskalla and Voelker 

( 1976); Lie, Hwang and Tillman ( 1977); Kumar and Agharwal ( 1980); Subramanian 

and Srinivasan (1980); Osaki (1985); Dhillon and Singh (1980) and Dhillon (1982, 

1983). 

1.4 Systems with Non-Instantaneous Switchover 

In the analysis of standby redundant system it is generally assumed that when the 

unit operating online fails, a standby unit is automatically switched online with this 

switchover being instantaneous. This stipulation, however, may be relaxed. 

Srinivasan (1968), Osaki (1972), Khalil (1977), Subramanian and Ravichandran 

(1979), Gopalan and Marathe (1978, 1980), Singh et al (1979) and Kalpakam and 

Shalul Hameed (1980), Sarma (1982), etc. have studied redundant systems 

incorporating non-negligible switchover times. 

1.5 Systems with Imperfect Switch 

To transfer a unit from the standby state to the online state, a device known as a 

"switching device" is required. Generally it has been assumed that this device is 

perfect in the sense that, it is failure free. However, Gnedenko et al (1969), 

pointed out that this need not always be the case. Such systems, in which the 

switching device may fail at a non-negligible rate are called "systems with an 

imperfect switch". Chow (1971), Osaki (1972), Nakagawa and Osaki (1976a), 

Nakagawa (1977), Venkatakrishnan (1975), Prakash and Kumar (1970), Srinivasan 
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and Subramanian (1980) and Subramanian and Natarajan (1980) have considered 

models where the switching device can fail. Subramanian and Sarma ( 1987) gave 

a more elaborate state-of-art on such systems. 

1.6 Intermittently used systems 

A common assumption in most of the literature on redundant systems is that the 

system is required to perform its intended function continuously. In some practical 

situations, however, systems are not required continuously but may be in a state of 

failure during certain time intervals with negligible consequential loss. Systems 

which possess such characteristics are called "Intermittently used systems". Gaver 

(1963) pointed out that it is pessimistic to evaluate the performance of such a system 

solely on the distribution of time to failure, since this failure could have occurred 

during a time interval when the system was not required, and illustrated his concepts 

by means of the analysis of a one unit intermittently used system. Later Srinivasan 

(1966), Nakagawa et al (1976), Srinivasan and Bhaskar (1979a,b,c), Kapur and 

Kapoor (1978, 1980) extended Gaver's results to the case of two-unit intermittently 

used systems. Sarma and Natarajan (1982) studied an intermittently used n-unit 

warm standby system with some restrictions. For the first time, an intermittently 

used parallel system was studied by Sarma and Hines (1990). 

1. 7 Measures of System Performance 

The previous section briefly described the various types of redundant systems 

discussed in the existing literature. In this section some of the important measures 
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used to evaluate system performance are discussed [Barlow and Proschan (1975), 

Gnedenko et al (1969)]. 

(a) Reliability 

Reliability of a system is the probability that the system will adequately perform its 

desired function for the period of time intended under the operational condition 

encountered. 

Let { l(t); t ~ 0} be the performance process of the system; then for each fixed 

t, I (t) is a binary random variable which takes the value 1 if the system operates 

satisfactorily at a given instant of time t, and takes the value 0, otherwise. Then the 

reliability function, R(t), is given by 

R(t) = pr[I(u) = 1; for all u such that 0 ~ u ~ t] 

The expected value of the random variable denoting the time interval from the point 

of initial operation of the system to first system failure is termed the "Mean-Time­

to-System-ailure" (MTSF). It can be obtained from the reliability function, R(t), 

from the relation 

MTSF = f R(u)du (1.1) 
0 

provided the integral converges and R(O) = 1. 
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(b) Pointwise or Instantaneous Availability 

This is defmed to be "the probability that the system is operational within the 

tolerances at a given instant of time". This may be expressed as, pointwise 

availability, 

A(t) = pr[system is up at t] 

= pr [l(t) = 1]. 

(c) Asymptotic, Steady-State or Limiting Availability 

Asymptotic, Steady-State or Limiting Availabily is defined as 

A.., = lim A(t) (1.2) 
,....,. 

This may be shown [Barlow and Proschan (1975)] to be the expected fraction of 

time that the system operates satisfactorily in the long run i.e. 

mean urptime 
A~ = -----.....:....-----

mean uptime + mean downtime 
(1.3) 
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(d) Mean Number of Events in (0, t} 

Let N( x, t) denote the number of a particular type of event (e.g. system failure) 

in the time interval (x, x + t] 

Then the expected number of such events in the time interval ~. t] is given by: 

E[N( 0, t)] = f h1(u)du (1.4) 
0 

where h1(i) denotes the first order product density of the events given by 

h1 (t) =lim E[N(t, A)] I A (1.5) 
~40 

The stationary rate of occurrence of events, N is given by 

N = lim [ E [ N ( 0, t)] I t] (1.6) , __ 

1.8 Techniques used in the Analysis of Redundant Systems 

This section is a compilation of some of the techniques employed in the analysis of 

redundant systems. 
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1.8.1 Renewal Theory 

Renewal theory provides a very useful tool for the study of stochastic processes and 

applied to probability models, and has been used extensively by many authors to 

analyse various reliability problems. Smith (1958) gave an extensive review and 

highelighted certain applications of renewal theory, and Feller (1968) made 

significant contributions to the development of renewal theory. Cox (1962) 

provides a lucid introduction to renewal theory. A renewal process is a 

generalization of the Poisson process allowing independent and identically 

distributed arbitrary distributions of the interarrival times. 

Definition 1: A renewal process is a sequence of independent and identically 

distributed random variables { Xn, n = 1, 2, ... , }, which are not all zero with 

probability one. 

We assume that these random variables are defmed on the same probability space 

and have finite mean ll· A renewal process is completely determined by means 

of f ( · ), the probability density function of X n . Associated with a renewal 

process is a counting process 

{N(t), t ~ 0}, 

which represents the number of renewals in the time interval (0, t] [Parzen (1962)]. 

Definition 2: The expected value of N ( t) is called the renewal function and is 

denoted by H ( t ). The derivative of H(t) , if it exists, is denoted by h ( t) and 

is called the renewal density. 
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The quantity h ( t) <> t is approximately equal to the probability that a renewal 

occurs in the time interval (t, t + () t), for () t > 0 sufficiently small. The 

renewal density satisfies the following famous integral equation known as the 

functional equation of renewal theory 

h(t) =J(t) + J f(u)h(t-u)du (1.7) 
0 

The solution of the above equation is given by: 

~ 

h(t) = L j(n)(t) 
n = 1 

where j<n>(t) isthen-foldconvolutionof f(t) and f 1 (t) = f(t). 

Renewal theory has been widely used in the analysis of reliability problems. 

Srinivasan et al ( 1971) used renewal theory to obtain some operating characteristics 

of a one-unit system. The integral equation of renewal theory was used by 

Gnedenko et al (1969) to obtain MTSF of a two-unit standby system. Osaki 

(1970b ), Bhat (1973) applied the integral equation to study several redundant 

systems. Buzacott (1971) used recent references of theoretic arguments to study 

some priority redundant systems and many authors have found renewal theory a vital 

tool in their research. 

1.8.2 Semi-Markov and Markov Renewal Processes 

In a discrete-time Markov chain the sojourn times are constant, but may be different. 

In a continuous..time Markov chain, the sojourn times are also random variables. 

A Markov process can move from one state to another in which the sojourn time is 
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distributed exponentially. On the other hand, a renewal process can revisit a state, 

in which the state space is only one. However, it can permit an arbitrary 

distribution of the sojourn time. 

Combining a Markov chain and a renewal process, we can get a Markov renewal 

process or a semi-Markov process. 

Consider a stochastic process which makes state transitions in accordance with a 

Markov chain but, however, with the sojourn times in each state being probabilistic. 

Denote the state space by the set of non-negative integers { 0, 1, 2, 0 0 0} and let the 

transition probabilities be given by P iJ, i, j = 0, 1, 2, . . . . Let F iJ ( t ), t > 0 

be the conditional distribution function of the sojourn time in state i, given that the 

next transition will be into state j. Let 

Then Q if (t) denotes the probability that the process makes a transition into state 

j in an amount of time less than or equal to t given that it just entered state i 

at t = 00 

The functions Q yC t) satisfy the following conditions: 

Q ijo( t) = 0; i, j = 0, 1, 2, ooo 
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co 

L Qij(t) = 1, i = o, 1, z, ... 
j=O 

(1.8) 

Let J0 denote the initial state of the process and Jn (n = 1, 2, ... ) the state of 

the process of the n-th transition has occurred. Then the process 

{J n ; n = 0, 1, 2, ... } is a Markov chain with transition probabilities P if. This 

is called an embedded Markov chain. Let N; ( t )" denote the number of 

transitions into state i in (0, t] and defme 

~ 

N(t) = L Ni (t) (1.9) 
i=O 

Now defme a stochastic process: 

{Z(t), t ;;.: 0} where Z (t) = i denotes that the process is in state i at timet. 

Then Z ( t ) = J N < t > . 

Definition 3: The stochastic process { Z ( t ) , t ;;.: 0} is called a semi-Markov 

process (SMP). 

Definition 4: The vector stochastic process {N 1 ( t ), N 2 ( t ), ... , t ;;.: 0} is called 

a Markov Renewal Process (MRP). 

Thus the SMP records the state of the process at each time point, whilst the MRP is 

a counting process which indicates the number of visits to each state. Let X; be 

the random variable denoting the time interval between two successive visits to a 

particular state i, then it is observed that {X; ; i = 0, 1, 2, ... } is a renewal 

process. 

Detailed treatment of SMP and MRP can be obtained in Pyke (1961a,b), Cinlar 

(1975a) and Ross (1970). The surveyofCinlar(1975b) demonstrates the usefulness 
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of the theory of MRP and SMP in applications. Barlow et al ( 1965) used these 

processes to obtain the MTSF of a two-unit system. Srinivasan (1968), Cinlar 

(1975b), Osaki (1970b, 1972, 1980), Arora (1976a,b), Nakagawa and Osaki (1974, 

1976) and Nakagawa (1974) have used the theory of SMP to discuss a number of 

reliability problems. 

1.8.3 Stochastic Point Process 

The stochastic process considered in the earlier sections may all be treated as special 

cases of stochastic point processes. Point processes have been studied against 

different backgrounds resulting in various definitions of such a process being 

proposed. [See for example Bartlett (1966), Bhaba (1950), Harris (1963), 

Khinchine (1955)]. A comprehensive definition of point processes is due to Moyal 

(1962) who deals with such processes in a general space. 

Essentially a stochastic point process may be defmed as a stochastic process with 

a continuous time parameter space and a discrete state space. 

1. 8.4 Product Densities 

One of the ways of characterizing a general stochastic point process is by 

considering product densities [Ramakrishnan (1950, 1954, 1958)], Smith (1955), 

Srinivasan (1974), Cox and Isham (1980), etc. These densities are analogues of the 

renewal density in the case of non-renewal processes. 
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Let N ( x, t) be the random variable representing the number of events in the 

interval (t, t+x). The product density of order n is defmed as 

n 

IT N(L1;, X;) 
i=l 

(1.10) 

a point process is said to be regular if the probability of occurrence of more than one 

event in an interval of length ~ is o(~). 

For regular point process 

pr[N(L1;,x J~ 1, i=1 ,2, ... ,n] 

L11 L12 · ·· L1n 

(1.11) 

h n (X 1' ... , X n) · l11 l12 ... L1n represents approximately the joint probability Of an 

eventineachoftheintervals (xl' x 1 + l11), (x 2 , x 2 + L12), ... , (xn, xn + L1n). 

Even though the functions h n ( ·, ·, ·, . ) are termed densities, their integration will 

not give probability densities. The ordinary moments can be obtained by relaxing 

the condition that all X; 's are distinct. 
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1.8.5 Regenerative Stochastic Processes 

Bellman and Harris (1948) frrst introduced the idea of a regeneration point while 

studying population point process. Feller (1949), in the theory of recurrent events, 

dealt with a special case of regeneration points. Later on, Smith ( 1955) generalized 

Feller's results and dealt with more general stochastic point processes possessing 

such regeneration points familiarly known as regenerative stochastic processes. 

Kingman (1964) developed a formal theory of such processes. 

Consider a stochastic process Z = {Z( t}, t ~ 0} with state space E. Suppose 

that every time a certain event, R, occurs, the future of the process Z ts a 

probabilistic replica of the future of the process from previous occurrence of R. 

Such events are called regenerative events and a stochastic process possessing such 

a characteristic is said to be a regenerative stochastic process. In some special 

cases of stochastic processes R is the only characteristic, so that the process 

regenerates itself. 

In more general cases, in addition to the occurrence of R, a knowledge of Z(t) is 

necessary for the prediction of the process. The renewal process discussed above 

may be considered as a general point process in which each point of occurrence of 

the event R is a regeneration point. If we further specialize to the case when the 

interval between successive regenerative events are distributed exponentially, we 

notice that any point on the time axis is a regenration point. Gnedenko (1964), 

Srinivasan and Gopalan (1973a,b), Birolini (1974, 1975), Srinivasan and 

Subramanian (1980), Sarma (1982), etc. have used such regenerative events to 

study some reliability problems. 
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CHAPTER2 

A two-unit complex system with vacation period 

for the repair facility 

2.1 Introduction 

One-unit systems have been studied extensively in the past (Osaki, 1985). The 

availability and reliability of these systems, where the life-time and the repair-time 

of the unit were arbitrarily distributed have also been studied. 

It is generally true that the high reliability and availability can be achieved by 

redundancy and/or maintenance. We discuss two-unit redundant systems as one 

of the basic redundant systems since there are many applications of two-unit 

redundant systems in the real world. For instance we encounter many computing 

systems comprised of two processors for performing computational demands and 

achieving high reliability and performance. Examples of such two-unit redundant 

systems are: a banking system, electronic switching system, a seat reservation 

system and so on. 

We should classify two-unit redundant systems into two categories: one is a two-

Modified version of this paper is communicated to the International Journal 
of Systems Science 
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unit parallel redundant system and another is a standy redundant system. A two­

unit parallel redundant system is a system that both units operate simultaneously if 

they are available. On the other hand a two-unit standby redundant system is a 

system, one unit will be operating online and the other will be kept on standby 

(offline). If the offline is failed in standby state, then it goes for repair. 

Two-unit standby redundant systems have attracted the attention of many applied 

probabilisits and reliability engineers. A bibliography of the work done has been 

prepared by Osaki and Nakagawa (1976), Kumar and Agarwal (1980), and Lie, 

Hwang and Tillman (1977). Table 2.1 gives some of the present state-of-art of two­

unit standby redundant systems. 

From this table it is clear that all the models discussed in the literature so far have 

the assumption that the repair facility is continuously available to attend the repair 

of the failed units. But is is reasonable to expect that a 'vacation period' might be 

needed to get the repair facility ready before the next repair could be taken up. If 

this vacation is started only when a unit arrives for repair, it is easy to solve the 

problem, since the vacation period plus the actual repair-time may be taken as the 

total repair time. But this vacation period starts immediately after each repair 

completion, so that the facility becomes available at the earliest (Sarma, 1982). 

This vacation period of the repair facility is similar to 'dead time' in counter models 

(Ramakrishnan and Matthews (1953); Takacs (1956; 57)). 

In this chapter we consider a two-unit cold standby redundant system in which the 

repair facility is not available for a random time after each repair completion. This 

non-availability period of the repair facility is called 'vacation period'. 
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Foil owing Kendall's notation in queueing theory each model of a standby system 

will be described by a series of symbols and slashes such as AlBIC where A indicates 

the p.d.f. of the life time of a unit while online, B that of a unit in standby and C the 

p.d.f. of the repair time. The symbol G and M, as usual, stands for a general and 

exponential respectively. Ek stands fork-stage Erlangian distribution. The 

symbol 0 stands for a cold standby system. 
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Table 2.1: Two-unit standby redundant systems 

System Author(s) Results obtained 
description 

1. M/0/Ek Muth (1966) MTSF 

2. MIMIM Tin Htun ( 1966) A. A .. 

3. M/M/G Branson and Shah (1971) MTSF. A.., 

4. M/M/G Srinivasan and Gopalan (1973a) R,A 

5. G/0/G Gnedcnko ( 1964) MTSF 

6. G/0/G Zubova (1964) R 

7. G/0/G Solovyev ( 1964) R and asymptotic behaviour 
when repair time is small 

8. G/0/G Linton and Bareswell (1973) MTSF 

9. G/0/G Srinivasan and Gopalan ( 1973b) R,A 

10. G/0/G Nakagawa and Osaki (1974) MTSF. A .. Expected number 
of visits to a state 

11. G/MIM Subramanian ( 1975) R,A 

12. G/M/G Birolini ( 1975) R,A 

13. G/M/G Subramanian ( 1977) R 

R: Reliability A: Availability A.., : Steady state availability 
MTSF: Mean time to system failure 
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2.2 System Description and Notation 

1. The system consists of two identical units. Either unit performs the system 

· function satisfactorily. When one unit is kept online, the other unit is kept 

as cold standby. 

2. There is only one repair facility. 

3. Switch.over of the unit is instantaneous and switching device is perfect. 

4. After each repair completion, the repair facility goes on 'vacation period' for 

a random period of time. 

5. The life time of a unit while operating online is an arbitrarily distributed 

random variable (r.v.) with probability density function (p.d.f.), J ·). 

6. The repair time of a unit is arbitrarily distributed r. v. with p.d.f., g( ·). 

7. The p.df. of the 'vacation period' is exponentially distributed with parameter 

e. 

{ 

1 if the system is in up state at time t 
S. <l(t) = 0 if h . . .J . 

1 t e system IS 111 uown state at lime t 

9. I; : the regenerative event of type i 

10. ~(t): number of I; events in (0, t]. 

11. ©: convolution symbol 
-

12. F{t) = 1 - F{t) 

13. A;(t) = P[<l>(t) = 1 IE; at t=O] 

14. R;(t) = P[<l>(u) = 0, 0 ~ u ~ I IE; at t=O] 

15. tlr*(s): Laplace transform of liJ(t) 

16. tiJ(n)( I): n -fold convolution of tiJ( I) 

The following regenerative events are used in the reliability and the availability 

analysis of the system. 
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Eo : Event that one unit is just online and the repair for the other unit just 

commences 

E, : Event that one unit is just online, and the other unit is waiting for repair when 

the repair facility is on vacation. 

2.3 Auxiliary Functions 

The following auxiliary functions are required in the availability and reliability 

analysis. 

cx01(t) = lim P{I; in (t, t+~). N 0(t) = 0, N1 (t) = 1, 
£\-0 

4>(u) = 0, 0 ~ u ~ I I E 0 } I ~ 

cx10(t) =lim P{Ea in (t, 1+~). N0(t) = 1, N1(t) = 0, 
£\-0 

4>{u) = 0, 0 ~ u ~ I I E 0 } I ~ 

cx0o(t) = lim P{E".a in (I, t+~). N 0(t) = 1, N1 (t) = 1, 
£\-0 

4>(u) = 1, 0 ~ u :;; ( I E0 } I ~ 

(2.1) 

(2.2) 

(2.3) 
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a 11(t) =lim P{E1 in (t, t+IJ.), N
0
(t) = 0, N

1
(t) = 1, 

.6-0 

a00(t) = lim P{E1 in (t, t+IJ.), N 0(t) = 1, 
.6-o 

4>(u) = o, o ~ u ~ ( I E0 } I IJ. 

Hence, we obtain, 

where 

~1 (t) = { g(t) 0 e -61 
} f(t) 

~o(t) = { ee-{)' 0 (1 - e-6~} f(t) 

~ 

0 h u<t) = E o« ~~>u > 
n=l 

~(t) =lim P{E0 in (t, t+IJ.), N 0 (1) =II E 0 } I IJ. 
.6-0 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

J\n(t) =lim P{E1 in (1, 1+/J.), N0 (1) = 0, N 1(t) = 1 I E0 1} I IJ. (2.13} 
.6-0 
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P10 (t) = lim P{E0 in (t, t+ll}, N 0 (t} = 1, N 1(t) = o I E,} I ll (2.14) 
~-o 

1
P00 (t) = lim P {E0 in (t, t+ll}, N0 (t) = 1, N 1(t) = 0 I E0 } I ll (2.15) 

~-o 

J3 11 (t) =lim P{E1 in (t, t +ll), N0 (t) = 0, N 1(t) = 1 I £ 1} Ill (2.16) 
~-o 

The above functions (2.12) - (2.16) are obtained as follows: 

Po, (t) = « 01 (t) + g(t) F(t) (2.17) 

J3 11 (t) = 
0 

«11 (t) + { 6 e -{}r 0 g(t) } F(t) (2.19) 

1
Poo (t) = 

1 
«oo (t) (2.20) 

where 
00 

d'uU> = :E P\1 (t) 
n=l 

(2.22) 
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2.4 Reliability Analysis 

Let us define the functions R0 ( t), which gives the system performance during the 

interval (0, t]. 

cfo(t) = Jl<J>(u) = 0, 0 ~ u ~ t, ~(t) = 0 I £ 0 ] (2.23) 

(2.24) 

To derive the expression for 
0 

R 0 (I~ the following mutually exclusive and 

exhaustive cases are considered: 

(i) there is £ 0 or £1 event in (0, t] 

(ii) one or more £ 0 avoiding £ 1 events occur in (0, t]. 

- -
0 

R 0 (t) = F ( t) + 
0
h 11( t) 0 F( t) (2.25) 

-
0

R 1(t) = F(t) + a01 (t) 0 cf 1 (t) (2.26) 

Now we obtain the reliability 
0 

R(t) using Figure 2.1. 

Ro(t) = P[<l>(u) = 0, o ~ u ~ t I £ 0] 

(2.27) 

where .. 
h00(t) = L a~~ (t) (2.28) 

n=l 
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Figure 2.1 

At t= 0 E 0 or E 1 occurs. 
At the epoch of failure of online 
unit. 

other unit is operable and the repair other unit is operable and the repair 
facility is available. Eu occurs. facility is on vacation. £1 

occurs. 
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Using Rr,(i}, we obtain the Mean time Between Failures (MTBF) from the relation 

MTBF = lim R;(s) (2.29) 
s-O 

2.5 Availability Analysis 

The availability function Aa (t) can be obtained using the following relation (2.33) 

and Figure 2.2. 



other unit is operable 
and the repair facility 
is available. E0 

occurs 

at the epoch 
of repair 
completion, 
£ 1 occurs 
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Figure 2.2 

At t = 0, E0 or E 1 occurs. 
At the epoch of failure of online 
unit 

other unit is 
operable and 
the repair 
facility is on 
vacation. E 1 

cccurs. 

other 
unit is 
under 
repatr 

other unit is 
waiting for 
repair and the 
repair facility 
is on vacation 

return from 
vacation and 
repatr 
commences 
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-
= F(t) + P01 (t) © cf 1 (t) (2.32) 

- -
= F(t) + 

0
ku (t) © F(t) (2.33) 

The steady state availability A® can be obtained using the relation 

A® = lim A 0(t) = lim s A;(s) (2.34) 
t~® s~o 
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CHAPTER3 

A two-unit parallel system with vacation period 

for the repair facility 

3.1 Introduction 

In the previous chapter two-unit cold standby systems with vacation period has been 

studied. In this chapter a parallel system will be considered. 

Gaver (1963) studied a parallel system with constant state dependent hazard rates 

and arbitrary repair. He provided the Laplace Transform solution of the reliability 

of the system and obtained the MTSF and the standby-state unavailability by using 

supplementary variable technique (Cox and Miller, 1965). 

Later Mine and Kawai2 (1974), Linton and Saw (1974) and Kulshrestha (1968, 70) 

have studied some parallel redundant systems. Kodama and Deguchi (1974) 

studied a two-unit parallel redundant system with Erlangian failure and general 

repair, and obtained MTSF. Linton (1976) extended the results of Kodama et a1 

Modified version of this chapter was presented at the SASA Conference, 1997. 
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(1974) for the case when the failure and repair distributions of the one of the units 

are Erlagian and those of the other are general, by a combination of the phase 

method (Cohan, 1969) and supplementary variable technique. 

Later Subramanian and Ravischandran (1979) extended the results ofLinton (1976) 

to a more general case. 

3.2 System description and notation 

1. The system consists of two non-identical units connected in parallel. 

2. At t=O, both units are new and operable, the repair facility (r.f.) is available. 

3. There is a single repair facility. 

4. With probability (p) unit one will be repaired and with probability (1-p) unit 

two will be repaired (only when the system is in downstate). 

5. The r.f. is not available for a random time and the r.f. needs a 'vacation 

period' 

6. Life-time of the units are random variables distributed exponentially with 

parameters A 1' A2 

7. Repair-Time ~ 1s a random variable with arbitrary distribution 

g;(-), i = 1, 2 

8. Vacation period is also arbitrarily distributed random variable with p. d. f. k( ·) . 

9. All the random variables are statistically independent. 

The following regenrative events are considered for the reliability analysis. (See 

Table 3.1.) 
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Table 3.1: Regenerative events 

Event Unit 1 Unit2 r.f 

Eo 0 0 a 

E. 0 r.J.C. a 

E; r.J.C. 0 a 

E; 0 0 J.n.a. 

£4 r.J.C. Q a 

Es Q r.J.C. a 

o =operable 

r.j.c. =repair just commences 

a = available 

Q = queueing for repair 

j.n.a. =just not available 
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3.3 Availability analysis 

A;(f) = P[the system is up at t I E; at t=O] 

Now derive the equation for A0 (t), by considering the following mutually 

exclusive and exhaustive possibilities in the interval (0, t] . 

(i) neither units fail 

(ii) one of the units fail. 

Similarly we arrive at the other equations. Figures (3.1), (3.2), (3.3) give the 

various mutually exclusive and exhaustive possibilities in the derivation of A1 ( t), 

~(t) and ~(t) respectively. 
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(3.4) 

(3.5) 

(3.6) 
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Figure 3.1 

Eo occurs 

none of the units fail up to t 

£1 occurs 
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Figure 3.2 

£1 occurs 
The repair for 

the unit 

I 
does not complete up to (t) is completed at u>t, at u the 
and the other unit does not other unit 

fail 

does not fail fails before t 

I I 
~ occurs ~ occurs 
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3.4 Reliability analysis 

We now derive the reliability equations for this system. Recall that the system 

reliability is concerned not only with its state of the system at a particular point in 

time but with its state over a period of time. These equations are obtained by 

dropping certain terms in the availability equations. 

R;(l) = P[the system is up in (0, t] I E; at t=O] 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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Figure 3.3 

~ occurs 
The Dead-Time 

I I 
Is not over up to t is over before t at 

u>t at that time 

I I 
both units do not fail I one of them fails 

I I 
Eo occurs I Et or £2 occurs 
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Taking the Laplace Transforms from (3.1) to (3.6) and (3.7) to (3.10), we get 

* 1 A2 A I * A 0 ~) = + ---A t(s) + A 2 (s) 
A 1 +A 2 +s A 1 +A 2 +s A 1 +A2 +s 

(3.11) 

+ [k *(A 1 +s) - k *(A 1 +A 2 +s)]A t +s) + [k *(A1 +s) - k *(A 1 +A 2 +s)]A ;(s) 
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Solving the equations from (3 .11) to (3 .16), we get A; (s). We obtain the steady 

state availability A~ using the relation 

A~ = lim sA;(s) 
s-O 

Similarly taking the Laplace Transforms for the equations (3. 7) to (3.10), we get 

R~~) = 1 + 
A 1 +A 2 +s 

(3.17) 

(3.18} 

(3.19} 

(3.20} 
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Solving the equations (3.17) to (3.20), we get ~(s). From ~(s), MTSF can 

be obtained using the relation 

SPECIAL CASES 

(1) When the units are identical, the results can be easily simplified, i.e . 

.A. 1 = .A. 2 =.A. and g1(t) = g 2 (t) = g(t). Then the events El' E2 

and E 4 , E 5 in the table 3 .1. The availability equations become 

(3.21) 

(3.22) 

(3.23) 



42 

Using these equations, the steady state availability A can be obtained explicitly 

as 

where 

NA = _!_ + g*(.A.) [1 - 4k*(.A.) + (1 + 4.A.)k*(2.A.)] 
A. 2.A. 

D A = [2k*(2.A.)rk*(.A.)g* 1(.A.) + 2k* 1(2.A.)g*(.A.) - k*(2.A.)g*(.A.) 
2.A. 

+ g *(A.)] f tk(t)dt 
0 

+ [1 - 2g *(.A.)k *(A.) + g *(A.) + g *(.A.)k *(2.A.)] Jtg(t)dt 
0 

The reliability equations in this special case become 

(3.24) 

(3.25) 

(3.26) 
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The MTSF can be obtained from the above equations, and using the relation 

MTSF = R~(O) 

3 g*~) 
=-+-----=--~----

1A 2l[l-2g*~)k*(A)+g*~)k*(1A)] 

(2) In addition to the special case (I), we assume I( t) = H(t), a Heaviside 

function 

MTSF = 2_ + g*(l) 
2l 2l[l-g *(l)] 

This result is in agreement with Srinivasan and Subramanian (1980). 

3.5 Numerical illustration 

Table 3.2 presents the steady state availability and the MTSF corresponding to 

the special case ( 1 ), when 

(a two-stage Erlangian) 

and k( t) = H (t- t01 a Heaviside function. For the parametric values ; = 50 

and for different values of _!_ = 15, 25, 35 A and MTSF are obtained. 
~ 
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Table 3.2: t 0 versus A~ and MTSF 

Repair time to A 
~ 

MTSF 

15 0.9918 152.92 
15 0.9809 147.66 
20 0.9011 137.92 
25 0.9490 129.81 

1 
- = 15 30 0.8999 125.07 
~ 35 0.8.598 120.88 

40 0.8307 117.33 
45 0.8080 115.90 
50 0.7899 113.98 

5 0.8991 122.81 
10 0.8710 117.88 
15 0.8433 114.96 
20 0.8111 112.86 
25 0.7910 110.07 

1 
- = 25 30 0.7760 108.81 
~ 35 0.7588 106.00 

40 0.7400 105.01 
45 0.7263 104.90 
50 0.7099 103.86 

5 0.7914 106.78 
10 0.7784 104.14 
15 0.7396 102.98 
20 0.7220 101,11 
25 0.7198 100,70 

1 30 0.7089 99,91 - = 35 
~ 35 0.6979 98.01 

40 0.6756 97.66 
45 0.6694 96.78 
50 0.6587 95.01 
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CHAPTER4 

Intermittently used systems- A Review 

4.1 Introduction 

The two-unit redundant repairable systems have been studied in the previous 

chapters with reference to the evaluation of the performance in terms of reliability, 

pointwise availability and other measures of system performance. There are 

several facets to the problems of these type. In all the attempts made so far it is 

assumed that the system under consideration may be needed all the time but there 

are certain practical situations in which continuous failure free performance may not 

be necessary. Therefore it may be worthwhile to take into account the fact that the 

system may not be needed in certain spans of time and the system can be in a 

downstate during such time intervals without any consequence. In such situations 

we come across intermittently used systems. While dealing with intermittently 

used systems the designer does not need to use severe constraints on the components 

that go to make the system. In modelling, the probability that the system is in the 

downsrctte need not be studied. It is enough to study, the probability that the 

system is not available whenever it is needed. This type of an approach to 

reliability and its consequences have not been explored by many researchers. We 

shall give a brief account of the present state of art of intermittently used systems. 
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Gaver (1964) pointed out that, it is pessimistic to evaluate the performance of an 

intermittently used system solely on the basis of the distribution of the time to 

failure. Gaver stressed on the point event called the disappointment characterised 

by the entry of the system into the downstate when the system is already in the 

downstate during a need period or the state of the need for the system when the 

system is already in the failstate he studied the one-unit intermittently used system 

in connection with a traffic and congestion problem and obtained the system · 

measure, the expected duration of the first disappointment. Later Srinivasan ( 1966) 

extended Gaver's analysis to two-unit cold standby systems and obtained the biased 

involved in the assessment of the system performance when the need pattern is 

ignored. 

Nakagawa, Sawa and Suzuki (1976) made a further study of the one-unit system 

used intermittently and obtained the system measures 

( 1) the expected time to the first disappointment 

(2) the expected number of disappointments during an interval of time 

(3) pointwise unavailability 

They also made a preliminary analysis of two-unit cold standby system and obtain 

Laplace-Stieltjes transform of the three measures given above. 

Table 4.1 presents the earlier work done on intermittently used systems. Foil owing 

Kendal's notation in queueing theory each model is described by a series of symbols 

and slashes such as AlBIC where A indicates the probability distribution of the life­

time of the online unit, B that of a unit in standby and C the probability distribution 

of the repair time. 
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Table 4.1 Intermittently used System 

Nwnberof Description of Description of Authors Results obtained 
units system need/no-need 

periods 

2 G/0/G MIM Srinivasan Expected time to system failure 
(Dissimilar (1966) 
units) 

2 G/M/G MIM Nakagawa, Sawa Pointwise unavailability 
and Suzuki 
(1976) 

2 G/0/G MIM Kapur and Distribution of time to the first 
Kapoor ( 1978) disappontment, probability of a 

disappointment at time I, the 
expected nwnber of 
disappointment during (0, t). 

2 G/0/G MIM Srivivasan and Mean time to the flfSt 
Bhaska (1976b) disappointment, mean and mean 

square nwnber of 
disappontments over any 
arbitrary interval, duration of 
the first disappointment. 

2 G/MIM MIM Srivivasan and Mean time to the first 
Bhaska ( 197 6c) disappointment, mean and mean 

square nwnber of 
disappontments over any 
arbitrary interval duration of the 
first disappointment. 

2 G/0/G MIM Kapoor and Joint distribution of the first up 
Kapur (1980) time and disappointment time. 

n 0 MIM Sambandham Time to the flfSt 
(1981) disappointment, distribution of 

the time between two 
successive need events, mean 
and mean square nwnber of 
disappointments. 

n G/MIM MIG Sarma and Distribution of time to flfSt 
Natrajan (1982) disappointment and mean time 

to flfSt disappontment 
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The distribution of need and no need period are described as DIE respectively in a 

separate column. As in queueing theory, the symbols G stands for general 

distribution, M stands for exponential distribution, Ek stands for k-stage Erlangian 

distribution. Special features like preventive maintenance (a unit which had 

worked for specified duration of time and due for repair or service) will be indicated 

in a separate column. If a system is a cold standby system we represent with a 

symbol 0. In case of a system in which the switching device cannot fail no repair 

is needed for it. The corresponding distribution of ihe repair time will be 

represented by the dash (-). Indicating that there is no repair. 

The first attempt on n-unit intermittently used standby redundant systems have been 

made by Subramanian, Sarma and Natarajan (1981), Sarma and Natarajan (1982). 

They obtained the system measures 

(I) expected time to the first disappointment and 

(2) expected number of disappointment in an interval. 

Various assumptions can be made regarding, whether a need period waits till the 

system becomes available or not; whether there is continuous monitoring of the 

system to detect failures or not and so on. A perpetual vigil is set to be kept on the 

system, if failures are detected as and when they occur irrespective of whether the 

occurrance is in a need or no need for the system and are taken up for repair 

immediately if the repair facility is available. If the failures are not detected during 

a no need period then we say that the system is kept under non-perpetual vigil. 

The above two papers of n-unit standby redundant systems studied by Subramanian, 

Sarma and Natarajan; Sarma and Natarajan have considered the non-perpetual vigil 

and perpetual vigil respectively. 
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In the articles cited in the tables the need period of the system is described by a 

stochastic process 

{Z(t1 t ~ 0} 

with state space {0, 1} where the numbers 1 and 0 signifiy the need and no-need 

states respectively. It has also been assumed that the process {Z(t1 t ~ 0} is 

Markov, so that the need and no-need period that follow each other constitute a pair 

of independent random variables which are distributed exponentially. 

The first contribution to the intermittently used two-unit parallel system is due to 

Sarma and Hines (1990). They obtained all the above measures using correlated 

alternating renewal process, and forward recurrence times. 



CHAPTER 5 

INTERMITIENTL Y USED TWO-UNIT 

STAND BY SYSTEM 
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CHAPTERS 

Intermittently used Two-unit Standby System 

5.1 Introduction 

In this chapter we consider a comparatively simple two-unit system and obtain the 

system measures like expected time to the first disappointment and the expected 

number of disappointments in an interval with the help of correlated alternating 

renewal process (Sarma, 1982). 

Baxter (1981) obtained some general measures for the reliability of the repairable 

one-unit system, by identifying the sequence of periods of operation and repair as 

an alternating renewal process (Cox. 1962). This type of modelling was possible 

because of the uptime and the downtime are independent random variables in such 

a system. 

However, consider a two-unit cold standby system, in which the life-time and the 

repair-time of units are arbitrarily distributed random variables. If at the epoch of 

the failure of the online unit, the other unit is under repair then the system ~11 enter 

the downstate. The duration of the system downtime will depend on the elapsed 

repair-time and therefore the time for which the online unit was operating 

successfully. Therefore in this example the up-time and the down-time are 

correlated random variables. 
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In this case the system remains in the upstate and downstate alternatively. The 

entire process describing the system behaviour can be thought of as a sequence of 

circles and each circle representing the uptime and the subsequent downtime. Such 

a process is called "Correlated Alternating Renewal Process", if it satisfies some 

more additional conditions. Earlier the joint distribution of uptime and downtime 

were obtained by Nakagawa and Osaki (1976), for a simple two-unit cold standby 

system. The joint distribution of uptime and disappointment time for an 

intermittently used system were studied by Kapoor and Kapur (1980). In this 

chapter we study the correlated alternating renewal process in detail and apply these 

results for a two-unit intermittently used cold standby system to obtain the system 

measures. This is achieved with the help of joint forward recurrance time. 

5.2 Correlated Alternating Renewal Process 

Consider a system which is alternately in one of two states called for convenience 

the favourable state and the unfavourable state. Let ~ be the random variable 

denoting the time spent in the favourable state during the system's i-th visit to the 

state and J; the time spent in the subsequent unfavourable state. We assume that 

<x;, Y;) i = 1, 2, .. . are statistically independent bivariate random variables. All 

these random variables are assumed to be defined on the same probability space and 

have the same distribution as the bivariate random variable (X Y) with joint 

distribution function F x.r (x, y). The sequence of ordered pairs 

{(Xk, Y k~ k = 1, 2, ... } 

will be called correlated alternating renewal process in the following additional 

assumptions are satisfied: 



52 

(i) ~ , X2, •. . are independent 

(ii) ~. Y2, ... are independent 

(iii) ~. Yj are independent for i * j 

These assumptions imply that the sequence of random variables 

{(X; + Y;); i = 1, 2, 3, ... } are independent and identically distributed and hence 

form a renewal process. 

The following events are identified to study the properties of the correlated 

alternating renewal process: 

E The system enters the favourable state from the unfavourable state. 

D The system enters the unfavourable state from the favourable state. 

The E and D events occur alternately and give rise to a correlated alternating 

renewal process. We identify X as the time interval between an E event and the 

next D event, and Y that between this D event and the next E event, so that X+ Y 

represents the interval between two successive E events. We assume the occurance 

of an E event at t=O, so that the functions Fx.r(x, y) and fx.r(x, y) are the joint 

distribution and the corresponding density of X and Y conditioned upon an E event 

at t=O. 

5.3 Properties of Correlated Alternating Renewal Process 

Using the joint distribution of X and Y, we can obtain the marginal distributions; 
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ff.n(x) = J fx.r (x, y)dy (5.1) 
0 

Kr(v) = J fx.r(x, y)dx (5.2) 
0 

where fx ( x) and g r ( y ) are the marginal distributions of X and Y respectively. 

( 1) The probability density function of a random variable X+ Y which is the 

interval between two successive E events, is given by 

fx+r (I) = J fx. r (u, 1-u)du 
0 

(5.3) 

(2) Let t be a fixed time point where the system up. Similar to the forward 

recurrence time for a renewal process we now introduce for the correlated 

alternating renewal process the joined forward recurrence time as a bivariate 

random variable (!1, , W, ) corresponding to the time measured from the 

time instant t to the next D event and the subsequent E event. 

For y > x, let 

1VD E(l, x, y) = lim -
1

- [Pr{the frrst D event after I occurs in 
• A •• A,-0 AI A2 

( 1 + x, 1 + x + A 1 ) and the frrst E 

event after t occurs m 

( 1 + y, t + y + ~) I the system is up at 

t, an E event occurred at t=O}] for all 

x,y ~o. 
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Then we have 

fx,rU +x,y-x)+ J h~u)fx.r(t-u+x,y-x)du for y > x 
0 

0 otherwise. 

(5.4) 

where 4(·) is the renewal density of the E events given by 

~ 

4(1) = L fi"!rU) (5.5) 
n=l 

where t):> r (t) is the n-fold convolution of fx. r (t) . 

(3) The marginal forward recurrence times of D and E events respectively are 

given by 

and 

1JID(t1, x) = lim ..!. Pr{ The first D event after t occurs in 
~-o ll 

(t+x, t+x +ll) I the system is up at t, Eat t=O} 

= J 1j1 D.~ I, X, y) dy 
0 

=Jx<t + x) + J hE(u)fx(t-u+x)du 
0 

(5.6) 
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lJIE(t, y) =lim _!_ Pr{ the first E event after t occurs in 
a~o ~ 

t+y, t+ y+~ /the system is up att, E att=O} 

y 

= J fx.r(t+u, y -u)du + J duJh E(w)fx. y(l -w+v, y -u)dw 

0 0 0 (5.7) 

(4) The stationary values of the forward recurrence times may be obained as 

(a) tVn,E (X, Y) = lim lJ1 D.E (t, x, y) 
t~~ 

~ 

= ~ J fr.r (t, y- x)dt 
~I ~2 x 

(5.8) 

(b) lJin (x) = lim lJ1 D (t, x) 
,.~ 

.. 
= 1 J fx (t)dt 

~I+~ 2 x 

(5.9) 

(c) q,E (y) = lim lJ1 E (t, y) ,_ 
.. 

1 
= J fx+r (t)dt 

~I +~2 y 

(5.10) 

where ~ 1 = E(X) and ~ 2 = E( Y) 
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5.4 An Intermittently used two-unit stand-by system 

5.4.1 System description and notation 

1. The system consists of two identical units, one operates online and the other 

is kept as a cold stand-by. 

2. There is a single repair facility and the repairs are taken up in frrst-in-frrst-out 

order. 

3. Each unit is new after repair. 

4. The switchover is instantaneous. 

5. Switching device is perfect. 

6. Initially the system enters the upstate from the downstate when the system is 

in the need state. 

7. The failure of a unit operating online is detected only when there is a need for 

the system and the failure remains undetected until the need arises for the 

system only then remedial measures like replacing the failed online unit with 

an operable stand-by and attempts to send the failed online unit for repair are 

considered. 

8. If the system enters the downstate when there is a need for the system or if 

need arises for the system when it is in the downstate, the system remains 

indefinitely in a state of need until it recovers and then the need period lasts 

for a span of time governed by the same exponential distribution. 

9. The life time of a unit while operating on online is an arbirarily distributed 

random variable having the p.d.f. f(·). 

10. The repair time of a unit is also arbitrarily distributed random variable with 

p.d.f. g(-) 

11. The need and the no need period are exponentially distributed random 

variables with parameters a, p respectively. The need and the no need 

period occur alternatively. 
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It is convenient to defme the event E 1 , in addition to E and D events, 

Event characterized by one unit just online and the other unit just taken for 

repair, the system is in the need period. 

Defme: 

Z (t) Two valued stochastic process, describing the state of need or noneed for the 

system at time t, i.e. 

{ 

0 if the system is in need state 
Z(t) = l 

if the system is in no -need state 

Associated with the process {~t)~ I :?: 0}, we define the following auxiliary 

functions 1t;/t), useful to our analysis: 

1tij (t) = Pr{Z(t) = j I Z(O) = i} i, j = 0,, 1, t :?: 0. 

and can be obtained by renewal theoretic arguments such as: 

(5.11) 

a -< a•PY --e 
a+~ 

(5.12) 



(X 
= -- + 

a+P 
_p_ e -(a+P~ 
a+P 

1tll (t) = _p_ - _p_ e -(a+P~ 
a+P a+ p 
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(5.13) 

(5.14) 

5.4.2 The Joint Distribution of the Favourable Time and the Unfavourable Time 

By identifying X as the time interval between an E event and the next D event 

and Y as the time interval between this D event and the following E event, the 

joint density of X and Y is given by figure 5.1. 

X 

!.xy (X, Y) = 1t 00 (X) fix) g(x +y) + J 1t01 (u) f (u) fle -P<x-u) g(x+ y)du 

0 

where 

X 

+ J hE
1
(U)1t00(x-u)f(x-u) g(x-u+y)du 

0 

x x-u 

+ J J hE
1
(u) 1t

01
(v)j(v) pe-lll:x-(ll+v)J g(x- u)+y)dvdu 

0 0 

hE
1 

(t) = t 
00

(t) /( t) G(t) + J 1t 01 {u) f(u)pe -P<.t-u) G(t)du t t ]( n) 

~~ 0 

is the renewal density of E1 events. 

(5.15) 
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Figure 5.1 

I E) occurs at I= 0 I 

No other Et event At least one E event occurs 
occurs before the next D before the next D event 
event 

I I 
The operating unit fails The last E1 event before the 
before the other units this D event occurs. The 
repair completes and the operating unit fails before the 
failure occurs in the other units repair completely 

and the failure occurs in the 

I I I I 
need period no-need need period no-need 
D occurs period and Doccurs period and 

I I 
need arises for the system need arises for the system 
before the repair before the repair completes. 
completes. D occurs D occurs. 
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5.4.3 The Marginal Densities 

If the marginal densities of the random variables X and Yare 

fx(x) and /y(y) 

respectively, then 

fx (x) = J /x,y(X, Y) dy 
0 

X -
= 1t

00
( x) f(x)G(x) + J 1t

0
( u )/( u)(3e -P<x -u > g(x+ y)du 

0 

X 

+ J hE, (u)1t 00 (x-u) f(x-u)G(x-u)du 
0 

x x-u 
+j J h (u)1t ji(vXle-Pt:x-(u+v)l G(x-u)dvdu (5.16) 

E 1 01 

0 0 

/y(y) = J fx.r(x, y)dx 
0 

X 

= J 1t
00

(x)f(x) g(x+y)dx + Jdx J 1t01 (u)f(u)pe-P<x-u>g(x+y)du 
0 0 0 

X 

+ J dx J hE
1
(u)1t00 (x-u)f(x-u) g(x-u+y)du 

0 0 

x x-u 
+ J dx J J hE

1 
(u)1t

01 
(v) f(v)(le -1\[x-(u+vfg (x-u +y) dvdu 

0 0 0 (5.17) 
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The density of the random variable X+ Y representing the cycle length is: 

fx + r (t ) = J f x, r ( u, I- u) du = g( I) J 1t 00 ( u) /( u) du 
0 0 

t 

+ g (t) J 1t
01 

( u) f( u) (1 -e -P<t -u>) du 
0 

t t-u 
+ J g(l-u) J h£

1
(U)1t01 (v)f(v)(l - e-P<t-(u+v»)dvdu 

0 0 

+I g(t - u)[ 'l h >; (u)Tt 00 (v)f(v) dvl du (5.18) 

5.5 System measures 

Using the joint distribution of the favourable and the unfavourable time and the joint 

forward recurrence time of the D and E events, expressions for various operating 

characteristics of an intermittently used system are obtained. 

It is noted that (Gaver (1963)), that measures such as reliability and availability will 

provide a rather pessimistic evaluation of the system performance in this case, since 

the system may be in the down state during no need periods with negligible 

consequential loss. Attention will instead be paid to the D event as defmed in 

previous sections. 

(1) Time to frrst D event 

Let Tv be the random variable denoting the time to the frrst D event then I; 

has p.d.f. given by 
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00 Pr{T D > t} = J f x (u)du (5019) 

The mean value of T D is given by 

MTTD = J x f x (x)dx (5020) 
0 

(2) The number of D events in the interval (0, t] 

Taken the point process generated by successive D events to be regular the first 

order product density for D events is given by 

h 1 (x) = lim..!_ E[N(x, .!\)] = lim..!_ Pr{N(x, .!\) = 1} 
.t.-o L\ .t.-o L\ 

where N, (X. Ll) denotes the number of D events in the time interval (X. x+ Ll)o 

Hence 

X 

h 1(x) = \j1 D (0, X) + J hE, (u)\jl D (u, x-u) du 
0 

(5021) 
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Therefore the expected number of D events in (0, t] is given by 

X 

E[N(O,t)] = f hl(x)dx = f lJ1 D (0, x)dx + fdxfh E (u)lj1 D (u, x-u) du 
0 0 0 0 

t X 

= J fx(x)dx + JdxJhE(u)fx(x-u) du (5.22) 
0 0 0 

(3) The expected duration of a disappointment 

The expected duration of a disappointment is given by the expected value of the 

random variable Y, and 

E(Y) = f y f x (y) dy (5.23) 
0 

5.6 Special case 

When a = 0 i.e. the system is available continuously. The following results are 

obtained: 

where 

and 

X 

f x,Y (x, y) = f(x)g(x+y) + J hE (u)f(x+u)g(x-u +y) du 
0 

~ 

h (t) = ~ [f(t)G(t)](n) 
Ei L...J 

n=l 

(5.24) 
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X 

fx (x) = Jx) G(x) + J h E
1
(u) f (x-u) G(x -u) du 

0 

X 

I y(y) = J f(x) g (x+ y)du + J dx J h £
1 
(u)f(x -u) g(x -u+y) dy 

(5.25) 

0 0 0 (5.26) 

1-il 

F X+Y(t) = g(t)F(t) + J g( t-u) J h E
1
(u)f( x) dx 

0 0 

= g(x) F(t) + J g(t -u)h E
1
(u)F(t-u) Du 

0 

(5.27) 

(5.28) 

These results are in agreement with Subramanian, Sarma and Natarajan (1983). 
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Concluding remark and scope of the work 

Reliability theory is a very important branch of system engineering and applied 

probability and deals with methods of evaluating the various measures of 

performance of a system that may be subject to gradual deterioration. Several 

methods of redundant systems have been studied in the literature and the following 

are some of the typical assumptions made in analysing such systems: 

(i) the repair facility can take up a failed unit for repair at any time, if no other 

unit is undergoing repair 

(ii) the system under consideration is needed all the time. 

Tiris dissertation is a study of redundant repairable systems, relaxing the above two 

assumptions. 
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