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SUMMARY 

Over the past two decades there has been an upsurge in interest in structural equation 

modelling (SEM). Applications abound in the social sciences and econometrics, but 

the use of this multivariate technique is not so common in public health research. 

This dissertation discusses the methodology, the criticisms and practical problems of 

SEM. We examine actual applications of SEM in public health research. 

Comparisons are made between multiple regression and SEM and between factor 

analysis and SEM. A complex model investigating the utilization of antenatal care 

services (ANC) by migrant women in Belgium is analysed using SEM. The 

dissertation concludes with a discussion of the results found and on the use of SEM 

in public health research. Structural equation modelling is recommended as a tool for 

public health researchers with a warning against using the technique too casually. 

KEY TERMS 

Structural equation modelling; Measurement model; Structural model; Latent 

variable; Multivariate statistical techniques; Theory based model; Path diagram; 

Identification; Specification error; Multiple regression; Exploratory factor analysis; 

Confirmatory factor analysis; Utilization of antenatal care services 
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CHAPTERl 

INTRODUCTION 

Over the past two decades there has been an upsurge in interest in structural equation 

modelling (SEM) especially in the fields of social science and econometrics. 

Applications of this technique include modelling macroeconomic formulation, racial 

discrimination in employment, evaluation of social action programs, voting behaviour, 

studies of genetic and cultural effects, scholastic achievement, and many other 

phenomena. 

The history of SEM shows that there is no one person who invented this technique, but 

rather it developed over time. From the early work of Sewall Wright (1918) on path 

analysis and the work of factor analysis initiated by Spearman (1904), structural 

equation modelling developed in leaps and bounds in the early 1970's and 1980's. 

Joreskog (1973), Keesling (1972), Wiley (1973) and others were instrumental in the 

conceptual synthesis of latent variable and measurement models. The late 1970's and 

early 1980's saw the development of estimation procedures which in turn led to the 

development of computer software. However it was the work of Joreskog and Sorbom 

on the LISREL (Linear Structural Relations) software that popularized the spread of this 

technique in the social sciences. 

The development of structural equation modelling was seen as a solution to the 

problems of: 

1. estimation of multiple and interrelated dependence relationships, and 
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2. representing unobserved concepts. 

These problems are common in the social sciences and that is the reason for SEM being 

so popular in this field. 

Epidemiological methods have traditionally been seen as the best methods of studying 

public health problems. Most epidemiological research has been focused on establishing 

the etiology of disease, but recently the view developed that disease is a result of a 

complex mix of social, economic, political and environmental factors. As public health 

has broadened from its focus on medical and behavioural problems to incorporate a 

more socio-environmental approach, so the questions asked by public health researchers 

have become more complex, more embedded in social, political and economic factors. 

Epidemiological methods are not designed to cope with the complexities of public 

health research while the social sciences offer a range of methods that have evolved to 

deal with the complex questions being asked by public health researchers. One such tool 

is structural equation modelling. With the change of focus in public health research and 

the complexity of the research questions being asked, methodologies for health research 

should be diverse. Adopting methodologies that evolved in the social sciences is one 

option to diversify public health research. 

Structural equation modelling presents one such possible methodology which can be 

used to great effect in the public health environment. From as early as 1974, Goldsmith 

and Berglund (1974) presented tentative path diagrams for: 

1. childhood asthma and bronchitis, 

2. adult bronchitis and emphysema, 
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3. respiratory functional impairment in children and adolescents, and 

4. cancer of the lungs. 

These they proposed as areas for further research but applications of either path 

analysis or SEM have been limited. More recently Buncher et al. (1991) showed the 

merits of using SEM in environmental epidemiology. In this dissertation, SEM will be 

applied to selected problems, to show that there are benefits in using this technique to 

analyse complex problems that would otherwise be difficult to solve using the standard 

statistical techniques. 

The aim of this dissertation is to show the benefits of using SEM when investigating 

complex causal relationships and also to discuss some criticisms, problems and 

shortcomings of this technique when applied in the public health environment. 

Chapter 2 gives an overview of structural equation modelling, taking us through the 

methodology and mathematical notation of SEM and discussing some criticisms and 

practical problems of the technique. Throughout this chapter the "low-birth weight 

example", which examines the relationship of acculturation (a process of social change 

caused by the interaction of significantly diverse cultures) and a number of other 

variables with low-birth weight status of women, will be used to explain and illustrate 

the structural equation modelling methodology. This example will also be used to 

explain definitions and terminologies. The model (revised from that which was analysed 

by Cobas et al. (1996)) is given in Figure 2.1. 

3 



In Chapter 3 similarities and differences between SEM and multiple regression and 

between SEM and factor analysis are discussed. The purpose of this chapter is to 

highlight the similarities and differences between SEM and other multivariate 

techniques. For each one of these techniques a data set is analysed in SEM and the 

related technique and the results are compared. In §3 .1 the HA TCO data set from Hair et 

al. (1992, pp. 536-537) serves as the data for analysis. The HATCO example looks at 

the effects of specific parameters on the level of satisfaction of their customers. In §3 .2 

' the example comes from Huba et al. (1981) and concerns the drug usage rates of 1634 

Los Angeles teenagers. 

A complex model investigating the utilization of antenatal care services by migrant 

Turkish women in Belgium is analysed using SEM in Chapter 4. The aim of this chapter 

is mainly to see how SEM is applied to a complex data set which has multiple 

interrelated regression equations which incorporate latent variables and to show the 

strengths and limitations of structural equation modelling. 

Chapter 5 IS a general discussion on structural equation modelling. It includes 

advantages and disadvantages of the methodology, a discussion on criticisms and 

recommendations on the use of SEM. Included are also problems which were 

experienced when conducting the analyses. 
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CHAPTER2 

STRUCTURAL EQUATION MODELLING 

2.1 OVERVIEW 

Multivariate statistical techniques have been used for decades and have emerged as a 

powerful tool in research, primarily for the exploration of data rather than testing of 

causal theories. One technique has recently become very popular especially in the fields 

of econometrics, psychology, sociology and educational research for testing causal 

theories, namely structural equation modelling (SEM). 

Structural equation modelling, though similar in some ways to the multivariate linear 

model, differs quite markedly in others. Multivariate linear models include multivariate 

analysis-of-variance models, multivariate analysis-of-covariance models, and 

multivariate regression models. Multivariate linear models must not be confused with 

multivariate analysis. The field of multivariate analysis covers a wide variety of other 

techniques not covered by the multivariate linear model. 

The multivariate linear model is written as: 

Y=XB+E 

where, Y is a (n x k) matrix of observed values of k independent variables of 

responses 

X is a (n x m) matrix ofn observations on them independent variables 

(which may contain dummy variables) 
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B is an (m x k) matrix of regression coefficients or parameters. Each 

column of B is a vector of coefficients corresponding to each of the k 

dependent variables, and each row contains the coefficients associated 

with each of m independent variables. 

E is the (n x k) matrix of then random errors, each column 

corresponding to each of the dependent variables. 

Structural equation modelling can be shown to embody the multivariate linear model 

(Bollen, 1989, pp. 2-4), but there are differences between these techniques. In the 

multivariate analysis-of-variance (MANOV A) we allow for multiple dependent 

variables but we cannot model multiple interrelated dependent relationships as SEM 

does. Similarly multiple regression can only examine relationships with a single 

dependent variable (Hair et al., 1992, p. 426). This is a severe restriction when 

modelling complex relationships. For MANOVA we minimise the F ratio, while in 

SEM the fitting function is minimised. The fitting function will be discussed under the 

topic of "estimation" on pages 20 to 23. 

Very often in research complex ~elationships need to be tested and the multivariate 

linear model is not suitable. 

Let us consider the following example, which will be referred to as the "low-birth 

weight example", which examines the relationship of acculturation (a process of social 

change caused by the interaction of significantly diverse cultures) and a number of 

variables with low-birth weight. The model (revised from that which was analysed by 
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Cobas et al.(1996)) is depicted in Figure 2.1. I will use this example to illustrate the 

concepts, methodology and the notation which is used in SEM. In the low birth weight 

example, Cobas et al used structural equation modelling to re-analyse data employed by 

Scribner and Dwyer in their 1987 study of the effects of acculturation on mothers' low 

birth weight status. The analysis was based on the Mexican American portion of the 

Hispanic Health and Nutritional Survey conducted by Scribner and Dwyer. The model 

examined in Figure 2.1 included only women who had experienced at least one live 

birth. Other variables included in the model, which are theoretically justified in Cobas et 

al. (1996), are education, age, size of the community, language spoken, preferred 

language, language read better, language written better, respondent's ethnic identity, 

mother's ethnic identity, father's ethnic identity, place of birth, food energy intake, 

calcium intake, iron intake, smoking status, parity (number of live births) and low birth 

weight status. More details on the variables and how they were derived and measured 

can be obtained from Scribner and Dwyer (1989) and Cobas et al. (1996). The revised 

model is given in Figure 2.1 below. 

/ 
'0 

I Parity 

Figure 2.1: Relationship between the variables in the low birth weight example. 
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One strength of SEM lies in its ability to deal with multiple relationships simultaneously 

in a straightforward manner while still providing statistical efficiency. Structural 

equation modelling estimates a series of separate but interdependent multiple regression 

equations simultaneously. Figure 2.1 clearly illustrates five relationships. The first, 

illustrating the relationship between Dietary Intake and Language. The second showing 

the relationship between Ethnicity, Language and Acculturation. The third relationship 

is between Acculturation and P~~ The fourth relationship is between Acculturation 

and Smoking and the fifth relationship is between Di~ Intake, Acculturation, - ' 

Smoking, Parity and Low Birth Weight Status. In an interdependent relationship, some 
- -----..... ,..,., ..... ,. '""' <" .... ~''' ·' 

dependent variables (Smoking and Parity) will be used as independent variables in 

subsequent relationships. Many of the same variables will affect each of the dependent 

variables but with differing effects. This type of model is called a structural model. In 

the low-birth weight example, Parity is a dependent variable which is related to 

Acculturation, but is also used as an independent variable when predicting Low Birth 

Weight Status. 

The other strength of SEM is its ability to incorporate latent variables into the analysis. 

A latent variable or construct is an unobserved concept that can only be approximated 

by observed variables often called manifest variables, measures, indicators or proxies 

(these terms will be used interchangeably throughout this dissertation). The model given 

in Figure 2.1 has four latent variables or constructs, represented by Language, Ethnicity, 

Dietary Intake and Acculturation. Table 2.1 illustrates the manifest variables or 

indicators which approximate the latent variables. 
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Table 2.1: Table of Latent variables and Manifest variables. 

LATENT VARIABLES 

Language 

Ethnicity 

Dietary Intake 

Acculturation 

MANIFEST VARIABLES 

Language Spoken 

Preferred Language 

Language Read Better 

Language Written Better 

Respondent's Ethnic ID 

Mother's Ethnic ID 

Father's Ethnic ID 

Birth Place 

Food Energy 

Calcium 

Iron 

Education 

Age 

Size ofthe Community 

Birth Place 

Constructs or latent variables are the basis for forming causal relationships as they make 

possible the representation of concepts. They can be defined with varying degrees of 

specificity, ranging from quite narrow concepts to complex or abstract concepts. Using 

latent variables has both practical and theoretical advantages, for example improving 

statistical estimation by accounting for measurement error. Measurement error is not 

always caused by inaccurate responses but is also present when very abstract concepts 

9 



are used. Structural equation modelling accounts for measurement error through the use 

of the measurement model. 

The measurement model is a submodel in SEM that: 

1. specifies the indicators for each construct, 

2. assesses the reliability of each construct for use in causal relationships, and 

3. measures the variance extracted by each ofthe constructs. 

The measurement model is very similar to factor analysis and is often referred to as 

confirmatory factor analysis (CFA) (Bentler, 1983; Bollen, 1989, p. 223; Joreskog & 

Sorbom, 1976). 

Traditional statistical techniques involve the analysis and modelling of individual 

observations or cases. In order to understand SEM we need to look at the analysis of the 

data in a different light and divorce ourselves from the idea that data can only be 

analysed as individual cases. We need to look at the data as a matrix of covariances 

rather than cases. 
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2.2 METHODOLOGY 

The benefits of SEM come from using the structural and measurement models 

simultaneously. To ensure that the models are correctly specified and the results are 

valid, Hair et al. (1992, p. 435) recommend a seven step approach. The steps are as 

follows: 

1. development of a theoretically based model, 

2. constructing a path diagram of causal relationships, 

3. converting the path diagrams into a set of structural equations and 

measurement model, 

4. choosing the input matrix type and estimation of the proposed model, 

5. assessing the identification of the model equations, 

6. model evaluation, and 

7. modifying the model if necessary and if theoretically justified. 

Other authors suggest a similar approach, only involving five steps (Joreskog, 1976; 

Bentler & Weeks, 1980; Long, 1994). The seven steps are now explained, using the 

descriptions given by Hair et al. (1992, pp. 435-452). 

2.2.1 Development of a Theory Based Model 

Structural equation modelling, like most multivariate techniques, is based on causal 

relationships, where a change in one variable results in the change of another variable. A 

model is formulated on the basis of one's theory or past research in the area of interest. 

Palloni (1987) discusses the relationship between theories, models and causal 

inferences. He defines a theory as an organized set of propositions reducing a particular 
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set of phenomena to an abstract network of concepts, created with a causal language that 

makes explicit the existence of causal factors and causal mechanisms. 

In order to draw valid inferences about causal relationships, the theory is translated into 

a model using a path diagram. At this stage the researcher chooses to emphasize certain 

aspects of the theory and de-emphasize others (Levin et al., 1989), and may also decide 

to simplify the relations implied by the theory. 

A critical error to be avoided in SEM as in all theoretically based models, is the 

omission of one or more key predictors, often called specification error (Joreskog, 1976; 

Hair et al., 1992, p. 436). Omitting key predictors will bias the importance of other 

variables. This does not mean that all variables must be included even though not 

theoretically justified. This will have practical limitations in terms of interpretation. We 

should always keep at the back of our minds the benefits of parsimonious and concise 

models. 

While theory is often a primary objective of academic research, researchers often 

propose or develop a set of relationships that are interrelated and quite complex. It is 

here that researchers can benefit from the unique analytical tools presented in structural 

equation modelling. 

2.2.2 Constructin& a Path Dia~:ram 

A path diagram is a pictorial representation of a system of simultaneous equations. It 

effectively communicates the basic conceptual ideas of the model. However, the path 
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diagram can do more than that. If the diagram is drawn correctly and includes sufficient 

detail, it can represent exactly the corresponding algebraic equations of the model. and 

the assumptions about the error terms in the equations. 

The following conventions are generally used in literature for path diagrams (Everitt, 

1984, pp. 10-11; Li, 1975, pp. 106-108; Loehlin, 1987, pp. 2-8). Reference will be made 

to the variables depicted in Figure 2.2.2. 

1. Observed variables, such as Language Spoken, Preferred Language, 

Language Read Better, Language Written Better, Respondent's Ethnic ID, 

Mother's Ethnic ID, Father's Ethnic ID, Birth Place, Food Energy, Calcium, 

Iron, Education, Age, Size of the Community, Parity, Smoking and Low 

Birth Weight Status, are enclosed in squares or rectangles. Latent variables, 

such as Language, Ethnicity, Dietary Intake and Acculturation, are enclosed 

in circles or ellipses. Error variables are included but are not enclosed. 

2. A one-way straight arrow between two variables indicates a direct influence. 

The one-way arrow between Parity and Low Birth Weight Status indicates a 

direct influence of Parity on Low Birth Weight Status. 

3. All direct influences of one variable on another must have a one-way arrow, 

so that an absence of an arrow means that there is no assumed direct 

relationship. For example there is no direct relationship between Iron and 

Low Birth Weight Status and therefore the absence of a one-way arrow 

between these two variables. 

4. A curved two-way arrow indicates just a correlation. The curved arrow 

between Language and Ethnicity indicates that the two constructs are 
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correlated. While the curved two-way arrow between Education and Age 

indicates that the two manifest variables are correlated without any direct 

relationship. 

The path diagram in Figure 2.2.2 depicts the relationships for the low birth weight 

example and indicates the conventions which are generally used. 

El E2 E3 

~ ~ ~ 

E4 E5 E6 

~ 
E7 

Figure 2.2.2: Path Diagram for the low birth weight example. 

Path diagrams are extremely helpful in visually or diagramatically depicting causal 

relationships. In SEM, path diagrams are critical as they provide a means of arriving at 

the algebraic equations. 
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2.2.3 Convertin2 the Path Dia&ram into a set of Structural Equations to 

specify the Measurement Model 

Once the path diagram has been drawn, the model can be specified in terms of a series 

of equations which define: 

1. the structural equation linking constructs, 

2. the measurement model defining which variables measure which construct, 

and 

3. a set of matrices indicating any hypothesized correlation of the constructs or 

variables. 

2.2.3.1 Structural Model 

The structural model specifies the causal relationship among the latent variables and 

describes the causal effects and the amount of unexplained variance. Here we translate 

the path diagram into a series of structural equations. Each endogenous construct will be 

the dependent variable in one equation, and the exogenous constructs are the 

independent variables. Each equation will contain at least one endogenous variable and 

one or more exogenous variables with an error. For the low birth weight example, the 

following nine coefficients need to be estimated in the structural equations and are 

expressed in the Table 2.2.3.1. This table clearly indicates the endogenous and the 

exogenous constructs and how they are related. 
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Table 2.2.3.1: Table of Structural Coefficients. 

Exogenous Constructs Endogenous ConstructsN ariables 

Endogenous 
Variable Language Ethnicity Dietary Intake Acculturation Smoking Parity 

Dietary Intake 131 

Acculturation ~ 133 

Smoking 134 

Parity 13s 

Low Birth 
Weight Status 136 137 13s 139 

2.2.3.2 Measurement Model 

The measurement model specifies how the latent variables or hypothetical constructs are 

measured in terms of the observed variables. The relationship between the latent 

variables (Language, Ethnicity, Dietary Intake and Acculturation) and the manifest 

variables (Language Spoken, Preferred Language, Language Read Better, Language 

Written Better, Respondent's Ethnic ID, Mother's Ethnic ID, Father's Ethnic ID, Birth 

Place, Food Energy, Calcium, Iron, Education, Age, Size of the Community) for the low 

birth weight example is represented in Table 2.1 and depicted in the form of a path 

diagram in Figure 2.2.2. Measurement models are important when one tries to measure 

abstract concepts. The procedure is very similar to factor analysis, but is much more 

powerful. Most of the indicators of the constructs contain a sizeable amount of 

measurement error and the measurement model takes this measurement error into 

account. Ignoring measurement error leads to inconsistent estimators and inaccurate 

assessment of the relation between the underlying latent variables. Once the 
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measurement model has been specified, the analyst must then provide measures of 

reliability of the constructs and estimate the variance extracted by the latent variables. 

2.2.4 Choosin2 the Input Matrix Type 

As mentioned earlier the focus in structural equation modelling is not on the individual 

cases but rather on the correlation or covariance matrix. Most SEM programs can read 

data of the following types: 

1. raw data, 

2. covariance matrix, 

3. product moment correlation matrix, or 

4. a correlation matrix consisting of any of the correlations such as tetrachoric, 

polychoric, biserial, polyserial or canonical correlations based on raw scores 

or normal scores. 

The following guidelines can be used to choose the input matrix type: 

Whenever a true "test of theory" (Hair et al., 1992, p. 442) is being produced the 

covariance matrix should be used, as this type of input matrix satisfies the assumptions 

of SEM and is the appropriate form of the data for validating causal relationships. 

Correlations of the types, tetrachoric, polychoric, biserial or polyserial are generally 

used when the data is ordinal or categorical. However, many authors caution against the 

interpretation and generalization of the results obtained by using any form of correlation 

matrix as these are standardized coefficients (Greenland et al., 1986; Rothman, 1986, 

p. 303). This will be discussed further in Section 2.4. 
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Once the input matrix has been selected, the computer program must be chosen for 

estimation. Frequently analysts use whichever computer program is available but there 

are differences in their abilities. The most common computer program used today is 

LISREL (Linear Structural Relations). This name has become almost synonymous with 

SEM. Other computer packages are available. These include: 

EQS (BMDP) which was developed by Peter Bentler (Bentler, 1985). 

PLS (Partial Least Squares) which was developed by Herman Wold. It is known 

primarily for its unique estimation method. 

AMOS which was developed by James Arbuckle and is distributed by SmallWaters 

Corporation (Hox, 1995, and Ridgon, 1996). 

RAMONA which was developed by Michael Browne and is now distributed as part of 

SYSTAT. More details on the application of RAMONA can be found in Kirby (1993). 

LISCOMP which was developed by Bength Muthen (Muthen, 1987) and is now 

distributed by Scientific Software, Inc. 

COSAN which was developed by Colin Fraser and Roderick McDonald (McDonald, 

1978, 1980). 

PROC CALIS (Covariance Analysis and Linear Structural equations) of the SAS 

software package which was developed by Wolfgang Hartman (SAS Institute Inc., 

(1989). 

Mx which is a combination of a matrix algebra interpreter and a numerical optimizer 

that was developed by Michael Neale (Neale, 1995). It includes built-in fit functions 

to enable structural equation modelling and other types of statistical modelling of data, 

including maximum likelihood estimation. 
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The TETRAD II software which is designed as a tool to assist the development of 

causal models. It analyses conditional probability relationships, prepares Monte-Carlo 

generated samples. To estimate linear models, the program will generate input files 

CALIS, EQS or LISREL (Scheines et al., 1994). 

Throughout this dissertation the CALIS (Covariance Analysis of Linear Structural 

Equations) procedure in SAS will be used for the SEM solutions to the examples in 

Chapters 3 and 4. The CALIS procedure can be used for analysis of covariance 

structures, fitting systems of linear structural equations and path analysis. This 

procedure estimates parameters and tests the appropriateness of linear structural models 

using covariance structure analysis (SAS Institute Inc., 1989, p. 246). The raw data, 

correlation matrix or covariance matrix can be used as input. Normality of the 

dependent variables is a critical assumption and poor estimates can be expected if there 

are large deviations from normality. In CALIS, parameters can be estimated using the 

criteria of least squares, generalized least squares or maximum likelihood for 

multivariate normal data. The output obtained is very similar to all the other programs. 

All programs contain very similar goodness-of-fit measures. They all provide the 

observed matrix together with the predicted and residual matrix. Also given are 

standardized and unstandardized solutions and a plot of normalized residuals. 

It is not uncommon to find numerical problems in the optimization process. It is in these 

optimization algorithms where the CALIS procedure differs from LISREL. The CALIS 

procedure offers several optimization algorithms including, Levenberg-Marquardt and 

Newton-Raphson implementations to various quasi Newton, dual quasi- Newton, and 
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conjugate gradient algorithms (SAS Institute Inc., 1989, pp. 295-298). LISREL on the 

other hand uses Fletcher and Powell's minimization procedures. Unlike the Newton­

Raphson method, the Fletcher-Powell one does not require the inverse of the analytic 

second partial derivatives in each iteration. Instead, this matrix is built up through 

adjustments after each iteration. 

The general structural equation model uses several methods to estimate the unknown 

parameters, so that the implied covariance matrix, L, is close to the sample covariance 

matrix, S. Many fitting functions are used to minimise the difference between LandS 

(Bollen, 1989, pp. 106-107). The choice of the estimation technique, and hence the 

fitting function, is often determined by the distributional properties of the variables 

being analysed. Both LISREL and the CALIS procedure offer the following three 

estimation methods: 

1. Maximum Likelihood (ML) 

This is to date the most widely used method. The fitting function that is 

minimised is, 

where, 

F =log I L (8) I+ tr (S L -I (8) ) -log I S I - (p + q) 

8 is the vector that contains the model parameters, 

L (8) is the covariance matrix written as a function of 8, and 

S is the sample covariance matrix 

p is the number of exogenous indicators, and 

q is the number of endogenous indicators. 
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This function may be used even if the distribution of the observed 

variables deviate from normality (Joreskog and Sorbom, 1989, p. 21). 

The asymptotic distribution of (N-1) F is a X2 distribution with { (1/2)(p + 

q )(p + q + 1) - t} degrees of freedom, where t is the number of free 

parameters and F is the value of the fitting function evaluated at the final 

estimates (Bollen, 1989, p. 110). 

The maximum likelihood fitting function is derived from the maximum 

likelihood principle based on the assumption that the observed variables 

have a multinormal probability distribution (Joreskog, 1989, p. 21). 

The likelihood function is given below: 

N 
L(8) = (2nrN(p+q)IZIL:(e)rN/Z exp[( -1 I 2)2: zrL:-1(8)z;] 

i=l 

where, z is a (p x q) x 1 vector formed by combining multinormal 

random variables y and x, 

N is the number of observations, 

p is the number of random variables of y, and 

q is the number of random variables of x. 

The derivation of L(()) can be found in Bollen (1989, pp. 133-135). 
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2. Unweighted Least Squares (ULS) 

The ULS fitting function is, 

F = (1/2) tr [(S - L (8) )2
] 

The function for ULS is justified when all variables are measured in the 

same units. This is the most simple fitting function and leads to 

consistent estimators. However, ULS does not lead to the asymptotically 

most efficient estimator. The values of the fitting function differ when 

correlation instead of covariance matrices are analysed, or it can differ 

with a change of scale (Bollen, 1989, p. 113). 

3. Generalized Least Squares (GLS) 

The fitting function for GLS is, 

F = (1/2) tr [(I - s-1 L (8) )2
] 

GLS and ML have similar asymptotic properties. Under the assumption 

of multivariate normality, both estimators are optimal in the sense of 

being most precise in large samples (Joreskog and Sorbom, 1989, p. 21). 

This fit function may also be used when the distribution of the observed 

variables deviate from normality. The asymptotic distribution of (N-1) F 

evaluated at the final estimates is chi-square. The degrees of freedom are 

(1/2)(p + q)(p + q +1) - t } where tis the number of free parameters 

(Bollen, 1989, p. 115). 
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In addition to the above three estimation methods, LISREL offers the following 

methods of estimation: 

1. two-stage least squares (TSLS) 

2. generally weighted least squares (WLS), and 

3. diagonally weighted least squares. 

More details on the above three methods of estimation can be found in the LISREL 

manual. 

2.2.5 Assessin~ the Identification of the Structural Model 

Joreskog (1976) defines an identification problem as the inability of the proposed model 

to generate unique estimates. In SEM it becomes difficult to ensure that a model is 

identified. One approach to ensure that your model is identified, is to look at possible 

symptoms of an identification problem. These include: 

1. very large standard errors for one or more coefficients, 

2. inability of the program to invert the information matrix, 

3. unreasonable estimates such as negative error variances, and 

4. high correlation (approx. 0.90) among the estimated coefficients. 

Different starting values can be used to assess identification. If the starting values do not 

converge to the same point each time, then identification should be examined 

thoroughly. 
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If an identification problem is indicated, one can look at three common sources: 

1. a large number of estimated coefficients relative to the number of covariances 

or correlations, indicated by a small number of degrees of freedom (similar to 

the problem of overfitting the data), 

2. the use of reciprocal effects (two-way causal arrows between two constructs), 

and 

3. failure to fix the measurement error variances of constructs. 

The only solution is to define more constraints on the model (Bollen, 1989, p. 99; Long, 

1994 ). If over-identification still exists, then the researcher must reformulate the model 

to provide more constructs relative to the number of causal relationships examined. 

2.2.6 Model Evaluation 

To evaluate the results we assess the degree to which the data and proposed model meet 

the assumptions of structural equation modelling. Once the assumptions are all met the 

results are accepted and then the goodness-of-fit must be assessed at several levels: first 

for the overall model (§2.2.6.1) and then for the measurement (§2.2.6.2) and structural 

(§2.2.6.3) models separately. 

The assumptions which must be met are: 

1. independence of the observations, 

2. random sampling of the respondents, 

3. linearity of all relationships, and 

4. multivariate normality. 
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Generalized least squares (GLS) is often used to overcome some of these problems but 

caution must be taken when the models become large and complex. Departures from 

multivariate normality may cause severe problems because this can substantially inflate 

the chi-square statistic and thus bias the critical values for determining significance of 

the coefficients. 

Once the assumptions have been checked, the results are examined for estimated 

coefficients that exceed acceptable limits, called offending estimates. Common 

examples are : 

1. negative error variances or non-significant error variances for any construct, 

2. standardized coefficients exceeding or very close to 1.0, or 

3. very large standard errors for the estimates. 

2.2.6.1 Overall Model Fit 

Once all the assumptions are met and there are no offending estimates, we need to 

assess the overall fit of the model using one or more measures of goodness-of-fit. There 

are three types of goodness-of-fit measures, overall model fit measures, incremental fit 

measures and parsimonious fit measures: 

2.2.6.1.1 Absolute fit 

This determines the degree to which the overall model predicts the observed 

covariance or correlation matrix. There are three absolute measures of fit commonly 

used in structural equation modelling: 
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1. Chi-square Statistic 

This is the only measure of goodness-of-fit available in SEM, which has known 

distributional properties (Hair et al., 1992, pp. 489-490). A large chi-square 

relative to the degrees of freedom implies that the observed and estimated 

matrices differ to a large degree. Thus low chi-square values, which result in 

significance levels greater than 0.05 or 0.1, indicate that the difference between 

the actual and predicted matrices are not statistically significant. 

§2.2.4 discussed the Maximum Likelihood fitting function and the Generalised 

Least Squares fitting function. Both of these are used as estimators of chi-square 

to test the hypothesis that the actual and predicted covariance matrices are equal. 

An important criticism of the chi-square measure is that it is too sensitive to 

sample size differences. It is sensitive to both small and large sample sizes and 

to departures from multivariate normality of the observed variables. 

2. Goodness-of-Fit Index (GFI) 

The goodness-of-fit index (GFI) is another measure commonly used by most 

computer packages. This measure ranges in value from 0 (poor fit) to 1.0 

(perfect fit). Higher values indicate a better fit, but there is no absolute threshold 

level for acceptability. 
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3. Root Mean Square Residual (RMSR) 

The RMSR is also provided by most packages. It is the root of the mean square 

residuals. If covariances are used it is the average residual covariance while if a 

correlation matrix is used then it is in terms of an average residual correlation. 

2.2.6.1.2 Incremental Fit Measure 

This measure compares the proposed model to a comparison model, often referred to as 

the null model. The null model is the most simple model that can be theoretically 

justified. The most common example of a null model is a single construct model related 

to all indicators with no measurement error. Throughout §2.2.6.1.2 we will refer to the 

chi-square for the null and the proposed models. These are the likelihood ratio chi­

square statistics for the null and proposed models, respectively. In other sections the chi­

square statistics are the statistics for the proposed model. There are two incremental fit 

measures: 

1. Tucker-Lewis Index (TLI) (Tucker & Lewis, 1973) 

TLI combines a measure of parsimony into a relative index between the 

proposed and null models, resulting in values ranging from 0 to 1.0. It is 

expressed as: 

TLI= 

[X,2 
nun/dfnull] - [X2 

propose/dfproposed] 

[X
2 null/ dfnun] -1 
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where, X2 null is the chi-square statistic for the null model, 

X2proposed is the chi-square statistic for the proposed model, 

dfnull is the degrees of freedom for the null model, and 

dfproposed is the degrees of freedom for the proposed model. 

The recommended value is 0.90 or greater. 

2. Normed Fit Index (NFI) (Bentler & Bonnet, 1980) 

This is probably the most popular measure. The values range from 0 (poor fit) to 

1.0 (perfect fit). It is expressed as: 

[ 2 2 ] X null - X proposed 

NFI= 2 
X null 

Once again, there is no indicator of what constitutes an acceptable level of fit, 

and the recommended values are the same as the TLI. 

2.2.6.1.3 Parsimonious Fit Measures 

There are four measures which are measures of parsimonious fit and their basic 

objective is to diagnose whether model fit has been achieved by "overfitting" the data 

with too many coefficients. These measures are: 
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1. Adjusted Goodness-of-Fit Index (AGFI) 

The AGFI is an extension of the GFI (defined on page 26) but is adjusted by the 

ratio of degrees of freedom for the proposed model to the degrees of freedom for 

the null model. The recommended level of acceptance is 0.90 or greater. 

2. Normed Chi-square (Joreskog, 1969) 

This method adjusts the X2 and it is simply the Chi-square divided by the degrees 

of freedom. 

3. Parsimonious Fit Index (PFI) (James, Muliak & Brett, 1982, p. 155) 

This is a modification of the NFI. The PFI is given by: 

PFI = ( d.fpropose/ d.fnull) X (NFI) 

Higher values of PFI are better and it is used mainly for comparison of models 

with different degrees of freedom. 

4. Akaike's Information Criterion (Akaike, 1987) 

The final measure is the AIC. It is very similar to the PFI and is calculated as 

follows: 

AIC = X,2/2- (number of estimated coefficients) 

AIC values closer to zero indicate better fit. 
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2.2.6.1.4 Summary 

In evaluating the set of measures, some general criteria are applicable and indicate 

models with acceptable fit: 

1. non-significant X2 (at least p > 0.05, perhaps 0.10 or 0.20), 

2. incremental fit indices (NFI & TLI) greater than 0.90, 

3. parsimonious indices that indicate the model to be more parsimonious than 

alternative models, and 

4. low RMSR based on the use of correlation or covariances. 

2.2.6.2 Measurement Model Fit 

Once the overall model fit is evaluated, the measurement of each construct can be 

assessed, by 

1. examining the indicator loadings for statistical significance, and 

2. assessing the construct's reliability and variance extracted. 

The Construct's reliability is given by: 

Construct Reliability= [(Sum of 1 standardised loadings 1 )
2
] I 

[(Sum of I standardised loadings 1 f +(Sum of indicator measurement error)] 

The Variance extracted is given by: 

Variance Extracted= (Sum of squared standardized loadings) I 

[(Sum of squared standardized loadings)+ (Sum of indicator measurement error)] 
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2.2.6.3 Structural Model Fit 

Examination of the structural model involves testing the significance of the estimated 

coefficients. Structural equation modelling methods provide the estimated coefficients 

together with standard errors and calculated t-values for each coefficient. Standardized 

solutions can be examined. An overall coefficient of determination R2 is also calculated 

for each endogenous equation. This provides a measure of fit for the entire structural 

equation and gives an indication of the amount of variation or correlation of the 

endogenous variable accounted for by the exogenous variables. It also provides a 

relative measure of fit for each structural equation. 

2.2. 7. Interpretin2 and Modifyine the Model 

Once the model is acceptable, we must examine possible modifications to improve both 

the theoretical explanations and the goodness-of-fit of the model. Examination of the 

residuals of the predicted covariance or correlation matrix is a good indicator that model 

modifications may be required (Hair et al., 1992, p. 474). Normalized residuals in 

excess of approximately 2.0 can be regarded as statistically significant at the 5% level 

and indicate prediction error. Modification indices also aid in assessing the fit of a 

model. If no further modifications are necessary the results can be interpreted. 
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2.3 MATHEMATICAL NOTATION 

Understanding the methodology of structural equation modelling is helped by having a 

knowledge of the notation used. The intention in this section is to give an introduction 

to the mathematical notation and to express the low birth weight example in the notation 

which is commonly used. Bollen (1989, p. 10) and Joreskog & Sorbom (1976, pp. 3-14) 

give an in-depth discussion on this topic, with most using the LISREL notation. I will 

therefore use the LISREL notation. 

The structural equation methodology requires a reorientation. The procedure emphasizes 

co variances rather than cases. Instead of minimising functions of observed and predicted 

individual values, we minimise the difference between the sample covariances and the 

covariances predicted by the model. The fundamental hypothesis for these structural 

equation procedures is that the covariance matrix of the observed variables is a function 

of a set of parameters. If the model were correct and we knew the parameters, the 

population covariance matrix would be exactly reproduced. Hence SEM is all about 

testing the hypothesis: 

:E = :E (9) ......... 2.3.1 

where, :E is the population covariance matrix of observed variables, 

e is the vector that contains the model parameters, and 

:E (9) is the covariance matrix written as a function of e. 

Suppose that there are m exogenous constructs, n endogenous constructs, p exogenous 

indicators and q endogenous construct indicators. If we let: 
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~ indicate the exogenous construct, such as Language and Ethnicity from the 

low birth weight example. 

11 indicate the endogenous construct, such as Dietary Intake and Acculturation. 

x be the indicator of exogenous construct, such as Language Spoken, Preferred 

Language, Language Read Better, Language Written Better, Respondent's 

Ethnic ID, Mother's Ethnic ID, Father's Ethnic ID, and Birth Place. 

y be the indicator of endogenous construct, Food Energy, Calcium, Iron, 

Education, Age, Birth Place, and Size of the Community. 

The basic equation for the structural model is given as: 

where, 

......... 2.3.2 

B (n*n) is a coefficient matrix oflatent endogenous variables, 

11 (n*l) is a vector oflatent endogenous variables, 

r (n*m) is a coefficient matrix of latent exogenous variables, 

~ ( m * 1) is a vector of latent exogenous variables, and 

s ( n * 1) is a random vector of residuals. 

The correlations among the exogenous constructs in the structural model are represented 

by PHI <D, i.e. <D(m*m) is the correlation matrix of~· 
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~I ~2 " •• •• ~m 

~I 

~2 <!>12 

The correlations among the error terms of the endogenous constructs in the structural 

model are represented by PSI 'P, i.e. 'P(n *n) is the correlation matrix of l;. 

111 112 .. .. .. 11n 

The basic equations for the measurement model are given as: 

where, 

X= A._~+ 8, 

y = J\, 11 + E, 

x (p* 1) is a vector of observed indicators of~' 

y ( q * 1) is a vector of observed indicators of 11, 

8 (p*1) is a vector of measurement errors ofx, 

E ( q * 1) is a vector of measurement error of y, 

Ax (p*m) is a coefficient matrix relating x to ~' and 

Ay(q*n) is a coefficient matrix relating y to 11· 
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The correlations among the error terms of the exogenous indicators in the measurement 

model are given by THETA-DELTA 8 5 , i.e. 8 5(p*p) is the correlation matrix of <5. 

xl x2 .. .. .. ~ 

Y e.pl e """p u lip2 .. 

The correlations among the error terms of the error terms of the endogenous indicators 

in the measurement model are given by THETA-EPSILON 8 8 , i.e. 8iq*q) is the 

correlation matrix of E. 

The elements of B represent direct effects of 11- variables on other 11- variables and the 

elements of r represents direct effects of ~- variables on ~- variables. E, () and s are 

vectors of error terms. 

The main assumptions are: 

1. E(Tt) = E(~) = E(s) = E(E) = E(<5) = 0, 

2. s is uncorrelated with ~' 
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3. E is uncorrelated with 11 and ~' 

4. 8 is uncorrelated with~' 11, 

5. s, E and 8 are mutually uncorrelated, and 

6. 1-B is non-singular. 

More details on the mathematics involved in SEM are provided by Joreskog (1979, 

pp. 105-127), Browne (1982) and Bollen (1989, pp. 10-20). 

If we look at the low birth weight example, depicted in the form of the path diagram in 

Figure 2.2.2, the actual equations (structural and measurement) will comprise, two 

exogenous constructs (Language and Ethnicity), two endogenous constructs (Dietary 

Intake and Acculturation) and three endogenous variables (Parity, Smoking and Low 

Birth Weight Status). Two of the endogenous variables, Parity and Smoking, are 

intermediate variables (this variable is a response in one equation and a predictor in 

another), while Low Birth Weight Status is the response variable. We will represent 

these equations in a straightforward manner, i.e. as the actual equations and then we 

shall represent them in matrix notation. The first step would be to construct structural 

equations into a series of structural equations for each endogenous variable and then to 

represent the path diagram (Figure 2.2.2) into a series of structural equations for the 

exogenous and endogenous constructs. 

The structural equations for the endogenous constructs/variables are represented in 

Table 2.3.1 below. 
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Table 2.3 .1: Structural Equations 

Endog. cons./var. = Exog. cons./var. + Endog. cons./var. + Error 

Language Ethnicity Dietary Intake Accul. Smoking Parity 

Dietary Intake = 131 Lang. + El 

Acculturation = 132 Lang. + l33 Ethnic. +e2 

Smoking = 134 Accul. +e3 

Parity = 135 Accul. +e4 

Low Birth = 136 Diet + l37 Accul. + 138 Smoke + 139 Parity +es 
Weight Status 

The structural model linking the endogenous constructs to the exogenous constructs is 

given as follows: 

ll1 Yn ~~ + ~~ 

The measurement model equations representing the relationship between the 8 

exogenous indicators (Language Spoken, Preferred Language, Language Read Better 

Language Written Better, Respondent's Ethnic ID, Mother's Ethnic ID, Father's Ethnic 

ID and Birth Place) and the 2 exogenous constructs (Language and Ethnicity), and the 

relationship between the 7 endogenous indicators (Food Energy, Calcium, Iron, 

Education, Age, Size of the Community and Birth Place) and the two endogenous 

constructs (Dietary Intake and Acculturation), now needs to be constructed. This 

relationship between the indicators and the constructs or latent variables is indicated in 

Table 2.1. The measurement model equations for the exogenous and endogenous 

constructs are given in Table 2.3.2 and Table 2.3.3, respectively. 
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Table 2.3.2: Measurement model equations for the exogenous constructs 

Exogenous Constructs 

Exogenous Indicators ~ 1 (Language) ~2 (Ethnicity) Error 

Language Spoken = AXIl ~1 + ()1 

Preferred Language = AX21 ~1 + ()2 

Language Read Better = A.\1~1 + ()3 

Language Written Better = A.\1~1 + ()4 

Respondent's Ethnic ID = A.\2~2 + ()5 

Mother's Ethnic ID = A.\2~2 + ()6 . 
Father's Ethnic ID = Ax72~2 + ()7 

Birth Place = ).,X82~2 + C>s 

Table 2.3.3: Measurement model equations for the endogenous constructs 

Endogenous Constructs 

Endogenous Indicaton 111 (Dietary Intake) 11 2 (Acculturation) Error 

Food Energy = ).,YIJ 111 + E1 

Calcium = ).,Y21 111 + E2 

Iron = ).,Y31 111 + E3 

Birth Place = ).,Y42 112 + E4 

Education = ).,Y 52 112 + Es 

Age = ).,Y62 112 + E6 

Size ofthe = ).,Y72 112 + E7 

Community 

The exogenous constructs (Language and Ethnicity) are correlated with each other. This 

is indicated by the curved arrows between these two constructs in Figure 2.2.2, so that 
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the corresponding structural equation correlation among the two exogenous constructs 

can be represented by the PHI matrix given below, 

~1 ~2 

~1 

~2 <1>12 

There are no correlations between the error terms of the two endogenous constructs, so 

that the PSI matrix does not exist. 

The measurement errors for Language Spoken and Preferred Language are correlated, so 

too are the measurement errors for Language Read Better and Language Written Better. 

The measurement errors for Respondent's Ethnic ID and Mother's Ethnic Id are 

correlated. So too are the measurement errors for Mother's Ethnic ld and Father's Ethnic 

ID. These measurement errors are not indicated on the path diagram (Figure 2.2.2) but 

the curved arrows are indicated on the path diagram . The measurement error correlation 

between the two exogenous indicators , is depicted by the theta-delta matrix below. 
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XI x2 x3 x4 Xs x7 Xs 

xl 

x2 0m 

x3 

x4 0334 

Xs 

x6 0356 

x7 

Xs 

where, 

XI Language Spoken 

x2 Preferred Language 

x3 Language Read Better 

x4 Language Written Better 

Xs Respondent's Ethnic ID 

x6 Mother's Ethnic ID 

x7 Father's Ethnic ID 

Xs Birth Place 

The measurement error correlation between the two endogenous indicators, is depicted 

by the theta-epsilon matrix below. 
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yl y2 y3 Xs Ys y6 y7 

yl 

y2 

y3 

Xs 

Ys 

y6 E>E65 

y7 E>E74 

where, 

yl Food Energy 

y2 Calcium 

y3 Iron 

Xs Birth Place 

Ys Education 

y6 Age 

y7 Size of the Community 

The path diagram in Figure 2.2.2 can now be represented in LISREL notation. This is 

done in Figure 2.3.1 below. 
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El E2 E3 

~ ~ ~ 
I Food Energy II Calcium I I Iron J 

E4 E5 E6 
E7 

Figure 2.3 .1: Path Diagram with the LISREL notation for the low birth weight example. 

It should be remembered that the terms exogenous and endogenous are model specific. 

It may be that an exogenous variable in one model is endogenous in another. 

Specifications of any causal relationship can be incorporated directly into one of the 

eight matrices discussed in this section. 
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2.4 PRACTICAL PROBLEMS OF SEM 

Although there has not been much criticism of the statistical theory which underlies 

structural equation models, people have criticised the application of the technique. 

Categorical data can be a problem if not handled in the proper manner. The most 

common procedure that is adopted for dealing with categorical data is to compute some 

form of correlation matrix, and then to proceed as if the data had been obtained from 

continuous variables. Popular correlation matrices used are the Pearson correlation, 

polychoric and polyserial correlations. The polychoric correlation matrix is used when a 

categorical variable is correlated with another categorical variable and the polyserial 

correlation matrix is used when a categorical variable is correlated with a continuous 

variable. When there are more than two categorical variables, the numerical 

computation involved in producing this matrix becomes considerable (Dunn, Everitt and 

Pickles, 1993, p. 171). 

Structural equation models have been criticised in that if the observed variables do not 

have a multivariate normal distribution then the model has no value. This is a valid 

criticism, but SEM methods are being developed for handling discrete and other non­

normal data. Non-linear relationships within the data can severely affect the elements of 

the covariance matrix. Another source of difficulty can be outliers. Outliers are 

observations with values that are distinct or distant from the bulk of the data. When 

outliers are present, the covariances provide a misleading summary of the association 

between most of the cases and lead to large residuals. Detecting outliers should be done 

using univariate summary measures and bivariate graphical techniques. Gallini and 
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Casteel (1993) demonstrate the effects of outliers on parameter estimates in a structural 

equation model using an empirical data set. If outliers are suspected, whether due to 

improperly identified samples, incorrect measurement, data contamination or other 

factors, some approach to reducing the effects of the outliers should be considered. 

Some approaches are given by Gallini and Casteel (1993). 

Strong criticisms have been made on the use of standardised regression coefficients, 

correlations and path coefficients. Greenland et al. (1986) argue about the "Fallacy of 

Employing Standardized Regression Coefficients as Measures of Effect.". This is not a 

direct attack on structural equation modelling. It basically argues against all correlation 

type techniques as measures of effect. The implication is that correlation type 

techniques are subject to distortion, and furthermore, offer no meaningful biological or 

public health interpretation. For example, how does one transcribe a path coefficient or 

estimate of model fit in terms of disease risk to an individual or group of individuals. 

Rothman (1986, p. 303) argues that techniques relying on path coefficients or related 

estimates should be avoided in epidemiology. 
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CHAPTER3 

COMPARISON OF SEM TO RELATED TECHNIQUES 

3.1 INTRODUCTION 

The purpose of this chapter is to highlight the similarities of and differences between 

structural equation modelling and other related multivariate techniques. Structural 

equation modelling is compared to multiple regression and is also compared to factor 

analysis. In each section a simple data set is analysed and the results obtained from the 

two techniques are compared. 

It is easy to show how regression and factor analysis is related to SEM. Simple 

examples from Bollen (1989, pp. 2-3) will illustrate how regression and factor analysis 

are similar to structural equation modelling. Consider the simple regression equation 

y = y x + s , where y is the regression coefficient, s is the disturbance variable which is 

uncorrelated with x, and the expected value of s, E(s ), is zero. Then x, y, and s are 

random variables. This regression model can now be written in terms of (2.3.1) as 

follows: 

V AR (y) COV (x, y) y 2 VAR (x) + VAR (s) y VAR(x) 

= 

COV (x, y) V AR (x) yVAR(x) VAR(x) 
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where V AR ( ) and COV ( ) refer to the population variances and covariances of the 

elements in parentheses. In the matrices above, the left-hand side is L and the right­

hand side is L (8), with 8 containing y, V AR (x), and V AR (s ) as parameters. The 

equation implies that each element on the left-hand side equals its corresponding 

element on the right-hand side. This example could be modified to include multiple 

regression, by adding explanatory variables, or more equations and other variables could 

be added to make a simultaneous equations system. Both cases can be represented as 

special cases of equation (2.3.1). 

Now suppose we have two random variables, x1 and x2, that are indicators of a factor (or 

latent variable), denoted as ~· The dependence of the variables on the factor is 

x1 = ~ + 81 and x2 = ~ + 82, where 81 and 82 are random disturbance terms, which are 

uncorrelated with~ and with each other, and E(81) = E(82) = 0. Equation (2.3.1) can now 

be written as : 

where ~ is the variance of the latent variable ~· Hence 8 consists of three elements: ~. 

VAR (81), and VAR (82). The covariance matrix of the observed variables is a function 

of three parameters. More indicators and latent variables could be added and we could 

allow for factor loadings and correlated disturbances, thus creating a general factor 

analysis model. It could be easily shown that this represents a special case of the 

covariance structure equation (2.3 .1 ). 
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3.2 MULTIPLE REGRESSION & SEM 

Multiple regression analysis is by far the most widely used and versatile multivariate 

dependence technique, applicable in most fields of research (Hair et al., 1992, p. 19; 

Lewis-Beck, 1993, p. 39). It is applicable in most types of research, both experimental 

and observational. ANOV A, Regression and ANCOV A can be looked at within the 

framework of the General Linear Model. When we discuss multiple regression, this will 

refer to all of the above techniques. 

Multiple regression analysis can be viewed as a special case of structural equation 

modelling. Multiple regression is specialised in that it assumes that the explanatory 

variables are measured without error. Regression has four basic assumptions. First, it 

consists of one equation examining a single relationship. Second, this equation specifies 

a directional relationship between two sets of variables, the dependent variable and a set 

of independent variables. The variation in the dependent variable is explained by means 

of a weighted combination of the values of the independent variables, called regression 

coefficients. Thirdly, the independent variables are assumed to be measured without 

error. Fourthly, the independent variables are assumed to be linearly related to the 

dependent variable. 

Goldberger (1973) gives three situations in which structural equation modelling has 

advantages over regression analysis: 

1. when the observed variables contain measurement errors, 

2. when there is interdependence among the observed response variables, and 

3. when important explanatory variables have not been measured. 
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Farrel (1994) gives one more area where SEM has the edge over regression analysis: 

The simplicity with which longitudinal data can be analysed and interpreted, although 

now there are regression techniques for handling longitudinal data (Von Eye, 1990; 

Diggle et al., 1994). In a recent study, Cole et al. (1993), argued in favour ofSEM over 

multivariate analysis of variance (MANOV A) when multiple indicators for the 

constructs are involved but warn against choosing too casually one technique over the 

other. 

Although SEM does have some advantages over regression analysis, lots of work still 

has to be done in the areas of goodness-of-fit and diagnostics. Assessing the overall 

goodness-of-fit for SEMis not as straightforward as with other multivariate dependence 

techniques. Structural equation modelling does not have a single statistical test that best 

describes the "strength" of the models' predictions (Bentler, 1980). Analysts therefore 

have to assess goodness-of-fit based on a number of measures. Up to now there exists 

only one statistically based goodness-of-fit measure in SEM. Regression diagnostics are 

also much more advanced than the diagnostics in SEM. Multivariate normality is 

difficult to assess in both regression and SEM and tests of univariate normality and 

bivariate graphical display techniques will have to be performed using the data. It is 

however impossible to carry out these tests if the raw data is not available. Testing for 

multicollinearity can be done using the variance inflation factor (VIF) and tolerance 

(Kleinbaum et al., 1988, p. 210) in regression and the diagnostics are excellent. This 

cannot be done in SEM unless the variables which are linearly related are specified in 

the path diagrams. Multicollinearity poses great difficulties for measurement models 

(Bollen, 1989, p. 59). Detecting outliers is also an easy task in regression but is difficult 

in SEM, where the residual covariance or correlation matrix is used. 
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Structural equation models can incorporate interaction effects in a similar manner to 

regression analysis. The interaction effect is defined as a new variable that is a 

combination of two or more variables and is included as an independent variable. 

However finding interactions between two factors with a large number of levels does 

create a problem as this would result in creating a large number of dummy variables. 

Obtaining the intercept term in SEM is a little more complicated. Most statistical 

software automatically provides the intercept in regression but is not so easily available 

in SEM. Bollen (1989, pp. 129-130) outlines how to obtain the intercept using 

LISREL VI. 

In structural equation models each equation represents a causal link rather than a more 

empirical association. In a regression model, on the other hand, each equation represents 

the conditional mean of a dependent variable as a function of explanatory variables. It is 

this distinction that makes conventional regression analysis an inadequate tool for 

estimating structural equation models, but the appropriateness of each technique will 

depend on the questions that are being asked in the investigation. 

Example 3.2: 

The following hypothetical example from Hair et al. (1992, pp. 15-17) will serve as the 

data set for analysis in this section. This data set is given in Table 1 in Appendix A. In 

order to predict HATCO's Customer Satisfaction Level (X10), we use the seven 

independent variables, Delivery Speed (X1), Price Level (X2), Price Flexibility (X3), 

Manufacturer's Image (X4), Overall Service (X5), Sales Force Image (X6) and the 

Product Quality (X7). The database consists of 100 observations on 14 separate 
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variables. Two classes of information were collected. The first class is the importance of 

seven benefits identified in past studies as most influential in the choice of suppliers. 

The second class of information contains evaluations of each respondent's satisfaction 

with HATCO, the percentage of their product purchases made from HATCO, and 

general characteristics of the purchases made from HATCO. For purposes of analyses 

the following variables will be used: 

XI Delivery Speed 

X2 Price Level 

X3 Price Flexibility 

X4 Manufacturer's Image 

X5 Service 

X6 Sales Force Image 

X7 Product Quality 

X9 Product Usage Level 

XlO Customer Satisfaction Level 

3.2.1 Regression Solution 

To demonstrate the use of multiple regression, we will show the procedures used by 

HA TCO to attempt to predict the satisfaction level of their customers from measures 

obtained from a survey. 

Below is a list of the variables used in the analysis and their descriptive statistics, which 

includes the mean, the standard deviation and the minimum and maximum values. All 

these variables showed little deviation from univariate normality. 
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Descriptive Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

X1 100 3.515 1. 321 351.500 0 6.100 

X2 100 2.436 1. 312 243.600 0.200 8.000 

X3 100 7.894 1. 387 789.400 5.000 10.000 

X4 100 5.248 1.131 524.800 2.500 8.200 

X5 100 2.916 0.751 291.600 0.700 4.600 

X6 100 2.665 0. 771 266.500 1.100 4.600 

X7 100 6.971 1. 585 697.100 3.700 10.000 

X9 100 46.100 8.989 4610.000 25.000 65.000 

X10 100 4. 771 0.856 477.100 3.200 6.800 

The product moment correlations among the 8 independent variables and their 

correlations with the dependent variable (Xl 0) appear below. Examination of the 

correlation matrix indicates that XlO is strongly correlated with X9, X5 and Xl. These 

should be significant predictors ofXlO provided that multicollinearity is not a problem. 

Correlation Analysis 

Pearson Correlation Coefficients I N = 100 

X1 X2 X3 X4 X5 X6 X7 X9 X10 

X1 1. 000 -0.306 0.509 0.050 0.610 0.077 -0.631 0.676 0.651 

X2 -0.306 1.000 -0.428 0.290 0.415 0.165 0.370 0.049 0.047 

X3 0.509 -0.428 1. 000 -0.116 0.067 -0.034 -0.448 0.559 0.524 

X4 0.050 0.290 -0.116 1. 000 0.299 0.788 0.200 0.224 0.476 

X5 0.612 0.415 0.067 0.299 1. 000 0.241 -0.055 0.701 0.631 

X6 0.077 0.165 -0.034 0.788 0.241 1. 000 0.177 0.256 0.341 

X7 -0.483 0.370 -0.448 0.200 -0.055 0.177 1. 000 -0.192 -0.283 

X9 0. 676 0.049 0.559 0.224 0.701 0.256 -0.192 1. 000 0. 711 

X10 0.651 0.047 0.525 0.476 0.631 0.341 -0.283 0. 711 1. 000 
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Initially the model with the eight predictors and two interaction terms (Xl *X3 and 

Xl *X2) was fitted. Both the interaction terms were not significant at the 5% level of 

significance, so the model with only the first order terms is fitted. This model with the 8 

predictors (Xl, X2, ... , X7, X9) is used to predict the levels of customer satisfaction of 

HATCO's customers. 

Model: MODELl 

Dependent Variable: X10 

Analysis of Variance 

Sum of Mean 

Source DF Squares Square F Value Prob>F 

Model 8 57.95427 7.24428 45.428 0.0001 

Error 91 14.51163 0.15947 

C Total 99 72.46590 

Root MSE 0.39934 R-square 0.7997 

Dep Mean 4. 77100 Adj R-sq 0.7821 

c.v. 8.37005 

Parameter Estimates 

Parameter Standard T for HO: 

Variable DF Estimate Error Parameter=O Frob > ITI 

INTERCEPT 1 -0.510511 0.45238863 -1.128 0.2621 

X1 1 0.099293 0.07037809 1.411 0.1617 

X2 1 0.024512 0.05421285 0.452 0.6522 

X3 1 0.289622 0.04867033 5.951 0.0001 

X4 1 0.417447 0.06015913 6.939 0.0001 

X5 1 0.421993 0.13500131 3.126 0.0024 

X6 1 -0.187581 0.08661249 -2.166 0.0329 

X7 1 -0.040589 0.03220567 -1.260 0.2108 

X9 1 -0.001127 0.00940589 -0.120 0.9049 

Variable DF Tolerance Variance Inflation 

INTERCEPT 1 0.00000000 

X1 1 0.18643995 5.36365731 

X2 1 0.3185504 3.13922038 

X3 1 0.35372851 2.82702684 

X4 1 0.34769113 2.87611593 
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X5 

X6 

X7 

X9 

1 

1 

1 

1 

0.15659792 

0.36135446 

0.61799404 

0.22534047 

6.38578101 

2.76736587 

1.61813858 

4.43772930 

These 8 predictors account for 79.97% of the variation ofXlO, with X3 (p<O.OOl), X4 

(p<0.001), X5 (p=0.0024), X6 (p=0.0329) significant. All the other predictors are not 

significant at either the 5% or 10% levels of significance. The adjusted R2 for this model 

is 0.7821. 

Colli.neari.ty Di.agnosti.cs(i.ntercept adjusted) 

Condition Var Prop Var Prop Var Prop Var Prop Var Prop Var Prop 

Number Eigen. Index X1 X2 X3 X4 X5 X6 

1 2.879 1. 000 0.018 0.001 0.018 0.003 0.009 0.003 

2 2.397 1. 096 0.001 0.028 0.013 0.037 0.005 0.031 

3 1.159 1. 576 0.001 0.068 0.014 0.055 0.028 0.090 

4 0.639 2.123 0.008 0.003 0.130 0.015 0.004 0.002 

5 0.494 2.415 0.079 0.203 0.170 0.003 0.013 0.000 

6 0.203 3.763 0.014 0.000 0.042 0.836 0.000 0.776 

7 0.149 4.400 0.215 0.173 0.415 0.050 0. 011 0.098 

8 0.080 6.012 0.664 0.524 0.198 0.001 0.930 0.000 

Var Prop Var Prop 

Number X7 X9 

1 0.017 0.021 

2 0.034 0.001 

3 0.003 0.004 

4 0.540 0.045 

5 0.229 0.005 

6 0.031 0.027 

7 0.128 0. 712 

8 0.018 0.185 

All predictors for which the tolerance is less than 0.10 and consequently the variance 

inflation factor (VIF) is greater than 10, should be scrutinized (Kleinbaum et al., 1988, 

p. 210). If we look at the VIF and the tolerance, none ofthe predictors have a tolerance 

smaller than 0.15 and VIF greater than 6.39. This together with the small condition 

numbers indicate that multicollinearity is not a problem. 
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We now investigate a model which excludes three predictors which are not significant, 

X2, X7 and X9. This model is now presented. 

Model: MODEL2 

Dependent Variable: X10 

Analysis of Variance 

Sum of Mean 

Source DF Squares Square F Value Prob>F 

Model 5 57.64391 11.52878 73.115 0.0001 

Error 94 14.82199 0.15768 

C Total 99 72.46590 

Root MSE 0.39709 R-square 0.7955 

Dep Mean 4 0 77100 Adj R-sq 0.7846 

c.v. 8.32300 

Parameter Estimates 

Parameter Standard T for HO: 

Variable DF Estimate Error Parameter=O Frob > ITI 

INTERCEPT 1 -0.824473 0.34772640 -2 0 371 0.0198 

X1 1 0.106411 0.04779724 2.226 0.0284 

X3 1 0.292538 0.03596684 8.134 0.0001 

X4 1 0.419373 0.05930494 7 0 071 0.0001 

X5 1 0.430139 0.07557319 5.692 0.0001 

X6 1 -0.203758 0.08451788 -2 0 411 0.0179 

Parameter DF Tolerance Variance Inflation 

INTERCEPT 1 0.00000000 

X1 1 0.39967964 2.50200384 

X3 1 0.64046858 1. 56135684 

X4 1 0.35376816 2 0 82670998 

X5 1 0.49411737 2.02381066 

X6 1 0.37523293 2 0 66501133 

Dropping X2, X7 and X9 from the model has a very small effect on the mean square 

error (MSE), reducing it from 0.39934 to 0.39709. The coefficient of determination (R2
) 
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also reduced from 79.97% to 79.55% while the adjusted R2 increased to 0.7846 from 

0.7821. This tells us that X2, X7 and X9 are not important when predicting XIO. All the 

remaining predictors (XI, X3, X4, X5 and X6) are significant. 

Collinearity Diagnostics(intercept adjusted) 

Condition Var Prop Var Prop Var Prop Var Prop Var Prop 

Number Eigenvalue Index X1 X3 X4 X5 X6 

1 2.08145 1.00000 0.0344 0.0077 0.0460 0.0612 0.0482 

2 1.65798 1.12045 0.0730 0.1152 0.0401 0.0149 0.0364 

3 0.82691 1. 58655 0.0051 0.3856 0.0109 0.2223 0.0426 

4 0.23458 2.97878 0.7362 0. 4 710 0.0804 0.5193 0.1529 

5 0.19908 3.23345 0.1513 0.0205 0.8226 0.1823 0. 7198 

Once again the tolerance for the predictors are all well above 0.10 and the VIF for the 

predictors are well below 10 to conclude that multicollinearity is not a problem in this 

data set (Kleinbaum et al., 1988, p. 210). The condition numbers from the collinearity 

diagnostics supports this conclusion. 

There are however a few outliers. These are observations numbered 31, 34, 50, 56, 72 

and 91. Removing these outliers would improve the fit of the model but there is no 

evidence supporting or rejecting the omission of these outliers and for the purpose of 

this dissertation the outliers are included in the analysis. The residuals are presented in 

Table 1 in Appendix C. The plot of the residuals against the predicted values does not 

indicate any unusual patterns, suggesting acceptable model fit. 
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Predicted Value of XlO 

The regression model is therefore: 

XI 0 = -0.824 + O.I 06 XI + 0.293 X3 + 0.4I9 X4 + 0.430 X5 - 0.204 X6 

Hence customer satisfaction can be predicted using only five (Delivery Speed, Price 

Flexibility, Manufacturer's Image, Service and Sales Force Image) of the 8 parameters. 

These are very important characteristics to consider in determining the satisfaction of 

HA TCO customers. The faster products are delivered the more satisfied are the 
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customers. Increased, price flexibility, manufacturer's image and service, all increase the 

satisfaction level. While increased sales force image decreases the level of satisfaction. 

If HA TCO is to increase their customer satisfaction levels they need to focus on their 

delivery speed, price flexibility, manufacturer's image and service. Their customers are 

not interested in the image of the sales force. 
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3.2.2 SEM Solution 

HATCO believes that certain of the explanatory variables measure the same 

characteristics and therefore proposed a model which has two factors or latent variables 

and a series of structural relationships which would help in their understanding of 

customer satisfaction in their industry. The proposed model is given below in Figure 

3 .2.1 and the SAS program is in Program 1 in Appendix B. 

r&~--1 XI I 

I~ \&2--1 X2 

C~~ ~ X3 1/ ~ 
&4--1 X7 I Product Satisfaction 

Usage Level 

I--- / 
~ ! 

&s--1 X4 &1 &s 
~ 

&6--1 X6 I~ 

Figure 3.2.1: Path Diagram for the HATCO example. 

From the path diagram it is evident that there are two exogenous constructs (Strategy 

and Image) with six manifest variables (XI, X2, X3, X7, X4 and X6) and two 

endogenous variables (Product Usage and Satisfaction Level). Product Usage is an 

intermediate variable as it is an endogenous variable which is related to the exogenous 

constructs and is also an exogenous variable when explaining the satisfaction level of 

HATCO's customers. 

The covariance matrix and the residual matrix are given below. The residual matrix 

provides an indication that the model is not going to fit very well. Both the average 
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absolute residual (0.1891) and the average off-diagonal absolute residual (0.2324) are 

not as low as would be expected for a model which fits well. 

Xl 

Xl 1. 7 44 

X2 -0.531 

X3 0.933 

X4 0.075 

X6 0.079 

X7 -1.010 

X9 8.031 

XlO 0.735 

Xl 

Xl 0.000 

X2 0.100 

X3 -0.104 

X4 -0.056 

X6 -0.028 

X7 -0.314 

X9 -0.056 

XlO 0.001 

Covariance Matrix 

X2 X3 X4 X6 X7 X9 

-0.531 0.933 0.075 0.079 1. 010 8.031 

1. 721 -0.778 0.430 0.167 0.769 0.582 

-0.778 1. 922 -0.182 -0.037 -0.985 6.967 

0.430 -0.182 1. 280 0.687 0.359 2.280 

0.167 -0.037 0.687 0.594 0.217 1.774 

0.769 -0.985 0.359 0.217 2.513 -2.743 

0.582 6.967 2.280 1. 774 -2.743 80.798 

0.053 0.623 0.461 0.225 -0.384 5. 466 

Residual Matrix 

X2 X3 X4 X6 X7 X9 

0.100 -0.104 -0.056 -0.028 -0.314 -0.056 

-0.294 0.152 0.419 0.158 0.830 -0.130 

0.152 0.000 -0.292 -0.126 -0.403 0.207 

0.419 -0.292 0.000 0.004 0.433 0.098 

0.158 -0.126 0.004 0.005 0.256 0.007 

0.830 -0.403 0.433 0.256 0.001 1. 799 

-0.130 0.207 0.098 0.007 1. 799 0.000 

-0.012 0.009 0.351 0.136 0.028 0.000 

Average Absolute Residual = 0.1891 

Average Off-diagonal Absolute Residual= 0.2324 

Goodness-of-Fit Measures 

Goodness of Fit Index (GFI) .... 

GFI Adjusted for Degrees of Freedom (AGFI) . 

Root Mean Square Residual (RMR) 

XlO 

0.735 

0.053 

0.623 

0.461 

0.225 

-0.384 

5. 466 

0.732 

XlO 

0.001 

-0.012 

0.009 

0.351 

0.136 

0.028 

0.000 

0.000 

Chi-square= 97.5931 

Null Model Chi-square: 

df = 14 

df = 28 

0.2456 

Prob>chi**2 

0.8415 

0.5925 

0.3761 

0.0001 

RMSEA Estimate . . . . 

Bentler's Comparative Fit Index 

Akaike's Information Criterion. 

Schwarz's Bayesian Criterion. 

Bentler & Bonett's (1980) NFI 

470.7755 

90%C.I. [0.2009, 0.2927] 

0. 8112 

69.5931 

33.1207 

0.7927 

The goodness-of-fit measures now need to be examined. The chi-square is significant 

with a value of 97.5931 on 14 degrees of freedom (p<0.001) and there is strong 
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evidence of lack of fit. This although not significant is a big improvement from the chi-

square for the null model. However based on the chi-square statistic this model has to be 

rejected. All the other goodness-of-fit measures are well below the acceptable limits of 

0.90. The GFI (0.8415) is not high enough. The root mean square residual 

(RMR=0.3761) is not low enough. The NFI (0.7927), the AIC (69.5931) and the SBC 

(33.12), provide very little in support ofthis model. 

Although this model is rejected it is important to analyse the measurement and the 

structural models in order to re-specify the model. The construct loadings are now given 

below. 

Indicator 

X1 

X2 

X3 

X4 

X6 

X7 

Construct Loadings (t values in parenthesis} 

Strategy Image 

0.8430 
(9. 42) 

0.0691 
(0. 61) 

0. 6713 
(7. 08) 

0. 8119 
(6.32) 

0.9688 
(6. 99) 

-0.3945 
(-4. 045) 

Corre1ations Between the Latent Variab1es 

STRATEGY 

IMAGE 

STRATEGY 

1. 000000000 

0.128855598 
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The construct loadings and their associated t-values of Image are relatively large. For 

the other exogenous construct, Strategy, all the loadings are large except for X2, which 

is not significant. There is also a strong indication that Strategy and Image are not 

correlated as postulated. The correlation between these two latent variable is just 0.129. 

Hence we might consider dropping X2 and the correlation between Strategy and Image 

when respecifying the measurement model. Although the t-value for X7 is significant, 

the factor loading is low and we might also consider dropping X7 as well. For this 

model I would not calculate the reliability of the two constructs and the variance 

extracted by the constructs as this model does not fit well enough. 

The coefficients for the two endogenous variables (X9 and XlO) from the structural 

model now need to be estimated. 

X9 

Std Err 

t Value 

XlO 

Std Err 

t Value 

Variable 

E7 

E8 

Endogenous Variable Equations 

7.0752*F STRAT + 1.464l*F IMAGE+ 0.5665 E7 

0.7804 SETAl 0.5600 BETA2 

9.0659 2.6143 

0.0241*X9 

0.0143 BETA4 

1. 6889 

+ 0.4840*F STRAT + 0.6196 E8 

0.1342 BETA3 

3.6064 

Variances of Exogenous Variables 

Parameter 

EPSl 

EPS2 

Estimate 

25.926764 

0.280972 
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Standard 

Error 

5.488327 

0.044013 

t Value 

4. 724 

6.384 



Squared Multiple Correlations 

1 

2 

Variable 

X9 

X10 

Error 

Variance 

25.926764 

0.280972 

Total 

Variance 

80.797980 

0.731979 

R-squared 

0.679116 

0.616147 

This component fits very well and 61.61% ofthe variation ofX10 is accounted for by 

Strategy and X9 and 67.91% of the variation of X9 is accounted for by Strategy and 

Image. The error terms for both these equations are significant. This together with the 

R2
, tells us that a fair amount of variation of X10 is not accounted for by variables not 

included in the two equations and can be attributed to measurement error. 

I now re-specify the model by dropping two manifest variables (X2 and X7) and add 

Image as a predictor ofX10. There are two correlations amongst the error terms in this 

model (between E1 and E2 and between E7 and E8). The path diagram for the re-specified 

model is given below. 

c.~[&]~ 

~ 
c,-lli]/ ~ 

.-P-ro_d_u-ct___, Satisfaction 

Usage Level 

"·-em----_. ~// __ ) ~~ 
&6-~..------

Figure 3 .2.2: Path Diagram for there-specified HA TCO model. 
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In the revised model the two exogenous constructs are measured by four manifest 

variables. Strategy is measured by Xl (Delivery Speed) and X3 (Price Flexibility) and 

the other exogenous construct, Image, is measured by X4 (Manufacturer's Image) and 

X6 (Sales Force Image). The intermediate variable, X9 (Product Usage) is still in there-

specified model and XlO (Customer Satisfaction Level) is now related to X9, Strategy 

and Image. The two latent variables are no longer correlated. 

Maximum likelihood estimation is used to arrive at the parameter estimates and the 

covariance matrix is analysed. This matrix together with the residual matrix is presented 

below. 

Covariance Matrix 

X1 X3 X4 X6 X9 X10 

X1 1. 744 0.933 0.075 0.079 8.031 0.735 

X3 0.933 1. 922 -0.182 -0.037 6. 967 0.623 

X4 0.075 -0.182 1. 280 0.687 2.280 0.461 

X6 0.079 -0.037 0.687 0.594 1. 774 0.225 

X9 8.031 6.967 2.280 1. 774 80.798 5. 466 

X10 0.735 0.623 0. 461 0.225 5. 466 0.732 

Determinant= 4.231 (Ln = 1. 442) 

Residual Matrix 

X1 X3 X4 X6 X9 X10 

X1 -.020 0.015 0.075 0.079 0.150 -.001 

X3 0.015 0.004 -.182 -.037 -.199 -.047 

X4 0.075 -.182 0.000 0.000 -.135 -. 013 

X6 0.079 -.037 0.000 0.000 0.186 0.017 

X9 0.150 -.199 -.135 0.186 0.161 -.096 

X10 -.001 -.047 -.013 0.017 -.096 -.019 

Average Absolute Residual 0.06835 

Average Off-diagonal Absolute Residual = 0.08205 

Most of the residuals are small and the average absolute residual is 0.068 and the 

average off-diagonal absolute residual is 0.082. These values give an early indication 
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that the model fits well. The distribution of normalised residuals given below also gives 

an indication of good fit. None of the normalised residuals exceed 2.0 and the 

distribution is symmetric and centred around zero. 

Distribution of Normalised Residuals 

(Each * represents 1 residuals) 

-1.25000 - -1.00000 1 4.76% I * 

-1.00000 - -0.75000 0 0.00% 

-0.75000- -0.50000 0 0.00% 

-0.50000 - -0.25000 2 9.52% ** 

-0.25000 - 0 7 33.33% ******* 
0 - 0.25000 8 38.10% ******** 

0.25000 - 0.50000 2 9.52% ** 

0.50000 - 0.75000 0 0.00% 

0.75000- 1.00000 1 4.76% I * 

We now need to look at the goodness-of-fit measures to assess the fit ofthe model. 

Goodness-of-fit Measures 

Goodness of Fit Index (GFI) .... 

GFI Adjusted for Degrees of Freedom (AGFI) . 

Root Mean Square Residual (RMR) 

df = 4 Prob>chi**2 

0.9853 

0. 9228 

0.0976 

0.3373 Chi-square= 4.5448 

Null Model Chi-square: df = 15 353.8163 

RMSEA Estimate 

Bentler's Comparative Fit Index 

Akaike's Information Criterion. 

Schwarz's Bayesian Criterion. 

Bentler & Bonett's (1980) NFI . 

0.0371 90%C.I.[., 0.1603] 

0.9984 

-3.4552 

-13.8758 

0. 9872 

The three absolute fit measures, the x2 = 4.545 (p=0.3378), the GFI (0.9853) and the 

RSMR (0.0976) indicates acceptable fit. The chi-square value of 4.545 is not significant 

and is a huge reduction from the x2 for the null model (353.82). The GFI is much higher 

than the acceptable threshold of 0.90 and the root mean square residual is low enough to 

64 



suggest acceptable fit. The RMSEA estimate (0.0371) is also very low, again an 

indication of acceptable fit. The NFI value of0.9872, the AIC (-3.46) and the SBC 

(-13.8753), also suggest good fit ofthe model. 

Based on these goodness-of-fit measures, there is no indication of lack of fit and the 

model cannot be rejected. 

The measurement model now needs to be assessed to see if the manifest variables are 

good indicators of Strategy and Image and to see if a fair amount of variation of these 

latent variables are accounted for. The construct loadings are now presented below. 

Indicator 

X1 

X3 

X4 

X6 

Construct Loadings (t values in parenthesis) 

Strategy 

0.9857 
(10. 62) 

0.8598 
(8. 58) 

Image 

0.9035 
(5. 81) 

0. 8724 
(5. 78) 

The construct loadings and the associated t-values for both Strategy and Image are all 

very high and are therefore important in describing the latent variables. 

The reliability of both the constructs as well as the variance extracted now need to be 

presented. 
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Sum of I Standardised Loadings I: 

Strategy 

Image 

Sum of Measurement Error: 

Reliability: 

Strategy 

Image 

Strategy 

Image 

(0.9857 + 0.8598} 

(0.9035 + 0.8724} 

1. 8455 

1. 7759 

(1 - 0. 9857 2
} + (1 0. 8598 2

} 

(1- 0.90352
} + (1 0.8724 2

} 

(1.8455} 2 I { (1.8455} 2 + 0.2891} 

(1.7759} 2 I {(1.7759} 2 + 0.4226} 

0.2891 

0.4226 

0.9218 

0.8818 

Sum of Squared Standardised Loadings: 

Variance: 

Strategy 

Image 

Strategy 

Image 

(0.9857 2 + 0.8598 2
} 

(0.9035 2 + 0.8724 2
} 

1. 7109 

1.5774 

(1.7109} I {1.7109 + 0.2891} 

(1.5774} I {1.5774 + 0.4226} 

0.8555 

0.7887 

In terms of reliability both Strategy and Image exceed the suggested level of 0.70 and 

are therefore very reliable. In terms of variance extracted both exogenous constructs 

exceed the threshold value of 0.50. Thus for both constructs, the indicators are sufficient 

in terms of how the measurement model in now specified. 

The structural model comprises of two equations where the endogenous variable, X9 

and XlO are predicted. These equations together with their coefficients and t-values are 

presented. 
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X9 

Std Err 

t Value 

X10 

Std Err 

t Value 

Variable 

E7 

E8 

Endogenous Variable Equations 

7.7435*F STRAT + 

0.0815 BETA1 

95.0159 

0.0373*X9 

0.0075 BETA4 

5.0064 

+ 

2.4013*F IMAGE+ 

0.3100 BETA2 

7.7458 

0.4345*F STRAT + 

0.0871 BETA3 

4.9865 

0.6940 E7 

0.2241*F IMAGE + 

0.0762 BETAS 

2. 9397 

Variances of Exogenous Variables 

Parameter 

EPS1 

EPS2 

Estimate 

38.835556 

0.285933 

Standard 

Error 

5.137715 

0.042122 

t Value 

Covariances among Exogenous Variables 

0.6169 E8 

7.559 

6.788 

Parameter Estimate 

Standard 

Error t Value 

E3 

ES 

5 

6 

E1 

E5 

COV13 

COV58 

-0.641125 

0.157894 

0.128156 

0.061303 

Squared Multiple Correlations 

Variable 

X9 

X10 

Error 

Variance 

38.835556 

0.285933 

Total 

Variance 

80.637319 

0.751285 

R-squared 

0.518392 

0.619408 

-5.003 

2.576 

It is evident that all the predictors are highly significant and are important in explaining 

both X9 (Product Usage) and XlO (Customer Satisfaction). 51.84% of the variation of 
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Product Usage is accounted for by both the exogenous constructs, Strategy and Image, 

and 61.94% of the variation of Customer Satisfaction is accounted for by Strategy, 

Image and Product Usage. This together with significant error terms e7 and e8 indicate 

that a fair amount of variation can be accounted for by measurement error and variables 

not included in the model. All the predictors of Customer Satisfaction are significant at 

the 5% level. An increase in Product Usage is expected to lead to increased Customer 

Satisfaction. Increased strategy of HATCO is expected to lead to higher satisfaction 

levels and a higher image perception of HATCO also leads to increased satisfaction 

levels. In order for HATCO to increase their satisfaction levels, they need to focus on 

increasing their delivery speed and their price flexibility which are strategic elements of 

their campaign. They would also have to increase the manufacturers image and their 

sales force image. While it is true that HATCO must focus on the above aspects of their 

business, they must not ignore the other aspects such as price levels, service and product 

quality. 

3.2.3 Conclusions 

The regression solution arrives at five predictors (Delivery Speed, Price Flexibility, 

Manufacturer's Image, Service and Sales Force Image) of Customer Satisfaction. 

Increased, delivery speed, price flexibility, service and manufacturer's image, increases 

the level of customer satisfaction of HATCO's customers. HATCO should therefore 

focus on these four aspects in their campaign to increase their customer satisfaction. 

However, they should not ignore other aspects of their business which might impact on 

customer satisfaction in future. 

68 



The structural equation model which is proposed (Figure 3.2.2), includes two latent 

variables which explain the concepts of Strategy and Image which HA TCO has decided 

to focus on. The Strategy component is measured by Delivery Speed and Price 

Flexibility and the Image component is measured by Manufacturer's Image and Sales 

Force Image. The two indicators of Strategy load highly and so does the indicators of 

Image and are very important variables when measuring these two concepts. The 

reliability of both constructs and the variance extracted by the Strategy and Image are 

well above the acceptable thresholds, thus giving further evidence of the importance of 

the indicators. 

The SEM solution gives a better understanding of the factors and variables which would 

help in increasing the levels of customer satisfaction of HACTO customers. This model 

includes Product Usage, which is absent in the regression model. The structural 

equation model provides strong evidence that Delivery Speed and Price Flexibility 

measure the same concept and that Manufacturer's Image and Sales Force Image 

measure another concept. This is the strength of SEM, it incorporates these factors with 

a regression model and analyses the data simultaneously, whereas the regression model 

includes the above indicators as independent variables. Furthermore, the 

interrelationship of all the factors and the variables is taken into consideration in this 

model thus giving the HATCO management a better understanding of the process which 

they need to follow to increase their customer satisfaction levels. The path diagram 

outlines the causal process involved in predicting customer satisfaction. This is not 

possible in regression. 
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An added advantage of using structural equation modelling for this example, is that the 

accepted model can be tested over time to see if the same factors and variables are still 

important in explaining customer satisfaction or whether a new model needs to be 

tested. This will help HATCO in assessing the strategic direction that needs to be 

followed. Hence this model should be re-assessed on a regular basis to keep up with the 

changes which are experienced in the environment they operate in. 
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3.3 EXPLORATORY FACTOR ANALYSIS & CONFIRMATORY FACTOR 

ANALYSIS 

As mentioned in the previous chapter, structural equation modelling is made up of two 

components, the measurement model and the structural model. The measurement model 

relates the manifest variables to the latent variables or constructs. This component is 
·----------~' ~---·· ... ,,., __ ........ -... ~----·-

identical to confirmatory factor analysis. The discussion from here on will focus on the 

comparison of exploratory factor analysis (EF A) and confirmatory factor analysis 

(CFA). 

The primary goal of factor analysis is to explain the co variances or correlations between 
vtV\olo~ev v.e d 

many observed variables by means of relatively few underlying latent variables. It can 

therefore be classified as a data reduction technique. Factor analysis can be approached 

in two ways, an exploratory and a confirmatory approach. Exploratory factor analysis 

(EF A) is the more traditional approach. The most distinctive feature of EF A, is that a 

model specifying the relationship between the latent variables and the manifest variables 

is not required. The number of latent variables need not be predetermined, the 

measurement errors are not allowed to be correlated, and under-identification (occurs 

when unique parameter estimates cannot be generated) is common (Bollen, 1989, 

pp. 226-232). 

On the other hand, depending upon the knowledge of the researcher, factor analysis can 

be used as a means of testing hypotheses. When factor analysis is used as a means of 

testing specific hypotheses rather than exploring underlying dimensions, we refer to the 

technique as confirmatory factor analysis (CFA) (Everitt, 1984, pp. 13-14). In contrast 

to EF A, in CF A a model is constructed in advance, clearly identifying relationships and 
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errors. The number of latent variables is set by the researcher, measurement errors are 

allowed to be correlated and parameter identification is required. In practice though, the 

distinction between the two approaches is not always clear-cut. 

Everitt (1984, pp. 13-14) and Bollen (1989, pp. 226-232) discuss some ofthe problems 

of EF A and their limits. Firstly, the technique does not allow the researcher to constrain 

some of the factor loadings to zero. In EF A each latent variable influences all of the 

manifest variables. Secondly, EF A does not allow correlated errors of measurement. 

Situations arise frequently when measurement errors may be correlated because they 

come from the same source, or because of response bias in survey questions, or for other 

reasons. This may lead to ambiguous or misleading solutions. The third problem is that 

of determining the number of factors. This becomes a problem no matter which 

selection criterion is used. 

These problems or limits reflect the inability of EF A to accommodate theoretical 

knowledge. Confirmatory factor analysis overcomes these shortcomings, but the 

strengths of CF A can only be exploited once the model is expertly formulated. Once the 

model is constructed, it can be estimated, and its fit to the data can be assessed using the 

measures discussed in the previous chapter. 

We can therefore conclude that confirmatory factor analysis provides a much more 

powerful tool in confirmatory research than exploratory factor analysis. 
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Example 3.3: 

The following example comes from Huba et al. (1981) and concerns the drug usage 

rates of 1634 students. The Pearson product-moment correlation matrix is in Table 2 in 

Appendix A. 

The participants in the study were 1634 students in the seventh through to ninth grades 

in 11 schools in the greater metropolitan area of Los Angeles. The schools were selected 

from a larger sample initially contacted through their district offices during the spring of 

1975. Each participant in the study completed a questionnaire about the number of times 

particular substances had ever been used. Responses were recorded on a five point scale: 

1. Never tried 

2. Only once 

3. A few times 

4. Many times 

5. Regularly 

Of the 1634 students providing usable responses 35.6% were male and 64.4% were 

female. White students comprised 56.4% of the sample, with Hispanic, Black and Asian 

students comprising 14.8%, 23.6% and 5.2% respectively. Seventh graders represent 

38.7% of the sample, eight graders 37.2% and ninth graders 24.1%. More detailed 

characteristics of the sample are given in Huba et al. (1979). 

The data will be analysed using the two techniques discussed above. In the exploratory 

factor analysis (EF A), the data will be analysed to investigate how many latent variables 
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explain the usage of the 13 different drugs. While in the confirmatory factor analysis 

(CF A) a model will be tested. 

3.3.1 Exploratory Factor Analysis Solution 

Exploratory factor analysis (EF A) is now performed on the product moment correlation 

matrix. The principal component is used to estimate the loading matrix. The number of 

factors extracted or retained influences how well the off-diagonal elements of the 

correlation matrix can be reproduced by the EF A model. Using a large number of 

factors defeats the purpose of factor analysis, namely to describe the variables in terms 

of only a few factors. Although principal factor analysis is the most commonly used 

method of factor analysis, maximum likelihood (ML) factor analysis is also used in 

practice. The ML method provides tests to ensure that an adequate numbers of factors is 

retained in the analysis. However, for the purposes of this dissertation, principal factor 

analysis will be used. 

In this analysis, I used the "Percentage of the total correlation criterion" and require 

75% of the total correlation to be accounted for by the factors extracted. This is however 

not the only criterion which can be used. Others which can be used are the "number of 

factors criterion", the "eigenvalue criterion" and the "scree plot". Using the"Percentage 

of total correlation criterion", 7 factors will be retained as these account for at least 75% 

of the total correlation, in fact, the first 7 principal components accounts for 79% of the 

total correlation. The number of factors retained is large but I will nevertheless interpret 

the results. 

74 



Eigenvalues of the Correlation Matrix: Total= 13 Average= 1 

2 3 4 5 6 7 8 9 10 11 12 13 

Eigenvalue 4.39 2.05 0.95 0.82 0.76 0.68 0.64 0.61 0.56 0.40 0.39 0.38 0.36 

Difference 2.33 1.10 0.13 0.06 0.08 0.04 0.03 0.05 0.16 0.01 0.02 0.02 

Proportion 0.34 0.16 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03 

Cumulative 0.34 0.50 0.57 0.63 0.69 0.74 0.79 0.84 0.88 0.91 0.94 0.97 1.00 

7 factors will be retained by the PROPORTION criterion. 

Factor Pattern 

Fl F2 F3 F4 F5 F6 F7 

V9 0.710 -0.232 -0.229 -0.095 0.313 -0.138 -0.113 Marijuana 

V10 0.688 0.075 -0.347 -0.107 0.234 0.186 0.101 Hashish 

V13 0.687 0.333 -0.228 -0.241 -0.179 0.021 -0.115 Amphetamines 

V4 0.665 -0.462 0.048 0.052 -0.150 0.149 0.004 Liquor 

V6 0.613 0.371 -0.169 0.076 -0.108 0.055 -0.442 Tranquilizers 

V2 0.599 -0.565 0.123 0.086 -0.152 0.140 0.095 Beer 

Vl 0.585 -0.406 -0.047 0.027 0.243 -0.385 -0.104 Cigarettes 

Vll 0.578 0.243 0.308 -0.174 0.061 -0.437 0.366 Inhalants 

V12 0.519 0.471 -0.108 -0.264 -0.306 0.131 0.330 Hallucinogenics 

V3 0.558 -0.563 0.210 0.123 -0.258 0.133 0.052 Wine 

V7 0.368 0.271 0.711 -0.296 0.222 0.217 -0.267 Drug store 

V5 0.435 0.412 0.052 0.538 0.390 0.275 0.241 Cocaine 

V8 0.421 0.451 0.143 0.480 -0.308 -0.298 -0.133 Heroin 

Variance explained by each factor 

Fl F2 F3 F4 F5 F6 F7 

4.384976 2.050142 0.952309 0.817589 0.761744 0.683972 0.643355 

The estimated loading matrix is now given on the previous page and all the variables 

from Cigarettes to Amphetamines are reordered according to their factor loadings. The 

factor loading of Marijuana is the highest of all for the first factor (Fl) followed by 

Hashish etc. However, the factor patterns are not very clear since many factor loadings 
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take on moderate values. Of the 7 factors, the first two explain the major proportion of 

the correlation. 

The matrix of residual correlations provides a good indication that a major proportion of 

the total correlation is explained by this EF A model; most of the off-diagonal elements 

of this matrix are very small. If 9 factors were retained 88% of the total correlation 

would be accounted for and the off-diagonal elements would be much closer to zero. 

The root mean square off-diagonal residuals (0.0637) is very close to zero, indicating 

that the model fits the data well. 

Residual Correlations With Uniqueness on the Diagonal 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 

V1 0.27 -0.03 O.Dl -0.05 0.05 -0.01 0.03 -0.04 -0.15 -0.06 -0.12 0.15 0.01 Cigarette 

V2 -0.03 0.25 -0.13 -0.11 -0.01 0.02 0.00 0.01 0.00 0.00 0.01 -0.02 0.01 Beer 

V3 0.01 -0.13 0.23 -0.12 0.02 0.02 -0.01 -0.04 0.00 0.01 0.01 -0.01 0.02 Wine 

V4 -0.05 -0.11 -0.12 0.29 0.00 0.00 -0.01 -0.01 -0.01 -0.03 0.05 -0.04 -0.02 Liquor 

V5 0.05 -0.01 0.02 0.00 0.06 0.03 -0.02 -0.08 -0.02 -0.12 0.01 0.01 0.07 Cocaine 

V6 -0.01 0.02 0.02 0.00 0.03 0.24 -0.07 -0.16 -0.07 -0.06 0.14 -0.02 -0.09 Tranquilizers 

V7 0.03 0.00 -0.01 -0.01 -0.02 -0.07 0.03 0.06 0.02 0.04 -0.06 0.04 -0.02 Drugstore 

V8 -0.04 0.01 -0.04 -0.01 -0.08 -0.16 0.06 0.17 0.08 0.14 -0.09 0.02 -0.04 Heroine 

V9 -0.15 0.00 0.00 -0.01 -0.02 -0.07 0.02 0.08 0.25 -0.06 -0.04 0.05 -0.05 Marijuana 

V10 -0.06 0.00 0.01 -0.03 -0.12 -0.06 0.04 0.14 -0.06 0.29 0.01 -0.08 -0.09 Hashish 

V11-0.12 0.01 0.01 0.05 0.01 0.14 -0.06 -0.09 -0.04 0.01 0.15 -0.13 0.00 Inhalants 

V12 0.15 -0.02 -0.01 -0.04 0.01 -0.02 0.04 0.02 0.05 -0.08 -0.13 0.21 -0.11 Hallucinogen 

V13 0.01 0.01 0.02 -0.02 0.07 -0.09-0.02 -0.04 -0.05 -0.09 0.00 -0.11 0.26 Amphetamine 

Root Mean Square Off-diagonal Residuals: Over-all= 0.06373300 

To make the results in the loading matrix easier to interpret, the V arimax method of 

orthogonal rotation is used. The new loading matrix provides the factor loadings with 
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the variables reordered in terms of their loadings. The factor patterns are now much 

clearer. 

Rotation Method: Varimax 

Rotated Factor Pattern 

F1 F2 F3 F4 F5 F6 F7 

V3 0.867 0.020 0.113 0.062 -0.014 0.047 0.050 Wine 

V2 0.835 0.067 0.209 -0.020 0.044 0.017 0.058 Beer 

V4 0.771 0.187 0.268 0.043 0.042 0.048 0.001 Liquor 

V12 0.070 0.797 -0.144 0.092 0.123 0.033 0.327 Hallucinogenics 

V13 0.104 0.754 0.264 0.262 -0.002 0.127 0.070 Amphetamines 

V10 0.120 0.575 0.460 -0.088 0.349 0.005 0.009 Hashish 

V9 0.308 0.264 0.753 0.002 0.109 0.048 0.060 Marijuana 

V1 0.383 -0.054 0.725 0.107 -0.029 -0.008 0.202 Cigarettes 

V8 0.047 0.154 -0.020 0.852 0.188 0.017 0.213 Heroin 

V6 0.050 0.530 0.296 0.535 0.106 0.216 -0.206 Tranquilizers 

V5 0.018 0.143 0.071 0.219 0.920 0.104 0.082 Cocaine 

V7 0.073 0.115 0.020 0.062 0.094 0.957 0.150 Drug store 

V11 0.097 0.253 0.229 0.171 0.095 0.198 0.801 Inhalants 

For the first factor, Wine, Beer and Liquor load highly while Marijuana and Cigarettes 

load moderately and all the variables which load highly relate to alcohol use and I 

therefore call this factor (F 1) Alcohol Use. Hallucinogenics, Amphetamines, Hashish 

and Tranquilizers load highly on factor 2 (F2). These variables give a good indication of 

hard drug usage and I therefore call F2, Hard Drug Use. Factor 3 relates to cannabis use 

as Marijuana and Cigarettes load highly while Hashish loads moderately on this factor. 

It is therefore called Cannabis Use. Heroin and Tranquilizers load highly on F4. I would 

rather refer to this factor as Heroin Use. Cocaine loads highly for factor 5 while Hashish 

loads moderately. This factor I call Cocaine Use. Drug Store and Inhalants are the only 
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variables which load highly on factors 6 and 7 respectively and I call these factors Drug 

Store Usage and Inhalant Use, respectively. 

The present 7 factor model retains a large number of factors and I therefore try a 5 factor 

model using the NF ACTOR criterion. These 5 factors accounts for 69% of the total 

correlation. The residual matrix is only marginally worse than that of the 7 factor model. 

This is expected as a lower percentage of the total correlation is accounted for by these 5 

factors. The root mean square off-diagonal residuals (=0.0717) is not much different 

from the 0.0637 of the 7 factor model and is also fairly close to zero, indicating an 

acceptable fit of the data to the model. 

The factor loadings for the 5 factor model after using V arimax rotation is now give 

below. 

Rotated Factor Pattern 

Fl F2 F3 F4 F5 

V3 0.86335 0.03934 0.04340 0.02556 0.06682 Wine 

V2 0.82699 0.04803 0.18403 0.00966 0.05356 Beer 

V4 0.77082 0.17001 0.23926 0.03489 0.04909 Liquor 

Vl2 0.00183 0.79291 0.02975 0.07495 0.17706 Hallucinogenics 

Vl3 0.12837 0.78167 0.27267 0.08941 0.12378 Amphetamines 

V6 0.10216 0.60424 0.21254 0.36622 0.06200 Tranquilizers 

V9 0.39332 0.21824 0.71107 0.04952 0.08497 Marijuana 

V10 0.16627 0.44111 0.65064 0.13608 0.03812 Hashish 

VI 0.52784 -0.00045 0.52906 0.05486 0.08950 Cigarettes 

V5 -0.07149 0.06597 0.32522 0.81126 0.17346 Cocaine 

V8 0.14058 0.41155 -0.23285 0.69184 0.06822 Heroin 

V7 0.04637 0.10587 0.01433 0.08601 0.91133 Drug store 

V11 0.17458 0.37021 0.16117 0.17090 0.54632 Inhalants 
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Variance explained by each factor 

Fl F2 F3 F4 F5 

2.568832 2.201774 1.608421 1.347064 1.240668 

For the first factor (Fl), Wine, Beer, Cigarettes and Liquor load highly while Marijuana 

load moderately. This factor is almost identical to that of the 7 factor model and I 

therefore retain the name Alcohol Use. The second factor (F2) has Hallucinogenics, 

Amphetamines and Tranquilizers loading highly and Hashish, Heroin and Inhalants 

loading moderately. This is also similar to factor 2 of the previous model. The variables 

of F2 give a good indication of hard drug usage and is given the name Hard Drug Use. 

Factor 3 (F3) has Marijuana, Hashish and Cigarettes loading highly and Cocaine loading 

moderately. This factor is called Cannabis Use as the variables which load highly give a 

good indication of cannabis use. Factor 4 (F4) has Cocaine and Heroin loading highly 

while Tranquilizers load moderately. This factor is therefore called Cocaine & Heroin 

Use. Drug Store and Inhalants load highly on F5, with Drug Store loading exceptionally 

high. I therefore call this factor Drug Store Use. 

The 5 factor model is accepted as the results are very similar to the 7 factor model and 

has the benefit of two less factors. 
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3.3.2 Confirmatory Factor Analysis Solution 

A three factor model was postulated to explain the observed correlations and the Factors 

being Alcohol Use (Fl), Cannabis Use (F2) and Hard Drug Use (F3). The path diagram 

depicting the model is given below in Figure 3.3 .1: 

Figure 3.3.1: Initial Model for the Teenage Drug Usage 

The initial model with correlated errors between Drug store and Inhalants, Cocaine and 

Amphetamines, Heroin and Tranquilizers and between Amphetamines and Tranquilizers 

had to be rejected as being fully adequate for representing the correlations among the 13 

drug use variables, chi-square (54) = 213.9 (Table 3.3.2). On the other hand the 

individual parameter estimates are all highly significant. Furthermore the model's 

observed chi-square to degree of freedom ratio indicates that for this large sample there 
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is not really that much discrepancy between the correlations obtained and those 

predicted from the model (Table 3.3.1). The Average Absolute Residual is also very 

small giving a further indication of the small discrepancy between the observed and the 

predicted correlation matrices. All the other indicators of goodness-of-fit are well above 

0.95 (Table3.3.2) indicating that all the correlations among the measures are explained 

by the model. 

Table 3.3 .1: Residual Matrix for the Initial Model 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 

V1 -.000 -.009 .018 -.014 -.028 .031 -.000 -.044 .004 -.021 .101 -.068 .032 

V2 -.009 .000 .001 .006 -.058 -.007 .022 -.049 -.012 .027 .075 -.062 .010 

V3 .018 .001 -.000 -.006 -.048 .017 .045 -.023 -.003 .006 .081 -.046 .033 

V4 -.014 .006 -.006 -.000 -.063 .043 .008 -.060 .009 .032 .081 -.046 .033 

V5 -.028 -.058 -.048 -.063 -.000 .020 .034 .081 -.049 -.002 -.003 -.044 .001 

V6 .031 -.007 .017 .043 .020 -.001 .009 -.005 .031 .008 -.010 -.024 -.006 

V7 -.000 .022 .045 .008 .034 .009 -.000 .047 -.001 -.033 -.000 .024 -.030 

V8 -.044 -.049 -.023 -.060 .081 -.005 .047 .000 -.054 -.050 .045 .035 -.046 

V9 .004 -.012 -.003 .009 -.049 .031 -.001 -.054 -.000 -.001 .063 -.076 .041 

V10 -.021 .027 .006 .032 -.002 .008 -.033 -.050 -.001 .000 -.007 .006 .011 

V11 .101 .075 .081 .075 -.003 -.010 -.000 .045 .063 -.007 -.000 .013 -.020 

V12 -.068 -.062 -.046 -.072 -.044 -.024 .024 .035 -.076 .006 .013 -.000 .027 

Vl3 .032 .010 .033 .027 .001 -.006 -.030 -.046 .041 .011 -.020 .027 -.000 

Average Absolute Residual= 0.02588 

Average Off-diagonal Absolute Residual= 0.03018 

V1 = Cigarettes V2 = Beer V3 = Wine 

V4 = Liquor V5 = Cocaine V6 = Tranquilizers 

V7 = Drug store V8 = Heroin V9 = Marijuana 

VlO = Hashish V11 = Inhalants V12= Hallucinogenics 

V13 = Amphetamines 

81 



Table 3.3.2: Indicators of Goodness-of-fit for the Initial Model 

Goodness of Fit Index (GFI) .......... . 

GFI Adjusted for Degrees of Freedom (AGFI) ... . 

Root Mean Square Residual (RMR) ........ . 

0.9808 

0.9677 

0.0359 

Chi-square= 213.9032 df= 54 

Null Model Chi-square: df = 78 

Prob>chi**2 = 0.0001 

6635.8126 

RMSEA Estimate . . . . . . 0.0426 90%C.I.[0.0367, 0.0486] 

Probability of Close Fit ........... . 

Bentler's Comparative Fit Index ........ . 

Akaike's Information Criterion ......... . 

Schwarz's Bayesian Criterion .......... . 

Bentler & Bonett's (1980) Non-normed Index .... 

Bentler & Bonett's (1980) NFI ......... . 

0.9786 

0.9756 

105.9032 

-185.6643 

0.9648 

0.9678 

Although the fit of the initial model was good, improvements can be made by removing 

Wine as an indicator of Cannabis Use and removing Liquor as an indicator of Hard 

Drug Use. A few more correlated errors (which are theoretically justified) are added. A 

list of all these correlated errors can be viewed in Appendix B (Program 2, Revised 

Model). 

The path diagram for the revised model is now given below in Figure 3.3.2. 
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Figure 3.3.2: Path Diagram for the Revised Model 

These improvements on the initial model do not improve the Chi-square (211.7503) and 

has minor improvements on the other Goodness-of-fit indices (Table 3.3.3). All the 

goodness-of-fit measures for the revised model exceed 0.95. Once again indicating that 

all the correlations among the measures are explained by the model. Furthermore the 

model's observed chi-square to degree of freedom ratio indicates that for this large 

sample there is not really that much discrepancy between the correlations obtained and 

those predicted from the model. Even though the chi-square is significant, the model 

results in a huge reduction in the x2 for the null model (6618.42). 
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Table 3.3 .3: Indicators of Goodness-of-fit for the Revised Model 

Goodness of Fit Index (GFI) .......... . 

GFI Adjusted for Degrees of Freedom (AGFI) ... . 

Root Mean Square Residual (RMR) ........ . 

0.9813 

0.9672 

0.0356 

Chi-square= 211.7503 df= 52 

Null Model Chi-square: df= 78 

Prob>chi**2 = 0.0001 

6618.4166 

RMSEA Estimate . . . . . . 0.0434 90%C.I.[0.0374, 0.0495] 

Probability of Close Fit . . . . . . . . . . . . 0.9620 

Bentler's Comparative Fit Index ........ . 

Akaike's Information Criterion ......... . 

Schwarz's Bayesian Criterion .......... . 

Bentler & Bonett's (1980) Non-normed Index .... 

Bentler & Bonett's (1980) NFI ......... . 

0.9756 

107.7503 

-173.0184 

0.9634 

0.9680 

Table 3.3 .4: Residual Matrix for the revised model. 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

V1 .007 .006 .006 .006 -.032 .012 -.002 -.030 .014 -.023 .044 -.075 

V2 .006 .000 .019 -.016 -.067-.031 .017 -.041 .001 .023 .066 -.075 

V3 .006 .019 .000 -.002 -.074 -.028 .029 -.032 -.054 -.038 .054 -.080 

V4 .006 -.016 -.002 .000 -.017 .086 .038 -.004 .049 .080 .122 -.020 

V5 -.032 -.067 -.074 -.016 .000 .017 .047 .001 -.048 .011 .015 -.027 

V6 .012 -.031 -.028 .086 .017 .000 .009 -.003 .009 -.006 -.014 -.034 

V7 -.002 .017 .029 .038 .047 .009 .000 .077 .000 -.024 .005 .037 

V8 -.030 -.041 -.032-.004 .001 -.003 .077 -.001 -.026 -.005 .013 -.006 

V9 .014 .001 -.054 .049 -.048 .009 .000 -.026 .004 -.002 .063 -.030 

V10 -.023 .023 -.038 .080 .011 -.006 -.024 -.005 -.002 .000 .005 .015 

V11 .044 .066 .054 .122 .015 -.014 .005 .013 .063 .005 .001 .030 

V12 -.075 -.075 -.080 -.020 -.027 -.034 .036 -.006 -.030 .015 .030 -.000 

V13 .009 -.020 -.022 .080 -.000 .007 -.031 -.001 .014 -.007 -.025 .015 

Average Absolute Residual= 0.02453 

Average Off-diagonal Absolute Residual= 0.02843 
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There is not really that much discrepancy between the correlations obtained and those 

predicted from the revised model and the Average Absolute Residual (0.02453) is not 

much lower than that of the initial model (0.02588). The Average Off-diagonal Absolute 

Residuals (0;02843) is also marginally lower than that of the initial model (0.03018). 

Distribution of Asymptotically Standardized Residuals 

(Each* represents 1 residuals) 
-5.25ooo- -5.ooooo 1 1.10% 1 * 
-5.ooooo- -4.75000 o o.oo% 1 
-4.75ooo- -4.5oooo o o.oo% 1 
-4.5oooo - -4.25ooo o o.oo% 1 
-4.25ooo- -4.ooooo 1 1.10% 1 * 
-4.ooooo- -3.75ooo 3 3.30% 1 *** 
-3.75ooo- -3.5oooo 1 uo% 1 * 
-3.5oooo- -3.25000 2 2.20% 1 ** 
-3.25ooo- -3.ooooo 1 1.10% 1 * 
-3.ooooo- -2.75ooo 3 3.30%1 *** 
-2.75000- -2.5oooo 2 2.20% 1 ** 
-2.5oooo- -2.25ooo o o.oo% 1 
-2.25ooo- -2.ooooo o o.oo% 1 
-2.ooooo- -1.75000 3 3.30%1 *** 
-1.75ooo- -1.5oooo 3 3.30%1 *** 
-1.5oooo- -1.25ooo 8 8.79%1 ******** 
-1.25ooo- -Looooo 3 3.30%1 *** 
-1.ooooo- -0.75000 2 2.20%1 ** 
-0.75ooo- -0.5oooo o o.oo% 1 
-o.soooo- -0.25ooo 4 4.40% 1 **** 
-0.25ooo- o 4 4.40% 1 **** 

o- o.25ooo 10 10.99% 1 ********** 
o.25ooo- o.5oooo 2 2.20% 1 ** 
o.soooo- o.75ooo 10 10.99% 1 ********** 
o.75ooo- t.ooooo 1 1.10% 1 * 
1.ooooo- 1.25ooo 2 2.20% 1 ** 
1.25ooo- t.5oooo 2 2.20% 1 ** 
J.5oooo- L75ooo 3 3.30% 1 *** 
1.75ooo- 2.ooooo o o.oo% 1 
2.ooooo- 2.25ooo 4 4.40% 1 **** 
2.25ooo- 2.soooo 1 1.10% 1 * 
2.soooo- 2.75ooo 2 2.20% 1 ** 
2.75ooo- 3.ooooo o o.oo% 1 
3.ooooo- 3.25000 2 2.20% 1 ** 
3.25ooo- 3.5oooo o o.oo% 1 
3.5oooo- 3.75ooo 3 3.30% 1 *** 
3.75ooo- 4.ooooo o o.oo% 1 
4.ooooo- 4.25ooo 1.10% 1 * 
4.25ooo - 4.5oooo o o.oo% 1 
4.5oooo- 4.75000 1 1.10% 1 * 
4.75ooo- 5.ooooo o o.oo% 1 
5.ooooo- 5.25ooo 2 2.20%1 ** 
5.25ooo- 5.soooo uo% 1 * 
5.soooo- 5.75ooo 1 1.10% 1 * 
5.75ooo- 6.ooooo 2 2.20% 1 ** 
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The maximum likelihood estimates for the loadings and correlations, standard errors 

and the student's t-statistic are given for each estimate in Table 3.3.5. In all cases the 

parameter estimates are significant at the nominal 5% level, indicating that the 

parameters are necessary and important when determining drug usage patterns amongst 

teenagers. 

Table 3.3 .5: (Parameter estimates, standard errors and t-values for the final Model) 

Alcohol Use Cannabis Use Hard Drug Use 

-~·-·~•-«««•----mmm--

Drug Estimate SE t-value Estimate SE t-value Estimate SE t-value 

Cigarettes 0.347 0.035 9.95 0.337 0.035 9.59 o.ooor 
Beer 0.797 0.023 35.47 o.ooor o.ooor 
Wine 0.752 0.023 32.88 o.ooor o.ooor 
Liquor 0.777 0.023 34.32 o.ooor o.ooor 
Cocaine o.ooor o.ooor 0.503 0.027 18.46 

Tranquilizers o.ooor o.ooor 0.659 0.024 27.52 

Drug store o.ooor o.ooor 0.322 0.026 12.21 

Heroin o.ooor o.ooor 0.387 0.028 14.02 

Marijuana o.ooor 0.908 0.032 28.86 o.ooor 
Hashish o.ooor 0.396 0.031 12.98 0.378 0.030 12.69 

Inhalants o.ooor o.ooor 0.511 0.025 20.34 

Hallucinogenics O.OOOr o.ooor 0.608 0.024 24.87 

Amphetamines o.ooor o.ooor 0.816 0.023 35.06 

Factor Correlations 

Fl F2 F3 

Fl l.OOOOr 0.6129 0.3362 

F2 0.6129 Loooor 0.5127 

F3 0.3362 0.5127 l.OOOOr 

r Parameter fixed at indicated value 
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This model can be summarized as follows. There are positive loadings for Beer, Wine, 

Liquor and Cigarettes on the first latent variable of Alcohol Use. The second latent 

variable of Cannabis Use has positive loadings for Marijuana, Hashish and Cigarettes. 

The third latent variable of Hard Drug Use has significant positive loadings for Cocaine, 

Tranquilizers, Drugstore Medication, Heroin, Hashish, Inhalants, Hallucinogenics and 

Amphetamines. The three latent variables are substantially intercorrelated in a positive 

manner. All the indices of goodness-of-fit does not indicate lack of fit and suggest an 

acceptance ofthis model but the chi-square value of211.75 on 52 df(p-value < 0.001) 

rejects this model. This chi-square value may be unreliable and can be attributed to a 

"few heavy" user adolescents with peculiar patterns of eo-use. This is confirmed by the 

Distribution of Asymptotically Standardized Residuals on page 85. 

The reliability of the three constructs are now calculated together with the variance 

extracted for each construct. 

Sum of 1 Standardized Loadings 1 : 

Alcohol Use 

Cannabis Use 

= (0.3481 + 0.7972 + 0.7521 + 0.7774) 

=2.6748 

= (0.3382 + 0.9102 + 0.3962) 

= 1.6446 

Hard Drug Use = (0.5031 + 0.6594 + 0.3218 + 0.3862 + 0.3777 + 0.5108 + 0.6075 + 

0.8162) 

= 4.1827 

Sum of Measurement Error: 

Alcohol Use = 2.073 

Cannabis Use = 1.900 

Hard Drug Use = 5.621 
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Sum of Squared Standardized Loadings: 

RELIABILITY: 

Alcohol Use = 1.927 

Cannabis Use = 1.100 

Hard Drug Use = 2.379 

Alcohol Use = (2.6748)2 I {(2.6748)2 + 2.073} = 0.775 

Cannabis Use = (1.6446)2 I {(1.6446Y + 1.900} = 0.587 

Hard Drug Use = (4.1827)2 I {(4.1827)2 + 5.621} = 0.757 

VARIANCE EXTRACTED: 

Alcohol Use = (1.927) I {1.927 + 2.073} = 0.482 

Cannabis Use = (1.100) I {1.100 + 1.900} = 0.367 

Hard Drug Use = (2.379) I {2.379 + 5.621} = 0.297 

In terms of reliability, Alcohol Use (0.775) and Hard Drug Use (0.757) are above the 

suggested level of 0.70 while Cannabis Use (0.587) is well below the recommended 

level. Hence Cannabis Use is not very reliable but Alcohol Use and Hard Drug Use are 

fine even though there are a few indicators which load moderately for these factors. The 

variance extracted for Cannabis Use (36.7%) and Hard Drug Use (29.7%) are much 

lower than the recommended value of 50% while the variance extracted for Alcohol Use 

( 48.2%) is only marginally lower than the suggested value. 

Although this model is acceptable, the inclusion of one or two more factors might lead 

to a better model to explain drug usage patterns amongst teenagers. This is evident by .. 
some low parameter estimates for Cannabis Use and Hard Drug Use. 
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3.3.3 Conclusions 

Factor 1 (Fl) of the exploratory factor analysis (EFA) has Beer (0.83), Wine (0.86), 

Cigarettes (0.53) and Liquor (0.77) loading high and Marijuana (0.39) loading 

moderately and is named Alcohol Use. The latent variable also named Alcohol Use in 

the confirmatory factor analysis (CFA), has Beer (0.80), Wine (0.75) and Liquor (0.78) 

loading very high and Cigarettes (0.35) loading moderately. The indicators and loadings 

of factor one (F1) from the EFA and the latent variable (Alcohol Use) from the CFA 

are almost identical. There is also a close resemblance of factor two (F2) from the EF A 

and the latent variable, Hard Drug Use, from the CF A. In the EF A, Hallucinogenics 

(0.79), Amphetamines (0.78) and Tranquilizers (0.60) load high and Hashish (0.44), 

Heroin (0.41) and Inhalants (0.37) load moderately while in the CFA, Hallucinogenics 

(0.61), Amphetamines (0.82), Inhalants (0.51), Cocaine (0.50) and Tranquilizers (0.66) 

load high and Hashish (0.38), Heroin (0.39) and Drug Store (0.32) load moderately. The 

latent variable, Cannabis Use, has Marijuana (0.91) loading very high and Cigarettes 

(0.34) and Hashish (0.40) loading moderately. This latent variable bears close 

resemblance with factor three (F3) of the EFA, which has Marijuana (0.71), Hashish 

(0.65) and Cigarettes (0.53) loading high and Cocaine (0.33) loading moderately. 

The EF A model with five factors seems to explain the drug usage patterns amongst 

teenagers better than the CF A model. The CF A model lacks one or two more latent 

variables to give a better understanding of the drug usage patterns. Huba et al. (1981) 

have shown that a few adolescents with a peculiar pattern of eo-use is impacting on the 

CF A model. Leaving out these individuals would significantly improve the model. 

However, it is not possible to identify these individuals as the raw data is not available. 
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Confirmatory factor analysis has the advantage of providing tests of significance of the 

parameters, and indicators of goodness-of-fit which assists the analyst in selecting a 

suitable model. There are also measures, such as reliability and variance extracted, 

which guide in re-specifying the model. All these are absent in exploratory factor 

analysis where we have to rely on arbitrary cut-off points for the factor loadings .. 

Frequently analysts have latent variables to contend with in their regression analysis, 

they calculate the principal components and use these in the regression analysis. These 

are however difficult to interpret and the analysts resort to using the original variables in 

the regression analysis. Structural equation model provides a dynamic way of 

combining regression and factor analysis. For example, if the researcher wants to relate 

the three factors from the CF A model to say teenage delinquency, then SEM would be 

more powerful than either EF A alone or regression alone. 
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CHAPTER4 

ANALYSIS OF ANC UTILIZATION DATA 

A better understanding of structural equation modelling (SEM) and the methodology 

requires the application of the technique to a real data set. Chapter 2 introduced us to the 

methodology of SEM. In Chapter 3 simple data sets were analysed using SEM and 

alternative techniques and the results obtained were compared. A complex data set will 

now be analysed using SEM, showing the strengths and limitations of this technique. 

4.1 INTRODUCTION 

Health problems occur frequently during pregnancy. Low education and socio-economic 

levels are also associated with an increased risk of morbidity in pregnancy, of 

complaints during labour and in the postpartum period. Other known risk factors are 

age, parity and gravida. Parity is the number of live births by the women and gravida is 

the number of times the woman was pregnant. 

Migrant women in Belgium frequently belong to a high risk group because of their low 

education and/or socio-economic status and/or their multigravidity. Belgian 

practitioners noticed differences between migrant and western women. For migrant 

women they noticed late first prenatal consultation, diminished contact rates and 

reserved attitudes towards prenatal examination in general and gynaecological 

investigation in particular ( da Silveria et al., 1988). 
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The prenatal behaviour of migrant women is a very complex matter. On the one hand, 

the western care providers have established certain norms and a routine prenatal care 

that is inspired by the existing concepts of health and disease in West-European culture 

and based on biomedical sciences. On the other hand migrants have no other choice than 

to attend the western antenatal care, although antenatal care is set up from a western 

point of view and is not necessarily the most appropriate for them. 

The general consensus is that pregnant migrant women have different preventive health 

service utilization behaviour which is assessed as "inappropriate" in comparison to 

Belgian women. The underlying hypothesis is that an adequate utilization of the 

antenatal services by the migrant pregnant women will decrease their probability of 

having serious complications during pregnancy and delivery and improve the health of 

the pregnant women. 

A conceptual model was proposed by da Silveria et al. (1988) to study the utilization of 

antenatal services by migrant Turkish women in Belgium. This model is now given in 

Figure 4.1.1 and was analysed using a general multiple regression approach by Levin et 

al. (1989). Levin et al. (1989) also suggested an alternative method of analysis, "the 

structural analysis", where the modelling procedure itself is suggested by the conceptual 

model. The results from the structured analysis was very similar to that obtained from 

the general approach. Although a marginally higher value of R2 for the structured 

analysis model than the model using the general regression model was found, this 

cannot be interpreted as a statistically better model, since in both cases regression was 

used as a descriptive tool, rather than trying to find the "best" model. Specifically this 
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meant that variables which were thought to be important from prior knowledge, were 

included in the model. 

The biggest shortcomings of the approach adopted by Levin et al. (1989) is that it was 

too arbitrary and that the data analysis was time consuming. This is a general problem in 

all of the traditional techniques, they cannot directly incorporate and analyse factors or 

latent variables in a simultaneous manner. 

Utili7.ation of Al'lC C'.onsultation by :Migrant Women ~ 

COMPLY ~ 

AGE 

I EDIEVWoll CURACIWoll CURACIMA II KNOWWFL I 

1 1 1 1 
es e.~ eJ e<J 

Figure 4.1.1: Path Diagram for the ANC model 

The definitions of all the variables used in this model are on page 97. 
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4.2 THE PROCESS OF BUILDING THE MODEL 

The model was developed in three stages: 

1. brainstorming session, 

2. first draft of the model, and 

3. interactive process. 

In the first stage a team consisting of Anthropologists, Demographers, Epidemiologists, 

Family Practitioners, Gynaecologists, Nurses, Nutritionists, Psychologists, Public 

Health Specialists and Sociologists met with the objective: 

1. of defining the problems related to the utilization behaviour of antenatal 

services by migrant women, 

2. to provide a list of markers which are supposed to have influence on the 

antenatal behaviour, 

3. to interrelate determinants in "causal" pathways, and 

4. to grade the determinants according to their relative priority. 

All the individuals in the team were either directly involved in the health environment 

or actually involved with migrants. 

The second stage involved developing an initial conceptual model and depicting it in the 

form of a path diagram. The final stage involved presenting the initial model to a 

research group on migrant studies and modifying the model. The new draft was once 

again presented to that research group and approved. Further information on the 

development and the uses of the conceptual model in the study of antenatal service 

utilization by migrant women in Belgium can be found in da Silveria et al. ( 1988). 
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4.3 THE USES OF THE MODEL 

The model would be used, 

1. to guide the choice of an adequate study design, 

2. in the preparation of the questionnaire, 

3. in the preparation of instruments for the measurement of facts and/or 

attitudes, 

4. as a basis for statistical modelling, 

5. in the detection ofunexplored areas in the study of the determinants, 

6. in the detection of causal mechanisms involved, 

7. as a basis for mathematical model development, and 

8. help for a holistic view of antenatal care. 

4.4 METHODOLOGY 

After the development of the conceptual model, two questionnaire instruments were 

developed for a survey of pregnant Turkish women. The model identified factors to be 

investigated by a factual questionnaire, and by an attitude questionnaire, which aimed at 

finding the women's opinions about pregnancy, childbirth and the family. 

The survey was then carried out on a sample of 115 recently delivered Turkish women 

who had given birth between 15th and 30th of September 1987 in 3 maternity hospitals -

Sint Franciscus ( Zolder), Sint Etienne (Brussels) and Middelheim (Antwerp)- that are 

frequently used by the migrant population. The interviews were conducted in Turkish by 

Turkish females who had been specially trained for the job outside the normal visiting 
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hours, i.e. in the absence of any one familiar with the interviewee, and they took about 

60 minutes. None of the selected women refused to participate. 

4.5 THE ANALYSIS OF THE DATA 

The main aim of the data analysis was to determine which covariates significantly 

influenced the utilization of antenatal care. In their analysis of the data, Levin et al. 

(1989) split the conceptual model into 5 sub-models to facilitate analysis. The data was 

then analysed in a structured manner by a series of regression equations. This was found 

to be time consuming and highlighted one of the shortcomings of not analyzing the data 

using the equations simultaneously. 

As a measure of utilization of antenatal care a compliance score was developed as 

follows: If a woman had no medical consultation in the first trimester of her pregnancy, 

she was given a score of -3, otherwise she was given a score of 1. For the second 

trimester, no visit resulted in a score of -2, and each visit earned a score of 1 up to a 

maximum of 3. For the third trimester, no visit was given a score of -1 and each visit 

earned a score of 1 up to a maximum of 8. The compliance score was then defined as a 

sum of the scores for the three trimesters, and thus lay between -6 (for a non-complier) 

and 12 (for an excellent complier). It was recognised that there was a degree of 

arbitrariness in this definition of the compliance score, so Levin et al. (1989) tried a 

slightly different score. The resulting model was very similar to the model with the 

original compliance score given above and it was decided to use the original compliance 

score as the response variable. 
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The following variables are considered in the model: 

COMPLY 

CO MHOS 

- Compliance score of the woman 

- Means of communication with the doctor 

CURACTMA- Current activity of the man 

CURACTWO - Current activity of the woman 

EDLEVWO -Educational level ofthe woman 

HAP PRE - Was the woman happy when she found out about the 

pregnancy 

KNOWWEL -Knowledge of a Western language 

LIVIST -Actual living situation 

NUBO - Number of boys born to the woman 

NUGI -Number of girls born to the woman 

NULOS - Number of children lost 

NUMISC - Number of miscarriages 

PART - Relationship to the partner 

PLCHIL - Place where the woman spent most of her childhood 

PLOR - Place where the woman was born 

USEPRC -Was it useful to follow antenatal care 

Y ARR WO - Year the woman arrived in Belgium 

AGE -Age of the woman 

F SPR -Social pressure of hostile environment and ghetto 

F SES - Socio-economic Status of the woman 
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There are two latent variables in the model, F _SES (Socio-economic Status) and F _SPR 

(Social pressure of hostile environment and ghetto). The exogenous construct, F _ SES, is 

measured by four manifest variables; namely, CURACTMA, CURACTWO, 

EDLEVWO and KNOWWEL. The other exogenous construct, F _SPR, is measured by 

seven manifest variables; namely, LIVIST, PART, CURACTMA, CURACTWO, 

PLOR, PLCHIL and YARRWO. There is one intermediate variable in the model, 

USEPRC (acceptance of the ANC consultation), which has four predictors (COMBOS, 

HAPPRE, KNOWWEL & F _SPR). The other endogenous variable is COMPLY 

(measuring the utilization of the ANC consultation by the migrant women). COMPLY 

has eight predictors, which comprises of six variables (EDLEVWO, AGE, NUBO, 

NUGI, NUMISC and NULOS), one latent variable (F SES) and the intermediate 

variable (USEPRC). 

Maximum likelihood estimation is used to arrive at the parameter estimates and the 

covariance matrix is analysed. The observed covariance matrix is given in Table 2 in 

Appendix C and the normalized residual matrix is in Table 3 in Appendix C. The values 

of the residual matrix should be relatively small and evenly spread among the variables 

if the model is a reasonable one for the data. Large residuals associated with specific 

variables are an indication of poor fit. The residual matrix gives an early indication of 

poor fit as there are numerous residuals that are large. These large residuals would 

impact on the chi-square statistic. The average normalized residual (0.7373) and the 

average normalized off-diagonal residual (0.8223) are both high, indicating 

unacceptable fit. This is supported by the number of large residuals given in the 
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distribution of asymptotically standardized residuals. Ideally the distribution of 

asymptotically standardized residuals should be symmetric and centred around zero. 

Distribution of Asymptotically Standardized Residuals 
(Each * represents 2 residuals) 

-3.ooooo- -2.75000 2 1.17%1 * 
-2.75000- -2.50000 2 1.17%1* 
-2.soooo- -2.2sooo 2 1.17% 1 * 
-2.2sooo - -2.ooooo 2 1.17% 1 * 
-2.ooooo- -L75ooo 4 2.34%1 ** 
-1.7 sooo - -Lsoooo 2 1.17% 1 * 
-1.soooo- -1.2sooo s 2.92%1 ** 
-1.2sooo- -1.ooooo 7 4.09% 1 *** 
-1.ooooo- -o.7sooo 12 7.02%1 ****** 
-o.7sooo- -o.soooo 6 3.51%1 *** 
-o.soooo- -o.2sooo 11 6.43% 1 ***** 
-o.2sooo- o 15 8.77% 1 ******* 
o - o.2sooo 59 34.50% 1 ***************************** 
o.2sooo- o.soooo 11 6.43% 1 ***** 
o.soooo- 0.7sooo 2 1.17%1 * 
o.7sooo- 1.ooooo s 2.92% 1 ** 
1.ooooo- 1.2sooo 6 3.51%1 *** 
1.2sooo- uoooo 3 1.75% 1 * 
1.soooo- L75ooo 1 0.58% 1 
L75ooo- 2.ooooo 7 4.09% 1 *** 

Before evaluating the structural and measurement models, the overall fit of the model 

needs to be assessed. The goodness-of-fit measures discussed in Chapter 2 will now be 

interpreted. 

Goodness-of-fit Measures 

Goodness of Fit Index (GFI) .......... . 

GFI Adjusted for Degrees of Freedom (AGFI) ... . 

Root Mean Square Residual (RMSR) ........ . 

0.7671 

0.6277 

1.1027 

Chi-square= 248.0253 df= 107 

Null Model Chi-square: df= 153 

Prob>chi**2 = 0.0001 

584.5382 

RMSEA Estimate ...... 0.1353 90%C.I.[O.ll33, 0.1574] 

Bentler's Comparative Fit Index . . . . . . . . . 0.6732 

Akaike's Information Criterion ......... . 

Schwarz's Bayesian Criterion .......... . 

Bentler & Bonett's (1980) NFI ......... . 
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ABSOLUTE FIT MEASURES: All three of the absolute fit measures are provided in 

the output. The chi-square value of 248.03 with 107 degrees of freedom is statistically 

significant (p < 0.001). This model clearly cannot be accepted based on the chi-square 

statistic. However, the chi-square test becomes more sensitive as the number of 

indicators rises and we therefore need to look at other measures. The GFI value of 

0.7671 is lower than the recommended 0.90 and the RMSR value of 1.1027 and the 

RMSEA estimate (0.1353) are too high. The RMSR value must be evaluated in light of 

the large number of high residuals. Thus based solely on the above three measures, the 

model has to be rejected. 

INCREMENTAL FIT MEASURES: The model is now evaluated relative to the null 

model. The null model has a chi-square value of 584.54 with 153 degrees of freedom. 

Although a substantial reduction in the x2 is gained, the NFI (0.5757) provides little to 

support this model. 

PARSIMONIOUS FIT INDICES: The AGFI (0.6277), AIC (34.03) and Schwarz's 

Bayesian Criterion (-211.05), all provide very little in support ofthis model. 

All three types of overall fit indices reveal that the model has to be rejected. 

Measurement Model Fit 

Although there is little to support this model, valuable information can be gained as to 

which factors are important in understanding the utilization of antenatal care (ANC) 

consultation by migrant women in Belgium. The results are also very important when 

re-specifying the model. We can therefore proceed with the interpretation of the results. 

The first stage is to examine the indicator loadings, which are given below. 
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Construct Loadings (t value in parenthesis) 

F SPR F SES 

INDICATORS 

LIVIST 0.4568 

(4.3526) 

PART 0.0845 

(0.7190) 

PLOR 0.0559 

(0.4746) 

PLCHIL -0.6892 

(-8.9255) 

YARRWO 0.9995 

(82.5519) 

CURACTMA -0.0885 -0.1165 

(-0.4235) (-0.5342) 

CURACTWO -0.2850 0.4682 

(-1.3720) (2.1931) 

EDLEVWO 0.3487 

(2.880) 

KNOWWEL -0.9409 

(-5.5641) 

Covariance Among the Latent Variables 

(t values in parentheses) 

F SPR F_SES 

F SPR 0.4763 -0.4161 

(-4.117) 

F SES -0.4161 0.5933 

(-4.117) 

The construct loadings and the associated t values for F _ SES are relatively large except 

for the variable CURACTMA. For the exogenous construct F _SPR, most of the 

variables load lowly, except for the variables LIVIST, PLCHIL and YARRWO. 
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Normally the variables that load lowly will be deleted and the model will be re­

estimated. This we must keep in mind when re-specifying the model. 

The reliability of the two constructs, F _SPR and F _SES are now calculated together 

with the variance extracted for each construct. 

Sum of I Standardized Loadings I : 

F SPR = 2.6594 

F SES = 1.8743 

Sum of Measurement Error: 

RELIABILITY: 

F SPR = 5.2180 

F SES = 2.7603 

F _SPR = (2.6594)2 I {(2.6594)2 + 5.2180} = 0.5754 

F _SES = (1.8743)2 I {(1.8743)2 + 2.7603} = 0.5600 

Sum of Squared Standardized Loadings: 

F SPR = 1.7820 

F SES = 1.2397 

VARIANCE EXTRACTED: 

F _SPR = (1.7820) I {1.7820+ 5.2180} = 0.2546 

F _SES = (1.2397) I {1.2397+ 2.7603} = 0.3099 

In terms of reliability, both exogenous constructs are well below the suggested level of 

0.70 and are not very reliable. The variance extracted for each exogenous construct is 

102 



also very low and well below the recommended level of 0.50. Thus the two constructs 

are not specified properly in this model. 

Structural Model Fit 

There are two endogenous variables in the structural model, USEPRC and COMPLY. 

USEPRC is also an exogenous variable and is therefore called an intermediate variable. 

The endogenous variable equations are now given below. It is evident that there are a 

number of significant predictors of both USEPRC and COMPLY. 

Endogenous Variable Equations 

USEPRC =- 0.1982*KNOWWEL - 0.0954*COMHOS + 0.1499*HAPPRE + 0.4170*F SPR 

Std Err 0.1024 BETA3 

tValue -1.9365 

+ 0.8649 ElO 

0.0389 BETA2 

-2.4529 

COMPLY = 0.6629*EDLEVWO - 0.3677*USEPRC 

Std Err 0.3363 BETAl 0.5673 BETAll 

t Value 1.9710 -0.6481 

0.0439 BETA16 

3.4157 

0.1375 BETA4 

3.0335 

+ 0.2788* AGE - 0.7645*NUBO 

0.0916 BETAS 0.4517 BETA6 

-3.0428 -1.6926 

- 1.5395*NUGI + 0.6576*NUMISC + 1.4618*NULOS + 1.6823*F SES 

Std Err 0.3497 BETA7 0.5116 BETAS 0.5270 BETA9 0.2847 BETAlO 

t Value -4.4026 1.2853 2.7737 5.9086 

+ 0.7342 Ell 
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Squared Multiple Correlations 

Variable 

USEPRC 

2 COMPLY 

Error Total 

Variance Variance 

0.296202 0.395939 

8.305703 15.406419 

Estimates of Error Terms 

Variable Parameter 

ElO 

Ell 

THETA10 

THETA11 

Standard 

Estimate 

0.296202 

8.305703 

Error 

0.049381 

1.422585 

R-squared 

0.251901 

0.460893 

t Value 

5.998 

5.838 

Only 25.19% of the variation ofUSEPRC is accounted for by KNOWWEL, COMHOS, 

HAPPRE and the latent variable F _SPR. For this endogenous variable COMHOS, 

HAPPRE and F _ SPR are all statistically significant while KNOWWEL is only 

marginally not significant at the 5% level. Acceptance of ANC consultation is expected 

to increase by 0.1499 units for those women who were happy when they found out 

about their pregnancy and is not expected to increase for those women who were not 

happy. Social pressure of the hostile environment and ghettos are expected to increase 

the acceptance of ANC consultation. It is expected to increase by 0.4170 units for every 

unit increase in F_SPR. On average the acceptance of ANC consultation is 0.1982 

points lower for women who knew a western language well than for those women who 

did not have a good knowledge of a western language. The acceptance of ANC 

consultation is also expected to decrease by 0.0954 units for those women who have a 
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means of communicating with the doctor as opposed to those who have no means of 

communication. 

For COMPLY, AGE, NUGI, NULOS AND F _SES are all significant while USEPRC, 

EDLEVWO and NUMISC are not significant. Women who have lost children are also 

more prone to have higher compliance scores than women who have not lost children. 

In fact the compliance score is expected to increase by 1.4618 units for each child lost. 

The compliance score decreased by 0. 7645 units for every boy the woman had given 

birth to and decreased by 1.5395 units for every girl the woman had given birth to. 

Women who have a higher socio-economic status have higher compliance scores than 

those who are of a lower socio-economic status. In fact the compliance score increases 

by 1.6823 units for every unit ofF _SES. The compliance score increases by 0.2788 per 

unit increase in age for each woman. Although NUMISC is not significant, every 

miscarriage is expected to increase the compliance score by 0.6576 units. On average 

the compliance score increases by 0.6629 units for every unit increase in the educational 

level of the women. The acceptance of ANC consultation decreases the compliance 

score and is not significant. 

The R2 for this relationship is 0.461, indicating that 46.1% of the total variation is 

accounted for by the variables listed above. The estimates of the error terms, E 10 and 

E 11, for both endogenous equations are statistically significant. This together with the 

R2 tells us that a fair amount of variation is due to variables not included in the model 

and to measurement error. 
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In order to improve the model, the non-significant exogenous variables, non-significant 

exogenous constructs and the indicators which load lowly are dropped from the model. 

These include USEPRC, NUBO, NUMISC, F _ SPR and CURACTMA. Hence the 

revised model now has COMPLY as the only endogenous variables, F _ SES as the only 

exogenous construct, three indicators which are CURACTWO, EDLEVWO and 

KNOWWEL. There are also four exogenous variables, namely, AGE, NUGI, NULOS 

and EDLEVWO. 

The path diagram depicting the relationship of all the variables given above with 

COMPLY is now given in Figure 4.5.1. 

e
4 
--- Ftilization of A NC Consultation by Migrant Women 

COMPLY 

AGE I I NUGI NULOS 

,EDLTO' ,CURArO''KNOrEL' 
e2 et eJ 

Figure 4.5.1: Path Diagram for the Revised ANC Model. 
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Maximum likelihood estimation is used to arrive at the parameter estimates and the 

covariance matrix is analysed. The observed covariance matrix is given in Table 4.5.1 

below and the normalized residual matrix is in Table 4.5.2 below. 

Table 4.5.1: Covariance Matrix 

EDLEVWO CURACTWO KNOWWEL COMPLY NUGI NUL OS AGE 

EDLEVWO 1.1964 0.2755 -0.3940 1.5245 -0.3099 -0.1093 -0.9183 

CURACTWO 0.2755 0.5638 -0.4829 0.9791 -0.0827 -0.0453 -0.1209 

KNOWWEL -0.3940 -0.4829 0.8185 -1.4742 0.0545 0.0107 -0.4028 

COMPLY 1.5245 0.9791 -1.4742 16.2209 -1.3030 0.7596 4.4209 

NUGI -0.3099 -0.0827 0.0545 -1.3030 1.2962 0.1145 2.2113 

NUL OS -0.1093 -0.0453 0.0107 0.7596 0.1145 0.4970 1.2738 

AGE -0.9183 -0.1209 -0.4028 4.4209 2.2113 1.2738 23.4209 

Determinant= 20.08 (Ln = 3.000) 

Table 4.5.2: Normalized Residual Matrix 

EDLEVWO CURACTWO KNOWWEL COMPLY NUGI NUL OS AGE 

EDLEVWO 0.0000 -0.0541 -0.0214 0.0220 -2.0818 -1.1855 -1.4514 

CURACTWO -0.0541 0.0000 0.0000 0.0724 -0.8094 -0.7156 -0.2784 

KNOWWEL -0.0214 0.0000 0.0000 -0.3249 0.4429 0.1399 -0.7697 

COMPLY 0.0220 0.0724 -0.3249 0.1217 -0.6352 -0.3505 -0.1909 

NUGI -2.0818 -0.8094 0.4429 -0.6352 0.0000 0.0000 0.0000 

NUL OS -1.1855 -0.7156 0.1399 -0.3505 0.0000 0.0000 0.0000 

AGE -1.4514 -0.2784 -0.7697 -0.1909 0.0000 0.0000 0.0000 

Average Normalized Residual= 0.3453 

Average Off-diagonal Normalized Residual= 0.4546 

The normalized residuals are all low except for that between EDLEVWO and NUGI. 

The average normalized residual is 0.3453 and the average normalized off-diagonal 
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residual is 0.4546. These are relatively low. This together with the distribution of 

normalized residuals give an indication of good fit. 

Distribution of Normalized Residuals 
(Each * represents 1 residuals) 

-2.25000- -2.00000 1 3.57% I* 

-2.00000- -1.75000 0 0.00%1 

-1.75000- -1.50000 0 0.00%1 

-1.50000- -1.25000 1 3.57% I* 

-1.25000- -1.00000 1 3.57% I* 

-1.00000- -0.75000 2 7.14% I** 

-0.75000- -0.50000 2 7.14% I** 

-0.50000- -0.25000 3 10.71%1 *** 

-0.25000- o 3 10.71% I*** 

o - o.25ooo 14 5o.oo% 1 ************** 

o.25ooo- o.5oooo 1 3.57% 1 * 

Now the goodness-of-fit measures need to be assessed so that the overall fit of the 

model can be checked. 

Goodness-of-fit Measures 

Goodness of Fit Index (GFI) .......... . 

GFI Adjusted for Degrees of Freedom (AGFI) ... . 

Root Mean Square Residual (RMSR) ........ . 

0.9656 

0.8930 

0.2402 

Chi-square= 9.1993 df= 9 Prob>chi**2 = 0.4191 

Null Model Chi-square: df = 21 

RMSEA Estimate ...... 0.0178 90%C.I.[., 0.1364] 

Bentler's Comparative Fit Index ........ . 

Akaike's Information Criterion ......... . 

Schwarz's Bayesian Criterion .......... . 

Bentler & Bonett's (1980) NFI ......... . 

133.4405 

0.9982 

-8.8007 

-29.1648 

0.9311 

ABSOLUTE FIT MEASURES: The chi-square value of 9.199 with 9 degrees of 

freedom is not statistically significant (p = 0.4191). The GFI value of 0.9656 is well 
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above the recommended value of 0.90 and the RMSR value of 0.2402 and the RMSEA 

estimate of 0.0178 are low enough to be regarded as acceptable. 

INCREMENTAL FIT MEASURES: The model is now evaluated relative to the null 

model. The null model has a chi-square value of 133.4405 with 21 degrees of freedom 

and a substantial reduction in the X,2 is gained by there-specified ANC model. The NFI 

(0.9311) is also above the recommended threshold of 0.90. 

PARSIMONIOUS FIT INDICES: The AGFI (0.8930), AIC (-8.8007) and Schwarz's 

Bayesian Criterion ( -29.1648), all indicate a parsimonious model. 

All three types of overall fit indices are favourable and indicate a model which cannot 

be rejected. 

Measurement Model Fit 

Now that acceptable model fit has be achieved, the measurement model can be 

interpreted. There is just one latent variable and three manifest variables which make up 

this model. The indicator loadings together with their associated t-values are given 

below. 

Construct Loadings (t value in parenthesis) 

INDICATORS 

CURACTWO 

EDLEVWO 

KNOWWEL 

F SES 

0.7844 

(4.4918) 

0.4363 

(3.243) 

-0.9062 

(-4.3124) 
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The construct loadings and the associated t values for F _ SES are relatively large. All the 

t-values are significant at the 5% level. The reliability ofF _SES now needs to be 

calculated together with the variance extracted for F _SES. 

Sum of I Standardized Loadings I : 

F SES = 2.1269 

Sum of Measurement Error: 

F SES = 1.3732 

RELIABILITY: 

F _SES = (2.1269Y I {(2.1269)2 + 1.3732} = 0.7671 

Sum of Squared Standardized Loadings: 

F SES = 1.6268 

VARIANCE EXTRACTED: 

F _ SES = (1.6268) I { 1.6268 + 1.3732} = 0.5423 

In terms of reliability, the exogenous construct is above the suggested level of 0.70 and 

is therefore reliable. The variance extracted for the exogenous construct is also above 

the recommended level of0.50. Thus the construct is specified properly in this model. 

Structural Model Fit 

This model comprises of one endogenous variable, COMPLY, four exogenous 

variables, EDLEVWO, NUGI, NULOS and AGE, and one exogenous construct, F _SES. 

The endogenous variable equation is now given below. 

110 



Endogenous Variable Equations 

COMPLY= 0.7652*EDLEVWO -1.2902*NUGI + 1.4271*NULOS +0.2523*AGE 

Std Err 0.3805 BETA7 0.3478 BETA3 0.5546 BETAS 0.0873 BETA1 

t Value 2.0108 -3.7093 2.5732 2.8904 

+ 2.9757*F SES + 0.7524 E4 

Std Err 0.4860 BETA6 

t Value 6.1232 

Squared Multiple Correlations 

Error Total 

Variable Variance Variance 

1 COMPLY 8.997630 15.893909 

Estimates of Error Terms 

Variable Parameter 

Standard 

Estimate Error 

R-squared 

0.433894 

t Value 

E4 THETA4 8.997630 1.569905 5.731 

All the predictors of COMPLY are significant and these predictors account for 43.39% 

of the variation of COMPLY. On average the compliance score increases by 0.7652 

units for every unit increase in the educational level of the woman. The compliance 

score is expected to decrease by 1.2902 units for every girl the woman had given birth 

to. Women who have lost children can be expected to have a higher compliance score 

than women who have not lost children. In fact the compliance score is expected to 

increase by 1.4271 units for each child lost. The compliance score increases by 0.2523 
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units per unit increase in age for each woman. Women who have a higher socio­

economic status have higher compliance scores than those who are of a lower socio­

economic status. In fact the compliance score increases by 2.9757 units for every unit of 

increase in F SES. 

The R2 for this relationship is 0.434, indicating that 43.4% of the total variation is 

accounted for by the variables listed above. The estimates of the error term, E4, for the 

endogenous equation is statistically significant. This together with the R2 tells us that a 

fair amount of variation is due to variables not included in the model and by 

measurement error. 

Although, the results obtained point to a very good model, these results must be viewed 

with suspicion. This model fits the available data well but may perform badly with a 

different dataset. Cross validation or replication for an independent sample is an 

important step in building confidence in the model (Bollen, 1989, p. 305). The cross 

validation method has been advocated by Cudeck and Browne (1983) to assess overall 

model fit. It is one of many methods used to assess overall model fit. Cross validation 

begins by randomly splitting a sample in half and forming two sample covariance 

matrices S1 and S2• Then a model is fitted to S1 and results in an estimated covariance 

matrix. The cross validation step does not involve estimation of a new model but, 

instead, calculates a fitting function, F, when S2, and the estimated covariance matrix are 

substituted for S and~. respectively, in the fitting function. This procedure is repeated 

for several models. The model with the smallest value of F in the validation half of the 

sample has the best fit. 
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The method of cross validation was used to test the fit of the Revised Model as 

compared to the Initial Model. To do this the original data set was randomly split into 

samples. One comprising of a third of the observations and the other containing two 

thirds of the observations. The sample with two thirds of the observations from the 

original data set shall be called the analysis sample and the smaller sample will be 

I 
called the validation sample. Both the models were analysed using the analysis sample 

and the validation sample and the goodness of fit index, together with the value of the 

Maximum Likelihood fitting function are presented below in Table 4.5.3. 

Table 4.5.3: Goodness-of-fit Indices 

Initial Model Revised Model 

Analysis Validation Analysis Validation 
Sample Sample Sample Sample 

GFI 0.7125 0.611 0.9182 0.9377 

AGFI 0.5405 0.3783 0.7454 0.8062 

RMSR 1.3026 1.0019 0.3326 0.5529 

RMSEA 0.1546 0.2385 0.1289 0 

Chi-square 0.0001 0.0001 0.0664 0.8002 

CFI 0.6616 0.4152 0.9196 1 

NFI 0.5529 0.3693 0.8521 0.8744 

AIC 13.1573 26.8775 -1.9763 -12.6225 

SBC -187.06 -94.6204 -27.8172 -31.8419 

R/\2 (Comply) 0.4664 0.6459 0.4491 0.422 

I Fitting 
:Function 

9.9344 -0.7164 I 
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The results indicate that the revised model performs far better than the initial model. 

The value of the fitting function for the revised model is much lower than that of the 

initial model. This value is very close to zero indicating a well specified model. For both 

the analysis sample and the validation sample, the results are very similar and indicate a 

model which fits the data well. 

Thus the cross validation together with the goodness-of-fit indices for the revised model 

on page 108 indicates an acceptable model. 
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4.6 CONCLUSIONS 

The initial ANC model (MODEL_1) was incorrectly specified, hence leading to a 

complex model which did not fit well. The revised ANC model (MODEL_2), although 

simple, fits very well. 

Table 4.6.1: Comparison of Goodness-of-fit measures for MODEL_1 and MODEL_ 2. 

MODEL 1 MODEL 2 

GFI 0.7671 0.956 

AGFI 0.6277 0.8930 

RMSR 1.1027 0.2402 

RMSEA 0.1353 0.0178 

x2 248.0253 (df= 107) 9.9199 (df= 9) 

CFI 0.6732 0.9982 

NFI 0.5757 0.9311 

AIC 34.0253 -8.8007 

SBC -211.0539 -29.1648 

R2 (COMPLY) 0.4609 0.4339 

A comparison of the goodness-of-fit measures for MODEL 1 and MODEL 2, reveals a - -

significant improvement on the revised ANC model from the initial ANC model. Every 

goodness-of-fit measure in MODEL_2 points to an acceptable model with favourable fit 

while, all the measures in MODEL_1 indicate a model which does not fit well and can 

be improved. Although the coefficient of determination (R2
) is marginally higher for 

MODEL_l than MODEL_2, it is expected to be. This is largely due to a decrease in the 

number of predictors of COMPLY in MODEL 2 than in MODEL 1. - -
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Table 4.6.2: Comparison of the Measurement model for MODEL 1 and MODEL 2 

Reliability 

F SES 

F SPR 

Variance Extracted 

F SES 

F SPR 

MODEL 1 MODEL 2 

0.5600 

0.2062 

0.3100 

0.2546 

- -

0.7671 

0.5423 

Table 4.6.2 gives us a good indication of the improvement on the measurement model 

from MODEL_l to MODEL_2. There is a significant improvement on the reliability 

and the variance extracted for F SES in MODEL 2 from MODEL 1. - - -

We now compare the parameter estimates from MODEL_1, MODEL_2 and those given 

in Levin et al. (1989). These are given together with the standard errors for each of the 

parameters in Table 4.6.3. 

Table 4.6.3: Parameter estimates from the three models. 

MODEL 1 MODEL 2 LEVIN MODEL 

AGE 0.2788 (0.0916) 0.2523 (0.0873) 0.26 (0.11) 

EDLEVWO 0.6629 (0.3363) 0.7652 (0.3805) 

F SES 1.6823 (0.2847) 2.9757 (0.4860) 

KNOWWEL 2.45 (1.63) 

NUBO -07645 (0.4517) -0.94 (0.61) 

NUGI -1.5395 (0.3497 -1.2902 (0.34 78) -1.74 (0.47) 

NUL OS 1.4618 (0.5270) 1.4271 (0.5546) 

NUMISC 0.6576 (0.5116) 0.5 

USEPRC -0.3677 (0.5673) 
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The parameter estimates of those variables common in MODEL_1 and MODEL_2 

(AGE, EDLEVWO, F _SES, NULOS and NUGI) are very similar. The only large 

difference is in F _SES, with MODEL_1 much lower than MODEL_2. The estimates of 

the LEVIN MODEL do not vary from those in MODEL_1 or MODEL_2. Levin et al. 

(1989) have identified multicollinearity between KNOWWEL and EDLEVWO and 

therefore only included KNOWWEL in the LEVIN MODEL. This variable is not 

significant. However, the SEM analysis in MODEL_2 have identified EDLEVWO as a 

significant parameter. 

Although MODEL_2 has shown acceptable fit, further improvement can be achieved in 

future studies. Greater thought must be given to the variables which explain Socio­

economic status. This is evident from the variance extracted for this latent variable. In 

the structural model, a few important variables are absent and have not been measured 

in this study. Adding more variables that would impact on the compliance would further 

improve our understanding of the utilization of ANC consultation by migrant women in 

Belgium. 

There are a large number of cases with missing data. In fact of the 115 women 

interviewed only 69 had complete information on all the variables analysed. This small 

sample size impacts on the results and hence the poor fit of the more complex SEM 

model (MODEL_l). If a more complex model is to be investigated, a larger sample size 

is necessary. For this example it is more advantageous to use SEM than multiple 

regression. With SEM one has the option of using pairwise deletion. In pairwise 

deletion a sample covariance matrix is formed, by using all cases with non-missing 
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values to compute each covariance or variance (Bollen, 1989, pp. 370-371). Multiple 

regression uses only observations with no missing information. The use of pairwise 

deletion in SEM represents a significant advantage for SEM over traditional models. 

Pairwise deletion does have drawbacks, however. First, the sample covariance matrix 

may not be positive-definite (Browne, 1982, p. 88). Second, the choice of the sample 

size in a covariance structure analysis of the sample covariance matrix plays a role in the 

chi-square tests of the model fit and the estimated asymptotic standard errors of the 

parameter estimates. Questions have been raised about the appropriateness of using the 

uncorrected standard errors and chi-square tests that result from analysing the sample 

covariance matrix (Bollen, 1989, p. 39). This is not a trivial problem and it may be safer 

to use listwise deletion of missing cases. 

Structural equation modelling is particularly useful in this example because it provides a 

mechanism of analyzing the measurement model and the structural model 

simultaneously. Not being able to analyse the data simultaneously was highlighted as 

one of the shortcomings of the analysis in Levin et al. (1989). The other advantage of 

using SEM for this example is due to the inclusion of latent variables in the analysis. 

Socio-economic status could not be directly measured and therefore had to be 

approximated by other measured variables. MODEL 1, which included latent variables 

and interdependent relationships, is very complex, although not impossible, to analyse 

using multiple regression. Structural equation modelling could be easily applied to this 

problem as the model was developed based on theory and past research in the area of 

antenatal care and on migrant women. 
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The conceptual model, to which MODEL_l is an approximation, was developed by a 

multidisciplinary team and it was hoped that by integrating several disciplines, the 

model proposed could be used to obtain a holistic view of the antenatal care of migrant 

women in Belgium. However, on the basis of the results, MODEL_l fails to achieve 

this objective but valuable information is gained as to the determinants of the utilisation 

of antenatal care of migrant women. Even MODEL_2 cannot be used to obtain a holistic 

view of the antenatal care of migrant women in Belgium. Due to the fact that this is the 

first time work of this nature has been carried out so extensively, MODEL_ I can be 

used as a basis for further work in understanding the behavioural patterns of migrant 

women. It can also be used in the preparation of questionnaires in future studies. 

Future studies should impose more structure on the survey instrument because this study 

lacked structure in the questionnaire. Levin et al. (1989) recognised that there was a 

degree of arbitrariness in the definition of the compliance score. The research team must 

give more thought on how best to measure the utilization of ANC amongst migrant 

women or a better method of quantifying compliance. The main problem with this 

particular study was that some of the variables identified in the conceptual model 

weren't measured in the questionnaire. Some latent variables can be avoided by directly 

measuring that variable. 

Notwithstanding the problems experienced in this study, the structural equation model 

(MODEL_ 2) provided very good results which were easily interpreted. 
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5.1 INTRODUCTION 

CHAPTERS 

CONCLUSIONS 

This Chapter gives a general discussion on structural equation modelling (SEM). It 

includes advantages and disadvantages of the methodology, a discussion of the 

criticisms of SEM, and recommendations on the use of SEM. Also included is a 

discussion on the technical problems of SEM and a theoretical discussion on the 

methodology. 

5.2 TECHNICAL DISCUSSION 

Throughout this dissertation, the essential modelling concepts, terminologies and 

techniques of the structural equation modelling approached have been discussed. 

However, in applying this methodology to new models and data, researchers are likely 

to encounter a number of additional issues and problems that have not yet been 

discussed. 

Specification error can be viewed simply as "using the wrong model". Researchers often 

propose wrong models, so that specification errors are common, though not often and 

easily recognised. 

We can seldom be sure that we have a correct model. Although we can sometimes be 

nearly certain, on the basis of empirical evidence, that we have been using the wrong 

model. What is true is that we can never have a perfect model. Hence we may never be 
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able to compare our model to a perfect model. Some precautions can however be taken 

to ensure that we do not totally misspecify a model, like giving careful thought to 

developing a model based on theory and not omitting important variables from the 

model. 

The initial confirmatory factor analysis model in §3.2, although it was not rejected, 

tended to show elements of misspecification. This was evident in the low factor 

loadings for some of the variables. A few "heavy" user teenagers with peculiar patterns 

of eo-use did impact, to some degree, on the model leading to these signs of 

specification errors. In Chapter 4, the initial ANC model was rejected, largely due to 

specification errors in the measurement model, where the reliability of the latent 

variables were well below 0. 7 and the variance extracted was below 50% for both the 

latent variables. Key predictors were also omitted from the structural model. 

Correctly specifying a model is not the only criterion for not rejecting a model. Other 

important criteria such as design of survey, sample size and measurement error are also 

important. 

In analyzing the data a few problems were encountered with the CALIS procedure. 

Constructing a path diagram using SAS is impossible and Microsoft PowerPoint had to 

be used. Although EQS does have the facility to construct path diagrams, from where 

the structural and measurement model parameters are estimated. Other SEM packages 

such as AMOS, RAMONA, and LISREL also have this facility. SAS, however does not 

have this graphical interface and hence the path diagram had to be constructed using 
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other software and the equations has to be specified in the SAS program so that the 

parameters in the measurement and structural models can be estimated. It is therefore 

my recommendation that future work on the CALIS procedure should incorporate 

graphical interfaces. 

In assessing the measurement model it is crucial to have an indication of the reliability 

of the latent variables and also the variance extracted by the latent variables. Obtaining 

these estimates is not very difficult by using the formulae given in Chapter 2, however 

the SAS output using the CALIS procedure does not estimate these indices. These have 

to be calculated manually and can become problematic when the number of constructs 

and manifest variables are large. 

Assessing the goodness-of-fit of the structural equation models is not as straightforward 

as with other multivariate dependence techniques like regression, MANOV A and 

discriminant analysis. Presently there is only one goodness-of-fit measure with known 

distributional properties, namely the chi-square statistic, and there is no single statistical 

test which best describes the "strength" of the model's prediction, instead a number of 

measures are used. All the other goodness-of-fit measures have a recommended 

threshold level of 0.90 and greater. However it is frequently found that models with 

measures in excess of 0.90 are rejected. With these subjective levels there is uncertainty 

as to what is acceptable fit and unacceptable fit and it is left to the researcher to 

determine whether fit is acceptable rather than being based on some statistical test. 

However, the choice of the cutoffs for fit indices can be influenced by the standards set 

by prior work. If other analyses of the same or similar variables with the same baseline 
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have cutoffs of 0.90 or higher, then a 0.85 or 0.90 cutoff may be regarded as 

unacceptable. Alternatively, if models in other research have fit indices typically below 

0.80, then values of 0.85 or higher can be regarded as an important improvement over 

the existing work and a threshold of 0.80 may be regarded as acceptable. 

These goodness-of-fit measures have also been criticised. The chi-square measure is too 

sensitive to both small and large sample sizes and to departures from multivariate 

normality of the observed variables. This measure of fit has serious disadvantages, 

particularly in the social and behavioural sciences, where models are perhaps best 

regarded as approximations to reality rather than as exact statements of truth. As a 

consequence any model is likely to be rejected if the sample size is sufficiently large, 

simply because of the difference between corresponding elements of the observed and 

predicted covariance matrices. The RMSEA is also unfavourable for use when sample 

sizes are small and the comparative fit index (CFI) would be preferable when the sample 

size is small. However the CFI is suitable in more exploratory contexts, while the 

RMSEA is more suited to confirmatory situations. The RMSEA is also good at 

detecting model misspecifications. With this in mind care must be taken when 

interpreting the goodness-of-fit measures as there are no strict rules to adhere to. 

5.3 THEORETICAL DISCUSSION 

The purpose of certain statistical techniques is to assist in establishing the plausibility of 

a theoretical model and to estimate the effects of the various explanatory variables 

(exogenous variables) on the dependent variable (endogenous variable). Various forms 

of regression are used for this purpose. Regression analysis and structural equation 
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modelling (SEM) are two such techniques. The important difference between these 

techniques is the shift towards causal modelling in SEM. 

In considering possible statistical models, it may be useful to distinguish between 

exploratory and confirmatory stages in investigating relationships. The exploratory 

approach is particularly useful in the absence of a relevant theoretical model. What is 

needed at this stage are statistical procedures that allow us to see the relative usefulness 

of different predictors or sets of predictors as well as what confounding is occurring 

among the independent variables, and what differences there are among different 

possible models for the data. Confounding occurs when a factor is causally related to 

both the cause and the effect. At the exploratory stage, the data analysis should suggest 

ways in which the theoretical model can be modified, how the measures might be 

combined or separated, or which variables can be deleted or ignored. As more 

convincing models are specified, applying structural equation modelling as a technique 

of analysis would be more appropriate. 

The initial model investigating the utilization of antenatal care (ANC) consultation by 

migrant women in Belgium is a much more complex model than the initial HA TCO 

example of Example 3.1. Regression analysis can be applied to the ANC model but 

does not have the same effect as SEM does. This model has two endogenous variables, 

two latent variables and one manifest variable. The benefit of SEM comes from 

incorporating these latent variables and the manifest variable in the model and therefore 

being able to analyse all the relationships simultaneously. When simple research 

questions like Example 3.1 are asked i.e. single linear relationships need to be tested, 
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regression will be an appropriate tool but more complex causal models will need a more 

complex procedure. Models which incorporate latent variables can best be analysed 

using SEM. 

It is often the case in research that researchers' knowledge of statistical procedures will 

be a guide to the complexity of the research question. What is also true, is that certain 

disciplines require more complex models than others and therefore applications of SEM 

would be more common in some than in others. Hence the type of technique should 

depend solely on the type of research question at hand and not vice versa. 

Most applications of structural equation models use observational data and most 

statistical analyses of experimental data employ ANOV A or regression techniques. 

However both ANOVA and regression are special cases of structural equation models. 

Both procedures are specialized in that they assume that the explanatory variables are 

measured without error. Costner (1971), Miller (1971) and other authors have over the 

years suggested that analysis of experimental data could benefit from structural 

equations that allow for measurement error, multiple indicators and tests for 

confounding variables. In a recent study, Cole et al. (1993), argued in favour of SEM 

over MANOV A when multiple indicators for the constructs are involved and 

recommended SEM as an alternative approach to the detection of multivariate mean 

differences in between-group designs. They however warn against choosing too casually 

one technique over another and encourage researchers to give careful thought to the 

variables under study before making their choice. 
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Experimental design utilizes a powerful means of control. It minimizes the effects of 

confounding variables through randomization. In observational studies, control through 

randomization is unavailable. These studies use statistical control by entering into the 

model the variables suspected to be causally related to the dependent variable. This can 

at times lead to elaborate models. It is in these elaborate models where SEM is 

beneficial. In experimental studies, the primary objective is often not to solve complex 

models but rather to test simpler effects, where ANOVA and regression would be far 

simpler to employ than SEM. 

Although it is evident that SEM can be applied to experimental data, applications of this 

technique are limited to the psychological and psychiatric environments. While it is true 

that SEM is applicable to some experimental data, the true value of SEM with 

experimental data cannot be gauged until more applications in different environments 

are seen. 

Structural equation modelling is a very familiar tool for most sociologists. This is 

largely due to the nature of the problems they try to solve where many of the concepts 

or constructs they work with are not directly measurable. Concepts like socio-economic 

status, aspiration, motivation, attitudes, intelligence and income are common but these 

concepts are not restricted to sociology. It is not uncommon to find these concepts being 

used in public health research. In South Africa, socio-economic status, educational level 

and income are common constructs used in trying to solve public health issues. These 

would be increasingly useful where diseases of poverty are common. 
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Although there has not been much criticism of the statistical theory which underlies 

structural equation models, people have criticized the application of the technique. 

Criticism has been advanced on three facets, namely the falsifiability of models, the use 

of latent variables and the distributional assumptions. 

The first criticism suggests that structural equation models cannot be disproved since a 

researcher cannot disconfirm a false causal assumption, regardless of the sample size or 

evidence, so long as the variables alledged to be causally related are correlated 

(Ling, 1983). There are numerous tests used to test the overall fit and model fit. This 

allows certain models to be disproved. Furthermore it is common to find two variables 

which are correlated, have no relationship once other variables are controlled. 

Establishing causality is a general problem, not restricted to SEM. Furthermore, SEM, 

although it proposes "causal models" cannot by itself prove causality. The second 

criticism is that structural equation models are not believable because they incorporate 

latent variables and that their constructs are abstract and have no scientific validity. 

There is a tendency for researchers to assign names to factors, and, subsequently, to 

imply that these factors have a reality of its own over and above the manifest variables. 

This tendency continues with the use of the term latent variables since it suggests that 

they are existing variables and that there is simply a problem of how they should be 

measured. However, latent variables will never be anything more than is contained in 

the observed variables and will never be anything beyond what is specified in the 

model. If we were to accept the argument that structural equation models are not 

believable, then we would eliminate much of contemporary science and statistics. The 

third criticism is that estimates of structural equation models have no value if the 
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observed variables do not have a multivariate normal distribution. This is a valid 

criticism, but methods are being developed for handling discrete and other non-normal 

data. 

5.4 OVERALL CONCLUSIONS 

Although there are still some problems with SEM, there are numerous advantages of 

employing this technique when faced with the research problems discussed in this 

dissertation. It can be particularly effective in public health research where relationships 

involving constructs and intermediate variables need to be tested. It is therefore my 

recommendation that SEM be used more for confirmatory type of work and leave the 

exploratory work for other multivariate techniques. Complex models which include 

latent variables and interdependent relationships, like the initial ANC model from 

Chapter 4, can benefit from the analytical tools available in SEM, whilst single 

relationships would be easily analysed using regression. 

There is also the danger that SEM might be used too casually by researchers who are not 

familiar with the technique and therefore careful thought must be given to the choice of 

the technique based on the research question at hand. Consideration must also be given 

to the nature of the variables before choosing one technique over another. 

As public health has broadened from its focus on medical and behavioural problems, the 

questions asked by public health researchers have become more complex, more 

embedded in social, political, economic and environmental factors. It is in these 
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complex research questions that SEM can be particularly beneficial. Public health 

researchers can certainly benefit from using structural equation modelling. 
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APPENDIX A 

DATA SETS 

Table 1: HA TCO data set for example 3.1: 

id xl x2 x3 x4 x5 x6 x7 x8 x9 xlO xll x12 x13 x14 
---·- ..... 4-:T· .. ··o:·6·--6.-9-4-. 7--2-.4--2-.3--5.-2--o-3-2--4-:.2:---1,----o:-----:-1 ---:-1 

2 1.8 3 6.3 6.6 2.5 4 8.4 43 4.3 0 0 1 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

3.4 
2.7 

6 

1.9 
4.6 
1.3 

5.5 
4 

2.4 
3.9 
2.8 
3.7 
4.7 
3.4 
3.2 
4.9 
5.3 
4.7 
3.3 
3.4 

3 

2.4 
5.1 
4.6 
2.4 
5.2 
3.5 
4.1 

3 
2.8 
5.2 
3.4 
2.4 
1.8 
3.6 

4 

0 
2.4 
1.9 
5.9 
4.9 

5 
2 

5.2 

0.9 
3.3 
2.4 
4.2 
1.6 
3.5 
1.6 
2.2 
1.4 
1.5 
1.3 

2 
4.1 
1.8 
1.4 
1.3 
0.9 
0.4 

4 

1.5 
1.4 
2.1 
1.5 
1.3 
2.8 
3.7 
3.2 
3.8 

2 
3.7 

I 

3.3 
4 

0.9 
2.1 

2 
3.4 
0.9 
2.3 
1.3 
2.6 

5.7 6 
7.1 5.9 
9.6 7.8 
7.9 4.8 
9.5 6.6 
6.2 5.1 
9.4 4.7 
6.5 6 

8.8 4.8 
9.1 4.6 
8.1 3.8 
8.6 5.7 
9.9 6.7 
9.7 4.7 
5.7 5.1 
7.7 4.3 
9.7 6.1 
9.9 6.7 
8.6 4 
8.3 2.5 
9.1 7.1 
6.7 4.8 
8.7 4.8 
7.9 5.8 
6.6 4.8 
9.7 6.1 
9.9 3.5 
5.9 5.5 

6 5.3 
8.9 6.9 
9.3 5.9 
6.4 5.7 
7.7 3.4 
7.5 4.5 
5.8 5.8 
9.1 5.4 
6.9 5.4 
6.4 4.5 
7.6 4.6 
9.6 7.8 
9.3 4.5 
8.6 4.7 
6.5 3.7 

4.3 2.7 
1.8 2.3 
3.4 4.6 
2.6 1.9 
3.5 4.5 
2.8 2.2 
3.5 3 
3.7 3.2 

2 2.8 
3 2.5 

2.1 1.4 
2.7 3.7 

3 2.6 
2.7 1.7 
3.6 2.9 
3.4 1.5 
3.3 3.9 

3 2.6 
2.1 1.8 
1.2 1.7 
3.5 3.4 
1.9 2.5 
3.3 2.6 
3.4 2.8 
1.9 2.5 
3.2 3.9 
3.1 1.7 
3.9 3 
3.1 3 
3.3 3.2 
3.7 2.4 
3.5 3.4 
1.7 1.1 
2.5 2.4 
3.7 2.5 
2.4 2.6 
1.1 2.6 
2.1 2.2 
2.6 2.5 
3.4 4.6 
3.6 1.3 
3.1 2.5 
2.4 1.7 

8.2 
7.8 
4.5 
9.7 
7.6 
6.9 
7.6 
8.7 
5.8 
8.3 
6.6 
6.7 
6.8 
4.8 
6.2 
5.9 
6.8 
6.8 
6.3 
5.2 
8.4 
7.2 
3.8 
4.7 
7.2 
6.7 
5.4 
8.4 

8 
8.2 
4.6 
8.4 
6.2 
7.6 
9.3 
7.3 
8.9 
8.8 
7.7 
4.5 
6.2 
3.7 
8.5 

1 48 
32 

0 58 
1 45 
0 46 

44 
0 63 
1 54 
0 32 
0 47 
1 39 
0 38 
0 54 
0 49 
0 38 
0 40 
0 54 
0 55 
0 41 
0 35 
0 55 

36 
0 49 
0 49 

36 
0 54 
0 49 
1 46 
1 43 
0 53 
0 60 

47 
1 35 

39 
1 44 
0 46 

29 
28 

1 40 
0 58 
0 53 
0 48 
1 38 

5 2.5 9.4 4.6 3.7 1.4 6.3 0 54 

I 

5.2 
3.9 
6.8 
4.4 
5.8 
4.3 
5.4 
5.4 
4.3 

5 
4.4 

5 
5.9 
4.7 
4.4 
5.6 
5.9 

6 
4.5 
3.3 
5.2 
3.7 
4.9 
5.9 
3.7 
5.8 
5.4 
5.1 
3.3 

5 
6.1 
3.8 
4.1 
3.6 
4.8 
5.1 
3.9 
3.3 
3.7 
6.7 
5.9 
4.8 
3.2 

6 

0 
0 

0 
1 
0 

1 
0 

1 
0 
1 

1 
1 

0 

0 

1 
1 
0 
0 
1 
1 

0 
0 
0 

0 

0 

0 
0 

1 
0 

1 
1 
0 
1 
0 

0 
1 
0 
0 

1 
0 

0 
0 

0 
0 
0 

0 
0 

1 
0 
0 

1 
0 
0 
1 

1 
1 
0 

1 
0 

1 
1 
0 
0 
0 

1 
0 

1 
1 
1 

1 
0 
1 
0 
0 
1 
0 

0 

0 

0 
1 
0 

0 
0 
0 
0 
0 

0 
1 

0 
0 
0 
0 
0 
0 
1 
1 
1 

1 
1 

0 
0 

0 

2 
1 
3 
2 
1 
2 
3 
2 
1 
2 

1 
3 
3 
2 
2 
3 
3 
2 

1 
3 

2 
3 
1 
3 
3 
2 

3 
3 
1 

1 
2 
3 
1 
1 
1 

3 
3 
2 
1 
3 



47 3.1 1.9 
48 3.4 3.9 
49 5.8 0.2 
50 5.4 2.1 
51 3.7 0.7 
52 2.6 4.8 
53 4.5 4.1 
54 2.8 2.4 
55 3.8 0.8 
56 2.9 2.6 
57 4.9 4.4 
58 5.4 2.5 
59 4.3 1.8 
60 2.3 4.5 
61 3.1 1.9 
62 5.1 1.9 
63 4.1 1.1 

64 3 3.8 
65 1.1 2 
66 3.7 1.4 
67 4.2 2.5 
68 1.6 4.5 
69 5.3 1.7 
70 2.3 3.7 
71 3.6 5.4 
72 5.6 2.2 

73 3.6 2.2 
74 5.2 1.3 

75 3 2 
76 4.2 2.4 
77 3.8 8 
78 3.3 2.6 
79 1.9 
80 4.5 1.6 
81 5.5 1.8 
82 3.4 4.6 

10 4.5 2.6 3.2 3.8 
5.6 5.6 3.6 2.3 9.1 
8.8 4.5 3 2.4 6.7 

8 3 3.8 1.4 5.2 
8.2 6 2.1 2.5 5.2 
8.2 5 3.6 2.5 9 
6.3 5.9 4.3 3.4 8.8 
6.7 4.9 2.5 2.6 9.2 
8.7 2.9 1.6 2.1 5.6 
7.7 7 2.8 3.6 7.7 
7.4 6.9 4.6 4 9.6 
9.6 5.5 4 3 7.7 
7.6 5.4 3.1 2.5 4.4 

8 4.7 3.3 2.2 8.7 
9.9 4.5 2.6 3.1 3.8 
9.2 5.8 3.6 2.3 4.5 
9.3 5.5 2.5 2.7 7.4 
5.5 4.9 3.4 2.6 6 
7.2 4.7 1.6 3.2 10 

9 4.5 2.6 2.3 6.8 
9.2 6.2 3.3 3.9 7.3 
6.4 5.3 3 2.5 7.1 
8.5 3.7 3.5 1.9 4.8 
8.3 5.2 3 2.3 9.1 
5.9 6.2 4.5 2.9 8.4 
8.2 3.1 4 1.6 5.3 
9.9 4.8 2.9 1.9 4.9 
9.1 4.5 3.3 2.7 7.3 
6.6 6.6 2.4 2.7 8.2 
9.4 4.9 3.2 2.7 8.5 
8.3 6.1 2.2 2.6 5.3 
9.7 3.3 2.9 1.5 5.2 
7.1 4.5 1.5 3.1 9.9 
8.7 4.6 3.1 2.1 6.8 
8.7 3.8 3.6 2.1 4.9 
5.5 8.2 4 4.4 6.3 

0 55 
1 43 
0 57 
0 53 
0 41 
1 53 

50 
32 

0 39 
0 47 
1 62 
0 65 
0 46 

50 
0 54 
0 60 
0 47 
0 36 

40 
0 45 
0 59 
1 46 
0 58 

49 
1 50 
0 55 
0 51 
0 60 
1 41 
0 49 
0 42 
0 47 

39 
0 56 
0 59 
0 47 

4.9 
4.7 
4.9 
3.8 

5 
5.2 
5.5 
3.7 
3.7 
4.2 
6.2 

6 
5.6 

5 
4.8 
6.1 
5.3 
4.2 
3.4 
4.9 

6 
4.5 
4.3 
4.8 
5.4 
3.9 
4.9 
5.1 
4.1 
5.2 
5.1 
5.1 
3.3 
5.1 
4.5 
5.6 

83 1.6 2.8 6.1 6.4 2.3 3.8 8.2 1 41 4.1 
84 2.3 3.7 7.6 5 3 2.5 7.4 0 37 4.4 
85 2.6 3 8.5 6 2.8 2.8 6.8 53 5.6 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

2.5 
2.4 
2.1 
2.9 
4.3 

3 

4.8 
3.1 
1.9 

4 

0.6 
6.1 

2 

3.1 
2.5 

3.1 
2.9 
3.5 
1.2 
2.5 
2.8 
1.7 
4.2 
2.7 
0.5 
1.6 
0.5 
2.8 
2.2 

1.8 

7 4.2 
8.4 5.9 
7.4 4.8 
7.3 6.1 
9.3 6.3 
7.8 7.1 
7.6 4.2 
5.1 7.8 

5 4.9 
6.7 4.5 
6.4 5 
9.2 4.8 
5.2 5 
6.7 6.8 

9 5 

2.8 2.2 
2.7 2.7 
2.8 2.3 

2 2.5 
3.4 4 

3 3.8 
3.3 1.4 
3.6 4 

2.2 2.5 
2.2 2.1 
0.7 2.1 
3.3 2.8 
2.4 2.7 
2.6 2.9 
2.2 3 

9 
6.7 
7.2 

8 
7.4 
7.9 
5.8 
5.9 
8.2 

5 

8.4 
7.1 
8.4 
8.4 

6 

1 43 
1 51 
0 36 

34 
0 60 
0 49 
0 39 
0 43 
1 36 
0 31 

25 
0 60 
1 38 
1 42 
0 33 

II 

3.7 
5.5 
4.3 

4 

6.1 
4.4 
5.5 
5.2 
3.6 

4 

3.4 
5.2 
3.7 
4.3 
4.4 

0 

1 
1 

0 
0 
0 

1 
0 

0 

1 

1 
1 

1 
0 

1 
0 
1 
0 
0 

1 
1 
0 

1 
0 

0 

1 
0 
0 
0 

0 

1 
1 
1 
0 
1 
0 
1 
0 
0 

0 

0 
0 
0 
1 

0 

0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
1 
0 
1 

0 

0 

0 

0 
0 
0 

0 
0 

1 
1 

1 
0 

0 
1 
1 
0 

0 

1 
0 

1 
1 
1 
0 
1 
0 

0 
1 
0 
0 

1 
1 
0 

0 

0 
0 
0 

1 

1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 

0 
0 

0 
0 

0 

1 
0 
1 
0 

1 
1 
1 
0 
0 
0 

3 
2 

3 
3 
2 

2 
2 
1 

2 
2 
3 
3 
2 
3 
3 
3 
2 
1 
2 
3 
2 
3 
2 
2 
3 
3 
3 
1 
2 
2 
3 
1 
3 
3 
2 
1 
1 
2 

2 

1 
3 
2 
2 
2 
1 
1 

3 
1 
1 



Table 2: Factor analysis data set for section 3.2: (Product Moment Correlation 

Matrix * 1000) 

Drug I 2 3 4 5 6 7 8 9 10 11 12 13 

1 Cigarettes 

2 Beer 447 

3 Wine 422 619 -

4 Liquor 436 604 583 -

5 Cocaine 114 068 053 115 

6 Tranquillizers 203 146 139 258 349 -

7 Drugstore 091 103 110 122 209 221 

8 Heroin 082 063 066 097 321 355 201 -

9 Marijuana 513 445 365 482 186 316 150 154 

10 Hashish 304 318 240 368 303 377 163 219 534 

11 Inhalants 245 203 183 255 272 323 310 288 301 302 

12 Hallucinogenics 101 088 074 139 279 367 232 320 204 368 340 

13 Amphetamines 245 199 184 293 278 545 232 314 394 467 392 511 

III 



Table 3: Data set for Utilization of ANC consultation in Chapter 4. 

1 5 2 1 0 1 3 2 1 1 12 81 10 11 59 0 1 0 0 5 

2 5 4 1 0 1 3 2 3 2 12 69 8 11 60 2 1 0 2 5 

3 5 3 1 0 1 3 5 3 1 21 66 8 11 66 0 1 0 0 1 

4 5 2 2 3 1 3 2 1 1 11 80 4 11 65 1 2 0 1 3 
5 5 4 3 3 2 1 2 1 2 12 82 9 11 64 0 2 0 1 5 
6 5 1 2 4 1 2 3 3 2 12 76 8 13 46 1 1 1 0 5 
7 5 4 1 0 1 1 5 3 2 12 76 6 11 69 0 1 0 0 5 
8 5 2 1 4 1 1 2 1 2 12 70 6 10 62 1 2 0 0 5 
9 5 2 2 3 1 4 2 1 1 12 82 0 10 62 0 2 0 0 5 

10 5 2 2 4 1 1 3 3 2 12 71 5 12 61 1 3 1 0 5 
11 5 1 3 3 1 1 2 1 1 11 76 9 12 59 2 1 1 3 5 
12 4 1 3 3 1 2 4 1 2 12 76 6 13 55 1 5 1 2 5 
13 5 2 1 0 1 3 3 2 1 11 73 8 11 58 1 2 0 0 5 
14 5 1 0 4 1 3 4 1 2 12 73 9 13 51 4 1 0 0 5 
15 5 2 3 4 1 1 4 1 1 11 79 8 8 58 3 1 0 0 5 
16 5 5 1 0 1 4 2 2 1 11 79 9 11 59 1 1 1 0 5 
17 1 1 3 4 1 1 4 1 1 12 72 10 11 49 3 3 2 1 1 
18 5 2 3 4 2 1 2 1 1 11 76 9 11 52 3 1 2 0 5 
19 5 5 3 3 1 1 2 3 2 12 81 2 11 1 1 0 0 5 
20 5 2 2 3 1 4 4 1 2 12 74 5 9 57 2 1 1 1 5 
21 5 2 3 3 1 4 2 1 2 12 78 2 10 59 2 1 0 0 2 

22 5 2 3 3 1 4 2 1 2 12 85 9 12 54 2 1 1 0 3 
23 5 4 2 3 2 2 2 1 1 11 85 3 9 70 0 1 2 0 5 
24 5 4 1 0 1 1 2 2 2 21 66 9 15 60 0 2 0 0 4 

25 4 2 3 3 2 2 3 1 2 12 85 -2 16 67 1 0 0 0 3 
26 5 2 3 3 2 2 3 1 1 11 86 10 14 69 0 1 1 0 5 
27 5 3 3 3 2 3 3 1 2 12 80 -2 16 64 0 2 0 0 5 
28 4 3 1 0 1 3 2 3 2 12 69 7 12 66 3 0 1 0 3 
29 5 3 2 4 1 2 2 3 2 12 71 7 11 62 2 1 0 0 5 
30 5 1 3 0 1 1 3 1 2 12 82 -4 12 67 2 2 0 0 1 
31 5 2 3 0 2 1 3 1 1 11 86 1 12 70 0 1 0 0 5 
32 5 1 3 0 2 1 3 1 2 12 85 -3 17 68 1 0 0 0 3 

33 2 1 3 4 1 1 3 1 2 12 76 -3 12 61 1 5 2 0 1 
34 5 4 2 3 1 3 3 1 2 12 80 5 11 63 0 2 0 0 1 
35 5 2 1 0 1 3 3 2 2 12 78 8 16 61 3 1 0 0 3 
36 5 3 3 3 1 2 0 1 1 12 79 8 13 61 2 1 0 0 4 
37 5 1 3 4 2 1 2 1 2 12 87 5 12 70 1 0 0 0 5 
38 5 3 1 0 1 3 3 1 1 11 69 5 14 58 2 3 0 1 5 
39 5 3 0 4 1 3 2 3 2 12 72 5 12 59 1 2 0 0 5 
40 5 4 3 3 2 4 2 1 2 12 86 5 9 66 0 1 0 0 5 
41 5 2 2 3 1 3 4 1 2 12 75 -1 10 56 1 3 0 0 2 
42 1 2 86 3 10 69 1 0 
43 3 2 85 3 11 63 0 3 
44 2 1 80 7 12 65 1 1 
45 3 1 65 2 11 60 2 1 
46 4 1 86 2 11 61 1 2 
47 1 1 86 9 11 68 1 0 
48 2 2 85 1 15 67 1 0 
49 4 2 85 3 12 69 1 1 
50 4 1 86 7 14 65 0 1 
51 3 2 64 9 12 64 1 0 
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52 2 1 84 9 14 63 2 0 
53 2 2 86 8 13 68 0 1 
55 3 2 74 7 10 63 0 2 
56 2 2 86 9 12 68 1 0 
57 1 1 69 9 12 53 1 4 
58 2 2 73 8 12 57 3 1 
59 3 1 86 4 8 71 0 1 
60 2 2 79 5 12 65 1 1 
61 3 1 86 10 14 59 1 2 
63 2 1 80 9 14 60 2 3 
64 4 1 64 8 10 64 2 0 
65 4 1 71 5 10 64 1 0 
66 3 2 69 8 14 60 1 1 
67 2 2 86 5 14 70 1 0 
68 5 2 72 0 13 64 1 2 
69 1 2 78 7 11 61 3 1 
70 1 2 80 5 12 60 1 3 
71 5 2 86 2 13 63 1 0 
72 2 2 78 6 14 59 2 1 
73 4 2 70 10 10 65 1 0 
74 3 2 71 1 12 67 0 1 
75 2 2 87 0 10 68 0 1 
76 2 2 74 -1 15 58 2 1 
77 3 2 74 4 16 65 2 2 
78 3 2 70 4 13 69 1 0 
79 4 2 67 4 14 61 1 2 
80 1 2 79 4 16 53 0 6 
81 2 1 86 9 13 68 0 1 
82 1 2 65 2 11 55 2 3 
83 5 3 1 0 1 4 2 2 1 21 64 9 13 56 3 0 3 1 5 
84 5 1 2 4 1 1 2 1 2 12 79 9 11 58 1 2 1 2 5 
85 5 1 3 4 1 1 2 1 2 12 86 9 11 62 1 0 1 0 5 
86 5 3 3 4 1 1 2 1 1 11 80 9 11 54 1 2 1 2 5 
87 5 1 1 0 1 1 3 3 2 12 68 9 10 56 2 2 0 0 5 
88 5 2 2 4 1 1 2 1 1 11 86 9 12 65 1 0 0 0 5 
89 5 4 1 0 1 1 3 3 2 21 64 9 11 63 1 2 2 0 5 
90 5 3 1 0 2 1 2 2 1 21 64 10 11 59 2 0 2 1 5 
91 5 3 1 0 2 1 3 1 2 21 70 9 11 69 0 1 0 0 0 
92 5 4 1 0 1 3 2 2 1 21 64 9 9 63 1 0 0 0 5 
93 5 3 3 0 2 2 2 1 2 12 86 8 10 70 0 0 0 0 2 
94 5 4 3 3 2 1 5 1 1 11 86 8 11 65 1 0 0 0 5 
95 4 4 1 0 1 1 2 2 2 21 61 9 12 63 1 1 0 0 3 
96 5 4 1 0 1 1 2 2 1 21 66 6 12 65 1 0 0 0 5 
97 4 3 1 0 2 2 3 3 2 21 69 10 12 69 0 1 0 0 5 
98 5 3 1 0 1 2 2 3 2 21 71 8 11 69 0 1 0 0 5 
99 5 2 3 3 2 1 3 1 2 12 84 5 12 68 0 1 0 0 5 

100 5 4 2 0 2 4 2 1 2 12 82 9 10 62 0 2 1 0 5 
101 5 1 3 0 2 2 2 1 2 12 84 1 10 69 0 2 0 0 1 
102 5 2 3 0 1 2 3 1 2 12 79 -1 11 62 2 2 1 0 1 
103 5 2 3 0 1 3 3 1 2 12 81 1 11 59 2 2 0 0 1 
104 4 2 3 3 2 4 3 1 2 12 85 2 11 66 2 0 0 0 3 
105 5 2 3 3 2 4 3 1 2 12 79 -1 9 61 2 2 0 0 3 
106 5 2 3 3 2 4 5 1 1 11 78 4 9 62 1 4 0 0 4 
107 5 1 2 3 1 4 2 1 2 12 77 8 9 59 2 1 2 0 5 

v 



108 5 5 2 3 1 4 4 1 2 12 79 7 9 59 1 2 0 0 5 
109 5 2 3 3 2 4 3 1 2 12 86 6 8 68 1 0 1 0 5 
110 5 4 3 3 2 4 2 1 2 12 82 9 9 67 1 0 0 0 5 
111 5 2 3 3 1 1 5 1 2 12 87 -2 9 64 0 1 0 0 5 
112 5 2 3 3 2 1 2 1 2 12 84 0 9 63 1 1 0 0 5 
113 5 2 2 4 1 4 4 1 1 11 76 9 9 61 3 1 0 3 5 
114 5 3 3 3 2 4 2 1 1 11 86 5 9 70 0 1 0 0 5 
115 5 I 2 3 1 1 2 1 2 11 79 -1 10 61 1 4 0 0 2 

The data is separated by at least one space and the names of the variables are listed below in the order 
which the data is captured. 

id, edlevwo, comhos, part, curactwo, useprc, knowwel, livist, curactma, plor, 

plchil, yarrwo, comply, x5, ybirwo, nubo, nugi, numisc, nulos, happre. 
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APPENDIXB 

SEM PROGRAMS 

Program 1 (Example 3.1) 

/*The Program does a Structural Equation Analysis for the HA TCO example in section 3.1 of Chapter 

3*/ 

data hatco; 

filename hatl 'c:\sas\data\hatco.dat'; 

infile hatl missover; 

input id 1-4 x1 8-13 x2 15-22 x3 23-30 x4 31-38 x5 39-46 x6 48-54 x7 55-63 x8 64-69 

x9 72-78 x10 80-86 x11 87-94 x12 95-102 x13 104-110 x14 111-117; 

label x 1 ='Delivery Speed' x2='Price Level' x3='Price Flexibility' 

x4='Manufacturers Image' x5='Service' x6='Sales Force Image' 

x7='Product Quality' x8='Size of the Firm' x9='Usage Level' 

xI O='satisfaction Level' x11 ='Specification Level' 

xl2='Structure of procurement' x13='Type of industry' 

x14='Type ofbuying situation'; 

/*Initial Model* I 

proc calis cov all; 

lineqs 

std 

x1 = gamma1 f_strat + e1, 

x2 = gamma2 f_strat + e2, 

x3 = gamma3 f_strat + e3, 

x7 = gamma4 f_strat + e4, 

x4 = gamma5 f_image + e5, 

x6 = gamma6 f_image + e6, 

x9 = beta1 f_strat + beta2 f_image + e7, 

x 10 = beta3 f_strat + beta4 x9 + e8; 

e l-e6=delta1-delta6, 

e7 -e8=eps 1-eps2, 

f_strat f_image=2* 1.0; 
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cov 

run· 
' 

f_strat f_image=covl, 

el e2=cov2, 

e2 e3=cov3, 

e4 e6=cov4; 

/*Revised Model*/ 

proc calis cov method=ml all; 

lineqs 

xl =gamma I f_strat + el, 

x3 = gamma3 f_strat + e3, 

x4 =gammaS f_image + e5, 

x6 = gamma6 f_ image + e6, 

x9 = betal f_strat + beta2 f_image + e7, 

xlO = beta3 f_strat + beta4 x9 + beta5 f_image + e8; 

std 

el=0.05, 

e5=delta5, 

e3=0.5, 

e6=delta6, 

e7=delta7, 

e8=delta8, 

f _ strat=eps 1, 

f _image=eps2; 

cov 

e5 e8=covl5, 

el e3=cov3; 

run; 
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Program 2 ( Confirmatory Factor Analysis) 

/*The Program does the Confirmatory Factor Analysis in section 3.2 of Chapter 3*/ 

data cfa (type=corr); 

_type_ ='corr'; 

filename cfa 'a:\fact.dat'; 

infile cfa missover; 

input _name_$ vl-v13; 

label v 1 ='Cigarettes' v2='Beer' v3='Wine' v4='Liquor' v5='Cocaine' 

v6='Tranquilizers' v7='Drug store' v8='Heroin' v9='Marijuana' 

v 1 O='Hashish' v 11 ='Inhalants' v 12='Hallucinogenics' v 13='Amphetamines'; 

/*Initial Model* I 

proc calis corr data=cfa method=ml edf= 1634 all; 

title "Confirmatory factor analysis ofHuba et al data"; 

lineqs 

std 

cov 

vl=lambda f1 + lambdal f2 + el, 

v2=lambda2 f1 + e2, 

v3=1ambda31 f1 + lambda32 f2 + e3, 

v4=1ambda41 f1 + lambda43 f3 + e4, 

v5=lambda5 f3 + e5, 

v6=lambda6 f3 + e6, 

v7=lambda7 f3 + e7, 

v8=lambda8 f3 + e8, 

v9=1ambda9 f2 + e9, 

vlO=lambdl02 f2+ lambdl03 f3+ elO, 

vll =lambdall f3 +ell, 

vl2=lambdal2 f3 + el2, 

v13=lambda13 f3 + e13; 

e l-el3=thetal-thetal3, 

fl-f3=3*1.0; 

el ell=gammalll, 

el elO=gammallO, 

el el2=gammall2, 

e2 elO=gamma210, 

e3 e7=gamma37, 
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run; 

e3 e13=gamma313, 

e4 e10=gamma410, 

e4 e12=gamma412, 

e4 e6=gamma46, 

e5 e8=gamma58, 

e5 e9=gamma59, 

e9 e 11 =gamma911, 

e9 e12=gamma912, 

e7 e10=gamma710, 

e7 e13=gamma713, 

e7 e8=gamma78, 

e8 e 11 =gamma811, 

e8 e12=gamma812, 

e10 e12=gamm1012, 

ell e12=gamm1112, 

e5 e13=gamma513, 

e6 e8=gamma68, 

e6 e13=gamma613, 

e7 e11=gamma711, 

f1 t2=a1pha12, 

f1 f3=alpha13, 

t2 f3=a1pha23; 

/*Revised Model*/ 

proc calis data=drug method=ml edf=1634 all; 

title "Confirmatory Factor Analysis for Drug Usage Model"; 

lineqs 

v1 =lambda11 fl + lambda12 f2 + el, 

v2=lambda21 f1 + e2, 

v3=1ambda31 f1 + e3, 

v4=lambda41 f1 + e4, 

v5=lambda53 f3 + e5, 

v6=lambda63 f3 + e6, 

v7=lambda73 f3 + e7, 

v8=lambda83 f3 + e8, 

v9=lambda92 f2 + e9, 

vlO=Iambdl02 f2 + lambd103 f3 + elO, 

vll =lambd113 f3 +ell, 
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vl2=lambdl23 f3 + el2, 

v13=lambdl33 f3 + e13; 

std 

e 1-e 13=thetal-thetal3, 

fl-f3=3*1.0; 

cov 

e1 ell =covlll, 

e5 e8=cov58, 

e5 e13=cov513, 

e6 e8=cov68, 

e7 e 11 =cov711, 

e8 e 11 =cov811, 

e8 e12=cov812, 

e9 e12=cov912, 

fl f2=phil2, 

f1 f3=phi13, 

t2 f3=phi23; 

run; 
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Program 3 ( Chapter 4: Utilization of Antenatal Care by Migrant women in Belgium) 

/*The Program does the Structural Equation Analysis for the ANC data of Chapter 4*/ 

/*MODEL 1*/ 

data migrant; 

filename migrant 'a:\migrant.dat'; 

infile migrant missover; 

input id 1-3 edlevwo 7 co mhos 11 part 15 curactwo 19 useprc 5 knowwel 9 livist 13 

curactma 17 plor 21 plchil23-24 yarrwo 26-27 comply 29-30 ybirwo 35-36 

nubo 38 nugi 40 numisc 42 nulos 44 happre 46; 

label useprc = 'Was it useful to follow antenatal care' 

edlevwo ='Educational level ofthe woman' 

knowwel ='Knowledge of an Western language' 

comhos = 'Means of communication with the doctor' 

livist ='Actual living situation' 

part = 'Relationship with the partner' 

curactma = 'Current activity of the man' 

curactwo = 'Current activity of the woman' 

plor = 'Place where the woman was born' 

plchil ='Place where the woman spent most of her childhood' 

yarrwo = 'Year the woman arrived in Belgium' 

ybirwo ='Year ofbirth of the woman'; 

age=97-ybirwo; 

proc calis cov all; 

lineqs 

livist = gamma1 f_spr + e1, 

part= gamma2 f_spr + e2, 

curactma = gamma3 f_spr + gamma31 f_ses + e3, 

curactwo = gamma4 f_spr + gamma41 f_ses + e4, 

plor =gammaS f_spr + e5, 

plchil = gamma6 f_spr + e6, 

yarrwo =gamma? f_spr + e7, 

edelvwo =gammaS f_ses + e8, 

knowwel = gamma9 f_ses + e9, 

useprc = beta2 comhos + beta16 happre + beta3 knowwel + beta4 f_spr + elO, 
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comply = betaS age + beta6 nubo + beta7 nugi + betaS numisc + beta9 nulos + 

betalO f_ses + betall useprc + betal edelvwo +ell; 

std 

cov 

run; 

e l-e6=theta l-theta6, 

e7=0.0S, 

eS-ell =thetaS-thetall, 

f _ spr f _ ses=psil; 

f_spr f_ses=covl; 

/*MODEL 2*/ 

data migrant 1; 

filename migrantl 'a:\migrantl.dat'; 

infile migrant! missover; 

input id 1-3 edlevwo 7 comhos 11 part lS curactwo 19 useprc S knowwel9 livist 13 

curactma 17 plor 21 plchil23-24 yarrwo 26-27 comply 29-30 ybirwo 3S-36 

nubo 3S nugi 40 numisc 42 nulos 44 happre 46; 

age=97-ybirwo; 

proc calis cov all; 

lineqs 

curactwo = gamma41 f_ses + el, 

edelvwo =gammaS f_ses + e2, 

knowwel = gamma9 f_ses + e3, 

comply= betal age + beta3 nugi +betaS nulos + beta6 f_ses + beta7 edelvwo + e4; 

std 

run; 

e l-e4=theta 1-theta4, 

f_ses=covl; 
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APPENDIXC 

RESULTS 

Table 1. Residual Diagnostics for the Revised HATCO Model in Chapter 3 

Dep Var Predict Std Err Std Err Student 

Obs XlO Value Predict Residual Residual Residual 

1 4.2000 

2 4.3000 

3 5.2000 

4 3.9000 

5 6.8000 

6 4.4000 

7 5.8000 

8 4.3000 

9 5.4000 

10 5.4000 

11 4.3000 

12 5.0000 

13 4.4000 

14 5.0000 

15 5.9000 

16 4.7000 

17 4.4000 

18 5.6000 

19 5.9000 

20 6.0000 

21 4.5000 

22 3.3000 

23 5.2000 

24 3.7000 

25 4.9000 

26 5.9000 

27 3.7000 

28 5.8000 

29 5.4000 

30 5.1000 

31 3.3000 

32 5.0000 

33 6.1000 

34 3.8000 

35 4.1000 

36 3.6000 

37 4.8000 

38 5.1000 

39 3.9000 

40 3.3000 

41 3.7000 

42 6.7000 

43 5.9000 

4.1651 

4.2382 

5.0205 

4.3198 

6.4187 

4.4330 

5.8006 

4.0225 

5.3759 

4.9584 

4.3080 

4.9628 

4.0547 

4.8830 

6.1422 

5.1610 

4.2799 

4.9096 

5.7601 

6.1422 

4.2565 

3.1836 

5.9471 

3. 7118 

5.1660 

5.3004 

3.6825 

5.7065 

4.8989 

4. 7106 

4.1948 

5.7382 

6.0263 

4.6127 

3. 6164 

4.0346 

4.7698 

5.0304 

3.4020 

3. 6454 

4.1391 

6.4080 

5.5883 

0.093 

0.101 

0.114 

0.0349 

0.0618 

0.1795 

0.109 -0.4198 

0.141 0.3813 

0.088 -0.0330 

0.121 -0.00057 

0.095 0.2775 

0.091 0.0241 

0.075 0.4416 

0.081 -0.00800 

0.060 0.0372 

0.082 0.3453 

0.083 0.1170 

0.122 -0.2422 

0.097 -0.4610 

0.095 0.1201 

0.095 0.6904 

0.101 0.1399 

0.122 -0.1422 

0.073 0.2435 

0.144 0.1164 

0.116 -0.7471 

0.077 -0.0118 

0.066 -0.2660 

0.059 0.5996 

0.079 

0.101 

0.0175 

0.0935 

0.110 0.5011 

0.096 0.3894 

0.076 -0.8948 

0.109 -0.7382 

0.092 0.0737 

0.082 -0.8127 

0.102 0.4836 

0.077 -0.4346 

0.092 0.0302 

0.070 0.0696 

0.124 0.4980 

0.076 -0.3454 

0.077 -0.4391 

0.138 0.2920 

0.113 0.3117 

XIV 

0.386 

0.384 

0.380 

0.382 

0.371 

0.387 

0.378 

0.386 

0.387 

0.390 

0.389 

0.393 

0.388 

0.388 

0.378 

0.385 

0.386 

0.385 

0.384 

0.378 

0.390 

0.370 

0.380 

0.389 

0.391 

0.393 

0.389 

0.384 

0.382 

0.385 

0.390 

0.382 

0.386 

0.389 

0.384 

0.389 

0.386 

0.391 

0.377 

0.390 

0.390 

0.372 

0.381 

0.090 

0.161 

0. 472 

-1.100 

1. 027 

-0.085 

-0.002 

0. 720 

0.062 

1.133 

-0.021 

0.095 

0.889 

0.301 

-0.641 

-1.197 

0.311 

1.791 

0.364 

-0.377 

0.624 

0.315 

-1.967 

-0.030 

-0.679 

1. 527 

0.045 

0.244 

1. 313 

1. 011 

-2.296 

-1. 933 

0.191 

-2.091 

1. 260 

-1.116 

0.078 

0.178 

1. 321 

-0.886 

-1.127 

0.785 

0.819 

-2-1-0 1 2 

**I 
I** 

I* 

I** 

I* 

*I 
**I 

I*** 

I* 

***I 

*I 
I*** 

I** 
I** 

****I 
***I 

****I 
I** 

**I 

I** 
*I 

**I 
I* 
I* 

Cook's 

D 

0.000 

0.000 

0.003 

0.017 

0.025 

0.000 

0.000 

0.005 

0.000 

0.008 

0.000 

0.000 

0.006 

0.001 

0.007 

0.015 

0.001 

0.033 

0.002 

0.002 

0.002 

0.003 

0.060 

0.000 

0.002 

0.009 

0.000 

0.001 

0.024 

0. 011 

0.034 

0.051 

0.000 

0.032 

0.019 

0.008 

0.000 

0.000 

0.032 

0.005 

0.008 

0.014 

0.010 



44 4.8000 

45 3.2000 

46 6.0000 

47 4.9000 

48 4.7000 

49 4.9000 

50 3.8000 

51 5.0000 

52 5.2000 

53 5.5000 

54 3.7000 

55 3.7000 

56 4.2000 

57 6.2000 

58 6.0000 

59 5.6000 

60 5.0000 

61 4.8000 

62 6.1000 

63 5.3000 

64 4.2000 

65 3.4000 

66 4.9000 

67 6.0000 

68 4.5000 

69 4.3000 

70 4.8000 

71 5.4000 

72 3.9000 

73 4.9000 

74 5.1000 

75 4.1000 

76 5.2000 

77 5.1000 

78 5.1000 

79 3.3000 

80 5.1000 

81 4.5000 

82 5.6000 

83 4.1000 

84 4.4000 

85 5.6000 

86 3.7000 

87 5.5000 

88 4.3000 

89 4.0000 

90 6.1000 

91 4.4000 

92 5.5000 

93 5.2000 

94 3.6000 

95 4.0000 

96 3.4000 

97 5.2000 

5.0185 

3.5275 

5.6928 

4.7843 

4.6039 

5.0556 

4.6978 

4.8782 

4.9870 

5.1285 

4.0340 

3.6015 

5.1431 

5.9190 

5.9743 

4.9450 

4.7028 

4.7754 

5.9218 

5.1642 

4.0914 

3.4061 

4.7390 

5.5387 

4. 2217 

4.8961 

4.8509 

5.2294 

4.8648 

5.3280 

5.1475 

4.6756 

5.2535 

4.9827 

4.6900 

3.2597 

5.0341 

5.0201 

5.4092 

4.0293 

4.5215 

5.0889 

4.0068 

4.9738 

4.3125 

4.5287 

5.6432 

5.2702 

4.8052 

5.0019 

3.3322 

3.9668 

3.0817 

5.3779 

0.067 

0.086 

0.112 

0.119 

0.097 

0.099 

0.121 

0.101 

0.104 

0.105 

0.060 

0.131 

0.079 

0.111 

0.084 

0.058 

0.098 

0.111 

0.091 

-0.2185 

-0.3275 

0.3072 

0.1157 

0.0961 

-0.1556 

-0.8978 

0.1218 

0.2130 

0. 3715 

-0.3340 

0.0985 

-0.9431 

0.2810 

0.0257 

0.6550 

0.2972 

0.0246 

0.1782 

0.070 0.1358 

0.092 0.1086 

0.115 -0.00611 

0.057 0.1610 

0.089 

0.088 

0.092 

0.087 

0.118 

0.124 

0.094 

0.078 

0.104 

0.065 

0.098 

0.109 

0.119 

0.059 

0.094 

0.131 

0.099 

0. 071 

0.076 

0.070 

0.078 

0.071 

0.100 

0.095 

0.081 

0.098 

0.123 

0.101 

0.106 

0.135 

0.4613 

0.2783 

-0.5961 

-0.0509 

0.1706 

-0.9648 

-0.4280 

-0.0475 

-0.5756 

-0.0535 

0.1173 

0.4100 

0.0403 

0.0659 

-0.5201 

0.1908 

0.0707 

-0.1215 

0. 5111 

-0.3068 

0.5262 

-0.0125 

-0.5287 

0.4568 

-0.8702 

0.6948 

0.1981 

0.2678 

0.0332 

0.3183 

0.100 -0.1779 

XV 

0.391 

0.388 

0.381 

0.379 

0.385 

0.385 

0.378 

0.384 

0.383 

0.383 

0.393 

0.375 

0.389 

0.381 

0.388 

0.393 

0.385 

0.381 

0.387 

0.391 

0.386 

0.380 

0.393 

0.387 

0.387 

0.386 

0.387 

0.379 

0.377 

0.386 

0.389 

0.383 

0.392 

0.385 

0.382 

0.379 

0.393 

0.386 

0.375 

0.384 

0.391 

0.390 

0.391 

0.389 

0.391 

0.384 

0.386 

0.389 

0.385 

0.377 

0.384 

0.383 

0.373 

0.384 

-0.558 

-0.845 

0.806 

0.305 

0.250 

-0.405 

-2.374 

0.317 

0.556 

0.970 

-0.851 

0. 263 

-2.423 

0.737 

0.066 

1. 668 

0.772 

0.064 

0.461 

0.348 

0.281 

-0.016 

0.410 

1.192 

0. 719 

-1.543 

-0.131 

0. 450 

-2.557 

-1.110 

-0.122 

-1.502 

-0.137 

0.305 

1. 073 

0.106 

0.168 

-1.348 

0.509 

0.184 

-0.311 

1. 312 

-0.785 

1. 352 

-0.032 

-1.376 

1.185 

-2.239 

1. 806 

0.525 

0.697 

0.087 

0.853 

-0.463 

*I 
*I 

I* 

****I 

I* 
I* 

*I 

****I 

I* 

I*** 

I* 

I** 

I* 

***I 

*****I 

**I 

***I 

I** 

**I 

I* 

I** 

*I 

I** 

**I 

I** 

****I 

I*** 

I* 
I* 

I* 

0.002 

0.006 

0.009 

0.002 

0.001 

0.002 

0.096 

0.001 

0.004 

0.012 

0.003 

0.001 

0.040 

0.008 

0.000 

0.010 

0.006 

0.000 

0.002 

0.001 

0.001 

0.000 

0.001 

0.012 

0.004 

0.022 

0.000 

0.003 

0.118 

0.012 

0.000 

0.028 

0.000 

0.001 

0.016 

0.000 

0.000 

0.018 

0.005 

0.000 

0.001 

0.011 

0.003 

0.012 

0.000 

0.021 

0.014 

0.037 

0.036 

0.005 

0.006 

0.000 

0.016 

0.002 



98 3.7000 3.4886 0.094 0.2114 0.386 0.548 I* 0.003 

99 4.3000 4.8446 0.098 -0.5446 0.385 -1.415 **I 0.021 

100 4.4000 4.5063 0.084 -0.1063 0.388 -0.274 0.001 

Sum of Residuals 0 

Sum of Squared Residuals 14.8220 

Predicted Resid SS (Press) 16.8038 
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Table 2: Covariance Matrix For the Initial ANC Model 

EDLEVWO COMBOS PART CURACTWO USEPRC KNOWWEL LIVIST CURACTMA 

EDLEVWO 

CO MHOS 

PART 

CURACTWO 

USEPRC 

KNOWWEL 

LIVIST 

CURACTMA 

PLOR 

PLCHIL 

YARRWO 

COMPLY 

AGE 

NUBO 

NUGI 

NUMISC 

NULOS 

HAP PRE 

/ 

1.2245 

-0.6157 

0.2734 

0.2449 

0.1396 

-0.3360 

0.0466 

-0.1142 

-0.0605 

1.3584 

-1.8923 

1.3626 

-1.4602 

-0.3415 

-0.2858 

-0.0820 

-0.0942 

0.3417 

·~ .... , 

-0.6157 0.2734 

2.8425 -0.0051 

-0.0051 1.4795 

-0.5036 -0.0839 

-0.1404 0.1189 

0.6859 -0.0759 

0.0179 0.0021 

0.0755 0.0105 

0.0099 -0.0160 

-2.9669 -0.6037 

4.5902 0.7218 

-0.5030 0.0017 

2.4205 0.5847 

0.2386 0.1627 

0.3076 -0.0750 

0.1084 -0.0384 

0.1745 -0.0244 

0.5249 0.0441 

XVII 

0.2449 

-0.5036 

-0.0839 

0.5845 

0.0122 

-0.4593 

-0.1153 

0.0068 

0.0459 

1.2074 

-3.4992 

0.9827 

0.1640 

0.0080 

-0.0862 

0.0213 

-0.0485 

0.2034 

0.1396 

-0.1404 

0.1189 

0.0122 

0.3984 

-0.0750 

0.0202 

-0.0936 

-0.0063 

-0.0472 

0.6100 

0.1440 

-0.5793 

-0.1092 

-0.2249 

-0.1431 

-0.0314 

0.3269 

-0.3360 

0.6859 

-0.0759 

-0.4593 

-0.0750 

0.8596 

0.1933 

0.0360 

0.0150 

-1.5987 

4.8096 

-1.5388 

-0.7570 

-0.0761 

0.0649 

0.0146 

0.0196 

-0.2412 

0.0466 

0.0179 

0.0021 

-0.1153 

0.0202 

0.1933 

0.2283 

-0.0112 

0.0078 

-0.1123 

1.5342 

-0.2930 

-1.3421 

-0.1682 

-0.1423 

-0.0272 

-0.0721 

0.0413 

-0.1142 

0.0755 

0.0105 

0.0068 

-0.0936 

0.0360 

-0.0112 

0.9300 

0.0112 

-0.2557 

0.0185 

-0.6455 

0.3451 

0.0341 

0.2468 

-0.0805 

0.0006 

-0.1686 

PLOR PLCHIL Y ARRWO COMPLY AGE NUBO NUGI NUMISC NULOS HAPPRE 

-0.0605 1.3584 

0.0099 -2.9669 

-0.0160 -0.6037 

0.0459 1.2074 

-0.0063 -0.0472 

0.0150 -1.5987 

0.0078 -0.1123 

0.0112 -0.2557 

0.2283 -0.0127 

-0.0127 11.3318 

0.1880 -16.3016 

-0.5403 4.0584 

-1.8923 

4.5902 

0.7218 

-3.4992 

0.6100 

4.8096 

1.5342 

0.0185 

0.1880 

-16.3016 

49.4079 

-10.5301 

-0.2274 -2.4098 -12.2055 

-0.0401 -0.4928 -1.9391 

0.0590 -0.7962 -1.0158 

-0.0561 0.2646 -0.9673 

-0.0807 -0.2165 -0.7546 

-0.1663 -0.3246 -0.1376 

1.3626 

-0.5030 

0.0017 

0.9827 

0.1440 

-1.5388 

-1.4602 -0.3415 -0.2858 -0.0820 

2.4205 0.2386 0.3076 0.1084 

0.5847 0.1627 -0.0750 -0.0384 

0.1640 0.0080 -0.0862 0.0213 

-0.5793 -0.1092 -0.2249 -0.1431 

-0.7570 -0.0761 0.0649 0.0146 

-0.2930 -1.3421 -0.1682 -0.1423 

-0.6455 0.3451 0.0341 0.2468 

-0.5403 -0.2274 -0.0401 0.0590 

4.0584 -2.4098 -0.4928 -0.7962 

-10.5301 -12.2055 -1.9391 -1.0158 

16.0103 5.3691 0.5455 -1.2970 

5.3691 

0.5455 

-1.2970 

0.6583 

0.7150 

2.3760 

28.1914 -3.0369 -2.0067 

3.0369 1.0004 -0.0755 

2.0067 -0.0755 1.2641 

1.3855 0.2047 0.0578 

1.1271 0.1882 0.1143 

0.6689 -0.0763 -0.4182 

-0.0272 

-0.0805 

-0.0561 

0.2646 

-0.9673 

0.6583 

1.3855 

0.2047 

0.0578 

0.5274 

0.1083 

0.0928 

Determinant = 2. 722 (Ln = 1.001) 

XVIII 

-0.0942 0.3417 

0.1745 0.5249 

-0.0244 0.0441 

-0.0485 0.2034 

-0.0314 0.3269 

0.0196 -0.2412 

-0.0721 

0.0006 

-0.0807 

-0.2165 

-0.7546 

0.7150 

0.0413 

-0.1686 

-0.1663 

-0.3246 

-0.1376 

2.3760 

1.1271 0.6689 

0.1882 -0.0763 

0.1143 -0.4182 

0.1083 

0.4855 

0.1963 

0.0928 

0.1963 

2.2344 



Table 3: Normalized Residual Matrix for the Initial ANC Model 

EDLEVWO COMHOS PART CURACTWO USEPRC KNOWWEL LIVIST CURAC1MA PLOR PLCIDL YARRWO COMPLY AGE NUBO NUGI NUMISC NULOS HAPPRE 

EDLEVWO 0.0000 -2.8002 1.9188 0.3989 1.9473 0.0049 1.7924 -0.7677 -0.8414 1.4722 0.2421 0.0811 2.1089 -2.6183 -1.9490 -0.8658 -1.0364 1.7529 

CO MHOS -2.8002 0.0000 -0.0213 -3.3154 0.4104 3.7233 0.1884 0.3942 0.1042 -4.4358 3.2866 -1.1761 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PART 1.9188 -0.0213 0.0000 -0.2982 1.1445 -1.0970 -0.2966 0.0737 -0.2734 -0.7559 0.0001 0.2350 -0.7682 1.1346 -0.4651 -0.3692 -0.2438 0.206 

CURACTWO 0.3989 -3.3154 -0.2982 0.0000 1.1247 0.0177 -0.1462 0.2732 1.3731 0.1558 0.0004 0.3908 -0.3428 0.0887 -0.8508 0.3257 -0.7728 1.5102 

USEPRC 1.9473 0.4104 1.1445 1.1247 0.0373 -1.4689 -0.3675 -1.2093 -0.2920 1.2107 -0.8593 0.7502 1.1385 -1.0098 -1.5802 -2.7229 -0.8545 0.3634 

KNOWWEL 0.0049 3.7233 -1.0970 0.0177 -1.4689 0.0000 0.8032 -0.0361 -0.0613 -0.0353 0.0126 -0.3837 1.3049 -0.6964 0.5281 0.1846 0.2574 -1.4771 

LIVIST 1.7924 0.1884 -0.2966 -0.1462 -0.3675 0.8032 0.0000 -0.2173 0.0733 1.9832 0.0017 -0.0700 4.4887 -2.9862 -2.2478 -0.6653 -1.8377 0.4905 

CURACTMA -0.7677 0.3942 0.0737 -0.2732 -1.2093 -0.0361 -0.2173 0.0000 0.2054 -0.6524 -0.0001 -1.2942 -0.5719 0.2996 1.9312 -0.9751 0.0072 -0.9923 

PLOR -0.8414 0.1042 -0.2734 1.3731 -0.2920 -0.0613 0.0733 0.2054 0.0000 0.2593 0.0010 -2.2908 0.7604 -0.7128 0.9316 -1.3725 -2.0559 -1.9755 

PLCHIL 1.4722 -4.4358 -0.7559 0.1558 1.2107 -0.0353 1.9832 -0.6524 0.2593 0.0000 -0.0009 0.6961 1.1440 -1.2419 -1.7851 0.9186 -0.7832 -0.5473 

YARRWO 0.2421 3.2866 0.0001 0.0004 -0.8593 0.0126 0.0017 -0.0001 0.0010 -0.0009 0.0000 -0.4690 2.7750 -2.3404 -1.0906 -1.6079 -1.3072 -0.1111 

COMPLY 0.0811 -1.1761 0.2350 0.3908 0.7502 -0.3837 -0.0700 -1.2942 -2.2908 0.6961 -0.4690 0.2352 -0.1240 -0.1601 -0.3868 0.0401 -0.1661 1.7664 

AGE -2.1089 0.0000 0.7682 0.3428 -1.1385 -1.3049 -4.4887 0.5719 -0.7604 -1.1440 -2.7750 0.1240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NUBO -2.6183 0.0000 1.1346 0.0887 -1.0098 -0.6964 -2.9862 0.2996 -0.7128 -1.2419 -2.3404 -0.1601 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NUGI -1.9490 0.0000 -0.4651 -0.8508 -1.5802 0.5281 -2.2478 1.9312 0. 9316 -1.7851 -1.0906 -0.3868 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NUMISC -0.8658 0.0000 -0.3692 0.3257 -2.7229 0.1846 -0.6653 -0.9751 -1.3725 0.9186 -1.6079 0.0401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NUL OS -1.0364 0.0000 -0.2438 -0.7728 -0.8545 0.2574 -1.8377 0.0072 -2.0559 -0.7832 -1.3072 -0.1661 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAPPRE 1.7529 0.0000 0.2060 1.5102 0.3634 -1.4771 0.4905 -0.9923 -1.9755 -0.5473 -0.1111 1.7664 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

... \. 
Average Normalized Residual= 0.7373 

Average Off-diagonal Normalized Residual= 0.8223 
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