
Developing an enriched natural language
grammar for prosodically-improved

concept-to-speech synthesis

by

Laurette Marais

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject of

COMPUTING

at the

University of South Africa

Supervisor: Aarne Ranta

Co-supervisor: Tertia Hörne

April 10, 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unisa Institutional Repository

https://core.ac.uk/display/43174688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that Developing an enriched natural language grammar for prosodically-
improved concept-to-speech synthesis is my own work and that all the sources
that I have used or quoted have been indicated and acknowledged by means of
complete references.

Signature Date
(Mrs)

1

Acknowledgements

I would like to thank my husband, Willem, for his unceasing love and support,
and my parents, Fransjohan and Laurette Pretorius, for their love and energy
in encouraging me to pursue a career in research.

Many thanks are due to my supervisor, Aarne Ranta, for his valuable input and
guidance, and for building the wonderful community around GF that challenges
and inspires.

I also want to thank my co-supervisor, Tertia Hörne, for her meticulous help in
ensuring that this thesis is presented in its best form.

Thanks also to Krasimir Angelov, who patiently answered many questions about
various facets of GF.

Finally, I want to thank all my colleagues at the HLT group of the Meraka Insti-
tute, CSIR, for providing a supportive and creative work environment. Special
thanks to Karen Calteaux, for the opportunity to pursue this topic and travel
to both Europe and the USA during the course of my studies, and Daniel van
Niekerk and Georg Schlunz for being willing to exchange ideas and share their
insights.

2

Abstract

The need for interacting with machines using spoken natural language is grow-
ing, along with the expectation that synthetic speech in this context sound
natural. Such interaction includes answering questions, where prosody plays an
important role in producing natural English synthetic speech by communicating
the information structure of utterances.

CCG is a theoretical framework that exploits the notion that, in English, in-
formation structure, prosodic structure and syntactic structure are isomorphic.
This provides a way to convert a semantic representation of an utterance into
a prosodically natural spoken utterance. GF is a framework for writing gram-
mars, where abstract tree structures capture the semantic structure and concrete
grammars render these structures in linearised strings. This research combines
these frameworks to develop a system that converts semantic representations
of utterances into linearised strings of natural language that are marked up to
inform the prosody-generating component of a speech synthesis system.

Key terms

GF; CCG; prosody; intonation; speech synthesis; concept-to-speech; informa-
tion structure; syntax; question-answering; spoken natural language;

3

Contents

List of Figures 8

List of Tables 11

1 Introduction 12

1.1 Problem Statement . 13

1.1.1 Modelling intonational units 15

1.1.2 Combinatory Categorial Grammar 15

1.1.3 Grammatical Framework 16

1.1.4 Developing a grammar for prosodically-improved spoken
English . 17

1.2 Research Question . 19

1.3 Methodology . 19

1.4 Assumptions and limitations . 20

1.5 Proposed Contribution . 21

2 Literature Review 22

2.1 Prosody in speech synthesis . 22

2.2 Concept-to-speech synthesis . 24

2.2.1 Information structure, prosody and syntax 25

4

2.2.2 Modelling information structure and syntax computation-
ally . 28

3 GF: A syntax-semantics interface 30

3.1 GF as a grammar formalism . 30

3.2 GF as a functional language . 33

3.3 GF as an NLP framework . 34

3.3.1 Resource Grammar Library 34

3.3.2 Previous work with GF 37

4 Modelling information structure, syntax and prosody 39

4.1 Information structure . 39

4.2 Syntax . 44

4.3 Prosody . 46

5 Implementation 49

5.1 Introduction . 49

5.2 Extending the GF English Resource library 50

5.2.1 Operation for marking categories 51

5.2.2 New functions . 52

5.2.3 Conclusion . 59

5.3 Building an application grammar 59

5.3.1 Theme and rheme . 59

5.3.2 Focus . 66

5.4 A Question-Answering system . 69

5.5 Producing speech with improved prosody 72

5.5.1 Realising prosody in speech synthesis 73

5

5.5.2 Criteria for assessing prosody in speech synthesis 74

5.5.3 Speech synthesis with SSML 75

6 Evaluation 78

6.1 Question-answering system . 78

6.2 Application grammar . 80

6.3 RGL extension . 82

6.4 Perceptual experiment . 84

6.4.1 Aim and hypothesis . 84

6.4.2 Experiment setup . 85

6.4.3 Results . 86

6.4.4 Conclusion . 87

6.5 Answering the research questions 90

7 Conclusion 91

A Bibliography 94

B Data 100

B.1 Test set of sentences . 100

B.1.1 Sentences . 100

B.1.2 Parses . 101

B.2 Questions . 103

C Code 105

C.1 English RGL extension . 105

C.1.1 MarkupEng.gf . 105

C.1.2 Lines added to ExtraEngAbs.gf 112

6

C.1.3 Lines added to ExtraEng.gf 112

C.1.4 Question-answering system 113

D List of Acronyms 119

7

List of Figures

1.1 A spoken question-answer system 13

1.2 A spoken question-answering system that uses CTS synthesis . . 14

1.3 A spoken question-answering system that uses GF for CTS syn-
thesis . 14

1.4 GF: John (loves Mary) . 17

1.5 GF: (John loves) Mary . 17

1.6 John (loves Mary) . 18

1.7 (John loves) Mary . 18

3.1 Compositional functions create tree structures 31

3.2 GF abstract and concrete syntaxes 32

3.3 Typical API functions . 36

3.4 A tree built from API functions 36

3.5 Question constructed from a ClSlash 37

4.1 Haskell code for pattern matching on a tree 40

4.2 Who beat Ajax? . 41

4.3 (Barcelona)rheme (beat Ajax)theme. 41

4.4 (Chelsea won)theme (the game against AJAX)rheme 44

4.5 the game against AJAX . 48

8

5.1 Linearisation category for ClSlash 51

5.2 mark overloaded for ClSlash and two strings 51

5.3 (Chelsea)rheme (beat Arsenal)theme 54

5.4 (Chelsea beat Arsenal)theme (today)rheme 56

5.5 (Torres scored)theme (the second goal)rheme (today)tail 56

5.6 (Chelsea gave Arsenal)theme (a beating)rheme (today)tail 57

5.7 (Chelsea paid)theme (Terry)rheme (twenty thousand pounds today)tail 58

5.8 Application grammar abstract syntax functions based on infor-
mation structure . 60

5.9 Application grammar concrete syntax functions based on infor-
mation structure . 61

5.10 A concrete syntax function using the mark operation 61

5.11 Who offered Daniels twenty thousand euros? 64

5.12 Whom did Ajax offer twenty thousand euros? 65

5.13 How much did Ajax offer Daniels? 65

5.14 When did Ajax offer Daniels twenty thousand euros? 66

5.15 <rheme> Ajax </rheme><theme> offered Daniels twenty thou-
sand euros </theme> . 67

5.16 <theme> Ajax offered </theme> <rheme> Daniels </rheme>
<tail> twenty thousand euros </tail> 67

5.17 <theme> Ajax offered Daniels </theme><rheme> twenty thou-
sand euros </rheme> . 68

5.18 <theme> Ajax offered Daniels twenty thousand euros </theme>
<rheme> today </rheme> . 68

5.19 <theme> Ajax offered <foc> Daniels </foc> twenty thousand
euros </theme> <rheme> today </rheme> 69

5.20 Example 1 of interaction with question-answering system 71

5.21 Example 2 of interaction with question-answering system 71

5.22 Example 3 of interaction with question-answering system 72

9

6.1 (Ajax) (offered Daniels twenty thousand euros) 82

6.2 (Ajax) (offered DANIELS twenty thousand euros) 83

6.3 A function for focusing Team elements 84

6.4 Screen shot of perceptual experiment 86

6.5 Amplitude, spectrogram and f0 contour for unmodified speech . . 88

6.6 Amplitude, spectrogram and f0 contour for modified speech . . . 89

10

List of Tables

5.1 List of categories for which mark is overloaded 52

5.2 Question and answer functions 64

5.3 Prolog queries from questions . 70

6.1 Marking theme and rheme . 84

6.2 Summary of results . 87

B.1 Experiment answers with possible questions 104

D.1 List of acronyms . 119

11

Chapter 1

Introduction

Talking machines have always been the staple of science fiction literature, but
judging by the success of spoken conversational agents like Apple’s Siri and Sam-
sung’s S-Voice for Android phones, the need for interacting with machines using
spoken natural language is growing. Users can issue commands to their phones
to perform actions like sending text messages, setting reminders, searching the
web etc., but they can also ask questions and have the agent supply an answer.
In order to do this, conversational agents like Siri rely on technologies for nat-
ural language question answering and, specifically, spoken question answering.
This typically includes aspects of speech recognition, language understanding,
information retrieval and reasoning, language generation and speech synthesis.

In spoken question answering, the addition of synthetic speech to human-computer
interaction provides a richer medium for conveying meaning to the user. Many
spoken languages, including English, rely on prosody (which refers to features
like stress, intonation, phrasing and accent) to convey meaning in ways that
text cannot. In order for synthetic voices to sound more natural, the prosodic
properties of human speech must be included in the synthesis process.

Spoken dialogue and question-answering (QA) systems can generally be seen
as consisting of five main components: Automatic Speech Recognition, Natu-
ral Language Understanding, Task Management (which handles reasoning and
information retrieval), Natural Language Generation and Speech Synthesis. Fig-
ure 1.1 shows a spoken question-answer system adapted from Jurafsky and Mar-
tin (2009).

Traditionally, the speech synthesis problem (or text-to-speech problem) is con-
ceived as having arbitrary natural language text as input, with prosody gen-
erated based on the semantics derived from the text. Deriving semantics from
arbitrary text is difficult, since natural language text can be underspecified in
terms of semantics (Taylor, 2009; Blackburn and Bos, 1999). However, not all
text-to-speech (TTS) applications depend on the ability to synthesise arbitrary
text. Particularly, in question-answering systems, the reasoning component pro-

12

Figure 1.1: A spoken question-answer system

duces a semantic representation of the answer, from which both natural language
and synthetic speech is produced. A system using the semantic representation
as a starting point for both the natural language generation and speech synthesis
components is known as a concept-to-speech (CTS) system. Since the seman-
tics of the utterance serves as the starting point for synthesis, the problem of
deriving semantics from the text in an attempt to model prosody disappears.

One aspect of the semantics of an utterance that is particularly relevant to
prosody is its information structure. According to Prevost (1995b) “informa-
tion structure refers to the organization of information within an utterance. In
particular, information structure defines how the information conveyed by a sen-
tence is related to the knowledge of the interlocutors and the structure of their
discourse”. Prevost adopts a two-tiered representation of information structure:
on the first tier, at the phrase level, an utterance is divided into its theme and
rheme; on the second tier, at the word level, focus is assigned to certain words in
both the theme and rheme phrases. He takes theme to refer to “the part of the
utterance that links it to previous utterances” and rheme to refer to “the part
of the utterance that forms the core of the speaker’s contribution” (Prevost,
1995b).

Steedman (2001) argues that it is possible to describe utterances syntactically
in such a way that the phrases corresponding to theme and rheme appear as
syntactic constituents. That is, when specified correctly, the syntax of an utter-
ance provides knowledge of its information structure. Steedman (1996; 2001)
also shows that, in English, the theme and rheme of an utterance are associated
with distinct intonational tunes. This shows that there is a structural correlation
between information structure, syntax and prosody in natural language.

The purpose of this study is to exploit this structural correlation in order to
contribute toward prosodically-improved speech synthesis.

1.1 Problem Statement

CTS systems generally take as input semantic representations “such as database
entities, templates or logical forms [...] and transforms them first into grammat-
ical sentences and subsequently, into natural and coherent spoken utterances”
(Pan et al., 2002). A spoken question-answering system that uses CTS is shown

13

Figure 1.2: A spoken question-answering system that uses CTS synthesis

Figure 1.3: A spoken question-answering system that uses GF for CTS synthesis

in figure 1.2.

Grammatical Framework (GF) (Ranta, 2011) is a functional programming lan-
guage for writing grammars. It supports mapping between semantic constituents
and syntactic constituents through its distinction between semantic grammars
and syntactic grammars. A semantic grammar provides functions for build-
ing tree structures that represent the semantics of utterances in the abstract,
while syntactic grammars provide rules about how these tree structures are rep-
resented as linear strings in various languages. This means that a semantic
grammar essentially plays the role of an interlingua between its corresponding
syntactic grammars. The mapping between the semantic grammar and the syn-
tactic grammars is bidirectional, which means that concrete, linear strings can
be parsed into tree structures, and tree structures can be linearised into strings.
The separation between semantic and syntactic structure in GF allows us to
re-envision the CTS structure for a question-answering system as in figure 1.3.

It is clear that using GF simplifies especially the answer generating aspects of
question-answering: the creation of an abstract representation of the answer is
reduced to manipulating the tree structure representing the question, replacing
and adding the relevant components, while the generation of enriched text that
serves as input to the synthesiser is reduced to linearising the tree structure into
a string that retains the necessary information about the tree structure itself.

GF also provides resources that simplify the linearisation step. A Resource
Grammar Library (RGL) for over twenty languages handles grammatical com-

14

plexity, which means that grammar engineers need only to define how semantic
trees are rendered in terms of syntactic structures, leaving linguistic details such
as case, number, gender and word order to the RGL.

Therefore, our approach is to extend the existing GF RGL for English to include
functions for exploiting the structural correlation between syntax and informa-
tion structure mentioned in the previous section. The goal is to generate natural
language text that is suitably marked up for use in prosodically-improved speech
synthesis.

1.1.1 Modelling intonational units

To improve the naturalness of a synthetic voice, appropriate prosodic informa-
tion, especially concerning intonation and phrasing, must be available to inform
the prosodic characteristics of the synthesised speech (Taylor, 2009, p.112). Usu-
ally, speech synthesis uses natural language text as its starting point. In order
to produce suitable prosody, the text is analysed using several natural language
processing techniques, including traditional syntactic analysis (Taylor, 2009, p.
117). This analysis forms the basis for generating suitable prosodic information
for each of the syntactic constituents in the utterance. However, traditional
syntactic units do not always correspond to intonational units (Prevost and
Steedman, 1994a). Instead, Steedman (1996) argues that certain intonational
tunes and spoken language phrases are rather associated with the theme (topic)
and rheme (comment) of an utterance, respectively. In the sentence “John loves
MARY”, where John loves is the theme and Mary the rheme, the intonation,
transcribed using ToBI (Tones and Break Indices) (Beckman and Hirschberg,
1994), is represented in the following way:

John loves Mary
LH* LH% H*LL%

Here, John loves and Mary are the intonational units, whereas traditionally,
John (subject) and loves Mary (predicate) would be the syntactic units. In
order to model these units in a grammar, a more generalised notion of syntax,
which would consider John loves and Mary as syntactic constituents, is needed.

1.1.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) generalises the notion of surface con-
stituency, “allowing multiple derivations and constituent structures for sen-
tences, including ones in which the subject and verb of a transitive sentence
can exist as a constituent, complete with an interpretation” (Prevost and Steed-
man, 1994a). Such a grammar could treat the phrases John loves and Mary as
constituents of the language that could in turn be assigned certain intonational
information. Crucially, the grammar would also provide a semantic interpre-
tation for such constituents (Prevost and Steedman, 1994a). In other words,

15

this would allow the writing of a grammar that is flexible in terms of matching
surface constituents with the theme and rheme of an utterance.

CCG captures all the required syntactic and categorial information in its lexicon.
The verb love, for instance, might have the type (S\NP)/NP. This means that it
combines with an NP to the right and then an NP to the left in order to create
an S. For example:

John loves Mary
NP (S\NP)/NP NP

S\NP
S

This corresponds to the semantic representation (John (loves Mary)).

The verb love could, however, be associated with a second type, namely (S/NP)\NP,
combining first with an NP to the left and then to the right, yielding the fol-
lowing syntactic interpretation:

John loves Mary
NP (S/NP)\NP NP

S/NP
S

This, in turn, corresponds to the semantic representation ((John loves) Mary).
Hence, CCG provides a suitable theoretical basis for a generalised notion of
syntax, which provides the additional property that intonational structure, syn-
tactic structure and information structure are isomorphic (Prevost, 1995b). A
flexible way of implementing such a grammar is needed to generate prosodically-
marked-up natural language.

1.1.3 Grammatical Framework

A GF grammar consists mainly of two parts: the abstract grammar and a set of
concrete grammars. The abstract grammar specifies semantic level relations be-
tween constituents, and the concrete grammar allows for these constituents and
relations to be linearised in a specific language. More than one concrete gram-
mar could be developed for a given abstract grammar, allowing semantically
robust translation between the concrete grammars (Ranta, 2011).

GF also provides a Resource Grammar Library (Ranta, 2009), the purpose of
which is “to provide the main grammar rules of different languages, in a form
readily usable by application programmers. The library defines the low-level
details of morphology and syntax ...” (Ranta, 2011) That is, a single abstract
grammar provides the general grammatical structures available in most lan-
guages, and a concrete grammar for each language linearises these structures
correctly according to its unique morphology and syntax. It also works as a
parser of sentences allowed by the grammar. Currently, GF supports over 20

16

UseCl -- produces S

(PredVP -- produces Cl

(UsePN john_PN)

(ComplSlash -- produces VP

(SlashV2a love_V2)

(UsePN mary_PN)

)

)

Figure 1.4: GF: John (loves Mary)

UseSSlash -- produces S

(UseSlash -- produces ClSlash

(SlashVP -- produces VPSlash

(mkNP john_PN)

(SlashV2a love_V2)

)

)

(mkNP mary_PN)

Figure 1.5: GF: (John loves) Mary

languages, including English (Ranta, 2013).

In many cases, the RGL provides more than one parse for a sentence, all of which
are grammatically correct (Ranta, 2011). The two GF trees (slightly simplified
for clarity) in figures 1.4 and 1.5 correspond to the two sentences linearised as
“John loves Mary” in the previous section. Figures 1.6 and 1.7 give graphical
representations of these trees.

This example shows that, besides providing traditional categories like VP and
NP, the RGL also provides structures for some non-traditional categories such
as ClSlash (a clause missing an NP, e.g. “she looks at”) and VPSlash (a verb
phrase missing an NP, e.g. ”looks at”). These categories correspond to S/NP
and (S/NP)\NP, respectively, in CCG.

1.1.4 Developing a grammar for prosodically-improved spo-
ken English

As seen in the previous section, the RGL provides structures allowing for mul-
tiple parses of the same sentence. In section 2.2 it was shown that a generalised
approach to syntax allows different surface structures for sentences to provide

17

Figure 1.6: John (loves Mary)

Figure 1.7: (John loves) Mary

18

a way of modelling intonational units more closely. This research presents an
extension to the RGL with both functions that allow the building of sentences
in multiple ways and with functions that allow enriched text linearisation that
marks up otherwise identical textual representations as having different under-
lying structures. This extension is used in a spoken question-answering system
to produce prosodically-improved speech synthesis.

1.2 Research Question

How can the novel combination of GF, insights from CCG and current speech
synthesis techniques be used to develop a grammar that assists in building a
prosodically-improved CTS question-answering system in English?

The following sub-questions will be addressed:

1. How should the GF English RGL be extended to provide functions for
building trees whose structures encode information structure?

2. How should the information structure encoded in the tree structures be
rendered when the tree is linearised?

3. How should the extended GF English RGL be used to build an application
grammar for a question-answering system, where question-answer pairs are
structurally related in terms of information structure?

4. How can a question-answering system use such an application grammar
to compute semantically correct answers to questions?

5. How can the output of the question-answering system be used to improve
the prosody in a synthetic voice?

1.3 Methodology

In order to answer the research question, a process of computational modelling,
prototyping, validation and testing was followed.

1. The grammatical scope of the research was established as limited to wh-
question-answer pairs consisting of main clauses.

2. A set of test sentences was developed to reflect the grammatical scope.
The chosen domain of the sentences was results of football games and
signings.

3. The sentences were analysed in terms of possible information structural
interpretations and then parsed by the GF English RGL to determine the
RGL’s coverage of information structure.

19

4. Based on this analysis, the RGL was adapted in the following two steps:

(a) It was extended to complete its coverage of different information
structural interpretations of the sentences. This involved adding
functions to the abstract Extra module of the English RGL, along
with the corresponding concrete syntax linearisation functions.

(b) The RGL was also extended to allow for enhanced linearisations of
the parse trees to indicate the information structure of each tree.

5. A GF application grammar was developed to showcase the use of the
extended RGL. It provides functions for building the question-answer pairs
in the test set.

6. A question-answering system was developed in Python to show how ques-
tions parsed by the grammar could be interpreted in order to calculate an
answer, and manipulated in order to return the corresponding sentence,
enhanced with information structural markup to facilitate synthesising
speech with improved prosody.

7. The output of the question-answering system was converted in a straight
forward way, replacing the markup for information structure with Speech
Synthesis Markup language (SSML) markup. This was fed to an SSML-
enabled synthesis system to produce audio output.

8. Finally, a perceptual experiment was conducted on the audio output, to
confirm that the information structural markup provided by the RGL ex-
tension via the application grammar, would indeed result in prosodically-
improved synthetic speech.

1.4 Assumptions and limitations

This research focuses on the problem of using CTS in spoken question-answering
systems, as opposed to the general TTS problem, and as such does not aim
to synthesise arbitrary natural language text. Such unconstrained input may
include grammatical errors that cannot be parsed by the RGL. As such, the
syntactic scope is at least limited to the coverage of the English RGL. Further-
more, the linguistic scope of the research is limited to wh-questions consisting
of only main clauses, as discussed in section 4.2, although possible future work
could include widening the linguistic scope.

The MARY synthesis engine will be used to produce speech synthesis. This
limits the ways in which the synthesis may be modified to the mechanisms
available for MARY. We discuss these in more detail in section 5.5.

20

1.5 Proposed Contribution

This research proposes to contribute the novel combination of GF with the the-
ory of information structure, syntax and prosody employed in CCG, as well
current speech synthesis techniques in order to produce prosodically-improved
speech synthesis. This combination of ideas proposes to contribute in two par-
ticular ways.

Firstly, GF as an implementation framework for grammars provides parsing and
linearising capabilities, a runtime environment that allows directly manipulating
syntax trees, as well as a grammar architecture that separates abstract syntax
from concrete syntax, which ensures efficient and extensible grammar develop-
ment in a multilingual setting. Implementing functions in GF based on the
work done in CCG with regards to information structure, syntax and prosody,
will extend this work with all the advantages offered by the GF environment.
In other words, the addition of information structurally motivated functions
to the GF English RGL provides the option to exploit the isomorphic relation
between information structure, syntax and prosody to develop grammars for
prosodically-improved speech synthesis. A spoken question-answering system
based on a GF application grammar is developed to illustrate this. Addition-
ally, since GF is particularly suited to multilingual solutions, this research could
provide the basis from which similar systems could be bootstrapped for other
languages.

Secondly, employing information structure as a means to improve prosody is
tested in the context of a state-of-the-art speech synthesis engine. Steady im-
provements in the naturalness of speech synthesis have been made in the last
decade, and it remains to be seen whether the structural correlation exploited
in the work on CCG will still result in prosodically-improved speech synthesis
using current synthesis techniques.

A note on tree diagrams

In the many GF tree diagrams presented in this document, the tree represents
the construction of an utterance from its various category components. Each
node is marked up with the function and the resulting type. For example, the
root node in some cases is labelled DeclUtt : Utt, which means that the
function DeclUtt is used to produce the type Utt. Its children represent the
arguments the function takes.

21

Chapter 2

Literature Review

Generating natural language for use in prosodically-informed speech synthesis
systems for question-answering encompasses several topics, including computa-
tional linguistics, natural language generation, the relationship between mean-
ing, prosody and syntactic structure, discourse structure, and dialogue man-
agement. As pointed out by Prevost (1995b), topics such as these have been
approached from fields as diverse as syntax, semantics, phonology, theoretical
computer science and artificial intelligence, each having different research goals
and methodologies.

In this chapter, we review various attempts to address the problem of prosodically-
natural spoken language generation by surveying the research into concept-to-
speech systems, with particular focus on research into the relationship between
prosody, information structure and syntax.

2.1 Prosody in speech synthesis

A growing appreciation for the role prosody plays in communication has led to
interest in modelling prosody in order to produce more “natural sounding” syn-
thetic speech. In particular, prosody can often be appealed to in disambiguat-
ing structural or scope ambiguities (Hirschberg, 2002). According to Steedman
(2012) “in spoken English, information-structural distinctions are to an unusual
degree conveyed by intonational prosody”.

When attempting to model prosody for synthetic speech, “one must first deter-
mine the prosodic inventory of the language to be modelled and which aspects
of that inventory can be varied by speakers to convey differences in meaning”
(Hirschberg, 2006a). In many languages, this results in a focus on prominence
(accent) and phrasing. In English, for example, speakers tend to make content
words prominent, especially when the concepts introduced by them are new to

22

the discourse. Prosodic phrasing is a result of humans “chunking” their utter-
ances into meaningful units of information. Several systems have been developed
to describe prominence and phrasing features, of which the most popular are
the Edinburgh Festival Tilt system, the ToBI system, developed for different
varieties of English prosody, the IPO contour stylisation techniques developed
for Dutch, and the Fujisaki model developed for Japanese (Hirschberg, 2006a).

However, prosody research in itself has faced methodological challenges, which
according to Xu (2012) is mainly due to the so-called lack of reference problem.

By reference I mean a pivot that serves as both a starting point
of inquest and a point that one can comfortably fall back on. In
segmental research, for example, word identity serves as such a refer-
ence, because it is consciously accessible whether the language under
study has a writing system or even whether the human informant
is literate. Thus we can confidently investigate the phonetic prop-
erties that distinguish one word from another. But words also give
us a false sense of certainty, because their ease of access may lead
to the assumption that what underlies the lexical contrast, namely,
the phonemes, are also easily accessible to individual speakers (Xu,
2012).

Easy access to phonemes, Xu maintains, is not the case, referring to work by
Mattingly (1972) and Liberman et al. (1989). Also, in the case of prosody, as
opposed to words, “very little of its functionality is orthographically represented,
except for the punctuations whose meanings are at best ambiguous” (Xu, 2012).

Xu divides the research on modelling prosody into three approaches.

1. In the case of analysis by transcription, which includes the examples men-
tioned above, the goal is not a predictive system, but rather a descriptive
one, making it difficult to apply such models in producing natural prosody
in synthetic speech.

2. In the case of analysis by introspection, the obvious danger is the subjec-
tive nature of the research, resulting in it remaining merely hypothetical.
While analysis by hypothesis testing provides a more rigorous framework
for research by allowing falsifiability, Xu lists several challenges faced in
this approach. These include the division between prosodic function and
the encoding thereof in speech, as well as ecological validity: “how much
of what is observed in a controlled experiment is applicable to everyday
speech”. This aspect is especially of importance when considering prosody
production in synthetic speech.

3. Finally, challenges facing the approach of analysis by computational mod-
elling include decisions concerning whether the computational model should
be prescriptive or predictive, how such a model could be evaluated and the
correct degree of freedom, that is, “the number of free parameters needed
to completely specify a model”.

23

While the current work does not concern prosody per se, but rather effecting a
change in the prosodic realisation of a synthetic voice based on the information
structure of an utterance, these concerns are of particular importance when
conducting perceptual experiments with prosodically-altered speech.

Originally, attempts to model prosody in synthetic speech were approached
from a text-to-speech perspective, a paradigm in which systems are able to read
aloud unrestricted text. Essentially, text-to-speech (TTS) comprises two com-
ponents, namely text analysis and speech generation (Taylor, 2000). However,
since the prosodic features of an utterance “are highly dependent on the infor-
mational structure, on the linguistic structure, and on the situational context
of the utterance” (Alter et al., 1997), this approached has not been entirely
successful in producing appropriate prosody in synthetic speech. For example,
traditionally, the task of varying contour in TTS systems was confined to assign-
ing appropriate contour to declaratives and questions. Increasing knowledge of
intonational meaning has been slow to find its way into speech synthesis sys-
tems (Hirschberg, 2002). According to Feng et al. (2012), recent research in
pitch accent and prosody prediction for TTS has had only limited success. The
problem of determining the boundaries of prosodic phrases in TTS is especially
difficult when the text itself is ambiguous. Hirschberg (2002) reports that the
given/new status of prosodic phrases “is modelled in text-to-speech systems at
best by collecting stems of previously uttered items in a fixed window, or a
paragraph or other orthographic unit”.

Determining phrase boundaries usually relies on the text analysis performed
in the first phase of text-to-speech synthesis. The components that produce
prosodic assignment are either rule-based, in which case the system relies espe-
cially on syntactic information, or corpus-trained, where features such as part-
of-speech, sentence length and type and punctuation are considered. However,
prosodic phrase boundaries do not necessarily occur at the boundaries of syntac-
tic units (Prevost and Steedman, 1994a), and so some success has been achieved
by incorporating more sophisticated constituent information. However, systems
seem to benefit most from allowing users to explicitly control the prosody of the
utterance via (usually system specific) markup (Hirschberg, 2006a).

The limitations of text-based approaches can partly be ascribed to the fact that
the written form of an utterance is a poor knowledge source for its prosodic
realisation (Alter et al., 1997; Blackburn and Bos, 1999; Taylor, 2009), since
prosodic structure contributes to communicating the intented meaning of the
utterance (Veilleux, 1997). In reaction to this, there has been an evident shift
of focus in the computational linguistics community towards so-called concept-
to-speech (CTS) systems (Haji-Abdolhosseini, 2003).

2.2 Concept-to-speech synthesis

Walker and Rambow (2002) separate the task of language generation into de-
ciding, firstly, what to say, and secondly, how to say it.

24

Spoken language systems used to identify these two decisions with separate
modules for natural language generation and speech generation, with prosodic
assignment seen as the responsibility of the latter process. CTS systems, on the
other hand, make use of tight interaction between these processes. Specifically,
“a [natural language] generation system may utilize options of speech synthesis
during its decisions of tactical or strategic generation, e.g., reflect the informa-
tion structure either by intonational cues or via morpho-syntactic variations”
(Alter et al., 1997). This means that the speech generation module is passed
more than just the text to be synthesised: some form of markup is typically used
to inform the prosody-generating component (Hirschberg, 2006a). Essentially,
CTS systems can be described as taking as input semantic representations, such
as “database entities, templates or logical forms” and, after transforming them
into grammatical sentences, producing as final output “natural and coherent
spoken utterances” (Pan et al., 2002). The rationale is that the naturalness is
improved by avoiding the loss of information structural knowledge that occurs
when a semantic representation is rendered in ambiguous or underspecified text
and then converted to synthetic speech.

In the generation of prosodically-natural speech synthesis via enriched text, as
in CTS systems, there is an interplay between information structure as present
in the semantic representation, syntactic structure as present in the textual
representation, and prosodic structure as present in the final synthetic speech.
It will be useful to look at how the relationships between these aspects have been
studied so far. Since information structure is the starting point in CTS systems,
we first consider attempts to understand or model the relationship between
information structure and prosody, and then consider attempts to understand
or model the relationship between information structure and syntax. Finally,
particular focus is given to attempts to unify all three aspects in one theory.

2.2.1 Information structure, prosody and syntax

Steedman (2012) echoes Xu’s (2012) point that, across languages, the various
markers of information structure are not well-understood, and he ascribes this
to our limited ability to detect and classify them in spoken language.

Semantically, almost all of their effects to which we have con-
scious access appear to be secondary implicatures arising from more
primitive meaning elements relating to interpersonal propositional
attitude, whose nature can only be inferred indirectly (Steedman,
2012).

Nonetheless, because of the role of prosody in communicating information struc-
ture, especially in English and other Germanic languages (Theune, 2002), nu-
merous studies have made use of information structure as a basis for more accu-
rately modelling prosody in CTS systems. Some studies attempt to understand
the relationship between information structure and prosody, while others use
this knowledge to compute more natural sounding prosody in synthetic speech.

25

In their study of the features that are most informative for modelling prosody,
Pan et al. (2002) use SURGE as the natural language generating component, se-
lecting from the features available in the system to learn prosodic associations.
Their results lead them to conclude, among other things, that part-of-speech
information and syntactic function are most effective for learning pitch accent
associations, and that the boundaries and length of semantic/syntactic con-
stituents are additionally effective for learning break indices.

Following a different approach, (Prevost, 1995b) identifies two tiers in informa-
tion structure that serve to inform prosody: the given/new distinction informs
intonational tunes and breaks at the phrase level, while focus informs pitch ac-
cents at the word level. At the phrase level, Prevost refers to the given part of
a sentence as the theme and the new or interesting part of the sentence as the
rheme. At the word level, he considers in detail contrastive focus, where con-
trast is derived from a word’s alternative set, restricting the sets of alternatives
to “those entities and propositions explicitly mentioned in the discourse”.

While terminology varies widely in the literature, a similar distinction is main-
tained by others also. For example, Gundel and Fretheim (2006) classify givenness-
newness as being either relational or referential. Relation givenness-newness
refers to the division of the sentence into a new and a given component, roughly
corresponding to Prevost’s theme and rheme, while referential givenness-newness
“involves a relation between a linguistic expression and a corresponding non-
linguistic entity in the speaker/hearers mind, the discourse (model), or some real
or possible world”, corresponding to Prevost’s interpretation of focus. Steed-
man (2000) also points out that several authors refer to two kinds of “focus”,
“using the term to cover both comment/rheme and phonological focus”. Büring
(2007) again refers to two ways in which prosody reflects information contained
in an utterance, namely Narrow Syntactic Mapping, where prosody reflects
sentence-internal structure such as syntax, and Extraneous Feature Mapping,
where prosody reflects discourse-related information, which he sees as unrelated
to syntax. However, he has in mind traditional notions of syntax. Steedman
(2001), on the other hand, proposes a view of syntax that he argues is in fact
isomorphic to both information structure and prosodic structure. Steedman
(2012) also draws together several conceptualisations of information structure as
essentially reflecting Prevost’s two-tiered model of information structure, com-
menting that the prevailing consensus in the literature may have been obscured
“by the numerous superficially differing nomenclatures that have been applied”.

The last 20 years have produced several studies on including information struc-
ture in order to produce better prosody in synthetic speech. Some have specif-
ically factored in the influence of syntax on prosody (Prevost and Steedman,
1993, 1994a,b; Hiyakumoto et al., 1997; Theune, 2002; Li et al., 2012), while
others have either limited their research to single syntactic templates (Kügler
et al., 2012) or focused on word-level accents (Spyns et al., 1997; Hitzeman et al.,
1998; Yagi et al., 2005).

Specifically, much of the work by Prevost and Steedman (1993) and others use
Combinatory Categorial Grammar (CCG) as a unifying framework for informa-
tion structure, syntax and prosody. What is unique to this approach is the use of

26

non-traditional syntactic constituents for modelling intonational units. The ar-
gument is made for an isomorphism between information structure, syntax and
prosody, and in fact, that “the Surface Syntax of natural language acts as a com-
pletely transparent interface between the spoken form of the language, including
prosodic structure and intonational phrasing, and a compositional semantics”
(Steedman, 2001). In terms of relating utterances to the discourse, that is,
assigning accents on word-level to contrasting constituents, Hiyakumoto et al.
(1997) used WordNet synsets to determine alternative sets for words, assigning
focus based on the presence of synonyms and antonyms earlier in the discourse.
They note that determining focus is an easier problem than identifying theme
and rheme phrases in arbitrary text.

Theune (1998), on the other hand, deals with the issue of contrastive accent by
comparing the data structures that give rise to utterances. If the data type of a
new utterance is the same as that of a recent utterance, their fields are compared,
and wherever the new utterance has different values, the corresponding surface
forms are assigned contrastive accents. This work is followed by research on
generating contrastive accent in the CTS system D2S (Theune, 2002), where
the effects of syntax are taken into account as well. Utterances are produced
from syntactic templates, which carry syntactic information used to compute
prosody.

More recent work by Kügler et al. (2012) also follows the route of syntactic
templates, but they use only a single template in their experiment. While their
system is work in progress, the 2012 publication is intended to motivate the use
of IS-enriched speech synthesis. The experiment they describe confirms that
in a complex discourse situation, IS-enriched synthetic speech is preferable to
a system’s default output. They used the MARY TTS system to produce the
default output, and manually manipulated the output to produce IS-enriched
synthetic speech (Kügler et al., 2012). Performing experiments with manually
manipulated audio has the advantage of presenting to users synthetic speech
that has been finely tuned to reflect the appropriate information structure (IS).
Their research does not yet, however, address the issue of manipulating the
default output of the MARY TTS system automatically based on information
structure. It also does not address the role of syntactic structure in computing
prosody.

Other work on improving prosody based on information structure includes that
of Hitzeman et al. (1998), which focuses on accent placement on noun phrases,
followed by Hitzeman et al. (1999) with an annotation scheme for information
structure. They argue for markup of linguistic information, which they define
as including rhetorical relations that function on the level of utterances (such
as concession, amplification, contrast, etc.), and relations that function on the
level of noun phrases. These relations include reference type, such as first men-
tion and anaphor, syntactic type, where a distinction is made between different
kinds of noun phrases and other structures, and semantic type, where there is a
distinction between proper nouns and other nouns. Opting for linguistic (or in
some cases information structural) markup supports a modular approach, since
it allows for simplified use with different synthesisers. They contrast this choice
with that of Hiyakumoto et al. (1997) and Bierner (1998), who mark up the

27

generated text with explicit prosodic information.

Finally, recent work by Li et al. (2012) uses the information structure annota-
tion scheme proposed by Calhoun et al. (2005) to mark contrastive word pairs.
They use an HMM-based synthesiser, trained on two sets of recorded data: the
first set is recorded with natural prosody, while the second is recorded with
exaggerated emphasis on contrastive word pairs within the sentence. Detection
of contrastive word pairs is done with support vector machines, while the em-
phasis is realised via the HMM-based synthesiser. Their experiments show that
participants were able to successfully identify contrastive words on the basis
of the prosody assigned to them. However, they conclude that over-emphasis
decreases the perceived naturalness of synthetic speech.

2.2.2 Modelling information structure and syntax compu-
tationally

As mentioned in the previous section, CCG has been the basis of some compu-
tational research into improvements to prosody in CTS in which syntax plays
an integral role. In fact, the argument is for a compositional semantics that is
reflected in both the prosodic structure as well as the syntactic structure. Ac-
cording to Steedman (2012) “The semantics is surface-compositional (Hausser,
1984), in the sense that logical forms can be derived directly via surface-syntactic
derivation, and constitute the only level of representation in the grammar”. The
relevant semantics in the case of question-answering systems is the information
structure of utterances.

A computational grammar framework that also follows a compositional ap-
proach to semantics and syntax is Grammatical Framework (GF). One of the
main features of a GF grammar is that it requires an abstract syntax, which
is a typed grammar for specifying semantics compositionally, and one or more
concrete syntaxes, which are concrete grammars for linearising the semantic
components as strings in different languages. It borrows this notion of separa-
tion between abstract syntax and concrete syntax from programming language
design, but applies it to natural language (Ranta, 2003).

In terms of representing semantic information and converting it to natural lan-
guage, GF has been used in several ways, including in multimodal grammar
applications (Bringert et al., 2005), dialogue systems (Ranta and Cooper, 2004;
Larsson and Ljunglof, 2008), generating GF grammars from OWL ontologies
(Dannélls et al., 2012) and also verbalising ontologies using GF and the Lexicon
Model for Ontologies (lemon) (Davis et al., 2012).

Research on multimodal grammars is based on the flexibility of the architecture
of GF, which allows several concrete grammars for a single abstract grammar.
According to Davis et al. (2012), such concrete grammars may take the form
of “a table output as a LATEX file or in Excel format” or “a format suitable
for speech synthesis”, or even, as in their example application, a “graphical
presentation of a route”.

28

GF has been used to provide natural language descriptions of semantic concepts
for ontologies written in OWL, as well as ontologies represented in lemon (Pérez
et al., 2006; Dannélls et al., 2012; Angelov and Enache, 2012). Large parts of
SUMO, an open-source ontology, have been translated to GF (Enache, 2010).

GF has also been used directly with the dialogue system GoDiS, providing a full
specification of the dialogue system as a GF grammar. GoDiS is an Information
State Update (ISU-based) dialogue system that provides “general and fairly
sophisticated accounts of several common dialogue phenomena such as inter-
active grounding, accommodation, multiple conversational threads, and mixed
initiative” (Larsson and Ljunglof, 2008). The semantic representations used by
GoDiS are called dialogue moves, which could be translated by a suitable gram-
mar into natural language utterances such as declarative sentences, questions
and imperatives.

GF has also been used in speech-related research, though the focus has been on
recognition and speech translation instead of synthesis (Bringert, 2007). A GF
speech recognition compiler was developed, targeting formats such as Nuance
GSL, SRGS, JSGF and HTK SLF (Bringert, 2008).

No work on GF, however, has been done in exploiting the abstract-concrete
syntax division to explicitly carry information structure in the way suggested
by work in CCG, that is, to attempt to exploit the isomorphism between infor-
mation structure, syntax and prosody as argued for by Steedman (2000) and
others. The purpose of this research, therefore, is to show how GF can be used
as a framework for question-answering in which the information structure is cap-
tured in the semantic composition of an utterance, where the concrete syntactic
structure reflects this, and where this leads to a linearisation that is marked up
with information for speech synthesis with improved prosody.

29

Chapter 3

GF: A syntax-semantics
interface

Grammatical Framework (GF) can be described as a categorial grammar for-
malism, a special-purpose, functional language for grammars, and also a natural
language processing (NLP) framework (Ranta, 2012). These three descriptions
capture different aspects of GF: firstly, as a grammar formalism based on type
theory; secondly, as a programming language for writing grammars for parsing
and linearising natural language; and thirdly as a framework equipped with re-
sources and tools that assist in the development of grammar-based applications.
We look at each of these three aspects in order to introduce the various features
of GF that are relevant to this research.

3.1 GF as a grammar formalism

According to Ranta (2003),

The development of GF started as a notation for type-theoretical
grammars, which use Martin-Löf’s type theory to express the se-
mantics of natural language. The first implementation was released
in 1998 at Xerox Research Centre Europe in Grenoble, with focus
on multilingual authoring via a type-theoretical pivot language.

Since then, GF has developed into a functional programming language and the
focus has shifted towards applications, with GF used as a “high-level and reliable
grammar formalism” for linguists, as well as an “elegant and efficient tool for
building natural language applications” for programmers (Ranta, 2003).

30

Figure 3.1: Compositional functions create tree structures

A key feature of GF is that it distinguishes between abstract and concrete syntax
(Dannélls et al., 2012). The abstract syntax describes the hierarchical, seman-
tic structure of a language, whereas the concrete syntax describes how this is
realised when the language is written down. More specifically, the abstract syn-
tax defines categories and typed rules for obtaining categories compositionally,
while the concrete syntax defines how each category is to be linearised and how
the linearisations of categories are obtained compositionally via the rules. In
effect, GF extends a logical framework (which is a version of constructive type
theory) with a notation for concrete syntax (Ranta, 2003).

For example, suppose we wanted to express the concept ‘integer-plus’ in an infix
language. We could define two categories in the abstract syntax, Expression
and Integer, and the following rule for building an Expression from Integers

integerPlus : Integer -> Integer -> Expression

This function composes the Expression category from two instances of the
Integer category, and can be represented as a tree structure, as in figure 3.1,
which reflects the semantics of the function.

The concrete syntax would then contain the linearisation types for each category,
and define how these are achieved by applying the appropriate linearisation
rule. The following shows how this is done. The keyword ++ denotes token
concatenation.

Expression = {s : Str}

Integer = {s : Str}

integerPlus x y = {s = x.s ++ "+" ++ y.s }

If we now wanted to express the same concept in a prefix language, we could use
the same abstract syntax (i.e. the same semantic tree structures), but define
another concrete syntax in the following way:

Expression = {s : Str}

Integer = {s : Str}

31

Figure 3.2: GF abstract and concrete syntaxes

integerPlus x y = {s = "+" ++ x.s ++ y.s }

In fact, since the two languages share an abstract syntax, we could easily gener-
ate the same statement in both languages. GF goes even further, however, and
provides the ability to parse strings recognised by a concrete grammar, which
means that we have a reliable two-way translator between our infix and pre-
fix languages: parsing with one concrete syntax and linearising with the other
(Bringert, 2008). Additionally, adding translation to and from more languages
simply requires writing a concrete syntax for each new language. (See figure 3.2)

This distinction between abstract and concrete syntax is quite clear when de-
signing programming languages, as the concrete syntax is purposefully designed
with certain principles in mind, such as simplicity and readability etc., to reflect
the semantics of the abstract syntax. This is not the case for natural languages,
since they arise naturally and there is no question there of design. However,
GF applies the idea of distinguishing between abstract and concrete syntax to
natural language: the concrete syntax is “designed” in such a way as to ensure
that it looks exactly like the natural language (Ranta, 2003). That is, we could
add a natural language to the translation system described above by adding a
concrete syntax for English that looks like this

Expression = {s : Str}

Integer = {s : Str}

integerPlus x y = {s = "the sum of" ++ x.s ++ "and" ++ y.s }

Once natural language enters the picture, however, linguistic features such as
number, gender, case, tense etc., have to be dealt with as well. GF as a func-
tional language offers ways to encode such linguistic features, and GF as an NLP
framework offers libraries in which this has been implemented for over twenty
languages. We now look at the language features that are specifically relevant
to this research.

32

3.2 GF as a functional language

GF is a functional language designed specifically for writing grammars. It bor-
rows constructs from Haskell and ML, such as algebraic datatypes, higher-order
functions and pattern matching, while the “type theory used in the abstract
syntax part of GF is inherited from logical frameworks, in particular ALF”
(Ranta, 2012).

In the discussion in section 3.1, the idea of defining categories and rules was
introduced, and it was shown how this structure is reflected in both the abstract
and concrete syntaxes. In GF, the keyword cat is used to introduce all the
categories in the abstract syntax, and lincat is used in the concrete syntax to
define each the linearisation category of each category in the abstract syntax.
Linearisation categories define the object that is produced when linearising a
category, and typically take the form of records (Ranta, 2011). In the abstract
syntax, the keyword fun is used to declare functions for building trees, and in
the concrete syntax, the keyword lin is used to define the linearisation rules for
building linearisation objects from their arguments (Ranta, 2011).

Records are a way of capturing various linguistic aspects of language categories.
For example, in the English Resource Library (Ranta, 2012), the category for
noun phrases, NP, has the following lincat definition:

lincat NP = {s : NPCase => Str ; a : Agr} ;

This means that the linearisation category of NP is a record with two fields: s,
of which the type is a table from NPCase to Str, and a, which has type Agr.
NPCase and Agr are so-called parameter types, while Str is the native GF type
for strings.

The a field holds the agreement information necessary to ensure that the noun
phrase agrees with the verb phrase. The agreement information, which is inher-
ent to the noun phrase, uses the parameter type Agr. This is similar to Haskell
and ML’s algebraic data types (Ranta, 2012) in that it defines the possible
values that an instance of type Agr can take as follows:

param Agr = AgP1 Number | AgP2 Number | AgP3Sg Gender | AgP3Pl ;

This captures the notion that there is first and second person agreement, which
both take number as a parameter, while third person singular agreement takes
gender as a parameter. Third person plural agreement takes no parameters.
This information is necessary for linearising the verb phrase correctly.

On the other hand, the s field encapsulates the notion that the surface form, or
linearised form, of the noun phrase is variable, and that it is generated based on
the relevant case. It does this using a table, which maps values of type NPCase

33

(also a parameter type, like Agr) to the correct surface string. The operator !

is used for choosing the correct string from the table. For instance, if we wanted
to linearise an object noun phrase, we would select the correct string by using
np.s!NPAcc. NPAcc is one of the legal values of the parameter type NPCase and
represents the accusative case.

Another feature of GF that ought to be mentioned is its operations, introduced
with the keyword oper. While fun functions in GF are used to construct trees,
and in terms of functional programming they behave as constructors, opera-
tions correspond to functions in any typed functional programming language.
They are able to take arguments and return results, can be overloaded and are
defined using lambda abstraction. Operations have many uses in GF, espe-
cially for defining smart paradigms, where pattern matching on strings is used
to determine the correct inflexion patterns for words in the grammar (Ranta,
2011).

The preceding discussion shows that GF uses records, tables and parameters
to model the various inherent and variable features of lexical and phrasal cat-
egories, as well as operations to abstract away certain functionality from the
tree-constructing fun functions.

3.3 GF as an NLP framework

3.3.1 Resource Grammar Library

An important resource available to GF users is the Resource Grammar Library
(RGL) and API. From a software perspective, the RGL functions as a software
library and in fact as the standard library of GF, while from a linguistic per-
spective it is essentially a set of parallel grammars (Ranta, 2009). It consists of
an abstract syntax and concrete syntaxes for more than twenty languages. In
contrast to the application grammars discussed so far, where the abstract syn-
tax focuses on capturing semantic relations between categories, the focus of the
abstract grammar is syntactic, that is, on capturing syntactic relations between
syntactic categories. By syntactic categories we mean both lexical categories,
such as noun or determiner, and phrasal categories, such as noun phrase or
prepositional phrase. The RGL’s abstract syntax defines the common phrasal
structures between languages, and leaves language-specific lexical structures and
their morphology to the concrete syntax of each language. According to Ranta,
the RGL can be thought of as a “linguistic ontology” (Ranta, 2011):

It is a domain of linguistic objects, organized in linguistic cat-
egories and following strict rules of combination. Two millennia of
research and education in the Western grammatical tradition have
set up a rather standard set of concepts, which in the 20th century
has also been formalized as precise mathematical models, and in
later decades, as computer implementations.

34

Ranta admits that the classical grammar concepts do not “fit” all languages,
but argues that “having a common conceptual framework has both practical
and theoretical advantages”, including re-use of previous work, especially in de-
veloping multi-lingual applications, as well as the availability of precise concepts
to compare languages (Ranta, 2011).

The library has two layers, namely the core grammar and the user API, and uses
a module structure to group relevant functions together. While the common syn-
tactic structures are accessed via the SyntaxL modules of each language’s con-
crete syntax and the language specific morphology via the ParadigmsL modules
(where L represents the language code), some languages have syntactic struc-
tures that are not shared by other languages. In these cases, a module named
ExtraL is included, which extends the grammar with the unique structures of
the language. The SyntaxL module is built from the core grammar using gram-
mar composition, with the main parts of the core grammar being GrammarL (for
all syntactic combination rules), LexiconL (containing a test lexicon), LangL,
which combines the latter two modules, and AllL, which combines LangL with
ExtraL (Ranta, 2009).

The categories covered by the resource grammar start at the suprasentential
level with Text (representing lists of phrases separated by punctuation), Phr

(phrases) and Utt (utterances, which can be whole sentences or subsentential
phrases). Utts are constructed from sentence types such as S (regular sentences)
and QS (question sentences). Sentence types are built from clause types (e.g.
Cl and QCl), by fixing the polarity and tense. It follows that clause types have
variable polarity and tense, and as such correspond to the notion of the sentence
radical. Clause types themselves are built by the processes of predication (the
combination of a subject and predicate) and complementation (where the main
verb is be). Subjects of sentences have type NP (noun phrase), while predicates
have type VP (verb phrase). A VP has a verb (e.g. V, V2, etc.) as its head
and can be modified by sentence adverbs (AdV), such as always, and ordinary
adverbs (Adv), such as here. NPs are formed mainly from common nouns (CN),
determiners (Det) and pronouns (Pron). CNs can be modified by adjectival
phrases (AP), and relative clauses (RCl) (Ranta, 2009). This overview is not
intended to be a full description of the categories in the Resource Grammar
library, but rather to give an idea of its hierarchical structure for building syntax
trees.

The Resource Grammar API consists of a set of overloaded functions of the
form mkC for constructing phrasal categories C, word C for constructing lexical
categories C, and descrC for any other function constructing C (Ranta, 2009).
Phrasal (or syntactic) functions take arguments, e.g. mkS : NP -> VP -> S,
while lexical functions take no arguments and produce the members of the
closed word classes, e.g. i Pron for the pronoun “I” and with Prep for the
proposition “with”.

These overloaded functions allow the linguistic details to be hidden from the
user of the library, who only needs to know how the domain concepts in the
abstract syntax are expressed in natural language (Ranta, 2011). For instance,
constructing the question “How does Jack play?”, requires knowing that the

35

fun

mkUtt : QS -> Utt ;

mkQS : QCl -> QS ;

mkQCl : IAdv -> Cl -> QCl ;

mkCl : NP -> V -> Cl ;

mkNP : PN -> NP ;

mkPN : Str -> PN ;

play_V : V ;

how_IAdv : IAdv ;

Figure 3.3: Typical API functions

lin mkUtt (mkQS (mkQCl how_IAdv

(mkCl (mkNP (mkPN "Jack")) play_V)));

Figure 3.4: A tree built from API functions

categories needed are an interrogative adverb (how) and a clause formed from
a noun phrase (Jack) and a verb (play). It also requires knowledge of the API
functions in figure 3.3, which can be found in the online reference (Ranta, 2012).

From this knowledge, the tree in figure 3.4 can be constructed. As it happens,
this structure also yields the question in a semantically correct way in many
other languages. This means that for sufficiently similar languages, code may
be re-used in application grammars using a so-called functor, which further
reduces the burden upon the application programmer (Ranta, 2011).

Slash Categories

A group of categories particularly relevant to this research is the so-called slash
categories. A slash category CSlash represents a category C that is “missing”
its noun phrase. The notion of slash categories is inspired by GPSG (Ranta,
2009). The categories available in the RGL are SSlash, ClSlash and VPSlash.
Slash verb phrases are formed by providing a verb with all its complements
except one of the noun phrases. In the case of ditransitive verbs (such as pay,
in “I pay you twenty euros”), a function is provided for constructing the slash
verb phrase where the second noun phrase (“twenty euros”) is not provided.
A VPSlash is then used to form a ClSlash, which in turn is used to form an
SSlash. Ranta explains the reason for defining only a few rules, instead of a
general slash category constructor, as follows (Ranta, 2009):

36

lin mkQS (mkQCl (mkIP which_IQuant man_N)

(mkClSlash

(mkNP (mkPN "John"))

(mkVPSlash see_V2))

Figure 3.5: Question constructed from a ClSlash

Semantically, extraction (slash formation) can be interpreted as
function abstraction. Thus CSlash is as semantic type equal to NP

-> C. Slash propagation is function composition. Both these in-
terpretations could be expressed using higher-order abstract syntax
(functions that take functions as arguments; see Ranta 2004). But
the results would be overgenerating, for instance, because of island
constraints. Thus we have chosen to approach full coverage from be-
low, by using weak rules to cover only the cases that are certain. The
approach is inspired by Combinatory Categorial Grammar (CCG)
where a set of combinators, such as function composition, are used
instead of unrestricted lambda binding.

These categories have so far been used to form certain kinds of questions. For
example, the question “Which man does John see?” can be constructed from
the GF Resource Grammar API as in figure 3.5.

The slash clause (ClSlash) is formed from the subject noun phrase “John”
and the slash verb phrase (VPSlash) “see”, with “see” being a transitive verb
missing its object noun phrase. The novel use of slash categories for modelling
information structural components such as theme and rheme is discussed in
section 5.2.2.

3.3.2 Previous work with GF

GF can be compiled into a runtime format, called Portable Grammar Format
(PGF) (Angelov et al., 2009), and can be used by applications written in Haskell,
Java, Javascript, C and Python (Angelov and Enache, 2012). It is also sup-
ported by runtime systems in Haskell (Angelov, 2009) and C (Ranta, 2012).
Most recently, GF has been used in the online multilingual translation project
MOLTO for applications that include adding multilinguality to semantic wiki
pages (Fuchs et al., 2013), providing knowledge management software for mu-
seums via ontology verbalisation (Ranta et al., 2012), high quality translation
of patents (Enache et al., 2012) and the ability to query knowledge bases using
natural language questions (Mitankin et al., 2010).

Previous projects using GF include the educational project WebALT (Caprotti,
2006), the verification tool KeY (Ahrendt et al., 2005) and the dialogue sys-

37

tem research project TALK (Ljunglöf et al., 2006). In TALK, GF was used for
building extensible, modularised and even multimodal dialogue systems. The
proof-of-concept system was able to understand sentences about public trans-
port using both speech recognition and mouse clicks (Bringert et al., 2005). In
the domain of speech, GF has also been used to implement speech translation.
A grammar compiler was built to support the generation of grammars in various
formats, including Nuance GSL, SRGS, JSGF and HTK SLF (Bringert, 2008).

38

Chapter 4

Modelling information
structure, syntax and
prosody

The purpose of this chapter is to lay the foundation for the discussion of
the implementation of an enriched natural language grammar for prosodically-
improved speech synthesis. This is done by looking at how information struc-
ture, syntax and prosody are understood for the purposes of this research.

4.1 Information structure

The view of information structure followed here is essentially a slightly simplified
version of Prevost (1995a) and others (Steedman, 1991, 2000, 2001; Calhoun
et al., 2005), i.e. a two-tiered system: one tier is concerned with the given/new
distinction at the phrase level, distinguishing between theme (given) and rheme
(new); the second tier is concerned with contrastive focus at the word level.
Kruijff-Korbayová and Steedman (2003) identify some distinguishing features
of theories of information structure, which serve as a useful grid along which to
clarify the view of information structure that is taken here.

One such feature is the recursivity of information structure partitioning. Theo-
ries differ over the level at which information structure partitions an utterance,
whether at the sentence level, clause level of perhaps lower levels of the syn-
tax hierarchy. Within these structures, some theories allow “mild” recursivity,
while others allow either unlimited recursivity or none at all. Following Steed-
man (2001), we partition at the sentence level and allow for no recursivity.

Each sentence is seen as consisting of a single theme and rheme. The subtrees

39

answer :: GUtt -> GUtt

answer p = case p of

GQUtt (GWhoTeamQ (GVPTheme action team))

-> GDeclUtt (GWhoTeamA (get_rheme action team)

(GVPTheme action team))

Figure 4.1: Haskell code for pattern matching on a tree

representing theme and rheme attach directly to the root node of the utterance,
and if they appear contiguously in the linearisation of the utterance, they are
enclosed with markup indicating which phrase represents the “rheme” and which
the “theme”. However, in some cases the rheme appears mid-sentence (see
example (1)), so to clarify the markup, a third label, namely “tail”, is taken
from Vallduvi (1993) to mark the parts of the theme that appear after the rheme
in a sentence. As to the level of orthogonality in this information structure
scheme, contrastive focus is seen as a completely orthogonal feature that occurs
in both the theme and rheme.

(1) a. Which game did Barcelona win yesterday?

b. (Barcelona won)theme (the game against Ajax)rheme (yesterday)tail.

The advantage of using this view together with GF to model the information
structure of wh-question-answer pairs is that the process of constructing answers
from their preceding wh-questions is fairly simple. To illustrate this, we use the
functional language Haskell to show how pattern matching can achieve this
construction. In the example in figure 4.1, all types starting with G are Haskell
data types that represent the functions in the GF application grammar. The
program takes GF trees as input, and these are converted by the GF Haskell
API into native Haskell trees. The function answer takes such a Haskell tree
representing a question and returns the tree that represents its answer. The
first branch of the case statement is shown below. Figure 4.2 shows an example
of a GF tree that would match the branch. Figure 4.3 shows and example of a
resulting GF tree.

The code in figure 4.1 shows that the syntactic unit representing the theme in
the answer is reused directly from the question. In this particular case, the syn-
tactic unit is a traditional verb phrase. However, using the conceptualisation of
syntax that underlies Combinatory Categorial Grammar (Steedman, 2001), sim-
ilar transformations become possible in which whatever information structural
unit representing the theme is reused from the question is also a well-defined
syntactic unit. Additionally, it corresponds directly to an intonational unit that
can be marked up in the linearisation of the tree in order to produce enhanced
natural language, which in turn may inform the prosody generation of a speech
synthesis module.

40

Figure 4.2: Who beat Ajax?

Figure 4.3: (Barcelona)rheme (beat Ajax)theme.

41

Another distinguishing feature discussed by Kruijff-Korbayová and Steedman
(2003) is that of the level at which the analysis of information structure occurs.
Some theories analyse the surface syntactic constituents, while others perform
analysis at the level of semantic representation. We follow Steedman (2001) in
considering semantic representation and syntactic structure to be isomorphic,
and thus the level of analysis that is done on the semantic representation is
also directly applicable at the syntactic level. This relates well to the approach
taken by GF, where semantic categories in the abstract syntax are associated
with syntactic categories in the concrete syntax.

Finally, Kruijff-Korbayová and Steedman (2003) refer to the issue of the under-
lying discourse semantics assumed by various theories of information structure.
Certain theories leave the question of semantics at the intuitive level, while
others take a specific formal approach to it. These can be divided into those
using a form of “update” semantics and those using Alternative Semantics.
Once again, following Steedman (2001), we take the latter approach, set out
by Rooth (1992). The two alternative sets used in this scheme is that of the
theme alternative set and the rheme alternative set. The two alternative sets
present in each utterance govern the contrastive focus assigned to words in the
theme and rheme, respectively. For example, given the question-answer pair
in example (2), the theme of the answer is “Barcelona won” and the rheme is
“yesterday’s game”. The rheme alternative set, then, are all those games that
Barcelona could have won. The word “yesterday” distinguishes the particular
game in question, and therefore receives contrastive focus (Steedman, 2012).

(2) a. Which game did Barcelona win?

b. Barcelona won yesterday’s game.

Another consideration regarding discourse semantics is the notion of recency
when identifying elements new to the discourse. Yule (1981) and Krifka (2008)
both refer to the phenomenon of the transitory status of newness. Yule (1981)
distinguishes between the states “new”, “current” and “displaced”, arguing that
as the event of some element being mentioned recedes in time, the status of the
element changes. Consequently, the current element is defined as the most re-
cently established element in the discourse, while all elements mentioned before
it are said to be displaced. Applying this to the notion of contrastive focus
in this research means that newly mentioned elements can only be said to be
contrastive if they contrast current elements, not displaced ones. Therefore,
this notion of the decay of an element’s newness must be factored in when
determining which elements in an utterance ought to be marked as focused.

The view taken of information structure can be summarised as follows.

1. Each utterance consists, non-recursively, of two parts, a theme and a
rheme. This is the first tier of an utterance’s information structure.

2. The second tier identifies the elements that receive contrastive focus, and,
this tier being orthogonal to the first, such elements can appear in both
the theme and the rheme of the utterance.

42

3. The underlying discourse semantics is based on Alternative Semantics,
and also employs the notion of recency to determine whether an element
is contrastive to a previously mentioned element in the discourse.

The abstract syntax of GF, which defines the legal tree structures in a grammar,
is the vehicle for encoding the two tiers of information structure. GF’s lineari-
sation functionality is employed to produce strings of enriched natural language
that are marked up to show the underlying information structure contributed
by both tiers. To show how this is achieved, we must first look more closely at
the two tiers of information structure.

The first tier, where the theme/rheme distinction is made, manifests on the
phrase level and communicates the structure of the sentence as consisting of
two information structural parts that are related to the discourse context with
regards to their givenness/newness. The second tier manifests on the word
level and communicates the contrastive relationship of specific elements of the
utterance to previously mentioned elements in the discourse. This research
treats the two tiers as completely orthogonal, and therefore the mechanisms for
determining their contribution to the tree structure of the utterance are required
to be independent. Consequently, in the utterance produced by the system,
the theme/rheme structure of the tree is determined by analysing the question
that is to be answered, while the focused status of elements in the tree are
determined by analysing recently established discourse elements, distinguishing
between current and displaced non-new elements. How this is reflected in the
abstract syntax tree is illustrated in the following example.

Suppose the question “Which game did Chelsea win?” has the answer “Chelsea
won the game against Ajax”. With regards to the first tier of information
structure, the theme of the answer is “Chelsea won”, while the rheme of the
answer is “the game against Ajax”. Suppose also that no element in the theme
is contrastive to some element in the discourse, and therefore, no element in
the theme is focused. In the rheme, however, “Ajax” is focused, because it is
the word that distinguishes this rheme from others that are possibilities in the
discourse context (Steedman, 2012). Figure 4.4 shows how the two-way division
of the sentence into ContestTheme and ContestRheme represents the first tier
of information structure, while the function ajax, whose return type is Team, is
wrapped by the function focusTeam, also of type Team, to represent the second
tier of information structure. In section 4.1 we discuss the linearisation of this
structure into enriched natural language.

Considering the view taken from Combinatory Categorial Grammar that the
relationship between between semantic, syntactic and intonational structure is
isomorphic (Steedman, 2001), in GF terms, it can be summarised by saying
that the information structure is encoded in the abstract syntax, while the
syntax and prosody are encoded in the concrete syntax. Consequently, the
grammar discussed in section 5.3, defining utterances in the domain of football
results, at once encodes the information structure, the syntactic structure as
well as the prosodic structure. By employing GF’s linearisation functionality,
the grammar is used to produce enriched natural language utterances for use in

43

Figure 4.4: (Chelsea won)theme (the game against AJAX)rheme

speech synthesis.

4.2 Syntax

Having determined which issues impact the abstract syntax, it is necessary to
address some issues relating to syntax that manifest at the level of the concrete
syntax. In other words, given that semantic - or more specifically in this case,
information structural - categories in the abstract syntax are identified with
syntactic categories in the concrete syntax, what is left is the issue of linearising
the syntactic categories using GF.

Syntax itself may be used to convey information structure. An example of this
is clefting, where the syntactic constituents are ordered so that new information
appears at the end of the sentence (Ward and Birner, 2006). For example, the
question “Which team beat Chelsea last season?” could have, among others,
the following two answers:

(3) a. Barcelona beat Chelsea last season.

b. The team that beat Chelsea last season is Barcelona.

c. Barcelona.

Since the focus of this research is to improve the prosody of concept-to-speech
systems, clefting and other syntactic means to communicate information struc-
ture are not considered. Also, the minimal answer in sentence (c) is also no
considered. While in certain cases the rheme itself is a possible answer, at least

44

three arguments can be made in favour of repeating the theme of the answer
utterance in a spoken question-answering system.

The first and most practical argument is that repeating the theme implicitly ac-
knowledges the content of the question. Since automatic speech recognition can
fail even when the system is sufficiently confident of its recognition, repeating
the theme in the answer ensures that the user knows that the right question is
being answered.

Secondly, in cases where the theme contains a focused element, repeating the
phrase provides useful discourse continuity. A theme-focused element contrasts
a recently mentioned element in the discourse, and acknowledging it as such by
repeating the theme with the appropriate element focused, communicates the
full information structure of the answer.

Thirdly, although conjunctions of questions are out of the current scope, an-
swering such questions by giving only the rhemes as answers is unnatural and
could even be confusing. Consider the following question and some possible
realisations of the same answer.

(4) a. Who won yesterday’s game and who beat Arsenal?

b. Wigan and Chelsea.

c. Wigan won yesterday’s game and Chelsea beat Arsenal.

d. Wigan and Chelsea beat Arsenal.

e. Wigan won yesterday’s game and Chelsea.

What is particularly important to note is that when answering conjoined ques-
tions, both themes should be repeated or left out. Sentence (d) and (e) show
clearly the ambiguities and unnatural utterances that might arise from being
inconsistent in this respect. However, it should also be clear that sentence (c)
is a more understandable answer to the question than sentence (b). In fact, (b)
can also be an answer to only “Who beat Arsenal?”, and it might not be clear
to the user whether both questions have been answered by the system.

Therefore, in all cases, sentences similar to example (3a) are used, and it is left
to the prosody generation component of the synthesis system to communicate
the correct information structure.

The syntactic scope of this research must also be delineated. Since the correla-
tion between the intonational tunes (i.e. prosody) and information structure of
wh-questions is relatively well-understood (Hirschberg, 2006b; Prevost, 1995a;
Steedman, 2001), it provides a suitable first delineation of the linguistic scope
of the research. A second, practical delineation is the decision to focus on utter-
ances containing verbs that take either one, two or no objects; that is, transitive,
ditransitive or intransitive verbs. Verbs that take sentence-like arguments, such
as “say” in “She says that John saw London”, or “ask”, which takes a direct
object and a question as arguments as in “He asked me if John saw London”,
are not covered. Other verbs not covered include those that take infinitive verbs

45

(want to read) and adjectival phrases (became rich). This results in the broad
syntactic scope being limited to wh-question pairs containing only main clauses.

Some limitations on the kind of syntactic constituents that occur lower down
in the hierarchy, such as noun phrases, are also imposed. These decisions were
informed by the chosen domain, as well as by the practical consideration of
including the necessary syntactic diversity to demonstrate the effect of the two-
tiered view taken of information structure. Therefore, the majority of noun
phrases consist of atomic proper names relating to football teams and players.
However, the ability to modify common nouns that appear in noun phrases
(such as “game” and “goal”) with genitive constructions (such as “yesterday’s
game”), prepositional phrases (“the game against Ajax”) and adjectival phrases
(“the second goal”) is supplied. It is also possible to modify verb phrases and
slash verb phrases with adverbs indicating time (“beat Chelsea yesterday”).

4.3 Prosody

In this section, we discuss the proposed markup scheme for producing enriched
natural language. This scheme should provide a synthesis system with the
information required to produce prosodically-improved speech synthesis. The
purpose of the markup scheme is to make explicit the information structure
of the utterance, so it should be general enough to be usable with different
synthesis systems, while being detailed enough to provide all the information
required to produce the appropriate prosody.

Synthesis engines may choose to follow one of two approaches when using en-
riched natural language input. On the one hand, the markup that forms part
of the enriched natural language may be used in the training of a prosodically-
informed synthetic voice. The information encoded in the markup would, along
with the analysis of the natural language component, be incorporated into the
features of the data on which the prosodic behaviour of the voice is trained.
On the other hand, it may also be used directly to explicitly manipulate an
existing voice. In this case, the markup would form the basis on which specific
commands are issued to the system to alter aspects of the synthesised speech,
whether it be pitch, volume, duration etc. These considerations also point to
the need for the markup scheme to be sufficiently general so that it may be
useful in both approaches.

One possible system for communicating the desired prosody resulting from the
underlying information structure is autosegmental-metric (AM) theory, “which
describes contour solely in terms of a small number of compound tones defined
in terms of as few as two abstract pitch-levels, high (H) and low (L), from which
actual contours can be derived algorithmically” (Steedman, 2012). Steedman
and others (Steedman, 1991; Prevost and Steedman, 1993; Steedman, 2012),
have argued extensively that certain tunes described using the AM system are
typically associated with theme and rheme. Specifically, theme is associated
with the tune L+H*LH%, which means that it consists of a L+H* pitch accent,

46

an L phrase accent and an H% boundary tone. Sentence initial rheme is as-
sociated with H*L (a H* pitch accent and L phrase accent) and sentence final
rheme with H*LL% (a H* pitch accent, L phrase accent and L% boundary tone)
(Steedman, 1991; Hirschberg and Pierrehumbert, 1986).

As is evident from analysing the meaning of the AM descriptions, the tunes
described above result from an interaction between the two tiers of informa-
tion structure. The different pitch accents indicate on which words the focus
lies, while the tunes as a whole communicate whether the phrase is a theme
or a rheme. However, if the mechanism for determining focus does not require
knowledge of whether the element to be focused belongs to a theme or a rheme,
thereby confirming the orthogonal nature of the two tiers of information struc-
ture, then for this kind of markup to reflect the correct pitch accent requires
that the linearisation process knows the location of the focused item in the tree.
However, GF’s linearisation process is compositional, which means that infor-
mation can only be passed up the tree, not down. One solution is to produce
markup which, instead of communicating directly the desired prosody, rather
indicates the information structure of the utterance. That is, focused items
are simply marked as focused, and not as theme-focused or rheme-focused, and
phrases are marked as theme or rheme.

The alternative is to relax the requirement of orthogonality of the two tiers
somewhat, and to mark elements specifically as theme-focused or rheme-focused,
via the AM pitch accents. However, this would lead us, firstly, to sacrifice
simplicity during the process of constructing the abstract syntax tree. Secondly,
it seems prudent to assume as little as possible before the linearisation phase
with regards to prosodic realisation. For example, in some cases the rheme
appears mid-sentence, with the theme part being split into a theme and tail. In
such cases it might not be clear how the prosody of the tail should be realised
in a universal way.

Finally, no information is lost by simply marking elements as focused, since
their presence within the phrase marked as theme or rheme will make it clear
what kind of pitch accent they should receive. Retaining the information struc-
tural designations within the markup scheme also allows for the implementation
of other theories regarding prosodic realisation of the two tiers of information
structure.

Figure 4.5 shows how the information structure of the rheme of the example
in section 4.1 relates to the result of the linearisation by GF, using a purely
information structurally informed markup scheme. The scheme uses XML-style
tags, with the names “theme” and “rheme” (and “tail”, if applicable) for the
first tier, and “foc” for the second tier. The way in which this particular scheme
is implemented is described in the next chapter.

47

Figure 4.5: the game against AJAX

48

Chapter 5

Implementation

5.1 Introduction

This chapter is structured around the research questions put forward on page 19.
Section 5.2 covers the extension of the GF English Resource Grammar Library
(RGL) in order to answer the first two subquestions:

1. How should the GF English RGL be extended to provide functions for
building trees whose structures encode information structure?

2. How should the information structure encoded in the tree structures be
rendered when the tree is linearised?

In section 5.3 we discuss the development of an application grammar in order
to answer the third subquestion:

3. How should the extended GF English RGL be used to build an application
grammar for a question-answering system, where question-answer pairs are
structurally related in terms of information structure?

Section 5.4 shows the implementation of a question-answering system in order
to answer the fourth subquestion:

4. How can a question-answering system use such an application grammar
to compute semantically correct answers to questions?

Finally, in section 5.5 we discuss the approach taken to produce prosodically–
improved synthetic speech from the output of the question-answering system in
order to answer the final subquestion:

49

5. How can the output of the question-answering system be used to improve
the prosody in a synthetic voice?

This chapter presents the work done in order to answer the research questions.
In chapter 6, this work done is evaluated with regards to the research questions.

5.2 Extending the GF English Resource library

In order to handle the two tiers of information structure in GF, two goals must
be achieved. Firstly, in terms of marking phrase-level theme and rheme, the
GF English RGL must be extended with the required functions for construct-
ing sentences from various syntactic categories that correspond to themes and
rhemes. Secondly, a way of marking syntactic categories as focused must be
supplied.

Regarding the phrase level extension, the functions available in the RGL must
be useful for the construction of both wh-questions and their corresponding
answers. The wh-questions in view introduce information that appears in the
answer as the theme, while the rheme of the answer contains the information
that was sought for. The questions considered here have simple main clauses
as answers where the rheme is either the subject, the object or some adverbial
phrase. It follows that the remaining syntactic categories that constitute the
answer sentence, that is, the theme, are introduced in the question. Regarding
the marking of focus, it should be possible to mark syntactic categories lower
down in the syntax hierarchy as focused during the linearisation process.

In GF terms, the requirement, therefore, is that it should be possible to build
an answer tree from two syntactic categories, corresponding to the information
structural categories of theme and rheme, and a question tree from only the
syntactic category corresponding to the theme. This offers the ability to com-
pute answer trees from question trees in a straightforward way. This syntactic
division must be exploited in the linearisation process by marking the two lin-
earisation categories (lincats) as either theme or rheme. For marking focus,
a similar marking capability should exist for categories lower down in the syn-
tax hierarchy. Both the theme/rheme marking and the focus marking should be
useful for the production of prosodically–natural synthetic speech. This requires
a flexible approach, in which the markup should be user defined to some degree.

This chapter deals with the marking of lincats first, and then discusses the
extension of the RGL with the categories and functions necessary to model
information structure as syntactic structure.

50

lincat ClSlash = {

s : ResEng.Tense => Anteriority => CPolarity => Order => Str;

c2 : Str ;

a : Agr ;

gapInMiddle : Bool } ;

Figure 5.1: Linearisation category for ClSlash

oper mark : Str -> Str -> ClSlash -> ClSlash =

\m,n,cls -> lin ClSlash

{ s = \\t,ant,c,o

=> "<"+m+">" ++ cls.s!t!ant!c!o ++ "</"+m+">" ;

c2 = "<"+n+">" ++ cls.c2 ++ "</"+n+">" ;

a = cls.a ;

gapInMiddle = cls.gapInMiddle } ;

Figure 5.2: mark overloaded for ClSlash and two strings

5.2.1 Operation for marking categories

In GF, while fun functions are used to construct trees, operations (or opers) use
lambda abstraction to abstract away similar behaviour in fun functions. These
operations can also be overloaded for different categories (Ranta, 2011). An
oper named mark was defined in a new resource module called MarkupEng.gf
(see appendix C, subsection C.1.1). Its function is to take one or two strings
and a syntactic category, and add XML-style tags to the string components of
the language category. For example, for the categories with type {s : Str}
(e.g. Prep), the operation with one string is defined as

oper mark : Str -> {s : Str} -> {s : Str} =

\m,x -> { s = "<"+m+">" ++ x.s ++ "</"+m+">" } ;

The linearisation category for ClSlash is shown in figure 5.1. Figure 5.2 shows
how mark is overloaded for this category.

Note that if the c2 field is empty, the tags around it still appear. The strings
passed as arguments are used as tag names, and could typically have values such
as ‘theme’, ‘rheme’, ‘emph’ or ‘focus’. So for instance, we might expect to mark
a ClSlash with ‘theme’, since themes are identified at the phrase level, and a
Prep with ‘focus’, since focus is identified at the word level. In section 5.3 we
show how the operation was used to mark both tiers of information structure
in an application grammar.

51

Linearisation type Category
{s : NPCase => Str ; a : Agr} NP

{s : AForm => Str} A

{s : Case => Str ; n : Number ; hasCard : Bool} Num

{s : Agr => Str ; isPre : Bool} AP

{s : Str} Prep, Subj
{s : Str} AdV, Predet
{s1,s2 : Str ; n : Number} Conj

... Det

{s : Agr => Str} Comp

... ClSlash

... Cl

... VPSlash

... VP

Table 5.1: List of categories for which mark is overloaded

Table 5.1 shows a list of the categories for which mark is overloaded. (The
linearisation types of the more complex categories are not shown.)

5.2.2 New functions

In order to mark the information structure of utterances, the English RGL
was extended with new functions in the ExtraEng.gf module (see appendix C,
subsections C.1.2 and C.1.3). The scope of the current work is limited to simple
main clauses of declarative sentences, since these are typically the kinds of
utterances that a spoken question-answer system would be expected to produce
as answers to wh-questions. The extension of the RGL was guided by a test set
of 40 wh-question-answer pairs (see appendix B, section B.1), covering among
them essentially three different ways of constructing answers to wh-questions
from theme and rheme phrases.

As mentioned in chapter 4, main clauses are seen as consisting of two information
structural parts: theme (“what the participants have agreed to talk about”) and
rheme (“what the speaker has to say about the theme”) (Prevost and Steedman,
1993; Prevost, 1995a; Steedman, 2001; Prevost and Steedman, 1993). In some
cases, this division coincides with a two-way division that can be expressed in a
syntactically traditional way, e.g. NP -> VP -> Cl. In this example, the rheme
of the utterance is the subject noun phrase, and the theme is the verb phrase.
Note that this runs somewhat contrary to the notion in traditional semantics
that the subject of an utterance is the topic (or theme) about which the verb
phrase makes a comment. Here, the theme (or topic) consists of both the verb
and any applicable objects in the sentence, and the subject of the utterance is
the rheme (or comment).

Objects and adjuncts could also be rhemes, however, and so in the case of
objects, the theme would constitute the subject and the object, and in the case

52

of adjuncts, the theme would constitute the original clause, and the rheme would
be an adverbial phrase. Constructing clauses in these two ways aren’t typical in
traditional syntax, but prove to be useful, since they provide a way to describe
syntax as isomorphic to information structure.

The idea in GF is then to be able to provide at least three different ways for
clauses to be constructed from two arguments. The first, from an NP and a
VP, is already available. The categories for the second, that is, from a ClSlash
and an NP, are also available, as are the categories for the third, but they have
not been used in this way before. In the following sections, we firstly consider
the case of predication, where a clause is formed from a NP and a VP, secondly
the case where a clause is formed by adding an adjunct (or adverbial phrase)
to a complete clause, and finally the case where slash categories are used, that
is, where a clause is formed from a ClSlash and an NP. The discussion focuses
on the phrase level marking of theme and rheme. Marking focus is presented in
more detail in the discussion of the application grammar in section 5.3.

Clauses via predication

This is the simplest case, since the functionality for building clauses in this way
already exists in the RGL. All that remained to be done was to ensure that the
marking operations for NPs and VPs behaved correctly. While the marking of the
noun phrase is straight forward, since it always appears contiguously, marking
the verb phrase required a different approach. This is because the order in
which the various elements of the verb phrase appear in the final linearisation
depends on parameters that are fixed higher up in the syntax tree, such as mood
and polarity. Therefore, besides the mark operation being overloaded to handle
the “default” case (a declarative sentence with positive polarity and indicative
mood), other operations were defined for handling the imperative and infinitive
moods, and for the case where the verb phrase appears in a question. These
functions mark the verb phrase at the phrase level, but operations for marking
individual elements of the verb phrase (such as the auxiliary verb, the main form
of the verb, the infinitive form of the verb etc.) were also added to deal with
situations in which individual elements are required to be marked as focused at
the word level.

Example (5) shows the linearisation of an utterance where the information struc-
ture corresponds to the syntactic structure achieved through predication. The
tree in figure 5.3 illustrates this syntactic structure. Note that the root node has
two children, and these children represent the theme and rheme of the utterance.
The GF code for achieving the correct linearisation is as follows.

PredVP (mark "rheme" (UsePN chelsea_PN))

(mark "theme" (ComplSlash (SlashV2a beat_V2)

(UsePN arsenal_PN)))

(5) <rheme> Chelsea </rheme> <theme> beat Arsenal </theme>

53

Figure 5.3: (Chelsea)rheme (beat Arsenal)theme

Adding adverbial phrases (adjuncts)

In GF, as is typically the case, adverbs take verb phrases or sentences as ar-
guments and produce modified verb phrases and sentences, respectively. In the
case of verb phrases there is a distinction between adverbs that appear before
and after the verb, as in “always sleep” and “sleep here” (Ranta, 2013). The
distinction is made at the lexical level, with adverbs like “always” having type
AdV and adverbs like “here” having type Adv. The VP’s lincat provides a field
of type Str for the AdV, and a single complement field of type Str for the ob-
jects of the verb and the Advs. The RGL also provides operations for inserting
string elements before or after the complement. In most cases, this works well
for English, since the object, if present, is always predictably the first element
of the complement, and adjuncts can be added at the end of the complement
without compromising grammaticality. However, this approach does not always
allow modification of the verb phrase to result in the most natural rendering.
Consider the following examples:

(6) a. How did Chelsea beat Arsenal yesterday?

b. Chelsea beat Arsenal yesterday well.

c. Chelsea beat Arsenal well yesterday.

(7) a. How did Jane play the Bach in the concert last week?

b. Jane played the Bach in the concert last week beautifully.

c. Jane played the Bach beautifully in the concert last week.

d. Jane played the Bach beautifully.

Currently, if we wanted to reuse the verb phrase of the question in the answer,
the lincat of the verb phrase allows rendering of only (6b) and (7b), although
they are not quite as felicitous as their c-counterparts. The reason that only
the b-sentences can be rendered is because the new adverb can only be inserted

54

before the complement (“well Arsenal yesterday”), which would be ungrammat-
ical, or after the complement (“Arsenal yesterday well”). This is consistent with
the general trend in English to present new information (the rheme) towards the
end of the sentence (Ward and Birner, 2006; Hajičová et al., 1995). However,
it is clear that in some contexts it would be more natural to use (6c) and (7c),
and leave it to the intonation contour of the utterance to make it clear what the
new information is. In any case, since the c-sentences are clearly grammatical,
it would be useful to be able to construct them by reusing the verb phrases in
the questions. A simple solution would be to have the lincat of the verb phrase
provide a field for the object and a separate field for the adjuncts. This would
make it possible to provide an operation for adding new adjuncts between the
object and the adjuncts introduced in the question.

Another argument for changing the RGL’s VP lincat by splitting the comple-
ment field in two could be made by referring to the utterance in (7d). Although
ellipsis does not form part of the current work, having two fields for the com-
plement instead of one would enable one to provide an operation on the verb
phrase introduced in the question that would linearise only the object and the
new adjunct, while leaving out the “old” or “given” adjuncts.

Given the way the current lincat of the verb phrase is defined in GF, only
the b-sentences can be rendered. This limitation does allow for a slight sim-
plification to be made when answers that have adjuncts as their rhemes are
constructed from their wh-questions. Since the RGL only allows the creation of
Cls where the verb phrase is linearised as the rightmost element, and since Cls
are always linearised with their complement element in the rightmost position,
simply adding adjuncts to the right of Cls results in the same string as adding
adjuncts to the right of VPs. Therefore, the function AddAdjunct : Cl ->

Adv -> Cl, which simply adds the linearised adjunct to the end of the token
list, was added to the RGL. It provides a straight-forward way of constructing
the answer from its theme and rheme: the Cl constituent represents the theme
and the Adv constituent represents the rheme. Figure 5.4 shows the use of the
function AddAdjunct to construct a tree in this way. The resulting linearisation
is shown in example (8).

(8) <theme> Chelsea beat Arsenal </theme> <rheme> today </rheme>

ClSlash: a clause missing an object NP

The existing ClSlash category is used in GF for questions such as “Which goal
did Torres score?”, where the NP “Torres” and verb “score” make up a ClSlash

that is missing its object NP. Now, a function was added that uses this same cat-
egory to produce answers such as ‘(Torres scored)theme (the second goal)rheme’,
where the theme is represented by the ClSlash and the rheme by the object NP.
This structure can then be exploited to be marked for information structure.
For example, the tree in figure 5.5 produces the following linearisation, when
marked appropriately:

55

Figure 5.4: (Chelsea beat Arsenal)theme (today)rheme

Figure 5.5: (Torres scored)theme (the second goal)rheme (today)tail

(9) <theme> Torres scored </theme><rheme> the second goal </rheme>
<tail> today </tail>

That is, when ComplSlash is marked as ComplClSlash (mark "theme" "tail"

clslash) (mark "rheme" object), where clslash and objectnp have types
ClSlash and NP, respectively, the string in example (9) is produced. Note that
the rheme consists of the entire phrase “the second goal”. A typical ques-
tion resulting in this answer is “Which goal did Torres score today?”. Strictly
speaking, the only entirely new part of the answer would be the word “second”.
However, the entire phrase “the second goal” constitutes a prosodic phrase, and
so is identified as the rheme (see example 51 on p.115 of Steedman (2001)). It
is left to the focus-marking tier of information structure to determine that the
pitch accent inside the rheme must be placed on the word “second”, since it is
the element that distinguishes this rheme from other possible rhemes.

56

Figure 5.6: (Chelsea gave Arsenal)theme (a beating)rheme (today)tail

The ClSlash category is constructed from an NP and a VPSlash, which is a verb
phrase missing an object. Additional functions were added to provide more ways
of constructing VPSlashes from transitive as well as ditransitive (or three-place)
verbs. In the latter case, either of the objects may be missing. To illustrate
the case where the direct object (“a beating”) is missing, the tree in figure 5.6
produces

(10) <theme> Chelsea gave Arsenal </theme><rheme> a beating </rheme>
<tail> today </tail>

The tree in figure 5.7 shows the case where the indirect object (“Terry”) is
missing, and produces

(11) <theme> Chelsea paid </theme> <rheme> Terry </rheme> <tail>
twenty thousand pounds today </tail>

This case, where the indirect object is the missing NP, required the addition
of the function Slash3V3a. While the function Slash3V3 allows construction
of a VPSlash from V3 and a single NP, the NP is assumed to represent the
indirect object. The function Slash3V3a was added, which similarly allows
the construction of a VPSlash from a V3 and a single NP, but in this case the NP

is assumed to be the direct object.

As with regular VPs, the presence of adjuncts in sentences built from VPSlashes
had to be addressed. The function for completing ClSlashes with their missing
NPs must place the NP after the verb, but before the adjuncts. The ClSlash

lincat provides two fields: the first, s, representing the clause as a table that
results in a string when tense, anteriority, polarity and order are fixed; the sec-
ond, c2, a field of type string. The only way to correctly insert the noun phrase
after the verb but before the adjuncts would be to ensure that the adjuncts

57

Figure 5.7: (Chelsea paid)theme (Terry)rheme (twenty thousand pounds
today)tail

58

of the clause are in the c2 field. When the ClSlash is constructed, it receives
the contents of its c2 field from the c2 field of the VPSlash from which it is
constructed. Therefore, the adjuncts of the VPSlash should be in its c2 field.
However, the RGL only provides a function that adds adverbs directly to the
complement field of the VPSlash. The result is that reusing the VPSlash when
constructing an answer from a question produces sentences with ungrammatical
word order.

(12) <theme> Ajax beat yesterday </theme> <rheme> Chelsea </rheme>
<tail> </tail>

In the example given above, the adjunct “yesterday” appears before the object,
instead of after it in the section marked by the tail tag. To remedy this, a
function VPSlashAdv was created that takes a VPSlash and an Adv and produces
a VPSlash in which the Adv’s string is placed in the c2 field. Building the
VPSlash in this way and then using the ComplClSlash function to supply the
missing noun phrases correctly yields

(13) <theme> Ajax beat </theme> <rheme> Chelsea </rheme> <tail>
yesterday </tail>

5.2.3 Conclusion

By adding the functions and operations discussed above, it was possible to use
the RGL to build an application grammar that shows how three different kinds
of wh-questions and their corresponding answers could be made available to a
question-answering system. The next section discusses the application grammar,
which handles wh-questions about football results.

5.3 Building an application grammar

5.3.1 Theme and rheme

The goals of the application grammar developed to model wh-question-answer
pairs about football were, firstly, to show how information structure categories
could be used to model the semantics of wh-questions and their answers, sec-
ondly, how reflecting this in the concrete syntax is simplified through the ex-
tension of the English RGL, and thirdly, to provide a basis for a proof-of-
concept question-answering system whose output would ultimately result in
prosodically–improved speech synthesis.

In chapter 3, an overview of the architecture of a GF grammar was given,
emphasising the division between abstract syntax and concrete syntax. This

59

-- example: Who beat Ajax?

AgentQuestion : AgentTheme -> Question ;

AgentAnswer : AgentTheme -> AgentRheme -> Answer ;

-- example: Whom did Barcelona beat?

PatientQuestion : PatientTheme -> Question ;

PatientAnswer : PatientTheme -> PatientRheme -> Answer ;

-- example: When did Barcelona beat Chelsea?

ModQuestion : ModTheme -> Question ;

ModAnswer : ModTheme -> ModRheme -> Answer ;

Figure 5.8: Application grammar abstract syntax functions based on informa-
tion structure

division gives rise to the interlingua structure of a GF grammar, where the
central module is the semantic abstract syntax, while the terminal modules are
the language-specific concrete syntaxes. The idea is for the semantics of the
grammar’s domain to be specified compositionally in the abstract syntax, leav-
ing it to the concrete syntaxes to determine how the abstract categories relate
to natural language categories in the various languages. In many cases, there
is a clear mapping between the parts that make up an abstract utterance and
the parts that make up a natural language utterance. For example, abstractly,
describing some thing as having a certain property requires a function over two
elements: a thing and a property. Concretely, in English, these two elements
correspond to the subject noun phrase and an adjectival phrase, respectively.

In the case of wh-questions, it would therefore be ideal if the information struc-
tural components were the building blocks of utterances, with the concrete syn-
tax mirroring this structure. Consider the GF functions in figure 5.8, which are
based loosely on thematic relation, where Mod is used as an umbrella term for
relations such as location, time, manner etc.

These functions define different ways of building questions and answers using
information structural categories. It is then up to the concrete syntax to de-
termine how the categories (AgentTheme, ModRheme etc.) should be represented
and linearised. Where abstract categories correspond to syntactic categories
in the RGL, these can be used directly. In section 5.2 we showed which cate-
gories in the RGL correspond to the different kinds of themes and rhemes used
in figure 5.8. For example, AgentTheme is a VP, PatientTheme is a ClSlash

and ModRheme is an Adv. The functions added to the RGL, as discussed in sec-
tion 5.2, simplifies the process of mapping the functions over abstract categories
to functions over linearisation categories. The API, which serves all languages
in the RGL, is defined for functions the languages have in common, but not for
functions that are particular to a specific language. Figure 5.9 shows the lineari-
sation functions for the example grammar. Note that API functions are used

60

lincat

Question = QS ; Answer = S ;

PatientTheme = ClSlash ;

PatientRheme = NP ;

lin

PatientQuestion patientTheme =

mkQS pastTense (mkQCl whoSg_IP patientTheme) ;

PatientAnswer patientTheme patientRheme =

mkS pastTense (ComplClSlash patientTheme patientRheme) ;

Figure 5.9: Application grammar concrete syntax functions based on informa-
tion structure

PatientAnswer patientTheme patientRheme =

mkS pastTense (ComplClSlash (mark "theme" patientTheme

(mark "rheme" patientRheme) ;

Figure 5.10: A concrete syntax function using the mark operation

whenever they are available. Otherwise, the functions defined in the extended
RGL are used directly.

Using the mark functionality discussed in section 5.2, the final line in figure 5.9
could be changed as indicated in figure 5.10.

This strategy shows how the first two goals of the application grammar can
be achieved in general. The specific football application grammar that was
developed uses this approach, and covers questions starting with “who”, cor-
responding to the Agent question-answer pair shown above, questions starting
with “whom”, “which”, “how much” and “how many”, corresponding to the
Patient question-answer pair, and “when”, corresponding to the Mod question-
answer pair. In the case of the Patient pairs where the verb in question was
ditransitive, for “whom” questions the answer constituted the indirect object
(“Whom did Ajax offer twenty thousand euros”), and for “how much” and “how
many” questions the answer constituted the direct object (“How much did Ajax
offer Daniels”).

The general strategy described above, however, is not specific enough to enforce
domain semantics. For example, suppose the verbs sign V2 and score V2 was
available in the grammar, as well as a team, Barcelona, a player, Messi, and
an amount of goals, for example, num goals. We would expect sentences like
“Barcelona signed Messi” and “Messi scored three goals”. That is, Barcelona

61

and Messi can both act as AgentRhemes, while Messi and num goals can both
act as elements of AgentThemes. However, there is no mechanism for disallowing
the sentences “Messi signed three goals” or “Barcelona scored Messi”.

The first step is to distinguish between types of “things” in the domain, such
as agents and patients, or anything that would typically be expressed as a noun
phrase in natural language. In the football grammar, the following can be de-
fined: Player, Team, Amount, Point and Contest. The second step is to identify
the action verbs as having certain types, beyond merely the syntactic require-
ment of identifying them as intransitive, transitive or ditransitive. Specifically,
each action type should be defined in terms of which agent type and patient
type(s) are applicable to it.

In GF, this would most elegantly be handled by so-called dependent types, which
offer a way to make types dependent on parameters. Instead of using the cate-
gories in the previous paragraph directly as types for the “things” in the gram-
mar, we use them for defining the kinds of semantic relations needed in the
grammar. Then, we make our “things” dependent on having a certain “kinds”.
For example, we could have the following functions for Things.

ajax : Thing Team ;

chelsea : Thing Team ;

messi : Thing Player ;

Next, we make the actions dependent on the kinds of their agents and patients
in the following way.

beat : Action Team Team ;

sign : Action Team Player ;

This is propagated up the tree. A verb phrase from a transitive verb combines
an Action with a Thing, which represents the patient. We construct a verb
phrase for a transitive verb in the following way.

mkVP2 : (agent : Kind) -> (patient : Kind) ->

Action agent patient -> Thing patient ->

VP agent ;

The Action defines the Kinds of its agent and patient, and the function ensures
that the second Kind on which the Action is dependent corresponds to the Kind
of the Thing passed as the patient. This constructs a VP of a certain Kind, which
represents the Kind of Thing it expects as an Agent. The following function
for constructing the complete clause, shows similarly how a semantically cor-
rect clause is constructed by ensuring that the Kind of the Thing and the VP

correspond.

62

mkClause : (agent : Kind) -> Thing agent -> VP agent -> Clause ;

Unfortunately, since there is currently no support in the GF C-runtime for
dependent types, these kinds of semantic dependencies must be modelled in a
different way in the grammar. That is, the types in the grammar must explicitly
indicate which actions are applicable to which agents and patients. Below are
some examples of the agents, patients and actions in the grammar with their
types.

ajax : Team ;

chelsea : Team ;

messi : Player ;

beat : TeamTeamV2 ;

sign : TeamPlayerV2 ;

score : PlayerPointV2 ;

offer : TeamPlayerAmountV3 ;

The convention followed was that the agent is named first, then the patients,
if applicable, and then the syntactic type of the verb itself. For example, sign
would be an action a Team does to a Player. These actions could now be used
to construct the information structural category of theme.

In the case of agent-questions, verbs are supplied with patients, if applicable,
to construct the theme, as shown in figure 5.11. Similarly, in patient-questions,
verbs are supplied with an agent and all required patients but one. Figure 5.12
shows the direct object being supplied, while figure 5.13 shows the indirect
object being supplied. In mod-questions, verbs are supplied with both the
agent and all patients to construct the theme, like in figure 5.14. Note that in
all cases the Question node has only one child.

Each question function has a corresponding answer function, listed in table 5.2.
The function types listed in the last column show the different kinds of themes
and rhemes. All italicised types represent rhemes, while all the other types,
except Sentence, represent themes. In fact, the question function types can be
inferred from the answer function types by removing the rheme type in each
case.

Figures 5.15, 5.16, 5.17, 5.18 show the answers to the wh-questions discussed on
page 61. The captions show the text that is output by the grammar. The tags
rheme, theme and tail were chosen to make it clear which syntactic constituents
represent the information structural constituents. A simple pass over the output
of the grammar replaces these tags with Speech Synthesis Markup Language
(SSML) tags. This is discussed in more detail in section 5.5.

Three things should be noted: firstly, that each Answer has two children, cor-
responding to the theme and rheme of the utterance; secondly, that the theme-
child subtree corresponds exactly to the single child subtree of the Questions

63

Question function Answer function Answer function type
WhoTeamQ WhoTeamA Team -> TeamVP -> Sentence

WhoPlayerQ WhoPlayerA Player-> PlayerVP -> Sentence

WhenQ WhenQ FClause -> TimeA -> Sentence

WhichPointQ WhichPointA PointClS-> Point -> Sentence

WhichContestQ WhichContestA ContestClS -> Contest -> Sentence

HowManyQ WhichPointA PointClS -> Point -> Sentence

WhomPlayerQ WhomPlayerA PlayerClS -> Player -> Sentence

WhomTeamQ WhomTeamA TeamClS -> Team -> Sentence

WhomPlayerQ2 WhomPlayerA2 PlayerClS2 -> Player -> Sentence

HowMuchQ HowMuchA AmountClS2 -> Amount -> Sentence

Table 5.2: Question and answer functions

Figure 5.11: Who offered Daniels twenty thousand euros?

64

Figure 5.12: Whom did Ajax offer twenty thousand euros?

Figure 5.13: How much did Ajax offer Daniels?

65

Figure 5.14: When did Ajax offer Daniels twenty thousand euros?

in figures 5.11 to 5.14; and thirdly, that the function names for constructing
Question types can be converted to their unique corresponding Answer func-
tion names by replacing the final Q with an A. It is therefore clear that the
computation of the answer tree from the question tree consists simply of com-
bining the theme-child with the rheme-child under the corresponding answer
type.

5.3.2 Focus

Orthogonal to the notion of theme and rheme as information structural cate-
gories is the notion of focus. Both the rheme and theme may contain focused
elements, as discussed in chapter 4. The first step in marking focus is to iden-
tify the types in the abstract syntax capable of carrying focus. Usually, this
should correspond to categories low down in the syntax hierarchy. In the foot-
ball grammar, the following types were identified as the types that would carry
focus: Player, Team, Amount, TimeA (time as an adverbial phrase), TimeN (time
as a certain point in time, i.e. a noun) and the number types ACard (for amounts
of money), FCard (for numbers of goals) and FOrd (ordinal numbers for talking
about specific goals).

A wrapper function that returns the same type was created for each type. In
the concrete syntax, this function invokes the RGL’s mark operation with the
tag <foc>. As discussed in chaper 4, focus is a function of the salience or
contrastiveness of an element, and this is dependent on the discourse context
of the utterance. Therefore, the focus in an answer cannot be computed by
inspecting the abstract syntax tree of the question. It must be handled by

66

Figure 5.15: <rheme> Ajax </rheme> <theme> offered Daniels twenty thou-
sand euros </theme>

Figure 5.16: <theme> Ajax offered </theme> <rheme> Daniels </rheme>
<tail> twenty thousand euros </tail>

67

Figure 5.17: <theme> Ajax offered Daniels </theme> <rheme> twenty thou-
sand euros </rheme>

Figure 5.18: <theme> Ajax offered Daniels twenty thousand euros </theme>
<rheme> today </rheme>

68

Figure 5.19: <theme> Ajax offered <foc> Daniels </foc> twenty thousand
euros </theme> <rheme> today </rheme>

keeping track of the discourse state. This is discussed further in section 5.4.

This section concludes with an example of a focus function that is applied to
an element in the theme of an answer. Suppose that the mention of the player
“Daniels” is contrastive in the discourse. The answer tree of figure 5.18 is
modified to the tree in figure 5.19, with the caption showing the linearisation.

5.4 A Question-Answering system

This section describes a question-answering system, football qa.py, developed
in Python and using the Python bindings to the GF C-runtime. In order to use
the application grammar described in section 5.3, the grammar is converted
to a PGF (portable grammar format) file. The Python bindings to the GF
C-runtime allow general functionality available for PGF, such as parsing and
linearising of utterances defined in the grammar, as well as ways of inspecting
and constructing trees. The approach is not type-safe, however, so care must be
taken to construct trees that are defined in the grammar to avoid runtime errors.
The Python module has one access method, reply, which takes a question string
and returns an answer string. Internal methods are defined for traversing the
tree and analysing its nodes. Some methods illustrating how the system works
are given in appendix C in subsection C.1.4.

The construction of the answer tree is a two-step process, and involves deter-
mining the structure of the answer tree, and analysing the question in order
to compute the content of the rheme of the answer. Random answers may be

69

Prolog query Question
sign(X,daniels,today) Who signed Daniels today?
sign(ajax,X,yesterday) Whom did Ajax sign yesterday?
sign(ajax,daniels,X) When did Ajax sign Daniels?
sign(barcelona,X,) Whom did Barcelona sign?

offer(X,fischer,euros,twenty thousand,)
Who offered Fischer twenty
thousand euros?

Table 5.3: Prolog queries from questions

produced by analysing the question to determine the type of the rheme, return-
ing random content of the correct type, and constructing the answer tree by
copying the theme and supplying the new content as rheme. This indicates how
simple the process of constructing the answer is once the content of the rheme
has been determined.

Of course, in a real question-answering system, the content of the rheme should
depend on the content of the question, i.e. the content of the theme. One could
think of the question, or in effect, the theme, as representing a query to be
presented to a database in order to retrieve a result. Prolog-style queries are
easy to read and are able to express the kinds of queries implicit in the wh-
questions considered here. While traversing the theme to analyse its content,
we therefore construct a Prolog query of the form verb(arg1, arg2, ...), where
the verb of the question becomes the name of the relation, and the subjects,
objects or adverbs become its arguments. Once the query is constructed, it may
be presented to a Prolog fact base in order to retrieve the content of the rheme
of the answer. Table 5.3 shows examples of some queries inferred from questions
presented to the question-answering system.

Since the focus of the research is not question-answering per se, but rather im-
proving the prosody of spoken question-answering systems, a dummy mechanism
was developed for resolving the constructed Prolog queries in the prototype sys-
tem. However, the construction of the Prolog-style queries proves the essential
point: that the meaning of the theme subtree can be determined by traversing
and analysing it, and that this can be presented in the form of a query that can
be resolved.

The matter of computing the answer tree was shown in section 5.3 to be straight
forward. The response type is a declarative utterance, and so the root node is of
type DeclUtt, as opposed to QUtt, which represents a question utterance. The
question type is identified, and its corresponding answer type is found. This
serves as the child of the root node. The question tree is then traversed in order
to determine the query it represents. When this is known, the rheme part of the
answer can be computed. The answer type is then supplied with two children:
the theme child carried over from the question, and the newly computed rheme
child. For figures showing such trees in more detail, see section 5.3.

An element is marked as focused in both the theme and the rheme if it is con-
trastive. We first discuss how theme-focus is handled in the question-answering

70

> who signed Fischer

<rheme> Barcelona </rheme> <theme> signed Fischer </theme>

> whom did Chelsea sign

<theme> <foc> Chelsea </foc> signed </theme>

<rheme> Daniels </rheme> <tail> </tail>

Figure 5.20: Example 1 of interaction with question-answering system

> who scored three goals

<rheme> Cole </rheme> <theme> scored three goals </theme>

> who scored two goals

<rheme> Messi </rheme> <theme> scored <foc> two </foc>

goals </theme>

Figure 5.21: Example 2 of interaction with question-answering system

system, and then how rheme-focus is handled.

The way in which theme-focus is determined is based on the contrastiveness of
the elements solely in relation to elements that have been made salient by pre-
vious answers. Consider the short sequence of questions to the system shown in
figure 5.20. Because “Barcelona” was mentioned in the first answer, “Chelsea”,
which is part of the theme, is constrastive to it in the second, and so receives
focus. Another example is the sequence in figure 5.21.

The mechanism for keeping track of contrastiveness involves storing salient, or
recently-mentioned, elements. A queue-like structure is maintained for all the
types in the grammar capable of carrying focus. When an element of a type
capable of carrying focus is presented in either the question or in the answer, it
is added to the appropriate queue. To model the notion of decay in the discourse
state, the queue has a fixed length. With each question-answer cycle, the oldest
elements in all the queues are removed. Checking for contrast, therefore, involves
checking whether it is non-salient and whether a member of its alternative set
has been mentioned recently, which amounts to checking whether the queue of
its associated type is non-empty and does not contain the element in question.

Rheme-focus has an extra dimension to it, especially pertaining to questions
starting with “which” and “how many”. In this grammar, questions starting

71

> which game did Ajax win

<theme> Ajax won </theme> <rheme> <foc> today’s </foc>

game </rheme> <tail> </tail>

> which game did Chelsea win

<theme> <foc> Chelsea </foc> won </theme> <rheme> the game

against <foc> Barcelona </foc> </rheme> <tail> </tail>

Figure 5.22: Example 3 of interaction with question-answering system

with “who”, “whom”, “how much” etc., have as their rheme parts mostly atomic
concepts in this grammar. In such cases, where all the words in the rheme are
completely new (and perhaps contrastive), the focus tag is omitted. However,
the “which”-questions and “how many”-questions have a slightly different dy-
namic. In asking “How many goals did Messi score?”, the notion of “goal” is
mentioned. This explicitly invokes the alternative set of specific goals, which in
this case are cardinal numbers, and it also makes the notion of “goal” salient
in the discourse. Even if this were the first question in a sequence, we would
still expect the answer to put focused emphasis on the number of goals scored:
“Messi scored <foc> two </foc> goals”. The rheme constitutes the phrase “two
goals”, but the focus should not fall on the phrase as a whole. With the notion
of “goal” being made salient by the question, the element that distinguishes the
answer from other possible answers is the number.

Similarly, consider the interaction sequence in figure 5.22. The answer to the
first question assigns focus to the noun “today”. It is the element of the rheme
that distinguishes it from other possible answers, because the notion of “game”
has been explicitly introduced. The second answer shows, on the one hand,
theme-focus, with “Chelsea“ being contrasted with the previously mentioned
“Ajax”, and on the other hand it shows rheme-focus on “Barcelona”, since it
is the element that distinguishes it from other possible answers, with “game”
already being a salient concept.

With this as output from a question-answering system, we can now turn to the
process of using the output to produce prosodically-improved speech synthesis.

5.5 Producing speech with improved prosody

So far in this work, no attempt has been made to make the notion of “prosodically-
improved” speech synthesis precise. To do this now, we briefly consider chal-
lenges facing the actual realisation of prosody in speech synthesis, and then look
at criteria for measuring the success of speech synthesis approaches in produc-

72

ing improved prosody. The rest of the section describes the process that was
followed to produce such prosodically-improved speech synthesis.

5.5.1 Realising prosody in speech synthesis

Two problems face the realisation of improved prosody in speech synthesis:
firstly, that of deciding which prosodic effects are to be realised for a given
utterance, and secondly, of deciding how such effects are, in fact, to be realised
in the synthetic speech (Taylor, 2009). It should be clear that evaluating the
success of solutions to the first problem also depends on the success of solutions
to the second problem. That is, limitations on successful realisation of chosen
prosodic effects necessarily affects the evaluation of the choice of prosodic effects
itself in the resulting synthetic speech.

This research primarily concerns the computation of plausible prosodic effects
for utterances based on their information structure. However, attempting to
show how this leads to prosodically-improved speech synthesis depends on pro-
ducing speech synthesis output that shows some prosodic improvement, which
is in turn dependent on current techniques for realising prosodic effects. Recog-
nising the limits of such techniques is helpful in deciding how best to measure
the success of this work.

There are, broadly speaking, two ways in which a synthetic voice with certain
prosodic behaviour can be developed from marked-up input. The first is to
train a voice on data that has been marked with the necessary information, so
that the resulting prosody is implicitly modelled when the voice is built. The
second is to use an existing voice and explicitly manipulate its signal during
the synthesis process, based on prosodic information in the input. The first
approach would require specially prepared data, while the second would require
a signal processing module capable of effecting the necessary changes. In either
case, a module that supports the processing of the markup is needed.

Speech Synthesis Markup Language (SSML) is a W3C standard for speech syn-
thesis, and its essential role is “to provide authors of synthesisable content a
standard way to control aspects of speech such as pronunciation, volume, pitch,
rate, etc. across different synthesis-capable platforms” (Burnett et al., 2004).
Its tags and attributes for prosody and style provide what might be called in-
terpreted and explicit control. An example of an interpreted tag would be
“emphasis”, which simply instructs the synthesiser to emphasise the content
enclosed in the tag. It leaves the decision on how to achieve emphasis to the
synthesiser, which might choose to modify the volume, pitch, rate, etc. in a way
that fits its own requirements. An example of a tag with an explicit attribute is
“prosody”, whose “duration” attribute takes values in seconds or milliseconds,
and directly instructs the synthesiser to give the enclosed content the exact
duration specified (Burnett et al., 2010).

MARY (Schröder and Trouvain, 2003) is an open-source text-to-speech (TTS)
engine that supports SSML input. It is distributed with several voices that can

73

be manipulated using SSML. This makes it a suitable fit for this research.

5.5.2 Criteria for assessing prosody in speech synthesis

Taylor notes that the two main goals of speech synthesis is, firstly, to communi-
cate the desired message, and secondly, to have the voice sound human-like. In
the literature, these two goals are referred to as intelligibility and naturalness
(Taylor, 2009).

Let us consider naturalness first. In order to make a synthetic voice sound more
human-like, the first course of action would be to improve the sound quality
of the voice. This would include, for example, reducing buzzing, scratches and
other mechanical noise. The next step would be to attempt to mimic other char-
acteristics of human voices, particularly the prosodic aspects of human speech:
appropriate intonation contours, phrase breaks, boundary tones and pitch ac-
cents. There have been various approaches to measuring the naturalness of
synthetic speech, specifically with regards to prosody, including informal inspec-
tion of the signals produced, formal objective evaluations and formal subjective
evaluations. Objective evaluations are usually concerned with goodness of fit
between a synthetic voice and the original prosody, while subjective evaluations
make use of perceptual tests. Such perceptual tests have themselves taken many
different forms, including directly judging whether the synthetic speech is natu-
ral, whether the prosody itself is natural, and comparing synthetic speech with
natural speech (Xu, 2012).

Intelligibility is for the most part considered to be solved, if by it one means
that the general meaning, or propositional content, of the utterance can be
understood by the user. Taylor refers to this as “decoding the message”, and in
this respect, one might even argue that this problem has been solved for several
decades (Taylor, 2009). However, if it is the case that information structure is
encoded via prosody in a language such as English, it follows that improving the
prosody of a system should also improve its intelligibility. Here, however, the
notion of intelligibility must be broadened to include communicating not only
the propositional content of utterances, but also information structural content.

Consequently, for a system to claim that it produces “prosodically-improved”
speech synthesis, it should produce a measured improvement of at least one, and
ideally both, intelligibility and naturalness. Given the scope of this research,
the primary criterium for evaluating the claim of prosodically-improved speech
synthesis is improved intelligibility of information structural content. That is,
the goal is to test whether there is a difference between the intelligibility of state
of the art synthesis and modified synthesis based on the output of the kind of
markup generated from a system as described in section 5.4.

In this section we discuss the attempt to produce prosodically-improved syn-
thetic speech, specifically with regards to intelligibility of information structural
content. The method, using SSML, is discussed, and the approaches taken
to convert the output of the question-answering system to SSML markup are

74

shown. The limitations of the approach taken are discussed in relation to the
two problems mentioned above, i.e. firstly, of deciding which prosodic effects to
realise, and secondly, of realising these effects. Also, the decisions made with
regards to which aspects of improvement were aimed for, are reviewed.

The following chapter evaluates the four stages of the pipeline; from extending
the RGL, to producing an application grammar exploiting it, to the develop-
ment of a system that produces answers to questions with information struc-
tural markup, and finally to producing prosodically-modified speech synthesis.
The evaluation of the last stage includes a discussion of the results of a per-
ceptual experiment conducted in order to compare the intelligibility of modified
and unmodified speech synthesis, to determine whether “prosodically-improved”
speech synthesis was achieved.

5.5.3 Speech synthesis with SSML

SSML elements and attributes are divided into three categories: document struc-
ture, text processing and pronunciation; prosody and style; and other elements.
The second group, prosody and style, are primarily relevant to this research.
These elements include the “voice” element, for choosing either specific voices,
or voices that meet certain requirements, such as gender and age. The “em-
phasis” element has been mentioned before, the “break” element provides ways
to insert silent breaks in the synthesis, while the “prosody” element provides
control over the attributes “pitch”, “contour”, “range”, “rate”, “duration” and
“volume”. Most of these attributes can take so-called interpreted or explicit
values. For example, the “pitch” attribute may take values in Hz to indicate
the exact pitch with which the content should be synthesised, or it may take rel-
ative changes to the baseline pitch value in either Hz or percentages to indicate
with which pitch the content should be synthesised relative to the baseline pitch
value. These are clearly explicit commands to the synthesiser. However, it may
also take the values “x-low”, “low”, “medium”, “high”, “x-high” or “default”
(Burnett et al., 2010). The decision of how to realise these values are left to the
synthesiser, and can therefore be called interpreted.

The advantage of the explicit values is clearly the precise control over the at-
tributes it provides. However, it also requires precise use. That is, it is not very
intelligent and its successful use is subject both to precise knowledge about
the content to be synthesised, such as the expected duration and which sylla-
bles are to be emphasised, as well as knowledge of the output produced by the
synthesiser, such as the pitch contour it produces for the input.

For example, suppose the word “Chelsea” is to receive a pitch accent. One
might use the “prosody” tag with its “contour” attribute in the following way:

<prosody contour="(5%,+80%) (50%,0%)"> Chelsea </prosody>

The above markup indicates that at the 5% duration mark, the pitch level

75

should be raised to 80% of the baseline value, and at 50% duration it should
return to the baseline value. This would, in general, produce a reasonable pitch
accent on the word “Chelsea”, and perhaps many other two-syllable words whose
emphasis is on the first syllable. However, suppose the word to receive pitch
accent is “United”. Here, the natural emphasis of the word falls on the second
syllable, and this syllable should therefore carry the pitch accent. Now, the
relative duration of the first syllable is needed in order to know at which point
the pitch level should be raised. It might be something like the following:

<prosody contour="(20%,+80%) (60%,0%)"> United </prosody>

However, producing this markup requires that decisions be made up front that
are more effectively dealt with by the synthesiser itself. In fact, unless the exact
behaviour of the synthesiser on all possible input is known beforehand, there is
no reliable way of predicting precisely enough the way in which pitch accents
should be realised. To complicate matters further, so far we have assumed that
the synthesiser produces a sufficiently neutral prosody that can be manipulated
safely by these explicit commands. However, it may be that certain words
produced by the synthesiser already bear a pitch contour that resembles a pitch
accent. Explicit manipulation of this might result in very unnatural output.
These are the kinds of limitations on the explicit controls of SSML that must be
born in mind when using it to produce prosodically-modified speech synthesis.

The interpreted values might simplify the problem, since they leave it to the
synthesiser to make the decisions discussed above, and since it is already re-
lied upon to make intelligent choices regarding the issues of syllable emphasis,
markup commands could be interpreted intelligently. However, this binds the
user of the system to the choices made by the synthesiser, which might not fit
in well with the intended use. In the case of MARY and this work, this was un-
fortunately the case. This meant that a controlled approach had to be followed:
both the vocabulary of the input, as well as the permissible structures, were
controlled to produce reasonable results via explicit control commands. For-
tunately, the syntactic scope of the grammar was not influenced, and all three
kinds of wh-question-pairs could be presented to the system, and their prosody
modified to an acceptable degree.

To illustrate the sufficiency of the information structural markup involving the
tags “theme”, “rheme”, “tail” and “focus”, a script was used that replaced the
information structural tags with SSML markup, based only on the tags them-
selves. No other analysis of the output of the question-answering system was
done. Due to the complicated nature of explicit control via SSML as discussed
above, a simplified scheme for prosody was followed. Specifically, due to the
unpredictability of the pitch contour of the synthesis output, the phrase level
information structure was only indicated by the “break” element. A break was
introduced between the theme and rheme phrases of the utterance, although
not between the rheme and tail parts, if they were present. Focus was achieved
by simulating pitch accents on the content using the “prosody” tag’s “contour”
attribute along with its “rate” attribute. The following is an example of an

76

utterance that has been marked up for both theme and rheme, as well as focus.
The attributes and values of the “speak” element are omitted.

<speak ... >

Barcelona won <break time="3ms" />

<prosody rate="0.9" contour="(5%,+60%) (10%,+60%) (50%,0%)">

yesterday’s </prosody> game

</speak>

The values of the attributes were arrived at informally and were influenced by
the general behaviour of the voice that was chosen. The male UK English voice,
distinguished as “dfki-spike-hsmm”, was chosen due to its relatively neutral and
monotonous prosody. This ensured more predictability, especially in terms of
pitch contour. Incidentally, this shows that when following the explicit control
route described here, prosodically-rich data could present more of a risk to
successful synthesis than data that exhibits less prosodic variation.

The grammar used in the question-answering stage to produce marked-up out-
put was limited to include only pitch-bearing words where the emphasis falls on
the first syllable. In terms of teams, examples include “Chelsea” and “Barcelona”,
players include “Fischer” and “Messi”, while the adverb “yesterday” was al-
lowed and “today” was not. The result was an improvement in the prosody of
the speech synthesis, as is argued in the next chapter.

77

Chapter 6

Evaluation

In evaluating this research, we have to determine whether the implemented sys-
tem puts us in a position to answer the research questions. The system consists
of four components, each intended to answer certain subquestions, and these
serve as the first guidelines for identifying the specific goals of each component
in the system. Since the system is concatenation of dependent processes, the
success of each component can be gauged by viewing it from the point of view of
the component that directly depends on it. For the purposes of this discussion,
we refer to this directly dependent component as the successor. Besides the
relevant subquestions, an important question to be asked of each component
is then: How does the component enable the successful implementation of its
successor?

Therefore, with the success of each component being partly measured by its
successor’s use of it, we have to evaluate the system in reverse, so to speak.
We start by considering the question-answering (QA) system, which produces
the markup required for appropriately modified speech synthesis. Then we
consider the application grammar that forms the basis of the question-answering
system. We continue by considering the extension to the English Resource
Grammar Library (RGL), which provides the application grammar with the
required functions and operations. Finally, having thus evaluated the process of
producing modified speech synthesis based on information structure markup, we
report the results of a perceptual experiment to evaluate whether the modified
speech synthesis is in fact an improvement in terms of its prosodic realisation.

6.1 Question-answering system

The purpose of the question-answering component is to produce answers, in
the form of text strings, that are marked in such a way that it can be used to
produce prosodically-improved speech synthesis. We elected for the question-

78

answering system to use markup that communicates the information structure
of the utterance. As explained in section 5.5, the markup is abstract and could
be used either in the training of a new synthetic voice or in the control of an
existing synthetic voice via synthesis engines with support for SSML markup.
We have elected the second approach for this research. The question-answering
system may therefore be regarded as successful if the output can readily be
converted into the desired SSML.

The first aspect to evaluate is the ability of the question-answering system to
produce correct answer strings when provided with questions. In order to test
this, 100 random questions were generated from the grammar and fed to the
question-answering system. The output was checked by hand to confirm that
the information structure marked in the answers were correct.

The next step is to evaluate the usefulness of the question-answering system’s
output. SSML, being a means of communicating the realisation of prosodic
features, is used essentially to encode theory of prosody. To test the usefulness
of our markup, we have to be able to produce SSML that encodes an established
theory, and the tunes for theme and rheme described by Steedman (1991),
following Hirschberg and Pierrehumbert (1986) and others, provide just this.

Suppose we have the following sentence, with its autosegmental-metric (AM)
description.

(CHELSEA won) (the game against ARSENAL).
L+H* LH% H*LL%

Here, the theme contains a focused element, “Chelsea”, as well as other elements,
while the rheme consists of unfocused elements followed by one focused element.
In this case we might expect to replace the AM description with SSML as follows:

AM SSML
L+H* <prosody contour="(5%,-50%) (50%,+50%)>"

LH% <prosody contour="(5%,-20%) (50%,+20%)> "

H*LL% <prosody rate="0.9" contour="(5%,+70%) (50%,0%)">

The desired SSML markup for the entire sentence would be as follows:

<speak ... >

<prosody contour="(5\%,-50\%) (50\%,+50\%)> Chelsea </prosody>

<prosody contour="(5\%,-20\%) (50\%,+20\%)> won </prosody>

the game against

<prosody rate="0.9"

contour="(5\%,+70\%) (50\%,0\%)> Arsenal </prosody>

<\speak>

Does the output of the question-answering system allow us to produce this
SSML? For this sentence, the question-answering system would produce the
following.

79

<theme> <foc> Chelsea </foc> won </theme>

<rheme> the game against <foc> Arsenal </foc> </rheme>

It is clear that we can infer from this output that the “Chelsea” element is
theme-focused, that “won” makes up the rest of the theme, that “the game
against” is part of the rheme, and that the rheme-focused element is “Arse-
nal”. Having identified this structure, these elements can simply be wrapped
in the SSML tags that corresponds to their information structure status, pro-
ducing the desired SSML shown above. Whether such SSML markup produces
prosodically-improved speech synthesis is addressed in section 6.4. At the mo-
ment, however, our concern is whether the question-answering system allows us
to produce the desired SSML.

The example shows that the required mechanism involves, firstly, identifying
the focused and unfocused sequences of words that make up the theme and
rheme of the utterance, and secondly, assigning to each sequence an enclosing
prosody tag with the appropriate attribute values, based on the information
structural status of the sequence. In the example, a sequence identified as
theme-focused is enclosed with <prosody contour="(5%,-50%) (50%,+50%)>

</prosody>, while a sequence identified as rheme-unfocused does not receive
any modification via the prosody tag.

The markup supplied by the grammar completely specifies the sequences of
words that have the same information structural status in the two-tiered scheme,
and this is sufficient for assigning the desired SSML markup. We may therefore
conclude that the question-answering system produces useful output for modify-
ing speech synthesis according to the theory of prosody of Steedman (2012) and
others. This is a partial answer to research subquestion 5, relating to the abil-
ity of the question-answering system’s output to lead to prosodically-improved
speech synthesis.

6.2 Application grammar

The purpose of the application grammar is to provide the functions necessary
for the question-answering system to produce answers from wh-questions. The
grammar may be evaluated in terms of its coverage, as well as its contribution
to the success of the question-answering system, whose input and output struc-
tures it defines. We have already established the successful functioning of the
question-answering system. What remains is to understand how the applica-
tion grammar enables the question-answering system to analyse its input and
produce the correct output.

A test set of 40 question sentences was developed, which was intended to cover
the required scope of the grammar (see appendix B, subsection B.1.1). In fact,
the set of 40 sentences functions as a specification for the coverage of the gram-
mar. If the grammar successfully parses each sentence, and if the test set can

80

be shown to cover the required linguistic scope of the research, the coverage of
the application grammar may be deemed sufficient.

Let us consider the linguistic coverage of the test set first. The sentences cover
the three distinct ways of constructing an answer from a theme and rheme,
as discussed in 5.2, as well as instances of theme-focus and rheme-focus (see
chapter 4). This means that they cover the cases in which the subject, object
or some adjunct of a sentence functions as its rheme, while the other parts of
the sentence constitute the theme. Therefore, the sentences provide coverage of
the general syntactic structures required for the purposes of this research.

Secondly, the grammar was developed to parse all 40 sentences used as a specifi-
cation. The results appear in appendix B in subsection B.1.2. The final coverage
size of the grammar, when allowing at most one focused element in the theme
and in the rheme, and with the lexicon reduced to one function per type, is 252
answer sentences. If focus were disregarded, the grammar would cover 45 answer
sentence types, along with the 45 corresponding question sentence types. These
45 sentence types increase to almost 6000 when a function for each category in
the lexicon is added to the grammar.

In addition, the effectiveness of the grammar is measured by its ease of use in
the question-answering component, i.e., how well does the grammar structures
facilitate the analysis of the incoming questions, and how are these structures
reusable in the production of the answers returned?

The grammar defines 10 question functions, which cover the three kinds of
theme-rheme distinctions discussed in section 5.2.2. They are listed in table 5.2
with the corresponding answer functions and their functions types. In section 5.3
we showed the structural correspondence between the questions in the grammar
and the answers.

Analysing the question requires an understanding of the elements present in
the theme in order to construct a query to determine the content of the rheme,
while producing an answer requires using the question’s corresponding answer
function to produce the correct abstract syntax tree by supplying the answer
with its theme-child and the newly determined rheme-child. The latter step
is quite simple: it consists of looking up the question function’s corresponding
answer function, and presenting as its arguments the theme, copied from the
question, and the rheme, determined from a query. It is the former step, that
of analysing the question in order to compute the content of the rheme, that
presents more of a challenge.

From the construction of Prolog-style queries, as discussed in section 5.4 and
shown in table 5.3, it is clear that the traversal of the theme-structures is suc-
cessful. Each Prolog query presents the verb of the question as the name of its
predicate, while the various subjects, objects and adverbs are presented as its
arguments. This reflects on the application grammar’s design, and its incorpo-
ration of all the necessary elements of the question into its theme structure.

Indicating focus in the answer structure is similarly successful. The application

81

Figure 6.1: (Ajax) (offered Daniels twenty thousand euros)

grammar provides specific categories capable of carrying focus, as well as a
function for each that ensures that such elements are marked up correctly. Once
an element is determined as carrying focus, updating the answer tree structure
simply requires inserting such focus functions above the appropriate elements.
Figure 6.1 shows an answer tree where no elements are focused, while figure 6.2
shows the effect of applying focus to the element “Daniels” in the theme.

It is clear that the application grammar covers the required scope, and admits
successful interaction with it for analysing questions and producing answers.

6.3 RGL extension

The purposes of extending the English RGL are, firstly, the addition of functions
for building tree structures that encode information structure, and secondly,
the addition of operations for linearising tree structures so that the underlying
information structure is communicated in the resulting string.

In section 6.2 we showed that the application grammar met the scope require-
ments of the test set of sentences. This necessarily means that the RGL must
also meet the scope requirements of the test set. In fact, coverage of the test
sentence cases is the first aspect on which the RGL extension is to be evaluated.
As discussed in section 5.2, the extension allows for three different ways in which
to construct an answer to a wh-question from a theme and a rheme.

Without the extension, the RGL is able only to parse the (unmarked) answers in

82

Figure 6.2: (Ajax) (offered DANIELS twenty thousand euros)

the test set as being instances of predication. That is, in each case, the two-way
divide of the answer coincides with the information structure associated with
who-answers, or answers to questions typically starting with “who”. However,
with the extension, the unmarked answers of the test set are parsed in multiple
ways, via the functions added to the RGL, as discussed in section 5.2.2. The
different parse trees represent different information structures, and so we may
conclude that the RGL extension achieves its first goal of encoding information
structure directly in tree structures.

In addition to these functions for achieving multiple parses of unmarked text,
the extended RGL also enables the communication of the information structure
in the linearisation of the tree, via operations for linearising syntactic categories
in the RGL with user specified tags. We give an overview of how this feature
was used to enable the application grammar to produce appropriately marked-
up linearisations for its answer functions.

The operations for marking syntactic categories in the RGL were used to com-
municate both tiers of information structure. The overloaded mark operation
was used to mark categories that represent themes and rhemes in the application
grammar, as well as categories capable of carrying focus. Table 6.1 shows an
example of each of the three ways of dividing an answer into theme and rheme
with the use of the mark operation.

To mark categories capable of carrying focus, functions in the application gram-
mar used the mark operation as well. This was done in a similar way as the
marking of theme and rheme. A typical example is the function for marking a
Team element as focused, presented in figure 6.3.

The use of the overloaded mark operation of the RGL extension shows how
the second goal of the extension is achieved. With both goals achieved, we
may conclude that the RGL extension successfully encodes and communicates
the information structure required to produce modified synthetic speech. We

83

-- abstract syntax function

focusTeam : Team -> Team ;

-- concrete syntax linearisation function

focusTeam t = mark "foc" t ;

-- typical result

<foc> Barcelona </foc>

Figure 6.3: A function for focusing Team elements

Theme-rheme division Example

Predication
WhoTeamA s vp = mkS pastTense

(mkCl (mark "rheme" s) (mark "theme" vp))

Adverbial phrases
WhenA cl t = mkS pastTense (AddAdjunct

(mark "theme" cl) (mark "rheme" t))

Slash categories
WhomTeamA cl answer = mkS pastTense

(ComplClSlash (mark "theme" "tail" cl)

(mark "rheme" answer))

Table 6.1: Marking theme and rheme

now turn to the issue of determining whether this modification is, in fact, and
improvement.

6.4 Perceptual experiment

6.4.1 Aim and hypothesis

In section 5.5 we provided a definition of “prosodically-improved speech synthe-
sis” as well as a slightly adapted definition of intelligibility that better describes
the aim of this research. We also explained that this work focuses on this notion
of intelligibility, which extends beyond propositional content to include informa-
tion structural content. The aim of the perceptual experiment described in this
section is therefore to show that the SSML output produced by the system and
discussed in section 5.5 results in speech synthesis with improved intelligibility.

We therefore adopt the following hypothesis:

Some form of markup of the kind discussed so far will result in
speech synthesis with improved intelligibility of information struc-
tural content.

84

6.4.2 Experiment setup

For the perceptual experiment, we elected a simplified SSML scheme, in order
to avoid the risks described in section 5.5.3. However, the scheme is expressive
enough to take into account all the necessary aspects of information structure:
theme and rheme boundaries are indicated by phrase breaks of 3 milliseconds,
rheme phrases are spoken at a slower rate (90% of the original rate) and pitch
accents are produced by changing the f0 contour to rise with 70% initially and
fall back to the original pitch halfway through the word. Although significantly
simplified from the tunes described by Steedman (1991), this scheme neverthe-
less captures the orthogonal nature of the information and its effects on prosody.

Furthermore, we employed the open-source TTS system, MARY, to process and
apply the SSML markup to its synthesis process. The essence of the perceptual
test was to determine whether participants could better identify correctly the
information structural content of speech produced by MARY from SSML input,
than they could identify the same in speech produced by MARY with only
bare text as input. In order to understand to what degree the various tiers of
information structure contribute to the intelligibility of the modified synthetic
speech, the markup scheme was applied in three different ways: one set of
utterances were produced from input where only phrase breaks were included,
another set of utterances were produced from input where only pitch accents
were included, and yet another set of utterances were produced where both
phrase breaks and pitch accents were included. A set of utterances were also
produced where no prosodic modification was attempted at all. The entire
set consisted of fourteen utterances produced in the four ways mentioned here,
totalling 56 utterances of synthetic speech. Some of the utterances contained
the same words, but were intended to have different prosodic realisations.

Three participants for the experiment were chosen from among mother-tongue
speakers of South African English with some experience in speech technology.
The latter requirement was decided on in order to ensure some familiarity with
the inherent limitations of speech synthesis in general. None of the participants,
however, are directly involved in speech synthesis research.

The experiment consisted of presenting the participant with the synthetic speech
of an answer to a wh-question. The possible wh-questions it could be an an-
swer to were also presented, along with an option labelled “Cannot tell”. The
participant was asked to choose from among these options, based on the syn-
thetically spoken answer. For example, a speech snippet may consist of the
words “Chelsea beat Barcelona yesterday”. The possible questions this could
be an answer to are:

1. Who beat Barcelona yesterday?

2. Whom did Chelsea beat yesterday?

3. When did Chelsea beat Barcelona?

85

Figure 6.4: Screen shot of perceptual experiment

The 56 utterances were presented to the participants randomly, and the order of
the options were also shuffled for each utterance. The participants were allowed
to listen to the utterance as many times as they chose. Figure 6.4 shows a screen
shot of the experiment.

6.4.3 Results

The results for the options chosen by each participant were categorised as either
“correct”, “wrong” or “cannot tell”. We assume that an utterance’s information
structure is “intelligible” if participants tend to interpret it “correctly”. We
discuss the results as summarised in table 6.2 on page 87.

In 5 of the 14 sentences, the markup made only a small improvement to the “cor-
rectness” of the options chosen, since participants were “wrong” in most cases,
whether the speech was generated with markup or without. These sentences
include two “when”-questions, a “which”-question and two “whom”-questions.

Two sentences were almost always “correctly” interpreted by the participants.
Perhaps it is significant that these two sentences were both “who”-sentences,
which could be an indication that the MARY voice’s existing prosodic behaviour
favours such an interpretation to some degree. Even here, however, a small
improvement was achieved by the marked-up speech.

86

Correctly interpreted
Sentence group Group size No markup With Markup
Mostly wrong 5 7% 18%
Mostly correct 2 83% 94%
Improved intelligibility 6 22% 65%
Reduced intelligibility 1 67% 22%

Table 6.2: Summary of results

Six sentences indicate that some form of markup resulted in significantly more
“correct” interpretations, averaging a correct interpretation 65% of the time,
while the unmarked speech averaged a correct interpretation only 22% of the
time. It should be mentioned that the three different kinds of markup faired
equally well in yielding “correct” interpretations. The sentences include exam-
ples of all wh-elements, except “when”.

Finally, for one sentence the markup speech was entirely misleading, yielding a
correct interpretation only 22% of the time, while its corresponding unmarked
utterance was correctly interpreted 67% of the time. The question for was
“Which game did Barcelona win?”, and the answer was “Barcelona won yester-
day’s game”. However, the unmodified speech of the answer already contains a
significant pitch accent on the word “game”. On top of this, the rheme-focused
element, “yesterday”, receives a pitch accent in the marked-up speech, which
exaggerates the focus on the rheme elements. The same risk was identified by
Li et al. (2012).

This shows that, due to a degree of unpredictability, SSML-modified speech syn-
thesis may, in certain cases, lead to synthesis that is so misleadingly unnatural
that the default, unmodified pitch contour is preferable. Figure 6.5 shows the
unmodified speech and figure 6.6 the speech with both a break and a modified
pitch contour. In both cases the vertical dotted red line indicates the start of
the rheme’s first word, “yesterday”. The top bar shows the amplitude of the
utterance, the bottom shows its spectrogram, and the blue line in the bottom
bar shows the f0 contour.

6.4.4 Conclusion

The results tend to confirm the hypothesis, since in almost half of the cases, a
significant improvement in the intelligibility of the intended information struc-
ture was observed, while more than half of the cases indicate good intelligibility.
Only one case resulted in reduced intelligibility, but this could be a direct result
of the unpredictability of using SSML to modify the prosodic behaviour of a
synthetic voice.

Given the simplicity of the markup scheme followed in this research, the re-
sults indicate strongly that a finer-grained, more intelligent application of the
markup produced by the question-answering system would result in significantly

87

Figure 6.5: Amplitude, spectrogram and f0 contour for unmodified speech

88

Figure 6.6: Amplitude, spectrogram and f0 contour for modified speech

89

improved prosody in speech synthesis. Suggestions for such a system are pre-
sented in the next chapter.

6.5 Answering the research questions

We now revisit the research questions stated in chapter 1 in order to determine
whether they have been answered.

With regards to subquestions 1 and 2, section 6.3 shows that information struc-
ture is successfully encoded in the tree structures built from the extended RGL,
and that the resulting linearisations communicate clearly what the underlying
information structure of the trees are.

Subquestion 3 relates to the development of an application grammar that pro-
vides functions for representing wh-question-answer pairs in a structurally re-
lated way. We saw in section 6.2 that such an application grammar was devel-
oped and used in a question-answering system.

The question-answering discussed in section 6.1 demonstrates the ability of the
question-answering system to receive wh-questions as input and to produce suit-
ably marked answers as output, using the application grammar developed for
this purpose, as referred to in subquestion 4.

The final subquestion is addressed in section 6.1, where the output of the
question-answering system is evaluated directly, as well as in section 6.4, where
the result of processing the output of the question-answering system produces
modified speech synthesis. The perceptual experiment discussed in section 6.4
indicates that an improvement in the prosody of speech synthesis was achieved.

In the next chapter we consider the main research question in light of the spoken
question-answering system developed and discussed in the preceding chapters.

90

Chapter 7

Conclusion

We now return to the main research question. The question, “How can the novel
combination of GF and insights from CCG be used to develop a grammar that
assists in building a prosodically-improved CTS question-answering system in
English?” must be addressed with reference to three main aspects:

1. The novel combination of GF with insights from CCG;

2. The development of a grammar;

3. The goal of the research is prosodically-improved concept-to-speech syn-
thesis in an English question-answering system.

GF has been used recently to extend AceWiki (Kaljurand and Kuhn, 2013),
which is an online semantic wiki. This wiki allows for adding wh-questions
about the content of the wiki that are automatically interpreted and answered.
GF was used to extend the wiki, which uses Attempto Controlled English (ACE),
to nine other languages. Each statement of fact or question in each of the other
languages was translated with GF to ACE, interpreted and answered in ACE,
and translated back into the original language.

This research is significantly different from the approach followed by Kaljurand
and Kuhn (2013) and Fuchs et al. (2013) in that it does not use ACE, but
instead uses GF trees directly to interpret the questions asked. It would be
quite possible to extend this work to other languages supported by GF in a
way similar to AceWiki. However, this would require the RGLs of the other
languages to also support the information structural categories and functions
present in the extended English RGL, as discussed in chapter 5. It is this point
that illustrates the contribution of this research, in answer to the main research
question:

1. Following Steedman (2001), we assumed an isomorphic relation between
information structure, syntactic structure and prosodic structure. We

91

extended the GF English RGL with functions that, in a constrained way,
allow for creating similar syntactic structures as would be possible in CCG.

2. We then exploited these structures in the creation of a grammar that
was used in a question-answering system for producing enriched natural
language.

3. This output was then shown to produce prosodically-improved speech
synthesis when transformed into appropriate SSML input to the MARY
speech synthesis engine.

There are two clear directions for future work. The first concerns the grammar
development aspects of the research. This would involve the further extension
of the RGL to cover more verb types, as mentioned in section 4.2, and would
also include research into the information structural interpretation of utterances
containing such verbs. Furthermore, the scope of the questions and answers
themselves may be extended beyond wh-question-answer pairs.

The second direction concerns the generation of prosody in speech synthesis
from the output of a question-answering system as described in section 5.4.
The approach taken here uses off-the-shelf technology. However, SSML does
not contain tags for marking information structure itself. Instead, the informa-
tion structure markup from the question-answering system is interpreted via a
theory of prosody Steedman (1991), and the abstract description of this theory is
converted into SSML commands, via a empirical process, to produce reasonable
output. However, this leads to the limitations described in section 5.5.3.

One possible approach to take might be the extension of SSML with tags for
marking information structure, similar to the “emph” (for emphasis) tag. The
“emph” tag allows the synthesis engine to determine the prosodic realisation of
the emphasised content in an intelligent way, taking into account the contribu-
tion of its natural language processing module. Similarly, information structure
tags - perhaps “theme”, “rheme” and “focus” - would allow a more intelligent
prosodic realisation of the content. It would solve, for instance, the problem
of how to correctly place the pitch accent on a word by simply identifying and
altering its stressed syllable.

A second possibility is the use of the the markup from the question-answering
system while training a voice. The information structure markup would be anal-
ysed during the natural language processing step and would form part of the
features of the data used for training. The voice’s prosodic behaviour associated
with the information structure in the sentences would then be modelled implic-
itly. Since there is no external alteration made on the synthesised speech that is
produced from such a system, this approach might result not only in improved
intelligibility of the information structural content, but also in an improvement
of the naturalness of the utterance.

Finally, an important possible extension of this work must be pointed out. The
abstract syntax that uses information structure as its basis for constructing
question and answer utterances is inherently language independent. In English,

92

the information structure is communicated via specific prosodic patterns in spo-
ken language. Other languages, however, may employ other means of realising
information structure. The work described here provides a framework within
which to explore these strategies for communicating information structure in
a multilingual environment. This would enable building multilingual question-
answer systems with prosodically-improved speech synthesis.

This work has shown that information structure plays a noticeable role in pro-
ducing prosodically-improved speech synthesis in the context of current speech
synthesis techniques. Furthermore, this research has shown that the notion of
information structure as the basis for describing the structure of question-answer
pairs in an abstract syntax grammar could be coupled with the parsing, linearis-
ing and tree-manipulating functionality provided by GF to improve the prosody
of concept-to-speech synthesis for spoken question-answering in English.

It is clear, however, that several questions remain to be answered, in the direc-
tion of approaches to generating prosodically-improved speech synthesis, and
also of further exploring the relationship between information structure and
syntax via monolingual as well as multilingual grammars.

93

Appendix A

Bibliography

Ahrendt, Wolfgang; Baar, Thomas; Beckert, Bernhard; Bubel, Richard; Giese,
Martin; Hähnle, Reiner; Menzel, Wolfram; Mostowski, Wojciech; Roth, An-
dreas; Schlager, Steffen, and Schmitt, Peter H. The KeY Tool. Software and
System Modeling, 4:32–54, 2005.

Alter, Kai; Pirker, Hannes, and Finkler, Wolfgang. Concept to Speech Genera-
tion Systems. In Proceedings of ACL97, Concept to speech generation systems
workshop, 1997.

Angelov, Krasimir. GF Runtime System. PhD thesis, University of Gothenburg,
2009.

Angelov, Krasimir and Enache, Ramona. Typeful Ontologies with Direct Mul-
tilingual Verbalization. Controlled Natural Language, pages 1–20, 2012.

Angelov, Krasimir; Bringert, Björn, and Ranta, Aarne. PGF: A Portable Run-
time Format for Type-theoretical Grammars. Journal of Logic, Language and
Information, 19(2):201–228, December 2009.

Beckman, Mary E. and Hirschberg, Julia. The ToBI Annotation Conventions,
1994. URL http://www.cs.columbia.edu/∼agus/tobi/tobi convent.pdf.
Accessed 2013-11-28.

Bierner, Gann. TraumaTalk: Content-to-Speech Generation for Decision Sup-
port at Point of Care. In Proceedings of the AMIA Symposium, pages 698–702.
American Medical Informatics Association, 1998.

Blackburn, Patrick and Bos, Johan. Representation and Inference for Natural
Language. 1999.

Bringert, Björn. Speech Recognition Grammar Compilation in Grammatical
Framework. In Proceedings of the Workshop on Grammar-Based Approaches
to Spoken Language Processing, pages 1–8. Association for Computational
Linguistics., 2007.

94

Bringert, Björn. Speech Translation with Grammatical Framework. In Proceed-
ings of the workshop on Speech Processing for Safety Critical Translation and
Pervasive Applications, pages 5–8, 2008. ISBN 9781905593521.

Bringert, Björn; Ljunglof, Peter; Cooper, Robin, and Ranta, Aarne. Multimodal
Dialogue System Grammars. In Proceedings of DIALOR05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue, pages 53–60, 2005.

Büring, Daniel. Semantics, Intonation and Information Structure. In The Oxford
Handbook of Linguistic Interfaces, pages 1–36. OUP, 2007.

Burnett, Daniel C.; Walker, Mark R., and Hunt, Andrew. Speech
Synthesis Markup Language (SSML) Version 1.0, 2004. URL
http://www.w3.org/TR/speech-synthesis/. Accessed 2013-10-18.

Burnett, Daniel C.; Shuang, Zhi Wei; Baggia, Paolo; Bagshaw, Paul; Bodell,
Michael; Huang, De Zhi; Xiaoyan, Lou; McGlashan, Scott; Tao, Jianhua; Jun,
Yan; Fang, Hu; Kang, Yongguo; Meng, Helen; Xia, Wang; Hairong, Xia, and
Wu, Zhiyong. Speech Synthesis Markup Language (SSML) Version 1.1, 2010.
URL http://www.w3.org/TR/speech-synthesis11/. Accessed 2013-10-22.

Calhoun, Sasha; Nissim, Malvina; Steedman, Mark, and Brenier, Jason. A
Framework for Annotating Information Structure in Discourse. In Pie in the
Sky: Proceedings of the ACL workshop, pages 45–52, 2005.

Caprotti, Olga. WebALT! Deliver Mathematics Everywhere. In Society for In-
formation Technology & Teacher Education International Conference, volume
2006, pages 2164–2168, March 2006.

Dannélls, Dana; Damova, Mariana; Enache, Ramona, and Chechev, Milen. Mul-
tilingual online generation from semantic web ontologies. Proceedings of the
21st international conference companion on World Wide Web - WWW ’12
Companion, page 239, 2012.

Davis, Brian; Enache, Ramona; Van Grondelle, Jeroen, and Pretorius, Lau-
rette. Multilingual Verbalisation of Modular Ontologies using GF and lemon.
Controlled Natural Language, pages 167–184, 2012.

Enache, Ramona. Reasoning and Language Generation in the SUMO Ontology.
PhD thesis, Chalmers University of Technology and University of Gothenburg,
2010.

Enache, Ramona; Popov, Borislav, and Ranta, Aarne. Patent MT and Retrieval
Prototype Beta. Technical report, MOLTO Project, 2012.

Feng, Junlan; Ramabhadran, Bhuvana; Hansen, John H L, and Williams, Ja-
son D. Trends in Speech and Language Processing. Signal Processing Maga-
zine, IEEE 29, no. 1, pages 2011–2013, 2012.

Fuchs, Norbert E; Kaljurand, Kaarel, and Kuhn, Tobias. Multilingual semantic
wiki. Technical report, MOLTO Project, 2013.

Gundel, Jeanette K and Fretheim, Thorstein. Topic and Focus. In Horn, Lau-
rence R and Ward, Gregory, editors, The Handbook of Pragmatics, pages
175–196. 2006.

95

Haji-Abdolhosseini, Mohammad. A Constraint-Based Approach to Information
Structure and Prosody Correspondence. In Proceedings of the HPSG-2003
Conference, pages 143–162, 2003.

Hajičová, Eva; Sgall, Petr, and Skoumalová, Hana. An Automatic Procedure
for Topic-Focus Identification. Computational Linguistics, 21(1):81–94, 1995.

Hausser, Roland R. Surface Compositional Grammar. Wilhelm Fink Verlag,
München, 1984.

Hirschberg, Julia. Communication and prosody: Functional aspects of prosody.
Speech Communication, 36(1-2):31–43, January 2002.

Hirschberg, Julia. Speech Synthesis: Prosody. In Encyclopedia of Language &
Linguistics, number 7, pages 49–55. 2006a.

Hirschberg, Julia. Pragmatics and Intonation. In The Handbook of Pragmatics,
pages 515–537. 2006b.

Hirschberg, Julia and Pierrehumbert, Janet. The intonational structuring of dis-
course. In Proceedings of the 24th annual meeting on Association for Compu-
tational Linguistics, pages 136–144. Association for Computational Linguis-
tics, 1986.

Hitzeman, Janet; Black, Alan W; Taylor, Paul; Mellish, Chris, and Oberlander,
Jon. On the use of automatically generated discourse-level information in
a concept-to-speech synthesis system. In Proceedings of the International
Conference on Spoken Language Processing, pages 1–4, 1998.

Hitzeman, Janet; Black, Alan W; Mellish, Chris; Oberlander, Jon; Poesio, Mas-
simo, and Taylor, Paul. An Annotation Scheme for Concept-to-Speech Syn-
thesis, 1999.

Hiyakumoto, Laurie; Prevost, Scott, and Cassell, Justine. Semantic and Dis-
course Information for Text-to-Speech Intonation. Concept to Speech Gener-
ation Systems, pages 47–56, 1997.

Jurafsky, Daniel and Martin, James H. Speech and Language Processing. 2009.

Kaljurand, Kaarel and Kuhn, Tobias. A Multilingual Semantic Wiki Based on
Attempto Controlled English and Grammatical Framework. In The Semantic
Web: Semantics and Big Data, pages 427–441. Springer Berlin, Heidelberg,
2013.

Krifka, Manfred. Basic Notions of Information Structure. Acta Linguistica
Hungarica, 55(3):243–276, 2008.

Kruijff-Korbayová, Ivana and Steedman, Mark. Discourse and Information
Structure. Journal of Logic, Language, and Information, 12(3):249–259, 2003.

Kügler, Frank; Smolibocki, Bernadett, and Stede, Manfred. Evaluation of Infor-
mation Structure in Speech Synthesis: The Case of Product Recommender
Systems. In Speech Communication; 10. ITG Symposium; Proceedings of.
VDE, pages 1–4, 2012.

96

Larsson, Staffan and Ljunglof, Peter. A Grammar Formalism for Specifying ISU-
Based Dialogue Systems. Advances in Natural Language Processing, pages
303–314, 2008.

Li, Chunrong; Wu, Zhiyong; Meng, Fanbo; Meng, Helen, and Cai, Lianhong.
Detection and emphatic realization of contrastive word pairs for expressive
text-to-speech synthesis. 2012 8th International Symposium on Chinese Spo-
ken Language Processing, pages 93–97, December 2012.

Liberman, Isabelle Y.; Shankweiler, Donald, and Liberman, Alvin M. The
alphabetic principle and learning to read. In Meeting of the International
Academy for Research on Learning Disabilities, Evanston, IL, US, 1989.

Ljunglöf, Peter; Amores, Gabriel; Burden, H̊a kan; Manchón, Pilar; Pérez,
Guillermo, and Ranta, Aarne. Enhanced Multimodal Grammar Library, Talk
and Look: Tools for Ambient Linguistic Knowledge. Technical report, 2006.

Mattingly, I. Reading, the linguistic process, and linguistic awareness. In Ka-
vanagh, J and Mattingly, I, editors, Language by ear and by eye: The rela-
tionships between speech and reading, pages 133–147. MIT Press, 1972.

Mitankin, Petar; Ilchev, Atanas; Popov, Borislav; Popova, Reneta, and
Petkova, Gergana. Knowledge Representation Infrastructure. Technical re-
port, MOLTO Project, 2010.

Pan, Shimei; McKeown, Kathleen, and Hirschberg, Julia. Exploring features
from natural language generation for prosody modeling. Computer Speech &
Language, 16(3-4):457–490, July 2002.

Pérez, G; Amores, G; Manchón, P, and Maline, DG. Generating Multilingual
Grammars from OWL Ontologies. Research in Computing Science, 18:3–14,
2006.

Prevost, Scott. An Information Structural Approach to Spoken Language Gen-
eration. In Proceedings of the 34th annual meeting on Association for Compu-
tational Linguistics, pages 294–301. Association for Computational Linguis-
tics, 1995a.

Prevost, Scott. A Semantics of Contrast and Information Structure for Speci-
fying Intonation in Spoken Language Generation. PhD thesis, University of
Pennsylvania, 1995b.

Prevost, Scott and Steedman, Mark. Using Context to Specify Intonation in
Speech Synthesis. Technical report, University of Pennsylvania, 1993.

Prevost, Scott and Steedman, Mark. Specifying intonation from context for
speech synthesis. Speech Communication, 15(1-2):139–153, October 1994a.

Prevost, Scott and Steedman, Mark. Information Based Intonation Synthesis. In
Proceedings of the workshop on Human Language Technology, pages 193–198.
Association for Computational Linguistics, 1994b.

Ranta, Aarne. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, 2003.

97

Ranta, Aarne. The GF Resource Grammar Library. Linguistic Issues in Lan-
guage Technology, 2(2), 2009.

Ranta, Aarne. Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI, Stanford, California, 2011.

Ranta, Aarne. GF - Grammatical Framework, 2012. URL
http://www.grammaticalframework.org/. Accessed 2013-01-30.

Ranta, Aarne. GF Resource Grammar Library, 2013. URL
http://www.grammaticalframework.org/download/release-3.5.html.
Accessed 2013-11-22.

Ranta, Aarne and Cooper, Robin. Dialogue Systems as Proof Editors. Journal
of Logic, Language and Information, 13(2):225–240, 2004.

Ranta, Aarne; Enache, Ramona; Chechev, Milen, and Damova, Mariana. Mul-
tilingual Online Translation. Technical report, MOLTO Project, 2012.

Rooth, Mats. A theory of focus interpretation. Natural Language Semantics, 1
(1):75–116, February 1992.

Schröder, M. and Trouvain, J. The German Text-to-Speech Synthesis System
MARY: A Tool for Research, Development and Teaching. International Jour-
nal of Speech Technology, 6:365–377, 2003.

Spyns, P.; Deprez, F.; Van Tichelen, L., and Van Coile, B. Message-to-Speech:
high quality speech generation for messaging and dialogue systems. In Pro-
ceedings of ACL97, Concept to speech generation systems workshop, number 1,
pages 11–16, 1997.

Steedman, Mark. Structure and Intonation. Language, 67(2):260–296, 1991.

Steedman, Mark. Representing discourse information for spoken dialogue gen-
eration. In Proceedings of the International Symposium on Spoken Dialogue,
ICSLP, 1996.

Steedman, Mark. Information Structure and the Syntax-Phonology Interface.
Linguistic Inquiry, 31(4):649–689, 2000.

Steedman, Mark. The Syntactic Process. MIT Press, London, 2001.

Steedman, Mark. The Surface-Compositional Semantics of English Intonation.
Manuscript, University of Edinburgh, draft 5, 2012.

Taylor, PA. Concept-to-speech synthesis by phonological structure matching.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 358(1769):1403–1417, April 2000.

Taylor, Paul. Text-to-Speech Synthesis. Cambridge University Press, Cambridge,
2009.

Theune, Mariët. Contrastive accent in a data-to-speech system. In ACL ’98
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association
for Computational Linguistics, pages 519–521, 1998.

98

Theune, Mariët. Contrast in concept-to-speech generation. Computer Speech &
Language, 16(3-4):491–531, July 2002.

Vallduvi, Enric. The Informational Component. PhD thesis, University of Penn-
sylvania, 1993.

Veilleux, Nanette M. Probabilistic Model of Acoustic/Prosody/ Concept Rela-
tionships for Speech Synthesis. In Proceedings of ACL97, Concept to speech
generation systems workshop, pages 1–10, 1997.

Walker, Marilyn and Rambow, Owen. Spoken language generation. Computer
Speech & Language, 16(3-4):273–281, July 2002.

Ward, Gregory and Birner, Betty. Information Structure and Non-canonical
Syntax. In Horn, Laurence R and Ward, Gregory, editors, The Handbook of
Pragmatics, chapter 7, pages 153–174. 2006.

Xu, Yi. Speech prosody: a methodological review. Journal of Speech Sciences,
1(1):85–115, 2012.

Yagi, Y.; Hirose, K.; Takada, S., and Minematsu, N. Improved concept-to-
speech generation in a dialogue system on road guidance. 2005 International
Conference on Cyberworlds (CW’05), pages 8 pp.–436, 2005.

Yule, George. New, Current and Displaced Entity Reference. Lingua, 55(1):
41–52, 1981.

99

Appendix B

Data

B.1 Test set of sentences

B.1.1 Sentences

1. whom did Barcelona sign today

2. when did Boateng score the third goal

3. when did Ajax pay Matheus twenty thousand pounds

4. how much did Chelsea offer Boateng

5. who lost the game against Ajax

6. whom did Barcelona pay twenty thousand pounds

7. whom did Ajax buy today

8. when did Muller score the first goal

9. whom did Chelsea lose to

10. when did Chelsea sign Muller

11. how many goals did Matheus score yesterday

12. how much did Chelsea offer Boateng yesterday

13. when did Matheus score the first goal

14. when did Matheus score the second goal

15. who scored the first goal

16. who won the game against Barcelona

100

17. who played

18. which game did Ajax lose

19. whom did Ajax sign

20. which goal did Muller score

21. whom did Ajax lose to yesterday

22. whom did Ajax beat today

23. which game did Arsenal lose

24. when did Chelsea pay Boateng twenty thousand pounds

25. how much did Ajax offer Boateng

26. whom did Ajax buy

27. whom did Arsenal buy

28. who lost

29. how many goals did Muller score

30. whom did Chelsea offer thirty thousand pounds

31. which game did Chelsea lose yesterday

32. how much did Chelsea offer Muller today

33. whom did Arsenal beat

34. how much did Barcelona pay Boateng

35. when did Matheus score the first goal

36. which goal did Matheus score today

37. which game did Arsenal win

38. who scored the second goal

39. whom did Arsenal offer twenty thousand euros

40. which goal did Muller score

B.1.2 Parses

1. QUtt (WhomPlayerQ (mkClSlashTPlayer barcelona (addTimeVPSTPlayer

(mkVPSTPlayer sign) today)))

2. QUtt (WhenQ (mkClauseP boateng (mkVPPlayerPoint score2 (ord goal

third))))

101

3. QUtt (WhenQ (mkClauseT ajax (mkVPTPA pay matheus (pounds

twenty thousand))))

4. QUtt (HowMuchQ (mkClSlash3 chelsea (mkVPS2P offer boateng)))

5. QUtt (WhoTeamQ (mkVPTeamContest lose2 (game someone ajax)))

6. QUtt (WhomPlayerQ2 (mkClSlash2 barcelona (mkVPS2A pay (pounds

twenty thousand))))

7. QUtt (WhomPlayerQ (mkClSlashTPlayer ajax (addTimeVPSTPlayer

(mkVPSTPlayer buy) today)))

8. QUtt (WhenQ (mkClauseP muller (mkVPPlayerPoint score2 (ord goal

first))))

9. QUtt (WhomTeamQ (mkClSlashTT chelsea (mkVPSTT lose to)))

10. QUtt (WhenQ (mkClauseT chelsea (mkVPTeamPlayer sign muller)))

11. QUtt (HowManyQ goal (mkClSlashPP matheus (addTimeVPSPP (mkVPSPP

score2) yesterday)))

12. QUtt (HowMuchQ (mkClSlash3 chelsea (addTimeVPS2A (mkVPS2P offer

boateng) yesterday)))

13. QUtt (WhenQ (mkClauseP matheus (mkVPPlayerPoint score2 (ord goal

first))))

14. QUtt (WhenQ (mkClauseP matheus (mkVPPlayerPoint score2 (ord goal

second))))

15. QUtt (WhoPlayerQ (mkVPPlayerPoint score2 (ord goal first)))

16. QUtt (WhoTeamQ (mkVPTeamContest win2 (game someone barcelona)))

17. QUtt (WhoTeamQ (mkVPTeam play1))

18. QUtt (WhichContestQ game (mkClSlashTContest ajax (mkVPSTContest

lose2)))

19. QUtt (WhomPlayerQ (mkClSlashTPlayer ajax (mkVPSTPlayer sign)))

20. QUtt (WhichPointQ goal (mkClSlashPP muller (mkVPSPP score2)))

21. QUtt (WhomTeamQ (mkClSlashTT ajax (addTimeVPSTT (mkVPSTT lose to)

yesterday)))

22. QUtt (WhomTeamQ (mkClSlashTT ajax (addTimeVPSTT (mkVPSTT beat)

today)))

23. QUtt (WhichContestQ game (mkClSlashTContest arsenal (mkVPSTContest

lose2)))

24. QUtt (WhenQ (mkClauseT chelsea (mkVPTPA pay boateng (pounds

twenty thousand))))

102

25. QUtt (HowMuchQ (mkClSlash3 ajax (mkVPS2P offer boateng)))

26. QUtt (WhomPlayerQ (mkClSlashTPlayer ajax (mkVPSTPlayer buy)))

27. QUtt (WhomPlayerQ (mkClSlashTPlayer ajax (mkVPSTPlayer buy)))

28. QUtt (WhoTeamQ (mkVPTeam play1))

29. QUtt (HowManyQ goal (mkClSlashPP muller (mkVPSPP score2)))

30. QUtt (WhomPlayerQ2 (mkClSlash2 chelsea (mkVPS2A offer (pounds

thirty thousand))))

31. QUtt (WhichContestQ game (mkClSlashTContest chelsea

(addTimeVPSTContest (mkVPSTContest lose2) yesterday)))

32. QUtt (HowMuchQ (mkClSlash3 chelsea (addTimeVPS2A (mkVPS2P offer

muller) today)))

33. QUtt (WhomTeamQ (mkClSlashTT arsenal (mkVPSTT beat)))

34. QUtt (HowMuchQ (mkClSlash3 barcelona (mkVPS2P pay boateng)))

35. QUtt (WhenQ (mkClauseP matheus (mkVPPlayerPoint score2 (ord goal

first))))

36. QUtt (WhichPointQ goal (mkClSlashPP matheus (addTimeVPSPP (mkVPSPP

score2) today)))

37. QUtt (WhichContestQ game (mkClSlashTContest arsenal (mkVPSTContest

win2)))

38. QUtt (WhoPlayerQ (mkVPPlayerPoint score2 (ord goal second)))

39. QUtt (WhomPlayerQ2 (mkClSlash2 arsenal (mkVPS2A offer (euros

twenty thousand))))

40. QUtt (WhichPointQ goal (mkClSlashPP muller (mkVPSPP score2)))

B.2 Questions

Table B.1 shows the 14 answer sentences with their corresponding possible ques-
tions that were used in the perceptual experiment.

103

Barcelona beat Chelsea Whom did Barcelona beat?
Who beat Chelsea?

Chelsea beat Ajax today Whom did Chelsea beat today?
Who beat Ajax today?
When did Chelsea beat Ajax?

Watson scored three goals Who scored three goals?
How many goals did Watson score?

Fischer scored the second goal Which goal did Fischer score?
Who scored the second goal?

Wigan offered Fischer twenty thou-
sand euros

How much did Wigan offer Fischer?

Who offered Fischer twenty thou-
sand euros?
Whom did Wigan offer twenty thou-
sand euros?

Wigan offered Daniels thirty thou-
sand euros

Whom did Wigan offer thirty thou-
sand euros?
How much did Wigan offer Daniels?
Who offered Daniels thirty thousand
euros?

Wigan offered Giggs thirty thousand
euros yesterday

When did Wigan offer Giggs thirty
thousand euros?
Whom did Wigan offer thirty thou-
sand euros yesterday?
Who offered Giggs thirty thousand
euros yesterday?
How much did Wigan offer Giggs
yesterday?

Barcelona signed Fischer Who signed Fischer?
Who did Barcelona sign?

Barcelona won yesterday’s game Which game did Barcelona win?
Who won yesterday’s game?

Wigan lost the game against
Chelsea

Which game did Wigan lose?

Who lost the game against Chelsea?
Chelsea beat Ajax today When did Wigan beat Ajax?

Whom did Chelsea beat today?
Who beat Ajax today?

Watson scored three goals How many goals did Watson score?
Who scored three goals?

Barcelona won yesterday’s game Who won yesterday’s game?
Which game did Barcelona win?

Fischer scored the second goal Who scored the second goal?
Which goal did Fischer score?

Table B.1: Experiment answers with possible questions

104

Appendix C

Code

C.1 English RGL extension

C.1.1 MarkupEng.gf

resource MarkupEng = open ExtraEng,

ParadigmsEng,

SentenceEng,

ResEng,

Prelude,

Predef in

{

oper

mark = overload

{ -- NP

mark : Str -> lincat NP {s : NPCase => Str ; a : Agr} ->

lincat NP {s : NPCase => Str ; a : Agr} =

\m,np -> lin NP

{ s = \\npcase => "<"+m+">" ++ np.s!npcase ++ "</"+m+">" ;

a = np.a } ;

-- N

mark : Str -> lincat N {s : Number => Case => Str ; g : Gender} ->

lincat N {s : Number => Case => Str ; g : Gender} =

\m,n -> lin N

{ s = \\x,y => "<"+m+">" ++ n.s!x!y ++ "</"+m+">" ;

g = n.g } ;

-- A

105

mark : Str -> lincat A {s : AForm => Str} ->

lincat A {s : AForm => Str} =

\m,a -> lin A

{ s = \\aform => "<"+m+">" ++ a.s!aform ++ "</"+m+">" } ;

-- Num

mark : Str ->

lincat Num {s : Case => Str ; n : Number ; hasCard : Bool} ->

lincat Num {s : Case => Str ; n : Number ; hasCard : Bool} =

\m,x -> lin Num

{ s = \\c => "<"+m+">" ++ x.s!c ++ "</"+m+">" ;

hasCard = x.hasCard ;

n = x.n } ;

-- Card

mark : Str -> lincat Card {s : Case => Str ; n : Number} ->

lincat Card {s : Case => Str ; n : Number} =

\m,x -> lin Card

{ s = \\c => "<"+m+">" ++ x.s!c ++ "</"+m+">" ;

n = x.n } ;

-- AP

mark : Str -> {s : Agr => Str ; isPre : Bool} ->

{s : Agr => Str ; isPre : Bool} =

\m,ap ->

{ s = \\agr => "<"+m+">" ++ ap.s!agr ++ "</"+m+">" ;

isPre = ap.isPre ; } ;

-- AdV, Adv, Predet

mark : Str -> Str -> Str =

\m,s -> "<"+m+">" ++ s ++ "</"+m+">" ;

-- Prep, Subj

mark : Str -> { s : Str } -> { s : Str } =

\m,x ->

{ s = "<"+m+">" ++ x.s ++ "</"+m+">" } ;

-- Conj

mark : Str -> {s1,s2 : Str ; n : Number} ->

{s1,s2 : Str ; n : Number} =

\m,c ->

{ s1 = "<"+m+">" ++ c.s1 ++ "</"+m+">" ;

s2 = "<"+m+">" ++ c.s2 ++ "</"+m+">" ;

n = c.n ; } ;

-- Det

mark : Str ->

{s : Str ; sp : NPCase => Str ; n : Number ; hasNum : Bool} ->

{s : Str ; sp : NPCase => Str ; n : Number ; hasNum : Bool} =

\m,det ->

106

{ s = "<"+m+">" ++ det.s ++ "</"+m+">";

sp = \\npcase => det.sp ! npcase;

n = det.n ;

hasNum = det.hasNum ; } ;

-- Comp

mark : Str -> {s : Agr => Str ;} -> {s : Agr => Str ;} =

\m,ap ->

{ s = \\agr => "<"+m+">" ++ ap.s!agr ++ "</"+m+">" ; } ;

-- ClSlash

mark : Str -> ClSlash -> ClSlash =

\m,cls -> lin ClSlash

{ s = \\t,ant,c,o => "<"+m+">" ++ cls.s!t!ant!c!o ++ "</"+m+">" ;

c2 = "<"+m+">" ++ cls.c2 ++ "</"+m+">" } ;

--a = cls.a ;

--gapInMiddle = cls.gapInMiddle } ;

-- ClSlash

mark : Str -> Str -> ClSlash -> ClSlash =

\m,n,cls -> lin ClSlash

{ s = \\t,ant,c,o => "<"+m+">" ++ cls.s!t!ant!c!o ++ "</"+m+">" ;

c2 = "<"+n+">" ++ cls.c2 ++ "</"+n+">" } ; --;

--a = cls.a } --;

--gapInMiddle = cls.gapInMiddle } ;

-- Cl

mark : Str -> Cl -> Cl =

\m,cl -> lin Cl

{ s = \\t,ant,c,o => "<"+m+">" ++ cl.s!t!ant!c!o ++ "</"+m+">" } ;

-- ClSlashVP

mark : Str -> ClSlashVP -> ClSlashVP =

\m,sl -> lin ClSlashVP

{ s = markNP m sl.s ;

s2 = "<"+m+">" ++ sl.s2 ++ "</"+m+">" ;

a = sl.a } ;

-- ClSlashVP (mark tail individually)

mark : Str -> Str -> ClSlashVP -> ClSlashVP =

\m,n,sl -> lin ClSlashVP

{ s = markNP m sl.s ;

s2 = "<"+n+">" ++ sl.s2 ++ "</"+n+">" ;

a = sl.a } ;

-- VPSlash

mark : Str -> VPSlash -> VPSlash =

\m,vp -> lin VPSlash

{ s = \\t,ant,cp,o,agr =>

let

107

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = "<"+m+">" ++ verb.aux ;

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf } ;

p = vp.p ++ "</"+m+">"; -- verb particle

prp = vp.prp ; -- present participle

ptp = vp.ptp ; -- past participle

inf = vp.inf ; -- the infinitive form

ad = vp.ad ; -- sentence adverb

s2 = \\agr => vp.s2!agr ; -- complement

c2 = "<"+m+">" ++ vp.c2 ++ "</"+m+">" ;

gapInMiddle = vp.gapInMiddle

} ;

-- marks everything, assumes the VP is linearised contiguously

mark : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = "<"+m+">" ++ verb.aux ;

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf } ;

p = vp.p ; -- verb particle

prp = vp.prp ; -- present participle

ptp = vp.ptp ; -- past participle

inf = vp.inf ; -- the infinitive form

ad = vp.ad ; -- sentence adverb

s2 = \\agr => vp.s2!agr ++ "</"+m+">" -- complement

} ;

} ;

-- recursive call of an overloaded oper gives some issues

markNP : Str -> NP -> NP =

\m,np -> lin NP

{ s = \\npcase => "<"+m+">" ++ np.s!npcase ++ "</"+m+">" ;

a = np.a ; } ;

-- marks everything, using the infinitive form

markInfVP : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

108

{aux = verb.aux ;

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf } ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = "<"+m+">" ++ vp.ad ;

s2 = \\agr => vp.s2!agr ++ "</"+m+">"

} ;

-- marks everything, using the imperative form

markImpVP : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux ;

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf } ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = "<"+m+">" ++ vp.ad ;

s2 = \\agr => vp.s2!agr ++ "</"+m+">"

} ;

-- marks everything, taking into account

-- the split between aux and the rest

markQVP : Str -> VP -> VP = \m,vp ->

markVPMain m (markVPAux m vp) ;

-- the following should typically be used to mark focus,

-- instead of phrase-level information structure

-- marks everything except the aux

markVPMain : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux ;

adv = "<"+m+">" ++ verb.adv ;

fin = verb.fin ;

inf = verb.inf

109

} ;

p = vp.p;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = vp.ad ;

s2 = \\agr => vp.s2!agr ++ "</"+m+">"

} ;

-- marks only the auxiliary verb

markVPAux : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = "<"+m+">" ++ verb.aux ++ "</"+m+">";

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf

} ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = vp.ad ;

s2 = \\agr => vp.s2!agr

} ;

-- marks only the finite/infinitive main verb

markVPFin: Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux;

adv = verb.adv ;

fin = "<"+m+">" ++ verb.fin ++ "</"+m+">" ;

inf = verb.inf

} ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = vp.ad ;

s2 = \\agr => vp.s2!agr

} ;

-- marks only the infinitive form

110

markVPInf: Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux;

adv = verb.adv ;

fin = verb.fin ;

inf = "<"+m+">" ++ verb.inf ++ "</"+m+">"

} ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = "<"+m+">" ++ vp.inf ++ "</"+m+">" ;

ad = vp.ad ;

s2 = \\agr => vp.s2!agr

} ;

-- marks only "not" in the verb phrase

markVPNot : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux ;

adv = "<"+m+">" ++ verb.adv ++ "</"+m+">" ;

fin = verb.fin ;

inf = verb.inf

} ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = vp.ad ;

s2 = \\agr => vp.s2!agr

} ;

-- marks only the verb parts used in imperatives

markVPImp : Str -> VP -> VP =

\m,vp -> lin VP

{ s = \\t,ant,cp,o,agr =>

let

verb = vp.s ! t ! ant ! cp ! o ! agr ;

in

{aux = verb.aux ;

adv = verb.adv ;

fin = verb.fin ;

inf = verb.inf

111

} ;

p = vp.p ++ "</"+m+">" ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = "<"+m+">" ++ vp.ad ;

s2 = \\agr => vp.s2!agr

} ;

}

C.1.2 Lines added to ExtraEngAbs.gf

fun

-- ways to build clause types

ComplClSlash : ClSlash -> NP -> Cl ;

AddAdjunct : Cl -> Adv -> Cl ;

QuestSlashAlt : IP -> ClSlash -> QCl ;

-- additional ways to build VPSlash’s;

VPSlashAdv : VPSlash -> Adv -> VPSlash ;

VPSlashAdV : Adv -> VPSlash -> VPSlash ;

SlashV3a : V3 -> VPSlash ;

Slash3V3a : V3 -> NP -> VPSlash ;

C.1.3 Lines added to ExtraEng.gf

lin

ComplClSlash cl np =

{s = \\t,a,p,o =>

cl.s ! t ! a ! p ! o ++ np.s!NPAcc ++ cl.c2 } ;

AddAdjunct cl adv =

{ s = \\t,a,p,o =>

cl.s ! t ! a ! p ! o ++ adv.s } ;

QuestSlashAlt ip slash =

mkQuestionAlt (ss (ip.s!NPAcc)) slash ;

VPSlashAdv vp adv = {

s = vp.s ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

112

inf = vp.inf ;

ad = vp.ad ;

s2 = \\a => vp.s2 ! a ;

c2 = vp.c2 ++ adv.s ;

gapInMiddle = vp.gapInMiddle

} ;

VPSlashAdV adv vp = {

s = vp.s ;

p = vp.p ;

prp = vp.prp ;

ptp = vp.ptp ;

inf = vp.inf ;

ad = vp.ad ++ adv.s ;

s2 = \\a => vp.s2 ! a ;

c2 = vp.c2 ;

gapInMiddle = vp.gapInMiddle

} ;

SlashV3a v = predVc v ;

Slash3V3a v np = predV v **

{c2 = np.s!NPAcc ; gapInMiddle = True } ;

oper

agrStr : Str -> (Agr => Str) = \obj -> _ => obj ;

mkQuestionAlt :

{s : Str} -> ClSlash -> QCl = \wh,cl -> lin QCl

{ s = \\t,a,p =>

let

cls = cl.s ! t ! a ! p ;

why = wh.s

in table {

QDir => why ++ cls ! OQuest ++ cl.c2 ;

QIndir => why ++ cls ! ODir ++ cl.c2

}

} ;

C.1.4 Question-answering system

class FootballQASystem:

def __init__(self, football_grammar_filename, language):

self.football_grammar = pgf.readPGF(football_grammar_filename)

self.lang_grammar = self.football_grammar.languages[language]

113

self.salients_categories = []

self.teamV1 = [x for x in \

self.football_grammar.functionsByCat("TeamV1") \

if x.find("focus") == -1]

self.teamteamv2 = [x for x in \

self.football_grammar.functionsByCat("TeamTeamV2") \

if x.find("focus") == -1]

... etc ...

self.players = [x for x in \

self.football_grammar.functionsByCat("Player") \

if x.find("focus") == -1]

self.teams = [x for x in \

self.football_grammar.functionsByCat("Team") \

if x.find("focus") == -1]

... etc ...

self.players_salient = []

self.teams_salient = []

... etc ...

self.salients_categories.append((’Player’,

self.players,

self.players_salient))

self.salients_categories.append((’Team’,

self.teams,

self.teams_salient))

... etc ...

self.updated = []

main entry point

def reply(self, input):

self.updated = []

try:

utt_iter = self.lang_grammar.parse(input)

(probability,utt_expr) = utt_iter.next() # get first parse

(utt_type, utt_children) = utt_expr.unpack()

utt_types = {’QUtt’ : self.answer,

’DeclUtt’ : lambda x: "I suppose that’s true..."}

func = utt_types.get(utt_type, lambda x: None)

answer = func(utt_children)

if answer:

tree = "DeclUtt (" + answer + ")"

else:

return "Error: could not compute an answer"

114

self.decay_salients()

return self.lang_grammar.linearize(pgf.readExpr(tree))

except pgf.ParseError:

return "Error: could not parse"

except NoParseException:

return "Error: could not parse"

except StopIteration:

return "Error: no parse"

determine question type and call appropriate method

to construct answer tree string

def answer(self, utt_children):

question_expr = utt_children[0]

(q_type,q_children) = question_expr.unpack()

q_types = { # traditional structures

’WhoPlayerQ’ : self.whoXA,

’WhoTeamQ’ : self.whoXA,

traditional with adverb

’WhenQ’ : self.whenA,

simple vpslash from v2

’WhomTeamQ’ : self.whomXA,

’WhomPlayerQ’ : self.whomXA,

simple vpslash from v3

’WhomPlayerQ2’ : self.whomXA,

vpslash from v3 with complex answer

’HowMuchQ’ : self.whomXA,

vpslash from v2 with common nouns

’HowManyQ’ : self.howManyA,

’WhichPointQ’ : self.whichPointA,

’WhichContestQ’ : self.whichContestA

}

func = q_types.get(q_type, lambda x: None)

answer = func(q_type,q_children)

return answer

builds answer tree string from (focus marked) theme and rheme

def whoXA(self, q_type, q_children):

vp_expr = q_children[0]

(vp_type, vp_children) = vp_expr.unpack()

115

vp_types = { ’addTimeVPT’ : self.addTimeVPT,

’addTimeVPP’ : self.addTimeVPP,

’mkVPPlayerPoint’ : self.mkVPPlayerPoint,

’mkVPTPA’ : self.mkVPTPA,

’mkVPTeam’ : self.mkVPTeam,

’mkVPTeamContest’ : self.mkVPTeamContest,

’mkVPTeamPlayer’ : self.mkVPTeamPlayer,

’mkVPTeamTeam’ : self.mkVPTeamTeam

}

func = vp_types.get(vp_type, lambda x: None)

(answer,theme_string) = func(vp_children)

theme_string = self.mark_focus_theme(theme_string)

rheme_string = self.mark_focus_rheme(answer)

return self.answer_type(q_type) +" "+ rheme_string \

+" "+ theme_string

theme string and query are constructed

- query is used to compute answer element

- answer element and theme string are returned

def mkVPTeamTeam(self,vp_children, time="_"):

v2_expr = vp_children[0]

v2_type = v2_expr.unpack()[0]

team_expr = vp_children[1]

team_type = team_expr.unpack()[0]

vp_string = "(mkVPTeamTeam "+v2_type+" "+team_type+")"

answer_team = self.query(v2_type, team_type, time)

theme_string = "(mkVPTeamTeam "+v2_type+" "+team_type+")"

return (answer_team, theme_string)

marks the complete subtree with root c as focused

def mark_subtree_focus(self, c):

if len(c.split()) > 0:

head = c.split()[0]

else:

head = c

if head in self.teams:

return "(focusTeam "+c+")"

elif head in self.players:

return "(focusPlayer "+c+")"

elif head in self.timesA:

return "(focusTimeA "+c+")"

elif head in self.timesN:

return "(focusTimeN "+c+")"

elif head in self.amounts:

return "(focusACard "+c+")"

elif head in self.fcards:

116

return "(focusFCard "+c+")"

elif head in self.fords:

return "(focusFOrd "+c+")"

else:

return c

entry point for marking theme focus

def mark_focus_theme(self,theme_string):

theme_expr = pgf.readExpr(theme_string)

return self.mark_theme_nodes_focus(theme_expr)

recurively marks as focused all nodes

(and their subtrees) as defined in the

alternative sets

makes them salient in the discourse

def mark_theme_nodes_focus(self, expr):

(type,children) = expr.unpack()

if type in self.currencies:

amount = children[0].unpack()[0]

if self.is_contrastive(amount):

marked = "("+type+" "+self.mark_ct_focus(amount)+")"

else:

marked = "("+expr.__str__()+")"

self.make_salient(amount)

else:

if len(children) == 0:

if self.is_contrastive(type):

marked = self.mark_ct_focus(expr.__str__())

else:

marked = "("+expr.__str__()+")"

else:

child_string = ""

for c in children:

child_string = child_string +" "+ \

self.mark_theme_nodes_focus(c)

if self.is_contrastive(type):

marked = "("+self.mark_ct_focus(type+" "+child_string)+")"

else:

marked = "("+type +" "+child_string+")"

self.make_salient(type)

return marked

marks "composite" rhemes with focus

makes all mentioned types salient in the discourse

def mark_focus_rheme(self,rheme_string):

rheme_expr = pgf.readExpr(rheme_string)

(rheme_type, rheme_children) = rheme_expr.unpack()

117

a = rheme_type in self.currencies

b = rheme_type in self.points

c = rheme_type in self.contests

if a or b or c:

child_type = rheme_children[0].unpack()[0]

if not self.is_salient(child_type):

rheme_string = "("+rheme_type +" "+ \

self.mark_ct_focus(child_type)+")"

elif self.is_salient(child_type):

rheme_string = "("+self.mark_ct_focus(rheme_expr.__str__())+")"

self.make_salient(child_type)

self.make_salient(rheme_type)

return "("+rheme_string+")"

helper function for computing default answer types

def answer_type(self,q_type):

q_index = q_type.rfind(’Q’)

q_code = q_type[q_index:]

a_code = q_code.replace(’Q’,’A’)

return q_type[:q_index]+a_code

118

Appendix D

List of Acronyms

Acronym Meaning
AM Autosegmental-metric
CCG Combinatory Categorial Grammar
CTS Context-to-speech
GF Grammatical Framework
GPSG Generalized phrase structure grammar
HMM Hidden Markov model
HTK SLF Hidden Markov Model Toolkit Standard Lattice Format
ISU Information State Update
JSGF JSpeech Grammar Format
Nuance GSL Nuance Grammar Specification Format
OWL Web Ontology Language
PGF Portable Grammar Format
QA Question-answering
RGL Resource Grammar Library
SRGS Speech Recognition Grammar Specification
SSML Speech Synthesis Markup Language
SUMO Suggested Upper Merged Ontology
ToBI Tones and Break Indices
TTS Text-to-speech

Table D.1: List of acronyms

119

