
iSEMSERV:

A FRAMEWORK FOR ENGINEERING INTELLIGENT SEMANTIC SERVICES

Jabu Saul Mtsweni

Submitted in accordance with the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: PROF. E. BIERMANN

Co-Supervisor: PROF. L. PRETORIUS

January 2013

ii

DECLARATION

 Student number: 46159525

I, Jabu Saul Mtsweni declare that the thesis titled iSEMSERV: A FRAMEWORK

FOR ENGINEERING INTELLIGENT SEMANTIC SERVICES is my own work and all

the sources that have been used and quoted are indicated and acknowledged by

means of complete references.

Signature :

Date : 21 January 2013

iii

DEDICATION

This study is dedicated to my late uncle

Thomas Peter Masango,

for his courage and support throughout my tertiary education.

iv

ACKNOWLEDGEMENTS

My deepest and humble gratitude goes to my Father in Heaven, without Whom it

would not have been possible to achieve this milestone.

I further wish to express my deepest love and appreciation to my family, particularly

my wife (Martha), and our two children (Ziyanda and Anelisa). Their support and

sacrifices are always appreciated.

To my supervisors, Prof. Elmarie Biermann and Prof. Laurette Pretorius, I am

grateful for your patience, expert guidance, and above all, the freedom you allowed

me to shape this thesis according to my capabilities.

I am greatly thankful to SAP Research, CSIR Meraka, University of South Africa,

National Research Foundation (NRF), and SANPAD (RCI Programme) for all the

support (financial and otherwise). I would also like to sincerely thank all the

professionals, pastors, friends, relatives, colleagues, and students who contributed

and supported me in different ways during the course of this study; if I could list all

the names, it would amount to another thesis.

Thank you all, and God bless!

v

ABSTRACT

The need for modern enterprises and Web users to simply and rapidly develop and

deliver platform-independent services to be accessed over the Web by the global

community is growing. This is self-evident, when one considers the omnipresence of

electronic services (e-services) on the Web.

Accordingly, the Service-Oriented Architecture (SOA) is commonly considered as

one of the de facto standards for the provisioning of heterogeneous business

functionalities on the Web. As the basis for SOA, Web Services (WS) are commonly

preferred, particularly because of their ability to facilitate the integration of

heterogeneous systems. However, WS only focus on syntactic descriptions when

describing the functional and behavioural aspects of services. This makes it a

challenge for services to be automatically discovered, selected, composed, invoked,

and executed – without any human intervention. Consequently, Semantic Web

Services (SWS) are emerging to deal with such a challenge.

SWS represent the convergence of Semantic Web (SW) and WS concepts, in order

to enable Web services that can be automatically processed and understood by

machines operating with limited or no user intervention. At present, research efforts

within the SWS domain are mainly concentrated on semantic services automation

aspects, such as discovery, matching, selection, composition, invocation, and

execution. Moreover, extensive research has been conducted on the conceptual

models and formal languages used in constructing semantic services.

However, in terms of the engineering of semantic services, a number of challenges

are still prevalent, as demonstrated by the lack of development and use of semantic

services in real-world settings. The lack of development and use could be attributed

to a number of challenges, such as complex semantic services enabling

technologies, leading to a steep learning curve for service developers; lack of unified

service platforms for guiding and supporting simple and rapid engineering of

semantic services, and the limited integration of semantic technologies with mature

service-oriented technologies.

vi

In addition, a combination of isolated software tools is normally used to engineer

semantic services. This could, however, lead to undesirable consequences, such as

prolonged service development times, high service development costs, lack of

services re-use, and the lack of semantics interoperability, reliability, and re-usability.

Furthermore, available software platforms do not support the creation of semantic

services that are intelligent beyond the application of semantic descriptions, as

envisaged for the next generation of services, where the connection of knowledge is

of core importance.

In addressing some of the challenges highlighted, this research study adopted a

qualitative research approach with the main focus on conceptual modelling. The

main contribution of this study is thus a framework called iSemServ to simplify and

accelerate the process of engineering intelligent semantic services. The framework

has been modelled and developed, based on the principles of simplicity, rapidity, and

intelligence. The key contributions of the proposed framework are: (1) An end-to-end

and unified approach of engineering intelligent semantic services, thereby enabling

service engineers to use one platform to realize all the modules comprising such

services; (2) proposal of a model-driven approach that enables the average and

expert service engineers to focus on developing intelligent semantic services in a

structured, extensible, and platform-independent manner. Thereby increasing

developers’ productivity and minimizing development and maintenance costs; (3)

complexity hiding through the exploitation of template and rule-based automatic code

generators, supporting different service architectural styles and semantic models;

and (4) intelligence wrapping of services at message and knowledge levels, for the

purposes of automatically processing semantic service requests, responses and

reasoning over domain ontologies and semantic descriptions by keeping user

intervention at a minimum.

The framework was designed by following a model-driven approach and

implemented using the Eclipse platform. It was evaluated using practical use case

scenarios, comparative analysis, and performance and scalability experiments. In

conclusion, the iSemServ framework is considered appropriate for dealing with the

complexities and restrictions involved in engineering intelligent semantic services,

especially because the amount of time required to generate intelligent semantic

vii

services using the proposed framework is smaller compared with the time that the

service engineer would need to manually generate all the different artefacts

comprising an intelligent semantic service.

Keywords: Intelligent semantic services, Web services, Ontologies, Intelligent

agents, Service engineering, Model-driven techniques, iSemServ framework.

viii

TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

I. LIST OF FIGURES ... xiii

II. LIST OF TABLES ... xv

III. LIST OF LISTINGS .. xv

IV. LIST OF ABBREVIATIONS ... xvii

1. CHAPTER 1: PROPOSAL ... 1-1

1.1. INTRODUCTION .. 1-4

1.2. PROBLEM STATEMENT .. 1-6

1.3. RESEARCH QUESTIONS .. 1-8

1.4. RESEARCH OBJECTIVES ... 1-9

1.5. BENEFITS OF THE STUDY ... 1-10

1.5.1. PRIMARY RESEARCH CONTRIBUTIONS ... 1-10

1.5.2. SECONDARY RESEARCH CONTRIBUTIONS ... 1-10

1.6. RESEARCH METHODOLOGY ... 1-11

1.7. RESEARCH SCOPE AND LIMITATIONS ... 1-14

1.8. PUBLICATIONS ... 1-14

1.9. THESIS OUTLINE .. 1-15

2. CHAPTER 2: SERVICE-ORIENTED COMPUTING 2-17

2.1. INTRODUCTION .. 2-20

2.2. WEB SERVICES .. 2-21

2.2.1. RPC WEB SERVICES ... 2-22

2.2.2. RESTFUL WEB SERVICES ... 2-23

2.3. SEMANTIC WEB .. 2-26

2.4. SEMANTIC WEB SERVICES ... 2-31

2.5. RELATED WORK ... 2-32

2.6. SUMMARY ... 2-37

ix

3. CHAPTER 3: SERVICE-ORIENTED SOFTWARE ENGINEERING 3-39

3.1. INTRODUCTION .. 3-42

3.2. COMPARISON: SE, WE, AND SOSE ... 3-45

3.3. SOSE LIFE CYCLE .. 3-48

3.3.1. MODELLING ... 3-51

3.3.2. DEVELOPMENT ... 3-52

3.3.3. DEPLOYMENT ... 3-53

3.3.4. PUBLISHING ... 3-54

3.4. SUMMARY ... 3-55

4. CHAPTER 4: SEMANTIC SERVICE MODELS AND RELATED TOOLS 4-57

4.1. INTRODUCTION .. 4-60

4.2. SWS DESCRIPTIONS .. 4-60

4.2.1. OWL-S ... 4-61

4.2.1.1. OWL-S TOOLS ... 4-66

4.2.2. WSMO ... 4-67

4.2.2.1. WSMO TOOLS .. 4-71

4.3. SWS ANNOTATIONS ... 4-74

4.3.1. WSDL-S ... 4-74

4.3.2. SAWSDL .. 4-75

4.3.3. WSMO-LITE .. 4-75

4.4. SUMMARY ... 4-77

5. CHAPTER 5: ISS DEFINITION AND BASIC BUILDING BLOCKS 5-79

5.1. INTRODUCTION .. 5-82

5.2. DEFINITION ... 5-83

5.3. FUNDAMENTAL BUILDING BLOCKS .. 5-85

5.3.1. SYNTACTIC DESCRIPTIONS .. 5-86

5.3.2. SEMANTIC DESCRIPTIONS ... 5-87

5.3.3. DOMAIN ONTOLOGIES ... 5-88

5.3.4. INTELLIGENCE .. 5-88

x

5.4. SOFTWARE AGENTS .. 5-88

5.5. SUMMARY ... 5-92

6. CHAPTER 6: PROPOSED ISEMSERV FRAMEWORK 6-94

6.1. INTRODUCTION .. 6-97

6.2. DESIGN PRINCIPLES .. 6-98

6.2.1. SIMPLIFICATION .. 6-99

6.2.2. ACCELERATION .. 6-101

6.2.3. INTELLIGENCE .. 6-101

6.3. PROPOSED MDE METHODOLOGY ... 6-102

6.4. THE ISEMSERV FRAMEWORK ... 6-105

6.4.1. SERVICES LAYER ... 6-107

6.4.2. SEMANTICS LAYER ... 6-108

6.4.3. INTELLIGENCE LAYER .. 6-110

6.5. FUNDAMENTAL COMPONENTS .. 6-111

6.5.1. SYNTACTIC DESCRIPTIONS .. 6-112

6.5.2. SEMANTIC DESCRIPTIONS ... 6-114

6.5.3. SERVICE INTELLIGENCE .. 6-116

6.6. SUMMARY ... 6-118

7. CHAPTER 7: ISEMSERV FRAMEWORK IMPLEMENTATION 7-119

7.1. INTRODUCTION .. 7-122

7.2. ISEMSERV TECHNICAL ARCHITECTURE ... 7-123

7.2.1. TECHNOLOGIES OVERVIEW ... 7-123

7.2.1.1. SERVICES LAYER ... 7-124

7.2.1.2. SEMANTICS LAYER ... 7-126

7.2.1.3. INTELLIGENCE LAYER ... 7-127

7.2.2. IMPLEMENTATION PLATFORM: ECLIPSE .. 7-128

7.3. ISEMSERV IMPLEMENTATION ... 7-128

7.3.1. SERVICES LAYER ... 7-129

7.3.1.1. SERVICE MODELLER .. 7-129

7.3.1.2. ISEMSERV MODEL2CODE TRANSFORMER ... 7-131

xi

7.3.2. SEMANTICS LAYER ... 7-135

7.3.2.1. ISEMSERV SEMANTICS MODEL SELECTOR ... 7-135

7.3.2.2. ISEMSERV SEMANTICS DESCRIPTOR ... 7-136

7.3.2.3. SEMANTICS EDITORS ... 7-141

7.3.2.4. VISUALIZATION AND DEPLOYMENT ... 7-141

7.3.3. INTELLIGENCE LAYER .. 7-142

7.3.4. FRONT-END ... 7-149

7.4. SUMMARY ... 7-150

8. CHAPTER 8: EVALUATION AND RESULTS .. 8-152

8.1. INTRODUCTION .. 8-155

8.2. SCENARIO-BASED EVALUATIONS .. 8-156

8.2.1. ONLINE MULTIMEDIA TRADING ... 8-157

8.2.1.1. SERVICE MODELS .. 8-158

8.2.1.2. SYNTACTIC WEB SERVICES .. 8-159

8.2.1.3. SYNTACTIC DESCRIPTIONS ... 8-162

8.2.1.4. SEMANTIC DESCRIPTIONS ... 8-163

8.2.1.5. SERVICE AGENTS ... 8-164

8.2.1.6. USER INTERFACES GENERATION ... 8-168

8.3. SCENARIO EVALUATION DISCUSSIONS .. 8-172

8.4. COMPARATIVE ANALYSIS ... 8-173

8.4.1. COMPARISON CRITERIA .. 8-174

8.4.2. QUALITATIVE COMPARISON ... 8-177

8.4.3. QUALITATIVE COMPARISON ... 8-178

8.5. SCALABILITY AND PERFORMANCE .. 8-183

8.6. SUMMARY ... 8-191

9. CHAPTER 9: SUMMARY, CONCLUSION, AND FURTHER RESEARCH .. 9-193

9.1. INTRODUCTION .. 9-196

9.2. RESEARCH SUMMARY... 9-196

9.3. RESEARCH QUESTIONS .. 9-196

9.4. RESEARCH CONTRIBUTIONS ... 9-201

xii

9.5. RESEARCH LIMITATIONS .. 9-202

9.6. FURTHER RESEARCH .. 9-203

9.6.1. IMPROVING CODE-GENERATION TECHNIQUES... 9-203

9.6.2. EXTENDING THE MULTIPLE LANGUAGE SUPPORT FEATURE 9-203

9.6.3. ENHANCING THE INTELLIGENCE LAYER ... 9-204

10. APPENDICES ... 10-205

APPENDIX A: ABSTRACTS OF PUBLICATIONS .. 10-205

APPENDIX B: TRANSFORMATION TEMPLATES ... 10-209

11. REFERENCES .. 222

xiii

I. LIST OF FIGURES

Figure ‎1.1: Overall Thesis Structure .. 1-2

Figure ‎1.2: Chapter 1 Layout ... 1-3

Figure ‎1.3: Mapping Research Questions to Research Methodologies 1-11

Figure ‎2.1: Overall Thesis Structure .. 2-18

Figure ‎2.2: Chapter 2 Layout ... 2-19

Figure ‎2.3: Evolution of the Web ... 2-20

Figure ‎2.4: Generic Web Services Stack ... 2-22

Figure ‎2.5: Current Semantic Web Architecture .. 2-27

Figure ‎3.1: Overall Thesis Structure .. 3-40

Figure ‎3.2: Chapter 3 Layout ... 3-41

Figure ‎3.3: SOA Generic Architecture ... 3-43

Figure ‎3.4: Relationship Perspective of Engineering Principles 3-44

Figure ‎3.5: SOSE Life Cycle ... 3-49

Figure ‎3.6: Web Service Engineering Life Cycle ... 3-50

Figure ‎3.7: Traditional Software Engineering Life Cycle.. 3-50

Figure ‎3.8: Service Publication and Discovery .. 3-54

Figure ‎4.1: Overall Thesis Structure .. 4-58

Figure ‎4.2: Chapter 4 Layout ... 4-59

Figure ‎4.3: OWL-S top level service ontology ... 4-62

Figure ‎4.4: Top-level WSMO Elements ... 4-68

Figure ‎5.1: Overall Thesis Structure .. 5-80

Figure ‎5.2: Chapter 5 Summary .. 5-81

Figure ‎5.3: Intelligent Semantic Service Evolution .. 5-83

Figure ‎5.4: IsS Definition Properties .. 5-84

Figure ‎5.5: IsS Basic Building Blocks .. 5-86

Figure ‎5.6: Typology of Agents ... 5-90

Figure ‎5.7: Classification of Agents ... 5-91

Figure ‎6.1: Overall Thesis Structure .. 6-95

Figure ‎6.2: Chapter 6 Layout ... 6-96

Figure ‎6.3: iSemServ Design Principles .. 6-99

Figure ‎6.4: iSemServ Model-driven Engineering Approach 6-104

Figure ‎6.5: iSemServ Framework .. 6-106

xiv

Figure ‎6.6: Services Layer Modules .. 6-107

Figure ‎6.7: Semantics Layer Modules ... 6-109

Figure ‎6.8: Intelligence Layer Modules.. 6-110

Figure ‎6.9: Syntactic Descriptions Contract .. 6-112

Figure ‎6.10: Semantic Service Descriptions Contract ... 6-115

Figure ‎6.11: Intelligence Wrapping Overview .. 6-117

Figure ‎7.1: Overall Thesis Structure .. 7-120

Figure ‎7.2: Chapter 7 Layout ... 7-121

Figure ‎7.3: iSemServ Technical Architecture .. 7-124

Figure ‎7.4: Partial iSemServ UML Profile .. 7-130

Figure ‎7.5: Service Code Generation Steps .. 7-132

Figure ‎7.6: Generic Agents Interaction with SWS ... 7-144

Figure ‎7.7: Integration of JADE agents and JESS .. 7-146

Figure ‎7.8: iSemServ Eclipse Plug-in .. 7-149

Figure ‎7.9: JADE runtime environment ... 7-150

Figure ‎8.1: Overall Thesis Structure .. 8-153

Figure ‎8.2: Chapter 8 Layout ... 8-154

Figure ‎8.3: Online Multimedia Trading Scenario ... 8-158

Figure ‎8.4: iSemServ Plug-in .. 8-158

Figure ‎8.5: Online Multimedia Trading Service Model ... 8-160

Figure ‎8.6: Syntactic RESTful Services ... 8-160

Figure ‎8.7: Generated Semantic Descriptions ... 8-163

Figure ‎8.8: Skeleton Code Structure for Provider Agents.................................... 8-165

Figure ‎8.9: Test User Interfaces .. 8-169

Figure ‎8.10: A Simple Form for Testing Services .. 8-169

Figure ‎8.11: JADE Runtime Environment (Provider Agents Running) 8-170

Figure ‎8.12: Multimedia Items Ontology Visualization ... 8-170

Figure ‎8.13: Imported Amazon Ontology Visualization.. 8-171

Figure ‎8.14: iSemServ Design Principles .. 8-175

Figure ‎8.15: Overall Performance of iSemServ Platform 8-185

Figure ‎8.16: Iterative Building Blocks Processing Times (Average) 8-187

Figure ‎8.17: Services Layer Processing Times ... 8-188

Figure ‎8.18: Semantics Layer Processing Times .. 8-189

Figure ‎8.19: Intelligence Layer Processing Times ... 8-189

xv

Figure ‎9.1: Overall Thesis Structure .. 9-194

Figure ‎9.2: Chapter 9 Layout ... 9-195

II. LIST OF TABLES

Table 2.1: HTTP Methods ... 2-24

Table 2.2: Summary of Related Work ... 2-35

Table 3.1: Comparison between SE, WE, and SOSE ... 3-46

Table 4.1: Differences between OWL-S and WSMO... 4-70

Table 7.1: Model2Service Mappings (RESTful) .. 7-133

Table 7.2:UML2JAX-RS Mappings.. 7-133

Table 7.3: UML2JAX-WS Mappings .. 7-134

Table 7.4: UML2WADL Mappings ... 7-134

Table 7.5: UML2WSMO Mappings .. 7-137

Table 7.6: UML2OWL-S Mappings (Service Profile) ... 7-139

Table 7.7: UML2WSMO (Semantics) .. 7-140

Table 8.1: iSemServ Comparative Analysis .. 8-177

Table 8.2: iSemServ Core Features .. 8-182

Table 8.3: Experimental Data (Averages) ... 8-186

III. LIST OF LISTINGS

Listing ‎4.1: Excerpt of the OWL-S Service Profile ... 4-63

Listing ‎4.2: OWL-S Service Model Class ... 4-64

Listing ‎4.3: WSMO Ontology example... 4-68

Listing ‎7.1: WSMO Concept and Attributes ... 7-137

Listing ‎7.2: WSMO Domain Ontology Structure .. 7-138

Listing ‎7.3: WSMO Web Service Template ... 7-140

Listing ‎7.4: Excerpt of JESS integration with JADE ... 7-143

Listing ‎7.5: Excerpt of the Service Provider Agent .. 7-147

Listing ‎7.6: Excerpt of the Client Gateway Agent .. 7-148

Listing ‎8.1: Seller RESTful Skeleton Code .. 8-161

Listing ‎8.2: Partial WADL Description.. 8-162

Listing ‎8.3: Partial WSMO Service Capability .. 8-164

Listing ‎8.4: Semantics and Provider Agent Mapping ... 8-166

xvi

Listing 8.5: Excerpt of JESS template and rules ... 8-167

xvii

IV. LIST OF ABBREVIATIONS

ACL Agent Communication Language

AI Artificial Intelligence

API Application Programming Interface

BPD Business Process Diagram

BPMN Business Process Modelling Notation

CDE Code-driven Engineering

CMU Carnegie Mellon University

DAML DARPA Agent Mark-up Language

DAML-S DARPA Agent Mark-up Language for
Services

DIP Data, Information, Processes, Integration
with SWS

DL Description Logics

EMF Eclipse Modelling Framework

EU European Union

FIPA Foundation for Intelligent Physical
Agents

FOL First Order Logic

FP7 Framework Programme Seven

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IIOP Internet Inter-ORB Protocol

ILEV Intelligence Logic Editor and Validator

IRS-III Internet Reasoning Service

ISEMSERV Intelligent Semantic Service (framework)

ISS Intelligent Semantic Service (service)

JADE Java Agent Development Environment

JAX-RS Java API for RESTful Web Services

JAX-WS Java API for XML Web Services

JEE Java Enterprise Edition

JESS Java Expert System Shell

LP Logic Programming

MAS Multi-Agent System

MDA Model-driven Architecture

MDE Model-driven Engineering

MOF Meta-Object Facility

MTL Model-to-Text Language

OCML Operational Conceptual Modelling
Language

OMG Object Management Group

OSS Open Source Software

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

PEOU Perceived Ease of Use

POJO Plain Old Java Object

xviii

PIM Platform Independent Model

PML Proof Mark-up Language

PSM Platform Specific Model

PU Perceived Usefulness

QoS Quality of Service

RAD Rapid Application Development

RDF Resource description Framework

RDF-S Resource Description Framework
Schemas

REST Representational State Transfer

RIF Rules Interchange Format

RMI Remote Method Invocation

RPC Remote Procedure Call

RULEML Rule Mark-up Language

SASS Service Architectural Style Selector

SAWSDL Semantic Annotations for WSDL and
XML Schema

SDK Software Development Kit

SDLC Software Development Lifecycle

SE Software Engineering

SEALS Semantic Evaluation at Large Scale

SEE Semantic Execution Environment

SEMMAS Semantic Web Services and Multi-Agent
System

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOSE Service-Oriented Software Engineering

SPA Service Provider Agent

SPARQL Simple Protocol & RDF Query Language

SQL Structured Query Language

SRA Service Request Agent

SVEV Semantics Visualizer/Editor/Validator

SW Semantic Web

SWF Semantic Web Fred

SWS Semantic Web Services

SWSA Semantic Web Services Architecture

SWSL Semantic Web Services Language

TAM Technology Adoption Model

UDDI Universal Description Discovery and
Integration

UI User Interfaces

UML Unified Modelling Language

UML-S Unified Modelling Language for Services

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WADL Web Application Description Language

WE Web Engineering

xix

WEBML Web Modelling Language

WS Web Services

WSDL Web Service Description Language

WSDL-S Web Service Description Language for
Semantics

WSML Web Service Modelling Language

WSMO Web Service Modelling Ontology

WSMX Web Service Execution Environment

WWW World Wide Web

XML Extensible Mark-up Language

XSD XML Schema Definition

1-1

1. CHAPTER 1: Proposal

This chapter introduces the challenges addressed in this thesis. In

attempting to address the identified problems, the discussions delve into the

main research question and subsidiary questions, the research objectives,

and the research methodologies applied to propose the appropriate solution

that could address the challenges identified. In addition, the evaluation

techniques for the proposed solution are described. Lastly, the primary and

secondary contributions emanating from this study are enumerated.

1-2

Figure ‎1.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

1-3

Figure ‎1.2: Chapter 1 Layout

1.1

Introduction

1.2

Problem

Statement

1.3

Research

Questions

1.4

Research

Objectives

1.5

Benefits of

Study

Primary

Contributions

Secondary

Contributions

1.6

Research

Methodology

1.7

Research Scope

& Limitations

1.9

Thesis Outline

1.8

Publications

1-4

1.1. INTRODUCTION

The Web has evolved into a universal virtual environment, where distributed

applications and business services are published and consumed (Sheng et al.,

2010). In addition, the interoperability of Web services (WS) with legacy systems has

revolutionized the exposition and consumption of business processes on the Web.

This is demonstrated by the widespread adoption of the Service-Oriented

Architecture (SOA) by prominent global enterprises (Hassanzadeh, Namdarian &

Elahi, 2011; Hemayati et al., 2010; Stein., 2008).

The terms business service, e-service, and Web service are generally interpreted

differently in varying contexts. In this study, we define the term business service as

any useful business functionality that is provided or requested via any appropriate

means to capture value for both the consumer and the provider (Baida, Gordijn &

Omelayenko, 2004), such as, for example, opening a bank account.

Accordingly, an e-service is defined as the provision of a business service via any

type of electronic network (Sun & Lau, 2007:365), such as the Internet. For instance,

buying books via the Internet can be regarded as a form of e-service. In this study,

we refer to e-services and Web services, as related but different concepts.

According to Booth et al. (2004), Web services are software components that

provide basic standards to enable interoperability between different software

applications, running on different platforms. They are software components available

in a distributed environment; they perform business-specific functions and facilitate

the integration of disparate software systems. Alonso et al.(2004:124) clearly define

a Web service as a: “software application identified by a URI1, whose interface and

bindings are capable of being defined, described, advertised, discovered, and

invoked”.

In the context of this study, a Web service is a component that comprises specific

business functionality that could be accessed over the Web; and an e-service is a

collection of network-resident services (Cardoso, Voigt & Winkler, 2008).

1
 URI stands for Uniform Resource Identifier

1-5

From the academic research perspective, it is apparent that WS have transformed

the World Wide Web (WWW) from being a source of raw data and information to a

platform of distributed services (Filho & Ferreira, 2009; García-Sanchez, 2007).

However, since the main goal of WS is to facilitate worldwide accessibility of

business services (Shen et al., 2005) on the Web, issues of automatic deployment,

discovery, invocation, and the composition of services are not addressed within the

WS paradigm (Bensaber & Malki, 2008; Shen et al., 2005). The main reason for this

is that WS lack semantic descriptions that could facilitate services automation

(Cabral et al., 2004). Semantic descriptions are formal and rich annotations that

unequivocally describe the non-functional, functional, and behavioural aspects of

services (Stollberg, Hepp & Fensel, 2010).

The evolution of Semantic Web Services (SWS), sometimes generally referred to as

semantic services, is bringing forth services that could be interpreted and processed

by both humans and machines(Lu, Zhang & Ruan, 2007) – subsequently, enabling

services to be integrated and utilized with little or no human intervention (Corcho et

al., 2007). Semantic services are commonly defined as extensions to the capabilities

of WS by leveraging new and existing Web services with semantic descriptions – to

facilitate and support automatic discovery, invocation, composition, and the

execution of services (Bensaber & Malki, 2008; Janev & Vranes, 2010).

SWS are mainly evolving from the Semantic Web (SW) domain. SW is an extension

of the current Web, where semantic annotations are incorporated into the current

Web to facilitate machine-to-human communication and machine-to-machine

communication (Berners-Lee, Hendler & Lassila, 2001; Rebstock, 2009:145). The

benefits of SWS are well documented in the literature and some of the common

benefits include, but are not limited to: (1) Improved representation, sharing,

searching, reasoning, and the re-use of data and services; (2) anywhere and

anytime dynamic connection of business partners; (3) the automation of various

tasks on the Web, such as service discovery; and (4) on-the-fly interoperation of

heterogeneous software systems (Bachlechner, 2008; Janev & Vranes, 2010; Joo,

2011; McIlraith, Son & Zeng, 2001; Mtsweni, Biermann & Pretorius, 2010).

1-6

Research efforts within the SWS domain have mainly focused on specific automation

aspects for services, such as discovery, selection, composition, invocation, and

execution (Gomez-Perez, Gonzalez-Cabero & Lama, 2004; Kanellopoulos &

Kotsiantis, 2006; Toch, Reinhartz-Berger & Dori, 2011; Yeganeh et al., 2010). In

addition, extensive research has been conducted on concepts, such as the emerging

Web Services Modelling Ontology (WSMO) (Lara et al., 2005),as well as formal

languages for constructing semantic services and applications (Dimitrov et al., 2007).

However, standard tools and integrated platforms that aim to simplify the engineering

of semantic services are still lacking. This could probably be attributed to the fact that

the SWS domain is still in its infancy and most research is concentrating on aspects

that demonstrate the automation aspects of semantic services.

In the following section, we shall succinctly discuss the research problem and the

motivations behind the proposed study.

1.2. PROBLEM STATEMENT

According to Agre et al. (2007) and Bensaber and Malki (2008), SWS are seldom

adopted and utilized, despite their attractive promises. The lack of adoption and

usage is attributed to a number of challenges (Filho & Ferreira, 2009; Janev &

Vranes, 2010; Siorpaes & Simperl, 2010). For instance, developing semantic

services is resource intensive, tedious, and complex, especially without the support

of unified and effective development tools (Filho & Ferreira, 2009; Janev & Vranes,

2010; Kerrigan et al., 2007).

Nevertheless, the concept of technology adoption is well researched. Davis,

Bagozzi, and Warshaw (1989:982) proposed a Technology Adoption Model (TAM)

that could be used to understand what influences end-users to adopt and use a

particular technology. The TAM model suggests that perceived usefulness (PU) and

perceived ease-of-use (PEOU) are the important factors that determine one’s

behavioural intention to adopt and use a particular technology (Davis, Bagozzi &

Warshaw, 1989:985; Wahid, 2007:2). This implies that if a technology is useful and

is easier to use, the chances of its adoption and usage by end-users are high.

1-7

Usefulness in this context is defined as the “prospective user’s subjective probability

that using a specific application system will increase job performance”; and ease of

use is defined as the “degree to which the end-user expects to use the system with

minimal effort” (Davis, Bagozzi & Warshaw, 1989:985). TAM also suggests that

external factors, such as system design characteristics, system development

processes, and system implementation processes may affect system adoption and

usage.

Some of the other reasons for the infrequent adoption and usage of semantic

services is the lack of unified platforms that are meant to simplify and accelerate the

process of engineering semantic services (Bachlechner, 2008; Bensaber & Malki,

2008; Dimitrov et al., 2007; Elenius et al., 2005; Filho & Ferreira, 2009; Siorpaes &

Simperl, 2010). Moreover, without the supporting tools, methods, and platforms,

developers are hindered by the extra costs of manually adding semantic descriptions

to new and existing services (Brambilla et al., 2006; Filho & Ferreira, 2009; Janev &

Vranes, 2010).

Currently, a combination of isolated software tools could be used to engineer

semantic services. This could, however, lead to undesirable consequences, such as

long service development times, high service development costs (Kerrigan et al.,

2007), the lack of semantic services re-use (Agarwal et al., 2005; Filho & Ferreira,

2009), and the lack of reliability and re-usability of semantic descriptions (Siorpaes &

Simperl, 2010). Furthermore, existing tools and platforms do not support the

engineering of semantic services that are intelligent beyond the use of ontologies

(Mtsweni, Biermann & Pretorius, 2010). As a result, there is a lack of semantic

services that could be automatically processed and understood by machines with

minimal user intervention.

Nonetheless, service developers cannot be expected to deliver error-free semantic

services without relying on reliable and simple design and development methods and

tools (Papazoglou & van den Heuvel, 2006). Furthermore, useful and easy-to-use

tools, methods, and unified platforms are essential for a wider adoption (Dimitrov et

al., 2007) of emerging technologies, such as semantic services.

1-8

Consequently, the main aim of this study is to investigate and propose a service

creation framework to simplify and accelerate the process of engineering intelligent

semantic services. This includes implementing a proof-of-concept semantic service

engineering platform and integrating emerging semantic technologies with matured

and expansive Web service technologies. This also includes devising strategies for

wrapping semantic services with intelligence, in order to realize service automation

on the Web.

1.3. RESEARCH QUESTIONS

The overall thesis is based on the following main research question and supporting

questions:

Main research question: How could a unified service creation framework simplify

and accelerate the process of engineering intelligent semantic services (IsS2)?

The following is a list of the supporting questions that are addressed in this study to

exhaustively and satisfactorily answer the main research question stated above.

SQ31: What are the fundamental building blocks and characteristics that constitute

an IsS? The notion of IsS is emerging, and with this particular supporting question,

we attempt to understand and provide clarity as to what an IsS is, how an IsS is

distinct from WS and SWS, and what components (building blocks) make up an IsS.

SQ2: How could intelligent semantic services be developed from the identified

fundamental building blocks? To address this supporting question, an investigation

is conducted to understand the techniques that could be used to uniformly develop

intelligent semantic services based on the identified fundamental building blocks.

SQ3: What are the requirements for designing and developing a unified service

creation framework, in order to simplify and speedup the process of engineering IsS?

To address this supporting question, the objective is to define the requirements for

2
IsS is used in this thesis interchangeably to refer to a single intelligent semantic service and plural intelligent semantic

services.
3
 SQ stands for supporting question.

1-9

designing and developing a framework for the purposes of simplifying and

accelerating the process of engineering intelligent semantic services.

SQ4: How could the specified service creation framework be implemented in a

unified and scalable environment? In this supporting question, the objective is to

practically demonstrate how the proposed conceptual service creation framework

could be implemented in a unified and scalable environment.

SQ5: How can the overall proposed solution be evaluated? The objective of this

supporting question is to apply different research techniques to evaluate the extent

to which the main research question has been addressed through the development

and implementation of the service creation framework.

1.4. RESEARCH OBJECTIVES

In order to extensively address the main research question and the supporting

questions, the following objectives are identified. The main objective is the

investigation and the proposition of a service creation framework that could serve as

a blueprint for simplifying and accelerating the process of engineering intelligent

semantic services. The following list enumerates additional sub-objectives:

 Formulate an elaborative definition for the term intelligent semantic service

(IsS).

 Identify and characterize a set of fundamental building blocks that make up an

IsS.

 Devise an appropriate service engineering methodology for developing

intelligent semantic services.

 Specify the requirements for the envisaged service creation framework.

 Implement the proposed framework by developing, and/or re-using software

artefacts that could contribute to simplifying and accelerating the process of

engineering IsS.

 Evaluate the proposed and implemented service creation framework against

the design requirements, related solutions, appropriate use case scenarios,

and based on performance and scalability.

1-10

1.5. BENEFITS OF THE STUDY

The main contributions emanating from this study are divided into primary and

secondary contributions as briefly explained below.

1.5.1. PRIMARY RESEARCH CONTRIBUTIONS

 Distinct fundamental building blocks that make up an intelligent semantic

service. The fundamental building blocks are covered in Chapter 5.

 A service engineering methodology that supports the use of multiple service

architectural style and semantic description languages to engineer intelligent

semantic services. The proposed methodology is discussed in Chapter 6.

 A multi-layered service creation framework to simplify and speedup the

process of engineering intelligent semantic services. The service creation

framework is proposed and discussed in Chapter 6.

 Advance state of the art of the service engineering domain with innovative

service creation frameworks, methods, and tools for constructing intelligent

semantic services.

1.5.2. SECONDARY RESEARCH CONTRIBUTIONS

This study also indirectly contributes toward the:

 Promotion and uptake of semantic services and applications.

 Re-usability and interoperability of semantic descriptions during service

development.

 Minimization of the time and costs required for engineering intelligent

semantic services.

 Provision of a suitable test environment for intelligent semantic services and

related applications.

1-11

1.6. RESEARCH METHODOLOGY

In order to contextualize this research study and the proposed solution, an extensive

literature review was conducted. The literature review was conducted on specific

concepts related to this study, such as Web Services, Semantic Web, Semantic Web

Services, ontologies, service engineering, and intelligent agents. The reviewed

literature and related work is presented in Chapter 2 – Chapter 4.

Research

Contextualization

Literature Review

 Web Services

 Semantic Web

 Semantic Web Services

 Service Engineering

 Ontologies

 Intelligent Agents

SQ1 – SQ3

Framework

Design

Modeling

 Elaborative Definition

 Basic Building Blocks

 Design Requirements

 Service Creation Framework

SQ4

Framework

Implementation

Prototyping

 Practical Implementation

 Proof of concept

SQ5

Evaluation

Practical Demonstrations,

Comparative Analysis, and

Experiments

 Domain-specific Scenarios

 Testing against specified

criteria

 SEALS: Performance and

Scalability

methodology

methodology

concepts

concepts

methodology

concepts

methodology

concepts

Figure ‎1.3: Mapping Research Questions to Research Methodologies

As depicted in Figure 1.3, the primary research methodology adopted for this study

is modelling (Jordaan & Lategan, 2010), where a service creation framework is

1-12

proposed and implemented. In this context, modelling refers to the creation of a

model or framework that captures the components (Olivier, 2006) that are essential

in simplifying and accelerating the process of building semantic services. This

approach is employed to address SQ1 – SQ3. The modelling method is preferred,

as it has been found to be appropriate when capturing or representing the essential

components of a system or process (Olivier, 2006:45), particularly for complex

systems or processes.

SQ4 deals with the practical implementation of the modelled service creation

framework. Thus, for proof of concept purposes, SQ4 is addressed using the

prototyping approach. According to Olivier (2006:9), prototypes are used to show

that new models are plausible and that these could be implemented in practice.

Moreover, prototypes are also useful for experimental purposes.

As illustrated in Figure 1.3, SQ5 is addressed by employing three different research

evaluation techniques. These include practical demonstrations, comparative

analysis, and controlled laboratory experiments - using the SEALS methodology

(Wrigley et al., 2011).

Practical demonstrations using domain-specific use case scenarios are conducted to

assess the functionality and utility of our service creation framework. With regard to

comparative analysis, the proposed framework is theoretically compared against

other existing solutions using a comprehensive list of design principles formulated

based on SQ3.

According to Hofstee (2006:128), experiments are conducted to “observe the effect

of a given intervention”. For the purpose of this thesis, controlled laboratory

experiments are also conducted. This is done to gain deeper insight into the service

creation framework, and to note the effects (i.e. performance, and scalability) of the

framework when engineering intelligent semantic services.

1-13

The SEALS4 methodology is adopted and used specifically for evaluating the

performance and scalability of the proposed and implemented service creation

framework. The methodology is chosen specifically because it is one of the few

readily available, comprehensive, and appropriate approaches for adequately

evaluating semantic technologies. Furthermore, the methodology has been

employed in evaluating a number of prominent semantic and ontology development

tools, such as Protégé5 (García-Castro et al., 2011).

The SEALS methodology was developed in the European Union (EU) seventh

framework programme project called SEALS (Semantic Evaluation at Large Scale)

with the purpose of creating a “lasting infrastructure for evaluating semantic

technologies” (García-Castro et al., 2011). It focuses on evaluating semantic

technologies automatically and interactively.

The methodology (i.e. SEALS) considers different criteria for evaluating semantic

service technologies (García-Castro et al., 2011). These are briefly explained as

follows:

 Performance - This refers to the performance of specific activities facilitated

by the semantic technology, such as service discovery (e.g. how long does it

take to automatically discover services?).

 Scalability - This refers to the ability of the semantic technology to perform

specific activities involving an increasing number of requirements (e.g. create

domain ontologies).

 Correctness - This refers to the ability of the semantic technology to respond

appropriately and correctly to different requests based on available domain

ontologies and semantic descriptions.

 Conformance - This refers to the extent to which the semantic technology

conforms to the features of the SWS architecture (SWSA) (Burstein et al.,

2005).

4
 More information on the SEALS methodology can be found at: http://www.seals-project.eu

5
 http://protege.stanford.edu/

http://www.seals-project.eu/

1-14

 Usability - This deals with the subjective user-friendliness of specific semantic

technologies. The SEALS methodology suggests feedback forms as one

possible option for measuring the usability of different SWS technologies.

1.7. RESEARCH SCOPE AND LIMITATIONS

The focus of this study is mainly on the simplification and acceleration of the process

of engineering intelligent semantic services. An elaborative definition of the term

intelligent semantic service is detailed in Chapter 5. In addition, the critical

discussion in this thesis deals with the concepts of service engineering (SE), Web

Services (WS), and Semantic Web services (SWS), ontologies, as well as intelligent

agents (IA).

The prototype (i.e. service creation platform) developed for this thesis is intended to

demonstrate the proof-of-concept implementation, rather than the actual realization

of a fully-fledged unified service creation environment for constructing intelligent

semantic services.

It should be noted that other concepts, which also form part of service engineering,

such as service discovery, selection, composition, orchestration, and choreography

are beyond the scope of this thesis. Nevertheless, occasional reference is made to

these concepts in the subsequent chapters, for clarifying core issues related to the

proposed solution.

1.8. PUBLICATIONS

In this section, we highlight the key publications that emanated from this research

study.

 MTSWENI, J., BIERMANN, E. & NGASSAM, E.K. 2009. Towards flexible

engineering of intelligent semantic-based services: building blocks and

methodology. Poster presented at the SAICSIT Conference, October 2009

1-15

 MTSWENI, J., BIERMANN, E. & NGASSAM, E.K. 2009. Towards the

engineering of intelligent semantic-based services: building blocks and

methodology. SAICSIT M&D Symposium. September 2009

 MTSWENI, J., BIERMANN, E. & PRETORIUS, L. 2010. iSemServ: Towards the

Engineering of Intelligent Semantic-based Services, ICWE Workshops 2010,

550-559, Vienna, Austria

 MTSWENI, J., BIERMANN, E. & PRETORIUS, L. 2010. Toward a service

creation framework: a case of intelligent semantic services. In: Proceedings of

the 2010 Annual Research Conference of the South African Institute of Computer

Scientists and Information Technologists. Bela Bela, South Africa.

 MTSWENI, J., BIERMANN, E. & PRETORIUS, L. 2012. iSemServ: Facilitating

the Implementation of Intelligent Semantic Services. Accepted for presentation at

the 9th International Network Conference 2012, Port Elizabeth, South Africa 11-

12 July 2012.

1.9. THESIS OUTLINE

The remaining chapters of this research study are structured as follows: Chapter 2

gives background information with regard to service-oriented computing (SOC), with

the specific focus on WS and SW. In Chapter 3, service-oriented engineering

techniques are discussed, and their relevance in addressing some of the identified

challenges will be highlighted. Prominent semantic models and some of the existing

supporting tools are discussed in Chapter 4. The proposed solution is formulated, by

giving a comprehensive definition of the term intelligent semantic services and

formulating the fundamental building blocks that make up intelligent semantic

services in Chapter 5.

The service creation framework as one possible solution for the challenges identified

in Section 1.2 is proposed and described together with its salient modules in Chapter

6; and the description is preceded by detailing the service creation framework design

requirements. Chapter 7 discusses the proof-of-concept implementation of the

suggested service creation framework, including the technologies essential to the

overall implementation. The implemented service creation framework is evaluated

and the results are discussed in Chapter 8. The thesis is concluded in Chapter 9, by

1-16

discussing the research contributions, and some of the remaining challenges not yet

addressed by the suggested service creation framework. These issues could form

the basis for further research.

2-17

2. CHAPTER 2: Service-Oriented Computing

This chapter presents background information related to the concepts of

service-oriented computing, which is the basis for semantic services. The

focus is on the components of Web services, Semantic Web, and semantic

Web services. RPC-based and RESTful services as the main architectural

styles for distributed Web services are also discussed, including some of

their distinct differences.

2-18

 Figure ‎2.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

2-19

Figure ‎2.2: Chapter 2 Layout

2.1

Introduction

2.2

Web Services

2.3

Semantic Web

2.4

Semantic Web

Services

2.5

Related Work

2.3.1-2.3.9

Semantic Web Layers

2.6

Summary

RPC

Web Services

RESTful

Web Services

2-20

2.1. INTRODUCTION

Several organizations in the private and the public sector are presently developing

and providing some form of Web-based services. For instance, various service

providers now deliver services, such as e-learning, e-banking, e-commerce; and

more recently, m-banking and m-commerce. As a result, within the current World

Wide Web (WWW), different types of services exist; and other types are emerging,

to improve on the capabilities of the existing services.

Figure ‎2.3: Evolution of the Web

Figure 2.3 illustrates how the WWW has evolved since its inception. In essence, the

Web is moving towards a collection of semantic services and data supported by the

Semantic Web (SW). As discussed in Chapter 1, SW is the extension of the current

WWW, with the main objective of promoting a Web that is understandable and

processable by both humans and machines (Berners-Lee, Hendler & Lassila, 2001).

In the SW, information and data on the Web are linked by using ontologies (Gruber,

1993), in order to enable automatic discovery of, and reasoning over Web content

(Bensaber & Malki, 2008). Since the WWW and SW deal mainly with content (i.e.

static data), Web Services (WS) augment the Web with integration and computation

capabilities, whilst Semantic Web Services (SWS) focus on automating the core

tasks of WS, such as discovery and composition, by minimizing user-intervention

(Corcho et al., 2003).

WWW SW

WS SWS

Syntactic Semantic

D
y

n
a

m
ic

S
ta

ti
c

2-21

In this chapter, the current state-of-the-art pertaining to Web services and related

concepts, such as SW, SWS, and ontologies is reviewed and discussed within the

context of this study. In addition, related research efforts within the domain of

semantic service engineering are also highlighted.

2.2. WEB SERVICES

The main goal of Web Services is to facilitate worldwide accessibility of business

functionalities (Filho & Ferreira, 2009; Shen et al., 2005) on the Web. This suggests

that WS are mainly created and utilized, in order to perform business-specific tasks

that could benefit both the providers and consumers of services (Gottschalk et al.,

2002:170; Hassanzadeh, Namdarian & Elahi, 2011).

WS are designed and developed to provide an environment for enabling

interoperability between different software applications that are running on different

platforms (Booth et al., 2004). WS, as modular applications, can be advertised,

discovered and executed across the Web (Kanellopoulos & Kotsiantis, 2006).

Furthermore, WS are distinct from general services that can also be accessed over

the network. The difference is: Web services have standardized and uniform

interfaces that describe all the operations necessary for interaction with other

systems (Alonso et al., 2004). Hence, a Web page that provides some business

functionalities is not a Web service; but it is rather an e-service.

The concept of WS revolves around three role-players. These role-players are: (1)

The service provider; (2) the service consumer; and (3) the service registry

(Kanellopoulos & Kotsiantis, 2006). The provider is responsible for defining,

developing, and publishing Web services. The requester is primarily the consumer of

the advertised and discovered services. For plausible discovery, invocation, and

execution by consumers, WS need to be published into service registries (Gottschalk

et al., 2002:172).

In the following subsections, we shall discuss the common types of Web services

that service developers would generally develop and publish into service registries.

2-22

2.2.1. RPC WEB SERVICES

Figure 2.4 depicts the core elements that make up the Remote Procedure Call

(RPC) Web Services stack. RPC WS are one possible implementation of the

Service-Oriented Architecture (SOA) (Hassanzadeh, Namdarian & Elahi, 2011); and

they have enjoyed considerable acceptance within the service engineering domain.

PUBLICATION AND DISCOVERY

(UDDI)

SERVICE DESCRIPTIONS

(WSDL)

MESSAGING

(SOAP)

TRANSPORTATION

(HTTP)

Figure ‎2.4: Generic Web Services Stack

The RPC WS are well-grounded on standards built on top of existing Internet

protocols. Thus, the transportation component in the stack, as illustrated in Figure

2.4, is one of the core layers of RPC WS. The protocols in the transportation layer

facilitate the publication, discovery, and invocation of RPC WS over the Web (Shen

et al., 2005).

In the messaging layer, the Simple Object Access Protocol (SOAP) is an Extensible

Mark-up Language (XML) (W3C, 2005) messaging protocol that handles message

exchanges (e.g. input and output messages) between WS and consumers. SOAP

messages are normally wrapped around the HTTP protocol; and these could be

utilized over various Internet communication protocols that are compatible with HTTP

(Keidl & Kemper, 2004).

The Web Services Description Language (WSDL6) resides in the service

descriptions layer. It exploits the XML language with standardized schemas to

6
 Extensive technical details on WSDL can be found at: http://www.w3.org/TR/wsdl

http://www.w3.org/TR/wsdl

2-23

syntactically define and describe WS capabilities (Kelly, Coddington & Wendelborn,

2006). However, services described with WSDL lack semantic descriptions, which

are essential for achieving semantic services.

As depicted in Figure 2.4, the publication and description functions of WS are

supposed to be handled by the Universal Description Discovery and Integration

(UDDI) standard protocol. According to Garcia-Sanchez et al. (2009), UDDI provides

all the necessary mechanisms for service providers to advertise WS, and similarly for

service consumers to search and locate information on the available services.

Nevertheless, functional public UDDI registries are infrequently available today,

since organizations, such as IBM and Microsoft, have since discontinued the

hosting7 of public UDDI registries. As a result, other non-UDDI service registries,

such as Seekda8 have emerged.

As may be noted from the description above, the lifecycle of WS is not cumbersome.

For instance, a service provider describes a WS using WSDL. The publication of a

defined WS is done within a UDDI registry. A consumer, who would like to access a

service, firstly needs to discover such a service from the selected service registry. If

an appropriate WS is discovered, it can then be invoked and executed, according to

the input and output specifications.

The most important element of RPC WS is the description (i.e. WSDL). Descriptions

enable services to be discovered, and subsequently, invoked.

2.2.2. RESTFUL WEB SERVICES

Apart from RPC WS, which are often referred to as SOAP-based WS, there are

other types of WS emerging, such as RESTful Web services. Representational State

Transfer (REST) is an architectural approach that leverages the HTTP-based

protocol; and it is considered to be simpler and more lightweight, compared with the

well-established architectural styles, such as RPC (Fielding, 2000; Filho & Ferreira,

2009; Pautasso, Zimmermann & Leymann, 2008). It was originally proposed for

7
 The news regarding the discontinuation of the UDDI registry hosted by IBM et al., can be found here:

http://soa.sys-con.com/node/164624
8
 See: http://webservices.seekda.com

http://soa.sys-con.com/node/164624
http://webservices.seekda.com/

2-24

large hypermedia systems, and stresses the scalability, generality, and

independency of resources on the Web (Fielding, 2000).

Web services that are considered RESTful need to conform to REST specifications.

These include:

 Identification of resources: a RESTful service needs to be identified as a

resource. A resource is any concept that could be represented or named in a

system (e.g. an image).

 Representations: RESTful services need to specify their representations that

could be manipulated by service consumers. In this regard, representations

are metadata about a resource (Fielding, 2000). RESTful services support

various representations, such as JSON, HTML, and XML: unlike RPC-based

services; which only support XML.

 Uniform identifiers: any RESTful service needs to be identified with a

Uniform Resource Identifier (URI)9. The uniform identifier is used as both the

name and locator of the RESTful service during discovery and invocation.

 Unified interfaces: RESTful services must specify standard operations that

could be performed on the resources. These are mainly the common HTTP

methods, such as GET, POST, PUT, and DELETE, as illustrated in Table 2.1.

Table ‎2.1: HTTP Methods

HTTP METHODS CRUD OPERATIONS

@POST Create

@GET Read

@PUT Update

@DELETE Delete

9
 See: http://www.w3.org/TR/uri-clarification/

http://www.w3.org/TR/uri-clarification/

2-25

 Execution scope: RESTful resources need to also define the execution

scope of services, such as the aspects of a resource that need to be affected;

for example: input and output parameters (Filho & Ferreira, 2009).

Fielding (2000) further describes the principles that apply to the REST architectural

style. Some of these are:

 Stateless: This means that each connection to the server by the client

includes all the information necessary to fulfil the request.

 Cacheable: Responses from a REST-enabled server can be implicitly or

explicitly labelled cacheable (i.e. responses can be stored by clients for re-

use) or non-cacheable.

 Addressable: Every REST-compliant resource needs to have one or more

addressable Uniform Resource Identifiers.

RESTful Web services, a term coined by Richardson and Ruby (2007), conform to

the principles and specifications prescribed by the REST architectural style. They do

not use the SOAP protocol or the architecture used by RPC WS. Similar to RPC WS,

RESTful services need to be described, so as to be discovered by potential

consumers. As indicated in Section 2.2, WS employs the popular WSDL for syntactic

descriptions. On the contrary, RESTful services do not boast of a standard syntactic

description language as yet, although, WSDL2.0 (Chinnici et al., 2007) does

accommodate the description of RESTful services.

Nevertheless, an XML-based description language, referred to as Web Application

Description Language (WADL10) is beginning to be used favourably by RESTful

services developers. It is provides machine process-able descriptions for web-based

services and applications (Hadley, 2009). In addition, WADL is also considered light-

weight compared to WSDL, due to its reliance on open protocols, such as HTTP.

With regard to publication and discovery, RESTful services do not prescribe any new

standard for service registries.

10

 Extensive technical specifications for WADL are provided here: http://www.w3.org/Submission/wadl/

http://www.w3.org/Submission/wadl/

2-26

2.3. SEMANTIC WEB

The WWW is made up of large amounts of data and information, which are

presented in a format that can mostly be processed and understood by humans

(Cowles, 2005). Hence, the Semantic Web (SW) or Web 3.0, as referred to by

Cardoso (2007b:84), is evolving to provide well-defined meaning to information and

services on the Web, so that humans and computers can work better together.

As envisaged by Berners-Lee (2003), in theory, SW aims to:

 Enable machine-interpretable Web resources;

 Augment Web resources with concepts and relations;

 Bridge the gap with regard to data integration across heterogeneous

applications and organizations;

 Automate a variety of Web-based tasks, such as search, discovery,

composition, invocation, and execution of services. As a result, it should be

possible to reduce human intervention in a number of Web-based tasks.

The concept of SW is generally made possible by embedding machine-interpretable

content into Web resources, such as documents and services (Oberle et al.,

2005:328). Accordingly, machine-understandable content is achieved through the

use of ontologies, which are an integral part of the SW, as they facilitate the

representation of knowledge on the Web (Tho, Fong & Hui, 2007).

Cowles (2005) explains the overall concept of SW as follows: “As the Semantic Web

gains momentum, an increased number of information resources will be just as

useful to software agents (i.e. machines) as to humans”. Hence, the SW is intended

to ensure that computers are able to accurately process and understand information

on the Web without any user intervention.

Within the SW research domain, there are immediate efforts toward the formalization

of standards and development of semantic technologies that are intended to enable

the overall vision of SW (Joo, 2011; Oberle et al., 2005:328). These standards and

2-27

technologies are envisaged to advance, amongst others, information searching, data

integration, and the automation of Web-related tasks (Koivunen & Miller, 2002).

According to Cabral et al. (2004), SW enabling technologies and standards are

structured into a set of layers (Berners-Lee, 2000), as depicted in Figure 2.5. A

combination of these layers is referred to as an overall Semantic Web Architecture

(Gerber, Barnard & van der Merwe, 2007). However, there are a few versions of the

SW architecture that have been proposed, and improved, over the recent past (Al-

Feel, Koutb & Suoror, 2009; Berners-Lee, 2000, 2003, 2005, 2006). In this study, we

only focus on the generic SW technologies and standards, as found in most of these

different versions of the SW architecture.

Figure 2.5 depicts the current SW architecture version (Berners-Lee, 2006).

According to Al-Feel, Koutb and Suoror (2009), and Horrocks et al. (2005), all the

layers depend on each other, and each layer uses the features of the layer below,

and extends the capabilities of the layer above. As alluded to by Gerber, Barnard,

and van der Merwe (2007), the current SW architecture presents both the functional

and technological aspects. However, this is not consistent in all the layers.

Figure ‎2.5: Current Semantic Web Architecture

2-28

In the following subsections, the discussion will generally focus on the functionalities

that each layer supports, especially functionalities that are the keys to the proposed

study.

Layer 1: URI and Unicode

Layer 1,as a foundation layer, is responsible for unambiguously identifying and

representing resources on the Web, using a compact sequence of characters (Al-

Feel, Koutb & Suoror, 2009:808; Berners-Lee et al., 2005). Secondly, this layer is

responsible for encoding characters from any written language, enabling users and

machines to use any language for data representation on the Web. URI and Unicode

are the common technologies available today to implement the functionalities of the

first layer (Al-Feel, Koutb & Suoror, 2009:808).

According to Berners-Lee et al. (2005), URI supports the identification and

representation of resources on the Web; whilst the Unicode standard identifies and

encodes any international characters linked to different Web resources (Gerber,

Barnard & van der Merwe, 2007).

Layer 2: XML

This layer supports the storage and the exchange of semantic data between

machines and users on the SW (Al-Feel, Koutb & Suoror, 2009:808) through the

utilization of standard technologies, such as XML. The XML standard promotes

common syntax usage in the SW (Obitko, 2007), thus boosting interoperability

between different systems and applications. Aziz et al., (2004) further explain that in

this layer, XML facilitates the process of defining semantic contents and rules

through the use of XML namespaces and schemas, which are responsible for

primarily describing the structure of an XML-based document.

Layer 3: RDF and RDF-S

Resource Description Framework (RDF), as an XML-based standard, simply

“describes resources with URI on the Web” (Cabral et al., 2004). This is

accomplished by linking Web resources with well-defined semantics, (i.e. RDF data)

interpretable and processable by machines (Lassila et al., 2000:67). In essence,

2-29

RDF augments layer 2 (i.e. XML standard) with semantics by “allowing the

description and representation of resources through properties”.

RDF-Schema (RDF-S) is a basic type of system that enables the provisioning of

metadata for processing and interpreting the RDF data (Cabral et al., 2004; Gerber,

Barnard & van der Merwe, 2007).

Nevertheless, RDF has some limitations, since it does not provide richer semantics

and support for describing cardinality constraints, which are some of the important

aspect of ontologies (Horrocks, 2008).

Layer 4: Query, Ontology, and Rules

The Query function is incorporated in the fourth layer for querying and retrieving RDF

data, RDF metadata, and ontologies, so that they can be interpreted and processed

by machines. Simple Protocol and RDF Query Language (SPARQL) is the

recommended SQL-like language; and a protocol for querying and accessing

relevant semantic data and ontologies (Obitko, 2007).

Ontologies are core to the overall SW architecture. They are basically used for

formally representing some knowledge within a specific domain. The term ontology is

commonly defined as “a formal specification of a shared conceptualization” (Gruber,

1993).

The Web Ontology Language (OWL) is one of the languages available for

implementing the ontological functions of layer 4 (Obitko, 2007), and it provides

richer semantics as compared with the RDF in layer 3. In fact, OWL is one of the

common languages used today for generating Web ontologies (Cardoso, 2007b:85).

Computers use the defined ontologies to automatically interpret and process Web

information and services with limited human assistance (Hernandez, 2007).

Rules also plays a major role in the SW (Eiter et al., 2008). The rules component in

this layer is aimed at easing the automatic reasoning and transformation of

knowledge on the Web by machines (Paschke & Bichler, 2008). Al-Feel, Koutb and

Suoror (2009:809) affirm that rules in the SW are meant to simplify querying,

2-30

reasoning, and the filtering of semantic data. Rules Interchange Format (RIF) and

Rule Mark-up Language (RuleML) are two of the promising languages for realizing

the rules component of this layer.

Layer 5: Unifying Logic

The unifying logic layer supports layer 4, in particular ontologies and rules with

logical deductive reasoning and dynamic inference of the semantic data (Aziz et al.,

2004:368; Hyvonen, 2002:16). This enables machines to automatically deduce the

meaning and purpose of the knowledge and the rules defined in layer 4.

Layer 6: Proof

The proof layer deals with validating and confirming the knowledge produced for the

Semantic Web using some ontological language such as OWL. This layer attempts

to assure SW users (e.g. agents) that the deduced knowledge, as developed using

ontologies, is correct (Al-Feel, Koutb & Suoror, 2009:809; Hyvonen, 2002:16).

Currently, a language called Proof Mark-up Language (PML) (Da Silva, McGuinness

& Fikes, 2006) is one of the implementation examples of the proof layer.

Layer 1-6: Cryptography

This layer spans across layer 1 to layer 6; and it is responsible for applying the

overall security to the semantic data. It applies W3C recommended technologies,

such as encryption, decryption, and digital signatures – to ensure that the SW

resources are secured and trusted (Al-Feel, Koutb & Suoror, 2009:809).

Layer 7: Trust

The trust layer is aimed at ensuring the trustworthiness of the domain knowledge

(i.e. ontologies) made available in layer 4.

Layer 8: User Interface and applications

This top-most layer of the SW architecture represents the platform where Web

applications can be SW-enabled. This layer enables users and agents to use SW-

enabled applications. There are a number of applications that could form part of this

layer, such as information and search retrieval, e-marketplaces, knowledge

management, and intelligent e-commerce Web applications (Hyvonen, 2002:17).

2-31

The background details discussed in this section serve as an input to the next

section, where this research study is grounded.

2.4. SEMANTIC WEB SERVICES

Although Web services focus on the accessibility of business functionality over the

Web, and promote interoperability amongst heterogeneous business applications,

various challenges are still being experienced in this field, such as the lack of

semantic descriptions that could enable WS to be fully machine-processable and

interpretable. The emergence of Semantic Web Services (SWS) has been purposed

as a possible solution for the challenges of WS. Dimitrov et al., (2007) assert that

WS without semantic descriptions are less dynamic; hence, the move towards SWS

is an essential one (Janev & Vranes, 2010) in order to achieve automation in Web

services.

In essence, SWS is the confluence of WS and the SW, to create services that are

capable of activities, such as automatic discovery, composition, and execution (Agre

et al., 2007). Within the SWS sphere, several standards and languages are evolving

on how to develop semantic services. These include standards and languages, such

as Web Ontology Language for Services (OWL-S), Web Services Modelling

Ontology (WSMO), based on Web Service Modelling Language (WSML), Semantic

Web Services Language (SWSL), and Web Service Semantics (WSDL-S) (Akkiraju

et al., 2005; Battle et al., 2005; García-Sanchez, 2007; Roman et al., 2006; Smith,

Welty & McGuinness, 2004).

WSMO is one of the approaches that is emerging to facilitate ontology development,

particularly when describing various aspects of SWS such as service capabilities

(Acuna & Marcos, 2006:33). OWL-S is a pure service ontology language based on

OWL. OWL-S is described as one of the major SWS description languages

(Bensaber & Malki, 2008). These emerging standards and languages mainly focus

on the description, publication, discovery, selection, composition, and invocation of

services (Cabral et al., 2004). In Chapter 4, some of these common SWS standards,

languages, and technologies will be discussed further.

2-32

According to Lu, Zhang and Ruan (2007), SWS still faces some challenges, such as

personalization, customization and engineering (i.e. design and development). This

is evidenced from the lack of adoption and development tools (Bensaber & Malki,

2008; Bouchiha & Malki, 2010) meant to ease the process of building of such

services.

It is also important to highlight that the complexity of SWS languages and standards

is generally not hidden from the user, thus making it a challenge for semantic

services to be widely adopted and exploited by service developers. Thus, the main

objective of this study is on simplifying and accelerating the process of building

intelligent semantic services.

The following section elaborates on some of the recent research efforts that have

been conducted within the scope of semantic service engineering and semantic

technologies.

2.5. RELATED WORK

In this section, we highlight some of the common related studies that attempt to

address some of the challenges of engineering semantic services. The focus is

exclusively on the studies that provide an end-to-end development lifecycle of

semantic services: from service design to service deployment.

The domain of semantic services is still in its infancy stage, and the research

activities are mainly on the different concepts of SWS, such as automatic service

discovery, composition, and execution. In terms of semantic service engineering,

there have been a limited number of studies conducted, since the emergence of the

concept of SWS (Agre et al., 2007; Anaby-Tavor. et al., 2008; McIlraith, Son & Zeng,

2001).

Stollberg et al., (2004:5) proposed a Semantic Web Fred (SWF) mediation platform

for building agent-based applications, based on different use case scenarios. The

focus in SWF is on creating an agent that represents an e-service. In this platform,

SWS are integrated from external sources, rather than being developed within the

2-33

platform. Furthermore, this platform is tightly coupled to one specific ontology

language (i.e. WSMO).

One approach that attempts to alleviate the problems of SWF is a framework by

Garcia-Sanchez et al., (2009). The framework, called SEMMAS (SEMantic web

services Multi-Agent System), is independent of the domain and application to which

it is applied. It is made up of four layers that cover various aspects, such as the

business logic, SWS, agents, and applications. SEMMAS does not prescribe a

particular ontology language. The main challenge of SEMMAS is that it relies heavily

on external WS. Moreover, the creation of domain and application ontologies is

manually achieved. Issues of complexity hiding and simple engineering of intelligent

semantic services are not addressed.

ODE-SWS, a SWS development environment of Corcho et al., (2003) focuses on

developing SWS in a language-independent approach. Various SWS languages can

be used within this platform. The framework is integrated within WebODE, an

ontology engineering workbench, responsible for exporting provided ontologies into

other ontology languages (WebODE, 2003). The main limitation of ODE-SWS is that

complete service automation, as prescribed in SWS, is not addressed at all.

One of the other frameworks that claims to be the first in SWS engineering is called

INFRAWEBS (Agre et al., 2007). It focuses on constructing semantic descriptions for

existing and new WS; and it enables the integration of disparate components (e.g.

WS and SWS). INFRAWEBS is made up of different units (i.e. SWS creation,

monitoring, selection, discovery, composition, and conversion); these are paramount

in the actual development and implementation of semantic services. INFRAWEBS

suffers from the same limitations as SWF; that is, it is bound to a specific ontology

language. Furthermore, it assumes that ontologies are already defined, and can

therefore be re-used.

A framework called Internet Reasoning Service (IRS-III) is a comprehensive

framework and a platform for creating WSMO-based SWS (Cabral, 2006; Domingue

et al., 2008). IRS-III is promoted as a development framework for SWS. According to

Domingue et al. (2008:110), the main goal of IRS-III is to support capability-based

2-34

discovery and invocation of semantic services. Web applications can be built and

executed within this platform, using the IRS-III Browser (Cabral, 2006). Its other main

role is to mediate between service providers and service consumers using ontologies

to further enhance the interoperability and collaboration (Domingue et al., 2008:110).

However, IRS-III does not provide an environment, where new semantic services

can be engineered, based on the users’ requirements.

The IRS-III framework, which is made up of an IRS-III Server, Publisher, and Client

does, however, provide support for creating semantic applications out of existing

SWS (Cabral, 2006) and out of existing Java and Lisp code (Domingue et al., 2004).

Moreover, ontologies can be generated using Operational Conceptual Modelling

Language (OCML) and WSMO.

Lastly, one of the research endeavours that is also related to this study, is that of

Srinivasan, Paolucci, and Sycara (2005). The authors proposed and realized a

practical integrated development environment (IDE) called OWL-S IDE, formally

known as CMU11’s OWL-S Development Environment (CODE) for developing,

deploying, and consuming semantic-based services.

OWL-S IDE adopts and extends existing WS tools such as OWL-S editor and

WSDL2OWL-S converter in order to support developers in the process of

developing, deploying, and consuming semantic services (Srinivasan, Paolucci &

Sycara, 2006). It is embedded within the Eclipse12 environment, and is purely based

on Java and OWL-S. It follows a multi-approach, by applying both code-driven and

model-driven methodologies in delivering semantic services.

The OWL-S IDE platform also supports various SWS activities, such as discovery,

invocation, and execution. However, it does not cater for interoperability and high

dynamism (i.e. automation) as envisaged with the overall vision of SWS.

11

Carnegie Mellon University

12
 Eclipse is an open source Java IDE that supports languages, such as Java, C/C++, and PHP. For more information visit:

http://www.eclipse.org

http://www.eclipse.org/

2-35

Table ‎2.2: Summary of Related Work

RELATED WORK SWF INFRAWEBS OWL-S IDE IRS-III SEMMAS ODE-SWS

Authors
Stollberg et al

(2004)
 Agre et al.

(2007)

Srinivasan,
Paolucci,
Sycara
(2006)

Domingue, et
al. (2008)

Garcia-
Sanchez et
al. (2009)

Corcho et al.
(2003)

Programming
Language

M
E
T
H
O
D
O
L
O
G
Y

Java/C++/VB Java Java Java & Lisp Java Java

Model-driven No No Yes No No Yes

Code-driven Yes Yes Yes Yes No No

Lifecycle integrate, publish,
discover, invoke,

execute

create,
compose,

discover, select,
execute, monitor

develop,
describe,
publish,
discover

 broker,
create,
publish

discover,
invoke,

choreograph,
orchestrate,

execute

 discover,
select,

compose,
invoke,

coordinate,
negotiate,
manage &

monitor

design,
develop,
describe,
publish,

discover,
compose

Architectural Style SOAP SOAP SOAP SOAP SOAP SOAP

Ontology
Language

OXML WSMO OWL OCML OWL-DL WebODE

Service
Description
Language

WSDL WSDL WSDL WSDL WSDL WSDL

Semantic
Description
Language

OXML

WSML

OWL-S

OCML OWL-S DAML-S

Intelligence Ontologies
Agents

Ontologies Ontologies Ontologies Ontologies
Agents

Ontologies

2-36

Table 2.2 summarizes the related work reviewed. The related work was reviewed

based on the generic features of WS, SWS, and the overall objectives of this study.

The features exploited for the review are explained as follows:

 Development Methodology: This was to determine the methodology

followed by the related solutions to address the engineering of semantic

services. Two methodologies were identified across these related solutions,

that is, code-driven and model-driven. Code-driven simply means that the

solution follows a bottom-up approach, where code is the foundation of every

component that forms part of intended semantic services. On the contrary,

model-driven engineering follows a top-down approach, where models are

the cornerstone for building systems. Programming languages supported by

the existing solutions were also identified. It became apparent that Java was

the language of choice across all the related solutions.

 Life Cycle: In this criterion, the goal was to ascertain the phases of semantic

service development that each solution supports. It was ascertain that most

of the solutions focus on the phases that are beyond the actual development

of semantic services, such as discovery, and execution. Thus, the key focus

of this study is to address challenges pertaining to the design and

development of semantic services.

 Architectural Style: An assessment was also made to determine the

architectural styles that each of the related solution supports. It was gathered

that all of them are inclined to the RPC-based architectural style (e.g. SOAP-

based services).

 Service Description Language: The related solutions were also reviewed,

according to the types of service description languages that they support; and

all the solutions support WSDL descriptions.

 Ontology Language: All the solutions were also reviewed, based on the

ontology languages that they support for defining domain knowledge. In this

2-37

case, it was clear that different ontology languages are supported by different

solutions.

 Semantic Description Language: In order to corroborate that different

solutions support different ontology languages, a review of semantic

description languages supported by related solutions was also conducted.

As can be noted in Table 2.2, different solutions were found to be supporting

only one semantic description language.

 Intelligence: An analysis was conducted to find out how each solution

addresses the issue of intelligence13 in Web services. It was discovered that

most solutions rely only on ontologies to achieve intelligence in Web

services, whilst some solutions combine ontologies and agents to realize

intelligence in Web services.

2.6. SUMMARY

The focus of Chapter 2 has been on the concepts of service-oriented computing

(SOC). In this chapter, WS are referred to as the loosely coupled distributed Web-

based artefacts that represent the implementation of business services. They are

normally accessed using open XML-based standard protocols, such as SOAP.

Furthermore, they are grounded in common technologies, such as WSDL for

syntactic service descriptions, UDDI for registration, and SOAP for messaging

between the service provider and service consumer.

One of the existing drawbacks of WS, is that they are purely described in a syntactic

manner; thereby, presenting a challenge when autonomously processed and

consumed by software programs. Hence, SWS are emerging to address this

particular challenge.

In essence, SWS are merely an extension of WS with the SW technologies. SW, as

described in the previous sections, is also an extension of the current Web, where

13

The term intelligence in this study has a similar connotation with terms such as high dynamism, and automation. An

elaborated definition of what is meant by intelligence in the context of this study is provided in Chapter 5.

2-38

the vision is to enable all the data on the Web to be strategically linked, in order to

facilitate the process of interoperability and automation on the Web. The main pillar

of SW is ontologies; these provide the possibility of describing data and services on

the Web semantically; thereby, contributing towards making it possible for software

programs to unambiguously understand the Web and its content.

In this chapter, we have also presented a summary of related work, especially with

regard to the solutions that are closely linked to the work proposed in this study.

Although SWS is still immature in terms of development platforms and tools, a

number of researchers have made some strides in ensuring that SWS should

become a reality. Some of the related work that was covered in this chapter, includes

the work of Stollberg (2004), Garcia-Sanchez et al., (2009), and Corcho et al.,

(2003). More importantly, comprehensive development frameworks, such as IRS-III

and OWL-S IDE, were also discussed and summarily evaluated, in order to

determine their relevance to our proposed work, and their limitations in relation to the

objectives of this study.

3-39

3. CHAPTER 3: Service-oriented Software Engineering

This chapter continues with the literature review related to the proposed

study. Concepts of service-oriented software engineering are reviewed, and

discussed. The core of this chapter is the phases that constitute the

service-oriented software engineering lifecycle. In approaching our solution,

these phases are essential in bringing forth a framework that will promote

simple and rapid engineering of intelligent semantic services.

3-40

Figure ‎3.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

3-41

Figure ‎3.2: Chapter 3 Layout

3.1

Introduction

3.2

Comparison

(SE, WE, and

SOSE)

3.3

SOSE Lifecycle

Modelling

Development

Deployment

Publishing

3.4

Summary

3-42

3.1. INTRODUCTION

Service orientation, as a novel approach to service-based system development, has

gained considerable attention in the software development industry over the years

(Kontogiannis, Lewis & Smith, 2008; Tsai, 2005). Hence, there has been a paradigm

shift, as modern enterprises are slowly moving away from traditional software

development to service-oriented system development; where software systems are

developed by composing cross-organizational open services (Gu & Lago, 2007;

Hassanzadeh, Namdarian & Elahi, 2011).

According to Simula (2007), trends indicate that the life cycle of software applications

is becoming relatively shorter than before. Thus, there is a preference for service-

oriented system development; which caters for software systems that can be

developed and deployed over a short period of time. This shift to service-oriented

system development could further be attributed to the growth and development of

the World Wide Web (WWW). Web content (i.e. data and services) is produced and

delivered on the Web on a daily basis by individuals and businesses, leading to a

Web consisting of astronomical amounts of data and services (Sheng et al.,

2010:186). Accordingly, this evolution calls for frameworks, easier-to-use methods,

and tools that could simplify the process of delivering and consuming Web contents,

especially semantically rich services and service-oriented systems.

Service orientation is an approach that advances the development of software

applications, by using the concepts of Web services (Kontogiannis et al., 2007;

Stojanovic & Dahanayake, 2005:1); which are platform-independent, leading to

seamless integration of heterogeneous systems. A number of software development

enterprises are adopting and applying Service-Oriented Architecture (SOA), as a

preferred method for producing and delivering service-based applications on the

Web (Chen, 2008; Kontogiannis et al., 2007).

Some of these enterprises, such as IBM, Oracle, SAP, and others have adopted

SOA for the purposes of lowering software production/re-production costs, and at the

same time, promoting service re-usability and interoperability (Hassanzadeh,

Namdarian & Elahi, 2011; Yu & Ong, 2009).

http://thesaurus.com/browse/subsequently

3-43

SOA focuses on three simple roles briefly explained in Chapter 2, Section 2.2.1.

These roles are those of a service provider, a service broker, and a service

consumer, as depicted in Figure 3.3. Each role player has a set of activities or tasks

to perform in Service-Oriented Software Engineering (SOSE). These activities are

extensively discussed in Section 3.3. However, it should be noted that in this study

the focus is mainly on the engineering phases that are meant to take place in the

service providers’ environment.

This means that the core focus is on the activities that specifically deal with service

production. Other activities that are executed within the service consumer and

broker’s environment are concisely addressed; but they are not the focus of this

study.

Figure ‎3.3: SOA Generic Architecture

Traditional Software Engineering (SE) methods are, to a certain extent, not suited for

delivering service-oriented systems (Tsai, 2005; van den Heuvel et al., 2009). For

example, service-oriented systems have additional activities (such as discovery and

composition) and different requirements, when compared to traditional software

systems. Furthermore, service-based systems are mainly characterized by SOA

design principles, such as loose-coupling, interoperability, composability,

discoverability, dynamism, adaptation, and re-usability (Erl, 2008), whereas

3-44

traditional software systems do not necessarily have to adhere to service design

principles.

SOA design and development principles are extensively applied in SOSE, as

compared to SE (Anaby-Tavor. et al., 2008). SOSE methods and tools are different

from those used in the SE paradigm (Kirda et al., 2001; Sassen & Macmillan, 2005).

SOSE focuses on turning business processes into adaptive and composable (Web)

services; whereas, SE focuses on the development and maintenance of static and

traditional software systems. Figure 3.4 illustrates the relationship between SE and

SOSE paradigms. As shown, SOSE extends from SE and Web Engineering (WE).

There are subtle differences and similarities between SOSE, WE and SE. In fact, as

illustrated in Figure 3.4, these paradigms are interconnected. For example, SOSE

methods inherit and extend some of the methods found in the SE paradigm. In

Section 3.2, the main distinctive features between these paradigms are summarised.

Web Engineering

Service-Oriented Software

Engineering

Software Engineering

Figure ‎3.4: Relationship Perspective of Engineering Principles

SOSE can be described as a discipline concerned with a set of activities that deal

with “systematic analysis, design, development, deployment, publication, and

execution of service-based systems” (Cardoso, Voigt & Winkler, 2008). A more

3-45

precise and comprehensive definition by van den Heuvel et al., (2009) states that

SOSE is a “science and application of concepts, models, methods, and tools to

design, develop (source), deploy, test, provide, and maintain business-aligned, and

SOA-based software systems in a disciplined, reproducible, and repeatable manner”.

SE can be defined as a paradigm that deals with all aspects of non-SOA software

systems engineering, such as analysis, design, development, testing,

implementation, documentation, configuration, and maintenance (Sommerville,

2006). WE is a systematic process of developing and applying knowledge to

engineer quality Web applications (Suh, 2005) and it also extends from SE.

In this chapter, the main focus is on providing a literature overview of the phases

involved in service engineering. The SOSE lifecycle approach, as proposed by

Zhang, Zhang and Cai (2007) is described. SOSE is core to this study, since the

main focus is on the engineering process that could simplify and ease the manner in

which intelligent semantic services are designed and developed for publication and

consumption by service providers and consumers.

3.2. COMPARISON: SE, WE, AND SOSE

Table 3.1, demonstrates the distinct features of the SE, WE, and SOSE paradigms.

These paradigms are compared, using selected key features adopted from Breivold

and Larsson (2007), as well as features derived from the objectives of this study.

3-46

Table ‎3.1: Comparison between SE, WE, and SOSE

Features SE WE SOSE

Functional

Requirements

Specific Specific/

Generic

Generic

Project Scope Large Varies Small

Production Time Long Varies Short

Production Costs High Medium Low

Growth and Change Slow Fast Fast

Market Narrow Broad Broad

Platform Dependent Independent Independent

User Interface Standard Varies Varies

In SE, functional requirements are normally specific, as compared with SOSE, where

general market requirements or market trends are used as the basis for producing

new services (Bicer et al., 2009; Ginige, 2002; Gu & Lago, 2007). Moreover, in

traditional software development, software requirements do not change frequently,

once the software system has been tested and packaged.

On the contrary, service-based system requirements change rapidly, especially due

to the evolution in market trends and requirements (Gu & Lago, 2007). In general,

functional requirements in WE can be specific or generic, depending on the intended

solution. For example, some Google Web applications (e.g. Google Sites) are

designed, based on the generic functional requirements, and enterprise Web

applications are mainly engineered, based on specific functional requirements.

Service-based systems have a short production time-span, as compared with legacy

software applications; which are engineered over a long period of time, due to their

large project scope. On the other hand, the project scope of Web-applications

varies, depending on the functional requirements and the complexity of the solution.

Ideally, SOSE is distinguished by small-scale projects (Stojanovic & Dahanayake,

2005:27). Each service is concerned with a specific functionality or capability, such

as “currency conversion”; whilst traditional software systems encompass all the

3-47

major and sometimes redundant functionalities, such as for example: “ordering,

invoicing and printing”. Nevertheless, service-based systems could also include

multiple capabilities; but generally, additional functionalities would be accomplished

by other external composite services possibly developed by different service

providers. This is made possible by the re-usability and interoperability aspects of

SOA. The assumption is that since the project scope of service-oriented systems

tends to be less than that of traditional software systems, the production costs and

time of the former would also be lower. This reasoning is the same for Web-based

applications; however, the complexity of the solution needs to be considered.

In SOSE and WE, the growth and change of services and the requirements are quite

rapid, as compared with systems produced under SE (Ginige, 2002; Stojanovic &

Dahanayake, 2005:28). Due to fierce competition, there can be a number of

services; and generally Web applications that offer the same capabilities, could

actually motivate service providers to always “think ahead” in offering value-added

services. However, in SE, changes are usually implemented more slowly than they

are needed. This is mainly because SE techniques were not intended to adapt to

frequent changes (Stojanovic & Dahanayake, 2005:28).

One of the main goals of SOA is to enable high quality and flexible software

production that enables adaptation, re-usability and interoperability (Yu & Ong,

2009). Thus, in SOSE and WE, the target market is usually broad and global, as

compared with SE; where users of the system are usually specific, and within a

narrow domain.

The other main difference between SE, WE and SOSE is that services and Web

applications are platform-independent (Tsai, 2005). This means that service-oriented

systems and Web applications could be accessed and executed from any platform

that supports services or Web technologies, including mobile devices. In SE,

software systems are generally platform-dependent, because systems are usually

developed or produced for a specific platform, such as Windows. The software

systems developed to run in Windows will thus need to be re-engineered, in order to

be implemented under a different platform, such as Linux.

3-48

Traditional software applications have standard user interfaces, which, in some

cases, are tightly bound to the selected system. In general, services have a common

interface description; but these can usually be accessed across various user

interfaces and devices – without changing the capability of the service. In WE, user

interfaces could be engineered to match different user requirements, as they are, in

many cases, not bound to the actual business logic.

Lastly, one other difference between SOSE and SE is that SOSE is solution-driven,

whilst SE is product-driven (Stojanovic & Dahanayake, 2005:33). Simply put, SE

techniques are generally applied, where complex and sometimes stand-alone

computer systems are developed, and the goal of such development is to deliver a

complete and functional software product. On the contrary, SOSE is well-suited for

modular solutions or independent services; which do not need to form part of a fully

functional business software product. Nevertheless, modular services delivered

through a SOSE technique could also be composed to realize a complete and

functional software product.

3.3. SOSE LIFE CYCLE

Service-Oriented Software Engineering (SOSE), as a relatively new approach,

involves different processes and stakeholders. According to Kilian-Kehr (2008),

some of the role-players that may be involved in the SOSE process include:

 Service designer: The provider of service specifications;

 Service producer: Someone who creates services on behalf of the providers;

 Service provider: The stakeholder that offers the actual service;

 Service consumer: The consumer of available and offered services.

However, in many instances, these stakeholders are grouped into three, namely:

service provider (creator), service host (broker), and service consumer (Breivold &

Larsson, 2007).

3-49

Modelling

Development

Deployment

Publishing

Monitoring &

Management

Discovery

Collaboration

Composition

Invocation

Service Creator
Service Host/

Broker

Service

Consumer

Figure ‎3.5: SOSE Life Cycle

As depicted in Figure ‎3.5 (Zhang, Zhang & Cai, 2007), the services lifecycle

encompasses several phases, such as service development, service composition,

and service management. These phases are also illustrated in Figure ‎3.6

(Papazoglou & van den Heuvel, 2006). Figure ‎3.7 illustrates five phases that are

generally found in software engineering, namely: requirements, design,

implementation (development), testing or verification, and maintenance (Yu & Ong,

2009), and these phases are the basis for SOSE.

3-50

Figure ‎3.6: Web Service Engineering Life Cycle

In SE, the software development lifecycle (SDLC in Figure ‎3.7) is common across

software development projects. However, in SOSE, researchers have proposed a

number of service development lifecycles over the recent past (Gu & Lago, 2007).

Although there are some differences between these service development lifecycles,

the common foundation is usually the service-oriented principles. Hence, in this

chapter, reference is made only to the SOSE lifecycle, as proposed by Zhang, Zhang

and Cai (2007) (cf. Figure ‎3.5).

The SOSE lifecycle is essential for service engineering, as it can aid designers,

developers, service brokers, and related stakeholders to have a clear understanding

of what activities are involved, when designing, developing, and facilitating the usage

of services and service-based systems.

Requirements Design Implementation Testing Maintenance

Figure ‎3.7: Traditional Software Engineering Life Cycle

3-51

In the following subsections, a description of each phase of the SOSE lifecycle is

provided in detail, with the focus only on the phases of the service creator; as that is

where the proposed study is focusing.

3.3.1. Modelling

Services are normally initiated, based on market requirements and trends, rather

than on specific client requirements. According to Gu and Lago (2007), SOSE

normally starts with a generic market scan, where service providers ascertain the

service requirements, by analyzing trends and market demands. Furthermore, an

effort is also made to ensure that a service fulfilling a perceived market demand is

not already available in various other service marketplaces and repositories. This

process can be quite useful in preventing redundant service production. It should

always be kept in mind that SOA encourages re-usability (Erl, 2008); where third-

party services could be composed with new services to satisfy evolving market

requirements.

A model can simply be defined as an abstract representation of a system’s

behaviour (Stahl & Volter, 2006). According to Gronmo et al. (2004), models govern

service development, as they can be converted into program code during the

development phase; thereby, increasing the speed of service development and

deployment. Service models are pivotal to the entire service development process.

They capture the problem domain quite clearly, as compared with the actual

implementation, which tends to focus heavily on the technological or implementation

issues. Additionally, service models are abstract, and mostly concentrate on the

main activities or business processes, without focusing on the “how”.

In the modelling phase, various techniques to model a service could be applied. For

instance, Business Process Modelling Notation (BPMN14) and Unified Modelling

Language (UML15) are some of the common techniques that are used to model

specific business processes. UML is more generic; where a number of complex

14

 BPMN is a standardized graphical notation for modelling business processes. It uses various notations for specific events,
activities, sequences and relationships between processes. For more information see: http://www.bpmn.org
15

 UML is a standard modelling (specification) language or notation developed by the Object Management Group (OMG) for the
purpose of modelling complex systems. For more information see: http://www.uml.org

http://www.bpmn.org/
http://www.uml.org/

3-52

systems can be modelled at various levels, while BPMN is domain-specific and

supports one level of modelling using business process diagrams (BPD).

In concluding this sub-section, it is important to highlight that service modelling can

be further divided into three sub-phases, namely: (1) Service identification; (2)

service specification; and (3) service realization (Bicer et al., 2009; Yu & Ong, 2009).

The identification phase is about determining the goals that are to be accomplished

by a service: service specification documents, agreed-upon service operations, and

properties. The sub-activity called service realization is concerned with the actual

advertisement of the innovated service.

3.3.2. Development

In this phase, a modelled service could be realized using different types of high-level

programming languages, such as Java, C#, C++, PHP, and others. In some cases,

specific modelling tools could be exploited for generating partial programming codes

from the service model. In such cases, developers need only to add the

implementation code within the generated code skeletons, thus minimizing service

development time.

Once the service capability has been fully implemented, functional service

descriptions (i.e. service name, operations, input and output parameters, messaging

types) could be manually defined and captured within WSDL documents, or any

other service descriptions. This process could also be partially automated by using

converters, such as Java2WSDL; this is an Eclipse plug-in that automatically

transforms Java classes into WSDL descriptions (Studer, Grimm & Abecker,

2007:312).

Thereafter, programming code stubs of these classes could be generated and

supplemented by the developer, based on the service interface defined in WSDL, or

in other service description languages. Service developers need to also perform

other activities, such as testing, and maintenance to ensure quality control and

expected performance levels (Gu & Lago, 2007). These activities are embedded

within the generic SE lifecycle as depicted in Figure 3.7.

3-53

The phases described in this sub-section are well-suited for producing conventional

Web services. When developing syntactic Web services (WS), the focus is on the

behavioural issues; and the incorporation of semantic descriptions is not addressed.

For instance, the service models produced in the modelling phase, using UML or

BPMN generally do not include any semantic descriptions that could assist in

minimizing model interpretation difficulties by different stakeholders. The service

descriptions built using WSDL or other conversion tools, such as Java2WSDL are

only syntactic. Thus, when it comes to SWS, additional tasks need to be performed

by developers during the modelling and developmental phases.

There are developments in this regard, such as using tools (e.g. WSDL2OWL-S)

(Studer, Grimm & Abecker, 2007:314) that convert WSDL descriptions to semantic

descriptions. However, these tools are not by default integrated into the service

development platforms; and they currently have their own challenges (Moulin,

Sbodio & Bettahar, 2005), such as the lack of multiple-language support, uniformity,

and completeness when for example translating syntactic descriptions to semantic

descriptions.

3.3.3. Deployment

The deployment phase is about activating the constructed services for consumption.

The deployment process can be compared to a process of uploading a service into

the Web server. The deployment stage in the SOSE life cycle gives the developer an

opportunity to actually test the performance of the developed service (Gu & Lago,

2007).

This process might also be recursive, as the developer would need to be satisfied

that the service performs as intended, before advertising the service for public

usage. As stated by Zhang, Zhang, and Cai (2007:104), the deployment phase also

involves the binding of functional service descriptions to service protocols, such as

SOAP over HTTP. Once a service has been deployed, it can only be invoked and

consumed by the provider. This means that the public community would not be able

3-54

to access the service until it is advertised or published to appropriate public

marketplaces or service registries.

3.3.4. Publishing

This phase mainly involves advertising the service for public access, invocation, and

execution. Information, such as how to invoke and execute the developed service, is

published in a public service registry, through the use of service descriptions.

Figure ‎3.8 demonstrates how services – through service descriptions – are published

and discovered using messaging protocols, such as SOAP (Newcomer, 2004:31).

Service registries are managed and monitored by service brokers (Zhang, Zhang &

Cai, 2007:104).

Figure ‎3.8: Service Publication and Discovery

In concluding Section 3.3, it is essential to be aware of, and to properly manage, the

different phases in the SOSE life cycle. Furthermore, a variety of techniques and

tools are available to achieve most of the activities described above. Approaches,

such as model-driven engineering (MDE) (Anaby-Tavor. et al., 2008), and code-

Service

Repository
(e.g. UDDI)

Service

Description

(e.g. WSDL)

Service

Description

(e.g. WSDL)

SOAP Processor SOAP Processor
Messaging

(Service Execution)

Provider Consumer

Search for

Registered

Services

Register

services

3-55

driven engineering (CDE) (Srinivasan, Paolucci & Sycara, 2006) could be used as

alternatives.

MDE focuses on models, meta-models, and transformations, as cornerstones for

SOSE. In this approach, the engineering process commences with the creation of

models at different levels of abstraction (Anaby-Tavor. et al., 2008), in order to

carefully design, analyze, and capture the requirements, behaviours, and structure of

the intended service or service-based system. MDE is commonly preferred in service

development as models enable developers and researchers to deal with various

concerns before the actual system is built and implemented; thereby, reducing the

risks of system failure and collapse during execution.

A code-driven engineering approach tends to be favoured by developers who are

mainly interested in the implementation or prototyping of systems. According to

Srinivasan, Paolucci, and Sycara (2005), the code-driven approach starts by

implementing a service – using a particular programming language. Service

descriptions and models are then be derived from the implemented code.

Lastly, for developers to realize individual services, and service-based systems, a

number of phases need to be completed. However, within the SOSE domain, there

is a lack of simple and unified platforms and tools that support the process of

engineering semantic services, as compared with the engineering of conventional

Web services. Equally so, it is a challenge for service designers and providers to

manually complete each SOSE lifecycle phase error-free, without simple, efficient,

and interoperable software tools. One of the key objectives of this thesis is to

address some of these challenges.

3.4. SUMMARY

The overall focus of this study is primarily on the modelling, and development (this

includes service creation, semantic descriptions and annotations, as well as

intelligence wrapping) of intelligent semantic services. We have realized that

traditional software engineering techniques cannot be directly applied when building

3-56

semantic services. Hence, the concept of Service-Oriented Software Engineering

(SOSE) has been introduced in this chapter.

Semantic services and service-oriented systems have different life cycles compared

to traditional software systems. For example, in service engineering, a service can

be searched, discovered, selected, composed, invoked, executed, and so forth,

whilst the lifecycle of a traditional software system is different, with fewer phases.

A comparison of SOSE, WE and SE has been provided, to establish the main

differences between these approaches. This was accomplished by taking into

consideration that service engineering inherits and extends software and Web

engineering techniques. The SOSE lifecycle was presented, in order to clarify the

main phases on which the proposed study focuses - when considering phases within

the service engineering process.

Furthermore, the SOSE life cycle also solidifies our research argument that without

supporting methods and tools, it could be a challenge to produce efficient services,

when manually handling the SOSE activities. This was done by detailing the different

activities conducted when engineering service-oriented systems. From the different

phases, it is appropriate to suggest that manual processes are not enough to simplify

and accelerate the process of engineering semantic services. There is a need for

novel methods and tools that could promote and unify service modelling,

development, deployment, re-usability, interoperability, and even more so, tools that

could deal with the complexities involved when engineering service-oriented

systems.

In Chapter 4, we shall discuss the prominent models, methods, and tools used in

semantic SOSE for realizing and supporting ontology definition, semantic

descriptions, and semantic annotations.

4-57

4. CHAPTER 4: Semantic Service Models and Related Tools

The literature review is concluded in this chapter. Prominent semantic

models and semantic description languages relevant to the engineering of

semantic services are reviewed and discussed. This includes common

related tools that have come forth over the recent years in an attempt to

ensure that semantic services become a reality.

4-58

Figure ‎4.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

4-59

Figure ‎4.2: Chapter 4 Layout

4.1

Introduction

4.2

SWS

Descriptions

4.3

SWS

Annotations

OWL-S

WSMO

4.4

Summary

WSDL-S

SAWSDL

WSMO-Lite

4-60

4.1. INTRODUCTION

The SOSE lifecycle described in Chapter 3 is suitable for developing Web services

(WS). However, it is not fully suitable for engineering Semantic Web Services

(SWS). This is due to the fact that the development of SWS requires additional

steps, such as ontology and semantic descriptions development. Nevertheless, the

traditional SOSE lifecycle phases (Zhang, Zhang & Cai, 2007) could be applied for

engineering some components of SWS. However, this needs to be supported by

developing additional novel methods, standards, and platforms that could facilitate

other activities involved in engineering SWS, such as the development of domain

ontologies and semantic descriptions.

The field of WS has evolved over the years, and the process of engineering WS has

greatly improved over time. This could mainly be attributed to mature methods, tools,

and platforms. Hence, the argument that is put forth in this study is that for SWS to

reach similar levels of success as WS, supporting methods, tools, and unified

platforms are of importance.

In the following sections, current advances and challenges in the field of SWS are

discussed. This includes the overarching semantic service models primarily focused

on semantic descriptions and domain ontologies, including available standards,

languages, tools, and platforms that attempt to deal with the issues of simplifying the

process of engineering semantic services.

4.2. SWS DESCRIPTIONS

In Chapter 2, SWS and related concepts were briefly introduced. In this section, we

elaborate on the essential building blocks of semantic services - semantic

descriptions, and related ontology models. Ontologies and semantic descriptions are

core to the process of developing semantic services because they enable services to

be machine-interpretable and machine-processable.

As noted in Section 2.2.1 of Chapter 2, WSDL as a standardized XML-based

language that is used for syntactically describing Web services. WSDL describes a

number of service aspects, such as service name, data types, operations, input and

4-61

output parameters as well as message types – all intended for service

advertisement, discovery, and invocation (Yu, 2007:208). However, WSDL only

provides syntactic descriptions; and these descriptions, as mentioned in Chapter 1

and Chapter 2; do not enable WS to be intelligently processed with minimal user

intervention. The concept of semantic descriptions is thus intended to address these

challenges.

Accordingly, there are a number of ontology-based models and languages that have

emerged over the recent past for facilitating the construction of semantic

descriptions, such as Web Ontology Language for Service (OWL-S), Web Services

Modelling Ontology (WSMO) (Kashyap, Bussler & Moran, 2008:259) and WSMO-

Lite (Vitvar, Kopecky & Fensel, 2009).

In the following subsections, we report on the prevalent heavy-weight semantic

description models and their underlying languages. These are: OWL-S and WSMO

(Acuna & Marcos, 2006; Lia, Abela & Scicluna, 2009; Wang et al., 2007). In

Section 4.3, WSDL-S, SAWSDL, and WSMO-Lite are highlighted as some of the

existing lightweight approaches for annotating SWS.

4.2.1. OWL-S

As a semantic description language, Web Ontology Language for Services (OWL-S)

is based on OWL (Web Ontology Language) and RDF (McGuinness & van

Harmelen, 2004); and these comprise the common basis for the Semantic Web

(Kashyap, Bussler & Moran, 2008:259) and SWS.

The main objective of OWL-S is on the enablement of services that could be

automatically discovered, composed, invoked, and executed by software agents and

users respectively (Martin et al., 2004). OWL-S, formerly known as DARPA Agent

Mark-up Language for Services (DAML-S), was initiated by DAML16, and is

supported by W3C17. It is structured into three elements, namely: the Service Profile,

16

 DAML is a DARPA Agent Mark-up Language programme with an objective to develop a language and tools to facilitate the
concept of the Semantic Web. For more information see http://www.daml.org
17

 W3C is a World Wide Web Consortium responsible for the standardization of Web technologies. For more details see
http://www.w3.org

http://www.daml.org/
http://www.w3.org/

4-62

the Service Model or Process Model, and Service Grounding, as depicted in Figure

4.3 (Martin et al., 2004).

Figure ‎4.3: OWL-S top level service ontology

The Service Profile advertises the information necessary for semantic service

discovery. The information presents “what a service does”. This is attained through a

profile class that defines the capabilities of the service by specifying both functional

(i.e. inputs, outputs, preconditions, and effects) and non-functional properties (i.e.

service name, textual service description, contact information, and service category)

(Elenius et al., 2005; Martin et al., 2004). According to Martin et al. (2004), a host of

non-functional properties can be used to describe a variety of features of a particular

service, such as service rating, estimated response time, and geographic scope.

In OWL-S, each service is represented through the instantiation of the Service

concept, as shown in Figure 4.3. The instantiated Service acts as a point of

reference for semantically describing a Web service (Lara et al., 2004; Martin et al.,

2004)- by using the three elements of OWL-S. Listing 4.1shows an excerpt of a

Service Profile class – describing inputs, outputs, and non-functional properties of a

service named “BravoAir_ReservationAgent”.

4-63

Listing ‎4.1: Excerpt of the OWL-S Service Profile

As shown in Listing 4.1, the Service Profile is structured using specialized XML tags,

such as <profile:textDescription>18 used to encapsulate non-technical

information that describe the offerings of a semantic service, and

<profile:serviceParameter>
19 that captures a list of properties that

supplement the profile class for service discoverability (Martin et al., 2004).

The Service Model provides a detailed description of service operations, such as

how a service could be executed by the requester, and how it performs its activities,

including data flow and message control between Web methods (Balzer, Liebig &

Wagner, 2004). Furthermore, the Service Model derives the functional properties

that are used in the profile class (Elenius et al., 2005). Additionally, it is formed, on

the basis of one or more process models defined by OWL-S for executing

discovered services. These are: atomic processes, simple processes, and composite

processes (Kashyap, Bussler & Moran, 2008:260).

18

See Line 8-12
19

See Line 13-20

4-64

An atomic process can be used by the service discoverer to directly invoke a service

containing only a single Web method (Balzer, Liebig & Wagner, 2004). Listing 4.2

depicts an example of a Service Model containing one atomic process that is

responsible for getting flight details, such as the Departure Airport, and Outbound

Date.

Listing ‎4.2: OWL-S Service Model Class

Simple processes are not meant to be directly invoked; and they are only intended

for specifying “abstract views of concrete processes by hiding certain inputs, outputs,

preconditions and effects” (Balzer, Liebig & Wagner, 2004). Composite processes

are the ones that have multiple steps. They provide for the maintenance of states

and messages that can be passed to other Web methods of separate services.

Composite processes deal with more than one process; these can be atomic, simple,

or even composite (Martin et al., 2004). However, it should be noted that composite

processes are composed of atomic processes.

Service Grounding provides semantic descriptions on how clients should

communicate or exchange messages with discovered services. Basically, grounding

defines how a service is invoked and executed. It binds parameters (i.e. inputs and

outputs) defined in the Service Model with concrete parameters and messages

defined in syntactic descriptions (Balzer, Liebig & Wagner, 2004; Elenius et al.,

2005; Kashyap, Bussler & Moran, 2008:259). An atomic process in the Service

Model is linked with operations or Web methods defined in the WSDL document or

any other service description document. Inputs and Outputs specified in the process

4-65

model are linked with service input and output parameters, as defined in the

syntactic description document.

Other OWL-S details, such as data types for inputs and outputs and message

protocols, are also linked with the same information, as described in syntactic

descriptions (Balzer, Liebig & Wagner, 2004). Nevertheless, Service Grounding is

also capable of describing additional information in OWL-S, such as supported

transport protocols, supported message formats, and other low-level information,

such as WSDL operations (Elenius et al., 2005; Yu, 2007:249).

OWL-S, as one of the first initiatives for semantically describing services, is

interoperable, in the sense that its different elements (e.g. Service Profile) could be

re-used by other services. In addition, OWL-S elements are extensible, especially

through sub-classing (Lara et al., 2004). For instance, a specific Service Model could

be extended to address additional behavioural situations in semantically described

services (Elenius et al., 2005).

Nevertheless, OWL-S (i.e. OWL-S 1.1) has its own shortcomings. According to

Wang et al. (2007), the reasoning capabilities of OWL-S are weak, particularly due to

the lack of matured reasoners within the OWL-S domain. Moreover, OWL-S is not

capable of adequately expressing a complete list of service’s non-functional

properties, such as availability and performance. In addition, OWL-S also does not

explicitly provide approaches for handling heterogeneity issues (de Bruijn et al.,

2005b) between the different elements (i.e. Service Profile, Service Model, and

Service Grounding).

OWL-S is complex and resource intensive from the perspective of an average

service developer. More than this, OWL-S has a steep learning curve for service

development experts. As a result, it falls short in facilitating the realization of SWS in

a simpler and quicker manner. The complexity challenges that come with OWL-S are

further compounded by the lack of adequate tools that could ease the development

of such semantic services (Agre et al., 2007; Balzer, Liebig & Wagner, 2004).

Nevertheless, there are tools that exist to partially support developers with the

4-66

creation of ontologies, such as OWL-S IDE (Srinivasan, Paolucci & Sycara, 2006)

and Protégé (Horridge et al., 2007).

However, some of these tools are not integrated with existing service engineering

platforms. Even those that could be easily integrated into existing development

platforms, such as Eclipse; do not support the engineering of semantic services that

are intelligent beyond the use of ontologies. Hence, in this study, our aim is to

demonstrate a proof of concept platform that will not only simplify and accelerate the

process of engineering intelligent semantic services, but will also provide an

environment that is unified, and useful to both experts and non-experts.

The following sub-section briefly elaborates on some of the current tools that can be

used to create semantic descriptions using OWL-S.

4.2.1.1. OWL-S Tools

One of the prominent tools that facilitates the development, advertisement, and

consumption of OWL-S based services, and supports a complete life cycle of SWS,

is OWL-S IDE (formerly known as CODE) by Srinivasan, Paolucci, and Sycara

(2005). OWL-S IDE integrates the semantic description process and the service

capability implementation process within one environment. OWL-S IDE extends

currently existing WS tools and standards, such as UDDI, in order to ensure

seamless development, advertisement, and the consumption of semantically based

services. OWL-S IDE is based on the Eclipse plug-in environment.

OWL-S IDE, as the name suggests, is coupled to OWL; it does not accommodate

other ontology models, such as WSMO; and graphical representation of ontologies

or services is not supported (Elenius et al., 2005).

One of the other tools that promotes OWL-S descriptions development is called

OWL-S Editor20 (Elenius et al., 2005); this is also used by the OWL-S IDE as

described above. OWL-S Editor only focuses on ontology editing, and does not

integrate any service programming environment within its platform. It is incorporated

20

 OWL-S Editor is an open source tool and is available under http://owlseditor.semwebcentral.org

http://owlseditor.semwebcentral.org/

4-67

in the Protégé platform on top of the OWL Ontology Editor plug-in. It facilitates the

development of various domain and service ontologies. However, it is not suited for

handling multiple and heterogeneous domain and service ontologies.

Other individual tools for facilitating the development of OWL-S services include

converters, such as WSDL2OWL-S21 and Java2OWL-S (Studer, Grimm & Abecker,

2007:312). WSDL2OWL-S converts WSDL descriptions into partial OWL-S classes.

These are: Service Profile, Service Model, and Service Grounding classes.

WSDL2OWL-S usually comes as part of the OWL-S toolset; and it could also be

incorporated into environments, such as Eclipse.

Java2OWL-S22 is responsible for partially translating Java classes into OWL-S

profile, process model, and service grounding classes. As with WSDL2OWL-S, the

service grounding is completely generated, whilst the service profile and service

model are partially generated. Java2OWL-S combines Java2WSDL23 and

WSDL2OWL-S converters to support the translation of Java classes to OWL-S

classes (Studer, Grimm & Abecker, 2007:314).

4.2.2. WSMO

WSMO is a conceptual ontology model. It was developed by DERI (Digital Enterprise

Research Institute)24 (Acuna & Marcos, 2006; de Bruijn et al., 2005a). It is based on

the Web Service Modelling Language (WSML) (Cabral et al., 2004; Fensel &

Bussler, 2002). Various elements that can be semantically described using WSMO

are Ontologies, Web services, Goals, and Mediators.

21

 WSDL2OWL-S converts WSDL documents to OWL-S ontology specifications, and can be downloaded at
http://www.daml.ri.cmu.edu/wsdl2owls/ or http://projects.semwebcentral.org/projects/wsdl2owl-s/
22

 Java2OWL-S can be downloaded from http://projects.semwebcentral.org/projects/java2owl-s/, and it uses WSDL2OWL-S in
the background and another component called Java2WSDL.
23

 Java2WSDL takes a Java class as input and generates a WSDL description file that can be used to invoked methods as Web
services by service requesters. It is part of Apache Axis. More information can be found on http://ws.apache.org/axis/
24

 See http://www.deri.org/

http://www.daml.ri.cmu.edu/wsdl2owls/
http://projects.semwebcentral.org/projects/wsdl2owl-s/
http://projects.semwebcentral.org/projects/java2owl-s/
http://ws.apache.org/axis/
http://www.deri.org/

4-68

Figure ‎4.4: Top-level WSMO Elements

As depicted in Figure 4.4, the core elements of WSMO are described according to

the WSMO submission document (de Bruijn et al., 2005a) to the W3C as follows:

 Ontologies: provide common terminologies and knowledge representations (i.e.

domain and service ontologies) that could be used to achieve an understanding

between Web services and Goals, including other core elements of WSMO for

interoperability purposes. Listing 4.3 shows a partial domain ontology describing

locations, such as continents, countries and cities and their interrelations using

the free-format of WSML.

Listing ‎4.325: WSMO Ontology example

25

 The complete ontology can be found at: http://www.wsmo.org/ontologies/location/

http://www.wsmo.org/ontologies/location/

4-69

As it can be noted, the information captured by the example (Listing 4.3) can vary

depending on the domain and the number of concepts and relations involved

within that particular domain.

 Goals: represent objectives or intentions in WSML that the service requester

expects to be accomplished by the Web service. Goals are usually represented in

terms of functional and non-functional requirements (Roman et al., 2006).

 Web services26: provide ontological descriptions that define functional, non-

functional, and behavioural aspects of the service itself. The descriptions can be

used by software programs to automatically discover services that are of interest.

 Mediators: capture the domain knowledge that is useful for handling

interoperability and incompatibility issues between the core WSMO elements.

There are four types of mediators supported by WSMO. Firstly, ooMediators deal

with interoperability issues between different ontologies. Secondly, ggMediators

connect different Goals and also handle interoperability issues between Goals.

Thirdly, wgMediators handle cooperation issues between Web services and

Goals. Lastly, wwMediators handle the interaction and interoperability challenges

between co-operating Web services.

As noted above, WSMO uses WSML, a formal language that allows for syntactic and

formal specification of different aspects of WSMO. The formal syntax and semantic

descriptions provided by WSML can be used to describe different WSMO core

elements (de Bruijn et al., 2005c).

Overall, the main differences between OWL-S and WSMO are (Cardoso, 2007a):

 OWL-S is based on OWL, and WSMO is based on WSML.

 OWL-S does not consider challenges of heterogeneity. WSMO provides

mediators for dealing with interoperability and heterogeneity problems.

 OWL relies only on Description Logics27 (DL) (Horrocks & Sattler, 2002),

whilst WSML is based on different logical formalisms, such as DL, First Order

26

Please note in this context, the term Web services refers to ontological descriptions in WSMO, and not distributed Web
services

4-70

Logic (FOL)28, and Logic Programming29 (LP). These facilitate the enablement

of formal meaning in semantic descriptions (de Bruijn et al., 2005c; Roman et

al., 2006).

The key differences between OWL-S and WSMO are further summarized in Table

4.1, using logical formalisms, ontology language, syntax, and support of

heterogeneous domain ontologies as elements of comparison.

Table ‎4.1: Differences between OWL-S and WSMO

Criteria OWL-S WSMO

Logical formalisms DL DL, FOL, LP

Ontology language OWL, RDF WSML

Syntax XML Human-readable syntax

XML

Heterogeneity Not supported Mediators

WSML has various benefits that are seen as improvements over OWL. All WSML

variants use normative human-readable syntax (de Bruijn et al., 2005c). In addition,

WSML separates conceptual modelling and logical modelling. Moreover, in WSMO,

Semantic descriptions are generated based on well-established logical formalisms,

such as Description Logics and First Order Logic. Heterogeneity issues in WSMO

are handled through the use of different types of mediators that are specific to

WSMO core elements (Roman et al., 2006).

The main drawbacks of WSML and WSMO pertain to the development tools. Tool

support, for creating semantic descriptions using WSML is lacking. Additionally,

WSML has a steep learning curve, especially when having no background

knowledge on logical formalisms when defining logical expressions (e.g. axioms).

27

 Description Logics (DL) are a variety of formal knowledge representation languages intended for modelling concepts, roles
and individuals, as well as their relationship. They are extensively used in Artificial Intelligence and have been adopted in the
implementation of Semantic Web and Semantic Web Services for knowledge representation, expression, and reasoning.
28

 First Order Logic (FOL), as a logical formalism, provides syntax for formally expressing objects, relations, and functions.
29

 Logic programming (LP) is a family of high-level knowledge representation languages that are commonly used in Artificial
Intelligence (AI) for expressing logical properties with regard to computations. Prolog is one of the established Logic
Programming languages.

4-71

Nevertheless, there are some tools and platforms that have been in the public

domain, such as WSMT (Web Service Modelling Toolkit) (Kerrigan et al., 2007), and

WSMO Studio (Dimitrov et al., 2007), for supporting the process of knowledge

representation, but not the complete end-to-end process of building intelligent

semantic services.

However, most of these tools are complex; and they cater for expert developers in

the field of SWS. Thus, it can be a challenge for average developers and service

providers to easily use these tools to simply and rapidly engineer their business

services, as intelligent semantic services. Similar to OWL-S, WSMO description

creation tools do not support the development of intelligent semantic services.

4.2.2.1. WSMO Tools

In this section, we discuss some of the tools and platforms that are available to

facilitate the process of building WSML compliant ontologies and semantic

descriptions. WSMT and WSMO Studio are two of such prominent platforms

available in the public domain. However, these tools do not come readily integrated

within existing service platforms. In our view, the approach of delivering semantic

tools in segregation could also be a barrier for adoption, and for usage by early

adopters. Developers always prefer to perform tasks that are related within one

integrated space (Rivières & Wiegand, 2004). Some of the WSMO tools are

discussed below:

 WSMT: Web Service Modelling Toolkit30 (Kerrigan et al., 2007) provides a

graphical environment for creating domain knowledge, using WSML to

describe and represent all the core elements of WSMO. It provides support for

building WSMO descriptions (i.e. Ontologies, Web services, Goals, and

Mediators) and mappings between different mediators. It also interfaces

created descriptions with the Semantic Execution Environments (SEEs), such

as WSMX (Web Service Execution Environment) (Kerrigan et al., 2007;

Roman et al., 2006). The reasoning of the created ontologies is supported,

30

 WSMT is an open source tool and is released under multiple free software licences, such as General Public Licence (GPL)

and Lesser General Public Licence (LGPL)

4-72

and is handled by the WSML2Reasoner plug-in, which is integrated within the

WSMT environment.

WSMT proponents contend that this modelling toolkit minimizes the

challenges of creating SWS applications by providing a unified toolset for

SWS (Kerrigan et al., 2007). WSMT could be also integrated to the Eclipse

environment and extended to include additional toolsets that could aid

developers in seamlessly building SWS applications. However, WSMT is

mainly developed for SWS experts; and it has a steep learning curve for

average developers. This is mainly due to the fact that creating semantic

descriptions using low-level lexical notations, as supported by conceptual

models, such as WSMO, remains nevertheless a daunting task (Torres,

Pelechano & Pastor, 2006).

Contrary to the objectives of this study, WSMT does not systematically, and

by default support the actual engineering of semantic services; but it facilitates

only the process of building semantic descriptions.

 WSMO Studio: is an open-source ontology editor that can be used to specify,

using WSML, all the core elements of WSMO (Dimitrov et al., 2007). It is

based on the Eclipse framework, and could also be extended with additional

plug-ins for re-usability and extensibility purposes (Feier et al., 2005). It

supports the annotation of services from WSML descriptions through the

SAWSDL implementation, which is discussed in Section 4.3.2.

It should be noted that although WSMT supports graphical representation and

the visualization of ontologies, WSMO studio is core in assisting the developer

with building and editing ontologies at the highest level. Nevertheless,

visualization tools for different WSML species could always be integrated

where needed (Kashyap, Bussler & Moran, 2008:142). In addition to the

ontology editing role, WSMO studio supports additional important activities:

validation and reasoning of created WSML ontologies, export and import from

different WSML variants, support definition of WSMO choreography interfaces

4-73

through a choreography editor, and facilitates semantic annotation, through

the SAWSDL editor (Dimitrov et al., 2007).

Furthermore, WSMO studio supports repositories for storing and querying

WSML compliant ontologies, service discovery, and reasoning over ontologies

using the WSML2Reasoner31 (Dimitrov et al., 2007).

 WSDL2WSMO: translates WSDL specifications into the corresponding, but

partial, WSMO ontology specifications. This tool only generates one core

element of WSMO, that is, Ontologies (Bouhissi, Malki & Bouchiha, 2006).

The developer would have to use other tools, such as WSMT, to create

ontological specifications for other elements, such as Web services, Goals,

and Mediators.

 WSMO4J: is made up of a group of Java libraries that could be used to parse

semantic descriptions created, using WSML to Java class objects (Kashyap,

Bussler & Moran, 2008:275). This approach is a top-down approach, where

ontologies are defined before actual service implementation. The top-down

approach is considered efficient in software development, as it focuses on

completeness and understanding with regard to semantic descriptions.

Nevertheless, WSMO4J has a steep learning curve, due to its complexity; and

the libraries do not provide any form of simplification or complexity hiding.

 WSMX: The Web Service Execution Environment is a SOA-based

middleware for handling and supporting various aspects of SWS, such as

automatic discovery, selection, mediation, composition, invocation, and

execution (Roman et al., 2006). It is an open source-based reference for the

implementation of WSMO, and it mainly deals with WSMO-based services.

WSMX is characterized by component decoupling; where components, such

as the discovery engine and data mediator are separated, according to their

specific functional responsibilities (Facca, Komazec & Toma, 2009).

31

 WSML2Reasoner is available under http://devi.deri.at/wsml2reasoner/

http://devi.deri.at/wsml2reasoner/

4-74

WSMX is seen as a promising and flexible WSMO implementation. It also

supports the interoperability and extensibility requirements with the use of

plug-ins, where even the generic WSMX components could be exchanged

with similar components provided by third parties (Herold, 2008; Roman et al.,

2006). However, in the proposed study, WSMX is viewed as relevant after the

actual implementation and deployment of semantic services. It could be useful

in supporting activities, such as service discovery, service composition, and

service execution, which are beyond the scope of this thesis.

4.3. SWS ANNOTATIONS

There have been a number of interventions in the practical realization of semantic

services. In the previous section, two high-level and common initiatives (i.e. OWL-S

and WSMO) for facilitating the development of semantic descriptions are discussed.

However, these solutions are complex and resource intensive. In the following

subsections, a brief review of alternative light-weight semantic annotation

approaches is provided. The description is limited to WSDL-S, SAWSDL, and

WSMO-Lite only, due to their widespread adoption and popularity in the SWS

research domain.

4.3.1. WSDL-S

WSDL-S is a lightweight annotation standard not dependent on any specific ontology

language or semantic description language (Yu, 2007:266). It extends WSDL

descriptions by annotating them with ontological concepts, such as inputs, output,

preconditions, effects, and operations (Stollberg, Hepp & Fensel, 2010). Since

WSDL-S extends WSDL descriptions with semantic annotations, it could be

executed in the WSDL environment (Hernandez, 2007); thus, there is no need for an

execution environment, such as WSMX in a case of WSMO-based services. The

main objective of WSDL-S is to support and facilitate the automatic interaction

between semantic services and service consumers (Akkiraju et al., 2005).

According to Stollberg, Hepp, and Fensel (2010:14), WSDL-S partly realizes the

semantically annotated services. Hence, it is considered a lightweight annotation

4-75

framework. In this sense, WSDL-S might not necessarily be an appropriate choice

for real-world service annotations. Moreover, it is tightly-coupled to WSDL described

services, and would need major updates for services described in other languages.

4.3.2. SAWSDL

The Semantic Annotations for Web Services Description Language and XML

Schema (SAWSDL) (Lausen, 2007; Lia, Abela & Scicluna, 2009) is a W3C

recommendation service annotation approach that is almost similar to WSDL-S. It

provides WSDL and XML schema extensions that could support the process of

annotating multiple WSDL elements (Garcia-Sanchez et al., 2009; Lia, Abela &

Scicluna, 2009). In SAWSDL, WSDL elements are linked with ontological concepts

using any semantic description language, as is the case with a WSDL-S mechanism

(Stollberg, Hepp & Fensel, 2010).

SAWSDL is supported in WSMO through the use of tools, such as WSMO studio.

However, SAWSDL is capable of handling few ontological concepts compared to

what is provided for by WSMO. This could be a draw-back when dealing with

complex services. In addition, according to a simple comparison of semantic

description and annotation frameworks by Stollberg, Hepp and Fensel (2010:13),

does not support ontological concepts that are highly expressive, which are essential

for automation of different Web service aspects, such as service discovery.

The main difference between WSDL-S and SAWSDL is that SAWSDL does not

provide support for annotating the sub-elements of the precondition construct in

WSDL. In SAWSDL, preconditions and effects are not catered for, and this could

limit service discovery and invocation to a keyword-based search (Stollberg, Hepp &

Fensel, 2010:13). However, on the positive side, SAWSDL does support the

discovery of services through categorization (Stollberg, Hepp & Fensel, 2010:16).

4.3.3. WSMO-Lite

WSMO-Lite is a WSMO inspired light-weight semantic annotation model building on

SAWSDL. The main objective of WSMO-Lite is on supporting the seamless

integration of intelligent services, by adding semantic annotations to existing WS

4-76

technologies (e.g. WSDL) (Vitvar, Kopecky & Fensel, 2009). These annotations are

expressed in RDF(S) (Kopecky & Vitvar, 2008). Furthermore, WSMO-Lite extends

and supports SAWSDL with ontological annotations, functional annotations and non-

functional annotations (Bussler et al., 2004; Kopecky & Vitvar, 2008).

WSMO-Lite also simplifies the processes of annotating services, by opting for a

bottom-up approach, where WSDL is the foundation, as compared to heavy-weight

semantic description languages, such as WSMO and OWL-S that subscribe to a top-

down approach (Kopecky & Vitvar, 2008). In WSMO and OWL-S, WSDL and SOAP,

standards are not directly considered when semantically describing services. This

means that WSMO and OWL-S can be applied to different types of services, such as

RPC-based or RESTful, unlike WSMO-Lite, which is only aligned towards WSDL

described services.

Although inspired by WSMO, WSMO-Lite is ontology-language independent -

meaning that concepts used for annotations can be defined in any W3C language,

based on RDF, such as OWL. WSMO-Lite does not subscribe to service descriptions

completeness, as compared to WSMO. Moreover, it is not possible to define domain

ontologies using WSMO-Lite. As a result, WSMO-Lite does not provide an

environment where all aspects of services (e.g. ontologies, goals, and mediators)

could be described semantically, as is the norm when using WSMO.

The main limitation of WSMO-Lite is that the behavioural aspects are not considered

when annotating semantic services. However, this is catered for through the

annotations of service-functional properties (Vitvar, Kopecky & Fensel, 2009). In

addition, the expressiveness of WSMO-Lite depends entirely on the ontology

language used. Although, this is not necessarily a limitation when languages, such

as WSMO are used; it is a limitation when some languages are used, such as

RDF(S), which are limited by design (Horrocks, 2008), and are less expressive.

4-77

4.4. SUMMARY

In this chapter, semantic models have been introduced. The focus is mainly on

semantic descriptions and annotations. OWL-S and WSMO are presented as the two

common semantic description models, whilst WSDL-S, SAWSDL, and WSMO-Lite,

were presented as the common semantic annotation approaches within the field of

the semantic Web services.

Based on the review of different semantic description and annotation models,

WSMO and OWL-S were found to be highly expressive, yet with steep learning

curves for developers. Nevertheless, OWL-S and WSMO models are not dependent

on any service description language (e.g. WADL or WSDL). On the contrary, the

light-weight semantic annotation approaches (e.g. WSDL-S) are more inclined

towards WSDL-based services. In addition, these standards (i.e. light-weight

approaches) provide limited expressivity, with regard to service ontologies. This

could be a limitation in delivering Web services that could be autonomously and

automatically processed and understood by machines.

In this chapter, a number of facilitation tools for WSMO and OWL-S were also briefly

presented. These tools vary from a comprehensive toolset, such as WSMO studio to

lean libraries, such as WSDL2WSMO translators. Nevertheless, most of these tools

do not systematically, and by default, support the complete lifecycle of semantic

services. They merely facilitate the process of building semantic descriptions, and

simply annotating existing services. This means that uniform and rapid engineering

of semantic services is not supported by these existing semantic-based tools; which

is what this study attempts to address.

It is also noted in this chapter that some of these tools, such as WSMO Studio, are

meant for expert developers, who are quite knowledgeable with the concepts of

logical formalisms. Hence, it could be a challenge for average developers to use

these tools for building their own semantic services. The overall objective of this

study is that of having a uniform – and yet user-friendly – engineering environment

that could support, simplify, and accelerate the process of engineering intelligent

semantic services.

4-78

In Chapter 5, the fundamental building blocks that make up intelligent semantic

services are identified, characterized, and grounded.

5-79

5. CHAPTER 5: IsS Definition and Basic Building Blocks

Chapter 5 formulates the proposed solution by providing an elaborative

definition for the term intelligent semantic services. Additionally, the

fundamental building blocks that make up the intelligent semantic service

are discussed. In addition, software agents, which are considered for

realizing the intelligence building block, are briefly discussed.

5-80

Figure ‎5.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

5-81

Figure ‎5.2: Chapter 5 Summary

5.1

Introduction

5.2

Definitions

5.3

Building Blocks

Syntactic

Descriptions

5.4

Software Agents

Semantic

Descriptions

Domain Ontologies

Intelligence

5.5

Summary

IsS Evolution

IsS

Characterization

5-82

5.1. INTRODUCTION

Semantic Web Services (SWS) are, in some cases, referred to as Intelligent Web

Services (IWS), mainly because of the semantic descriptions in Web services (WS)

that could be queried and interpreted by software agents (Balzer, Liebig & Wagner,

2004; Feier et al., 2005; Gomez-Perez & Euzenat, 2005; Guha, 2009; Wang et al.,

2007). In some instances, the integration of software agents, Web services, and

ontologies is considered by other researchers as the basis of intelligent services

(Garcia-Sanchez et al., 2009; Kanellopoulos & Kotsiantis, 2006; Lewis, 2008;

Papazoglou, 2001; Simula, 2007; Soe-Tsyr & Kwei-Jay, 2003).

The Web Services Architecture (WSA) document (Booth et al., 2004), states that:

“A Web service is an abstract notion that must be implemented by a concrete agent.

The agent is the concrete piece of software or hardware that sends and receives messages,

while the service is the resource characterized by the abstract set of functionality that is

provided.”

The definition of Booth et al. (2004) implies that Web services can be regarded as

agents or parts of agent systems. Zhu and Shan (2005) also state that “WS can be

regarded as part of agent systems”. In addition, the Semantic Web Services

Architecture32(SWSA) attempts to enable a high degree of automation in semantic

services, by addressing all processes of Web services (e.g. discovery, composition,

invocation, etc.) through the use of software agents (Burstein et al., 2005; Gümüs et

al., 2007). In SWSA, software agents are intended to provide and consume semantic

services in an intelligent manner (Gürcan et al., 2007).

Nevertheless, intelligent semantic services (IsS) are not clearly defined. Hence, in

this chapter, the objective is to elaborate as to what an intelligent semantic service

(IsS) is in the context of this study; how it is distinct from traditional WS, SWS, and

agent-based software systems; and what appropriate building blocks make up an

IsS.

The remainder of this chapter is structured as follows: Section 5.2 provides a clear

and an elaborative definition of what is meant by the term intelligent semantic service

32

 See http://www.swsi.org for a detailed architecture

http://www.swsi.org/

5-83

in the context of this study. Section 5.3 identifies and discusses the basic building

blocks that are found to be essential to the formal characterization and realization of

intelligent semantic services. In Section 5.4, software agents, with the particular

focus on intelligent agents, which form part of the IsS building blocks, are discussed

from the literature review perspective; and a motivation is also presented on why

software agents are suitable for realizing intelligence in SWS.

5.2. DEFINITION

In this research, an intelligent semantic service (IsS) is meant to extend and

leverage WS and SWS, with the intelligence implemented using intelligent agents.

This is done to enable the emergence of services on the Web that are autonomous

and automatable.

Figure ‎5.3: Intelligent Semantic Service Evolution

Figure ‎5.3 depicts an abstract position for an IsS in the context of the evolution of

Web services. As may be noted, IsS inherits the properties and features of Web

services and semantic services. Thus, in defining the term intelligent semantic

service, we focus on two core notions, namely semantics (i.e. semantic descriptions)

and intelligence, as depicted in Figure ‎5.4. These two concepts are essential

towards the practical development of intelligent semantic services.

Generally, semantic descriptions enable services to be machine-processable and

interpretable through formal specifications of functional, non-functional, and

WWW SW

WS SWS

Intelligent Semantic Service

Syntactic Semantic

In
te

ll
ig

e
n

t
D

y
n

a
m

ic
S

ta
ti

c

5-84

behavioural aspects of Web services (de Bruijn et al., 2008:20-21). In addition,

intelligence in the context of artificial intelligence, is commonly associated with

autonomy, reactive, proactive, and collaborative or social ability properties

(Protogeros, 2008). It is viewed as an approach of incorporating cognitive abilities

into machines (e.g. software agents).

Henceforth, adopting the common intelligence properties found in (Jennings &

Wooldridge, 1998; Protogeros, 2008) and semantic Web key enablers found in (de

Bruijn et al., 2008; Studer, Grimm & Abecker, 2007) and based on the objectives of

this research, an intelligent semantic service (IsS) is defined as a semantically

enabled software unit representing some business functionality that could be

accessed through the Web, and is capable of being: (1) autonomous, (2) proactive,

(3) reactive (4) machine-processable and understandable, as well as (5)

collaborative.

Figure ‎5.4: IsS Definition Properties

The properties in the definition are further expanded as follows:

 Semantically-enabled: This refers to the enrichment of services with

semantic descriptions, as derived from domain and service ontologies created

using semantic models, such as WSMO and OWL-S. This property enables a

developed IsS to be machine processable and understandable in a manner

Semantic Descriptions Intelligence

machine-proccesable

machine-understandable
autonomy

proactive

reactive

collaborative

p
ro

p
e

rt
ie

s

p
ro

p
e

rt
ie

s

mapping

5-85

that service aspects, such as discovery, selection, and composition, could be

automated.

 Autonomous: This property characterizes an IsS as a service that has the

ability to act on behalf of its owner, and to carry out the required actions with

limited or no human intervention (Jennings & Wooldridge, 1996).

 Proactive: This refers to the ability of the service to show goal-directed

behaviour and to be able to take initiatives where necessary (Protogeros,

2008; Zhu & Shan, 2005).

 Reactive: This refers to the ability of a service to react to its environment and

situation. This further allows the service to adjust its behaviour, based on

situational circumstances of the service consumer, service requesting device,

service embedded behaviour, service boundaries, and current location. This

property could also be referred to as context-awareness.

 Collaborative: The collaborative property enables an IsS to be able to

communicate openly and seamlessly with other services available for

consumption by the Web community. In other publications, this property is

referred to as the social ability (Zhu & Shan, 2005).

Some of the properties in the IsS definition have been widely used in Artificial

Intelligence (AI), especially intelligent agents (Jennings & Wooldridge, 1996;

Protogeros, 2008). Thus, in our opinion, the concept of intelligent agents cannot be

ignored when considering intelligent semantic services. Herein, agents are also

discussed in this chapter, in order to highlight the fundamental mappings between

intelligent agents and semantic services (Usman et al., 2006).

The following section discusses the fundamental building blocks that constitute an

IsS.

5.3. FUNDAMENTAL BUILDING BLOCKS

The fundamental building blocks that comprise an IsS are presented in Figure ‎5.5.

These building blocks demonstrate that an IsS is a non-atomic unit. However, in

order to achieve a degree of intelligence, the building blocks are interconnected to

5-86

form an intelligent semantic service. These building blocks were conceived through a

literature review of Web services, Ontologies, Semantic Web Services, and

Intelligent Agents, as was discussed throughout the background chapters.

The building blocks are directly related to the IsS definition and its properties. The

first three building blocks are linked to the semantically-enabled property, whilst the

intelligence building block is linked to the rest of the other properties, such as

autonomy. Additionally, these building blocks guide the process on how an IsS could

be simply engineered. Furthermore, they (i.e. building blocks) enable us to decide on

the engineering methodology to follow when designing, modelling, and implementing

intelligent semantic services.

Figure ‎5.5: IsS Basic Building Blocks

In the following sub-sections, we shall describe each building block in detail.

5.3.1. Syntactic Descriptions

The main goal of service providers is to satisfy a business need; that is, services

provided need to be of value to both the provider and consumers (Cardoso, Voigt &

Winkler, 2008). Because of continuous changing business and user requirements in

the service economy, services provided on the Web cannot be rigid; and therefore,

they need to be captured in a manner that promotes interoperability, and adaptation.

To achieve this, various services need to be specified, represented, and described,

using standard approaches.

Syntactic Descriptions

Intelligence

Domain OntologiesSemantic Descriptions

1

2 3

4

5-87

Thus, one of the main building blocks that have been identified as core to the

formation of an IsS is the syntactic descriptions, also referred to as “service

descriptions”. IsS can only be beneficial to providers and consumers, if it captures

and facilitates the delivery of some valuable business services; and this value is

described and discoverable.

The syntactic descriptions building block captures the overall syntactic, non-

functional, functional, and behavioural properties of an IsS; as it is the norm with

traditional WS and SWS.

5.3.2. Semantic Descriptions

As defined, ontologies are a “formal specification of shared conceptualization”

(Gruber, 1993). This means that ontologies capture unambiguous accepted

terminologies representing a particular domain, which can be commonly interpreted,

and processed by humans and software programs (Stollberg, 2006). Therefore,

ontologies are essential in the development of intelligent semantic services.

However, ontologies differ in categorization (Studer, Grimm & Abecker, 2007:78).

They can be grouped, according to top-level ontology, domain ontology, service

ontology, and application ontology. The main groups that have been identified as

important to the composition of an IsS are the domain and service ontologies.

Domain ontologies capture domain-specific knowledge, and service ontologies33

capture knowledge about a specific service operating within the boundaries of a

particular domain. As a result, the other main building block identified for an IsS is

the service ontology or semantic descriptions, as depicted in Figure ‎5.5.

Semantic descriptions are useful for semantically describing service inputs, outputs,

pre-conditions, effects, transport messages, non-functional properties, and service

processes – using the concepts defined in the domain ontology. The semantic

descriptions building block’s main goal is to enrich Web services with semantic

knowledge.

33

 Service ontologies are referred to as semantic descriptions in the context of Semantic Web Services.

5-88

5.3.3. Domain ontologies

In order for Web services to efficiently interoperate with one another in an automated

and intelligent manner, domain ontologies are essential. These are necessary, in

order to ensure that services share the same knowledge and understanding about a

particular domain. As one of the building blocks for the formation of an IsS, domain

ontologies provide shared vocabularies that are service-independent, and are the

basis of semantic descriptions.

In a number of domains, universal and commonly agreed-upon ontologies already

exist, such as in medicine, tourism, and transport (Studer, Grimm & Abecker,

2007:78). These ontologies can be re-used, rather than developed anew for different

tasks in SWS. In our work, semantic services could use domain-related knowledge

to “share the same interpretation of concepts and terms” (Garcia-Sanchez et al.,

2009) during the phases of service discovery, selection, composition, invocation, and

execution.

5.3.4. Intelligence

Software agents have been linked to the realization of SWS by various authors

(Garcia-Sanchez et al., 2009; Hendler, 2001; Lewis, 2008). However, few pilot

applications that demonstrate their practicality and viability in semantic services

exist. In our work, the intelligence building block is considered for: (1) Defining and

realizing the intelligent behaviour, according to the IsS properties; (2) facilitating the

reasoning over and processing of domain and service ontologies; (3) minimizing

human involvement in service requests and provisions; and (4) promoting a high

degree of automation in various service processes (e.g. discovery and, selection).

The intelligence building block is based on the properties of intelligent agents, as

described in Section 5.4. The agent itself is not a service, but is intended to facilitate

the activities involved in delivering intelligent semantic services. In other words, an

intelligent agent is chosen to leverage an IsS with intelligence capabilities.

5.4. SOFTWARE AGENTS

According to Usman et al. (2006), software agents and Web services share a

number of commonalities that could address the challenges hindering the

5-89

intelligence of services on the Web. This is further highlighted by Garcia-Sanchez et

al. (2009), who advocate that service intelligence could be widely realized through

the combination of software agents, WS, and SWS. In principle, agents and SWS

can complement each other in a number of ways. For instance, by integrating them

at different levels, in order to minimize the challenges faced by each technology

when applied and deployed independently.

For example, software agents could be very useful in dynamically co-ordinating

service requests and provisions in a distributed environment. In addition, WS and

SWS could be useful in facilitating the collaboration between multiple heterogeneous

agents.

However, software agents suffer from a number of challenges when it comes to

collaborations outside their own domain. One of the challenges is the use of closed

and platform-dependent communication protocols, such as Remote Method

Invocation (RMI) and Internet Inter-ORB Protocol (IIOP), which makes it a challenge

to achieve interoperability when agents are implemented without the support of open

standards (García-Sánchez et al., 2011; Schaaf & Maurer, 2001). Contrarily, WS

and SWS operate passively when implemented, independent of agent systems.

Software agents are active entities, and integrating them with Web services, which

employ open standards for messaging, could promote the realization of intelligent

semantic services.

In essence, a software agent can be defined as a computational entity that is

capable of accomplishing users’ tasks in an autonomous manner (Biermann, 2004;

Garcia-Sanchez et al., 2009; Jennings & Wooldridge, 1996; Protogeros, 2008).This

means that it is capable of acting on its own, without much human involvement. An

agent is usually situated in an environment, where it is capable of interacting with

other agents, for the purpose of completing a given task.

There are different types of software agents, as illustrated in Figure ‎5.6.

Furthermore, agents are classified, according to various properties, as exemplified in

Figure 5.7. These types of agents are identified and discussed in detail by Nwana

(1996). For example, collaborative, mobile, interface, smart, information, reactive,

and hybrid agents.

5-90

Figure ‎5.6: Typology of Agents

As depicted in Figure 5.6, core to this thesis are the collaborative agents; which are

capable of acting co-operatively, rationally, autonomously, and have the ability to

learn(Nwana, 1996; Protogeros, 2008) in their respective environment, as depicted

in Figure 5.7. Furthermore, collaborative agents possess social abilities. This means

that collaborative agents are also able to communicate with other agents in an “open

and time-constrained multi-agent environment” (Nwana, 1996). Collaborative agents

also have learning and reasoning capabilities, but these are not core to their ultimate

operations (Nwana, 1996).

In the context of this thesis, collaborative agents are considered to be having similar

capabilities as intelligent agents, particularly with regard to autonomy and reasoning.

Agent Types

Collaborative

Agents

Interface

Agents

Mobile

Agents

Information

Agents
Reactive

Agents

Hybrid

Agents

Smart

Agents

5-91

Figure ‎5.7: Classification of Agents

In this regard, intelligent agents are fundamental to the realization of the intelligence

building block, as discussed in Section 5.3.4. As defined by Jennings and

Wooldridge (1998), intelligent agents are computational entities “capable of flexible

autonomous actions, in order to meet design objectives”. Accordingly, intelligent

agents are appropriate for implementing intelligent semantic services, as they

partially capture the necessary IsS properties. As already stated, collaborative

agents also have learning and reasoning capabilities, but these are not core to their

ultimate operations (Nwana, 1996).

The agents’ properties that are of importance, and are captured by the incorporation

of intelligent agents are: autonomy; collaborative (i.e. social ability); reactivity; and

pro-activeness. Additional properties are: rational; extensibility; and situational-

awareness. These are broadly captured within the semantic and syntactic

descriptions.

According to Blois, Escobar, and Choren (2007); intelligent agents can be useful for

the development of SWS products, and according to Jennings and Wooldridge

(1998), software agents are capable of realizing a number of processes within a

service engineering domain, such as dynamic service discovery, composition, and

invocation. Consequently, intelligent agents have been implemented in real-world

Cooperative Learn

Autonomy

Interface Agents
Collaborative Agents

Collaborative Learning Agents

Smart Agents

5-92

software applications for different purposes (Garcia-Sanchez et al., 2009; Jennings &

Wooldridge, 1998; Nwana, 1996; Protogeros, 2008), such as:

 Workflow management;

 Dynamic information retrieval and management;

 Interoperating legacy systems;

 Solving inherently distributed problems (e.g. telecommunications network

management); and

 Enhancing systems’ modularity, speed, reliability, flexibility, re-usability, and

reducing complexity.

Further details, such as detailed agents’ properties, different agent architectures,

communication approaches, languages and transport mechanisms are beyond the

scope of this thesis, and as such are not covered. However, for proof of concept

implementation, a common agent architecture, called the Java Agent Development

framework (JADE) (Protogeros, 2008)shall be briefly covered in Chapter 8.

5.5. SUMMARY

Intelligent semantic services are emerging as an attempt to address issues related to

dynamic service-oriented systems; where heterogeneous Web services are

composed, with the purpose of delivering integrated value-added services. There are

still a number of challenges that need to be addressed, in order to achieve intelligent

services on the Web. However, as a base, Web services can be augmented with

semantic descriptions and intelligence, as derived from software agents – to achieve

automation and autonomy in business services.

The main focus of this chapter was to define the term “intelligent semantic service”,

which has been coined, based on the foundations of semantic web services and

software agents. Furthermore, since the main objective of our work is toward

simplifying and accelerating the process of engineering intelligent semantic services,

it was essential that that we also determine, define, and describe what constitutes an

intelligent semantic service.

5-93

As a result, the basic building blocks for intelligent semantic services were identified

and described. The building blocks were identified after a literature review and

practical observations include syntactic descriptions, semantic descriptions, domain

ontologies, and intelligence. These are meant to realize intelligent semantic services

and minimize user interventions during service requests and provisioning on the

Web.

The basic building blocks are essential for the overall process of engineering

semantic services; and they are the basis of the proposed service creation

framework, which will be presented in the next chapter.

Software agents were discussed as being of relevance to the scope of this study,

and properties that are relevant to intelligent semantic services were also covered. In

what follows, in Chapter 6, design principles that underpin the service creation

framework will be determined and explained. The proposed conceptual service

creation framework is also presented and explained. The methodology preferred for

engineering intelligent semantic services is also described.

6-94

6. CHAPTER 6: Proposed iSemServ Framework

This chapter presents the proposed service creation framework to address

the challenges discussed in Chapter 1. The discussion starts off with the

design principles that are the basis for the proposed service creation

framework. This is followed by a brief introduction of a model-driven

engineering methodology that is adopted for engineering intelligent

semantic services. The framework is presented in a multi-layered format,

which represents the basic building blocks, as discussed in the previous

chapter.

6-95

Figure ‎6.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

6-96

Figure ‎6.2: Chapter 6 Layout

6.1

Introduction

6.2

Design

Principles

6.3

Proposed

MDE

Methodology

Simplification

6.4

The

iSemServ

Framework

6.5

Fundamental

Components

Acceleration

Intelligence

Syntactic

Descriptions

Semantic

Descriptions

Service

Intelligence

Services Layer

Semantics Layer

Intelligence Layer

6.6

Summary

6-97

6.1. INTRODUCTION

This chapter describes the service creation framework for simplifying and

accelerating the process of engineering intelligent semantic services (IsS). The

framework is termed iSemServ – from the word intelligent Semantic Services.

The concepts described in the previous chapters, especially in Chapters 2 – 5, and

the challenges explained in Chapter 1, have provided us with an understanding of

the current state of affairs within the Web services (WS), Semantic Web (SW),

Semantic Web Services (SWS), Ontologies, and Intelligent Agent domains. This

was essential for grounding the challenges highlighted in this thesis, and on what

has already been proposed within the research environments of the domains listed

above.

Thus, based on the literature review of the related work (cf. Chapters 1 – 4), a

number of challenges and shortcomings of existing semantic service engineering

models were identified. This has motivated us to propose a unified service-creation

framework, which aims to address some of the identified challenges.

Concisely put, the shortcomings that were identified include:

 The lack of methods and tools for simplifying and accelerating the process of

engineering intelligent semantic services within a unified environment (cf.

Chapter 1).

 The lack of standardized methods for formulating semantic service

descriptions and annotations (cf. Chapters 1 - 3).

 The lack of efficient interoperability between different semantic services

models (e.g. WSMO & OWL-S) and languages (e.g. OWL & WSML) (cf.

Chapter 4).

 The use of low-level lexical notation semantic languages (e.g. WSML), thus

leading to a steep learning curve for developers.

 Incompatible and disconnected tools for developing semantic services (cf.

Chapter 4).

6-98

 Current solutions are tightly coupled to specific semantic service models and

ontology languages. For example: OWL-S IDE is tightly coupled to OWL-S

and WSMO Studio is tightly coupled to WSMO (Dimitrov et al., 2007;

Srinivasan, Paolucci & Sycara, 2006), leading to restrictive development

environments.

 The lack of support for building intelligent semantic services within existing

semantic service environments.

 The non-integration of existing semantic technologies with mature Web

service technologies.

The remainder of this chapter is structured as follows: In order to address some of

the challenges listed above, essential design principles for the formulation of the

proposed service creation framework are presented in Section 6.2. Section 6.3

discusses the service engineering methodology for the proposed service creation

framework; and this is based on the literature review presented in Chapter 3. The

iSemServ framework is presented and described in Section 6.4. We elaborate on the

key components from the iSemServ framework in Section 6.5.These are: syntactic

descriptions, semantic descriptions, and intelligence wrapping. The chapter is

concluded with a summary in Section 6.6.

6.2. DESIGN PRINCIPLES

Semantic service technologies generally adhere to the enabling standards of the

Semantic Web as discussed in Chapter 2 (Section 2.3). In addition to the Semantic

Web enabling standards, for the proposed service creation framework, the following

design principles were identified. The principles discussed in Section 6.2.1 - 6.2.3

were identified through are view of related work based on the challenges that the

iSemServ framework addresses.

The iSemServ framework needs to address the design principles, as illustrated in

Figure ‎6.3. The design principles are grouped into three main categories, namely;

simplification, acceleration, and intelligence. These categories emanate from the

core focus of this thesis; that is, simplifying and accelerating the process of

engineering intelligent semantic services.

6-99

Simplification

Acceleration

complexity hiding

model-driven
decoupling

uniformity

multiple language

support
visualization

reusability

interoperability

Intelligence

ontology-based

agent-based

extensibility

subset

Figure ‎6.3: iSemServ Design Principles

6.2.1. Simplification

 Model-driven – In order to simplify the semantic service development

experience, the iSemServ framework follows a model-driven approach

rather than a code-driven approach. A model-driven approach is

considered as efficient and exhaustive when it comes to developing

software systems; and this is also true for service-based systems

(Srinivasan, Paolucci & Sycara, 2006). Models are also important for

code generation, due to the different levels of abstraction (Nassar et al.,

2009); thus maximizing complexity hiding and service engineering

productivity.

 Decoupling – This principle requires that the iSemServ framework

promotes the separation of concerns (SOC).Similar to WSMO elements

(de Bruijn et al., 2005a), the framework needs to support the definition of

6-100

syntactic descriptions, semantic descriptions, and intelligence in an

independent manner (Erl, 2008). However, these components need to be

aware of each other, and to be easily integrated when needed.

 Multiple Language – Existing frameworks tend to only accommodate one

particular language for describing services syntactically and semantically.

Those that claim to support language independence, such as the ODE-

SWS framework, tend to simply focus on semantic annotations; and they

do not address the challenges of service descriptions and intelligence

(Corcho et al., 2003). In the proposed approach, the multiple language

support requirement enables the framework to support different semantic

description and syntactic description languages.

 Complexity hiding – The framework needs to support approaches that

could aid service developers in rapidly implementing service components

and re-using existing ontologies. In addition, it is necessary to support

the use of tools that are capable of reducing complexities associated with

intelligent semantic services development.

 Interoperability – As noted for the decoupling principle, the proposed

framework needs to accommodate the implementation of different

components (e.g. semantic descriptions) independently; but at the same

time, the components need to be aware of, and to interoperate with one

another. Interoperability is core to service-oriented environments. Thus,

our framework needs to support the interoperability of different

components and services.

 Visualization – The development of semantic descriptions is quite a

complex and resource intensive process. Thus, without the availability of

graphical and user-friendly tools, it can be daunting and error-prone to

produce reliable semantic descriptions. Hence, the framework proposed

in this thesis needs to embrace components that support the

visualization of domain ontologies and semantic descriptions. This

6-101

approach is also used in a few existing semantic tools for designing and

viewing ontologies, such as in the Web Services Modelling Toolkit

(WSMT), where WSMOViz (Kerrigan, 2006) is implemented – to guide

the developer visually through the process of creating and editing

ontologies (Kerrigan et al., 2007).

In our case, the visualization requirement is one prerequisite for dealing

with the issues of complexity hiding, especially when augmenting

generated semantic descriptions and intelligence.

6.2.2. Acceleration

 Uniformity – The developers of intelligent semantic services need to be

able to uniformly and cohesively perform all the activities (e.g. service

modelling, development, description, annotation, and intelligence

wrapping) of building semantic services within one environment. The

framework needs to facilitate the engineering of services in a unified

manner, in order to minimize the service development time and costs.

 Extensibility – The components of the framework need to have the ability

to be extended to include new functionalities, when needed.

 Reusability – The components of the iSemServ framework need to be re-

usable. For instance, semantic descriptions defined within the proposed

framework should be available for re-use within other semantic services’

environments. This is essential for the purpose of promoting re-usability

and easier integration of technologies within the service-based

ecosystem (Agarwal et al., 2005). This could further lead to lower service

development costs and prompter service deployment and publication.

6.2.3. Intelligence

 Ontology-based – The iSemServ framework deals with two aspects to

realize intelligence in services, namely: ontologies and agents. Thus, one

of the core requirements to realize an intelligent semantic service is an

6-102

ontology-based framework. Similar to WSMO (de Bruijn et al., 2005a)

design requirements, services produced using the iSemServ need to be

ontology-based, particularly for realizing the semantically rich principle

embedded within the IsS definition.

 Agent-based –Software agents are used regularly in solving complex

software problems, and are also appropriate for exposing and consuming

Web services (Greenwood & Calisti, 2004). In the iSemServ framework,

the agent-based design principle is essential for introducing the notion of

intelligence into semantic services in concurrence with the ontologies

realized through the ontology-based requirement. This is essential in

realizing some of the promises of SWS, such as automatic service

discovery.

6.3. PROPOSED MDE METHODOLOGY

In the software and Web engineering domains, there are a number of mature

methodologies that could be used to guide the development of semantic services.

For instance, techniques such as Web Modelling Language (WebML) (Brambilla et

al., 2006), Unified Modelling Language for Services (UML-S) (Dumez et al., 2008),

XML, and business process modelling languages, such as BPMN (White, 2004)

have been used extensively; and in some cases, they have been adopted to model

Web services, Web applications, and complex end-to-end enterprise service-based

solutions (Sun et al., 2009). Some of these techniques are grounded in the Model-

driven Architecture (MDA), an initiative of the Object Management Group (OMG)

(Sun et al., 2009), which is appropriate for modelling services in a technology

platform-independent manner.

MDA deals with the complete life cycle of designing, deploying, integrating, and

managing systems and services, using associated OMG open standards, such as

UML (OMG, 2010b). It focuses on using high-level platform-independent models

(PIMs) in designing systems and services. Furthermore, it handles the automatic

transformation of these PIMs into platform-specific models (PSMs), and the

generation of programming code stubs for the transformed PSMs (OMG, 2010b;

6-103

Xiaofeng et al., 2006). MDA intrinsic features are those of promoting strict

decoupling and isolating system and business logic from the technology platform

used to implement the actual system (Sun et al., 2009).

To design and realize the iSemServ framework that satisfies the design principles

described in the previous section, a MDA, primarily the model-driven engineering

(MDE) (Qafmolla & Cuong, 2010) methodology, is employed for engineering

intelligent semantic services. The MDE methodology is chosen because of its

essential benefits, such as the isolation of application logic and implementation

technology, and support for simplifying and accelerating the design of systems and

services (Sun et al., 2009) without depending on a particular platform. In addition,

other benefits that make MDA an appropriate choice for our IsS engineering

approach include (OMG, 2010a):

 Reduced development time for new services;

 Improved service quality; and

 Rapid inclusion of emerging technology benefits into their existing

systems.

The steps enumerated in Figure ‎6.4 illustrate the suggested MDE methodology for

simplifying and accelerating the process of engineering intelligent semantic services.

It should be noted that the methodology suggested presents alternative paths as

illustrated by duplicate numbering. For instance, the starting point could either be the

service functional design process (Step 1a) or the importing of existing service

models (Step 2b). The outcome of the first step is a service model(s). It must be

noted that step (1a or 1b) is preceded by the service requirements module, which

does not directly form part of the proposed solution.

OMG recommends that models need to be defined using associated OMG modelling

standards (Qafmolla & Cuong, 2010). Henceforth, for our suggested MDE

methodology, the Unified Modelling Language (UML) is used for designing service

models. UML is widely used across a number of organizations on account of its

openness and extensibility features (Xiaofeng et al., 2006). In the suggested

6-104

methodology, new UML-compliant models can be designed, using the existing UML

tools; or alternatively, existing models could be imported from different sources, as

depicted in Figure ‎6.4 (Step 1b).

Service Requirements

Service Models

Syntactic Service
Descriptions

Service Interfaces
Implementation

Semantic
Descriptions

Service Intelligenceintelligence wrapping

code stubs generation

functional descriptions

OWL/RDF
WSML
XML

Ontology store

1a

3b

4a

5a

2a

IsS EV

validate & deploy6a

functional design

functional semantics

4b

UML
Models

Import models

Syntactic
Descriptions

Import descriptions

functional descriptions 3a

1b

3c

Alternative path

default path

Import ontologies

Figure ‎6.4: iSemServ Model-driven Engineering Approach

The next phase (Step 2a) involves the automatic transformation of the service

model(s) into partial service logic code. The generated code stubs can be in a

number of programming languages, such as Java or C#. Step 3a deals with

automatically transforming service models into syntactic descriptions, such as WADL

or WSDL (Christensen et al., 2001; Filho & Ferreira, 2009). However, existing

service descriptions could also be imported, as indicated in Step 3c.

Depending on the preferences of the developer, service descriptions could also be

generated using the service logic code stubs generated and augmented in Step 2a.

This particular phase is illustrated by Step 3b. There are a few tools available, such

as Java2WSDL (Studer, Grimm & Abecker, 2007) that support the generation of

6-105

service descriptions from service logic source code. Step 4a involves transforming

validated syntactic service descriptions into semantic descriptions of choice, such as

those prescribed by WSMO or OWL-S. It should be noted that these descriptions

could either be derived from the service models designed in Step 1a, from the

syntactic descriptions realized in Step 3, or from existing domain ontologies, as

indicated in Step 4b. This is done in line with the service implementation for the

purposes of annotating syntactic services with rich knowledge, using domain and

service ontologies from disparate sources.

Once Web services have been semantically described using internal or external

semantic descriptions; service intelligence wrapping follows in Step 5a. As part of

the design principles, the wrapping of intelligence to semantic services is essential

for achieving the promises of semantic services, such as automated service

discovery, invocation, and execution.

The final step (Step 6a) in the suggested model-driven methodology is concerned

with validating and deploying intelligent semantic services to an environment where

intelligent semantic services could be automatically discovered, selected, invoked,

executed, and monitored by the consumers.

It should be noted that the methodology presented in this section directly informs the

proposed iSemServ framework, including its multi-layers and high-level abstract

modules, as presented in the following section.

6.4. THE iSEMSERV FRAMEWORK

The iSemServ framework adopts the MDE methodology, as discussed in Section

6.3, to model, specify, describe, annotate, and add appropriate intelligence into

semantic services. The core components of the framework are the syntactic

descriptor, semantic descriptor, and intelligence generator and wrapper. These

components are mapped to the fundamental building blocks described in Chapter 5

(Section 5.3). It should be noted that the semantic descriptor addresses both the

domain ontologies and semantic descriptions building blocks.

6-106

In Figure ‎6.5, the proposed service creation framework is illustrated. The framework

description in terms of its functional aspects, including its modules, is discussed. The

framework is presented as a multi-layered architecture, made up of three core

layers, namely: services layer, semantics layer, and intelligence layer. The

implementation and validation of this framework is discussed in Chapters 7 and 8.

The fundamental modules of each layer are discussed in the following sub-sections.

S
e

rv
ic

e
s

La
y

e
r

S
e

m
a

n
ti

cs
 L

a
y

e
r

In
te

ll
ig

e
n

ce
 L

a
y

e
r

Service Modeller
Model2Code

Transformer

Syntactic

Descriptor

Service

Editor

Semantics

Descriptor

Knowledge Store

(Ontology-based)

Semantics

Editor

Intelligence

Generator/Wrapper

Intelligence

Editor

Dependency

Generalization ReuseContribution

Service

Architectural Style

Selector

Semantics

Model Selector

Linkage

Figure ‎6.5: iSemServ Framework

6-107

6.4.1. Services Layer

In general, the service development process begins with a conceptualization of a

service. That means the process begins at the requirements elicitation phase. Once

all the activities to be performed by a concrete service are identified, iSemServ is

employed to simplify and accelerate the process of building-up envisaged IsS or

related applications.

S
e

rv
ic

e
s

La
y

e
r

Service Modeller
Model2Code

Transformer

Syntactic

Descriptor

Service

Editor

Service

Architectural Style

Selector

Figure ‎6.6: Services Layer Modules

In the services layer (cf. Figure ‎6.6), the initial step for engineering IsS deals with

service modelling, facilitated by the Service Modeller module. Service modelling is

mainly about representing envisaged intelligent semantic services using platform-

independent models (PSMs).

This process is important, as it could simplify the service engineering process by

enabling automatic generation of service code stubs from the model, thus reducing

service development time and costs. In addition, this step promotes the decoupling

of business logic and service logic.

Once a service model has been designed or imported, the model can be transformed

automatically, using defined Model2Code templates and transformation rules into

partial code stubs that represent the classes and operations relevant for service logic

implementation. The code stubs could then be supplemented by the developer to

realize a complete Web service, using any appropriate programming editor that is

capable of interpreting the generated code could be used.

6-108

The programming editor as shown in Figure 6.6 is loosely linked34 to the Mode2Code

transformer and the Syntactic Descriptor - since they are responsible for generating

the code that needs to be edited or validated. This is also done to promote uniformity

when engineering semantic services.

As illustrated in Figure ‎6.6, the iSemServ framework supports the engineering of

different types of services such as SOAP (action-based) and REST (resource-based)

services. This is made possible by the Service Modeller and Service Architectural

Style Selector (SASS) modules, which are some of the core contributions of this

work. As may also be noted, the SASS module depends on the Service Modeller, in

order to elicit and generate the type of services that the developer requires. For

instance, the service could be REST-based, SOAP-based or both.

In the services layer, syntactic descriptions are automatically generated by the

Syntactic Descriptor module, based on the service model realized or re-used in the

Service Modeller module. The type of descriptions to be generated would depend on

the annotations in the service model. For example, within the service model, the

developer could annotate the models with WSDL stereotypes to indicate the

preference to generate WSDL service descriptions. Once the syntactic descriptions

are generated, and the service logic implemented, syntactic Web services are

available for use; but they do not include semantic descriptions and intelligent

features, as yet.

6.4.2. Semantics Layer

The semantics layer (e.g. Semantic Descriptor module) relies on the Service

Modeller and Model2Code transformer modules for automatically generating domain

ontologies and semantic descriptions. However, the syntactic descriptions produced

in the services layer could also be used as input to the semantics layer’s Semantics

Descriptor module, as depicted in Figure ‎6.7. Since there are a number of semantic

models that could be used to semantically describe Web services, our framework

34

 The link between the editors/validators and the relevant modules is loose mainly because only what is generated by the
modules is visible to the editors/validators and not the modules. In other words: there is no operational relationship between the
editors and associated modules.

6-109

provides the developer with the ability, through the use a defined UML profile35, to

choose the preferred semantics model(s) (e.g. WSMO or OWL-S). The Semantics

Model Selector module would then be able to detect such a choice from the service

model(s).

S
e

m
a

n
ti

cs
 L

a
y

e
r

Semantics

Descriptor

Knowledge Store

(Ontology-based)

Semantics

Editor

Semantics

Model Selector

Figure ‎6.7: Semantics Layer Modules

Depending on the selection of a semantic model, partial semantic descriptions could

then be automatically generated – using the Model2Code transformation rules, as

defined in the services layer. Moreover, stand-alone tools, such as WSDL2OWL-S

(Studer, Grimm & Abecker, 2007:313) and WSDL2WSMO (El Bouhissi, Malki &

Bouchiha, 2008) could also be applied to realize semantic descriptions from

syntactic descriptions.

The semantic descriptions generated by the suggested Semantics Descriptor

module or existing translators are incomplete by default, the developer is then

provided with a Semantics Editor module, in order to visualize, edit, augment, and

validate the generated semantic descriptions.

Because the iSemServ framework relies on domain ontologies for semantic

descriptions, an ontology-based knowledge store is provided, so that developers

could also re-use existing ontologies to semantically describe services – where

applicable. This knowledge store could be made up of domain and service

ontologies. In addition, the knowledge store is shared across the intelligence layer,

35

 The iSemServ framework defined UML profile is presented in Chapter 7.

6-110

as depicted in Figure ‎6.5, for purposes of using the same knowledge to embed

semantic services with intelligence.

The results out of the semantic layer are independent semantic descriptions and

domain ontologies that describe services realized in the services layer. Because

semantic descriptions are not automatable on their own; an intelligence component

as described in the next section is needed to automatically process the semantic

descriptions in intelligent manner that will lead to minimal user intervention during

service consumption.

6.4.3. Intelligence Layer

At this stage, semantic services have been realized, and could be deployed to a

semantic execution environment (e.g. WSMX) for automatic discovery and

consumption. Nevertheless, in order to satisfy the principles that underpin the IsS

definition, intelligence is wrapped into the semantic service(s) in this layer – to

produce intelligent semantic services.

In
te

ll
ig

e
n

ce
 L

a
y

e
r

Knowledge Store

(Ontology-based)

Intelligence

Generator/Wrapper

Intelligence

Editor

Figure ‎6.8: Intelligence Layer Modules

The Intelligence Generator/Wrapper module, as depicted in Figure ‎6.8, is

responsible for generating most of the necessary intelligence logic for the developed

semantic services, and mapping of semantic descriptions and syntactic descriptions

to the intelligent properties. The module also relies on the re-usable intelligence logic

(i.e. agents’ behaviour and operations) available through the Intelligence Editor. The

operations that are essential to realize intelligence for semantic services are those

that implement autonomous, proactive, reactive, and collaborative behaviours. The

6-111

machine-processable property according to the definition of our intelligence semantic

service, as presented in Chapter 5 (Section 5.2), is addressed by the knowledge

store (cf. Figure 6.8), shared with the semantics layer for simpler interoperability

amongst the agents and semantic services, and to achieve common interpretation of

terminologies used in semantic descriptions and domain ontologies (Ringelstein,

Franz & Staab, 2007).

The Intelligence Editor can be implemented using any agent-based environment that

provides an environment for editing autonomous, proactive, reactive, and

collaborative capabilities as generated by the Intelligence Generator/Wrapper.

Additional details on how the intelligence layer was implemented using technologies

of choice are presented in Chapter 7 (Section 7.3).

The end results of the intelligence layer are functional intelligent semantic services.

These developed intelligent semantic services could then be validated and deployed

into some internal or external execution environment, where it would be possible for

consumers and machines to automatically discover, select, compose, invoke,

execute, and manage these services.

In this study, the validation and deployment of intelligent semantic services is

partially dealt with, since the focus of the project is primarily on simplifying and

accelerating the process of engineering IsS.

In the following section, we shall describe the core components of the iSemServ

framework in detail; these are: service descriptions, semantic descriptions, and

service intelligence.

6.5. FUNDAMENTAL COMPONENTS

The core components that form part of our main contributions in this study focus on

methods and tools that facilitate: (1) multiple language support for syntactic

descriptions; (2) independent semantic descriptions generation from syntactic

descriptions and service models; and (3) intelligence wrapping of semantic services

to produce intelligent semantic services.

6-112

In the following subsections, we discuss the theoretical aspect of these fundamental

components.

6.5.1. Syntactic Descriptions

In the absence of syntactic descriptions, a service is not available for consumption

outside the service provider’s environment; and it might not even be discoverable in

the public domain. Without syntactic descriptions, users are unable to make prior

decisions on whether or not to invoke and consume a particular service.

The ability of syntactic descriptions lies in the fact that, when available, users are

able to know what inputs, outputs, pre/post conditions, and results, a particular

service satisfies (Ringelstein, Franz & Staab, 2007).

Figure ‎6.9: Syntactic Descriptions Contract

In the iSemServ framework, syntactic descriptions are defined by using the common

service description contract, as defined by Vitvar et al., (2009). The contract is partly

6-113

illustrated in Figure ‎6.9. The contract indicates that it is possible to describe syntactic

services using different description languages and models (e.g. WADL or WSDL).

Therefore, syntactic descriptions defined in any XML-base language need at least to

conform to the descriptions contract. This means that every service needs to be

described according to the information model description, functional descriptions,

non-functional descriptions, and technical descriptions (Vitvar, Kopecky & Fensel,

2009). The iSemServ framework follows the XML Schema, as the information

description model for defining inputs, output, error messages, and other relevant

data used within syntactic descriptions. XML Schema provides an open, structured,

and platform-independent approach in describing documents. This means that

service description languages supported in our framework are XML-based.

In order to describe service capabilities (i.e. functional descriptions), WSDL(Web

Service Description Language) for SOAP-based services, and WADL (Web

Application Description Language) for REST-based services (Hadley, 2009) are

adopted for the iSemServ framework. Both WADL and WSDL are XML-based, and

are commonly used to describe resource-based and action-based services. Non-

functional descriptions are additional data elements that augment service

descriptions, but do not affect service functionalities (Vitvar, Kopecky & Fensel,

2009). However, they could affect the decision by the service requester as to

whether to use the service or not.

These non-functional descriptions could range from simple data, such as the “price”

of a service to complex and contextual information, such as service performance and

the geographical relevance of the service. In our work, non-functional descriptions

are embedded within the non-semantic descriptions, using specialized XML tags,

such as <documentation> in the case of WSDL standard.

Technical descriptions define the communication protocols used and the messages

exchanged, during service invocations (Vitvar, Kopecky & Fensel, 2009). This aspect

in our work is covered through the implicit SOAP bindings in WSDL, and the unified

interfaces in WADL for RESTful services, using HTTP methods, such as GET and

6-114

POST. However, behavioural descriptions, as defined by Vitvar et al. (2009), are not

used in our work for syntactic descriptions. This is because behavioural descriptions

represented using WS-*36 specifications are not machine-interpretable (Ringelstein,

Franz & Staab, 2007); and thus, they do not add any value to the formation of an

intelligent semantic service.

As discussed in Chapter 2 (Section 2.2), syntactic descriptions are not practicable for

machines or software agents, as they only state what a service does, but lack

semantic information on how the service can achieve its functionalities. In the

following section, we shall highlight on the contract of semantic descriptions.

6.5.2. Semantic Descriptions

The iSemServ framework accomplishes the generation of semantic descriptions by

following a common semantic-level description contract of Vitvar et al., (2009).The

approach is illustrated in Figure ‎6.10, and is similar to the syntactic description

contract. The common semantic descriptions contract prescribes that a semantic

service needs to be described according to the functional descriptions, non-

functional descriptions, and behavioural descriptions, using information model

descriptions. The information model descriptions are provided in the form

appropriate of domain ontologies, which provide common terminologies that are

used across functional, non-functional, and behavioural descriptions (de Bruijn et al.,

2008:31).

Technical descriptions are generally not represented at a semantic level; since

according to Vitvar et al. (2009), these are covered adequately in the syntactic

descriptions. However, OWL-S represent technical descriptions through the use of

service groundings (Martin et al., 2004). Within the iSemServ framework, semantic

technical descriptions are only considered when the semantic description language

of choice is OWL-S.

36

 WS-* are web services specifications such as WS-BPEL, which is mainly used for syntactic workflow definitions

6-115

In this study, the following status quo holds for generating semantic descriptions: (1)

Information model descriptions are realized through the ontology-based knowledge

store.

Figure ‎6.10: Semantic Service Descriptions Contract

(2) Although the premise of our framework is that it should support various semantic

descriptions languages, including lightweight description languages, such as

RDF(S). For experimentation purposes in this study, functional descriptions are

generated, either in WSML or OWL – due to the high-level nature of their

expressivity. The process of how this is achieved is detailed in Chapter 7. (3) Non-

functional descriptions are represented either through the use of the

nonFunctionalProperty in WSMO, or through the use of textDescription in

OWL-S service profile class; and (4) Semantic behavioural descriptions detail how

the interactions, through the use of input, output, conditions and message

exchanges happen between the service provider and requester (de Bruijn et al.,

2008:32).

6-116

In the context of this study, semantic descriptions are represented through the use of

formal ontologies. In OWL-S, behavioural descriptions are represented within the

process model class; whilst in WSMO, this is achieved through the use of the

Interface property within the WSMO Web Services element (de Bruijn et al.,

2008:33).

6.5.3. Service Intelligence

Service Intelligence is core to the proposed framework. As detailed in Chapter 5, the

intelligence building block wraps semantic services with the properties of pro-

activeness, reactivity, collaboration, and autonomy. This is achieved at two levels,

namely: the message-level and the knowledge-level.

At the message-level, services and intelligent agents are mapped through syntactic

descriptions. Thus, syntactic descriptions, particularly functional and technical

descriptions, are used to share information, such as input, output, messages, and

communication protocols with software agents for the purposes of automating and

enhancing service consumption. Since WSDL uses protocols (e.g. SOAP) that are

incompatible with software agents languages, such as FIPA-ACL (Protogeros, 2008),

messages and protocol translations could also be done at this level, such as

SOAP2ACL and ACL2SOAP (Hemayati et al., 2010).

However, for REST-based services, the translation of protocols does not apply,

because open and common HTTP methods are used, such as GET and POST

(Pautasso, Zimmermann & Leymann, 2008). These do not need any translation at

message-level, when agents are communicating with syntactic services.

Figure ‎6.11 demonstrates the high-level components for intelligence wrapping.

These include the structure, which is mainly the non-functional descriptions of an

agent, including details, such as the agent name (Zhu & Shan, 2005). Operations

represent the behaviours that implement intelligence according to the IsS definition.

Messages capture requests (e.g. goals) and responses during message-level

interactions. The knowledge base component contains internal knowledge of an

agent, which is interoperable with the common knowledge-based store.

6-117

Figure ‎6.11: Intelligence Wrapping Overview

It is important to understand that intelligence wrapping in our context is considered

mainly for enabling interoperation between semantic services and agents; thereby,

enabling protocol translation from one format to another, and ultimately enabling

agents to communicate with semantic services, both at message-level and at

knowledge-level.

Intelligence wrapping does not replace the semantic service, but augments the

service with behaviours that make it possible for consumers (e.g. humans and

software machines) to automatically perform a number of activities with regard to

semantic services. The addition of intelligence to semantic services also happens in

a decoupled manner; that is, semantic services are not tightly linked to agents, and

could still be invoked and executed independently.

Syntactic Service

Descriptions

Semantic Service

Descriptions

Intelligence

Wrapping

STRUCTURE

OPERATIONS

MESSAGES

KNOWLEDGE

BASE

messaging-level

knowledge-le
vel

6-118

6.6. SUMMARY

In this chapter, we presented and described an iSemServ framework that simplifies

and accelerates the process of engineering intelligent semantic services. The design

principles of the framework may be grouped as follow; simplification, acceleration,

and intelligence. The framework was also designed with a model-driven engineering

methodology in mind, which promotes decoupling, interoperability, seamless

translations between syntactic and semantic descriptions, and code stub generation

at various layers.

The core contributions of the framework are: (1) seamless development of syntactic

service descriptions, based on an XML-based common descriptions contract; (2)

Semantic descriptions generation in multiple semantic models (e.g. WSML and

OWL) following a common semantic description contract; and (3) the wrapping of

semantic services with intelligent properties to achieve machine-interpretable

intelligent semantic services.

The next chapter will cover, the implementation of the iSemServ framework,

including all its components, processes, and technologies.

7-119

7. CHAPTER 7: iSemServ Framework Implementation

The implementation specifics of the proposed service creation framework

are illustrated and described in this chapter. This is preceded by the

illustration and description of the iSemServ technical architecture, and the

main technologies that are essential to the overall implementation of the

different layers as discussed in Chapter 6. The implementation in this

chapter focuses on the development of the UML profile for model

annotations, design and development of the code generation rules and

templates, and the intelligence wrapping logic – all responsible for realizing

functional intelligent semantic services.

7-120

Figure ‎7.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

7-121

Figure ‎7.2: Chapter 7 Layout

7.1

Introduction

7.2

Technical

Architecture

7.3

iSemServ

Implementation

Technologies

Overview

7.4

Summary

Implementation

Platform: Eclipse

Services Layer

Semantics Layer

Intelligence Layer

7-122

7.1. INTRODUCTION

This chapter discusses the proof-of-concept implementation and technologies

exploited to implement the components of the proposed iSemServ framework. In

Chapter 8 the actual use of the framework is demonstrated by means of an

appropriate use case scenario.

The framework was implemented using the Eclipse platform, which encompasses a

variety of re-usable service engineering components. Although the iSemServ

framework is touted as platform independent and could be implemented using any

other SOA-based platform, the decision to implement the framework using the

Eclipse37 environment was motivated by a number of factors and benefits, such as:

(1) Openness; (2) wider support and community involvement; (3) the availability of

plug-ins; (4) the support of multiple programming and modelling languages, (5)

simple extensibility; and (6) the wider adoption and use by service developers.

This chapter is organized as follows: Section 7.2 presents and discusses the

iSemServ technical architecture, which represent the high-level technological view of

the framework. In addition, an overview of the methods and technologies used to

realize the different layers of the framework is presented. It should be noted that the

technologies used for implementing the iSemServ framework may differ from one

implementation to the other depending on various choices and requirements. Thus,

in Section 7.2, only an overview of these technologies is presented, without focusing

too much on the technical details of the specific technologies. In Section 7.3, a proof-

of-concept implementation is provided, according to each layer of the iSemServ

framework. In this section, the focus is on the design and development of the UML

profile for model annotations, code generation rules and templates, and the

intelligence wrapping logic.

Section 7.4 summarizes the chapter by highlighting some of the lessons learnt

during implementation, and some possible future improvements to the proposed

framework.

37

 See: http://www.eclipse.org

http://www.eclipse.org/

7-123

7.2. iSEMSERV TECHNICAL ARCHITECTURE

In this section, the iSemServ technical architecture is described. A conceptual view

of the proposed framework in terms of the technological components that are

relevant to the implementation is also provided.

The technical architecture in Figure ‎7.3 depicts a unified technology infrastructure,

meant to ease and accelerate the process of engineering intelligent semantic

services. The architecture is similar to the conceptual service creation framework. It

is also made up of three integrated, but independent, layers. The technical

specifications of each layer are discussed in Section 7.3.

7.2.1. Technologies Overview

In this section, an overview of all the salient technologies used to realize the

iSemServ service-creation framework is presented. Details on how some of the

technologies were applied are made available in Section 7.3 under each specific

layer.

7-124

Figure ‎7.3: iSemServ Technical Architecture

7.2.1.1. Services layer

In this sub-section, we briefly highlight the technologies that were used to implement

the services layer.

 Service Modelling: The Unified Modelling Language (UML2) Eclipse plug-in

was used to enable the modelling of services. The plug-in allows for the creation

of all UML diagrams (e.g. class, activity, and use cases). In the context of the

proposed service creation framework, the UML2 plug-in facilitates the model-

driven, complexity hiding, and visualization design principles.

Service Designer/Developer/Provider/Deployer

Eclipse Platform
Services Layer

Semantics Layer

Intelligence Layer

UML2
Service

Modeller

R

R

iSemServ
Architectural Style

Selector

R

Model
Store

R

R

iSemServ
Semantics Model

Selector

Semantics Registry
(KnowledgeBase)

R

External
Ontologies

WSMOViz
OWLViz

R

Syntactic Descriptions
Service

Code Stubs

WSMX/Sesame
Deployer

R

Service
Editor (JEE)

iSemServ
Model2Code
Transformer

R

(Sesame/WSMX)
Knowledge Store

iSemServ
Semantics
Descriptor

Semantics
Editor

imports

(Sesame/WSMX)
Knowledge Base

(Sesame/WSMX)
Knowledge Store

Agent
Platform+Editor

(JADE&JESS)

Service
Client Agent

(JADE)

Service
Provider Agent

(JADE&JESS)

R

Generic Agent
 Logic (re-usable)

R

R

Deployment Descriptions

Intelligence Wrapper/Generator

Tomcat
Deployer

R

7-125

 iSemServ Model2Code Transformer: This is an Acceleo38 compliant code

generation module implemented particularly for the proposed solution. In brief,

Acceleo (Acceleo, 2011) is an open source model-to-text language (MTL)

framework. It provides a flexible and simple environment for designing and

developing a variety of code generators, using simple and standard templates. It

is used in the proposed solution, primarily because its design principles are

based on increasing software development productivity.

 JAX-RS: a Java API for RESTful (Representational State Transfer) Web

Services specification (Sun Microsystems, 2009b) is adopted as a standard for

realizing RESTful services within the services layer. Jersey39, as reference

implementation for JAX-RS, is chosen for handling the development and

deployment of RESTful services.

 JAX-WS: a Java API for XML-Based Web Services specification (Sun

Microsystems, 2009a) is used as a standard for implementing SOAP-based

services in the services layer. The reference implementation selected for the

realization of JAX-WS is Metro40, which is compatible with the Apache Tomcat

deployment environment. Tomcat is used as the appropriate service execution

environment in our implementation for deploying JAX-RS and JAX-WS services.

 iSemServ Architectural Style Selector: This is a module that automatically

detects the type of modelled services (e.g. RESTful or SOAP). The detected

service type is used by the Model2Code Transformer and the Syntactic

Descriptor modules to generate the relevant service code stubs (e.g. JAX-RS or

JAX-WS), syntactic descriptions (e.g. WADL or WSDL), and deployment

descriptions (e.g. XML). Deployment descriptions are essential for deployment

purposes, such as to the Tomcat environment.

 Java Enterprise Edition (Java EE) editors: Eclipse embedded Java editors are

used to provide the developer with an environment in which to complete the

behaviour/logic of the service, as generated from UML service models.

38

 For more details visit: http://eclipse.org/acceleo/
39

 JAX-RS (Jersey) reference implementation available at: https://jersey.dev.java.net/
40

 JAX-WS (Metro) reference implementation available at: http://metro.java.net/guide/

http://eclipse.org/acceleo/
https://jersey.dev.java.net/
http://metro.java.net/guide/

7-126

7.2.1.2. Semantics layer

In this sub-section, we briefly highlight the technologies that were used to implement

the semantics layer.

 iSemServ Semantics Model Selector: This is a simple UML profile-based

module, specifically implemented for the proposed service creation framework. It

allows the service developer to choose from a variety of semantics models (e.g.

WSMO or OWL-S) when designing services.

 iSemServ Semantics Descriptor: This is another component developed for the

iSemServ framework for the purpose of automatically generating skeleton41

semantic descriptions, based on the preferred semantic model (e.g. WSMO) as

inferred by the Model Selector.

 Semantics Editor: A number of external semantics editors for different semantic

models are used for editing auto-generated semantics and domain knowledge.

These include WSML editor and OWL-S editor, which provide developers with

useful features, such as error detection, syntax auto-completion, and

highlighting, when editing generated service semantics.

 WSMOViz/OWLViz: Keeping in line with the visualization and complexity hiding

principles, existing ontology visualization approaches are used to aid the

developer in understanding, viewing, and editing complex semantic descriptions.

For WSMO-based semantics, WSMOViz (Kerrigan, 2006), is embedded within

the Eclipse IDE. OWLViz42 is used to support the developer in visualizing OWL-

based ontologies.

41

By skeleton semantics we mean partial semantic descriptions and/or domain ontologies that could be augmented by the
developer.
42

http://www.co-ode.org/downloads/owlviz/OWLVizGuide.pdf

http://www.co-ode.org/downloads/owlviz/OWLVizGuide.pdf

7-127

7.2.1.3. Intelligence layer

In this sub-section, we briefly highlight the technologies that were used to implement

the intelligence layer.

 JADE: This is a Java-based agent development environment and middleware

(Ye & Yang, 2009). The environment is integrated within Eclipse to realize the

autonomous, machine-processable, and collaborative capabilities necessary for

producing intelligent semantic services. In brief, JADE43 is made up of a

platform, consisting of containers, responsible for managing and executing

agents. JADE also provides libraries for implementing agent-based logic

necessary for realizing partial intelligence (e.g. autonomy and collaborations). It

was chosen for iSemServ framework implementation mainly because of its open

nature and use of Java programming language, which is fully supported by

Eclipse.

 JESS: It is referred to as a Java Expert System Shell (Balachandran, 2008). It is

generally used as a rule-based engine and programming environment using

Java (Friedman-Hill, 2003). It is touted as a “powerful tool for systems with

intelligent reasoning abilities” (Balachandran, 2008), using algorithms, such as

Rete44. In this study, JESS is employed in conjunction with JADE for the

purposes of realizing the proactive and reactive properties of an intelligent

semantic service. In addition, it is exploited to enable the developer to define

free-format reasoning rules that enable proactive and reactive capabilities within

a specific intelligent semantic service. These rules can be expressed in JESS

rule language or XML45, and are stored in a text file with an extension “.clp”. The

language is expressive and capable of defining logical relationships, using

minimal code. Moreover, the language has built-in functions that can easily be

reused. JESS also has functions that enable direct access to Java APIs. Such

reasons make JESS one of the suitable alternatives for defining rules that could

be used by software agents to reason over domain and service ontologies.

43

 More information on JADE: http://jade.tilab.com/
44

 See: http://www.jessrules.com
45

 See: http://www.jessrules.com

http://jade.tilab.com/
http://www.jessrules.com/
http://www.jessrules.com/

7-128

Furthermore, in this study, JESS was chosen because of its easier integration

with Java, JADE, and Eclipse.

7.2.2. Implementation Platform: Eclipse

The iSemServ framework was implemented as a collection of unified plug-ins using

the Eclipse platform. Eclipse is a mature, well-designed, and extensible platform.

This platform supports developers with libraries to build components that

interoperate seamlessly. The key to the seamless integration of tools in Eclipse is

the plug-in approach(Rivières & Wiegand, 2004). The plug-in modules developed for

the iSemServ framework integrate with Eclipse in exactly the same way as any other

Eclipse plug-in, without much effort from the developer.

The following section discusses the iSemServ framework implementation particulars.

7.3. iSEMSERV IMPLEMENTATION

The iSemServ framework was implemented, using a variety of open source (OS)

service-based modules within the Eclipse environment, as indicated in the preceding

sections. The OS service-based modules include existing and newly developed

modules, as highlighted in Section 7.2.

Adhering to the decoupling and separation of concerns principles, the

implementation was realized in phases. Thus, each layer was implemented

independently of any other layers, and could also be used independently of other

layers. Nevertheless, the completed implementation involved the integration of all the

layers into one operational iSemServ Eclipse plug-in.

In terms of the implementation strategy, the services layer was implemented first, as

it handles the initial processes of creating syntactic services. The semantics layer,

which is responsible for integrating service ontologies into services engineered within

the services layer, then followed. The intelligence layer, which consists of

components necessary to incorporate intelligence into the semantic service, was

implemented last. Although the implementation was meant to demonstrate merely a

proof-of-concept, and not a fully-fledged iSemServ framework, an effort was made to

7-129

implement many of the salient features deemed necessary for simplifying and

accelerating the process of building up intelligent semantic services.

7.3.1. Services Layer

The services layer supports the service engineer with the necessary modules for

producing standard-independent syntactic services. As illustrated in Figure ‎7.3,

different modules are necessary for the complete functioning of the services layer. In

this section, the implementation details of these modules are discussed.

7.3.1.1. Service Modeller

The service modeller, which represents the core module responsible for capturing

the internal and external properties of the identified service(s), was implemented

using the UML2 development kit integrated within the Eclipse platform. In this

module, the service designer could capture the structure of services using UML class

diagrams. The behaviour of the services could also be captured using UML activity

diagrams at this layer.

It should be noted as well that within the iSemServ platform, the designer could also

import external service models (i.e. UML class diagrams) from the model store, or as

designed, using any other UML2-compliant tool, such as ArgoUML46. Nevertheless,

for the purposes of the service creation framework implementation, the premise is

that new services should be designed using the UML2 service modeller module.

In general, service models can be designed using any modelling language of choice.

However, Model Driven Architecture (MDA) compliant languages, such as the

Unified Modelling Language (UML), are encouraged by the Object Management

Group (OMG) (OMG, 2010b). Thus, for the implementation of the service modeller

module, UML-compliant models were chosen. This is mainly because of their wide

spread use in industry and academia, and their support for platform independency,

ensuring “portability, interoperability, extensibility and re-usability through an

architectural separation of concerns between the specification and implementation”

(Lautenbacher, 2006).

46

 See: http://argouml.tigris.org/

http://argouml.tigris.org/

7-130

For the proper functioning of the service modeller module, the class diagrams

capturing the properties of services to be engineered need to be modelled based on

the iSemServ UML profile. The specific iSemServ UML profile implemented for the

service modeller module is depicted in Figure 7.4.

In brief, UML profiles are a group of custom keywords (i.e. stereotypes), data types,

constraints, and tagged values that could be used to annotate and extend UML

diagrams (Bensaber & Malki, 2008). Moreover, the distinct stereotypes within the

UML profile provide the necessary flexibility to annotate the model in a manner that

would promote different representations of the model.

«metaclass»
iSemServ

«stereotype»
RESTful

«stereotype»
SOAP

«stereotype»
WADL

«stereotype»
WSDL

«stereotype»
WSMO

«stereotype»
OWL-S

«package»
iSemServ

Figure ‎7.4: Partial iSemServ UML Profile

In Figure 7.4, a UML profile implemented for the proposed iSemServ framework is

illustrated using a simplified UML package diagram. This is essential for Java code

generations, where classes are generally organized within packages. The key

stereotypes in the iSemServ profile are <<RESTful>> and <<SOAP>>. These two

stereotypes can only be applied to class diagrams. This means that any class

diagram capturing the structure of a service could be annotated as <<RESTful>>or

<<SOAP>>, the two common Web services standards to date. The other

7-131

stereotypes deriving from the main stereotypes are <<WADL>> and <<WSDL>>,

which enable the developer to decide on the syntactic descriptions to be generated

for the modelled service(s). The use of the profile is demonstrated in Chapter 8

(Section 8.2).

As illustrated in Figure 7.4, both <<WSMO>> and <<OWL-S>>stereotypes are

catered for within the iSemServ framework implementation for selecting the skeleton

semantic descriptions and domain ontologies to be auto-generated. Additional

keywords can also be added to accommodate other syntactic descriptions (e.g.

USDL (Cardoso et al., 2010)) and semantic descriptions or annotation standards,

such as WSDL-S (Akkiraju et al., 2005).

For the implementation of the iSemServ framework – and adhering to the principle of

supporting multiple languages, UML profiles are also viewed as significant. For

instance, within one service model, a service designer could annotate the model to

represent RESTful services and WSMO semantic descriptions. Similarly, the same

model could be annotated to represent SOAP services and OWL-S semantic

descriptions. It is also important to note that UML profiles are easily implementable,

using any UML compliant tool, and could be extended by adding new keywords and

other details of interest.

7.3.1.2. iSemServ Model2Code Transformer

Once a service model is defined according to the iSemServ profile, it is inputted into

the implemented iSemServ Model2Code Transformer. This module is capable of

automatically determining the type of a service, syntactic descriptions, and

deployment descriptions to be generated - given a UML2 compatible model. The

generator relies on the steps depicted in Figure ‎7.5.

7-132

Figure ‎7.5: Service Code Generation Steps

The Model2Code Transformer was implemented using a number of code

transformation rules and static code templates solely defined for the iSemServ

framework. The code generation templates implemented for the proposed framework

are based on the Acceleo platform integrated within the Eclipse IDE, as discussed in

Section 7.2.1. The templates were implemented using the model-to-text scripting

language and Java custom services/methods such as hasStereotype(String

Keyword).

The transformation rules that are the foundation of the Model2Code Transformer

within the services layer include:

 model2services: These are the mappings that are meant to transform

appropriately annotated service models to the necessary service code structure.

In our context, this would either be JAX-RS or JAX-WS. For JAX-RS, that is, a

service model annotated with the <<RESTful>> stereotype, the mappings are

tabulated in Table 7.1.

Generated Service Code

Existing Models

synthesis

Service structure generation

imports

Transformation rules

Service modelling/Pre-existing
model

7-133

Table ‎7.1: Model2Service Mappings (RESTful)

RESTful Methods UML Operations Start Keywords

@GET get, find, request, search, check

@PUT put, update, set, place, edit, modify

@POST post, create, add, do

@DELETE delete, cancel, remove

For example, these mappings can be translated as follows: For any UML

operation that starts with the keyword “get”, an associated @GET method would

be annotated to the relevant JAX-RS method. Any other UML operation that

does not start with any of the listed keywords (cf. Table 7.1) in the case of

<<RESTful>> annotated UML classes would be transformed into a normal

POJO (Plain Old Java Object) method. The remaining transformation mappings

for model2services are adopted from the JAX-RS and JAX-WS specifications

(refer to: (Sun Microsystems, 2009a; Sun Microsystems, 2009b)), as partially

depicted in Table ‎7.2.

Table ‎7.2:UML2JAX-RS Mappings

UML Class Diagram Java Classes (JAX-RS)

<<RESTful>>class RESTful Service (@Path)

[keyword] operation @[GET|PUT|DELETE|UPDATE]

operation parameters (in) @Consumes

operation parameter (return) @Produces

Operation parameters (in) @[Path|Query|Form|Header|Cookie]Param

Table 7.3 shows the mappings that are applied in the proposed framework to

transform UML service models annotated with a <<SOAP>> stereotype to

SOAP-based services, using JAX-WS specifications. For any UML class that is

annotated with the <<SOAP>> stereotype, an equivalent Java-based SOAP

service, annotated with the @WebService keyword, is generated. In addition, for

all the operations of the <<SOAP>> annotated UML class, equivalent Java

methods would be annotated with the @WebMethod as prescribed by JAX-WS.

7-134

Table ‎7.3: UML2JAX-WS Mappings

UML Class Diagram Java Class (JAX-WS)

<<SOAP>> class SOAP Service (@WebService)

Class Name Service Name

Package Name (reversed) TargetNameSpace

Owned Operation @WebMethod

Package Name +Interface EndpointInterface

 model2descriptions: These mappings enable the Model2Code Transformer to

automatically derive complete syntactic descriptions from the UML class

diagrams. For example, if the service model has been annotated with the

<<WADL>> stereotype, the mappings in Table 7.4 would apply when the

Model2Code transformer is automatically generating syntactic descriptions.

Table ‎7.4: UML2WADL Mappings

UML Class Diagram WADL Descriptions

<<RESTful>><<WADL>> class <application><resources>

operation <resource><method>

operation parameters (in) <request><param …/><representation>

operation parameter (return) <response><representation>

representation tag value <representation>

These mappings comply with the specifications that prescribe the approach for

describing RESTful services using WADL. For instance, for any UML class that

is annotated with both <<RESTful>> and <<WADL>> keywords, an equivalent

WADL description file would be generated using the mappings as shown in

Table 7.3. The practical usage of these mappings is demonstrated in Chapter 8

(Section 8.2)

 model2deployment: These are the simple mappings that allow the Model2Code

Transformer (cf. Figure 7.3) to create the relevant deployment description files

from the service models. For implementation purposes, only the deployment

descriptions targeting (e.g. JAX-RS or JAX-WS) the Apache Tomcat application

server can be generated using the iSemServ framework. These mappings are

7-135

similar to those tabulated in Table 7.4, with the main difference being in the

names of the XML tags.

In order to augment or edit the generated service code, descriptions, or even

deployment description files, the service engineer is provided with existing editors,

such as Java EE and XML Editors integrated within the Eclipse IDE. This is in

accordance with the re-usability and interoperability iSemServ framework design

principles.

The practical demonstrations of the various modules’ implementation of each layer

are illustrated in the next chapter, using different use case scenarios. In the following

section, the details related to the implementation of the semantics layer are

presented. (In order to review the high-level view of the modules within the

semantics layer, please refer back to Chapter 6 or see Figure ‎7.3.)

7.3.2. Semantics Layer

Semantic services are realized through the use of domain ontologies and semantic

descriptions. Thus, once syntactic descriptions are delivered in the services layer,

the automatic generation of partial semantic descriptions is the focus within the

semantics layer. The essential components that were implemented for the proposed

framework are described in the following sub-sections.

7.3.2.1. iSemServ Semantics Model Selector

The proposed framework needs to subscribe to the principle of semantic standards

independency. This is to ensure that as semantic standards develop, the proposed

framework remains relevant. As noted in the previous sections, there have been a

number of efforts with regard to models that provide methods and tools for building

domain ontologies and semantic descriptions.

Because of the diversity of semantic models, an iSemServ Semantics Model

Selector was implemented, mainly using the iSemServ UML Profile. The Model

Selector mainly infers the semantic model of choice, based on the service model’s

annotations. This simply means that the developer annotates the service model,

7-136

using specific stereotypes, such as <<OWL-S>> within the services layer, to

explicitly indicate what type of skeleton semantic descriptions and/or domain

ontologies need to be automatically generated.

The Model Selector does not restrict the number of semantic models that could be

selected simultaneously. Thus, multiple semantic models could be selected for one

specific service model.

It should also be noted that in this context, the service engineer is only expected to

make the semantic models preference visible through the service model, as defined

in the services’ layer. If the service model is not annotated with specific semantic

models’ stereotypes, domain ontologies and/or semantic descriptions can be

imported from existing sources. This is essential for complying with the re-usability

principle, since the generation of domain ontologies is also quite complex and

resource intensive, and normally involves a number of domain experts (Sabou et al.,

2005). Thus, building new domain ontologies for every new service is, in many

instances, discouraged, but re-using well-defined and generic pre-existing domain

ontologies is encouraged.

7.3.2.2. iSemServ Semantics Descriptor

The Semantics Descriptor uses the details gathered by the Semantic Model Selector

to automatically generate the skeleton semantic descriptions, and in preferred cases,

domain ontologies for the planned services. This module was implemented, based

on a number of transformation rules, using the Acceleo framework. The main rules

include:

 model2ontologies: Domain ontologies are the cornerstone of semantic

services. Although the intentions in this study are not to build complete

domain ontologies; for the iSemServ framework, an implementation was

conducted to support the process of automatically generating partial domain

ontologies from the service model(s). This was achieved by using the class

properties, types, operations, and their input parameters to partially infer

some of the common concepts relevant to the service(s) being engineered.

7-137

Generic mappings for WSMO and OWL-S were also defined for the iSemServ

solution. In Table 7.5, the mappings between the UML class diagrams and the

WSMO domain ontologies are listed. These are based on the salient

components (i.e. ontologies) of WSMO, as discussed in Chapter 4.

Table ‎7.5: UML2WSMO Mappings

UML Class Diagram WSMO Domain Ontologies

<<WSMO>><<ontology>> Stereotype

Class name

WSMO Domain Ontologies

Ontology name, Concept

Class properties, Operation parameters (in)

Operations, Enumerations, DataTypes

Concepts’ attributes

Concepts

Association/Composition/Aggregation Relation

Generalization

EnumerationLiterals, DefaultValues

Sub-Concept

Instances

Constraints Axioms

For instance, every class name annotated with the <<WSMO>> and

<<ontology>> stereotypes, specific class operations, and enumerations, are

mapped to the relevant WSML ontological concepts. The properties of a class

and the input parameters of operations are then mapped to the attributes of

the relevant concepts. For example, in Listing 7.1, the concept “person”

would have been generated from a class with the name “person”. The

attributes firstName and lastName would have been the properties of the

same class. Elaborative examples are provided in Chapter 8 (Section 8.2)

concept person

nonFunctionalProperties

 dc#description hasValue "WSML description of a person"

endNonFunctionalProperties

 firstName ofType _string

 lastName ofType _string

Listing ‎7.1: WSMO Concept and Attributes

7-138

Furthermore, WSML relations, sub-concepts, and instances are derived from

UML class relationships (e.g. aggregation, and generalization) and

enumeration default values. For example, a UML child class that derives from

a super class is mapped as the Sub-Concept of the specific super class.

Logical expressions (i.e. axioms), which are essential when defining various

WSMO elements, are mapped against the constraints defined for the specific

UML class diagram.

All these mappings were implemented, using the WSMO ontology template

(see: Listing 7.2), and the transformation rules realized by exploiting the

Acceleo MTL (model-to-text language) and a variety of Java common

services.

ontology = 'ontology' id? header* ontology_element*

ontology_element = concept

 | relation

 | instance

 | relationinstance

| axiom

Listing ‎7.2: WSMO Domain Ontology Structure

For the purposes of the implementation, and for showing the applicability of

supporting multiple languages, OWL-S transformation rules were also defined

and implemented. If another domain ontology language needs to be

supported by the suggested framework, only the relevant mappings and new

stereotypes need to be defined.

 model2semantics: Semantic descriptions enable services to be automated,

as they describe the functional, non-functional, and behavioural properties of

services in using domain ontologies (Vitvar, Kopecky & Fensel, 2009). In the

proposed framework, semantic descriptions could be defined using different

semantic description languages similar to the process of building domain

ontologies. For proof-of-concept purposes, only OWL-S and WSMO semantic

descriptions were accommodated within the iSemServ framework.

7-139

As discussed in Chapter 4 (Section 4.2.1), OWL-S provides three elements

for semantically describing Web services. The Service Profile semantically

describes the functional aspects of the service (i.e. what does the service

do?), whilst the Service Model semantically describes the behaviour of the

service, enabling the requesting agent to understand how to interact with the

service using the Service Grounding element.

Table ‎7.6: UML2OWL-S Mappings (Service Profile)

UML Class Diagram OWL-S Profile

<<OWL-S>><<profile>> Stereotype OWL-S Profile
Class name Class, Service Name, Profile Name
Operation parameters (in) (return) &process (#input, #output, #parameter , #results)
Generalization SubClassOf
Constraints &expr (#condition), restrictions, cardinality
Enumerations, EnumerationLiterals Collections, OneOf

Table 7.6 lists some of the mappings implemented within the Semantics

Descriptor module for transforming an <<OWL-S>><<profile>> annotated

UML service model into OWL-S Profile descriptions. Every OWL-S annotated

class name is mapped to an OWL-S class, Service Name, and Profile Name

according to the OWL-S specifications (Martin et al., 2004). UML class

operation’s input and output parameters are mapped to OWL-S Profile

properties such as Inputs, Output, Parameters, and Results. UML-defined

constraints are then aligned to OWL-S logical expressions in Preconditions

and Effects.

7-140

Table ‎7.7: UML2WSMO (Semantics)

UML Class Diagram WSMO Web Services
<<WSMO>><<webService>> Stereotype
Operation

WSMO Web service descriptions
Web service name

Operation
Class properties, Operation parameters (in)

Capability name
Shared Variables

EnumerationLiterals, DefaultValues Preconditions, Assumptions, Postconditions,

and Effects
Constraints Preconditions, Assumptions, Postconditions,

and Effects

In implementing WSMO semantic descriptions, the mappings in

Table ‎7.7 were formulated and realized using the WSMO template (de Bruijn

et al., 2005c), as presented in Listing ‎7.3.

capability = 'capability' id? header* sharedvardef? pre_post_ass_or_eff*

sharedvardef = 'sharedVariables' variablelist

pre_post_ass_or_eff = 'precondition' axiomdefinition

 | 'postcondition' axiomdefinition

 | 'assumption' axiomdefinition

 | 'effect' axiomdefinition

Listing ‎7.3: WSMO Web Service Template

The mappings are mainly applicable to <<WSMO>> annotated UML service

models in the context of the iSemServ framework. Each UML class operation

name is directly mapped to a WSMO Web service name and one WSML

Capability name. This is because each WSMO Web service (i.e. semantic

descriptions) can have only one capability that semantically represents the

functionality provided by the service (de Bruijn et al., 2005c).

7-141

The WSMO-shared variables are mapped from UML class

attributes/properties, and class operation input parameters. Preconditions,

post-conditions, assumptions and effects are directly mapped to UML-defined

constrains, class attributes’ default values and enumeration literals. As

mentioned, the practical demonstrations of all the transformation rules will be

presented in the next chapter.

7.3.2.3. Semantics Editors

The Semantics Editors module was implemented by re-using the existing WSML

editors and various OWL-S editors, such as Profile Model Editor and Process Model

Editor (Srinivasan, Paolucci & Sycara, 2006). The main task conducted in this regard

was the actual integration of these existing editors into the Eclipse platform. The

purpose of the editors is to enable the service engineer to easily and uniformly

review, edit, and augment the generated domain ontologies and the semantic

descriptions. This is done in accordance with the reusability, interoperability,

extensibility, and uniformity principles that are significant for simplifying and

accelerating the process of engineering intelligent semantic services. In addition,

Semantics Editors are also incorporated to enable the service developers to perform

additional activities, such as semantics validation, syntax error detection, and code

auto-completion, where possible.

7.3.2.4. Visualization and Deployment

One challenge that commonly hinders the development of semantic services is the

complexity and steep learning curve of the semantic models and the descriptions

that are generated, based on such models (cf. Section 1.2 – Chapter 1). In

addressing this challenge, pre-existing semantics visualization tools were

incorporated within the iSemServ framework. The tools that were re-used include

OWLViz and WSMOViz (Kerrigan, 2006), which were developed for supporting

semantic service engineers with the lifecycle of semantics generation.

For the purposes of this study, these components were re-used to support the

service engineer with the visualization of semantic descriptions generated using the

7-142

Semantics Descriptor module, thus making the process of reviewing and editing

generated semantic descriptions and domain ontologies simpler and faster.

The deployment of generated and/or refined semantic descriptions and domain

ontologies is made possible in the iSemServ framework by using different execution

environments. As described in Section 7.3.1, syntactic descriptions are deployed in

the Apache Tomcat application server, whilst semantic descriptions are either

deployed in WSMX (WSMO descriptions) or Sesame (OWL-S descriptions)

execution environments (cf. Section 7.2).

Multiple execution environments are used, because integrated semantic service

execution environments that cater for syntactic descriptions and semantic

descriptions of different models are currently lacking. Addressing this challenge is

beyond the scope of this study.

7.3.3. Intelligence Layer

The agent-based principle of the iSemServ framework was realized within the

intelligence layer. The implementation was achieved by exploiting the JADE

platform47, which provides specialized libraries for defining Java-based autonomous

and social software agents.

JESS, a Java-based rule engine (Friedman-Hill, 2003), was also exploited for

specifically implementing the intelligence properties (i.e. proactivity, and reactivity),

according to the definition of the intelligent semantic service. However, it should be

noted that the iSemServ framework only auto-generates the intelligent logic

necessary for integrating JADE and JESS, as indicated in Listing 7.4. JESS rules are

defined by the developer for the specific IsS using the generated JESS rules’

template as shown under Appendix B (cf. JESS Rules Template)

An Acceleo transformation script (using the code structure in Listing 7.4) was

implemented for auto-generating generic code for integrating JADE and JESS. The

important parts in Listing 7.4 are the inclusion of JADE and JESS libraries as

47

 Visit http://jade.tilab.com for more details on JADE

http://jade.tilab.com/

7-143

indicated in Line 5 and Line 6. These are needed to enable any functionality of JESS

within the intelligence layer. As it may be noted in Line 8, the JESS agent (in this

case named: iSemServJessAgent) extends from the core JADE agent. Line 13 – 16

initializes the JESS engine for enabling automatic synthesis of domain ontologies

and semantic descriptions with little human intervention.

Line 20 – 23 shows the logic that is executed during the initialization of JESS, and

this code adds a basic JESS behaviour, which is auto-generated using an Acceleo

script.

1. /* template for implementing automated reasoning in iSemServ

using JESS engine */

2.

3. package isemserv.reason.jess;

4.

5. import jess.*;

6. import jade.core.*;

7.

8. public class iSemServJessAgent extends jade.core.Agent

9. {

10.

11. /* Initialization of a Jess engine */

12.

13. private Rete jess;

14. public Rete getRete ()

15. {

16. return jess;

17. }

18. /* setup method to add basic JESS behaviour that will be used

by the generic agents to process semantic services

19. */

20. protected void setup() {

21.

22. addBehaviour(new

BasicJessBehaviour(this,"isemserv/jess/irules.clp",1));

23. }

24. }

Listing ‎7.4: Excerpt of JESS integration with JADE48

In the context of this study, an Acceleo transformation script was also implemented

for auto-generating generic agents using the annotations in the service model –

thereby further simplifying and accelerating the process of building intelligent

48

 Adapted from examples used in JADE and JESS (see: http://jade.tilab.com and http://www.jessrules.com)

http://jade.tilab.com/
http://www.jessrules.com/

7-144

semantic services. The generic agents provide autonomy and social abilities to

intelligent semantic services.

According to McIlraith, Son and Zeng (2001),“Semantic Services need to be agent-

ready, user-apparent, and machine-understandable”. Figure ‎7.6 depicts the generic

agents (i.e. Service Provider Agent and Client Gateway), their interactions and

distinct behaviours, as implemented for the suggested framework. Moreover, the

interaction between the generated descriptions and their generic agents is

demonstrated.

Service Provider

Agent

SWS

Syntactic

Descriptions

Semantic

Descripions

Consumer

SWS
SWS

SWS

SWS

messaging knowledge

Requests/responses

DescriptionBehaviour

SemanticsBehaviour

RequestsServerBehaviour

IntelligenceBehaviour

Client

Gateway

Figure ‎7.6: Generic Agents Interaction with SWS

The Service Provider Agent was implemented to be responsible for:

 Syntactic descriptions parsing – Autonomously parses the syntactic

descriptions on behalf of the client agent to determine the functional

properties of the discovered service.

 Domain ontologies querying – The service provider agent has the capability

of querying the knowledge embedded in the semantics layer. This could, for

7-145

example, involve the task of querying a vocabulary of concepts and their

relationship and axioms.

 Semantic descriptions deduction – This involves the automatic deduction

of service functional and behavioural aspects (e.g. Web service capability), as

embedded within the semantic descriptions generated in the semantics layer.

 Intelligence behaviour implementation – With the assistance of JESS,

declarative rules are defined by the IsS developer to enable service

consumers and providers to interact in a highly proactive and reactive manner

(refer to Figure 7.7).

 Service requests and responses management – In this instance, every

auto-generated Service Provider agent includes a service response handler,

which extends JADE-based cyclic behaviour, and is generally responsible for

automatically processing service requests and channelling service responses

to the service consumer.

The Service Provider Agent also wraps the semantic service at the message-level

and knowledge-level. For message-level wrapping, a generic syntactic descriptions

parsing behaviour was implemented (see excerpt in Listing 7.5).

7-146

Figure ‎7.7: Integration of JADE agents and JESS

JADE agents understand ontologies. Thus, the Service Provider agent template has

been implemented to accommodate the interaction between the Service and the

Provider agents at the knowledge level using domain ontologies and semantic

descriptions (cf. Appendix B - intelligence layer). Domain ontologies querying

behaviour and semantic description parser and reasoner behaviours were also

implemented – in an effort to realize intelligent semantic services.

Listing 7.5 shows the code template that was followed to create an Acceleo

transformer, in order to auto-generate many of the Service Provider agent

behaviours described above.

1. public class ServiceProviderAgent extends Agent {

2.

3. /**

4. default Agent properties

5. */

6. private static final long serialVersionUID = 1L;

7. private String serviceRules = "ServiceProviderRules.clp";

8. /**

9. Initialise ServiceProviderAgent

10. */
11. protected void setup()
12. {
13. //Logging "welcome message"
14. System.out.println("Hallo! :"+getAID().getName()+" is initialized and ready--->");

Service Agent
(JADE)

JESS-RULES ENGINE

reason

GENERIC BEHAVIOURS

SERVICE LOGIC BEHAVIOUR

JESS BEHAVIOUR

tasks

Client Agent
(JADE)

Requests/responses

rules

facts
database

7-147

15. /**
16. Register ServiceProviderAgent in YellowPages (JADE)
17. */
18. DFAgentDescription dfd = new DFAgentDescription();
19. dfd.setName(getAID());
20. ServiceDescription sd = new ServiceDescription();
21. sd.setType("service-provider");
22. sd.setName("iSemServ-service-provider");
23. dfd.addServices(sd);
24.
25. try {
26. DFService.register(this, dfd);
27. //Logging a confirmation message for Registration
28. System.out.println(getAID().getName()+" is registered in JADE Yellow Pages");
29. }
30. catch (FIPAException fe) {
31. fe.printStackTrace();
32. }
33. /**
34. Add getRESTServiceURL [Part of SyntacticDescriptions Behaviour] Cyclic Behaviour provided

by ServiceProviderAgent

35. */
36. addBehaviour(new getServiceURL());
37. /**
38. Add getWSCapabilityName [Part of SemanticsBehaviour]Cyclic Behaviour provided by

ServiceProviderAgent

39. */
40. addBehaviour(new getWSCapability());
41. /**
42. Add the Jess Engine (Reasoner) Behaviour
43. */
44. addBehaviour(new ReasonerActivity(this, serviceRules));
45.
46. /**
47. Add the ServiceResponseHandler Behaviour
48. */
49. addBehaviour(new CompareQuotes());
50. }

Listing ‎7.5: Excerpt of the Service Provider Agent

The Service Provider agent for any generated semantic service extends the Agent

class (see Line 1 in Listing 7.5), which is found within the JADE development

libraries. The setup()protected method (i.e. Line 11) is used for initializing any

JADE-based agent. It also implements the code necessary for registering the agent

into JADE yellow pages for discovery purposes by the client agents (i.e. Line 16 -

32). The rest of the code(i.e. Line 34 - 49) is about adding respective behaviours to

the service provider agent, e.g. getWSCapability (i.e. Line 40), which deals

mainly with returning the semantic capability of the service back to the requester.

It is important to note that the generated Service Provider agent logic in Listing ‎7.5 is

not static, and could be modified by the developer to suit the requirements not

represented in the service model.

The Client Gateway agent was implemented to handle:

7-148

 Keyword-based service discovery – As partially illustrated in Listing 7.6, a

common JADE service discovery technique was adopted for keyword-based

discovery. For example, in Line 14 of Listing 7.6, we merely demonstrate how

agents of type “service-provider” could be discovered using the JADE search

service.

1. @Override

2. public void action()

3. {

4.

5. if(status==0)

6. {

7. //Code stubs for service discovery

8. DFAgentDescription template = new DFAgentDescription();

9. ServiceDescription sd = new ServiceDescription();

10. sd.setType("service-provider");

11. template.addServices(sd);

12.
13. try {

14. DFAgentDescription[] result = DFService.search(myAgent, template);

15. System.out.println("Following service providers discovered:");

16. availServiceProvider = new AID[result.length];

17. for (int i = 0; i < result.length; ++i) {

18. availServiceProvider[i] = result[i].getName();

19.
20. System.out.println(availServiceProvider[i].getName());
21. }

22. }

23. catch (FIPAException fe) {

24. fe.printStackTrace();

25. }

26. }

27. //Perform service requests

28. ACLMessage cfp = new ACLMessage(ACLMessage.CFP);

29. for (int i = 0; i < availServiceProvider.length; ++i) {

30. cfp.addReceiver(availServiceProvider[i]);

31. }

Listing ‎7.6: Excerpt of the Client Gateway Agent

 Service requests – manual service requests’ user interfaces are also auto-

generated within the iSemServ framework for each intelligent semantic

service. This was implemented to simplify the process of quickly testing

deployed intelligent semantic services. In this regard, the service consumer

will interact with the intelligent semantic service(s) in terms of furnishing the

required inputs through a Web-user interface (e.g. PHP web page with a

form).

7-149

7.3.4. Front-end

Although the iSemServ framework and architecture is divided into various layers with

various modules, the front-end system representing the implemented platform is only

an Eclipse plug-in that could easily be integrated within version 3.5 of Eclipse

Galileo. The user interface that the developer interacts with is depicted in Figure 7.8.

Figure ‎7.8: iSemServ Eclipse Plug-in

The service engineer only needs to import a UML2 packaged service model, and

select the types of service elements that need to be auto-generated. The plug-in

would then in the background generate all the selected service elements using the

defined transformation rules and templates. The engineer could then review, edit,

and finalize the generated modules or even re-use previously generated elements

(e.g. domain ontologies) using various editors integrated within the Eclipse

environment, as described above.

7-150

Figure ‎7.9: JADE runtime environment

As illustrated in Figure ‎7.9, the generated agent artefacts are deployed within the

containers, as supported by the JADE platform. Nevertheless, the deployment of

intelligent semantic services falls outside the scope of this thesis. The actual

operation of intelligent semantic services, as generated within the iSemServ

framework, is demonstrated with the aid of a use case scenario presented in Chapter

8.

7.4. SUMMARY

The iSemServ framework implementation details on the Eclipse platform were

presented in this chapter. The framework was implemented according to its defined

layers. These are: services, semantics, and intelligence layer. In implementing the

framework, a number of technological tools were used, and these were also

discussed in this chapter. The overall implementation was realized by re-using a

number of already available open source and limited proprietary tools. The key

technologies used to implement the different modules of different layers include the

UML2 SDK, which was used for designing service models. Java as an

implementation language was also used throughout the different layers. Only

RESTful and SOAP-based services have been accommodated within the proposed

framework.

7-151

In terms of semantic descriptions and domain knowledge, WSMO and OWL-S

modules were implemented. The core contribution of this study, which is the

intelligence layer, was implemented using the JADE and JESS environments, in

order to realize autonomous, social, reactive, and proactive features that make

semantic services intelligent. Acceleo was used throughout the different layers for

the purpose of defining templates and transformation rules for auto-generating

different service elements.

A number of lessons were learnt during the development of the prototype. These

included the understanding that developing intelligent semantic services is indeed a

tedious and an error-prone task – especially without any supporting tools. We

envisage the suggested approach as one possibility for minimizing the current

hindrances of engineering intelligent semantic services, especially because of the

principles of standards independency, separation of concerns, complexity hiding,

and the exploitation of existing technologies, including the integration of semantic

technologies into existing web services platforms, such as Eclipse.

Nevertheless, the proposed iSemServ framework also has its own challenges. These

are discussed in Chapter 9.

The following chapter discusses the assessment of the use case scenarios, as well

as the evaluation of the proposed and implemented solution.

8-152

8. CHAPTER 8: Evaluation and Results

This chapter demonstrates the use, together with the evaluation results of

the proposed iSemServ framework. The framework was evaluated using

different techniques including a qualitative comparison of the semantic

services engineering platforms and real-world use case scenarios. These

are discussed in this chapter.

8-153

Figure ‎8.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

8-154

Figure ‎8.2: Chapter 8 Layout

8.1

Introduction

8.2

Scenario-Based

Evaluations

8.4

Comparative

Analysis

8.5

Scalability and

Performance

Evaluations &

Discussions

Comparison Criteria

Qualitative

Comparisons

8.6

Summary

8.3

Scenario

Evaluation

Discussions

Discussions

8-155

8.1. INTRODUCTION

One of the additional objectives of this thesis is to evaluate the proposed service

creation framework against the design principles set out in Chapter 6, related

solutions as presented in Chapter 2, and appropriate use case scenarios, as defined

in Section 8.2. Thus, this chapter discusses the evaluation of the iSemServ

framework, as implemented in Chapter 7. The framework is evaluated using

qualitative comparative analysis, laboratory experiments, and quantitative

performance and scalability tests.

In order to reach reliable and valid conclusions in relation to the proposed framework

and its implementation, the evaluation process plays an important part. Moreover,

evaluation is essential to the development of any technical solution. However,

approaches for evaluating unified semantic-based solutions are not currently well-

established or standardized. Thus, in evaluating the iSemServ framework and its

implementation, different types of evaluation techniques were considered. The initial

evaluation focused on real-world use case scenarios, which were specifically defined

for Semantic Web Services (SWS).

Real-world scenarios are key in assessing technical solutions (Kuropka et al., 2008).

Scenarios could also enable an evaluation of the different aspects of the technical

solution, such as the design, functionality, scalability, and performance. In the

context of this thesis, a number of real-world and mature scenarios were adopted,

and prototyped – to demonstrate the operations of the iSemServ environment.

Furthermore, controlled laboratory experiments were also carried out to illustrate the

practicality and relevance of the proposed solution in relation to the engineering

effort involved in building intelligent semantic services.

In addition, comparative analysis (Hofstee, 2006) plays an important role in

assessing any new solution against the existing similar solutions. As a result, for

evaluating the iSemServ framework and its implementation, a comparative analysis

was also conducted, in order to qualitatively note the benefits and the limitations of

the proposed solution against the common related solutions.

8-156

The remainder of this chapter is structured as follows: Scenario-based evaluations

are introduced and discussed in Section 8.2. The evaluation results from the

experiments are discussed in Section 8.3. In Section 8.4, a comparative analysis

using the iSemServ framework design principles as a base is discussed.

Adopting the SEALS49 methodology for evaluating semantic web services tools,

scalability and performance tests of the iSemServ platform are performed; and the

results are presented in Section 8.5. The chapter is concluded with a summary of the

evaluations in Section 8.6.

8.2. SCENARIO-BASED EVALUATIONS

As mentioned throughout this thesis, the main goal of the proposed iSemServ

framework is to simplify and accelerate the process of engineering intelligent

semantic services. In assessing the applicability and benefits of the implemented

solution, particularly with regard to satisfying the main design principles (i.e.

simplification and acceleration), existing real-world use case scenarios were adopted

from the European Union (EU) framework projects, such as DIP (Data, Information

and Process Integration with Semantic Web Services) (Losada et al., 2005), and

SWSA (Semantic Web Services Architecture) usage scenarios50.

These real-world scenarios were adopted, as they are well defined for semantic

services’ environments, and have been implemented in different ways in the

aforementioned projects. In addition, real-life project scenarios were adapted and

experimented to evaluate the scalability and the performance of the iSemServ

solution.

Although the objectives of the selected scenarios were mainly to demonstrate the

relevance of semantic services in the world of Web services, in the context of this

thesis, the scenarios were further adapted to demonstrate the processes of

engineering intelligent semantic services. In line with the objectives of this study, our

focus on the scenarios was about demonstrating the benefits of the iSemServ

49

 See: http://www.seals-project.eu
50

 SWSA scenarios are available at: http://www.ai.sri.com/daml/services/use-cases.html

http://www.seals-project.eu/
http://www.ai.sri.com/daml/services/use-cases.html

8-157

framework, rather than demonstrating working service-oriented applications. The

following sub-section presents one of the several experimented use case scenarios.

8.2.1. Online Multimedia Trading

Traditional Web services do not provide explicit semantic representations during

service requests and responses. This usually leads to a number of issues – as was

discussed in Chapter 1, some of which include ambiguous interpretations of service

operations and inconsistent or unreliable service responses.

The scenario presented in this section demonstrates how intelligent semantic

services could be implemented in a simple and efficient manner by using the

iSemServ plug-in. This real-world scenario involves tasks that have been assigned to

the service developer. The tasks involve developing an online multimedia trading

Web application that enables consumers and sellers to perform the following

activities, using intelligent semantic services:

 Search for different multimedia products in a semantically-enabled multimedia

catalogue;

 Dynamically add multimedia products to the shopping cart;

 Order products in the shopping cart;

 Use external services to make payments;

 Intelligently add new multimedia products to the catalogue.

The requirement is also to implement RESTful services grounded in WSMO

ontologies. Existing domain ontologies describing multimedia products, such as

those from Amazon51 could also be exploited. This scenario, as depicted in

Figure ‎8.3, is adapted from the Amazon use case of selling and buying books online,

using Web services, as defined by SWSA.

51

 See: http://www.wsmo.org/ontologies/amazonECS/amazonOntology.wsml

http://www.wsmo.org/ontologies/amazonECS/amazonOntology.wsml

8-158

Figure ‎8.3: Online Multimedia Trading Scenario

The following section illustrates how the above-mentioned scenario could be

engineered by the service developer using the proposed Eclipse plug-in, as

demonstrated in Figure ‎8.4.

Figure ‎8.4: iSemServ Plug-in

8.2.1.1. Service models

The service developer uses the UML2 SDK plugged into Eclipse to design service

models capturing both the services’ structures and semantic concepts. It is further

Search

Add to Cart

Create Order

Add New Products

Make Payment

 . .
Intelligent Requests/Responses

 . .

REST calls
Instructions

Intelligent Semantic Services

Service

Provider

Agent

Client

GateWay

Online Multimedia Trading

WSMO

Ontologies

WADL

Descriptions

WSMO

Descriptions

Service consumer
Manual Requests/Responses

8-159

emphasized that the model is defined according to the iSemServ UML profile

presented in Chapter 7 (Section 7.3). Figure ‎8.5 depicts the service model for the

online multimedia trading scenario.

This model is inputted into the plug-in through the simple browser capability. The

developer chooses the modules that need to be generated. The iSemServ

transformation module then automatically generates the selected implementation

artefacts, which are described in the following sections.

8.2.1.2. Syntactic Web services

As may be noted, 6 classes are modelled and annotated with appropriate keywords

(e.g. <<RESTful>> and <<WSMO>>). From the service model, syntactic RESTful

services are generated according to the <<RESTful>> annotation. In this regard, the

iSemServ environment facilitates the generation of skeleton syntactic RESTful

services.

The service developer would be responsible for completing the service logic using

the generated skeleton classes. At this layer, simplification and acceleration of the

engineering process is addressed through automatic code generations.

The amount of time it takes, for example, to generate the skeleton code for the

classes depicted in the model is only a few milliseconds (cf. Section 8.5) compared

with manually coding the structure of RESTful services. However, this is not novel,

as this methodology is used extensively in a number of mature development

environments, such as Eclipse and Visual Studio. The key difference is that in the

iSemServ platform, the service developer is in control of what code skeletons could

be generated through the use of service models and profiles.

8-160

Figure ‎8.5: Online Multimedia Trading Service Model

A snippet of the generated code structure is shown in Figure ‎8.6. This structure

demonstrates the number of classes (i.e. six) generated based on the number of

classes modelled in UML.

Figure ‎8.6: Syntactic RESTful Services

+createCustomer(in customerData : String) : Boolean

+deleteCustomer(in custID : Boolean) : Boolean

+requestLogin(in custName : String, in custPass : String) : Boolean

-custID : Integer

-custName : String

-custPass : String

-custEmail : String

-custLocation : String

-custType : String

«WSMO»Customer

+checkOrderStatus(in orderID : Integer) : String

+requestLogin(in custEmail : String, in custPass : String)

-buyerID : Integer

-currentOrderID : Integer

«RESTful WSMO»Buyer

+requestLogin(in sellerEmail : String, in sellerPass : String) : Boolean

+addItems(in xmlData : String) : Boolean

-sellerID : Integer

-currentItems : String

«RESTful WSMO»

Seller

+addToCart(in itemData : String) : Boolean

+removeCart(in cartID : Boolean) : Boolean

-itemCode : String

-itemQty : Integer

-itemPrice : Double

«RESTful WSMO»ShoppingCart

+searchItems(in keywords : String) : String

+addItems(in itemData : String) : String

+updateItems(in itemData : String) : String

+removeItems(in itemID : Integer) : Boolean

-itemsData : String

«RESTful WSMO»

MultimediaItems

+setAmount(in paymentData : String) : void

-paymentID : Integer

-amount : Double

«RESTful»Payment

8-161

As illustrated in the service model (cf. Figure 8.5), five UML classes represent five

RESTful services, while one, that is, the Customer class, is not a RESTful service,

but a pure Java POJO class. Nevertheless, semantic descriptions and domain

ontologies for this class are also generated on the basis of the <<WSMO>>

annotation.

The excerpt of the skeleton code behind RESTful services (e.g. Seller) is illustrated

in Listing ‎8.1. This shows the code auto-generated based on the service model. Line

5 indicates that the generated code represent a RESTful service (JAX-RS); as a

result of the @Path annotation (cf. Chapter 7, Table 7.2).

1. /**

2. @Path

3. represents relative URI for a RESTful resource

4. */

5. @Path("/seller")

6. public class Seller extends Customer {

7. /*

@Declaration of Attributes

8. */

9. private int sellerID;

10. public String currentItems;
11. /*

@Declaration of Operations

12. */
13. /*

Description of the method requestLogin

14. *
@param CustEmail

@param custPass

@return Boolean

15. */

16. /**
decorate our RESTful service with @Path, @HTTP_Method, and @Representation

17. */
18. @Path("/requestlogin")
19. @GET
20. @Consumes({"text/plain","application/xml","text/html","application/json"})
21. @Produces({"text/plain","application/xml","text/html","application/json"})
22. public Boolean requestLogin(@PathParam("CustEmail custPass")String CustEmail,String

custPass){

23. //TODO: ADD service logic for requestLogin method

24. return null;
25. }

Listing ‎8.1: Seller RESTful Skeleton Code

A RESTful method is illustrated by the @GET annotation (Line 19), and other

mappings as discussed in Chapter 7 (cf. Section 7.3, Table 7.1). As may be noted in

Line 23, the developer would then need to add the service logic for the generated

8-162

method. The developer could also edit the generated code in whatever way that is

deemed necessary.

8.2.1.3. Syntactic descriptions

As highlighted throughout this thesis, the key benefit of Web services is that they are

self-described for the purposes of discovery, selection, and manual composition.

Thus, the iSemServ platform also makes it possible to auto-generate WADL

descriptions for every RESTful class or service. It should be noted that WADL

descriptions can be auto-generated in two ways, (1) annotating the model with the

<<WADL>> stereotype, and (2) using the <<RESTful>> annotation and choosing

the semantic descriptions option on the iSemServ plug-in. An example of the WADL

descriptions generated for the online multimedia scenario is illustrated in Listing ‎8.2.

The listing only represents the syntactic description for multimedia items class. The

auto-generated descriptions are linked to the mapping rules in Chapter 7 (cf. Section

7.3, Table 7.3).

1. <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2. <!-- Generated by SemServ Model2Descriptions transformer using Acceleo 2.8 -->

3. <!-- Date: May 25, 2012 [11:19:39 AM] -->

4. <application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5. xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd"

6. xmlns:xsd="http://www.w3.org/2001/XMLSchema"

7. xmlns="http://wadl.dev.java.net/2009/02">

8. <doc xmlns:semserv="http://desc.isemserv.co.za/" />

9. <doc xml:lang="en" title="Documentation for MultimediaItemsService">

10. documentation for application.wadl
11. </doc>
12. <grammars>
13. <include href="{add reference to schemas if any}"/>
14. </grammars>
15. <resources base="http://localhost:8088/restful">
16. <resource path="/multimediaitems">
17. <resource path="/update">
18. <method name="POST" id="updateitems">
19. <request>
20. <representation mediaType="application/xml"/>
21. </request>
22. <response>
23. <representation mediaType="application/text"/>
24. </response>
25. </method>
26. </resource>
27. </resource>
28. </resources>
29. </application>

Listing ‎8.2: Partial WADL Description

8-163

8.2.1.4. Semantic descriptions

Semantic descriptions and domain ontologies are dynamic, in a sense that they

evolve over time. As a result, they are resource intensive to build and update. In

Figure ‎8.7, the snippet of semantic descriptions and domain ontologies auto-

generated for each class annotated with <<WSMO>> stereotype are shown. The

generation process also depends on the service model presented in Figure ‎8.5. The

semantic descriptions at this phase are independent of the syntactic descriptions

discussed in Section 8.2.1.3.

Figure ‎8.7: Generated Semantic Descriptions

Basically, the [ClassName]+WSCapability.wsml files represent Web Service

capabilities according to WSMO specifications. As may be noted in Figure 8.7, the

scenario in question is semantically described with five domain ontologies, and five

Web service capabilities, referred to as semantic descriptions throughout this study.

The generated WS capability skeleton code for the CheckOrderStatus and

RequestLogin operations is demonstrated in Listing ‎8.3. The service engineer

could further edit the generated code using semantic tools, such as the WSMO

editor embedded within the Eclipse environment. The code is generated based on

the mapping rules discussed in Chapter 7 (cf. Section 7.3, Table 7.5 and Table 7.7).

8-164

1. wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

2. comment <!--Generated by SemServ Model2Semantics transformer using Acceleo 2.8-->

3. comment <!--Date: May 25, 2012 [11:19:42 AM] -->

4. namespace { _"http://www.isemserv.co.za/services/buyerSemantics#",

5. buy _"http://www.isemserv.co.za/ontologies#",

6. dc _"http://purl.org/dc/elements/1.1#",

7. wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

8. xsd _"http://www.w3.org/2001/XMLSchema#",

9. desc _"http://www.isemserv.co.za/descriptions#"}

10. webService checkOrderStatusrequestLoginService

11. importsOntology {_"http://example.org/ImportedOntology"} /*PLEASE COMPLETE*/

12. capability checkOrderStatusrequestLoginCapability

13. nonFunctionalProperties
14. dc#typehasValue"service ontology"
15. dc#descriptionhasValue"Enter description for this capability"
16. dc#titlehasValue"Capability for a buyer Web service"
17. dc#creatorhasValue {"Your Name"}
18. dc#publisherhasValue"isemserv"
19. dc#datehasValue"May 25, 2012 [11:19:42 AM]"
20. dc#typehasValue _"http://www.wsmo.org/2004/d2#ontologies"
21. dc#identifierhasValue _"http://www.isemserv.co.za/services/buyer"
22. dc#languagehasValue"en-US"
23. dc#formathasValue"text/plain"
24. desc#serviceDescription hasValue"COMPLETE URL FOR SERVICE DESCRIPTION"
25. endNonFunctionalProperties

26. sharedVariables {?orderID}
27. sharedVariables {?custEmail, ?custPass}

28. precondition
29. nonFunctionalProperties
30. dc#descriptionhasValue"condition(s) that need to be satisfied before service is

invoked"

31. endNonFunctionalProperties
32. definedBy
33. ?orderID memberOf OrderID
34. ?custEmail memberOf CustEmail
35. ?custPass memberOf CustPass

Listing ‎8.3: Partial WSMO Service Capability

As may be noted in Listing 8.3, Line 10-Line 25, illustrate the auto-generated

semantic descriptions (e.g. service name, capability name, and non-functional

properties) - necessary for semantically enabling the buyer RESTful service.

Nevertheless, the developer could change the descriptions to suit own development

requirements. In addition, Line 11 indicates that external ontologies can also be

referenced for purposes of augmenting the generated descriptions. The rest of the

code is directly linked to the mappings presented in Chapter 7 (cf. Section 7.3).

8.2.1.5. Service agents

In order to enable the semantic services generated above to have the intelligent

features, as described throughout this thesis, the iSemServ environment also

8-165

enables the generation of the Service Provider agent and Client agent code that

would make it possible to consume the semantic services with minimal user

intervention. The service engineer would still be able to manually call generated

semantic services without relying on generated provider agents for service discovery

and consumption.

For the multimedia trading scenario, intelligent agents and JESS rules’ template are

auto-generated. The generated agents (i.e. service provider agents) for each

semantic service are by default endowed with intelligent capabilities, such as

keyword service discovery, syntactic descriptions parsing, semantic descriptions

analysis, and service request and response management. Snippets of some of these

key capabilities are highlighted in Figure ‎8.8.

The service engineer would only be responsible for implementing the logic of specific

services, such as checkOrderStatus.

Figure ‎8.8: Skeleton Code Structure for Provider Agents

8-166

The mapping of syntactic descriptions to generated provider agents at the message

level, and of semantic descriptions and generated agents at the knowledge level are

realized during the process of model transformation – using the code structure and

templates discussed in Chapter 7 (cf. Section 7.4, Listing 7.4). In additional,

essential operations, such as getWSCapability in Listing ‎8.4 and others, make

such mapping possible.

1. //the client wants to know the semantic capability of the service

2. if (request.equalsIgnoreCase("getWSCapability"))

3. {

4. //a service response reply

5. ACLMessage reply = msg.createReply();

6. try {

7. capabilityName = new WSMLReader().returnCapability();

8. } catch (IOException e) {

9. e.printStackTrace();

10. }

11. // The service response
12. reply.setPerformative(ACLMessage.INFORM);
13. reply.setContent(capabilityName);
14. reply.addReceiver(msg.getSender());
15. myAgent.send(reply);

16. }

Listing ‎8.4: Semantics and Provider Agent Mapping

The code to note in Listing 8.4 is in Line 2, which is responsible for receiving a

capability request message from the client agent to determine the capabilities of the

discovered service. Once the message is received and is interpreted accordingly, the

provider agent will respond with the functional capabilities of the service as

described in the semantic descriptions (cf. Listing 8.3). As it may be noted, the

agents use the Agent Communication Language (ACL) for exchanging messages

(cf. Line 12 – Line 15).

The iSemServ framework, as highlighted in Chapter 7, does not auto-generate JESS

rules for each specific IsS. But, the logic that integrates JADE and JESS as

demonstrated in Chapter 7 (Listing 7.4), and the template for defining the specific

rules. A sample of JESS rules were defined for the scenario demonstrated in Figure

8.3. Some of the rules are shown in Listing 8.5.

8-167

The first part of Listing 8.5 shows the generic template that is used for declaring a

template that is needed in JESS for defining rules. The template is declared using

the keyword deftemplate as shown in Line 1 (Part 1). The declaration includes a

name that is by convention similar to the class name (e.g. Buyer cf. Figure 8.5). The

template takes the same format as the corresponding class found in the UML model

(Line 2). In the implementation of the iSemServ framework, this template is auto-

generated, further simplifying the process of building intelligent semantic services.

Generated JESS rule template (Part 1)

1 (deftemplate buyer

2 (declare (from-class buyer)

3 (include-variables TRUE))

JESS rule template (Part 2)

1 “This rule automatically processes the order ID”

2

3 (defrule processOrderID

4 “Processing Order”

5 (buyer {OrderID < 1})

6)

7 =>

8 (assert (buyer (OrderID 1)))

9 (printout t "Order successfully placed" crlf))

10
11 "check automatically if order was placed, assuming that if
12 OrderID is greater than 1 it means order is placed"
13
14 (defrule check-if-order-placed
15 “Checking Order”
16 (buyer {orderID > 0})
17 =>
18 (printout t "Order was placed”, crlf)
19)
20

Listing ‎8.5: Excerpt of JESS template and rules

Part 2 of Listing 8.5 include some of the rules that were manually defined using

JESS programming environment integrated within Eclipse. The rules are based on

the generated template in Part 1. The first rule (Line 3 – Line 9) enables the Provider

agent to process the OrderID when a specific order has been successfully placed.

The second rule is tied to the first rule. It enables an agent to automatically check if

an order has been placed successfully by checking the value of the OrderID.

8-168

As it may be noted, JESS rules can be simple. However, for real-life applications,

complex rules are unavoidable, and the developer would still need to manually

define them for each specific intelligent semantic service. As highlighted, the

iSemServ framework in its current form does not accommodate the auto-generation

of JESS rules.

Once the service engineer has implemented the additional logic and defined the

associated JESS rules based on the auto-generated templates for different provider

agents, the online multimedia trading application can be deployed, using auto-

generated deployment descriptors, and tested using generated client tests’ user

interfaces, as briefly discussed in the next section.

8.2.1.6. User interfaces Generation

The iSemServ framework further simplifies and accelerates the process of

engineering intelligent semantic services by auto-generating optional Web-based

user interfaces (UIs) for testing the operations of all generated intelligent semantic

services. The auto-generation of UIs is a well-studied subject (Dannecker et al.,

2010).

The auto-generated UIs are based on Web technologies, such as HTML,

JavaScript’s, and Servlets. These UIs are also generated from the service models,

using the Acceleo and simple Web application templates. Examples of UIs for some

of the auto-generated services are demonstrated in Figure ‎8.9 and Figure ‎8.10.

8-169

Figure ‎8.9: Test User Interfaces

Figure ‎8.10: A Simple Form for Testing Services

All auto-generated provider and client agents for each semantic service can be

deployed to the JADE runtime environment, as illustrated in Figure ‎8.11. These

agents would then collaborate by automatically processing semantic service

requests and responses in the background.

8-170

Figure ‎8.11: JADE Runtime Environment (Provider Agents Running)

Moreover, during the implementation of different artefacts (e.g. descriptions and

ontologies), the iSemServ environment integrates effectively with other external

engineering tools for the purposes of augmenting auto-generated artefacts. These

include, for instance, visualization tools, such as WSMOViz that enables service

developers to visually analyze auto-generated semantic descriptions and domain

ontologies.

Figure ‎8.12: Multimedia Items Ontology Visualization

8-171

In Figure 8.12, the auto-generated multimedia-items domain ontology is shown using

the WSMO Visualizer integrated in Eclipse. Moreover, Figure ‎8.13 depicts a tree of

all concepts, relations, and axioms used in the Amazon Ontology that was imported

for the online multimedia scenario.

Figure ‎8.13: Imported Amazon Ontology Visualization

The Amazon ontology was simply imported into the project by using the WSMO

editor launcher. The launcher could also be used to edit all the various elements of

the domain ontologies or the semantic descriptions.

As may be noted from the illustrated online multimedia trading scenario, the process

of engineering intelligent semantic services is extensive; and service developers

need methods and tools to ease and speed up such a process. From the tested

scenario above, we have demonstrated how this could be realized using the

iSemServ framework.

8-172

In the following section, a discussion is provided with regard to the evaluation results

extracted from the presented scenario, and others that have been partially

implemented, using the iSemServ proposed solution.

8.3. SCENARIO EVALUATION DISCUSSIONS

The evaluation approach of using the proposed framework to partially implement use

case scenarios has provided several insights with regard to the engineering of

intelligent semantic services. The following benefits, in terms of the proposed

solution, were observed:

 Uniformity: The engineering of different building blocks that make up

intelligent semantic services can be realized within a unified environment.

 Acceleration: Any development effort is reduced through the auto-

generation of different implementation artefacts, which may lead to high

development times and costs, if a manual approach is chosen.

 Control: The service engineer controls the engineering life cycle, and the

iSemServ plug-in does impose restrictions on the types of service or the

semantic descriptions. The only requirement pertains to the usage of UML-

based service models for structuring services and domain knowledge.

 Simplification: The service engineer need not to be concerned with the

generics, but rather need to focus on the specific implementations for

intended services. The generation of semantic descriptions and domain

ontologies is made understandable through the mappings with service

models. The addition of intelligence properties in semantic services is

simplified, and the testing of such services can be further simplified,

through the auto-generation of simple user interfaces, which could save

the developer time and effort in testing implemented intelligent semantic

services.

 Interoperability: The external and internal tools interoperate effectively

with the iSemServ platform to simplify the generation of domain ontologies

and semantic descriptions, and for the visualization of ontologies– thereby

minimizing the steep learning curve of semantic technologies and models.

8-173

 Integration: The existing Web service tools, such as a WSDL generator,

can easily be integrated with semantic technologies, such as WSMO, to

form semantic services.

 Domain-independency: The evaluation also demonstrated that the

proposed iSemServ solution is not dependent on a specific domain, as

intelligent semantic services could be engineered for multiple domains

(e.g. online trading).

 Elementary Intelligence: The wrapping of semantic services with

intelligence follows standard approaches, such as Object-Oriented Design,

where wrapping is achieved at a message-level and a knowledge-level,

using common Java classes and agent development environments, such

as JADE.

The iSemServ framework presented in this study is research-oriented, and as a

result, has some practical limitations. For instance, key features, such as dynamic

semantic services discovery, selection, composition, and monitoring are not

addressed. Nevertheless, one of the key principles of our solution is extensibility,

which is intended to enable other researchers and developers to extend the

iSemServ platform with any required modules via the Eclipse environment.

The following section presents additional evaluation results that were derived by way

of a comparative analysis. This analysis focused on comparing the iSemServ

framework with existing solutions that have objectives closely aligned with the goals

of this study.

8.4. COMPARATIVE ANALYSIS

Currently, there are no commercial platforms available for facilitating the process of

building intelligent semantic services. However, research that has been done in this

field over recent years suggests that the next generation platforms for developing

software systems will focus on semantics-enabled systems.

The existing solutions that formed part of the analysis were discussed and

summarised in Chapter 2 (cf. Section 2.5).

8-174

8.4.1. Comparison Criteria

The comparative criteria used for evaluating the suggested solution against similar

solutions in literature are based on the design principles presented in Chapter 6 (cf.

Section 6.2). Figure ‎8.14 depicts an overview of the design requirements. The

requirements are divided into simplification, acceleration, and intelligence. With

regard to simplification, the proposed framework is compared with the existing

solutions according to the following criteria:

 Model-driven: Model-driven engineering approaches are meant to enable

software developers to increase productivity and shorten the software

development life cycle. Henceforth, the premise in this study is that any

solution that attempts to simplify and accelerate the process of engineering

semantic services needs to follow a model-driven approach.

 Decoupling: Syntactic services, semantics, and intelligence-building blocks

need to exist independently of each other; but they still need to be able to

interoperate.

 Complexity hiding: semantic descriptions, domain ontologies, and intelligence

complexities need, to some extent, to be hidden from service developers.

 Interoperability: The solution needs to enable different tools to interoperate.

For instance, syntactic Web services tools should easily interoperate with

other semantic Web services tools.

 Visualization: Large domain ontologies can be complex to understand without

the assistance of the correct tools. Thus, any solution suggested for

simplifying and accelerating the process of engineering intelligent semantic

services needs to provide some methods and tools for visualizing complex

domain ontologies and semantic descriptions.

8-175

Simplification

Acceleration

complexity hiding

model-driven
decoupling

uniformity

multiple language

support
visualization

reusability

interoperability

Intelligence

ontology-based

agent-based

extensibility

subset

Figure ‎8.14: iSemServ Design Principles

 Multiple Language Support: Any solution that attempts to solve the challenges

of engineering semantic services needs to support multiple semantic models,

such as WSMO or OWL-S.

With regard to acceleration, the proposed framework is compared with existing

solutions according to the following criteria:

 Re-usability: Any solution that seeks to address the challenges of engineering

semantic services should re-use the generic and mature Web services

technologies. In addition, any semantic solution should enable the re-use of

the existing domain knowledge and semantic descriptions.

 Extensibility: Any solution that attempts to address the challenges raised in

Chapter 1 (cf. Section 1.2) should be extensible without extensive

modifications, to be able to accommodate the integration of additional

8-176

modules, such as service composition, multiple service standards and

semantic description languages.

 Uniformity: Any solution that supports the building of semantic services needs

to do so within a uniform environment, where service engineers are not

expected to switch between fragmented tools to deliver functionally intelligent

semantic services.

In terms of the intelligence principle, the proposed framework is compared with the

existing solutions according to the following criteria:

 Ontology-based: Any solution that addresses the challenges of building

semantic services needs to consider different standards of representing

domain ontologies and semantic descriptions.

 Agent-based: Semantic services and software agents are viewed as

complementary (Garcia-Sanchez et al., 2009). Thus, it is maintained that

novel technologies attempting to address the challenges of engineering

semantic services need to consider the mapping of agents and semantic

services, in order to achieve automation in service discovery, selection,

composition, and execution.

8-177

8.4.2. Qualitative Comparison

Table ‎8.1: iSemServ Comparative Analysis

M
o

d
e
l-

d
ri

v
e

n

C
o

m
p

le
x

it
y
 H

id
in

g

D
e
c

o
u

p
li
n

g

In
te

ro
p

e
ra

b
il
it

y

M
u

lt
ip

le
 L

a
n

g
u

a
g

e

S
u

p
p

o
rt

V
is

u
a
li
z
a

ti
o

n

R
e
u

s
a

b
il
it

y

E
x

te
n

s
ib

il
it

y

U
n

if
o

rm
it

y

O
n

to
lo

g
y

-b
a
s

e
d

A
g

e
n

t-
b

a
s

e
d

 Simplification Acceleration Intelligence

iSEMSERV √ √* √ √ √* √* √ √ √ √ √

SEMMAS × × √ √ √ × √ × × √ √

SWF × √* × √ × √* √* × × √ √

OWL-S IDE × √ √ √ × √* √ √ × √ ×

WSMO

Studio

× √ √ √ × √ √ √ × √ ×

INFRAWEBS √* √ √ √ × √ √ √ √* √ ×

ODE-SWS √* √ √ √ √* √* √* × × √ ×

IRS-III × √ √ √ √* √ √* √ × √ ×

LEGENDS ? = not known

× = not addressed

√ = addressed

√*= partially addressed

Solution

Principles

8-178

8.4.3. Qualitative Comparison

In Table 8.1, a summary of the comparative analysis is presented. The iSemServ

solution adopts a model-driven approach, due to its objective to increase software

development productivity and efficiency. Furthermore, the model-driven approach is

used across all layers – from the services layer to the intelligence layer.

INFRAWEBS (Agre et al., 2007) and ODE-SWS (Corcho et al., 2003) are the only

solutions in the comparative analysis that also adopt the model-driven approach.

However, as indicated in Table 8.1, these solutions partially support the model-

driven technique in the engineering life cycle of semantic services.

For instance, the service developer can only model WSMO semantic features using

the INFRAWEBS environment. The modelling of services (e.g. SOAP or REST) is,

however, not supported. The INFRAWEBS graphical modelling module is tightly

coupled to the solution itself, and is non-conformant to the model-driven architecture

(MDA). The ODE-SWS solution focuses mainly on the semantic descriptions that

could be implemented using different semantic languages. However, the modelling

part is only supported by an internal ODE-SWS graphical tool; which also does not

accommodate the modelling of other artefacts, such as syntactic services and

intelligence.

The majority of the solutions evaluated pay attention to the principle of complexity

hiding – when it comes to simplifying the process of engineering semantic services.

Our solution addresses the issue of complexity hiding through the auto-generation of

skeleton code. However, the developer still needs to understand the different

languages, in order to augment the generated semantic descriptions and ontologies.

The only solution that does not address the issue of complexity hiding is the

SEMMAS solution (Garcia-Sanchez et al., 2009).

In SEMMAS, the developer is required to manually generate all the necessary

building blocks (e.g. ontologies) that comprise an intelligent semantic service. On the

contrary, Semantic Web Fred (SWF) (Stollberg et al., 2004) partially addresses the

principle of complexity hiding by generating proprietary ontologies from XML Schema

Definition (XSD) files, using an ontology management unit called Ontology Tower.

8-179

With regard to the decoupling principle, the only solution found to be lacking is SWF.

In this regard, SWF couples services, and ontologies into FREDs, which are

basically software agents.

All of the evaluated solutions address the principle of interoperability, although, the

principle is addressed in various ways. For instance, in OWL-S IDE (Srinivasan,

Paolucci & Sycara, 2006), syntactic service technologies (e.g. UDDI and WSDL

standards) are interoperated effectively with specific semantic technologies (e.g.

OWL Editor). In SWF, the interoperability principle in the context of this study is

limited to SOAP and compiled ontologies’ interoperability.

In terms of the iSemServ solution, the interoperability requirement is addressed

across different layers, where multiple syntactic services technologies are easily

interoperated with semantic technologies and agent-based technologies. SEMMAS

also address the interoperability principle in a similar way to the iSemServ

framework.

In terms of supporting the multiple standards and languages, the evaluation results

revealed that only iSemServ and SEMMAS consider this requirement across the

services and semantics layers. For example, in iSemServ both RESTful and SOAP

services are accommodated in the service layers, and heavy-weight and lean

semantic description approaches are also supported through the application of UML

profiles. SEMMAS does not put any restrictions on ontology languages that can be

used to semantically describe services. With regard to the services layer, RESTful

and SOAP services are both supported by the SEMMAS framework.

ODE-SWS (Corcho et al., 2003) uses WebODE (WebODE, 2003), an ontology

engineering workbench that enables the use of different ontology standards in the

semantics layers. The other solutions, such as IRS-III (Domingue et al., 2008),

mainly support multiple languages by integrating their own ontology standard

(OCML) and WSMO within the semantics layer.

8-180

The visualization requirement suggested for simplifying the viewing of semantic

descriptions and domain ontologies by service engineers is supported either partially

or completely by the majority of the solutions selected for the evaluation. The only

solution that does not address the visualization of complex ontologies or semantic

descriptions is SEMMAS. It merely provides different user interfaces that the service

developer could use to point to where ontologies and semantic descriptions are

located.

The comparative analysis task also revealed support for the re-usability principle by

all solutions evaluated. INFRAWEBS, WSMO Studio, OWL-S IDE, SEMMAS, and

iSemServ fully support the re-use of existing Web services technologies and existing

domain ontologies or semantic descriptions. Other solutions, such as SWF, IRS-III,

and ODE-SWS focus exclusively on the re-use of services and technologies, but not

necessarily on domain knowledge or semantic descriptions.

The uniformity principle basically contributes to the acceleration of the engineering

process. From the evaluations, it was found that only the iSemServ solution fully

facilitates the engineering of semantic services within a unified environment.

INFRAWEBS partially addresses the uniformity principle by facilitating the import of

existing syntactic services and the creation of semantic descriptions for imported

services. However, in INFRAWEBS, the process of building intelligence modules for

the formation of intelligent semantic services is not considered.

The other solutions focus exclusively on the engineering of semantic descriptions

and/or ontologies, and leave the service engineer to develop syntactic services, and

intelligence features using external solutions.

In terms of intelligence wrapping over semantic services, all the solutions address

the intelligence principle from the perspective of ontologies. Thus, all the solutions

that were part of the evaluation process are ontology-based. However, the

evaluation process further compared the solutions in terms of agent-based

intelligence, which is considered paramount in the processing of semantic

descriptions and domain ontologies with minimal human intervention. Only three

solutions, that is, iSemServ, SEMMAS, and SWF – clearly address agent-based

8-181

intelligence, as one of the requirements identified for any solution that addresses the

issue of simplifying and accelerating the process of engineering intelligent semantic

services.

In Table ‎8.2, the main features of the iSemServ framework are further compared with

those of similar solutions. The distinction was evaluated, based on the conformity to

the agent-based principle, which was further classified into three features: (1)

Message-level: semantic services and software agents communicate via messages,

using syntactic services protocols, such as SOAP and RESTful-HTTP, (2)

knowledge-level: semantic services and agents communicate using shared

ontologies, and (3) rules and reasoning: these agents are enabled to reason on

semantic service rules and ontologies.

In addition, the support of complexity hiding in different solutions was further

analyzed, based on code-generations, which is viewed as one of the key approaches

for simplifying and accelerating the process of building intelligent semantic services

in this study.

From the evaluation, it became clear that the solution addressing both message-

level and knowledge-level integration of semantic services and software agents is

iSemServ, whilst SEMMAS and SWF solutions address the integration, particularly

at the knowledge-level, and by using domain ontologies.

8-182

Table ‎8.2: iSemServ Core Features

M
e

s
s

a
g

e
-l

e
v
e

l

K
n

o
w

le
d

g
e

-l
e

v
e

l

R
u

le
s

 a
n

d
 R

e
a

s
o

n
e
r

C
o

d
e

 G
e

n
e
ra

ti
o

n
s

 Agent-based Complexity-Hiding

iSEMSERV √ √ √* √*

SEMMAS × √ √* ×

SWF × √ √ ×

OWL-S IDE × × ? √*

WSMO

Studio

× × √ ×

INFRAWEBS × × √ √*

ODE-SWS × × √ √*

IRS-III × × √ ×

LEGENDS ? = not known × = not addressed √*= partially addressed

√ = addressed

The analysis shows that all of the solutions, except OWL-S IDE fully or partially

support the definition of rules and reasoning over domain ontologies. However,

different techniques are used across the evaluated solutions. In our proposed

solution, partial JESS and ontological rules are auto-generated from rules-annotated

service models. For reasoning purposes, the JESS inference engine (Friedman-Hill,

2003) is exploited, as was explained in the previous chapter.

In INFRAWEBS, Prolog engines are used for storing rules, and performing matching

tasks during service discovery and selection. SEMMAS only touches on the mapping

rules, and the reasoning features are supported by hard-coded software agents.

Features

Principles

8-183

IRS-III supports rules and reasoning features through chaining rules and the OCML

reasoner (Domingue et al., 2008) for processing and matching semantic descriptions

to relevant semantic services. On the contrary, the ODE-SWS solution relies on the

WebODE workbench for reasoning over ontologies. The rules that are considered for

reasoning purposes are mainly included in the ontology. As with ODE-SWS, the

SWF framework facilitates the definition of rules using the selected ontology

language.

Finally, the WSMO studio uses state transition rules (Dimitrov et al., 2007) and

exploits multiple WSML reasoners for processing domain ontologies and semantic

descriptions.

In terms of code-generations for complexity hiding, iSemServ is capable of

facilitating auto-transformations from the service layer to the intelligence layer. Other

solutions, such as OWL-S IDE, INFRAWEBS, and ODE-SWS, were found to be

supporting code-generation mainly for semantic descriptions, but not for syntactic

services and intelligence implementation.

The comparative analysis presented in this section revealed some distinctive

differences between our proposed solution and similar existing solutions. Where

essential features were found to be supported across other solutions, the differences

between those features also revealed how iSemServ addresses the specific

challenges of building intelligent semantic services.

The next section will present the final evaluation activity with regard to the

performance and scalability of our proposed solution.

8.5. SCALABILITY AND PERFORMANCE

In this section, an additional evaluation activity that was conducted is presented and

discussed. This specific evaluation was conducted using the SEALS methodology for

evaluating semantic technologies. It should be noted that none of the related

solutions that formed part of the comparative analysis were evaluated using the

SEALS methodology. Thus, this work goes one step further by considering the

8-184

scalability and performance of the iSemServ platform with regard to the simplification

and acceleration of the process for engineering intelligent semantic services.

For the purposes of this study, we only focused on two evaluation principles,

performance and scalability. Other evaluation criteria considered by SEALS as

highlighted in Chapter 1 (cf. Section 1.6), such as solution correctness were not

considered, as they are beyond the scope of the iSemServ framework. However,

usability evaluations were not conducted due to the evident simplicity of the

iSemServ plug-in as demonstrated in Section 8.2 (cf. Figure 8.4).

As discussed in Chapter 1 (cf. Section 1.6), scalability refers to the capability of the

evaluated solution to perform tasks involving an increasing number of service

descriptions, ontologies, and semantic descriptions. Performance refers to the

functioning of specific semantic service activities, such as service implementation,

deployment, discovery, and execution. In general, the SEALS methodology suggests

that the performance of identified activities is determined by using the execution time

and the throughput.

In evaluating iSemServ performance and scalability conformity, a series of

experiments was conducted. The experimental environment was set up on a

Microsoft Windows XP (32-bit OS), Intel Core™ 2 Duo CPU (2GHz), and a 1GB

RAM Acer Travel-Mate 6492 machine. Eclipse memory was capped at 512MB. In

measuring the approximate execution times of the different modules of iSemServ, an

Acceleo Profiler embedded in Eclipse was used.

The Acceleo Profiler provides features for identifying and isolating performance

problems, such as resource limitations and bottlenecks. Additionally, it covers

performance monitoring, execution, tracing and profiling, and logging. It was chosen

for conducting different performance and scalability tests, mainly because the

proposed solution exploits code generation techniques and a template engine

provided by the Acceleo platform, as was discussed in Chapter 7.

Using real-life project scenarios, a number of service models were manually

designed using the Eclipse UML SDK. The models comprised 6 to 1152 classes,

8-185

annotated with <<RESTful>> and/or <<WSMO>> keywords. In Figure ‎8.15, a graph

is depicted highlighting the performance of the proposed iSemServ platform under

varying service model sizes. The overall execution times, presented in seconds (s)

illustrate the time it took the platform to generate the artefacts involved in

engineering intelligent semantic services. The objective was not about showing

accuracy in terms of execution times, but to relatively demonstrate the performance

and scalability of the proposed framework under varying requirements.

Figure ‎8.15: Overall Performance of iSemServ Platform

Figure 8.15 suggests that, as the size of the service model grows, so does the

amount of time required to automatically transform the model to different artefacts.

For instance, processing a service model with 144 classes required about 11

seconds on average. An average of 73 seconds was additionally required to

generate a total number of 576 Java classes and mapped building blocks, such as

semantic descriptions. The code generation execution time increased to almost 3

minutes on average for processing a service model made up of 1152 classes.

In Table 8.3 and Figure 8.16, average execution times, based on 10 experimental

runs in relation to code generated for different building blocks, are illustrated.

0.84 1.51 4.40 7.00 11.50

73.36

154.47

0.00

50.00

100.00

150.00

200.00

6 18 36 72 144 576 1152

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Model Size (UML)

Overall Execution Time Per Model Size

Overall (s)

8-186

Table ‎8.3: Experimental Data (Averages)
S

iz
e
 (

m
s
)

M
o

d
e

ls
 (

m
s

)

R
E

S
T

fu
l

S
e

rv
ic

e
s

(m
s

)

S
y

n
ta

c
ti

c
 D

e
s
c

ri
p

ti
o

n
s

(m
s

)

D
o

m
a

in
 O

n
to

lo
g

ie
s

(m
s

)

S
e

m
a

n
ti

c
 D

e
s
c

ri
p

ti
o

n
s

(m
s

)

A
g

e
n

ts
 a

n
d

 J
E

S
S

R
u

le
s

(m
s

)

T
e
s
t-

U
s

e
r

In
te

rf
a
c

e
s

(m
s

)

D
e

p
lo

y
m

e
n

t

D
e

s
c

ri
p

to
rs

(m
s

)

In
te

rn
a
l

(m
s

)

T
o

ta
l
T

im
e

(m
s

)

T
o

ta
l
T

im
e

(s
)

T
o

ta
l
T

im
e

 (
m

)

6 2.50 97.10 78.15 94.50 78.50 101.80 63.50 281.10 46.40 843.55 0.84 0.01

18 12.50 456.10 114.30 140.10 125.50 110.20 78.50 406.50 62.80 1506.50 1.51 0.03

36 20.90 1000.60 532.20 844.00 875.00 481.40 78.10 532.70 31.20 4396.10 4.40 0.07

72 18.60 1560.90 951.10 999.30 841.00 1201.00 380.40 1036.10 16.50 7004.90 7.00 0.12

144 48.10 2109.40 1625.40 750.10 1287.90 865.10 594.80 4203.40 16.10 11500.30 11.50 0.19

576 90.50 14303.10 12867.50 10918.60 11503.90 12744.10 1565.40 9308.50 62.50 73364.10 73.36 1.22

1152 245.70 27241.80 26175.40 19873.70 30357.90 21876.40 10670.60 17801.20 230.00 154472.70 154.47 2.57

8-187

Figure ‎8.16: Iterative Building Blocks Processing Times (Average)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

6 18 36 72 144 576 1152

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Model Size(UML class diagram)

Iterative Building Blocks Processing Times

Models

RESTful Services

Syntactic Descriptions

Domain Ontologies

Semantic Descriptions

Agents and JESS Rules

Test-User Interfaces

Deployment Descriptors

Internal

8-188

Table ‎8.3 denotes model sizes, number of RESTful services, domain ontologies,

semantic descriptions as well as all the other essential building blocks generated

during the experiments.

Overall, the auto-generation of semantic descriptions in the semantics layer took

most of the processing time (cf. Figure 8.16) as compared with other artefacts in the

services and intelligence layer, as the service model surged. The processing of the

service models required fairly a small amount of time (e.g. 48 milliseconds for a

service model made up of 144 classes). As the service model size grew to 1000+

classes, the processing time increased slightly to 245 milliseconds (ms). Withal, this

is still viewed as manageable, and suggests that an increasing model size would not

introduce major processing challenges.

Figure ‎8.17: Services Layer Processing Times

The processing time required for auto-generating syntactic service skeleton code,

syntactic descriptions, and deployment descriptors increases with the model size (cf.

Figure 8.17).

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

6 18 36 72 144 576 1152

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Model Size (classes)

Services Layer Performance

Models

RESTful Services

Syntactic Descriptions

Deployment Descriptors

8-189

Figure ‎8.18: Semantics Layer Processing Times

With regard to the semantics layer (cf. Figure ‎8.18), the processing time required to

generate semantic descriptions increased from 11 to 30 seconds when the service

model size double from 500+ to 1000+ classes. However, the processing time

required to generate domain ontologies from varying service models remained

minimal; that is, from 500+ to 1000+ classes an additional 9 seconds was needed.

Figure ‎8.19: Intelligence Layer Processing Times

In Figure ‎8.19, the processing times required to transform the varying service models

to the intelligence artefacts (i.e. agents’ code and rules) are illustrated. It required an

execution time of less than 5 seconds on average to generate all the necessary

intelligence codes, when the model size ranged between 5+ and 100+, which for

many small software projects is quite sufficient. As the model size increased to

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

6 18 36 72 144 576 1152

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Model Size (class)

Semantics Layer Performance

Semantic Descriptions

Domain Ontologies

Models

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

6 18 36 72 144 576 1152

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Model Size (Class)

Intelligence Layer Performance

Agents and JESS Rules

Models

8-190

between 500+ and 1000+ classes, the processing time requirements also increased

to around20 seconds – to generate all the intelligence artefacts. As may be noted in

Figure 8.19, a slight drop in processing time between model size (144) and model

size (72) is noticeable. The drop could be attributed to a number of reasons, such as

the number of processes in the computer memory or the number of activities in

Eclipse during specific experiment runs.

Other modules that formed part of the experiments, although not essential to the

proposed solution, included the auto-generation of web-based user interfaces for

purposes of simply and quickly testing the generated building blocks. The processing

time required to generate different user interfaces for a 1000+ classes’ service model

was approximately 10 seconds.

From the experiment, it may be concluded that the majority of the processing time is

taken by the services and the semantics layer. The services layer (e.g. RESTful

services, syntactic descriptions, and deployment descriptors) consumes the major

portion of the processing time. In order to ensure that the platform is not burdened

with a lot of processing time, the platform has also been designed in a manner that

enables the service engineer to select specific building blocks to generate at a time.

Thus, it is not a requirement of the system to auto-generate all the artefacts within a

single iteration.

The transformation process can be split into different phases, thereby minimizing the

processing load and improving the performance of the platform.

In addition, it may also be concluded that the iSemServ platform is scalable, in the

sense that it is capable of handling an increasing number of classes in the service

model without any major challenges except for a small number of “out-of-memory”

exceptions in Eclipse, which could be sorted out by increasing the maximum memory

for Eclipse. Furthermore, our model is inherently scalable on account of its style of

implementation (i.e. plug-in) in Eclipse.

The scalability and performance analysis further indicates that the iSemServ platform

is capable of simplifying and accelerating the process of engineering intelligent

8-191

semantic services. This is demonstrated by the fact that the amount of processing

time required to generate the skeleton code for different layers is smaller compared

with the time that the service engineer would need to manually generate all the

different artefacts.

Our analysis also demonstrated that as the model size increases, so does the

required processing time. However, the processing time was still immeasurably small

when compared with that required by the manual process.

8.6. SUMMARY

This chapter has presented the evidence in relation to the practicality, relevance,

novelty, performance, and scalability of the proposed solution. The first evaluation

focused on the practicality and relevance of our solution within an online multimedia

trading domain, where semantic services could be of use. A scenario was defined

and a service model developed. The model was then fed into our platform to

demonstrate how it could simplify and accelerate the process of engineering

intelligent semantic services.

Using the implemented iSemServ Eclipse Plug-in, it was demonstrated how the

different building blocks could be generated.

The qualitative evaluation, in terms of a comparative analysis, was also presented –

demonstrating thereby the main differences between the proposed solution and the

existing solutions. From the comparative analysis, it was revealed that our proposed

solution introduced the approach of firstly building intelligent semantic services within

a unified environment. Secondly, our solution adopts a model-driven approach,

where all the necessary modules required to engineer intelligent semantic services

are derived from the service model annotated with defined UML stereotypes.

In addition, software agents and associative JESS-rules are automatically generated

to wrap semantic services via knowledge and message levels for the purpose of

automatically processing services and reasoning over domain ontologies and

semantic descriptions. Lastly, our solution addresses the issue of complexities in

8-192

building intelligent semantic services by proposing a template-based approach for

code generations and the support of different architectural styles and semantic

description languages.

Finally, the results, from a series of experiments, demonstrated that our solution is

capable of handling an increasing size of service models; this includes an increasing

size of services, service descriptions, domain ontologies, semantic descriptions, and

intelligent agents. This approach was not followed by the similar solutions that the

proposed iSemServ solution was compared with.

In the following chapter, a summary and conclusion of the study is provided.

9-193

9. CHAPTER 9: Summary, Conclusion, and Further Research

In this chapter, we summarize the thesis by reviewing the research

problem, the research questions, and the extent to which they were

addressed. Furthermore, we highlight the main contributions (theoretical

and practical) derived from this study. The remaining challenges and

limitations of the study are also discussed. Further research work that could

address some of the identified limitations and challenges is also discussed.

9-194

Figure ‎9.1: Overall Thesis Structure

Chapter 1:

 Proposal

Chapter 2:

Service-Oriented Computing

(Part 1)

Chapter 3:

Service-Oriented Software

Engineering

(Part 2)

Chapter 5:

IsS Definition and Basic Building

Blocks

Chapter 6:

Proposed

iSemServ Framework

Chapter 7:

iSemServ Framework

Implementation

Chapter 8:

Evaluation and Results

Chapter 9:

Summary, Conclusion, and Further

Research

Literature Review

Proposed Solution

Implementation & Evaluation

Chapter 4:

Semantic Service Models and

Related Tools

(Part 3)

9-195

Figure ‎9.2: Chapter 9 Layout

9.1

Introduction

9.2

Research

Summary

9.5

Research

Limitations

9.6

Further

Research

9.3

Research

Questions

9.4

Research

Contributions

9-196

9.1. INTRODUCTION

In this final chapter, we summarize our work by revisiting the research problem that

inspired this study. We then review the extent to which the identified research

questions were addressed. In addition, the main contributions emanating from the

proposed solution are highlighted, from a practical and theoretical point of view.

Furthermore, the research limitations and challenges identified are highlighted; and

further research work that could address some of these identified challenges is

discussed.

9.2. RESEARCH SUMMARY

Semantic services are touted as the next generation of the future Web, where

business processes would be executed and automated by machines with minimal

user interventions. However, the implementation and development of such services

have been lacking in real-life environments. The lack of implementation and

development of these services is attributed to a number of challenges, such as

tedious and error-prone semantic service development processes, the lack of

integration of semantic technologies with expansive Web service technologies, the

steep learning curves of semantic description languages, the lack of unified

platforms that support the simplification of the process of engineering semantic

services (Siorpaes & Simperl, 2010), and the lack of semantic platforms that provide

end-to-end development of intelligent semantic services.

In addressing some of these challenges, we exploited a number of techniques,

guided by the following summary of the main research question and the supporting

questions.

9.3. RESEARCH QUESTIONS

In this section, we review how the supporting questions were addressed – in

answering the main research question and accomplishing the main objectives of this

thesis. The main research question was phrased as follows: How could a unified

service creation framework simplify and accelerate the process of engineering

9-197

intelligent semantic services (IsS)? A review of the supporting questions and

essential objectives that have been accomplished in this thesis is as follows:

SQ521: What are the fundamental building blocks that constitute an intelligent

semantic service and the characteristics thereof?

In coming up with an approach that aims to deal with the challenges of building

intelligent semantic services, it was of importance for us to understand a number of

issues, such as: What is an intelligent semantic service? How is it different from

existing services concepts, such as Web services? What components comprise such

services? What are the characteristics of such components?

In tackling these supporting questions, a literature review, the thesis problem space,

and the identified research objectives constituted our valuable compass.

The supporting question (i.e. SQ1) was covered by providing an elaborative

definition of the term intelligent semantic service (IsS). This was motivated by the

fact that at the time of this study, there was no common definition of the term. The

proposed definition is provided in Chapter 5 (Section 5.2). This was then followed by

the identification of the fundamental building blocks that could compose a functional

intelligent semantic service.

The key building blocks that were identified were grounded in the concepts of Web

Services, Domain Ontologies, Semantic Web Services, and Intelligent Agents.

Furthermore, the main characteristics of the building blocks were formulated and

presented in Chapter 5.

SQ2: How could service engineers develop intelligent semantic services from the

identified fundamental building blocks?

52

SQ: supporting question

9-198

Once the fundamental building blocks were devised, it was then important to

understand the manner in which these components could be utilised by service

engineers – to build functional intelligent semantic services. A model-driven

engineering methodology was proposed to address this supporting question. It was

proposed because of its benefits and relevance to our problem space, such as

enabling reduced development times for new services, and open integration of

semantic technologies with expansive technologies (e.g. Web services). The

proposed MDE methodology consists of six steps (cf. Chapter 6, Section 6.3), which

provide a stable foundation for simplifying the process of engineering intelligent

semantic services.

SQ3: What are the requirements for designing and developing a unified service

creation framework, in order to simplify and speedup the process of engineering IsS?

The main objective of the study was to investigate and formulate a unified service

creation framework, so as to simplify the complexities involved in engineering

intelligent semantic services. In an attempt to design and develop such a solution, it

became essential to specify the design requirements. These requirements, which are

presented and discussed in Chapter 6 (Section 6.2) emanated from the objectives of

the study, the literature review, related work, and the components that make up an

intelligent semantic service, as derived from one of the supporting questions (i.e.

SQ1).

The design requirements provided basis for designing and developing a solution that

would not only address the challenges of building semantic services, but would

further ensure that our solution is future-proof in terms of extensibility and scalability,

re-usability, interoperability, and is capable of supporting multiple languages. Once

the requirements were specified and the engineering methodology clarified, a unified

service creation framework, called iSemServ (intelligent semantic services), was

designed.

The framework was designed by following a multi-layered approach, where each

identified building block occupies its own layer, but is mapped to other building

blocks in a loosely coupled fashion. This enables the building blocks to exist

9-199

independently of each other, and to be able to interoperate without noticeable

restrictions. The key towards simplifying and accelerating the process of building

intelligent semantic services was the choice of a model-driven approach, which

forms part of the identified design requirements.

Further to this, requirements, such as complexity hiding, and re-usability, directly

addressed the question of how to simplify and accelerate the engineering process.

The intelligence aspects inscribed within the intelligent semantic service definition

were conceptually addressed, based on the ontology-based and agent-based design

requirements.

SQ4: How can we implement the specified service creation framework in a unified

and scalable environment?

In this supporting question, the goal was to determine the manner in which the

proposed service creation framework could be efficiently implemented, so as to

adequately address the design requirements. The analysis of different

implementation environments revealed that the framework could be effectively

implemented within an open and extensible development environment, such as

Eclipse, which exhibits a number of benefits, as discussed in Chapter 7 (Section 7.1

– 7.3).

Eclipse, as an SOA-based development environment, enables the easier integration

of different technologies; and it provides a platform for creating singleton plug-ins

that immediately interoperate with other Eclipse plug-ins. Thus, all the layers of the

iSemServ framework were implemented within the Eclipse environment.

A number of open source tools were exploited in Eclipse to achieve the

implementation of different layers. These included tools, such as: (1) UML2 SDK for

designing service models; (2) Acceleo platform for defining model transformation

rules, and code generation templates; (3) WSML editors for reviewing and editing

generated domain ontologies; and (4) a JADE platform for developing all the defined

intelligent building blocks. In the end, it became evident that Eclipse was a good

choice for implementing our proposed solution, as all the layers were implemented

9-200

by using a singleton Eclipse plug-in, as demonstrated in Chapters 7 and Chapter 8,

and most of the design requirements were addressed without any major restrictions.

SQ5: How can we evaluate the overall proposed solution for validity and relevance?

In order to validate the plausibility and the relevance of the proposed solution, a

number of techniques were adopted, as discussed in Chapter 1 (Section 1.6) and

Chapter 8. In particular, qualitative and quantitative approaches were exploited.

Using a use case scenario, the functionality and utility of all the layers in the

iSemServ framework were demonstrated. This was followed by a comparative

analysis, which provided a setting for qualitatively gauging our proposed solution

with existing solutions in literature.

In the analysis, the key differentiators between our solution and related solutions

were highlighted and clarified. From the analysis, it became evident that the value

propositions of our framework are:

 Uniformity: providing and end-to-end approach of engineering intelligent

semantic services, thus enabling the developer to use one platform to realize

all the modules comprising such services.

 Model-driven: enabling average and expert service engineers to focus on

developing intelligent semantic services in a structured, extensible, and

platform-independent manner. Thus, increasing developers’ productivity and

minimizing development and maintenance costs.

 Complexity hiding in the form of automatic code generators supporting

different architectural styles and semantic models by exploiting template-

based code generators.

 Intelligence wrapping of services at message and ontological levels for the

purposes of automatically processing semantic service requests and

responses: in addition to reasoning over domain ontologies and semantic

descriptions. JADE implements the collaborative and autonomous properties,

and JESS implements the proactive and reactive properties (dealing with the

reasoning capabilities using JESS rules. This ensures that the intelligent

9-201

semantic service developed according to the iSemServ framework conforms

to the properties discussed in Chapter 5 (cf. Section 5.2).

The iSemServ framework was further evaluated, using the SEALS methodology –

specifically meant for evaluating semantic technologies. We evaluated the solution

on performance, that is, in terms of automatically generating different code

skeletons, and scalability, that is, in terms of the support for an increasing size of

service model, syntactic services, service descriptions, ontologies, semantic

descriptions, and intelligence.

The evaluation activity demonstrated that the iSemServ framework is capable of

handling an increasing service model size. Furthermore, the amount of time it takes

to generate all the necessary intelligent semantic services modules is smaller when

compared with the amount of time that the service engineer would take to manually

generate all the code involved in building intelligent semantic services.

9.4. RESEARCH CONTRIBUTIONS

In Chapter 1 (Section 1.5), the primary and secondary contributions emanating from

this study were highlighted. In this section, the focus is mainly on the key

contributions that became apparent from the proposal and the practical

implementation of the conceptual service framework.

The following are the noticeable research contributions forthcoming from this thesis:

 A clear definition of what is meant by an intelligent semantic service.

 Fundamental building blocks that comprise intelligent semantic services and

their characteristics.

 A model-driven engineering methodology, based on software, Web, and

service engineering philosophies for building intelligent semantic services.

 Essential requirements for designing and developing a unified service creation

framework in a platform-independent manner.

9-202

 A unified, model-driven, and multi-layered iSemServ framework for

addressing some of the challenges involved in developing intelligent semantic

services.

Overall, the proposed iSemServ solution succeeds in simplifying and accelerating

the process of engineering intelligent semantic services. It is a simple, and yet

useful, approach for enabling average and expert service engineers to focus on

developing semantic services in a structured, extensible, and unified manner.

9.5. RESEARCH LIMITATIONS

Overall, the objectives set out in Chapter 1 were accomplished. However, the

proposed solution could still be improved to address some of the limitations identified

during the implementation and evaluation phase. Some of these limitations are

briefly discussed as follows:

 The multiple language support feature is still limited, in the sense that it

depends on UML meta-models, which are language-dependent.

 Code generations, as proposed in our solution, do address the issue of

complexities surrounding the building of semantic descriptions and ontologies.

However, our solution is limited, in the sense that once the skeleton code for

different layers is generated, the developer still has the obligation to understand

the generated code. This is even more essential in cases where the code need to

be augmented or edited. Furthermore, the generation of rules for reasoning

purposes is limited in a sense that only templates are generated. The developer

still has to manually define the specific rules for each intelligent semantic service.

 Agent-based intelligence, as proposed in this thesis, might be appropriate, but

in some cases, it can prove to be a limitation. This is due to the fact that software

agents have unaddressed challenges, such as security, incompatible messaging

protocols, and resource-constraint limitations. Similar to what has been

highlighted above, the generation of JESS rules is labour intensive as manual

input from the developer is still required.

9-203

9.6. FURTHER RESEARCH

The potential for further research presented in this area is derived from the

limitations of the proposed solution, as described in the previous section.

9.6.1. Improving Code-Generation Techniques

Currently, the iSemServ platform implements a model-to-code transformation

module by exploiting different templates developed using Acceleo and UML service

models made up of class diagrams. Further work in improving this technique could

focus on enabling the code-generation module to also transform activity or sequence

diagrams to different building blocks. This could further improve complexity hiding to

the extent that, for example, activity diagrams could be automatically transformed to

partial, and yet useful, syntactic services logic. In its current implementation, the

iSemServ platform is only capable of generating code skeletons from class

diagrams.

The service engineer is still required to manually complete the implementation of all

the logic behind syntactic services, which could be modelled using activity and

sequence diagrams. In addition, the intelligence layer also requires the service

engineer to augment the generated intelligent skeletons, especially for each

generated service provider agent that might have additional requirements not initially

annotated within the UML service model. However, with regard to the generation of

domain ontologies, semantics, descriptions, and deployment descriptors, the service

developer is not required to implement additional logic for the generated artefacts.

9.6.2. Extending the Multiple Language Support Feature

In its current implementation, the iSemServ framework focuses on UML meta-

models to accomplish the multiple language support feature. Nonetheless, this is

limited, as discussed in Section 9.3. Moreover, finding a solution to such a limitation

is not simple. Thus, further work could be done on proposing other innovative means

to enable multi-language support when engineering intelligent semantic services in a

unified platform, such as the iSemServ platform.

9-204

9.6.3. Enhancing the Intelligence Layer

The weaknesses of software agents, for instance, incompatible and proprietary

messaging protocols, as described in the thesis, also call for further improvements to

the intelligence layer. Our proposed solution attempts to address this limitation by

mapping services, semantics and agents at different levels of abstraction. That is, at

the knowledge-level using ontologies for semantic descriptions and agents; and at

the message-level using open standard protocols, such as HTTP for services and

agents integration.

Future work could focus on mapping services, semantic descriptions, and

intelligence at one level, using approaches that address the current limitations of

software agents effectively.

Finally, our solution could be extended and improved by incorporating all the phases

involved in the engineering processes of intelligent semantic services, such as

service discovery, service selection, service composition, and service monitoring.

10-205

10. APPENDICES

APPENDIX A: ABSTRACTS OF PUBLICATIONS

The following are the abstracts of the publications that emanated from this thesis, as

listed in Chapter 1 (Section 1.8)

Towards a service creation framework: a case of intelligent semantic services

Abstract. Semantic Web Services are touted as one possible solution for some of

the challenges experienced with Web services; such as lack of automatic service

discovery and consumption. Ideally, semantic services are meant to facilitate

automatic business service provisioning and consumption on the Web. These

services are enriched with semantics, which are derived from ontologies.

Nevertheless, semantic-based services are seldom adopted and utilised by service

providers and consumers, respectively.

Some of the reasons noted in literature for this lack of adoption and usage include

issues, such as the lack of real-life prototypes that are meant to demonstrate the

benefits of semantic services; the lack of integrated service creation frameworks;

unified development platforms that are purported to guide and promote simple

engineering of semantic services. Thus, in this short paper, our aim is to propose

and present of a conceptual multi-layered, and yet integrated, service creation

framework – called iSemServ. The framework is intended to guide, simplify, and

accelerate the process of engineering intelligent semantic services.

iSemServ: Towards the Engineering of Intelligent Semantic-Based Services

Abstract. The emergence of Semantic Web Services is stimulating the need for

modern enterprises to efficiently and rapidly develop and deliver machine-

processable and machine-interpretable value-added services, in order to automate a

variety of tasks on the Web. However, semantic-based services are seldom adopted

and utilised, as there are few real-life examples that demonstrate the possibilities

and benefits of such services. Furthermore, there is a lack of service creation

frameworks and technical platforms that purport to guide and promote the simple,

flexible, rapid, and unified engineering of semantic-based services.

10-206

In addition, current semantic service platforms do not support the construction of

semantic services that are intelligent beyond the application of ontologies. In this

paper, preliminary efforts that seek to address the challenges of simplifying and

speeding up the engineering process of intelligent semantic services are presented.

The goal of the work presented in this paper is to supply service providers,

designers, and consumers with simple, unified, and yet simple, tools that can aid in

the technical implementation of intelligent semantic-based services.

The main contribution envisaged from this research is a conceptual service-creation

framework, called iSemServ, and a technological service-creation platform, which is

intended to simplify and support the phases of building intelligent semantic services

in an integrated manner. The proposed research adopts a quantitative approach with

the main focus on model-building, prototypes, and laboratory experiments.

Towards the engineering of intelligent semantic-based services building

blocks and methodology

Abstract. Semantic-based services are emerging as phenomena that enable

innovative broad provisioning and consumption of business services on the Web.

Therefore, service providers often require flexible technological tools and platforms

that facilitate and support the effective development and advertisement of such

services. Similarly, service consumers need access to tools and platforms that would

enable the seamless discovery and consumption of these services. However, within

the semantic Web service domain, there is a lack of development platforms and tools

that promotes effective, rapid, simple, and flexible engineering and deployment of

intelligent semantic-based services (IsS).

This is quite apparent by the limited research focusing on the practical development

of semantic-based services. In this paper, we propose and motivate that open and

flexible engineering of IsS is of significant importance, particularly to service

providers and consumers in developing economies; where software costs,

development costs, and technical skills still remain a challenge.

10-207

As a work in progress, our main focus in this paper is on the basic fundamental

building blocks: the elementary components that make up a functional IsS. A

proposed service engineering approach for constructing an IsS is also detailed. The

future outlook of our work is on the proposal and the realization of a technical

framework and integrated development environment for IsS engineering.

Engineering RESTful semantic services on the fly

Abstract. Real-world implementations of semantic services that could enable

seamless integration of heterogeneous and legacy IT systems on the fly are

deficient. This could be attributed to the complexity of heavy-weight semantic

technologies, which mostly have a steep learning curve. As a consequence, the

evolution of modern approaches that purport to simplify the engineering of such

services is a necessity. In this short paper, we present a work-in-progress model-

driven approach that seeks to simplify and speed up the process of engineering

RESTful semantic services.

The suggested approach promotes the automatic transformation of platform-

independent service models to partial service implementation and semantic

descriptions, in order to realize functional RESTful semantic services.

iSemServ: Facilitating the Implementation of Intelligent Semantic Services

Abstract
The process of developing semantic services is viewed by service developers as

being complex, and tedious. The main barriers that have been identified include a

steep learning curve for emerging semantic models and ontological languages, the

lack of integrated tool support for developing semantic services, and lack of

interoperability between emerging semantic technologies and matured Web service

technologies. In addition, current efforts that are meant to ease the implementation

of semantic services are fragmented; that is, developers are required to use a

combination of disconnected tools to realize semantic services. Moreover, existing

semantic technologies are tightly coupled to specific semantic models and service

architectural styles; leading to restrictive development environments. In this paper,

an iSemServ framework is proposed, and implemented as an Eclipse plug-in with the

core objective to facilitate, unify, and accelerate the process of developing intelligent

10-208

semantic services using semantic models and service architectural styles of choice.

Experimental evaluations demonstrate that a solution, such as iSemServ has the

potential to minimize some of the barriers associated with building intelligent

semantic services.

10-209

APPENDIX B: TRANSFORMATION TEMPLATES

In this section, some of the scripts used for code-generation purposes at different

layers are included. These are included to assist the reader in understanding the

possible implementation of the different layers that make up the proposed service

creation framework. These fragments of code are not meant to demonstrate the

complete functional logic of the iSemServ platform.

Services Layer

1. <%
2. metamodel http://www.eclipse.org/uml2/2.1.0/UML
3. import org.acceleo.modules.uml2.services.Common
4. import org.acceleo.modules.uml2.services.ListServices
5. import org.acceleo.modules.uml2.services.StringServices
6. import org.acceleo.modules.uml2.services.Uml2Services

7. %>
8. <%script type="Class" name="fullFilePath"%>

9. <%if (hasStereotype("RESTful")){%>
10. /src/<%package.name.toPath()%>/<%name%>.java
11. <%}%>
12. <%if (hasStereotype("SOAP")){%>

13. /src/<%package.name.toPath()%>/<%name%>.java
14. <%}%>
15. <%if (!hasStereotype("SOAP")&&!hasStereotype("RESTful")){%>
16. /src/<%package.name.toPath()%>/<%name%>.java
17. <%}%>
18. <%script type="uml.Class" name="rest" file="<%fullFilePath%>"%>
19. <%if (hasStereotype("RESTful")){%>
20. /*---
21. * <auto-generated>
22. * Generated by iSemServ Model2Service transformer using Acceleo 2.7
23. * Copyright (c) 2011 iSemServ
24. *
25. * All rights reserved. This program and the accompanying materials
26. * are made available under the terms of the Eclipse Public License 1.0
27. * You can apply any license to the files generated with this template
28. * Original template generator contributor : Jabu Mtsweni, SAP Research, Pretoria, South Africa
29. * <auto-generated>
30. * ---*/
31.
32. package <%package.name%>;
33.
34. /*
35. * JAX-RS imports
36. */
37.
38. import javax.ws.rs.*;
39.
40. <%for (getAssociations().filter("Association").oppositeAttributeOf(current())[isNavigable()]){%>
41. <%if (current("Class").package!=type.){%>

42. import <%package.name%>.<%name%>;
43. <%}%><%}%>
44. <%if (superClass.nSize()==1){%>
45. import <%package.name%>.<%general.name%>;
46. <%}%>
47.
48. /**
49. * @author <Include your name>
50. * @Date Created: <%getLongDate()%> [<%getTime()%>]
51. */

10-210

52.
53. /**
54. * @Path
55. * represents relative URI for a RESTful resource
56. */
57.
58. @Path("/<%name.toLowerCase()%>")
59. <%if (superClass.nSize()==1){%>
60. <%visibility%> class <%name%> extends <%general.name%><%}else{%><%visibility%> class

<%name%><%}%>

61. {
62. /*
63. * @Declaration of Attributes
64. */
65. <%if (attribute.nSize==0){%>
66. //No attributes declared
67. <%}else{%>
68. <%for (attribute){%>
69. <%visibility%><%type.name%><%name%><%if (default!=null){%>="<%default%>"<%}%>;
70. <%}%>
71. <%}%>
72. /*
73. * @Declaration of Operations
74. */
75. <%-- Generate methods ---%>
76. <%for (ownedOperation[!name.equalsIgnoreCase(current(1).name)].sep("\n")){%>
77. <%--** Generate methods doc ---%>
78. /*
79. * Description of the method <%name%>
80. *
81. <%for (ownedParameter[direction != "return"]){%>

82. * @param <%name%>
83. <%}%>
84. <%for (ownedParameter[direction == "return"]){%>
85. * @return <%type.name%>
86. <%}%>
87. */
88. /**
89. * decorate our RESTful service with @Path, @HTTP_Method, and @Representation
90. */
91. <%if (name.startsWith("get")){%>
92. @Path("/<%name.toLowerCase()%>")
93. @GET
94. @Consumes({"text/plain","application/xml","text/html","application/json"})
95. @Produces({"text/plain","application/xml","text/html","application/json"})
96. <%if (type.name!=null) {%>
97. <%visibility%><%type.name%><%name%>(@PathParam("<%ownedParameter.name.sep("

")%>")<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>){
98.
99. //TODO: ADD service logic for <%name%> method
100.
101. <%if (type.name!=null){%>
102. return null;
103. <%}else{%>
104. <%--Does not return anything--%>
105. <%}%>
106. }
107. <%}else{%>
108. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)

109. {
110.
111. //<%startUserCode%>

112.
113. //TODO: ADD service logic for <%name%> method
114.
115. //<%endUserCode%>

10-211

116.
117. <%if (type.name!=null){%>

118. return null;
119. <%}else{%>
120. <%--Does not return anything--%>
121. <%}%>

122. }
123. <%}%>
124. <%}%>
125. <%if (name.startsWith("request")){%>

126. @Path("/<%name.toLowerCase()%>")
127. @GET
128. @Consumes({"text/plain","application/xml","text/html","application/json"})
129. @Produces({"text/plain","application/xml","text/html","application/json"})
130. <%if (type.name!=null) {%>
131. <%visibility%><%type.name%><%name%>(@PathParam("<%ownedParameter.name.sep("

")%>")<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>){
132.
133. //TODO: ADD service logic for <%name%> method
134.
135. <%if (type.name!=null){%>
136. return null;
137. <%}else{%>
138. <%--Does not return anything--%>
139. <%}%>
140. }
141. <%}else{%>

142. <%visibility%> void
<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)

143. {
144.
145. //<%startUserCode%>

146.
147. //TODO: ADD service logic for <%name%> method
148.
149. //<%endUserCode%>

150.
151. <%if (type.name!=null){%>
152. return null;
153. <%}else{%>
154. <%--Does not return anything--%>
155. <%}%>
156. }
157. <%}%>
158. <%}%>
159. <%if (name.startsWith("update")){%>
160. @Path("/<%name.toLowerCase()%>")
161. @PUT
162. @Consumes({"text/plain","application/xml","text/html","application/json"})
163. @Produces({"text/plain","application/xml","text/html","application/json"})
164. <%if (type.name!=null) {%>

165. <%visibility%><%type.name%><%name%>(@PathParam("<%ownedParameter.name.sep("
")%>")<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>){

166.
167. //TODO: ADD service logic for <%name%> method
168.
169. <%if (type.name!=null){%>
170. return null;
171. <%}else{%>
172. <%--Does not return anything--%>
173. <%}%>
174. }
175. <%}else{%>
176. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)
177. {
178.

10-212

179. //<%startUserCode%>

180.
181. //TODO: ADD service logic for <%name%> method
182.
183. //<%endUserCode%>

184.
185. <%if (type.name!=null){%>
186. return null;
187. <%}else{%>
188. <%--Does not return anything--%>
189. <%}%>
190. }
191. <%}%>
192. <%}%>
193. <%if (name.startsWith("create")){%>
194. @Path("/<%name.toLowerCase()%>")
195. @POST
196. @Consumes({"text/plain","application/xml","text/html","application/json"})
197. @Produces({"text/plain","application/xml","text/html","application/json"})
198. <%if (type.name!=null) {%>
199. <%visibility%><%type.name%><%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].pa

rameterDeclaration.sep(",")%>){
200.
201. //TODO: ADD service logic for <%name%> method
202.
203. <%if (type.name!=null){%>
204. return null;
205. <%}else{%>
206. <%--Does not return anything--%>
207. <%}%>
208. }
209. <%}else{%>
210. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)
211. {
212.
213. //<%startUserCode%>

214.
215. //TODO: ADD service logic for <%name%> method
216.
217. //<%endUserCode%>

218.
219. <%if (type.name!=null){%>

220. return null;
221. <%}else{%>
222. <%--Does not return anything--%>
223. <%}%>

224. }
225. <%}%>
226. <%}%>
227. <%if (name.startsWith("add")){%>

228. @Path("/<%name.toLowerCase()%>")
229. @POST
230. @Consumes({"text/plain","application/xml","text/html","application/json"})
231. @Produces({"text/plain","application/xml","text/html","application/json"})
232. <%if (type.name!=null) {%>
233. <%visibility%><%type.name%><%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].pa

rameterDeclaration.sep(",")%>){
234.
235. //TODO: ADD service logic for <%name%> method
236.
237. <%if (type.name!=null){%>
238. return null;
239. <%}else{%>

240. <%--Does not return anything--%>
241. <%}%>
242. }

10-213

243. <%}else{%>
244. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)
245. {
246.
247. //<%startUserCode%>

248.
249. //TODO: ADD service logic for <%name%> method
250.
251. //<%endUserCode%>

252.
253. <%if (type.name!=null){%>
254. return null;
255. <%}else{%>

256. <%--Does not return anything--%>
257. <%}%>
258. }
259. <%}%>
260. <%}%>
261. <%if (name.startsWith("delete")){%>
262. @Path("/<%name.toLowerCase()%>/{<%ownedParameter[!direction.equalsIgnoreCase("return")].paramete

rDeclaration.toLowerCase().sep(",")%>}")
263. @DELETE
264. @Consumes({"text/plain","application/xml","text/html","application/json"})
265. @Produces({"text/plain","application/xml","text/html","application/json"})
266. <%if (type.name!=null) {%>
267. <%visibility%><%type.name%><%name%>(@PathParam("<%ownedParameter.name.toLowerCase().sep(

" ")%>")<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>){
268.
269. //TODO: ADD service logic for <%name%> method
270.
271. <%if (type.name!=null){%>
272. return null;
273. <%}else{%>
274. <%--Does not return anything--%>
275. <%}%>
276. }
277. <%}else{%>
278. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)
279. {
280.
281. //<%startUserCode%>

282.
283. //TODO: ADD service logic for <%name%> method
284.
285. //<%endUserCode%>

286.
287. <%if (type.name!=null){%>
288. return null;
289. <%}else{%>

290. <%--Does not return anything--%>
291. <%}%>
292. }
293. <%}%>
294. <%}%>
295. <%}%>
296. }
297. <%}%>
298. <%-- end of rest --%>
299. <%if (hasStereotype("SOAP")){%>
300. /*---
301. * <auto-generated>
302. * Generated by iSemServ Model2Service transformer using Acceleo 2.8
303. * Copyright (c) 2011 iSemServ
304. *
305. * All rights reserved. This program and the accompanying materials

10-214

306. * are made available under the terms of the Eclipse Public License 1.0
307. * You can apply any license to the files generated with this template
308. * Original template generator contributor : Jabu Mtsweni, SAP Research, Pretoria, South Africa
309. * <auto-generated>
310. * ---/
311. package <%package.name%>
312.
313. /**
314. * @author <Include your name>
315. * @Date Created: <%getLongDate()%> [<%getTime()%>]
316. */
317. /*
318. * JAX-WS imports
319. */
320. import javax.jws.WebMethod;
321. import javax.jws.WebService;
322.
323. /**
324. * @WebService
325. * Important for decorating our class as a SOAP Web Service
326. */
327. @WebService(serviceName = "<%name%>",
328. portName = "<%name%>Port",
329. endpointInterface = "<%package.name%>.<%name%>Interface",
330. targetNamespace = "http://<%package.name.reverse()%>",
331. wsdlLocation=" WebContent/wsdl/<%name.toLowerCase()%>.wsdl")
332. <%visibility%> class <%name%> {
333.
334. /**
335. * @Declaration of Attributes
336. */
337. <%if (attribute.nSize==0){%>
338. //No attributes declared
339. <%}else{%>
340. <%for (attribute){%>

341. <%visibility%><%type.name%><%name%>;
342. <%}%>
343. <%}%>
344.
345. /**
346. * @Declaration of Operations
347. */
348. <%-- Generate methods ---%>
349. <%for (ownedOperation[!name.equalsIgnoreCase(current(1).name)].sep("\n")){%>
350. <%--** Generate methods doc ---%>
351. /**
352. * Description of the method <%name%><%ownedComment%>.
353. *
354. <%for (ownedParameter[direction != "return"]){%>
355. * @param <%name%><%ownedComment%>
356. <%}%>
357. <%for (ownedParameter[direction == "return"]){%>
358. * @return <%name%><%ownedComment%>
359. <%}%>
360. */
361. <%if (type.name!=null) {%>
362. @WebMethod
363. <%visibility%><%type.name%><%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].pa

rameterDeclaration.sep(",")%>)
364. {
365.
366. //TODO-logic for <%name%> method
367.
368. <%if (type.name!=null){%>

369. return null;
370. <%}else{%>
371. <%--Does not return anything--%>

10-215

372. <%}%>
373. }
374. <%}else{%>
375. @WebMethod
376. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)

377. {
378. //<%startUserCode%>

379.
380. //ADD service logic for <%name%> method
381.
382. //<%endUserCode%>

383.
384. <%if (type.name!=null){%>

385. return null;
386. <%}else{%>
387. <%--Does not return anything--%>
388. <%}%>

389. }
390. <%}%>
391. <%}%>
392. }
393. <%}%>
394. <%--end of the soap if--%>
395. <%-- Beginning of POJO classes --%>
396. <%if (!hasStereotype("SOAP")&&!hasStereotype("RESTful")) {%>
397. /*---
398. * <auto-generated>
399. * Generated by SemServ Model2Service transformer using Acceleo 2.7
400. * Copyright (c) 2011 iSemServ
401. *
402. * All rights reserved. This program and the accompanying materials
403. * are made available under the terms of the Eclipse Public License 1.0
404. * You can apply any license to the files generated with this template
405. * Original template generator contributor : Jabu Mtsweni, SAP Research, Pretoria, South Africa
406. * <auto-generated>
407. * ---*/
408.
409. package <%package.name%>;
410.
411. /**
412. * @author <Include your name>
413. * @Date Created: <%getLongDate()%> [<%getTime()%>]
414. * @category <%name%>Entity
415. */
416. <%--Start of POJO class --%>
417. <%if (superClass.nSize()==1){%>
418. <%visibility%> class <%name%> extends <%general.name%><%}else{%><%visibility%> class

<%name%><%}%>
419. {
420. /*
421. * @Declaration of Attributes
422. */
423. <%if (attribute.nSize==0){%>
424. //No attributes declared
425. <%}else{%>
426. <%for (attribute){%>
427. <%visibility%><%type.name%><%name%><%if (default!=null){%>="<%default%>"<%}%>;
428. <%}%>
429. <%}%>

430. /*
431. * @Declaration of Operations
432. */
433. <%-- Generate methods ---%>
434. <%for (ownedOperation[!name.equalsIgnoreCase(current(1).name)].sep("\n")){%>
435. <%--** Generate methods doc ---%>
436. /**

10-216

437. * Description of the method <%name%><%ownedComment%>.
438. *
439. <%for (ownedParameter[direction != "return"]){%>
440. * @param <%name%><%ownedComment%>
441. <%}%>
442. <%for (ownedParameter[direction == "return"]){%>

443. * @return <%name%><%ownedComment%>
444. <%}%>
445. */
446. <%if (type.name!=null) {%>
447. <%visibility%><%type.name%><%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].pa

rameterDeclaration.sep(",")%>)
448. {
449.
450. //TODO: ADD service logic for <%name%> method
451.
452. <%if (type.name!=null){%>
453. return null;
454. <%}else{%>
455. <%--Does not return anything--%>
456. <%}%>
457. }
458. <%}else{%>
459. <%visibility%> void

<%name%>(<%ownedParameter[!direction.equalsIgnoreCase("return")].parameterDeclaration.sep(",")%>)
460. {
461. //<%startUserCode%>

462.
463. //TODO: ADD service logic for <%name%> method
464.
465. //<%endUserCode%>

466.
467. <%if (type.name!=null){%>
468. return null;
469. <%}else{%>

470. <%--Does not return anything--%>
471. <%}%>
472. }
473. <%}%>
474. <%}%>
475. }
476. <%}%>
477. <%scripttype="Parameter" name="parameterDeclaration"%>

478. <%type.name%><%name%>

479. DEPLOYMENT

480. <%
481. metamodel http://www.eclipse.org/uml2/2.1.0/UML
482. import org.acceleo.modules.uml2.services.Common
483. import org.acceleo.modules.uml2.services.ListServices
484. import org.acceleo.modules.uml2.services.StringServices
485. import org.acceleo.modules.uml2.services.Uml2Services

486. %>
487. <%scripttype="uml.Class" name="fullFilePath"%>
488. <%if hasStereotype("RESTful") {%>

489. /WebContent/WEB-INF/web.xml
490. <%}%>
491. <%if hasStereotype("SOAP"){%>
492. /WebContent/WEB-INF/web.xml
493. <%}%>
494. <%scripttype="uml.Class" name="rest" file="<%fullFilePath%>"%>
495. <%if hasStereotype("RESTful") {%>
496. <?xml version="1.0" encoding="UTF-8"?>
497. <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5">

498. <display-name><%package.name%></display-name>

10-217

499. <welcome-file-list>
500. <welcome-file>index.html</welcome-file>
501. <welcome-file>index.htm</welcome-file>
502. <welcome-file>index.jsp</welcome-file>
503. <welcome-file>default.html</welcome-file>
504. <welcome-file>default.htm</welcome-file>
505. <welcome-file>default.jsp</welcome-file>
506. </welcome-file-list>
507. <servlet>
508. <servlet-name>Jersey REST <%name.toLowerCase()%>Service</servlet-name>
509. <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
510. </servlet>
511. <servlet-mapping>
512. <servlet-name>Jersey REST Service</servlet-name>
513. <url-pattern>/*</url-pattern>
514. </servlet-mapping>
515. </web-app>
516. <%}%>
517. <%if hasStereotype("SOAP") {%>
518. <?xml version="1.0" encoding="UTF-8"?>
519. <!DOCTYPE web-app PUBLIC "-//Sun Microsystems,
520. Inc.//DTD Web Application 2.3//EN"
521. "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
522. <web-app>
523. <listener>
524. <listener-class>
525. com.sun.xml.ws.transport.http.servlet.WSServletContextListener
526. </listener-class>
527. </listener>
528. <servlet>
529. <servlet-name><%name.toLowerCase()%></servlet-name>
530. <servlet-class>
531. com.sun.xml.ws.transport.http.servlet.WSServlet
532. </servlet-class>
533. <load-on-startup>1</load-on-startup>
534. </servlet>
535. <servlet-mapping>
536. <servlet-name><%name.toLowerCase()%></servlet-name>
537. <url-pattern>/<%name.toLowerCase()%></url-pattern>
538. </servlet-mapping>
539. <session-config>
540. <session-timeout>120</session-timeout>
541. </session-config>
542. </web-app>
543. <%}%>

Semantics Layer

1. <%
2. metamodel http://www.eclipse.org/uml2/2.0.0/UML
3. import org.acceleo.modules.uml2.services.Uml2Services
4. import org.acceleo.modules.uml2.services.Common

5. %>
6. <%--This template generate a WSMO domain ontologies--%>
7. <%script type="Class" name="fullFilePath"%>
8. <%if (hasStereotype("WSMO")){%>
9. wsml/ontologies/<%name.toLowerCase()%>Ontology.wsml
10. <%}%>
11. <%script type="Class" name="ontologies" file="<%fullFilePath%>"%>
12. <%if (hasStereotype("WSMO")){%>
13. wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
14. //<!--Generated by SemServ Model2Semantics transformer using Acceleo 2.8-->
15. //<!--Date: <%getLongDate()%> [<%getTime()%>] -->
16. namespace {_"http://www.isemserv.co.za/ontologies/<%name.toLowerCase()%>Ontology.wsml#",
17. dc _"http://purl.org/dc/elements/1.1#",
18. xsd _"http://www.w3c.org/2001/XMLSchema#",
19. wsml _"http://www.wsmo.org/2004/wsml-syntax#",

10-218

20. dt _"http://www.wsmo.org/ontologies/dateTime/#",
21. desc _"http://www.isemserv.co.za/descriptions#"}
22.
23.
24. ontology _"http://www.isemserv.co.za/wsml/ontologies/<%name.toLowerCase()%>Ontology.wsml#"
25.
26. nonFunctionalProperties
27. dc#type hasValue "<%name.toLowerCase()%> Domain Ontology"
28. dc#description hasValue "Enter description of the domain ontology"
29. dc#title hasValue "Domain Ontology for a <%name.toLowerCase()%> Web service"
30. dc#creator hasValue {"Your Name/Editors name"}
31. dc#subject hasValue { "<%name.toU1Case()%>", "{other subjects}"}
32. dc#publisher hasValue "iSemServ"
33. dc#date hasValue "<%getLongDate()%> [<%getTime()%>]"
34. dc#type hasValue _"http://www.wsmo.org/2004/d2#ontologies"
35. dc#identifier hasValue _"http://www.isemserv.co.za/ontologies/<%name.toLowerCase()%>Ontology"
36. dc#language hasValue "en-US"
37. dc#format hasValue "text/plain"
38. endNonFunctionalProperties
39.
40. importsOntology {_"http://example.org/ImportedOntology"}
41.
42. concept <%name%>
43. nonFunctionalProperties
44. dc#description hasValue "{add description of the concept}"
45. endNonFunctionalProperties
46. <%for (ownedAttribute) {%>

47. <%name%> ofType _<%type.name%>
48. <%}%>
49. <%for (ownedOperation) {%>
50.
51. concept <%name%>
52. nonFunctionalProperties
53. dc#description hasValue "{add description of the concept}"
54. endNonFunctionalProperties
55. <%for (ownedParameter[!direction.equalsIgnoreCase("return")]) {%>
56. <%name%> ofType _<%type.name%>
57. <%}%>
58. <%}%>

59. WEB SERVICES (WSMO)

60. <%
61. metamodel http://www.eclipse.org/uml2/2.0.0/UML
62. import org.acceleo.modules.uml2.services.Uml2Services
63. import org.acceleo.modules.uml2.services.Common
64. %>
65. <%--
66. This template generate a Web Service capability for WSMO
67. --%>
68. <%script type="Class" name="fullFilePath"%>
69. <%if (hasStereotype("WSMO")){%>

70. wsml/services/<%name.toLowerCase()%>WSCapability.wsml
71. <%}%>
72. <%script type="Class" name="ontologies" file="<%fullFilePath%>"%>
73. wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
74. comment <!--Generated by SemServ Model2Semantics transformer using Acceleo 2.8-->
75. comment <!--Date: <%getLongDate()%> [<%getTime()%>] -->
76. namespace { _"http://www.isemserv.co.za/services/<%name.toLowerCase()%>Semantics#",
77. <%name.toLowerCase().substring(0,3)%> _"http://www.isemserv.co.za/ontologies#",
78. dc _"http://purl.org/dc/elements/1.1#",
79. wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
80. xsd _"http://www.w3.org/2001/XMLSchema#",
81. desc _"http://www.isemserv.co.za/descriptions#"}
82. webService <%ownedOperation.name%>Service
83. importsOntology {_"http://example.org/ImportedOntology"} /*PLEASE COMPLETE*/
84. capability <%ownedOperation.name%>Capability
85. nonFunctionalProperties
86. dc#type hasValue "service ontology"

10-219

87. dc#description hasValue "Enter description for this capability"
88. dc#title hasValue "Capability for a <%name.toLowerCase()%> Web service"
89. dc#creator hasValue {"Your Name"}
90. dc#publisher hasValue "isemserv"
91. dc#date hasValue "<%getLongDate()%> [<%getTime()%>]"
92. dc#type hasValue _"http://www.wsmo.org/2004/d2#ontologies"
93. dc#identifier hasValue _"http://www.isemserv.co.za/services/<%name.toLowerCase()%>"
94. dc#language hasValue "en-US"
95. dc#format hasValue "text/plain"
96. desc#serviceDescription hasValue "COMPLETE URL FOR SERVICE DESCRIPTION"
97. endNonFunctionalProperties
98.
99. <%for (ownedOperation) {%>
100. sharedVariables {<%for (ownedParameter[!direction.equalsIgnoreCase("return")].sep(", "))

{%>?<%name%><%}%>}
101. <%}%>
102. precondition
103. nonFunctionalProperties
104. dc#description hasValue "condition(s) that need to be satisfied before service is invoked"
105. endNonFunctionalProperties
106. definedBy
107. <%for (ownedOperation) {%>
108. <%for (ownedParameter[!direction.equalsIgnoreCase("return")]) {%>
109. ?<%name%> memberOf <%name.toU1Case()%>
110. <%}%>
111. <%}%>

Intelligence Layer

1. <%
2. metamodel http://www.eclipse.org/uml2/2.1.0/UML
3. import org.acceleo.modules.uml2.services.Common
4. import org.acceleo.modules.uml2.services.ListServices
5. import org.acceleo.modules.uml2.services.StringServices
6. import org.acceleo.modules.uml2.services.Uml2Services
7. %>
8. <%script type="Class" name="fullFilePath"%>
9. <%if (hasStereotype("RESTful")){%>
10. /src/<%package.name.toPath()%>/agents/provider/<%name%>ProviderAgent.java
11. <%}%>
12. <%script type="uml.Class" name="ServiceAgent" file="<%fullFilePath%>"%>
13. <%if (hasStereotype("RESTful")){%>
14. /*---
15. <auto-generated>
16. Generated by iSemServ Model2Intelligence transformer using Acceleo 2.8
17. Copyright (c) 2011 iSemServ
18. All rights reserved. The generator and the accompanying materials
19. are made available under the terms of the Eclipse Public License 1.0
20. You can apply any license to the files generated with this template

21. ServiceProviderAgent template generator contributor : Jabu Mtsweni
22. UNISA 2011
23. JADE - Java Agent DEvelopment Framework is a framework to develop
24. multi-agent systems in compliance with the FIPA specifications.
25. Copyright (C) 2000 CSELT S.p.A. GNU Lesser General Public License
26. <auto-generated>
27. ---*/
28.
29. package <%package.name%>.agents.provider;
30. /**Required Libraries for the Intelligence Layer*/
31. import java.io.IOException;
32. import jade.core.Agent;
33. import jade.core.behaviours.CyclicBehaviour;
34. import jade.domain.DFService;
35. import jade.domain.FIPAException;
36. import jade.domain.FIPAAgentManagement.DFAgentDescription;

10-220

37. import jade.domain.FIPAAgentManagement.ServiceDescription;
38. import jade.lang.acl.ACLMessage;
39. import jade.lang.acl.MessageTemplate;
40. import isemserv.org.wadl.WadlReader;
41. import isemserv.org.wsml.WSMLReader;
42. /**
43. @co-author Jabu Mtsweni
44. @category ServiceProviderAgent
45. @version $Revision: 1.0
46. @Date: <%getLongDate()%> [<%getTime()%>]
47. */
48. public class <%name%>ProviderAgent extends Agent {
49.
50. /**
51. default Agent properties
52. */
53. private static final long serialVersionUID = 1L;
54. /**
55. Initialise ServiceProviderAgent
56. */
57. protected void setup(){
58. //Logging "welcome message"
59. System.out.println("Hallo! :"+getAID().getName()+" is initialized and ready--->");
60. /**
61. Register ServiceProviderAgent in YellowPages (JADE)
62. */
63. DFAgentDescription dfd = new DFAgentDescription();
64. dfd.setName(getAID());
65. ServiceDescription sd = new ServiceDescription();
66. sd.setType("<%name.toLowerCase()%>");
67. sd.setName("JADE-service-provider");
68. dfd.addServices(sd);
69. try {
70. DFService.register(this, dfd);
71. //Logging a confirmation message for Registration
72. System.out.println(getAID().getName()+" is registered in JADE Yellow Pages");
73. }
74. catch (FIPAException fe) {
75. fe.printStackTrace();
76. }
77. /**
78. Add getRESTServiceURL Cyclic Behaviour provided by ServiceProviderAgent
79. */
80. addBehaviour(new getServiceURL());
81. /**
82. Add getWSCapabilityName Cyclic Behaviour provided by ServiceProviderAgent
83. */
84. addBehaviour(new getWSCapability());
85.
86. /**
87. Add Generic Cyclic Behaviour provided by ServiceProviderAgent
88. */
89. <%-- Generate methods ---%>
90. <%for (ownedOperation[!name.equalsIgnoreCase(current(1).name)].sep("\n")){%>
91. <%--** Generate methods doc ---%>
92. /**
93. Add <%name%> Cyclic Behaviour provided by ServiceProviderAgent
94. */
95. addBehaviour(new <%name%>());
96. <%}%>

10-221

JESS Rule Template

1 (defrule rule-name
2 "optional comment"
3 (pattern-1) ; left-hand side (LHS) of the rule
4 (pattern-2) ; consisting of elements before the "=>"
5 (pattern-n)
6 =>
7 (action-1) ; right-hand side (RHS) of the rule
8 (action-2) ; consisting of elements after the "=>"
9 (action-m)
10) ; the last ")" balances the opening "(" to
11 ; the left of "defrule". Be sure all your
12 ; parentheses balance or you will get
13 ; error messages.

JESS Template Syntax

1 (deftemplate classname
2 (declare (from-class classname)
3 (include-variables TRUE))

222

11. REFERENCES

ACCELEO. 2011. Acceleo - transforming models into code. [Online]. Available
from: http://www.eclipse.org/acceleo/. [Accessed: 16 April 2011].

ACUNA, C. J. & MARCOS, E. 2006. Modeling semantic Web services: a case study.
In: Proceedings of the 6th international conference on Web engineering (ICWE'06).
11-14 July. Palo Alto, California, USA.

AGARWAL, A., DASGUPTA, K., KARNIK, N., KUMAR, A., KUNDU, A., MITTAL, S.,
et al. 2005. A service creation environment based on end to end composition of web
services. In: Proceedings of the WWW2005. 10-14 May. Chiba, Japan.

AGRE, G., MARINOVA, Z., PARIENTE, T. & MICSIK, A. 2007. Towards Semantic
Web service engineering. In: Proceedings of the Workshop on service matchmaking
and resource retrieval in the semantic Web (SMRR 2007).

AKKIRAJU, R., FARRELL, J., MILLER, J., NAGARAJAN, M., SCHMIDT, M.-T. &
VERMA, A. S. K. 2005. Web Service Semantics - WSDL-S. [Online]. Available
from: http://www.w3.org/Submission/WSDL-S/. [Accessed: 07 June 2009].

AL-FEEL, H., KOUTB, M. A. & SUOROR, H. 2009. Toward an agreement on
Semantic Web architecture. World academy of science, engineering, and
technology, 49, 806-810.

ALONSO, A., CASATI, F., KUNO, H. & MACHIRAJU, V. 2004. Web Services:
concepts, architectures, applications: Springer.

ANABY-TAVOR., A., AMID., D., SELA., A., FISHER., A., ZHANG., K. & JUN., O. T.
2008. Towards a model driven service engineering process. In: Proceedings of the
IEEE Congress on Services - Part I. 6-11 July.

AZIZ, Z., ANUMBA, C., RUIKAR, D., CARRILLO, P. & BOUCHLAGHEM, D. 2004.
Semantic web based services for intelligent mobile construction collaboration. ITcon,
9, 367-369.

BACHLECHNER, D. 2008. Semantic Web service research: current challenges and
proximate achievements. International Journal of Computer Science and
Applications, 5(3b), 117-140.

BAIDA, Z., GORDIJN, J. & OMELAYENKO, B. 2004. A shared service terminology
for online service provisioning. In: Proceedings of the Sixth International Conference
on Electronic Commerce (ICEC'04). Delft, Netherlands.

BALACHANDRAN, B. M. 2008. Developing Intelligent Agent Applications with JADE
and JESS. In: Proceedings of the 12th international conference on Knowledge-
Based Intelligent Information and Engineering Systems, Part III. Zagreb, Croatia.

http://www.eclipse.org/acceleo/
http://www.w3.org/Submission/WSDL-S/

223

BALZER, S., LIEBIG, T. & WAGNER, M. 2004. Pitfalls of OWL-S: a practical
semantic web use case. In: Proceedings of the 2nd international conference on
Service oriented computing. 15-19 November. New York, NY, USA.

BATTLE, S., BERNSTEIN, A., BOLEY, H., GROSOF, B., GRUNINGER, M., HULL,
R., et al. 2005. Semantic Web Services Framework (SWSF) overview. [Online].
Available from: http://www.w3.org/Submission/SWSF/. [Accessed: 25 March 2009].

BENSABER, D. A. & MALKI, M. 2008. Development of semantic web services:
model driven approach. In: Proceedings of the 8th international conference on new
technologies in distributed systems. Lyon, France.

BERNERS-LEE, T. 2000. Semantic Web - XML2000. [Online]. Available from:
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html. [Accessed: 04 June
2009].

BERNERS-LEE, T. 2003. The Semantic Web and challenges. [Online]. Available
from: http://www.w3.org/2003/Talks/01-sweb-tbl/. [Accessed: 17 September 2009].

BERNERS-LEE, T. 2005. Web for real people. [Online]. Available from:
http://www.w3.org/2005/Talks/0511-keynote-tbl/. [Accessed: 18 September 2009].

BERNERS-LEE, T. 2006. Artificial Intelligence and the Semantic Web. [Online].
Available from: http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html.
[Accessed: 23 October 2009].

BERNERS-LEE, T., FIELDING, R., IRVINE, U. C. & MASINTER, L. 2005. Uniform
Resource Identifier (URI): generic syntax. [Online]. Available from: http://www.rfc-
archive.org/getrfc.php?rfc=3986. [Accessed: 20 October 2009].

BERNERS-LEE, T., HENDLER, J. & LASSILA, O. 2001. The semantic web.
Scientific American, 34-43.

BICER, V., LAMPARTER, S., SURE, Y. & DOGRU, A. H. 2009. Towards an
interdisciplinary methodology for service-oriented system engineering. In:
Proceedings of the 24th International Symposium on Computer and Information
Sciences.

BIERMANN, E. 2004. A framework for the protection of mobile agents against
malicious hosts. University of South Africa, Pretoria.

BLOIS, M., ESCOBAR, M. & CHOREN, R. 2007. Using agents and ontologies for
application development on the semantic web. Journal of Brazilian Computer
Society, 13(2), 35-44.

BOOTH, D., HAAS, H., MCCABE, F., NEWCOMER, E., CHAMPION, M. & FERRIS,
C. 2004. Web services architecture. W3C working group note [Online]. Available
from: http://www.w3.org/TR/ws-arch. [Accessed: 18 March 2009].

http://www.w3.org/Submission/SWSF/
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/2003/Talks/01-sweb-tbl/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html
http://www.rfc-archive.org/getrfc.php?rfc=3986
http://www.rfc-archive.org/getrfc.php?rfc=3986
http://www.w3.org/TR/ws-arch

224

BOUCHIHA, D. & MALKI, M. 2010. Towards re-engineering Web applications into
Semantic Web Services. In: Proceedings of the International Conference on Machine
and Web Intelligence (ICMWI). 3-5 October.

BOUHISSI, H. E., MALKI, M. & BOUCHIHA, D. 2006. Towards WSMO ontology
specification from existing Web Services. [Online]. Available from: http://ceur-
ws.org/Vol-547/100.pdf. [Accessed: 18 October 2009].

BRAMBILLA, M., CELINO, I., CERI, S., CERIZZA, D., VALLE, E. D. & FACCA, F. M.
2006. Software engineering approach to design and development of semantic Web
service applications. In: Proceedings of the 5th International Semantic Web
Conference. 5-9 November. Athens, GA, USA

BREIVOLD, H. P. & LARSSON, M. 2007. Component-Based and Service-Oriented
Software Engineering: key concepts and principles. In: Proceedings of the 33rd
EUROMICRO Conference on Software Engineering and Advanced Applications. 28-
31 August. Lubeck

BURSTEIN, M., BUSSLER, C., FININ, T., HUHNS, M. N., PAOLUCCI, M., SHETH,
A. P., et al. 2005. A semantic Web services architecture. IEEE Internet Computing,
9(5), 72-81.

BUSSLER, C., ROMAN, D., LAUSEN, H., OREN, E. & LARA, R. 2004. Web Service
Modeling Ontology - Lite (WSMO-Lite) In: Proceedings of the 1st F2F meeting SDK
cluster working group on Semantic Web Services. 15 March. Wiesbaden, Germany.

CABRAL, L., DOMINGUE, J., MOTTA, E., PAYNE, T. & HAKIMPOUR, F. 2004.
Approaches to semantic web services: an overview and comparisons. In:
Proceedings of the European Semantic Web Conference. Heraklion, Greece.

CABRAL, L., DOMINGUE, J., GALIZIA, S., GUGLIOTTA, A., NORTON, B.,
TANASESCU, V., AND PEDRINACI, C. 2006. IRS-III: a broker for Semantic Web
Services based applications. In: Proceedings of the 5th International Semantic Web
Conference (ISWC 2006). 5-9 November. Athens, France.

CARDOSO, J. 2007a. Semantic Web Services: theory, tools and applications: IGI
Global.

CARDOSO, J. 2007b. The Semantic Web vision: where are we? IEEE Intelligent
Systems, 22(5), 84 - 88

CARDOSO, J., BARROS, A., MAY, N. & KYLAU, U. 2010. Towards a Unified
Service Description Language for the Internet of Services: Requirements and First
Developments. In: Proceedings of the IEEE International Conference on Services
Computing (SCC). 5-10 July. Miami, Florida.

CARDOSO, J., VOIGT, K. & WINKLER, M. 2008. Service engineering for the
internet of services. In: Proceedings of the Enterprise Information Systems 10th
International Conference (ICEIS). 12-16 June. Barcelona, Spain.

http://ceur-ws.org/Vol-547/100.pdf
http://ceur-ws.org/Vol-547/100.pdf

225

CHEN, H.-M. 2008. Towards Service Engineering: Service Orientation and
Business-IT Alignment. In: Proceedings of the 41st Annual Hawaii International
Conference on System Sciences

CHINNICI, R., MOREAU, J.-J., RYMAN, A. & WEERAWARANA, S. 2007. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
[Online]. Available from: http://www.w3.org/TR/wsdl20/. [Accessed: 15 October
2009].

CHRISTENSEN, E., CURBERA, F., MEREDITH, G. & WEERAWARANA, S. 2001.
Web Services Description Language (WSDL) 1.1. [Online]. Available from:
http://www.w3.org/TR/wsdl. [Accessed: 12 March 2009].

CORCHO, O., GOMEZ-PEREZ, A., FERNANDEZ-LOPEZ, M. & LAMA, M. 2003.
ODE-SWS: A semantic web service development environment. In: Proceedings of
the 1st International Workshop on Semantic Web and Databases (SWDB03). Berlin,
Germany.

CORCHO, O., SILVESTRE, L., BENJAMINS, R., BAS, J. L. & BELLIDO., S. 2007.
Personal ebanking solutions based on semantic web services. Studies in
Computational Intelligence (SCI), 37, 287 - 305.

COWLES, P. 2005. Web Service API and the Semantic Web. [Online]. Available
from: http://soa.sys-con.com/node/39631. [Accessed: 17 August 2009].

DA SILVA, P., MCGUINNESS, D. & FIKES, R. 2006. A proof markup language for
semantic web services. Information Systems, 31(4), 381-395.

DANNECKER, L., FELDMANN, M., NESTLER, T., HUBSCH, G., JUGEL, U.,
MUTHMANN, K., et al. 2010. Rapid Development of Composite Applications Using
Annotated Web Services
Current Trends in Web Engineering. In (Vol. 6385: 1-12): Springer Berlin /
Heidelberg.

DAVIS, F. D., BAGOZZI, R. P. & WARSHAW, P. R. 1989. User acceptance of
computer technology: comparison of two theoretical models. Management Science,
35(8), 982-1003.

DE BRUIJN, J., BUSSLER, C., DOMINGUE, J., FENSEL, D., HEPP, M., KELLER,
U., et al. 2005a. Web Service Modelling Ontology (WSMO): DERI.

DE BRUIJN, J., FENSEL, D., KELLER, U. & LARA, R. 2005b. Using the web service
modeling ontology to enable semantic e-business. Communications of the ACM,
48(12), 43-47.

DE BRUIJN, J., FENSEL, D., KERRIGAN, M., KELLER, U., LAUSEN, H. &
SCICLUNA, J. 2008. Modeling Semantic Web Services: The Web service modeling
language: Springer-Verlag Berlin Heidelberg.

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl
http://soa.sys-con.com/node/39631

226

DE BRUIJN, J., LAUSEN, H., KRUMMENACHER, R., POLLERES, A., PREDOIU,
L., KIFER, M., et al. 2005c. The Web Service Modeling Language WSML: DERI.

DIMITROV, M., SIMOV, A., MOMTCHEV, V. & KONSTANTINOV, M. 2007. WSMO
Studio - a semantic web services modelling environment for WSMO. In: Proceedings
of the 4th European conference on the Semantic Web: research and applications.
Innsbruck, Austria.

DOMINGUE, J., CABRAL, L., GALIZIA, S., TANASESCU, V., GUGLIOTTA, A.,
NORTON, B., et al. 2008. IRS-III: A broker-based approach to semantic Web
services. Web Semantics: Science, Services and Agents on the World Wide Web,
6(2), 109-132.

DOMINGUE, J., CABRAL, L., HAKIMPOUR, F., SELL, D. & MOTTA, E. 2004. Demo
of IRS-III: A platform and infrastructure for creating wsmo-based semantic web
services. In: Proceedings of the 3rd International Semantic Web Conference
(ISWC2004). 7-11 November. Hiroshima, Japan.

DUMEZ, C., NAIT-SIDI-MOH, A., GABER, J. & WACK, M. 2008. Modeling and
Specification of Web Services Composition Using UML-S. In: Proceedings of the 4th
International Conference on Next Generation Web Services Practices. 20-22
October. Seoul.

EITER, T., IANNI, G., KRENNWALLNER, T. & POLLERES, A. 2008. Rules and
Ontologies for the Semantic Web. In Reasoning Web: 4th International Summer
School 2008, tutorial lectures (1-53). Venice, Italy,: Springer-Verlag.

EL BOUHISSI, H., MALKI, M. & BOUCHIHA, D. 2008. A reverse engineering
approach for the Web Service Modeling Ontology specifications. In: Proceedings of
the Second International Conference on Sensor Technologies and Applications
(SENSORCOMM '08) 25-31 August. Cap Esterel

ELENIUS, D., DENKER, G., MARTIN, D., GILHAM, F., KHOURI, J., SADAATI, S., et
al. 2005. The OWL-S editor – a development tool for semantic web Services In The
Semantic Web: Research and Applications (78-92): Springer Berlin / Heidelberg.

ERL, T. 2008. SOA: principles of service design: Prentice Hall.

FACCA, F. M., KOMAZEC, S. & TOMA, I. 2009. WSMX 1.0: a further step toward a
complete semantic execution environment. In: Proceedings of the 6th Annual
European Semantic Web Conference (ESWC2009). 31 May - 4 June. Heraklion,
Greece.

FEIER, C., ROMAN, D., POLLERES, A., DOMINGUE, J., STOLLBERG, M. &
FENSEL, D. 2005. Towards intelligent Web services: the Web Service Modeling
Ontology (WSMO). In: Proceedings of the International Conference on Intelligent
Computing (ICIC). 23-26 August. Hefei, China.

FENSEL, D. & BUSSLER, C. 2002. The Web Service Modeling Framework (WSMF).
Electronic Commerce Research and applications, 1(1).

227

FIELDING, R. T. 2000. Architectural Styles and the Design of Network-based
Software Architectures. University of California, Irvine.

FILHO, O. F. F. & FERREIRA, M. A. G. V. 2009. Semantic Web Services: a RESTful
approach. In: Proceedings of the IADIS International Conference WWW/Internet
2009 Rome, Italy.

FRIEDMAN-HILL, E. 2003. Jess in Action: Java Rule-Based Systems. New York:
Manning Publications Co.

GARCÍA-CASTRO, R., YATSKEVICH, M., SANTOS, C. T. D., WRIGLEY, S. N.,
CABRAL, L., NIXON, L., et al. 2011. The state of semantic technology today –
Overview of the First SEALS Evaluation Campaigns. [Online]. Available from:
http://www.seals-project.eu/news/902-community/132-seals-whitepaper-semantic-
technology. [Accessed: 19 May 2011].

GARCÍA-SANCHEZ, F. 2007. Knowledge Technologies-Based System for Semantic
Web Services Environments. University of Murcia, Spain.

GARCÍA-SÁNCHEZ, F., SABUCEDO, L. Á., MARTÍNEZ-BÉJAR, R., RIFÓN, L. A.,
VALENCIA-GARCÍA, R. & GÓMEZ, J. M. 2011. Applying intelligent agents and
semantic web services in eGovernment environments. Expert Systems, 1-21.

GARCIA-SANCHEZ, F., VALENCIA-GARCIA, R., MARTINEZ-BEJAR, R. &
FERNANDEZ-BREIS, J. T. 2009. An ontology, intelligent agent-based framework for
the provision of semantic web services. Expert Systems with Applications, 36, 3167–
3187.

GERBER, A. J., BARNARD, A. & VAN DER MERWE, A. J. 2007. Towards a
semantic Web layered architecture. In: Proceedings of the 25th conference on
IASTED International Multi-Conference: Software Engineering. February. Innsbruck,
Austria.

GINIGE, A. 2002. Web engineering: managing the complexity of web systems
development. In: Proceedings of the 14th international conference on Software
engineering and knowledge engineering. 15-19 July. Ischia, Italy.

GOMEZ-PEREZ, A. & EUZENAT, J. (Eds.). 2005. The Semantic Web: research and
applications: Springer-Verlag Heidelberg.

GOMEZ-PEREZ, A., GONZALEZ-CABERO, R. & LAMA, M. 2004. ODE SWS: a
framework for designing and composing semantic Web services. Intelligent Systems,
IEEE, 19(4), 24-31.

GOTTSCHALK, K., GRAHAM, S., KREGER, H. & SNELL, J. 2002. Introduction to
web service architecture. IBM Systems Journal, 41(2), 170-177.

http://www.seals-project.eu/news/902-community/132-seals-whitepaper-semantic-technology
http://www.seals-project.eu/news/902-community/132-seals-whitepaper-semantic-technology

228

GREENWOOD, D. & CALISTI, M. 2004. Engineering Web service - agent
integration. In: Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics. 10-13 October. The Hague, Netherlands.

GRONMO, R., SKOGAN, D., SOLHEIM, I. & OLDEVIK, J. 2004. Model-driven Web
services development. In: Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service. 28-31 March. Hong Kong.

GRUBER, T. R. 1993. A translation approach to portable ontologies. Knowledge
Acquisition, 5(2), 199-220.

GU, Q. & LAGO, P. 2007. A stakeholder-driven service life cycle model for SOA. In:
Proceedings of the 2nd international workshop on service oriented software
engineering: in conjunction with the 6th ESEC/FSE joint meeting. Dubrovnik, Croatia.

GUHA, R. 2009. Toward the Intelligent Web Systems. In: Proceedings of the First
International Conference on Computational Intelligence, Communication Systems
and Networks (CICSYN '09).

GÜMÜS, Ö., GÜRCAN, Ö., KARDAS, G., EKINCI, E. & DIKENELLI, O. 2007.
Engineering an MAS Platform for Semantic Service Integration Based on the SWSA.
In MEERSMAN, R. & TARI, Z. (Eds.), Workshops on the move to meaningful
Internet Systems (OTM 2007) (Vol. 4805: 85-94): Springer Berlin / Heidelberg.

GÜRCAN, Ö., KARDAS, G., GÜMÜS, Ö., EKINCI, E. & DIKENELLI, O. 2007. An
MAS Infrastructure for Implementing SWSA Based Semantic Services. In HUANG,
J., KOWALCZYK, R., MAAMAR, Z., MARTIN, D., MÜLLER, I., STOUTENBURG, S.,
et al. (Eds.), Service-Oriented Computing: Agents, Semantics, and Engineering (Vol.
4504: 118-131): Springer Berlin / Heidelberg.

HADLEY, M. 2009. Web Application Description Language. [Online]. Available
from: http://www.w3.org/Submission/wadl/. [Accessed: 14 November 2010].

HASSANZADEH, A., NAMDARIAN, L. & ELAHI, S. B. 2011. Developing a
framework for evaluating service oriented architecture governance (SOAG).
Knowledge-Based Systems.

HEMAYATI, M. S., MOHSENZADEH, M., SEYYEDI, M. A. & YOUSEFIPOUR, A.
2010. A framework for integrating web services and multi-agent systems. In:
Proceedings of the 2nd International Conference on Software Technology and
Engineering (ICSTE). 3-5 October. San Juan, PR

HENDLER, J. 2001. Agents and the semantic Web. IEEE Intelligent Systems, 16(2),
30-37.

HERNANDEZ, R. L. 2007. A flexible model for the semi-automatic location of
services. Universidad Autonoma de Madrid, Madrid, Spain.

HEROLD, M. 2008. WSMX Documentation. Galway, Ireland: Digital Enterprise
Research Institute (DERI).

http://www.w3.org/Submission/wadl/

229

HOFSTEE, E. 2006. Constructing a good dissertation: a practical guide to finishing a
master's, MBA, or PhD on schedule. Johannesburg, South Africa: EPE.

HORRIDGE, M., JUPP, S., MOULTON, G., RECTOR, A., STEVENS, R. & WROE,
C. 2007. A practical guide to building OWL ontologies using Prot´eg´e 4 and CO-
ODE tools: The University Of Manchester.

HORROCKS, B., PARSIA, P., PATEL-SCHNEIDER, P. & HENDLER, J. 2005.
Semantic Web architecture: stack or two towers? In Principles and Practice of
Semantic Web Reasoning (Vol. 3703/2005: 37-41): Springer Berlin / Heidelberg.

HORROCKS, I. 2008. Ontologies and the semantic web. Communications of the
ACM, 51(12), 58-67.

HORROCKS, I. & SATTLER, U. 2002. Description Logics -basics, applications, and
more. [Online]. Available from: http://www.cs.man.ac.uk/~horrocks/Slides/ecai-
handout.pdf. [Accessed: 19 April 2010].

HYVONEN, E. (Ed.). 2002. Semantic Web kick-off in Finland: vision, technologies,
research, and applications. Helsinki: HIIT Publications, 2002-001, Helsinki Institute
for Information Technology (HIIT).

JANEV, V. & VRANES, S. 2010. Applicability assessment of Semantic Web
technologies. Information Processing & Management.

JENNINGS, K. & WOOLDRIDGE, M. 1996. Software Agents. IEEE Review, 17-20.

JENNINGS, N. R. & WOOLDRIDGE, M. 1998. Applications of intelligent agents. In
Agent technology: foundations, applications, and market (3 - 28): Springer-Verlag
New York, Inc.

JOO, J. 2011. Adoption of Semantic Web from the perspective of technology
innovation: A grounded theory approach. International Journal of Human-Computer
Studies, 69(3), 139-154.

JORDAAN, G. D. & LATEGAN, L. O. K. 2010. Modelling as Research Methodology:
SUN PRESS.

KANELLOPOULOS, D. & KOTSIANTIS, S. 2006. Towards intelligent wireless Web
services for tourism. International Journal of Computer Science and Network
Security (IJCNS), 6(7B), 83-90.

KASHYAP, V., BUSSLER, C. & MORAN, M. 2008. The Semantic Web: semantics
for data and services on the Web. Berlin: Springer-Verlag.

KEIDL, M. & KEMPER, A. 2004. Towards context-aware adaptable web services. In:
Proceedings of the 13th International World Wide Web Conference. 17-22May. New
York, USA.

http://www.cs.man.ac.uk/~horrocks/Slides/ecai-handout.pdf
http://www.cs.man.ac.uk/~horrocks/Slides/ecai-handout.pdf

230

KELLY, P., CODDINGTON, P. & WENDELBORN, A. 2006. A simplified approach to
web service development. In: Proceedings of the 2006 Australasian workshops on
Grid computing and e-research - Volume 54. Hobart, Tasmania, Australia.

KERRIGAN, M. 2006. WSMOViz: An Ontology Visualization Approach for WSMO.
In: Proceedings of the 10th International Conference on Information Visualization.

KERRIGAN, M., MOCAN, A., TANLER, M. & FENSEL, D. 2007. The Web Service
Modeling Toolkit (WSMT)- an integrated development environment for Semantic
Web Services. In: Proceedings of the 4th European conference on the Semantic
Web: Research and Applications. Innsbruck, Austria.

KILIAN-KEHR., R. 2008. Service engineering and consumption research roadmap
(White paper): SAP Research.

KIRDA, E., JAZAYERI, M., KERER, C. & SCHRANZ, M. 2001. Experiences in
engineering flexible Web services. Multimedia, IEEE, 8(1), 58-65.

KOIVUNEN, M.-R. & MILLER, E. 2002. W3C Semantic Web activity. Helsinki,
Finland: HIIT Publications, 2002-001, Helsinki Institute for Information Technology
(HIIT).

KONTOGIANNIS, K., LEWIS, G. A. & SMITH, D. B. 2008. A research agenda for
service-oriented architecture. In: Proceedings of the 2nd international workshop on
Systems development in SOA environments. Leipzig, Germany.

KONTOGIANNIS, K., LEWIS, G. A., SMITH, D. B., LITOIU, M., MULLER, H.,
SCHUSTER, S., et al. 2007. The Landscape of Service-Oriented Systems: A
research perspective. In: Proceedings of the International Workshop on Systems
Development in SOA Environments.

KOPECKY, J. & VITVAR, T. 2008. WSMO-Lite: Lowering the Semantic Web
Services Barrier with Modular and Light-Weight Annotations. In: Proceedings of the
IEEE International Conference on Semantic Computing. 4-7 August Santa Clara, CA

KUROPKA, D., TROGER, P., STAAB, S. & MATHIAS, W. (Eds.). 2008. Semantic
Service Provisioning.

LARA, R., POLLERES, A., LAUSEN, H., ROMAN, D., DE BRUIJN, J. & FENSEL, D.
2005. A conceptual comparison between WSMO and OWL-S: DERI.

LARA, R., ROMAN, D., POLLERES, A. & FENSEL, D. 2004. A conceptual
comparison of WSMO and OWL-S. In: Proceedings of the European Conference on
Web Services (ECOWS 2004).

LASSILA, O., VAN HARMELEN, F., HORROCKS, I., HENDLER, J. &
MCGUINNESS, D. L. 2000. The semantic Web and its languages. IEEE Intelligent
Systems, 15(6), 67-73.

231

LAUSEN, J. F. H. 2007. Semantic Annotations for WSDL and XML Schema.
[Online]. Available from: http://www.w3.org/TR/sawsdl/. [Accessed: 18 January
2010].

LAUTENBACHER, F. 2006. A UML profile and transformation rules for semantic web
services (No. 2006-20): Institute of Computer Science, University of Augsburg,
Germany.

LEWIS, D. 2008. Intelligent agents and the Semantic Web: developing an intelligent
Web. [Online]. Available from: http://www.ibm.com/developerworks/web/library/wa-
intelligentage/. [Accessed: 19 June 2009].

LIA, K., ABELA, C. & SCICLUNA, J. 2009. WISE - Workbench for Semantic Web
Services. In: Proceedings of the Third International Conference on Advances in
Semantic Processing (SEMAPRO '09) 11-16 October. Sliema, Malta.

LOSADA, S., RIBAS, J., CONTRERAS, J., BAS, J. L., BELLIDO, S., GÓMEZ, J. M.,
et al. 2005. Mortgage Comparison Service (No. FP6 - 507483): DIP.

LU, J., ZHANG, G. & RUAN, D. (Eds.). 2007. E-Service Intelligence: Methodologies,
Technologies and Applications (Vol. 37): Springer-Verlag Berlin Heidelberg.

MARTIN, D., BURSTEIN, M., HOBBS, J., LASSILA, O., MCDERMOTT, D.,
MCILRAITH, S., et al. 2004. OWL-S: Semantic Markup for Web Services [Online].
Available from: http://www.w3.org/Submission/OWL-S/. [Accessed: 18 June 2009].

MCGUINNESS, D. L. & VAN HARMELEN, F. 2004 OWL Web Ontology Language.
[Online]. Available from: http://www.w3.org/TR/owl-features/. [Accessed: 18
November 2009].

MCILRAITH, S., SON, T. & ZENG, H. 2001. Semantic Web Services. IEEE
Intelligent Systems. Special Issue on the Semantic Web, 16(2), 46 – 53.

MOULIN, C., SBODIO, M. & BETTAHAR, F. 2005. Semantic requirements for
eGovernment services interoperability. In: Proceedings of the International
Workshop on Semantics and Orchestration of eGovernment Processes.
Compiègne, France.

MTSWENI, J., BIERMANN, E. & PRETORIUS, L. 2010. Toward a service creation
framework: a case of intelligent semantic services. In: Proceedings of the 2010
Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists. Bela Bela, South Africa.

NASSAR, M., ANWAR, A., EBERSOLD, S., ELASRI, B., COULETTE, B. &
KRIOUILE, A. 2009. Code generation in VUML profile: A model driven approach. In:
Proceedings of the IEEE/ACS International Conference on Computer Systems and
Applications. 10 -13 May. Rabat, Morocco

NEWCOMER, E. 2004. Understanding Web Services: XML, WSDL, SOAP, and
UDDI: Pearson.

http://www.w3.org/TR/sawsdl/
http://www.ibm.com/developerworks/web/library/wa-intelligentage/
http://www.ibm.com/developerworks/web/library/wa-intelligentage/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/owl-features/

232

NWANA, H. S. 1996. Software Agents: an overview. Knowledge Engineering
Review, 11(3), 1-40.

OBERLE, D., STAAB, S., STUDER, R. & VOLZ, R. 2005. Supporting application
development in the semantic web. ACM Transactions on Internet Technology
(TOIT), 5(2), 328-358.

OBITKO, M. 2007. Translations between ontologies in multi-agent systems,. Czech
Technical University, Prague.

OLIVIER, M. S. 2006. Information Technology Research: a practical guide for
computer science and informatics (2nd ed.). Pretoria, South Africa: Van Schaik.

OMG. 2010a. Model Driven Architecture: the architecture of choice for a changing
world. [Online]. Available from: http://www.omg.org/mda/executive_overview.htm.
[Accessed: 10 February 2011].

OMG. 2010b. OMG Model Driven Architecture. [Online]. Available from:
http://www.omg.org/mda/. [Accessed: 10 February 2010].

PAPAZOGLOU, M. P. 2001. Agent-oriented technology in support of e-business.
Communications of the ACM, 44(4), 71-77.

PAPAZOGLOU, M. P. & VAN DEN HEUVEL, W. J. 2006. Service-oriented design
and development methodology. International Journal of Web Engineering and
Technology, 2(4), 412 - 442.

PASCHKE, A. & BICHLER, M. 2008. Knowledge representation concepts for
automated SLA management. Decision Support Systems, 46(1), 187-205.

PAUTASSO, C., ZIMMERMANN, O. & LEYMANN, F. 2008. RESTful Web Services
vs. “Big” Web Services: making the right architectural decision. In: Proceedings of
the WWW 2008. 21-25 April. Beijing, China.

PROTOGEROS, N. 2008. Agent and Web services technologies in Virtual
Enterprises.

QAFMOLLA, X. & CUONG, N. V. 2010. Automation of Web services development
using model driven techniques. In: Proceedings of the 2nd International Conference
on Computer and Automation Engineering (ICCAE). 26-28 February. Singapore

REBSTOCK, M. 2009. Technical opinion: semantic ambiguity. Communications of
the ACM, 52(5), 145-146.

RICHARDSON, L. & RUBY, S. 2007. RESTful Web Services. Sebastopol, USA:
O’Reilly Media.

http://www.omg.org/mda/executive_overview.htm
http://www.omg.org/mda/

233

RINGELSTEIN, C., FRANZ, T. & STAAB, S. 2007. The Process of Semantic
Annotation of Web Services. In CARDOSO, J. (Ed.), Semantic Web Services:
theory, tools, and applications (217-239). Germany: IGI Global.

RIVIÈRES, J. D. & WIEGAND, J. 2004. Eclipse: a platform for integrating
development tools. IBM Systems Journal, 43(2), 371-383.

ROMAN, D., DE BRUIJN, J., MOCAN, A., LAUSEN, H., DOMINGUE, J., BUSSLER,
C., et al. 2006. WWW: WSMO, WSML, and WSMX in a nutshell. In: Proceedings of
the 1st Asian Semantic Web Conference 3-7 September. Beijing, China.

SABOU, M., WROE, C., GOBLE, C. & STUCKENSCHMIDT, H. 2005. Learning
domain ontologies for semantic Web service descriptions. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(4), 340-365.

SASSEN, A. & MACMILLAN, C. 2005. The service engineering area: an overview of
its current state and a vision of its future. Belgium: EUROPEAN COMMISSION (EC).

SCHAAF, M. & MAURER, F. 2001. Integrating Java and CORBA: a programmer's
perspective. IEEE Internet Computing, 5(1), 72-78.

SHEN, W., LI, Y., QI, H. W., S. & GHENNIWA, H. 2005. Implementing collaborative
manufacturing with intelligent Web services. In: Proceedings of the Fifth International
Conference on Computer and Information Technology (CIT'05)

SHENG, Q. Z., YU, J., SEGEV, A. & LIAO, K. 2010. Techniques on developing
context-aware web services. International Journal of Web Information Systems, 6(3),
185-202.

SIMULA, K. 2007. Intelligent software agent framework for customized mobile
services. In: Proceedings of the 4th Middleware Doctoral Symposium. Newport
Beach, California.

SIORPAES, K. & SIMPERL, E. 2010. Human Intelligence in the Process of Semantic
Content Creation. World Wide Web (WWW) Journal, 13(1-2), 33-59.

SMITH, M. K., WELTY, C. & MCGUINNESS, D. L. 2004. OWL Web Ontology
Language guide. [Online]. Available from: http://www.w3.org/TR/2004/REC-owl-
guide-20040210/#OwlVarieties. [Accessed: 03 October 2009].

SOE-TSYR, Y. & KWEI-JAY, L. 2003. WISE-building simple intelligence into Web
services. In: Proceedings of the IEEE/WIC International Conference on Web
Intelligence (ICWI03). 13-17 October. Halifax, Canada.

SOMMERVILLE, I. 2006. Software Engineering: update (8th ed.). Amsterdam,
Netherlands: Addison-Wesley

SRINIVASAN, N., PAOLUCCI, M. & SYCARA, K. 2005. CODE: a development
environment for OWL-S Web services. (No. Technical Report CMU-RI-TR-05-48):
Robotics Institute, Carnegie Mellon University.

http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties

234

SRINIVASAN, N., PAOLUCCI, M. & SYCARA, K. 2006. Semantic Web Service
Discovery in the OWL-S IDE. In: Proceedings of the 39th Annual Hawaii International
Conference on System Sciences 4-7 January. Kauai, Hawaii, USA.

STAHL, T. & VOLTER, M. 2006. Model-driven software development: technology,
engineering, management: John Wiley & Sons, Ltd.

STEIN., S. 2008. Flexible service provisioning in multi-agent systems. Unpublished
Thesis, University of Southampton.

STOJANOVIC, Z. & DAHANAYAKE, A. (Eds.). 2005. Service-Oriented Software
System Engineering: challenges and practices. Singapore: Idea Group Publishing.

STOLLBERG, M. 2006. State of Affairs in Semantic Web Services. Canadian
Semantic Web Symposium [Online]. Available from:
http://www.wsmo.org/TR/d17/resources/200606-CSWWS2006/SWStutorial-
CSWWS2006.pdf. [Accessed: 15 September 2010].

STOLLBERG, M., HEPP, M. & FENSEL, D. 2010. Semantics for Service-Oriented
Architectures. In GRIFFITHS, N. & CHAO, K.-M. (Eds.), Agent-Based Service-
Oriented Computing, : Springer.

STOLLBERG, M., LAUSEN, H., ARROYO, S., HERZOG, R., SMOLLE, P. &
FENSEL, D. 2004. FRED whitepaper: an agent platform for the semantic Web.
Ireland: DERI-Digital Enterprise Research Institute.

STUDER, R., GRIMM, S. & ABECKER, A. (Eds.). 2007. Semantic web services:
concepts, technologies, and applications: Springer-Verlag Berlin.

SUH, W. 2005. Web engineering: principles and techniques. Retrieved 04 November
2010, from
http://books.google.com/books?id=MPQhKGjI6tUC&pg=PA58&source=gbs_selected
_pages&cad=3#v=onepage&q&f=false.

SUN MICROSYSTEMS, I. 2009a. The Java API for XML-Based Web Services (JAX-
WS) 2.2: Sun Microsystems, Inc.

SUN MICROSYSTEMS, I. 2009b. JAX-RS: Java™ API for RESTful Web Services.

SUN, W., LI, S., ZHANG, D. & YAN, Y. 2009. A Model-Driven Reverse Engineering
Approach for Semantic Web Services Composition. In: Proceedings of the World
Congress on Software Engineering (WCSE '09). Xiamen

SUN, Z. & LAU, S. K. 2007. Customer experience management in e-services
Studies in Computational Intelligence (SCI), 37, 365-388.

THO, Q. T., FONG, A. C. M. & HUI, S. C. 2007. A scholarly semantic web system for
advanced search functions. Online Information Review, 31(3), 353-364.

http://www.wsmo.org/TR/d17/resources/200606-CSWWS2006/SWStutorial-CSWWS2006.pdf
http://www.wsmo.org/TR/d17/resources/200606-CSWWS2006/SWStutorial-CSWWS2006.pdf
http://books.google.com/books?id=MPQhKGjI6tUC&pg=PA58&source=gbs_selected_pages&cad=3#v=onepage&q&f=false
http://books.google.com/books?id=MPQhKGjI6tUC&pg=PA58&source=gbs_selected_pages&cad=3#v=onepage&q&f=false

235

TOCH, E., REINHARTZ-BERGER, I. & DORI, D. 2011. Humans, semantic services
and similarity: A user study of semantic Web services matching and composition.
Web Semantics: Science, Services and Agents on the World Wide Web, 9(1), 16-28.

TORRES, V., PELECHANO, V. & PASTOR, Ó. 2006. Building Semantic Web
Services based on a model driven Web engineering method In Advances in
Conceptual Modeling - Theory and Practice (Vol. 4231/2006: 173-182): Springer
Berlin / Heidelberg.

TSAI, W. T. 2005. Service-oriented system engineering: a new paradigm. In:
Proceedings of the IEEE International Workshop on Service-Oriented System
Engineering. 20-21 October. Beijing, China.

USMAN, A. M., NADEEM, M., ANSARI, Z. A. & RAZA, S. 2006. Multi-agent Based
Semantic E-government Web Service Architecture Using Extended WSDL. In:
Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology Workshops. Hong Kong

VAN DEN HEUVEL, W. J., ZIMMERMANN, O., LEYMANN, F., LAGO, P.,
SCHIEFERDECKER, I., ZDUN, U., et al. 2009. Software service engineering: tenets
and challenges. In: Proceedings of the ICSE Workshop on principles of engineering
service oriented systems,.

VITVAR, T., KOPECKY, J. & FENSEL, D. 2009. WSMO-Lite: a lightweight semantic
descriptions for services on the Web. [Online]. Available from: http://cms-
wg.sti2.org/TR/d11/v0.2/20090310/. [Accessed: 12 August 2010].

W3C. 2005. W3C Extensible Markup Language (XML). [Online]. Available from:
http://www.w3.org/XML/. [Accessed: 20 October 2009].

WAHID, F. 2007. Using the technology adoption model to analyze Internet adoption
and use among men and women in Indonesia. The Electronic Journal on Information
Systems in Developing Countries, 32(6), 1-8.

WANG, X., KRÄMER, B. J., ZHAO, Y. & HALANG, W. A. 2007. Representation and
discovery of intelligent e-services. Studies in Computational Intelligence (SCI), 37,
233-252.

WEBODE. 2003. WebODE ontology engineering platform. [Online]. Available from:
http://webode.dia.fi.upm.es/WebODEWeb/index.html. [Accessed: 2 April 2009].

WHITE, S. A. 2004. Introduction to BPMN. IBM Corporation,

WRIGLEY, S. N., REINHARD, D., ELBEDWEIHY, K., BERNSTEIN, A. &
CIRAVEGNA, F. 2011. Methodology and campaign design for the evaluation of
semantic search tools. In: Proceedings of the 3rd International Semantic Search
Workshop. Raleigh, North Carolina.

XIAOFENG, Y., JUN, H., YAN, Z., TIAN, Z., LINZHANG, W., JIANHUA, Z., et al.
2006. A Model Driven Development Framework for Enterprise Web Services. In:

http://cms-wg.sti2.org/TR/d11/v0.2/20090310/
http://cms-wg.sti2.org/TR/d11/v0.2/20090310/
http://www.w3.org/XML/
http://webode.dia.fi.upm.es/WebODEWeb/index.html

236

Proceedings of the 10th IEEE International Enterprise Distributed Object Computing
Conference. October. Hong Kong.

YE, R. & YANG, X. 2009. Multi-Agent Web Services Aggregation Driven by
Requirement in JADE. In: Proceedings of the International Symposium on Computer
Network and Multimedia Technology. Wuhan

YEGANEH, S. H., HABIBI, J., ROSTAMI, H. & ABOLHASSANI, H. 2010. Semantic
web service composition testbed. Computers & Electrical Engineering, 36(5), 805-
817.

YU, L. 2007. Introduction to the Semantic Web and Semantic Web Services. New
York: Chapman & Hall/CRC.

YU, W. D. & ONG, C. H. 2009. A SOA-based software engineering design approach
in service engineering. In: Proceedings of the IEEE International Conference one-
Business Engineering.

ZHANG, L., ZHANG, J. & CAI, H. 2007. Services Computing: Springer Heidelberg.

ZHU, H. & SHAN, L. 2005. Agent-oriented modelling and specification of Web
services. In: Proceedings of the 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems. 2-4 February. Sedona, Arizona.

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	I. LIST OF FIGURES
	II. LIST OF TABLES
	III. LIST OF LISTINGS
	IV. LIST OF ABBREVIATIONS
	1. CHAPTER 1: Proposal
	1.1. INTRODUCTION
	1.2. PROBLEM STATEMENT
	1.3. RESEARCH QUESTIONS
	1.4. RESEARCH OBJECTIVES
	1.5. BENEFITS OF THE STUDY
	1.5.1. PRIMARY RESEARCH CONTRIBUTIONS
	1.5.2. SECONDARY RESEARCH CONTRIBUTIONS
	1.6. RESEARCH METHODOLOGY
	1.7. RESEARCH SCOPE AND LIMITATIONS
	1.8. PUBLICATIONS
	1.9. THESIS OUTLINE

	2. CHAPTER 2: Service-Oriented Computing
	2.
	2.1. INTRODUCTION
	2.2. WEB SERVICES
	2.2.1. RPC WEB SERVICES
	2.2.2. RESTFUL WEB SERVICES
	2.3. SEMANTIC WEB
	2.4. SEMANTIC WEB SERVICES
	2.5. RELATED WORK
	2.6. SUMMARY

	3. CHAPTER 3: Service-oriented Software Engineering
	3.
	3.1. INTRODUCTION
	3.2. COMPARISON: SE, WE, AND SOSE
	3.3. SOSE LIFE CYCLE
	3.3.1. Modelling
	3.3.2. Development
	3.3.3. Deployment
	3.3.4. Publishing
	3.4. SUMMARY

	4. CHAPTER 4: Semantic Service Models and Related Tools
	4.
	4.1. INTRODUCTION
	4.2. SWS DESCRIPTIONS
	4.2.1. OWL-S
	4.2.1.1. OWL-S Tools
	4.2.2. WSMO
	4.2.2.1. WSMO Tools
	4.3. SWS ANNOTATIONS
	4.3.1. WSDL-S
	4.3.2. SAWSDL
	4.3.3. WSMO-Lite
	4.4. SUMMARY

	5. CHAPTER 5: IsS Definition and Basic Building Blocks
	5.
	5.1. INTRODUCTION
	5.2. DEFINITION
	5.3. FUNDAMENTAL BUILDING BLOCKS
	5.3.1. Syntactic Descriptions
	5.3.2. Semantic Descriptions
	5.3.3. Domain ontologies
	5.3.4. Intelligence
	5.4. SOFTWARE AGENTS
	5.5. SUMMARY

	6. CHAPTER 6: Proposed iSemServ Framework
	6.
	6.1. INTRODUCTION
	6.2. DESIGN PRINCIPLES
	6.2.1. Simplification
	6.2.2. Acceleration
	6.2.3. Intelligence
	6.3. PROPOSED MDE METHODOLOGY
	6.4. THE iSEMSERV FRAMEWORK
	6.4.1. Services Layer
	6.4.2. Semantics Layer
	6.4.3. Intelligence Layer
	6.5. FUNDAMENTAL COMPONENTS
	6.5.1. Syntactic Descriptions
	6.5.2. Semantic Descriptions
	6.5.3. Service Intelligence
	6.6. SUMMARY

	7. CHAPTER 7: iSemServ Framework Implementation
	7.
	7.1. INTRODUCTION
	7.2. iSEMSERV TECHNICAL ARCHITECTURE
	7.2.1. Technologies Overview
	7.2.1.1. Services layer
	7.2.1.2. Semantics layer
	7.2.1.3. Intelligence layer
	7.2.2. Implementation Platform: Eclipse
	7.3. iSEMSERV IMPLEMENTATION
	7.3.1. Services Layer
	7.3.1.1. Service Modeller
	7.3.1.2. iSemServ Model2Code Transformer
	7.3.2. Semantics Layer
	7.3.2.1. iSemServ Semantics Model Selector
	7.3.2.2. iSemServ Semantics Descriptor
	7.3.2.3. Semantics Editors
	7.3.2.4. Visualization and Deployment
	7.3.3. Intelligence Layer
	7.3.4. Front-end
	7.4. SUMMARY

	8. CHAPTER 8: Evaluation and Results
	8.
	8.1. INTRODUCTION
	8.2. SCENARIO-BASED EVALUATIONS
	8.2.1. Online Multimedia Trading
	8.2.1.1. Service models
	8.2.1.2. Syntactic Web services
	8.2.1.3. Syntactic descriptions
	8.2.1.4. Semantic descriptions
	8.2.1.5. Service agents
	8.2.1.6. User interfaces Generation
	8.3. SCENARIO EVALUATION DISCUSSIONS
	8.4. COMPARATIVE ANALYSIS
	8.4.1. Comparison Criteria
	8.4.2. Qualitative Comparison
	8.4.3. Qualitative Comparison
	8.5. SCALABILITY AND PERFORMANCE
	8.6. SUMMARY

	9. CHAPTER 9: Summary, Conclusion, and Further Research
	9.
	9.1. INTRODUCTION
	9.2. RESEARCH SUMMARY
	9.3. RESEARCH QUESTIONS
	9.4. RESEARCH CONTRIBUTIONS
	9.5. RESEARCH LIMITATIONS
	9.6. FURTHER RESEARCH
	9.6.1. Improving Code-Generation Techniques
	9.6.2. Extending the Multiple Language Support Feature
	9.6.3. Enhancing the Intelligence Layer

	10. APPENDICES
	1.
	APPENDIX A: ABSTRACTS OF PUBLICATIONS
	APPENDIX B: TRANSFORMATION TEMPLATES

	11. REFERENCES

