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ABSTRACT 
 
Many concrete problems, ranging from Portfolio selection to Water resource 
management, may be cast into a multiobjective programming framework. The 
simplistic way of superseding blindly conflictual goals by one objective function let no 
chance to the model but to churn out meaningless outcomes. Hence interest of 
discussing ways for tackling Multiobjective Programming Problems. More than this, 
in many real-life situations, uncertainty and imprecision are in the state of affairs.  
In this dissertation we discuss ways for solving Multiobjective Programming 
Problems with fixed and fuzzy coefficients. No preference, a priori, a posteriori, 
interactive and metaheuristic methods are discussed for the deterministic case. As 
far as the fuzzy case is concerned, two approaches based respectively on possibility 
measures and on Embedding Theorem for fuzzy numbers are described. A case 
study is also carried out for the sake of illustration. We end up with some concluding 
remarks along with lines for further development, in this field. 
 
Key words: Multiobjective Programming, Fuzzy set, Pareto optimal solution, 
possibility measures, Embedding Theorem. 
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INTRODUCTION 

Optimization is a very old and classical area which is of high concern to many 
disciplines [3], [15]. 
Engineering as well as Management, Politics as well as Medicine, Artificial 
Intelligence as well as Operations Research and many other fields are in one way or 
another concerned with optimization of designs, decisions, structures, procedures or 
information processes. 
 
In a deterministic environment using a single well-defined criterion for evaluating 
potential alternatives, the optimal decision can be obtained through user-friendly 
Mathematical Programming software. 
Optimization procedure is, in this case, a batch-type process assuming a closed 
model in which all information is available and in which the Decision Maker could 
provide and process all information simultaneously. 
 
There are several good books to which the reader may refer for a comprehensive 
treatment of Mathematical Programming [14], [30]. 
More detailed accounts of this subject including optimization software may be found 
in [50]. 
In a turbulent environment involving several conflicting objective functions and 
intrinsic or informational imprecision, the optimization is not that simple [35], [50]. 
 
In this dissertation we consider the challenging task of pondering conflicting goals in 
an  optimization setting. We also address the issue of incorporating fuzziness in a 
Multiobjective  Mathematical Programming framework. 
From this discussion we have obtained a mini-Decision Support System for helping 
people facing problems that may be cast into a deterministic or fuzzy  multiobjective 
programming framework. 
 
The dissertation is organized as follows. 
For the presentation to be somewhat self-contained, we provide basic notions of 
Mathematical Programming and Fuzzy set Theory in Chapter 1. 
Chapter 2 is devoted to analysis of Deterministic Multiobjective Programming 
Problems along with methods for solving them. 
In Chapter 3 we discuss Multiobjective Programming Problems under fuzziness. 
Ample room is allotted to two ways for solving a multiobjective program with fuzzy 
parameters. The first way is based on a correspondence between fuzzy numbers 
and their �-level sets [54]. The second relies heavily on possibility measures of 
uncertainty [16].  
A mini Decision Support System aiming at helping a decision maker facing a 
problem that may be cast into a multiobjective programming setting is presented in 
Chapter 4 along with a case study related to the Rwandan socio-economic tissue 
The dissertation ends with some concluding remarks including lines for further 
development in the field of Multiobjective Programming. 
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CHAPTER 1:  PRELIMINARIES  

 
In this dissertation we will discuss, among other things, how important ideas form 
Mathematical Programming and Fuzzy set Theory can be weaved synergically in 
order to address deterministic Multiobjective Programming Problems as well as 
multiobjective programming under uncertainty. 
Therefore we find it relevant to introduce, in this chapter, basic concepts of 
Mathematical Programming and Fuzzy set Theory that are needed in the sequel. 
 

1.1 Mathematical Programming  
 
1.1.1 Preamble 
 
Mathematical Programming is the field of Applied Mathematics that studies problems 
of optimization of a real-valued function over a domain given by mathematical 
relations. 
Mathematical Programming has been successfully used for years in a variety of 
problems related to hard systems in which the structure, relations and behavior are 
well-defined and quantifiable. 
In this section we’ll briefly discuss basic ideas of Mathematical Programming that are 
needed in subsequent developments. 
 
1.1.2 Problem formulation 
 
A mathematical program is a problem of the type: 
 

(P�) �min  	
��           
�
�� � 0 ;         � � � � �1, … , ��,� 
 
where f and 
� are real-valued functions defined on ��. 
In the sequel the set of feasible solutions of (P�) is denoted by X. That is : 

 
X= {� � ��/ 
�
�� � 0 ;  � � � � �1, . . , ���. 

 
If there exists �" � # such that  
�
�"� � 0, then  the constraint  
�
�� � 0 is said to 

be saturated at �". 
 
A particular case of greatest interest, is when f and 
� are linear functions [30], [36]. 
In this case (P�) reads: 

                                      
P$�  � min %� &� � '� ( 0 �  
 
where c � ��,  b� �) and A is a nonsingular  m x n matrix. 
P$� is merely called linear program. 
In what follows, we are going to discuss the main mathematical problems related to 
(P�) and 
P$�. Namely, the existence of a solution, the eventual unicity of this solution 
and the construction of such a solution.  



3 

 

1.1.3 Existence and unicity of a solution of a mathematical program 
 
Theorem 1.1 (Weierstrass) 
 
Consider (P�) and assume that f is  continuous . Suppose also that X is compact. 
Then (P�)  has an optimal solution �*. 
 
Proof   
 Let  m � inf               /�0 �	
���.  Then there exists a sequence �x:�;�< of elements of X such that:  f
x:� A m.  Since X is  compact, there exists a sub-sequence ��B�B�C (LD <� which 
converges to  �*; 
Since f is continuous, we have f(�B)A f
�*�. We can therefore write: 

  � � lim;EF 	
�;� �  limBEFB�C 	
�B� � f
�*� 

 
Since f(�*� G H∞, we have m > - ∞ and J� � #: f
�*� = m ≤ f(x); this means that �* is 
a solution of 
P��. 
 
Remark 1.1 
 
It is well known (see e.g [3], [9]) that if f is strictly convex, then the solution of (K�) is 
unique. 
For more details on these matters, the reader may consult [1], [10]. 
 
1.1.4 Necessary optimality conditions 
 
In what flows, we assume that functions f and 
�  (i=1,…,m) are differentiable. We 
also suppose that the feasible set X is not empty. 
 
Definition 1.1 (Admissible curve at �") 
 
If �" � # is a local optimum of (K�), then f(x) cannot decrease when x describes an 
arc of curve L starting at �" and contained in the feasible set X. 
Such an arc of curve is called admissible at �".  
It will be defined by a differentiable function: 
 
                                      M N � A �� 
                                            O P  M
O� � 
M�
O�, M$
O�, … , M�
O�� 
verifiying the following conditions: 
 

(a) M
0�=�";                                                          
(b) for sufficiently small  O > 0, M
O� � #. 

 
Definition 1.2 (Admissible direction at �" ) 
 
An admissible direction at �" is a vector   
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Q � RSRT 
0� � 
RSURT 
0�, RSVRT 
0�, … , RSWRT 
0��X, 

 
which is tangential to an arc of  curve  M
O� admissible at  �".                                
Before proceeding further we need  the following notation. 
 
Notation 

 YZR  denotes the cone of all admissible directions at x"; that is 
 YZR=� Q | \
�X
�"�. y � 0          i � 1, … , m� �" stands for the set of indices of constraints saturated at �" ; that is �"= {i� � /  
�
�"� � 0}      

G = �Q | \
�X
�"�. y � 0  J �^�"�. 
 
Lemma 1.1 YZR  D G  
 
This result derives trivially from the definition of  YZR  and G as a matter of fact 

 �" D {1,…, m} 
 
1.1.5 Constraint qualification 
 
We say that the domain X defined by constraints 
�
�� � 0 � � � satisfies the 
hypothesis of constraint qualification in �" � #  if and only if 

          
                                   cl (YZR �= _                                                                          
QC� 

 
where  cl  stands for closure.  
 
Obviously, the direct verification of (QC) might be difficult in practice. This is why one 
has looked for sufficient conditions for (QC) to hold. The most important results in 
this regards are collected in the following lemma, the proof of these results may be 
found in [37]. 
 
Lemma 1.2 
 
For  
bY� to hold at every point �^#,  it is sufficient that one of the following  
conditions holds: 
 

(a)    all the functions 
� are linear, 
(b)    all the functions 
� are convex and # has nonempty interior. 

 
Lemma 1.3 
 
For (QC) to hold at a point �" � #, it is sufficient that : 

(c) the gradients c
�
�"�  (�^�") are linearly   independent. 
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1.1.6 Sufficient Optimality conditions 
Consider again (K�) and define the Lagrangian of (K�) as follows: 

 
L(x,d) = f(x) + ∑ d�
���f (x). 

 

Where d� � � (d� i=1,…,m are called Lagrangian multiplicators) 
 
Definition 1.3 
 

Let �g  � # and  dg ( 0.  We say that (�g,dg) is a saddle-point of L(x,d) if: 
L((�g,d� � h(�g,dg) ≤ L(x,dg),  J � # , J d ( 0. 
 
Theorem 1.2 
 

Let  �g � # and  dg ( 0. 
�g , dg� is a saddle-point  for h
�, d� if and only if:  
 

(a)  h
�g, dg�  =min/�0   h
�, dg�                     

(b)  
�
�g� � 0    J  �^� 

 (c) dg�
�
�g� � 0       J  �^�. 

Proof  

(1) If 
�g , dg� is a saddle-point of L
x, λ�, then (a) must be true.  

On the other hand, we have 
 
                                          Jd ( 0            h(�g,dg) ≥ L(�g,d�, 
hence 
                                           f(�g� + ∑ dg�
�
�g���f ( f(�g� + ∑ d�
�
�g���f , 

 
therefore 

                                       Jd ≥ 0:   ∑  jd� H dg�k
���f 
�g� �  0.                                   (*) 
 

If for some subscript i, (b) does not hold, then we can always choose d�> 0 
sufficiently large so that (*)  does not hold (contradiction). 
Hence (b) is should be true. 

Finally, for d � 0 , (*)  implies ∑  dg�
���f 
�g� (  0 , but  dg� ≥ 0 and 
�
�g� � 0  implies  ∑  dg�
���f 
�g� �  0. 
 

Hence  ∑  dg�
���f 
�g� �  0. 

This last relation   implies  dg�
�
�g� � 0   ( J � � �) and (c) is proved.  
 
(2)  Conversely: assume the conditions (a), (b) and (c) hold true. 
 
a�  l  hj�g , dgk � hj�, dgk    J  � � #.  

 

On the other hand  (c) m  hj�g , dgk � 	
�g�.  
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Finally,  
  

                                  h
�g , d� � 	
�g� n ∑ d� 
�
�g� � 	
�g� �  hj�g , dgk      ��f Jd ( 0. 

Hence  
                                  h
�g , d� � hj�g, dgk � h
�, dg�                J  d ( 0 opq J� � # ,  

 
which completes the proof. 

 
Theorem 1.3 
 

If  j�g , dgk is a saddle-point of L
�, d� , then �g  is a global optimum of (K$). 

 
Proof 
Condition (a) of the preceding theorem implies  
 	
�� n r dst 
�
�g� � 	
�� n r dst 
�
��     ��f   J � � #.   ��f  

 
On other hand, by (c) we have:   

 
                                  dst 
�
�g� � 0   J� � �.   
 
Hence 
                                 	
�� � 	
�� n ∑ dst 
�
��     
J � � #�   ��f   
 
and since dg ( 0,   we have , ∑ dst 
�
�� � 0   
J � � #�   ��f and therefore 

 
                                 	
�g� � 	
��       J � � #, as desired. 
 
1.1.7 Algorithms for solving  Mathematical Programming Problems 
 
In this section we are going to describe the simplex method, which is a technique for 
solving a linear program. We also present the gradient projection method which is a 
scheme for solving a nonlinear program. 
For other methods for linear programming we refer the readers to [25] and [26] 
where interior-point and ellipsoid methods are discussed. 
As far as nonlinear programming problems are concerned, there is a plethora of 
techniques for solving them (see e.g. [39], [53]). 
  
1.1.7.1 Simplex method 
 
Consider the linear program (K$� and assume that constraints are in the form of 
equalities after (eventually) slack variables have been added. 
Then (K$� takes the following form: 

                                                        (Pu� � min %�&� � '� ( 0 � 
 
where A is a m’ x n’ matrix of rank m’, b� �)v  and c� ��v. 
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A basis B for this program is a m’ x m’ matrix such that  det Bw 0. 
We assume, without loss of generality, that B is obtained by the m’ first columns of 
the matrix A. 
A basic solution corresponding to B is a solution of the form: 

 
(�x, 0, … ,0� � y�v  

 
where  �x=z{�' �  y)v. 
 
In this dissertation I(B) stands for the indices of columns of B  
( here I(B)= {1,2,…,m”}). 
Given a basis B we define |" and |} 
 |" = ∑ %�'���f
x� , 

 |}=  ∑ %�o�}��f
x� . 

 
We are now in a position to describe the simplex method [14]. 
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                                         Yes                                                                   
 
                                                                         No 
 
 
 
            
                                                                                    No                                                           
 
                                                                                              Yes                                           No 
 No 
                                                                                       

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 1.1: Flowchart for the simplex method for a min linear program 

 
 
 
 
 
 

|} - %} ≤ 0   Jj 

Solution of (Ku� is infinite 

Make a change of basis from B to B’ 

B=B’ 

Start 

Read A, b, 
c 

=  , where  is the initial basis 

|}   
~ � 1, … , ��Compute  and |}  
~ � 1, … , �� 
 

Print “the basis solution  
associated to ”is optimal  and      

x* = (�x, 0, … ,0� 

Choose k Z: H C: �   maxZ�{C��"
 Z� H c���  

 

o�; ≤ 0  J � 

STOP 

 
 
 

 

Choose  � �  ����� � minaikG0 ����� 
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Remarks 

•  For the formula of change of basis, the reader may consult [14]. 
• For a max problem, the test |} H %} � 0   J~ should be replaced  by 

 |} H %} ( 0   J~. 
• k should be chosen so that  Z: H c:  � min
Z� H c��  ��{����              .     

       
• Other approaches for solving linear programming problems include the Karmarkar 

method [25] and the Khachiyan algorithm [21]. 
  
1.1.7.2  Gradient projection method  

 
Here we consider the mathematical program of the form: 
 

(��)� ��p 	
��                                   o�� �  '�                        � �  ��  o�� �  '�                        � � �$   � � ��.                                     
�      

   
The gradient method for this problem proceeds as follows: 
 

(a) At step k=0, a vector  �" satisfying the constraint of the problem is chosen. 
 

(b) At the current step k we have  �;.  Find the set �"
�;� = {k� � /  
;
�"� � 0}      

Set h"= �"
�;�. 
 

(c) Let &" be the matrix whose rows correspond to the constraints i� h". 
Compute the projection matrix  
 K"= I−&"X . �&"&"X�{� . &"  where I is identity matrix and put: 

 Q; = −K"\	
�;� 
If  Q; � 0 go to (e). 
 

(d) Compute �)Z/= max {�/�; + � Q; � #}  and put: 
 
 �;�� ��%� ��o�  f(�;���= min"� � ¡¢£  min�f
�;  n  � Q;��    
 
Set  k� ¤ n 1 and return to (b). 
 

(e) Let  u= −&"X . �&"&"X�{�. &".\	
�;�. 
 
If  u ≥ 0, print:  �; solution of (P¥) go to (f).  
Otherwise let �� be the most negative component of u. 

Set h" � h" H ��� and return to (c). 
(f)  END. 

It has been proved [1] that if u≥0 then  �; is optimal for (K¥). 
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1.2 Fuzzy set Theory 
 
1.2.1 Preamble 
 
Although Probability Theory claims to cope with uncertainty, there is a qualitatively 
different kind of imprecision that is not covered by probabilistic apparatus. Namely: 
inexactness, ill-definedness, vagueness. 
Situations where doubt arises about the exactness of concepts, correctness of 
statements and judgments, degree of credibility, have little to do with occurrence of 
events, the back-bone of Probability Theory. 
It turns out that Fuzzy set Theory [29], [55], [56] offers a proper framework for 
coming to grips with the above mentioned non-stochastic imprecision. 
The following subsection introduce basic notions of Fuzzy set Theory that we  need 
in subsequent discussions.   
 
1.2.2 Fuzzy set 
 
The main idea behind a fuzzy set is that of gradual membership to a set without 
sharp boundary. 
This idea is in tune with human representation of reality that is more nuanced than 
clear-cut.  
Some philosophical related issues ranging from ontological level to application level 
via epistemological level may be found elsewhere [47]. 
 
In a fuzzy set, the membership degree of an element is expressed by any real 
number from 0 to 1 rather than the limiting extremes. 
More formally, a fuzzy set of a set Aw ¦ is characterized by a membership function: 
 
                                                   §: A E �0,1�. 
 
In what follows a fuzzy set will be identified with its membership function.  
Moreover, for our purposes, we restrict ourselves to fuzzy sets of the real line �. 
 
1.2.3 Some notions related to fuzzy sets of � 
 

• The support of a fuzzy set § is the crisp set denoted  by supp (§) and defined as 

follows: 

 

supp 
µ� �  �� � � | µ
�� G 0�¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ . 

 

• The kernel of a fuzzy set § is the crisp set denoted by Ker (§) and defined as follows: 

 

Ker 
µ� �  �� � � | µ
�� � 1�. 

 

• A fuzzy set § is said to be normal if Ker 
§� w  ©. 
 

• The �-cut or �-level set of a fuzzy set § is the crisp set  §  defined as follows: §  � �� � � | §
�� ( ��. 



11 

 

• The strict  �-level set of a fuzzy set   §, in symbol § ª , is  defined as follows: 

 

                                      § ª= {x � � | §
�� G ��. 

 

• A fuzzy set § is said to be convex if §
��is a quasi-concave function. 

 

• A fuzzy number is a normal and convex fuzzy set of �.       
 

A fuzzy number is well suited for representing a vague datum �16�. 
For instance the vague datum: “close to five” can be represented by the fuzzy 
number § as in Fig 2. 
 
 
 
 
 
     
                                        0                                       4          5           6 

 
Figure 1.2: Membership function of the vague datum: “close to 5”. 

 
1.2.4 Properties of �-level sets 
 

• For a fuzzy number §, the following property holds: 
 

      If  0<� � ¬ � 1, then §­ ® § . 

 
• Let § be a normal fuzzy set of �. A family of subsets of � , ¯µ

α
°α � 
0,1�± is called a 

set representation of §, if and only if: 

 
i� 0² � � ¬ ² 1 l µ
β

®  µ
α
 

 

            
ii� Jt � �, µ
t� �Sup³αIµ
α
µα � 
0,1�¶ 

 
where ΙP stands for the characteristic function of Ρ, i.e 
 

                                        ΙP  
x� �  ³ 1 if x � Ρ     0 otherwise.� 
 
 
Theorem 1.4  
 
Let § be a fuzzy number. Then �§ |� � 
0,1��  and  �§ ª |� � 
0,1�� are set 

representation of §. 
 
 
 

  

1 

x 

§
�� 
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Proof 
 
Obviously µ

α
 and µ

αª are not empty for all α � 
0,1� and 0² α � β ² 1 l µ
β

®  µ
α
 and 

µ»¼ ®  µ½ª  

Let t � R   be arbitrary. We want to show that 
 µ
t� � sup�αIµÁ 
t�/α � 
0,1��  and 

 
                                         µ
t� ( sup�αIµÁª 
t�/α � 
0,1�� is valid. 

 
For abbreviation, define γ Ã  µ
t�. If γ � 0,  the first assertion is obvious.  
If  γ G 0, then t � µÄ{Å
t� is valid for ε G 0. This implies  

 
                                          (γ H ε�IÄ{Å
t� �  γ H ε 

 
for all Ç G 0, and the  first assertion follows. 
For all � � 
0,1� we have 

                                         �ÈÉª 
��=Ê1,   �	 � � 
0, Ë�0, �	 � � 
Ë, 1�.� 
This implies 

 

                                         ��ÈÉª 
�� � Ê�, �	 � � 
0, Ë�0, �	 � � 
Ë, 1��  ,   
and 

  
                                         ��ÈÉª 
�� � Ë�ÌÉª 
�� � Ë � §
��.    

 
This demonstrates the second assertion and implies the two inequalities 
 §
�� � ��Í¯��ÈÉ  | � � 
0,1�± �  ��Í¯��ÈÉª  | � � 
0,1�± � §
��, 
 
as µ

α
®  µ

αª  is  valid for � � 
0,1�.   
This completes the proof. 

 
Theorem 1.5  
 
Let § be a fuzzy number and �& |� � 
0,1�� be its set representation. Then, we have 
for all � � 
0,1� 
 limÎE∞ inf &Ï � �
$Î�
�{ �Ð � infµ

α
 

and  limÎE∞sup&Ñ � U
VÒ�
UÓÉ�Ô � supµ
α
.  
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Proof  
 
Let � � 
0,1�. 
 

For abbreviation define  �Î Ã  � n �
$Î�
�{ � for r � <. 

 
For r,s � Õ    r ≤ s  implies �Î ≥ �Ö , and by this & Ò ®  & × , holds. 

 
Therefore ��p	& Ò�Î�< is monotonously decreasing and  ���Í& Ò�Î�< is 

monotonously increasing. 
We know that [38] 
 

inf§   � inf & Ò � ��Í & Ò � sup §   for r � <  holds. 

 
If inf §  G H ∞, then  ��p	& Ò�Î�<  is convergent, let A denote the limit.  A ( inf §  is 

obvious. 
Let Ç G 0 be arbitrary. There exists  x � §    with x ≤ inf § +Ç. 
Then we can find  [38] and r � <  with x � & Ò , i.e. 

 �p	& Ò  � � � inf § +Ç 

Therefore 
               A= limÎE∞  �p	& Ò � inf §    follows. 

 
If  inf §  = - ∞ and  n � < are arbitrary, there is an x �  §  with x < - n. 
We can find  r � <  with  x �   & Ò  and can follows :  �p	& Ò  �  Hp.  As   ��p	& Ò �Î�<  

is decreasing , it converges against - ∞. 
The second assertion can be shown in a similar way. 
 
1.2.5 Operations on fuzzy sets 
 

• Consider two fuzzy sets of �,  §� and §$. 
- The complement of §� is defined as §g� where §g�
�� � 1 H §�
��. 
- The union of §� and §$ is defined as §� Ù §$ where (§� Ù §$�
�� � maxj§�
��, §$
��k. 
- The intersection of §� and §$ is defined as §� Ú §$ where 
§� Ú §$�
�� � ��pj§�
��, §$
��k. 
• Let  * be an arithmetic operation on real numbers a and b.  

An extension of *  to fuzzy numbers  §ZÛ   and §ÜÝ   is as follows: 

 
                             (§ZÛ  * §ÜÝ )(r)= sup Ö,ÞÖ*ÞßÎmin (§ZÛ  (s), §ÜÝ 
���  [14]. 

 
1.2.6 Possibility, Necessity and Credibility measures 

 
Let à be a nonempty set representing the sample space. A possibility measure  is a 
function Pos N 2à E �0,1� 
satisfying the following axioms: 
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 (i) Pos �à� � 1, 
 (ii) Pos �©� � 0,  
 (iii) Pos �â�&�� � ��Í�Kã��&��, 
 (iv) Let �à;�; be a family of sets and Pos;: 2àä E �0,1� verify (i) – (iii) and 

  à�à�åà$ … åàæ. 
 

Then for & D à,  Pos{A} = supàU,…,àç�A min��;��Pos;�à;�. 
 
Necessity and Credibility measures are obtained from Possibility measure as follows: 

For A� 2à, we have: 
 
                                                Nec�&� � 1 H Pos
&ê� 
and Cr�&� � Pos�&� n Nec�&�2  

where &� is the complement of &.  
Details on Possibility, Necessity and Credibility measures may be found elsewhere �29�. 
These measures are used in the literature of decision making under uncertainty 
either to appraise the level of desirability of a decision or to transform a decision 
problem under uncertainty into deterministic terms [16]. 
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CHAPTER 2:  DETERMINISTIC MULTIOBJECTIVE PRO-
GRAMMING PROBLEMS 

 
2.1 Analysis 
 
2.1.1 Problem setting and general notation 
 

A general multiobjective program is a problem of the type: 
 

(Kì� Ê  ��p�	�
��, … , 	;
���, ¤ ( 2                     � � # �  �� �  �� �/
}
�� � 0; ~ � 1, … , ���� 
 
where 	�
��; � � 1, … , ¤ and 
}
��, ~ � 1, … , � are real-valued functions of ��. 
Many real-life problems may be cast in the form of (Kì). An interested reader is 
referred to [4], [7] for examples of concrete problems that may be formulated as 
Multiobjective Programming Problems. 
 
2.1.2  Background materials 
 
Throughout this chapter, all the vectors are assumed to be column vectors. If � and �* are vectors of ��, the notation �X�* (where T stands for the transpose) denotes 
the scalar product of � and �*. Moreover, the following notation is used: 

 
                         �� � =�í � 
í� ��…, �íæ� � �æ | �� ≥ 0, � � 1, … , �p� 

 

                                           îxî � 
∑ x�$æ�ß� �½. 
 
For # ® ��,  

dist 
�* �, �#� = �p	/�0 ï � H �* ï 
 
                                           z
�*, ð� �  �� � �� : ï � H �* ï² ð�. 
 
The following definitions are needed in the sequel. 
 
Definition 2.1   
 
Let d � ��, q w 0, we say that d is a feasible direction emanating  
from x � X if there exists �* G 0 such that  � n �q � # 	ãñ oòò � � �0, �*�. 
 
Definition 2.2  
 
A constraint 
}
�� � 0 is said to be active at a point �* � #   if 
}
�*� � 0.   
A set of active constraints at �* is denoted by ó
�*�. 
 
In other words, 
                                               J
x*� � �j � �1, … , m� / g�
x*� � 0� . 
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2.1.3 Convex multiobjective program 
 
Definition 2.3 
 
A function f : �� E � is convex if for all � , Q �  �� and � � �0,1�we have 
 	
�� n 
1 H ��Q� � �	
�� n 
1 H ��	
Q�. 
 
Definition 2.4  
 
A set C ® �� is convex if for all x, Q �C and � � �0,1�, we have 
 �� n 
1 H ��Q �C. 
Definition 2.5 
 
Consider the multiobjective program 
Kì�. 
If the feasible set X is convex and if the objective functions 	�
��;  i=1,…,k are 
convex, then 
Kì�  is said to be a convex multiobjective program. 
 
As it will become evident in Section 2.2, most of the methods described for 
multiobjective programs are applicable only to convex multiobjective programs 
involving differentiable functions up to order 2. In this chapter, we’ll also indicate 
what can be done if the above mentioned conditions are not satisfied. 
 
2.1.4 Solution concepts used in multiobjective programming 
 
In a multiobjective optimization context, unless the objective functions are not 
conflicting, the optimum optimorum lies outside the feasible set. It is therefore 
worthwhile to make explicit the meaning of optimality in this context. Several 
solutions concepts are discussed in the literature [8] ,[36] ,[40], [43]. We briefly 
discuss these solution concepts in the following subsections. 
 
2.1.5 Pareto optimality 
 
Definition 2.6  
 �* � # is said to be a Pareto optimal (efficient) solution for (�÷) if no other � � # 
exists, such that 	�
�� � 	�
�*� for all � � 1, … , ¤  and 
 	ℓ
�� ² 	ℓ
�*� for som ℓ.  
 
Remark 2.1  
 
A Pareto optimal solution is also called a globally Pareto optimal solution. 
 
 
Definition 2.7  
 
Consider the multiobjective program (Kì). �* � # is called locally Pareto optimal for 
(Pì) if there is  ð G 0 exists such that �* is Pareto optimal for (Kì) in # ù z
�*, ð�. 
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Theorem 2.1  
 
Assume that the multiobjective program (Kì) is convex. Then every locally Pareto 
optimal solution for (Kì) is also globally Pareto optimal for (Kì). 
 
Proof 
 
Assume (Kì) is convex and let �* � # be locally Pareto optimal for (Pì). We can then 
find ð G 0 and a neighborhood z
�*, ð� of �* such that there is no � � # ù z
�*, ð� for 
 which 	� 
�� � 	�
�*� 	ãñ oòò � � 1, … , ¤ and 	ℓ
�� ² 	ℓ
�*� for some ℓ. 
Assume that �* is not globally Pareto optimal for (Pì). Then there exists some other 
point �" � # such that: 
 	�
�"� � 	�
�*� 	ãñ oòò � � 1, … , ¤ and  	ℓ
�"� ² 	ℓ
�*�  for some ℓ.                       (2.1) 
 
Let �ú � ¬�" n 
1 H ¬��*, where ¬ � 
0,1� is chosen such that �ú � z
�*, ð�.  
Then, by the convexity of X and the convexity of 	�;  � � 1, … , ¤,  we have: 
   �ú � #                                                                                      (2.2) 
and   
 	�
�ú� � ¬	�
�"� n 
1 H ¬�	�
�*� � ¬	�
�*� n 
1 H ¬�	�
�*� � 	�
�*�                        (2.3) 
 
for every � � 1, … , ¤. 
 
Since �* is locally Pareto optimal for (Kì)  and �ú � z
�*, ð�, we must also have  
        
                                 	�
�ú� � 	�
�*�;  � � 1, … , ¤.                (2.4) 
 
Moreover, 	� 
�*� � ¬	�
�"� n 
1 H ¬�	�
�*� for every  � � 1, … , ¤ , because x* is 
locally Pareto optimal for  (Pì). That is:  
   
                                ¬	�
�*�  � ¬	�
�"�  for every   i=1,…,k.                                   (2.5) 
 
Since ¬ G 0, we can use it to divide and obtain 	�
�*� � 	�
�"� for all � � 1, … , ¤. 
But 	ℓ
�*� G 	ℓ
�"� according to (2.1) for some ℓ. This is a contradiction. Therefore �* is globally Pareto optimal for (Kì). 
 
Corollary 2.1 
 
For convex multiobjective programs, Pareto optimality and locally Pareto optimality 
coincide. 
 
2.1.6 Weak and proper Pareto optimality 
 
Definition 2.8  

 
 �* � # is weakly Pareto optimal for (Kì) if there is no � � # such that 	�
�� ² 	�
�*� 
for all � � 1, … , ¤. 
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Corollary 2.2 
 
If x* is Pareto optimal for (Kì) then x* is weakly Pareto optimal for (Kì). 
 
Definition 2.9  

  �* � # is properly Pareto optimal for (Kì) if  it is Pareto optimal for (Kì) and if there  
does not exist any point d � ��  such that: 

 

            \f�T
x*�. d � 0                      for all i=1,…,k,  

                                        \f�T
x*�. d ² 0                        for some j    

and 
 

            \gℓT
x*�. d � 0  for all ℓ satisfying 
ℓ
�*� � 0. 
 
For more details on proper efficiency the reader is referred to [36].  
 
2.1.7 Ideal point 
 
Definition 2.10 
 
 Consider the multiobjective program (Kì). For each of the k objective functions, there 
is one different optimal solution. An objective vector constructed with these individual 
optimal objective values constitutes the ideal objective vector denoted by ü*  
 
This means,  ü* � 
ü�*, … , ü;*�  where  ü�* =	�
�*� and  �* is a solution of  

 ³��p 	�
��� � X       � 
 

A point �" � X  such that  	�
�"� = ü�*  J �   is called ideal point for (Kì). 
 
Remark 2.2 
 
Unless the objective functions of (Pì) are not conflicting, the ideal point is outside the 
feasible domain X. 
 
2.1.8  Kuhn and Tucker conditions for Pareto optimality 
 
In this section, we discuss necessary and sufficient conditions for Pareto optimality 
for a multiobjective program. We assume that all the functions involved are 
continuously differentiable. 
 
Theorem 2.2   
 
A necessary condition for �* � # to be Pareto optimal for (Kì) is that there are 
vectors d � �; and § � �) with d ( 0 opq § ( 0 and 
d, §� w 
0,0�, such that the 
following conditions hold: 
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                                     ∑ d�\	�
�*� n ∑ §})}ß� \
}
�*� � 0                                                 
2.6�;�ß�  

                                          §}
}
�*� � 0; ~ � 1, … , �.                                                       
2.7�  

 
For the proof of this result, we invite the reader to consult [13]. 
 
Equations (2.6) and (2.7) are called Kuhn and Tucker conditions for Pareto 
optimality. They generalize quite canonically Kuhn and Tucker conditions for 
optimality for single objective mathematical programs (see §1.1). 
 
Corollary 2.3 
 
For a convex multiobjective program, the conditions given in Theorem 2.2 are also 
sufficient for Pareto optimality [36]. 

 
2.2 Methods 
 
2.2.1 Preamble 
 
This section is devoted to methods for finding a compromise solution for a 
multiobjective programming problem. A look at the literature (see for example  
[18], [28], [50]) reveals that the most frequently used methods for solving 
multiobjective programs fit into five categories:  

 
 
-no-preference methods,  
-a priori methods,  
-a posteriori methods,  
-interactive methods and  
-metaheuristic  methods.  
 

In the following sections we briefly discuss the general methodological principle in 
each of these categories.  
It is worth remembering that the problem at hand is: 
 
Pì� Ê ��p�	�
��, … , 	;
���,   ¤ ( 2                           � � # �  �� �  �� �|
}
�� � 0; ~ � 1, … , ���� 
 
where 	�
��;  � � 1, … , ¤ opq 
}
��;  ~ � 1, … , � are real-valued functions of ��. 
 
2.2.2. No-preference methods 
 
One of the best known methods in this category is the Compromise programming 
(CP) method that is briefly discussed in the sequel. 
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Definition 2.11 
 

We call the aspiration level ü� , the level of the �Þ� objective function of problem (Kì) 
that is satisfactory to the decision maker. 
 If  ü� , � � 1, … , ¤ are aspiration levels, then ü � 
ü� … , ü;� is called a reference point. 
 
The compromise programming method, also known as the global criterion method, 
picks a point in the feasible set X whose vector of objective values is close to some 
reference point for a given distance [48].  
Here we take the ideal vector ü* as the reference point.  
The method proceeds as follows: 
 
Step 1 
Choose a distance d, fix a reference point  ü*, choose p and solve one of the 
following optimization problems according to the value of p. 
 

                   (K�) ��
�minj∑ �;�ß� 	�
�� H ü�*��k�/�,                                                                                                                                  �	 Í � �1, �∞��  � � #                                                                                                                  

�   
 

(K�� � ��p max�ß�,…,;|	�
�� H ü�*|,                                                                                                                            �	 Í � ∞� � #.                                                                                     �  
 

where ü�* is the �Þ� component of the reference point. 

 
Step 2 
Present the solution obtained to the decision maker. 
  
Step3   
Stop. 
 
It is clear that (K�) is a nondifferentiable multiobjective program. Nevertheless, we 
can put this program in the following differentiable form: 
 


P	� � min  �              α ( 	�
�� H ü�*� � #.              �                                                                       
 
With regard to (K�), when all the functions involved in (Kì) are linear and p =1, then it 
is a linear program that can be solved by the simplex method (see Chapter 1). 
If the functions involved in the constraints are linear, then for p = 2, (K�) is a 
quadratic program problem that can be solved by the gradient projection method 
(see Chapter 1).  
The next two theorems tell us something about the Pareto optimality of solutions 
obtained by this method. 
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Theorem 2.3  
 
If �* is a solution of (K�), then �* is Pareto optimal for (Kì). 
 
Proof 
 
Let �* � # be a solution of (K�) and assume that �* is not Pareto optimal for (Kì). 
Then there is  a point � � # such that 	�
�� � 	�
�*� for � � 1, … , ¤ and 	ℓ
�� ² 	ℓ
�*� 
for some ℓ.  
Now, because  Í � �1, ∞�, we have that: 
 
             
	�
�� H ü�*�� � 
	�
�*� H ü�*��; � � 1, … , ¤.                               (2.8)                              
                                
	ℓ
�� H üℓ*�� ² 
	ℓ
�*� H üℓ*�� for some ℓ.                              
2.9�                                                        
 
From (2.8) and (2.9) we can write that 
 

r
	�
�� H ü�*�� ² r
	�
�*� H ü�*��.;
�ß�

;
�ß�  

 
 
Hence j∑ 
	�
�� H ü�*��;�ß� kU
 ² j∑ 
	�
�*� H ü�*��;�ß� kU
 . 

 
This is in contradiction to the assumption that �* is a solution of Problem (K�). 
Therefore, �* is Pareto optimal for 
Pì�. 
 
Theorem 2.4  
 
Solutions to problem (K�) contain at least one Pareto optimal solution. 
 
Proof 
 
Les us suppose that none of the optimal solutions of (K�) is  Pareto optimal. Let �* � # be an optimal solution of (K�). Since we assume that  it is not Pareto optimal, 
there must exist a solution � � #  which is not optimal for (K�) but for which 
 	�
�� � 	�
�*�;   � � 1, … , ¤ 
                                         
and  
 
                                        	ℓ
�� ² 	ℓ
�*� for some ℓ. 
 
We have now 
                                       	�
�� H ü�* � 	�
�*� H ü�*;  � � 1, … , ¤          
 
with the strict inequality holding for one  ℓ, and further  
 
 



22 

 

max � �	�
�� H ü�*� � max�  �	�
�*� H ü�*�.  
 
Because  �* is an optimal solution for (K�),  � has to be an optimal solution, as well. 
This contradiction completes the proof. 
 
Example 2.1 
 
Consider the multiobjective program: 
 


���
�


�


�min �Ï �� n 2�$�� n �$ n 1Ð , Ï 2�� n �$2�� n 3�$ n 1Ð�                            H�� n 2�$ � 3                                                                      2�� H �$ � 3                                                                   �� n �$ ( 3                                                                     2 � �� � 25                                                                   1 � �$ � 9,5                                                                  

� 
 
Let us take the ideal vector as reference vector, that is: 
 
                                      ü* � 
ü�*; ü$*�X � 
1; 0, 55�. 
 
Taking  p = 2,  putting the problem into the form of (K�) and squaring the objective 
function yields the following program: 
 


P�"�
�


�



�min � �� H 1�� n �$ n 1 n 0,9�� H 0,65�$ H 0,552�� n 3�$ n 1  �                                                                   H�� n 2�$ � 3                                                            2�� H �$ � 3                                                             �� n �$ ( 3                                                               2 � �� � 25                                                              1 � �$ � 9,5                                                             

� 
 
Solving this program, using LINGO software, we obtain the solution �* � 
3,3� with 
an optimal value of 0,298214285.  
By virtue of Theorem 2.3, this solution is Pareto optimal for (Kì). 
 
The compromise programming method brings extra parameters such as p and the 
reference point into the problem under consideration. This is an inconvenience of 
this method. 
 
2.2.3  A priori methods 
 
Unlike no-preference methods, the general principle of a priori method is to first take 
into consideration the opinions and preferences of the decision maker before solving 
the multiobjective program at hand.  
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The most used a priori methods are goal programming and lexicographic goal 
programming methods [5], [22], [42], [44], [45]. These methods are briefly presented 
in what follows. 
 
2.2.3.1 Goal programming method 
 
The main idea behind the goal programming method is to find solutions that are 
close to predefined targets [28]. Therefore, in the goal programming method, the 
decision maker should fix the targets for each objective function. He then solves a 
single objective program aiming at minimizing the sum of deviations to the targets. 
Consider 
Pì� and assume that '� is the target for objective i, the corresponding 
single objective program is as follows: 
 
 

(K��)

��
� ��p�∑ 
q�{ n q���;�ß� �                             	�
�� n  q�{ H q�� � '�;    � � 1, … , ¤ � � #                                                          q�{, q�� ( 0;   � � 1, … , ¤.                      

� 
 
The variables d�{ and d�� are underachievement and overachievement of the �Þ� goal 
respectively. 
Using the goal programming method, the decision maker can allocate some weights 
to each objective so as to put some hierarchy in the objectives. To this end he can 

specify real numbers �� 
� � 1, … ¤�; �� G0 and  ∑ ��;�ß� =1.  
In this case, the corresponding single objective program is: 
 
 

               (K�$)

��
� ��p�����
q�{; q��� n �n �;�;
q;{; q; ��� 	�
�� n q�{ n q�� � '�;    � � 1, … , ¤                      � � #                                                                             q�{, q�� ( 0;   � � 1, … , ¤.                                          

� 
               

Here ��
q�{; q���;  i = 1,…,k are some linear functions of the deviational variables. 

Under certain conditions, the solution to program 
K�$� is Pareto optimal for 
Kì�. 
This is the subject matter of the following theorem, the proof for which may be found  
elsewhere [2]  
 
Theorem 2.5 
 
A solution to 
K�$� �� Koñ��ã ãÍ���oò 	ãñ 
Kì� �	 all the deviational variables q�� and q�{ have positive values at the optimum. 
 
The goal programming method can be summarized as follows. 
 
Step 1 
Set targets and weights for each objective function of  
Kì�. 
 
 
 



24 

 

Step 2 
Formulate and solve 
K��� if weights are equal or formulate and solve 
K�$� if weights 
are not equal. 
 
Step 3 

Present the solution obtained in Step 2 to the decision maker. If he is happy with the 
solution, stop. Otherwise go back to Step1 with new targets and new weights.  
 
Example 2.2 
 
Consider the following multiobjective program: 
 

                         (K�u)�min�	�
��, 	$
��, 	u
��, 	¥
��, 	ì
���         
�� H 3�$ n 
�$ H 3�$ n 
�u H 3�$ � 4    �� n �$ n �u � 15                                         � 
 
where 

                                   f�
x� � 
x� n x$ n xu��V                      
                                   f$
x� � 
x� H 4�¥ n 
x$ H 3�¥ n xu¥ 
                                   fu
x� � 3x�u n 
x$ H 1�¥ n 2
xu H 20�¥  
                                   f¥
x� � 
x� n x$ n xu�{� 
                                   fì
x� � 
x� H 3�$ n ln
xu n x¥�. 
 
Assume that the targets for each objective have been set by the decision maker as 
follows: '� � 80, '$ � 20, 'u � 0,15, '¥ � 75000 opq  'ì � 60. Assume also that the objectives 
have equal weights.  
 
Then  
K���  reads: 

(K�¥)

�





�





�

 min�∑ 
q�{ n q���ì�ß� �                                                        
�� n �$ n �u��V n q�{ H q�� � 80                                   
�� H 4�¥ n 
�$ H 3�¥ n �u¥ n q${ H q$� � 20            3��u n 
�$ H 1�¥ n 2
�u H 20�¥ n qu{ H qu� � 0,15 
�� n �$ n �u�{�nq¥{ H q¥� � 75000                          �� n �$ n �u � 15 n qì{ H qì� � 60                            
�� H 3�$ n 
�$ H 3�$ n 
�u H 3�$ � 4                       �� n �$ n �u � 15                                                             q�{, q�� ( 0; � � 1, … , ¤.                                                   

� 

 
Solving this program, using LINGO software, yields the following solution: 
 q�{ � q${ � qu{ � q¥� � qì� � 0, q¥{ � 74999.9, qì� � 0.278939, q�� � 319.3253, q$� � 606.0207, 

qu� � 101347.2, �� � 2.987495, �$ � 2.990755, �u � 4.99994 �¥ � 0.8640776� n 26.
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The major strength of the goal programming method is its simplicity. Although this 
method offers a great deal of flexibility for solving Multiobjective Programming 
Problems, there are some difficulties associated with it. These include the fact that it 
does not always produce Pareto optimal solutions for (Kì). Moreover it may be 
difficult to set weights or targets for objective functions. 
 
2.2.3.2 Lexicographic goal programming method 
 
The lexicographic programming method deals with situations where the objective 
functions of a multiobjective program are arranged according to their importance 
while a target is not given for each objective function.  
Consider the multiobjective program (Kì) and assume that: 
 	�
�� � 	$
�� � � � 	;
��. 
 
The above notation means that 	�
�� is more important than 	$
��,  	$
�� is more 
important than 	u
�� and so on.  
The lexicographic goal programming method proceeds as follows. 
 
Step 1 

Solve the following mathematical program: 
 

(K�ì)³min 	�
��� � #. � 
   

Let �* be its  solution.  
If  �* is unique, then  �* is considered to be the preferred solution to the entire 
problem.  
If �* is not unique, go to step 2. 
 
Step 2 
Solve the following mathematical program: 
 

(K��)�min 	$
��          � � #                 	�
�� � 	�
�*�.� 
 
This procedure is then repeated until a unique solution is obtained.  
If the procedure stops at the minimum of the objective 	� 
��, i ² ¤, then the objectives 
that are less important than 	�
�� will be ignored. 
The question that can be raised now is that of whether the solution obtained by this 
method is Pareto optimal. The answer to this question is given by the following 
theorem. 
 
Theorem 2.6   

 
If the lexicographic goal programming method is used to solve the multiobjective 
program 
Kì�, then the solution obtained is Pareto optimal. 
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Proof 
 
Let �* � # be a solution obtained by the lexicographic goal programming method. 
Assume that �* is not Pareto optimal for 
Kì�. Therefore there exists a point � � # 
such that: 
 

             	�
�� � 	�
�*�   i� 1, … , ¤ 
 
and for one ℓ we have : 
 	ℓ
�� ² 	ℓ
�*�. 
 
Let i = 1, then  	�
�� attains its minimum at �*. Since 	�
�� � 	�
�*�, we should have  

 
that: 
 	�
�� � 	�
�*�. 
 
If optimization is performed  for  i= 2, we have 
 	$
�� � 	$
�*� 
for the same reason. 
If optimization  is performed for i= 1,…,k then  
 
                                                       	�
�� � 	�
�*�; � �   1, … , ¤. 
 
This contradicts the assumption that there is at least one strict inequality.  
Therefore, �* is Pareto optimal for 
Kì�. 
 
2.2.4 A posteriori methods 
 
A posteriori methods are concerned with finding all or most of the Pareto optimal 
solutions for a given multiobjective program. These solutions are then presented to 
the decision maker who has to choose one of them. The most important a posteriori 
methods described in the literature include the e-constrained method [17], [35], the 

adaptive search method [24], the Benson’s method [48] and the weighting method 

[5], [45]. For the sake of brevity we restrict ourselves to the weighting method. 
  
Weighting method 
 
Consider the program 
Kì�. The weighting method transforms the original 
multiobjective problem into a single objective one. This is done by creating a new 
objective from the weighted sum of the k objectives. By doing so, the resulting 
program is: 
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(K��)³min �
��� � #.     � 
 

               
 
where  

�
�� � r ��
;

�ß� 	�
��;        
 
and �� is the weight of the �Þ� objective; 

 

i.e. 0 � �� � 1, � � 1, … , ¤,    ∑ �� � 1;�ß� . 

 
 The following interesting result tells us that under mild conditions, a solution for (K��) 
is Pareto optimal for 
Kì�. 
 
Theorem  2.7   
 
If, �� G 0 for all i = 1,…, k, and if �* is an optimal solution for (K��) then �* is a Pareto 
optimal solution for 
Kì�. 
Proof. 
Let �* � # be a solution for the weighting problem (K��) and suppose that �* is not 
Pareto optimal for (Kì). Then, there exists a solution x � # such that:  

 	�
�� �  	�
�*�; i = 1,…, k 
and 	ℓ
�� ² 	ℓ
�*� for some ℓ. 
 
From the fact that �� G 0;    i = 1,...,k, it follows that 

r��
;

�ß� 	� 
�� ² r��	�
�*�;
�{� . 

 
This contradicts the assumption that �* is a solution for the weighting problem (���). 
Therefore, �* is Pareto optimal for (Kì). 
 
Example 2.3 

 
Consider again problem (K�) discussed in subsection 2.2.2: 
 


P�	�
�


�


� min �Ï �� n 2�$�� n �$ n 1Ð , Ï 2�� n �$2�� n 3�$ n 1Ð�                     H�� n 2�$ � 3                                                                      2�� H �$ � 3                                                                   �� n �$ ( 3                                                                     2 � �� � 25                                                                   1 � �$ � 9,5                                                                  

� 
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The counterpart of (K��) for this multiobjective program is: 
 

(P��)
�


�


�

min ∑ �� 	�
��$�ß�                           H�� n 2�$ � 3             2�� H �$ � 3               �� n �$ ( 3      2 � �� � 25               1 � �$ � 9,5             
� 

where 
 	�
�� � �� n 2�$�� n �$ n 1 

 	$
�� � 2�� n �$2�� n 3�$ n 1 

 
A set of solutions for (K��) obtained by the parametric programming method is given 
in table 2.1.    
      
Table 2.1:  A set of solutions for (K��)  
 
 

 
Since the objectives are to be minimized, the most preferred alternative is given by 
 �� � 0,�$ � 1   and  �� � �$ � 3, which yield the lowest value of �
�� � 0,62. 
We obtain the same solution we obtained by the Compromise Programming method.  
It is worth mentioning that for the weighting method, unlike in the goal programming 
method, the decision maker does not have to provide targets for each objective 
function.  
Pareto optimality for (Kì) is guaranteed if the weights are strictly positive. Here both 
(2,1) and (3,3) are Paareto optimal for 
P�	�. 
 
The weights are not easy for the decision makers to interpret or understand. It is also 
sometimes difficult for decision makers to choose a solution from a large number of 
generated alternatives. 
 
 

w 1 w2 x 1 x 2 F (x) 
0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1 

1 
0,9 
0,8 
0,7 
0,6 
0.5 
0,4 
0,3 
0,2 
0,1 
0 

2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 
 

0,62 
0,66 
0,70 
0,78 
0,83 
0,92 
0,99 
1,07 
1,14 
1,21 
1,29 
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2.2.5 Interactive methods 
 
Interactive methods consist of the following steps: 
 Step 1 

 Find an initial solution. 
 
 Step 2 

Discuss the solution with the decision maker. If the decision maker is satisfied, 
Stop. Otherwise go to the next step. 

 
 Step 3 
 Obtain a new solution and go back to step 2. 
 
Many interactive methods have been developed in the literature. Here are some of 
them.: 

-the Step method [23]; 
-the Sequential Proxy Optimization Technique (SPOT) [34]; 
-the Interactive Surrogate Worth Trade-off (ISWT) method [11]; 
-The Geoffrion-Dyer-Feinberg (GDF) method [27]; 
-the Reference point method [52]. 

 
Reference point method 
 
Consider again the multiobjective program 
 

(Kì�  min �	�
��, … , 	;
���, ¤ ( 2                         � � # � ¯� � ��|
}
�� � 0; ~ � 1, … , �± � 
 

 
where 	�
��; � � 1, … , ¤ and  
}
��; ~ � 1, … , � are real-valued functions of ��. 

 
Definition 2.12 
 
An achievement function is defined as follows 
 
                                                            ��
ü� � max�ß�,…,;���
ü� H ü�*��   � � 1, … , ¤ 

 

where ü* � �; is an arbitrary reference point. 
Consider now the following program: 
 

(K$")Êmin ��
ü�ü � 	
#� � 
                                             
where  f(X)={f 
�� / � � #} and  f
��= (	�
��, … , 	;
���. 
 
As (K$") involves an achievement function, it is called an achievement problem. 
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The aim of the reference point method [47] is to minimize the related achievement 
function. The decision maker is requested to assist in the choice of the next 
reference point at each iteration.  
The question that can be raised now is whether the solution obtained in this way is 
Pareto optimal for (Kì). An answer to this question is given by the following theorem. 
 
Theorem 2.8 
 
If the achievements function 
 ��
ü� � max�ß�,…,;  ���
ü� H ü�*�� 
 
is strictly increasing, then,  if üg is   the solution to (K$"), we have that 	{�
üg� is Pareto 
optimal for (Kì). 
The proof of this result may be found in [36]. 
 
The Reference point method consists of fixing a reference point z* defining ��(z) and 
solving (P$"). 
The reference point method is easy to understand and to implement and the decision 
maker is free to change his mind during the solution process.  
Unlike the goal programming method, the reference point method guarantees the 
Pareto Optimality of the solutions of (Kì), depending on the increasing nature of the 
achievement function deployed.  
Some shortcomings of the Reference point method include the fact that there are no 
criteria for the choice of aspiration levels and for elicitation of the achievement 
function. There is no clear strategy for producing the final solution since the 
reference point method does not help the decision maker to find improved solutions. 
 
2.2.6 Metaheuristic  for the multiobjective programming problem 
 
Most of the methods described in the preceding sections apply for convex 
multiobjective programs. In the case of nonconvex multiobjective programs, 
metaheuristics  may be considered [2], [26].  
A metaheuristic is a method that seeks to find a good solution to an optimization 
problem at a reasonable computational cost. A metaheuristic often has an intuitive 
justification and therefore a mathematical proof cannot be constructed to guarantee 
the Pareto optimality of the solution obtained [2].  
The most used metaheuristic are simulated annealing [41], tabu search [12] and 
genetic algorithm (GA) [51]. In what follows we restrict ourselves to the genetic 
algorithm method.  
 
A genetic algorithm is a stochastic search method for problems based on the 
mechanisms of natural selection and genetics (that is, survival of the fittest).  
One of the most important notions in genetic algorithms is that of chromosomes.  
A chromosome is a string of numbers or symbols. A genetic algorithm starts with an 
initial set of randomly generated chromosomes which are called population. The 
population size is the number of individuals in that population. All chromosomes are 
evaluated by an evaluation function and the selection process is used to form a new 
population, which uses a sampling mechanism based on fitness values. The term 
“generation” is used to describe the cycle from one population to another. The 
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crossover and mutation operations are used to update all chromosomes and the new 
chromosomes are called offsprings. The new population is formed when the 
selection process selects new chromosomes. After a given number of generations, 
the best chromosome is decoded into a solution for (Kì).  
 
A genetic algorithm usually follows the following steps. 
 
Step 1    
Initialize the chromosomes at random. 
 
Step 2    
Update the chromosomes by crossover and mutation operations. 
 
Step 3    
Calculate the objective values of all the chromosomes. 
 
Step 4    
Compute the fitness of each chromosome via the objective values. 
 
Step 5    
Select the best chromosome using the tournament selection method, 

             ranking   selection method or roulette wheel method. 
 
Step 6    
Repeat Step 2 to Step 5 for a given number of cycles. 
 
Step 7    
Report the best chromosome as the compromise solution for the  
multiobjective program. 
 
Example 2.4 
 
Consider the multiobjective program 
 


P$��
��
�min �	�
��, 	$
��, 	u
���H��$ n �$$ ( 10                ��$ n �$$ n �u$ � 6            ��, �$, �u ( 0                   

� 
where                   	�
�� � 3 H !��                                    	$
�� � 4 H !�� n 2�$                               	u
�� � 5 H !�� n �$�$3�u  . 

 
Using a genetic algorithm to solve this program leads to the following steps. 
 
Step 1    
Encode a solution � � ���, �$, �u� into a chromosome " � �#�, #$,#u�. 
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Step 2    
Update the chromosomes by crossover and mutation operations. 
 
Step 3    
Compute the objective values of all chromosomes. 
 
Step 4    
Compute the fitness of each chromosome via the objective values. 
 
Step 5    

Select the best chromosome by the roulette wheel method. 
 
Step 6   Repeat Steps 2 to 5 for 2000 generations.     
 
The compromise solution for 
K$�� obtained by this genetic algorithm is  
x � 
��, �$, �u� � 
9,3.5, 2.597�.  
 
The advantage of genetic algorithm is that it can be used to solve nonconvex 
multiobjective programs. Unfortunately, it cannot guarantee the Pareto optimality of 
the solution obtained. 
Another approach for solving convex or nonconvex Multiobjective Programming 
Problems is based on Fuzzy set Theory. 
We discuss such an approach in the next section. 
 
2.2.7 Solving a deterministic multiobjective program using fuzzy sets 
 
2.2.7.1 Putting a multiobjective program into a single objective 
 
Consider the following multiobjective program: 
 

 

                                     
P$$�  �o��	�
��, … , 	;
���         ¤ ( 2                                        � � # � ¯� � �� 
}
��⁄ � 0;   ~ � 1, . . . , �±                � 
Let: h� � max/�0 	�
��; � � 1 , … . , ¤ 

 
and assume that h� is  finite for all �. 
Suppose further that the decision maker is able to fix Í� ² h� so that he wishes to 
maintain 	�
�� greater than Í� for all i. 
Then (K$$�  reads: 
 
Find � � # such that Í� % 	�
�� & h�; � � 1, … , ¤ .                                                  (2.10)   
                                        
Here “~” means that inequalities are not strict imperatives but some leeways may be 
accepted. 
Each flexible objective � of (2.10) may be represented by a fuzzy set (�  ã	 # the 
membership function of which is defined as follows: 
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                  §�
�� � �0                                              �	   	�
�� � Í�     )*
/�{�*C*{�*                                     �	 	�
�� G Í�      �                              (2.11) 

 
Therefore using Bellman-Zadeh confluence principle [6], 
P$$� can be written as 
follows: 
 

 
P$u� � max  +u�
x�   :
�ß�          

x � F                            
� 

 
where  F denotes  the set 

 # ù j- supp §�:�ß� k  

 
and     +   

  

 

is the operator used to translate the “and” connective. 
 
2.2.7.2 Solving the resulting problem using the Ë- operator  
 
The  Ë-operator introduced by Zimmermann [57] and defined by  
 

+ ��
��;
�ß� � ./��
��;

�ß� 0�{Ì 11 H /
1 H ���;
�ß� 2Ì

 

 
where Ë � �0,1�  yields  a compensation grade between aggregated membership 
function. This compensatory operator seems to be more appropriate than Zadeh’s 
min operator [55].  
As a matter of fact it overcomes the ultra-pessimistic criticism addressed to the min 
operator. 
With Zimmermann’s operator, (K$u� reads: 

(K$¥� ³max3
�� � � � � 
where  

                                       3
�� � Ñ∏ )*
/�{5*C*{5*;�ß� Ô�{Ì 61 H ∏ 
1 H )*
/�{5*C*{5* �;�ß� 7Ì
.        (2.12) 

 
The question that we raise now is that of the Pareto optimality of the solution 
obtained by solving 
P$¥� for 
P$$�. 
The answer to this question is given in the following result. 
 
Proposition 2.1 
 
Suppose h� and Í�  are finite for all � and are such that Í� ² h�  (i=1,…,k). 
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If  �* is a solution of  
K$¥�, then  �* is Pareto Optimal for 
P$$�. 
Proof 
 
Suppose  �* optimal for  
P$¥� and non efficient for 
P$$�. Then there exists �** � # so 

that  
 

                                     	�
�**� ( 	�
�*�, � � 1, … , ¤                                              (2.13.) 
and  
                                     	�
�**� G 	�
�*� for at least one � . 
 �** cannot be in #\� otherwise there will be an � so that 	�
�*� G Í� ( 	�
�**� i.e. 	�
�*� G 	
�**�  which contradicts (2.13). 
 
 
So we have: 
 	�
�**� H Í�h� H Í� ( 	�
�*� H Í�h� H Í�  ,    � � 1, … , ¤ 

 

                             
)*
/**�{�*C*{� G )*
/*�{�*C*{�*    for at least one i� �1, … , ¤�.                      (2.14) 

 
As h� H Í� G 0,   	�
�*� H Í� G 0   J �  and   0 < γ < 1,   
 
we have: 
 

                                Ñ∏ )*
/**�{�*C*{�*;�ß� Ô�{Ì G Ñ∏ )*
/*�{�*C*{�* �;�ß� Ô�{Ì
 .                           (§) 

 
We also have: 
 1 H 	�
�**� H Í�h� H Í� � 1 H 	�
�*� H Í�h� H Í� ,               � � 1, … . ¤ 

 
and    

 1 H 	�
�**� H Í�h� H Í� ² 1 H 	�
�*� H Í�h� H Í� ,               � � 1, … . ¤ 

 
for � � �1, … , ¤� for which the inequality (2.14) holds.  
It results that  
 

                          61 H ∏ Ñ1 H )*
/**�{�*C*{�* Ô;�ß� 7Ì G 61 H ∏ Ñ1 H )*
/*�{�*C*{�* Ô;�ß� 7Ì
.              (§§) 

 
 
(§) and (§§) give 3
�**� G 3
�*�. This contradicts the fact that �* is optimal for 
K$¥�. 
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2.2.7.3 Solving the resulting problem using the min-bounded sum operator 
 
Although the solution obtained by solving the resulting problem 
P$¥�using the  Ë-operator is efficient for (P$$�, it is not always easy to solve 
P$¥� by available 

mathematical programming software. 
This leads us to use another compensatory operator, namely, the bounded min-sum 
defined as follows: 

 Ë min�ß�,…,; §� n 
1 H Ë� min .1, r §�
;

�ß� 0 

 
where Ë is a coefficient of compensation ranging on (0,1).  
Empirical investigations [31] show that 0.705 is a good value for Ë. 
With this operator  the program (K$u) reads:                 
  

             (K$ì)Ê max �Ë min�ß�,…,;  §� n  
1 H Ë�min 
1, ∑ §�;�ß� �� x � �                                                                             �                                       
 
Proposition 2.2 
  �* is optimal for (K$ì) if and only if ( �*, d*, §*� where d* � ��p�§�

 �*�,   §* � ��p 
1, ∑ §�;�ß� 
�*�  is the solution of the problem 

 

                    (K$�)

�
�

��o� Ëd n 
1 H Ë�§    d � §��     � � 1, … , �§ � 1                              § � ∑ §�
��                  � � �                            

� 
Lemma 2.1 
 
If  (�*, d* , §*� is optimal for (K$�) , then  

 d* � ��p� §�

 �*�,                   §* � ��p 
1, ∑ §�;�ß� 
 �*��. 

Proof.  
Suppose  (�*, d*, §*� is optimal for (K$�) and d* w ��p� §�

�*� ; let d**=��p� §�

�*�, 
then   d** G  d*. 
(�*, d**, §*� verifies the constraints of  (K$�) and   Ëd*+(1-Ë�§* < Ëd**+(1-Ë�§*; this 
contradicts the fact that  
�*, d*, §*� is optimal for (K$�). The fact that §* � min 
1, ∑ §�;�ß� 
�*�� can be proved in the same way. 
 
Proof of Proposition 2.2 
 

(a) Necessity: 
If  �* is optimal for (K$ì), then  
 

Ë min�ß�,…,; §� 
�*� n 
1 H Ë� min .1, r §�
�*�;
�ß� 0 
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              ≥ Ë min�ß�,…,; §�
�� n  
1 H Ë�min 
1, ∑ §�;�ß� 
���,  J � � �.                     (2.15) 

 
Suppose that 
�*, d*, §*� with d* � min�§�
�*� and §*  � min
1, ∑ §�
�*�� is not optimal 
for (K$ì). There exists  
�**, d** , §**� w 
�*, d*, §*� such that: 

 d** � §�
�**�, � � 1, … , ¤,                          
                                       §** � 1,           §** � ∑ §�
�**�;�ß� ,                                       
                                       �** � �,                                                                                              
                                      Ëd** n 
1 H Ë�§** G Ëd* n 
1 H Ë�§*.                           
 
It results that Ë min� §�
�**� n 
1 H Ë� min� Ñ1, r §� 
�**�Ô ( Ëd** n 
1 H Ë�§** G Ëd* n 
1 H Ë�§*  � Ë min� §�
�*� n 
1 H Ë� min Ñ1, r §�
�*�Ô 

which contradicts (2.15). 
 

(b) Sufficiency:  
If  
�*, d*, §*�  is optimal for 
K$��, by the lemma 2.1 we have 

 d* � min� §�
�*� opq   §* � min Ñ1, r §�
�*�Ô. 
 
Suppose �* is not optimal for  
K$ì�, there exists �**  such that: 
 Ë min� §�
�**� n 
1 H Ë� min�
1, ∑ §�
�**�� G Ë min� §�
�*� n 
1 H Ë� min 
1, ∑ §�
�*��  � Ëd* n 
1 H Ë�§*. 
 
Let  
 d** � min� §�
�**�,   §** � min Ñ1, r §�
�**�Ô . 
 
(�**, d**, §**� verifies the constraints of (K$�� and 
 Ëd** n 
1 H Ë�§** G Ëd* n 
1 H Ë�§*. 
 
This contradicts the fact that   
�*, d*, §*�   is optimal for 
P$��. 
 
The solution obtained by (K$ì) is not necessarily Pareto optimal.  
The following result claims that it is an attractive one from the standpoint of 
efficiency. 
 
Proposition 2.3  

 
If h� and Í� are finite with Í� ² hf  
� � 1, … , ¤�, and if  �* is optimal for 
K$ì�, then each 

solution �** which dominates strictly �* is also optimal. 
 
Proof  �**  dominates strictly  �*  implies  
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 	�
 �** � ( 	�
 �* �        J�    
and 

                	� 
 �** � G 	�
 �*  �  for at least one �. 
Then  

 
)*
 /** �{�*C*{�* ( )*
 /*  �{�*C*{�*      J� 

and  

                                               min� Ñ)*
/**�{�*C*{�* Ô ( min� Ñ)*
 /* �{�*C*{�* Ô. 
We also have 

                                               min Ñ1, ∑ )*
/**�{�*C*{�* Ô ( min Ñ1, ∑ )*
 /* �{�*C*{�* Ô. 
 
The last two inequalities imply that: 
 Ë min� 9	�
�**� H Í�h� H Í� : n 
1 H Ë� min 91, r 	�
�**� H Í�h� H Í� : 

( Ëmin� 9	�
 �* � H Í�h� H Í� : n 
1 H Ë�min91, r 	�
 �*  � H Í�h� H Í� :. 
 
As  �*  is optimal for (K$ì�, the last relation is necessarily an equality and �** is also 
optimal for (K$ì�. 
 
Corollary 2.4  

 
If the solution  �*   of (K$ì) is unique, then  �*  is efficient for 
K$$�. 

 
Proof 
 
As  �*  is unique, there is no �** � � such that 	�
�**� ( 	�
 �* �  J�  and  
 	�
�**� G 	�
 �* � for at least one �. Otherwise, by the Proposition 2.3, �** would be 
optimal. For each � � #\� there is an ℓ so that 	ℓ
�� � Íℓ ² 	ℓ
�*�.  We can 
conclude that there is no x** � #  such that  	�
�� ( 	�
�*� J� and   	�
�� G 	�
 �* � for 
at least one �.   �* is then efficient for 
P$$�. 
 
2.2.7.4 Numerical example 
 
Consider the multiobjective program: 
 

        (K$�� �max�
3�� n �$�, 
�� H  2�$� �  2�� H �$ � 2                               �� n  2�$ � 5                              �� ( 0 , �$ ( 0                           � 
 

Put  	�
�� � 3�� n �$  and  	$
�� � �� H 2�$. 
 
Let us  compute  h�    and  h$ 
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 To obtain  h� we have to  solve the linear program: 

                                 �max  
3�� n �$�2�� H  �$ � 2   �� n  2�$ � 5   �� ( 0, �$ ( 0 � 
 
Using LINGO we obtain the optimal solution:  ��* � 9/5 ,  �$* � 8/5,    and  h� � 7. 
 
To obtain h$ we have to solve the linear program: 
 

                                 �max  
�� H 2�$�2�� H  �$ � 2   �� n  2�$ � 5   �� ( 0, �$ ( 0 � 
 
Using again LINGO the optimal solution:  ��* � 1 ,  �$* � 0, and   h$ � 1. 
Now taking decision maker opinion we fix  Í� and  Í$ such that: 

                                    Í� �  h�,   Í$ � h$  . 
Let  Í� = 5    and   Í$= 0  and define  §� and  §$ as in (2.11) 

Aggregating the two membership functions using min-bounded sum operator yields: 

§;(x) =Ë minj§�
��, §$
��k + (1-Ë�min 
1,  §�
�� n §$
��). 
The resulting program is then 

 

                      
P$	�
��
�max¯ Ë minj§�
��, §$
��k n 
1 H Ë� minj1,  §�
�� n §$
��k±             2�� H �$ � 2                                                                                                       �� n  2�$  � 5                                                                                                     x�  ( 0 ,    x$ (  0                                                                                              

� 
 
By virtue of Proposition 2.2, this program is equivalent to: 
 

                     
P$��
�
�

�max  
Ëd n 
1 H d�§�d � §� 
��                     § � 1                            § �  §�
�� n §$
��� � �                          

� 
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Replacing Ë by 0.705 and   we obtain the program:                                 

 

                                 
Pu"�
�



�




� max  
0.705d n 0.295§�                   d �    3�� n �$                                    d �    ��  H  2�$                                  § � 1                                                    § �  �V x� H <V  =V H �V                                        2�� H �$ � 2                                      �� n  2�$  � 5                                     x�  ( 0 ,    x$ (  0                              

�
 

 
Using LINGO software to solve this program we obtain the following solution: 
  
   d* � 1 
                                §* � 1  
                                ��* � 1 
                                �$* � 0. 
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CHAPTER 3:  MULTIOBJECTIVE PROGRAMMING 
PROBLEMS UNDER FUZZINESS. 

 

3.1  Preamble 
 
The increased complexity and uncertainty of our social, economic and business 
environment are currently raising some of the greatest challenge yet faced by 
managers. 
Old answers may no longer be appropriate. Instead, managers are required to 
understand, to cope and to adapt to complex and imprecise situations. 
To do so, better decision making procedures must be developed to increase the 
ability of managers to make decisions in perspective of conflictual goals and 
uncertainty.  
In this chapter we discuss  ways  for incorporating fuzziness in a multiobjective 
program model.  
 

3.2  Approach for solving a fuzzy linear multiobjective 
programming problem  using possibility measure 

 
In this section we restrict our discussion to linear programming in a way to convey 
our ideas in a simpler manner. 
 
3.2.1  Problem statement  
 
Consider the mathematical program   

            

(Ku�)�   max 
%̃��, … , % ̃;��    &?� � ' ¼                        � (  0                       � 
 

where % ̃} (j=1,….,k) are n-vectors ,'Ý is an m-vector and &? an m x n matrix , all having 
components that are fuzzy numbers.  %B̃}(l=1, ….,n) 'Ý� , oÛ�} are fuzzy numbers, the membership functions of which are,@ê?*�, @ÜÝ*, @ZÛ*�   respectively. 

 
The membership function of % ̃} is defined as follows: 
 @� ̃�
��, … , ��� � min 
@�Ũ�
���, … , @�W̃� 
����. 

 
By the multiplicity of objectives and the imprecision of technological and objective 
coefficients, (Ku�) is an ill posed problem.  
We must then specify the solution concept we consider to be appropriate for this 
program. This is the task to which we now turn. 
 
 
 
 



41 

 

3.2.2 � - possibly feasible, β –possibly efficient and satisfying solutions for (Ku�) 
 
Definition 3.1 

 
Consider α = (�� ,…,�)  ), α i∈[0.1]  J�  (eventually α 1=α 2 = …= α m).           � ∈X = { � ∈Rn / � ≥0} is said to be α -possibly feasible for (Ku�)  if 
 

                                 Poss (&?�  � �  'Ý�)(  ��   i= 1,…, m,                                (3.1) 
 
where Poss denotes Possibility [55]. 
 
Some points relating to the above definition are in need of comments. 
First using the Zadeh’s extension principle [16] we have: 
 

Poss (&?�  � �  'Ý�)=sup  min (@ZÛ*U 
����,….,@ZÛ*W (tin)). @ÜÝ* (si)) 

                                                   AÞ*�/� �Ö*Þ*,Ö*        

 
where �� � 
���, … , ����,  i=1,…,m. 

 
This quantity is the possibilistic valuation of the alternative x∈Rn, i.e. the degree of 

possibility to which x satisfies the constraint   &g�� �  '̈�. 
Poss (&?�  � �  'Ý�) may be obtained by solving the following mathematical 
programming problem: 
 

Sup k, 
k ≤  @ZÛ*U(ti1), 

. 

. 

. 

k ≤  @ZÛ*W(tin) 

r ��}�}
�

}ß� �  �� 
�� � 
���, … , ���� � �� �} ( 0,   ~ � 1, … , p, 

 

Second, the relative importance of different constraints may be taken into account by 
manipulating appropriately the target levels α i. 

 
Consider now the following mathematical program: 

 

(Ku$)Êmax 
% ̃��, … , %̃;�� � � B                      � 
               

where D⊂ X =�� � �� �  C  � ( 0�. 
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Definition 3.2    
 �" � D is β-possibly efficient for (Ku$), if there is no x� B and  i∈(1,…,k) such that: 

Poss (%̃�� ≥ %̃� �",…,% ̃B{� � ≥%gB{��"  ,  %̃B� G % ̃B�", % ̃B��� ( % ̃B���",…, % ̃;� (  % ̃;�")( ¬. 
 
 
By the extension principle,  
 
Poss (%̃�� ≥ %̃� �",..,,%̃B{� � ≥%̃B{��"  ,  % ̃B� G % ̃B�", %̃B��� ( %̃B���",…, % ̃;� (  %̃;�") 
= sup min(@ê?U
���,…, @ê?DÓU
�B{�� ,@ê?D  (�B), @ê?UEU  (�B��),…, @ê?ä (�;�) 

    (��,…,�;)�  F� 
 
where  
 
            F�= {(��, … , �;) �  y;� / ��� (  ���",..,�B{�� (  �B{��", �B� G  �B�", �B��� (               �B�� �", … , �;� (  �;�"} 
 
and  @êg* (i= 1,.., k) are n- ary possibility distributions. 

 
 Definition 3.2 can be weakened in the following way. 
 
Definition 3.3 
 
x0

∈D is β-weakly possibly efficient for (Ku$) if there is no �∈D such that: 
 
Poss (%̃�� G  % ̃��",..., %̃;� G  % ̃;�")≥ β 
 
It is an easy matter to show that a β-possibly efficient solution for (Ku$) is β-weakly 
possibly efficient for (Ku$) but the reverse is not true. 

 
Definition 3.4 
 
x0 ∈X is an (α ,β)-satisfying solution  for (Ku�) if and only if �" is β-possibly efficient 
for the program. 
 

(Kuu)Ê  �o� 
% ̃��, … , %̃;�"�,� � #                      � 
    

where Xα  denotes the set of α -possibly feasible solutions for (Ku�). 

 
It is worth noticing that for α  and β sufficiently close to 1, an ( ,α β)-satisfying solution 

for (Kuu) is attractive with respect to feasibility and efficiency. As a matter of fact, 
such a solution achieves a great possible degree of feasibility and is not possibly 
dominated to a great extent. 
Throughout this dissertation we suppose �, ¬ fixed a priori. One can equally well 
discuss how to determine them optimally (in the Pareto optimal sense for instance). 
Some attempts in this direction may be found elsewhere [20]. A full parametric 
sensitivity analysis may also be envisaged in this context. 
A natural question is that of how to single out an (α , β)-satisfying solution for (Ku�). 
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We now move to a more precise discussion of this matter. For all to come it is 
assumed that all possibility distributions involved in (Ku�) are convex. 
 
3.2.3. Characterization of an (α, β) –satisfying solution for (�G�) 
 
Consider the mathematical program 
 

(Ku¥) Ê  max 

%̃��­�, … , 
% ̃;�­� �,� � #                                �                
where  
%̃�)β = ((%̃�� �β … , 
%̃�� �β ) and (%}�)β denotes the ¬-level set of the possibilistic variable %}̃�. 
 

By the convexity assumption on the distribution of %̃}�, (%}̃�)β,   j=1, ..., n; i=1, .., k, are 

real intervals that will be denoted as [%̃}�C , %}̃�H�.  
Let now 3­ be the set of k x n matrices C=(cij)  with  cij � � %̃}�C, %}̃�H�. 
 
It is clear that (Ku¥) may be written 
 

max { Y�/� � #α, Y � 3­} 

 
(Ku¥) is then an infinite family of multiple objective linear programs. 
 
Definition 3.5  
 �° is efficient for (Ku¥) if and only if there is no C� 3­ and � � #α, such that  

C � ≥C �°  with at least one strict inequality. 
 
To put it differently, �°  is efficient for (Ku¥) if and only if �° is efficient for  
 Êmax C�, J Y � 3­� � #  ,                 � 
 
From now, EF(3­) and EF(C ) will denote efficient solutions for (Ku¥) and for  

max �Y�/� � #α} respectively. 
By Definition 3.4,   EF (3­) = - EFê� 3K 
Y�. 
A slight weakening of Definition 3.5 gives: 
 
Definition 3.6  
 �° is weakly efficient for (Ku¥) if and only if there is no C� 3­ and � � #α, such that  

C � >C �°. 
   

It is a remarkable fact that (α,β)-satisfying solutions for (Ku�) are nothing but efficient 
solutions for (Ku¥). 
This is the content of the following result. 
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Theorem 3.1  
 �° is an (α,β)-satisfying solution for (Ku�) if and only if �° is efficient for (Ku¥). 
 
 
Proof  
 
Suppose �° is an (α,β)-satisfying solution for (Ku�)  then by Definition 3.4, �° is α-
possibly feasible and β-possibly efficient for (Kuu). Assume now that �°  is not efficient 

for (Ku¥). There is then �1� #α and (L1,…, Lk) with Li� 
% ̃��β such that : 
 
qi �� 

≥ qi �"   J� �{1,…, k}  and  �" � {1,…..,k} such that: 
 

                                                  L�M�� ( L�M�" .                                                     (3.13) 
 

As  L� � 
Y?��β, i = 1…., k   we have also: 
 
                                            min (@ê?* (L�),.., @ê?ä (L;))( ¬                                    (3.14) 

 
By (3.13) and (3.14) we have:  
 
sup min ((@ê?U
���,…. @� ̃*M (��M{�),  @�̃*M(��M),  @� ̃*MEU(��M��), ….,@ê?ä(�;)) 

(��, … , �;� � F�M�  

 

= Poss ( % ̃���≥  % ̃��", ….,%̃�M{� �� ≥ % ̃�M{� �" ,  % ̃�M �� G  % ̃�M �",             % ̃�M�� �� (  %̃�M{� �" , …,  %̃;�� (  % ̃;�"� (  ¬ 
 
where  
 F��� = {
��, … , �;� � y�; /���� ( ���", … , ��MÓU�� ( ��MÓU�", 

 ��M�� G ��M�", ��MEU�� ( ��MEU�", … , �;�� ( �;�"}. 

 
This contradicts the β-possible efficiency of �� for (Kuu) and the if part of the theorem 
is established. 
To show the only if part, suppose �� is efficient for (Ku¥) and not (α,β)-satisfying for 
(Ku�). Then there is �$ � #   and � � �1, … . , ¤� such that: 
 
Poss(% ̃��$ ( %̃���, … . , % ̃Ö{��$ ( %̃Ö{���, % ̃Ö�$ G % ̃Ö��, % ̃Ö���$ ( % ̃Ö����, …, % ̃;�$ ( % ̃;�")( ¬, 
i.e. 
sup min  (@� ̃U(��),..,@� ̃×ÓU) (�Ö{�), @� ̃×(�Ö), @� ̃×EU(�Ö��),….., @� ̃ä(�;))≥β                      (3.15) 

(��, … , �;� � FÖ$ 
 
where  
 FÖ$= {(�� , … , �;� � y�;/���$ ( ���", … , �Ö{��$ ( �Ö{��", �Ö�$ G �Ö�", �Ö���$ (  �Ö���", … . , �;�$ ( �;�"}. 
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For this supremum to exist there should be a vector (Í� , . . . , Í;� � y�x … . . x Ræ 

satisfying the following constraints: 
 Í��$ ( Í��",…,ÍÖ{��$ ( ÍÖ{��",ÍÖ�$ G ÍÖ�", ÍÖ���$ ( ÍÖ���", … , Í;�$ ( Í;�"   (3.16)                        
 
Suppose now that for all (Í�, … , Í;) satisfying the system (3.16), we have  
min (@�̃*(Í�),…, @�̃ä(Í;))<β. 

 
Then  
sup min  (@� ̃*(Í�),..,@� ̃×ÓU) (ÍÖ{�), @�̃×(ÍÖ), @� ̃×EU(ÍÖ��),….., @� ̃ä(Í;))<β. 

(Í�, … . . , Í;� � FÖ$ 
Contradicting (3.15).  
 
There is then (Í� , … , Í;)  satisfying (3.16) such that: 
 
                                      min(@� ̃*(Í�),….,@�̃ä
Í;�� ( ¬.                                          (3.17)                                             

 
By (3.17), @� ̃*(Í�)(β,   i = 1, …., k,                i.e. 

 

                                                      Í� � 
%̃��β,  i=1,….,k.                                                          (3.18) 
 
(3.16) and (3.18) contradict the efficiency of x0 for (Ku¥) and we are done. 
 
Corollary 3.1  
 
x0 is β-weakly possibly efficient for (Kuu) if and only if x0 is weakly efficient for (Ku¥). 
 
The usefulness and interest of these results will be enhanced if there is a way of 
finding an efficient or weakly efficient solution of the program (Ku¥). We now turn to 
this problem in some details. 
 
3.2.4 Finding an efficient solution for (Ku¥) 
 
The following notations will facilitate further discussions. 
Mβ denotes the subset of 3­ composed of matrices C having elements of each 

column at the upper bound or at the lower bound, i.e. if C �  Mβ then either  
 

Y.}=Y.}C= N�̃�UO...��̃WOP ãr Y.}=Y.}H= N��̃UQ...��̃WQ
P 

 

where %}̃�Cand %̃}�Hare the right  and  the left endpoint of( %̃}��β respectively. 

Let K(C ) = {Í � ��  /  YÍ ( 0�. 
If S D 3­ then K (S) = - R
Y�,ê�Ö  and EF (S) = - ��
Y�,ê�Ö  where, as previously, 

EF(C) is the set of efficient solutions for the optimization problem max (C � |  � # ). 
 
 
 



46 

 

Lemma 3.1  
 �  is efficient for (Ku¥) if and only if  
 
                     [{� } + K (3­)]∩ # = { � }.                                                                 (3.19) 

 
Proof 
 
Necessity:  Suppose x efficient  for (Pu�) and [{x } + K(3»)]ù X½ w { x }. 

Then there is y�[{ x }+K(3»�� ù X½ with y w x, i.e. there is C� 3» such that  y � x n Cp � X½ with p � K
C� and y w x.  Or to put it differently, there is C� 3» and y � X½ such that Cy ≥ C x. As y w x, there is some row C� of C satisfying the condition  C�y G  C�x,. This contradicts the efficiency of x for (Pu¥). 
 
Sufficiency: Assume (3.19) holds and x is not efficient for (Pu¥). Then there is  y � X½ 
and C � 3» such that Cy ≥ Cx  with at least one strict inequality. Let now p= y- �; it is 

clear that p∈K(C).   
Furthermore y= � +p and y∈[{ �}+K(C)] ∩ Xα . This is in contradiction with (3.19). 

 
Proposition 3. 2  

 
   (a) K (3­) = â R
Y�ê�TK . 

       (b) EF (3­)= - ��
Y�ê�TK . 
 
Proof 
 

(a) Assume p� K
3») , there exists   C � 3»  such that C p ≥ 0. Consider C1 = (c���) 

defined as follows: Y�}� �   Y.}C          �	 Í} ( 0     Y.}T       �	  Í} ² 0  . � 
 

            
It is clear that C �p ( C p ( 0  i.e. p � K 
C�) . As C� � M» it follows that  

K(3») ⊆ K(Mβ). 

The reverse inclusion is a direct consequence of the definitions of K(3») and K(Mβ). 

  
(b) By definition of Mβ we have EF 3») ⊆ EF(Mβ).  

Assume now that x V EF3»); then by Lemma 3.1 , [{x }+K(3»)]ù X½≠{ x }; it follows by 

(a) that [{x }+K(Mβ)] ]ù X½ ≠{ x}  and  
therefore �∉ EF(C) for some C� M». Hence � ∉EF(Mβ) and consequently 

 EF (Mβ) ⊆ EF(3») as desired. 

 
This result is insightful. It tells us that efficient solutions for (Pu¥) must be searched 
among elements of EF (Mβ). 
The following Lemma that will be used in the sequel is well known in multiple 
objective optimization theory [35]. 
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Lemma 3.2 
 
A necessary and sufficient condition for x0 to be efficient for the multiple objective 
program 

 
max  C �, � ∈ X. 

 
is that there is λ>0 such that x0 solves the mathematical program. 

 
max λC �, � ∈X. 

 
A fascinating point is that the following program yields an (α ,β)-satisfying solution 

for (Ku�): 

(Kuì) Ê max  q"�,  � �  #     � 
              

where L" is a solution of the system  

                                           "�Y� H L � 0   J � such that  Y� � W­,           (3.20) "� � �; ,     "� G 0. 
 
Proposition 3.3 
 
If x0 is optimal for (Kuì) then x0 is efficient  for (Ku¥). 
 
Proof 
As q0 is a solution of (3.20), J � such that Y� � W­, there is "� � y;,  "� G 0 

such that "�Y�= L"  i.e. J � such that Y� � W­,  �" solves max ("�Y��|� � # ). 

By Lemma 3.2, �" is efficient for 
 

max (Y��|� � #  ) J Y� � W­ 

 
By Proposition 3.2, �" is efficient for 
 

max 
Y��|� � # ) JY� � 3­ 

 
i.e. �" is efficient for (Ku¥) as desired. 
 
Corollary 3.2 
 
If x0 is optimal for (Kuì) then �" is (α β)- satisfying for (Ku�). 

 
This statement follows trivially from Proposition 3.3 and Theorem 3.1. 
 
From this discussion we can derive the following method for solving. 
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3.2.5  Description of the method 
 

Step 0   
Start 
 
 
Step 1  
Read  @��̃D   j=1,…,n   ,  l=1,…,k,  @ZÛ*�  , @ÜÝ*  ;  i=1,…,m 

 
 
Step 2  

Fix  �, ¬ ; 
 
Step 3  

Put  j%̃}�k­   in the form   �%}̃�C , %̃}�T� ; 
 
Step 4   

Determine  ©­ ,W­, #   ; 
 
Step 5  

Solve the system  "�Y� H L � 0  J�  such that: 

          Y� � W­ , "� � y; ,"� G 0 , 
Let L"  be its solution; 
 
Step 6  
Solve the mathematical program:   max     q"�  

       � �  #   

Let �"  be its solution 
 
Step 7  
Print   �" �� 
�, ¬� satisfying for 
Pu��; 
 
Step 8   
Stop 

 
3.2.6 Numerical example 
 
Consider the multiple objective linear possibilistic program: 
 


Pu�)

�


�


�

 Max
% ̃��, % ̃$��            ��  n  �$ (  250         ��  �  200                  2�$ � 200                 2�� n 1.5�$ �  4803�� n 4�$ � 900    �� ( 0 ,   x$ ( 0     
  � 

 



49 

 

where % ̃� = (%̃��, %�̃$),  % ̃$  � 
%̃$� , %̃$$� and %̃�} are characterized by the possibility 

distributions shown in figure 3.1 a-d. 
Let β =1; then (%̃��)β = [1,2], (%�̃$)β = {1}= (%$̃$)β, (%$̃�)β = {0}. The subset W­ of 3­ is 

composed of the matrices. 
 Ñ1 10 1Ô,      Ñ2 10 1Ô 

 

For L"=j¥.¥$.�k the system Ñ1 10 1Ô ÑXUUXVUÔ � j¥.¥$.�k 

as well as Ñ2 10 1Ô ÑXUVXVVÔ � j¥.¥$.�k 

have positive solutions, namely  ÑXUUXVUÔ � j�.¥$.�k,    ÑXUVXVVÔ �  j".�ìì.	 k 

 
 
  @ê?UU                                                                                                        @ê?UV  

                                 a               b 

                                                                                                                             

              1             1 

 

  � 

               0              1                  2                       �                                0                  1               2                                                                                                                                               
 
 
 
 @ê?VU                    @ê?VV 

 
     1 c         1          d 
                                                                                
                                                                                               1                 �  
-1          0        1           �                                                    0                                    2                                                            

 

 
Fig.3.1: Possibility distributions of data of (Ku�) . 

 
 
respectively. As constraints are crisp, the set X of points of R2 satisfying (Ku�) is 
nothing but the set of 1-possibly feasible solutions. By the Corollary 3.2, the program  
max (q0 � / � � #� � # ) yields a (1,1)-satisfying solution for (Ku�). 
Solving this program, using LINGO software, we get the solution  �* = (150,100). 
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3.3 Approach for solving a fuzzy multiobjective programming 
problem using connections between fuzzy numbers and real 
intervals. 

 
3.3.1 Connection between fuzzy numbers and real intervals 
 
Consider Π:Z��
��                 [\\\] ?̂�0,1� x ?̂�0,1� 
                                                 aÛ                               [\\\\\\\\] 
oÛC
��, oÛH
���     
 
where oÛC
�� � oÛ C   and   oÛH
�� � oÛ H. 
 oÛ C   and oÛ H  standing for the lower and upper endpoints of the �-level of oÛ. 
Here Z��
�� denotes the space of fuzzy numbers with compact support and ?̂�0,1� is 
the set of real-valued bounded functions 	 on �0,1� such that: 
 

- 	 is left continuous for any � � �0,1� and right continuous at 0. 
- 	 has a right limit for any � � �0,1�. 

 
It is shown in [54] that Π is isomorphic and isometric. 
This result, called Embedding Theorem for fuzzy numbers, will be used in an 
essential manner in our approach for solving a multiobjective programming problem 
with fuzzy coefficients. 
 
Consider the mappings: 	?� : ��                             [\\\\\\\] _��
��; � � 1, … , ¤ 

We are interested in solving the following optimization problem: 
 
Pu� � Êmax  �	?� 
��, … , 	?; 
��� � � #                             � 
 

where # � ¯� � �� 
}
��⁄ � 0;   ~ � 1, . . . , �± is a convex and bounded subset of ��. 

We use the notation 	?� 
�� for the �-level of 	?�
��. It is clear that  
 	?�  
�� � �	?� C 
��, 	?� H
���. 

 
Consider now the following surrogate of 
Ku��: 
 

                                              
Pu	� Ê min�∏ 
	?�
���, … ,∏
	?;
����� � #                                      � 
 
The following result relates 
Pu�� and 
Pu	� in expected manner. 
 
Proposition 3.4 
 �* is efficient for 
Ku�� if and only if �* is efficient for 
Ku	� 
 
Proof 
Assume �* is efficient for (Ku�) and not efficient for (Ku	).   
As �* is efficient for (Ku�), there is no  � � # such that: 
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	?�
�� � 	?�
�*�   J� � �1, … . , ¤�    ���
��                                                                                                   (3.21) 

and  
 

            
	?ℓ
�� ² 	?ℓ
�*�    for some ℓ � �1, … , k�. ���
��                                                                                       (3.22) 

 
As �* is not efficient for 
Ku	�, we may find � � # such that: 
 

          Π	?�
�� � Π	?�
�*�, J � � �1, … . . , ¤�                                                             (3.23) 
 
and  

          Π	?ℓ
�� ² Π	?ℓ
�*�    for some ℓ � {1,…,k}.                                                (3.24)  
 
This means  

        
	?� C  
��, 	?� H
��� � Ñ	?� C 
�*�, 	?� H
�*�Ô , J� � 
0,1�,   J� � �1, … , ¤�                  (3.25) 

and  

       
	?ℓ C 
��, 	?ℓ H 
��� ² Ñ	?ℓ C 
�*�, 	?ℓ C 
�*�Ô , J� � 
0,1� for some ℓ �{1,…,k}.         (3.26) 

   
(3.25) and (3.26) are equivalent to:  
 

        
	?�
�� � 	?�
�*�      J � � �1, … . , ¤� ���
��                                                                                                      (3.27) 

and  
 

       
	?ℓ
�� ² 	?ℓ
�*�      for some ℓ � �1, … , k�. ���
��                                                                                            (3.28) 

 
(3.27) and (3.28) are in contradiction with (3.21) and (3.22). This means that  �* is 
efficient for 
K¥"�. 
The other implication can be proved in similar way. 
 
Making use of the definition of Π; 
Ku	� can be put in the following form: 
 


Pu� �� min��	?�C
��
��, 	?�H
��
���    � � 1, … , ¤ �� � #                                                                    � � �0,1�                                                             � 
 
Worthy to note here is the fact that 
Pu� � is a multiobjective mathematical program 

with infinitely many objective functions.  
This is the price to pay for considering an equivalent deterministic counterpart of 
Pu� � instead of an approximate one.  
To be able to carry out a fairly discussion of 
Pu� � we find it convenient to assume 
that minimizing an interval is tantamount to minimizing its midpoint. 
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This interpretation generalizes quite canonically the real case. As a matter of fact the 
midpoint of [a, a] is a. 
Bearing in mind the above assumption and considering the fact that multiplying 
objective functions by a constant do not alter the localization of the optimum, 
Pu� � 
can be written: 
 

                                 
P¥" � � min ��	�C
��
�� n 	�H
��
���; � � 1, … , ¤��� � #                                                                     � � �0,1�                                                               � 
 

From now 	�
��
��  denotes  
	�C
��
�� n 	�H
��
���  and I stands for [0,1]. Therefore 
P¥" � reads merely: 
 


P¥� � � min �	�
��
��; � � 1, … , ¤�                       �� � #                                                                � � �                                                                 � 
 
Let’s select a finite subset of I, S={ ��, … , �)� and  let  ��, … ,�) be real valued 
functions such that: 
 

(i) �}
�� ( 0    � �I ; j=1,…,m; 

  

(ii)    �}
��� � Ê1             �	  � � ~0            �	 � w ~ � .   
 

Define the operator ` as follows: 

 Κ [	�
��
���=∑ �}
��)}ß� 	�
��
�}�. 
 

Consider now the following mathematical programs: 
 

                                  
P¥$ � � min �Κ�	�
��
���;    � � 1, … , ¤�                       �� � #                                                                        � � �0,1�                                                                  � 
 

                                  
P¥u ��min ¯	�
��j�}k;  ~ � 1, … , �;  � � 1, … , ¤�                       �� � #                                                                                        � � �0,1�                                                                                  � 
 
The following theorem tells us that 
P¥$ � and 
P¥u � are equivalent in terms of 
efficiency. 
 
Theorem 3.2 �* is efficient for ( K¥$� if and only if �* is efficient for (K¥u�. 
 
Proof 

(1)  l 
Suppose that �* is efficient for 
P¥$ �  and not efficient for 
P¥u �.  
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Then there is no x � # such that: 

 Κ 	�
��
�� ≤ Κ 	�
�*�
��   J i = {1,…,k},  J� � I                                                   (3.29) 

 
and  

 Κ 	ℓ
��
�̈� < Κ 	ℓ
�*�
�̈�  for some ℓ � {1,…,k}  and for some �̈ � I.                 (3.30)                 

 
In the same time we have, by the fact that �* is not efficient for 
P¥u�, that there is 

x� # such that : 
 	�  
��
�}� � 	�
�*�
�}�                       J i={1,…,k};             J j = {1,…,m} 

 
and  	ℓ 
��
�Ö� ² 	ℓ
�*�
�Ö�  for some ℓ �{1,…,k} and for some s �{1 ,…,m}. 

 
Let now �  be chosen arbitrarily in I.  As  �}
�� ( 0  and �}j�}k =1, we have that 

 	�  
��j�}k H 	�
�*�
�}�  � 0                       J i={1,…,k};             J j={1,…,m} 

 
and 
 

          	ℓ 
��
�Ö� H 	ℓ
�*�
�Ö� ² 0  for some ℓ �{1,…,k} and for some s �{1 ,…,m}. 
 
We can say that there is x� # such that: 
 ∑  �}
��)}ß� �	�  
��
�}k H 	�  
�*�
�}�� ² 0     J i = {1,…,k}. 

 
This means there is x� # such that: 
 

     ∑  �}
��)}ß� 	�  
��
�}� ² ∑  �}
��)}ß� 	�  
�*�
�}�     J i = {1,…,k}. 

 
As � is chosen arbitrarily, we can say that there is x� # such that: 

 Κ 	�
��
�� ≤ Κ 	�
�*�
��   J i,  J� � I. 
 
This contradicts (3.29) and (3.30 and we may conclude that �* should be efficient for 
P¥u�. 
 
 (2)  b 
Suppose now that �* is efficient for  
P¥u� and not efficient for 
P¥$�.  
Then there is no x� # such that: 

 	�  
��
�}� � 	�
�*�
�}�          J j�{1,…,m}              J i�{1,…,k}                            (3.31) 
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and  
 	ℓ 
��
�Ö� ² 	ℓ
�*�
�Ö�  for some l�{1,…,k}; and for some  s�{1 ,…,m}             (3.32) 

 
In the same time we have, by the fact that �* is not efficient for 
P¥$�, that there is 

x� # such that: 
 Κ 	�
��
�� ≤ Κ 	�
�*�
��   J I = {1,…,k},  J� � I                                                  (3.33) 

 
and  
 Κ 	ℓ
��
�̈� < Κ 	ℓ
�*�
�̈�  for some  ℓ � {1,…,k}  and for some �̈ � I.                (3.34) 

 
This means by (3.33) and (3.34) that there is x� # such that: 
 ∑  �}
��)}ß� �	�  
��
�}k H 	�  
�*�
�}�� � 0     J i={1,…,k}  J� �I           (3.35) 

 
and 
 ∑  �}
�̈�)}ß� �	ℓ 
��
�}k H 	ℓ 
�*�
�}�� ² 0 for some ℓ �{1,…,k}, and some �̈ �I.(3.36) 

 
By the fact that  �}
�� ( 0   J ~  we have from (3.35) that: 	�  
��
�}� H 	�  
�*�
�}� ² 0   J j�{1,…,m}              J i�{1,…,k}                             (3.37) 

 
Moreover, by the fact that  �}
�̈� ( 0   J ~  we have from (3.36) that:  

 	B  
��
�Ö� H 	B
�*�
�Ö� < 0  for some l�{1,…,k}; and for some  s�{1 ,…,m}          (3.38) 

 
(3.37) and (3.38) contradicts (3.31) and (3.32) and  �*  should be efficient for 
P¥$�. 
 
The interpretation that goes with this theorem is as follows. 
Finding an efficient solution of 
P¥u� is tantamount to find an efficient solution of 
P¥�� 

where 	�  
�� i = 1,…,k are replaced by Κ 	�
�� i = 1,…,k. 

 
3.3.2 Description of the algorithm for solving the program 
Pu�� 

 � � �
��, … , �)� � max mincα H αicα�I    1�i�m                   is called the roughness of the grid  

 
         S= (�� , … , �)�. 
 
It is well known (see e.g. [19]) that the discretization error decreases when the grid is 
refined. That is when h is kept to a lower extend. 
 
The foregoing discussion  leads us to describe the following  algorithm for solving the 
equivalent deterministic program  
Pu��. 
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Step 0 

Fix an acceptable bound of error for h, Ç. 

 
Step 1    
Read data of  
Pu��. 
 
Step 2   
Write the equivalent deterministic program 
Pu��. 

 
Step 3    

Put   ℓ =0. 

 
Step 4    
Take a discretization S={ �ℓU ,…, �ℓ¡ℓ} of  I 

 
Step 5    
Write the discretization problem   
P¥u�. 
 
Step 6:   Find an efficient solution of  
P¥u�. 
 
Step 7    

Compute  � � max mincα H αicα�I    1�i�m                 and check whether |h|< Ç.    

   
     If this is truth Go to Step 9 otherwise Go to Step 8. 
 
Step 8    
Take a finer discretization S’, put S=S’ and Go to step 5. 
 
Step 9    

Print the solution obtained. 
 
Step 10   
Stop. 
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CHAPTER 4: APPLICATIONS 
 
4.1 Mini-Decision Support System for Multiobjective Program-

ming Problems (MDMOPP) 
 
4.1.1 Preamble 
 
MDMOPP is a decision support system for Multiobjective Programming Problems. 
The main aim of this decision support system is to help decision makers faced with 
problems that may be cast into a deterministic or fuzzy multiobjective programming 
framework, to choose an appropriate technique for dealing with the problem at hand 
and to solve it. 
MDMOPP assumes that the multiobjective program to be solved has been 
completely formulated by the decision maker and that information concerning the 
decision maker preferences is available. 
 
4.1.2 Components of MDMOPP 
 
The MDMOPP has three main components, namely a database, a modelbase and a 
software system. In the following subsections we describe each of these 
components. 
 
4.1.2.1   Database 
 
The MDMOPP database is able to store a collection of data files. These data files 
contain a combination of numerical and alphabetical data. Although some of the data 
are stored directly in computer, some of them may be stored on the internet. The 
files are protected by a security code activated by the decision maker.  
 
4.1.2.2   Modelbase 
 
The modelbase consists of the following methods: the compromise programming 
method, the genetic algorithm, the goal programming method, the lexicographic goal 
programming method, the reference point method, the weighting method, the fuzzy 
approach based on possibility measure and the fuzzy approach based on the 
Embedding Theorem. 
All these methods have been described in detail in chapters 2 and 3. 
 
4.1.2.3   Software subsystem 
 
The software subsystem of MDMOPP consists of three components: database 
management software (DBMS), model base management software (MBMS) and 
dialogue generating management software (DGMS). 
Through these components, the interface with the analyst is realized by a sequence 
of windows. Each window has distinct expression which helps considerably to 
facilitate the analyst’s work. The analyst is able to move between the next window 
and the previous one, which helps him to make adjustments or corrections about 
information already entered into the computer. The solution process (which refers to 
steps that the analyst follows to solve the problem) of a given multiobjective problem 
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can be stopped at any step and can be continued again at a later stage. This allows 
the analyst to update, rearrange, retrieve and inquire about the objectives, 
constraints, variables or solution of the problem.  
The model base management software of MDMOPP is able to manage the methods 
by choosing an appropriate one for a given problem. It should also be able to link the 
method to relevant data. The dialogue generating management system of MDMOPP 
provides the dialogue between the analyst and the computer. The dialogue 
generating management system ensures that there is interaction between the 
MDMOPP, the analyst and the operating system. This interaction refers to entering 
data from the given program (P) and information about the preferences of the 
decision maker. 
 

4.2   Functioning of MDMOPP 
 
4.2.1 Actions to perform 
 
To solve a multiobjective program (P), the following basic actions are performed: 

• Analyst answers questions about the problem (P) and about preferences of the 
decision maker. Here are some examples of questions that may be asked: 

- Is at least one objective or constraint of the problem at hand nonlinear? 
- Is the decision maker willing to work through the solution process together 

with the analyst? 
- Is the decision maker willing to have as many options as possible to 

choose from?  
- Does the decision maker have specific targets for each objective? 
- Does the decision maker regard some objectives as more important than 

others? 
• Analyst enters data into MDMOPP. 
• MDMOPP checks data for more details.  
• MDMOPP solves (P) according to the method chosen. 

 
4.2.2 Flowchart of MDMOPP  
 
Here is a flowchart that summarizes the MDMOPP functioning: 
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Figure 4.1: Flowchart of Mini-Decision Support System for Multiobjective Programming 

Problems. 
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The full implementation of this mini-system is a subject of further research. 
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4.3 Case study 
 
4.3.1  Problem formulation 
 

The Nyarutarama  Lake, located in Kigali City, is famous for its flora which attracts 
migratory birds and fish. The lake is connected to many rivers. The most important 
ones: Karenge, Kimisagara and Nyabarongo are controlled by reservoirs. These 
reservoirs are managed by Rwanda Water and Sanitation Corporation (RWASCO). 
They provide drinking/irrigation water and fresh water to the Nyarutarama Lake. 
Reservoir releases for the lake contribute to flora growth.  
For a given reservoir, RWASCO has decided monthly on water quantity to release 
for irrigation, for drinking and for the lake. These releases will be decided regarding 
some objectives: satisfying the drinking and irrigation water demands, controlling the 
drought and flood periods and contributing to the preservation of the Nyarutarama 
Lake. 
The problem consists of determining optimal release from different reservoirs. 
 
4.3.2 Mathematical formulation of the problem 
 
Data related to resources and reservoirs management must be considered to build 
the objectives and constraints of the problem. 
For this problem the decision variables are the water releases, from different 
reservoirs, for irrigation, ��,Þ , for drinking, B�,Þ and for the Nyarutarama  Lake, h�,Þ;  i 
and t are reservoir and time indices respectively.  
The decision maker has to specify for each reservoir the flood, �Y control storage. 
Moreover, the following parameters must be introduced in order to begin the solution 
procedure: 

- maximum release from each reservoir  W�,Þ ; 
- minimum release of the lake at the end of the period t, MRLd. 

The variables used to formulate the problem may be summarized as follows. 
 

• Decision variables: 
 ��,Þ :  Releases for irrigation demand from reservoir � at the end of period �. B�,Þ :  Releases for drinking demand from reservoir � at the end of period �. h�,Þ :  Releases for the Nyarutarama Lake demand from reservoir � at the end of  

      period �. 
 
• Parameter variables: 

 W�,Þ :  Estimation of releases for drinking, irrigation and the lake from reservoir �. Wyht:  Minimum releases for the Lake at period � specified by the Environment     
Ministry. B;,�,Þ:  Maximum demand for drinking water from reservoir i at the end of period t. Bf,�,Þ:  Maximum irrigation demand from reservoir i at the end of period t. 

 
In our application the period � is equal to one month and the index � is equal to 1 for 
Karenge reservoir, to 2 for Kimisagara reservoir and 3 for Nyabarongo reservoir. 
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• Objectives of the problem:  
 
The goals of the problem are as follows: 
Goal for the control of the drinking water supply: the goal here is to satisfy the 
demands  

 B�,Þ ( B;,�,Þ  J�. 
 

Goal for the control of the irrigation water supply: the goal here is to satisfy the 
irrigation demands  
 ��,Þ ( Bf,�,Þ   J�. 

 
• Constraints of the problem: 

 
The constraints of the system are as follows: 
 
Constraint on maximum water releases:  
 B�,Þ n ��,Þ n h�,Þ � W�,Þ      J i 
 
Constraint on Lake releases:  h�,Þ ( WyhÞ.       J i 
Non negativity constraint: B�,Þ , ��,Þ ,  h�,Þ   ( 0,         J�. 

 
As the targets B;,�,Þ  and  Bf,�,Þ  are given for each of the objectives, we see from our 

mini-Decision Support System that we have to use the goal programming method.  
This means we have to minimize positive and negative deviations from these targets. 
 
Let �;,�,Þ  be the deviation between B�,Þ  and  B;,�,Þ , that is  �;,�,Þ �  B�,Þ H B;,�,Þ . 
Let also �f,�,Þ  be the deviation between  ��,Þ  and  Bf,�,Þ . 
The resulting mathematical program is: 
 


P¥¥ �
�


�



� min�r  
u

�ß� �; ,�,Þ� n �f,�,Þ� n �;,�,Þ{ n �f,�,Þ{ ��                                                                                                       B�,Þ H �; ,� ,Þ� n �;,�,Þ{ � B;,�,Þ                                  Ji ��,Þ H �f ,�,Þ� n �f,�,Þ{ � Bf,�,Þ                                      Ji B�,Þ n ��,Þ n h�,Þ �  W�,Þ                                          J �  h�,Þ ( WyhÞ                                                               Ji   B�,Þ,  ��,Þ ,  h�,Þ   ( 0,                                                  J �
� 

 
where  �;,�,Þ� , �f,�,Þ� ,  �;,�,Þ{ ,  �f,�,Þ{  are positive and negative deviations respectively. 

 
For the considered month t (September 2008), the following data, expressed in 
millions of liters of water, have been collected from RWASCO: 
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i 

B;,�,Þ Bf,�,Þ W�,Þ 
1 2.9 1.613 3.2 

2 0.185 0.216 3.2 
3 0.787 0.517 3.2 
    
 WyhÞ= 1.8 
 
Table 4.1: Data collected from RWASCO. 
 
4.3.3 Solution of the problem 
 
With above data and by denoting positive and negative deviations by EDITIV, EIITV, 
EDITU, and EIITU respectively, LINGO instructions read: 
 
MIN = ED1TV + EI1TV + ED1TU + EI1TU + ED2TV + EI2TV + ED2TU + EI2TU  

+ ED3TV + EI3TV + ED3TU + EI3TU ; 
 
D1T + ED1TU - ED1TV = 2.9 
D2T + ED2TU – ED2TV =0.185 
D3T + ED3TU – ED3TV = 0.787 
I1T + EI1TU – EI1TV = 1.613 
E2T + EI2TU – EI2TV = 0.216 
I3T + EI3TU – EI3TV = 0.517 
D1T + I1T + L1T≤ 3.2 
D2T + I2T + L2T ≤ 3.2 
D3T + I3T + L3T ≤ 3.2 
L1T ≥ 1.8 
L2T ≥ 1.8 
L2T ≥ 1.8. 

 
Using LINGO « SOLVE » Command yields the following solution: 
 

D1T = 1.4 
     D2T = 0.185 
    D3T = 0.787 

I1T = 0.0 
    I2T = 0.216 
    I3T = 0.517 

L1T = 1.8 
     L2T = 2.799 
     L3T = 1.896. 
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This means that the following releases (expressed in millions of liters of water)  for 
drinking / irrigation and for the Lake,  are optimal. 
Releases from: 
 

• Karenge reservoir:  1.4 for drinking,  0.0 for irrigation and 1.8 for the Lake; 
 

• Kimisagara reservoir: 0.185 for drinking, 0.216 for irrigation and 2.799 for the 
Lake; 

 
• Nyabarongo reservoir: 0.787 for drinking, 0.517 for irrigation and 1.896 for the 

Lake. 
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CONCLUDING REMARKS 
 
Multiobjective Programming Problems are encountered in many areas of 
applications.  
 
In this dissertation we have highlighted the fact that it is possible to solve these 
problems using adequate techniques rather than relying on the simplistic way of 
replacing stubbornly different conflicting objectives by a single one.  
It is worth mentioning that some of ideas developed here will appear in a forthcoming 
issue of the journal Advanced in fuzzy sets and systems [33]. 
 
It has also been shown that Fuzzy set Theory may be of great help as both a 
language and a tool for dealing with Multiobjective Programming Problems with fixed 
and fuzzy data. 
 
We have also described a mini-Decision Support System aiming at helping people 
facing these problems. This system helps both in the choice of an appropriate 
technique and in the solution process. 
 
Among lines for further developments in this field, we may mention the following. 

- The consideration of both possibility and necessity measures in the 
approach described in  § 3.2. 

- The extension of methods described in Chapter 3 to the case where 
fuzziness and randomness are in state of affairs. 

- The full implementation of the mini-Decision Support System described in 
§ 4.1. 
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