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ABSTRACT 
The present study has originated from the realisation that numerous software 

development projects either do not live up to expectations or fail outright.  The scope, 

environment and implementation of traditional software projects have changed due to 

various reasons such as globalisation, advances in computing technologies and, last 

but not least, the development and deployment of software projects in distributed, 

collaborative and virtual environments.  As a result, traditional project management 

methods cannot and do not address the added complexities found in this ever-

changing environment. 

  

In this study the processes and procedures associated with software project 

management (SPM) were explored. SPM can be defined as the process of planning, 

organising, staffing, monitoring, controlling and leading a software project.  The 

current study is principally aimed at making a contribution to enhancing and 

supporting SPM.   

 

A thorough investigation into software agent computing resulted in the realisation that 

software agent technology can be regarded as a new paradigm that may be used to 

support the SPM processes.  A software agent is an autonomous system that forms 

part of an environment, can sense the environment and act on it over a period of time, 

in pursuit of its own agenda.  The software agent can also perceive, reason and act by 

selecting and executing an appropriate action.  The unique requirements of SPM and 

the ways in which agent technology may address these were subsequently identified.  

It was concluded that agent technology is specifically suited to geographically 

distributed systems, large network systems and mobile devices.  Agents provide a 

natural metaphor for support in a team environment where cooperation and the 

coordination of actions toward a common goal, as well as the monitoring and 

controlling of actions are strongly supported.  Although it became evident that agent 

technology is indeed being applied to areas and sections of the SPM environment, it is 

not being applied to the whole spectrum, i.e. to all core and facilitating functions of 

SPM.  If software agents were to be used across the whole spectrum of SPM 



 
 

 
 

 

processes, this could provide a significant advantage to software project managers 

who are currently using other contemporary methods.  

 

The “SPMSA” model (Software Project Management supported by Software Agents) 

was therefore proposed.  This model aims to enhance SPM by taking into account the 

unique nature and changing environment of software projects.  The SPMSA model is 

unique as it supports the entire spectrum of SPM functionality, thus supporting and 

enhancing each key function with a team of software agents.  Both the project 

manager and individual team members will be supported during software project 

management processes to simplify their tasks, eliminate the complexities, automate 

actions and enhance coordination and communication.  Virtual teamwork, knowledge 

management, automated workflow management and process and task coordination 

will also be supported. 

 

A prototype of a section of the risk management key function of the SPMSA model 

was implemented as ‘proof of concept’.  This prototype may be expanded to include 

the entire SPMSA model and cover all areas of SPM.  Finally, the SPMSA model was 

verified by comparing the SPM phases of the model to the Plan-Do-Check-Act (PDCA) 

cycle.  These phases of the SPMSA model were furthermore compared to the basic 

phases of software development as prescribed by the ISO 10006:2003 standard for 

projects.  In both cases the SPMSA model compared favourably. 

 

Hence it can be concluded that the SPMSA model makes a fresh contribution to the 

enhancement of SPM by utilising software agent technology.  
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1.1 INTRODUCTION 
Most current business undertakings are supported by software applications.  The 

quality, effectiveness and efficiency of these applications determine the success or 

failure of many business solutions.  As a result, businesses often find that they need to 

obtain a competitive advantage through the development of software projects that 

support crucial business activities.  The quality of the software development process 

plays a key role in the quality of the software implementation.  Improvements in the 

development of project management software can therefore result in a significant 

improvement in software quality (Schwalbe, 2006). 

 

Numerous software development projects either do not live up to expectations or they 

fail outright.  This is clear from the fact that software projects often do not comply with 

the traditional standard measurements of success, namely time, cost and scope 

(Schwalbe, 2006).  For example, Marchewka (2003) reports that of the more than 

$250 billion that the United States spent on IT projects, 31% were cancelled before 

completion. Only 53% were completed but they had exceeded their budgets and time 

schedules and were not compliant with the specifications.  This explains why 

researchers and practitioners are continuously trying to find new, and enhance 

existing solutions to these problems (Boehm, 1991; Chen, Nunamaker, Romano and  

Briggs, 2003; Marchewka, 2003; The Standish Group, 2005). 

 

In some initial attempts to address problems associated with software development, 

traditional project management (PM) techniques were applied to the development of 

software projects.  However, over time project management methods seemed to lack 

the ability to address the unique characteristics of the software development domain 

(Olson, 2004; Hughes and Cotterell, 2006). This led to the development of Software 

Project Management as an independent application area and field of study (Romano, 

Chen and Nunamaker, 2002; Chen et al., 2003).    
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1.2 UNIQUE NATURE OF SOFTWARE PROJECT 
MANAGEMENT  

Software Project Management (SPM) differs from General Project Management as 

certain inherent characteristics are unique to software development (Brooks, as 

quoted by Hughes and Cotterell, 2006).  These characteristics are invisibility, 

complexity, conformity and flexibility.  

 

 Invisibility implies that the process of developing the software cannot be seen 

(is not visual); thus it is difficult to control, monitor, measure and estimate 

project progress. 

 Complexity of software projects is increased in that software projects include 

not only the development, but also the implementation and maintenance of a 

system that may be distributed and that interfaces with many existing systems.   

 Conformity of software is essential. Traditional disciplines involve physical non-

changing resources, whereas software projects involve a variety of resources 

where the software is expected to conform to the requirements of humans and 

organisations. 

 Flexibility is needed as software systems are required to conform to the 

standards of the organisation.  Thus it is subject to a high degree of change. 

     

The above unique factors contribute to shortcomings in the field of SPM and therefore 

need attention. 

1.3 MOTIVATION FOR THIS STUDY 
The available literature in this field reveals that ongoing research is conducted to 

address the current shortcomings in the management of software projects (Addison 

and Vallabh, 2002; Roy, 2004; Sherer, 2004; The Standish Group, 2003).  

Practitioners have attempted to apply several Software Engineering principles to 

different Software Project Management processes (Lethbridge and Laganiere, 2001).  

They have also explored standard structured analysis and design methods and 

incorporated object-oriented approaches to overcome the aforementioned 
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shortcomings (Gelbard, Pliskin and Spiegler, 2002; Hughes and Cotterell, 2006).  

Different standard project management approaches exist, which are applicable to 

different areas of software project management, such as PRINCE 2 and BS 

6079:1996 (Hughes and Cotterell, 2006).  Yet many software projects still fail to 

comply with the triple constraints of time, cost and scope (Oghma: Open Source, 

2003).  

 

The problems mentioned above can be ascribed to various factors, the most important 

of which is the fact that the SPM environment has changed dramatically over the past 

decade and is still changing rapidly due to globalisation and advances in computing 

technology (Romano et al., 2002; Zanoni and Audy, 2003).  The traditional single 

project, which was commonly executed at a single location, has evolved into 

distributed, collaborative projects deployed in distributed and collaborative 

environments.  This means that traditional project management methods cannot and 

do not address the added complexities found in a distributed environment, such as 

efficient task scheduling, tracking and monitoring, as well as the effective sharing of 

information and knowledge among project contributors.  There is therefore an urgent 

need for managing software project risks in such a way that this complex distributed 

environment is addressed and optimally supported. 

1.4 PROBLEMS TO BE ADDRESSED 
With the advent of global enterprises and virtual organisations, the environment 

impacting on traditional software project management has changed.  Outsourcing of 

projects has become commonplace and adds to the complexity of managing the 

project management process.  It furthermore implies that traditional project 

management methods are unable to address the added complexities found in a 

distributed environment.  Consequently, tools are required for the effective sharing of 

information and knowledge among project contributors, as well as for efficient task 

scheduling, tracking and monitoring.  High levels of collaboration, task 

interdependence and distribution have become essential across time, space and 

technology (Chen et al., 2003).  This thesis will therefore explore the processes and 

procedures associated with SPM in an attempt to contribute to the enhancement of 
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SPM. It will accordingly propose a SPM model that enhances SPM processes by 

incorporating a software agent technology framework. The main issues to be 

addressed in this thesis are consequently defined in the form of the following research 

questions:  

1.4.1 Do standard SPM practices take into account the 
unique nature and changing environment of software 
projects (SPs)? 

Over the past years the SPM environment has changed and it is still evolving and 

developing.  Standard SPM practices focus on a single project, commonly executed at 

a single location with localised team members.  This has changed due to factors such 

as globalisation and advances in computing technology (Romano et al., 2002; Zanoni 

and Audy, 2003).  Nowadays projects are of a distributed and collaborative nature, 

and they are deployed in distributed and collaborative environments.  SPM is also 

characterised by its unique and dynamically changing nature, which differs greatly 

from standard project management.   

 

Innovative SPM practices should take full cognisance of this unique nature and 

changing environment of SPM. An attempt will be made to determine whether 

traditional SPM methods adequately address the added complexities found in a 

distributed environment. This thesis will explore the changing environment and unique 

nature of SPM as well as the processes and procedures associated with SPM, in an 

effort to address this question.  

1.4.2 How can SPM processes be supported and enhanced 
in a distributed environment?  

Software that supports crucial business activities may be utilised to gain a competitive 

advantage for its organisation.  In other words, the quality of the software development 

process, as well as improvements in the development of project management 

software can significantly enhance the quality of the software (Schwalbe, 2006).  
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Since the operational environment of SPM has changed, new methods are needed to 

enhance and support standard SPM practices.  Different paradigms are evolving and 

several may hold promise to address both this changing environment and the unique 

nature of SPM.  Several paradigms such as software engineering principles, agile 

methodologies and structured analysis and design principles have been applied in an 

effort to improve SPM practices, though not with much success. 

    

The questions that arise are whether a new paradigm could minimise the problems 

with current practices, and whether another paradigm could support the intrinsic 

aspects that cause the failure of projects. The researcher plans to investigate the 

possibility of using software agent technology to address SPM problems in a 

distributed environment in order to enhance SPM processes. 

1.4.3 Has software agent technology been applied to the 
SPM environment? 

Various software agent applications have been developed over the past few years.  

The researcher aims to investigate whether software agent technology has been 

applied to support any processes in the SPM environment and/or to address SPM 

problems in a distributed environment.  In addition, she wishes to find out whether 

software agent technology has been used to support or enhance single functions or 

larger application areas in the SPM environment. 

1.4.4 How can software agent technology be incorporated 
and utilised by SPM to enhance the entire SPM 
environment?   

To address this question, the researcher will implement an SPM model entitled 

SPMSA (Software Project Management supported by Software Agents) that she 

developed for this purpose. The SPMSA model enhances and supports SPM 

processes by incorporating a software agent framework.  



Chapter 1 Introduction 
   

 

 
 

 
 

 

8

1.5 PUBLICATIONS RESULTING FROM THE STUDY 

The following peer-reviewed publications were generated as result of the research 

conducted for this thesis (see Appendix A to F for the articles):  

1) Nienaber R.C. and Cloete E. 2003. A Software Agent Framework for the 
support of Software Project Management. In Proceedings of IT Research in 

Developing Countries, Midrand, Gauteng. (SAICSIT 2003). ISBN: 1-58113-774-

5, pp. 16-23. 

2) Nienaber R.C., Cloete E. and Barnard A. 2004. Software Project Risk 
Management Supported by Agent Technology. In Proceedings of the Global 

Business and Economic Conference, August 2004, Istanbul, Turkey. The  

Business Review, Cambridge, 2, (1) 2004. ISSN 1540 -1200, pp. 452-459. 

3) Nienaber R.C. and Barnard A. 2006. Software Quality Management 
supported by Software Agent Technology. In Proceedings in Informing 

Science and Information Technology Conference (INSITE 2006), Flagstaff, 

Arizona, USA. ISSN: 1547-5840, pp. 659-669.  

4) Nienaber R.C. and Barnard A. 2007. A Generic Agent Framework to Support 
Various Software Project Management Processes. In the proceedings of the 

conference on Issues in Informing Science and Information Technology 

(INSITE 2007), June 22-25 2007, Llubljana, Slovenia. This paper received the 

“best paper” award, and was accordingly published in the Interdisciplinary 

Journal of Information, Knowledge and Management, Volume 2, pp. 149-162, 

January 2008. 

5) Nienaber R. C., Smith E., Barnard A., and Van Zyl T., 2008. Software Agent 
Technology supporting Risk Management in SPM. In the conference 

proceedings of IADIS International Conference Applied Computing 

(IADIS2008), April 10 – 13, 2008, Algarve, Portugal.   

6) Nienaber R.C. and Smith E. 2008. Enhancing and supporting SPM: The 
Software Project Management supported by Software Agents model.  
Submitted to the International Journal of Information Management (2008). 

Pending. 
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Articles 1 to 5 were presented at international conferences. 

Article 4 was also published in an international journal. 

Article 6 has recently been submitted to an accredited international journal. 

1.6 KEY TERMINOLOGY 
Having thoroughly studied the available literature, the researcher found that numerous 

definitions and meanings exist with respect to software project management terms 

and concepts, as well as concepts related to software agents (Marchewka, 2003; 

Olson, 2004; Schwalbe, 2006; Hughes and Cotterell, 2006).  For the purpose of this 

thesis, the following terminology applies and can be used as a frame of reference for 

further discussions in this thesis. 

 

An agent is a system that is situated within a part of an environment and that senses 

that environment and acts on it, over time, in pursuit of its own agenda and so as to 

effect what it senses in the future (Franklin and Graesser, 1996; Wooldridge, 2002). 

 

A project is a temporary endeavour undertaken to accomplish a unique purpose.  A 

project furthermore requires resources, has a primary stakeholder or customer and 

involves uncertainty (Schwalbe, 2006). 

 

Project management is the application of knowledge, skills, tools and techniques to 

project activities in order to meet or exceed stakeholder needs and expectations with 

regard to a project (Elec 4704, 2003). 

 

Software Project Management is the process of planning, organising, staffing, 

monitoring, controlling and leading a software project (IEEE Standards Board, 1997). 

 

A software agent is an autonomous system that forms part of an environment when 

situated within the said environment.  The software agent can sense the environment 

and act on it over a period of time, in pursuit of its own agenda.  The software agent 

can also perceive by receiving stimuli from its environment, reason by combining 
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newly acquired information with its existing goals and knowledge, and act by selecting 

and executing an appropriate action (Franklin and Graesser, 1996). 

 

A mobile agent is an active entity that can migrate autonomously from one location to 

another (as opposed to a stationary agent), and resume execution at a remote site to 

perform a task on behalf of its user.  It is able to act independently, observe its 

environment and to adapt to changes in the environment (Dale 1997; Kotz and Gray, 

1999; Schoeman, 2005). 

 

An intelligent agent will to a smaller or larger degree contain capabilities of reactivity 

(implying that it is able to perceive its environment and respond to it in timely fashion), 

proactivity (entailing exhibiting goal-directed behaviour by taking the initiative to satisfy 

its design objectives), and a social ability (meaning that it is able to interact and 

communicate with other agents to satisfy its design objectives) (Wooldridge, 2002). 

 

A mobile agent environment is a software agent system that is distributed over a 

network of computers. Its primary task is to provide an environment in which agents 

can execute.  The mobile agent environment provides support services for agent 

movement, connection to environments in which the agent environment exists, as well 

as services to communication (Green, Hurst, Nangle, Cunningham, Somers and 

Evans, 1997). 

1.7 OUTLINE OF THE STUDY 
This thesis consists of four parts, with each part comprising one or more chapters.  

The figure on page 2 graphically depicts the layout of and relationship between the 

various chapters.  This section describes the outline of the chapters.  

1.7.1 Part I: Introduction 

Part I, comprising chapters 1 and 2, serves as an introduction and background to this 

study. Chapter 1 introduces the field of study, gives a rationale for the current study 

and highlights the problems to be addressed in the form of research questions.  
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Chapter 2 of Part I presents the research methodology followed throughout this 

thesis.  

1.7.2 Part II: Theoretical background   

Part II serves as theoretical background to this study, and includes chapters 3, 4 and 

5.  Chapter 3 of Part II is devoted to a literature study relevant to the area of SPM.  

This chapter explores the changing and unique nature of the SPM environment.  

Software project characteristics, as well as its core and facilitating functions are 

investigated and reported on.  The conclusion reached, namely that failure in many 

areas of SPM points to shortcomings in standard SPM practices, is deemed important 

as it underpins the need for a new approach to support and enhance standard SPM 

practices.  In Chapter 4 software agent technology is investigated.  Trends driving 

software agent technology are revealed, and concepts and identifying features of 

agent technology are discussed.  In doing so, salient features of software agent 

technology are uncovered which motivates the use of such technology.  It becomes 

clear that these characteristics of software agent technology can indeed address the 

unique and complex requirements of SPM.   

 

In Chapter 5 the process of agent development is scrutinised.  The chapter also 

explores the utilisation of agent technology in the SPM field and investigates various 

applications.  It transpires that although agent technology has been utilised for certain 

functions in the SPM environment, it has not been applied to the entire SPM 

environment.       

1.7.3 Part III: The SPMSA model  
Part III consists of chapters 6, 7, 8 and 9.  It presents the SPMSA (Software Project 

Management supported by Software Agents) model, which involves SPM processes 

that are supported by agent technology.  Chapter 6 commences with a presentation of 

the scope of this model, comprising the main research areas addressed in this thesis, 

namely SPM and software agent technology.  A conceptual view of the model is 

compiled next to illustrate the generic phases of software development for each SPM 
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key function, as well as the software agent framework that will address each key area 

of SPM.  It is thus established that the proposed model is specifically tailored to 

support the unique and changing SPM environment.  In Chapter 7 each of the key 

areas of SPM is scrutinised and elaborated on.  The aim of this section is to compile a 

comprehensive model – the SPMSA model – to enhance and support the entire SPM 

environment.  Chapter 8 illustrates the implementation of a section of the SPMSA 

model as proof of concept in the form of a prototype and explains how this prototype 

was tested in a real-life scenario.  Chapter 9 substantiates the relevance of the model 

by comparing it to the Plan-Do-Check-Act (PDCA) cycle, as well as to the ISO 

10006:2003 standard. 

1.7.4 Part IV: Conclusion 

The thesis culminates in Part IV, which comprises of a single chapter.  Chapter 10 

provides a summary of and reports on the outcomes of the research project.  The 

thesis is concluded with a reflection on areas of further research.  
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2.1 INTRODUCTION 
Different research paradigms, models and strategies based on various philosophical 

foundations and conceptions of reality may be utilised to direct the research 

process.  Chapter 2 delineates the research methodology followed in this thesis, 

namely that recommended by Oates (2006).  

2.2 RESEARCH METHODOLOGY 
The purpose of this study is to enhance SPM, and consequently the use of software 

agent computing as a potential tool to support project managers and role-players 

during SPM processes is investigated.  An overview of the complete research 

process as recommended by Oates (2006) is graphically depicted in Figure 2.1. 

 

 
Figure 2.1  Model of the research methodology (adapted from Oates, 2006) 

The coloured blocks indicate the specific research methodology steps that were 

followed in the course of this study. 
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2.2.1 Research paradigm    
A paradigm is defined by Oates (2006) as: 

“ a pattern or model or shared way of thinking”. 

 

Various philosophical foundations and concepts of reality influence the ground rules 

and building blocks on which research paradigms are based and the specific 

methods that are used by them (de Villiers, 2005; Olivier, 2004).  Each paradigm is 

implemented using associated methodological approaches and strategies. Different 

philosophical paradigms have different views on the nature of our world (ontology) 

and the methods we use to acquire knowledge about it (epistemology).  Based on 

the available literature, three primary research paradigms are identified, namely 

positivist, interpretive and critical research (Myers, 2006; Oates, 2006).  For the 

purposes of this study, the interpretive research paradigm is the most suitable. 

 

Interpretive research in computing is defined by Oates (2006), in that it: 

“concerns itself with understanding the social context of an information system; 

the social processes by which it is developed and construed by people and 

through which it influences, and is influenced by its social setting”. 

 

As this study reflects on the practices and functions of SPM, it is inherently a study 

of processes and interactions.  It considers the social context of an information 

system – specifically the social processes by which it is developed and construed – 

and thus emphasises the interpretative nature of the study, according to Oates’s 

criteria. 

 

In recent years interpretive research has become accepted in Information Systems 

(IS) (Klein and Meyers, 1999; Roode, 2003).  According to Klein and Myers (1999) 

interpretive studies can provide clear insight into IS management and development.  

Interpretivism typically, but not exclusively, tests research questions and lends itself 

to qualitative studies (de Villiers, 2005).  The interpretive research paradigm 

underpins the research methodology followed in this study (see Figure 2.1).  
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2.2.2 Preliminary literature review 
The first step in the research methodology followed constitutes a preliminary 

literature review (see Figure 2.1).  The purpose of such a review is to determine 

what research has so far been done in the specific field of study, and to identify 

current problems and areas for future research.  Following this review, a number of 

research questions will be formulated.  This will be followed by an ongoing literature 

survey as the research progresses. 

2.2.3 Research questions 
Having conducted a preliminary literature review concerning SPM, the following 

research questions were identified (see Chapter 1): 

 

Table 2.1  Research Questions 

 Research questions 

1 Do standard SPM practices take into account the unique nature and 

changing environment of software projects?  

2 How can SPM processes be supported and enhanced in a distributed 

environment?   

3 Has software agent technology been applied to the SPM environment? 

4 How can software agent technology be incorporated and utilised by SPM to 

enhance the entire SPM environment? 

 

Each chapter in this thesis is devoted to answering one or some part of the research 

questions above.  

2.2.4 Research strategies 
The third step in the research methodology involves the research strategies to be 

executed to address the research questions stated above.  Research strategies can 

be described as the approach to answering the research question(s).  Oates (2006) 

identifies various strategies, namely survey, design and creation, experimenting, 
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case studies, action research and ethnography, as depicted in Figure 2.1.  The 

specific approach adopted for this thesis is the design and creation research 

strategy. 

 

The design and creation research strategy focuses on developing new IT products 

such as constructs, models, methods and instantiations (March and Smith, 1995).  

 

Quoting Oates (2006), “[a] researcher following the design and creation 

strategy could offer a construct, model, method or instantiation as a 

contribution of knowledge”.  

 

Research that utilises the design and creation strategy must illustrate how this 

research differs from technical development by using concepts of analysis, 

explanation, argument, justification and critical evaluation (Oates, 2006).  A model 

should be compiled and evaluated.  According to Oates (2006), it is rare for any 

implementation of such a model developed through design and creation research to 

be a full-blown system that can be used immediately without any other researcher 

involvement.  Instead, the role of implementing the model is that of a prototype to 

illustrate ideas and constructs, models and methods by which effective and efficient 

workings systems (involving people and technology) might be achieved.  No 

evaluation of the system in use is necessarily provided (Oates, 2006). 

 

This thesis thus reflects on design and creation research as the SPM environment is 

studied and its core and facilitating functions are defined and compiled into a model 

of the entire SPM functional area.  A software agent framework is then constructed 

to support the SPM area and a section of this model is subsequently instantiated 

through a prototype.  The model is evaluated by being compared to the PDCA 

(Plan-Do-Check-Act cycle) as well as to the ISO standard 10006:2003. 
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2.2.5 Data generation methods 
The next step in the research methodology, as illustrated in Figure 2.1, is data 

generation. Data generation includes interviews, observations, questionnaires and 

documents.  The approach followed was adopted from the guidelines set by Oates 

(2006) and Miles and Huberman (1994).  The primary source of data for this thesis 

is documents that were obtained from formal academic sources.  Such documents 

were obtained from electronic libraries within Computer Science and Information 

Systems, notably from the ACM, the IEEE (Computer Society Library), Elsevier, 

ScienceDirect and Springerlink.  This primary source was supplemented by verified 

informal sources such as specific Web sites concerned with software agent 

technology.  Completeness of data or documents was attained through data 

saturation.  Data set saturation was achieved by exploring the reference list of 

significant and relevant publications.  This process was continued until saturation 

point was reached.  

 

In order to prevent the researcher from being swamped by the amount of data, 

Oates (2006) recommends techniques to manage and analyse data, namely data 

preparation, data reduction, data analysis and interpretation(evaluation). 

 

Data preparation involves structuring the data into a format ready for analysis.  

Similar formats are easier to analyse, such as A4 pages, or computer files.  Filing 

will also benefit by an identified similar format.  In this thesis, data preparation was 

executed and categories were set based on the various functionalities of the 

application domain studied.  These categories were consequently refined.  

Documents, books, texts and publications were used within the researcher’s 

impressions and experience of, for example, constructing a model or a framework.   

 

Data reduction involves the identification of broad themes within the research topic. 

Relevant data can be further categorised and ordered by identifying broad 

categories and units to be refined later.  Categories may be identified based on a 

deductive approach, where existing theories are used as base and extended or 
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expanded, or on an inductive approach where categories are identified based purely 

on data explored.  Themes can now be identified and interconnections established.  

The data reduction process as described by Oates (2006) was followed where 

referenced publications were selected based on the application domain, namely 

software project management core and facilitating functions.  Categorisation was 

based on these areas and sub-categories were identified.  The journal articles were 

also analysed, which led to an additional selection of documents.   

 

Data analysis involves the “breaking up” of data into manageable themes, patterns, 

trends and relationships (Mouton, 2001). Data is analysed to get a clear 

understanding of the various elements of the data. Through inspecting the data, 

relationships may be defined between concepts, constructs or variables.  The aim of 

data analysis is to identify or isolate any clear trends, patterns or even themes in the 

data.   

 

Data interpretation (evaluation) involves the synthesis of one’s data, based on 

identified trends, into larger coherent structures (Mouton, 2001).  The aim of data 

interpretation is to formulate theories or hypotheses that reflect on the observed 

patterns or trends in data.  Through interpretation of one’s data, the results and 

findings may be related to existing theoretical frameworks or models.   

2.2.6 Data analysis methods 
Data can be analysed qualitatively or quantitatively. Quantitative data analysis 

implies data or evidence based on numbers, and is typically generated through 

experiments and surveys.  Qualitative data analysis on the other hand, includes 

non-numerical data such as words, images and items found in researchers’ notes, 

diaries, documents and tapes.  Qualitative studies investigate the why and how of 

decision making, as compared to the what, where and when of quantitative studies.      

 

In this study, which was mainly guided by the researcher’s impressions and 

experience, documents, books, texts and publications were used to construct a 
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model, agent framework and prototype.  The study is therefore qualitative and not 

quantitative. 

2.3 SCOPE OF THE STUDY 
This study explores the entire spectrum of Software Project Management as a 

discipline.  The aim of the study is to enhance SPM processes and therefore all core 

and facilitating functions of SPM are investigated to identify methods or structures to 

support and enhance the said functions.       

   

Agent taxonomies comprise biological, robotical and computational agents, with 

differentiation of computational agents into artificial life agents and software agents 

(Franklin and Graesser, 1996).  The main focus of this thesis is on software agents, 

as will be discussed in Chapter 4. 

2.4 CONCLUSION 
The research methodology in this thesis, as executed in accordance with the 

research process of Oates (2006), is summarised in Table 2.2 below. 

 

Table 2.2  Research methodology 

Research methodology This thesis 

Research paradigm Interpretivist 

Research strategy Design and Create 

Data generation method Documents 

Data analysis method Qualitative 

 

 

Chapter 2 concludes Part I of the thesis. It aimed to describe the area under 

investigation, formulate the research questions, and consequently elaborate on the 

research methodology followed to answer the set of research questions.  It also 

served to place the research project in context for the reader.   
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In Part II, the theoretical background of SPM and agent computing will be explored.  

Essential aspects of SPM, including its unique factors and changing environment, 

will be investigated.  Software agent technology will also be explored to determine 

whether it may be utilised to support SPM processes.   

   
 



 

 
22 

 

 

 

 

 

 

 

 

PART II 
 

THEORETICAL BACKGROUND



 

23 
 

CHAPTER 3 

3 SOFTWARE PROJECT MANAGEMENT 

 

CHAPTER 1 Introduction 

CHAPTER 3 Software 
Project Management  (SPM) 

CHAPTER 4 Software  
Agent Computing 

CHAPTER 7 The SPMSA Model 

CHAPTER 9 Model Verification 

CHAPTER 5 Software Agents in SPM 

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion 

Part 1 

Introduction 

Part II 
Theoretical  Background 

Part III 

The SPMSA 
Model 

Part IV 

Conclusion 

CHAPTER 6 Model – Scope and Concept 

CHAPTER 8 Prototype Implementation 



 
Chapter 3    Software Project Management 

 
 
 
 

24 
 

3.1 INTRODUCTION 
Project management is one of the most critical processes for implementing 

multidisciplinary ventures and leveraging company resources (Thamhain, 2003).  

Advances in information technology have had a profound impact on project 

management as an enabling tool, affecting project management capabilities and 

functioning.  This has resulted in a contemporary framework for multi-functional 

linkages and communication, essential for integrating today’s complex projects and 

project environments.  However, in spite of technological advances, the increased 

level of interconnectivity, distribution and processing, also creates vast challenges 

involving a wide spectrum of software-related activity management and 

organisational issues.  In fact, complexities and risks of software project 

development continue to increase (Marchewka, 2003). 

  

Over the past years, the development of software projects have regularly failed to 

meet user expectations, were commonly delivered late, and mostly exceeded the 

set budget.  Much of this still holds true today, which is why these issues have to be 

addressed in concrete terms (Chen, et al., 2003; Chen, Lin, Blocker and Cokins, 

2005).  As a result, the field of SPM is receiving increasing attention and various 

methods and techniques are utilised to optimise the SPM processes.  SPM involves 

the management of all aspects and issues that are involved in the development of a 

software project, namely: identification of scope and objectives; project development 

approaches; software effort and cost estimation; activity planning, monitoring and 

control; risk management; resource allocation and control; as well as managing 

contracts, teams of people and quality (Hughes and Cotterell, 2006).  The specific 

purpose of this chapter is to explore the changing environment of SPM. Software 

project characteristics, as well as the core and facilitating functions of SPM, are 

delineated to identify problems experienced during software project management 

processes. 
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3.2 UNIQUE CHARACTERISTICS OF SPM 
SPM processes comprise their own unique features.  Research was conducted by 

Brooks to emphasise the unique nature of SPM, and reported on in his much cited 

work No Silver Bullet in 1987.  In Section 1.2 (Chapter 1) the unique nature of SPM 

was outlined and characteristics unique to software projects were listed as 

invisibility, complexity, conformity and flexibility.  These aspects contribute to the 

difficult task of pinpointing a software project as an exact task with a specific 

beginning, end and deliverables.  An example of a general project may be to build a 

house, a building or bridge.  Although this task may be complex, it is a visible, 

inflexible task and not subject to conformity.  A software project, on the other hand,  

 is invisible, for instance writing an operating system for a new computer;  

 is complex, such as an Internet flight-booking system (or a flight control and 

scheduling system for an airline);  

 should be able to conform, for instance amending a financial system to deal 

with different currencies (amending the federal tax system of the U.S. 

government);  

 should be flexible, such as implementing a data warehouse for sales services 

and integrating various brands from various vendors placed on different 

databases and formatted differently, while allowing for the integration of 

information on new databases. 

 

Schwalbe (2006) adds to the above characteristics by stating that a software project 

has a unique purpose; it is usually temporary; a software project is developed using 

progressive elaboration; a software project requires resources; a software project 

should have a primary customer or stakeholder, and a software project involves 

uncertainty.   

 

The unique nature of SPM therefore contributes to the difficulties experienced with 

managing software projects and the likely failure of such projects. 
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3.3 CHANGING ENVIRONMENT OF SPM 
SPM operates in a highly dynamic environment that involves temporary tasks and 

rapidly changing technology, and that requires coordination between various parties 

and organisations (Olson, 2004).  In a cornerstone publication, The Mythical Man-

Month by F.P. Brooks (1979), difficulties of managing large software development 

projects are identified and solutions proposed to solve these problems (Verner, 

Overmyer and McCain, 1999).  The work describes pitfalls and fundamental 

problems and proposes suggestions for improvement of software project 

management.  Over the past decade, computer technology expanded and 

management and control functions were automated and supported by software tools 

and techniques in an effort to support SPM and control (Chandrashekar, Mayfield 

and Samadzadeh, 1993).    

 

Currently, the SPM environment is still changing due to business globalisation and 

information technology advances that support distributed and virtual teams and 

projects (Chen et al., 2003; Hughes and Cotterell, 2006; Callegari and Bastos, 2007).  

The increasing number of distributed projects involving software project collaborators 

from different locations, organisations and cultures, changes the SPM paradigm of a 

traditional project focusing on a single project executed at a specific location 

(Evaristo and Van Fenema, 1999; Jonsson, Novosel, Lillieskold and Eriksson, 2001; 

Olson, 2004; Smits and Pshigoda, 2007).  Due to this distributed nature of software 

projects, high levels of collaboration are essential for successful project execution.  

Tracking of work processes, effective sharing of information and knowledge among 

collaborators, as well as proactive change management across time, space and 

technology are essential (Chen et al., 2003). 

 

Literature reveals that several factors contribute to this changing environment of 

SPM:  

 The globalisation of the economy has led to the geographical distribution of 

resources and investments in order to obtain better results (Zanoni and Audy, 

2003; Dekkers and Forselius, 2007). A physically distributed environment 
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implies that users and development teams may be situated in different 

places, countries and possibly different cultures.  The software development 

area has been foremost in this process in countries such as India and Ireland 

(Zanoni and Audy, 2003).   

 The spreading of software development processes offshore or outsourcing is 

implemented in order to attain greater productivity, reduce cost and risk, and 

improve quality.  The key issue for distributed software projects is 

coordination and collaboration (Chen et al., 2003).  

 Teams of people, as representatives of the software project development 

effort, regularly collaborate with the software project and task leaders to plan, 

compose and monitor tasks (Cleetus, Cascaval and Matsuzaki, 1996; Gaeta 

and Ritrovato, 2002; Zanoni and Audy, 2003; Rose, Pedersen, Hosbond and 

Kraemmergaard, 2007). Such teams are commonly distributed over several 

dispersed geographical locations, and even several enterprises involving 

sub-contractors and sponsors.  Distance may slow down interaction and 

communication.   

 E-business and Internet growth stimulate and support the distribution of role-

players involved in software development (Gaeta and Ritrovato, 2002).  

Although numerous new opportunities and possibilities are provided, 

complexity is increased and care must be taken to assure the quality of 

integrating the Internet with SPM processes.     

 Advances in technology, such as distributed component technologies (Gaeta 

and Ritrovato, 2002) and parallel and distributed process architectures (Chen 

et al., 2005; McMichael and Lombardi, 2007), enable collaboration and 

concurrency, but also enhance complexity and maintenance problems.   

 

The focus of SPM processes has clearly shifted away from the position that it held 

two decades ago.  Consequently, tools for effective sharing of information and 

knowledge among project contributors, as well as efficient task scheduling, tracking 

and monitoring are needed.  High levels of collaboration, task interdependence and 
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distribution have become essential across time, space and technology (Chen et al., 

2003).   

3.4 PROBLEMS WITH SOFTWARE PROJECTS 
Several studies have been conducted to identify weaknesses and areas to improve 

during SPM.  A number of surveys specifically investigated failed software projects 

(Verner, et al., 1999; Flower, 1996; The Standish Group, 1995, 2001, 2003 and 

2005; Verner and Cerpa, 2005; Dekkers and Forselius, 2007), to list but a few on 

this topic. 

 

According to the Standish group (2003), failure begets knowledge.   

“If you begin with failure and learn to evaluate it, you also learn to succeed.” 

(Olson, 2004) 

 

Hughes and Cotterell (2006) identify the following aspects that, from the software 

project manager’s point of view, contribute to the failure of software projects: poor 

estimates and plans; lack of quality standards and measures; lack of guidance in 

decision making; lack of techniques to make progress visible; poor role definition.  

From the point of view of the team members the following are an indication of 

failure: inadequate specification of work; management ignorance of Information 

Communication Technology; lack of knowledge in application area; lack of 

standards; lack of current documentation; lack of communication. 

  

A study of SPM practices in Australia reveals that fifty percent of software projects 

begin with unclear requirements, twenty percent has no life-cycle methodology, and 

risk assessment does not form part of the development process (Verner and Cerpa, 

2005).  Although the majority of managers identified risks at the start of the project, 

only half followed through during development.  

 



 
Chapter 3    Software Project Management 

 
 
 
 

29 
 

Many of the problems identified with software project failure stem from poor 

communication and uncoordinated support to all team members.  The question that 

begs to be asked is whether standard SPM practices are failing?     

 

Practitioners have attempted to apply several Software Engineering (SE) principles 

to different SPM processes in order to address the existing shortcomings in the 

management of software projects (Lethbridge and Laganiere, 2001).  Research 

investigations and software engineering textbooks compare and contrast different 

process models or life-cycle models for development (Kettunen and Laanti, 2004).  

Standard structured analysis and design methods are explored, while object-

oriented approaches and extreme programming are used to overcome the 

aforementioned shortcomings (Lethbridge and Laganiere, 2001; Gelbard et al., 

2002).  Heuristics are explored (Purvis, McCray and Roberts, 2003) and 

visualisation is scrutinised to assist SPM processes (Hansen, 2006). Standard 

process definitions, process maturity assessment models and quality management 

systems such as the Unified Software Development Process and the Capability 

Maturity Model for Software Engineering are in use (Olson, 2004; Sonnekus and 

Labuschagne, 2004; Hughes and Cotterell, 2006). Standards such as ISO9001 

have been formulated, and the compliance of the development process to these 

standards is tested. Different standards-based software project management 

approaches have been developed and are in use, such as PRINCE 2 and BS 6079 

(Hughes and Cotterell, 2006).  Yet, the results remain disappointing since many 

software projects still fail to comply with the triple constraints of time, cost and scope 

(Oghma: Open Source, 2003).  These triple constraints refer to the fact that the 

failure of software projects can mostly be attributed to the fact that they are not 

delivered on time and do not meet the expectations of the client (scope), and as a 

result have cost implications. Sommerville and Rodden (1996) note that a large 

number of co-operation activities are unplanned, and that software engineers work 

in a flexible, autonomous fashion, which is not supported by the existing process 

models. 
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The traditional focus of SPM processes has shifted.  Consequently, the size, 

complexity and strategic importance of information systems that are currently being 

developed require stringent measures to determine why projects fail.  Since 

organisations continue to invest time and resources in strategically important 

software projects, the possibility of failure of the project should be minimised.   

3.4.1 Minimising project failure 
The 1995 Standish Group study found that the three major factors related to 

software project management success were user involvement, executive 

management support and a clear statement of requirements (The Standish Group, 

1995). After their famous CHAOS report (1995), the Standish Group studied 13 522 

projects in a follow-up survey, dubbed the EXTREME CHAOS report (2003).  In the 

latter report, executive management support, user involvement, an experienced 

project manager and a clear statement of requirements topped the list of 

requirements for success.  In 2005 the Standish Group reported that success rates 

increased to a third of all projects, but time overruns now measure 82 percent, whilst 

only 52 percent of required and specified functions and features were included in 

the final product.  Their 2005 study determined that 18 percent of the surveyed 

projects failed, 53 percent did not meet the requirements (challenged) and only 29 

percent succeeded. 

 

Table 3.1 summarises the findings of the 2005 report by The Standish Group, 

describing in order of importance the factors that contribute most to the success of  

software projects: 

Table 3.1  The Standish Group Report 

1 User involvement 

2 Executive management support 

3 Clear business objectives  

4 Optimising scope 

5 Agile process 
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6 Experienced project manager  

7 Financial management 

8 Skilled resources  

9 Formal methodology  

10 Standard tools and infrastructure 

 

Pinto and Slevin (1987) investigated the dual importance of strategy and tactics and 

after examining over 400 software projects, identified 10 critical success factors.  

They propose a framework involving conceptualisation, planning, execution and 

termination to illustrate these issues.  To identify a solution to project failure is not 

an elementary process.  SPM should be investigated as a whole, and each of its 

processes should be considered to fully understand the scope of SPM.  In the 

following section SPM will be defined and its functions delineated. 

3.5 SOFTWARE PROJECT MANAGEMENT FRAMEWORK 
To discuss software project management, it is important to start off by defining a 

software project.  Schwalbe (2006) defines a software project as a temporary 

endeavour undertaken to create a unique product, service or result.  Software 

projects involve the use of hardware, software and networks to create a product, 

service or result.  What exactly is then meant by software project management? 

 

The IEEE defines SPM as the process of planning, organising, staffing, monitoring, 

controlling and leading a software project (IEEE Standards Board, 1987). A more 

detailed exposition shows that SPM involves the planning, monitoring and 

controlling of people and processes that are involved in the creation of executable 

programs, related data and documentation (Elec 4704, 2003).  

 

In an effort to visualise and contextualise the SPM operational environment, various 

frameworks and guidelines have been compiled.  Hughes and Cotterell (2006) 

describe a framework of basic steps, Step Wise, in project planning.  Step Wise 

covers the planning stages of a software project and not the monitoring and control 
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of it.  The planning stages may, however, be adapted to support planning in any 

other methodology or standard of development.  PRINCE 2 is a set of project 

management standards originally sponsored by the Central Computing and 

Telecommunications Agency (CCTA) for use in British government software 

projects.  Schwalbe (2006) compiles a framework of key issues of importance during 

the SPM process.  This framework combines the environment as well as processes 

or functions of software project management. Figure 3.1 illustrates these issues in a 

framework that contains the key elements in the field of SPM.  The components of 

this framework are derived from Project Management Body of Knowledge (PMBOK) 

(2004) guidelines. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Software Project Management Framework (adapted from Schwalbe, 

2006) 
 

We distinguish between three key elements: software project stakeholders; software 

project management knowledge areas, namely core and facilitating functions; and 

software project management tools and techniques.  The software project 

stakeholders and SPM knowledge areas comprise a working model. Software 

project management tools and techniques support these knowledge areas.  This 

framework serves to explain the processes and refer to the SPM of a single project 
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in which the SPM manager allocates tasks and gives instructions to various role 

players.   

 

The software project stakeholders are the people who are involved in the different 

project activities. They include the project sponsor, project team, support staff, 

customers, users, suppliers, as well as individuals with opposing views concerning 

the project.  Good relationships, communication and coordination among all of these 

stakeholders are essential to ensure that the needs and expectations of 

stakeholders are understood and met. SPM knowledge areas include key functions 

concerned during the software project management process. The SPM knowledge 

areas consist of four core functions and four facilitating functions.  The core 

functions – scope, time, cost and quality management – lead to specific project 

objectives and are supported by the facilitating functions. The facilitating functions 

represent the means to meet different objectives and include human resource 

management, communication, risk and procurement management. Project 

management integration is not regarded as separate function, but as supporting 

structure connecting all said functions with each other.  Stretched across all these 

knowledge areas are the software project management tools and techniques 

(depicted on the right-hand side of the framework diagram in Figure 3.1). These are 

used to assist team members and software project managers to carry out their 

respective tasks. 

3.6 CORE FUNCTIONS 
Each of the core functions of the software project management development 

process (scope, time, cost and quality management) is discussed in the following 

section. 

3.6.1 Scope management 
According to Schwalbe (2006) the scope of a software project refers to all the work 

involved in creating the products of the software project and the processes used to 

create them.  Being one of the first steps in the development phase, it is a difficult 
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but also important part of software project management, as problems or errors 

occurring during this phase will be perpetuated throughout the development 

process, and could be costly and time consuming to rectify at a later stage.  The 

Standish Group’s CHAOS study (1995) identified user involvement and clear 

statement of requirements as key factors associated with software project 

management failure. 

 

To determine the exact scope of a software project, different approaches may be 

used.  As the first phase of the Step Wise framework, Hughes and Cotterell (2006) 

propose the following steps: 

 Identify objectives and measures of effectiveness in meeting them 

 Establish a project authority 

 Identify stakeholders 

 Modify objectives in the light of stakeholder analysis 

 Establish methods of communication with all parties. 

 

Schwalbe (2006) and PMBOK (2004) identifies the following specific phases of 

software project scope management:  

 Scope planning – the planning and refinement of project scope and the 

creation of a formal scope statement document that entails project 

assumptions, project constraints, a summary of all project deliverables, a 

description of the products involved in the project and a statement of what 

determines project success.  The preliminary planning of one of the most 

important aspects of scope planning, namely the Work Breakdown Structure 

(WBS) is done at this stage.       

 Scope definition – the division of major project deliverables into smaller and 

more manageable components.  The deliverable of this phase is the WBS.  

This process is important to project success as it supports accurate time, 

cost and resource estimates and defines a baseline for project control and 

performance measurement.  The WBS defines the total scope of the project 

by defining work packages. 
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  Creating the Work Breakdown Structure (WBS) – subdividing the project 

deliverables into smaller work packages. 

 Scope verification – formal acceptance of the scope of the project by 

various key stakeholders.  

 Scope control – managing all changes to the scope of the project.  Aspects 

of importance to be recorded are not only scope changes, but also 

preventive action, corrective action, additions or deletions and lessons 

learned. 

 

Various types of software are available to assist in project scope management, 

for instance word-processors for scope definition documents and spreadsheets 

for financial calculations.  Automated software is also available for drawing the 

WBS.  

3.6.2 Time management 
Scope management entails determining the objectives and full functionality of the 

project.  The next step is to determine the time and cost that the identified products 

and activities will entail, as well as the resources needed to develop the project.  

Time and cost aspects may overlap directly, thus influencing each other, and in 

practical terms they may or may not execute concurrently (Olson, 2004).  As 

mentioned previously, many software projects fail with respect to scope, time and 

cost management.  Managers often site schedule issues as one of the main reasons 

for conflict on projects.   

 

Time management involves the processes required to measure timely completion of 

a project (Schwalbe, 2006).  Time management involves not only the creation of an 

activity plan, but also the estimation of time required for each task and activity, 

resulting in the overall duration of the project  The output is the precedence network 

and critical path.  This is also utilised throughout the duration of the entire project for 

scheduling, management and risk identification and management purposes.  Time is 
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highly correlated with cost, and keeping a project on schedule is indeed a major 

challenge (Meredith and Mantel, 2002). 

 

Activity planning forms the baseline for project and resource scheduling and 

supports a number of objectives, namely feasibility assessment, resource allocation, 

detailed costing, motivation and coordination of the project (Hughes and Cotterell, 

2006). 

 

The main processes of time management are the following (PMBOK, 2004, 

Schwalbe, 2006): 

 Activity definition involves the identification of each task or activity that must 

be executed by stakeholders or project team members in order to produce 

the project deliverables.  Thus it can also be seen as refining the scope of the 

project.  An activity or task is an element of work with an expected duration, 

cost and resource usage.  The work breakdown structure (WBS) forms the 

basis for this, and the initial WBS will be used to develop a more detailed 

WBS with supporting explanations as well as assumptions and constraints 

related to specific activities.  This process may be performed using an 

activity-based approach or a product-based approach.  In both cases a WBS 

and a product flow diagram (product-based approach) will be outputs. 

 Activity sequencing involves indicating when each of the identified activities 

should occur.  Activities in the detailed WBS will be reviewed referencing the 

detailed product descriptions, assumptions and constraints to determine the 

relationship between the activities.  The output of this phase is the network 

diagram.  An activity-on-node (precedence diagram) approach may be used. 

Network planning models were originally developed in the 1950s with the two 

best-known methods being CPM (Critical Path Method) or PERT (Program 

Evaluation Review Technique).    

 Activity resource estimation includes the determination of how many and 

which resources will be needed to perform project activities. 
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 Activity duration estimation involves estimating the number of work periods to 

be completed in order to complete an individual activity.  Duration estimation 

should not be confused with effort estimation.  Effort estimation refers to the 

number of workdays or work hours required to complete a task, whereas 

duration refers to the time estimate and not the effort estimate.  Effort and 

time are related, thus team members must record assumptions regarding 

both. 

 Schedule development occurs when activity sequences and activity duration 

estimates, as well as resource requirements are combined to create the 

project schedule.  The goal of this phase is to develop a realistic schedule 

that provides a basis for monitoring project progress for the time dimension of 

the project.  Various tools and techniques are available for this process, 

including Gantt charts, CPM analysis, critical chain scheduling and PERT 

analysis.      

 Schedule control refers to the control and management of changes to the 

initial schedule. 

 

Software packages are available to support these steps.  However, the concepts 

behind the software should be clearly understood, i.e. critical path or schedule 

baseline, in order to use these packages correctly. 

 

Time management is often cited as one of the main sources of conflict with regard 

to projects (Olson, 2004).  Closely linked to activities and the scheduling of 

activities, is the estimation of the cost of each activity, or then the cost of different 

components of the project.   

3.6.3 Cost management 
Cost estimation and monitoring occurs throughout the entire life cycle of the project.  

It has also been identified as one of the major causes of project failure, together with 

time and user requirements.  In the 1995 CHAOS project report, average cost 

overruns of software projects tested were cited as 189 percent of the original 
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estimates.  The 2001 CHAOS report reflected an improvement from 189 percent to 

145 percent, but this means that the projects still exceeded their associated budgets 

substantially.   

 

Cost management can be seen as all processes required to ensure that a project 

team completes a project within an approved budget (Schwalbe, 2006).  Cost 

estimation is an important part of the initial assessment of whether the project will be 

feasible or not.  An economic assessment of a proposed information system will be 

made by comparing the expected costs of development and operation of the 

system.  Thus, basic project cost estimates throughout the development of the 

project will involve the following: 

 Cost estimating refers to the process of developing an estimate of the costs of 

all actions, resources and procedures needed to complete the project.  Cost 

estimation should include development costs and operational costs where cost 

estimation is performed during different stages of product development.  Basic 

accounting and financial principles are used for the initial cost-benefit analysis 

plan included in the feasibility study, such as cost-benefit analysis, cash flow 

analysis, calculation of internal rate of return, net profit, payback period, return 

on investment and net present value.  Various estimation tools and techniques 

exist, namely analogous estimating, bottom-up estimating, parametric 

modelling (such as amongst others COCOMO) and computerised models.   

  Cost budgeting involves using the project cost estimate and allocating this to 

individual work items.  The WBS, as well as the project schedule is used to 

allocate costs over time.  A cost baseline is a time-phased budget that can be 

used to measure and monitor cost by managers or project leaders. 

 Cost control includes monitoring cost performance, reviewing changes and 

notifying stakeholders and team members of changes related to cost. 

 

Cost control cannot be done without a clear identification of resources to be used.  

Various computerised software packages exist to support this action. 
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3.6.4 Quality management 
The Project Management Body of Knowledge (PMBOK) (2004) defines project 

quality management as the processes required to ensure that the project will satisfy 

the needs for which it was undertaken (Schwalbe, 2006). It includes all activities of 

the overall management function that determine the quality policy, objectives and 

responsibility, and implements these by means of quality planning, quality 

assurance, quality control and quality improvement.  Quality management does not 

only include the concepts, tools and methods of quality assurance, but also 

validation and verification, as well as change control during the development 

process. 

 

Major quality management processes identified by PMBOK (2004) are the following: 

 Quality planning determines which quality standards are relevant to the 

specific project under consideration and decides how these standards will be 

met.  Hughes and Cotterell (2006) state that this process should identify 

variables that have a direct influence on the outcome of the project.  Thus, 

aspects such as functionality, system outputs, performance, reliability and the 

quality policy should be included in the quality management plan.   

 Quality assurance involves evaluating overall performance regularly to 

ensure conformance to the set standards.  Quality audits or reviews support 

this function throughout the project.  Tools to be utilised include quality 

audits, templates specifying required documentation, quality assurance 

procedures, problem-reporting procedures, quality assurance metrics and 

quality assurance check list forms (Hughes and Cotterell, 2006).   

 Quality control monitors the activities and end results of the project to ensure 

compliance to the standards utilising various available tools and techniques.  

The quality control process mainly consists of decisions to determine if the 

products or services produced will be accepted or rejected (if not accepted 

rework is specified on the items), and process adjustments to correct or 

prevent further quality problems (Hughes and Cotterell, 2006).  Various tools 

and techniques may be utilised in this phase.  
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However, quality management should not be considered as a separate development 

phase.  It should be integrated into all phases and all processes during software 

project management.   

 

Process as well as product quality measures should be implemented.  In an effort to 

give structure and uniformity to this process, several standards and measures have 

been developed over the past number of years.  These standards and measures will 

be discussed in the following section. 

3.6.4.1 Existing Standards  

Software development is a fast growing industry and the lack of standards holds 

significant consequences for society and the economy (Nienaber and Barnard, 

2005).  In an attempt to solve this problem, various national and international 

standards bodies have proceeded to set standards for this area of development.  

The standards listed below are of importance: 

 The PMI (Project Management Institute) coded the Project Management 

Body of Knowledge’s (PMBOK) first published standard in 1983, namely the 

Project Management Quarterly Special Report: Ethics, Standards and 

Accreditation.  This was developed further and the PMBOK Standards were 

published in 1987, whilst the Guide to PMBOK was published in 1996.  PMI 

furthermore published the Organizational Project Management Maturity 

Standard in 2003, which will be revised and published in December 2008.  

Currently the PMI is working on the OPM3 as the global standard for 

organisational project management (Project Management Institute, 2004).  

 The ISO standard 9126 was published in 1991 to address the problem of 

defining software quality (Hughes and Cotterell, 2006).  ISO 9126 identified 

six software quality characteristics, namely functionality, reliability, usability, 

efficiency, maintainability and portability.  Sub-characteristics for each of 

these are also identified.  Measurements correlating to each quality are 

identified, and then tested and mapped onto a scale to indicate compliance to 

the specific quality metric. 
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 Standards set in the UK are among others PRINCE (set by the Central 

Computer and Telecommunications Agency) and BS 6079, which both apply 

to any type of project. The British Standards Institution (BSI) set the 

BS 6079:1996 standard identical to the international standard 

ISO 9000:2000, followed by the 2001 and 2004 standards respectively.   

 The primary objective of standards such as the ISO 9000 series is to ensure 

that a monitoring and control system to check quality is in place.  The 

ISO 9000 series targets the fundamental features of a quality management 

system (QMS), thus quality in general terms, and not specifically quality in 

software project management.  ISO 9001 describes the creation of products 

and the provision of services, while ISO 9004 targets process management 

(Hughes and Cotterell, 2006).  ISO 10006:2003 targets a quality 

management system and provides guidelines for quality management for 

projects specifically. 

 The capability maturity model (CMM) was developed at the Software 

Engineering Institute in the United States (McBride, Henderson-Sellers and 

Zowghi, 2004; Schwalbe, 2006). This model defines different stages of 

process maturity, implying sophistication and quality of production practices 

at which an organisation may be placed.  The assessment is done by an 

external team of assessors, who will also make recommendations on 

improving the quality processes. Bootstrap, a European initiative, allows 

assessment at project level (Hass, Johansen and Pries-Heje, 1998). 

3.6.4.2 Product quality measures 

Measurement of quality usually concerns intangible, invisible factors.  Hughes and 

Cotterell (2006) define practical software quality measures such as reliability that 

might measure availability, mean time between failures, failure on demand and 

support activities. Other practical measures include maintainability and extendibility.  

Various factors that enhance quality have been identified over the years in an 

attempt to improve quality measures, but lack of conformity of definitions and terms 
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pose a problem.  Thus, the difference between measures, techniques and 

approaches is not outlined clearly and the approaches overlap. 

Hughes and Cotterell (2006) cite the following measures to enhance quality:  

 Increasing visibility of the development process involves utilising egoless 

programming to encourage the practice of programmers scanning each 

other’s code. 

 Procedural structure implies the use of methodologies where every 

process in the development cycle has carefully laid-out plans. 

 Checking intermediate stages involves the continuous checking of quality 

and the correctness of work done throughout the development phases. 

Other techniques recommended are inspections, structured programming and 

clean-room software development, formal methods and software quality circles 

(Hughes and Cotterell, 2006).  Different approaches to quality control are also 

utilised.  Mehandjiev, Layzell, Brereton, Lewis, Mannion and Coallier (2002) state 

that a goal-driven approach is more appropriate to handle adaptability and 

productivity requirements, whereas Szejko (2002) promotes requirements-driven 

quality control. 

3.7 FACILITATING FUNCTIONS 
The facilitating functions of the SPM framework represent the means through which 

different objectives are to be met.  Human resource management, communication 

management, risk management and procurement management form part of these 

functions.  The following section will focus on these facilitating functions. 

3.7.1 Human resource management 
Human resource management involves all processes required to effectively utilise 

all resources involved in a project (Schwalbe, 2006).  A resource may be seen as 

any item or person required for the execution of a project.  Human resource 

management therefore concerns all project stakeholders involved in developing the 

project.  Hughes and Cotterell (2006) identify seven categories of resources to be 
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managed for a project, namely labour, equipment, materials, space, services, time 

and money.   

The main focus of human resource management is to allocate these resources to 

activities, and to create a work schedule based on the activity plan.  Activities should 

be scheduled to minimise variations in resource levels during the project and 

resources will then be allocated to competing activities.    

 

Schwalbe (2006) identifies four phases to achieve the above, namely human 

resource planning, acquiring the project team, developing the project team and 

managing the project team.   

 Human resource planning involves identifying, assigning and documenting 

project role players, their roles and relationships.  An organisational chart may 

be an output of this phase. 

 Acquiring the project team involves appointing or identifying and assigning the 

appropriate personnel to the project activities. 

 Developing the project team includes improving team skills to enhance project 

performance.  Various theories exist for managing people and teams, but these 

aspects fall outside the scope of this document. 

 Managing the project team also includes the monitoring and controlling of 

resources throughout the project.  Progress must be monitored and software for 

visualising progress can support the project team. 

 

Project management software and general software are available to support human 

resource management.  Examples are: 

 Spreadsheets  

 Project organisational charts 

 Responsibility assignment matrices 

 Resource histograms 

 

However, project resource management involves much more than using software to 

facilitate organisational planning and assigning resources.  As this phase involves 
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people, psychosocial issues that affect how people work and how effective they 

work, must be recognised as influential issues during this phase. 

3.7.2 Communications management 
The 1995 Standish Group study found that the three major factors related to 

software project success were user involvement, executive management support 

and a clear statement of requirements (Krupansky, 2003). All of these project 

success factors depend on good communication and coordination skills among the 

stakeholders. Poor, ineffective or untimely communication, contradictions, 

omissions, failure to notify all of meetings and decisions, and failure to store 

information are often cited as reasons for projects failing or running over time.  

Traditional reporting tools use a simple passive reporting mechanism, which does 

not provide sufficient reporting support to a collaborative distributed system (Chen et 

al., 2003). 

  

Communications management in a software project is an enabling and supporting 

action that ensures timely and appropriate generation, collection, dissemination, 

storage and disposition of project information (Schwalbe, 2006). Effective 

communication and sharing of information and knowledge among project 

contributors are needed. Schwalbe (2006) identifies four distinct functions 

associated with communications management: 

 Communications planning  

 Information distribution  

 Performance reporting 

 Stakeholder management  

 

The communications planning function determines the who, when and how of the 

project. It therefore facilitates a collaborative working environment that determines 

the information and communication needs of the stakeholders.  The information 

distribution function entails disseminating information to keep all the stakeholders 

informed. Performance reporting alludes to the generation of reports such as status, 
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progress and forecasting reports, while the stakeholder management function 

involves managing stakeholders, approving change requests and updating reports.  

 

Communication can, however, be enhanced and supported by the use of a common 

repository. A paper-based repository has several disadvantages, such as retrieval 

delays, lost documentation and error proneness, but most of all, it may result in 

insufficient project documentation in the distributed environment.  Another common 

problem with regard to communication is that many project processes, contexts, 

rationales or artefacts may not be captured at all. An electronic repository promises 

to overcome some of these disadvantages. 

3.7.3 Risk management 
As organisations continue to invest time and resources in strategically important 

software projects, managing the risk associated with the project becomes a critical 

area of concern.  

 

Schwalbe (2006) describes project risk management as the art and science of 

identifying, analysing and responding to risks throughout the life cycle of the project.  

The Webster’s Dictionary defines risk as hazard, peril or exposure to loss or injury, 

whereas the PMBOK defines project risk management as the systematic process of 

identifying, analysing and responding to project risk.  The objective of risk 

management is to minimise or avoid the adverse effects of unforeseen events.  

Many projects do not follow a formal risk management plan, which leads to a state 

of perpetual crisis. According to Marchewka (2003) the reasons for this may be that  

 benefits of risk management are not clearly understood by the project leader;  

 adequate time is not provided for risk management, and  

 risk is not identified and assessed using a standardised approach.   

 

Project management and planning is based on the understanding of various role-

players of the current situation, the information available and the assumptions to be 

made.  But since environments may change dynamically, events may not proceed 
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according to plan and various degrees of uncertainties exist that cannot be 

predicted with total accuracy.  To ensure eventual success, those unexpected 

events must be addressed and managed throughout the life cycle of the project to 

ensure that project risk is minimised.       

 

Various models or frameworks exist to ameliorate the risk associated with software 

project development.  Schwalbe (2006) suggests the following risk management 

processes, namely risk management planning, risk identification, qualitative and 

quantitative risk analysis, risk response planning, and risk monitor and control.  

Based on Boehm’s (1991) model, software risk management entails risk 

assessment and risk control (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Software risk management (adapted from Boehm, 1991) 

 
The first step deals with the assessment of the risks by means of stakeholder 

interaction with the SPM interface and as such, is dependent on the project 

manager’s input on the potential risks in the software project.  Potential risks are 
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means of performance models, cost models, network and decision analysis. Risk 
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prioritisation involves risk exposure, risk leverage and compound-risk reduction. The 

second step deals with the control of these risks, and comprises risk planning, risk 

resolution and risk monitoring.  Risk planning entails the drawing up of contingency 

plans to counteract each identified risk, risk avoidance strategies, risk transfer and 

risk reduction plans.  Risk resolution entails the elimination or resolution of risks by 

using prototypes, simulations and benchmarks.  Risk monitoring involves the 

tracking of the project’s progress towards resolving its risk items.  For effective risk 

management, risks should be identified, discussed and monitored as early as 

possible (Phillips, 1998).        

3.7.4 Procurement management 
During the process of project development it may be necessary to procure products, 

goods or items that are not available within an organisation (Marchewka, 2003).  

Procurement refers to the process of acquiring goods or services from an outside 

source.  Procurement management refers to a set of procedures for acquiring these 

products, expediting external work and ensuring a satisfactory standard of work 

throughout a given organisation.  These may involve rules for acquisition, purchase 

order documentation required by a specific organisation, and creating and 

maintaining lists of trustworthy, qualified vendors (Hughes and Cotterell, 2006).  The 

BS 6079 document describes these aspects in more detail (Hughes and Cotterell, 

2006).  

 

Although the term ‘procurement’ is widely used, information technology 

professionals also refer to ‘outsourcing’, while other private companies prefer the 

term ‘purchasing’.  As the outsourcing of important information technology functions 

is increasing at a tremendous rate, this area should be considered very important in 

relation to the success of a project.  According to Schwalbe (2006), organisations 

outsource to reduce costs, focus on their core business, access skills and 

technologies, provide flexibility, and increase accountability.  
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Project procurement management consists of six main processes: procurement 

purchasing and acquisition; planning contracting; requesting seller responses; 

selecting sellers; administering the contract; and closing the contract (Schwalbe, 

2006). 

 

Procurement purchasing and acquisition involves decisions as to what to purchase, 

when and how.  The possibility to outsource must be considered.  Outputs of this 

process are the procurement management plan, contract statement-of-work, and 

make-or-buy decisions.  Existing tools and techniques include performance make-

or-buy analysis, and internal as well as external expert consultation.  The type of 

contract for the above-mentioned products should be determined.  Various options 

exist, such as a fixed-price or lump-sum contracting, cost reimbursable contracting, 

time and material contracts, and unit price contracts.   

 

Planning contracting refers to describing requirements for the products or services 

desired from the procurement and identifying potential sources or sellers.  This 

phase involves writing procurement documents such as a Request for Proposal 

(RFP), and developing source selection evaluation criteria for the entire 

organisation. 

 

Requesting seller responses entails obtaining quotes, information, bids and offers.  

The main outputs of this process include a qualified sellers list, procurement 

package and proposals. 

 

Selecting sellers involves evaluating potential sellers and negotiating the contract. 

 

Administering the contract entails managing the relationship with the selected seller.  

Outputs of this process are contract documentation, requested changes, corrective 

actions and updates. 

 

Closing the contract involves the settlement and completion of each contract. 
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3.8 CONCLUSION 
In this chapter the unique characteristics and changing environment of software 

project management were explored.  The diverse nature of SPM, as well as the 

wide range of business areas and technologies involved makes it especially 

challenging to manage.  The dynamically changing environment adds to the 

complexity of these systems and results in higher levels of interconnectivity, higher 

levels of sharing data and knowledge, and higher levels of task tracking and 

monitoring.  These issues should be optimally supported by SPM processes to 

enable project managers to concentrate on crucial issues and strive for lower failure 

and higher success rate in software projects. 

 

The SPM processes have been delineated in order to get a clear picture of the 

entire SPM process in an effort to determine the aspects that drive project failure.   

Based on the literature survey conducted in this chapter, the researcher defines the 

phases of each of the eight knowledge areas of SPM, as depicted in Table 3.2: 

Table 3.2  Phases of the knowledge areas of SPM 

Scope 
Manage-
ment 

Time 
Manage- 
ment 

Cost 
Manage-
ment 

Quality 
Manage-
ment 

HR 
Manage-
ment 

Communi-
cation 
Manage-
ment 

Risk Manage-
ment 

Procure-
ment 
Management 

Initiation Activity 

definition 

   Identification 

and planning 

 

Risk 

identification 

Procurement 

planning 

Planning Activity 

sequencing; 

Duration 

estimation 

 

Resource 

planning 

Planning Organisatio-

nal planning 

 

Team 

support 

Risk analysis 

and 

prioritisation 

Solicitation 

planning 

Definition Time 

schedule 

develop-

ment 

Cost 

estimation 

Assurance Team 

development

and staff 

acquisition 

Information 

distribution 

Risk 

management 

planning 

Solicitation 

and source 

selection 

Verifica-

tion  

Time 

schedule 

control 

Cost 

budgeting 

Control Manage-

ment: 

monitor and 

control 

Performance 

reporting 

Monitor 

 

Contract 

administration 

Change  Monitor;   Administra- Resolution Contract 
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Scope 
Manage-
ment 

Time 
Manage- 
ment 

Cost 
Manage-
ment 

Quality 
Manage-
ment 

HR 
Manage-
ment 

Communi-
cation 
Manage-
ment 

Risk Manage-
ment 

Procure-
ment 
Management 

control control tive closure closure 

 

These phases will form the basis of the SPM model that will be introduced in 

chapter 6.   

  

According to research studies done software projects still regularly fail to comply 

with requirements and expectations (The Standish Group, 2005).  Organisations 

continue to invest time and resources in strategically important software projects, 

thus one would expect the possibility of project failure to be minimised.  Failure in 

many areas of SPM indicates shortcomings in existing standard practices 

(Schwalbe, 2006; Hughes and Cotterell, 2006) while research shows that there is an 

urgent need for successful SPM practices (Marchewka, 2003).  It seems essential to 

address the unique and changing environment of SPM if any success is to be 

obtained.     

 

This study focuses on enhancing existing SPM practices.  Despite the existence of 

various SPM application packages, as well as enterprise management packages, 

none of them successfully address the dynamically changing and unique 

environment of SPM (Schwalbe, 2006).   

   

In Chapter 4 the use of software agents will be investigated as a potential tool to 

support software project management.  We specifically concern ourselves with the 

question whether software agents can be used to support and enhance SPM in a 

distributed environment and in this way address the limitations of current practices.   
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CHAPTER 4 
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4.1 INTRODUCTION 
In the previous chapter the changing environment of SPM was explored to identify 

problems experienced during software project management processes.  The 

changing environment and unique nature of SPM are seen as factors that contribute 

to the failure of software projects.  The researcher investigated the SPM 

environment and accordingly compiled phases of the eight knowledge areas of 

SPM, which will form the basis of the SPM model that will be introduced in chapter 

6. 

 

The purpose of this chapter is to explore software agent computing to determine if it 

can be utilised to support software project management processes.  To orientate the 

reader with regard to the background of agents, and more specifically mobile 

software agents, concepts and identifying features of agent technology and mobile 

agents are discussed.  The trends and drivers for agent technology are presented, 

as well as a brief history of mobile agents.  The goal of this chapter is to consider 

software agent technology from this viewpoint to determine whether it can support 

SPM and, as a result, minimise project failures.   

4.2 AGENT TECHNOLOGY 
Computing evolved through different metaphors in its lifetime.  Charles Babbage in 

the nineteenth century saw computation as calculation or operations on numbers.  

With the advent of widespread digital storage and manipulation of non-numerical 

information, computation was replaced by the term information processing.  The 

development of the Internet and the World Wide Web has necessitated a new 

metaphor, namely computation as interaction (Luck, McBurney, Shehory, Willmott, 

and Agentlink Community, 2005). This metaphor identifies computing as actions 

taking place by and through communication between computational entities.  

Monolithic architectures are replaced by distributed systems and autonomous 

components (Rigaud and Guarnieri, 2002). 
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New open and dynamic environments in which heterogeneous systems must 

interact span organisational boundaries. The fact that this type of systems should 

operate effectively within rapidly changing circumstances and with dramatically 

increasing quantities of available information, suggests the need for new computing 

models and paradigms (Luck et al., 2005).   

 

Agents can be viewed as a new metaphor of computing.  In a publication by Luck et 

al., (2005), two main stages of adoption are identified through which new 

technologies evolve: an installation period of exploration and development; and a 

deployment period concentrating on the use of such new technology. Agent-based 

computing is considered disruptive and results in a re-evaluation of the nature of 

computing.  According to Franklin and Graesser (1996) a software agent is an 

autonomous system that, when situated within an environment, forms part of the 

said environment.  The software agent can sense the environment and act on it over 

a period of time.  However, various descriptions, views and definitions of agents 

exist.  

 

Software engineering explores the complexity of computer systems and stipulates 

interaction as one of the most important components of complex software.  Software 

architectures that contain more than one dynamically interacting component, each 

with its own thread of control and engaged in complex coordinated protocols, are 

exponentially more complex to design and control than single function systems.  

Agents are seen as a paradigm for ubiquitous, interconnected computer systems 

(Wooldridge, 2002).  Agents can also be viewed as a tool to understand human 

societies.  Doran, Franklin, Jennings and Norman (1997) used multi-agents to 

simulate an ancient society in order to shed light on some social processes.  This 

implies some sort of intelligence.  Agents have been viewed as a type of distributed 

system, or subclass of distributed system (Ben-Ari, 1990).  The agent system 

however exhibits autonomous action, which differ from concurrent systems.  Since 

agents may or may not exhibit intelligence, the area of artificial intelligence is also 

related to agent computing.  According to Wooldridge (2002), economics theory and 
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social science are also related to the concept of agents.  Luck et al. (2005) consider 

agents as a design metaphor, source of technology, as well as a method for 

simulation. It is clear that agent technology spans a diverse area and can be seen 

as related to different disciplines; yet it exhibits characteristics of its own. 

4.2.1 Emerging trends as drivers for agent technology 
Agent computing provides explicit benefits for these new open and dynamic 

environments.  The AgentLink group published a ‘Roadmap to agent-based 

computing’ (2005) and cited the following trends as drivers for agent computing: the 

semantic web; web services and service-oriented computing; peer-to-peer-

computing; grid computing; ambient intelligence and self-*systems and autonomic 

computing.   

4.2.1.1 The semantic web 

The semantic web is based on the concept that data on the web can be defined and 

linked in such a way that it can be used by machines for automatic processing and 

integrating of data across different applications (Berners-Lee, Hendler and Lassila, 

2001).  The key to enabling the sharing and processing of data on the web is by 

augmenting web pages with descriptions of their content in such a way that it is 

possible for components to reason automatically about that content.  Agent-based 

systems can therefore be built on top of the semantic web and thus exploit its value.  

Luck and d’Inverno (2004) suggest that the semantic web demands effort and 

involvement from the field of agent-based computing and that the two fields are 

intimately connected.  

4.2.1.2 Web services and service-oriented computing 

Web services provide a standard means of interoperating between software 

applications on different platforms (Luck et al., 2005).  Standards for a wide range of 

interoperability issues such as basic messaging, security, architecture and service 

discovery (produced by bodies such as W3C and OASIS) provide a framework for 

the deployment of component services that are accessible and use HTTP and XML 

interfaces. 
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Web service standards serve as a potential convergence point for diverse 

technology efforts such as eBusiness frameworks (ebXML, RosettaNet, etc.).  Thus, 

web services provide a ready-made infrastructure for supporting agent-based 

systems.  An agent-oriented view of web services is gaining exposure, as provider 

and consumer web services can be seen as a form of agent-based system (Booth, 

2004). 

4.2.1.3 Peer-to-peer computing 

Another technological development that serves to support agent-based systems is 

peer-to-peer (P2P) computing.  A wide range of infrastructures, technologies and 

applications constitute P2P computing.  These applications are designed to create 

networked applications where the deployed system (or every node) is equivalent 

and application functionality is created by arbitrary interconnection between the 

peers.  A range of agent-like characteristics, such as self-organisation, behaviour 

and negotiation, are displayed by P2P systems.   

4.2.1.4 Grid computing 

Kephart and Chess (2004) state that grid computing has recently gained interest as 

a high-performance computing infrastructure for supporting large-scale distributed 

scientific endeavours.  The grid provides a computing infrastructure for supporting 

large-scale information handling, knowledge management and service provision. 

 

This infrastructure is abstracted into several layers, which may include a data layer 

for resource allocation, scheduling and allocation; an information layer for the 

handling of information; and a knowledge layer.  This infrastructure enables the 

integrated collaborative use of computers, networks, databases and scientific 

instruments of various organisations.   

4.2.1.5 Ambient intelligence 

The vision of ambient intelligence relies on ubiquitous computing, ubiquitous 

communication and intelligent user interfaces.  Ambient intelligence was identified 

by the European Commission as a challenge for research and development in 
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information technology (Luck et al., 2005).  This refers to an environment of 

potentially thousands of embedded and mobile devices or software components, 

interacting to support user goals and activity.  Key features are autonomy, 

distribution, adoption and responsiveness, and in this sense they share the same 

features as agent-based systems. 

4.2.1.6 Self-*Systems and Autonomic Computing 

Luck et al. (2005) identify self-*systems (pronounced “self-star”) as a computational 

goal since the work of Charles Babbage.  Although a general definition of these 

systems is still emerging, it includes properties such as self-awareness, self-

organisation, self-configuration, self-management, self-diagnosis, self-correction 

and self-repair.  Computational self-*systems provide an application domain for 

research and development of agent technologies, as many self*-systems may be 

viewed as involving interactions between autonomous entities and components. 

 

Autonomic computing, first proposed by IBM (Kephart and Chess, 2003), is an 

approach to self-managed computing systems, with a minimum of human 

interference.  Kotz and Gray (1999) add trends affecting Internet technology and 

activity, such as bandwidth, mobile devices, mobile users, intranets and aspects 

such as information overload, customisation and proxies. 

4.3 WHAT IS A SOFTWARE AGENT? 
A number of different descriptions and definitions of agents can be found in 

literature.  Franklin and Graesser (1996) describe an autonomous agent as “a 

system situated within a part of an environment that senses that environment and 

acts on it, over time, in pursuit of its own agenda and so as to effect what it senses 

in the future”.  They divide agents into taxonomies of biological, robotical and 

computational agents, and further subdivide computational agents into artificial life 

agents and software agents.  The focus of this thesis is primarily on software 

agents. 
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The usefulness and viability of software agents have been debated since the mid-

nineties.  Various definitions for software agents exist but unfortunately those that 

are formulated are vague.  In general, end-users see software agents as programs 

that assist people and act on their behalf by allowing people to designate work to 

them (Lange and Oshima, 1998; Grimley and Monroe, 1999).  Jennings and 

Wooldridge (1998) define a software agent as an autonomous system, capable of 

flexible autonomous action in order to meet its design objectives.  Another definition 

of a software agent states that it is a computer program that is capable of 

autonomous (or at least semi-autonomous) actions in pursuit of a specific goal 

(Franklin and Graesser, 1996). In the AgentLink publication, 2005, software agents 

are viewed as a computer system that is capable of flexible autonomous action in 

dynamic, unpredictable, typically multi-agent domains.  The autonomy characteristic 

of a software agent distinguishes it from general software programs. Autonomy in 

agents implies that the software agent has the ability to perform its tasks without 

direct control, or at least with minimum supervision, in which case it will be a semi-

autonomous software agent (Wooldridge, 2002).   

 

The software agent is able to perceive the environment and act on it over a period of 

time.  This corresponds to a widely accepted notion of agency which regards an 

agent as an autonomous software system acting in a continuous Perceive-Reason-

Act cycle (as illustrated in Figure 4.1) in order to achieve a goal (Lind, 2001; Luck et 

al., 2005; Schoeman, 2005).  The software agent perceives the environment by 

receiving and processing certain stimuli.  It reasons by combining newly acquired 

information with its own existing knowledge and goals.  It acts by selecting and 

executing one of the possible actions. 
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4.3.1 Classes of software agents     
Software agents can be grouped according to specific characteristics and into 

different software agent classes. Literature does not agree on the different types or 

classes of software agents. For example, Krupansky (2003) distinguishes between 

ten different types of software agents, while the Oghma Open Source (2003) web 

site identifies sixteen different types of software agents. Because software agents 

are commonly classified according to a set of characteristics, different classes of 

software agents often overlap, implying that a software agent might belong to more 

than one class at a time. For the purpose of this thesis, we distinguish between two 

simple classes of software agents, namely stationary agents and mobile agents. 

 

Agents that do not move are called stationary agents.  A stationary agent executes 

only on the system on which it begins execution; it may typically use a 

communication system such as remote procedure calling.  An agent is implemented 

as a code component and a state component.  Furthermore, agents need an agent 

execution environment at both the client and host computers.  This execution 

environment allows agent interaction, information exchange, agent mobility and 

agent security (Lingau, Drobnik and Domel, 1995).  The execution environment will 

be discussed in Chapter 5.  Mobile software agents on the other hand, are programs 

that can migrate from host to host in a network, at times and at places of their own 

choosing (Kotz and Gray, 1999). The state of the running program is saved, 

Environment 

Reason 

Perceive Act 

Figure 4.1  The Perceive-Reason-Act cycle 
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transported to the new host, and restored.  For the purpose of this thesis our focus 

is on mobile agents as discussed in detail in Section 4.4.  Mobile agents are able to 

transport themselves from one machine to another.  This ability of mobile agents are 

extremely suitable to a SPM environment as it will support distribution between 

teams and processes. 

 

Agents in both these classes might or might not display any or a combination of the 

following characteristics: a user interface, autonomy, intelligence, adaptivity, 

flexibility and collaborative properties. 

 

 Whether or not an agent has a user interface depends on whether it 

collaborates with humans, other agents or hosts. User interfaces are 

commonly found only where agents interact with humans.   

 Autonomy in agents implies, as stated earlier, that the software agent has the 

ability to perform its tasks with minimum supervision. 

 According to Wooldridge (2002), intelligence implies the inclusion of at least 

three distinct properties, namely reactivity, proactiveness and social ability.  

The intelligent dimension represents the agents’ capability to express 

preference, beliefs and emotions, and their ability to complete a task by 

reasoning, planning and learning.   

o Reactivity refers to an agent’s ability to perceive its environment and 

respond timeously to changes that occur, in order to achieve its design 

goals.  

o Proactiveness is the agent’s ability to take initiative in its environment in 

order to achieve its design goals.  

o Social ability alludes to the collaborative nature of the agent. Different 

definitions attempt to define the collaborative nature of software agents.  

 Adaptivity is a characteristic that can also be regarded as an intelligence 

property, although it is not counted as a prerequisite for identifying an agent 

as intelligent. Adaptivity refers to an agent’s ability to customise itself on the 

basis of previous experiences.  
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 An agent is considered flexible when it can dynamically choose which actions 

to invoke, and in what sequence, in response to the state of its external 

environment (Pai, Wang and Jiang, 2000). 

 The collaborative nature of a software agent refers to the agent’s ability to 

share information or barter for specialised services to cause a deliberate 

synergism among agents (Croft, 1997). It is expected of most agents to have 

a strong collaborative nature without necessarily implying other intelligence 

properties.  

 

Agents may have additional abilities such as mobility, being rational, the ability to 

learn, and many other (Nwana and Ndumu, 1996a; Franklin and Graesser, 1996; 

Luck et al., 2005).  Mentalistic attitudes, such as knowledge, belief, intention and 

obligation may also be added to the agent (Wooldridge, Jennings and Kinny, 2000; 

Dale, 1997; Luck et al., 2005).  Intelligence in the form of reasoning and 

understanding can be added to agents to determine their behaviour and focus their 

reaction in given situations.  Thus the spectrum of agents may vary from agents with 

no intelligence but performing useful tasks, to agents with intelligence (Dale, 1997).   

4.4 MOBILE SOFTWARE AGENTS 
Mobile agents are agents that are capable of transmitting themselves, their program 

and their state, across a computer network (Wooldridge, 2002).  The state of the 

agent refers to its attribute values that direct it in determining what to do when it 

resumes execution at its next destination (Lange and Oshima, 1998). The mobile 

agent is able to transport its state and code when traversing a network to another 

execution environment in the network, and then resume execution.  Code implies 

the class code necessary for the agent to execute.  

 

Mobile agents conform to the criteria for weak agency, namely autonomy, social 

ability, reactivity and pro-activity (see Table 4.1). These are the criteria that enable 

agents to succeed in assisting humans (Jennings and Wooldridge, 1998; Lange and 

Oshima, 1998; Luck et al., 2005). 
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Table 4.1  Agent Properties 

Property Meaning 

Autonomy Operates independently without direct programmer or 

user intervention. 

Social ability Communicates with the local environment, other agents 

or user. 

Reactivity (external) Responds in timely fashion to changes in its environment. 

Reactivity (internal) Changes its behaviour based on experience. 

Pro-activity Exhibits goal-directed behaviour. 

 

The ability to travel allows a mobile agent to move to a host that contains an object 

with which the agent wants to interact, and then to take advantage of the computing 

resources of the object’s host to interact with that object.  During execution, the 

agent transfers information to the host and may receive information from the host 

(social ability).  The agent will then decide, based on this exchange of evidence 

(reactivity), whether to terminate, become a resident agent, or repeat the migration 

process (pro-activity).   

4.4.1 History of mobile agents 
Mobile agent technology has been under development since about 1994 (Green et 

al., 1997).  The concept of a mobile agent has grown from advances in distributed 

systems research.  Initially mobile agents were intended to improve on remote 

procedure calls (RPCs) as a way for processes to communicate over a network 

(Wooldridge, 2002).  

 

During the first wave of the computer industry, from 1970 to 1980, large proprietary 

mainframes were commonly used and procedural languages such as Cobol, RPL, 

Fortran and C were used.  The mid-nineties constitute the second generation of the 

computer industry.  With the advent of personal computers that became cheaper but 
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more powerful, PCs connected to networks and servers were commonplace and 

new programming paradigms such as object-oriented languages became popular: 

C++, Java, as well as visual programming such as Delphi and Visual Basic.  We 

believe that we are currently experiencing the third generation, dispersed by 

industry standards, the Internet and mobile computing.     

 

In a white paper describing General Magic’s Telescript technology, Jim White (1995) 

coined the term ‘mobile agent’ to describe a procedure that travels with its data to 

the host computer, to be executed at the host.  Typescripts was followed by 

research systems such as Tacoma in 1995, which offers operating system support 

for mobile agents, and Agent Tcl (currently known as D’Agents) in 1996. 

Mobile agent systems are required to execute on a variety of hardware platforms, as 

well as to be implemented in code that does not require recompilation after 

migration.  As a result, most existing mobile agent platforms are based on either 

scripting languages or Java.  Java is currently the language used most commonly to 

program mobile agents (Green et al., 1997; Wooldridge, 2002; Luck et al., 2005). 

Well-known Java-based applications include Aglets, Voyager and Odyssey.  IBM’s 

Tokyo research laboratory started development of one of the first industrial mobile 

agent systems, Aglets, in 1995, while ObjectSpace’s Voyager started in mid-1996, 

Mitshubishi’s Concordia in 1997 and General Magic’s Odyssey in 1997.     

 

Although various mobile agent applications are developed over a large application 

area, agent implementation is still in the early stages of adoption.  Application areas 

range from AI, telecommunication, distributed computing, intelligent user interfaces, 

e-commerce, power system management and air traffic control, to information 

retrieval management, smart databases, digital libraries and many more 

(Wooldridge et al., 2000; Luck et al., 2005).       

 

In an effort to enhance acceptance of agent technology, two main sets of standards 

have been compiled.  They are the Mobile Agent System Interoperability Facility 

(MASIF) from the Object Management Group (OMG) in 1998 (Milojicic, Breugst, 
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Busse, Campbell, Covaci, Friedman, Kosaka, Lange, Ono, Oshima, Tham, 

Virdhagriswaran and White, 1998) and the Foundation for Intelligent Physical 

Agents (FIPA) standard from the Agent Management Support for Mobility 

Specification (FIPA00087 – FIPA 98 Part II Version 1.0: Agent Management 

Support for Mobility Specification) in 1998.   

4.4.1.1 The MASIF standard 

The Object Management Group’s (OMG) MASIF standard addresses interfaces 

between mobile agent systems.  It also presents standards for cross-system 

communication and administration (Kotz and Gray, 1999).  MASIF uses two primary 

interfaces for this purpose, namely the MAFAgentSystem and MAFFinder interface.   

The above two interfaces address the following concerns: 

 A standard to manage agents, including operations such as creation, 

suspension, resumption and termination 

 A common mobility infrastructure for agent communication and interaction 

 A standardised syntax and semantics for agent and agent systems-naming 

services 

 A standardised location syntax for finding agents 

4.4.1.2 The FIPA standard 

The FIPA standard intends to promote interoperation of heterogeneous agents and 

agent services.  FIPA architecture consists of the following concepts and agents: 

 

 Agents: Each agent has an identifier that is unique in the agent environment. 

 Agent platform (AP): Consists of a directory agent, a management agent and 

a communication channel agent. 

 Directory Facilitator (DF): The directory agent is an agent that supports 

catalogue services to other agents.  It defines an agent domain and supports 

the actions to register, deregister, search and modify. 

 Agent Management System (AMS): This agent manages activities within an 

agent platform, such as the creation, deletion and migration of agents. 
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 Agent Communication Channel (ACC): The communication agent passes 

messages to agents within the platform and to other platforms. 

 Agent Communication Language (ACL): The communication language used 

is based on the search-act theory, where messages are viewed as 

communicative acts intended to perform some action.  ACL consists of 

ontologies, a knowledge representation language (KIF - Knowledge 

Interchange Format) and a communication language similar to KQML 

(Knowledge Query and Manipulation Language). 

 

FIPA demonstrates several applications that have been implemented using their 

architecture (www.: joagu@ida.liu.se).  

Although the specifications are not complete, they offer valuable guidelines to 

develop mobile agent systems.  

4.4.2 Characteristics 
In addition to the essential properties of agents as discussed in Table 4.1, mobile 

agents exhibit various additional unique characteristics.  Lange and Oshima (1998) 

cite object-passing, autonomy, asynchronicity, local interaction, disconnected 

operation and parallel execution as unique characteristics.  Braun, Eismann, Erfurth 

and Rossak (2001) add adaptation, communication, cooperation, persistence and 

goal-orientedness to this list.  A mobile agent can clone itself, which implies a 

measure of recursion (Harrison, Chess and Kersenbaum, 1995; Horvat, Milutinovic, 

Kocovic, and Kovacevic, 2000). Table 4.2 summarises similar characteristics as 

pointed out by Nwana and Ndumu (1996b), Green et al. (1997), Horvat et al. (2000) 

and Schoeman (2005). 
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Table 4.2  Mobile agent characteristics 

Property Meaning 

Mobility It is able to transport itself from one machine to another. 

Asynchronous 

execution 

An agent has its own thread of execution, thus it does not 

require its sending host to suspend execution until the 

mobile agent returns. 

Local interaction An agent interacts locally with its host. 

Disconnected operation The agent can perform its tasks at a host, regardless of 

whether the network connection is open. 

Parallel execution Cloning allows more than one agent to execute a task in 

parallel at different hosts. 

Intelligence Agents’ level of intelligence can vary, but commonly 

intelligence sustains autonomy by allowing the agent to 

decide as to where to move next.   

Communication An agent can communicate with other agents, and 

possibly people. 

Cooperation Agents cooperate to work within an environment, via 

public protocols, to reach a common goal. 

Adaptation Agents can react dynamically to changing situations by 

choosing an appropriate action. 

Persistence The state of the mobile agent is persistent, even if action 

is stopped and restarted. 

Goal-orientedness Mobile agents perform tasks on behalf of others, to 

achieve certain goals. 

Loyalty An agent performs computations on behalf of users. 

Recursion An agent can create child agents for sub-tasks. 

4.4.3 Advantages of mobile agents 
Circumstances under which the use of mobile agents is regarded as beneficial can 

be recognised by reviewing the advantages as well as disadvantages of mobile 

agents. Researchers (Green et al., 1997; Lange and Oshima, 1998, 1999, 
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Gawinecki, Kruszyk, Paprzycki and Ganzha, 2007) cite the following advantages of 

using mobile agents: 

 Agents reduce the network load by processing data at the remote host 

instead of transmitting data over the network.  Distributed systems often rely 

on communication protocols that involve interaction with the host, resulting in 

network traffic.  Mobile agents package a conversation and move it to the 

host, where interaction takes place.  This overcomes the limitations of a client 

computer with insufficient resources.    

 Agents execute asynchronously and autonomously.  Mobile devices often 

rely on expensive but fragile network connections.  Tasks requiring a 

continuous open connection between two devices are commonly not 

economically or technically feasible.  Tasks can be embedded into mobile 

agents, which can traverse a network and execute asynchronously and 

autonomously without relying on a continued connection.  Thus, when 

network connectivity is not consistent, processing does not have to stop.   

 Agents are efficient: Mobile agents consume fewer network resources since 

they move the computation to the data, rather than the data to the 

computation (Green et al., 1997). Vast amounts of data, such as in a weather 

station, can be accessed remotely, instead of moving the data over the 

network. 

 Agents overcome network latency by executing and acting locally.  Critical 

real-time systems such as robots in manufacturing processes need to 

respond in real-time to changes in their environment.  Controlling such 

systems involves significant latencies.  Mobile agents can act locally and 

execute the controller’s instructions. 

 Agents encapsulate protocols.  In a distributed system, each host owns the 

code needed to implement the protocol to exchange incoming and outgoing 

data.  Mobile agents can move to remote hosts to establish ‘channels’ based 

on proprietary protocol.   
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 Agents adapt dynamically. Due to the reactivity attribute defined in weak 

agency, mobile agents are aware of their environment and respond to 

changes in it.  

 Agents are naturally heterogeneous. As network computing is often from a 

hardware and software perspective heterogeneous and mobile agents are 

usually computer and transport layer independent.  Mobile agents will 

execute on different hardware and software systems. 

 Agents are robust and fault tolerant. The ability of mobile agents to react 

dynamically to adverse situations makes it easier to build fault tolerant 

behaviour. 

 Agents can personalise server behaviour.  By dynamically supplying new 

behaviour, network entities such as routers can change behaviour when 

supported by intelligent agents. 

 Agents provide support for electronic commerce.  Mobile agents can build 

electronic markets. The mobile agent will embody the intentions, desires and 

resources of the participants. 

 Agents are seen as a convenient development paradigm, since they are 

inherently distributed in nature and thus entail a natural view of a distributed 

system. 

4.4.4 Disadvantages of using mobile agents 
One of the main disadvantages to using mobile agents is security.  This includes all 

security issues such as authentication of user and server, authorisation, verification 

agents and protecting agents against transfer (Lange and Oshima, 1999; Roth, 

2004; Luck et al., 2005).  Seeing that this thesis does not focus on security issues, 

the reader is referred to Grimley and Monroe (1999) for more information on security 

issues related to agent technology.   

 

Lack of accepted standards and a pervasive infrastructure are also listed as 

inhibiting factors (Milojicic et al., 1999; Roth, 2004; Luck et al., 2005).  Additional 

problems include lack of a so-called killer application, lack of proper education in 
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agent development, and lack of scalability or performance (Harrison et al., 1995; 

Samaras, 2004; Wooldridge, 2002). 

 

Luck et al. (2005) provide a table (Table 4.3) with areas of agent technology to be 

addressed over different timescales.  The main areas that are listed are industrial 

strength software, agreed standards, infrastructure for open communities, reasoning 

in open communities, learning technologies, and trust and repudiation. Broad and 

specific challenges are also identified.  The following broad challenges are listed: 

 Developing tools, techniques and methodologies to support agent systems 

developers  

 Automating the specification, development and management of agent 

systems 

 Integrating components and features 

 Establishing tradeoffs between adaptability and predictability 

 Establishing linkages to other branches of computing 

 

Table 4.3  Challenges regarding agent technology (Luck et al., 2005) 

Challenges Short term Medium term Long term 
Industrial strength 

software 

Peer to peer 

Better development tools 

Service-oriented 

computing 

Generic designs 

Libraries for agent-

oriented development 

Best practice in agent 

systems design 

Agreed standards FIPA ACL 

Semantic description 

Service-oriented 

computing 

Libraries of interaction 

protocols 

Tools for evolutions of 

communications 

languages and 

protocols 

Infrastructure in 

open communities 

Web mining 

Data integration 

Semantic web 

Semantic interaction 

Agent-enabled 

Semantic web 

Shared improved 

ontologies 

Reasoning in open 

environments 

Organisational views of 

agent systems 

Enhanced 

understanding of agent 

societies 

Automated eScience 

systems and other 

application domains 

Learning 

technologies 

Adaptation 

Personalisation 

Evolving agents 

Self-organisation 

Run-time 

reconfiguration and re-
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Challenges Short term Medium term Long term 
Hybrid technologies Distributed learning design 

Trust and 

repudiation 

Security and verification 

Reliability testing 

Self-enforcing protocols 

Norms and social 

structures 

Formal methods 

Electronic contract 

Trust techniques for 

coping with malicious 

agents 

 

Mobile agent technologies have disadvantages and challenges.  However, the 

benefits gained from robustness, asynchronous and autonomous functioning, speed 

and functionality far outweigh the disadvantages.  

 

The main reasons for using mobile agents can be summarised as follows: 

 Intermittent connectivity, slow networks, lightweight devices and mobile 

computing, as well as offline processing with unreliable and/or limited 

capacity. 

 Asynchronous execution, autonomy and persistence or distributed retrieval or 

dissemination of information (Sunsted, 1998; Lange and Oshima, 1999).  

 

Domains where mobile agent technology can make a positive contribution include 

but may not be restricted to are as follows (Lange and Oshima, 1999; Kendall, 

Krishna, Suresh and Pathak, 2000, Gawinecki et al., 2007): 

 

 Telecommunication and networking: Support and management for advanced 

telecommunication services use dynamic network reconfiguration and user 

customisation.  Mobile agents can act as the glue to keep these systems 

flexible but effective (Lange and Oshima, 1999; Kendall et al., 2000).  

 Electronic commerce. A commercial transaction may require real-time access 

to remote resources.  Different agents with different goals and strategies may 

each support these.  Agents embodying the intentions of their creators, and 

acting and negotiating on their behalf constitute a suitable application for 

agent technology. 
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 Mobile computing: Laptops and other mobile wireless technologies are still 

limited in terms of bandwidth usage.  Mobile agents allow for increased 

performance and can proceed executing when connections fail. 

 Distributed information retrieval and dissemination systems: Agents can 

retrieve large amounts of information from various distributed locations.  

Agents can also disseminate information such as news and software updates 

to specific persons. 

 Distributed computing: Processing of data can be done closer to the data 

source instead of moving large amounts of data to the processor.  Only the 

result, rather than large amounts of data, can then be returned. 

 Distributed management: Mobile agents can be designated management 

tasks closer to where they are needed in a distributed area, thus reducing 

bandwidth usage. 

 Workflow applications and groupware: Mobile agents are suited to support 

the flow of documents between co-workers.  Agents provide a degree of 

autonomy as well as mobility to these workflow documents. 

 Monitoring and notification: An agent can monitor a certain information 

source without being dependent on the system from which it originates.  The 

asynchronous nature of the agent supports this function, as the agent can 

wait for certain kinds of information to become available. 

 Personal assistants: Agents can perform on behalf of their creators over a 

distributed network. Remote assistants work independent of their network 

connectivity.  For example – when a meeting is to be scheduled, a user can 

send an agent to interact or negotiate with team members or agents of team 

members to arrange the meeting.  

4.5 CONCLUSION 
This chapter was devoted to a discussion of agent technology.  The background to 

agent technology was sketched and emerging trends were reviewed as drivers for 

agent technology.  Software agent technology was investigated, including various 

classes of software agents and specifically mobile software agents.  The 
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advantages and disadvantages of using agent technology were explored and 

standards for mobile agents were considered. 

 

Despite the lack of complete standards documentation, mobile agent research 

continues.  This is clear from the attention that international mobile agent 

conferences are receiving, as well as from the recent launch of the Journal of Mobile 

Information Systems, which includes mobile agents as topic (Tanair, 2005). 

 

Mobile agent technology can therefore be seen as a new paradigm that may be 

used to support the SPM process.  The following table lists the unique requirements 

of SPM and how agent technology may address these.    

Table 4.4  SPM features to be addressed by agent technology 

SPM Software agent technology 

Changing environment of SPM systems 

leads towards a complex distributed 

environment.  

 

Agents allow distribution and 

communication over a geographical area 

irrespective of the geographical location.  

Agents overcome network latency by 

executing locally, thus reducing network 

load (Lange and Oshima, 1998, 1999).  

Parallel execution enables tasks to be 

executed in parallel at different 

workstations.  

SPM distributed environments may 

require and incorporate mobile devices 

and fragile network connections. 

Agent systems can incorporate large 

network systems and mobile devices.  

Tasks can be embedded into mobile 

agents, which can traverse the network 

and execute asynchronously and 

autonomously without relying on a 

continued connection (Harrison et al., 

1995; Lange and Oshima, 1998). 



 
Chapter 4   Software Agent Computing 

 
 
 
 

72 
 

SPM Software agent technology 

A distributed environment requires a 

high level of collaboration and 

cooperative problem solving between 

teams and team members.  

Teams of agents can coordinate actions 

towards a similar goal in a distributed 

environment.  Software agent technology 

provides a natural metaphor for support 

in a team environment, where software 

agents can traverse the network in order 

to monitor and coordinate events 

(Wooldridge, 2002).  Communication 

and cooperation is strongly supported by 

agent teams. 

Distributed environment results in virtual, 

dynamically changing collaborative 

teams. 

Agents adapt dynamically to changes. 

They are aware of their environment and 

can respond to changes in it.  Agents 

have the computational mechanisms for 

flexibly forming, maintaining and 

disbanding organisational structures 

(Jennings, 2001). 

Collaboration between team leader and 

distributed team members requires 

continuous control, monitor and 

measurement. (Invisibility aspect) 

Agents are excellently suited to control, 

monitor and measure elements in a 

distributed environment (Braun et al., 

2001). 

A distributed environment requires 

heterogeneous technology and 

databases that have to interact and 

share information.  

Agents are naturally heterogeneous, and 

mobile agents can execute on different 

hardware and software platforms (Impey 

and Forester, 2003; Lange and Oshima, 

1999). 

The changing SPM environment requires 

flexibility and conformity of the system. 

Agents adapt dynamically to changes in 

their environment; thus this feature will 

be excellently supported (Nwana and 

Ndumu, 1996a; Kotz, Jiang, Gray, 
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SPM Software agent technology 

Cybenko and Peterson, 2000). 

 

Virtual software project teams over 

dispersed environments need to access 

information and documents. 

Agents support the distributed retrieval 

and dissemination of information and 

documents and can automate routine 

tasks (Maes, 1996; Green et al., 1997). 

 

Table 4.4 illustrates that software agent technology is indeed suitable for addressing 

the various unique features of SPM.  It can therefore be concluded that software 

agent technology provides a suitable framework for supporting and possibly 

enhancing SPM processes in a complex distributed environment.  The need for the 

flexible management of ever-changing organisational structures such as those dealt 

with in SPM is suitably addressed by the computational mechanism of agent 

systems (Jennings, 2001).  Agent behaviour as stated in Table 4.4 can be used to 

support the individual team members in numerous tasks, such as coordination and 

cooperation with team members, document retrieval and distribution, workflow 

monitor and control, scheduling and organisation of meetings, reminders for tasks 

and overdue dates or deliverables.  

 

Various development approaches as well as environments for agent systems exist. 

In the next chapter the development environments of agent systems will be 

investigated.  The researcher will also look at software agents used in different 

applications and explore the possibilities of using this paradigm to support SPM 

processes. 



 
 
Chapter 5  Software Agents in SPM 

 
 
 
 

74 
 

 

CHAPTER 5 

5 SOFTWARE AGENTS IN SPM 

 

 

CHAPTER 1 Introduction 

CHAPTER 3 Software 
Project Management  (SPM) 

CHAPTER 4 Software  
Agent Computing 

CHAPTER 7 The SPMSA Model 

CHAPTER 9 Model Verification 

CHAPTER 5 Software Agents in SPM 

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion 

Part 1 

Introduction 

Part II 
Theoretical  Background 

Part III 

The SPMSA 
Model 

Part IV 

Conclusion 

CHAPTER 6 Model – Scope and Concept 

CHAPTER 8 Prototype Implementation 



 
 
Chapter 5  Software Agents in SPM 

 
 
 
 

75 
 

5.1 INTRODUCTION 
In the previous chapter the basic concept of agents – and more specifically mobile 

software agents – was explored.  It was concluded that agent technology can be 

utilised to support and possibly enhance the entire SPM environment, so as to 

address shortcomings and project failures in this area. 

 

Mobile software agent development and implementation will be discussed in this 

chapter.  Agent application development environments have been generated to 

support the user in his/her process of designing and implementing an agent-based 

system.  The purpose of this chapter is to regard the process of agent development, 

as well as the factors that support this environment.  Finally, Chapter 5 also 

investigates agent-driven applications that have been developed with specific focus 

on the agents used in SPM.  

 

Wherever reference is made to a mobile agent throughout the remainder of this 

thesis, it should be read as referring specifically to a software mobile agent.  

5.2 MOBILE AGENT DEVELOPMENT  
Developing agent applications is a relatively new software engineering paradigm 

and although a variety of approaches for development exists, a standard has not 

been set and proven (Iglesias, Garijo, Gonzalez and Velasco, 1998; Zambonelli, 

Jennings, Omicini and Wooldridge, 2001).  Existing methodologies are/were taken 

and either adapted or extended to support agent-based development.  Examples of 

these are existing object-oriented (OO) methodologies, knowledge engineering, 

formal specification languages, as well as new methods such as using patterns and 

components.  The adoption of agent technologies has not yet entered the 

mainstream of commercial organisations, and the range of applications is limited to 

a small number of industrial sectors (Luck et al., 2005).  These include automated 

trading in online markets such as for financial products and commodities; simulation 

and training applications in defence domains; network management; control system 

management in industrial plants such as steel works; user interface and local 
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interaction management in telecommunication networks; schedule planning and 

optimisation in logistics, and supply-chain management (Luck et al., 2005).  Which 

options, i.e. methodologies, and application development environments are then 

available to design and implement mobile agent systems?  The following sections 

attempt to answer this question. 

5.2.1 Mobile agent development methodologies 
Software development methodologies usually consist of a modelling technique and 

a development process.  Models are intended to formalise the concept of the 

system as they are defined on an abstract level and then extended to become more 

detailed, concrete and specific.  An analysis and design methodology assists in 

gaining an understanding of and then designing the system.  This thesis focuses on 

compiling a model of SPM processes supported by an agent framework to enhance 

the SPM processes.  Thus, the methodology and process to implement an agent 

system will only be regarded briefly and in the context of an agent system.  

  

Wooldridge (2002) specifies two broad groups of approaches to analyse and design 

agent-based systems: 

 Agent systems that adapt to object-oriented development and that either 

extend existing OO methodologies or adapt OO methodologies to the 

purpose of agent-based systems (Burmeister, 1996; Kendall et al., 2000; 

Wooldridge, et al., 2002). 

 Agent systems that adapt to knowledge engineering or other techniques such 

as formal specification techniques (Kefalas, Holcombe, Eleftherakis and 

Gheorghe, 2003; Luck et al., 2005). 

 

There are various examples of the above approaches, namely the AAII methodology 

defined by Kinny and Georgeff, (1997); Odell’s (2001) adaptation of UML to agent 

development; the Gaia methodology of Wooldridge et al. (2000); the use of 

specification language Z to specify agent systems (Luck et al., 2005); as well as the 

Cassiopeia methodology designed by Collinot, Drogul and Benhamou (1996).  
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Debenham and Henderson-Sellers (2003) propose extensions to the OPEN (Object-

oriented Process, Environment and Notation) framework to design agent-based 

systems. 

 

An additional methodology has emerged that is specifically tailored to address the 

development of agent-based systems, namely agent-oriented analysis and design.  

Agent-based systems have many unique factors, thus it is inevitable that it should 

be addressed by a unique analysis and design methodology, specifically designed 

for this paradigm.  An example is the Hermes system that proposes an approach for 

designing agent interactions in terms of interaction goals (Cheong and Winikoff, 

2005).  Design goals are then mapped into collections of plans.  

 

Ongoing research is conducted into the process of systems analysis and design of 

agent-based systems.  Currently there is no single unified and unique agent-

orientated methodology, i.e. a standard has not been adopted yet (Schoeman, 

2005).  Methodologies that have been developed vary, for example Gaia 

(Wooldridge, et al., 2000) and SODA (Omicini, 2001), which support only analysis 

and design phases, and PASSI (process for agent societies specification and 

implementation) which supports the entire spectrum of the life cycle (Cossentino, 

Burrafato, Lombardo and Sabatucci, 2002).  

 

However, whichever methodology is followed, the process of developing and 

implementing software agents will also involve a phase for the analysis and design 

of the agent system, and thus a brief look at these phases is necessary to put them 

in the context of this paradigm (Schoeman, 2005).  

 

During the software development process at least four basic phases are usually 

executed in either sequential or concurrent order. These are the requirements 

analysis phase, design phase, implementation phase and testing phase.  Each 

phase results in various diagrams, depending on the paradigm or methodology 

used.  For example, the models supporting the requirements analysis phase use 
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case diagrams, domain models and system sequence diagrams, while the models 

supporting the design phase use the design class diagram, interaction diagrams and 

package diagrams (Satzinger, Jackson and Burd, 2004).  The phases of 

development may continue sequentially (as in the waterfall method), or iterations will 

repeatedly take place (V-model, prototyping, and iteration method).   

 

For the purpose of this study, the requirements analysis phase and the design 

phase will be considered in more detail. 

5.2.1.1   Requirements analysis phase 

During the requirements analysis phase the problem domain is investigated and the 

problem(s) identified.  The analyst concentrates on what the problem is and 

identifies functional and non-functional requirements.  Functional requirements 

identify what the system must do (use cases are used) and non-functional 

requirements may constitute themselves through the constraints on the system, i.e. 

security.  Thus, the system’s goals and requirements must first be defined, as is the 

case in traditional systems analysis methodologies.   

 

Regardless of the model, technique or methodology that is used to design and 

implement an agent system, the analysis process should result in a conceptual 

model to describe both the conceptual agent model and the conceptual group of 

agents to be implemented.  This model states what the system has to do, not how it 

is to be done.  Thus, to summarise, the following must be identified (Zambonelli et 

al., 2001): 

 A description of the requirements of the system 

 A model to describe external interaction with the system and individual agent 

responsibilities/tasks 

 An agent social model for global interaction  
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5.2.1.2 Design phase 

During the design phase the developer creates the solution to the problem based on 

the outcome of the requirements analysis phase (Schoeman, 2005).  The main 

focus of this phase is on how to resolve the problem.  This is traditionally identified 

by an architectural as well as a detail design.  The three main methods for 

developing agent systems are based on extensions and adaptations of either OO 

methodologies or knowledge-based methodologies, or on agent-based approaches 

(Zambonelli et al., 2001; Schoeman, 2005).  

 

The following step will be to implement the agent system by using either a 

programming language or a development environment, as will be discussed in the 

following section. 

5.3 MOBILE AGENT IMPLEMENTATION 
The design models developed during the agent analysis and design phase need to 

be implemented by translating them to program code. This can be done either by 

using a programming language and developing the entire agent system from 

scratch, or by using an agent development environment that provides the 

programming constructs to implement agent concepts.  To build sophisticated 

software agents from scratch can be very difficult and time consuming. Hayes-Roth 

and Amor (2003) and Luck et al. (2005) recommend that software developers 

without extensive experience in agent development use an agent construction toolkit 

to build software agents.   

 

The form and components of toolkits vary from integrated development 

environments to basic middleware providing some networking capabilities.  

According to Luck et al. (2005) agent toolkits will typically offer the following:   

 Facilities to enable the development of individual agents, and their interface 

to the environment. 

 Coordination and communication mechanisms with regard to high-level and 

low-level services. 
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 Management services to monitor and debug agent applications. 

 Software to assist with the development process. 

5.3.1 Agent development environments 
Mobile agents interact, move and perform various autonomous tasks.  Mobile 

agents need an environment in which they can execute, migrate and communicate.  

This environment is addressed in different terms by various authors, i.e. it is referred 

to as a “platform” (Tahara, Ohsuga and Honiden, 1999; FIPA, 2003), “framework” 

(Feridun and Krause, 2001), “architecture” (Gschwind, Feridun and Pleisch, 1999; 

Tahara et al., 1999; Wong, Helmer, Naganathan, Polavarapu, Honovar and Miller, 

2001) or “infrastructure” (Aridor and Oshima, 1998).    

 

An agent platform can be seen as the computer hardware as well as software 

available for agent development (Caudron, Groote, Van Hee, Hemerik, Somers and 

Verhoeff, 2004).  Agent frameworks are programming toolkits or development 

toolkits for constructing agents such as D’Agents (D’Agents: Mobile agents at 

Dartmouth College, 2002), Grasshopper or JADE.  Agent architecture views agents 

as reactive/proactive entities and conceptualise agents as perceptive, reasoning 

and active components (Schoeman, 2005).  Agent infrastructure provides the rules 

that agents follow, and deals with ontologies, communication protocols, 

communication infrastructure and interaction protocol. 

5.3.1.1  Agent platforms  

In this thesis an agent environment that allows for the proper functioning of agents is 

referred to as an agent platform.  Key aspects of an agent platform include support 

for communication, interoperability, security and mobility.  An agent platform must 

have an agent management system to support communication, interoperability, 

security and mobility (Van Zyl, 2005).  Agent platforms may also provide a set of 

standards and development tools to aid in the design, construction, management 

and maintenance of agents.   
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Most existing mobile agent platforms are based on either scripting languages or 

Java.  The latter is currently the language that is most commonly used to program 

mobile agents (Green et al., 1997; Wooldridge, 2002; Luck et al., 2005).  

 

Various agent development platforms have been developed that address the 

technical issues of mobility of an agent in different ways.  For example, in Telescript 

mobility is employed by transmitting both the agent and its state.  The state includes 

a program counter that ‘remembers’ the value and resumes when it reaches the 

new destination (Wooldridge, 2002).    

 

In order to implement an agent platform, the following minimum criteria must be met 

(Luck et al., 2005; Van Zyl, 2005; Schoeman, 2005): 

• Development support for mobile agents must be provided.  The agent 

platform must provide support for agents to communicate with each other in 

order to extract information, give information or check information.  Allowing 

agents to move to the location where interaction will take place means that 

network delays, disconnection or downtime will not affect the communication 

or negotiation process. 

• The platform must be operating system independent.  In order to allow 

agents to move from one system to another, regardless of the underlying 

operating system, will provide greater usability to the agent community.  

Broader usage is essential for large applications and distributed 

environments. 

• The agent platform must support standards such as FIPA or the mobile agent 

system interoperability facility that was discussed in the previous chapter 

(Van Zyl, 2005). Standards allow for agent communication and mobility; thus, 

following a set standard allows for further expansion and interaction between 

systems. 

• The development platform must support Java.  Java has become a de facto 

standard for the programming of mobile agents (Luck, 2005; Chmiel, Tomiak, 

Gawinecki, Kaczmarek, Szymczak and Paprzycki, 2004b).  Java not only 



 
 
Chapter 5  Software Agents in SPM 

 
 
 
 

82 
 

supports weak mobile agents through serialisation, but also supports 

operating system independence.   

 

Agent platforms that support the above criteria include Aglets software development 

kit (ASDK); Bee-gent; Comtec agent platform; Grasshopper; Java agent 

development environment (JADE), and Tryllians’s agent development kit (ADK). 

 

The Java agent development environment (JADE) platform is shown in Figure 5.1.  

In this platform, agent development is supported by an agent management system, 

directory facilitator and message transport system.  The agent management system 

enables agent mobility, interoperability, communication, as well as the security of 

agents.  The directory facilitator provides a yellow-page service to monitor the 

agents, while the message transport system enables agent message transportation 

by communicating with other agent platforms. 

 
 

 
Figure 5.1 JADE Agent platform 
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Other prominent development environments not necessarily based on Java are 

D’Agents (formerly known as AgentTCL), Telescript and Tacoma, all based on TCL.  

Table 5.1 lists some of the available agent platforms (adapted from Altmann, 

Gruber, Klug, Stockner and Weippl, 2000 and Giang and Tung, 2002).  It also 

supplies the name and author of each platform, as well as information on its support 

for standards, security and communication.  
 

Table 5.1  Platforms for agent development  

 Author Features 
Agentalk NTT 

Ishida 

A coordinated protocol description language for multi-agent 

systems.  AgenTalk allows protocols to be defined incrementally 

and to be customised to application domains by including an 

inheritance mechanism. 

Agent 

Development 

Kit (ADK) 

Tryllian BV This commercial kit supports P2P XML-based communication. 

Supports weak mobility. 

A commercial kit not suitable for academic use. 

AgentTool Kansas State 

University 

The AgentTool allows agent designers to formally specify the 

required structure and behaviour of multi-agent systems.  

Supports authentication and access restriction.  

Full support for communication. 

Supports weak mobility. 

Aglets 

Software 

Development 

Kit (ASDK) 

IBM 

 

An aglet is a Java object that can move from one host on the 

Internet to another.  The aglet can halt execution, dispatch to 

the remote host and resume execution. The aglet’s state and 

code is transmitted. 

Open source, free. 

AgentBuilder  An integrated tool suite for constructing intelligent software 

agents.  

Tools for managing the development process, analysing the 

domain of agent operations, designing and developing networks 

of communicating agents.  The runtime system includes an 

agent engine that provides an environment for execution.   

Full support for communication: Knowledge and Manipulation 

Language (KQML) 
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 Author Features 
Grasshopper IKV++ 

Technologies 

AG++ 

Good security support for certificates, encryption and 

authentication. 

Full support for communication, MOTIF and FIPA standards. 

Strong mobility support, NOT open source project, thus access 

to the working of the system is limited. 

Java Agent 

Development 

Environment 

(JADE) 

 JADE constitutes a software framework to develop agent-based 

applications.   

A comprehensive set of system services and agents is 

provided.  JADE can be considered agent middleware. 

Weak security, full support for communication.  

Complies to FIPA standards, open source, free. 

Zeus British 

telecommunication 

labs 

Zeus is a collaborative agent-building environment and 

component library written in Java.  Each Zeus agent consists of 

a definition layer, organisational layer and a co-ordination layer. 

 

For a summary of technology refer to Green (1997), Altmann et al. (2000) and 

Giang and Tung (2002).  

5.4 APPLICATIONS OF MULTI-AGENT SYSTEMS 
Various applications of agents have been implemented.  As was stated earlier, Luck 

et al. (2005) suggest that the adoption of agent technologies has not yet entered the 

mainstream of commercial organisations and the range of applications is limited to a 

number of industrial sectors.  However, Ganzha and Paprzycki (2008) are actively 

researching agent technology and are busy implementing systems such as a travel 

support system (Kruszyk, Ganzha, Gawinecki and Paprzycki, 2007) and an e-

commerce system (Vukmirovic, Gawinecki, Kobzdej, Ganzha and Paprzycki, 2007). 

 

To develop a mobile agent system, an adaptable and flexible framework is needed. 

It should include multi-agent features that enable the developer to set up the 

distributed application, as well as an appropriate level of reasoning.   
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Applications of agent systems are divided by Wooldridge (2002) into two main 

categories, namely distributed system agents (with the emphasis on multi-agent 

systems) and personal assistant agents (with the emphasis on individual agents).   

 

Examples of agent applications include agents for e-commerce, agents for 

information retrieval and management, agents for networking and the Internet, 

agents for workflow and business process management, as well as agents in project 

management (Wooldridge, 2002; Luck et al., 2005). 

5.4.1 Agents for Electronic Commerce 
E-commerce systems (of which amazon.com is one of the best-known examples) 

will typically allow the user to browse an online catalogue of products, select some 

and then purchase these products using a credit card (Wooldridge, 2002).  Agents 

have improved on these systems by automating some of the buyer’s behaviour.  

They have been used as comparison shopping agents, where the agent obtains 

information related to available products, examines various merchants, negotiates 

for the buyer and purchases the product (Wurman, 2001). The InAMoS project 

proposes a mobile agent to represent the user in the market place (Luck et al., 

2005). The Jango system (Wooldridge, 2002) also represents a comparison 

shopping agent system.   

5.4.2 Agents for Information Retrieval and Management 
Distributed, semi-structured information resources such as the World Wide Web 

provide enormous potential for the accessing of information.  Agents can be used 

for searching the internet and filtering information to prevent ‘information overload’.  

For example, Pattie Maes from the MIT lab developed a number of prototypical 

systems that could carry out these types of tasks.  MAXIMS, an electronic mail 

filtering system can prioritise, delete, forward, sort and archive mail messages on 

behalf of the user (Maes, 1994).  Another example is the NewT system, a Usenet 

news filter (Maes, 1994) where the agent filters news as an extension of the user’s 

interest, and then searches and proposes such news items for the reader to read.     
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MagicCap is an intelligent personal communication system that uses mobile agent 

technology in Telescript to allow different forms of communication to intelligently 

interact with the user, irrespective of his geographical location (Green et al., 1997).  

A number of studies have been conducted on information agents, including aspects 

such as extracting or including information from different sources (Gruber, 1993). 

The SoFAR system represents an agent framework for distributed information 

management (Moreau, Zaini, Cruickshank and De Roure, 2003).  Carnot (Huhns, 

2002) allows pre-existing and heterogeneous database systems to work together to 

answer queries that fall outside the scope of the individual database. Obudiye, 

Kocur and Weinstein (1997) developed an agent-based information retrieval system 

called SAIRE. 

 

Related work is being done by the computer-supported cooperative work (CSCW) 

community.  Interested readers may consult the work of Gaeta and Ritrovato (2002) 

and Greif (1994) for more detail. 

5.4.3 Agents for Network and Internet 
The use of mobile agents in network management and in the telecommunications 

area has been recognised and promoted.  The IBM Agent Meeting Point for Mobile 

Communication concerns itself with the creation of a framework to implement 

secure, remote applications in large public networks with several mobile devices 

such as laptops and PDAs (Green et al., 1997).  An agent meeting point is central to 

this concept.  The Magna mobile agent system that was developed by GMD Fokus 

and the Technical University of Berlin targets the service scalability problem in 

intelligent networks by trying to incorporate Remote Procedure Calls as well as 

mobile agents for providing customised telecommunication services (Green et al., 

1997).  Another example of mobile agents used for advanced network management 

is the Perpetuum Mobile Procura Project.  In this application, mobile agents are 

used to overcome the problem of legacy issues, explore new intelligent distributed 

management techniques and deliver a Java-based platform for network 

management.  A collection of articles on agent systems (Programming Multi-agent 
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Systems), provide more information for the interested reader (Eds.) Bordini, Dastani, 

Dix and Seghrouchni (2005).   

5.4.4 Agents for workflow and business process 
management 

Workflow and business process control systems are of increasing importance in 

computer science.  Workflow systems aim to automate the processes of a business, 

making sure that the correct tasks are sent to the correct people at appropriate 

intervals, and typically ensuring that a specific document flow is maintained and 

managed in an organisation (Müller, Bauer and Friese, 2004).  In the agent system 

ADEPT  a business organisation is modelled as a society of negotiating service-

providing agents (Jennings, Sycara and Wooldridge, 1998).   

5.4.5 Agents used in project management  
Software agent technology is at present explored as a promising way to support and 

implement complex distributed systems and a useful supplement to client/server 

systems (Balasubramanian, Brennan and Norrie, 2001; Chen et al., 2003).  In this 

section, we consider how agent technology is currently deployed, specifically in 

SPM, by considering some application examples.  As described earlier, the SPM 

environment has changed in the past decade into a dynamic and complex 

environment where flexible and adaptive behaviour and management techniques 

are required. Agent-based solutions are applicable to this environment since they 

are appropriate in highly dynamic, complex, centralised as well as distributed 

situations (Dowling and Welch, 2004). In addition to the advantages of distributed 

and concurrent problem solving, agent technology has the advantage of 

sophisticated patterns of interaction, namely cooperation, coordination and 

negotiation (Hall, Guo and Davis, 2003).  However, work on the use of agents in 

project management has been performed to address certain aspects pertaining to 

SPM, but not to address the total environment (Maurer, 1996; O’Connor and 

Jenkins, 1999; Sauer and Applerath, 2003).   
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5.4.5.1 Scheduling  

The first application is intended for the broader project management environment, 

and is not specific to the SPM environment. Nevertheless, this example is 

mentioned as it applies agent technology to scheduling tasks, which are common to 

both environments, and it is focused on in the distributed environment. In a recent 

work, Sauer and Applerath (2003) presented an approach that involves using a 

generic agent framework to support the scheduling tasks within the supply chain in 

the PM environment. The framework allows for the consistent design of agents that 

reside on several levels of the organisation. To prevent communication overhead 

(found in earlier multi-agent systems), agent teams are formed. All the agents in a 

team then collaborate to solve a specific scheduling task on a particular level. 

Furthermore, every agent (in its personal capacity) is also responsible for a specific 

schedule (the schedule of the resources that it represents). Therefore each agent is 

provided with the scheduling knowledge that is necessary to create or maintain the 

schedule without contacting the other members of the team.  The focus of this 

application is primarily on time management and certain aspects of the 

communication management function.   

 

Agents are used with great success as planners and schedulers in supply chain 

management and industrial systems.  Examples of these are the Daewoo system  

produced by Metra Corp where task, resource and service agents schedule the 

press shop at Daewoo Motors’ integrated automobile production facility in Korea 

(Wu and Simmons, 2000).  The Daewoo shop supplies body parts for five different 

car models.  An agent is assigned to each traditional manufacturing function, such 

as order acquisition, logistics, scheduling, resource management.  Agents are also 

commonly assigned to physical entities in the system.  The AARIA (Autonomous 

Agents for Rock Island Arsenal) ontology is used and manufacturing processes 

occur when the flow of the parts and resources intersect at a unit process (Parunak, 

Baker and Clark, 1997). 
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5.4.5.2 Planning and resource management 

Maurer (1996) proposed a system (the CoMo Kit) in which methods and tools were 

developed to plan and manage complex workflows, especially in design domains.  

According to this system, tasks can be decomposed into subtasks and for every 

task several alternative decompositions (methods) can be defined.  Every task is 

associated with a set of agents, humans or computers that are able to solve it.  The 

problem-solving process, for example the application of methods to tasks, is 

distributed via a local area network.  The proposed system uses agent technology 

as a tool for planning, coordinating and designing process execution.  This approach 

follows a centralised black-box agent approach.  The system architecture consists of 

a modeller that does project planning; a scheduler that supports project execution 

and manages information produced; and an information assistant that allows access 

to the current state of the project.  During SPM, the modeller gathers information 

through interaction with the project manager or other stakeholders, and as a result 

presents a model of this information to the scheduler as input.  The scheduler then 

manages agendas that contain the tasks to be carried out by an agent. To work on 

the task, the agent can access all relevant information (using the information 

assistant) for solving the problem.  Maurer’s solution (1996) is applicable to scope 

management, time management and, to a certain extent, the communication 

management function.  Research is also conducted on resource management in 

virtual organisations (Szymczak, Frackowiak, Ganzha, Gawinecki, Paprzycki and 

Park, 2007) and plan tracking (Wu and Simmons, 2000).  

 

In another example targeting this environment, O’Connor and Jenkins (1999) 

propose an intelligent assistant system to support the project team during planning, 

scheduling and risk management.   

 

Joslin and Poole (2005) adapt a simulation-based planning algorithm to the problem 

of planning for SPM.  Simulation techniques offer support for modelling the way in 

which agents may behave in project management and the manager might adapt the 

project plan based on the project status at future points.  Resource allocation and 
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task selection are targeted by this simulation.  The algorithm for resource allocation 

is run at the beginning of each simulation period. 

5.4.5.3 Control and monitor 

Software agents are used to control and monitor activity execution at various sites in 

an open source platform that supports distributed software engineering processes in 

a development as part of the GENESIS project (Gaeta and Ritrovato, 2002).  

Software agents are used to support the control of software processes as well as 

the communication among distributed software engineering teams.  Agents are 

mainly utilised for the synchronisation of process instances executed on different 

sites, the dynamic reconfiguration of software processes, process data collection, 

monitoring of the processes, as well as artefact retrieval.   

5.4.5.4 Risk analysis 

Korb, Engel, Boesecke and Eggers (2003) apply a basic level of risk management in 

clinical research to implement the robot system RobaCKa for craniotomies.  A 

systematic approach was implemented to support fault-free design, error detection 

and quality assurance in the design of the robot system.  The system was 

implemented and tested, while further clinical investigations will be carried out in the 

next two years.   

 

Rigaud and Guarnieri (2002) developed the AUDI@R system that aims to prevent 

technical risks in small and medium enterprises.  The virtual organisation targeted in 

this application is viewed in terms of three sub-systems: the first based on activities 

and internal actors of the company; a second that integrates companies evolving in 

the same field, and a third that includes all the companies in the same geographic 

basin.  The first sub-system is the one that concerns safety and reliability issues.  

Seven user profiles are identified according to company functionality, namely 

organisation, documentation, environment, human, production means and 

manufactured product.  When the contractor wishes to diagnose his company, he 

informs the co-worker through the communication interface.  A questionnaire is then 
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posted to users concerning security, maintenance and suitability between 

production means and manufactured products, after which the results are returned 

to the contractor. This model is based on grid computing and focuses on the 

system’s heterogeneity and communication architecture.  However, it only targets 

one aspect of the development cycle, namely risk (Rigaud and Guarnieri, 2002).  

Although Boehm laid some foundations for risk management and various related 

discussions (e.g. Charette, 2002) are found in the literature, formal risk analysis is 

rarely an integrated part of project management.  

5.4.5.5  Quality assurance 

Leung and Poon (1999) developed a multi-agent environment framework (AUTOQ) 

that aims to support software quality assurance.  Emphasis is placed on process 

and product assurance.  An interface agent assumes the role of project manager to 

direct requests from the user to agent testing, audit, review, defect and support 

components.  The user provides input data to the interface agent, and it is sent to 

the information agent where it is tested and archived in a database.  Task agents 

analyse the reported results, send results to the project managing agent and archive 

the results. 

 

The other components, namely audit, review, defect and support components 

execute on the same basis by accepting input from the user, analysing and then 

reporting and archiving results.  This system has been developed using Java and 

C++.  It also targets only one of the eight functional areas of SPM.   

 

This discussion serves to show the application domains where agents may be 

utilised.  This is by no means a complete list of all agent applications, but is intended 

to show the possibilities of this paradigm.   
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5.5 CONCLUSION 
This chapter was devoted to a discussion of mobile agent development and 

implementation.  Various applications using agent technology were discussed, with 

specific emphasis on the SPM area to show the possibilities of using this paradigm.  

 

Agent technology has been more commonly applied to areas such as network and 

system management (Kendall et al., 2000), decision and logic support (Burstein, 

McDermott, Smith and Westfold, 2000), interest matching (Object Management 

Group, 2000), data collection in distributed and heterogeneous environments, 

searching and filtering, negotiating and monitoring (Venners, 1997; Kruszyk et al., 

2007; Ganzha, 2006).  Agents are not commonly used in SPM applications and are 

typically constrained to one or two of the core and facilitating functions such as 

planning, scheduling or communication.  In the previous chapter it was concluded 

that software agent technology can address the unique features of SPM, and that 

this technology is well suited to the dynamically changing environment of SPM.  The 

software agent paradigm, including its concepts and techniques, are well suited to 

develop complex, dynamically changing, distributed systems (Jennings, 2001). 

From this chapter it becomes evident that although agent technology has indeed 

been applied to the SPM environment, it has not been applied to the whole 

spectrum, i.e. to all core and facilitating functions of SPM.  This is a limitation of 

current software agent applications. Supporting and enhancing the whole spectrum 

of SPM processes by a software multi-agent system could provide software project 

managers with significant advantages over using contemporary methods (Jennings, 

2001).  The potential advantages that will result from this approach become clear 

through the increasing number of deployed agent applications in other application 

areas (Gawinecki et al., 2007; Ganzha et al., 2006;  Sauer and Applerath, 2003; 

Jennings, 2001). 

 

This chapter concludes Part II (comprising chapters 3, 4 and 5), which provides the 

theoretical knowledge about the areas under discussion, namely SPM and mobile 

agent computing. Part III will be devoted to presenting the proposed model that will 
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support SPM processes.  A comprehensive agent framework that forms part of the 

proposed model will be compiled to support these processes.  The next chapter 

provides an overview of the scope and concept of the said model.   
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6.1 INTRODUCTION 
Part II established the theoretical framework that contains theoretical knowledge on 

SPM and software agent computing.  In this part it was initially established that new 

approaches to address shortcomings in software development projects are needed.  

Software agent technology was therefore investigated to determine if agent 

technology would be suitable to address SPM problems in a distributed 

environment. It was concluded that software agent technology is particularly suitable 

for addressing the unique requirements of SPM. 

 

Part III, in turn, is devoted to introducing and developing a model for SPM where the 

SPM processes are supported by software agents.  The model entitled “SPMSA” 

(Software Project Management supported by Software Agents) aims to enhance the 

SPM processes by addressing the intrinsic unique aspects of SPM.  The 

comprehensive framework of agents that forms part of the SPMSA model will be 

construed to support the entire SPM process and thereby aim to eliminate failure 

and address shortcomings in this environment.  This model will be unique in that it 

aims to support and enhance the entire environment of the SPM arena, and not only 

a section of it.  Current software agent applications target only a section of this 

environment, for example, planning or resource management.  Software agent 

technology, as opposed to other programming paradigms, not only provides support 

to the dynamically changing environment of SPM, but also to its complex 

heterogeneously distributed environment.  Furthermore, regular tasks may be 

automated and intelligence added to further support and enhance the workload of 

each team member. 

 

The first part of this chapter will present the entire scope of the proposed model and 

includes both SPM and agent computing.  The aim is to place the problem in context 

for the reader and illustrate areas of agent support to SPM processes.  The latter 

part of this chapter will provide a conceptual view of the proposed SPMSA model.  

The detailed SPMSA model will be compiled and discussed in Chapter 7. 
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6.2 SCOPE OF THE MODEL 
The proposed SPMSA model supports all of the SPM processes involved, as 

opposed to current agent applications in SPM that support only part of the SPM 

environment.  The scope of the model is defined in terms of the SPM processes it 

supports, as well as the type of agents that support these processes.  Figure 6.1  

depicts the scope of the model. 

 

Figure 6.1  Scope of the proposed model 

 

The left-hand side of Figure 6.1 depicts the PM field and indicates that SPM has 

developed into a research field of its own.  The proposed model includes all the 

SPM processes indicated by the shaded blocks, namely scope management, time 

management, cost management, quality management, procurement management, 

human resource management, communication management and risk management.  
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The right-hand side of Figure 6.1 depicts agent computing, which comprises robotic 

agents, biological agents and computational agents.  Computational agents can be 

subdivided into intelligent agents and software agents, while software agents consist 

of mobile agents, stationary agents, commerce agents and entertainment agents. 

The mobile agents that form part of the SPMSA model are shaded, namely project 

manager agent, monitoring agents, the team leader agent, task agent and 

messaging agents.  The stationary agents that form part of the proposed model are 

also shaded. These are client agents, agent management agents and personal 

assistant agents. The commerce and entertainment agents fall outside the scope of 

the proposed model.  

6.3 CONCEPT OF THE MODEL 
The main goal of the proposed SPMSA model will be to support the teams and 

individual team members in the SPM environment while executing their tasks, and in 

this way to enhance the complete SPM environment.  The team leader, teams and 

individual team members will be supported during each process of software project 

management to simplify the environment, eliminate the complexities, enhance 

coordination and communication, implement dynamic changes in the system, 

support task scheduling, and enhance all processes.  Figure 6.2 explains the 

concept of this process of support.     

 

Figure 6.2 also comprises two basic concepts, namely the phases of software 

development for each SPM key function, and the software agent framework that will 

support each key area of SPM.   
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6.3.1 Phases of software development for each SPM key 
function 

Various methods and paradigms have been used to support the process of software 

development and as such software project management.  The basic SPM processes 

were scrutinised in Chapter 3 (sections 3.6 and 3.7), and this resulted in a table 

depicting the basic phases of these processes, illustrated in Table 3.2.  This table 

provides a summary of the basic phases of each function and as such constitutes 

the basis of the SPMSA model.  On close inspection, overlapping phases can be 

identified as executed in each of these functions.  An abstraction of these functions 

may be mapped to a generic model of software development that contains 

overlapping phases for each function (or process) of SPM.  Thus the basic phases 

for each key function, illustrated in the conceptual model (top part) in Figure 6.2 

(also referred to as a generic model of software development), are:  

 Phase 1: Identify, initiate and define key functions.   

 Phase 2: Plan the concepts of the particular process of the key function. 

 Phase 3: Analyse, assess and evaluate key concepts of the key function 

concerned. 

 Phase 4: Monitor, control and manage the functions of each key function. 

 

The arrows indicate the order in which the phases are executed and follow on each 

other.  Although a few additional tasks may exist depending on the specific key 

function concerned, all functions contain these basic phases.  The requirements 

state that the implementation of these phases should be tailored to each individual 

key function, for example to cost or time management.  In this way the unique 

aspects of each SPM key function will be addressed. 

   

The upper section of Figure 6.2 therefore represents the SPM processes in the 

SPMSA model which will be supported by a software agent framework. 

6.3.2 Software agent framework to support each SPM key 
function 

Each of the key functions of SPM will be supported by a combination of one or more 

of the agents as indicated by the bottom half of Figure 6.2.  The software agents will 
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support the generic functions for each of the key SPM processes (with minor 

practical differences, for example risk or time initiation).  

 

Various types of agents or agent teams may be used to support the different phases 

of SPM.  Chapter 4 contained a discussion of agents, and a distinction was made 

between software mobile and software stationary agents.  To illustrate this basic 

configuration of agents supporting the SPM phases, a conceptual view of the 

operational environment of three team members (A, B and C) – which will probably 

be geographically dispersed – is depicted in Figure 6.2. 

 

To describe how software agents can generically be employed to address different 

functions of SPM, a set of agent teams is used to address the functions and then to 

define specialised software agents operating within these teams (or on their own 

where applicable).  The system is built regarding agents as components, which 

simplifies the design and programming of agents. The following specialised working 

mobile and stationary agents are used: 

 

A Personal Assistant agent (PA agent) is used for each team member. This is an 

agent that supports each individual team member to accomplish his or her tasks by 

providing maximum assistance, as well as an interface between the team member 

and the other agents. This agent also has a collaborative nature and relies on other 

agents to provide it with the information that it needs to sustain its owner. The 

personal assistant agents are not computer-bound but human-bound, as their 

stakeholders may be required to work on different computers when working in a 

distributed environment. 

 

The Client agent is a stationary agent responsible for a specialised task such as 

information retrieval or gathering. Client agents may or may not have intelligence, 

depending on their specific task, but they must have a collaborative nature to 

interact with other agents in their agent team. 

 

The Agent Management agent (AM) is responsible for managing a team of agents 

and for ensuring coordination between the sub-tasks of the different members of a 

team to accomplish the objective of the agent team.  This agent enables 



Chapter 6  Model - Scope and Concept 
 

102 
 

communication, mobility, instantiation and destruction.  The AM is central to 

communication and ensures that all messages arrive at their intended destinations.  

In performing this task, the AM must also track the distribution locations of agents 

with respect to their platforms and where mobile agents have moved to. 

 

The Task agent is an agent that supports a specific project task. This agent 

collaborates with other objective and facilitator functions to support a specific task. 

This mobile agent is commonly invoked by a personal assistant agent to allow a 

stakeholder to work on a specific task, and is continuously monitored by a 

monitoring agent.  An example can be that of an agent monitoring risk, schedules or 

aspects of time. 

 

The Monitoring agent is responsible for monitoring tasks and for reporting back to 

different phases where scheduling and rescheduling of tasks, as well as the 

notification of stakeholders can take place. A monitoring agent is mobile, with 

intelligence, flexibility and strong collaborative properties. 

 

The Team Leader agent is responsible for managing a team of agents and for 

ensuring coordination between the sub-tasks of the different members of a team to 

accomplish the objective of the agent team. 

 

The Project Manager (PM) agent is an agent that takes on the project manager role, 

helps in the creation of the project, the initial specification of the tasks and allocation 

of tasks to personnel. 

 

A Messaging agent is an agent responsible for carrying messages between different 

agent teams. This type of agent has strong collaborative characteristics and is by 

nature a mobile agent, since the different agent teams may work in a distributed 

environment. 

   

Finally, the Directory Facilitator (DF) is an agent that provides a yellow pages 

functionality, which assists agents in discovering services provided by one another.  

This agent forms part of the facility provided by JADE, thus it is not included in the 

list of created agents in Figure 6.1. 
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6.4 CONCLUSION 
Chapter 6 provides a conceptual view of the scope and the basic concepts 

underlying the SPMSA model.  It has been established that failure in the SPM area 

indicates that new paradigms should be used to support the specific requirements of 

this area.  The salient features of agent technology imply that this paradigm will 

prove suitable to this need.  The proposed model is thus specifically tailored to 

support the ever-changing environment and unique features of SPM.   

 

Chapter 7 will regard each of the key areas of SPM and elaborate on each phase as 

illustrated in Figure 6.2.  The aim is to compile a comprehensive model of SPM 

functionality to be supported by software agent technology.  The phases depicted in 

Figure 6.2 will be scrutinised and applied to each of the eight key core and 

facilitating function areas of SPM, in order to compile the comprehensive SPMSA 

model. 
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7.1 INTRODUCTION  
In the previous chapter a conceptual view of the SPMSA model was provided by 

discussing the scope and concept thereof.  The aim of the conceptual view was to 

place the SPM processes and the supporting software agent framework in context 

with regard to one another.  The purpose of this chapter is to provide a detailed 

discussion of the SPMSA model.  The phases of software development for each of 

the SPM key functions (as illustrated in Figure 6.2 in the previous chapter) will 

therefore be delineated and discussed in detail to compile the comprehensive 

SPMSA model. 

 

The first part of the chapter is devoted to a discussion of the phases of each SPM 

key function, as well as a description of an agent team to support each SPM key 

function.  A graphical representation will be compiled for each key function, which 

will consequently constitute the SPMSA model.  The second part of the chapter will 

contain the full SPMSA model.  The chapter will conclude with a table that depicts 

the advantages of using agents to address the unique and changing SPM 

environment. 

7.2 SOFTWARE PROJECT MANAGEMENT KNOWLEDGE 
AREAS 

Each of the distinct SPM knowledge areas introduced earlier in Chapter 3 is 

reconsidered briefly to delineate the phases of each key function to be supported by 

an agent framework.  The steps comprising the processes of each of the key 

functions will be elaborated on in order to compile the SPMSA model that will 

enhance all of the SPM key functions involved.   

 

In Chapter 3 a framework of the key functions in the entire SPM development arena 

was presented (see Figure 3.1).  This framework contains the core and facilitating 

functions of software project management as key functions.  These functions have 

been discussed in detail in Chapter 3.  In order to compile a model that supports all 

of the SPM key functions involved Table 3.2 was compiled by the researcher as a 
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summary of the phases of the key functions that form the basis of the SPMSA 

model (Nienaber and Barnard, 2007). It is therefore inserted here again in order to 

be reviewed. 

 

Table 3.2  Phases of the knowledge areas of SPM 
Scope 
Manage-
ment 

Time 
Manage-
ment 

Cost 
Manage-
ment 

Quality 
Manage-
ment 

HR 
Manage-
ment 

Communi-
cation 
Manage-
ment 

Risk Manage-
ment 

Procurement 
Management 

Initiation Activity 

definition 

   Identification 

and planning 

Risk 

identification 
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planning 

Planning Activity 
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Duration 
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Resource 

planning 

Planning Organisatio-

nal planning 

 

Team 

support 
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and 

prioritisation 

 

Solicitation 

planning 
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schedule 

development 
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Assurance Team 

development 

and staff 

acquisition 

Information 

distribution 

Risk  

Management 

planning  

Solicitation 

and source 

selection 

Verifica-

tion 

Time 

schedule 

control 
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budgeting 

Control Manage-

ment: 

Monitor and 

control 

Performance 

reporting 

Monitor 

 

Contract  

administration 

Change 

Control 

 Monitor, 

control 

  Administra-

tive closure 

Resolution Contract 

closure 

 

Table 3.2 illustrates the correlating phases of the core and facilitating functions of 

SPM as included in the SPMSA model.  Integration management is considered as 

underlying part of these functions and not as separate knowledge area as in 

PMBOK (2004).  The aim of the section that follows is to compile a graphical 

representation for each of the key functions, indicating how the key function may be 

supported by software agent technology in the SPMSA model.  An abstraction of 

Table 3.2 is used when compiling these representations. 
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7.2.1 Scope management  
The scope management function comprises the following specific phases: initiation, 

scope planning, scope definition, scope verification and scope change control.  The 

purpose of each of these phases was highlighted in Chapter 3 and will therefore be 

mentioned only briefly in this section.  

 

Figure 7.1 illustrates the different phases of the scope management function and the 

way in which agent teams cooperate to accomplish the objectives of these phases.  

The arrows indicate the flow of interaction, whether of communication or 

information, mostly via agents – as will be explained. 

 

 

Figure 7.1  Scope management function 

    

The software project manager, team members or other designated stakeholders 

interact with the scope initiation phase through a special user interface. The scope 

initiation phase involves committing an organisation to begin a project or continue a 

next phase of a project (Schwalbe, 2006). The output of this is a project charter, 

which will be stored in the repository.  An organisation’s strategic plan should guide 
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this project selection process.  An important criterion for investing in IT projects 

includes supporting strategic business indicators, such as benefits and customer 

satisfaction, as well as financial incentives, such as a good rate of internal return 

(IRR), or net present value (NPV).  The user interface is situated on top of the scope 

initiation phase and uses personal assistant agents, a project manager agent, task 

agents, an agent management agent and messaging agents. The directory 

facilitator agent assigns a personal assistant agent to the project manager that has 

supervision rights over other personal assistant agents.  During scope initiation, the 

project manager defines team members that are assigned to this project.  The 

project manager agent assigns a personal assistant agent to each team member, to 

be invoked with a user name and password. (For simplicity’s sake, the username 

and password could be the same as a person’s network login ID and password, but 

the choice depends on the individual, or the manager, should he or she decide 

differently for the sake of security).  The personal assistant agent will support the 

team member it is associated with to automate various tasks such as the following: 

adding relevant documents to each task; sending these documents to all team 

members; sifting and organising email in priorities; communicating with other 

personal assistant agents concerning meeting scheduling; attaching agendas and 

distributing information to all committed team members.  The information will be 

stored in the repository, from where it will be extracted when necessary.  All agents 

will be managed by the agent management agent, also referred to as the agent 

management system.  The agent management system is discussed in chapter 8 

(8.3.1.1).  Thus the task agents will support the project manager and each team 

member by automatically performing net present value analysis, return on 

investment and payback analysis on each proposed project, and so assist in the 

selection of a project.  After completion, the project charter will be distributed to all 

concerned members as well as stored in the repository by the agent team.  The 

scope initiation phase communicates with the scope definition phase and the scope 

planning phase. 
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Scope planning involves the development of documentation to provide the basis for 

future project decisions and provides guidance on other scope management 

processes.  The project charter, project assumptions and project constraints are all 

inputs obtained from either the scope initiation phase or the repository, whereas the 

scope statement and project scope management plan are output to the system and 

placed in the repository.  The scope-planning phase refines the scope and compiles 

a formal scope-planning document that contains all the above documents. The 

agent team will take this document to all relevant team members, and store it in the 

repository.   

 

During scope definition, the team members define all tasks and deliverables of the 

project with input from the scope initiation and planning function, thereby creating a 

work breakdown structure (WBS).  Client and task agents are available to automate 

standard tasks, for example to support the compilation of the WBS, do resource 

allocation, and to transport the formal scope definition document to all team 

members, requiring feedback from each.  The document will be stored in the 

repository.   

 

Scope verification involves formal acceptance of the project scope from all 

stakeholders.  Input is obtained from the documents in the repository.  Once the 

team members have accepted and verified the formal scope document during the 

scope verification phase, messaging agents store the completed document in the 

central repository. 

 

The scope change control phase involves the control of changes to the project 

scope, and the use of an agent team that consists of messaging agents, task 

agents, client agents and a project manager agent.  If changes are identified, this 

team evaluates and then implements the changes to the scope documents and 

resulting documents. The agent team uses task agents to gather information from 

the incoming messaging agents and client agents to perform scope integration and 

coordination.  The messaging agents provide the documentation from the repository 
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and communicate with the verification phase, as well as the stakeholders, via the 

user interface.  The directory facilitator provides a yellow page service to assist 

agents to discover services provided by other agents. 

7.2.1.1 Advantages of software agent support for scope 
management 

Current project management systems support individual aspects of the scope 

management function, such as a word processor to create documents and 

spreadsheet software to perform financial calculations.  Project management 

software assists with the scheduling aspects of a project, but the scope and 

complexity of current software require facilities for coordinating independent 

activities and managing the project. They do not provide an integrated coordinated 

environment with set structure to support a uniform standard and methodology 

(O’Connor and Jenkins, 1999).   

 

Agents excellently support the distributed retrieval and dissemination of information 

and documents.  The agent system will automatically route workflow to all relevant 

team members, obtain and incorporate feedback into the system, and store 

documentation in the repository.  The team members may not necessarily reside in 

the same area, and will probably be geographically dispersed.  Some may even 

have access to the system only at certain times when visiting a site.  

Communication and coordination is enabled through the heterogeneous nature of 

an agent system.  Agent systems can incorporate large network systems, as well as 

mobile devices.  Tasks, such as financial analysis, can be embedded into mobile 

task agents, which can traverse the network and execute asynchronously and 

autonomously, without having to rely on a continued connection.  Agent systems 

execute locally and thus reduce network load.  Parallel execution also enables tasks 

to be executed at different workstations simultaneously.  The team of agents can 

furthermore coordinate actions toward a similar goal, such as change control of the 

scope document. 
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7.2.2 Time management 
Time management involves the processes required to measure timely completion of 

a project and as such involves not only the creation of an activity plan, but also the 

estimation of the time that each task and activity will take, resulting in the overall 

duration of the project.  The main processes of time management include activity 

definition, activity sequencing and activity duration estimation, time schedule 

development and time schedule control, as identified and discussed in Chapter 3. 

 

A graphical representation of the different phases of the time management function 

and how agent teams cooperate to accomplish the objectives of these phases is 

illustrated in Figure 7.2. 

 

Figure 7.2  Time management function 

The software project manager, team members or other designated stakeholders 

interact with the activity definition phase through a special user interface.  During the 

activity definition phase each activity that must be performed to produce the project  

deliverables will be identified. Agent teams will support the team members in a 

similar way as in the scope management function.  Each stakeholder and team 

member will be represented by a personal assistant agent, while a messaging agent 

will carry messages between agent teams and agents.  Specific functions will be 

executed by task agents and client agents.  The information will be obtained from 
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the WBS (compiled during scope management), the stakeholders and the scope 

definition document, which was stored in the repository.  

 

The activities that have been defined during the activity definition phase will be input 

to the activity sequencing and activity duration estimation phases, also referred to 

as the activity planning phase.  Activity sequencing entails identification of the 

relationships between project activities, while activity duration estimation entails 

estimating the time needed to complete activities.  Software effort estimation 

techniques such as algorithmic models, analogy, Parkinson’s estimations and 

parametric models can be programmed to be executed by task agents.  In other 

words, function point analysis (Albrecht’s and Mark II) and COCOMO, a parametric 

model, can both be programmed to be executed by a task agent (Benfield, 

Hendrickson and Galanti, 2006).  The input will be provided by the activity definition 

phase and output will be sent to the time schedule development and time schedule 

control phases, as well as be stored in the repository.  The task agents will support 

the duration estimation and activity sequencing phases.   

  

The activity definition, sequencing and activity duration estimation phases constitute 

the basis for creating a project schedule. Time schedule development involves 

developing a schedule that considers the activity sequences, activity durations and 

resource requirements to complete the tasks and the project.  Various standard 

SPM diagramming methods with supporting software are available (Schwalbe, 

2006).  These applications may be identified by personal assistant agents and 

suggested for use, such as network diagrams, i.e. activity-on-node and precedence 

networks, as well as Gantt charts, PERT techniques and critical path analysis.  

Calculations and simulations, such as “What if” analysis, can also be programmed 

to be executed by task and client agents, which will take the functionality to the team 

member and team leader’s work area.  However, the time schedule development 

phase will need interaction with the stakeholders (via the user interface) and team 

members to ensure commitment of all said members.  By using input from the team 

members, previous experience will automatically be included in the calculations.  
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These diagrams will all be stored in the repository and they will be sent to the time 

schedule control phase.   

 

The time schedule control phase uses an agent team that consists of messaging 

agents, monitoring agents, task agents and a project manager agent.  This phase 

involves controlling and managing changes to the schedule.  The project schedule is 

used as input to this phase and all changes are stored in the repository.  If changes 

are identified, the agent team evaluates and then implements the changes to the 

project schedule and resulting documents.  It uses task agents to gather information 

from the incoming messaging agents and client agents to perform schedule 

integration and coordination.  The monitoring agents monitor all activities, while 

messaging agents circulate the documentation from the repository and 

communicate with all team members’ personal assistant agents and the 

stakeholders.  Milestones must form an integral part of this schedule, to enable and 

support the control phase. 

7.2.2.1  Advantages of agent support for time management 

The process of project planning and time management is notoriously inaccurate, 

mostly due to changing circumstances, additions or new information (Joslin and 

Poole, 2005).  In response to these dynamic changes, time estimates may change, 

resources be reassigned and tasks may be changed.  Thus, a dynamic planning 

system that can automatically incorporate changes will greatly benefit the project 

management environment.  Although the use of artificial intelligence falls outside the 

scope of this thesis, the incorporation of agent-based simulation can be used for 

project time planning (Myers, Berry, Blythe, Conley, Gervasio, McGuinness, Morley, 

Pfeffer, Pollack and Tambe, 2007).    

 

Schwalbe (2006) sites the times scheduling phase of the time management function 

as the main reason for conflict during the middle and end phases of a project.  This 

conflict could be minimised by getting input from the team members and 

stakeholders during the activity definition and activity duration estimation phases.  

The agent system will continuously prompt users for input and interaction, thus 
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supporting communication and integration.  Realistic time values will be derived 

which will benefit project professionals by minimizing the tendency to be overly 

optimistic.  The agent system can in this way force continuous and realistic 

interaction between users and stakeholders. 

 

Standard SPM software can do the basic diagrams, but the project manager/team 

members must be knowledgeable about these, i.e. if a manager does not know how 

to establish dependencies between tasks in Microsoft Project, it will result in errors.  

The agent system can support the team and the project manager to a larger extent 

as it will automate many tasks and will require only specific input. 

7.2.3 Cost management 
Cost management involves the managing of all financial aspects of a project to 

ensure that a project team completes a project within the approved budget.  This 

includes resource planning, cost estimation, cost budgeting, and cost control and 

monitoring – as highlighted in Chapter 3.  Figure 7.3 illustrates the different phases 

of the cost management function and how agent teams cooperate to accomplish the 

objectives of these phases. 

 

Figure 7.3  Cost management function 
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Although resource planning is not explicitly included by PMI (2004) as part of cost 

management, it is included as a function of the agent model to estimate project cost. 

During the resource planning phase, all resources and quantities of resources 

needed for a project are to be identified, and the output is a list of resources.  Agent 

teams will support the phases in a similar way as in the scope and time 

management functions.  Input concerning available resources is provided by the 

team leader and team members.  The user interface, which is situated on top of the 

resource planning phase is used for interaction with all stakeholders.  The resource 

planning phase uses personal assistant agents, task agents and messaging agents.  

A personal assistant agent will support each individual team member to accomplish 

his or her tasks by providing maximum assistance, as well as by providing an 

interface between the team member and the other agents. The output of this 

function will be communicated to the cost estimation function as well as stored in the 

repository.  The resource planning will be supported by the directory facilitator to 

select any pre-existing functions encapsulated in agents. 

 

The cost estimation phase involves developing an estimate of the cost of resources 

needed for this project. Input to this function will be information from the messaging 

agents of the resource planning function, and the functioning will be supported by 

messaging, task and client agents.  Task and client agents will automate financial 

calculations such as rough order of magnitude (ROM) estimates, return on 

investment estimates (ROI), budgetary estimates, derived estimates (Benfield et al., 

2006).  These estimations will constitute a cost management plan.  Various 

computerised tools are available and can be integrated to support this action, such 

as analogous estimates, bottom-up costing and parametric modelling (Hughes and  

Cotterell, 2006). The cost estimation phase interacts with the resource planning 

phase, the cost control and monitor phase and the repository where the estimation 

plan will be stored. 

   

The cost budgeting phase entails allocating the project cost estimates to specific 

items.  Input to this is the WBS and project schedule, which are obtained from the 
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repository and used as input to the cost control function.  Agent teams will be used 

to monitor the cost and automatically update expenditure.  All changes will be stored 

in the repository. 

 

The cost control and monitor phase involves the monitoring of cost performance and 

will be supported by a monitoring agent to monitor tasks and compare expenditure 

to budgeted amounts.  This function will interact with the cost budgeting and cost 

estimation phases, storing all relevant documents, for instance the estimation plan, 

in the repository.  Notification of stakeholders can take place via the user interface.  

A client agent will be responsible for specialised tasks, while the team leader agent 

will be responsible for managing the team of agents.   

7.2.3.1 Advantages of agent support for cost management 

Current approaches rely on the team leader or identified team members to manually 

or electronically update and maintain cost expenditure (Hughes and Cotterell, 2006).  

Current PM approaches provide capabilities for financial calculations such as ROI, 

NPV, etc., but the project leader or member still has to provide the information.  

Agent teams can automate this on specified times, as part of preparing the budget 

thus eliminating the ‘human error’ aspect.  Calculations can be executed by agent 

teams and changes can be incorporated dynamically.  Benfield et al. (2006) report a 

developer productivity of 350% for systems supported with a type of agent support.  

The agent approach also reduces complexity, incorporates changes easily and thus 

compiles solutions faster than traditional programming paradigms.   

7.2.4 Quality management 
Project quality management involves all activities of the overall management 

function that determine the quality policy, objectives and responsibility. It 

implements these by means of quality planning, quality assurance and quality 

control within the quality system.  Each of these processes has been discussed in 

Chapter 3. 
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Figure 7.4 illustrates the different phases in the quality management function and 

how agent teams cooperate to accomplish the objectives of these phases. 

 

 

Figure 7.4  Quality management function 

 

To describe how software agents are used to address the different functions of 

quality management, we use a set of agent teams similar to the previous functions 

to address the individual phases and then define specialised software agents 

operating within these teams (or on their own where applicable). It is less intricate to 

design the behaviour of each agent.  Furthermore, the specialised agents make it 

possible to explicitly describe the various interactions between different agents, 

which in turn reduce the general complexity of the agent system.  The various 

programming patterns that are available accomplish specific agent-associated tasks 

such as creation, migration, suspension and collaboration (Aridor and Lange. 1998; 

Kendall et al., 2000).   

 

During the quality planning phase, interaction with the user interface enables 

communication between stakeholders and the agent team.  Quality standards are 

identified and quality measures set. A plan devised to adhere to these standards will 
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result in the quality plan, which will be stored in the repository for further referencing.  

Agents utilised are personal assistant agents to assist each team member, task 

agents to set and identify relevant quality measures, messaging agents to 

communicate to stakeholders and teams, monitoring agents to receive and 

distribute documents, and team management agents to coordinate agents.   

 

Quality assurance involves evaluating overall performance regularly to ensure 

conformance to the set standards.  Task agents will support this evaluation to 

ensure compliance to set standards, traverse the network of team members on a 

regular basis and, when problems are encountered, give warning messages to 

personal assistant agents who will communicate with individual team members, as 

well as with the stakeholders.  Input will be from the quality planning phase, namely 

the quality plan.  Quality audits or reviews are used to support this function and 

personal assistant agents will be responsible for setting schedules, agendas and 

meetings; for distributing information needed, and for instructing messaging agents 

to deliver messages, all of which will be stored in the repository. 

  

The team of agents will support the quality control phase while monitoring the 

activities and products of the project to ensure compliance with the standards.  As 

quality control involves acceptance of the work in hand, the user interface of this 

phase ensures communication between stakeholders on a regular basis. Task 

agents will traverse the network regularly to monitor tasks and report back to all 

stakeholders.  Various project management techniques may be used, such as 

pareto analysis, statistical sampling and quality control charts, which can be 

programmed and executed by agents (Olson, 2004). A library of tools and 

techniques may be made available and best choices may be selected by agents to 

support each team member. If any rework or process adjustment is necessary, it will 

be communicated and coordinated between task and personal assistant agents.  

Monitoring agents will control and check that rework and adjustments are executed 

and that change control documentation is stored in the repository.  Monitoring 

agents will also monitor all agent activity. 
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7.2.4.1 Advantages of agent support for quality management 

There is a need for improvement on this level of SPM.  Hughes and Cotterell (2006) 

recommend that quality aspects of the project plan be reviewed on an ongoing 

basis.  Traditionally, project quality control depends primarily on either the project 

leader or a specific allocated team, thus on human input (Schwalbe, 2006).  

Software agent teams may assist in these endeavours by continually prompting 

team members for input, regularly measuring workflow and rework status.   

7.2.5 Human resource management 
Human resource management includes all the people concerned with a project.  

These will include the project stakeholders, sponsors, customers, project team 

members, support staff, suppliers supporting the project, as well as any other 

person or item needed to complete the project.  The main focus of this process is to 

allocate resources to activities, and to create a work schedule utilising these 

resources from the activity plan.  Human resource management consist of the 

following phases, namely the organisational planning phase; the HR team 

development and staff acquisition phase; and the monitor and control 

(management) phase. 

 

Figure 7.5 illustrates the different phases in the human resource management 

function and how agent teams cooperate to accomplish the objectives of these 

phases. 
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Figure 7.5  Human resource management function 

 

The software project manager or other designated stakeholders interact with the 

organisational planning phase through a special user interface. This user interface, 

which sits on top of the organisational planning function, uses personal assistant 

agents, task agents, messaging agents and a project manager agent.  The Directory 

facilitator agent assigns a personal assistant agent to the project manager, which 

has supervision rights over other personal assistant agents.  The project manager 

agent assigns a personal assistant agent to each team member.  Once the user has 

entered the required information into the system via the user interface, messaging 

agents take the information to a central repository and to the HR monitor and control 

phase.  The organisational planning phase involves identifying and documenting 

project roles, responsibilities and relationships.  A staffing management plan and 

organisational chart will result and both will be stored in the central repository. 

 

The HR team development and staff acquisition phase entails staff acquisition or 

assigning the needed personnel to the project, as well as building individual and 
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group skills needed to enhance the project.  This will primarily be executed by the 

project manager, with a team assisting him/her.  The project manager or other 

designated stakeholders interact with the team development and staff acquisition 

phase through a user interface.  A team of agents similar to the team supporting the 

previous functions will support this phase.  Thus, the personal assistant agent will 

support the project leader in identifying personnel with the needed skills and in 

compiling a suitable team.  Task agents will match the existing skills and knowledge 

of staff to the required skills and knowledge, in order to identify areas to be 

developed.  Agents involved will be task agents for specific tasks, messaging agents 

to communicate and deliver messages, and monitoring agents to control and check.  

The HR team development and staff acquisition phase interacts with the user 

interface, the HR monitoring and control phase, and the repository by storing 

finalised documents. 

 

The HR monitor and control phase includes tracking team performance, providing 

timely feedback, resolving issues and conflict, as well as coordinating changes.   

The primary responsibilities of the client and task agents are to facilitate teamwork, 

perform scheduling on teamwork, and distribute collaborative documents.  The HR 

monitor and control function interacts between the organisational planning phase 

and the team development and staff acquisition phase.  Task agents will execute 

monitoring tasks by continuously traversing the network of team members and 

reporting on the status of all tasks and subtasks.  Messaging agents will receive and 

carry information, and the team leader agent will manage the team of agents.  

These agents will interact and regulate the functioning of the HR monitor and control 

function.  Completed and intermediate documentation will be stored in the 

repository.  

7.2.5.1 Advantages of agent support for HR management 

Current systems contain software that may be used for support to facilitate 

organisational planning and assign resources, but people skills will be the primary 

objective of this phase.  Current approaches support the project leader and team 

only with loose software support, such as responsibility assignment matrixes, 
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resource histograms and other reporting features (Hughes and Cotterell, 2006).  

The framework of agents will support the team with an integrated approach of 

support, mainly through the personal assistant agent and task agents.  Coordination 

and communication will also be supported.  

7.2.6 Communication management 
Communications management creates an environment for interaction and ensures 

timely and appropriate generation, collection, dissemination, storage and disposition 

of project information.  This function consists of five distinct phases, namely 

communications identification and planning, team support, information distribution, 

performance reporting and administrative closure.  These have been highlighted  

and explained in Chapter 3. 

 

Figure 7.6 illustrates the different phases in the communications management 

function and how agent teams cooperate to accomplish the objectives of these 

phases. 

 

Figure 7.6  Communication management function 
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The software project manager or other designated stakeholders interact with the 

identification and planning phase through a special user interface. This user 

interface, which sits on top of the communications identification and planning 

function, uses personal assistant agents, task agents and messaging agents.  

During interaction with the interface, the user defines team members or relevant 

stakeholders and the tasks that are assigned to them, and defines milestones, 

objectives, etc.  The project manager agent uses the directory facilitator to assign a 

personal assistant agent to the project manager, as well as to each team member.  

This agent may be invoked with a user name and password.  Once the user has 

entered the required information into the system, messaging agents take the 

information to a central repository and to the information distribution function. 

 

The information distribution phase uses an agent team that consists of messaging 

agents, task agents, client agents and a team leader agent. The agent team of this 

function accepts incoming messaging agents from the user interface of the team 

support phase and uses its own messaging agents to interact with the identification 

and planning phase, team support phase, performance reporting phase and the 

administrative closure phase. It also uses client agents to gather information from 

the incoming messaging agents and task agents to perform information integration 

and coordination. 

 

As before, task agents are included for specialised computing tasks. For the 

information distribution phase, task agents may or may not be included at this level, 

depending on how elaborative the client agents are.  The researcher advocates the 

use of task agents to simplify the design and improve the maintenance of the SPM 

tool software. As mentioned before, the client agent typically has a number of 

functions that include interacting with (and thus receiving) incoming messaging 

agents; understanding (interpreting) incoming information; translating incoming 

information to a syntax that makes it possible to be processed; processing the 

incoming information; and deciding on distribution conduct (based on its generic 

approach to handling information as well as previous knowledge and experience). 
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The client agent is also tasked with the responsibility to interact with the outgoing 

messaging agents that must disseminate the processed information and send the 

information to the administrative closure phase. The latter interacts with the central 

repository. To simplify the design of a client agent, these individual tasks can be 

designed as task agents reporting to the client agent via the team leader agent. 

 

The team support phase is primarily responsible for collaborative scheduling tasks. 

The phase prescribed by PMBOK (2004), namely managing stakeholders will be 

included in the team support phase of the communication management function.  

The software project manager or other designated stakeholders interact with the 

team support phase through a user interface.  Agents associated with scheduling 

are monitoring agents, personal assistant agents, client agents (and task agents 

where applicable), as well as messaging agents. Messaging agents are defined as 

before. Monitoring agents are responsible for monitoring the incoming messages 

from messaging agents. They subsequently determine the necessity or urgency to 

suggest new or earlier meeting schedules than those already scheduled during the 

previous communication rounds, or by the team support phase. The primary 

responsibilities of the client and task agents are to facilitate teamwork, perform 

scheduling tasks on teamwork, and distribute collaborative documents. When an 

individual team member works on a collaborative document, his or her personal 

assistant agent must be cognisant of any extraordinary circumstances when the 

user falls behind schedule. This could for example be done by special-prompting-

task-agents that ask specific questions or monitoring agents that compare set dates 

to real dates. The personal assistant agent passes this information to the (manager) 

monitoring agent, which either sends the agent to the general client agent at this 

level, or makes special suggestions with regard to extraordinary meetings to be 

scheduled. A user interface is available at this level, through which team members 

can interact with the collaborative task environment. 

 

The administrative closure phase interacts between the information distribution 

phase, performance reporting phase and the central repository. It also keeps a 
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history by using monitoring agents to coordinate incoming reports before storing or 

archiving the information to the central repository. As expected, this function 

includes both messaging agents and client agents (potentially also task agents to 

assist the client agents) to coordinate the incoming reports and archiving processes. 

 

The performance reporting phase entails the generation of reports such as status, 

progress and forecasting reports.  The performance reporting phase interacts 

between the administrative closure phase, the information distribution phase and the 

central repository.  It receives input from the administrative closure and information 

distribution phases through the use of monitoring agents to coordinate incoming 

reports before generating required reports and then archiving the information to the 

central repository.  This function requires both messaging agents and task agents to 

coordinate the generation of reports and archiving processes. 

7.2.6.1 Advantages of agent support for communication 
management 

Traditional SPM tools use a passive reporting mechanism that does not provide 

sufficient reporting support to a collaborative distributed system (Chen et al., 2003).  

Several software tools are used, such as a word processor to create documents, 

spreadsheet software to perform financial calculations, as well as standard project 

management software that can assist in drawing diagrams.  However, these are 

separate tools and do not provide an integrated, autonomous environment to 

support all phases.  Communication is enhanced and supported by the use of an 

agent system that prompts the users for input and thus eliminates human type of 

errors, such as forgetting to document all details (leading to insufficient project 

documentation).  Another common problem in communication is that many project 

processes, contexts, rationales, or artefacts may not be captured at all. An 

electronic repository supported by an agent system, will automate and monitor 

documentation storing and retrieving, that in turn will overcome these disadvantages 

(Nienaber and Cloete, 2003).   
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Distributed retrieval and dissemination of information and documents are also 

supported by the agent system.  Workflow will automatically be routed to all relevant 

team members, feedback will be obtained, and documentation will be stored in the 

repository.  The team members will probably be geographically dispersed, but 

communication and coordination will be enabled through the heterogeneous nature 

of an agent system.   

7.2.7 Risk management 
Various models or frameworks exist, which may be used to identify and address risk 

associated with software project development.   

 

Based on Boehm’s model (1991), software risk management consists of the 

following phases: risk assessment that includes risk identification,  risk analysis and 

risk prioritisation, as well as risk control, comprising risk management planning,  risk 

resolution, and risk monitoring.  Figure 7.7 illustrates the different phases in the risk 

management function (as discussed in Chapter 3) and how agent teams cooperate 

to accomplish the objectives of these phases. 

        

       Figure 7.7  Risk management function 
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The risk identification phase entails the identification of specific risks by the project 

manager and the team members. The software project manager or other designated 

stakeholders interact with the risk identification phase through a special user 

interface. This user interface, situated on top of the risk identification phase, uses 

personal assistant agents, task agents and messaging agents.  The project 

manager agent uses the directory facilitator agent to identify personal assistant 

agents of all the members of the team. The project manager then identifies possible 

risks for this project. The agent management agent is responsible for managing the 

team of agents, ensuring coordination between the sub-tasks, communication 

between agents and the location distribution of agents. The project leader defines 

the parameters of the project with the assistance of the personal assistant agents, 

adds tasks and subtasks, and allocates tasks to team members with the support of 

the personal assistant agents.  Once the user has entered the required information 

into the system, messaging agents take the information to a central repository and 

to the risk analysis and prioritisation phase.  

 

During the risk analysis and prioritisation phase, the task agent further traverses the 

distributed network of team members, communicating with each team member’s 

personal assistant agent.  Each team member will enter information concerning risk 

probability (e.g. identify on a scale of 1 to 100 the probability of a certain risk 

occurring).  The task agent will also perform calculations regarding the impact on 

the assets, where known, if the risk occurs. Furthermore, each team member will be 

prompted for information concerning risk areas at regular time intervals.  Thus, this 

function will enhance the risk management function by continuously updating team 

members on the probability of a certain risk occurring.  The status of each task will 

also be monitored by the task and monitoring agent.  All intermediate information 

will be communicated to the risk management planning phase, as well as be stored 

in the repository. 

  

Risk management planning involves the developing of strategies to address risks, 

should they occur.  A risk management plan that includes aspects such as risk 
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mitigation strategies for technical cost and schedule risks, as well as contingency 

plans, will be stored in the repository for further reference.  Interaction with the 

stakeholders, all team members, as well as with the risk identification, risk analysis, 

risk prioritisation, risk-monitoring and risk resolution phases is necessary.      

 

The risk-monitoring phase will provide the team and the team leader with 

information on the status of each specific task, e.g. a warning message if tasks or 

deliverables are overdue or on schedule; the probability of occurrence of identified 

risks.  The monitoring agent will be responsible for monitoring tasks, reporting back 

to the PAs where rescheduling of tasks as well as the notification of stakeholders 

can take place.  Task documents, attached to a specific task, will also be monitored.  

This phase will interact with the risk management planning phase, the risk resolution 

phase, as well as with the repository.    

 

Risk resolution will be supported by the agent team. Client and task agents are 

available to automate standard tasks, for example to support the compilation of the 

risk resolution plan, to do simulations and benchmarks, and to transport all formal 

documentation such as the formal risk resolution planning document to all team 

members, requiring feedback from each.  The document will be stored in the 

repository.   

7.2.7.1  Advantages of agent support for risk management 

Current risk management approaches consist of a variety of application packages 

that address various areas of functionality in the SPM area.  These applications 

require pre-knowledge of the project manager and are time-consuming to use.                       

The incorrect usage, or omission of certain items will result in errors in calculations 

and estimations.  Input is also time-consuming and may be omitted in certain 

circumstances.  The software agent approach will have the advantage that the SPM 

process is enhanced and supported by automated process input.  Real-time 

progress measurement as sustained by continuous input will help to identify 

potential risks early and support the project manager to be proactive.  The team 
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leader will be informed of the status of all tasks of the specific project.  Thus 

interaction with the user, project manager and other stakeholders will be optimised.   

 

The task agent will traverse the distributed network for input from all team members 

on the selected risks, which will enhance the process by sending the functionality to 

the various team members. Thus, communication overhead and network load are 

lessened.  Task documents will also automatically be distributed over the distributed 

network, lessening the work load of each team member. 

 

Distributed teams can also communicate and coordinate through this 

heterogeneous nature of the agent system. 

7.2.8 Procurement management 
During the process of software project development, products, goods or items that 

are not readily available within the organisation (perhaps in the form of software, 

hardware or people) must be acquired (Marchewka, 2003).  Procurement entails 

acquiring services or goods from an outside source.  Procurement management 

thus comprises the methods and procedures stipulated by an organisation to 

facilitate the acquisition of such products.  Project procurement management 

consists of the following processes, namely procurement planning, solicitation 

planning, solicitation and source selection, contract administration, and contract 

closure as highlighted by the researcher in Chapter 3.  

 

Figure 7.8 illustrates the different phases of the procurement management function 

and how agent teams cooperate to accomplish the objectives of these phases. 
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Figure 7.8  Procurement management function 
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agents are available to automate standard tasks, for example to support the 

compilation of the RFP (Request for Proposal), and to compile the evaluation criteria 

based on input from all team members.  The procurement documents will be stored 

in the repository.  This phase interacts with the solicitation and source selection 

phase, contract administration, as well as contract closure phase.   

 

The solicitation and source selection phase entails the process of obtaining 

quotations, bids and offers, and selecting the most appropriate one.  This phase is 

supported by the team of agents.  The personal assistant agent supports each team 

member with individual tasks, while task agents will do specific comparisons.  

Several studies have been completed on negotiating agents (Kephart and Chess, 

2003; Chmiel, Czech, and Paprzycki, 2004a).  This process can thus be fully 

supported by a team of bidding and negotiating agents.  All documents, such as 

quotations, bids and offers, will be stored in the repository, as well as be sent to the 

contract closure phase. 

 

The contract administration phase refers to the management of the contract in 

accordance with outside stakeholders, such as suppliers.  As this phase entails 

interaction with the stakeholders and suppliers, such interaction is enabled by the 

user interface.  The contract administration phase will again be supported by an 

agent team, supporting the team member/s who execute this function via the user 

interface.  Contract administration detail will be communicated with the contract 

closure phase. 

 

Contract closure involves a procurement audit, as well as formal acceptance and 

closure of the contract.  Input is obtained from the solicitation and source selection 

phase, contract administration phase, and solicitation documents in the repository.  

Once the team members have accepted and verified the product concerned in the 

contract, messaging agents store the completed document in the central repository. 

   



 
 
Chapter 7  The SPMSA Model 

 
 
 

132 
 

7.2.8.1 Advantages of agent support for procurement management 

Current systems rely on individual team members to execute the procurement 

acquisition process.  The procurement management function can be extensively 

supported by bidding and negotiating agents.  Research has been done and is still 

being done on automated bidding agents that can bid for services or products in 

electronic markets, without direct human intervention (Kephart and Chess, 2003, 

Badica, Popescu, Vukmirovic, Gawinecki, Kobzdej, Ganzha and Paprzycki, 2008).  

Autonomous agents consisting of bidding, buyer, seller and middle agents may bid 

for products or services.  These agents are able to negotiate according to inbuilt 

negotiation algorithms and conclude transactions to maximise gain for an 

organisation (Shehory, Goldstein, Shulman, Sturm and Yurovitsky, 2002).  Buyer 

agents are sometimes referred to as shopping agents (Kephart and Chess, 2003).  

Pricing agents may also provide team members with information concerning prices 

in the market (Kephart and Greenwald, 1999).  This will free the development team 

and management team from having to deal with the actions of acquiring information 

on products or services, bidding to buy them, negotiating and concluding the 

transaction – thus allowing them more time for quality product development.  

 

7.3 THE “SOFTWARE PROJECT MANAGEMENT 
SUPPORTED BY SOFTWARE AGENTS” (SPMSA) 
MODEL 

The proposed SPMSA model is unique as it supports each key function of SPM with 

a team of software agents.  In the previous section it was illustrated how an agent 

team supports each of the SPM key functions.  Table 7.1 provides a summary of the 

purpose of each agent that forms part of the agent teams of the different SPM key 

functions of the SPMSA model. 
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Table 7.1  Agents and their tasks 

Agents Purpose Mobile Stationary 

Agent 

management 

agent 

• Manages the team of agents 

• Keeps track of the distribution 

location of all agents  

• Enables communication of agents 

• Enables mobility of agents  

• Tracks instantiation of tasks 

 X 

 

Client agent • Executes a specialised task at a 

workstation 

• Interacts with the agent team  

• Receives input from task agent 

 X 

Directory 

Facilitator 
• Automated JADE facility 

• Provides yellow pages functionality 

to agents 

• Provides agents with information 

on services provided by other 

agents 

 X 

Personal 

assistant 

agent 

• Allocated to a specific team 

member 

• Assists the team member 

• Interface between team member 

and other agents  

• Collaborative nature 

 X 

 

Messaging 

agent 
• Traverses the network of agents 

• Carries messages to and from 

agents 

• Collaborates between agents  

X  

Monitoring 

agent  
• Monitors agent movement 

• Monitors tasks and activities 

X  
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Agents Purpose Mobile Stationary 

• Coordinates agents 

Project 

manager agent 
• Supports and directs the team of 

agents 

• Takes on project manager role 

• Helps create and initialise project  

• Specifies tasks 

• Allocates tasks to members 

X  

Task agent • Supports a specific task, e. g. 

information gathering, information 

distribution, information retrieval 

• Traverses the network of team 

members for input 

• Calculates various measures, such 

as probability of risk occurring, 

ROI, NPV 

• Gives feedback to personal 

assistant agents 

X  

Team leader 

agent 
• Manages the team of agents X  

 

The graphical representations compiled for each of the SPM key functions (as 

depicted in Figures 7.1 to 7.8) are mapped to form the SPMSA model.  The core 

functions and the facilitating functions are presented in Figure 7.9 and Figure 7.10 

respectively.  These two figures represent the entire SPMSA model, but due to 

space constraints they are spread over two pages. 
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Figure 7.9  The SPMSA model - core functions 
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Figure 7.10  

 

The SPMSA model is unique in that it supports the entire spectrum of SPM 

functionality by means of software agents.  Thus the SPMSA model aims to address 
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Table 7.2 below provides a summary of how the SPMSA model addresses the 

limitations of current SPM approaches through software agents. 
 

Table 7.2  Limitations of SPM addressed by agent technology 

Limitations of current SPM 
approaches 

Agent enhancement 

 
Environment 

Stakeholders in virtual teams 

may have different goals; 

different cultural backgrounds 

(Chen et al., 2003). 

Virtual teams supported by automated agent 

interaction work toward a similar goal, with 

coordination and collaboration of team members. 

Support communication in 

homogeneous environments 

and will need additional 

features or measures to 

connect heterogeneous 

elements (O’Connor and 

Jenkins, 1999). 

Agents support heterogeneous environments, 

thus improving and enabling 

• communication and 

• coordination. 

The system executes 

synchronously and must be 

connected to execute (Maes, 

1994). 

Agent system executes asynchronously and 

autonomously, thus 

• less network load,  

• less communication overhead. 

Do not sufficiently support the 

knowledge representation of 

the SPM area (O’Connor and 

Gaffney, 1998). 

Agent systems provide assistance with regard 

to knowledge management, namely 

knowledge of plans and designs, and can 

provide mechanisms to reason about these 

elements. 

 

 



 
 
Chapter 7  The SPMSA Model 

 
 
 

138 
 

Limitations of current SPM 
approaches 

Agent enhancement 

 
Human interaction / automated control 

Documents are distributed by 

human action, thus there is the 

possibility of human error, 

such as omission (Purvis et 

al., 2003). 

Workflow management to all relevant team 

members is automated,  

• documents and information are dispersed 

and 

• retrieved from the repository. 

Team member interaction 

depends on user/human 

interaction, thus prone to 

errors (Benfield et al., 2006). 

Automates team member interaction, by regular 

prompting for input to ensure that  

• the data is current and  

• tasks not forgotten, thus  

• improving productivity.  

All actions, functions and 

coordination to be executed by 

team members, without 

specific process coordination 

measures (Petrie, Goldman 

and Raquet, 1999). 

Automates process coordination, which will 

improve programmer productivity as well as 

minimise errors.  

 
Tasks 

Complexity of tasks and 

environment one of the 

reasons for failure (Jennings, 

2001; Benfield et al., 2006). 

Complexity of tasks is minimised by automated 

support, such as calculations automated, thus  

• reducing complexity of the solution,  

• improving programmer productivity. 

Large systems are difficult to 

maintain consistently over a 

set period of time.  Current 

tools do not provide proper 

change notification (Petrie, et 

Maintenance is automated and users are 

prompted for input on changes.   

Change control is automated and users are 

regularly prompted for input.  Changes are 

incorporated dynamically. 
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Limitations of current SPM 
approaches 

Agent enhancement 

al., 1999). 

 

Current tools support the 

reporting and calculation 

facilities, but not continuous 

progress management 

(Chandrashekar et al., 1993). 

Management of progress status is automated, 
e.g. risk monitoring and risk status are checked on 

a daily basis, enabling the project manager to  

• identify problems early and  

• take proactive measures (Roy, 2004).  

According to a study by Verner 

and Cerpa (2005) risks are 

identified at the start of a 

project but only 50% follow the 

risk through during 

development. 

Agents that monitor risk will automate the 

continuous monitoring of risks, thus following all 

risks throughout the project. 

Different team members use  

passive corporate reporting 

aspects (Chen et al., 2003).  

Continuous input of task status and sharing of 

information changes passive reporting to a system 

that supports dynamic reporting, thus improving 

coordination and cooperation between team 

members. 

Data, tasks and results will be 

sent over a network to execute 

at the user’s workstation 

(Chen et al., 2003). 

Tasks are embedded in agent behaviour, thus by 

traversing the network, agents lessen 
communication overhead and network load 

because tasks execute at team member’s site. 

Ineffective and inefficient 

communication, i.e. untimely 

information, failure to notify all 

team members, not enough 

top-down information flow and 

storing information in a format 

not suitable for retrieval (Chen 

Collaborative tool that provides automated 

support on structures for efficient information 

sharing, set format for information storing and 

structures for communication to promote adequate 

and timely information sharing (Gawinecki et al., 

2007).  
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Limitations of current SPM 
approaches 

Agent enhancement 

et al., 2003). 

Quality measures and 

standards are selected by 

team.  Human inaccuracy and 

omissions are possible 

(O’Connor and Jenkins, 1999).  

Continuous automated input are received from all 

team members for quality control. 
Agents may supply measures and directives that 

conform to standards. 

Current SPM tools provide no 

intelligent support on 

standards or best practices 

(O’Connor and Moynihan, 

2000).  

Agents with intelligence may encapsulate areas 

of experience such as standards, and may advise 

the project leader on best practices and 

standardisation. This provides knowledge base 
support (Gawinecki et al., 2007). 

 
Intelligent support 

Bidding and negotiation are 

done by humans (Kephart and 

Chess, 2003; Badica, et al., 

2008).  

Advantages of bidding and negotiating agents. 

Automation of these functions will mean less work 

for the developer and added productivity for the 

developer/s. 

Current SPM tools that make 

projections concerning tasks 

and decisions are static and 

do not support dynamic 

simulation (Joslin and Poole, 

2005). 

Agent systems support dynamic simulation 

concerning planning of uncertainty, i.e. dynamic 

resource allocation.  Simulations may help the 

manager to anticipate critical conditions earlier and 

enable him to implement preventative measures –

thus proactive SPM. 

All interaction occurs through 

stakeholders but no support in 

decision-making process of 

project manager (O’Connor 

and Gaffney, 1998; Purvis et 

al., 2003). 

Personal assistant agent supports each 

individual team member to intelligently manage 

and analyse large amounts of project data (Myers 

et al., 2007; Gawinecki et al., 2007).  
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7.4 CONCLUSION 
In this chapter the complete SPMSA model was compiled.  This was accomplished 

by compiling a graphical representation of each of the SPM key functions that depict 

the different phases of each function.  The researcher highlighted how a team of 

agents could support each phase.    

 

The agent framework follows an approach of agent teams being composed of 

specialised software agents, each tasked with a manageable/atomic task.  This 

implies that the complexity of creating and maintaining tasks can be greatly 

reduced.   

 

The SPMSA model enhances SPM by addressing the entire spectrum of SPM 

development by means of software agents.  A prototype of a section of the SPMSA 

model is implemented as ‘proof of concept’ and will be discussed in the following 

chapter.  The SPMSA model will also be verified against the PDCA cycle, as well as 

against the ISO 10006:2003 standard in order to substantiate its relevance.   
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8.1 INTRODUCTION 
In previous chapters it was established that software agent technology is suitable to 

address the changing and ever-evolving SPM environment.  A model, namely the 

SPMSA model, was consequently developed to support all SPM processes with a 

software agent framework.  This chapter is devoted to a discussion of the 

development and implementation of a prototype of a section of the SPMSA model, 

namely the risk management function.      

 

The purpose of this chapter is to show that the SPMSA model is not merely a 

theoretical concept, but that it can be implemented successfully.  The prototype is 

used as ‘proof of concept’ to illustrate the possibility of using software agent 

technology to support SPM processes.  The prototype could, of cause, be expanded 

to implement the entire SPMSA model. 

8.2 DEVELOPING THE PROTOTYPE  
The SPMSA model supports the teams and individual team members in the SPM 

environment with a framework of software agents while executing their tasks.  The 

project manager (also acting as team leader in this case), together with individual 

team members, will be supported during software project management processes to 

simplify their tasks, eliminate the complexities, and enhance coordination and 

communication. The prototype will specifically support the risk assessment part (i.e. 

the risk identification and the risk analysis and prioritisation phases) and the risk-

monitoring phase of the risk control part of the SPMSA model.   

 

The SPMSA model may be implemented by using agent black boxes in support of 

SPM functions.  Each of the key processes discussed in Chapter 7 could 

successfully be addressed by following a black box approach that is based on 

software agent technology.  Each black box consists of collaborative software 

agents that ensure cooperation, coordination and synergy between the different 

black boxes.  Within such a black box, a component-based development approach 

is followed.  According to this approach, we use multiple (simple) agents, each with 
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a particular objective, rather than fewer (complex) agents which each has a long list 

of tasks to accomplish.  This implies that the complexity of creating and maintaining 

tasks could be greatly reduced.  

 

The prototype specifically targets the risk management function of the SPMSA 

model, as was indicated earlier.  The prototype is developed according to the basic 

phases of agent development as indicated in Chapter 5 (Sections 5.2.1.1 and 

5.2.1.2), namely the requirements analysis phase and the design phase. 

8.2.1 Requirements analysis phase 
The prototype is used as ‘proof of concept’, therefore only some functions will be 

used to illustrate the concept of agent support.  Implementing the full spectrum of 

the SPMSA model falls outside the scope of this thesis.  However, the prototype is 

used as evidence that the SPMSA model can be implemented and can support and 

enhance the SPM arena. 

 

The aim of the agent framework in the prototype is to support the project manager 

and team members in their tasks during software risk management.  As mentioned 

in Chapter 5, different approaches to design agent systems have emerged, but 

there is currently not a single unified and accepted agent-orientated methodology 

(Iglesias et al., 1998; Zambonelli et al., 2001).  In this study, object-oriented 

diagrams are adapted and used for the requirements analysis phase, with regard to 

the following: 

 The requirements description 

 A model, i.e. use cases to describe external interaction with the system and 

individual agent tasks 

 A social agent model for global interaction. 

8.2.1.1 The requirements description 

The purpose of the requirements description is to provide the developer with a clear 

detailed understanding of the requirements of the system (Whitten, Bentley and 

Dittman, 2004).  The prototype implements the two phases of risk assessment, i.e. 
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risk identification and risk analysis and prioritisation.  Additionally, the prototype also 

implements the risk-monitoring phase of risk control.  Although it was possible, the 

risk management planning and risk resolution phases of risk control were not 

implemented since the scope was considered too large for the purpose of this study.  

Both phases would also require extensive participation from the project manager 

concerning risk planning and resolution.    

 

The purpose of each of the phases that are indeed implemented by the prototype 

can be summarised as follows:  

 During the risk identification phase potential threats, discrepancies and 

overall inconsistencies concerning the project plan schedule, budget or time 

frame are identified.  Risk identification will be done by both the team leader 

and team members.  

 The purpose of the risk analysis and prioritisation phase is to assess the 

likelihood of a particular risk occurring, as well as a prediction on its potential 

impact in monetary value. 

 Additionally, a list is produced of risk items ranked as top risks for this project. 

 The risk-monitoring phase involves tracking the process of the project 

towards resolving its risk items in order to enable the team or project 

manager to take preventative measures or corrective action where 

appropriate.  For instance the prototype monitors the task status of each 

team member. 

 

8.2.1.2 The model 

The purpose of the model is to indicate the interaction of external entities, such as 

the project manager and individual team members with the agents. The model is 

illustrated by means of a use-case diagram, in Figure 8.1 below. 
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Figure 8.1  Use-case for the Jade Project Management Prototype System 
(JPMPS)   

8.2.1.3   A social agent model 

The purpose of the social agent model is to indicate the interaction of agents with 

the environment and with other agents.  The conceptual view of the SPMSA model 

presented in Chapter 6 (Figure 6.2) illustrates both the phases of software 

development to be supported, and the software agent framework to support these 
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phases.  The bottom section of Figure 6.2 comprises an agent framework that 

describes the different agents in the system, as well as their interaction with each 

other and with the team.  Figure 6.2 was adapted to create the social agent model 

for the risk management function for this prototype (see Figure 8.2).  This social 

agent model contains a risk agent as an additional agent to be utilised for this 

specific implementation, whereas the client agent and messaging agent are not 

utilised.   

 

 

Figure 8.2  Social agent model for the JPMPS 

 

The different agents used in this framework are the agent management agent, the 

directory facilitator, monitoring agent, personal assistant agents, the project 

manager agent, task agent(s) and risk agent(s) – as depicted in Figure 8.2 

 

The interaction of the agents with each other is summarised in Table 8.1. 
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Table 8.1  Agent interaction with other agents 

  AM DF MA PA PMA TA RA 

Agent management 

agent (AM) 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

JADE 

System Directory facilitator 

(DF) 

X X 

 

X 

 

X 

 

X 

 

X X 

Monitoring agent (MA) X 

 

X 

 

X 

 

 

 

X 

 

X 

 

X 

Personal assistant 

agent (PA) 

X X 

 

 

 

 X X 

 

X 

Project Manager 

Agent (PMA) 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

Task agent (TA) X X X X X X X 

 

Agents 

Risk agent (RA) X X X X X X X 

 

A description of the purpose of these agents are contained in Table 7.1 (Chapter 7). 

8.2.2 Design Phase 
The design should indicate the solution to the problem based on the outcome of the 

requirements analysis phase.  The main focus of this phase is on how to resolve the 

problem.  This is traditionally identified by an architectural design as well as a 

detailed design.  In this case the social agent model indicates the architectural 

structure, as well as the relationship between agents to indicate inter-agent 

dependencies.  The prototype is implemented in JADE, and JADE has an inbuilt 

mechanism for describing detailed agent interaction, thus this will be illustrated as 

part of the implementation.   

 

To facilitate the rapid development of an agent-based system, JADE contains a 

number of predefined classes that can easily be extended for a specific application. 

One such object class is that of the Agent class that is extended by all implemented 

agents.  Other useful classes include behaviour classes that allow the encapsulation 

of agent actions. Various other classes and extensions exist that assist with 
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debugging, communication, agent self-management, the development of graphical 

user interfaces and web services, to name a few (Bellifemine, Caire, Poggi and 

Rimassa, 2003; FIPA, 2003).   

8.3 PROTOTYPE IMPLEMENTATION 

8.3.1 The Technological Platform 
As Java contains most of the required technologies to implement software and 

mobile agents such as multithreading, remote method invocation, portable 

architecture, security features, broadcast support and database connectivity, it is 

viable to implement the risk management function area of the proposed model in 

Java (Wooldridge, 2002). 

 

JADE can be considered as agent middleware that implements an agent platform 

and sustains a development framework.  JADE facilitates mobile agent application 

development, providing key features for distributed network programming.  One 

feature of the JADE framework is the ability to abstract away from the details of 

agent communication.  The JADE platform allows for easier communication by 

adhering to the FIPA standard for Agent Communication called FIPA-ACL (FIPA, 

2003).  It supports debugging and deployment, the agent platform can be distributed 

across machines, and the graphical user interface (GUI) can be controlled and 

changed via a remote GUI.  The goal is to simplify development while ensuring 

compliance to standards through a comprehensive set of system services and 

agents.   

 

The efficiency of the JADE platform for agent development has been tested in a 

scenario where the number of agents and messages are increased, to test the 

efficiency of agent creation and scalability (Chmiel, et al., 2004b).  These 

researchers found that JADE is a very efficient environment limited only by the 

limitations of the standard Java programming language.  The environment does not 

introduce substantial overhead, and JADE scales well when messages and agent 

movement are substantially increased.  
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The Jade agent platform used for this implementation provides a fully integrated 

agent platform with an agent management system and a directory facilitator.    

8.3.1.1  Agent Management System 

The entire process of agent management (including agent mobility, suspension, 

awaking, creation and destruction) is handled by the Agent Management System 

(AMS) referred to in Jade as the remote agent management system, which is also a 

FIPA recommendation. The JADE agents exist in agent containers provided by the 

JADE agent platform, upon which the agents are given access to the functionality of 

the Jade agent platform.   

 

As shown in Figure 8.3, the JADE container provides a context for agent existence 

and can be extended by other containers to form a distributed environment.  

 

Figure 8.3  Agent management system 

The agent management system – also referred to as agent management agent – is 

responsible for managing the team of agents, ensuring coordination between the 
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sub-tasks, communication between agents and the location distribution of agents.  

The agent management system provides the unique agent identifiers used to 

identify agents within the FIPA standard.  In Figure 8.3 the Main-Container contains 

agents RMA@TERLAP: 1099/JADE, ams@TERLAP: 1099/JADE and df@TERLAP: 

1099/JADE, while containers 1, 2, 3 and 4 each contains one agent. 

 

The agent management system also provides communication interfaces in which 

agents can exist.  Agents register with this agent management system and it 

provides execution cycles and mobility for the agents.  Upon registration each agent 

receives a globally unique identifier.  The agent management system provides a 

white pages service, which provides a listing of available agents with each one’s 

address.  The agent management system is available to the system without 

additional programming, as it is already a feature of the JADE platform. 

8.3.1.2  Directory Facilitator 

A second feature of agent interaction that is explicitly handled by the JADE 

framework and that also adheres to the FIPA recommendations for an agent-based 

platform, is that of the Directory Facilitator (DF).  The DF acts as a yellow page 

service to enable the discovery of agents and the relevant services provided by said 

agents, as illustrated in Figure 8.4.  
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Figure 8.4  Directory facilitator 

 

The DF in Figure 8.4 has four agents registered.  The first agent is identified by a 

name – Terence@TERLAP:1099/JADE, and address – http://TERLAP:7778/acc.  

The remaining agents are RAA@TERLAP:1099/JADE, Ralf@TERLAP:1099/JADE 

and Kay@TERLAP:1099/JADE, each with its own address.  

 

The directory facilitator is also available to the system without additional 

programming, because it is a feature of the Jade agent platform. 

8.3.2   Overview of the prototype 
The prototype supports the software project manager in his/her task during the risk 

identification, risk analysis and prioritisation phases, as well as during the risk-

monitoring phase.  The agents collaborate in a distributed environment to achieve 

the overall objective of software project management (Nienaber, Smith, Barnard and 
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Van Zyl, 2008).  Various roles are captured in reusable entities called “behaviours”, 

which can be assigned to agents at design time.   

 

The prototype entitled “The Jade Project Management Prototype System” (JPMPS) 

was developed at the Meraka Institute (African Advanced Institute for Information 

and Communication Technology).  The researcher compiled the specifications for 

the prototype, including the use-case diagram and the social agent model. The 

coding for the prototype was done at Meraka.  The researcher tested the prototype 

and suggested changes and enhancements. Consequently the researcher compiled 

Chapter 8, with input from the developer at Meraka, pertaining to the technological 

platform (section 8.3.1) as well as the identification of the advantages of the 

prototype after it was used for a true-life system (section 8.3.3).   

 

The prototype was accordingly tested with the Corridor Sensor Web Application by 

the team leader of the project. The Corridor Sensor Web Application (CSWA) is a 

small in-house project that aims to deploy a test bet for Sensor Web type 

applications.  The project team consisted of three members.  The screenshots that 

follow all relate to the prototype implemented in the CSWA project environment.1 

8.3.2.1  Risk Identification 

The aim of the risk identification phase is to identify, through interaction with all 

team members, specific risks that may pose a problem.  Feedback concerning 

identified risks will be shown to the project team on a continuous basis.  

 

The application is activated by double clicking on the ProJectMan icon on the 

desktop.  This provides the project manager with an input screen to start the project, 

as shown in Figure 8.5 – the initial screen will contain no data in the Project 

Name, Tasks, Risks and Team Members edit boxes.  

 
1Permission was obtained to publish the results of testing the prototype in the said project. 
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Figure 8.5  Input screen for the CSWA project 

 

The first step will be to initialise the specific project by entering an identifying project 

name (in this case Corridor Sensor Web) and team members (i.e. Denise, 

Wabo and Terence) into the Project Name and the Team Members edit boxes 

respectively – see Figure 8.5.  For each of these team members a personal 
assistant agent is immediately activated by the system. 

 

The second step will be to select the risks for this project. The project manager 

selects the relevant risks from the list of risks displayed in the Risks list box by 

clicking on the appropriate risk – see Figure 8.5.   

 

The third step will be to identify the tasks for this project.  The identified tasks will be 

entered by the project manager by using the Add Task button on the input screen 

displayed in Figure 8.5. The project may have several tasks, while each one will 

have a timeframe (in days) for completion and possibly one or more preceding 

tasks.   
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When clicking the Add Task button in Figure 8.5, the screen depicted in Figure 8.6 

will be displayed – the initial screen will contain no data in the Description, 

Task Documents, Task Days, Preceding Tasks and Task Members edit 

boxes.  

 

 

Figure 8.6  Task: Deploy Sensor Web Application 

 

An example of adding the information for one of the tasks, i.e. the Deploy Sensor 

Web Application task, is displayed in Figure 8.6. The name of the task, namely 

Deploy Sensor Web Application, is entered in the Description edit box. 

The task documents, i.e. a list of specifications concerning the task, can be added 

with the Add Document button, and will then appear in the Task Documents edit 

box. This task currently has no task documents added.  It has been allocated five 

working days (indicated next to the Task Days edit box) to be completed. The 

other tasks namely Develop Data Adaptor, Develop Sensor 
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Observation Service and Develop Sensor Planning Service are 

displayed in the Preceding Tasks list box.  Finally, the list of team members 

available for this project is displayed in the Task Members list box.  Denise and 

Wabo will be responsible for this specific task, as indicated by the shading in Figure 

8.6.  Information will be saved or cancelled by the Save and Cancel buttons 

respectively at the bottom of this input screen.  Information for the other tasks 

related to the current project will be entered in a similar way. All tasks are keyed in 

at the beginning of the project as shown in Figure 8.5.  

 

Each member of the project team will be supported by a personal assistant agent, 
which will reside on each team member’s computer desktop. Such an agent will 

provide information concerning the task allocated to the team member.  Figure 8.7 

illustrates Wabo’s personal assistant agent, concerning task Develop 

Sensor Planning Service, which is on schedule.    

 

 

Figure 8.7  Personal Assistant Agent: Wabo 

 

Such an agent screen will appear automatically on the desktop computer of each 

team member. 

 

The personal assistant agent of each team member will support him/her in daily 

planning tasks such as setting up meetings, compiling and distributing an agenda, 

attaching required documents and finalising the place and time. The personal 

assistant agent will have information about tasks of the team members it is 

associated with and will be able to support the team member by monitoring the time 

set to complete the task.  Documents will be appended and the user will be 
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prompted when documents should be attached.  The workflow is thus automated, 

input for tasks is automated, the progress is monitored and relevant information is 

sent to the monitoring agent.  Change control will also be monitored and 

addressed.  The team may be geographically dispersed, but the heterogeneous 

system will address the discrepancies in technology and area.  

8.3.2.2 Risk Analysis and prioritisation 

During the risk analysis and prioritization phase, the task agent will traverse the 

network of team members, visiting each personal assistant agent of each team 

member.   

 

A risk input screen, similar to the screen depicted in Figure 8.8, will automatically 

pop up on the desktop computer of each team member for each task related to the 

specific team member, at regular intervals, i.e. the information depicted on this 

screen will continuously be updated.   

 

 

Figure 8.8  Risk probability and monetary value input: example 1 
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The screen depicted in Figure 8.8 displays all the risks identified for the specific task 

at hand. Each team member responsible for this task will receive such a screen – 

with no data initially.  The team member will allocate a percentage value to indicate 

the probability of a specific risk occurring. In addition, the monetary value of the risk 

– if it were to occur – should also be entered if possible. For example, in Figure 8.8 

the probability of Personnel Shortfalls to occur is 10%, and if this risk occurs, 

it will result in a cost of R16 000.  Figure 8.9 illustrates another example of a team 

member’s input.  

 

Figure 8.9  Risk probability and monetary value input: example 2 

 

The task agent then continuously calculates and presents the average percentage 

of a specific risk occurring, given the input values of all team members.  The risk 

probability is calculated as the (probability of occurrence i.e. risk probability 

percentage) x (potential damage i.e. potential damage in monetary value) (Hughes 

and Cotterell, 2006).     
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Furthermore, each team member is prompted automatically on a daily or regular 

basis (decided by the designers of the system) for input on the percentage of task 

completion (for their specific task in hand) at that time.  The system compares this to 

the set date for completion. Consider for example the screen depicted in Figure 8.10 

below. 

 

 

Figure 8.10  Task completion input screen 

 

Each team member should key in the percentage of the task that is completed in the 

Task % Complete window, as indicated in Figure 8.10. For example, the 

Develop Sensor Planning Service task is 50% complete. Note that the risk 

probability values at this stage reflect the average values (based on the input 

of all team members) and are displayed on this screen, and cannot be changed by 

the team member here. These values can only be changed on the risk probability 

and monetary value input screen (depicted in Figures 8.8 and 8.9) as discussed 

earlier. 
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The risk agent will continuously monitor the status of all tasks, and this will keep the 

team members conscious of the time aspect.  The risk agent thus traverses the 

project environment, as shown in Figures 8.11 and 8.12.  

 

 

Figure 8.11  Risk agent in Container-1 

 

 

Figure 8.12  Risk agent in Container-2 
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Figure 8.11 shows the risk agent in Container-1, getting input from Denise (see 

arrow) regarding percentage task completion, whereas Figure 8.12 illustrates that 

the risk agent has moved to Container-2, where it is getting input from Wabo (see 

arrow) regarding the percentage of completion of his task. Thus, the risk agent 
moves from team member to team member at set time intervals to get information 

about, firstly, the risks this specific team member considers possible of occurring, 

and, secondly, the percentage of the task allocated to this team member that has 

been completed.   

 

A team member might login at a remote site or at another laptop, but the agent 

system will locate the team member.  The personal assistant agent of each team 

member will continue to support the specific team member, regardless of the 

location of the specific computer, and it will continuously monitor the task 

completion.  For example, Figure 8.13 indicates that the Current Task Status 

of the Test Sensor Web Application task that Terence’s personal 

assistant agent is responsible for, is Overdue. 

 

Figure 8.13  Personal Assistant Agent: Terence 

 

Furthermore, the task agent will traverse the network and perform tasks needed, 

such as continuously getting input concerning risks identified from each team 

member, calculating the risk probability and distributing documents.  Calculations on 

risk are automated by the task agent and any changes, such as one task taking 

longer than planned, will automatically be incorporated in the planning.     

 

The agent management agent will continuously monitor all agent locations.  

Collaboration is thus attained through an agent-supported framework, the progress 
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being automatically monitored by the monitoring agent, and change control being 

executed when necessary.  The directory facilitator will sustain a library for 

services for the agents to access if necessary.   

 

During risk prioritisation the task agent will monitor the risks, and while traversing 

the environment, it will show the risks as prioritised to the team members.  In other 

words, the team will continuously be provided with information on risk prioritisation.  

Figure 8.14 illustrates an example of risk prioritisation.    

 

 

Figure 8.14  Risk prioritisation report screen 

In Figure 8.14 the probability of Personnel Shortfalls occurring is the highest, 

i.e. 60% and therefore this risk is displayed at the top of the screen. 

 

The risk screen will appear on each team member’s desktop at regular intervals. At 

the same time the personal assistant agent of each team member will 

continuously display the task status on the screen, together with relevant messages 
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(as shown in Figures 8.7 and 8.13) to enable the team member to take action when 

necessary.  Thus, interaction is forced and continuously sustained. 

8.3.2.3   Risk monitoring 

During the risk-monitoring phase the system will provide information on the status 

of all the team members’ tasks, which will be shown on each member’s desktop by 

his/her personal assistant agent.  The monitoring agent will monitor tasks and 

report back to the personal assistant agents, where rescheduling of tasks as well 

as the notification of stakeholders can take place. 

    

 

Figure 8.15  Team Leader Report 

 

Tasks are monitored and an output screen (see Figure 8.15) will be shown, which 

illustrates the Team Leaders’ screen, reporting that two tasks, Sensor 

Observation Service and Sensor Planning Service are on Schedule.  
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The risk probability and money value are shown and cannot be edited at 

this stage. 

 

Thus, the team leader will be supported by receiving information on a daily basis on 

risks prioritised, as well as a report on the percentage of each task that has been 

completed for all team members. Relevant messages as well as warnings will be 

given to attend to the problem.  Tasks running late can be addressed, especially if 

the problem concerns a preceding task to another task. The necessary steps may 

then be taken.  Action can also be taken to address the problem before the delay 

gets out of hand.  Workflow is automated, documents are stored and updated 

automatically, task progress is monitored and change control is automated. The 

reporting facility can be extended to include PERT estimations and to calculate Z 

value and other project management calculations (Müller et al., 2004).  

8.3.3 Outcome of using JPMPS 
The Jade Project Management Prototype System (JPMPS) was used to manage the 

Corridor Sensor Web Application (CSWA) at the Meraka Institute. Having used the 

prototype, the team leader reported substantial benefits of using the prototype for 

the CSWA project.  The JPMPS prototype supported and enhanced SPM 

processes, as opposed to other traditional SPM systems. Its benefits as 

experienced by the project leader are summarised below: 

 

 All tasks have been successfully orchestrated, in other words the agent team 

successfully traversed the team environment, prompting each team member 

for input on task completion, as well as for documentation to accompany 

tasks.  Thus, the cooperation of tasks between members was attained.  Task 

members were relieved of the task to remember to send relevant deliverables 

or documents to other members.  Agent teams automatically prompted team 

members to remind them of completion dates of tasks and deliverables, i.e. 

documents.  Task completion of the entire project was monitored and 

reported on, thus supporting the project manager or team leader.  This 
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enabled him/her to take corrective action before a task got out of hand or to 

spend more time on other functions.   

 The whole team was alerted to the risks by means of the agent system 

continuously traversing the network and monitoring risks.  Each team 

member, as well as the project manager, was kept up to date with the 

probability of risks occurring.  In traditional applications risks can be analysed 

and visualised, but this has to be executed additionally by a team member.  

In this application the agent system autonomously executes this action and 

reports to the team.    

 The team leader was able to keep track of any outstanding tasks, through the 

continuous feedback received from the agent system.  Personal assistant 

agents provided feedback to team members with regard to task completion.  

Traditional applications will not provide this information on its own, without 

the team contacting or emailing each other. 

 Overall, the use of an agent-based system with mobile agents added value to 

the project as no central server was required and the system was robust 

enough to cope with team members’ working on different PCs and other 

network and infrastructure failure.  The use of the agent system improves the 

adaptability of the project to changes in the environment.     

 Team members were also not confined to a single working area or PC, but 

could log in at any other computer (at another site) and connect to the 

Internet, and the software agents would be able to track users to their new 

workstations.  

8.4 CONCLUSION 
In this chapter, the JPMPS prototype was discussed. 

 

The prototype was tested in a real-life project i.e. the Corridor Sensor Web 

Application (CSWA), at the Meraka Institute.  The project is of a very technical 

nature and relies on third party components regarding both hardware and software 

that had already been developed.  
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Using the prototype enabled the project leader to monitor risk probability and 

consequence, as well as the status of tasks and deliverables of the project.  The 

SPM risk-monitoring processes were supported and enhanced by the team of 

agents that prompted team members for input on the status of tasks and 

deliverable. In this way the coordination and cooperation of tasks between members 

was attained.  The autonomous functioning of the agent team also supported the 

team by provided feedback on each team members’ task status and risk 

probabilities.  It can therefore be concluded that the JPMPS succeeded in 

supporting and enhancing the SPM processes during risk management. 

 

The JPMPS prototype currently implements only part of the risk management 

function as it is implemented as ‘proof of concept’, but it can be expanded to include 

all phases of risk management, as well as the entire SPMSA model, covering all 

areas of SPM. 

 

In the next chapter, the SPMSA model will be substantiated by comparing the SPM 

phases of the model to the Plan-Do-Check-Act (PDCA) cycle, as well as to the ISO 

10006:2003 standard. 
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CHAPTER 9 

9 MODEL VERIFICATION 
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9.1 INTRODUCTION 
The previous chapter was devoted to a discussion of the prototype that was 

implemented as ‘proof of concept’ to illustrate the possibility of using software agent 

technology to support SPM processes.  The prototype supports the phases of risk 

assessment, namely risk identification and risk analysis and prioritisation, as well as 

risk monitoring, which is part of risk control.  As stated before, the prototype can be 

expanded to include the entire risk management function and the entire SPMSA 

model, thus covering all areas of SPM.  It is clear from previous chapters that agent 

technology will hold specific advantages for the SPM environment.  This chapter is 

devoted to a discussion of the verification of the SPMSA model.    

 

Table 3.2 (Chapter 3) contains the correlating phases of the core and facilitating 

functions of SPM, as compiled by the researcher.  These phases, which form the 

basis of the SPMSA model, were compiled into a graphical representation in Figure 

6.2 (Chapter 6) that depicts the generic phases of software development for each 

SPM key function.   

 

The aim of this chapter is to evaluate and substantiate the SPMSA model.  The 

SPM phases of the SPMSA model are therefore compared to the Plan-Do-Check-

Act (PDCA) cycle.  In addition, these phases are compared to the basic phases of 

software development as prescribed by the ISO 10006:2003 standard for projects.    

9.2 ISO STANDARDS 
Standards enable the adoption of standard project management practices, and can 

be defined as something established by authority, custom or general consent as a 

model or example (Garcia, 2005).  The International Organization for 

Standardization (ISO) was formed in 1947 “to facilitate the international coordination 

and unification of industrial standards” (Garcia, 2005).  In the 1990s, organisations 

responded to a fairly large number of industry standards (Schwalbe,2006).  Project 

management standards, however, were contained as part of various standards, not 

all reflecting purely on software project management processes, but containing SPM 
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as part of a larger standard that deals with an engineering or information technology 

domain (Garcia, 2005).  

 

Thus, over time several products appeared in an effort to contribute towards the 

adoption of standard project management practices, for example the Capability 

Maturity Model, Guide to Project Management Body of Knowledge (PMBOK), and 

the various ISO and ISO/IEC standards (Garcia, 2005).  The reader is referred to 

www.pmi.org for more information regarding the work in progress by the PMI 

(PMBOK, 2004). Each of the standards focuses on a specific process.  The ISO 

9000 is a quality system standard developed by ISO, and comprises a continuous 

cycle of planning, controlling and documenting quality in an organisation 

(Marchewka, 2003; Schwalbe, 2006).  The ISO 9000:2000 standard was revised in 

2000 and consequently ISO 9001:2000 and ISO 9001:2004 appeared.  ISO 

9000:2000 describes the fundamental features for a quality management system 

(QMS), while ISO 9001:2000 illustrates how a QMS can be applied to the creation of 

products and service provision, and ISO 9001:2004 applies to process management 

(Hughes and Cotterell, 2006).  Another standard that specifically targets software 

development and contains guidelines for the application of ISO 9001:2000 to 

computer software is ISO/IEC 90003:2004, entitled “Software Engineering ”.  

 

In 2006 ISO’s portfolio comprised more than 15 900 standards in an effort to provide 

practical solutions and achieve benefits for almost every sector of economic activity 

and technology (Nielsen, 2006).  According to the Nielsen market research report 

(2005) 700 000 ISO 9001:2000 certificates were issued worldwide between 2001 

and 2005.  In South Africa 5 963 certificates were issued to South African 

organisations between 2001 and 2005.  The ISO 9001:2000 standard will be 

replaced in Autumn 2008.  The ISO standards organisation is thus widely known 

and accepted as a market standard.   

 

Standards for software project management are currently being set.  In 2003 a 

standard was created to target quality management for projects specifically, namely 

the ISO 10006:2003, which is based on the ISO 9000 and aims to align ISO 
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10006:2003 with the ISO 9000 family of international standards.  The ISO 

10006:2003 standard is selected as verification tool.  It is based on the well-known 

ISO 9001:2000 standard.  However, ISO 10006:2003 represents a newer standard 

that targets quality management in projects specifically and does not apply to all 

industrial areas of development, as did ISO 9001:2000.  This standard (ISO 

10006:2003) concerns the practices required to implement a quality management 

system in projects specifically, whereas the ISO 9001:2000 targets all areas and not 

software projects development specifically.  A work group is currently working 

towards a South African standard, which is not available yet.  As the ISO 9001:2000 

is based on the PDCA cycle (ISO 9001:2000; 2000), both the PDCA cycle and ISO 

10006:2003 standard are used as verification tools. 

9.3 SPMSA MODEL VERIFICATION 

9.3.1 PDCA cycle 
A specific process, namely the PDCA (Plan-Do-Check-Act) cycle, is known as the 

operating principle of ISO’s management system standards (ISO 9001:2000; 2000).  

The PDCA cycle was used as the basic approach for developing and improving a 

certain organisation’s management system.  This cycle was originally designed by 

Walther Shewart, but was later revised by the Quality Management authority W. 

Edwards Deming.  It is currently known as the Plan-Do-Check-Act standard, 

although it has also been referred to as the Shewart cycle and the Deming cycle 

(Tague, 2004; American Society for Quality, 2005).  The cycle is used to coordinate 

continuous improvement efforts, and it supports daily routine management as well 

as general problem-solving processes. It furthermore supports SPM, vendor 

management, human resource management and product development.  The PDCA 

cycle is consequently regarded as suitable for managing the development of 

software projects. 

 

The basic phases of the PDCA cycle are illustrated in Figure 9.1. 
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Figure 9.1  The PDCA cycle 

 

The specific phases of this cycle are plan, do, check and act. The plan phase 

comprises identifying and establishing objectives and processes necessary to 

deliver results.  This includes analysing the organisation’s situation, establishing 

overall objectives, setting interim targets and developing plans to achieve them.  

Olson (2002) describes it as adhering to the company mission and vision, and basic 

management objectives based on information gathered through the quality system. 

  
The do phase entails implementing these plans and processes in order to produce 

the product or deliver the service in accordance with the customer’s requirements 

(Olson, 2004).  The goals and set objectives are thus implemented and produced by 

operating the project-specific products and/or services.  The system will thus 

operate and execute in this phase. 

 
The check phase implies the measurement and monitoring of this system, which 

takes place according to information obtained from the customer and the 

organisation.  Actions, documents, deliverables and objectives are reviewed in order 

to improve the system and provide customer satisfaction. 
 

Do 

Check Act 

Plan 

Implement, 

operate 

Monitor, 

review  Maintain, 

improve 

Identify, 

establish 



 
 
Chapter 9  Model verification 

 
 

172 
 

The act phase suggests the actions to continually improve the plans and processes 

for implementing the system.  Successful activities are maintained and less 

successful ones are improved.  This is regarded the key to continual improvement. 

 

As international state of the art, the PDCA cycle is used as the basis for several ISO 

management system standards, for instance the ISO 9001:2000 standard.  For 

further information concerning the correlation between ISO 9001:2000 and the 

PDCA cycle, the reader is referred to Brewer and Nash (2005).  In Table 9.1. the 

SPMSA model is firstly verified by drawing a comparison between the SPM phases 

that form the basis of the model (as depicted in Table 3.2, Chapter 3) and the PDCA 

cycle.  

Table 9.1  PDCA cycle vs SPMSA model 

Key function areas of SPM 
 

 
PDCA 
Cycle Scope 

Manage-
ment 

Time 
Manage-
ment 

Cost  
Manage-
ment 

Quality 
Manage-
ment 

HR 
Manage-
ment 

Communi-
cation 
Manage-
ment 

Risk 
Manage-
ment 

Procure-
ment 
Manage-
ment 

 Initiation Activity 

definition 

   Identification 

and 
planning 

Risk 

identification 

Procure-
ment 
planning 

Plan: 

Identify 

Establish 

Planning Activity 
sequencing 

Duration 

estimation 

Resource  
planning 

Planning Organisa-
tional 
planning 
 

Team 

support 

Risk 

analysis and 

prioritisation 

 

Solicitation 
planning 

Do: 
Imple- 

ment  

Operate 

Definition Time 

schedule 

development 

Cost 

estimation 

Assurance Team 

development

staff 

acquisition 

Information 

Distribution 

Risk   
Manage-
ment 
Planning  

Solicitation 

and source 

selection 

Check: 

Monitor  

Review 

 

Verifica-
tion 

Time 
schedule 
control 

Cost 
budgeting 

Control Manage-

ment: 

Monitor and 
control 

Performance 

Reporting 

 
Monitor 

 

Contract  

administra- 

tion 

Act: 

Maintain, 

improve 

Change 
control 

 Monitor, 
control 

  Admin 

closure 

Resolution Contract 

closure 

 

In the above table, the correlating SPM phases of the SPMSA model are placed 

alternatively in red (if they correlate with the plan phase of the PDCA cycle), green if 
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they correlate with the do phase of the PDCA cycle), blue (if they correlate with the 

check phase of the PDCA cycle) and turquoise (if they correlate with the act phase 

of the PDCA cycle).  From Table 9.1 it is clear that the basic phases of the PDCA 

cycle are clearly represented in the SPMSA model. 

 

Table 9.1 can be generalised by comparing the PDCA cycle to the generic phases 

of software development as reflected in the SPMSA model (compare with Figure 

6.2, Chapter 6).  This comparison is illustrated in Table 9.2 below.  The colour 

coding is similar to the colour coding of Table 9.1. 
 

Table 9.2  PDCA cycle vs generic phases of the SPMSA model 

PDCA cycle Generic phases of software development 

- Identification / initiation, definition of key functions 

Plan Planning for concepts 

Do Analysis, assessment and evaluation of key concepts 

Check Monitoring, control and management 

Act - 

 

The generic phases of software development as reflected in the SPMSA model also 

correlate well with the PDCA cycle.  The first three phases of the PDCA cycle are 

similar to the last three phases of the SPMSA model.   

9.3.2  ISO 10006:2003 
To verify the SPMSA model further, the SPM phases of the SPMSA model (as 

graphically illustrated in Table 3.2) are compared to the processes in the ISO 

10006:2003 standard in Table 9.3.  This comparison is made to determine the 

relevance of the SPMSA model with regard to software project management 

processes.  Thus the SPMSA model is verified against the ISO 10006:2003 

standard, which targets projects specifically – see Table 9.3. 
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Table 9.3  SPMSA model vs ISO 10006:2003 

Colour coding: all processes on:  
Quality management: red  Scope management : turquoise Communication management grey 
Review evaluations: green  Time management: light blue Risk management: olive green 
Resource management : blue Cost management: orange Purchasing management: pink 
ISO  1006:2003 Processes 
 

SPMSA Model 

Non-process clause 
 

  

4 Quality 
management 
systems  

4.1 Project 
characteristics 

4.1.2 
4.1.3 
4.1.4 

Organisations 
Processes in projects 
Project management processes 

Quality 
management 

None 
None 
None 

 4.2 Quality management 
systems 

4.2.1 
4.2.2 
4.2.3 

Quality management principles 
Project quality management 
Quality plan for project 

None 
None 

Quality assurance 
Quality control 
Quality planning 

Processes   
5.Management 
responsibility 

5.2 Strategic process 
5.3 Reviews and progress 
evaluations 

   None 
Performance reporting (communication 
mngment) 

6. Resource 
management 

6.1 
Resource-related 
processes 

6.1.2 
 
6.1.3 

Resource planning 
 
Resource control 

Human  
resource 
management 

Resource planning (cost management) 
Management: monitor and control 
 

 6.2 
Personnel-related 
processes 

6.2.2 
 
6.2.3 
6.2.4 

Establish project organisational 
structure 
Allocation of personnel 
Team development 

 Organisational planning 
 
Staff acquisition 
Team development  

7.Product 
realisation  

7.2 
Interdependency-related 
processes 

7.2.2 
 
7.2.3 
7.2.4 
7.2.5 

Project initiation and management plan 
development 
Interaction management 
Change management 
Process and project closure 

 None   
 
       None 
Change control (scope ) 
Admin closure (communication) 
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 7.3 
Scope-related processes 

7.3.2 
7.3.3 
7.3.4 
 
7.3.5 

Concept development 
Scope development and control 
Definition of activities 
None 
Control of activities 

 
Scope 
Management 

Initiation 
Planning 
Definition 
Verification 
Change control 

 7.4 
Time-related processes 
 

7.4.2 
 
7.4.3 
7.4.4 
7.4.5 

Planning of activity dependencies 
Estimation of duration 
Schedule development 
Schedule control 

 
Time 
Management 

Activity definition and sequencing 
Duration estimation 
Time schedule development 
Time schedule control 
None 

 7.5 
Cost-related processes 

7.5.2 
7.5.3 
7.5.4 

Cost estimation 
Budgeting 
Cost control 

Cost 
Management 

Cost estimation 
Cost budgeting 
Monitor and control 

 7.6 
Communication-related 
processes 

7.6.2 
 
7.6.3 
7.6.4 

Communication planning 
None 
Information management 
Communication control 
None 
None 

Communication
Management 

Identification and planning 
Team support 
Information distribution 
None 
Performance reporting (5) 
Admin closure (7.2.5) 

 7.7 Risk-related 
processes 

7.7.2 
7.7.3 
7.7.4 
7.7.5 

Risk identification 
Risk assessment 
Risk treatment 
Risk control 
None 

Risk 
Management 

Risk identification 
Risk analysis and prioritisation 
Risk planning 
Monitor 
Resolution 

 7.8  
Purchasing-related 
processes 
 

7.8.2 
7.8.3 
 
7.8.4 
7.8.5 
7.8.6 

Purchasing planning and control 
Documentation of purchasing 
requirements 
Supplier evaluation 
Contracting 
Contract control 

Procurement 
Management 

Procurement planning 
Solicitation planning 
Solicitation and 
Source selection 
Contract administration 
Contract closure 

8 Measurement  
analysis  

8.1 
Improvement processes 

 
8.1 

 
Improvement 

  
None 

 8.2 Measurement and 
analysis 

8.2 Measurement and analysis  None 
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The ISO 10006:2003 standard consists of a full and extensive list of clauses.  

Similar to ISO 9001:2000, the ISO 10006:2003 standard consists of eight main 

clauses, 27 sub-clauses and 61 sub-sub clauses.  Main clauses one to three 

concern only descriptive background, such as the scope of the document, 

normative references (which state its correlation with ISO 9001:2000), as well 

as terms and definitions.  These clauses are omitted from Table 9.3, as they 

contain information and not processes to implement.  In the standard, each first 

sub-clause, i.e. 1.1.1, 1.2.1 and 1.3.1 is a general clause, which is also omitted.  

 

In Table 9.3, the correlating phases are placed in a specific similar colour code, 

e.g. if the SPMSA model’s phase correlates with clause 4: Quality management 

of ISO 10006:2003, both the SPMSA model’s phase and the ISO clause are 

placed in red.  Each similar set of processes is colour coded. The colour code 

appears at the top of Table 9.3. 

  

All the key areas in the SPMSA model, namely scope management, time 

management, cost management, quality management, human resource 

management, communication management, risk management and 

procurement management are reflected in the standard.   

 

Table 9.4 lists the clauses in ISO 10006:2003 that are not reflected in the 

SPMSA model.   

 

Table 9.4  ISO 10006:2003 clauses not reflected in the SPMSA model 

 ISO 10006:2003 clauses with no equivalent in SPMSA model 
4 Quality 

management 

4.1 Project 

characteristics 

4.2.1  Principles  

5  Management 

responsibility 

5.2 Strategic process  

7 Project 7.2 Interdependency- 7.2.2 Project initiation, management 
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 ISO 10006:2003 clauses with no equivalent in SPMSA model 
realisation related processes plan 

7.2.3 Interaction management 

  7.3.3 Scope development and control 

  7.6.4 Communication control 

  7.7.4  Risk treatment 

  7.8.3 Documentation of purchasing 

requirements 

7.8.6 Contract control 

 8.1 Improvement 

processes 

8.2 Measurement 

analysis 

8.3 Continual 

improvement 

 

 

 

 

8.3.1 Continual improvement 

 

From Table 9.4 it is clear that ISO 10006:2003 additionally lists Quality 

Management (clause 4), Management responsibility (clause 5), Product 

realisation (clause 7) and Measurement analysis and improvement (clause 8) 

as separate clauses. 

 

Table 9.5 lists the processes in SPMSA that are not reflected in ISO 

10006:2003. 

 

Table 9.5  SPMSA processes not reflected in ISO 10006:2003 

SPMSA processes not reflected in ISO 10006:2003 
Quality management Quality assurance  

Quality control  

Scope management Scope planning 

Scope verification 

Communication management Communication identification 

Team support 
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SPMSA processes not reflected in ISO 10006:2003 
Risk management Risk planning 

Risk resolution 

Procurement management Solicitation planning 

Contract closure 

 

Table 9.5 illustrates that the SPMSA model contains ten processes that are not 

reflected in the ISO model.  As shown in Table 9.3, the majority of processes in 

the SPMSA model correlate with processes in ISO 10006:2003.  Furthermore, 

the eight core and facilitating functions of the SPMSA model are reflected in the 

ISO 10006:2003 standard. 

 

The above comparisons clearly indicate that the phases of the SPMSA model 

conform to the ISO 10006:2003 standard.  The SPMSA model is therefore 

substantiated as conforming to a recognised ISO standard and as such can be 

justified to be applied to the software project management area.  The SPMSA 

model addresses the shortcomings in current SPM applications and the 

underlying technology, namely agent technology, will support the unique nature 

and changing environment of SPM. 

  

9.4 CONCLUSION 
Chapter 9 concludes Part III of this thesis.  Part III was devoted to compiling the 

SPMSA model.  As ‘proof of concept’, a prototype based on a section of the 

model was designed and implemented.  Thereafter the model was verified 

against the PDCA cycle, as well as against the ISO 10006:2003 standard.  

Since the PDCA cycle is regarded as the basis of ISO 9000:2001, the SPMSA 

model was compared to the PDCA cycle with good results.  Furthermore, the 

SPMSA model was compared to the processes prescribed in the ISO 

10006:2003 standard, with excellent results.  It can consequently be concluded 

that the SPMSA model complies with industry standards and can be adopted – 

with minor changes – in the SPM area.   
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10.1 INTRODUCTION 
The aim of this concluding chapter is to reflect on the objectives of the present study 

and to determine the extent to which these objectives have been met.  The research 

questions will therefore be re-examined to ascertain whether they have indeed been 

answered.  Finally, areas of further research will be identified. 

10.2 RESEARCH OVERVIEW 
This research study explored the processes and procedures associated with 

software project management (SPM) and the ensuing thesis is aimed at making a 

contribution to enhancing SPM.  Problems and challenges in this area were 

identified and a solution was sought by exploring software agent technology as a 

new paradigm for supporting SPM processes.  An SPM model was accordingly 

compiled, which enhances SPM processes by incorporating a software agent 

technology framework to address the shortcomings in this area. 

 

Although the research in hand is aimed at software practitioners and software 

developers, it will also be beneficial to researchers working in the field of SPM.  The 

development of software projects that support crucial business activities may serve 

to attain a competitive advantage for an organisation. The quality of the software 

development process determines the success or failure of many business solutions.  

Thus, the quality of the software development process, as well as improvements in 

the development of project management software can result in a significant 

improvement in software quality (Schwalbe, 2006).   

 

As indicated above, the main issues to be addressed in this study (as reflected in 

Chapter 1) will be re-examined to determine the extent to which they have been 

resolved.  
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10.2.1 Do standard SPM practices take into account the 
unique nature and changing environment of 
software projects (SP)? 

In the same way that business organisations have grown and evolved over time, 

computer technology has evolved – yet far more radically. Hence, the science of 

software project management has had to change and adapt.  The discipline of 

software project management has grown, and together with it, standards, 

methodologies, best practices and bodies of knowledge. Despite this, software 

project failures are still common.  The increased level of interconnectivity, 

distribution and processing obviously creates vast challenges in the SPM arena. 

 

The wide range of application areas of software projects and various technologies 

contributes to the challenges and problems of managing these systems.  The area 

of SPM has changed due to several factors, such as globalisation, advances in 

computing technology, outsourcing and virtual distributed teamwork.  It is clear from 

many failed or non-satisfactory projects that standard SPM practices fail to support 

the changes.  

 

Standard SPM practices also fail to address the diverse, unique and changing 

nature of SPM.  Characteristics that are unique to software projects are their 

invisibility, complexity, conformity and flexibility.  These aspects contribute to the 

difficulty in clearly pinpointing a software project as an exact task with a specific 

beginning, an end and deliverables.   

 

The dynamically changing environment of SPM further adds to the complexity of 

these systems, resulting in higher levels of interconnectivity, higher levels of sharing 

data and knowledge, task tracking and monitoring.  These issues should be 

optimally supported by SPM processes so as to enable project managers to 

concentrate on crucial issues and strive for lower failure and higher success rates in 

software projects. 
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Development methods should thus take full cognisance of this unique nature and 

changing environment of SPM.  It can be concluded that traditional SPM methods 

do not address the added complexities found in an ever-evolving distributed 

environment.   

10.2.2 How can SPM processes be supported and 
enhanced in a distributed environment?  

The processes and functions in the SPM environment were explored and discussed 

to delineate various SPM processes and functions.  The aim was to get a clear 

picture of the entire SPM process in an effort to determine the aspects that cause 

project failure.  In order to determine how SPM processes can be enhanced and 

supported, these processes and functions must be clearly understood. 

  

A paradigm is needed that will support the unique nature and dynamic changing 

environment of the SPM arena.  For this reason software agent computing was 

investigated.  Software agents are adaptive, flexible, pro-active, reactive, and have a 

collaborative, social nature.  Furthermore, software agent technology can address 

developments such as changing environments, e-business and Internet 

applications, varying team structures, and open and dynamic environments 

consisting of heterogeneous components that must interact and span organisational 

boundaries.  These aspects, for instance dynamic, open and distributed 

environments, are typical features of the software project management arena.  

Agent behaviour can furthermore be used to support individual team members in 

numerous tasks, such as coordination and cooperation with team members, 

document retrieval and distribution, workflow monitoring and control, scheduling and 

organising meetings, reminders for tasks and overdue dates or deliverables.  

 

It can be concluded that software agent technology is suitable for addressing the 

various unique features of SPM.  Software agent technology provides a suitable 

framework for supporting and enhancing SPM processes in a complex distributed 

environment.  Flexible management in an ever-changing organisational structure 
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such as dealt with in SPM is suitably addressed by the computational mechanism of 

agent systems.       

10.2.3 Has software agent technology been applied to the 
SPM environment? 

Agent technology has been applied to various development areas, such as network 

and system management, decision and logic support, interest matching, data 

collection in distributed and heterogeneous environments, searching and filtering, 

negotiating, and monitoring.  Although agent technology has indeed been applied to 

the SPM environment, it has not been applied to the whole spectrum, i.e. to all core 

and facilitating functions of SPM.  Agents in SPM applications are typically 

constrained to one or two of the core and facilitating functions, such as planning, 

scheduling, human resource management or communication.  This is an unfortunate 

limitation of current software agent applications. Supporting and enhancing the 

whole spectrum of SPM processes by software agents could provide software 

project managers with significant advantages over contemporary methods.  For 

example, the coordination and cooperation of teams that integrate the whole 

spectrum of functionality of a distributed project will be supported and enhanced by 

the agent features highlighted in this thesis. 

10.2.4 How can software agent technology be 
incorporated and utilised by SPM to enhance the 
entire SPM environment?   

It has been established that agent technology is suitable to supporting SPM.  The 

key areas of SPM were explored and the phases adapted to compile a 

comprehensive model of SPM functionality to be supported by software agent 

technology.  The model, entitled the SPMSA (Software Project Management 

supported by Software Agents) model was developed, and it enhances and supports 

all core and facilitating functions of SPM through utilising an agent framework.  The 

SPMSA model consequently addresses the entire spectrum of software project 

management.  It is unique as it supports each key function of SPM with a team of 
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software agents.  This model is thus specifically tailored to provide support for the 

constantly changing environment and the unique features of SPM.   

  

A prototype (JPMPS) of a section of the SPMSA model was implemented as ‘proof 

of concept’ and was tested in a true-life project.  The SPMSA model was 

furthermore verified against the PDCA cycle, as well as against the ISO 10006:2003 

standard to substantiate its relevance.  These comparisons reflected favourably on 

the SPMSA model, and it was concluded that the SPMSA model would be suitable 

to support and enhance the entire SPM environment. 

10.3 CONTRIBUTION OF SPMSA MODEL 
The SPMSA model was compiled to enhance standard SPM practices and address 

challenges encountered due to the unique and changing environment of SPM.   

 

Software project management is characterised by invisibility, complexity, conformity 

and flexibility.  The SPMSA model is specifically tailored to address each of these 

unique features through the agent framework.  As is evident from work presented in 

this thesis, agent technology is extremely suitable to handle complex and 

dynamically changing environments.  Furthermore, it limits the impact of the 

invisibility of projects through agent support.  In other words, by continuous 

prompting for task status to identify risks, it supports the management of tasks as a 

whole.  Additionally, agents will provide continuous support to address the 

distributed SPM environment by executing asynchronously and autonomously, thus 

lessening network load and communication overhead.  The software agent 

environment will support dynamic changing and relocation of team members, as 

found in a distributed project. 

  

A software agent framework will improve automated control and support human 

interaction by automating workflow management and process coordination.  Team 

interaction will be supported by agents that interact towards a similar goal, 

supporting coordination and collaboration.   
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Furthermore, agents will excellently address and manage complex tasks through the 

automation of calculations, dynamic reporting, and the continuous monitoring of 

maintenance, progress status, as well as risks.  Agents can also provide intelligent 

support for software projects (e.g. acting as bidding and negotiating agents) and 

through dynamic resource allocation.  Individual team members can also be 

supported by a personal assistant agent for each team member. 

 

Finally, the SPMSA model supports and enhances the entire environment of the 

SPM arena.  Each key feature of SPM is supported by a team of software agents. 

10.4 FUTURE RESEARCH 
It has to be conceded that there are limitations and challenges to the model, 

technology and the prototype.  Limitations that were identified can however be 

explored and will open up new areas for further research. The following limitations 

and areas of further research exist: 

 

The possibilities of the model’s interaction with current project management 

application packages have not been explored in this study.  Further research could 

test the model to tried and tested SPM applications. 

 

The knowledge areas of SPM as depicted in Table 3.2 have been compiled by the 

researcher.  There are a few minor differences between this representation and that 

of PMBOK (2004).  The project management integration function may be regarded 

as separate function as prescribed by PMBOK (2004).  Additionally administrative 

closure could be included in the integration management function.  Table 3.2 and 

Table 9.1 may be expanded to include this function to be supported by an agent 

framework.  This may be addressed in further research. 

 

The current research does not entail a study on the most effective use of agent 

technology.  The agent design will determine the efficiency and effectiveness of the 

system.  Too large an amount of code or functionality within one agent might reflect 
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negatively on the system.  Thus, another area for future research will be to 

implement more functions and test the trade-off between thin agents with less 

functionality or larger agents with more functionality. 

 

Agent analysis and design methodologies are being developed but are still without a 

set standard for development methods and techniques.  No standard method is 

available for the analysis and design of agent systems.  This could lead to 

interesting further research.  AML (extension of UML) has been developed and 

could be tested for diagramming efficiency.  Standards are limited and uniform 

development methods scarce.   

 

The prototype in this research study implements only a section of one of the SPM 

processes.  The SPMSA model covers the entire SPM spectrum.  Thus, as further 

research, the prototype could be expanded to implement the entire SPMSA model. 

 

The prototype furthermore implements the section of the SPMSA model in one 

agent platform, namely JADE based on JAVA.  This could also be implemented in 

other environments, such as C# or agent platforms to test effectiveness, robustness 

and scalability.  Researchers are currently involved in exploring various trade-offs of 

agent design.  
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Numerous software development projects do not live up to expectations or sadly fail.  This can be seen in the fact that software 
projects often do not comply with the traditional standard measurements of success, namely time, cost and specifications.  
Traditionally, individual software projects were executed at a single location.  However, due to globalisation and advances in 
computing technologies, this has changed, and software projects are developed and deployed in distributed and collaborative 
environments. This means that traditional project management methods cannot and do not address the added complexities found in a 
distributed environment, such as efficient task scheduling, tracking and monitoring, as well as effective sharing of information and 
knowledge among project contributors.  High levels of collaboration, task interdependence and distribution have become essential 
across time, space and technology.  In this paper the utilisation of stationary and mobile software agents is investigated as a potential 
tool to improve software project management processes.  We also propose and discuss a software agent framework to support 
distributed software project management.  Although still in its initial phases, this research shows promise of significant results in 
enabling software developers to meet market expectations, and produce projects timeously, within budget and to users’ satisfaction 
 
Categories and Subject Descriptors: D1.3 [Programming Techniques]: Concurrent Programming - Distributed Programming; 
Concurrent Programming; K6.1 [Management of Computing and Information Systems]: Project and People Management - 
Systems development; Strategic information planning;  K6.3 [Management of Computing and Information Systems]: Software 
Management - Software process. 
General Terms: Design, Experimentation, Management  
Additional Key Words and Phrases: Software agent computing, Software project management, Collaborative distributed software 
projects. 
______________________________________________________________________________________ 
 
 

1. INTRODUCTION 

Software applications are integrated into almost every business application today. It is the quality, 
effectiveness and efficiency of these applications that determine the success or failure of many business 
solutions. As a result, businesses often find that they need to attain a competitive advantage through the 
development of software projects that support crucial business activities.  The quality of a software project 
is determined by the quality of the software development process.  Improvements in the development 
process can result in significant improvement in software quality [Schwalbe 2000].  
Over the past few decades, software projects generally failed to come up to user expectations, were 
commonly delivered late, and mostly ran over the set budget.  Indeed, much of this still holds true today, 
and it has alerted software developers and managers to the fact that these issues have to be addressed in 
concrete terms, and as a result the field of Software Project Management (SPM) has evolved.  SPM 
involves the management of all aspects and issues that are involved in the development of a software 
project, namely scope and objective identification, planning, evaluation, project development approaches, 
software effort and cost estimation, activity planning, monitoring and control, risk management, resource 
allocation and control, as well as managing contracts, teams of people and quality.  Initially, traditional 
Project Management (PM) techniques were applied to the development of software projects.   Different 
standard project management approaches exist, which are applicable to different areas of SPM, such as 
PRINCE 2, BS 6079.  However, over time PM methods seemed to lack in the ability to address the unique 
characteristics of the software development arena [Hughes and Cotterell 2002]. This led to the development 
of SPM as an independent application area and field of study. 

 
In order to address the existing shortcomings in managing software projects, practitioners also attempted to 
apply several Software Engineering principles to different SPM  processes [Lethbridge and Laganiere 
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2000].  They explored standard structured analysis and design methods, and also incorporated object-
oriented approaches to overcome the aforementioned shortcomings [Gelbard et al. 2002; Lethbridge and 
Laganiere 2000].  Yet disappointment remained since many software projects still failed to comply with the 
triple constraints of scope, time and cost [Oghma:Open Source 2003].  The triple constraints refer to the 
fact that the failure of software projects can mostly be attributed to the fact that they are not delivered on 
time and do not meet the expectations of the client (scope), and as a result have cost implications. 

The SPM environment is rapidly changing due to globalisation and advances in computing technology.  
This implies that the traditional single project, which was commonly executed at a single location, has 
evolved into distributed, collaborative projects.  The focus in the SPM processes has clearly shifted from 
the position that it held two decades ago.  Consequently, tools for effective sharing of information and 
knowledge among project contributors, as well as efficient task scheduling, tracking and monitoring are 
sorely needed.  High levels of collaboration, task interdependence and distribution have become essential 
across time, space and technology [Chen et al. 2003].   

A promising solution to addressing software management problems in a distributed environment is offered 
by software agent technology.  According to this technology, software agents are used to support the 
development of SPM systems in which data, control, expertise, or resources are distributed.  Software agent 
technology provides a natural metaphor for support in a team environment, where software agents can 
monitor and coordinate events and meetings and distribute documentation [Balasubramanian 2001]. 

SPM skills, especially in the distributed computing environment, are greatly in demand.  Moreover, there is 
a desperate need for technologies and systems to support the management of software projects in these 
environments. Our research is therefore aimed at software practitioners and software developers, but will 
also be beneficial to researchers working in the field of SPM. 

In this paper the use of software agents is investigated as a potential tool to improve the SPM processes.  
We concern ourselves with the question of how software agents can be used to improve SPM processes in a 
distributed environment.  As a result, we propose a software agent framework to support distributed SPM.  
Although our research is not yet complete, initial indications are that it will be significant in enabling 
software developers to meet market expectations, which will bring about savings in cost, time and effort. 

Section 2 contains a background study and a discussion on research in this area. Section 3 provides a 
generic-type framework for one of the key SPM processes.  This framework can be adapted to support all 
SPM processes and further extended using a (similar) multi-agent grid structure framework to coordinate 
the individual processes. Finally, Section 4 presents a conclusion. 

 
2. BACKGROUND 

2.1 Software Agents 
 
A software agent is a computer program that is capable of autonomous (or at least semi-autonomous) 
actions in pursuit of a specific goal. The autonomy characteristic of a software agent distinguishes it from 
general software programs. Autonomy in agents implies that the software agent has the ability to perform its 
tasks without direct control, or at least with minimum supervision, in which case it will be a semi-
autonomous software agent. Software agents can be grouped, according to specific characteristics, into 
different software agent classes. Literature does not agree on the different types or classes of software 
agents. For example, Krupansky [2003] distinguishes between ten different types of software agents, while 
the Oghma Open Source [2003] web site identifies sixteen different types of software agents. Because 
software agents are commonly classified according to a set of characteristics, different classes of software 
agents often overlap, implying that a software agent might belong to more than one class at a time. For the 
purpose of this research, we distinguish between two simple classes of software agents, namely stationary 
agents and mobile agents. Agents in both these classes might, or might not have, any or a combination of 
the following characteristics: a user interface, intelligence, adaptivity, flexibility and collaborative 
properties.  
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other agents 
or hosts. User interfaces are commonly only found where agents interact with humans. According to 
Woolridge [2001] intelligence implies the inclusion of at least three distinct properties, namely reactivity, 
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proactiveness and social ability. Reactivity refers to the agent’s ability to perceive its environment and 
respond timeously to changes that occur in order to achieve its design goals. Proactiveness is the agent’s 
ability to take initiative in its environment in order to achieve its design goals. Social ability alludes to the 
collaborative nature of the agent. There are different definitions to define the collaborative nature of 
software agents. For the purpose of this paper we use Croft’s [1997] definition in which the collaborative 
nature of a software agent refers to the agent’s ability to share information or barter for specialized services 
to cause a deliberate synergism amongst agents. It is expected of most agents to have a strong collaborative 
without necessarily implying other intelligence properties. Adaptivity is a characteristic that can also be 
regarded as an intelligence property, although it is not counted as a prerequisite to identify an agent as 
intelligent. Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences. 
An agent is considered flexible when it can dynamically choose which actions to invoke, and what 
sequence, in response to the state of its external environment [Pai et al. 2000]. 

We consider a stationary agent to be a piece of autonomous (or semi-autonomous) software that 
permanently resides on a particular host. Such an agent performs tasks on its host machine such as 
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security 
policies and so forth. 

We consider a mobile agent to be a software agent that has the ability to transport itself from one host to 
another in a network. The ability to travel allows a mobile agent to move itself to a host that contains an 
object with which the agent wants to interact, and then to take advantage of the computing resources of the 
object’s host in order to interact with that object. Full autononomy, migratability and collaborativeness are 
the most important characteristics that should be imbedded in each mobile agent. When a mobile agent 
possesses these three intelligence requirements, it is often referred to as a robot [Krupansky 2003]. 

 
2.2 Software Project Management 

 
The IEEE defines SPM as the process of planning, organizing, staffing, monitoring, controlling, and 
leading a software project [IEEE Standards Board 1987]. A more detailed exposition shows that SPM 
involves the planning, monitoring and controlling of people and processes that are involved in the creation 
of executable programs, related data and documentation [Elec 4704 2003].  Figure 1 illustrates these issues 
in a framework that contains the key elements in the field of SPM. We distinguish between three key 
elements: project stakeholders, project management knowledge areas, and project management tools and 
techniques. 
The project stakeholders are the people involved in all the different project activities and include the project 
sponsor, project team, support staff, customers, users, suppliers and even opponents. Good relationships, as 
well as communication and coordination between all of these stakeholders, are essential to ensure that the 
needs and expectations of stakeholders are understood and met. Knowledge areas include the key 
competencies concerned during the software project management process. The core functions, namely 
scope, time, cost and quality management lead to specific project objectives and are supported by the 
facilitating functions. The facilitating functions represent the means through which different objectives are 
to be met and include human resource management, communication, risk, and procurement management. 
Stretched across all these knowledge areas are the project management tool and techniques (on the right-
hand side of the framework diagram). These are used to assist team members and project managers in 
carrying out their respective tasks. 

This framework refers to the SPM of a single project, in which the SPM manager allocates tasks and gives 
instructions to various role players. However, as mentioned earlier, factors such as business globalisation, 
rapid technology advancement, and distributed team membership have influenced the SPM environment to 
such an extent that traditional tools and techniques supporting the key management areas are no longer 
adequate [Chen et al.2003]. For example, the focus of the communication and cooperating mechanisms has 
changed. As a result, the communication between various role players is not sufficiently supported in this 
environment  to coordinate and schedule activities, and support document distribution. The 1995 Standish 
Group study found that the three major factors related to information technology project success were user 
involvement, executive management support and a clear statement of requirements [Krupansky 2003]. All 
these depend on having good communication and coordination skills among the stakeholders. Poor, 
ineffective or untimely communication, contradictions, omissions, failure to notify all of meetings and 
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decisions, and failure to store information are often cited as reasons for projects failing or running over 
time.  Traditional reporting tools use a simple passive reporting mechanism, which does not provide 
sufficient reporting support to a collaborative distributed system [Chen et al.2003]. Communication is, 
however, enhanced and supported by the use of a common repository. A paper-based repository has several 
disadvantages, such as retrieval delays, lost documentation and error-proneness, but most of all, may result 
in insufficient project documentation in the distributed environment. Another common problem in 
communication is that many project processes, contexts, rationales, or artefacts may not be captured at all. 
An electronic repository might overcome some of these disadvantages. 

 
2.3 Software Agents in SPM 

 
Software agent technology is being explored as a promising way to support and implement complex 
distributed systems. Using software agents for SPM processes is a new field of research and as such, 
literature in this regard is not commonly available. However, some work on using agents has been done to 
address at least some of the aspects of SPM. In this section, the authors briefly consider how agent 
technology is currently being deployed in SPM by considering some application examples. 
The first application that we mention is intended for the broader project management environment, and is 
not specific to the SPM environment. Nevertheless, we refer to this example as it applies agent technology 
to scheduling tasks, which are common to both environments.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Software Project Management Framework (adapted from Schwalbe). 

  

Furthermore, the authors find it worthy of mention it since it is focussed on in the distributed environment. 
In recent work, Sauer & Applerath [2003] presented an approach that involves using a generic agent 
framework to support the scheduling tasks within the supply chain in the PM environment. The framework 
allows for the consistent design of agents that reside on several levels of the organization. To prevent 
communication overhead (found in earlier multi-agent systems), agent teams are formed. All the agents in a 
team then collaborate to solve a specific scheduling task on a particular level. Furthermore, every agent (in 
its personal capacity) is also responsible for a specific schedule (the schedule of the resources that it 
represents). Therefore each agent is provided with the scheduling knowledge that is necessary to create or 
maintain the schedule without contacting the members of the team. 

In another example, Maurer [1996] proposes a system (the CoMo Kit) in which methods and tools were 
developed to plan and manage complex workflows, especially in design domains. According to this system, 
tasks can be decomposed into subtasks and for every task, several alternative decompositions (methods) 
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can be defined. Every task is associated with a set of agents, humans or computers, which are able to solve 
it. The problem-solving process, for example the application of methods to tasks, is distributed via a local 
area network. The proposed system uses agent technology as a tool for planning, coordinating and 
designing process execution.  This approach follows a centralised black-box agent approach. The system 
architecture consist of a modeller, which does project planning; a scheduler, which supports project 
execution and manages information produced; and an information assistant that allows access to the current 
state of the project. During SPM, the modeller gathers information through interaction with the project 
manager or other stakeholders, and as a result presents a model of this information to the scheduler as 
input. The scheduler then manages agendas that contain the tasks to be carried out by an agent. To work on 
the task, the agent can access all relevant information (using the information assistant) for solving the 
problem. 

 

3. SPM FRAMEWORK SUPPORTED BY SOFTWARE AGENT TECHNOLOGY 

 
As described earlier, the software project management environment has changed in the past decade into a 
dynamic and complex environment where flexible and adaptive behaviour and management techniques are 
required. Agent-based solutions are exactly applicable to this environment since they are appropriate in 
highly dynamic, complex, centralised as well as distributed situations. In addition to the advantages of 
distributed and concurrent problem-solving, agent technology has the advantage of sophisticated patterns of 
interaction, namely cooperation, coordination and negotiation [Hall et al. 2003]. 
Before discussing our proposed SPM framework, we briefly reconsider the distinct knowledge areas and 
practices entailed in software project management (illustrated in Figure 1), to emphasise the focus of our 
work for this paper. The SPM management areas consist of four objective functions and four facilitator 
functions. The solution presented by Sauer and Applerath [2003] primarily focuses on the Time 
Management and certain aspects of the Communication Management functions. Maurer’s solution [1996] is 
applicable to the Scope Management, Time Management and to a certain extent the Communication 
Management functions. We believe that each of these key processes/functions could successfully be 
addressed by following a black box approach that is based on agent technology. Each black box consists of 
collaborative software agents ensuring cooperation, coordination and synergy between the different black 
boxes. Within such a black box a component-based development approach is followed. According to this 
approach, we use multiple (simple) agents, each with a particular objective, rather than fewer (complex) 
agents of which each has a long list of tasks to accomplish. For the purpose of this paper, we discuss our 
approach to only one of the SPM key processes, namely Communications Management, and describe the 
agent framework to accomplish the so called black box for this process. 

Communications Management in a software project is an enabling and supporting action that ensures 
timely and appropriate generation, collection, dissemination, storage and disposition of project information 
[Schwalbe 2000]. Effective communication and sharing of information and knowledge among project 
contributors are needed. Schwalbe [2000] identifies five distinct functions associated with Communications 
Management, namely (1) communications planning; (2) information distribution; (3) performance 
reporting; (4) administrative closure; and (5) teamwork support. The communications planning function 
determines the who, when and how of the project, while the information distribution function entails 
disseminating information to keep all the stakeholders informed. Performance reporting alludes to the 
generation of reports such as status, progress and forecasting reports, while the administrative closure 
function involves project archiving and formal acceptance of reports. Finally the teamwork support 
function refers to the functions pertaining to collaborative project tasks, and hence includes the scheduling 
of meetings for these collaborative tasks.  It therefore facilitates a collaborative working environment as 
well as document distribution. 

To describe how software agents can be used to address the different functions of Communications 
Management, we use a set of agent teams to address the individual functions and then define specialised 
software agents operating within these teams, or on their own where applicable. In defining these 
specialised software agents, we find that it is less intricate to design the behaviour of each agent. 
Furthermore, the specialised agents also make it possible to describe the various interactions between 
different agents explicitly, which in turn reduces the general complexity of the agent system. The various 
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programming patterns [Aridor and Lange 1998; Kendall et al. 2000; Tahara et al.1999] available, 
accomplish specific agent-associated tasks, such as creation, migration, suspension, and collaboration.  The 
design of the overall system, based on components (specialised agents) simplify the design and 
programming of agents. The following specialised working agents are used: 

− Messaging agent: an agent responsible for carrying messages between different agent teams. A 
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the 
different agent teams may work in a distributed environment. 

− Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accomplish his 
or her tasks by providing maximum assistance. This agent also has a collaborative nature, and relies on 
other agents to provide it with the information that it needs to sustain its owner. The PA agent is not 
computer-bound, but human-bound, as its stakeholders may be required to work on different computers 
when working in a distributed environment. 

− Task agent: an agent that supports a specific project task. This agent collaborates with other objective 
and facilitator functions to support a specific task. This agent is commonly invoked by a PA agent to 
allow a stakeholder to work on a specific task, and is continuously monitored by a monitoring agent. 

− Monitoring agent: an agent responsible for monitoring tasks, reporting back to the communications 
planning and information distribution functions where scheduling and rescheduling of tasks as well as 
the notification of stakeholders can take place. A monitoring agent is mobile, with intelligence, 
flexibility and strong collaborative properties. 

− Client agent: a stationary agent responsible for a specialised task such as information retrieval or 
gathering. Client agents may or may not have intelligence, depending on their specific task, but must 
have a collaborative nature to interact with other agents in their agent team. 

− Team Manager agent: an agent that is responsible for managing a team of agents, ensuring 
coordination between the sub-tasks of the different members of a team to accomplish the objective of 
the agent team. 

 

Figure 2 illustrates the main operations in the Management Communications function and how agent teams 
cooperate to accomplish the objectives of these operations. 

 

The software project manager, or other designated stakeholders, interacts with the communications 
planning function through a special user interface. This user interface, which sits on top of the 
communications planning function, uses personal agents, task agents and messaging agents. The interface 
assigns a personal agent to the user who has supervision rights over other personal agents. During 
interaction with the interface, the user defines team members or relevant stakeholders as well as the tasks 
that are assigned to them, and defines milestones, objectives, et cetera.  
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Figure 2: SPM Communication Management function supported by software agent technology. 

 

The interface then assigns a personal agent to each person, to be invoked with a user name and password. 
(For simplicity’s sake, the username and password could be the same as a person’s network login Id and 
password, but the choice depends on the individual, or the manager, should he or she decide differently for 
the sake of security.) Required  schedules and resources may be allocated at this stage or omitted if it is 
assumed that the Time Management agent system will do detailed scheduling. Client and task agents are 
used for automation where necessary, for example to do resource allocation, or calculations. Once the user 
has entered the required information into the system, messaging agents take the information to a central 
repository and the information distribution function 

The information distribution function uses an agent team that consists of messaging agents, task agents, 
client agents and a team manager agent. The agent team of this function accepts incoming messaging 
agents from the user interface and uses its own messaging agents to interact with the stakeholders, the 
teamwork support function and the administrative closure function. It uses client agents to gather 
information from the incoming messaging agents and task agents to perform information integration and 
coordination. 

In addition to the three primary intelligence properties, client (and task) agents at this level must also be 
adaptable in the sense that they remember specific properties of personal agents from previous work on the 
project, or even from previous projects and as a result, adjust their computing (based on a generic model) to 
integrate these characteristics. The above intelligence properties also imply flexibility. Developing these 
agents with the suggested intelligent properties is not a simple task, but since generic patterns exist for 
many of the other agents, more time can potentially be spent on this part of the development of the SPM 
tool. 

As before, task agents are included for specialised computing tasks. For the information distribution 
function, task agents may or may not be included at this level, depending on the elaborativeness of the 
client agents.  We advocate the use of task agents to simplify the design and improve the maintenance of 
the SPM tool software. As mentioned before, the client agent typically has a number of functions including 

ST
A

K
EH

O
LD

ER
S 

User Interface 

Performance 
Reporting 

Administrative 
closure 

Information 
Distribution 

Repositor

Teamwork 
Support

User Interface 

Communication 
Planning 



 
Proceedings of SAICSIT 

 APPENDIX A  A-9 
 

interacting with (and thus receiving) incoming messaging agents, understanding (interpreting) incoming 
information, translating incoming information to a syntax that makes it processable, processing the 
incoming information, and deciding on distribution conduct (based on its generic approach to handling 
information as well as previous knowledge and experience). The client agent is also tasked with the 
responsibility to interact with the outgoing messaging agents, which must disseminate the processed 
information, and must also send the information to the administrative closure function that interacts with 
the central repository as well as with the teamwork support function. To simplify the design of a client 
agent, these individual tasks can be designed as task agents reporting to the client agent via the team 
manager agent. 

The performing reporting agents, responsible for generating reports, commonly include client agents and 
messaging agents. Should this function use the same approach as advocated above, task agents are also to 
be included. A decision on whether or not to follow this approach depends on the complexity of the 
expected reports. The messaging agents interact with the information distribution function and 
administrative closure functions. In the first instance, mobile agents provide the reports to the information 
distribution function for dissemination, while they also present the report information to the administrative 
closure function for storing and archiving procedures, maintaining system persistence. 

The teamwork support function is primarily responsible for collaborative scheduling tasks. Agents 
associated with scheduling are monitoring agents, personal assistant agents, client agents (and task agents 
where applicable), as well as messaging agents. Messaging agents are defined as before. Monitoring agents 
are responsible for monitoring the incoming messages from messaging agents in order to determine the 
necessity or urgency to suggest new or earlier meeting schedules than those already being scheduled during 
the previous communication rounds, or by the teamwork support function. The primary responsibilities of 
the client and task agents are to facilitate teamwork, perform scheduling task on teamwork, and distribute 
collaborative documents. When an individual team member works on a collaborative document, his or her 
personal assistant agent must be cognisant of any extraordinary circumstances when the user is falling 
behind schedule. This could for example be done by special-prompting-task-agents asking specific 
questions or monitoring agents comparing set dates to real dates. The personal assistant agent passes this 
information to the (manager) monitoring agent, which either sends the agent to the general client agent at 
this level, or makes special suggestions with regard to extraordinary meetings to be scheduled. A user 
interface is available at this level through which team members can interact with the collaborative task 
environment. 

The administrative closure function interacts between the performance reporting function and the central 
repository. It also keeps a history through the use of monitoring agents to coordinate incoming reports 
before storing or archiving the information to the central repository. As expected, this function includes 
both messaging agents and client agents (potentially also task agents to assist the client agents) to 
coordinate the incoming reports and archiving processes. 

 
4. CONCLUSIONS 

The advances in computing technology have evolved over the past decade to a point where distributed 
computing has become the de facto working platform. This has changed the characteristics of SPM, and as 
a result, the traditional methods and techniques of SPM do not meet the new requirements posed by this 
new working platform. Software agent technology, although primarily applied to other fields, such as e-
commerce, information retrieval and network management, is ideally suited to meeting the new challenges 
faced by the SPM characteristics such as appropriate tools for effective sharing of information and 
knowledge among project contributors, as well as efficient distributed task scheduling, tracking and 
monitoring mechanisms. In this paper we investigated an approach to using software agent technology to 
address these challenges. We also focussed on one of the key elements of SPM and designed a generic 
agent framework to address all the tasks of this key element. This framework forms a basis for other key 
elements, and could easily be adapted into individual frameworks and then coordinated by an overall multi-
agent system to achieve the objectives of SPM. Our framework followed an approach of agent teams being 
composed of specialised software agents, each tasked with a manageable (atomic) task. This implied that 
the complexity of creating and maintaining tasks could be greatly reduced. Although we have not yet 
completed the programming of the proposed system, we believe that our solution is significant, based on 
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our experience in other fields that advocate component-based development. We do, however, recognize the 
fact that programming of the model will have to be completed and the model thoroughly tested against 
other SPM tools before its true value will become apparent. 
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ABSTRACT 
 
The software project management environment is rapidly changing due to globalisation and advances 
in computing technologies. Currently software projects are developed and deployed in distributed and 
collaborative environments. This means that traditional project management methods cannot and do not 
address the added complexities found in a distributed environment, such as effective sharing of 
information, messages and knowledge among project contributors, as well as efficient task scheduling, 
tracking and monitoring. Numerous software development projects do not live up to expectations or 
sadly fail. This is demonstrated by the fact that software projects often do not comply with the 
traditional standard measurements of success, namely time, cost and specifications. In this paper the 
utilisation of stationary and mobile software agents is investigated as a potential tool to improve 
software project risk management. We also propose and discuss a software agent framework to support 
risk management. Although still in its initial phases, this research shows promise of significant results 
in enabling software developers to meet market expectations, and produce projects timeously, within 
budget and to users’ satisfaction, while ameliorating the risk associated with software project 
development.  

 
1 INTRODUCTION 
Computing technology is becoming faster, less expensive and more reliable, however, the 

complexities and risks of software projects continue to increase (Marchewka, 2003.)  Over the past two 
decades, software projects generally failed to satisfy user expectations, were commonly delivered late, 
and mostly ran over the set budget. The Standish Group (2000) studied 13,522 projects since their 
famous 1995 report in a follow-up survey, dubbed the EXTREME CHAOS report (2000). This study 
determined that 23 percent of the surveyed projects failed, 49 percent did not meet the requirements 
and only 28 percent succeeded.  In March 2003 the group reported that success rates increased to a 
third of all projects, but time overruns now measure 82 percent, whilst only 52 percent of required and 
specified functions and features were included in the final product.  

Software developers and managers are alerted to the fact that these issues have to be addressed in 
concrete terms.  Initially, techniques utilized in traditional Project Management (PM) practices were 
applied to the development of software projects. However, standard PM methods seemed to lack in the 
ability to address the unique characteristics of the software development arena (Hughes & Cotterell, 
2002). This led to the development of software project management as an independent application area 
and field of study. Software project management (SPM) includes amongst other the management of all 
issues involved in the development of a software project, namely scope and objective identification, 
planning, evaluation, project development approaches, software effort and cost estimation, activity 
planning, monitoring and control, risk management, resource allocation, as well as managing contracts, 
teams of people and quality. 

Practitioners attempted to apply several Software Engineering (SE) principles to different SPM 
processes in order to address the existing shortcomings in managing software projects (Lethbridge & 
Laganiere, 2000).    Standard structured analysis and design methods were explored, and furthermore 
object-oriented approaches to overcome the aforementioned shortcomings were incorporated (Gelbard 
et al. 2002; Lethbridge & Laganiere, 2000).  Standards, such as ISO9001 were formulated, and 
compliance of the development process to these standards tested. Different software project 
management approaches based on standards have been developed and are used, namely PRINCE 2 and 
BS 6079. Yet disappointment remained since many software projects still failed to comply with the 
triple constraints of scope, time and cost (Oghma: Open Source, 2003).  The triple constraints refer to 
the fact that the failure of software projects can mostly be attributed to the fact that they are not 
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delivered on time and do not meet the expectations of the client (scope), and as a result have cost 
implications. The SPM environment is continuously changing due to globalisation and advances in 
computing technology.  This implies that the traditional single project, commonly executed at a single 
location, has evolved into distributed, collaborative projects.  The traditional focus of SPM processes 
has shifted from the position aforded to it two decades ago.  Consequently, the size, complexity and 
strategic importance of information systems currently being developed require stringent measures to 
determine why projects might fail.  As organizations continue to invest time and resources in 
strategically important software projects, managing the risk associated with the project becomes a 
critical area of concern.  While various risk checklists (e.g. the top 10 list of risk factors described by 
Boehm, 1988) and different frameworks (Marchewka, 2003) have been proposed, there are relatively 
few tools or methods available to assist project managers to identify, categorize and evaluate risk 
factors to develop risk management strategies. 

 Software agent technology offers a promising solution to addressing software management 
problems in a distributed environment.  According to this technology, software agents are used to 
support the development of SPM systems in which data, control, expertise, or resources are distributed.  
Software agent technology provides a natural metaphor for support in a team environment, where 
software agents can support the project manager and team members to monitor and coordinate tasks 
and in particular to identify, evaluate and monitor risks.  SPM skills, especially in the distributed 
computing environment, are greatly in demand.  Moreover, there is a need for technologies and systems 
to support the management of software projects in these environments. Our research is therefore aimed 
at software practitioners and software developers, but will also be beneficial to researchers working in 
the field of SPM. 

In this paper the use of software agents is investigated as a potential tool to improve management 
of SPM processes.  We specifically concern ourselves with the question of how software agents can be 
used to improve risk management in a distributed environment.  As a result, we propose a software 
agent framework to support risk management.  Although our research is not yet complete, initial 
indications are that it will be useful in enabling software developers to meet market expectations and to 
manage risk factors accordingly.  This, in turn, will bring about savings in cost, time and effort. 

Section 2 of this paper contains a background study of SPM as well as agent computing, and a 
short discussion  regarding each is presented. Section 3 provides a generic-type framework for one of 
the facilitating SPM processes, namely risk management.  This framework can be adapted to support 
all SPM processes and further extended using a (similar) multi-agent grid structure framework to 
coordinate the individual processes. We conclude the paper in section 4 by arguing that using agent 
technology to assist with risk management of SPM, may prove useful to the software developer. 

2 BACKGROUND 

2.1 SOFTWARE  PROJECT MANAGEMENT 
 

SPM is defined as the process of planning, organizing, staffing, monitoring, controlling, and 
leading a software project (IEEE Standards Board, 1987). A more detailed exposition shows that SPM 
involves the planning, monitoring and controlling of people and processes that are involved in the 
creation of executable programs, related data and documentation (Elec 4704, 2003).  Figure 1 on the 
following page illustrates a framework of the key elements in SPM identified by the Project 
Management Body of Knowledge (PMBOK).  We distinguish between three key elements: project 
stakeholders, project management knowledge areas, and project management tools and techniques.  
The project stakeholders include those people involved in all the different project activities and should, 
at least, consist of the project sponsor, project team, support staff, customers, users, suppliers, and even 
opponents. Good relationships, as well as communication and coordination between all of these 
stakeholders, are essential to ensure that the needs and expectations of stakeholders are understood and 
met. Knowledge areas include the key competencies concerned during the software project 
management process. The core functions, namely scope, time, cost and quality management lead to 
specific project objectives and are supported by the facilitating functions. The facilitating functions 
represent the means through which different objectives are to be met and include human resource 
management, communication, risk, and procurement management. Stretched across all these 
knowledge areas are the project management tool and techniques (on the right-hand side of the 
framework diagram). These are used to assist team members and project managers to carry out their 
respective tasks.   
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This framework depicts key elements concerned during the management of a single project, in 
which the SPM manager allocates tasks and gives instructions to various role players. However, 
traditional tools and techniques supporting the key management areas are no longer adequate in a 
coordinated, distributed team-development environment (Chen et al., 2003). The 1995 Standish Group 
study found that the three major factors related to information technology project success were user 
involvement, executive management support  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Software Project Management Framework (adapted from Schwalbe, 2003). 

and a clear statement of requirements (Standish Group, 1995). In the 2000 report executive 
management support, user involvement, an experienced project manager and a clear statement of 
requirements top the list of requirements for success (Standish Group, 2000).  All these aspects can be 
addressed and improved by enhancing risk management.  

Schwalbe (2003) describes project risk management as the art and science of identifying, 
analyzing and responding to risks throughout the life cycle of the project.  The Webster’s dictionary 
defines risk as hazard, peril or exposure to loss or injury, whereas the PMBOK defines project risk 
management as the systematic process of identifying, analyzing, and responding to project risk.  The 
objective of risk management is to minimize or avoid the adverse effects of unforseen events.  Many 
projects do not follow a formal risk management plan, which lead to a state of perpetual crisis. 
According to Marchewka (2003) the reasons for this include among others that (1) the benefits of risk 
management is not clearly understood by the project leader; (2) adequate time is not provided for risk 
management; and (3) not identifying and assessing risk using a standardized approach.   

Project management and planning is based on the understanding of various role-players of the 
current situation, the information available and the assumptions to be made.  But as environments may 
change dynamically, events may not proceed according to plan and various degrees of uncertainties 
exist which cannot be predicted with total accuracy.  To ensure eventual success, those unexpected 
events must be addressed and managed throughout the life cycle of the project and to ensure that 
project risk is minimized.       

 

2.2 SOFTWARE AGENTS 
 

A software agent is a computer program that is capable of autonomous actions in pursuit of a 
specific goal. The autonomy characteristic of a software agent distinguishes it from general software 
programs. Autonomy in agents implies that the software agent has the ability to perform its tasks 
without direct control, or at least with minimum supervision, in which case it will be a semi-
autonomous software agent (Wooldridge, 2001). Software agents can be grouped, according to specific 
characteristics, into different software agent classes. Literature does not agree on the different types or 
classes of software agents. For example, Krupansky (2003) distinguishes between ten different types of 
software agents, while the Oghma Open Source (2003) web site identifies sixteen different types of 
software agents. Because software agents are commonly classified according to a set of characteristics, 
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different classes of software agents often overlap, implying that a software agent might belong to more 
than one class at a time. For the purpose of this research, we distinguish between two simple classes of 
software agents, namely stationary agents and mobile agents. Agents in both these classes may, or may 
not have, any or a combination of the following characteristics: a user interface, intelligence, 
adaptivity, flexibility and collaborative properties.   

Whether or not an agent has a user interface, depends on its potential collaboration with 
humans, other agents or hosts. User interfaces are commonly only found where agents interact with 
humans. According to Wooldridge (2001) intelligence implies the inclusion of at least three distinct 
properties, namely reactivity, proactiveness and social ability. Reactivity refers to the agent’s ability to 
perceive its environment and respond timeously to changes that occur in order to achieve its design 
goals. Proactiveness is the agent’s ability to take initiative in its environment in order to achieve its 
design goals. Social ability alludes to the collaborative nature of the agent. There are different 
definitions to define the collaborative nature of software agents. For the purpose of this paper we use 
Croft’s (1997) definition in which the collaborative nature of a software agent refers to the agent’s 
ability to share information or barter for specialized services to cause a deliberate synergism amongst 
agents. It is expected of most agents to have a strong collaborative nature without necessarily implying 
other intelligence properties. Adaptivity is a characteristic that can also be regarded as an intelligence 
property, although it is not considered to be a prerequisite to identify an agent as being intelligent. 
Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences. An agent 
is considered flexible when it can dynamically choose which actions to invoke, and in what sequence, 
in response to the state of its external environment (Pai et al. 2000). 

We consider a stationary agent to be a piece of autonomous (or semi-autonomous) software that 
permanently resides on a particular host. Such an agent performs tasks on its host machine such as 
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security 
policies and so forth.  We consider a mobile agent to be a software agent that has the ability to transport 
itself from one host to another in a network. The ability to traverse a network of potential hosts, allows 
a mobile agent to move itself to a host that contains an object with which the agent wants to interact, 
and then to take advantage of the computing resources of the object’s host in order to interact with that 
object. Full autononomy, migratability and collaborativeness are the most important characteristics that 
should be imbedded in each mobile agent. When a mobile agent possesses these three intelligence 
requirements, it is referred to as a robot (Krupansky, 2003). 

2.3 AGENT TECHNOLOGY IN SPM 
 

Software agent technology is being explored as a promising way to support and implement 
complex distributed systems, see Balasubramanian (2001) and Chen (2003). Using software agents in 
the SPM environment, and in particular in SPM of a distributed environment, is a relative novice field 
of research and as such, literature in this regard is not commonly available. However, some work on 
using agents has been performed to address certain aspects pertaining to SPM, refer to Maurer (1996), 
O’Connor (1999) and Sauer and Appelrath (2003).  In this section, the authors briefly consider how 
agent technology is currently being deployed in SPM by considering some application examples. 

 
The first application that we mention applies risk analysis for a safe, reliable surgical robot 

system.  Korb et al (2003) applies a basic level of risk management in clinical research to implement 
the robot system RobaCKa for craniotomies. A systematic approach was implemented to support fault-
free design, error detection and quality assurance in the design of the robot system.  The system was 
implemented and tested, while further clinical investigations will be carried out in the next two years. 

In a second example software agents are used to control and monitor activity execution at various 
sites in an open source platform supporting distributed software engineering processes.  This 
environment is being developed as part of the GENESIS project (Gaeta and Ritrovato, 2002).  
Although this project does not relate to risk management, it uses agents to support the control of 
software processes as well as the communication among distributed software engineering teams.  
Agents are mainly utilized for the synchronizing of process instances executed on different sites, the 
dynamic reconfiguration of software processes, process data collection, process monitor and artefact 
retrieval.  Other examples of agent utilization in SPM can be found in Maurer (1996), O’Connor (1999) 
and Sauer and Appelrath (2003). 
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3 SOFTWARE AGENT TECHNOLOGY SUPPORT FOR RISK MANAGEMENT 

3.1 CONTEXT  

As described earlier, the SPM environment has changed in the past decade into a dynamic and 
complex environment where flexible and adaptive behaviour and management techniques are required. 
We argue that agent-based solutions are not only applicable to this environment, but that they are 
appropriate in highly dynamic, complex, centralised as well as distributed situations. In addition to the 
advantages of distributed and concurrent problem-solving, agent technology has the advantage of 
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall et al. 
2003). 

 

Before discussing our proposed SPM framework, we briefly reconsider the distinct knowledge 
areas and practices entailed in SPM (illustrated in Figure 1), to emphasise the focus of this paper. The 
SPM management areas consist of four objective functions and four facilitator functions. The solution 
presented by Sauer and Appelrath (2003) primarily focuses on the time management and certain aspects 
of the communication management functions. Maurer’s solution (1996) is applicable to the scope 
management, time management and to a certain extent the communication management functions. We 
believe that each of these key processes/functions could successfully be addressed by following a black 
box approach that is based on agent technology. Each black box consists of collaborative software 
agents ensuring cooperation, coordination and synergy between the different black boxes. Within such 
a black box a component-based development approach is followed. According to this approach, we use 
multiple /simple/ agents, each with a particular objective, rather than fewer /complex/ agents of which 
each has an extensive repertoire of tasks to perform. For the purpose of this paper, we limit our 
approach to only one of the SPM key processes, namely risk management, and describe the agent 
framework to accomplish the black-box for this process. 

Various models or frameworks exist to ameliorate the risk associated with software project 
development.  This basically entails two aspects (Marchewka, 2003), namely risk analysis and risk 
management.  Risk analysis includes risk identification, qualitative and quantitative risk analysis, 
evaluation and assessment.  Risk management on the other hand entails risk planning, monitoring and 
control.  Hughes and Cotterel (2002) identify two major areas including eight distinct functions 
associated with risk management, based on Boehms model (1988) depicted in Figure 2.  

 
 

 

 

 

 

 

 

 

 

 

Figure 2: Software Risk Engineering (Boehm, 1988). 

For the model we present in this paper, we will adopt a combination of these functions: the risk 
identification function will identify threats, discrepancies and overall inconsistencies with the project 
plan schedule, budget or time frame, while the risk estimation and risk evaluation function will 
determine what the likelihood is of a particular risk occurring and what impact it will have.  It also 
contains information on how to deal with a particular type of risk, using qualitative and quantitative 
measures. This will support the project manager to prioritize risks.  Risk planning alludes to the 
generation of risk strategies that may be implemented to deal with identified risks and will be stored in 
the repository.  The risk control, risk monitor, risk directing and risk staffing function involves 
implementing those strategies and plans with respect to specific risks and reporting it to the 
stakeholders.  
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We propose a risk management model that addresses two categories of risks: first, the risks 
identified by the stakeholders throughout the project, and second the unexpected risks detected by our 
agent monitoring system at any time throughout the lifetime of the project.  Due to the technical 
content, as well as the constraints on the length of this report, we will only discuss the management of 
the first type of risk in this article.  The second type of risk will be supported by a risk monitor model 
based on personal agents that monitor stakeholders as well as teams, and in the event of detecting 
possible risks, will react accordingly.       

To describe how software agents are used to address the different functions of risk management, 
we use a set of agent teams to address the individual functions and then define specialised software 
agents operating within these teams, or on their own where applicable. In defining these specialised 
software agents, we find that it is less intricate to design the behaviour of each agent. Furthermore, the 
specialised agents also make it possible to describe the various interactions between different agents 
explicitly, which in turn reduces the general complexity of the agent system.  The various programming 
patterns (Aridor and Lange 1998; Kendall et al. 2000; Tahara et al.1999) available, accomplish specific 
agent-associated tasks, such as creation, migration, suspension, and collaboration.   

The design of the overall system, based on components (specialised agents) simplify the design 
and programming of agents. The following specialised working agents are used in our discussion of the 
risk model that we present in the next subsection. These working agents include: 

− Messaging agent: an agent responsible for carrying messages between different agent teams. A 
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the 
different agent teams may function in a distributed environment. 

− Personal assistant agent (PA agent): an agent that supports an individual stakeholder to 
accomplish his or her tasks by providing maximum assistance. This agent also has a collaborative 
nature, and relies on other agents to provide it with the information that it requires to sustain its 
owner. The PA agent is not computer-bound, but human-bound, as its human stakeholder may 
work on different computers in a distributed environment. 

− Task agent: an agent that supports a specific project task. This agent collaborates with other 
objective and facilitator functions to support a specific task. This agent is commonly invoked by a 
PA agent to allow a stakeholder to work on a specific task, and is continuously monitored by a 
monitoring agent. 

− Monitoring agent: an agent responsible for monitoring tasks.  A monitoring agent is mobile, with 
intelligence, flexibility and strong collaborative properties. 

− Client agent: a stationary agent responsible for a specialised task such as information retrieval or 
gathering. Client agents may or may not have intelligence, depending on their specific task, but 
must have a collaborative nature to interact with other agents in their agent team. 

− Team manager agent: an agent that is responsible for managing a team of agents, ensuring 
coordination between the sub-tasks of the different members of a team to accomplish the objective 
of the agent team. 

Figure 3 illustrates the main operations in the risk management function and how agent teams 
cooperate to accomplish the objectives of these operations. 

3.2 THE RISK MANAGEMENT MODEL 

The software project manager, or other designated stakeholders, interacts with the risk 
management function through a special user interface. This user interface, which resides on top of the 
risk identification function, uses personal agents, task agents and messaging agents. The interface 
assigns a personal agent to the user who has supervision rights over other personal agents. During 
interaction with the interface, the user defines team members or relevant stakeholders as well as the 
tasks that are assigned to them, and defines milestones, objectives, risks, et cetera.  

The interface then assigns a personal agent to each person, to be invoked with a user name and 
password. (For simplicity’s sake, the username and password could be the same as a person’s network 
login Id and password, but the choice depends on the individual, or the manager, should s/he decide 
differently for the sake of security.) Required schedules and resources may be allocated at this stage or 
omitted if it is assumed that the time management agent system will perform the detailed scheduling. 
Client and task agents are used for automation  purposes where necessary, for example to effect 
estimations, risk analysis or calculations.  

The risk identification function uses an agent team that consists of messaging agents, task agents, 
client agents and a team manager agent. The agent team of this function accepts incoming messaging 
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agents from the user interface and uses its own messaging agents to interact with the stakeholders, the 
risk estimation and risk evaluation function. It uses client agents to gather information from the 
incoming messaging agents and task agents to perform risk identification, risk estimation and risk 
evaluation. 

In addition to the three primary intelligence properties, client (and task) agents at this level must 
also be adaptable in the sense that they remember specific properties of personal agents from previous 
work on the project, or even from previous projects and as a result, adjust their computing (based on a 
generic model) to integrate these characteristics. The above intelligence properties also imply 
flexibility. Developing these agents with the suggested intelligent properties is not a simple task, but 
since generic patterns exist for many of the other agents, more time can potentially be spent on this part 
of the development of the SPM tool. Task agents are included for specialised computing tasks.  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Risk management model for identified risks. 

For the risk planning function, task agents may or may not be included at this level, depending on 
the elaborativeness of the client agents.  We advocate the use of task agents to simplify the design and 
improve the maintenance of the SPM tool software. As mentioned before, the client agent typically has 
a number of functions including interacting with, /and thus receiving/ incoming messaging agents, 
understanding or interpreting incoming information, translating incoming information to a syntax that 
makes it processable, processing the incoming information, and deciding on distribution conduct /based 
on its generic approach to handling information as well as previous knowledge (strategies) and 
experience/. The client agent is also tasked with the responsibility to interact with the outgoing 
messaging agents, which must disseminate the processed information, and must also send and extract 
when necessary the information to the central repository as well as  the risk control and risk monitor 
function. To simplify the design of a client agent, these individual tasks can be designed as task agents 
reporting to the client agent via the team manager agent. 

4 CONCLUSIONS 

Advances in computing technology have evolved over the past decade to a point where distributed 
computing has become the de facto working platform. This has changed the characteristics of SPM, 
and as a result, the traditional methods and techniques of SPM do not meet the new requirements posed 
by this new working platform. Software agent technology, although primarily applied to other fields, 
such as e-commerce, information retrieval and network management, is ideally suited to meeting the 
new challenges faced by SPM.   Examples of these are appropriate tools for the identification and 
evaluation of project risk, as well as efficient risk management, tracking and monitoring. In this paper 
we investigated an approach of using software agent technology to address these challenges. We also 
focussed on one of the key elements of SPM and designed a generic agent framework to address all the 
tasks of this key element. This framework forms a basis for other key elements, and could be adapted 
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into individual frameworks and then coordinated by an overall multi-agent system to achieve the 
objectives of SPM. Our framework follows an approach of agent teams being composed of specialised 
software agents, each tasked with a manageable /atomic/ task. This implied that the complexity of 
creating and maintaining tasks could be greatly reduced. Although we have not yet completed the 
programming of the proposed system, we believe that our solution in the form of a framework, can 
potentially be significant, based on our experience in other fields that advocate component-based 
development. We do, however, recognize the fact that programming of the model will have to be 
completed and the model thoroughly tested against other SPM tools before its true value will become 
apparent.  This research is based upon work supported by the National Research Foundation of South 
Africa under Grant number 2054319. 
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Abstract 
Software technology and computing resources have evolved and developed considerably over the past 
years and may be considered as the backbone of many business ventures today.  However, the software 
project management environment has also changed and is continuously evolving. Currently software 
projects are developed and deployed in distributed, pervasive and collaborative environments. This means 
that traditional software project management methods cannot, and do not, address the added complexities 
found in a pervasive, distributed global environment. Projects thus have a high rate of failure.  More 
specifically, software projects often do not comply with the traditional standard measurements of success, 
namely time, cost and specifications.  There is thus a need for new methods and measures to support 
software project management. 
In this paper, software agent technology is explored as a potential tool for enhancing software project 
management practices in general. We propose and discuss a software agent framework, specifically to 
support software quality management. Although still in its initial phases, research indicates some promise 
in enabling software developers to meet market expectations and produce projects timeously, within budget 
and to users’ satisfaction. 
Keywords: Software Project Management, Software Agent Technology, Project Quality Management.  

Introduction 
Information Systems (IS) play a major role in today’s daily business activities, ranging from small business 
operations to enterprise-wide operations throughout the worldwide business community.  With the advent 
of the Internet and related global networking capabilities becoming more pervasive, cost-effective 
computing resources will continue to play a major role in improving organizational operations.  
Yet, over the past two decades, software projects frequently failed to live up to user expectations, were 
commonly delivered late, and mostly ran over the set budget. The Standish Group studied 13,522 projects 
in a survey named EXTREME CHAOS (2000). This study determined that 23 percent of the surveyed 
projects failed, 49 percent did not meet the requirements and only 28 percent succeeded.  In March 2003 
the group reported that success rates increased to a third of all projects, but time overruns increased to 82 
percent, whilst only 52 percent of required and specified functions and features were included in the final 
product. Software developers and managers are alerted to the fact that these issues have to be addressed in 
concrete terms.  In particular Brooks (1987) listed the invisibility, complexity, conformity, and inflexibility 
of software as complicating factors in managing software projects.  Initially, techniques utilized in 
traditional Project Management (PM) practices were applied to the development of software projects. 
However, standard PM methods seemed to lack the capacity to address the unique characteristics of the 
software development arena (Hughes & Cotterell, 2002). 
This led to the development of Software Project Management (SPM) as an independent application area 
and field of study. SPM includes, amongst other things, the management of all issues involved in the 
development of a software project, namely scope and objective identification, planning, evaluation, project 
development approaches, software effort and cost estimation, activity planning, monitoring and control, 
risk management, resource allocation, as well as managing contracts, teams of people and quality. 

The SPM environment is continuously changing as a result of globalization and advances in computing 
technology.  This implies that the traditional single project, commonly executed at a single location, has 
evolved into distributed, collaborative projects.  A number of emerging capabilities, e.g. agent technology 
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and automation, network-centric operations (Durham & Torrez, 2004) and grid/distributed computing are 
providing a novel infrastructure for connecting otherwise isolated computing resources, and supporting the 
development and management of distributed software projects.  
The focus in SPM processes has thus clearly shifted from the position that it held two decades ago.  
Consequently, the size, complexity and strategic importance of information systems currently being 
developed require stringent measures to determine why projects might fail.  Project or software quality 
management concerns itself with the prevention of failure and discrepancies.  The purpose of quality 
management is to ensure that the product satisfies the needs of the stakeholders. As organizations continue 
to invest time and resources in strategically important software projects, software quality management 
becomes a critical area of concern.   
 Software agent technology offers a promising solution to addressing software quality management 
problems in a distributed environment.  According to this technology, software agents are used to support 
the development of SPM systems in which data, control, expertise, or resources are distributed.  Software 
agent technology provides a natural metaphor for support in a distributed team environment, where 
software agents can help the project manager and team members to monitor and coordinate tasks, to apply 
quality control measures, to validate and verify, as well as to ensure proper change control.  SPM skills, 
especially in the distributed computing environment, are greatly in demand.  Moreover, there is a need for 
technologies and systems to support the quality management of software projects in these environments. 
Our research is therefore aimed at software practitioners and software developers, but will also be 
beneficial to researchers working in the field of SPM. 
In this paper the use of software agents is investigated as a potential tool for improving the quality 
management of SPM processes.  We specifically concern ourselves with the question of how software 
agents can be used to improve quality management in a distributed environment.  After investigating the 
various SPM key processes and some factors impacting on software quality management we propose a 
software agent framework to support software quality management.  Although our research is not yet 
complete, initial indications are that it will enable software developers to meet market expectations and to 
manage risk factors accordingly.  This, in turn, will bring about savings in cost, time and effort. 
The next section contains a background study and a discussion on software quality management in the 
context of the software project management framework.  The following section presents a topology of 
existing standards and measures for software quality management.  We then provide background 
information on agent technology, whereas the next section provides a generic-type multi-agent framework 
for quality management.  This framework can be adapted to support all SPM processes and further 
extended using a (similar) multi-agent grid structure framework to coordinate the individual processes. We 
conclude by speculating that the proposed framework for enhancing software quality management may also 
be adapted to address other key SPM processes.  

Software Project Management Background  

Software Quality Management 
The Project Management Body of Knowledge (PMBOK) defines project quality management as the 
processes required to ensure that the project will satisfy the needs for which it was undertaken. It includes 
all activities of the overall management function that determine the quality policy, objectives and 
responsibility, and implements these by means of quality planning, quality assurance, quality control and 
quality improvement, within the quality system.  Quality management not only includes the concepts, tools 
and methods of quality assurance, but also validation and verification, as well as change control during the 
development process.  
Major quality management processes identified by Schwalbe (2004) are: 
 Quality planning: determining which quality standards are relevant to this specific project and 

deciding how these standards will be met. 

 Quality assurance: involves evaluating overall performance regularly to ensure conformance to the set 
standards.  Quality audits or reviews can support this function.  

 Quality control: monitoring the activities and end results of the project to ensure compliance with the 
standards utilizing various available tools and techniques. 
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However, quality management should not be considered as a separate developmental phase but should be 
an inextricable part of all phases and all processes during software project management.   
SPM is defined as the process of planning, organizing, staffing, monitoring, controlling and leading a 
software project (IEEE Standards Board, 1987). A more detailed exposition shows that SPM involves the 
planning, monitoring and controlling of people and processes that are involved in the creation of executable 
programs, related data and documentation (Elec 4704, 2003).  Figure 1 illustrates a framework of the key 
elements in SPM identified by the PMBOK (Schwalbe, 2004).  We distinguish between three key elements: 
project stakeholders, project management knowledge areas, and project management tools and techniques.  
Project stakeholders comprise all the people involved in the different project activities and include the 
project sponsor, project team, support staff, customers, users, suppliers and even opponents. Good 
relationships, as well as communication and coordination between all of these stakeholders, are essential to 
ensure that the needs and expectations of stakeholders are understood and met. Knowledge areas include 
the key competencies involved in the software project management process. The core functions, namely 
scope, time, cost and quality management lead to specific project objectives and are supported by the 
facilitating functions. The facilitating functions represent the means through which different objectives are 
to be met and include human resource management, communication, risk and procurement management. 
Reaching across all these knowledge areas are the project management tool and techniques (see Figure 1). 
These are used to assist team members and project managers in carrying out their respective tasks. 
However, traditional tools and techniques supporting the key management areas are not adequate (Chen et 
al., 2003) in a coordinated, distributed team-development environment. The 1995 Standish Group study 
found that the three major factors related to information technology project success were user involvement, 
executive management support and a clear statement of requirements (Standish Group, 1995). In the 2000 
report of the Standish Group, executive management support, user involvement, an experienced project 
manager and a clear statement of requirements top the list of requirements for success.  Software quality 
management can address and improve all of these aspects. 
 

Figure 1: Software Project Management Framework (adapted from Schwalbe, 2004). 

 
Hughes & Cotterel (2002) recommend that quality aspects of the project plan should be reviewed 
constantly.  In considering the three phases of quality management, the following phases are of importance: 
The quality-planning phase should identify variables having a direct influence on the outcome of the 
project.  Thus, aspects affecting the scope of the project are functionality, system outputs, performance and 
reliability.  All these factors should be included in the quality assurance plan.  The quality assurance phase 
involves evaluation measures throughout the project.  Tools used include quality audits, templates 
specifying required documentation, quality assurance procedures, problem-reporting procedures, quality 

 

K
N

O
W

LE
D

G
E

A
R

EA
S

 
CORE FUNCTIONS

Scope Management Time Management Cost Management Quality  
management 

 

FACILITATING FUNCTIONS

Human 
ResourceManage

Communication 
Management 

Risk Management 
 

Procurement        
Management 

ST
A

K
EH

O
LD

ER
S

TO
O

LS
&

TE
C

H
N

IQ
U

ES
PROJECT MANAGEMENT INTEGRATION 



 
Issues in Informing Science and Information Technology 

 

APPENDIX C C-5

assurance metrics and quality assurance check list forms.  The quality control phase mainly consists of the 
following: acceptance decisions to determine whether the products or services produced will be accepted or 
rejected; if not accepted, rework specified on the items; and process adjustments to correct or prevent 
further quality problems.  Various tools and techniques may be utilized during this phase. Process as well 
as product quality measures should be implemented.  Several standards and measures have been developed 
over the past few years in an effort to give structure and uniformity to this process.  These standards will be 
discussed in the following section. 

Existing Standards and Measures 
Various factors enhancing quality have been identified over the years in an attempt to improve quality 
measures, but lack of conformity of definitions and terms posed a problem.  Software development is a fast 
growing industry and the lack of standards has significant implications for society and the economy. In an 
attempt to solve this problem various national and international standards bodies proceeded to set standards 
for this area of development. 
The PMI (Project Management Institute) coded the Project Management Body of Knowledge’s (PMBOK) 
first published standard in 1983, namely the Project Management Quarterly Special Report: Ethics, 
Standards and Accreditation.  This was further developed and the PMBOK Standards were published in 
1987, whilst the Guide to Project Management Body of Knowledge was published in 1996.  Currently PMI 
is working on the OPM3 standard, as the global standard for organizational project management.  
The ISO standard 9126 was published in 1991 (Hughes & Cotterel, 2002) to address the problem of 
defining software quality. ISO 9126 identified six software quality characteristics, namely functionality, 
reliability, usability, efficiency, maintainability and portability.  Sub-characteristics for each of these are 
also identified.  Measurements correlating to each quality are identified, and then tested and mapped onto a 
scale to indicate compliance with the specific quality metric. 
The British Standards Institution set the BS EN ISO 9001:2000 standard, identical to the international 
standard ISO 9000:2000, followed by the 2001 and 2004 standards respectively. 
The capability maturity model (CMM) was developed at the Software Engineering Institute in the United 
States. This model defines different stages of process maturity, implying sophistication and quality of 
production practices in which an organization may find itself.  The assessment is done by an external team 
of assessors, who will also make recommendations on improving the quality processes. Bootstrap, a 
European initiative, allows assessment at project level.    
Hughes and Cotterel (2002) define practical software quality measures, such as reliability, which might 
measure availability, mean time between failures, failure on demand and support activities. Other practical 
measures are maintainability and extendibility.   
Measurement of quality concerns intangible, invisible factors. Techniques to enhance quality (Hughes and 
Cotterel, 2002) are cited as increased visibility, procedural structure and checking of intermediate stages: 
Increasing visibility of the development process consists of utilizing ego-less programming to encourage 
the practice of programmers scanning each other’s code.   
Procedural structure implies the use of methodologies, where every process in the development cycle has 
carefully laid out plans. 
Checking intermediate stages involves the continuous checking of quality and correctness of work done 
throughout the development phases. 
Other techniques recommended are inspections, structured programming and clean-room software 
development, formal methods and software quality circles. 
Different approaches to quality control are also utilized.  Mehandjiev et al (2002) state that a goal-driven 
approach is more appropriate to handle adaptability and productivity requirements, whereas Szejko (2002) 
promotes requirements-driven quality control. 
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Using Agent Technology to Enhance Quality 
Standards 

Agent Technology 
A software agent is a computer program that is capable of autonomous (or at least semi-autonomous) 
actions in pursuit of a specific goal (Krupansky, 2003). The autonomy characteristic of a software agent 
distinguishes it from general software programs. Autonomy in agents implies that the software agent has 
the ability to perform its tasks without direct control, or at least with minimum supervision, in which case it 
will be a semi-autonomous software agent. Software agents can be grouped, according to specific 
characteristics, into different software agent classes (d’Inverno & Luck, 2001). Literature does not agree on 
the different types or classes of software agents. As software agents are commonly classified according to a 
set of characteristics, different classes of software agents often overlap, implying that a software agent 
might belong to more than one class at a time. For the purpose of this research, we distinguish between two 
simple classes of software agents, namely stationary agents and mobile agents. Agents in both these classes 
might, or might not have, any or a combination of the following characteristics: a user interface, 
intelligence, adaptivity, flexibility and collaborative properties (Pacheco & Carmo, 2003).  
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other agents 
or hosts. User interfaces are commonly only found where agents interact with humans. According to 
Wooldridge (2001), intelligence implies the inclusion of at least three distinct properties, namely reactivity, 
pro-activeness and social ability. Reactivity refers to the agent’s ability to perceive its environment and 
respond timeously to changes that occur in order to achieve its design goals. Pro-activeness is the agent’s 
ability to take the initiative in its environment in order to achieve its design goals. Social ability alludes to 
the collaborative nature of the agent. There are different definitions to define the collaborative nature of 
software agents. For the purpose of this paper we use Croft’s (1997) definition in which the collaborative 
nature of a software agent refers to the agent’s ability to share information or barter for specialized services 
to cause a deliberate synergism amongst agents. It is expected of most agents to have a strong collaborative 
nature without necessarily implying other intelligence properties. Adaptivity is a characteristic that can also 
be regarded as an intelligence property, although it is not counted as a prerequisite for identifying an agent 
as intelligent. Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences. 
An agent is considered flexible when it can dynamically choose which actions to invoke, and in what 
sequence, in response to the state of its external environment (Pai et al. 2000). 
A stationary agent can be seen as a piece of autonomous (or semi-autonomous) software that permanently 
resides on a particular host. An example of such an agent is one that performs tasks on its host machine 
such as accepting mobile agents, allocating resources, performing specific computing tasks, enforcing 
security policies and so forth.  A well known example of a stationary agent is Clippie, the Microsoft Office 
Assistant.  Clippie exhibits similar features of a stationary, intelligent agent and its settings are global for 
all programs in the Microsoft Office Suite.  
A mobile agent is a software agent that has the ability to transport itself from one host to another in a 
network. The ability to travel allows a mobile agent to move to a host that contains an object with which 
the agent wants to interact, and then to take advantage of the computing resources of the object’s host in 
order to interact with that object. An example of a mobile agent is provided by a flight booking system 
where a logged request is transferred to a mobile agent that on its part traverses the web seeking suitable 
flight information quotations as well as itineraries.  Full autonomy, migratability and collaborativeness are 
the most important characteristics that should be embedded in each mobile agent. When a mobile agent 
possesses these three intelligence requirements, it is often referred to as a ‘robot’ (Krupansky 2003).  For a 
more detailed discussion of mobile agent systems and associated design concepts refer to Schoeman & 
Cloete, 2004. 

Software Agents in SPM 
Software agent technology is being explored as a promising way to support and implement complex 
distributed systems.  In this section, the authors briefly consider how agent technology is currently being 
deployed in SPM by considering some application examples.  As described earlier, the software project 
management environment has changed in the past decade into a dynamic and complex environment in 
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which flexible and adaptive behaviour and management techniques are required. Agent-based solutions are 
most applicable to this environment since they are appropriate in highly dynamic, complex, centralised as 
well as distributed situations. In addition to the advantages of distributed and concurrent problem solving, 
agent technology has the advantage of sophisticated patterns of interaction, namely cooperation, 
coordination and negotiation (Hall et al. 2003). 
The first application that we mention, utilizes agents for project planning and process management in a 
distributed environment.  O’Connor & Jenkins (1999) propose an intelligent assistant system to assist the 
project team during planning, scheduling and risk management.     
In a second example software agents are used to control and monitor activity execution at various sites in 
an open source platform supporting distributed software engineering processes.  This environment is being 
developed as part of the GENESIS project (Gaeta and Ritrovato, 2002).  Although this project does not 
relate to quality management, it uses agents to support the control of software processes as well as the 
communication among distributed software engineering teams.  Agents are mainly utilized for the 
synchronizing of process instances executed on different sites, the dynamic reconfiguration of software 
processes, process data collection, monitoring of the processes and artefact retrieval.  Other relevant 
examples of agent utilization in SPM can be found in Maurer (1996) and Sauer and Appelrath (2003).  
Sauer and Applerath (2003) presented an application using agents to focus primarily focus on the Time 
Management function and certain aspects of the Communication Management function. Maurer’s solution 
(1996) is applicable to the Scope Management, Time Management and to a certain extent the 
Communication Management functions.  

Multi-Agent Model for Software Quality Management 
We briefly reconsider the distinct knowledge areas and practices that in software project management 
entails (illustrated in Figure 1), to emphasise the focus of our work for this paper. The SPM management 
areas consist of four objective functions and four facilitator functions. We believe that each of these key 
processes/functions could successfully be addressed by following a black-box approach that is based on 
agent technology. Each black box consists of collaborative software agents ensuring cooperation, 
coordination and synergy between the different black boxes. Within such a black box a component-based 
development approach is followed. According to this approach, we use multiple (simple) agents (discussed 
on the following page), each with a particular objective, rather than fewer (complex) agents of which each 
has a long list of tasks to accomplish. For the purpose of this paper, we discuss our approach to only one of 
the SPM key processes, namely Quality Management, and describe the agent framework to accomplish the 
black-box for this process.  (Models for the communication management and risk management function can 
be consulted in previous work of the authors.) 
To describe how software agents are used to address the different functions of quality management, we use 
a set of agent teams to address the individual functions and then define specialised software agents 
operating within these teams, or on their own where applicable. In defining these specialised software 
agents, we find that it is less intricate to design the behaviour of each agent. Furthermore, the specialised 
agents also make it possible to describe the various interactions between different agents explicitly, which 
in turn reduces the general complexity of the agent system.  The various programming patterns (Aridor and 
Lange 1998; Kendall et al. 2000) available, accomplish specific agent-associated tasks, such as creation, 
migration, suspension, and collaboration.   
The design of the overall system, based on components (specialised agents), simplifies the design and 
programming of agents. The following specialised working agents are used in our discussion of the quality 
management model that we present in the next subsection. These working agents include: 
Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accomplish his or 
her tasks by providing maximum assistance. This agent also has a collaborative nature, and relies on other 
agents to provide it with the information that it requires to sustain its owner. The PA agent is not computer-
bound, but human-bound, as its human stakeholder may work on different computers in a distributed 
environment. 
Messaging agent: is an agent responsible for carrying messages between different agent teams. A 
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the different 
agent teams may function in a distributed environment. 
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Task agent: an agent that supports a specific project task. This agent collaborates with other objective and 
facilitator functions to support a specific task. This agent is commonly invoked by a PA agent to allow a 
stakeholder to work on a specific task, and is continuously monitored by a monitoring agent. 
Monitoring agent: is an agent responsible for monitoring tasks.  A monitoring agent is mobile, with 
intelligence, flexibility and strong collaborative properties. 
Team manager agent: an agent that is responsible for managing a team of agents, ensuring coordination 
between the subtasks of the different members of a team to accomplish the objective of the agent team. 
Figure 2 illustrates the main operations in the quality management function.  Various agents, as described 
above will be developed and utilized to support every function of quality management.  Agent teams will 
cooperate to accomplish the objectives of these functions. 
The interaction between different functions are depicted by arrows illustrating the direction of the 
interaction. 
For the model we present in this paper, we will adopt a combination of these functions:  
Quality planning consists of determining which quality standards are relevant to this specific project and 
deciding how these standards will be met. Obviously a quality plan must be devised and set.  In our 
discussion we assume quality measures derived from: (1) requirements and (2) standards.  Agents utilized 
will be: 

Task agents to set and identify relevant quality measures, 
mobile agents to communicate to stakeholders and teams, 
monitoring agents to receive and distribute  

teamwork agents to coordinate agents. 
Quality assurance involves evaluating overall performance regularly to ensure conformance to the set 
standards.  Quality audits or reviews can support this function.  Agents involved will be: 
 Task agents to evaluate compliance to set relevant standards, and give warning messages, 
 mobile agents to communicate, 
 messaging agents to deliver messages, 
 monitoring agents to control and execute audits. 
 

 
Figure 2: Software Project Quality Management Framework. 
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 mobile agents to receive and carry information,  
 messaging agents, personal agents, 
 monitoring agents to control and check that tasks meet measures. 

Conclusion 
In this paper we investigated an approach of using software agent technology to address the challenges 
posed in the software project management arena. We focused on one of the key elements of SPM, namely 
software quality management, and designed a generic agent framework to address all the tasks of this key 
element. This framework forms a basis for other key elements, and could be adapted into individual 
frameworks and then coordinated by an overall multi-agent system to achieve the objectives of SPM. Our 
framework follows an approach of agent teams being composed of specialised software agents, each tasked 
with a manageable /atomic/ task. This implied that the complexity of creating and maintaining tasks could 
be greatly reduced. Although we have not yet completed the programming of the proposed system, we 
believe that our solution in the form of a framework can potentially be significant, based on our experience 
in other fields that advocate component-based development. We do, however, recognize the fact that 
programming of the model will have to be completed and the model thoroughly tested against other SPM 
tools before its true value will become apparent. 
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Abstract 
 
Despite various research efforts originating from both academia and industry, software projects have a 
high rate of failure, more specific, software projects often do not comply with the traditional standard 
measurements of success, namely time, cost and requirements specification.  Thus, there is a need for 
new methods and measures to support the software project management process. 
Globalisation and advances in computing technologies has changed the software project management 
environment.  Currently software projects are developed and deployed in distributed, pervasive and 
collaborative environments and traditional project management methods cannot, and do not, address 
the added complexities inherent to this environment. 
In this paper the utilisation of stationary and mobile software agents is investigated as a potential tool 
to assist with the improvement of software project management processes.  In particular we propose 
and discuss a software agent framework to support software project management.  Although still in its 
initial phases, this research shows promise of significant results in enabling software developers to 
meet market expectations, and produce projects timeously, within budget and to users’ satisfaction.  

Keywords:  Software Project Management,  Software Agent Technology,  Project Scope 
Management,  Project Time management,  Project Cost Management,  Project Quality 
Management,  Project Risk Management,  Project Communication Management,  Project 
Human Resource Management,  Project Procurement Management, 
 

Introduction 
 
Software Project Management (SPM) has become a critical task in many organisations.  Managing 
software projects is a complex task, further complicated by a continued increase in the size and 
complexity of the software-intensive system.  In the 1980’s SPM methodologies primarily focused on 
providing schedule and resource data to management (Schwalbe, 2006.)  However, present-day SPM 
activities involve much more.  With the advent of the Internet, improvement of computer hardware, 
software, and networks, global interdisciplinary work teams have changed the working environment 
addressed by SPM.  Global networking capabilities have become more pervasive with the result that 
cost-effective computing resources will continue to play a major role in improving organisational 
operations.  
SPM involves the management of all issues involved in the development of a software project, namely 
scope and objective identification, evaluation, planning, project development approaches, software 
effort and cost estimation, activity planning, monitoring and control, risk management, resource 
allocation and control, as well as managing contracts, teams of people and quality. 

Since publication of the 1995 report of The Standish Group (The Standish Group, 1995), this same 
organisation studied 13,522 projects in a follow-up survey, aptly dubbed EXTREME CHAOS (The 
Standish Group, 2000).  This study determined that 23 percent of the surveyed projects failed, 49 
percent did not meet the requirements and only 28 percent succeeded.  In March 2003 the group reports 
that success rates increased to a third of all projects, but time overruns increased to the 82nd percentile, 
whilst only 52 percent of required and specified functions and features were included in the final 
product (The Standish Group, 2003). 
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Many software projects still failed to comply with the triple constraints of scope, time and cost 
(Oghma: Open Source, 2003).  These triple constraints refer to the fact that the failure of software 
projects can mostly be attributed to projects not delivered on time and that it does not meet the 
expectations of the client (scope), and as a result have cost overrun implications.  As previously 
mentioned, the SPM environment is continuously changing due to globalisation and advances in 
computing technology.  This implies that the traditional single project, commonly executed at a single 
location, has evolved into distributed, collaborative projects.  The focus in SPM processes has clearly 
shifted from the position that it held two decades ago.  Consequently, the size, complexity and strategic 
importance of information systems currently being developed require stringent measures to ensure that 
software projects do not fail.  As organisations continue to invest time and resources in strategically 
important software projects, managing the risk associated with the project becomes a critical area of 
concern.   

Software agent technology offers a promising solution in order to address SPM problems in a 
distributed environment.  According to this technology, software agents are used to support the 
development of SPM systems in which data, control, expertise, or resources are distributed.  Software 
agent technology provides a natural metaphor for support in a distributed team environment, where 
software agents can support the project manager and team members to monitor and coordinate tasks, 
apply quality control measures, validation and verification, as well as change control.  Agent 
technology has distinct advantages over client/server technology as distributed system instantiation.  
SPM skills, especially in the distributed computing environment, are greatly in demand.  Moreover, 
there is a need for technologies and systems to support management of related aspects of software 
projects in such environments.  Our research is therefore aimed at software practitioners and software 
developers, but will also be beneficial to researchers working in the field of SPM. 
In this paper the use of software agents is investigated as a potential tool to improve the management of 
related SPM processes.  We specifically concern ourselves with the question of how software agents 
can be used to improve all core and facilitating management functions in distributed environments.  As 
a result, we propose two software agent frameworks to support SPM in such environments.  Although 
our research is not yet complete, initial indications are that it will enable software developers to meet 
market expectations and to manage risk and associated core and facilitating factors accordingly.  This, 
in turn, will bring about savings in cost, time and effort. 
In Section 2 of this paper, brief information regarding agent technology is provided.  Section 3 contains 
a background study on SPM and a discussion on agents utilised in SPM.  In Section 4 the phases of the 
core and facilitating functions during SPM are discussed, as well as a proposal of a generic multi-agent 
framework supporting SPM.  This framework supports the entire spectrum of SPM processes and as 
instantiation thereof, has been conformed to include our previously identified frameworks for risk, 
quality and communication management (Nienaber & Cloete, 2003; Nienaber, Cloete & Barnard, 2004; 
Nienaber & Barnard, 2005).  Finally, Section 5 presents a conclusion. 

Software Agent Technology 
 
This section presents a discussion on software agent technology.  Differentiating properties of software 
agents are explained. 
A software agent is a software program that is capable of autonomous (or at least semi-autonomous) 
actions in pursuit of a specific goal.  The autonomy characteristic of a software agent distinguishes it 
from general software programs.  Autonomy in agents implies that the software agent has the ability to 
perform its tasks without direct control, or at least with minimum supervision, in which case it will be a 
semi-autonomous software agent.  Software agents can be grouped, according to specific 
characteristics, into different software agent classes.  Literature does not agree on the different types or 
classes of software agents.  As software agents are commonly classified according to a set of 
characteristics, different classes of software agents often overlap, implying that a software agent might 
belong to more than one class at a time (d’Inverno and Luck, 2001).  For the purpose of this research, 
we distinguish between two simple classes of software agents, namely stationary agents and mobile 
agents.  Agents in both these classes may, or may not have, any or a combination of the following 
characteristics: a user interface, intelligence, adaptivity, flexibility and collaborative properties 
(Wooldridge, 2001).  
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other 
agents or hosts.  User interfaces are commonly only found where software agents are required to 
interact with humans.  According to Wooldridge (2001) intelligence implies the inclusion of at least 
three distinct properties, namely reactivity, proactiveness and social ability.  Reactivity refers to the 
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agent’s ability to perceive its environment and respond timeously to changes that occur in order to 
achieve its design goals.  Proactiveness is the agent’s ability to take initiative in its environment in 
order to achieve its design goals.  Social ability alludes to the collaborative nature of the agent.  There 
are different definitions to define the collaborative nature of software agents.  For the purpose of this 
paper we use Croft’s (1997) definition in which the collaborative nature of a software agent refers to 
the agent’s ability to share information or barter for specialised services to cause a deliberate synergism 
amongst agents.  It is expected of most agents to have a strong collaborative nature without necessarily 
implying other intelligence properties.  Adaptivity is a characteristic that can also be regarded as an 
intelligence property, although it is not counted as a prerequisite to identify an agent as intelligent.  
Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences.  An 
agent is considered flexible when it can dynamically choose which actions to invoke, and in what 
sequence, in response to the state of its external environment (Pai, Wang & Jiang, 2000). 
 
A stationary agent can be seen as a piece of autonomous (or semi-autonomous) software that 
permanently resides on a particular host.  Such an agent performs tasks on its host machine such as 
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security 
policies and so forth. 
A mobile agent is a software agent that has the ability to transport itself from one host to another in a 
network.  The ability to travel allows a mobile agent to move itself to a host that contains an object 
with which the agent wants to interact, and then to take advantage of the computing resources of the 
object’s host in order to interact with that object.  Full autonomy, migratability and collaborativeness 
are the most important characteristics that should be imbedded in each mobile agent.  When a mobile 
agent possesses these three intelligence requirements, it is often referred to as a robot (Krupansky, 
2003). 

Software Project Management (SPM) 

Software Project Management Framework 
SPM is defined as the process of planning, organising, staffing, monitoring, controlling, and leading a 
software project (IEEE Standards Board, 1987).  A more detailed exposition shows that SPM involves 
the planning, monitoring and controlling of people and processes that are involved in the creation of 
executable programs, related data and documentation (Elec 4704, 2003).  Figure 1 illustrates a 
framework of the key elements in SPM identified by The Project Management Body of Knowledge 
(PMBOK), (Project Management Institute, 2004).  We distinguish between three key elements: project 
stakeholders, project management knowledge areas, and project management tools and techniques.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Software Project Management Framework (adapted from Schwalbe (2006)). 

 

 

K
N

O
W

LE
D

G
E 

A
R

EA
S 

 
CORE FUNCTIONS

Scope Management 
 

Time Management Cost Management 
 

Quality Management 

 

FACILITATING FUNCTIONS

Human Resource 
Management 

Communication 
Management 

Risk Management Procurement 
Management 
M t

ST
A

K
EH

O
LD

ER
S 

TO
O

LS
 &

 T
EC

H
N

IQ
U

ES
 

PROJECT MANAGEMENT INTEGRATION 



 
Issues in Informing Science and Information Technology 

 
 

APPENDIX D D-5

Project stakeholders are those individuals involved in all different project activities and 
include the project sponsor, project team, support staff, customers, users, suppliers and even 
opponents of the project.  Although these stakeholders may have different views and 
expectations, good relationships as well as communication and coordination between all of 
these stakeholders are essential to ensure that the needs and expectations of stakeholders are 
understood and met.  

Software project management knowledge areas include the key competencies concerned 
during the software project management process.  These areas are categorised as core and 
facilitating functions.  The core functions, namely scope, time, cost and quality management 
lead to specific project objectives and are supported by the facilitating functions.  The 
facilitating functions represent the means through which different objectives are to be met and 
include human resource management, communication, risk, and procurement management.  
Stretched across all these knowledge areas are the project management tools and techniques 
(on the right-hand side of the framework diagram).  These are used to assist team members 
and project managers in carrying out the core and facilitating functions. 

Software Agents in SPM 
Software agent technology is at present explored as a promising way to support and implement 
complex distributed systems and a useful supplement to client/server systems.  In this section, the 
authors briefly consider how agent technology is currently deployed in SPM by considering some 
application examples.  As described earlier, the SPM environment has changed in the past decade into a 
dynamic and complex environment where flexible and adaptive behaviour and management techniques 
are required. Agent-based solutions are applicable to this environment since they are appropriate in 
highly dynamic, complex, centralised as well as distributed situations (Dowling, 2000). In addition to 
the advantages of distributed and concurrent problem-solving, agent technology has the advantage of 
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall, Guo & 
Davis, 2003). 
The first application that we mention utilises agents for project planning and process management in a 
distributed environment.  O’Connor & Jenkins (1999) propose an intelligent assistant system to support 
the project team during planning, scheduling and risk management.  Joslin & Poole (2005) adapts a 
simulation-based planning algorithm to the problem of planning for SPM.    
In another example software agents are used to control and monitor activity execution at various sites 
in an open source platform supporting distributed software engineering processes.  This environment is 
being developed as part of the GENESIS project (Gaeta & Ritrovato, 2002).  Software agents are used 
in this project to support the control of software processes as well as the communication among 
distributed software engineering teams.  Agents are mainly utilised for the synchronisation of process 
instances executed on different sites, the dynamic reconfiguration of software processes, process data 
collection, monitoring of the processes, as well as artefact retrieval.  Other relevant examples of agent 
utilisation in SPM can be found, among others, in Maurer (1996) and Sauer & Appelrath (2003).  Sauer 
& Applerath (2003) present an application using agents to primarily focus on Time Management and 
certain aspects of the Communication Management function.  Maurer’s solution (1996) is applicable to 
Scope Management, Time Management and, to a certain extent, the Communication Management 
function.  Agent technology has been more commonly applied to areas such as network and system 
management (Kendall, Krishna, Suresh & Pathak, 2000), decision and logic support (Burstein, 
McDermott & Smith, 2000), interest matching (Object Management Group, 2000), data collection in 
distributed and heterogenous environments, searching and filtering, negotiating, and monitoring 
(Venners, 1997). 

Multi-Agent Model for Software Project Management 

Software project management phases 
In order to identify and compile a general multi-agent model to facilitate (in the following two 
sections) all of the SPM processes involved, the steps comprising each process of each of the key areas 
will be elaborated on below: 
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Software scope management:  
Schwalbe (2006) identifies the following specific phases of software project scope management namely 
initiation, scope planning, scope definition, scope verification and scope change control.  Initiation of 
the project involves the commitment of an organisation to a project.  Scope planning identifies and 
refines project scope and creates a formal scope statement document, scope definition involves the 
division of major project deliverables into smaller and more manageable components and scope 
verification includes formal acceptance of the scope of the project by the various key stakeholders. 
Software time management: 
Time management involves the processes required to measure timely completion of a project and as 
such involves not only the creation of an activity plan, but also the estimation of each task and activity, 
resulting in the overall duration of the project.  Activity planning constitutes the baseline for project and 
resource scheduling, supporting a number of objectives (Hughes & Cotterel, 2006), namely feasibility 
assessment, resource allocation, detailed costing, motivation and coordination of the project.  The main 
processes involved in time management (Schwalbe, 2006) are briefly reflected on below: 
Activity definition involves the identification of each task or activity that must be executed in order to 
produce the project deliverables.  Activity sequencing indicates when each of the identified activities 
should occur.  Activity duration estimation concerns estimating the work periods to be executed.  
Schedule development involves utilising the previous two activities, as well as resource requirements, 
to create the project schedule.  Schedule control refers to the controlling and managing of changes to 
the initial schedule. 
Software cost management: 
Cost management can be seen as all processes required to ensure that a project team completes a 
project within an approved budget (Schwalbe, 2006).  Cost estimation refers to the process of 
developing an approximation or estimate of the costs of all actions, resources and procedures, and cost 
budgeting  involve using the project cost estimate and allocating this to individual work items.  Cost 
control and monitoring includes monitoring cost performance, reviewing changes and notifying 
stakeholders and team members of changes related to cost.   
Software quality management: 
The Project Management Body of Knowledge (PMBOK) defines project quality management as 
processes required to ensure that the project will satisfy the needs for which it was undertaken. It 
includes all activities of the overall management function that determine the quality policy, objectives, 
and responsibility and implements these by means of quality planning, quality assurance, quality 
control and quality improvement, within the quality system.  Major quality management processes 
identified by Schwalbe (2006) are quality planning during which quality standards are identified and 
applied.  Quality assurance involves evaluating overall performance regularly, quality audits or 
reviews can support this function.  Quality control concerns monitoring activities and end results to 
ensure compliance to standards. 
Software human resource management: 
Human resource management involves all processes required to effectively utilise all resources 
involved in a project.  A resource may be seen as any item or person required for the execution of a 
project.  Human resource management concerns all project stakeholders involved in developing the 
project.  The main focus of this process is to allocate resources to activities, and to create a work 
schedule from the activity plan.  Hughes & Cotterell (2006) identifies 7 categories of resources to be 
managed for a project, namely labour, equipment, materials, space, services, time and money.  
Schwalbe (2006) identifies three phases, namely organisational planning, staff acquisition and team 
development.   
Software communication management: 
Communications management in a software project is an enabling and supporting action that ensures 
timely and appropriate generation, collection, dissemination, storage and disposition of project 
information (Schwalbe, 2006).  Effective communication and sharing of information and knowledge 
among project contributors are required.  Schwalbe (2006) identifies five distinct functions associated 
with communications management, namely:  The communications planning function that determines 
the who, when and how of the project, whilst the information distribution function entails disseminating 
information to keep all stakeholders informed.  Performance reporting alludes to the generation of 
reports such as status, progress and forecasting reports, while the administrative closure function 
involves project archiving and formal acceptance of reports.  Finally the teamwork support function 
refers to the functions pertaining to collaborative project tasks, and hence includes the scheduling of 
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meetings for these collaborative tasks.  It therefore facilitates a collaborative working environment as 
well as document distribution. 
Software risk management: 
Various models or frameworks exist to ameliorate the risk associated with software project 
development.  According to Marchekwa (2003), this basically entails two aspects, namely risk analysis 
and risk management.  Risk analysis includes risk identification, qualitative and quantitative risk 
analysis, evaluation and assessment.  Risk management on the other hand entails risk planning, 
monitoring and control.  Similarly, Hughes and Cotterel (2006) identify two major areas, namely risk 
analysis and risk management, based on Boehm’s model (1989), including the following functions 
namely risk identification, risk evaluation, risk planning, risk control, and risk monitoring 
Software procurement management: 
During the process of software project development, products, goods or items that are not readily 
available within the organisation (perhaps in the form of software, hardware or people) must be 
acquired (Marchewka, 2003).  Procurement refers to the process of acquiring goods or services from an 
outside source.  Procurement management thus entails a set of procedures to facilitate acquisition of 
such products, expediting external work and to ensure the satisfactory standard of work throughout a 
given organisation.  These may involve rules for acquisition, purchase order documentation required by 
a specific organisation and creating and maintaining lists of trustworthy, qualified vendors (Hughes & 
Cotterel, 2006).  Project procurement management consists of six main processes, namely procurement 
planning, solicitation planning, solicitation, source selection, contract administration, and contract 
close-out (Schwalbe, 2006).  
However, these phases should not be considered as separate development phases but should be 
entwined in all phases and all processes during the SPM undertaking.  The following table depicts the 
phases utilised during execution of the core and facilitating functions: 
 

Table 1: Software Project Management core and facilitating functions. 
Scope 
Manage-
ment 

Time 
Manage-
ment 

Cost 
Management 

Quality 
Managem
ent 

HR 
Manage-
ment 

Communica-
tion 
Management 

Risk 
Manage-
ment 

Procurement 
Management 

Initiation Activity 
definition 

Cost & 
resource 
planning 

  Identification Identification Identification 

Definition Activity 
sequencing 
Activity 
duration 
estimation 

Cost 
estimation 

Planning Planning 
Team 
development 

Planning 
Team support 

Estimation 
Evaluation 
Assessment 

Solicitation 
Planning 

Planning Time 
schedule 
development 

Budgeting Assurance Monitor & 
control 

Information 
Distribution 

Planning 
Staffing 

Contract  
administration 

Control Time 
schedule 
control 

Control Control  Performance 
Reporting 

Monitor 
Control 

Control 

Verificatio
n 

  Validation  Admin closure   

. 
As abstraction of this table the correlating phases of the core and facilitating functions will be used to 
compile a generic model in a subsequent section. 

Software agents to support SPM 
Software agent technology provides a useful paradigm for the use of distributed computational 
resources.  Mobile agents (Butte, 2002) enable a shift in the communication paradigm of distributed 
systems from data shipping to function shipping.  Using mobile agent technology, in comparison to the 
classic well-known Remote Procedure Call (RPC), or its object-oriented equivalent Remote Method 
Invocation (RMI), due to the autonomous code it entails may attain a higher level of abstraction.  This 
autonomy reduces network load and communication overhead in distributed applications.  Distributed 
applications based on RPC techniques are suitable for stable and static system structures, which is not 
always the case in a distributed environment. 
To describe how software agents are used to address the different functions, we use a set of agent 
teams to address the individual functions and then define specialised software agents operating within 
these teams, or on their own where applicable.  In defining these specialised software agents, we find 
that it is less intricate to design the behaviour of each agent.  Furthermore, the specialised agents also 
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make it possible to describe the various interactions between different agents explicitly, which in turn 
reduces the general complexity of the agent  system.  The various programming patterns (Aridor & 
Lange, 1998; Kendall, et al, 2000) available, accomplish specific agent-associated tasks, such as 
creation, migration, suspension, and collaboration.   
The design of the overall system, based on components (specialised agents) simplifies the design and 
programming of agents.  The following specialised working agents are used in our discussion of the 
generic multi-agent framework that we present in the next subsection. 
These working agents include:  
Personal assistant agent (PA agent):  an agent that supports an individual stakeholder to accomplish 
his or her tasks by providing maximum assistance.  This agent also has a collaborative nature, and 
relies on other agents to provide it with the information that it requires to sustain its owner.  The PA 
agent is not computer-bound, but human-bound, as its human stakeholder may work on different 
computers in a distributed environment.  
Messaging agent:  an agent responsible for transporting messages between different agent teams.  A 
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the 
different agent teams may function in a distributed environment. 
Task agent:  an agent that supports a specific project task.  This agent collaborates with other objective 
and facilitator functions to support a specific task.  Such an agent is commonly invoked by a PA agent 
to allow a stakeholder to work on a specific task, and is continuously monitored by a monitoring agent. 
Monitoring agent:  an agent responsible for monitoring tasks.  A monitoring agent is mobile, with 
intelligence, flexibility and strong collaborative properties. 
Team manager agent:  an agent that is responsible for managing a team of agents, ensuring 
coordination between the sub-tasks of the different members of a team to accomplish the objective of 
the agent team. 
For the model we present in this paper, we will adopt a combination of these agents.  

Software agent framework to support SPM 
We briefly reconsider the distinct knowledge areas and practices entailed in software project 
management (illustrated in Figure 1 and summarised in table 1), to emphasise the focus of our work for 
this paper.  The SPM areas consist of four core functions and four facilitator functions.  We believe that 
each of these key processes/functions could successfully be addressed by following a black box 
approach that is based on agent technology.  Each black box consists of collaborative software agents 
ensuring cooperation, coordination and synergy between the different black boxes.  Within such a black 
box a component-based development approach is followed.  According to this approach, we use 
multiple (simple) agents, each with a particular objective, rather than fewer (complex) agents of which 
each has a long list of tasks to accomplish.  An abstraction of the generic functions of a key SPM 
process was compiled into a generic model (Figure 2). 
 

 
Figure 2:  Generic model for SPM processes 
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This abstraction will be used to compile two generic multi-agent frameworks supporting all phases of 
SPM.  In particular we discuss our approach to the entire spectrum of the SPM key processes, and 
describe the agent framework to accomplish the black-box for these processes. 
As mentioned previously, an abstraction of the functions of the key SPM processes was compiled into a 
generic model (Figure 2).  This abstraction can then be used to compile a conceptual model or 
framework for each of the key SPM processes.  To illustrate this process risk management is used as an 
example.  Software risk management consist of the following phases:  risk identification, risk analysis 
that includes risk assessment and evaluation, risk planning, monitoring and control.  An agent 
framework depicting this key area is illustrated in Figure 3. 
 

        
        Figure 3. Software risk management. 
 
The generic model as depicted in Figure 2 was instantiated to one key area, namely risk management, 
resulting in Figure 3 above.  In a similar way the basic generic model will be detailed, elaborated and 
expanded on to compile an overall framework and two conceptual models will be created depicting the 
core functions and the facilitating functions, Figure 4 and Figure 5 respectively.  A conceptual model 
for the SPM core functions: time management, cost management, quality management & scope 
management are shown on the following page in Figure 4. 
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Figure 4: Conceptual model for the core functions: time management, cost management, quality 
management & scope management. 
 
 
The SPM facilitating functions: communication management, risk management, procurement 
management and human resource management are depicted in Figure 5 on the following page. 
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Figure 5: Conceptual model for facilitating functions: communication management, risk management, 
procurement management and human resource management 
 
We believe that both these models may be implemented as agent black boxes in support of SPM 
functions.   
As prototype of this model one key core function, namely risk management, is currently being 
implemented in Java and will subsequently be tested.  To implement a software agent system an 
adaptive and flexible framework is needed that supports multi-agent features that permits the set up of a 
distributed application, as well as an appropriate level of reasoning capability.  
As Java contains most of the required technologies to implement software and mobile agents, such as 
multithreading, remote method invocation, portable architecture, security features, broadcast support 
and database connectivity (Wooldridge, 2002), it is viable to implement the system in Java.  JADE 
(Java Agent Development Framework) is a software framework to de 
velop agent-based applications in compliance with the FIPA specifications for interoperable intelligent 
multi-agent systems.  It supports debugging and deployment, the agent platform can be distributed 
across machines, and the graphical user interface (GUI) can be controlled and changed via a remote 
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GUI.  The goal is to simplify the development while ensuring compliance to standards through a 
comprehensive set of system services and agents.  JADE can be considered as agent middleware that 
implements an agent platform and sustains a development framework.  JADE facilitates mobile agent 
application development, providing key features for distributed network programming.  The 
development and implementation detail, as well as test results, will be detailed in further research. 
 As part of our research we regard the ISO standards as important guidelines.  ISO27001 utilises a 
model, namely the PDCA cycle to develop and improve an organisation’s management system.  This 
cycle was originally designed by Walther Shewart, but revised by the Quality Management authority W 
Edwards Deming and is currently known as the Plan-Do-Check-Act standard (ISO17799, 2006).  This 
cycle is used to coordinate continuous improvement efforts, supports daily routine management, 
supports general problem-solving processes, and also supports SPM, vendor management, human 
resource management and product development.  
Our proposed generic model as illustrated in figure 2 are compared to the ISO standard PDCA Cycle in 
table 2.   The first three phases conforms to that of the PDCA cycle’s last three phases. This work will 
be elaborated on in further research.        
Tabel 2: Comparison of PDCA cycle and generic model for software agent frame 
PDCA Cycle Generic model for software agents 
 Initiation / evaluation 
Plan Planning 
Do Control / Monitor 
Check Validation / verification 
Act  

Conclusion 
In this paper we investigated an approach of using software agent technology to address the challenges 
posed in the Software Project Management (SPM) arena.  We focussed on compiling a generic model 
supporting all key areas of SPM, and designed a generic agent framework to address the common tasks 
of the key elements.  This abstract model was instantiated and detailed to form two comprehensive 
overall frameworks, supporting all core and facilitating functions.  The framework forms a basis for all 
core and facilitating functions to achieve the objectives of SPM.  Our framework follows an approach 
of agent teams being composed of specialised software agents, each tasked with a manageable / atomic 
task.  This implies that the complexity of creating and maintaining tasks can be greatly reduced.  The 
prototype of this system is currently being implemented for one core function in Java’s development 
platform JADE.  We believe that our solution in the form of a framework can potentially be significant 
based on our experience in other fields that advocate component-based development.  Our framework 
complies with the ISO 27001 standard PDCA cycle, and as such it supports a recognised standard 
utilised during SPM.   
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ABSTRACT 

Globalisation and advances in computing technologies have changed the software project management 
environment. Currently software projects are developed and deployed in distributed, pervasive and collaborative 
environments and traditional project management methods cannot, and do not, address the added complexities 
inherent to this environment. Thus, there is a need for new methods and measures to support the software project 
management process. 

In this paper software agents are investigated as a potential tool to assist with the enhancement of software 
project management processes. In particular the authors propose to enhance software project management 
processes with a software agent framework, which forms part of the SPMSA model. A prototype is developed for 
the risk management function area of this model, to prove that the model, and specifically the agent framework, is 
not merely a theoretical concept, but can indeed be implemented. This research shows promise of significant 
results in enabling software developers to meet market expectations, and produce projects timeously, within budget 
and to users’ satisfaction.  

KEYWORDS:  

 Software Project Management, Software Agent Technology, Risk management 

1. INTRODUCTION 

Software Project Management (SPM) has become a critical task in many organizations. Over the past 
years, development of software projects regularly failed to come up to user expectations, were 
commonly delivered late, and mostly ran over the set budget. Much of this still holds true in the present 
context, and these issues have to be addressed in concrete terms (Chen, Nunamaker, Romano & Briggs, 
2003). As a result the field of software project management (SPM) is receiving increasing attention and 
various methods and techniques are utilized to optimise the SPM processes.   

SPM involves the management of all aspects and issues that are involved in the development of a 
software project, namely identification of scope and objectives, project development approaches, 
software effort and cost estimation, activity planning, monitoring and control, risk management, 
resource allocation and control, as well as managing contracts, teams of people and quality (Hughes & 
Cotterel, 2006). Furthermore, SPM processes comprise their own unique features. Characteristics 
unique to software projects are invisibility, complexity, conformity and flexibility. These aspects 
contribute to the difficulty in pinpointing a software project as an exact task with a specific beginning, 
an end and deliverables. The unique nature of SPM is seen as a contributing factor to the difficulties 
experienced with managing software projects and the failure of such projects. 

During the past decade computer technology expanded and management and control functions were 
automated and supported by software tools and techniques in an effort to support SPM management 
and control (Chen et al., 2003). Currently the SPM environment is still changing due to business 
globalization and information technology advances that support distributed and virtual teams and 
projects (Chen et al., 2003). The increasing number of distributed projects involving software project 
collaborators from different locations, organizations and cultures, changes the SPM paradigm of a 
traditional project focussing on a single project executing at a specific location (Jonsson, et al., 2001; 
Smits & Pshigoda, 2007). The focus of SPM processes has clearly shifted from the position that it held 
two decades ago. Consequently, tools for effective sharing of information and knowledge among 
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project contributors, as well as efficient task scheduling, tracking and monitoring are needed. High 
levels of collaboration, task interdependence and distribution have become essential across time, space 
and technology (Chen et al., 2003).  

The need for flexible management of ever changing organizational structures such as dealt with in 
SPM, are suitably addressed by the computational mechanism of agent systems (Jennings, 2001). 
Jennings and Wooldridge (1998) define a software agent as an autonomous system, capable of flexible 
autonomous action in order to meet its design objectives. Software agents are appropriate in highly 
dynamic, complex, centralised as well as distributed situations (Butte, 2002). In addition to the 
advantages of distributed and concurrent problem-solving, agent technology has the advantage of 
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall, et al., 
2003). Agent computing provides explicit benefits for open and dynamic environments. In particular 
software agent technology provides a useful paradigm for the use of distributed computational 
resources. Mobile agents enable a shift in the communication paradigm of distributed systems from 
data shipping to function shipping (Butte, 2002).  Using mobile agent technology, in comparison to the 
classic well-known Remote Procedure Call (RPC), or its object-oriented equivalent Remote Method 
Invocation (RMI), due to the autonomous code it entails will enable the designer to attain a higher level 
of abstraction. This autonomy reduces network load and communication overhead in distributed 
applications. Furthermore agents are naturally heterogeneous, thus mobile agents can execute on 
different hardware and software platforms. Software agent technology therefore provides a natural 
metaphor for support in a distributed team environment, where software agents can support the project 
manager and team members to monitor and coordinate tasks, apply quality control measures, to 
validate and verify, as well as change control.  

In previous work we reported on the development of a model for SPM, where the SPM processes 
are supported by software agents (Nienaber & Barnard, 2007). The model entitled “SPMSA” (Software 
Project Management supported by Software Agents) aims to enhance the SPM processes by addressing 
the intrinsic unique aspects of SPM. This model is unique in that it aims to support and enhance the 
entire environment of the SPM arena. The purpose of this paper is to report on work-in-progress 
regarding implementing one section of the SPMSA model i.e. the risk management function.  This 
implementation serves to illustrate that the proposed SPMSA model (see reference for more detail on 
this model) can be implemented and is not merely a theoretical concept.  Due to paper length it is not 
possible to discuss the implementation of the entire model. 

2. OVERVIEW OF THE SPMSA MODEL 

The main goal of the proposed SPMSA model is to support the teams and individual team members in 
the SPM environment while executing their tasks. The team leader, teams and individual team 
members will be supported during each process of software project management to simplify the 
environment, eliminate the complexities, enhance coordination and communication, implement 
dynamic changes in the system and support task scheduling. Figure 1 on the following page presents a 
conceptual view of the proposed model. 

Software project management knowledge areas include the key competencies concerned during the 
software project management process. These areas are categorised as core and facilitating functions. 
The core functions, namely scope, time, cost and quality management lead to specific project 
objectives and are supported by the facilitating functions. The facilitating functions represent the means 
through which different objectives are to be met and include human resource management, 
communication, risk, and procurement management. Stretched across all these knowledge areas are the 
project management tools and techniques.  These are used to assist team members and project 
managers in carrying out the core and facilitating functions. These form the basic key function areas of 
SPM. 

Each key function has a number of basic phases. On close inspection overlapping phases can be 
identified, as executed in each of these processes. An abstraction of these functions may be mapped to 
a generic model, containing overlapping phases for each function or process of SPM (Nienaber & 
Barnard, 2007 for more detail). 
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Figure 1. Conceptual view of the SPMSA model 

 
A generic model of software development for each key function is represented by the top part of 

figure 1 i.e. the different phases. During phase 1 (Identification, initiation and definition of key 
functions) elements concerning each key function are defined, scrutinized and initiated. In phase 2 
concepts of the key function concerned is assessed and evaluated. The planning for the “concepts of the 
particular process” of the key function is conducted in phase 3. Finally, in phase 4 the different 
functions associated with each key function are monitored, controlled and managed. 

Although a few additional functions may exist according to the specific key function, all functions 
have these basic phases in common. During the implementation of these phases the phase will be 
tailored to each individual key function, i.e. cost or time management. The upper section of figure 1 
therefore represents the SPM processes that will be supported by an agent framework. 

Each of the key functions of SPM will be supported by a combination of one or more of the agents 
as shown in figure 1 – bottom part. The software agents will support the generic functions for each of 
the key SPM processes (with minor practical differences, i.e. risk or time initiation). The various 
phases of SPM will be supported by agents or teams of agents (the agent framework). For illustrative 
purposes this basic configuration is represented as a conceptual view of the operational environment of 
3 team members, which will probably be geographically dispersed, and is depicted in figure 1. 

To describe how software agents can generically be used to address different functions of SPM, we 
use a set of agent teams to address the functions and then define specialised software agents operating 
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within these teams, or on their own where applicable. For a detailed discussion on software agent 
technology, the interested reader is referred to Wooldridge (2002) and Butte (2002). The following 
specialised working mobile and stationary agents are used: 
A Personal Assistant Agent (PA agent) supports each individual team member to accomplish his or her 
tasks by providing maximum assistance, as well as providing an interface between the team member 
and other agents. The PA agent is not computer-bound, but human-bound, as its stakeholders may be 
required to work on different computers when working in a distributed environment. 
The Task Agent (TA) is an agent that supports a specific project task. This agent collaborates with other 
objective and facilitator functions to support a specific task. This mobile agent is commonly invoked by 
a PA agent to allow a stakeholder to work on a specific task. 
The Client Agent (CA) is a stationary agent responsible for a specialized task, such as information 
retrieval.  
The Monitoring Agent (MA) is a mobile agent responsible for monitoring tasks, reporting back to 
enable scheduling, rescheduling of tasks, as well as the notification of stakeholders. 
The Directory Facilitator (DF) provides a yellow page functionality that assists agents to discover 
services provided by one another. 
The Agent Management Agent (AM) is responsible for managing a team of agents, ensuring 
coordination between the sub-tasks of the different members of a team to accomplish the objective of 
the agent team. This agent enables communication, mobility, instantiation and destruction amongst 
other tasks.  
Team Leader (TL) is an agent that is responsible for managing a team of agents, ensuring coordination 
between the sub-tasks of the different members of a team. 
Project Manager (PM) is an agent that takes on the project manager role, assists with the creation of 
the project, initial specification of the tasks, and allocation of tasks to personnel. 

3. SOFTWARE PROJECT RISK MANAGEMENT  

This paper focuses on the risk management function area (part of the facilitating functions – as 
mentioned in the previous section) of the proposed model only. For the proposed of this study, risk 
analysis comprises the risk identification function (i.e. identifies potential risks), the risk assessment 
function (i.e determine what the likelihood of a particular risk occurring is), the risk planning and 
analysis (i.e. determine risk strategies to deal with identified risks), and the risk monitor function (i.e. 

monitor the environment to pinpoint possible 
changes that needs attention).  Figure 2 
depicts a graphical representation of the 
different risk management stages as described 
above.  Each of these key functions could 
successfully be addressed by following a 
black box approach that is based on agent 
technology.  Each black box consists of 
collaborative software agents ensuring 
cooperation, coordination and synergy 
between the different black boxes.  Within 
such a black box a component-based 

development approach is followed. This will be further addressed by the prototype in the next section.                       
 

4. PROTOTYPING THE RISK MANAGEMENT FUNCTION AREA  

The purpose of this section is to illustrate how one functional area of the SPMSA model, namely risk 
management, can be implemented.  Other functional areas of the model will be implemented in a 
similar way. 

As Java contains most of the required technologies to implement software and mobile agents, such 
as multithreading, remote method invocation, portable architecture, security features, broadcast support 
and database connectivity (Wooldridge, 2002), it is viable to implement the risk management function 
area of the proposed model in Java.  JADE (Java Agent Development Framework) is a software 
framework to develop agent-based applications in compliance with the FIPA specifications for 

Figure 2. Risk management stages 
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interoperable intelligent multi-agent systems. It supports debugging and deployment, the agent 
platform can be distributed across machines, and the graphical user interface (GUI) can be controlled 
and changed via a remote GUI. The goal is to simplify the development while ensuring compliance to 
standards through a comprehensive set of system services and agents. JADE can be considered as agent 
middleware that implements an agent platform and sustains a development framework. JADE 
facilitates mobile agent application development, providing key features for distributed network 
programming.    

The JADE platform allows for easier communication by adhering to the FIPA standard for Agent 
Communication referred to as FIPA-ACL. Agent interaction is explicitly handled by the JADE 
framework through the Directory Facilitator (DF). The DF acts as a yellow page directory to enable the 
discovery of agents and agent services. The entire process of agent management including agent 
mobility, suspension, awaking, creation and destruction is handled by the Agent Management System 
(AMS). The JADE container provides a context for agent existence and can be extended by other 
containers to form a distributed environment (Bellifemine et. al., 2001).  The risk management stages 
as illustrated in figure 2 will be supported by a team of agents on the JADE platform. 

The risk identification phase entails that specific risks are identified by the project manager and the 
team members. The Project Manager agent uses the Directory Facilitator agent to identify Personal 
Assistant agents of all the members of the team. The project manager then identifies possible risks for 
this project. The Agent Manager agent is responsible for managing the team of agents, ensuring 
coordination between the sub-tasks, communication between agents and location distribution of agents. 
The project leader defines the parameters of the project with the assistance of the PA agent, adds tasks 
and subtasks, and allocates tasks to team members, with the support of the PA agent. The monitoring 
agent will be responsible for monitoring tasks, reporting back to the PA’s where rescheduling of tasks 
as well as the notification of stakeholders can take place.  Task documents, attached to a specific task, 

will also be monitored.  The task agent 
will traverse the distributed network for 
input of all team members on the 
selected risks, which will enhance the 
process by sending the functionality to 
the various team members.  Network 
load is lightened and communication 
overhead lessened.  Task documents 
will also automatically be distributed 
over the distributed network, lessening 
the work load of each team member. 

During risk assessment the task 
agent further traverse the distributed 
network of team members, 
communicating with each team 
members’ personal assistant agent.  
Each team member will allocate a 
weight to relevant risks in the form of 
the probability of occurrence on a scale 

of 1-100. The task agent will perform the calculation of risk probability for each risk identified, as well 
as correlating the input of all team members.  The two columns in figure 3, Risk probability and Money 
value, will be populated once it is calculated by the task agent. The team members will continuously be 
informed of the risk probability and monetary value implications if known at this stage. Furthermore, 
each team member will be prompted on the percentage that each task is completed, at regular time 
intervals.  The task documents will also be attached to a task. Thus this function will enhance the risk 
management function by continuously updating team members on the probability of a certain risk 
occurring.  The status of each task will also be monitored by the task and monitoring agent.  In other 
words if a task runs late, the preceding tasks will be sent a message that there is a problem, and when 
the task is finished completed deliverables and documents are automatically distributed amongst the 
team.                                 

The risk monitor and control phase will provide the team and the team leader with information on 
the status of each specific task; a warning message if tasks or deliverables are overdue or on schedule; 
the probability of occurrence of identified risks, on a scale of 1 – 100. Due to paper length only one 
screen of the prototype is shown, namely figure 3, which report on the task status. Task Design 
Database is on track and thus no action needs to be taken. The SPM process is enhanced by the 
additional information supplied to the team and team leader on a daily basis. The team leader will be 

Figure 3. Task status
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informed of the status of all tasks of the specific project.  If a task falls behind schedule immediate 
action can be taken.  Communication overhead and network load are lessened.  Distributed teams can 
also communicate and coordinate through this heterogeneous nature of the agent system. Note that the 
risk planning phase, does not yet form part of the scope of the prototype. This prototype is being 
refined and will be evaluated in a real-life scenario, as well as verified by comparing it to an ISO 
standard. 

5. CONCLUSION 

In this paper we illustrated that our SPMSA model can be implemented by agents and we 
highlighted the benefits of such a supporting agent framework in the SPM arena. Our prototype 
currently implements only certain sections of the model as it is implemented as ‘proof of concept’ but it 
can be expanded to include the entire model as well as all areas of SPM.  

Our research is aimed at software practitioners and software developers, but will also be beneficial 
to researchers working in the field of SPM. The development of software projects supporting crucial 
business activities may be utilized to attain a competitive advantage for that organization. Thus, the 
quality of the software development process, as well as improvements in the development of project 
management software may potentially result in significant improvement in software quality (Schwalbe, 
2006). 
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Abstract 
 
The scope, environment and implementation of traditional software projects have changed because of 
various factors such as globalisation, advances in computing technologies and, last but not least, the 
development and deployment of software projects in distributed, collaborative and virtual environments. As 
a result, traditional project management methods fail to address the added complexities found in this ever-
changing environment. 
  
In this paper the authors propose a software project management (SPM) model, entitled SPMSA (Software 
Project Management Supported by Software Agents), that aims to enhance SPM by taking the unique 
nature and changing environment of software projects into account.  The SPMSA model is unique in that it 
supports the entire spectrum of SPM functionality, thereby supporting and enhancing each key function 
with a team of software agents.  The project manager and the individual team members will be supported 
during software project management processes to simplify their tasks, eliminate the complexities, automate 
actions and enhance coordination and communication.  At the same time, virtual teamwork, knowledge 
management, automated workflow management and process and task coordination will be supported. 
 
The phases of the SPMSA model also compare favourably with the basic phases of software development 
as prescribed by the ISO 10006:2003 standard for projects.  It can therefore be concluded that the SPMSA 
makes a fresh contribution to enhancing SPM by utilising software agent technology.  
    
Key terms 
Software projects; software project management; software agent technology 
 

1. Introduction 
 
Most business undertakings these days are commonly supported by software applications.  The quality, 
effectiveness and efficiency of these applications determine the success or failure of many business 
solutions.  As a result, businesses often find that they need to attain a competitive advantage through the 
development of software projects that support crucial business activities.  The quality of the software 
development process plays a key role in the quality of the software implementation.  Improvements in the 
development of project management software used to manage software development can result in 
significant improvement in software quality (Schwalbe, 2006). 
 
The literature reveals that ongoing research aims to address the existing shortcomings in managing 
software projects (Roy, 2004; The Standish Group, 2005).  Practitioners have attempted to apply several 
software engineering principles to different software project management (SPM) processes (Lethbridge & 
Laganiere, 2001).  They have explored standard structured analysis and design methods and also 
incorporated object-oriented approaches to overcome the aforementioned shortcomings (Gelbard, Pliskin & 
Spiegler, 2002; Hughes & Cotterell, 2006).  Different standard project management approaches exist, 
which are applicable to different areas of software project management, such as PRINCE 2 and BS 
6079:1996 (Hughes & Cotterell, 2006).  Yet many software projects have failed to comply with the triple 



 

APPENDIX F F-3

constraints of scope, time and cost (Oghma: Open Source, 2003).  These triple constraints refer to the fact 
that the failure of software projects can mostly be attributed to the fact that they are not delivered on time 
and do not meet the expectations of the client (scope), with the result that they have cost implications.  
 
The abovementioned problems can be ascribed to various factors, but mainly to the fact that the SPM 
environment has changed over the past decade, and is still rapidly changing due to globalisation and 
advances in computing technology (Zanoni & Audi, 2003).  The traditional single project, which was 
commonly executed at a single location, has evolved into distributed, collaborative projects deployed in 
distributed and collaborative environments.  This means that traditional project management methods 
cannot address the added complexities found in a distributed environment, such as efficient task 
scheduling, tracking and monitoring, as well as effective sharing of information and knowledge among 
project contributors.  Therefore there is a clamant need for managing software project risks in such a way 
that this complex distributed environment is addressed and supported optimally. 
 
The purpose of this paper is to propose an SPM model – entitled Software Project Management Supported 
by Software Agents (SPMSA) – that enhances SPM processes by incorporating a software agent 
technology framework (Chen, Nunamaker, Romano & Briggs, 2003).  The first part of this paper highlights 
the unique features of the project management environment, as well as the changing nature thereof. In the 
second part of the paper, the suitability of software agents to support SPM is explained, and the third part is 
devoted to a discussion of the SPMSA model. The paper culminates in a verification of the SPMSA model 
against the ISO standard 10006:2003. 
 
2. Unique nature and changing environment of SPM 
 
Software project management (SPM) differs from general project management as certain inherent 
characteristics are unique to software development (Brooks, as quoted by Hughes & Cotterell, 2006).  
These characteristics are invisibility, complexity, conformity and flexibility. Invisibility implies that the 
development process of the software cannot be seen visually, which makes controlling, monitoring, 
measuring and estimating project progress difficult. Furthermore, complexity of software projects is 
increased in that software projects include not only the development of a system, but also the 
implementation and maintenance of a system that may be distributed and which interfaces with many 
existing systems.  The conformity of software is essential because software projects involve a variety of 
resources where the software is expected to conform to the requirements of humans and organisations. 
Finally, flexibility is needed as software systems are required to conform to the standards of the 
organisation and are therefore subject to a high degree of change. These aspects contribute to the difficulty 
in clearly pinpointing a software project as an exact task with a specific beginning, an end and deliverables.   
 
The dynamic environment of SPM adds to the complexity of these systems, resulting in higher levels of 
interconnectivity, higher levels of data and knowledge sharing, task tracking and monitoring.  These issues 
should be supported optimally by SPM processes to enable project managers to concentrate on crucial 
issues, thus striving for less failure and higher success rates in software projects. 
 
3. Software agent technology  
 
SPM practices should take full cognisance of the unique nature and changing environment of SPM. 
Traditional SPM methods do not address the added complexities found in an ever-evolving distributed 
environment.  The authors investigated the possibility of using software agent technology to address SPM 
problems in a distributed environment to enhance SPM processes. 
 
Table 1 lists the unique requirements of SPM and how agent technology may address these.   
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Table 1 SPM features to be addressed by agent technology 

SPM Software agent technology 
Changing environment of SPM systems leads to a 
complex distributed environment.  
 

Agents allow distribution and communication over a 
geographical area, irrespective of the geographical 
location.  Agents overcome network latency by 
executing locally and reduce network load (Lange & 
Oshima, 1999).  Parallel execution enables tasks to be 
executed in parallel at different workstations.  

SPM distributed environments may require and 
incorporate mobile devices and fragile network 
connections. 

Agent systems can incorporate large network systems 
and mobile devices.    Tasks can be embedded into 
mobile agents, which can traverse the network and 
execute asynchronously and autonomously, without 
relying on a continued connection (Lange & Oshima, 
1999). 

A distributed environment requires a high level of 
collaboration and cooperative problem solving 
between teams and team members.  

Teams of agents can coordinate actions toward a 
similar goal in a distributed environment. Software 
agent technology provides a natural metaphor for 
support in a team environment, where software agents 
can traverse the network in order to monitor and 
coordinate events (Wooldridge, 2002). 
Communication and cooperation is strongly supported 
by agent teams. 

A distributed environment results in virtual, 
dynamically changing collaborative teams. 

Agents adapt dynamically to changes. Agents are 
aware of their environment and can respond to 
changes in it.  Agents have the computational 
mechanisms for flexibly forming, maintaining and 
disbanding organisational structures (Jennings, 2001) 

Collaboration between team leader and 
distributed team members requires continuous 
control, monitoring and measurement 
(invisibility aspect). 

Agents are perfectly suited to control, monitor and 
measure elements in a distributed environment (Braun 
et al., 2001). 

A distributed environment requires 
heterogeneous technology and databases that 
have to interact and share information.  

Agents are naturally heterogeneous and mobile and 
can execute on different hardware and software 
platforms (Lange & Oshima, 1999). 

The changing SPM environment requires 
flexibility and conformity of the system. 

Agents adapt dynamically to changes in their 
environment, therefore this aspect will be excellently 
supported (Kotz & Gray, 1999). 

Virtual software project teams over dispersed 
environments need to access information and 
documents. 

Agents support the distributed retrieval and 
dissemination of information and documents and can 
automate routine tasks (Maes, 1996; Green et al., 
1997). 

 
From table 1 we can conclude that software agent technology provides a suitable framework for supporting 
and possibly enhancing SPM processes in a complex distributed environment.  The need for flexible 
management of ever-changing organisational structures, such as are dealt with in SPM, is suitably 
addressed by the computational mechanism of agent systems (Jennings, 2001).  As stated in table 1, agent 
behaviour can be used to support the individual team members in numerous tasks, such as coordination and 
cooperation with team members, document retrieval and distribution, workflow monitoring and control, 
scheduling and organising meetings, and reminders for tasks and overdue dates or deliverables.  
 
4. The SPMSA model 
 
Having established that agent technology is suitable for supporting the SPM environment, the authors 
compiled a comprehensive model of SPM functionality to be supported by software agent technology. The 
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SPMSA model enhances and supports all core and facilitating functions of SPM by utilising an agent 
framework to enhance the SPM processes.  This model thus addresses the entire spectrum of software 
project management. 
 
4.1 Conceptual view of the SPMSA model 

 
Having investigated and delineated all SPM processes, the authors defined the SPM core and facilitating 
functions, as depicted in table 2; these form the basis of the proposed SPMSA model (Schwalbe, 2006; 
Hughes & Cotterell, 2006; Boehm, 1991; Olson, 2004 and Marchewka, 2003). 
 
Table 2 SPM core and facilitating functions 

Scope 
manage-
ment 

Time 
manage- 
ment 

Cost 
manage-
ment 

Quality 
manage-
ment 

HR 
manage-
ment 

Communicati
on manage-
ment 

Risk 
manage-
ment 

Procuremen
t 
managemen
t 

Initiation Activity 
definition 

   Identification 
& planning 

Risk 
identificati
on 

Procurement 
planning 

Planning Activity 
sequencing
; duration 
estimation 

Resource 
planning 

Planning Organisa-
tional 
planning 
 

Team support Risk 
analysis & 
prioritisa-
tion 

Solicitation 
planning 

Defini-
tion 

Time 
schedule 
develop-
ment 

Cost 
estimation 

Assurance Team 
develop-
ment & 
staff 
acquisition 

Information 
distribution 

Risk 
manageme
nt planning 

Solicitation 
& source 
selection 

Verifica-
tion  

Time 
schedule 
control 

Cost 
budgeting 

Control Manage-
ment: 
monitoring 
& 
control 

Performance 
reporting 

Monitoring 
 

Contract 
administratio
n 

Change 
control 

 Monitoring 
& 
control 

  Admin closure Resolution Contract 
closure 

 
When examining table 2 closely, overlapping phases can be identified, as executed in each of these 
functions.  An abstraction of these functions may be mapped to a generic model of software development, 
containing the overlapping phases depicted in figure 1 (top part), for each function (or process) of SPM.  
These phases will be supported by an agent framework.  Figure 1 aims to explain the concept of this 
process of support.  Figure 1 consists of the two basic concepts, namely the phases of software development 
for each SPM key function and the software agent framework that will address each key area of SPM 
individually. 
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Figure 1 Conceptual view of the SPMSA model 

 

Phases of software development for each SPM key function  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Requirements: 

1. The phases must be tailored to each individual key function, i.e. cost or time management. 
2. The unique aspects of each SPM key function must be addressed. 

 

 Features: 
- Support distribution & communication of teams over a wide geographical area, thus SPM complexity.  
- Incorporates large networks, mobile devices & supports fragile network connections, thus adaptability. 
- Provides a high level of collaboration and cooperative problem solving, thus supports SPM invisibility. 
- Supports dynamically changing collaborative teams, thus SPM conformity & heterogeneous systems. 
  

Identification, initiation & 
definition of key functions 

Analyse, assess and evaluate 
key concepts  

Monitoring, control and 
management  

Planning for 
concepts  

SPM team members 

Phase 1 

Phase 3 

Phase 2 

Phase 4 

Apply software agent framework to support each SPM key function 

Development of software projects

Team member A 

Team member B 

Team member C 

Project 
manager 
agent

Task agent 

Monitoring 
agent 

Personal 
assistant Personal 

assistant 

Personal 
assistant 

Agent 
management 
agent

Team  leader 
agent 

Directory 
facilitator

Client 
agent 
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The primary goal of the proposed SPMSA model is to support the teams and individual team members in 
the SPM environment while they are executing their tasks and, in so doing, to enhance the complete SPM 
environment.  This support is enabled by an agent framework as depicted in figure 1 (bottom half). The 
team leader, teams and individual team members will be supported during each process of software project 
management, utilising an agent framework to simplify the environment, eliminate the complexities, 
enhance coordination and communication, implement dynamic changes in the system, support task 
scheduling and enhance all processes.   
 
Table 3 provides a summary of the purpose of each agent (depicted in figure 3) forming part of the agent 
teams of the different SPM key functions of the SPMSA model. 
 
Table 3 Agents and their tasks 

Agents Purpose Mobile Stationa
ry 

Agent management 
agent 

• Manages the team of agents 
• Keeps track of the distribution location of all 

agents  
• Enables communication of agents 
• Enables mobility of agents  
• Tracks instantiation of tasks 

 X 
 

Client agent • Executes a specialised task at a workstation 
• Interacts with the agent team  
• Receives input from task agent 

 X 

Directory facilitator • Automated JADE facility 
• Provides Yellow Pages functionality to agents 
• Provides agents with information on services 

provided by other agents 

 X 

Personal assistant • Allocated to a specific team member 
• Assists the team member 
• Interface between team member and other agents  
• Collaborative nature 

 X 
 

Messaging agent • Traverses the network of agents 
• Carries messages to and from agents 
• Collaborates with agents  

X  

Monitoring agent  • Monitors agent movement 
• Monitors tasks and activities 
• Coordinates agents 

X  

Project manager 
agent 

• Supports and directs the team of agents 
• Takes on project manager role 
• Helps create & initialise project 
• Specification of tasks 
• Allocation of tasks to members 
 

X  

Task agent • Supports a specific task, i.e. information 
gathering, information distribution, information 
retrieval 

• Traverses the network of team members for input 
• Calculates various measures, such as probability 

of risk occurring, ROI, NPV 
• Gives feedback to personal assistant agents 

X  

Team leader agent • Manages the team of agents X  
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The phases of software development for each of the SPM key functions, as illustrated in table 1, were 
delineated and investigated in detail to compile the comprehensive SPMSA model.  The SPMSA model 
comprises all processes of SPM as supported by an agent framework, which are illustrated in figures 2 and 
3. The core functions and the facilitating functions are presented separately, owing to space limitations. 
 

 
 

Figure 2 SPMSA model for core functions: scope, time, cost and quality management 
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Activity definition  
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Time schedule 
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Activity sequencing 
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Time schedule 
control 
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Resource planning 

User interface 
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Quality control 
 
User interface 
 

Quality 
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User interface 

Scope control 
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planning 
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definition 
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Figure 3 SPMSA model for facilitating functions: human resource, communication, risk and procurement 
management 

 
The SPMSA model aims to enhance SPM processes by addressing the unique intrinsic aspects of SPM.  
The comprehensive framework of agents that forms part of the SPMSA model supports the entire SPM 
process, thereby aiming to eliminate failure and address shortcomings in this environment.  This model will 
be unique in that it aims to support and enhance the entire environment of the SPM arena, and not only a 
section of it.  Current software agent applications target only a section of this environment, for example 
planning or resource management.  Unlike other programming paradigms, software agent technology not 
only provides support to the dynamically changing environment of SPM, but also support for the complex 
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heterogeneously distributed environment it encompasses. Furthermore, regular tasks may be automated and 
intelligence added to further support and enhance the workload of each team member. 
 
4.2 Advantages of using agent technology for SPM 

 
This study reveals that the limitations in the SPM environment can be supported by agent technology.  A 
summary of the advantages of how the SPMSA model addresses the limitations of current SPM approaches 
through software agents is given in table 4. 
 
Table 4 Limitations of SPM addressed by agent technology 

Limitations of current SPM approaches Agent enhancement 
Environmental factors 

Stakeholders in virtual teams may have 
different goals and different backgrounds 
(Chen et al., 2003) 

Virtual teams, supported by automated agent interaction, work 
toward a similar goal through coordination and collaboration 
of team members 

Support communication in homogeneous 
environments and will need additional 
features or measures to connect 
heterogeneous elements (O’Connor & 
Jenkins, 1999) 

Agents support heterogeneous environments, thus improving 
and enabling 
• communication  
• coordination 

The systems are executed synchronously 
and must be connected to be executed 
(Maes, 1997) 

Agent system executes asynchronously and 
autonomously, thus less network load & fewer 
communication overheads 

Do not sufficiently support the knowledge 
representation of the SPM area (O’Connor 
& Gaffney, 1998) 

Agent systems provide assistance in knowledge 
management, namely knowledge of plans and designs and  
mechanisms to reason on these elements 

Human interaction/automated control 
Documents distributed by human action, 
thus allowing for human error, such as 
omission (Purvis, McCray & Roberts, 2000) 

Automated workflow management to all relevant team 
members:  
• documents and information dispersed  
• documents and information retrieved from repository 

Team member interaction dependent on 
human interaction, thus prone to errors 
(Petrie, Goldmann & Raquet, 2005) 

Automates team member interaction:   
• regular prompting for input ensures that the data is 

current & tasks are not forgotten  
• improves productivity  

All actions and coordination to be executed 
by team members without specific process 
coordination measures (Petrie et al., 2005)  

Automates process coordination, which will improve 
programmer productivity as well as minimise errors  

Tasks 
Complexity of tasks and environment is one 
of the reasons for failure (Benfield et al., 
2006) 

Complexity of tasks is minimised by automated support, such 
as automated calculations, thus reducing complexity of the 
solution and improving programmer productivity 

Large systems are difficult to maintain 
consistently over set period of time.  Current 
tools do not provide proper change 
notification (Petrie et al., 2005) 

• Maintenance is automated and users are prompted for 
input on changes   

• Change control is automated and users are regularly 
prompted for input.  Changes are incorporated 
dynamically 

Current tools support reporting and 
calculation facilities, but not continuous 
progress management (Chandrashekar et al., 
2002) 

Management of progress status automated, e.g. risk 
monitoring and risk status checked on daily basis, enabling the 
project manager to identify problems early and take proactive 
measures (Roy, 2004)  

Risks are commonly identified at the start of 
a project, but only 50% followed the risk 
through during development (Verner & 

Agents monitoring risk will automate the continuous 
monitoring of risks, thus following all risks throughout the 
project 
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Limitations of current SPM approaches Agent enhancement 
Cerpa, 2005) 
Overemphasise passive corporative 
reporting aspects (Chen et al., 2003) of SPM 
by different team members  

Continuous input of task status and sharing of information 
changes passive reporting to a system that supports dynamic 
reporting, improving coordination and cooperation between 
team members 

Data, tasks and results will be sent over a 
network to execute at the user’s workstation 

 Tasks embedded into agent behaviour, thus traversing the 
network agents, which lessens communication overheads 
and network load – tasks are executed at team member’s site 

Ineffective and inefficient  communication, 
i.e. untimely information, failure to notify 
all team members (Chen et al., 2003) 

Collaborative tool providing automated support on structures 
for efficient information sharing, set format for information 
storing and structures for communication will promote 
adequate and timely information sharing (Gawinecki, 
Kruszyk, Paprzycki & Ganzha, 2007) 

Quality measures and standards selected by 
team.  Human inaccuracy and omissions 
possible (O’Connor & Jenkins, 1999)     

Continuous automated input of all team members regularly for 
quality control, as well as measures and directives 
conforming to standards 

Current SPM tools provide no intelligent 
support on standards or best practices 
(O’Connor & Moynihan, 2000)  

Agents with intelligence may encapsulate areas of experience, 
such as standards, and advise the project leader on best 
practices and standardisation, thus providing knowledge base 
support (Gawinecki et al., 2007) 

Intelligent support 
Bidding and negotiation done by humans 
((Badica, Popescu, Vukmirovic, Gawinecki, 
Kobzdej, Ganzha, & Paprzycki, 2007) 

AI advantages of bidding and negotiating agents. 
Automation of these functions will mean less work and 
additional productivity for the developer /s 
 

Current SPM tools that make projections 
concerning tasks and decisions are static and 
do not support dynamic simulation (Joslin & 
Poole, 2005) 

Agent systems support dynamic simulation concerning 
planning of uncertainty, i.e. dynamic resource allocation.  
Simulations may help  managers to anticipate critical 
conditions earlier and enable them to implement preventive 
measures; thus proactive SPM 

All interaction through stakeholders but no 
support in decision making process of 
project manager (O’Connor & Gaffney, 
1999; Purvis et al., 2003) 

Personal assistant agent supports each individual team 
member and manages and analyses large amounts of project 
data (Gawinecki et al., 2007) 

 
 
5. Verification of the SPMSA model 
 
The SPM phases of the SPMSA model are compared with the processes in the ISO 10006:2003 standard 
(which targets projects specifically) to determine the relevance of the SPMSA model regarding software 
project management processes – see table 5. In table 5 the correlating phases are marked in the same 
colour, e.g. if the SPMSA model’s phase correlates with clause 4: Quality management of ISO 10006:2003, 
both the SPMSA model’s phase and the ISO clause are marked in red.  Each similar set of processes is 
colour-coded (see colour code at the top of table 5). 
 
The ISO 10006:2003 standard consists of a full and extensive list of clauses.  Similar to ISO 9001:2000, the 
ISO 10006:2003 standard consists of 8 main clauses, 27 sub-clauses and 61 sub-sub clauses.  Main clauses 
1–3 concern only descriptive background, such as the scope of the document, normative references that 
state its correlation with ISO 9001:2000, as well as terms and definitions.  These clauses are omitted from 
table 5 as they contain information and not processes to implement.  In the standard, each first sub-clause, 
i.e. 1.1.1, 1.2.1 and 1.3.1, is a general clause, which is also omitted.  
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Table 5 SPMSA model vs ISO 10006:2003 
Colour coding: all processes on:  
Quality management: red      Scope management : turquoise  Communication management: grey 
Review evaluations: green     Time management: light blue     Risk management: olive green 
Resource management: blue  Cost management: orange          Purchasing management: pink 
 
ISO  1006:2003 processes 
 

SPMSA model 

Non-process clauses 
 

 

4 Quality management 
systems  
4.1 Project 
characteristics 

4.1.2 Organisations 
4.1.3 Processes in projects 
4.1.4 Project management processes 

Quality 
manage-
ment  

None 

4.2 Quality management 
systems 

4.2.1 Quality management principles 
4.2.2 Project quality management 
4.2.3 Quality plan for project 

None Quality assurance 
Quality control 
 
Quality planning 

Process clauses 
 

 

5 Management 
responsibility 
5.2 Strategic process 
5.3 Reviews and 
progress evaluations 

  None 
 
 
Performance reporting 
(communication 
management) 

    
6. Resource 
management 
 

6.1.2  Resource planning 
 
6.1.3  Resource control 

Human  
resource 
manage-
ment  

Resource planning (cost 
management) 
Management: 
monitoring & control 
 

6.2 
Personnel-related 
processes 

6.2.2  Establish project 
organisational structure 
6.2.3  Allocation of personnel 
6.2.4  Team development 

 Organisational planning 
 
Staff acquisition 
 
Team development  

7 Product realisation 
7.2 
Interdependency-related 
processes 

7.2.2 Project initiation &  
management plan development 
7.2.3 Interaction management 
7.2.4 Change management 
7.2.5 Process and project closure 

 None   
 
       
 None 
Change control (scope) 
Admin closure 
(communication) 

7.3 
Scope-related processes 

7.3.2  Concept development 
7.3.3 Scope development &               
control 
7.3.4 Definition of activities 
         None 
7.3.5 Control of activities 

Scope 
manage-
ment 

Initiation 
Planning 
Definition 
Verification 
Change control 

7.4 
Time-related processes 
 

7.4.2 Planning of activity 
dependencies 
7.4.3 Estimation of duration 
7.4.4 Schedule development 
7.4.5 Schedule control 

Time 
manage-
ment 

Activity definition & 
sequencing 
Duration estimation 
Time schedule 
development 
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Time schedule control 
None 

7.5 
Cost-related processes 

7.5.2 Cost estimation 
7.5.3 Budgeting 
7.5.4 Cost control 

Cost 
manage-
ment 

Cost estimation 
Cost budgeting 
Monitoring & control 

7.6 
Communication-
related processes 

7.6.2 Communication  planning 
None 
7.6.3 Information management 
7.6.4 Communication control 
None 
None 

Communi- 
cation 
manage-
ment 

Identification & planning 
 
Team support 
Information distribution 
 
None 
Performance reporting (5) 
Admin closure (7.2.5) 

7.7  
Risk-related processes 

7.7.2 Risk identification 
7.7.3 Risk assessment 
7.7.4 Risk treatment 
7.7.5 Risk control 
        None 

Risk 
manage-
ment 

Risk identification 
Risk analysis & 
prioritisation 
Risk planning 
Monitoring 
Resolution 

7.8  
Purchasing-related 
processes 
 

7.8.2 Purchasing planning & 
control 
7.8.3 Documentation of purchasing 
requirements 
7.8.4 Supplier evaluation 
7.8.5 Contracting 
7.8.6 Contract control 

Procure-
ment 
manage-
ment 

Procurement planning 
Solicitation planning 
Solicitation & 
source selection 
Contract administration 
Contract closure 

8 
Measurement analysis 
8.1 Improvement 
processes 

 
8.1 Improvement 

  
None 

8.2 Measurement & 
analysis 

8.2 Measurement & analysis  None 

 
All the key areas in the SPMSA model, namely scope management, time management, as well as cost, 
quality, human resource, communication, risk and procurement management, are reflected in the standard.  
ISO 10006:2003 also lists management responsibility (clause 5), product realisation (clause 7) and 
measurement analysis & improvement (clause 8) as separate clauses.  The SPMSA model contains ten 
processes not reflected in the ISO model.  The majority of processes in the SPMSA model correlate with 
processes in ISO 10006:2003.  Furthermore, the eight core and facilitating functions of the SPMSA model 
are reflected in the ISO 10006:2003 standard. 
 
The above comparisons clearly indicate that the SPMSA model conforms to the ISO 10006:2003 standard 
and, as such, can justifiably be applied to the software project management area.   The SPMSA model 
addresses the shortcomings in current SPM applications, and the underlying technology, namely agent 
technology, will support the unique nature and changing environment of SPM. 
 
6. Conclusion 
 
It is clear from this research study that traditional methods and techniques of SPM do not meet the 
requirements posed by this dynamically changing and unique working platform. Software agent 
technology, although primarily applied to other fields, such as e-commerce, information retrieval and 
network management, is ideally suited to meeting the new challenges faced by the SPM characteristics, 
such as appropriate tools for effective sharing of information and knowledge among project contributors, as 
well as efficient distributed task scheduling, tracking and monitoring mechanisms. In this paper we propose 
an approach to using software agent technology to address these challenges. The SPMSA model was 
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compiled to enhance standard SPM practices and thus also to address challenges encountered due to the 
unique and changing environment of SPM.  The SPMSA model is specifically tailored to address each of 
the unique features, namely complexity, flexibility, conformity and invisibility, through the agent 
framework.  As is evident from this investigation, agent technology is extremely suitable for handling 
complex and dynamically changing environments.  We believe that our solution is significant, based on our 
experience in other fields that advocate component-based development.  
 
This research is aimed at software practitioners and software developers, but will also be beneficial to 
researchers working in the field of SPM.  The development of software projects supporting crucial business 
activities may be utilised to attain a competitive advantage for that organisation.  
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