

A MODEL FOR ENHANCING SOFTWARE

PROJECT MANAGEMENT USING

SOFTWARE AGENT TECHNOLOGY

By

RITA C. NIENABER

submitted in accordance with the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in the subject

COMPUTER SCIENCE
at the

UNIVERSITY OF SOUTH AFRICA

PROMOTER: PROF. ELMÈ SMITH

CO-PROMOTER: PROF. ANDRIES BARNARD

JUNE 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/43165761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my husband, Sarel, who incited my interest in computer science - for his unflagging support

and encouragement throughout this undertaking.

ACKNOWLEDGEMENTS

To the Almighty and Heavenly Father for supporting me and giving me the strength to

persevere with and conclude this study.

I wish to express my gratitude and heartfelt thanks to my promotors:

o Prof. Elmé Smith, for her creative input, guidance and friendship throughout my

research project.

o Prof. Andries Barnard who in extremely difficult circumstances still gave his valuable

input and insight.

My family – Sarel, Marie-Louise and Ettienne, Karen and Werner, Tanya and Rohan –

thank you for all the love, support and understanding.

My grandchildren – Michael, Francois, Carli, Zenia and Arno – to whom I can now give

my undivided attention.

The Bit2PhD group led by Prof. Alta van der Merwe – thank you to each of you for your

motivation and support.

My friends and colleagues for their support and encouragement.

ABSTRACT
The present study has originated from the realisation that numerous software

development projects either do not live up to expectations or fail outright. The scope,

environment and implementation of traditional software projects have changed due to

various reasons such as globalisation, advances in computing technologies and, last

but not least, the development and deployment of software projects in distributed,

collaborative and virtual environments. As a result, traditional project management

methods cannot and do not address the added complexities found in this ever-

changing environment.

In this study the processes and procedures associated with software project

management (SPM) were explored. SPM can be defined as the process of planning,

organising, staffing, monitoring, controlling and leading a software project. The

current study is principally aimed at making a contribution to enhancing and

supporting SPM.

A thorough investigation into software agent computing resulted in the realisation that

software agent technology can be regarded as a new paradigm that may be used to

support the SPM processes. A software agent is an autonomous system that forms

part of an environment, can sense the environment and act on it over a period of time,

in pursuit of its own agenda. The software agent can also perceive, reason and act by

selecting and executing an appropriate action. The unique requirements of SPM and

the ways in which agent technology may address these were subsequently identified.

It was concluded that agent technology is specifically suited to geographically

distributed systems, large network systems and mobile devices. Agents provide a

natural metaphor for support in a team environment where cooperation and the

coordination of actions toward a common goal, as well as the monitoring and

controlling of actions are strongly supported. Although it became evident that agent

technology is indeed being applied to areas and sections of the SPM environment, it is

not being applied to the whole spectrum, i.e. to all core and facilitating functions of

SPM. If software agents were to be used across the whole spectrum of SPM

processes, this could provide a significant advantage to software project managers

who are currently using other contemporary methods.

The “SPMSA” model (Software Project Management supported by Software Agents)

was therefore proposed. This model aims to enhance SPM by taking into account the

unique nature and changing environment of software projects. The SPMSA model is

unique as it supports the entire spectrum of SPM functionality, thus supporting and

enhancing each key function with a team of software agents. Both the project

manager and individual team members will be supported during software project

management processes to simplify their tasks, eliminate the complexities, automate

actions and enhance coordination and communication. Virtual teamwork, knowledge

management, automated workflow management and process and task coordination

will also be supported.

A prototype of a section of the risk management key function of the SPMSA model

was implemented as ‘proof of concept’. This prototype may be expanded to include

the entire SPMSA model and cover all areas of SPM. Finally, the SPMSA model was

verified by comparing the SPM phases of the model to the Plan-Do-Check-Act (PDCA)

cycle. These phases of the SPMSA model were furthermore compared to the basic

phases of software development as prescribed by the ISO 10006:2003 standard for

projects. In both cases the SPMSA model compared favourably.

Hence it can be concluded that the SPMSA model makes a fresh contribution to the

enhancement of SPM by utilising software agent technology.

Table of contents

TABLE OF CONTENTS

CHAPTER 1 ..2

1 INTRODUCTION ..2

1.1 INTRODUCTION...3

1.2 UNIQUE NATURE OF SOFTWARE PROJECT MANAGEMENT ...4

1.3 MOTIVATION FOR THIS STUDY ...4

1.4 PROBLEMS TO ADDRESSED ..5

1.4.1 Do standard SPM practices take into account the unique nature and changing environment of

software projects (SPs)?..6

1.4.2 How can SPM processes be supported and enhanced in a distributed environment?6

1.4.3 Has software agent technology been applied to the SPM environment? ..7

1.4.4 How can software agent technology be incorporated and utilised by SPM to enhance the entire

SPM environment?..7

1.5 PUBLICATIONS RESULTING FROM THE STUDY...8

1.6 KEY TERMINOLOGY..9

1.7 OUTLINE OF THE STUDY ..10

1.7.1 Part I: Introduction ...10

1.7.2 Part II: Theoretical background ..11

1.7.3 Part III: The SPMSA model ..11

1.7.4 Part IV: Conclusion..12

CHAPTER 2 ..13

2 RESEARCH METHODOLOGY...13

2.1 INTRODUCTION...14

2.2 RESEARCH METHODOLOGY ...14

2.2.1 Research paradigm...15

2.2.2 Preliminary literature review..16

2.2.3 Research questions...16

2.2.4 Research strategies ..16

2.2.5 Data generation methods ..17

2.2.6 Data analysis methods ...19

2.3 SCOPE OF THE STUDY ...20

2.4 CONCLUSION ...20

CHAPTER 3 ..23

Table of contents

3 SOFTWARE PROJECT MANAGEMENT ..23

3.1 INTRODUCTION...24

3.2 UNIQUE CHARACTERISTICS OF SPM..25

3.3 CHANGING ENVIRONMENT OF SPM ...26

3.4 PROBLEMS WITH SOFTWARE PROJECTS ..28

3.4.1 Minimising project failure ..30

3.5 SOFTWARE PROJECT MANAGEMENT FRAMEWORK ..31

3.6 CORE FUNCTIONS..33

3.6.1 Scope management..33

3.6.2 Time management ...35

3.6.3 Cost management ..37

3.6.4 Quality management..39

3.7 FACILITATING FUNCTIONS ...42

3.7.1 Human resource management...42

3.7.2 Communications management ..44

3.7.3 Risk management...45

3.7.4 Procurement management ..47

3.8 CONCLUSION ...49

CHAPTER 4 ..51

4 SOFTWARE AGENT COMPUTING ...51

4.1 INTRODUCTION ..52

4.2 AGENT TECHNOLOGY...52

4.2.1 Emerging trends as drivers for agent technology...54

4.3 WHAT IS A SOFTWARE AGENT? ..56

4.3.1 Classes of software agents ...58

4.4 MOBILE SOFTWARE AGENTS ..60

4.4.1 History of mobile agents...61

4.4.2 Characteristics ..64

4.4.3 Advantages of mobile agents...65

4.4.4 Disadvantages of using mobile agents...67

4.5 CONCLUSION ...70

CHAPTER 5 ..74

5 SOFTWARE AGENTS IN SPM..74

5.1 INTRODUCTION...75

Table of contents

5.2 MOBILE AGENT DEVELOPMENT ..75

5.2.1 Mobile agent development methodologies..76

5.3 MOBILE AGENT IMPLEMENTATION..79

5.3.1 Agent development environments ...80

5.4 APPLICATIONS OF MULTI‐AGENT SYSTEMS ...84

5.4.1 Agents for Electronic Commerce ..85

5.4.2 Agents for Information Retrieval and Management ..85

5.4.3 Agents for Network and Internet..86

5.4.4 Agents for workflow and business process management ..87

5.4.5 Agents used in project management..87

5.5 CONCLUSION ...92

CHAPTER 6 ..95

6 MODEL – SCOPE AND CONCEPT ..95

6.1 INTRODUCTION...96

6.2 SCOPE OF THE MODEL ...97

6.3 CONCEPT OF THE MODEL ...98

6.3.1 Phases of software development for each SPM key function...100

6.3.2 Software agent framework to support each SPM key function..100

6.4 CONCLUSION ...103

CHAPTER 7 .. 104

7 THE SPMSA MODEL .. 104

7.1 INTRODUCTION...105

7.2 SOFTWARE PROJECT MANAGEMENT KNOWLEDGE AREAS..105

7.2.1 Scope management..107

7.2.2 Time management ...110

7.2.3 Cost management ..114

7.2.4 Quality management..116

7.2.5 Human resource management...119

7.2.6 Communication management..122

7.2.7 Risk management...126

7.2.8 Procurement management ..129

7.3 THE “SOFTWARE PROJECT MANAGEMENT SUPPORTED BY SOFTWARE AGENTS” (SPMSA) MODEL132

7.4 CONCLUSION ...141

CHAPTER 8 .. 142

Table of contents

8 PROTOTYPE IMPLEMENTATION .. 142

8.1 INTRODUCTION...143

8.2 DEVELOPING THE PROTOTYPE ...143

8.2.1 Requirements analysis phase ...144

8.2.2 Design Phase ..148

8.3 PROTOTYPE IMPLEMENTATION ..149

8.3.1 The Technological Platform..149

8.3.2 Overview of the prototype..152

8.3.3 Outcome of using JPMPS..164

8.4 CONCLUSION ...165

CHAPTER 9 .. 167

9 MODEL VERIFICATION .. 167

9.1 INTRODUCTION...168

9.2 ISO STANDARDS ..168

9.3 SPMSA MODEL VERIFICATION...170

9.3.1 PDCA cycle ..170

9.3.2 ISO 10006:2003 ..173

9.4 CONCLUSION ...178

CHAPTER 10 .. 180

10 CONCLUSION.. 180

10.1 INTRODUCTION..181

10.2 RESEARCH OVERVIEW..181

10.2.1 Do standard SPM practices take into account the unique nature and changing environment of

software projects (SP)? ...182

10.2.2 How can SPM processes be supported and enhanced in a distributed environment?183

10.2.3 Has software agent technology been applied to the SPM environment?..................................184

10.2.4 How can software agent technology be incorporated and utilised by SPM to enhance the entire

SPM environment?..184

10.3 CONTRIBUTION OF SPMSA MODEL ...185

10.4 FUTURE RESEARCH..186

11 REFERENCES ... 188

Table of contents

APPENDIX A PAPER PRESENTED AT SAICSIT2003, PUBLISHED IN THE CONFERENCE PROCEEDINGS. A‐1

APPENDIX B PAPER PRESENTED AT THE GLOBAL BUSINESS AND ECONOMIC CONFERENCE, AND PUBLISHED IN THE

BUSINESS REVIEW, CAMBRIDGE 2, (1) AUGUST 2004. B‐1

APPENDIX C PAPER PUBLISHED IN PROCEEDINGS IN INFORMING SCIENCE AND INFORMATION TECHNOLOGY

CONFERENCE INSITE 2006, FLAGSTAFF, ARIZONA, USA. C‐1

APPENDIX D PAPER PRESENTED AT INSITE 2007 AND PUBLISHED IN THE INTERDISCIPLINARY JOURNAL OF

INFORMATION, KNOWLEDGE, KNOWLEDGE AND MANAGEMENT, VOLUME 2,JANUARY 2008. D‐1

APPENDIX E PAPER PRESENTED AT IADIS, 2008: THE APPLIED COMPUTING INTERNATIONAL CONFERENCE, APRIL,

ALGARVE, PORTUGAL. THIS PAPER WAS PUBLISHED IN THE CONFERENCE PROCEEDINGS. E‐1

APPENDIX F THIS PAPER WAS SUBMITTED TO THE INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT IN

MAY 2008. F‐1

 List of Figures

vi

LIST OF FIGURES

FIGURE 2.1 MODEL OF THE RESEARCH METHODOLOGY (ADAPTED FROM OATES, 2006) 14

FIGURE 3.1 SOFTWARE PROJECT MANAGEMENT FRAMEWORK (ADAPTED FROM SCHWALBE, 2006) 32

FIGURE 3.2 SOFTWARE RISK MANAGEMENT (ADAPTED FROM BOEHM, 1991) 46

FIGURE 4.1 THE PERCEIVE‐REASON‐ACT CYCLE 58

FIGURE 5.1 JADE AGENT PLATFORM 82

FIGURE 6.1 SCOPE OF THE PROPOSED MODEL 97

FIGURE 6.2 CONCEPTUAL VIEW OF THE SPMSA MODEL 99

FIGURE 7.1 SCOPE MANAGEMENT FUNCTION 107

FIGURE 7.2 TIME MANAGEMENT FUNCTION 111

FIGURE 7.3 COST MANAGEMENT FUNCTION 114

FIGURE 7.4 QUALITY MANAGEMENT FUNCTION 117

FIGURE 7.5 HUMAN RESOURCE MANAGEMENT FUNCTION 120

FIGURE 7.6 COMMUNICATION MANAGEMENT FUNCTION 122

FIGURE 7.7 RISK MANAGEMENT FUNCTION 126

FIGURE 7.8 PROCUREMENT MANAGEMENT FUNCTION 130

FIGURE 7.9 THE SPMSA MODEL ‐ CORE FUNCTIONS 135

FIGURE 7.10 THE SPMSA MODEL ‐ FACILITATING FUNCTIONS 136

FIGURE 8.1 USE‐CASE FOR THE JADE PROJECT MANAGEMENT PROTOTYPE SYSTEM (JPMPS) 146

FIGURE 8.2 SOCIAL AGENT MODEL FOR THE JPMPS 147

FIGURE 8.3 AGENT MANAGEMENT SYSTEM 150

FIGURE 8.4 DIRECTORY FACILITATOR 152

FIGURE 8.5 INPUT SCREEN FOR THE CSWA PROJECT 154

FIGURE 8.6 TASK: DEPLOY SENSOR WEB APPLICATION 155

FIGURE 8.7 PERSONAL ASSISTANT AGENT: WABO 156

FIGURE 8.8 RISK PROBABILITY AND MONETARY VALUE INPUT: EXAMPLE 1 157

FIGURE 8.9 RISK PROBABILITY AND MONETARY VALUE INPUT: EXAMPLE 2 158

FIGURE 8.10 TASK COMPLETION INPUT SCREEN 159

FIGURE 8.11 RISK AGENT IN CONTAINER I 160

FIGURE 8.12 RISK AGENT IN CONTAINER 2 160

FIGURE 8.13 PERSONAL ASSISTANT AGENT: TERENCE 161

FIGURE 8.14 RISK PRIORITISATION REPORT SCREEN 162

FIGURE 8.15 TEAM LEADER REPORT 163

FIGURE 9.1 THE PDCA CYCLE 171

 List of Tables

vii

LIST OF TABLES

TABLE 2.1 RESEARCH QUESTIONS 16

TABLE 2.2 RESEARCH METHODOLOGY 20

TABLE 3.1 THE STANDISH GROUP REPORT 30

TABLE 3.2 PHASES OF THE KNOWLEDGE AREAS OF SPM 49

TABLE 4.1 AGENT PROPERTIES 61

TABLE 4.2 MOBILE AGENT CHARACTERISTICS 65

TABLE 4.3 CHALLENGES REGARDING AGENT TECHNOLOGY (LUCK ET AL., 2005) 68

TABLE 4.4 SPM FEATURES TO BE ADDRESSED BY AGENT TECHNOLOGY 71

TABLE 5.1 PLATFORMS FOR AGENT DEVELOPMENT 83

TABLE 7.1 AGENTS AND THEIR TASKS 133

TABLE 7.2 LIMITATIONS OF SPM ADDRESSED BY AGENT TECHNOLOGY 137

TABLE 8.1 AGENT INTERACTION WITH OTHER AGENTS 148

TABLE 9.1 PDCA CYCLE VS SPMSA MODEL 172

TABLE 9.2 PDCA CYCLE VS GENERIC PHASES OF THE SPMSA MODEL 173

TABLE 9.3 SPMSA MODEL VS ISO 10006:2003 174

TABLE 9.4 ISO 10006:2003 CLAUSES NOT REFLECTED IN THE SPMSA MODEL 176

TABLE 9.5 SPMSA PROCESSES NOT REFLECTED IN ISO 10006:2003 177

1

PART I

INTRODUCTION

Chapter 1 Introduction

2

CHAPTER 1

1 INTRODUCTION

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 1 Introduction

3

1.1 INTRODUCTION
Most current business undertakings are supported by software applications. The

quality, effectiveness and efficiency of these applications determine the success or

failure of many business solutions. As a result, businesses often find that they need to

obtain a competitive advantage through the development of software projects that

support crucial business activities. The quality of the software development process

plays a key role in the quality of the software implementation. Improvements in the

development of project management software can therefore result in a significant

improvement in software quality (Schwalbe, 2006).

Numerous software development projects either do not live up to expectations or they

fail outright. This is clear from the fact that software projects often do not comply with

the traditional standard measurements of success, namely time, cost and scope

(Schwalbe, 2006). For example, Marchewka (2003) reports that of the more than

$250 billion that the United States spent on IT projects, 31% were cancelled before

completion. Only 53% were completed but they had exceeded their budgets and time

schedules and were not compliant with the specifications. This explains why

researchers and practitioners are continuously trying to find new, and enhance

existing solutions to these problems (Boehm, 1991; Chen, Nunamaker, Romano and

Briggs, 2003; Marchewka, 2003; The Standish Group, 2005).

In some initial attempts to address problems associated with software development,

traditional project management (PM) techniques were applied to the development of

software projects. However, over time project management methods seemed to lack

the ability to address the unique characteristics of the software development domain

(Olson, 2004; Hughes and Cotterell, 2006). This led to the development of Software

Project Management as an independent application area and field of study (Romano,

Chen and Nunamaker, 2002; Chen et al., 2003).

Chapter 1 Introduction

4

1.2 UNIQUE NATURE OF SOFTWARE PROJECT
MANAGEMENT

Software Project Management (SPM) differs from General Project Management as

certain inherent characteristics are unique to software development (Brooks, as

quoted by Hughes and Cotterell, 2006). These characteristics are invisibility,

complexity, conformity and flexibility.

 Invisibility implies that the process of developing the software cannot be seen

(is not visual); thus it is difficult to control, monitor, measure and estimate

project progress.

 Complexity of software projects is increased in that software projects include

not only the development, but also the implementation and maintenance of a

system that may be distributed and that interfaces with many existing systems.

 Conformity of software is essential. Traditional disciplines involve physical non-

changing resources, whereas software projects involve a variety of resources

where the software is expected to conform to the requirements of humans and

organisations.

 Flexibility is needed as software systems are required to conform to the

standards of the organisation. Thus it is subject to a high degree of change.

The above unique factors contribute to shortcomings in the field of SPM and therefore

need attention.

1.3 MOTIVATION FOR THIS STUDY
The available literature in this field reveals that ongoing research is conducted to

address the current shortcomings in the management of software projects (Addison

and Vallabh, 2002; Roy, 2004; Sherer, 2004; The Standish Group, 2003).

Practitioners have attempted to apply several Software Engineering principles to

different Software Project Management processes (Lethbridge and Laganiere, 2001).

They have also explored standard structured analysis and design methods and

incorporated object-oriented approaches to overcome the aforementioned

Chapter 1 Introduction

5

shortcomings (Gelbard, Pliskin and Spiegler, 2002; Hughes and Cotterell, 2006).

Different standard project management approaches exist, which are applicable to

different areas of software project management, such as PRINCE 2 and BS

6079:1996 (Hughes and Cotterell, 2006). Yet many software projects still fail to

comply with the triple constraints of time, cost and scope (Oghma: Open Source,

2003).

The problems mentioned above can be ascribed to various factors, the most important

of which is the fact that the SPM environment has changed dramatically over the past

decade and is still changing rapidly due to globalisation and advances in computing

technology (Romano et al., 2002; Zanoni and Audy, 2003). The traditional single

project, which was commonly executed at a single location, has evolved into

distributed, collaborative projects deployed in distributed and collaborative

environments. This means that traditional project management methods cannot and

do not address the added complexities found in a distributed environment, such as

efficient task scheduling, tracking and monitoring, as well as the effective sharing of

information and knowledge among project contributors. There is therefore an urgent

need for managing software project risks in such a way that this complex distributed

environment is addressed and optimally supported.

1.4 PROBLEMS TO BE ADDRESSED
With the advent of global enterprises and virtual organisations, the environment

impacting on traditional software project management has changed. Outsourcing of

projects has become commonplace and adds to the complexity of managing the

project management process. It furthermore implies that traditional project

management methods are unable to address the added complexities found in a

distributed environment. Consequently, tools are required for the effective sharing of

information and knowledge among project contributors, as well as for efficient task

scheduling, tracking and monitoring. High levels of collaboration, task

interdependence and distribution have become essential across time, space and

technology (Chen et al., 2003). This thesis will therefore explore the processes and

procedures associated with SPM in an attempt to contribute to the enhancement of

Chapter 1 Introduction

6

SPM. It will accordingly propose a SPM model that enhances SPM processes by

incorporating a software agent technology framework. The main issues to be

addressed in this thesis are consequently defined in the form of the following research

questions:

1.4.1 Do standard SPM practices take into account the
unique nature and changing environment of software
projects (SPs)?

Over the past years the SPM environment has changed and it is still evolving and

developing. Standard SPM practices focus on a single project, commonly executed at

a single location with localised team members. This has changed due to factors such

as globalisation and advances in computing technology (Romano et al., 2002; Zanoni

and Audy, 2003). Nowadays projects are of a distributed and collaborative nature,

and they are deployed in distributed and collaborative environments. SPM is also

characterised by its unique and dynamically changing nature, which differs greatly

from standard project management.

Innovative SPM practices should take full cognisance of this unique nature and

changing environment of SPM. An attempt will be made to determine whether

traditional SPM methods adequately address the added complexities found in a

distributed environment. This thesis will explore the changing environment and unique

nature of SPM as well as the processes and procedures associated with SPM, in an

effort to address this question.

1.4.2 How can SPM processes be supported and enhanced
in a distributed environment?

Software that supports crucial business activities may be utilised to gain a competitive

advantage for its organisation. In other words, the quality of the software development

process, as well as improvements in the development of project management

software can significantly enhance the quality of the software (Schwalbe, 2006).

Chapter 1 Introduction

7

Since the operational environment of SPM has changed, new methods are needed to

enhance and support standard SPM practices. Different paradigms are evolving and

several may hold promise to address both this changing environment and the unique

nature of SPM. Several paradigms such as software engineering principles, agile

methodologies and structured analysis and design principles have been applied in an

effort to improve SPM practices, though not with much success.

The questions that arise are whether a new paradigm could minimise the problems

with current practices, and whether another paradigm could support the intrinsic

aspects that cause the failure of projects. The researcher plans to investigate the

possibility of using software agent technology to address SPM problems in a

distributed environment in order to enhance SPM processes.

1.4.3 Has software agent technology been applied to the
SPM environment?

Various software agent applications have been developed over the past few years.

The researcher aims to investigate whether software agent technology has been

applied to support any processes in the SPM environment and/or to address SPM

problems in a distributed environment. In addition, she wishes to find out whether

software agent technology has been used to support or enhance single functions or

larger application areas in the SPM environment.

1.4.4 How can software agent technology be incorporated
and utilised by SPM to enhance the entire SPM
environment?

To address this question, the researcher will implement an SPM model entitled

SPMSA (Software Project Management supported by Software Agents) that she

developed for this purpose. The SPMSA model enhances and supports SPM

processes by incorporating a software agent framework.

Chapter 1 Introduction

8

1.5 PUBLICATIONS RESULTING FROM THE STUDY

The following peer-reviewed publications were generated as result of the research

conducted for this thesis (see Appendix A to F for the articles):

1) Nienaber R.C. and Cloete E. 2003. A Software Agent Framework for the
support of Software Project Management. In Proceedings of IT Research in

Developing Countries, Midrand, Gauteng. (SAICSIT 2003). ISBN: 1-58113-774-

5, pp. 16-23.

2) Nienaber R.C., Cloete E. and Barnard A. 2004. Software Project Risk
Management Supported by Agent Technology. In Proceedings of the Global

Business and Economic Conference, August 2004, Istanbul, Turkey. The

Business Review, Cambridge, 2, (1) 2004. ISSN 1540 -1200, pp. 452-459.

3) Nienaber R.C. and Barnard A. 2006. Software Quality Management
supported by Software Agent Technology. In Proceedings in Informing

Science and Information Technology Conference (INSITE 2006), Flagstaff,

Arizona, USA. ISSN: 1547-5840, pp. 659-669.

4) Nienaber R.C. and Barnard A. 2007. A Generic Agent Framework to Support
Various Software Project Management Processes. In the proceedings of the

conference on Issues in Informing Science and Information Technology

(INSITE 2007), June 22-25 2007, Llubljana, Slovenia. This paper received the

“best paper” award, and was accordingly published in the Interdisciplinary

Journal of Information, Knowledge and Management, Volume 2, pp. 149-162,

January 2008.

5) Nienaber R. C., Smith E., Barnard A., and Van Zyl T., 2008. Software Agent
Technology supporting Risk Management in SPM. In the conference

proceedings of IADIS International Conference Applied Computing

(IADIS2008), April 10 – 13, 2008, Algarve, Portugal.

6) Nienaber R.C. and Smith E. 2008. Enhancing and supporting SPM: The
Software Project Management supported by Software Agents model.
Submitted to the International Journal of Information Management (2008).

Pending.

Chapter 1 Introduction

9

Articles 1 to 5 were presented at international conferences.

Article 4 was also published in an international journal.

Article 6 has recently been submitted to an accredited international journal.

1.6 KEY TERMINOLOGY
Having thoroughly studied the available literature, the researcher found that numerous

definitions and meanings exist with respect to software project management terms

and concepts, as well as concepts related to software agents (Marchewka, 2003;

Olson, 2004; Schwalbe, 2006; Hughes and Cotterell, 2006). For the purpose of this

thesis, the following terminology applies and can be used as a frame of reference for

further discussions in this thesis.

An agent is a system that is situated within a part of an environment and that senses

that environment and acts on it, over time, in pursuit of its own agenda and so as to

effect what it senses in the future (Franklin and Graesser, 1996; Wooldridge, 2002).

A project is a temporary endeavour undertaken to accomplish a unique purpose. A

project furthermore requires resources, has a primary stakeholder or customer and

involves uncertainty (Schwalbe, 2006).

Project management is the application of knowledge, skills, tools and techniques to

project activities in order to meet or exceed stakeholder needs and expectations with

regard to a project (Elec 4704, 2003).

Software Project Management is the process of planning, organising, staffing,

monitoring, controlling and leading a software project (IEEE Standards Board, 1997).

A software agent is an autonomous system that forms part of an environment when

situated within the said environment. The software agent can sense the environment

and act on it over a period of time, in pursuit of its own agenda. The software agent

can also perceive by receiving stimuli from its environment, reason by combining

Chapter 1 Introduction

10

newly acquired information with its existing goals and knowledge, and act by selecting

and executing an appropriate action (Franklin and Graesser, 1996).

A mobile agent is an active entity that can migrate autonomously from one location to

another (as opposed to a stationary agent), and resume execution at a remote site to

perform a task on behalf of its user. It is able to act independently, observe its

environment and to adapt to changes in the environment (Dale 1997; Kotz and Gray,

1999; Schoeman, 2005).

An intelligent agent will to a smaller or larger degree contain capabilities of reactivity

(implying that it is able to perceive its environment and respond to it in timely fashion),

proactivity (entailing exhibiting goal-directed behaviour by taking the initiative to satisfy

its design objectives), and a social ability (meaning that it is able to interact and

communicate with other agents to satisfy its design objectives) (Wooldridge, 2002).

A mobile agent environment is a software agent system that is distributed over a

network of computers. Its primary task is to provide an environment in which agents

can execute. The mobile agent environment provides support services for agent

movement, connection to environments in which the agent environment exists, as well

as services to communication (Green, Hurst, Nangle, Cunningham, Somers and

Evans, 1997).

1.7 OUTLINE OF THE STUDY
This thesis consists of four parts, with each part comprising one or more chapters.

The figure on page 2 graphically depicts the layout of and relationship between the

various chapters. This section describes the outline of the chapters.

1.7.1 Part I: Introduction

Part I, comprising chapters 1 and 2, serves as an introduction and background to this

study. Chapter 1 introduces the field of study, gives a rationale for the current study

and highlights the problems to be addressed in the form of research questions.

Chapter 1 Introduction

11

Chapter 2 of Part I presents the research methodology followed throughout this

thesis.

1.7.2 Part II: Theoretical background

Part II serves as theoretical background to this study, and includes chapters 3, 4 and

5. Chapter 3 of Part II is devoted to a literature study relevant to the area of SPM.

This chapter explores the changing and unique nature of the SPM environment.

Software project characteristics, as well as its core and facilitating functions are

investigated and reported on. The conclusion reached, namely that failure in many

areas of SPM points to shortcomings in standard SPM practices, is deemed important

as it underpins the need for a new approach to support and enhance standard SPM

practices. In Chapter 4 software agent technology is investigated. Trends driving

software agent technology are revealed, and concepts and identifying features of

agent technology are discussed. In doing so, salient features of software agent

technology are uncovered which motivates the use of such technology. It becomes

clear that these characteristics of software agent technology can indeed address the

unique and complex requirements of SPM.

In Chapter 5 the process of agent development is scrutinised. The chapter also

explores the utilisation of agent technology in the SPM field and investigates various

applications. It transpires that although agent technology has been utilised for certain

functions in the SPM environment, it has not been applied to the entire SPM

environment.

1.7.3 Part III: The SPMSA model
Part III consists of chapters 6, 7, 8 and 9. It presents the SPMSA (Software Project

Management supported by Software Agents) model, which involves SPM processes

that are supported by agent technology. Chapter 6 commences with a presentation of

the scope of this model, comprising the main research areas addressed in this thesis,

namely SPM and software agent technology. A conceptual view of the model is

compiled next to illustrate the generic phases of software development for each SPM

Chapter 1 Introduction

12

key function, as well as the software agent framework that will address each key area

of SPM. It is thus established that the proposed model is specifically tailored to

support the unique and changing SPM environment. In Chapter 7 each of the key

areas of SPM is scrutinised and elaborated on. The aim of this section is to compile a

comprehensive model – the SPMSA model – to enhance and support the entire SPM

environment. Chapter 8 illustrates the implementation of a section of the SPMSA

model as proof of concept in the form of a prototype and explains how this prototype

was tested in a real-life scenario. Chapter 9 substantiates the relevance of the model

by comparing it to the Plan-Do-Check-Act (PDCA) cycle, as well as to the ISO

10006:2003 standard.

1.7.4 Part IV: Conclusion

The thesis culminates in Part IV, which comprises of a single chapter. Chapter 10

provides a summary of and reports on the outcomes of the research project. The

thesis is concluded with a reflection on areas of further research.

Chapter 2 Research Methodology

13

CHAPTER 2

2 RESEARCH METHODOLOGY

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II

Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 2 Research Methodology

14

2.1 INTRODUCTION
Different research paradigms, models and strategies based on various philosophical

foundations and conceptions of reality may be utilised to direct the research

process. Chapter 2 delineates the research methodology followed in this thesis,

namely that recommended by Oates (2006).

2.2 RESEARCH METHODOLOGY
The purpose of this study is to enhance SPM, and consequently the use of software

agent computing as a potential tool to support project managers and role-players

during SPM processes is investigated. An overview of the complete research

process as recommended by Oates (2006) is graphically depicted in Figure 2.1.

Figure 2.1 Model of the research methodology (adapted from Oates, 2006)

The coloured blocks indicate the specific research methodology steps that were

followed in the course of this study.

1:N

often

Usually

1:1

Preliminary
Literature
Review

Research

Question (s)

Case study
Question-

naires

Quantitative

Qualitative

Experiment

Design and
Creation

Survey

Action
Research

Ethnography

Documents

Observation

Interviews

Conceptual

Framework

Research strategies Data analysis

Research paradigm: Interpretive

Literature

Survey

Data generation
methods

Chapter 2 Research Methodology

15

2.2.1 Research paradigm
A paradigm is defined by Oates (2006) as:

“ a pattern or model or shared way of thinking”.

Various philosophical foundations and concepts of reality influence the ground rules

and building blocks on which research paradigms are based and the specific

methods that are used by them (de Villiers, 2005; Olivier, 2004). Each paradigm is

implemented using associated methodological approaches and strategies. Different

philosophical paradigms have different views on the nature of our world (ontology)

and the methods we use to acquire knowledge about it (epistemology). Based on

the available literature, three primary research paradigms are identified, namely

positivist, interpretive and critical research (Myers, 2006; Oates, 2006). For the

purposes of this study, the interpretive research paradigm is the most suitable.

Interpretive research in computing is defined by Oates (2006), in that it:

“concerns itself with understanding the social context of an information system;

the social processes by which it is developed and construed by people and

through which it influences, and is influenced by its social setting”.

As this study reflects on the practices and functions of SPM, it is inherently a study

of processes and interactions. It considers the social context of an information

system – specifically the social processes by which it is developed and construed –

and thus emphasises the interpretative nature of the study, according to Oates’s

criteria.

In recent years interpretive research has become accepted in Information Systems

(IS) (Klein and Meyers, 1999; Roode, 2003). According to Klein and Myers (1999)

interpretive studies can provide clear insight into IS management and development.

Interpretivism typically, but not exclusively, tests research questions and lends itself

to qualitative studies (de Villiers, 2005). The interpretive research paradigm

underpins the research methodology followed in this study (see Figure 2.1).

Chapter 2 Research Methodology

16

2.2.2 Preliminary literature review
The first step in the research methodology followed constitutes a preliminary

literature review (see Figure 2.1). The purpose of such a review is to determine

what research has so far been done in the specific field of study, and to identify

current problems and areas for future research. Following this review, a number of

research questions will be formulated. This will be followed by an ongoing literature

survey as the research progresses.

2.2.3 Research questions
Having conducted a preliminary literature review concerning SPM, the following

research questions were identified (see Chapter 1):

Table 2.1 Research Questions

 Research questions

1 Do standard SPM practices take into account the unique nature and

changing environment of software projects?

2 How can SPM processes be supported and enhanced in a distributed

environment?

3 Has software agent technology been applied to the SPM environment?

4 How can software agent technology be incorporated and utilised by SPM to

enhance the entire SPM environment?

Each chapter in this thesis is devoted to answering one or some part of the research

questions above.

2.2.4 Research strategies
The third step in the research methodology involves the research strategies to be

executed to address the research questions stated above. Research strategies can

be described as the approach to answering the research question(s). Oates (2006)

identifies various strategies, namely survey, design and creation, experimenting,

Chapter 2 Research Methodology

17

case studies, action research and ethnography, as depicted in Figure 2.1. The

specific approach adopted for this thesis is the design and creation research

strategy.

The design and creation research strategy focuses on developing new IT products

such as constructs, models, methods and instantiations (March and Smith, 1995).

Quoting Oates (2006), “[a] researcher following the design and creation

strategy could offer a construct, model, method or instantiation as a

contribution of knowledge”.

Research that utilises the design and creation strategy must illustrate how this

research differs from technical development by using concepts of analysis,

explanation, argument, justification and critical evaluation (Oates, 2006). A model

should be compiled and evaluated. According to Oates (2006), it is rare for any

implementation of such a model developed through design and creation research to

be a full-blown system that can be used immediately without any other researcher

involvement. Instead, the role of implementing the model is that of a prototype to

illustrate ideas and constructs, models and methods by which effective and efficient

workings systems (involving people and technology) might be achieved. No

evaluation of the system in use is necessarily provided (Oates, 2006).

This thesis thus reflects on design and creation research as the SPM environment is

studied and its core and facilitating functions are defined and compiled into a model

of the entire SPM functional area. A software agent framework is then constructed

to support the SPM area and a section of this model is subsequently instantiated

through a prototype. The model is evaluated by being compared to the PDCA

(Plan-Do-Check-Act cycle) as well as to the ISO standard 10006:2003.

Chapter 2 Research Methodology

18

2.2.5 Data generation methods
The next step in the research methodology, as illustrated in Figure 2.1, is data

generation. Data generation includes interviews, observations, questionnaires and

documents. The approach followed was adopted from the guidelines set by Oates

(2006) and Miles and Huberman (1994). The primary source of data for this thesis

is documents that were obtained from formal academic sources. Such documents

were obtained from electronic libraries within Computer Science and Information

Systems, notably from the ACM, the IEEE (Computer Society Library), Elsevier,

ScienceDirect and Springerlink. This primary source was supplemented by verified

informal sources such as specific Web sites concerned with software agent

technology. Completeness of data or documents was attained through data

saturation. Data set saturation was achieved by exploring the reference list of

significant and relevant publications. This process was continued until saturation

point was reached.

In order to prevent the researcher from being swamped by the amount of data,

Oates (2006) recommends techniques to manage and analyse data, namely data

preparation, data reduction, data analysis and interpretation(evaluation).

Data preparation involves structuring the data into a format ready for analysis.

Similar formats are easier to analyse, such as A4 pages, or computer files. Filing

will also benefit by an identified similar format. In this thesis, data preparation was

executed and categories were set based on the various functionalities of the

application domain studied. These categories were consequently refined.

Documents, books, texts and publications were used within the researcher’s

impressions and experience of, for example, constructing a model or a framework.

Data reduction involves the identification of broad themes within the research topic.

Relevant data can be further categorised and ordered by identifying broad

categories and units to be refined later. Categories may be identified based on a

deductive approach, where existing theories are used as base and extended or

Chapter 2 Research Methodology

19

expanded, or on an inductive approach where categories are identified based purely

on data explored. Themes can now be identified and interconnections established.

The data reduction process as described by Oates (2006) was followed where

referenced publications were selected based on the application domain, namely

software project management core and facilitating functions. Categorisation was

based on these areas and sub-categories were identified. The journal articles were

also analysed, which led to an additional selection of documents.

Data analysis involves the “breaking up” of data into manageable themes, patterns,

trends and relationships (Mouton, 2001). Data is analysed to get a clear

understanding of the various elements of the data. Through inspecting the data,

relationships may be defined between concepts, constructs or variables. The aim of

data analysis is to identify or isolate any clear trends, patterns or even themes in the

data.

Data interpretation (evaluation) involves the synthesis of one’s data, based on

identified trends, into larger coherent structures (Mouton, 2001). The aim of data

interpretation is to formulate theories or hypotheses that reflect on the observed

patterns or trends in data. Through interpretation of one’s data, the results and

findings may be related to existing theoretical frameworks or models.

2.2.6 Data analysis methods
Data can be analysed qualitatively or quantitatively. Quantitative data analysis

implies data or evidence based on numbers, and is typically generated through

experiments and surveys. Qualitative data analysis on the other hand, includes

non-numerical data such as words, images and items found in researchers’ notes,

diaries, documents and tapes. Qualitative studies investigate the why and how of

decision making, as compared to the what, where and when of quantitative studies.

In this study, which was mainly guided by the researcher’s impressions and

experience, documents, books, texts and publications were used to construct a

Chapter 2 Research Methodology

20

model, agent framework and prototype. The study is therefore qualitative and not

quantitative.

2.3 SCOPE OF THE STUDY
This study explores the entire spectrum of Software Project Management as a

discipline. The aim of the study is to enhance SPM processes and therefore all core

and facilitating functions of SPM are investigated to identify methods or structures to

support and enhance the said functions.

Agent taxonomies comprise biological, robotical and computational agents, with

differentiation of computational agents into artificial life agents and software agents

(Franklin and Graesser, 1996). The main focus of this thesis is on software agents,

as will be discussed in Chapter 4.

2.4 CONCLUSION
The research methodology in this thesis, as executed in accordance with the

research process of Oates (2006), is summarised in Table 2.2 below.

Table 2.2 Research methodology

Research methodology This thesis

Research paradigm Interpretivist

Research strategy Design and Create

Data generation method Documents

Data analysis method Qualitative

Chapter 2 concludes Part I of the thesis. It aimed to describe the area under

investigation, formulate the research questions, and consequently elaborate on the

research methodology followed to answer the set of research questions. It also

served to place the research project in context for the reader.

Chapter 2 Research Methodology

21

In Part II, the theoretical background of SPM and agent computing will be explored.

Essential aspects of SPM, including its unique factors and changing environment,

will be investigated. Software agent technology will also be explored to determine

whether it may be utilised to support SPM processes.

22

PART II

THEORETICAL BACKGROUND

23

CHAPTER 3

3 SOFTWARE PROJECT MANAGEMENT

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 3 Software Project Management

24

3.1 INTRODUCTION
Project management is one of the most critical processes for implementing

multidisciplinary ventures and leveraging company resources (Thamhain, 2003).

Advances in information technology have had a profound impact on project

management as an enabling tool, affecting project management capabilities and

functioning. This has resulted in a contemporary framework for multi-functional

linkages and communication, essential for integrating today’s complex projects and

project environments. However, in spite of technological advances, the increased

level of interconnectivity, distribution and processing, also creates vast challenges

involving a wide spectrum of software-related activity management and

organisational issues. In fact, complexities and risks of software project

development continue to increase (Marchewka, 2003).

Over the past years, the development of software projects have regularly failed to

meet user expectations, were commonly delivered late, and mostly exceeded the

set budget. Much of this still holds true today, which is why these issues have to be

addressed in concrete terms (Chen, et al., 2003; Chen, Lin, Blocker and Cokins,

2005). As a result, the field of SPM is receiving increasing attention and various

methods and techniques are utilised to optimise the SPM processes. SPM involves

the management of all aspects and issues that are involved in the development of a

software project, namely: identification of scope and objectives; project development

approaches; software effort and cost estimation; activity planning, monitoring and

control; risk management; resource allocation and control; as well as managing

contracts, teams of people and quality (Hughes and Cotterell, 2006). The specific

purpose of this chapter is to explore the changing environment of SPM. Software

project characteristics, as well as the core and facilitating functions of SPM, are

delineated to identify problems experienced during software project management

processes.

Chapter 3 Software Project Management

25

3.2 UNIQUE CHARACTERISTICS OF SPM
SPM processes comprise their own unique features. Research was conducted by

Brooks to emphasise the unique nature of SPM, and reported on in his much cited

work No Silver Bullet in 1987. In Section 1.2 (Chapter 1) the unique nature of SPM

was outlined and characteristics unique to software projects were listed as

invisibility, complexity, conformity and flexibility. These aspects contribute to the

difficult task of pinpointing a software project as an exact task with a specific

beginning, end and deliverables. An example of a general project may be to build a

house, a building or bridge. Although this task may be complex, it is a visible,

inflexible task and not subject to conformity. A software project, on the other hand,

 is invisible, for instance writing an operating system for a new computer;

 is complex, such as an Internet flight-booking system (or a flight control and

scheduling system for an airline);

 should be able to conform, for instance amending a financial system to deal

with different currencies (amending the federal tax system of the U.S.

government);

 should be flexible, such as implementing a data warehouse for sales services

and integrating various brands from various vendors placed on different

databases and formatted differently, while allowing for the integration of

information on new databases.

Schwalbe (2006) adds to the above characteristics by stating that a software project

has a unique purpose; it is usually temporary; a software project is developed using

progressive elaboration; a software project requires resources; a software project

should have a primary customer or stakeholder, and a software project involves

uncertainty.

The unique nature of SPM therefore contributes to the difficulties experienced with

managing software projects and the likely failure of such projects.

Chapter 3 Software Project Management

26

3.3 CHANGING ENVIRONMENT OF SPM
SPM operates in a highly dynamic environment that involves temporary tasks and

rapidly changing technology, and that requires coordination between various parties

and organisations (Olson, 2004). In a cornerstone publication, The Mythical Man-

Month by F.P. Brooks (1979), difficulties of managing large software development

projects are identified and solutions proposed to solve these problems (Verner,

Overmyer and McCain, 1999). The work describes pitfalls and fundamental

problems and proposes suggestions for improvement of software project

management. Over the past decade, computer technology expanded and

management and control functions were automated and supported by software tools

and techniques in an effort to support SPM and control (Chandrashekar, Mayfield

and Samadzadeh, 1993).

Currently, the SPM environment is still changing due to business globalisation and

information technology advances that support distributed and virtual teams and

projects (Chen et al., 2003; Hughes and Cotterell, 2006; Callegari and Bastos, 2007).

The increasing number of distributed projects involving software project collaborators

from different locations, organisations and cultures, changes the SPM paradigm of a

traditional project focusing on a single project executed at a specific location

(Evaristo and Van Fenema, 1999; Jonsson, Novosel, Lillieskold and Eriksson, 2001;

Olson, 2004; Smits and Pshigoda, 2007). Due to this distributed nature of software

projects, high levels of collaboration are essential for successful project execution.

Tracking of work processes, effective sharing of information and knowledge among

collaborators, as well as proactive change management across time, space and

technology are essential (Chen et al., 2003).

Literature reveals that several factors contribute to this changing environment of

SPM:

 The globalisation of the economy has led to the geographical distribution of

resources and investments in order to obtain better results (Zanoni and Audy,

2003; Dekkers and Forselius, 2007). A physically distributed environment

Chapter 3 Software Project Management

27

implies that users and development teams may be situated in different

places, countries and possibly different cultures. The software development

area has been foremost in this process in countries such as India and Ireland

(Zanoni and Audy, 2003).

 The spreading of software development processes offshore or outsourcing is

implemented in order to attain greater productivity, reduce cost and risk, and

improve quality. The key issue for distributed software projects is

coordination and collaboration (Chen et al., 2003).

 Teams of people, as representatives of the software project development

effort, regularly collaborate with the software project and task leaders to plan,

compose and monitor tasks (Cleetus, Cascaval and Matsuzaki, 1996; Gaeta

and Ritrovato, 2002; Zanoni and Audy, 2003; Rose, Pedersen, Hosbond and

Kraemmergaard, 2007). Such teams are commonly distributed over several

dispersed geographical locations, and even several enterprises involving

sub-contractors and sponsors. Distance may slow down interaction and

communication.

 E-business and Internet growth stimulate and support the distribution of role-

players involved in software development (Gaeta and Ritrovato, 2002).

Although numerous new opportunities and possibilities are provided,

complexity is increased and care must be taken to assure the quality of

integrating the Internet with SPM processes.

 Advances in technology, such as distributed component technologies (Gaeta

and Ritrovato, 2002) and parallel and distributed process architectures (Chen

et al., 2005; McMichael and Lombardi, 2007), enable collaboration and

concurrency, but also enhance complexity and maintenance problems.

The focus of SPM processes has clearly shifted away from the position that it held

two decades ago. Consequently, tools for effective sharing of information and

knowledge among project contributors, as well as efficient task scheduling, tracking

and monitoring are needed. High levels of collaboration, task interdependence and

Chapter 3 Software Project Management

28

distribution have become essential across time, space and technology (Chen et al.,

2003).

3.4 PROBLEMS WITH SOFTWARE PROJECTS
Several studies have been conducted to identify weaknesses and areas to improve

during SPM. A number of surveys specifically investigated failed software projects

(Verner, et al., 1999; Flower, 1996; The Standish Group, 1995, 2001, 2003 and

2005; Verner and Cerpa, 2005; Dekkers and Forselius, 2007), to list but a few on

this topic.

According to the Standish group (2003), failure begets knowledge.

“If you begin with failure and learn to evaluate it, you also learn to succeed.”

(Olson, 2004)

Hughes and Cotterell (2006) identify the following aspects that, from the software

project manager’s point of view, contribute to the failure of software projects: poor

estimates and plans; lack of quality standards and measures; lack of guidance in

decision making; lack of techniques to make progress visible; poor role definition.

From the point of view of the team members the following are an indication of

failure: inadequate specification of work; management ignorance of Information

Communication Technology; lack of knowledge in application area; lack of

standards; lack of current documentation; lack of communication.

A study of SPM practices in Australia reveals that fifty percent of software projects

begin with unclear requirements, twenty percent has no life-cycle methodology, and

risk assessment does not form part of the development process (Verner and Cerpa,

2005). Although the majority of managers identified risks at the start of the project,

only half followed through during development.

Chapter 3 Software Project Management

29

Many of the problems identified with software project failure stem from poor

communication and uncoordinated support to all team members. The question that

begs to be asked is whether standard SPM practices are failing?

Practitioners have attempted to apply several Software Engineering (SE) principles

to different SPM processes in order to address the existing shortcomings in the

management of software projects (Lethbridge and Laganiere, 2001). Research

investigations and software engineering textbooks compare and contrast different

process models or life-cycle models for development (Kettunen and Laanti, 2004).

Standard structured analysis and design methods are explored, while object-

oriented approaches and extreme programming are used to overcome the

aforementioned shortcomings (Lethbridge and Laganiere, 2001; Gelbard et al.,

2002). Heuristics are explored (Purvis, McCray and Roberts, 2003) and

visualisation is scrutinised to assist SPM processes (Hansen, 2006). Standard

process definitions, process maturity assessment models and quality management

systems such as the Unified Software Development Process and the Capability

Maturity Model for Software Engineering are in use (Olson, 2004; Sonnekus and

Labuschagne, 2004; Hughes and Cotterell, 2006). Standards such as ISO9001

have been formulated, and the compliance of the development process to these

standards is tested. Different standards-based software project management

approaches have been developed and are in use, such as PRINCE 2 and BS 6079

(Hughes and Cotterell, 2006). Yet, the results remain disappointing since many

software projects still fail to comply with the triple constraints of time, cost and scope

(Oghma: Open Source, 2003). These triple constraints refer to the fact that the

failure of software projects can mostly be attributed to the fact that they are not

delivered on time and do not meet the expectations of the client (scope), and as a

result have cost implications. Sommerville and Rodden (1996) note that a large

number of co-operation activities are unplanned, and that software engineers work

in a flexible, autonomous fashion, which is not supported by the existing process

models.

Chapter 3 Software Project Management

30

The traditional focus of SPM processes has shifted. Consequently, the size,

complexity and strategic importance of information systems that are currently being

developed require stringent measures to determine why projects fail. Since

organisations continue to invest time and resources in strategically important

software projects, the possibility of failure of the project should be minimised.

3.4.1 Minimising project failure
The 1995 Standish Group study found that the three major factors related to

software project management success were user involvement, executive

management support and a clear statement of requirements (The Standish Group,

1995). After their famous CHAOS report (1995), the Standish Group studied 13 522

projects in a follow-up survey, dubbed the EXTREME CHAOS report (2003). In the

latter report, executive management support, user involvement, an experienced

project manager and a clear statement of requirements topped the list of

requirements for success. In 2005 the Standish Group reported that success rates

increased to a third of all projects, but time overruns now measure 82 percent, whilst

only 52 percent of required and specified functions and features were included in

the final product. Their 2005 study determined that 18 percent of the surveyed

projects failed, 53 percent did not meet the requirements (challenged) and only 29

percent succeeded.

Table 3.1 summarises the findings of the 2005 report by The Standish Group,

describing in order of importance the factors that contribute most to the success of

software projects:

Table 3.1 The Standish Group Report

1 User involvement

2 Executive management support

3 Clear business objectives

4 Optimising scope

5 Agile process

Chapter 3 Software Project Management

31

6 Experienced project manager

7 Financial management

8 Skilled resources

9 Formal methodology

10 Standard tools and infrastructure

Pinto and Slevin (1987) investigated the dual importance of strategy and tactics and

after examining over 400 software projects, identified 10 critical success factors.

They propose a framework involving conceptualisation, planning, execution and

termination to illustrate these issues. To identify a solution to project failure is not

an elementary process. SPM should be investigated as a whole, and each of its

processes should be considered to fully understand the scope of SPM. In the

following section SPM will be defined and its functions delineated.

3.5 SOFTWARE PROJECT MANAGEMENT FRAMEWORK
To discuss software project management, it is important to start off by defining a

software project. Schwalbe (2006) defines a software project as a temporary

endeavour undertaken to create a unique product, service or result. Software

projects involve the use of hardware, software and networks to create a product,

service or result. What exactly is then meant by software project management?

The IEEE defines SPM as the process of planning, organising, staffing, monitoring,

controlling and leading a software project (IEEE Standards Board, 1987). A more

detailed exposition shows that SPM involves the planning, monitoring and

controlling of people and processes that are involved in the creation of executable

programs, related data and documentation (Elec 4704, 2003).

In an effort to visualise and contextualise the SPM operational environment, various

frameworks and guidelines have been compiled. Hughes and Cotterell (2006)

describe a framework of basic steps, Step Wise, in project planning. Step Wise

covers the planning stages of a software project and not the monitoring and control

Chapter 3 Software Project Management

32

of it. The planning stages may, however, be adapted to support planning in any

other methodology or standard of development. PRINCE 2 is a set of project

management standards originally sponsored by the Central Computing and

Telecommunications Agency (CCTA) for use in British government software

projects. Schwalbe (2006) compiles a framework of key issues of importance during

the SPM process. This framework combines the environment as well as processes

or functions of software project management. Figure 3.1 illustrates these issues in a

framework that contains the key elements in the field of SPM. The components of

this framework are derived from Project Management Body of Knowledge (PMBOK)

(2004) guidelines.

Figure 3.1 Software Project Management Framework (adapted from Schwalbe,

2006)

We distinguish between three key elements: software project stakeholders; software

project management knowledge areas, namely core and facilitating functions; and

software project management tools and techniques. The software project

stakeholders and SPM knowledge areas comprise a working model. Software

project management tools and techniques support these knowledge areas. This

framework serves to explain the processes and refer to the SPM of a single project

K
N

O
W

LE
D

G
E

 A
R

E
A

S

CORE FUNCTIONS

Scope
Management

Time
Management

Cost
Management

Quality
Management

FACILITATING FUNCTIONS

Human Resource
Management

Communication
Management

Risk
Management

Procurement
Management

S
TA

K
E

H
O

LD
E

R
S

TO
O

LS
 &

 T
E

C
H

N
IQ

U
E

S

PROJECT MANAGEMENT INTEGRATION

Chapter 3 Software Project Management

33

in which the SPM manager allocates tasks and gives instructions to various role

players.

The software project stakeholders are the people who are involved in the different

project activities. They include the project sponsor, project team, support staff,

customers, users, suppliers, as well as individuals with opposing views concerning

the project. Good relationships, communication and coordination among all of these

stakeholders are essential to ensure that the needs and expectations of

stakeholders are understood and met. SPM knowledge areas include key functions

concerned during the software project management process. The SPM knowledge

areas consist of four core functions and four facilitating functions. The core

functions – scope, time, cost and quality management – lead to specific project

objectives and are supported by the facilitating functions. The facilitating functions

represent the means to meet different objectives and include human resource

management, communication, risk and procurement management. Project

management integration is not regarded as separate function, but as supporting

structure connecting all said functions with each other. Stretched across all these

knowledge areas are the software project management tools and techniques

(depicted on the right-hand side of the framework diagram in Figure 3.1). These are

used to assist team members and software project managers to carry out their

respective tasks.

3.6 CORE FUNCTIONS
Each of the core functions of the software project management development

process (scope, time, cost and quality management) is discussed in the following

section.

3.6.1 Scope management
According to Schwalbe (2006) the scope of a software project refers to all the work

involved in creating the products of the software project and the processes used to

create them. Being one of the first steps in the development phase, it is a difficult

Chapter 3 Software Project Management

34

but also important part of software project management, as problems or errors

occurring during this phase will be perpetuated throughout the development

process, and could be costly and time consuming to rectify at a later stage. The

Standish Group’s CHAOS study (1995) identified user involvement and clear

statement of requirements as key factors associated with software project

management failure.

To determine the exact scope of a software project, different approaches may be

used. As the first phase of the Step Wise framework, Hughes and Cotterell (2006)

propose the following steps:

 Identify objectives and measures of effectiveness in meeting them

 Establish a project authority

 Identify stakeholders

 Modify objectives in the light of stakeholder analysis

 Establish methods of communication with all parties.

Schwalbe (2006) and PMBOK (2004) identifies the following specific phases of

software project scope management:

 Scope planning – the planning and refinement of project scope and the

creation of a formal scope statement document that entails project

assumptions, project constraints, a summary of all project deliverables, a

description of the products involved in the project and a statement of what

determines project success. The preliminary planning of one of the most

important aspects of scope planning, namely the Work Breakdown Structure

(WBS) is done at this stage.

 Scope definition – the division of major project deliverables into smaller and

more manageable components. The deliverable of this phase is the WBS.

This process is important to project success as it supports accurate time,

cost and resource estimates and defines a baseline for project control and

performance measurement. The WBS defines the total scope of the project

by defining work packages.

Chapter 3 Software Project Management

35

 Creating the Work Breakdown Structure (WBS) – subdividing the project

deliverables into smaller work packages.

 Scope verification – formal acceptance of the scope of the project by

various key stakeholders.

 Scope control – managing all changes to the scope of the project. Aspects

of importance to be recorded are not only scope changes, but also

preventive action, corrective action, additions or deletions and lessons

learned.

Various types of software are available to assist in project scope management,

for instance word-processors for scope definition documents and spreadsheets

for financial calculations. Automated software is also available for drawing the

WBS.

3.6.2 Time management
Scope management entails determining the objectives and full functionality of the

project. The next step is to determine the time and cost that the identified products

and activities will entail, as well as the resources needed to develop the project.

Time and cost aspects may overlap directly, thus influencing each other, and in

practical terms they may or may not execute concurrently (Olson, 2004). As

mentioned previously, many software projects fail with respect to scope, time and

cost management. Managers often site schedule issues as one of the main reasons

for conflict on projects.

Time management involves the processes required to measure timely completion of

a project (Schwalbe, 2006). Time management involves not only the creation of an

activity plan, but also the estimation of time required for each task and activity,

resulting in the overall duration of the project The output is the precedence network

and critical path. This is also utilised throughout the duration of the entire project for

scheduling, management and risk identification and management purposes. Time is

Chapter 3 Software Project Management

36

highly correlated with cost, and keeping a project on schedule is indeed a major

challenge (Meredith and Mantel, 2002).

Activity planning forms the baseline for project and resource scheduling and

supports a number of objectives, namely feasibility assessment, resource allocation,

detailed costing, motivation and coordination of the project (Hughes and Cotterell,

2006).

The main processes of time management are the following (PMBOK, 2004,

Schwalbe, 2006):

 Activity definition involves the identification of each task or activity that must

be executed by stakeholders or project team members in order to produce

the project deliverables. Thus it can also be seen as refining the scope of the

project. An activity or task is an element of work with an expected duration,

cost and resource usage. The work breakdown structure (WBS) forms the

basis for this, and the initial WBS will be used to develop a more detailed

WBS with supporting explanations as well as assumptions and constraints

related to specific activities. This process may be performed using an

activity-based approach or a product-based approach. In both cases a WBS

and a product flow diagram (product-based approach) will be outputs.

 Activity sequencing involves indicating when each of the identified activities

should occur. Activities in the detailed WBS will be reviewed referencing the

detailed product descriptions, assumptions and constraints to determine the

relationship between the activities. The output of this phase is the network

diagram. An activity-on-node (precedence diagram) approach may be used.

Network planning models were originally developed in the 1950s with the two

best-known methods being CPM (Critical Path Method) or PERT (Program

Evaluation Review Technique).

 Activity resource estimation includes the determination of how many and

which resources will be needed to perform project activities.

Chapter 3 Software Project Management

37

 Activity duration estimation involves estimating the number of work periods to

be completed in order to complete an individual activity. Duration estimation

should not be confused with effort estimation. Effort estimation refers to the

number of workdays or work hours required to complete a task, whereas

duration refers to the time estimate and not the effort estimate. Effort and

time are related, thus team members must record assumptions regarding

both.

 Schedule development occurs when activity sequences and activity duration

estimates, as well as resource requirements are combined to create the

project schedule. The goal of this phase is to develop a realistic schedule

that provides a basis for monitoring project progress for the time dimension of

the project. Various tools and techniques are available for this process,

including Gantt charts, CPM analysis, critical chain scheduling and PERT

analysis.

 Schedule control refers to the control and management of changes to the

initial schedule.

Software packages are available to support these steps. However, the concepts

behind the software should be clearly understood, i.e. critical path or schedule

baseline, in order to use these packages correctly.

Time management is often cited as one of the main sources of conflict with regard

to projects (Olson, 2004). Closely linked to activities and the scheduling of

activities, is the estimation of the cost of each activity, or then the cost of different

components of the project.

3.6.3 Cost management
Cost estimation and monitoring occurs throughout the entire life cycle of the project.

It has also been identified as one of the major causes of project failure, together with

time and user requirements. In the 1995 CHAOS project report, average cost

overruns of software projects tested were cited as 189 percent of the original

Chapter 3 Software Project Management

38

estimates. The 2001 CHAOS report reflected an improvement from 189 percent to

145 percent, but this means that the projects still exceeded their associated budgets

substantially.

Cost management can be seen as all processes required to ensure that a project

team completes a project within an approved budget (Schwalbe, 2006). Cost

estimation is an important part of the initial assessment of whether the project will be

feasible or not. An economic assessment of a proposed information system will be

made by comparing the expected costs of development and operation of the

system. Thus, basic project cost estimates throughout the development of the

project will involve the following:

 Cost estimating refers to the process of developing an estimate of the costs of

all actions, resources and procedures needed to complete the project. Cost

estimation should include development costs and operational costs where cost

estimation is performed during different stages of product development. Basic

accounting and financial principles are used for the initial cost-benefit analysis

plan included in the feasibility study, such as cost-benefit analysis, cash flow

analysis, calculation of internal rate of return, net profit, payback period, return

on investment and net present value. Various estimation tools and techniques

exist, namely analogous estimating, bottom-up estimating, parametric

modelling (such as amongst others COCOMO) and computerised models.

 Cost budgeting involves using the project cost estimate and allocating this to

individual work items. The WBS, as well as the project schedule is used to

allocate costs over time. A cost baseline is a time-phased budget that can be

used to measure and monitor cost by managers or project leaders.

 Cost control includes monitoring cost performance, reviewing changes and

notifying stakeholders and team members of changes related to cost.

Cost control cannot be done without a clear identification of resources to be used.

Various computerised software packages exist to support this action.

Chapter 3 Software Project Management

39

3.6.4 Quality management
The Project Management Body of Knowledge (PMBOK) (2004) defines project

quality management as the processes required to ensure that the project will satisfy

the needs for which it was undertaken (Schwalbe, 2006). It includes all activities of

the overall management function that determine the quality policy, objectives and

responsibility, and implements these by means of quality planning, quality

assurance, quality control and quality improvement. Quality management does not

only include the concepts, tools and methods of quality assurance, but also

validation and verification, as well as change control during the development

process.

Major quality management processes identified by PMBOK (2004) are the following:

 Quality planning determines which quality standards are relevant to the

specific project under consideration and decides how these standards will be

met. Hughes and Cotterell (2006) state that this process should identify

variables that have a direct influence on the outcome of the project. Thus,

aspects such as functionality, system outputs, performance, reliability and the

quality policy should be included in the quality management plan.

 Quality assurance involves evaluating overall performance regularly to

ensure conformance to the set standards. Quality audits or reviews support

this function throughout the project. Tools to be utilised include quality

audits, templates specifying required documentation, quality assurance

procedures, problem-reporting procedures, quality assurance metrics and

quality assurance check list forms (Hughes and Cotterell, 2006).

 Quality control monitors the activities and end results of the project to ensure

compliance to the standards utilising various available tools and techniques.

The quality control process mainly consists of decisions to determine if the

products or services produced will be accepted or rejected (if not accepted

rework is specified on the items), and process adjustments to correct or

prevent further quality problems (Hughes and Cotterell, 2006). Various tools

and techniques may be utilised in this phase.

Chapter 3 Software Project Management

40

However, quality management should not be considered as a separate development

phase. It should be integrated into all phases and all processes during software

project management.

Process as well as product quality measures should be implemented. In an effort to

give structure and uniformity to this process, several standards and measures have

been developed over the past number of years. These standards and measures will

be discussed in the following section.

3.6.4.1 Existing Standards

Software development is a fast growing industry and the lack of standards holds

significant consequences for society and the economy (Nienaber and Barnard,

2005). In an attempt to solve this problem, various national and international

standards bodies have proceeded to set standards for this area of development.

The standards listed below are of importance:

 The PMI (Project Management Institute) coded the Project Management

Body of Knowledge’s (PMBOK) first published standard in 1983, namely the

Project Management Quarterly Special Report: Ethics, Standards and

Accreditation. This was developed further and the PMBOK Standards were

published in 1987, whilst the Guide to PMBOK was published in 1996. PMI

furthermore published the Organizational Project Management Maturity

Standard in 2003, which will be revised and published in December 2008.

Currently the PMI is working on the OPM3 as the global standard for

organisational project management (Project Management Institute, 2004).

 The ISO standard 9126 was published in 1991 to address the problem of

defining software quality (Hughes and Cotterell, 2006). ISO 9126 identified

six software quality characteristics, namely functionality, reliability, usability,

efficiency, maintainability and portability. Sub-characteristics for each of

these are also identified. Measurements correlating to each quality are

identified, and then tested and mapped onto a scale to indicate compliance to

the specific quality metric.

Chapter 3 Software Project Management

41

 Standards set in the UK are among others PRINCE (set by the Central

Computer and Telecommunications Agency) and BS 6079, which both apply

to any type of project. The British Standards Institution (BSI) set the

BS 6079:1996 standard identical to the international standard

ISO 9000:2000, followed by the 2001 and 2004 standards respectively.

 The primary objective of standards such as the ISO 9000 series is to ensure

that a monitoring and control system to check quality is in place. The

ISO 9000 series targets the fundamental features of a quality management

system (QMS), thus quality in general terms, and not specifically quality in

software project management. ISO 9001 describes the creation of products

and the provision of services, while ISO 9004 targets process management

(Hughes and Cotterell, 2006). ISO 10006:2003 targets a quality

management system and provides guidelines for quality management for

projects specifically.

 The capability maturity model (CMM) was developed at the Software

Engineering Institute in the United States (McBride, Henderson-Sellers and

Zowghi, 2004; Schwalbe, 2006). This model defines different stages of

process maturity, implying sophistication and quality of production practices

at which an organisation may be placed. The assessment is done by an

external team of assessors, who will also make recommendations on

improving the quality processes. Bootstrap, a European initiative, allows

assessment at project level (Hass, Johansen and Pries-Heje, 1998).

3.6.4.2 Product quality measures

Measurement of quality usually concerns intangible, invisible factors. Hughes and

Cotterell (2006) define practical software quality measures such as reliability that

might measure availability, mean time between failures, failure on demand and

support activities. Other practical measures include maintainability and extendibility.

Various factors that enhance quality have been identified over the years in an

attempt to improve quality measures, but lack of conformity of definitions and terms

Chapter 3 Software Project Management

42

pose a problem. Thus, the difference between measures, techniques and

approaches is not outlined clearly and the approaches overlap.

Hughes and Cotterell (2006) cite the following measures to enhance quality:

 Increasing visibility of the development process involves utilising egoless

programming to encourage the practice of programmers scanning each

other’s code.

 Procedural structure implies the use of methodologies where every

process in the development cycle has carefully laid-out plans.

 Checking intermediate stages involves the continuous checking of quality

and the correctness of work done throughout the development phases.

Other techniques recommended are inspections, structured programming and

clean-room software development, formal methods and software quality circles

(Hughes and Cotterell, 2006). Different approaches to quality control are also

utilised. Mehandjiev, Layzell, Brereton, Lewis, Mannion and Coallier (2002) state

that a goal-driven approach is more appropriate to handle adaptability and

productivity requirements, whereas Szejko (2002) promotes requirements-driven

quality control.

3.7 FACILITATING FUNCTIONS
The facilitating functions of the SPM framework represent the means through which

different objectives are to be met. Human resource management, communication

management, risk management and procurement management form part of these

functions. The following section will focus on these facilitating functions.

3.7.1 Human resource management
Human resource management involves all processes required to effectively utilise

all resources involved in a project (Schwalbe, 2006). A resource may be seen as

any item or person required for the execution of a project. Human resource

management therefore concerns all project stakeholders involved in developing the

project. Hughes and Cotterell (2006) identify seven categories of resources to be

Chapter 3 Software Project Management

43

managed for a project, namely labour, equipment, materials, space, services, time

and money.

The main focus of human resource management is to allocate these resources to

activities, and to create a work schedule based on the activity plan. Activities should

be scheduled to minimise variations in resource levels during the project and

resources will then be allocated to competing activities.

Schwalbe (2006) identifies four phases to achieve the above, namely human

resource planning, acquiring the project team, developing the project team and

managing the project team.

 Human resource planning involves identifying, assigning and documenting

project role players, their roles and relationships. An organisational chart may

be an output of this phase.

 Acquiring the project team involves appointing or identifying and assigning the

appropriate personnel to the project activities.

 Developing the project team includes improving team skills to enhance project

performance. Various theories exist for managing people and teams, but these

aspects fall outside the scope of this document.

 Managing the project team also includes the monitoring and controlling of

resources throughout the project. Progress must be monitored and software for

visualising progress can support the project team.

Project management software and general software are available to support human

resource management. Examples are:

 Spreadsheets

 Project organisational charts

 Responsibility assignment matrices

 Resource histograms

However, project resource management involves much more than using software to

facilitate organisational planning and assigning resources. As this phase involves

Chapter 3 Software Project Management

44

people, psychosocial issues that affect how people work and how effective they

work, must be recognised as influential issues during this phase.

3.7.2 Communications management
The 1995 Standish Group study found that the three major factors related to

software project success were user involvement, executive management support

and a clear statement of requirements (Krupansky, 2003). All of these project

success factors depend on good communication and coordination skills among the

stakeholders. Poor, ineffective or untimely communication, contradictions,

omissions, failure to notify all of meetings and decisions, and failure to store

information are often cited as reasons for projects failing or running over time.

Traditional reporting tools use a simple passive reporting mechanism, which does

not provide sufficient reporting support to a collaborative distributed system (Chen et

al., 2003).

Communications management in a software project is an enabling and supporting

action that ensures timely and appropriate generation, collection, dissemination,

storage and disposition of project information (Schwalbe, 2006). Effective

communication and sharing of information and knowledge among project

contributors are needed. Schwalbe (2006) identifies four distinct functions

associated with communications management:

 Communications planning

 Information distribution

 Performance reporting

 Stakeholder management

The communications planning function determines the who, when and how of the

project. It therefore facilitates a collaborative working environment that determines

the information and communication needs of the stakeholders. The information

distribution function entails disseminating information to keep all the stakeholders

informed. Performance reporting alludes to the generation of reports such as status,

Chapter 3 Software Project Management

45

progress and forecasting reports, while the stakeholder management function

involves managing stakeholders, approving change requests and updating reports.

Communication can, however, be enhanced and supported by the use of a common

repository. A paper-based repository has several disadvantages, such as retrieval

delays, lost documentation and error proneness, but most of all, it may result in

insufficient project documentation in the distributed environment. Another common

problem with regard to communication is that many project processes, contexts,

rationales or artefacts may not be captured at all. An electronic repository promises

to overcome some of these disadvantages.

3.7.3 Risk management
As organisations continue to invest time and resources in strategically important

software projects, managing the risk associated with the project becomes a critical

area of concern.

Schwalbe (2006) describes project risk management as the art and science of

identifying, analysing and responding to risks throughout the life cycle of the project.

The Webster’s Dictionary defines risk as hazard, peril or exposure to loss or injury,

whereas the PMBOK defines project risk management as the systematic process of

identifying, analysing and responding to project risk. The objective of risk

management is to minimise or avoid the adverse effects of unforeseen events.

Many projects do not follow a formal risk management plan, which leads to a state

of perpetual crisis. According to Marchewka (2003) the reasons for this may be that

 benefits of risk management are not clearly understood by the project leader;

 adequate time is not provided for risk management, and

 risk is not identified and assessed using a standardised approach.

Project management and planning is based on the understanding of various role-

players of the current situation, the information available and the assumptions to be

made. But since environments may change dynamically, events may not proceed

Chapter 3 Software Project Management

46

according to plan and various degrees of uncertainties exist that cannot be

predicted with total accuracy. To ensure eventual success, those unexpected

events must be addressed and managed throughout the life cycle of the project to

ensure that project risk is minimised.

Various models or frameworks exist to ameliorate the risk associated with software

project development. Schwalbe (2006) suggests the following risk management

processes, namely risk management planning, risk identification, qualitative and

quantitative risk analysis, risk response planning, and risk monitor and control.

Based on Boehm’s (1991) model, software risk management entails risk

assessment and risk control (Figure 3.2).

Figure 3.2 Software risk management (adapted from Boehm, 1991)

The first step deals with the assessment of the risks by means of stakeholder

interaction with the SPM interface and as such, is dependent on the project

manager’s input on the potential risks in the software project. Potential risks are

identified by using checklists, assumptions and decomposition, and analysed by

means of performance models, cost models, network and decision analysis. Risk

Risk
management

Risk
assessment

Risk
control

Risk
identification

Risk
analysis

Risk
prioritisation

Risk
planning

Risk
resolution

Risk
monitoring

Chapter 3 Software Project Management

47

prioritisation involves risk exposure, risk leverage and compound-risk reduction. The

second step deals with the control of these risks, and comprises risk planning, risk

resolution and risk monitoring. Risk planning entails the drawing up of contingency

plans to counteract each identified risk, risk avoidance strategies, risk transfer and

risk reduction plans. Risk resolution entails the elimination or resolution of risks by

using prototypes, simulations and benchmarks. Risk monitoring involves the

tracking of the project’s progress towards resolving its risk items. For effective risk

management, risks should be identified, discussed and monitored as early as

possible (Phillips, 1998).

3.7.4 Procurement management
During the process of project development it may be necessary to procure products,

goods or items that are not available within an organisation (Marchewka, 2003).

Procurement refers to the process of acquiring goods or services from an outside

source. Procurement management refers to a set of procedures for acquiring these

products, expediting external work and ensuring a satisfactory standard of work

throughout a given organisation. These may involve rules for acquisition, purchase

order documentation required by a specific organisation, and creating and

maintaining lists of trustworthy, qualified vendors (Hughes and Cotterell, 2006). The

BS 6079 document describes these aspects in more detail (Hughes and Cotterell,

2006).

Although the term ‘procurement’ is widely used, information technology

professionals also refer to ‘outsourcing’, while other private companies prefer the

term ‘purchasing’. As the outsourcing of important information technology functions

is increasing at a tremendous rate, this area should be considered very important in

relation to the success of a project. According to Schwalbe (2006), organisations

outsource to reduce costs, focus on their core business, access skills and

technologies, provide flexibility, and increase accountability.

Chapter 3 Software Project Management

48

Project procurement management consists of six main processes: procurement

purchasing and acquisition; planning contracting; requesting seller responses;

selecting sellers; administering the contract; and closing the contract (Schwalbe,

2006).

Procurement purchasing and acquisition involves decisions as to what to purchase,

when and how. The possibility to outsource must be considered. Outputs of this

process are the procurement management plan, contract statement-of-work, and

make-or-buy decisions. Existing tools and techniques include performance make-

or-buy analysis, and internal as well as external expert consultation. The type of

contract for the above-mentioned products should be determined. Various options

exist, such as a fixed-price or lump-sum contracting, cost reimbursable contracting,

time and material contracts, and unit price contracts.

Planning contracting refers to describing requirements for the products or services

desired from the procurement and identifying potential sources or sellers. This

phase involves writing procurement documents such as a Request for Proposal

(RFP), and developing source selection evaluation criteria for the entire

organisation.

Requesting seller responses entails obtaining quotes, information, bids and offers.

The main outputs of this process include a qualified sellers list, procurement

package and proposals.

Selecting sellers involves evaluating potential sellers and negotiating the contract.

Administering the contract entails managing the relationship with the selected seller.

Outputs of this process are contract documentation, requested changes, corrective

actions and updates.

Closing the contract involves the settlement and completion of each contract.

Chapter 3 Software Project Management

49

3.8 CONCLUSION
In this chapter the unique characteristics and changing environment of software

project management were explored. The diverse nature of SPM, as well as the

wide range of business areas and technologies involved makes it especially

challenging to manage. The dynamically changing environment adds to the

complexity of these systems and results in higher levels of interconnectivity, higher

levels of sharing data and knowledge, and higher levels of task tracking and

monitoring. These issues should be optimally supported by SPM processes to

enable project managers to concentrate on crucial issues and strive for lower failure

and higher success rate in software projects.

The SPM processes have been delineated in order to get a clear picture of the

entire SPM process in an effort to determine the aspects that drive project failure.

Based on the literature survey conducted in this chapter, the researcher defines the

phases of each of the eight knowledge areas of SPM, as depicted in Table 3.2:

Table 3.2 Phases of the knowledge areas of SPM

Scope
Manage-
ment

Time
Manage-
ment

Cost
Manage-
ment

Quality
Manage-
ment

HR
Manage-
ment

Communi-
cation
Manage-
ment

Risk Manage-
ment

Procure-
ment
Management

Initiation Activity

definition

 Identification

and planning

Risk

identification

Procurement

planning

Planning Activity

sequencing;

Duration

estimation

Resource

planning

Planning Organisatio-

nal planning

Team

support

Risk analysis

and

prioritisation

Solicitation

planning

Definition Time

schedule

develop-

ment

Cost

estimation

Assurance Team

development

and staff

acquisition

Information

distribution

Risk

management

planning

Solicitation

and source

selection

Verifica-

tion

Time

schedule

control

Cost

budgeting

Control Manage-

ment:

monitor and

control

Performance

reporting

Monitor

Contract

administration

Change Monitor; Administra- Resolution Contract

Chapter 3 Software Project Management

50

Scope
Manage-
ment

Time
Manage-
ment

Cost
Manage-
ment

Quality
Manage-
ment

HR
Manage-
ment

Communi-
cation
Manage-
ment

Risk Manage-
ment

Procure-
ment
Management

control control tive closure closure

These phases will form the basis of the SPM model that will be introduced in

chapter 6.

According to research studies done software projects still regularly fail to comply

with requirements and expectations (The Standish Group, 2005). Organisations

continue to invest time and resources in strategically important software projects,

thus one would expect the possibility of project failure to be minimised. Failure in

many areas of SPM indicates shortcomings in existing standard practices

(Schwalbe, 2006; Hughes and Cotterell, 2006) while research shows that there is an

urgent need for successful SPM practices (Marchewka, 2003). It seems essential to

address the unique and changing environment of SPM if any success is to be

obtained.

This study focuses on enhancing existing SPM practices. Despite the existence of

various SPM application packages, as well as enterprise management packages,

none of them successfully address the dynamically changing and unique

environment of SPM (Schwalbe, 2006).

In Chapter 4 the use of software agents will be investigated as a potential tool to

support software project management. We specifically concern ourselves with the

question whether software agents can be used to support and enhance SPM in a

distributed environment and in this way address the limitations of current practices.

Chapter 4 Software Agent Computing

51

CHAPTER 4

4 SOFTWARE AGENT COMPUTING

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 4 Software Agent Computing

52

4.1 INTRODUCTION
In the previous chapter the changing environment of SPM was explored to identify

problems experienced during software project management processes. The

changing environment and unique nature of SPM are seen as factors that contribute

to the failure of software projects. The researcher investigated the SPM

environment and accordingly compiled phases of the eight knowledge areas of

SPM, which will form the basis of the SPM model that will be introduced in chapter

6.

The purpose of this chapter is to explore software agent computing to determine if it

can be utilised to support software project management processes. To orientate the

reader with regard to the background of agents, and more specifically mobile

software agents, concepts and identifying features of agent technology and mobile

agents are discussed. The trends and drivers for agent technology are presented,

as well as a brief history of mobile agents. The goal of this chapter is to consider

software agent technology from this viewpoint to determine whether it can support

SPM and, as a result, minimise project failures.

4.2 AGENT TECHNOLOGY
Computing evolved through different metaphors in its lifetime. Charles Babbage in

the nineteenth century saw computation as calculation or operations on numbers.

With the advent of widespread digital storage and manipulation of non-numerical

information, computation was replaced by the term information processing. The

development of the Internet and the World Wide Web has necessitated a new

metaphor, namely computation as interaction (Luck, McBurney, Shehory, Willmott,

and Agentlink Community, 2005). This metaphor identifies computing as actions

taking place by and through communication between computational entities.

Monolithic architectures are replaced by distributed systems and autonomous

components (Rigaud and Guarnieri, 2002).

Chapter 4 Software Agent Computing

53

New open and dynamic environments in which heterogeneous systems must

interact span organisational boundaries. The fact that this type of systems should

operate effectively within rapidly changing circumstances and with dramatically

increasing quantities of available information, suggests the need for new computing

models and paradigms (Luck et al., 2005).

Agents can be viewed as a new metaphor of computing. In a publication by Luck et

al., (2005), two main stages of adoption are identified through which new

technologies evolve: an installation period of exploration and development; and a

deployment period concentrating on the use of such new technology. Agent-based

computing is considered disruptive and results in a re-evaluation of the nature of

computing. According to Franklin and Graesser (1996) a software agent is an

autonomous system that, when situated within an environment, forms part of the

said environment. The software agent can sense the environment and act on it over

a period of time. However, various descriptions, views and definitions of agents

exist.

Software engineering explores the complexity of computer systems and stipulates

interaction as one of the most important components of complex software. Software

architectures that contain more than one dynamically interacting component, each

with its own thread of control and engaged in complex coordinated protocols, are

exponentially more complex to design and control than single function systems.

Agents are seen as a paradigm for ubiquitous, interconnected computer systems

(Wooldridge, 2002). Agents can also be viewed as a tool to understand human

societies. Doran, Franklin, Jennings and Norman (1997) used multi-agents to

simulate an ancient society in order to shed light on some social processes. This

implies some sort of intelligence. Agents have been viewed as a type of distributed

system, or subclass of distributed system (Ben-Ari, 1990). The agent system

however exhibits autonomous action, which differ from concurrent systems. Since

agents may or may not exhibit intelligence, the area of artificial intelligence is also

related to agent computing. According to Wooldridge (2002), economics theory and

Chapter 4 Software Agent Computing

54

social science are also related to the concept of agents. Luck et al. (2005) consider

agents as a design metaphor, source of technology, as well as a method for

simulation. It is clear that agent technology spans a diverse area and can be seen

as related to different disciplines; yet it exhibits characteristics of its own.

4.2.1 Emerging trends as drivers for agent technology
Agent computing provides explicit benefits for these new open and dynamic

environments. The AgentLink group published a ‘Roadmap to agent-based

computing’ (2005) and cited the following trends as drivers for agent computing: the

semantic web; web services and service-oriented computing; peer-to-peer-

computing; grid computing; ambient intelligence and self-*systems and autonomic

computing.

4.2.1.1 The semantic web

The semantic web is based on the concept that data on the web can be defined and

linked in such a way that it can be used by machines for automatic processing and

integrating of data across different applications (Berners-Lee, Hendler and Lassila,

2001). The key to enabling the sharing and processing of data on the web is by

augmenting web pages with descriptions of their content in such a way that it is

possible for components to reason automatically about that content. Agent-based

systems can therefore be built on top of the semantic web and thus exploit its value.

Luck and d’Inverno (2004) suggest that the semantic web demands effort and

involvement from the field of agent-based computing and that the two fields are

intimately connected.

4.2.1.2 Web services and service-oriented computing

Web services provide a standard means of interoperating between software

applications on different platforms (Luck et al., 2005). Standards for a wide range of

interoperability issues such as basic messaging, security, architecture and service

discovery (produced by bodies such as W3C and OASIS) provide a framework for

the deployment of component services that are accessible and use HTTP and XML

interfaces.

Chapter 4 Software Agent Computing

55

Web service standards serve as a potential convergence point for diverse

technology efforts such as eBusiness frameworks (ebXML, RosettaNet, etc.). Thus,

web services provide a ready-made infrastructure for supporting agent-based

systems. An agent-oriented view of web services is gaining exposure, as provider

and consumer web services can be seen as a form of agent-based system (Booth,

2004).

4.2.1.3 Peer-to-peer computing

Another technological development that serves to support agent-based systems is

peer-to-peer (P2P) computing. A wide range of infrastructures, technologies and

applications constitute P2P computing. These applications are designed to create

networked applications where the deployed system (or every node) is equivalent

and application functionality is created by arbitrary interconnection between the

peers. A range of agent-like characteristics, such as self-organisation, behaviour

and negotiation, are displayed by P2P systems.

4.2.1.4 Grid computing

Kephart and Chess (2004) state that grid computing has recently gained interest as

a high-performance computing infrastructure for supporting large-scale distributed

scientific endeavours. The grid provides a computing infrastructure for supporting

large-scale information handling, knowledge management and service provision.

This infrastructure is abstracted into several layers, which may include a data layer

for resource allocation, scheduling and allocation; an information layer for the

handling of information; and a knowledge layer. This infrastructure enables the

integrated collaborative use of computers, networks, databases and scientific

instruments of various organisations.

4.2.1.5 Ambient intelligence

The vision of ambient intelligence relies on ubiquitous computing, ubiquitous

communication and intelligent user interfaces. Ambient intelligence was identified

by the European Commission as a challenge for research and development in

Chapter 4 Software Agent Computing

56

information technology (Luck et al., 2005). This refers to an environment of

potentially thousands of embedded and mobile devices or software components,

interacting to support user goals and activity. Key features are autonomy,

distribution, adoption and responsiveness, and in this sense they share the same

features as agent-based systems.

4.2.1.6 Self-*Systems and Autonomic Computing

Luck et al. (2005) identify self-*systems (pronounced “self-star”) as a computational

goal since the work of Charles Babbage. Although a general definition of these

systems is still emerging, it includes properties such as self-awareness, self-

organisation, self-configuration, self-management, self-diagnosis, self-correction

and self-repair. Computational self-*systems provide an application domain for

research and development of agent technologies, as many self*-systems may be

viewed as involving interactions between autonomous entities and components.

Autonomic computing, first proposed by IBM (Kephart and Chess, 2003), is an

approach to self-managed computing systems, with a minimum of human

interference. Kotz and Gray (1999) add trends affecting Internet technology and

activity, such as bandwidth, mobile devices, mobile users, intranets and aspects

such as information overload, customisation and proxies.

4.3 WHAT IS A SOFTWARE AGENT?
A number of different descriptions and definitions of agents can be found in

literature. Franklin and Graesser (1996) describe an autonomous agent as “a

system situated within a part of an environment that senses that environment and

acts on it, over time, in pursuit of its own agenda and so as to effect what it senses

in the future”. They divide agents into taxonomies of biological, robotical and

computational agents, and further subdivide computational agents into artificial life

agents and software agents. The focus of this thesis is primarily on software

agents.

Chapter 4 Software Agent Computing

57

The usefulness and viability of software agents have been debated since the mid-

nineties. Various definitions for software agents exist but unfortunately those that

are formulated are vague. In general, end-users see software agents as programs

that assist people and act on their behalf by allowing people to designate work to

them (Lange and Oshima, 1998; Grimley and Monroe, 1999). Jennings and

Wooldridge (1998) define a software agent as an autonomous system, capable of

flexible autonomous action in order to meet its design objectives. Another definition

of a software agent states that it is a computer program that is capable of

autonomous (or at least semi-autonomous) actions in pursuit of a specific goal

(Franklin and Graesser, 1996). In the AgentLink publication, 2005, software agents

are viewed as a computer system that is capable of flexible autonomous action in

dynamic, unpredictable, typically multi-agent domains. The autonomy characteristic

of a software agent distinguishes it from general software programs. Autonomy in

agents implies that the software agent has the ability to perform its tasks without

direct control, or at least with minimum supervision, in which case it will be a semi-

autonomous software agent (Wooldridge, 2002).

The software agent is able to perceive the environment and act on it over a period of

time. This corresponds to a widely accepted notion of agency which regards an

agent as an autonomous software system acting in a continuous Perceive-Reason-

Act cycle (as illustrated in Figure 4.1) in order to achieve a goal (Lind, 2001; Luck et

al., 2005; Schoeman, 2005). The software agent perceives the environment by

receiving and processing certain stimuli. It reasons by combining newly acquired

information with its own existing knowledge and goals. It acts by selecting and

executing one of the possible actions.

Chapter 4 Software Agent Computing

58

4.3.1 Classes of software agents
Software agents can be grouped according to specific characteristics and into

different software agent classes. Literature does not agree on the different types or

classes of software agents. For example, Krupansky (2003) distinguishes between

ten different types of software agents, while the Oghma Open Source (2003) web

site identifies sixteen different types of software agents. Because software agents

are commonly classified according to a set of characteristics, different classes of

software agents often overlap, implying that a software agent might belong to more

than one class at a time. For the purpose of this thesis, we distinguish between two

simple classes of software agents, namely stationary agents and mobile agents.

Agents that do not move are called stationary agents. A stationary agent executes

only on the system on which it begins execution; it may typically use a

communication system such as remote procedure calling. An agent is implemented

as a code component and a state component. Furthermore, agents need an agent

execution environment at both the client and host computers. This execution

environment allows agent interaction, information exchange, agent mobility and

agent security (Lingau, Drobnik and Domel, 1995). The execution environment will

be discussed in Chapter 5. Mobile software agents on the other hand, are programs

that can migrate from host to host in a network, at times and at places of their own

choosing (Kotz and Gray, 1999). The state of the running program is saved,

Environment

Reason

Perceive Act

Figure 4.1 The Perceive-Reason-Act cycle

Chapter 4 Software Agent Computing

59

transported to the new host, and restored. For the purpose of this thesis our focus

is on mobile agents as discussed in detail in Section 4.4. Mobile agents are able to

transport themselves from one machine to another. This ability of mobile agents are

extremely suitable to a SPM environment as it will support distribution between

teams and processes.

Agents in both these classes might or might not display any or a combination of the

following characteristics: a user interface, autonomy, intelligence, adaptivity,

flexibility and collaborative properties.

 Whether or not an agent has a user interface depends on whether it

collaborates with humans, other agents or hosts. User interfaces are

commonly found only where agents interact with humans.

 Autonomy in agents implies, as stated earlier, that the software agent has the

ability to perform its tasks with minimum supervision.

 According to Wooldridge (2002), intelligence implies the inclusion of at least

three distinct properties, namely reactivity, proactiveness and social ability.

The intelligent dimension represents the agents’ capability to express

preference, beliefs and emotions, and their ability to complete a task by

reasoning, planning and learning.

o Reactivity refers to an agent’s ability to perceive its environment and

respond timeously to changes that occur, in order to achieve its design

goals.

o Proactiveness is the agent’s ability to take initiative in its environment in

order to achieve its design goals.

o Social ability alludes to the collaborative nature of the agent. Different

definitions attempt to define the collaborative nature of software agents.

 Adaptivity is a characteristic that can also be regarded as an intelligence

property, although it is not counted as a prerequisite for identifying an agent

as intelligent. Adaptivity refers to an agent’s ability to customise itself on the

basis of previous experiences.

Chapter 4 Software Agent Computing

60

 An agent is considered flexible when it can dynamically choose which actions

to invoke, and in what sequence, in response to the state of its external

environment (Pai, Wang and Jiang, 2000).

 The collaborative nature of a software agent refers to the agent’s ability to

share information or barter for specialised services to cause a deliberate

synergism among agents (Croft, 1997). It is expected of most agents to have

a strong collaborative nature without necessarily implying other intelligence

properties.

Agents may have additional abilities such as mobility, being rational, the ability to

learn, and many other (Nwana and Ndumu, 1996a; Franklin and Graesser, 1996;

Luck et al., 2005). Mentalistic attitudes, such as knowledge, belief, intention and

obligation may also be added to the agent (Wooldridge, Jennings and Kinny, 2000;

Dale, 1997; Luck et al., 2005). Intelligence in the form of reasoning and

understanding can be added to agents to determine their behaviour and focus their

reaction in given situations. Thus the spectrum of agents may vary from agents with

no intelligence but performing useful tasks, to agents with intelligence (Dale, 1997).

4.4 MOBILE SOFTWARE AGENTS
Mobile agents are agents that are capable of transmitting themselves, their program

and their state, across a computer network (Wooldridge, 2002). The state of the

agent refers to its attribute values that direct it in determining what to do when it

resumes execution at its next destination (Lange and Oshima, 1998). The mobile

agent is able to transport its state and code when traversing a network to another

execution environment in the network, and then resume execution. Code implies

the class code necessary for the agent to execute.

Mobile agents conform to the criteria for weak agency, namely autonomy, social

ability, reactivity and pro-activity (see Table 4.1). These are the criteria that enable

agents to succeed in assisting humans (Jennings and Wooldridge, 1998; Lange and

Oshima, 1998; Luck et al., 2005).

Chapter 4 Software Agent Computing

61

Table 4.1 Agent Properties

Property Meaning

Autonomy Operates independently without direct programmer or

user intervention.

Social ability Communicates with the local environment, other agents

or user.

Reactivity (external) Responds in timely fashion to changes in its environment.

Reactivity (internal) Changes its behaviour based on experience.

Pro-activity Exhibits goal-directed behaviour.

The ability to travel allows a mobile agent to move to a host that contains an object

with which the agent wants to interact, and then to take advantage of the computing

resources of the object’s host to interact with that object. During execution, the

agent transfers information to the host and may receive information from the host

(social ability). The agent will then decide, based on this exchange of evidence

(reactivity), whether to terminate, become a resident agent, or repeat the migration

process (pro-activity).

4.4.1 History of mobile agents
Mobile agent technology has been under development since about 1994 (Green et

al., 1997). The concept of a mobile agent has grown from advances in distributed

systems research. Initially mobile agents were intended to improve on remote

procedure calls (RPCs) as a way for processes to communicate over a network

(Wooldridge, 2002).

During the first wave of the computer industry, from 1970 to 1980, large proprietary

mainframes were commonly used and procedural languages such as Cobol, RPL,

Fortran and C were used. The mid-nineties constitute the second generation of the

computer industry. With the advent of personal computers that became cheaper but

Chapter 4 Software Agent Computing

62

more powerful, PCs connected to networks and servers were commonplace and

new programming paradigms such as object-oriented languages became popular:

C++, Java, as well as visual programming such as Delphi and Visual Basic. We

believe that we are currently experiencing the third generation, dispersed by

industry standards, the Internet and mobile computing.

In a white paper describing General Magic’s Telescript technology, Jim White (1995)

coined the term ‘mobile agent’ to describe a procedure that travels with its data to

the host computer, to be executed at the host. Typescripts was followed by

research systems such as Tacoma in 1995, which offers operating system support

for mobile agents, and Agent Tcl (currently known as D’Agents) in 1996.

Mobile agent systems are required to execute on a variety of hardware platforms, as

well as to be implemented in code that does not require recompilation after

migration. As a result, most existing mobile agent platforms are based on either

scripting languages or Java. Java is currently the language used most commonly to

program mobile agents (Green et al., 1997; Wooldridge, 2002; Luck et al., 2005).

Well-known Java-based applications include Aglets, Voyager and Odyssey. IBM’s

Tokyo research laboratory started development of one of the first industrial mobile

agent systems, Aglets, in 1995, while ObjectSpace’s Voyager started in mid-1996,

Mitshubishi’s Concordia in 1997 and General Magic’s Odyssey in 1997.

Although various mobile agent applications are developed over a large application

area, agent implementation is still in the early stages of adoption. Application areas

range from AI, telecommunication, distributed computing, intelligent user interfaces,

e-commerce, power system management and air traffic control, to information

retrieval management, smart databases, digital libraries and many more

(Wooldridge et al., 2000; Luck et al., 2005).

In an effort to enhance acceptance of agent technology, two main sets of standards

have been compiled. They are the Mobile Agent System Interoperability Facility

(MASIF) from the Object Management Group (OMG) in 1998 (Milojicic, Breugst,

Chapter 4 Software Agent Computing

63

Busse, Campbell, Covaci, Friedman, Kosaka, Lange, Ono, Oshima, Tham,

Virdhagriswaran and White, 1998) and the Foundation for Intelligent Physical

Agents (FIPA) standard from the Agent Management Support for Mobility

Specification (FIPA00087 – FIPA 98 Part II Version 1.0: Agent Management

Support for Mobility Specification) in 1998.

4.4.1.1 The MASIF standard

The Object Management Group’s (OMG) MASIF standard addresses interfaces

between mobile agent systems. It also presents standards for cross-system

communication and administration (Kotz and Gray, 1999). MASIF uses two primary

interfaces for this purpose, namely the MAFAgentSystem and MAFFinder interface.

The above two interfaces address the following concerns:

 A standard to manage agents, including operations such as creation,

suspension, resumption and termination

 A common mobility infrastructure for agent communication and interaction

 A standardised syntax and semantics for agent and agent systems-naming

services

 A standardised location syntax for finding agents

4.4.1.2 The FIPA standard

The FIPA standard intends to promote interoperation of heterogeneous agents and

agent services. FIPA architecture consists of the following concepts and agents:

 Agents: Each agent has an identifier that is unique in the agent environment.

 Agent platform (AP): Consists of a directory agent, a management agent and

a communication channel agent.

 Directory Facilitator (DF): The directory agent is an agent that supports

catalogue services to other agents. It defines an agent domain and supports

the actions to register, deregister, search and modify.

 Agent Management System (AMS): This agent manages activities within an

agent platform, such as the creation, deletion and migration of agents.

Chapter 4 Software Agent Computing

64

 Agent Communication Channel (ACC): The communication agent passes

messages to agents within the platform and to other platforms.

 Agent Communication Language (ACL): The communication language used

is based on the search-act theory, where messages are viewed as

communicative acts intended to perform some action. ACL consists of

ontologies, a knowledge representation language (KIF - Knowledge

Interchange Format) and a communication language similar to KQML

(Knowledge Query and Manipulation Language).

FIPA demonstrates several applications that have been implemented using their

architecture (www.: joagu@ida.liu.se).

Although the specifications are not complete, they offer valuable guidelines to

develop mobile agent systems.

4.4.2 Characteristics
In addition to the essential properties of agents as discussed in Table 4.1, mobile

agents exhibit various additional unique characteristics. Lange and Oshima (1998)

cite object-passing, autonomy, asynchronicity, local interaction, disconnected

operation and parallel execution as unique characteristics. Braun, Eismann, Erfurth

and Rossak (2001) add adaptation, communication, cooperation, persistence and

goal-orientedness to this list. A mobile agent can clone itself, which implies a

measure of recursion (Harrison, Chess and Kersenbaum, 1995; Horvat, Milutinovic,

Kocovic, and Kovacevic, 2000). Table 4.2 summarises similar characteristics as

pointed out by Nwana and Ndumu (1996b), Green et al. (1997), Horvat et al. (2000)

and Schoeman (2005).

Chapter 4 Software Agent Computing

65

Table 4.2 Mobile agent characteristics

Property Meaning

Mobility It is able to transport itself from one machine to another.

Asynchronous

execution

An agent has its own thread of execution, thus it does not

require its sending host to suspend execution until the

mobile agent returns.

Local interaction An agent interacts locally with its host.

Disconnected operation The agent can perform its tasks at a host, regardless of

whether the network connection is open.

Parallel execution Cloning allows more than one agent to execute a task in

parallel at different hosts.

Intelligence Agents’ level of intelligence can vary, but commonly

intelligence sustains autonomy by allowing the agent to

decide as to where to move next.

Communication An agent can communicate with other agents, and

possibly people.

Cooperation Agents cooperate to work within an environment, via

public protocols, to reach a common goal.

Adaptation Agents can react dynamically to changing situations by

choosing an appropriate action.

Persistence The state of the mobile agent is persistent, even if action

is stopped and restarted.

Goal-orientedness Mobile agents perform tasks on behalf of others, to

achieve certain goals.

Loyalty An agent performs computations on behalf of users.

Recursion An agent can create child agents for sub-tasks.

4.4.3 Advantages of mobile agents
Circumstances under which the use of mobile agents is regarded as beneficial can

be recognised by reviewing the advantages as well as disadvantages of mobile

agents. Researchers (Green et al., 1997; Lange and Oshima, 1998, 1999,

Chapter 4 Software Agent Computing

66

Gawinecki, Kruszyk, Paprzycki and Ganzha, 2007) cite the following advantages of

using mobile agents:

 Agents reduce the network load by processing data at the remote host

instead of transmitting data over the network. Distributed systems often rely

on communication protocols that involve interaction with the host, resulting in

network traffic. Mobile agents package a conversation and move it to the

host, where interaction takes place. This overcomes the limitations of a client

computer with insufficient resources.

 Agents execute asynchronously and autonomously. Mobile devices often

rely on expensive but fragile network connections. Tasks requiring a

continuous open connection between two devices are commonly not

economically or technically feasible. Tasks can be embedded into mobile

agents, which can traverse a network and execute asynchronously and

autonomously without relying on a continued connection. Thus, when

network connectivity is not consistent, processing does not have to stop.

 Agents are efficient: Mobile agents consume fewer network resources since

they move the computation to the data, rather than the data to the

computation (Green et al., 1997). Vast amounts of data, such as in a weather

station, can be accessed remotely, instead of moving the data over the

network.

 Agents overcome network latency by executing and acting locally. Critical

real-time systems such as robots in manufacturing processes need to

respond in real-time to changes in their environment. Controlling such

systems involves significant latencies. Mobile agents can act locally and

execute the controller’s instructions.

 Agents encapsulate protocols. In a distributed system, each host owns the

code needed to implement the protocol to exchange incoming and outgoing

data. Mobile agents can move to remote hosts to establish ‘channels’ based

on proprietary protocol.

Chapter 4 Software Agent Computing

67

 Agents adapt dynamically. Due to the reactivity attribute defined in weak

agency, mobile agents are aware of their environment and respond to

changes in it.

 Agents are naturally heterogeneous. As network computing is often from a

hardware and software perspective heterogeneous and mobile agents are

usually computer and transport layer independent. Mobile agents will

execute on different hardware and software systems.

 Agents are robust and fault tolerant. The ability of mobile agents to react

dynamically to adverse situations makes it easier to build fault tolerant

behaviour.

 Agents can personalise server behaviour. By dynamically supplying new

behaviour, network entities such as routers can change behaviour when

supported by intelligent agents.

 Agents provide support for electronic commerce. Mobile agents can build

electronic markets. The mobile agent will embody the intentions, desires and

resources of the participants.

 Agents are seen as a convenient development paradigm, since they are

inherently distributed in nature and thus entail a natural view of a distributed

system.

4.4.4 Disadvantages of using mobile agents
One of the main disadvantages to using mobile agents is security. This includes all

security issues such as authentication of user and server, authorisation, verification

agents and protecting agents against transfer (Lange and Oshima, 1999; Roth,

2004; Luck et al., 2005). Seeing that this thesis does not focus on security issues,

the reader is referred to Grimley and Monroe (1999) for more information on security

issues related to agent technology.

Lack of accepted standards and a pervasive infrastructure are also listed as

inhibiting factors (Milojicic et al., 1999; Roth, 2004; Luck et al., 2005). Additional

problems include lack of a so-called killer application, lack of proper education in

Chapter 4 Software Agent Computing

68

agent development, and lack of scalability or performance (Harrison et al., 1995;

Samaras, 2004; Wooldridge, 2002).

Luck et al. (2005) provide a table (Table 4.3) with areas of agent technology to be

addressed over different timescales. The main areas that are listed are industrial

strength software, agreed standards, infrastructure for open communities, reasoning

in open communities, learning technologies, and trust and repudiation. Broad and

specific challenges are also identified. The following broad challenges are listed:

 Developing tools, techniques and methodologies to support agent systems

developers

 Automating the specification, development and management of agent

systems

 Integrating components and features

 Establishing tradeoffs between adaptability and predictability

 Establishing linkages to other branches of computing

Table 4.3 Challenges regarding agent technology (Luck et al., 2005)

Challenges Short term Medium term Long term
Industrial strength

software

Peer to peer

Better development tools

Service-oriented

computing

Generic designs

Libraries for agent-

oriented development

Best practice in agent

systems design

Agreed standards FIPA ACL

Semantic description

Service-oriented

computing

Libraries of interaction

protocols

Tools for evolutions of

communications

languages and

protocols

Infrastructure in

open communities

Web mining

Data integration

Semantic web

Semantic interaction

Agent-enabled

Semantic web

Shared improved

ontologies

Reasoning in open

environments

Organisational views of

agent systems

Enhanced

understanding of agent

societies

Automated eScience

systems and other

application domains

Learning

technologies

Adaptation

Personalisation

Evolving agents

Self-organisation

Run-time

reconfiguration and re-

Chapter 4 Software Agent Computing

69

Challenges Short term Medium term Long term
Hybrid technologies Distributed learning design

Trust and

repudiation

Security and verification

Reliability testing

Self-enforcing protocols

Norms and social

structures

Formal methods

Electronic contract

Trust techniques for

coping with malicious

agents

Mobile agent technologies have disadvantages and challenges. However, the

benefits gained from robustness, asynchronous and autonomous functioning, speed

and functionality far outweigh the disadvantages.

The main reasons for using mobile agents can be summarised as follows:

 Intermittent connectivity, slow networks, lightweight devices and mobile

computing, as well as offline processing with unreliable and/or limited

capacity.

 Asynchronous execution, autonomy and persistence or distributed retrieval or

dissemination of information (Sunsted, 1998; Lange and Oshima, 1999).

Domains where mobile agent technology can make a positive contribution include

but may not be restricted to are as follows (Lange and Oshima, 1999; Kendall,

Krishna, Suresh and Pathak, 2000, Gawinecki et al., 2007):

 Telecommunication and networking: Support and management for advanced

telecommunication services use dynamic network reconfiguration and user

customisation. Mobile agents can act as the glue to keep these systems

flexible but effective (Lange and Oshima, 1999; Kendall et al., 2000).

 Electronic commerce. A commercial transaction may require real-time access

to remote resources. Different agents with different goals and strategies may

each support these. Agents embodying the intentions of their creators, and

acting and negotiating on their behalf constitute a suitable application for

agent technology.

Chapter 4 Software Agent Computing

70

 Mobile computing: Laptops and other mobile wireless technologies are still

limited in terms of bandwidth usage. Mobile agents allow for increased

performance and can proceed executing when connections fail.

 Distributed information retrieval and dissemination systems: Agents can

retrieve large amounts of information from various distributed locations.

Agents can also disseminate information such as news and software updates

to specific persons.

 Distributed computing: Processing of data can be done closer to the data

source instead of moving large amounts of data to the processor. Only the

result, rather than large amounts of data, can then be returned.

 Distributed management: Mobile agents can be designated management

tasks closer to where they are needed in a distributed area, thus reducing

bandwidth usage.

 Workflow applications and groupware: Mobile agents are suited to support

the flow of documents between co-workers. Agents provide a degree of

autonomy as well as mobility to these workflow documents.

 Monitoring and notification: An agent can monitor a certain information

source without being dependent on the system from which it originates. The

asynchronous nature of the agent supports this function, as the agent can

wait for certain kinds of information to become available.

 Personal assistants: Agents can perform on behalf of their creators over a

distributed network. Remote assistants work independent of their network

connectivity. For example – when a meeting is to be scheduled, a user can

send an agent to interact or negotiate with team members or agents of team

members to arrange the meeting.

4.5 CONCLUSION
This chapter was devoted to a discussion of agent technology. The background to

agent technology was sketched and emerging trends were reviewed as drivers for

agent technology. Software agent technology was investigated, including various

classes of software agents and specifically mobile software agents. The

Chapter 4 Software Agent Computing

71

advantages and disadvantages of using agent technology were explored and

standards for mobile agents were considered.

Despite the lack of complete standards documentation, mobile agent research

continues. This is clear from the attention that international mobile agent

conferences are receiving, as well as from the recent launch of the Journal of Mobile

Information Systems, which includes mobile agents as topic (Tanair, 2005).

Mobile agent technology can therefore be seen as a new paradigm that may be

used to support the SPM process. The following table lists the unique requirements

of SPM and how agent technology may address these.

Table 4.4 SPM features to be addressed by agent technology

SPM Software agent technology

Changing environment of SPM systems

leads towards a complex distributed

environment.

Agents allow distribution and

communication over a geographical area

irrespective of the geographical location.

Agents overcome network latency by

executing locally, thus reducing network

load (Lange and Oshima, 1998, 1999).

Parallel execution enables tasks to be

executed in parallel at different

workstations.

SPM distributed environments may

require and incorporate mobile devices

and fragile network connections.

Agent systems can incorporate large

network systems and mobile devices.

Tasks can be embedded into mobile

agents, which can traverse the network

and execute asynchronously and

autonomously without relying on a

continued connection (Harrison et al.,

1995; Lange and Oshima, 1998).

Chapter 4 Software Agent Computing

72

SPM Software agent technology

A distributed environment requires a

high level of collaboration and

cooperative problem solving between

teams and team members.

Teams of agents can coordinate actions

towards a similar goal in a distributed

environment. Software agent technology

provides a natural metaphor for support

in a team environment, where software

agents can traverse the network in order

to monitor and coordinate events

(Wooldridge, 2002). Communication

and cooperation is strongly supported by

agent teams.

Distributed environment results in virtual,

dynamically changing collaborative

teams.

Agents adapt dynamically to changes.

They are aware of their environment and

can respond to changes in it. Agents

have the computational mechanisms for

flexibly forming, maintaining and

disbanding organisational structures

(Jennings, 2001).

Collaboration between team leader and

distributed team members requires

continuous control, monitor and

measurement. (Invisibility aspect)

Agents are excellently suited to control,

monitor and measure elements in a

distributed environment (Braun et al.,

2001).

A distributed environment requires

heterogeneous technology and

databases that have to interact and

share information.

Agents are naturally heterogeneous, and

mobile agents can execute on different

hardware and software platforms (Impey

and Forester, 2003; Lange and Oshima,

1999).

The changing SPM environment requires

flexibility and conformity of the system.

Agents adapt dynamically to changes in

their environment; thus this feature will

be excellently supported (Nwana and

Ndumu, 1996a; Kotz, Jiang, Gray,

Chapter 4 Software Agent Computing

73

SPM Software agent technology

Cybenko and Peterson, 2000).

Virtual software project teams over

dispersed environments need to access

information and documents.

Agents support the distributed retrieval

and dissemination of information and

documents and can automate routine

tasks (Maes, 1996; Green et al., 1997).

Table 4.4 illustrates that software agent technology is indeed suitable for addressing

the various unique features of SPM. It can therefore be concluded that software

agent technology provides a suitable framework for supporting and possibly

enhancing SPM processes in a complex distributed environment. The need for the

flexible management of ever-changing organisational structures such as those dealt

with in SPM is suitably addressed by the computational mechanism of agent

systems (Jennings, 2001). Agent behaviour as stated in Table 4.4 can be used to

support the individual team members in numerous tasks, such as coordination and

cooperation with team members, document retrieval and distribution, workflow

monitor and control, scheduling and organisation of meetings, reminders for tasks

and overdue dates or deliverables.

Various development approaches as well as environments for agent systems exist.

In the next chapter the development environments of agent systems will be

investigated. The researcher will also look at software agents used in different

applications and explore the possibilities of using this paradigm to support SPM

processes.

Chapter 5 Software Agents in SPM

74

CHAPTER 5

5 SOFTWARE AGENTS IN SPM

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 5 Software Agents in SPM

75

5.1 INTRODUCTION
In the previous chapter the basic concept of agents – and more specifically mobile

software agents – was explored. It was concluded that agent technology can be

utilised to support and possibly enhance the entire SPM environment, so as to

address shortcomings and project failures in this area.

Mobile software agent development and implementation will be discussed in this

chapter. Agent application development environments have been generated to

support the user in his/her process of designing and implementing an agent-based

system. The purpose of this chapter is to regard the process of agent development,

as well as the factors that support this environment. Finally, Chapter 5 also

investigates agent-driven applications that have been developed with specific focus

on the agents used in SPM.

Wherever reference is made to a mobile agent throughout the remainder of this

thesis, it should be read as referring specifically to a software mobile agent.

5.2 MOBILE AGENT DEVELOPMENT
Developing agent applications is a relatively new software engineering paradigm

and although a variety of approaches for development exists, a standard has not

been set and proven (Iglesias, Garijo, Gonzalez and Velasco, 1998; Zambonelli,

Jennings, Omicini and Wooldridge, 2001). Existing methodologies are/were taken

and either adapted or extended to support agent-based development. Examples of

these are existing object-oriented (OO) methodologies, knowledge engineering,

formal specification languages, as well as new methods such as using patterns and

components. The adoption of agent technologies has not yet entered the

mainstream of commercial organisations, and the range of applications is limited to

a small number of industrial sectors (Luck et al., 2005). These include automated

trading in online markets such as for financial products and commodities; simulation

and training applications in defence domains; network management; control system

management in industrial plants such as steel works; user interface and local

Chapter 5 Software Agents in SPM

76

interaction management in telecommunication networks; schedule planning and

optimisation in logistics, and supply-chain management (Luck et al., 2005). Which

options, i.e. methodologies, and application development environments are then

available to design and implement mobile agent systems? The following sections

attempt to answer this question.

5.2.1 Mobile agent development methodologies
Software development methodologies usually consist of a modelling technique and

a development process. Models are intended to formalise the concept of the

system as they are defined on an abstract level and then extended to become more

detailed, concrete and specific. An analysis and design methodology assists in

gaining an understanding of and then designing the system. This thesis focuses on

compiling a model of SPM processes supported by an agent framework to enhance

the SPM processes. Thus, the methodology and process to implement an agent

system will only be regarded briefly and in the context of an agent system.

Wooldridge (2002) specifies two broad groups of approaches to analyse and design

agent-based systems:

 Agent systems that adapt to object-oriented development and that either

extend existing OO methodologies or adapt OO methodologies to the

purpose of agent-based systems (Burmeister, 1996; Kendall et al., 2000;

Wooldridge, et al., 2002).

 Agent systems that adapt to knowledge engineering or other techniques such

as formal specification techniques (Kefalas, Holcombe, Eleftherakis and

Gheorghe, 2003; Luck et al., 2005).

There are various examples of the above approaches, namely the AAII methodology

defined by Kinny and Georgeff, (1997); Odell’s (2001) adaptation of UML to agent

development; the Gaia methodology of Wooldridge et al. (2000); the use of

specification language Z to specify agent systems (Luck et al., 2005); as well as the

Cassiopeia methodology designed by Collinot, Drogul and Benhamou (1996).

Chapter 5 Software Agents in SPM

77

Debenham and Henderson-Sellers (2003) propose extensions to the OPEN (Object-

oriented Process, Environment and Notation) framework to design agent-based

systems.

An additional methodology has emerged that is specifically tailored to address the

development of agent-based systems, namely agent-oriented analysis and design.

Agent-based systems have many unique factors, thus it is inevitable that it should

be addressed by a unique analysis and design methodology, specifically designed

for this paradigm. An example is the Hermes system that proposes an approach for

designing agent interactions in terms of interaction goals (Cheong and Winikoff,

2005). Design goals are then mapped into collections of plans.

Ongoing research is conducted into the process of systems analysis and design of

agent-based systems. Currently there is no single unified and unique agent-

orientated methodology, i.e. a standard has not been adopted yet (Schoeman,

2005). Methodologies that have been developed vary, for example Gaia

(Wooldridge, et al., 2000) and SODA (Omicini, 2001), which support only analysis

and design phases, and PASSI (process for agent societies specification and

implementation) which supports the entire spectrum of the life cycle (Cossentino,

Burrafato, Lombardo and Sabatucci, 2002).

However, whichever methodology is followed, the process of developing and

implementing software agents will also involve a phase for the analysis and design

of the agent system, and thus a brief look at these phases is necessary to put them

in the context of this paradigm (Schoeman, 2005).

During the software development process at least four basic phases are usually

executed in either sequential or concurrent order. These are the requirements

analysis phase, design phase, implementation phase and testing phase. Each

phase results in various diagrams, depending on the paradigm or methodology

used. For example, the models supporting the requirements analysis phase use

Chapter 5 Software Agents in SPM

78

case diagrams, domain models and system sequence diagrams, while the models

supporting the design phase use the design class diagram, interaction diagrams and

package diagrams (Satzinger, Jackson and Burd, 2004). The phases of

development may continue sequentially (as in the waterfall method), or iterations will

repeatedly take place (V-model, prototyping, and iteration method).

For the purpose of this study, the requirements analysis phase and the design

phase will be considered in more detail.

5.2.1.1 Requirements analysis phase

During the requirements analysis phase the problem domain is investigated and the

problem(s) identified. The analyst concentrates on what the problem is and

identifies functional and non-functional requirements. Functional requirements

identify what the system must do (use cases are used) and non-functional

requirements may constitute themselves through the constraints on the system, i.e.

security. Thus, the system’s goals and requirements must first be defined, as is the

case in traditional systems analysis methodologies.

Regardless of the model, technique or methodology that is used to design and

implement an agent system, the analysis process should result in a conceptual

model to describe both the conceptual agent model and the conceptual group of

agents to be implemented. This model states what the system has to do, not how it

is to be done. Thus, to summarise, the following must be identified (Zambonelli et

al., 2001):

 A description of the requirements of the system

 A model to describe external interaction with the system and individual agent

responsibilities/tasks

 An agent social model for global interaction

Chapter 5 Software Agents in SPM

79

5.2.1.2 Design phase

During the design phase the developer creates the solution to the problem based on

the outcome of the requirements analysis phase (Schoeman, 2005). The main

focus of this phase is on how to resolve the problem. This is traditionally identified

by an architectural as well as a detail design. The three main methods for

developing agent systems are based on extensions and adaptations of either OO

methodologies or knowledge-based methodologies, or on agent-based approaches

(Zambonelli et al., 2001; Schoeman, 2005).

The following step will be to implement the agent system by using either a

programming language or a development environment, as will be discussed in the

following section.

5.3 MOBILE AGENT IMPLEMENTATION
The design models developed during the agent analysis and design phase need to

be implemented by translating them to program code. This can be done either by

using a programming language and developing the entire agent system from

scratch, or by using an agent development environment that provides the

programming constructs to implement agent concepts. To build sophisticated

software agents from scratch can be very difficult and time consuming. Hayes-Roth

and Amor (2003) and Luck et al. (2005) recommend that software developers

without extensive experience in agent development use an agent construction toolkit

to build software agents.

The form and components of toolkits vary from integrated development

environments to basic middleware providing some networking capabilities.

According to Luck et al. (2005) agent toolkits will typically offer the following:

 Facilities to enable the development of individual agents, and their interface

to the environment.

 Coordination and communication mechanisms with regard to high-level and

low-level services.

Chapter 5 Software Agents in SPM

80

 Management services to monitor and debug agent applications.

 Software to assist with the development process.

5.3.1 Agent development environments
Mobile agents interact, move and perform various autonomous tasks. Mobile

agents need an environment in which they can execute, migrate and communicate.

This environment is addressed in different terms by various authors, i.e. it is referred

to as a “platform” (Tahara, Ohsuga and Honiden, 1999; FIPA, 2003), “framework”

(Feridun and Krause, 2001), “architecture” (Gschwind, Feridun and Pleisch, 1999;

Tahara et al., 1999; Wong, Helmer, Naganathan, Polavarapu, Honovar and Miller,

2001) or “infrastructure” (Aridor and Oshima, 1998).

An agent platform can be seen as the computer hardware as well as software

available for agent development (Caudron, Groote, Van Hee, Hemerik, Somers and

Verhoeff, 2004). Agent frameworks are programming toolkits or development

toolkits for constructing agents such as D’Agents (D’Agents: Mobile agents at

Dartmouth College, 2002), Grasshopper or JADE. Agent architecture views agents

as reactive/proactive entities and conceptualise agents as perceptive, reasoning

and active components (Schoeman, 2005). Agent infrastructure provides the rules

that agents follow, and deals with ontologies, communication protocols,

communication infrastructure and interaction protocol.

5.3.1.1 Agent platforms

In this thesis an agent environment that allows for the proper functioning of agents is

referred to as an agent platform. Key aspects of an agent platform include support

for communication, interoperability, security and mobility. An agent platform must

have an agent management system to support communication, interoperability,

security and mobility (Van Zyl, 2005). Agent platforms may also provide a set of

standards and development tools to aid in the design, construction, management

and maintenance of agents.

Chapter 5 Software Agents in SPM

81

Most existing mobile agent platforms are based on either scripting languages or

Java. The latter is currently the language that is most commonly used to program

mobile agents (Green et al., 1997; Wooldridge, 2002; Luck et al., 2005).

Various agent development platforms have been developed that address the

technical issues of mobility of an agent in different ways. For example, in Telescript

mobility is employed by transmitting both the agent and its state. The state includes

a program counter that ‘remembers’ the value and resumes when it reaches the

new destination (Wooldridge, 2002).

In order to implement an agent platform, the following minimum criteria must be met

(Luck et al., 2005; Van Zyl, 2005; Schoeman, 2005):

• Development support for mobile agents must be provided. The agent

platform must provide support for agents to communicate with each other in

order to extract information, give information or check information. Allowing

agents to move to the location where interaction will take place means that

network delays, disconnection or downtime will not affect the communication

or negotiation process.

• The platform must be operating system independent. In order to allow

agents to move from one system to another, regardless of the underlying

operating system, will provide greater usability to the agent community.

Broader usage is essential for large applications and distributed

environments.

• The agent platform must support standards such as FIPA or the mobile agent

system interoperability facility that was discussed in the previous chapter

(Van Zyl, 2005). Standards allow for agent communication and mobility; thus,

following a set standard allows for further expansion and interaction between

systems.

• The development platform must support Java. Java has become a de facto

standard for the programming of mobile agents (Luck, 2005; Chmiel, Tomiak,

Gawinecki, Kaczmarek, Szymczak and Paprzycki, 2004b). Java not only

Chapter 5 Software Agents in SPM

82

supports weak mobile agents through serialisation, but also supports

operating system independence.

Agent platforms that support the above criteria include Aglets software development

kit (ASDK); Bee-gent; Comtec agent platform; Grasshopper; Java agent

development environment (JADE), and Tryllians’s agent development kit (ADK).

The Java agent development environment (JADE) platform is shown in Figure 5.1.

In this platform, agent development is supported by an agent management system,

directory facilitator and message transport system. The agent management system

enables agent mobility, interoperability, communication, as well as the security of

agents. The directory facilitator provides a yellow-page service to monitor the

agents, while the message transport system enables agent message transportation

by communicating with other agent platforms.

Figure 5.1 JADE Agent platform

Message transport system

Agent Management

System

Software

Directory

facilitator
Agent

Agent platform

Chapter 5 Software Agents in SPM

83

Other prominent development environments not necessarily based on Java are

D’Agents (formerly known as AgentTCL), Telescript and Tacoma, all based on TCL.

Table 5.1 lists some of the available agent platforms (adapted from Altmann,

Gruber, Klug, Stockner and Weippl, 2000 and Giang and Tung, 2002). It also

supplies the name and author of each platform, as well as information on its support

for standards, security and communication.

Table 5.1 Platforms for agent development

 Author Features
Agentalk NTT

Ishida

A coordinated protocol description language for multi-agent

systems. AgenTalk allows protocols to be defined incrementally

and to be customised to application domains by including an

inheritance mechanism.

Agent

Development

Kit (ADK)

Tryllian BV This commercial kit supports P2P XML-based communication.

Supports weak mobility.

A commercial kit not suitable for academic use.

AgentTool Kansas State

University

The AgentTool allows agent designers to formally specify the

required structure and behaviour of multi-agent systems.

Supports authentication and access restriction.

Full support for communication.

Supports weak mobility.

Aglets

Software

Development

Kit (ASDK)

IBM

An aglet is a Java object that can move from one host on the

Internet to another. The aglet can halt execution, dispatch to

the remote host and resume execution. The aglet’s state and

code is transmitted.

Open source, free.

AgentBuilder An integrated tool suite for constructing intelligent software

agents.

Tools for managing the development process, analysing the

domain of agent operations, designing and developing networks

of communicating agents. The runtime system includes an

agent engine that provides an environment for execution.

Full support for communication: Knowledge and Manipulation

Language (KQML)

Chapter 5 Software Agents in SPM

84

 Author Features
Grasshopper IKV++

Technologies

AG++

Good security support for certificates, encryption and

authentication.

Full support for communication, MOTIF and FIPA standards.

Strong mobility support, NOT open source project, thus access

to the working of the system is limited.

Java Agent

Development

Environment

(JADE)

 JADE constitutes a software framework to develop agent-based

applications.

A comprehensive set of system services and agents is

provided. JADE can be considered agent middleware.

Weak security, full support for communication.

Complies to FIPA standards, open source, free.

Zeus British

telecommunication

labs

Zeus is a collaborative agent-building environment and

component library written in Java. Each Zeus agent consists of

a definition layer, organisational layer and a co-ordination layer.

For a summary of technology refer to Green (1997), Altmann et al. (2000) and

Giang and Tung (2002).

5.4 APPLICATIONS OF MULTI-AGENT SYSTEMS
Various applications of agents have been implemented. As was stated earlier, Luck

et al. (2005) suggest that the adoption of agent technologies has not yet entered the

mainstream of commercial organisations and the range of applications is limited to a

number of industrial sectors. However, Ganzha and Paprzycki (2008) are actively

researching agent technology and are busy implementing systems such as a travel

support system (Kruszyk, Ganzha, Gawinecki and Paprzycki, 2007) and an e-

commerce system (Vukmirovic, Gawinecki, Kobzdej, Ganzha and Paprzycki, 2007).

To develop a mobile agent system, an adaptable and flexible framework is needed.

It should include multi-agent features that enable the developer to set up the

distributed application, as well as an appropriate level of reasoning.

Chapter 5 Software Agents in SPM

85

Applications of agent systems are divided by Wooldridge (2002) into two main

categories, namely distributed system agents (with the emphasis on multi-agent

systems) and personal assistant agents (with the emphasis on individual agents).

Examples of agent applications include agents for e-commerce, agents for

information retrieval and management, agents for networking and the Internet,

agents for workflow and business process management, as well as agents in project

management (Wooldridge, 2002; Luck et al., 2005).

5.4.1 Agents for Electronic Commerce
E-commerce systems (of which amazon.com is one of the best-known examples)

will typically allow the user to browse an online catalogue of products, select some

and then purchase these products using a credit card (Wooldridge, 2002). Agents

have improved on these systems by automating some of the buyer’s behaviour.

They have been used as comparison shopping agents, where the agent obtains

information related to available products, examines various merchants, negotiates

for the buyer and purchases the product (Wurman, 2001). The InAMoS project

proposes a mobile agent to represent the user in the market place (Luck et al.,

2005). The Jango system (Wooldridge, 2002) also represents a comparison

shopping agent system.

5.4.2 Agents for Information Retrieval and Management
Distributed, semi-structured information resources such as the World Wide Web

provide enormous potential for the accessing of information. Agents can be used

for searching the internet and filtering information to prevent ‘information overload’.

For example, Pattie Maes from the MIT lab developed a number of prototypical

systems that could carry out these types of tasks. MAXIMS, an electronic mail

filtering system can prioritise, delete, forward, sort and archive mail messages on

behalf of the user (Maes, 1994). Another example is the NewT system, a Usenet

news filter (Maes, 1994) where the agent filters news as an extension of the user’s

interest, and then searches and proposes such news items for the reader to read.

Chapter 5 Software Agents in SPM

86

MagicCap is an intelligent personal communication system that uses mobile agent

technology in Telescript to allow different forms of communication to intelligently

interact with the user, irrespective of his geographical location (Green et al., 1997).

A number of studies have been conducted on information agents, including aspects

such as extracting or including information from different sources (Gruber, 1993).

The SoFAR system represents an agent framework for distributed information

management (Moreau, Zaini, Cruickshank and De Roure, 2003). Carnot (Huhns,

2002) allows pre-existing and heterogeneous database systems to work together to

answer queries that fall outside the scope of the individual database. Obudiye,

Kocur and Weinstein (1997) developed an agent-based information retrieval system

called SAIRE.

Related work is being done by the computer-supported cooperative work (CSCW)

community. Interested readers may consult the work of Gaeta and Ritrovato (2002)

and Greif (1994) for more detail.

5.4.3 Agents for Network and Internet
The use of mobile agents in network management and in the telecommunications

area has been recognised and promoted. The IBM Agent Meeting Point for Mobile

Communication concerns itself with the creation of a framework to implement

secure, remote applications in large public networks with several mobile devices

such as laptops and PDAs (Green et al., 1997). An agent meeting point is central to

this concept. The Magna mobile agent system that was developed by GMD Fokus

and the Technical University of Berlin targets the service scalability problem in

intelligent networks by trying to incorporate Remote Procedure Calls as well as

mobile agents for providing customised telecommunication services (Green et al.,

1997). Another example of mobile agents used for advanced network management

is the Perpetuum Mobile Procura Project. In this application, mobile agents are

used to overcome the problem of legacy issues, explore new intelligent distributed

management techniques and deliver a Java-based platform for network

management. A collection of articles on agent systems (Programming Multi-agent

Chapter 5 Software Agents in SPM

87

Systems), provide more information for the interested reader (Eds.) Bordini, Dastani,

Dix and Seghrouchni (2005).

5.4.4 Agents for workflow and business process
management

Workflow and business process control systems are of increasing importance in

computer science. Workflow systems aim to automate the processes of a business,

making sure that the correct tasks are sent to the correct people at appropriate

intervals, and typically ensuring that a specific document flow is maintained and

managed in an organisation (Müller, Bauer and Friese, 2004). In the agent system

ADEPT a business organisation is modelled as a society of negotiating service-

providing agents (Jennings, Sycara and Wooldridge, 1998).

5.4.5 Agents used in project management
Software agent technology is at present explored as a promising way to support and

implement complex distributed systems and a useful supplement to client/server

systems (Balasubramanian, Brennan and Norrie, 2001; Chen et al., 2003). In this

section, we consider how agent technology is currently deployed, specifically in

SPM, by considering some application examples. As described earlier, the SPM

environment has changed in the past decade into a dynamic and complex

environment where flexible and adaptive behaviour and management techniques

are required. Agent-based solutions are applicable to this environment since they

are appropriate in highly dynamic, complex, centralised as well as distributed

situations (Dowling and Welch, 2004). In addition to the advantages of distributed

and concurrent problem solving, agent technology has the advantage of

sophisticated patterns of interaction, namely cooperation, coordination and

negotiation (Hall, Guo and Davis, 2003). However, work on the use of agents in

project management has been performed to address certain aspects pertaining to

SPM, but not to address the total environment (Maurer, 1996; O’Connor and

Jenkins, 1999; Sauer and Applerath, 2003).

Chapter 5 Software Agents in SPM

88

5.4.5.1 Scheduling

The first application is intended for the broader project management environment,

and is not specific to the SPM environment. Nevertheless, this example is

mentioned as it applies agent technology to scheduling tasks, which are common to

both environments, and it is focused on in the distributed environment. In a recent

work, Sauer and Applerath (2003) presented an approach that involves using a

generic agent framework to support the scheduling tasks within the supply chain in

the PM environment. The framework allows for the consistent design of agents that

reside on several levels of the organisation. To prevent communication overhead

(found in earlier multi-agent systems), agent teams are formed. All the agents in a

team then collaborate to solve a specific scheduling task on a particular level.

Furthermore, every agent (in its personal capacity) is also responsible for a specific

schedule (the schedule of the resources that it represents). Therefore each agent is

provided with the scheduling knowledge that is necessary to create or maintain the

schedule without contacting the other members of the team. The focus of this

application is primarily on time management and certain aspects of the

communication management function.

Agents are used with great success as planners and schedulers in supply chain

management and industrial systems. Examples of these are the Daewoo system

produced by Metra Corp where task, resource and service agents schedule the

press shop at Daewoo Motors’ integrated automobile production facility in Korea

(Wu and Simmons, 2000). The Daewoo shop supplies body parts for five different

car models. An agent is assigned to each traditional manufacturing function, such

as order acquisition, logistics, scheduling, resource management. Agents are also

commonly assigned to physical entities in the system. The AARIA (Autonomous

Agents for Rock Island Arsenal) ontology is used and manufacturing processes

occur when the flow of the parts and resources intersect at a unit process (Parunak,

Baker and Clark, 1997).

Chapter 5 Software Agents in SPM

89

5.4.5.2 Planning and resource management

Maurer (1996) proposed a system (the CoMo Kit) in which methods and tools were

developed to plan and manage complex workflows, especially in design domains.

According to this system, tasks can be decomposed into subtasks and for every

task several alternative decompositions (methods) can be defined. Every task is

associated with a set of agents, humans or computers that are able to solve it. The

problem-solving process, for example the application of methods to tasks, is

distributed via a local area network. The proposed system uses agent technology

as a tool for planning, coordinating and designing process execution. This approach

follows a centralised black-box agent approach. The system architecture consists of

a modeller that does project planning; a scheduler that supports project execution

and manages information produced; and an information assistant that allows access

to the current state of the project. During SPM, the modeller gathers information

through interaction with the project manager or other stakeholders, and as a result

presents a model of this information to the scheduler as input. The scheduler then

manages agendas that contain the tasks to be carried out by an agent. To work on

the task, the agent can access all relevant information (using the information

assistant) for solving the problem. Maurer’s solution (1996) is applicable to scope

management, time management and, to a certain extent, the communication

management function. Research is also conducted on resource management in

virtual organisations (Szymczak, Frackowiak, Ganzha, Gawinecki, Paprzycki and

Park, 2007) and plan tracking (Wu and Simmons, 2000).

In another example targeting this environment, O’Connor and Jenkins (1999)

propose an intelligent assistant system to support the project team during planning,

scheduling and risk management.

Joslin and Poole (2005) adapt a simulation-based planning algorithm to the problem

of planning for SPM. Simulation techniques offer support for modelling the way in

which agents may behave in project management and the manager might adapt the

project plan based on the project status at future points. Resource allocation and

Chapter 5 Software Agents in SPM

90

task selection are targeted by this simulation. The algorithm for resource allocation

is run at the beginning of each simulation period.

5.4.5.3 Control and monitor

Software agents are used to control and monitor activity execution at various sites in

an open source platform that supports distributed software engineering processes in

a development as part of the GENESIS project (Gaeta and Ritrovato, 2002).

Software agents are used to support the control of software processes as well as

the communication among distributed software engineering teams. Agents are

mainly utilised for the synchronisation of process instances executed on different

sites, the dynamic reconfiguration of software processes, process data collection,

monitoring of the processes, as well as artefact retrieval.

5.4.5.4 Risk analysis

Korb, Engel, Boesecke and Eggers (2003) apply a basic level of risk management in

clinical research to implement the robot system RobaCKa for craniotomies. A

systematic approach was implemented to support fault-free design, error detection

and quality assurance in the design of the robot system. The system was

implemented and tested, while further clinical investigations will be carried out in the

next two years.

Rigaud and Guarnieri (2002) developed the AUDI@R system that aims to prevent

technical risks in small and medium enterprises. The virtual organisation targeted in

this application is viewed in terms of three sub-systems: the first based on activities

and internal actors of the company; a second that integrates companies evolving in

the same field, and a third that includes all the companies in the same geographic

basin. The first sub-system is the one that concerns safety and reliability issues.

Seven user profiles are identified according to company functionality, namely

organisation, documentation, environment, human, production means and

manufactured product. When the contractor wishes to diagnose his company, he

informs the co-worker through the communication interface. A questionnaire is then

Chapter 5 Software Agents in SPM

91

posted to users concerning security, maintenance and suitability between

production means and manufactured products, after which the results are returned

to the contractor. This model is based on grid computing and focuses on the

system’s heterogeneity and communication architecture. However, it only targets

one aspect of the development cycle, namely risk (Rigaud and Guarnieri, 2002).

Although Boehm laid some foundations for risk management and various related

discussions (e.g. Charette, 2002) are found in the literature, formal risk analysis is

rarely an integrated part of project management.

5.4.5.5 Quality assurance

Leung and Poon (1999) developed a multi-agent environment framework (AUTOQ)

that aims to support software quality assurance. Emphasis is placed on process

and product assurance. An interface agent assumes the role of project manager to

direct requests from the user to agent testing, audit, review, defect and support

components. The user provides input data to the interface agent, and it is sent to

the information agent where it is tested and archived in a database. Task agents

analyse the reported results, send results to the project managing agent and archive

the results.

The other components, namely audit, review, defect and support components

execute on the same basis by accepting input from the user, analysing and then

reporting and archiving results. This system has been developed using Java and

C++. It also targets only one of the eight functional areas of SPM.

This discussion serves to show the application domains where agents may be

utilised. This is by no means a complete list of all agent applications, but is intended

to show the possibilities of this paradigm.

Chapter 5 Software Agents in SPM

92

5.5 CONCLUSION
This chapter was devoted to a discussion of mobile agent development and

implementation. Various applications using agent technology were discussed, with

specific emphasis on the SPM area to show the possibilities of using this paradigm.

Agent technology has been more commonly applied to areas such as network and

system management (Kendall et al., 2000), decision and logic support (Burstein,

McDermott, Smith and Westfold, 2000), interest matching (Object Management

Group, 2000), data collection in distributed and heterogeneous environments,

searching and filtering, negotiating and monitoring (Venners, 1997; Kruszyk et al.,

2007; Ganzha, 2006). Agents are not commonly used in SPM applications and are

typically constrained to one or two of the core and facilitating functions such as

planning, scheduling or communication. In the previous chapter it was concluded

that software agent technology can address the unique features of SPM, and that

this technology is well suited to the dynamically changing environment of SPM. The

software agent paradigm, including its concepts and techniques, are well suited to

develop complex, dynamically changing, distributed systems (Jennings, 2001).

From this chapter it becomes evident that although agent technology has indeed

been applied to the SPM environment, it has not been applied to the whole

spectrum, i.e. to all core and facilitating functions of SPM. This is a limitation of

current software agent applications. Supporting and enhancing the whole spectrum

of SPM processes by a software multi-agent system could provide software project

managers with significant advantages over using contemporary methods (Jennings,

2001). The potential advantages that will result from this approach become clear

through the increasing number of deployed agent applications in other application

areas (Gawinecki et al., 2007; Ganzha et al., 2006; Sauer and Applerath, 2003;

Jennings, 2001).

This chapter concludes Part II (comprising chapters 3, 4 and 5), which provides the

theoretical knowledge about the areas under discussion, namely SPM and mobile

agent computing. Part III will be devoted to presenting the proposed model that will

Chapter 5 Software Agents in SPM

93

support SPM processes. A comprehensive agent framework that forms part of the

proposed model will be compiled to support these processes. The next chapter

provides an overview of the scope and concept of the said model.

94

PART III

THE SPMSA MODEL

Chapter 6 Model - Scope and Concept

95

CHAPTER 6

6 MODEL – SCOPE AND CONCEPT

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1
Introduction

Part II

Theoretical Background

Part III
The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 6 Model - Scope and Concept

96

6.1 INTRODUCTION
Part II established the theoretical framework that contains theoretical knowledge on

SPM and software agent computing. In this part it was initially established that new

approaches to address shortcomings in software development projects are needed.

Software agent technology was therefore investigated to determine if agent

technology would be suitable to address SPM problems in a distributed

environment. It was concluded that software agent technology is particularly suitable

for addressing the unique requirements of SPM.

Part III, in turn, is devoted to introducing and developing a model for SPM where the

SPM processes are supported by software agents. The model entitled “SPMSA”

(Software Project Management supported by Software Agents) aims to enhance the

SPM processes by addressing the intrinsic unique aspects of SPM. The

comprehensive framework of agents that forms part of the SPMSA model will be

construed to support the entire SPM process and thereby aim to eliminate failure

and address shortcomings in this environment. This model will be unique in that it

aims to support and enhance the entire environment of the SPM arena, and not only

a section of it. Current software agent applications target only a section of this

environment, for example, planning or resource management. Software agent

technology, as opposed to other programming paradigms, not only provides support

to the dynamically changing environment of SPM, but also to its complex

heterogeneously distributed environment. Furthermore, regular tasks may be

automated and intelligence added to further support and enhance the workload of

each team member.

The first part of this chapter will present the entire scope of the proposed model and

includes both SPM and agent computing. The aim is to place the problem in context

for the reader and illustrate areas of agent support to SPM processes. The latter

part of this chapter will provide a conceptual view of the proposed SPMSA model.

The detailed SPMSA model will be compiled and discussed in Chapter 7.

Chapter 6 Model - Scope and Concept

97

6.2 SCOPE OF THE MODEL
The proposed SPMSA model supports all of the SPM processes involved, as

opposed to current agent applications in SPM that support only part of the SPM

environment. The scope of the model is defined in terms of the SPM processes it

supports, as well as the type of agents that support these processes. Figure 6.1

depicts the scope of the model.

Figure 6.1 Scope of the proposed model

The left-hand side of Figure 6.1 depicts the PM field and indicates that SPM has

developed into a research field of its own. The proposed model includes all the

SPM processes indicated by the shaded blocks, namely scope management, time

management, cost management, quality management, procurement management,

human resource management, communication management and risk management.

Computational agents

Software agents

Stationary agents

Mobile agents

Entire PM field

Entire SPM field

Communication
management

Risk
management

Cost
management

Quality
management

Procurement
management

Time
management

Scope
management

Human resource
management

Monitoring
agents

Project
manager
agent

Personal
assistant
agents

Task
agents

Client
agents Agent

management
agents

Biological agents Robotic agents

Commerce
agents

Entertainment
agents

Intelligent agents

Team
leader agent Messaging

agents

Chapter 6 Model - Scope and Concept

98

The right-hand side of Figure 6.1 depicts agent computing, which comprises robotic

agents, biological agents and computational agents. Computational agents can be

subdivided into intelligent agents and software agents, while software agents consist

of mobile agents, stationary agents, commerce agents and entertainment agents.

The mobile agents that form part of the SPMSA model are shaded, namely project

manager agent, monitoring agents, the team leader agent, task agent and

messaging agents. The stationary agents that form part of the proposed model are

also shaded. These are client agents, agent management agents and personal

assistant agents. The commerce and entertainment agents fall outside the scope of

the proposed model.

6.3 CONCEPT OF THE MODEL
The main goal of the proposed SPMSA model will be to support the teams and

individual team members in the SPM environment while executing their tasks, and in

this way to enhance the complete SPM environment. The team leader, teams and

individual team members will be supported during each process of software project

management to simplify the environment, eliminate the complexities, enhance

coordination and communication, implement dynamic changes in the system,

support task scheduling, and enhance all processes. Figure 6.2 explains the

concept of this process of support.

Figure 6.2 also comprises two basic concepts, namely the phases of software

development for each SPM key function, and the software agent framework that will

support each key area of SPM.

Chapter 6 Model - Scope and Concept

99

Phases of software development for each SPM key function

Requirements:
1. The phases must be tailored to each individual key function, e. g. cost or time management.
2. The unique aspects of each SPM key function must be addressed.

Features:

- Supports distribution and communication of teams over a wide geographical area, thus SPM complexity.

- Incorporates large networks and mobile devices; supports fragile network connections, thus adaptability.

- Provides a high level of collaboration and cooperative problem solving, thus SPM invisibility.

- Supports dynamically changing collaborative teams, thus SPM conformity and heterogeneous systems.

Identification, initiation and

definition of key functions

Analyse, assess and

evaluate key concepts

Monitor, control and

management

Planning for

concepts

SPM team members

Phase 1

Phase 3

Phase 2

Phase 4

Apply Software Agent Framework to support each SPM key function

Development of software projects

Team Member A

Team Member B

Team Member C

Project
manager
agent

Task agent

Monitoring
agent

Personal
assistant
agent A Personal

assistant
agent B

Personal
assistant
agent C

Agent
management
agent

Team
leader agent

Directory
facilitator

Client
agent

Messaging
agent

Figure 6.2 Conceptual view of the SPMSA model

Chapter 6 Model - Scope and Concept

100

6.3.1 Phases of software development for each SPM key
function

Various methods and paradigms have been used to support the process of software

development and as such software project management. The basic SPM processes

were scrutinised in Chapter 3 (sections 3.6 and 3.7), and this resulted in a table

depicting the basic phases of these processes, illustrated in Table 3.2. This table

provides a summary of the basic phases of each function and as such constitutes

the basis of the SPMSA model. On close inspection, overlapping phases can be

identified as executed in each of these functions. An abstraction of these functions

may be mapped to a generic model of software development that contains

overlapping phases for each function (or process) of SPM. Thus the basic phases

for each key function, illustrated in the conceptual model (top part) in Figure 6.2

(also referred to as a generic model of software development), are:

 Phase 1: Identify, initiate and define key functions.

 Phase 2: Plan the concepts of the particular process of the key function.

 Phase 3: Analyse, assess and evaluate key concepts of the key function

concerned.

 Phase 4: Monitor, control and manage the functions of each key function.

The arrows indicate the order in which the phases are executed and follow on each

other. Although a few additional tasks may exist depending on the specific key

function concerned, all functions contain these basic phases. The requirements

state that the implementation of these phases should be tailored to each individual

key function, for example to cost or time management. In this way the unique

aspects of each SPM key function will be addressed.

The upper section of Figure 6.2 therefore represents the SPM processes in the

SPMSA model which will be supported by a software agent framework.

6.3.2 Software agent framework to support each SPM key
function

Each of the key functions of SPM will be supported by a combination of one or more

of the agents as indicated by the bottom half of Figure 6.2. The software agents will

Chapter 6 Model - Scope and Concept

101

support the generic functions for each of the key SPM processes (with minor

practical differences, for example risk or time initiation).

Various types of agents or agent teams may be used to support the different phases

of SPM. Chapter 4 contained a discussion of agents, and a distinction was made

between software mobile and software stationary agents. To illustrate this basic

configuration of agents supporting the SPM phases, a conceptual view of the

operational environment of three team members (A, B and C) – which will probably

be geographically dispersed – is depicted in Figure 6.2.

To describe how software agents can generically be employed to address different

functions of SPM, a set of agent teams is used to address the functions and then to

define specialised software agents operating within these teams (or on their own

where applicable). The system is built regarding agents as components, which

simplifies the design and programming of agents. The following specialised working

mobile and stationary agents are used:

A Personal Assistant agent (PA agent) is used for each team member. This is an

agent that supports each individual team member to accomplish his or her tasks by

providing maximum assistance, as well as an interface between the team member

and the other agents. This agent also has a collaborative nature and relies on other

agents to provide it with the information that it needs to sustain its owner. The

personal assistant agents are not computer-bound but human-bound, as their

stakeholders may be required to work on different computers when working in a

distributed environment.

The Client agent is a stationary agent responsible for a specialised task such as

information retrieval or gathering. Client agents may or may not have intelligence,

depending on their specific task, but they must have a collaborative nature to

interact with other agents in their agent team.

The Agent Management agent (AM) is responsible for managing a team of agents

and for ensuring coordination between the sub-tasks of the different members of a

team to accomplish the objective of the agent team. This agent enables

Chapter 6 Model - Scope and Concept

102

communication, mobility, instantiation and destruction. The AM is central to

communication and ensures that all messages arrive at their intended destinations.

In performing this task, the AM must also track the distribution locations of agents

with respect to their platforms and where mobile agents have moved to.

The Task agent is an agent that supports a specific project task. This agent

collaborates with other objective and facilitator functions to support a specific task.

This mobile agent is commonly invoked by a personal assistant agent to allow a

stakeholder to work on a specific task, and is continuously monitored by a

monitoring agent. An example can be that of an agent monitoring risk, schedules or

aspects of time.

The Monitoring agent is responsible for monitoring tasks and for reporting back to

different phases where scheduling and rescheduling of tasks, as well as the

notification of stakeholders can take place. A monitoring agent is mobile, with

intelligence, flexibility and strong collaborative properties.

The Team Leader agent is responsible for managing a team of agents and for

ensuring coordination between the sub-tasks of the different members of a team to

accomplish the objective of the agent team.

The Project Manager (PM) agent is an agent that takes on the project manager role,

helps in the creation of the project, the initial specification of the tasks and allocation

of tasks to personnel.

A Messaging agent is an agent responsible for carrying messages between different

agent teams. This type of agent has strong collaborative characteristics and is by

nature a mobile agent, since the different agent teams may work in a distributed

environment.

Finally, the Directory Facilitator (DF) is an agent that provides a yellow pages

functionality, which assists agents in discovering services provided by one another.

This agent forms part of the facility provided by JADE, thus it is not included in the

list of created agents in Figure 6.1.

Chapter 6 Model - Scope and Concept

103

6.4 CONCLUSION
Chapter 6 provides a conceptual view of the scope and the basic concepts

underlying the SPMSA model. It has been established that failure in the SPM area

indicates that new paradigms should be used to support the specific requirements of

this area. The salient features of agent technology imply that this paradigm will

prove suitable to this need. The proposed model is thus specifically tailored to

support the ever-changing environment and unique features of SPM.

Chapter 7 will regard each of the key areas of SPM and elaborate on each phase as

illustrated in Figure 6.2. The aim is to compile a comprehensive model of SPM

functionality to be supported by software agent technology. The phases depicted in

Figure 6.2 will be scrutinised and applied to each of the eight key core and

facilitating function areas of SPM, in order to compile the comprehensive SPMSA

model.

Chapter 7 The SPMSA Model

104

CHAPTER 7

7 THE SPMSA MODEL

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 7 The SPMSA Model

105

7.1 INTRODUCTION
In the previous chapter a conceptual view of the SPMSA model was provided by

discussing the scope and concept thereof. The aim of the conceptual view was to

place the SPM processes and the supporting software agent framework in context

with regard to one another. The purpose of this chapter is to provide a detailed

discussion of the SPMSA model. The phases of software development for each of

the SPM key functions (as illustrated in Figure 6.2 in the previous chapter) will

therefore be delineated and discussed in detail to compile the comprehensive

SPMSA model.

The first part of the chapter is devoted to a discussion of the phases of each SPM

key function, as well as a description of an agent team to support each SPM key

function. A graphical representation will be compiled for each key function, which

will consequently constitute the SPMSA model. The second part of the chapter will

contain the full SPMSA model. The chapter will conclude with a table that depicts

the advantages of using agents to address the unique and changing SPM

environment.

7.2 SOFTWARE PROJECT MANAGEMENT KNOWLEDGE
AREAS

Each of the distinct SPM knowledge areas introduced earlier in Chapter 3 is

reconsidered briefly to delineate the phases of each key function to be supported by

an agent framework. The steps comprising the processes of each of the key

functions will be elaborated on in order to compile the SPMSA model that will

enhance all of the SPM key functions involved.

In Chapter 3 a framework of the key functions in the entire SPM development arena

was presented (see Figure 3.1). This framework contains the core and facilitating

functions of software project management as key functions. These functions have

been discussed in detail in Chapter 3. In order to compile a model that supports all

of the SPM key functions involved Table 3.2 was compiled by the researcher as a

Chapter 7 The SPMSA Model

106

summary of the phases of the key functions that form the basis of the SPMSA

model (Nienaber and Barnard, 2007). It is therefore inserted here again in order to

be reviewed.

Table 3.2 Phases of the knowledge areas of SPM
Scope
Manage-
ment

Time
Manage-
ment

Cost
Manage-
ment

Quality
Manage-
ment

HR
Manage-
ment

Communi-
cation
Manage-
ment

Risk Manage-
ment

Procurement
Management

Initiation Activity

definition

 Identification

and planning

Risk

identification

Procurement

planning

Planning Activity

sequencing;

Duration

estimation

Resource

planning

Planning Organisatio-

nal planning

Team

support

Risk analysis

and

prioritisation

Solicitation

planning

Definition Time

schedule

development

Cost

estimation

Assurance Team

development

and staff

acquisition

Information

distribution

Risk

Management

planning

Solicitation

and source

selection

Verifica-

tion

Time

schedule

control

Cost

budgeting

Control Manage-

ment:

Monitor and

control

Performance

reporting

Monitor

Contract

administration

Change

Control

 Monitor,

control

 Administra-

tive closure

Resolution Contract

closure

Table 3.2 illustrates the correlating phases of the core and facilitating functions of

SPM as included in the SPMSA model. Integration management is considered as

underlying part of these functions and not as separate knowledge area as in

PMBOK (2004). The aim of the section that follows is to compile a graphical

representation for each of the key functions, indicating how the key function may be

supported by software agent technology in the SPMSA model. An abstraction of

Table 3.2 is used when compiling these representations.

Chapter 7 The SPMSA Model

107

7.2.1 Scope management
The scope management function comprises the following specific phases: initiation,

scope planning, scope definition, scope verification and scope change control. The

purpose of each of these phases was highlighted in Chapter 3 and will therefore be

mentioned only briefly in this section.

Figure 7.1 illustrates the different phases of the scope management function and the

way in which agent teams cooperate to accomplish the objectives of these phases.

The arrows indicate the flow of interaction, whether of communication or

information, mostly via agents – as will be explained.

Figure 7.1 Scope management function

The software project manager, team members or other designated stakeholders

interact with the scope initiation phase through a special user interface. The scope

initiation phase involves committing an organisation to begin a project or continue a

next phase of a project (Schwalbe, 2006). The output of this is a project charter,

which will be stored in the repository. An organisation’s strategic plan should guide

STAKEHOLDERS

Scope initiation

User Interface

Scope
definition

REPOSITORY

Scope change control

User Interface

Scope
verification

Scope planning

Chapter 7 The SPMSA Model

108

this project selection process. An important criterion for investing in IT projects

includes supporting strategic business indicators, such as benefits and customer

satisfaction, as well as financial incentives, such as a good rate of internal return

(IRR), or net present value (NPV). The user interface is situated on top of the scope

initiation phase and uses personal assistant agents, a project manager agent, task

agents, an agent management agent and messaging agents. The directory

facilitator agent assigns a personal assistant agent to the project manager that has

supervision rights over other personal assistant agents. During scope initiation, the

project manager defines team members that are assigned to this project. The

project manager agent assigns a personal assistant agent to each team member, to

be invoked with a user name and password. (For simplicity’s sake, the username

and password could be the same as a person’s network login ID and password, but

the choice depends on the individual, or the manager, should he or she decide

differently for the sake of security). The personal assistant agent will support the

team member it is associated with to automate various tasks such as the following:

adding relevant documents to each task; sending these documents to all team

members; sifting and organising email in priorities; communicating with other

personal assistant agents concerning meeting scheduling; attaching agendas and

distributing information to all committed team members. The information will be

stored in the repository, from where it will be extracted when necessary. All agents

will be managed by the agent management agent, also referred to as the agent

management system. The agent management system is discussed in chapter 8

(8.3.1.1). Thus the task agents will support the project manager and each team

member by automatically performing net present value analysis, return on

investment and payback analysis on each proposed project, and so assist in the

selection of a project. After completion, the project charter will be distributed to all

concerned members as well as stored in the repository by the agent team. The

scope initiation phase communicates with the scope definition phase and the scope

planning phase.

Chapter 7 The SPMSA Model

109

Scope planning involves the development of documentation to provide the basis for

future project decisions and provides guidance on other scope management

processes. The project charter, project assumptions and project constraints are all

inputs obtained from either the scope initiation phase or the repository, whereas the

scope statement and project scope management plan are output to the system and

placed in the repository. The scope-planning phase refines the scope and compiles

a formal scope-planning document that contains all the above documents. The

agent team will take this document to all relevant team members, and store it in the

repository.

During scope definition, the team members define all tasks and deliverables of the

project with input from the scope initiation and planning function, thereby creating a

work breakdown structure (WBS). Client and task agents are available to automate

standard tasks, for example to support the compilation of the WBS, do resource

allocation, and to transport the formal scope definition document to all team

members, requiring feedback from each. The document will be stored in the

repository.

Scope verification involves formal acceptance of the project scope from all

stakeholders. Input is obtained from the documents in the repository. Once the

team members have accepted and verified the formal scope document during the

scope verification phase, messaging agents store the completed document in the

central repository.

The scope change control phase involves the control of changes to the project

scope, and the use of an agent team that consists of messaging agents, task

agents, client agents and a project manager agent. If changes are identified, this

team evaluates and then implements the changes to the scope documents and

resulting documents. The agent team uses task agents to gather information from

the incoming messaging agents and client agents to perform scope integration and

coordination. The messaging agents provide the documentation from the repository

Chapter 7 The SPMSA Model

110

and communicate with the verification phase, as well as the stakeholders, via the

user interface. The directory facilitator provides a yellow page service to assist

agents to discover services provided by other agents.

7.2.1.1 Advantages of software agent support for scope
management

Current project management systems support individual aspects of the scope

management function, such as a word processor to create documents and

spreadsheet software to perform financial calculations. Project management

software assists with the scheduling aspects of a project, but the scope and

complexity of current software require facilities for coordinating independent

activities and managing the project. They do not provide an integrated coordinated

environment with set structure to support a uniform standard and methodology

(O’Connor and Jenkins, 1999).

Agents excellently support the distributed retrieval and dissemination of information

and documents. The agent system will automatically route workflow to all relevant

team members, obtain and incorporate feedback into the system, and store

documentation in the repository. The team members may not necessarily reside in

the same area, and will probably be geographically dispersed. Some may even

have access to the system only at certain times when visiting a site.

Communication and coordination is enabled through the heterogeneous nature of

an agent system. Agent systems can incorporate large network systems, as well as

mobile devices. Tasks, such as financial analysis, can be embedded into mobile

task agents, which can traverse the network and execute asynchronously and

autonomously, without having to rely on a continued connection. Agent systems

execute locally and thus reduce network load. Parallel execution also enables tasks

to be executed at different workstations simultaneously. The team of agents can

furthermore coordinate actions toward a similar goal, such as change control of the

scope document.

Chapter 7 The SPMSA Model

111

7.2.2 Time management
Time management involves the processes required to measure timely completion of

a project and as such involves not only the creation of an activity plan, but also the

estimation of the time that each task and activity will take, resulting in the overall

duration of the project. The main processes of time management include activity

definition, activity sequencing and activity duration estimation, time schedule

development and time schedule control, as identified and discussed in Chapter 3.

A graphical representation of the different phases of the time management function

and how agent teams cooperate to accomplish the objectives of these phases is

illustrated in Figure 7.2.

Figure 7.2 Time management function

The software project manager, team members or other designated stakeholders

interact with the activity definition phase through a special user interface. During the

activity definition phase each activity that must be performed to produce the project

deliverables will be identified. Agent teams will support the team members in a

similar way as in the scope management function. Each stakeholder and team

member will be represented by a personal assistant agent, while a messaging agent

will carry messages between agent teams and agents. Specific functions will be

executed by task agents and client agents. The information will be obtained from

STAKEHOLDERS

User interface

Activity definition

Activity sequencing
Activity duration
estimation

Time schedule
control

REPOSITORY

User interface

Time schedule
development

Chapter 7 The SPMSA Model

112

the WBS (compiled during scope management), the stakeholders and the scope

definition document, which was stored in the repository.

The activities that have been defined during the activity definition phase will be input

to the activity sequencing and activity duration estimation phases, also referred to

as the activity planning phase. Activity sequencing entails identification of the

relationships between project activities, while activity duration estimation entails

estimating the time needed to complete activities. Software effort estimation

techniques such as algorithmic models, analogy, Parkinson’s estimations and

parametric models can be programmed to be executed by task agents. In other

words, function point analysis (Albrecht’s and Mark II) and COCOMO, a parametric

model, can both be programmed to be executed by a task agent (Benfield,

Hendrickson and Galanti, 2006). The input will be provided by the activity definition

phase and output will be sent to the time schedule development and time schedule

control phases, as well as be stored in the repository. The task agents will support

the duration estimation and activity sequencing phases.

The activity definition, sequencing and activity duration estimation phases constitute

the basis for creating a project schedule. Time schedule development involves

developing a schedule that considers the activity sequences, activity durations and

resource requirements to complete the tasks and the project. Various standard

SPM diagramming methods with supporting software are available (Schwalbe,

2006). These applications may be identified by personal assistant agents and

suggested for use, such as network diagrams, i.e. activity-on-node and precedence

networks, as well as Gantt charts, PERT techniques and critical path analysis.

Calculations and simulations, such as “What if” analysis, can also be programmed

to be executed by task and client agents, which will take the functionality to the team

member and team leader’s work area. However, the time schedule development

phase will need interaction with the stakeholders (via the user interface) and team

members to ensure commitment of all said members. By using input from the team

members, previous experience will automatically be included in the calculations.

Chapter 7 The SPMSA Model

113

These diagrams will all be stored in the repository and they will be sent to the time

schedule control phase.

The time schedule control phase uses an agent team that consists of messaging

agents, monitoring agents, task agents and a project manager agent. This phase

involves controlling and managing changes to the schedule. The project schedule is

used as input to this phase and all changes are stored in the repository. If changes

are identified, the agent team evaluates and then implements the changes to the

project schedule and resulting documents. It uses task agents to gather information

from the incoming messaging agents and client agents to perform schedule

integration and coordination. The monitoring agents monitor all activities, while

messaging agents circulate the documentation from the repository and

communicate with all team members’ personal assistant agents and the

stakeholders. Milestones must form an integral part of this schedule, to enable and

support the control phase.

7.2.2.1 Advantages of agent support for time management

The process of project planning and time management is notoriously inaccurate,

mostly due to changing circumstances, additions or new information (Joslin and

Poole, 2005). In response to these dynamic changes, time estimates may change,

resources be reassigned and tasks may be changed. Thus, a dynamic planning

system that can automatically incorporate changes will greatly benefit the project

management environment. Although the use of artificial intelligence falls outside the

scope of this thesis, the incorporation of agent-based simulation can be used for

project time planning (Myers, Berry, Blythe, Conley, Gervasio, McGuinness, Morley,

Pfeffer, Pollack and Tambe, 2007).

Schwalbe (2006) sites the times scheduling phase of the time management function

as the main reason for conflict during the middle and end phases of a project. This

conflict could be minimised by getting input from the team members and

stakeholders during the activity definition and activity duration estimation phases.

The agent system will continuously prompt users for input and interaction, thus

Chapter 7 The SPMSA Model

114

supporting communication and integration. Realistic time values will be derived

which will benefit project professionals by minimizing the tendency to be overly

optimistic. The agent system can in this way force continuous and realistic

interaction between users and stakeholders.

Standard SPM software can do the basic diagrams, but the project manager/team

members must be knowledgeable about these, i.e. if a manager does not know how

to establish dependencies between tasks in Microsoft Project, it will result in errors.

The agent system can support the team and the project manager to a larger extent

as it will automate many tasks and will require only specific input.

7.2.3 Cost management
Cost management involves the managing of all financial aspects of a project to

ensure that a project team completes a project within the approved budget. This

includes resource planning, cost estimation, cost budgeting, and cost control and

monitoring – as highlighted in Chapter 3. Figure 7.3 illustrates the different phases

of the cost management function and how agent teams cooperate to accomplish the

objectives of these phases.

Figure 7.3 Cost management function

STAKEHOLDERS

User interface

Resource
planning

Cost estimation Cost budgeting

REPOSITORY

User interface

Cost control and
monitor

Chapter 7 The SPMSA Model

115

Although resource planning is not explicitly included by PMI (2004) as part of cost

management, it is included as a function of the agent model to estimate project cost.

During the resource planning phase, all resources and quantities of resources

needed for a project are to be identified, and the output is a list of resources. Agent

teams will support the phases in a similar way as in the scope and time

management functions. Input concerning available resources is provided by the

team leader and team members. The user interface, which is situated on top of the

resource planning phase is used for interaction with all stakeholders. The resource

planning phase uses personal assistant agents, task agents and messaging agents.

A personal assistant agent will support each individual team member to accomplish

his or her tasks by providing maximum assistance, as well as by providing an

interface between the team member and the other agents. The output of this

function will be communicated to the cost estimation function as well as stored in the

repository. The resource planning will be supported by the directory facilitator to

select any pre-existing functions encapsulated in agents.

The cost estimation phase involves developing an estimate of the cost of resources

needed for this project. Input to this function will be information from the messaging

agents of the resource planning function, and the functioning will be supported by

messaging, task and client agents. Task and client agents will automate financial

calculations such as rough order of magnitude (ROM) estimates, return on

investment estimates (ROI), budgetary estimates, derived estimates (Benfield et al.,

2006). These estimations will constitute a cost management plan. Various

computerised tools are available and can be integrated to support this action, such

as analogous estimates, bottom-up costing and parametric modelling (Hughes and

Cotterell, 2006). The cost estimation phase interacts with the resource planning

phase, the cost control and monitor phase and the repository where the estimation

plan will be stored.

The cost budgeting phase entails allocating the project cost estimates to specific

items. Input to this is the WBS and project schedule, which are obtained from the

Chapter 7 The SPMSA Model

116

repository and used as input to the cost control function. Agent teams will be used

to monitor the cost and automatically update expenditure. All changes will be stored

in the repository.

The cost control and monitor phase involves the monitoring of cost performance and

will be supported by a monitoring agent to monitor tasks and compare expenditure

to budgeted amounts. This function will interact with the cost budgeting and cost

estimation phases, storing all relevant documents, for instance the estimation plan,

in the repository. Notification of stakeholders can take place via the user interface.

A client agent will be responsible for specialised tasks, while the team leader agent

will be responsible for managing the team of agents.

7.2.3.1 Advantages of agent support for cost management

Current approaches rely on the team leader or identified team members to manually

or electronically update and maintain cost expenditure (Hughes and Cotterell, 2006).

Current PM approaches provide capabilities for financial calculations such as ROI,

NPV, etc., but the project leader or member still has to provide the information.

Agent teams can automate this on specified times, as part of preparing the budget

thus eliminating the ‘human error’ aspect. Calculations can be executed by agent

teams and changes can be incorporated dynamically. Benfield et al. (2006) report a

developer productivity of 350% for systems supported with a type of agent support.

The agent approach also reduces complexity, incorporates changes easily and thus

compiles solutions faster than traditional programming paradigms.

7.2.4 Quality management
Project quality management involves all activities of the overall management

function that determine the quality policy, objectives and responsibility. It

implements these by means of quality planning, quality assurance and quality

control within the quality system. Each of these processes has been discussed in

Chapter 3.

Chapter 7 The SPMSA Model

117

Figure 7.4 illustrates the different phases in the quality management function and

how agent teams cooperate to accomplish the objectives of these phases.

Figure 7.4 Quality management function

To describe how software agents are used to address the different functions of

quality management, we use a set of agent teams similar to the previous functions

to address the individual phases and then define specialised software agents

operating within these teams (or on their own where applicable). It is less intricate to

design the behaviour of each agent. Furthermore, the specialised agents make it

possible to explicitly describe the various interactions between different agents,

which in turn reduce the general complexity of the agent system. The various

programming patterns that are available accomplish specific agent-associated tasks

such as creation, migration, suspension and collaboration (Aridor and Lange. 1998;

Kendall et al., 2000).

During the quality planning phase, interaction with the user interface enables

communication between stakeholders and the agent team. Quality standards are

identified and quality measures set. A plan devised to adhere to these standards will

STAKEHOLDERS

Quality planning

User interface

Quality
assurance

REPOSITORY

Quality control

User interface

Chapter 7 The SPMSA Model

118

result in the quality plan, which will be stored in the repository for further referencing.

Agents utilised are personal assistant agents to assist each team member, task

agents to set and identify relevant quality measures, messaging agents to

communicate to stakeholders and teams, monitoring agents to receive and

distribute documents, and team management agents to coordinate agents.

Quality assurance involves evaluating overall performance regularly to ensure

conformance to the set standards. Task agents will support this evaluation to

ensure compliance to set standards, traverse the network of team members on a

regular basis and, when problems are encountered, give warning messages to

personal assistant agents who will communicate with individual team members, as

well as with the stakeholders. Input will be from the quality planning phase, namely

the quality plan. Quality audits or reviews are used to support this function and

personal assistant agents will be responsible for setting schedules, agendas and

meetings; for distributing information needed, and for instructing messaging agents

to deliver messages, all of which will be stored in the repository.

The team of agents will support the quality control phase while monitoring the

activities and products of the project to ensure compliance with the standards. As

quality control involves acceptance of the work in hand, the user interface of this

phase ensures communication between stakeholders on a regular basis. Task

agents will traverse the network regularly to monitor tasks and report back to all

stakeholders. Various project management techniques may be used, such as

pareto analysis, statistical sampling and quality control charts, which can be

programmed and executed by agents (Olson, 2004). A library of tools and

techniques may be made available and best choices may be selected by agents to

support each team member. If any rework or process adjustment is necessary, it will

be communicated and coordinated between task and personal assistant agents.

Monitoring agents will control and check that rework and adjustments are executed

and that change control documentation is stored in the repository. Monitoring

agents will also monitor all agent activity.

Chapter 7 The SPMSA Model

119

7.2.4.1 Advantages of agent support for quality management

There is a need for improvement on this level of SPM. Hughes and Cotterell (2006)

recommend that quality aspects of the project plan be reviewed on an ongoing

basis. Traditionally, project quality control depends primarily on either the project

leader or a specific allocated team, thus on human input (Schwalbe, 2006).

Software agent teams may assist in these endeavours by continually prompting

team members for input, regularly measuring workflow and rework status.

7.2.5 Human resource management
Human resource management includes all the people concerned with a project.

These will include the project stakeholders, sponsors, customers, project team

members, support staff, suppliers supporting the project, as well as any other

person or item needed to complete the project. The main focus of this process is to

allocate resources to activities, and to create a work schedule utilising these

resources from the activity plan. Human resource management consist of the

following phases, namely the organisational planning phase; the HR team

development and staff acquisition phase; and the monitor and control

(management) phase.

Figure 7.5 illustrates the different phases in the human resource management

function and how agent teams cooperate to accomplish the objectives of these

phases.

Chapter 7 The SPMSA Model

120

Figure 7.5 Human resource management function

The software project manager or other designated stakeholders interact with the

organisational planning phase through a special user interface. This user interface,

which sits on top of the organisational planning function, uses personal assistant

agents, task agents, messaging agents and a project manager agent. The Directory

facilitator agent assigns a personal assistant agent to the project manager, which

has supervision rights over other personal assistant agents. The project manager

agent assigns a personal assistant agent to each team member. Once the user has

entered the required information into the system via the user interface, messaging

agents take the information to a central repository and to the HR monitor and control

phase. The organisational planning phase involves identifying and documenting

project roles, responsibilities and relationships. A staffing management plan and

organisational chart will result and both will be stored in the central repository.

The HR team development and staff acquisition phase entails staff acquisition or

assigning the needed personnel to the project, as well as building individual and

STAKEHOLDERS

HR team development
Staff acquisition

User interface

REPOSITORY

Organisational
planning

User interface

HR monitor and
control

Chapter 7 The SPMSA Model

121

group skills needed to enhance the project. This will primarily be executed by the

project manager, with a team assisting him/her. The project manager or other

designated stakeholders interact with the team development and staff acquisition

phase through a user interface. A team of agents similar to the team supporting the

previous functions will support this phase. Thus, the personal assistant agent will

support the project leader in identifying personnel with the needed skills and in

compiling a suitable team. Task agents will match the existing skills and knowledge

of staff to the required skills and knowledge, in order to identify areas to be

developed. Agents involved will be task agents for specific tasks, messaging agents

to communicate and deliver messages, and monitoring agents to control and check.

The HR team development and staff acquisition phase interacts with the user

interface, the HR monitoring and control phase, and the repository by storing

finalised documents.

The HR monitor and control phase includes tracking team performance, providing

timely feedback, resolving issues and conflict, as well as coordinating changes.

The primary responsibilities of the client and task agents are to facilitate teamwork,

perform scheduling on teamwork, and distribute collaborative documents. The HR

monitor and control function interacts between the organisational planning phase

and the team development and staff acquisition phase. Task agents will execute

monitoring tasks by continuously traversing the network of team members and

reporting on the status of all tasks and subtasks. Messaging agents will receive and

carry information, and the team leader agent will manage the team of agents.

These agents will interact and regulate the functioning of the HR monitor and control

function. Completed and intermediate documentation will be stored in the

repository.

7.2.5.1 Advantages of agent support for HR management

Current systems contain software that may be used for support to facilitate

organisational planning and assign resources, but people skills will be the primary

objective of this phase. Current approaches support the project leader and team

only with loose software support, such as responsibility assignment matrixes,

Chapter 7 The SPMSA Model

122

resource histograms and other reporting features (Hughes and Cotterell, 2006).

The framework of agents will support the team with an integrated approach of

support, mainly through the personal assistant agent and task agents. Coordination

and communication will also be supported.

7.2.6 Communication management
Communications management creates an environment for interaction and ensures

timely and appropriate generation, collection, dissemination, storage and disposition

of project information. This function consists of five distinct phases, namely

communications identification and planning, team support, information distribution,

performance reporting and administrative closure. These have been highlighted

and explained in Chapter 3.

Figure 7.6 illustrates the different phases in the communications management

function and how agent teams cooperate to accomplish the objectives of these

phases.

Figure 7.6 Communication management function

STAKEHOLDERS

REPOSITORY

Administrative
closure

Performance
reporting

Information
distribution

User interface

Team support
User interface

Identification and
planning

Chapter 7 The SPMSA Model

123

The software project manager or other designated stakeholders interact with the

identification and planning phase through a special user interface. This user

interface, which sits on top of the communications identification and planning

function, uses personal assistant agents, task agents and messaging agents.

During interaction with the interface, the user defines team members or relevant

stakeholders and the tasks that are assigned to them, and defines milestones,

objectives, etc. The project manager agent uses the directory facilitator to assign a

personal assistant agent to the project manager, as well as to each team member.

This agent may be invoked with a user name and password. Once the user has

entered the required information into the system, messaging agents take the

information to a central repository and to the information distribution function.

The information distribution phase uses an agent team that consists of messaging

agents, task agents, client agents and a team leader agent. The agent team of this

function accepts incoming messaging agents from the user interface of the team

support phase and uses its own messaging agents to interact with the identification

and planning phase, team support phase, performance reporting phase and the

administrative closure phase. It also uses client agents to gather information from

the incoming messaging agents and task agents to perform information integration

and coordination.

As before, task agents are included for specialised computing tasks. For the

information distribution phase, task agents may or may not be included at this level,

depending on how elaborative the client agents are. The researcher advocates the

use of task agents to simplify the design and improve the maintenance of the SPM

tool software. As mentioned before, the client agent typically has a number of

functions that include interacting with (and thus receiving) incoming messaging

agents; understanding (interpreting) incoming information; translating incoming

information to a syntax that makes it possible to be processed; processing the

incoming information; and deciding on distribution conduct (based on its generic

approach to handling information as well as previous knowledge and experience).

Chapter 7 The SPMSA Model

124

The client agent is also tasked with the responsibility to interact with the outgoing

messaging agents that must disseminate the processed information and send the

information to the administrative closure phase. The latter interacts with the central

repository. To simplify the design of a client agent, these individual tasks can be

designed as task agents reporting to the client agent via the team leader agent.

The team support phase is primarily responsible for collaborative scheduling tasks.

The phase prescribed by PMBOK (2004), namely managing stakeholders will be

included in the team support phase of the communication management function.

The software project manager or other designated stakeholders interact with the

team support phase through a user interface. Agents associated with scheduling

are monitoring agents, personal assistant agents, client agents (and task agents

where applicable), as well as messaging agents. Messaging agents are defined as

before. Monitoring agents are responsible for monitoring the incoming messages

from messaging agents. They subsequently determine the necessity or urgency to

suggest new or earlier meeting schedules than those already scheduled during the

previous communication rounds, or by the team support phase. The primary

responsibilities of the client and task agents are to facilitate teamwork, perform

scheduling tasks on teamwork, and distribute collaborative documents. When an

individual team member works on a collaborative document, his or her personal

assistant agent must be cognisant of any extraordinary circumstances when the

user falls behind schedule. This could for example be done by special-prompting-

task-agents that ask specific questions or monitoring agents that compare set dates

to real dates. The personal assistant agent passes this information to the (manager)

monitoring agent, which either sends the agent to the general client agent at this

level, or makes special suggestions with regard to extraordinary meetings to be

scheduled. A user interface is available at this level, through which team members

can interact with the collaborative task environment.

The administrative closure phase interacts between the information distribution

phase, performance reporting phase and the central repository. It also keeps a

Chapter 7 The SPMSA Model

125

history by using monitoring agents to coordinate incoming reports before storing or

archiving the information to the central repository. As expected, this function

includes both messaging agents and client agents (potentially also task agents to

assist the client agents) to coordinate the incoming reports and archiving processes.

The performance reporting phase entails the generation of reports such as status,

progress and forecasting reports. The performance reporting phase interacts

between the administrative closure phase, the information distribution phase and the

central repository. It receives input from the administrative closure and information

distribution phases through the use of monitoring agents to coordinate incoming

reports before generating required reports and then archiving the information to the

central repository. This function requires both messaging agents and task agents to

coordinate the generation of reports and archiving processes.

7.2.6.1 Advantages of agent support for communication
management

Traditional SPM tools use a passive reporting mechanism that does not provide

sufficient reporting support to a collaborative distributed system (Chen et al., 2003).

Several software tools are used, such as a word processor to create documents,

spreadsheet software to perform financial calculations, as well as standard project

management software that can assist in drawing diagrams. However, these are

separate tools and do not provide an integrated, autonomous environment to

support all phases. Communication is enhanced and supported by the use of an

agent system that prompts the users for input and thus eliminates human type of

errors, such as forgetting to document all details (leading to insufficient project

documentation). Another common problem in communication is that many project

processes, contexts, rationales, or artefacts may not be captured at all. An

electronic repository supported by an agent system, will automate and monitor

documentation storing and retrieving, that in turn will overcome these disadvantages

(Nienaber and Cloete, 2003).

Chapter 7 The SPMSA Model

126

Distributed retrieval and dissemination of information and documents are also

supported by the agent system. Workflow will automatically be routed to all relevant

team members, feedback will be obtained, and documentation will be stored in the

repository. The team members will probably be geographically dispersed, but

communication and coordination will be enabled through the heterogeneous nature

of an agent system.

7.2.7 Risk management
Various models or frameworks exist, which may be used to identify and address risk

associated with software project development.

Based on Boehm’s model (1991), software risk management consists of the

following phases: risk assessment that includes risk identification, risk analysis and

risk prioritisation, as well as risk control, comprising risk management planning, risk

resolution, and risk monitoring. Figure 7.7 illustrates the different phases in the risk

management function (as discussed in Chapter 3) and how agent teams cooperate

to accomplish the objectives of these phases.

 Figure 7.7 Risk management function

STAKEHOLDERS

User interface

Risk identification

Risk analysis and
prioritisation

REPOSITORY

User interface

Risk management
planning

Resolution Risk
monitoring

Risk

assessment
Risk control

Chapter 7 The SPMSA Model

127

The risk identification phase entails the identification of specific risks by the project

manager and the team members. The software project manager or other designated

stakeholders interact with the risk identification phase through a special user

interface. This user interface, situated on top of the risk identification phase, uses

personal assistant agents, task agents and messaging agents. The project

manager agent uses the directory facilitator agent to identify personal assistant

agents of all the members of the team. The project manager then identifies possible

risks for this project. The agent management agent is responsible for managing the

team of agents, ensuring coordination between the sub-tasks, communication

between agents and the location distribution of agents. The project leader defines

the parameters of the project with the assistance of the personal assistant agents,

adds tasks and subtasks, and allocates tasks to team members with the support of

the personal assistant agents. Once the user has entered the required information

into the system, messaging agents take the information to a central repository and

to the risk analysis and prioritisation phase.

During the risk analysis and prioritisation phase, the task agent further traverses the

distributed network of team members, communicating with each team member’s

personal assistant agent. Each team member will enter information concerning risk

probability (e.g. identify on a scale of 1 to 100 the probability of a certain risk

occurring). The task agent will also perform calculations regarding the impact on

the assets, where known, if the risk occurs. Furthermore, each team member will be

prompted for information concerning risk areas at regular time intervals. Thus, this

function will enhance the risk management function by continuously updating team

members on the probability of a certain risk occurring. The status of each task will

also be monitored by the task and monitoring agent. All intermediate information

will be communicated to the risk management planning phase, as well as be stored

in the repository.

Risk management planning involves the developing of strategies to address risks,

should they occur. A risk management plan that includes aspects such as risk

Chapter 7 The SPMSA Model

128

mitigation strategies for technical cost and schedule risks, as well as contingency

plans, will be stored in the repository for further reference. Interaction with the

stakeholders, all team members, as well as with the risk identification, risk analysis,

risk prioritisation, risk-monitoring and risk resolution phases is necessary.

The risk-monitoring phase will provide the team and the team leader with

information on the status of each specific task, e.g. a warning message if tasks or

deliverables are overdue or on schedule; the probability of occurrence of identified

risks. The monitoring agent will be responsible for monitoring tasks, reporting back

to the PAs where rescheduling of tasks as well as the notification of stakeholders

can take place. Task documents, attached to a specific task, will also be monitored.

This phase will interact with the risk management planning phase, the risk resolution

phase, as well as with the repository.

Risk resolution will be supported by the agent team. Client and task agents are

available to automate standard tasks, for example to support the compilation of the

risk resolution plan, to do simulations and benchmarks, and to transport all formal

documentation such as the formal risk resolution planning document to all team

members, requiring feedback from each. The document will be stored in the

repository.

7.2.7.1 Advantages of agent support for risk management

Current risk management approaches consist of a variety of application packages

that address various areas of functionality in the SPM area. These applications

require pre-knowledge of the project manager and are time-consuming to use.

The incorrect usage, or omission of certain items will result in errors in calculations

and estimations. Input is also time-consuming and may be omitted in certain

circumstances. The software agent approach will have the advantage that the SPM

process is enhanced and supported by automated process input. Real-time

progress measurement as sustained by continuous input will help to identify

potential risks early and support the project manager to be proactive. The team

Chapter 7 The SPMSA Model

129

leader will be informed of the status of all tasks of the specific project. Thus

interaction with the user, project manager and other stakeholders will be optimised.

The task agent will traverse the distributed network for input from all team members

on the selected risks, which will enhance the process by sending the functionality to

the various team members. Thus, communication overhead and network load are

lessened. Task documents will also automatically be distributed over the distributed

network, lessening the work load of each team member.

Distributed teams can also communicate and coordinate through this

heterogeneous nature of the agent system.

7.2.8 Procurement management
During the process of software project development, products, goods or items that

are not readily available within the organisation (perhaps in the form of software,

hardware or people) must be acquired (Marchewka, 2003). Procurement entails

acquiring services or goods from an outside source. Procurement management

thus comprises the methods and procedures stipulated by an organisation to

facilitate the acquisition of such products. Project procurement management

consists of the following processes, namely procurement planning, solicitation

planning, solicitation and source selection, contract administration, and contract

closure as highlighted by the researcher in Chapter 3.

Figure 7.8 illustrates the different phases of the procurement management function

and how agent teams cooperate to accomplish the objectives of these phases.

Chapter 7 The SPMSA Model

130

Figure 7.8 Procurement management function

The phases of this function will each be supported by agent teams that are similar to

the agent teams in the previous sections.

The procurement planning phase involves identifying what to procure and when.

These decisions will constitute the procurement management plan. Interaction is

needed from the stakeholders and team members and will be enabled by the user

interface. This user interface, situated on top of the procurement planning phase,

uses personal assistant agents, task agents and messaging agents. The personal

assistant agent of each member will support the member to identify and specify

items needed for the task in hand. The messaging agent will take this document to

all relevant team members, via the user interface, the solicitation planning phase

and store the completed document in the repository.

During the solicitation planning phase product requirements are documented and

resources identified. Procurement documents and rules are set. Client and task

STAKEHOLDERS

Procurement
planning

User interface

Solicitation
planning Contract closure

REPOSITORY

Contract
administration

User interface

Solicitation and
source selection

Chapter 7 The SPMSA Model

131

agents are available to automate standard tasks, for example to support the

compilation of the RFP (Request for Proposal), and to compile the evaluation criteria

based on input from all team members. The procurement documents will be stored

in the repository. This phase interacts with the solicitation and source selection

phase, contract administration, as well as contract closure phase.

The solicitation and source selection phase entails the process of obtaining

quotations, bids and offers, and selecting the most appropriate one. This phase is

supported by the team of agents. The personal assistant agent supports each team

member with individual tasks, while task agents will do specific comparisons.

Several studies have been completed on negotiating agents (Kephart and Chess,

2003; Chmiel, Czech, and Paprzycki, 2004a). This process can thus be fully

supported by a team of bidding and negotiating agents. All documents, such as

quotations, bids and offers, will be stored in the repository, as well as be sent to the

contract closure phase.

The contract administration phase refers to the management of the contract in

accordance with outside stakeholders, such as suppliers. As this phase entails

interaction with the stakeholders and suppliers, such interaction is enabled by the

user interface. The contract administration phase will again be supported by an

agent team, supporting the team member/s who execute this function via the user

interface. Contract administration detail will be communicated with the contract

closure phase.

Contract closure involves a procurement audit, as well as formal acceptance and

closure of the contract. Input is obtained from the solicitation and source selection

phase, contract administration phase, and solicitation documents in the repository.

Once the team members have accepted and verified the product concerned in the

contract, messaging agents store the completed document in the central repository.

Chapter 7 The SPMSA Model

132

7.2.8.1 Advantages of agent support for procurement management

Current systems rely on individual team members to execute the procurement

acquisition process. The procurement management function can be extensively

supported by bidding and negotiating agents. Research has been done and is still

being done on automated bidding agents that can bid for services or products in

electronic markets, without direct human intervention (Kephart and Chess, 2003,

Badica, Popescu, Vukmirovic, Gawinecki, Kobzdej, Ganzha and Paprzycki, 2008).

Autonomous agents consisting of bidding, buyer, seller and middle agents may bid

for products or services. These agents are able to negotiate according to inbuilt

negotiation algorithms and conclude transactions to maximise gain for an

organisation (Shehory, Goldstein, Shulman, Sturm and Yurovitsky, 2002). Buyer

agents are sometimes referred to as shopping agents (Kephart and Chess, 2003).

Pricing agents may also provide team members with information concerning prices

in the market (Kephart and Greenwald, 1999). This will free the development team

and management team from having to deal with the actions of acquiring information

on products or services, bidding to buy them, negotiating and concluding the

transaction – thus allowing them more time for quality product development.

7.3 THE “SOFTWARE PROJECT MANAGEMENT
SUPPORTED BY SOFTWARE AGENTS” (SPMSA)
MODEL

The proposed SPMSA model is unique as it supports each key function of SPM with

a team of software agents. In the previous section it was illustrated how an agent

team supports each of the SPM key functions. Table 7.1 provides a summary of the

purpose of each agent that forms part of the agent teams of the different SPM key

functions of the SPMSA model.

Chapter 7 The SPMSA Model

133

Table 7.1 Agents and their tasks

Agents Purpose Mobile Stationary

Agent

management

agent

• Manages the team of agents

• Keeps track of the distribution

location of all agents

• Enables communication of agents

• Enables mobility of agents

• Tracks instantiation of tasks

 X

Client agent • Executes a specialised task at a

workstation

• Interacts with the agent team

• Receives input from task agent

 X

Directory

Facilitator
• Automated JADE facility

• Provides yellow pages functionality

to agents

• Provides agents with information

on services provided by other

agents

 X

Personal

assistant

agent

• Allocated to a specific team

member

• Assists the team member

• Interface between team member

and other agents

• Collaborative nature

 X

Messaging

agent
• Traverses the network of agents

• Carries messages to and from

agents

• Collaborates between agents

X

Monitoring

agent
• Monitors agent movement

• Monitors tasks and activities

X

Chapter 7 The SPMSA Model

134

Agents Purpose Mobile Stationary

• Coordinates agents

Project

manager agent
• Supports and directs the team of

agents

• Takes on project manager role

• Helps create and initialise project

• Specifies tasks

• Allocates tasks to members

X

Task agent • Supports a specific task, e. g.

information gathering, information

distribution, information retrieval

• Traverses the network of team

members for input

• Calculates various measures, such

as probability of risk occurring,

ROI, NPV

• Gives feedback to personal

assistant agents

X

Team leader

agent
• Manages the team of agents X

The graphical representations compiled for each of the SPM key functions (as

depicted in Figures 7.1 to 7.8) are mapped to form the SPMSA model. The core

functions and the facilitating functions are presented in Figure 7.9 and Figure 7.10

respectively. These two figures represent the entire SPMSA model, but due to

space constraints they are spread over two pages.

Chapter 7 The SPMSA Model

135

Figure 7.9 The SPMSA model - core functions

STAKEHOLDERS

User interface

Activity definition

User interface

Time schedule
development

REPOSITORY

Activity sequencing
Duration estimation

Time schedule

control

Cost estimation

User interface

Resource
planning

User interface

Cost control

and monitor

Cost budgeting

STAKEHOLDERS

Quality control

User interface

Quality
assurance

Scope initiation

User interface

Scope change

control

Quality
planning

User interface

Scope
planning

Scope
definition

Scope
verification

Chapter 7 The SPMSA Model

136

Figure 7.10

The SPMSA model is unique in that it supports the entire spectrum of SPM

functionality by means of software agents. Thus the SPMSA model aims to address

the shortcomings of current SPM practices as a result of the changing nature and

dynamic changing SPM environment.

User interface

Risk management
planning

Risk
resolution

Risk analysis and
prioritisation

REPOSITORY

Administra-
tive closure

Performance
reporting

Information
distribution

STAKEHOLDERS

User interface

Risk
identification

User interface

Team support
User interface

Communication
identification
and planning

HR Team development
and staff acquisition

User interface

Organisational
planning

User interface

Procurement
planning

User interface

Contract
administration

User interface

HR monitor and
control

Solicitation

planning

Contract
closure

Solicitation
and source
selection

STAKEHOLDERS

Risk
monitoring

Figure 7.10 The SPMSA model - facilitating functions

Chapter 7 The SPMSA Model

137

Table 7.2 below provides a summary of how the SPMSA model addresses the

limitations of current SPM approaches through software agents.

Table 7.2 Limitations of SPM addressed by agent technology

Limitations of current SPM
approaches

Agent enhancement

Environment

Stakeholders in virtual teams

may have different goals;

different cultural backgrounds

(Chen et al., 2003).

Virtual teams supported by automated agent

interaction work toward a similar goal, with

coordination and collaboration of team members.

Support communication in

homogeneous environments

and will need additional

features or measures to

connect heterogeneous

elements (O’Connor and

Jenkins, 1999).

Agents support heterogeneous environments,

thus improving and enabling

• communication and

• coordination.

The system executes

synchronously and must be

connected to execute (Maes,

1994).

Agent system executes asynchronously and

autonomously, thus

• less network load,

• less communication overhead.

Do not sufficiently support the

knowledge representation of

the SPM area (O’Connor and

Gaffney, 1998).

Agent systems provide assistance with regard

to knowledge management, namely

knowledge of plans and designs, and can

provide mechanisms to reason about these

elements.

Chapter 7 The SPMSA Model

138

Limitations of current SPM
approaches

Agent enhancement

Human interaction / automated control

Documents are distributed by

human action, thus there is the

possibility of human error,

such as omission (Purvis et

al., 2003).

Workflow management to all relevant team

members is automated,

• documents and information are dispersed

and

• retrieved from the repository.

Team member interaction

depends on user/human

interaction, thus prone to

errors (Benfield et al., 2006).

Automates team member interaction, by regular

prompting for input to ensure that

• the data is current and

• tasks not forgotten, thus

• improving productivity.

All actions, functions and

coordination to be executed by

team members, without

specific process coordination

measures (Petrie, Goldman

and Raquet, 1999).

Automates process coordination, which will

improve programmer productivity as well as

minimise errors.

Tasks

Complexity of tasks and

environment one of the

reasons for failure (Jennings,

2001; Benfield et al., 2006).

Complexity of tasks is minimised by automated

support, such as calculations automated, thus

• reducing complexity of the solution,

• improving programmer productivity.

Large systems are difficult to

maintain consistently over a

set period of time. Current

tools do not provide proper

change notification (Petrie, et

Maintenance is automated and users are

prompted for input on changes.

Change control is automated and users are

regularly prompted for input. Changes are

incorporated dynamically.

Chapter 7 The SPMSA Model

139

Limitations of current SPM
approaches

Agent enhancement

al., 1999).

Current tools support the

reporting and calculation

facilities, but not continuous

progress management

(Chandrashekar et al., 1993).

Management of progress status is automated,
e.g. risk monitoring and risk status are checked on

a daily basis, enabling the project manager to

• identify problems early and

• take proactive measures (Roy, 2004).

According to a study by Verner

and Cerpa (2005) risks are

identified at the start of a

project but only 50% follow the

risk through during

development.

Agents that monitor risk will automate the

continuous monitoring of risks, thus following all

risks throughout the project.

Different team members use

passive corporate reporting

aspects (Chen et al., 2003).

Continuous input of task status and sharing of

information changes passive reporting to a system

that supports dynamic reporting, thus improving

coordination and cooperation between team

members.

Data, tasks and results will be

sent over a network to execute

at the user’s workstation

(Chen et al., 2003).

Tasks are embedded in agent behaviour, thus by

traversing the network, agents lessen
communication overhead and network load

because tasks execute at team member’s site.

Ineffective and inefficient

communication, i.e. untimely

information, failure to notify all

team members, not enough

top-down information flow and

storing information in a format

not suitable for retrieval (Chen

Collaborative tool that provides automated

support on structures for efficient information

sharing, set format for information storing and

structures for communication to promote adequate

and timely information sharing (Gawinecki et al.,

2007).

Chapter 7 The SPMSA Model

140

Limitations of current SPM
approaches

Agent enhancement

et al., 2003).

Quality measures and

standards are selected by

team. Human inaccuracy and

omissions are possible

(O’Connor and Jenkins, 1999).

Continuous automated input are received from all

team members for quality control.
Agents may supply measures and directives that

conform to standards.

Current SPM tools provide no

intelligent support on

standards or best practices

(O’Connor and Moynihan,

2000).

Agents with intelligence may encapsulate areas

of experience such as standards, and may advise

the project leader on best practices and

standardisation. This provides knowledge base
support (Gawinecki et al., 2007).

Intelligent support

Bidding and negotiation are

done by humans (Kephart and

Chess, 2003; Badica, et al.,

2008).

Advantages of bidding and negotiating agents.

Automation of these functions will mean less work

for the developer and added productivity for the

developer/s.

Current SPM tools that make

projections concerning tasks

and decisions are static and

do not support dynamic

simulation (Joslin and Poole,

2005).

Agent systems support dynamic simulation

concerning planning of uncertainty, i.e. dynamic

resource allocation. Simulations may help the

manager to anticipate critical conditions earlier and

enable him to implement preventative measures –

thus proactive SPM.

All interaction occurs through

stakeholders but no support in

decision-making process of

project manager (O’Connor

and Gaffney, 1998; Purvis et

al., 2003).

Personal assistant agent supports each

individual team member to intelligently manage

and analyse large amounts of project data (Myers

et al., 2007; Gawinecki et al., 2007).

Chapter 7 The SPMSA Model

141

7.4 CONCLUSION
In this chapter the complete SPMSA model was compiled. This was accomplished

by compiling a graphical representation of each of the SPM key functions that depict

the different phases of each function. The researcher highlighted how a team of

agents could support each phase.

The agent framework follows an approach of agent teams being composed of

specialised software agents, each tasked with a manageable/atomic task. This

implies that the complexity of creating and maintaining tasks can be greatly

reduced.

The SPMSA model enhances SPM by addressing the entire spectrum of SPM

development by means of software agents. A prototype of a section of the SPMSA

model is implemented as ‘proof of concept’ and will be discussed in the following

chapter. The SPMSA model will also be verified against the PDCA cycle, as well as

against the ISO 10006:2003 standard in order to substantiate its relevance.

Chapter 8 Prototype implementation

142

CHAPTER 8

8 PROTOTYPE IMPLEMENTATION

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II

Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 8 Prototype implementation

143

8.1 INTRODUCTION
In previous chapters it was established that software agent technology is suitable to

address the changing and ever-evolving SPM environment. A model, namely the

SPMSA model, was consequently developed to support all SPM processes with a

software agent framework. This chapter is devoted to a discussion of the

development and implementation of a prototype of a section of the SPMSA model,

namely the risk management function.

The purpose of this chapter is to show that the SPMSA model is not merely a

theoretical concept, but that it can be implemented successfully. The prototype is

used as ‘proof of concept’ to illustrate the possibility of using software agent

technology to support SPM processes. The prototype could, of cause, be expanded

to implement the entire SPMSA model.

8.2 DEVELOPING THE PROTOTYPE
The SPMSA model supports the teams and individual team members in the SPM

environment with a framework of software agents while executing their tasks. The

project manager (also acting as team leader in this case), together with individual

team members, will be supported during software project management processes to

simplify their tasks, eliminate the complexities, and enhance coordination and

communication. The prototype will specifically support the risk assessment part (i.e.

the risk identification and the risk analysis and prioritisation phases) and the risk-

monitoring phase of the risk control part of the SPMSA model.

The SPMSA model may be implemented by using agent black boxes in support of

SPM functions. Each of the key processes discussed in Chapter 7 could

successfully be addressed by following a black box approach that is based on

software agent technology. Each black box consists of collaborative software

agents that ensure cooperation, coordination and synergy between the different

black boxes. Within such a black box, a component-based development approach

is followed. According to this approach, we use multiple (simple) agents, each with

Chapter 8 Prototype implementation

144

a particular objective, rather than fewer (complex) agents which each has a long list

of tasks to accomplish. This implies that the complexity of creating and maintaining

tasks could be greatly reduced.

The prototype specifically targets the risk management function of the SPMSA

model, as was indicated earlier. The prototype is developed according to the basic

phases of agent development as indicated in Chapter 5 (Sections 5.2.1.1 and

5.2.1.2), namely the requirements analysis phase and the design phase.

8.2.1 Requirements analysis phase
The prototype is used as ‘proof of concept’, therefore only some functions will be

used to illustrate the concept of agent support. Implementing the full spectrum of

the SPMSA model falls outside the scope of this thesis. However, the prototype is

used as evidence that the SPMSA model can be implemented and can support and

enhance the SPM arena.

The aim of the agent framework in the prototype is to support the project manager

and team members in their tasks during software risk management. As mentioned

in Chapter 5, different approaches to design agent systems have emerged, but

there is currently not a single unified and accepted agent-orientated methodology

(Iglesias et al., 1998; Zambonelli et al., 2001). In this study, object-oriented

diagrams are adapted and used for the requirements analysis phase, with regard to

the following:

 The requirements description

 A model, i.e. use cases to describe external interaction with the system and

individual agent tasks

 A social agent model for global interaction.

8.2.1.1 The requirements description

The purpose of the requirements description is to provide the developer with a clear

detailed understanding of the requirements of the system (Whitten, Bentley and

Dittman, 2004). The prototype implements the two phases of risk assessment, i.e.

Chapter 8 Prototype implementation

145

risk identification and risk analysis and prioritisation. Additionally, the prototype also

implements the risk-monitoring phase of risk control. Although it was possible, the

risk management planning and risk resolution phases of risk control were not

implemented since the scope was considered too large for the purpose of this study.

Both phases would also require extensive participation from the project manager

concerning risk planning and resolution.

The purpose of each of the phases that are indeed implemented by the prototype

can be summarised as follows:

 During the risk identification phase potential threats, discrepancies and

overall inconsistencies concerning the project plan schedule, budget or time

frame are identified. Risk identification will be done by both the team leader

and team members.

 The purpose of the risk analysis and prioritisation phase is to assess the

likelihood of a particular risk occurring, as well as a prediction on its potential

impact in monetary value.

 Additionally, a list is produced of risk items ranked as top risks for this project.

 The risk-monitoring phase involves tracking the process of the project

towards resolving its risk items in order to enable the team or project

manager to take preventative measures or corrective action where

appropriate. For instance the prototype monitors the task status of each

team member.

8.2.1.2 The model

The purpose of the model is to indicate the interaction of external entities, such as

the project manager and individual team members with the agents. The model is

illustrated by means of a use-case diagram, in Figure 8.1 below.

Chapter 8 Prototype implementation

146

Figure 8.1 Use-case for the Jade Project Management Prototype System
(JPMPS)

8.2.1.3 A social agent model

The purpose of the social agent model is to indicate the interaction of agents with

the environment and with other agents. The conceptual view of the SPMSA model

presented in Chapter 6 (Figure 6.2) illustrates both the phases of software

development to be supported, and the software agent framework to support these

Initialise
project

Identify risks

Identify tasks,
documents

Project
Manager

Initialise project

Identify
teams

Team
member

Project
Manager
agent

Risk calculation process

Traverse
network

Feedback on
risk

Get risk input

Get task %
completion

Calculate risk
probability &

impact

Task
agent
Risk
agent

Personal
Assistant
agents

Calculate task
completion

Message:
Task %

completion

Interact

Initialise task,
input info

Task monitor process

Identify
documents

Chapter 8 Prototype implementation

147

phases. The bottom section of Figure 6.2 comprises an agent framework that

describes the different agents in the system, as well as their interaction with each

other and with the team. Figure 6.2 was adapted to create the social agent model

for the risk management function for this prototype (see Figure 8.2). This social

agent model contains a risk agent as an additional agent to be utilised for this

specific implementation, whereas the client agent and messaging agent are not

utilised.

Figure 8.2 Social agent model for the JPMPS

The different agents used in this framework are the agent management agent, the

directory facilitator, monitoring agent, personal assistant agents, the project

manager agent, task agent(s) and risk agent(s) – as depicted in Figure 8.2

The interaction of the agents with each other is summarised in Table 8.1.

Software Agent Framework to support the JPMPS

Team Member A

Team Member B

Team Member C

Project
manager

agent

Task agent

Monitoring
agent

Personal
assistant
agent A Personal

assistant
agent B

Personal
assistant
agent C

Agent
management

agent

Directory
facilitator

Risk agent

Chapter 8 Prototype implementation

148

Table 8.1 Agent interaction with other agents

 AM DF MA PA PMA TA RA

Agent management

agent (AM)

X

X

X

X

X

X

X

JADE

System Directory facilitator

(DF)

X X

X

X

X

X X

Monitoring agent (MA) X

X

X

X

X

X

Personal assistant

agent (PA)

X X

 X X

X

Project Manager

Agent (PMA)

X

X

X

X

X

X

X

Task agent (TA) X X X X X X X

Agents

Risk agent (RA) X X X X X X X

A description of the purpose of these agents are contained in Table 7.1 (Chapter 7).

8.2.2 Design Phase
The design should indicate the solution to the problem based on the outcome of the

requirements analysis phase. The main focus of this phase is on how to resolve the

problem. This is traditionally identified by an architectural design as well as a

detailed design. In this case the social agent model indicates the architectural

structure, as well as the relationship between agents to indicate inter-agent

dependencies. The prototype is implemented in JADE, and JADE has an inbuilt

mechanism for describing detailed agent interaction, thus this will be illustrated as

part of the implementation.

To facilitate the rapid development of an agent-based system, JADE contains a

number of predefined classes that can easily be extended for a specific application.

One such object class is that of the Agent class that is extended by all implemented

agents. Other useful classes include behaviour classes that allow the encapsulation

of agent actions. Various other classes and extensions exist that assist with

Chapter 8 Prototype implementation

149

debugging, communication, agent self-management, the development of graphical

user interfaces and web services, to name a few (Bellifemine, Caire, Poggi and

Rimassa, 2003; FIPA, 2003).

8.3 PROTOTYPE IMPLEMENTATION

8.3.1 The Technological Platform
As Java contains most of the required technologies to implement software and

mobile agents such as multithreading, remote method invocation, portable

architecture, security features, broadcast support and database connectivity, it is

viable to implement the risk management function area of the proposed model in

Java (Wooldridge, 2002).

JADE can be considered as agent middleware that implements an agent platform

and sustains a development framework. JADE facilitates mobile agent application

development, providing key features for distributed network programming. One

feature of the JADE framework is the ability to abstract away from the details of

agent communication. The JADE platform allows for easier communication by

adhering to the FIPA standard for Agent Communication called FIPA-ACL (FIPA,

2003). It supports debugging and deployment, the agent platform can be distributed

across machines, and the graphical user interface (GUI) can be controlled and

changed via a remote GUI. The goal is to simplify development while ensuring

compliance to standards through a comprehensive set of system services and

agents.

The efficiency of the JADE platform for agent development has been tested in a

scenario where the number of agents and messages are increased, to test the

efficiency of agent creation and scalability (Chmiel, et al., 2004b). These

researchers found that JADE is a very efficient environment limited only by the

limitations of the standard Java programming language. The environment does not

introduce substantial overhead, and JADE scales well when messages and agent

movement are substantially increased.

Chapter 8 Prototype implementation

150

The Jade agent platform used for this implementation provides a fully integrated

agent platform with an agent management system and a directory facilitator.

8.3.1.1 Agent Management System

The entire process of agent management (including agent mobility, suspension,

awaking, creation and destruction) is handled by the Agent Management System

(AMS) referred to in Jade as the remote agent management system, which is also a

FIPA recommendation. The JADE agents exist in agent containers provided by the

JADE agent platform, upon which the agents are given access to the functionality of

the Jade agent platform.

As shown in Figure 8.3, the JADE container provides a context for agent existence

and can be extended by other containers to form a distributed environment.

Figure 8.3 Agent management system

The agent management system – also referred to as agent management agent – is

responsible for managing the team of agents, ensuring coordination between the

Chapter 8 Prototype implementation

151

sub-tasks, communication between agents and the location distribution of agents.

The agent management system provides the unique agent identifiers used to

identify agents within the FIPA standard. In Figure 8.3 the Main-Container contains

agents RMA@TERLAP: 1099/JADE, ams@TERLAP: 1099/JADE and df@TERLAP:

1099/JADE, while containers 1, 2, 3 and 4 each contains one agent.

The agent management system also provides communication interfaces in which

agents can exist. Agents register with this agent management system and it

provides execution cycles and mobility for the agents. Upon registration each agent

receives a globally unique identifier. The agent management system provides a

white pages service, which provides a listing of available agents with each one’s

address. The agent management system is available to the system without

additional programming, as it is already a feature of the JADE platform.

8.3.1.2 Directory Facilitator

A second feature of agent interaction that is explicitly handled by the JADE

framework and that also adheres to the FIPA recommendations for an agent-based

platform, is that of the Directory Facilitator (DF). The DF acts as a yellow page

service to enable the discovery of agents and the relevant services provided by said

agents, as illustrated in Figure 8.4.

Chapter 8 Prototype implementation

152

Figure 8.4 Directory facilitator

The DF in Figure 8.4 has four agents registered. The first agent is identified by a

name – Terence@TERLAP:1099/JADE, and address – http://TERLAP:7778/acc.

The remaining agents are RAA@TERLAP:1099/JADE, Ralf@TERLAP:1099/JADE

and Kay@TERLAP:1099/JADE, each with its own address.

The directory facilitator is also available to the system without additional

programming, because it is a feature of the Jade agent platform.

8.3.2 Overview of the prototype
The prototype supports the software project manager in his/her task during the risk

identification, risk analysis and prioritisation phases, as well as during the risk-

monitoring phase. The agents collaborate in a distributed environment to achieve

the overall objective of software project management (Nienaber, Smith, Barnard and

Chapter 8 Prototype implementation

153

Van Zyl, 2008). Various roles are captured in reusable entities called “behaviours”,

which can be assigned to agents at design time.

The prototype entitled “The Jade Project Management Prototype System” (JPMPS)

was developed at the Meraka Institute (African Advanced Institute for Information

and Communication Technology). The researcher compiled the specifications for

the prototype, including the use-case diagram and the social agent model. The

coding for the prototype was done at Meraka. The researcher tested the prototype

and suggested changes and enhancements. Consequently the researcher compiled

Chapter 8, with input from the developer at Meraka, pertaining to the technological

platform (section 8.3.1) as well as the identification of the advantages of the

prototype after it was used for a true-life system (section 8.3.3).

The prototype was accordingly tested with the Corridor Sensor Web Application by

the team leader of the project. The Corridor Sensor Web Application (CSWA) is a

small in-house project that aims to deploy a test bet for Sensor Web type

applications. The project team consisted of three members. The screenshots that

follow all relate to the prototype implemented in the CSWA project environment.1

8.3.2.1 Risk Identification

The aim of the risk identification phase is to identify, through interaction with all

team members, specific risks that may pose a problem. Feedback concerning

identified risks will be shown to the project team on a continuous basis.

The application is activated by double clicking on the ProJectMan icon on the

desktop. This provides the project manager with an input screen to start the project,

as shown in Figure 8.5 – the initial screen will contain no data in the Project

Name, Tasks, Risks and Team Members edit boxes.

1Permission was obtained to publish the results of testing the prototype in the said project.

Chapter 8 Prototype implementation

154

Figure 8.5 Input screen for the CSWA project

The first step will be to initialise the specific project by entering an identifying project

name (in this case Corridor Sensor Web) and team members (i.e. Denise,

Wabo and Terence) into the Project Name and the Team Members edit boxes

respectively – see Figure 8.5. For each of these team members a personal
assistant agent is immediately activated by the system.

The second step will be to select the risks for this project. The project manager

selects the relevant risks from the list of risks displayed in the Risks list box by

clicking on the appropriate risk – see Figure 8.5.

The third step will be to identify the tasks for this project. The identified tasks will be

entered by the project manager by using the Add Task button on the input screen

displayed in Figure 8.5. The project may have several tasks, while each one will

have a timeframe (in days) for completion and possibly one or more preceding

tasks.

Chapter 8 Prototype implementation

155

When clicking the Add Task button in Figure 8.5, the screen depicted in Figure 8.6

will be displayed – the initial screen will contain no data in the Description,

Task Documents, Task Days, Preceding Tasks and Task Members edit

boxes.

Figure 8.6 Task: Deploy Sensor Web Application

An example of adding the information for one of the tasks, i.e. the Deploy Sensor

Web Application task, is displayed in Figure 8.6. The name of the task, namely

Deploy Sensor Web Application, is entered in the Description edit box.

The task documents, i.e. a list of specifications concerning the task, can be added

with the Add Document button, and will then appear in the Task Documents edit

box. This task currently has no task documents added. It has been allocated five

working days (indicated next to the Task Days edit box) to be completed. The

other tasks namely Develop Data Adaptor, Develop Sensor

Chapter 8 Prototype implementation

156

Observation Service and Develop Sensor Planning Service are

displayed in the Preceding Tasks list box. Finally, the list of team members

available for this project is displayed in the Task Members list box. Denise and

Wabo will be responsible for this specific task, as indicated by the shading in Figure

8.6. Information will be saved or cancelled by the Save and Cancel buttons

respectively at the bottom of this input screen. Information for the other tasks

related to the current project will be entered in a similar way. All tasks are keyed in

at the beginning of the project as shown in Figure 8.5.

Each member of the project team will be supported by a personal assistant agent,
which will reside on each team member’s computer desktop. Such an agent will

provide information concerning the task allocated to the team member. Figure 8.7

illustrates Wabo’s personal assistant agent, concerning task Develop

Sensor Planning Service, which is on schedule.

Figure 8.7 Personal Assistant Agent: Wabo

Such an agent screen will appear automatically on the desktop computer of each

team member.

The personal assistant agent of each team member will support him/her in daily

planning tasks such as setting up meetings, compiling and distributing an agenda,

attaching required documents and finalising the place and time. The personal

assistant agent will have information about tasks of the team members it is

associated with and will be able to support the team member by monitoring the time

set to complete the task. Documents will be appended and the user will be

Chapter 8 Prototype implementation

157

prompted when documents should be attached. The workflow is thus automated,

input for tasks is automated, the progress is monitored and relevant information is

sent to the monitoring agent. Change control will also be monitored and

addressed. The team may be geographically dispersed, but the heterogeneous

system will address the discrepancies in technology and area.

8.3.2.2 Risk Analysis and prioritisation

During the risk analysis and prioritization phase, the task agent will traverse the

network of team members, visiting each personal assistant agent of each team

member.

A risk input screen, similar to the screen depicted in Figure 8.8, will automatically

pop up on the desktop computer of each team member for each task related to the

specific team member, at regular intervals, i.e. the information depicted on this

screen will continuously be updated.

Figure 8.8 Risk probability and monetary value input: example 1

Chapter 8 Prototype implementation

158

The screen depicted in Figure 8.8 displays all the risks identified for the specific task

at hand. Each team member responsible for this task will receive such a screen –

with no data initially. The team member will allocate a percentage value to indicate

the probability of a specific risk occurring. In addition, the monetary value of the risk

– if it were to occur – should also be entered if possible. For example, in Figure 8.8

the probability of Personnel Shortfalls to occur is 10%, and if this risk occurs,

it will result in a cost of R16 000. Figure 8.9 illustrates another example of a team

member’s input.

Figure 8.9 Risk probability and monetary value input: example 2

The task agent then continuously calculates and presents the average percentage

of a specific risk occurring, given the input values of all team members. The risk

probability is calculated as the (probability of occurrence i.e. risk probability

percentage) x (potential damage i.e. potential damage in monetary value) (Hughes

and Cotterell, 2006).

Chapter 8 Prototype implementation

159

Furthermore, each team member is prompted automatically on a daily or regular

basis (decided by the designers of the system) for input on the percentage of task

completion (for their specific task in hand) at that time. The system compares this to

the set date for completion. Consider for example the screen depicted in Figure 8.10

below.

Figure 8.10 Task completion input screen

Each team member should key in the percentage of the task that is completed in the

Task % Complete window, as indicated in Figure 8.10. For example, the

Develop Sensor Planning Service task is 50% complete. Note that the risk

probability values at this stage reflect the average values (based on the input

of all team members) and are displayed on this screen, and cannot be changed by

the team member here. These values can only be changed on the risk probability

and monetary value input screen (depicted in Figures 8.8 and 8.9) as discussed

earlier.

Chapter 8 Prototype implementation

160

The risk agent will continuously monitor the status of all tasks, and this will keep the

team members conscious of the time aspect. The risk agent thus traverses the

project environment, as shown in Figures 8.11 and 8.12.

Figure 8.11 Risk agent in Container-1

Figure 8.12 Risk agent in Container-2

Chapter 8 Prototype implementation

161

Figure 8.11 shows the risk agent in Container-1, getting input from Denise (see

arrow) regarding percentage task completion, whereas Figure 8.12 illustrates that

the risk agent has moved to Container-2, where it is getting input from Wabo (see

arrow) regarding the percentage of completion of his task. Thus, the risk agent
moves from team member to team member at set time intervals to get information

about, firstly, the risks this specific team member considers possible of occurring,

and, secondly, the percentage of the task allocated to this team member that has

been completed.

A team member might login at a remote site or at another laptop, but the agent

system will locate the team member. The personal assistant agent of each team

member will continue to support the specific team member, regardless of the

location of the specific computer, and it will continuously monitor the task

completion. For example, Figure 8.13 indicates that the Current Task Status

of the Test Sensor Web Application task that Terence’s personal

assistant agent is responsible for, is Overdue.

Figure 8.13 Personal Assistant Agent: Terence

Furthermore, the task agent will traverse the network and perform tasks needed,

such as continuously getting input concerning risks identified from each team

member, calculating the risk probability and distributing documents. Calculations on

risk are automated by the task agent and any changes, such as one task taking

longer than planned, will automatically be incorporated in the planning.

The agent management agent will continuously monitor all agent locations.

Collaboration is thus attained through an agent-supported framework, the progress

Chapter 8 Prototype implementation

162

being automatically monitored by the monitoring agent, and change control being

executed when necessary. The directory facilitator will sustain a library for

services for the agents to access if necessary.

During risk prioritisation the task agent will monitor the risks, and while traversing

the environment, it will show the risks as prioritised to the team members. In other

words, the team will continuously be provided with information on risk prioritisation.

Figure 8.14 illustrates an example of risk prioritisation.

Figure 8.14 Risk prioritisation report screen

In Figure 8.14 the probability of Personnel Shortfalls occurring is the highest,

i.e. 60% and therefore this risk is displayed at the top of the screen.

The risk screen will appear on each team member’s desktop at regular intervals. At

the same time the personal assistant agent of each team member will

continuously display the task status on the screen, together with relevant messages

Chapter 8 Prototype implementation

163

(as shown in Figures 8.7 and 8.13) to enable the team member to take action when

necessary. Thus, interaction is forced and continuously sustained.

8.3.2.3 Risk monitoring

During the risk-monitoring phase the system will provide information on the status

of all the team members’ tasks, which will be shown on each member’s desktop by

his/her personal assistant agent. The monitoring agent will monitor tasks and

report back to the personal assistant agents, where rescheduling of tasks as well

as the notification of stakeholders can take place.

Figure 8.15 Team Leader Report

Tasks are monitored and an output screen (see Figure 8.15) will be shown, which

illustrates the Team Leaders’ screen, reporting that two tasks, Sensor

Observation Service and Sensor Planning Service are on Schedule.

Chapter 8 Prototype implementation

164

The risk probability and money value are shown and cannot be edited at

this stage.

Thus, the team leader will be supported by receiving information on a daily basis on

risks prioritised, as well as a report on the percentage of each task that has been

completed for all team members. Relevant messages as well as warnings will be

given to attend to the problem. Tasks running late can be addressed, especially if

the problem concerns a preceding task to another task. The necessary steps may

then be taken. Action can also be taken to address the problem before the delay

gets out of hand. Workflow is automated, documents are stored and updated

automatically, task progress is monitored and change control is automated. The

reporting facility can be extended to include PERT estimations and to calculate Z

value and other project management calculations (Müller et al., 2004).

8.3.3 Outcome of using JPMPS
The Jade Project Management Prototype System (JPMPS) was used to manage the

Corridor Sensor Web Application (CSWA) at the Meraka Institute. Having used the

prototype, the team leader reported substantial benefits of using the prototype for

the CSWA project. The JPMPS prototype supported and enhanced SPM

processes, as opposed to other traditional SPM systems. Its benefits as

experienced by the project leader are summarised below:

 All tasks have been successfully orchestrated, in other words the agent team

successfully traversed the team environment, prompting each team member

for input on task completion, as well as for documentation to accompany

tasks. Thus, the cooperation of tasks between members was attained. Task

members were relieved of the task to remember to send relevant deliverables

or documents to other members. Agent teams automatically prompted team

members to remind them of completion dates of tasks and deliverables, i.e.

documents. Task completion of the entire project was monitored and

reported on, thus supporting the project manager or team leader. This

Chapter 8 Prototype implementation

165

enabled him/her to take corrective action before a task got out of hand or to

spend more time on other functions.

 The whole team was alerted to the risks by means of the agent system

continuously traversing the network and monitoring risks. Each team

member, as well as the project manager, was kept up to date with the

probability of risks occurring. In traditional applications risks can be analysed

and visualised, but this has to be executed additionally by a team member.

In this application the agent system autonomously executes this action and

reports to the team.

 The team leader was able to keep track of any outstanding tasks, through the

continuous feedback received from the agent system. Personal assistant

agents provided feedback to team members with regard to task completion.

Traditional applications will not provide this information on its own, without

the team contacting or emailing each other.

 Overall, the use of an agent-based system with mobile agents added value to

the project as no central server was required and the system was robust

enough to cope with team members’ working on different PCs and other

network and infrastructure failure. The use of the agent system improves the

adaptability of the project to changes in the environment.

 Team members were also not confined to a single working area or PC, but

could log in at any other computer (at another site) and connect to the

Internet, and the software agents would be able to track users to their new

workstations.

8.4 CONCLUSION
In this chapter, the JPMPS prototype was discussed.

The prototype was tested in a real-life project i.e. the Corridor Sensor Web

Application (CSWA), at the Meraka Institute. The project is of a very technical

nature and relies on third party components regarding both hardware and software

that had already been developed.

Chapter 8 Prototype implementation

166

Using the prototype enabled the project leader to monitor risk probability and

consequence, as well as the status of tasks and deliverables of the project. The

SPM risk-monitoring processes were supported and enhanced by the team of

agents that prompted team members for input on the status of tasks and

deliverable. In this way the coordination and cooperation of tasks between members

was attained. The autonomous functioning of the agent team also supported the

team by provided feedback on each team members’ task status and risk

probabilities. It can therefore be concluded that the JPMPS succeeded in

supporting and enhancing the SPM processes during risk management.

The JPMPS prototype currently implements only part of the risk management

function as it is implemented as ‘proof of concept’, but it can be expanded to include

all phases of risk management, as well as the entire SPMSA model, covering all

areas of SPM.

In the next chapter, the SPMSA model will be substantiated by comparing the SPM

phases of the model to the Plan-Do-Check-Act (PDCA) cycle, as well as to the ISO

10006:2003 standard.

Chapter 9 Model verification

167

CHAPTER 9

9 MODEL VERIFICATION

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II

Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 9 Model verification

168

9.1 INTRODUCTION
The previous chapter was devoted to a discussion of the prototype that was

implemented as ‘proof of concept’ to illustrate the possibility of using software agent

technology to support SPM processes. The prototype supports the phases of risk

assessment, namely risk identification and risk analysis and prioritisation, as well as

risk monitoring, which is part of risk control. As stated before, the prototype can be

expanded to include the entire risk management function and the entire SPMSA

model, thus covering all areas of SPM. It is clear from previous chapters that agent

technology will hold specific advantages for the SPM environment. This chapter is

devoted to a discussion of the verification of the SPMSA model.

Table 3.2 (Chapter 3) contains the correlating phases of the core and facilitating

functions of SPM, as compiled by the researcher. These phases, which form the

basis of the SPMSA model, were compiled into a graphical representation in Figure

6.2 (Chapter 6) that depicts the generic phases of software development for each

SPM key function.

The aim of this chapter is to evaluate and substantiate the SPMSA model. The

SPM phases of the SPMSA model are therefore compared to the Plan-Do-Check-

Act (PDCA) cycle. In addition, these phases are compared to the basic phases of

software development as prescribed by the ISO 10006:2003 standard for projects.

9.2 ISO STANDARDS
Standards enable the adoption of standard project management practices, and can

be defined as something established by authority, custom or general consent as a

model or example (Garcia, 2005). The International Organization for

Standardization (ISO) was formed in 1947 “to facilitate the international coordination

and unification of industrial standards” (Garcia, 2005). In the 1990s, organisations

responded to a fairly large number of industry standards (Schwalbe,2006). Project

management standards, however, were contained as part of various standards, not

all reflecting purely on software project management processes, but containing SPM

Chapter 9 Model verification

169

as part of a larger standard that deals with an engineering or information technology

domain (Garcia, 2005).

Thus, over time several products appeared in an effort to contribute towards the

adoption of standard project management practices, for example the Capability

Maturity Model, Guide to Project Management Body of Knowledge (PMBOK), and

the various ISO and ISO/IEC standards (Garcia, 2005). The reader is referred to

www.pmi.org for more information regarding the work in progress by the PMI

(PMBOK, 2004). Each of the standards focuses on a specific process. The ISO

9000 is a quality system standard developed by ISO, and comprises a continuous

cycle of planning, controlling and documenting quality in an organisation

(Marchewka, 2003; Schwalbe, 2006). The ISO 9000:2000 standard was revised in

2000 and consequently ISO 9001:2000 and ISO 9001:2004 appeared. ISO

9000:2000 describes the fundamental features for a quality management system

(QMS), while ISO 9001:2000 illustrates how a QMS can be applied to the creation of

products and service provision, and ISO 9001:2004 applies to process management

(Hughes and Cotterell, 2006). Another standard that specifically targets software

development and contains guidelines for the application of ISO 9001:2000 to

computer software is ISO/IEC 90003:2004, entitled “Software Engineering ”.

In 2006 ISO’s portfolio comprised more than 15 900 standards in an effort to provide

practical solutions and achieve benefits for almost every sector of economic activity

and technology (Nielsen, 2006). According to the Nielsen market research report

(2005) 700 000 ISO 9001:2000 certificates were issued worldwide between 2001

and 2005. In South Africa 5 963 certificates were issued to South African

organisations between 2001 and 2005. The ISO 9001:2000 standard will be

replaced in Autumn 2008. The ISO standards organisation is thus widely known

and accepted as a market standard.

Standards for software project management are currently being set. In 2003 a

standard was created to target quality management for projects specifically, namely

the ISO 10006:2003, which is based on the ISO 9000 and aims to align ISO

Chapter 9 Model verification

170

10006:2003 with the ISO 9000 family of international standards. The ISO

10006:2003 standard is selected as verification tool. It is based on the well-known

ISO 9001:2000 standard. However, ISO 10006:2003 represents a newer standard

that targets quality management in projects specifically and does not apply to all

industrial areas of development, as did ISO 9001:2000. This standard (ISO

10006:2003) concerns the practices required to implement a quality management

system in projects specifically, whereas the ISO 9001:2000 targets all areas and not

software projects development specifically. A work group is currently working

towards a South African standard, which is not available yet. As the ISO 9001:2000

is based on the PDCA cycle (ISO 9001:2000; 2000), both the PDCA cycle and ISO

10006:2003 standard are used as verification tools.

9.3 SPMSA MODEL VERIFICATION

9.3.1 PDCA cycle
A specific process, namely the PDCA (Plan-Do-Check-Act) cycle, is known as the

operating principle of ISO’s management system standards (ISO 9001:2000; 2000).

The PDCA cycle was used as the basic approach for developing and improving a

certain organisation’s management system. This cycle was originally designed by

Walther Shewart, but was later revised by the Quality Management authority W.

Edwards Deming. It is currently known as the Plan-Do-Check-Act standard,

although it has also been referred to as the Shewart cycle and the Deming cycle

(Tague, 2004; American Society for Quality, 2005). The cycle is used to coordinate

continuous improvement efforts, and it supports daily routine management as well

as general problem-solving processes. It furthermore supports SPM, vendor

management, human resource management and product development. The PDCA

cycle is consequently regarded as suitable for managing the development of

software projects.

The basic phases of the PDCA cycle are illustrated in Figure 9.1.

Chapter 9 Model verification

171

Figure 9.1 The PDCA cycle

The specific phases of this cycle are plan, do, check and act. The plan phase

comprises identifying and establishing objectives and processes necessary to

deliver results. This includes analysing the organisation’s situation, establishing

overall objectives, setting interim targets and developing plans to achieve them.

Olson (2002) describes it as adhering to the company mission and vision, and basic

management objectives based on information gathered through the quality system.

The do phase entails implementing these plans and processes in order to produce

the product or deliver the service in accordance with the customer’s requirements

(Olson, 2004). The goals and set objectives are thus implemented and produced by

operating the project-specific products and/or services. The system will thus

operate and execute in this phase.

The check phase implies the measurement and monitoring of this system, which

takes place according to information obtained from the customer and the

organisation. Actions, documents, deliverables and objectives are reviewed in order

to improve the system and provide customer satisfaction.

Do

Check Act

Plan

Implement,

operate

Monitor,

review Maintain,

improve

Identify,

establish

Chapter 9 Model verification

172

The act phase suggests the actions to continually improve the plans and processes

for implementing the system. Successful activities are maintained and less

successful ones are improved. This is regarded the key to continual improvement.

As international state of the art, the PDCA cycle is used as the basis for several ISO

management system standards, for instance the ISO 9001:2000 standard. For

further information concerning the correlation between ISO 9001:2000 and the

PDCA cycle, the reader is referred to Brewer and Nash (2005). In Table 9.1. the

SPMSA model is firstly verified by drawing a comparison between the SPM phases

that form the basis of the model (as depicted in Table 3.2, Chapter 3) and the PDCA

cycle.

Table 9.1 PDCA cycle vs SPMSA model

Key function areas of SPM

PDCA
Cycle Scope

Manage-
ment

Time
Manage-
ment

Cost
Manage-
ment

Quality
Manage-
ment

HR
Manage-
ment

Communi-
cation
Manage-
ment

Risk
Manage-
ment

Procure-
ment
Manage-
ment

 Initiation Activity

definition

 Identification

and
planning

Risk

identification

Procure-
ment
planning

Plan:

Identify

Establish

Planning Activity
sequencing

Duration

estimation

Resource
planning

Planning Organisa-
tional
planning

Team

support

Risk

analysis and

prioritisation

Solicitation
planning

Do:
Imple-

ment

Operate

Definition Time

schedule

development

Cost

estimation

Assurance Team

development

staff

acquisition

Information

Distribution

Risk
Manage-
ment
Planning

Solicitation

and source

selection

Check:

Monitor

Review

Verifica-
tion

Time
schedule
control

Cost
budgeting

Control Manage-

ment:

Monitor and
control

Performance

Reporting

Monitor

Contract

administra-

tion

Act:

Maintain,

improve

Change
control

 Monitor,
control

 Admin

closure

Resolution Contract

closure

In the above table, the correlating SPM phases of the SPMSA model are placed

alternatively in red (if they correlate with the plan phase of the PDCA cycle), green if

Chapter 9 Model verification

173

they correlate with the do phase of the PDCA cycle), blue (if they correlate with the

check phase of the PDCA cycle) and turquoise (if they correlate with the act phase

of the PDCA cycle). From Table 9.1 it is clear that the basic phases of the PDCA

cycle are clearly represented in the SPMSA model.

Table 9.1 can be generalised by comparing the PDCA cycle to the generic phases

of software development as reflected in the SPMSA model (compare with Figure

6.2, Chapter 6). This comparison is illustrated in Table 9.2 below. The colour

coding is similar to the colour coding of Table 9.1.

Table 9.2 PDCA cycle vs generic phases of the SPMSA model

PDCA cycle Generic phases of software development

- Identification / initiation, definition of key functions

Plan Planning for concepts

Do Analysis, assessment and evaluation of key concepts

Check Monitoring, control and management

Act -

The generic phases of software development as reflected in the SPMSA model also

correlate well with the PDCA cycle. The first three phases of the PDCA cycle are

similar to the last three phases of the SPMSA model.

9.3.2 ISO 10006:2003
To verify the SPMSA model further, the SPM phases of the SPMSA model (as

graphically illustrated in Table 3.2) are compared to the processes in the ISO

10006:2003 standard in Table 9.3. This comparison is made to determine the

relevance of the SPMSA model with regard to software project management

processes. Thus the SPMSA model is verified against the ISO 10006:2003

standard, which targets projects specifically – see Table 9.3.

Chapter 9 Model verification

174

Table 9.3 SPMSA model vs ISO 10006:2003

Colour coding: all processes on:
Quality management: red Scope management : turquoise Communication management grey
Review evaluations: green Time management: light blue Risk management: olive green
Resource management : blue Cost management: orange Purchasing management: pink
ISO 1006:2003 Processes

SPMSA Model

Non-process clause

4 Quality
management
systems

4.1 Project
characteristics

4.1.2
4.1.3
4.1.4

Organisations
Processes in projects
Project management processes

Quality
management

None
None
None

 4.2 Quality management
systems

4.2.1
4.2.2
4.2.3

Quality management principles
Project quality management
Quality plan for project

None
None

Quality assurance
Quality control
Quality planning

Processes
5.Management
responsibility

5.2 Strategic process
5.3 Reviews and progress
evaluations

 None
Performance reporting (communication
mngment)

6. Resource
management

6.1
Resource-related
processes

6.1.2

6.1.3

Resource planning

Resource control

Human
resource
management

Resource planning (cost management)
Management: monitor and control

 6.2
Personnel-related
processes

6.2.2

6.2.3
6.2.4

Establish project organisational
structure
Allocation of personnel
Team development

 Organisational planning

Staff acquisition
Team development

7.Product
realisation

7.2
Interdependency-related
processes

7.2.2

7.2.3
7.2.4
7.2.5

Project initiation and management plan
development
Interaction management
Change management
Process and project closure

 None

 None
Change control (scope)
Admin closure (communication)

Chapter 9 Model verification

175

 7.3
Scope-related processes

7.3.2
7.3.3
7.3.4

7.3.5

Concept development
Scope development and control
Definition of activities
None
Control of activities

Scope
Management

Initiation
Planning
Definition
Verification
Change control

 7.4
Time-related processes

7.4.2

7.4.3
7.4.4
7.4.5

Planning of activity dependencies
Estimation of duration
Schedule development
Schedule control

Time
Management

Activity definition and sequencing
Duration estimation
Time schedule development
Time schedule control
None

 7.5
Cost-related processes

7.5.2
7.5.3
7.5.4

Cost estimation
Budgeting
Cost control

Cost
Management

Cost estimation
Cost budgeting
Monitor and control

 7.6
Communication-related
processes

7.6.2

7.6.3
7.6.4

Communication planning
None
Information management
Communication control
None
None

Communication
Management

Identification and planning
Team support
Information distribution
None
Performance reporting (5)
Admin closure (7.2.5)

 7.7 Risk-related
processes

7.7.2
7.7.3
7.7.4
7.7.5

Risk identification
Risk assessment
Risk treatment
Risk control
None

Risk
Management

Risk identification
Risk analysis and prioritisation
Risk planning
Monitor
Resolution

 7.8
Purchasing-related
processes

7.8.2
7.8.3

7.8.4
7.8.5
7.8.6

Purchasing planning and control
Documentation of purchasing
requirements
Supplier evaluation
Contracting
Contract control

Procurement
Management

Procurement planning
Solicitation planning
Solicitation and
Source selection
Contract administration
Contract closure

8 Measurement
analysis

8.1
Improvement processes

8.1

Improvement

None

 8.2 Measurement and
analysis

8.2 Measurement and analysis None

Chapter 9 Model verification

176

The ISO 10006:2003 standard consists of a full and extensive list of clauses.

Similar to ISO 9001:2000, the ISO 10006:2003 standard consists of eight main

clauses, 27 sub-clauses and 61 sub-sub clauses. Main clauses one to three

concern only descriptive background, such as the scope of the document,

normative references (which state its correlation with ISO 9001:2000), as well

as terms and definitions. These clauses are omitted from Table 9.3, as they

contain information and not processes to implement. In the standard, each first

sub-clause, i.e. 1.1.1, 1.2.1 and 1.3.1 is a general clause, which is also omitted.

In Table 9.3, the correlating phases are placed in a specific similar colour code,

e.g. if the SPMSA model’s phase correlates with clause 4: Quality management

of ISO 10006:2003, both the SPMSA model’s phase and the ISO clause are

placed in red. Each similar set of processes is colour coded. The colour code

appears at the top of Table 9.3.

All the key areas in the SPMSA model, namely scope management, time

management, cost management, quality management, human resource

management, communication management, risk management and

procurement management are reflected in the standard.

Table 9.4 lists the clauses in ISO 10006:2003 that are not reflected in the

SPMSA model.

Table 9.4 ISO 10006:2003 clauses not reflected in the SPMSA model

 ISO 10006:2003 clauses with no equivalent in SPMSA model
4 Quality

management

4.1 Project

characteristics

4.2.1 Principles

5 Management

responsibility

5.2 Strategic process

7 Project 7.2 Interdependency- 7.2.2 Project initiation, management

Chapter 9 Model verification

177

 ISO 10006:2003 clauses with no equivalent in SPMSA model
realisation related processes plan

7.2.3 Interaction management

 7.3.3 Scope development and control

 7.6.4 Communication control

 7.7.4 Risk treatment

 7.8.3 Documentation of purchasing

requirements

7.8.6 Contract control

 8.1 Improvement

processes

8.2 Measurement

analysis

8.3 Continual

improvement

8.3.1 Continual improvement

From Table 9.4 it is clear that ISO 10006:2003 additionally lists Quality

Management (clause 4), Management responsibility (clause 5), Product

realisation (clause 7) and Measurement analysis and improvement (clause 8)

as separate clauses.

Table 9.5 lists the processes in SPMSA that are not reflected in ISO

10006:2003.

Table 9.5 SPMSA processes not reflected in ISO 10006:2003

SPMSA processes not reflected in ISO 10006:2003
Quality management Quality assurance

Quality control

Scope management Scope planning

Scope verification

Communication management Communication identification

Team support

Chapter 9 Model verification

178

SPMSA processes not reflected in ISO 10006:2003
Risk management Risk planning

Risk resolution

Procurement management Solicitation planning

Contract closure

Table 9.5 illustrates that the SPMSA model contains ten processes that are not

reflected in the ISO model. As shown in Table 9.3, the majority of processes in

the SPMSA model correlate with processes in ISO 10006:2003. Furthermore,

the eight core and facilitating functions of the SPMSA model are reflected in the

ISO 10006:2003 standard.

The above comparisons clearly indicate that the phases of the SPMSA model

conform to the ISO 10006:2003 standard. The SPMSA model is therefore

substantiated as conforming to a recognised ISO standard and as such can be

justified to be applied to the software project management area. The SPMSA

model addresses the shortcomings in current SPM applications and the

underlying technology, namely agent technology, will support the unique nature

and changing environment of SPM.

9.4 CONCLUSION
Chapter 9 concludes Part III of this thesis. Part III was devoted to compiling the

SPMSA model. As ‘proof of concept’, a prototype based on a section of the

model was designed and implemented. Thereafter the model was verified

against the PDCA cycle, as well as against the ISO 10006:2003 standard.

Since the PDCA cycle is regarded as the basis of ISO 9000:2001, the SPMSA

model was compared to the PDCA cycle with good results. Furthermore, the

SPMSA model was compared to the processes prescribed in the ISO

10006:2003 standard, with excellent results. It can consequently be concluded

that the SPMSA model complies with industry standards and can be adopted –

with minor changes – in the SPM area.

179

PART IV

CONCLUSION

180

CHAPTER 10

10 CONCLUSION

CHAPTER 1 Introduction

CHAPTER 3 Software
Project Management (SPM)

CHAPTER 4 Software
Agent Computing

CHAPTER 7 The SPMSA Model

CHAPTER 9 Model Verification

CHAPTER 5 Software Agents in SPM

CHAPTER 2 Research Methodology

CHAPTER 10 Conclusion

Part 1

Introduction

Part II
Theoretical Background

Part III

The SPMSA
Model

Part IV

Conclusion

CHAPTER 6 Model – Scope and Concept

CHAPTER 8 Prototype Implementation

Chapter 10 Conclusion

181

10.1 INTRODUCTION
The aim of this concluding chapter is to reflect on the objectives of the present study

and to determine the extent to which these objectives have been met. The research

questions will therefore be re-examined to ascertain whether they have indeed been

answered. Finally, areas of further research will be identified.

10.2 RESEARCH OVERVIEW
This research study explored the processes and procedures associated with

software project management (SPM) and the ensuing thesis is aimed at making a

contribution to enhancing SPM. Problems and challenges in this area were

identified and a solution was sought by exploring software agent technology as a

new paradigm for supporting SPM processes. An SPM model was accordingly

compiled, which enhances SPM processes by incorporating a software agent

technology framework to address the shortcomings in this area.

Although the research in hand is aimed at software practitioners and software

developers, it will also be beneficial to researchers working in the field of SPM. The

development of software projects that support crucial business activities may serve

to attain a competitive advantage for an organisation. The quality of the software

development process determines the success or failure of many business solutions.

Thus, the quality of the software development process, as well as improvements in

the development of project management software can result in a significant

improvement in software quality (Schwalbe, 2006).

As indicated above, the main issues to be addressed in this study (as reflected in

Chapter 1) will be re-examined to determine the extent to which they have been

resolved.

Chapter 10 Conclusion

182

10.2.1 Do standard SPM practices take into account the
unique nature and changing environment of
software projects (SP)?

In the same way that business organisations have grown and evolved over time,

computer technology has evolved – yet far more radically. Hence, the science of

software project management has had to change and adapt. The discipline of

software project management has grown, and together with it, standards,

methodologies, best practices and bodies of knowledge. Despite this, software

project failures are still common. The increased level of interconnectivity,

distribution and processing obviously creates vast challenges in the SPM arena.

The wide range of application areas of software projects and various technologies

contributes to the challenges and problems of managing these systems. The area

of SPM has changed due to several factors, such as globalisation, advances in

computing technology, outsourcing and virtual distributed teamwork. It is clear from

many failed or non-satisfactory projects that standard SPM practices fail to support

the changes.

Standard SPM practices also fail to address the diverse, unique and changing

nature of SPM. Characteristics that are unique to software projects are their

invisibility, complexity, conformity and flexibility. These aspects contribute to the

difficulty in clearly pinpointing a software project as an exact task with a specific

beginning, an end and deliverables.

The dynamically changing environment of SPM further adds to the complexity of

these systems, resulting in higher levels of interconnectivity, higher levels of sharing

data and knowledge, task tracking and monitoring. These issues should be

optimally supported by SPM processes so as to enable project managers to

concentrate on crucial issues and strive for lower failure and higher success rates in

software projects.

Chapter 10 Conclusion

183

Development methods should thus take full cognisance of this unique nature and

changing environment of SPM. It can be concluded that traditional SPM methods

do not address the added complexities found in an ever-evolving distributed

environment.

10.2.2 How can SPM processes be supported and
enhanced in a distributed environment?

The processes and functions in the SPM environment were explored and discussed

to delineate various SPM processes and functions. The aim was to get a clear

picture of the entire SPM process in an effort to determine the aspects that cause

project failure. In order to determine how SPM processes can be enhanced and

supported, these processes and functions must be clearly understood.

A paradigm is needed that will support the unique nature and dynamic changing

environment of the SPM arena. For this reason software agent computing was

investigated. Software agents are adaptive, flexible, pro-active, reactive, and have a

collaborative, social nature. Furthermore, software agent technology can address

developments such as changing environments, e-business and Internet

applications, varying team structures, and open and dynamic environments

consisting of heterogeneous components that must interact and span organisational

boundaries. These aspects, for instance dynamic, open and distributed

environments, are typical features of the software project management arena.

Agent behaviour can furthermore be used to support individual team members in

numerous tasks, such as coordination and cooperation with team members,

document retrieval and distribution, workflow monitoring and control, scheduling and

organising meetings, reminders for tasks and overdue dates or deliverables.

It can be concluded that software agent technology is suitable for addressing the

various unique features of SPM. Software agent technology provides a suitable

framework for supporting and enhancing SPM processes in a complex distributed

environment. Flexible management in an ever-changing organisational structure

Chapter 10 Conclusion

184

such as dealt with in SPM is suitably addressed by the computational mechanism of

agent systems.

10.2.3 Has software agent technology been applied to the
SPM environment?

Agent technology has been applied to various development areas, such as network

and system management, decision and logic support, interest matching, data

collection in distributed and heterogeneous environments, searching and filtering,

negotiating, and monitoring. Although agent technology has indeed been applied to

the SPM environment, it has not been applied to the whole spectrum, i.e. to all core

and facilitating functions of SPM. Agents in SPM applications are typically

constrained to one or two of the core and facilitating functions, such as planning,

scheduling, human resource management or communication. This is an unfortunate

limitation of current software agent applications. Supporting and enhancing the

whole spectrum of SPM processes by software agents could provide software

project managers with significant advantages over contemporary methods. For

example, the coordination and cooperation of teams that integrate the whole

spectrum of functionality of a distributed project will be supported and enhanced by

the agent features highlighted in this thesis.

10.2.4 How can software agent technology be
incorporated and utilised by SPM to enhance the
entire SPM environment?

It has been established that agent technology is suitable to supporting SPM. The

key areas of SPM were explored and the phases adapted to compile a

comprehensive model of SPM functionality to be supported by software agent

technology. The model, entitled the SPMSA (Software Project Management

supported by Software Agents) model was developed, and it enhances and supports

all core and facilitating functions of SPM through utilising an agent framework. The

SPMSA model consequently addresses the entire spectrum of software project

management. It is unique as it supports each key function of SPM with a team of

Chapter 10 Conclusion

185

software agents. This model is thus specifically tailored to provide support for the

constantly changing environment and the unique features of SPM.

A prototype (JPMPS) of a section of the SPMSA model was implemented as ‘proof

of concept’ and was tested in a true-life project. The SPMSA model was

furthermore verified against the PDCA cycle, as well as against the ISO 10006:2003

standard to substantiate its relevance. These comparisons reflected favourably on

the SPMSA model, and it was concluded that the SPMSA model would be suitable

to support and enhance the entire SPM environment.

10.3 CONTRIBUTION OF SPMSA MODEL
The SPMSA model was compiled to enhance standard SPM practices and address

challenges encountered due to the unique and changing environment of SPM.

Software project management is characterised by invisibility, complexity, conformity

and flexibility. The SPMSA model is specifically tailored to address each of these

unique features through the agent framework. As is evident from work presented in

this thesis, agent technology is extremely suitable to handle complex and

dynamically changing environments. Furthermore, it limits the impact of the

invisibility of projects through agent support. In other words, by continuous

prompting for task status to identify risks, it supports the management of tasks as a

whole. Additionally, agents will provide continuous support to address the

distributed SPM environment by executing asynchronously and autonomously, thus

lessening network load and communication overhead. The software agent

environment will support dynamic changing and relocation of team members, as

found in a distributed project.

A software agent framework will improve automated control and support human

interaction by automating workflow management and process coordination. Team

interaction will be supported by agents that interact towards a similar goal,

supporting coordination and collaboration.

Chapter 10 Conclusion

186

Furthermore, agents will excellently address and manage complex tasks through the

automation of calculations, dynamic reporting, and the continuous monitoring of

maintenance, progress status, as well as risks. Agents can also provide intelligent

support for software projects (e.g. acting as bidding and negotiating agents) and

through dynamic resource allocation. Individual team members can also be

supported by a personal assistant agent for each team member.

Finally, the SPMSA model supports and enhances the entire environment of the

SPM arena. Each key feature of SPM is supported by a team of software agents.

10.4 FUTURE RESEARCH
It has to be conceded that there are limitations and challenges to the model,

technology and the prototype. Limitations that were identified can however be

explored and will open up new areas for further research. The following limitations

and areas of further research exist:

The possibilities of the model’s interaction with current project management

application packages have not been explored in this study. Further research could

test the model to tried and tested SPM applications.

The knowledge areas of SPM as depicted in Table 3.2 have been compiled by the

researcher. There are a few minor differences between this representation and that

of PMBOK (2004). The project management integration function may be regarded

as separate function as prescribed by PMBOK (2004). Additionally administrative

closure could be included in the integration management function. Table 3.2 and

Table 9.1 may be expanded to include this function to be supported by an agent

framework. This may be addressed in further research.

The current research does not entail a study on the most effective use of agent

technology. The agent design will determine the efficiency and effectiveness of the

system. Too large an amount of code or functionality within one agent might reflect

Chapter 10 Conclusion

187

negatively on the system. Thus, another area for future research will be to

implement more functions and test the trade-off between thin agents with less

functionality or larger agents with more functionality.

Agent analysis and design methodologies are being developed but are still without a

set standard for development methods and techniques. No standard method is

available for the analysis and design of agent systems. This could lead to

interesting further research. AML (extension of UML) has been developed and

could be tested for diagramming efficiency. Standards are limited and uniform

development methods scarce.

The prototype in this research study implements only a section of one of the SPM

processes. The SPMSA model covers the entire SPM spectrum. Thus, as further

research, the prototype could be expanded to implement the entire SPMSA model.

The prototype furthermore implements the section of the SPMSA model in one

agent platform, namely JADE based on JAVA. This could also be implemented in

other environments, such as C# or agent platforms to test effectiveness, robustness

and scalability. Researchers are currently involved in exploring various trade-offs of

agent design.

188

11 REFERENCES
ADDISON, T. and VALLABH, S. 2002. Controlling Software Project Risks. In:

Proceedings of SAICSIT, South African Institute for Computer Science and
Information Technology. Johannesburg. 128-140.

ALTMANN, J., GRUBER, F., KLUG, L., STOCKNER, W and WEIPPL, E. 2000.
Using mobile agents in the real world: A survey and evaluation of agent
platforms. Software Competence Centre Hagenberg. URL:
www.iwiswn.usv.ro/representations/mobile_agents_GP.pdf. Accessed
12/05/2005.

AMERICAN SOCIETY FOR QUALITY. 2005. Project Planning and Implementing
Tools. ASQ. URL: www.asq.org. Accessed 20/10/2006.

ARIDOR, Y. and LANGE, D.B. 1998. Agent Design Patterns: Elements of agent
application design. In: Proceedings of 2nd International conference on
Autonomous Agents. Minneapolis/St Paul, USA. 108-115.

ARIDOR, Y. and OSHIMA, M. 1998. Infrastructure for Mobile agents: Requirements
and design. In: Proceedings of the first International Conference on Mobile
Agents '98. Los Alamitos. LNCS 1477, 38-49.

BADICA, C., POPESCU, E., FRACKOWIAK, G., GANZHA, M., PAPRZYCKI, M.,
SZYMCZAK, M. and PARK, M. 2008. On Human Resource Adaptibility in an
Agent-Based Virtual Organization. In: Conference on Adaptive Networked
Systems and Media, ANSYM 2008. Wroclaw, Poland.

BALASUBRAMANIAN, S., BRENNAN, R.W. and NORRIE, D.H. 2001. An
Architecture for metamorphic control of holonic manufacturing systems.
Computers in Industry, 46, 13-31.

BELLIFEMINE, F., CAIRE, G., POGGI, A. and RIMASSA, G. 2003. JADE: A White
Paper, exp, 3(3), 6-19.

BEN-ARI, M. 1990. Principles of Concurrent and Distributed Programming. New
Jersey: Prentice-Hall. 350. ISBN 0-1371-1821x.

BENFIELD, S., HENDRICKSON, J. and GALANTI, D. 2006. Making a strong
business case for Multiagent Technology. In: Proceedings of the AAMAS '06.
1-59593-303 ed. Hokkaido, Japan, ACM Computing surveys. 8-12.

BERNERS-LEE, T., HENDLER, J. and LASSILA, O. 2001. The semantic web. The
Scientific American, 5 (1), URL:
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html.
Accessed 20/9/2006.

BOEHM, B.W. 1991. Software Risk Management: Principles and Practices. IEEE

References

189

Software, 8 (1), 32-41.

BOOTH, A. 2004. Counting what counts. URL:
http:www.northumbia.ac.uk/static/powerpoint/Booth.ppt. Accessed
10/05/2005.

BORDINI, R., DASTANI, M., DIX, J. AND SEGHROUCHNI, A. (EDs). 2005.
Programming Multi-Agent Systems. Proceedings of the Third international
Workshop, ProMAS 2005. Utrecht, The Netherlands, July 2005. LNAI 3862.
Springer. 266.

BRAUN, P., EISMANN, J., ERFURTH, C. and ROSSAK, W. 2001. TRACY: A
Prototype of an Architected Middleware to support Mobile Agents. In:
Proceedings of the Eighth Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS'01).
Washington, D.C. USA. Washington, D.C. IEEE Computer Society. 6. ISBN
0-7695-1086-8.

BREWER, D. and NASH, M. 2005. The similarity between ISO 9001 and BS 7799-
2. Gamma Secure Systems. UK. 1-4 URL:
http://www.gammassl.co.uk/topics/ics/9001Similaries.pdf. Accessed
20/10/2007.

BROOKS, F.P. 1979. The Mythical man-month: Essays on software engineering. 3rd
Edition. Reading, Massachusetts: Addison Wesley Publishing Company.
ISBN 0-201-00650-2.

BROOKS, F.P. 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. Computer, 20, (4), 10-19.

BURMEISTER, B. 1996. Models and Methodology for Agent-Oriented Analysis and
Design. Fischer, K. (Ed.). In: Working Notes of the KI ’96 Workshop on
Agent-Oriented Programming and Distributed Systems. DFKI Document D-
96-06.

BURSTEIN, MCDERMOTT, SMITH, E. and WESTFOLD, S. 2000. Derivation of
Glue Code for Agent Interoperation. In: Proceedings of the 4th International
Conference on Autonomous Agents. Barcelona, Spain. 277-284.

CALLEGARI, D.A. and BASTOS, R.M. 2007. Project management and software
development processes: Integrating RUP and PMBOK. In: Proceedings of
the International conference on Systems Engineering and Modeling. Herzilya,
Israel, IEEE. 1-8.

CAUDRON, M., GROOTE, J.F., VAN HEE, K., HEMERIK, K., SOMERS, L. and
VERHOEFF, T. 2004. Software Engineering Reference Framework. URL:
http://www.win.tue.nl/~jfg/articles/CSR-04-39.pdf. Accessed 20/10/2005.

References

190

CHANDRASHEKAR, S., MAYFIELD, B. and SAMADZADEH, M. 1993. Towards
automating software project management. The International Journal of
Project Management, Elsevier Science Ltd. 11(1), 29-39.

CHANG, C. and CAI, L. 2001. Agent based requirements evolution over the
Internet. In: Proceedings of the 2001 Symposium on Applications and the
Internet-Workshops. San Diego, CA, USA. IEEE. 83.

CHARETTE, R. 2002. The state of Risk Management: Hype or Reality? Arlington,
MA US, Cutter Information Corporation.

CHARETTE, R., ADAMS, K. and WHITE, M. 1997. Managing risk in Software
Maintenance. Software, 14, 43-50.

CHEN, F., NUNAMAKER, J.F., ROMANO, N.C.J. and BRIGGS, R.O. 2003. A
Collaborative Project Management Architecture. In: Proceedings of the 36th
Hawaii International Conference on System Sciences. Big Island, Hawaii.
IEEE. 1-10.

CHEN, K., LIN, T., BLOCKER, E. and COKINS, G. 2005. Overview of
Blocker/Chen/Cokens/Lin, Cost Management: a strategic emphasis. Third
Edition. New Jersey: McGraw-Hill. ISBN 0-0728-18360.

CHEONG, C. and WINIKOFF, M. 2005. Hermes: Implementing goal-oriented agent
interactions. In: BORDINI, R.H., DASTANI, M., DIX, J. and SEGHROUCHNI
(Eds), Proceedings of the Third International workshop ProMAS 2005. 0302-
9743 ed. Utrecht, Netherlands: Springer-Verlag. LNAI 3862 (1), 168-183.

CHMIEL, K., CZECH, D. and PAPRZYCKI, M. 2004a. Agent technology in
modelling E-Commerce Processes, Sample implementations. Multimedia and
network Information systems, 2, 13-22.

CHMIEL, K., TOMIAK, D., GAWINECKI, M., KARCZMAREK, P., SCYMCZAK, M.
and PAPRZYCKI, M. 2004b. Testing the efficiency of the JADE platform. In:
Proceedings of the ISDP Conference 2004. Los Angeles: IEEE CS Press, 49-
56.

CLEETUS, K.J., CASCAVAL, G.C. and MATSUZAKI, K. 1996. PACT: A software
package to manage projects and coordinate people. In: Proceedings of the
5th International Workshop on Enabling Technologies: Infrastructure for
collaborative Enterprises (WET ICE '96). Stanford, CA. USA. IEEE CS Press,
162-169.

COLLINOT, A., DROGUL, A. and BENHAMOU, P. 1996. An agent oriented design
of a soccer robot team. In: Proceedings of the 2nd International Conference
on multi-agent systems. Kyoto, Japan. 41-47.

COSSENTINO, M., BURRAFATO, P., LOMBARDO, S. and SABATUCCI, L. 2002.

References

191

Introducing Pattern Reuse in the design of Multi-Agent Systems. URL:
http://citeseer.ist.psu.edu/cache/papers/cs/26501http:zSzzSzwww.csai.unipa.
itzSzcossentinozSzpapersZsAITA02.pdf. Accessed 03/08/04.

CROFT, D.W 1997. Intelligent software agents: Definitions and Applications. URL:
http://www.alumni.caltech.edu/~croft/research/agent/definition. Accessed
20/10/2005.

D’Agents: Mobile Agents at Dartmouth College. 2002. URL:
http://agent.cs.dartmouth.edu/. Accessed 11/05/2005.

DALE, J. 1997. A mobile architecture to support distributed resource information
management. PhD, University of Southampton, Southampton.

DE VILLIERS, M. 2005. Interpretive research models for informatics: Action
Research, Grounded Theory, and the Family of Design and Development
research. Alternation, 12, 10-52.

DEBENHAM, J. and HENDERSON-SELLERS, B. 2003. Designing agent-based
systems: Extending the OPEN process framework. In: PLEKHANOVA, V.
(Ed.) Intelligent agent software engineering. Hershey: Idea group publishing.
1-59140-046-5. (1), 241.

DEKKERS, C. and FORSELIUS, P. 2007. Increase ICT project success with
concrete scope management. MUNCH, J.A. (Ed.) In: Proceedings of the 8th
International Conference on Product-Focused Software Process. Riga,
Latvia, Berlin: Springer-Verlag. LNCS 4589AI. 407-409.

DORAN, J.E., FRANKLIN, S.R.J.N. and NORMAN, T.J. 1997. On cooperation in
Multi-agent systems. The Knowledge Engineering Review, 12 (3), 309-314.

DOWLING, P. and WELCH, D. 2004. International Human Resource management:
managing people in multi-national context. 4th Edition. Cincinnati: Thompson
Learning.

ELEC 4704. 2003. Software Project Management. Department of Electrical and
Information Engineering, University of Sydney. URL:
http://www.ee.usyd.edu.au/elec4704/lec-01.html. Accessed 20/05/2003.

EVARISTO, R. and VAN FENEMA, P.C. 1999. A typology of project management:
emergence and evolution of new forms. International Journal of Project
Management, 17, 275-281.

FERIDUN, M. and KRAUSE, J. 2001. A framework for distributed management with
mobile components. Computer Networks, 35, 25-38.

FIPA. 2003. The Foundation for Intelligent Agents. URL:
http://www.fipa.org/specifications/index.html. Accessed 12/10/2005.

References

192

FLOWER, S. 1996. Software failure. New Jersey: Wiley and Sons.

FRANKLIN, S. and GRAESSER, A. 1996. Is it an Agent, or just a program? A
taxonomy for Autonomous Agents. In: Proceedings of the Third International
workshop on Agent Theories, Architectures and Languages. Berlin: Springer-
Verlag. 2135.

GAETA, M. and RITROVATO, P. 2002. Generalized Environment for Process
Management in Cooperative Software Engineering. In: Proceedings of the
26th Annual International Computer Software and Applications Conference.
Oxford, England. 1-5.

GANZHA, M., GAWINECKI, M., PAPRZYCKI, M., GASIOROWSKI, R., PISAREK,

S. and HYSKA, W. 2006. Utilizing semantic web and software agents in a
travel support system. In: A.F. Salam and Stevens (Eds). Semantic Web
Technologies and eBusiness: Virtual Organization and Business Process
Automation. Hershey, USA: Idea Publishing Group. 325-359.

GAWINECKI, M., KRUSZYK, M., PAPRZYCKI, M., and GANZHA, M. 2007. Pitfalls
of agent system development on the basis of a travel support system. In: W.
Abramowicz (Ed). Proceedings of the BIS 2007 Conference, Berlin: Springer.
LNCS 4439, 488-499.

GARCIA, S. 2005. How standards enable adoption of project management practice.
IEEE Software, 22-29.

GELBARD, R., PLISKIN, N. and SPIEGLER, I. 2002. Integrating systems analysis
and project management tools. International Journal of Project Management,
Elsevier Science Ltd. 20 (6), 461-468.

GIANG, N. and TUNG, D. 2002. Agent platform evaluation and comparison. Institute
of Informatics. Slovac Academy of Science.

GREEN, S., HURST, L., NANGLE, B., CUNNINGHAM, P., SOMERS, F. and
EVANS, R. 1997. Software agents: a review. URL:
http://www.cs.tcd.ie/Brenda.Nangle/iag.html. Accessed 20/05/2005.

GREIF, I. 1994. Desktop agents in group-enabled products. Communications of the
ACM, 37, 100-105.

GRIMLEY, M.J. and MONROE, B.D. 1999. Protecting the integrity of agents: an
exploration of letting agents loose in an unpredictable world. ACM Computing
surveys, 1-12.

GRUBER, T.R. 1993. Towards principles for the design and ontologies used for
knowledge sharing. KSL -93-04. Stanford University.

GSCHWIND, T., FERIDUN, M. and PLEISCH, S. 1999. ADK: Building Mobile

References

193

Agents for Network and Systems management from reusable components.
In: Proceedings of the Third International Symposium on Agent Systems and
Applications. Palm Springs, CA. 13-21.

HALL, G., GUO, Y. and DAVIS, R.A. 2003. Developing a Value-Based Decision-
making Model for Inquiring Organizations. In: Proceedings of the 36th Hawaii
International Conference on System Sciences. Big Island, Hawaii. 111.

HANSEN, K.T. 2006. Project Vizualization for Software. IEEE Computer Society,
84-92.

HARRISON, C.G., CHESS, D.M. and KERSHENBAUM, A. 1995. Mobile Agents:
Are they a good idea? URL: http://216.239.59.104/search?q=cache.
Accessed 12/04/2007.

HASS, A., JOHANSEN, J. and PRIES-HEJE, J. 1998. Does ISO 9001 increase
software development maturity? In: Proceedings of the 24th EUROMICRO
Conference. Washington, DC. IEEE Computer Society. (2) 860-866.

HAYES-ROTH, R. and AMOR, D. 2003. Radical Simplicity transforming Computers
Into Me-Centric Appliances. New Jersey: Prentice Hall.

HORVAT, H.D.C., MILUTINOVIC, D., KOCOVIC, P. and KOVACEVIC, V. 2000.
Mobile Agents and Java Mobile Agent Toolkits. Telecommunication Systems,
Springer Netherlands. 13 (1-3), 271-287.

HUGHES, B. and COTTERELL, M. 2006. Software Project Management. Fourth
Edition. London: McGraw-Hill. ISBN 10-0077-109899. 356.

HUHNS, M.N. 2002. Agents as Web Services. IEEE Internet Computing, 93-95.

IEEE STANDARDS BOARD 1987. IEEE Standard for Software Project
Management Plans. IEEE Std. ISBN 0-7381-0409-4, SS 12138.

IEEE STANDARDS BOARD 1997. IEEE Standard for Software Project
Management Plans.IEEE Std.

IGLESIAS, C.A., GARIJO, M., GONZALEZ, J.C. and VELASCO, J.R. 1998.
Analysis and design of multi-agent systems using mas-commonKADS. In:
Proceedings of Intelligent Agents IV: Fourth International Workshop on Agent
Theories, Architectures and languages. Rhode Island, LNAI 1365, Springer-
Verlag. 313-326.

IMPEY, R. and FORESTER, G. 2003. Mobile agent-based enabling technologies for
ad-hoc virtual teams and the Internet. URL: Http://iit-iti.ncr-
cnrc.gc.ca/projects-projects/agent-based-tech-agent-mobiles-e.html.
Accessed 10/04/2007.

References

194

International Standards Organization ISO, 2000. ISO 9001:2000 Quality
Management Systems. In: SABS (Ed.) South African National Standard.
Switzerland, SABS.

International Standards Organization ISO, 2003. ISO 10006:2003 Quality
Management Systems. In: SABS (Ed.) South African National Standard,
Switzerland, SABS.

JENNINGS, N.R. 2001. An Agent-Based approach for building Complex Software
Systems. Communications of the ACM, 44, 35-39.

JENNINGS, N.R., SYCARA, K. and WOOLDRIDGE, M. 1998. A roadmap of agent
research and development. Journal of autonomous agents and multi-agent
systems, 1, 7-38.

JENNINGS, N.R. and WOOLDRIDGE, M. 1998. Applications of intelligent agents.
In: Jennings and Wooldridge (Eds). Agent technology: Foundations,
applications and markets. Springer-Verlag. 3-28.

JONSSON, N., NOVOSEL, D., LILLIESKOLD, J. and ERIKSSON, M. 2001.
Successful Management of Complex, Multinational R and D projects. In:
Proceedings of the thirty-fourth Annual Hawaii International Conference on
System Sciences. Maui, Hawaii, IEEE Computer Society Press. ISBN 0-
7695-0981-9. 8044.

JOSLIN, D. and POOLE, W. 2005. Agent-based simulations for software project
planning. In: Proceedings of the 2005 Winter Simulation Conference.
Orlando. IEEE Computer Society. 8.

KEFALAS, P., HOLCOMBE, M., ELEFTHERAKIS, G. and GHEORGHE, M. 2003. A
Formal Method for the development of Agent-based Systems. London: Idea
Group Publishing.

KENDALL, E.A., KRISHNA, P.V., SURESH, C.B. and PATHAK, C.V. 2000. An
application framework for intelligent and mobile agents. ACM Computing
surveys, 32(1).

KEPHART, J.O. and CHESS, D.M. 2003. The vision of Autonomic computing. IEEE
Computer, Jan 2003. 41-50.

KEPHART, J.O. and CHESS, D.M. 2004. PGMS: A P2P-Based Grid Monitoring
System, LNCS 3251/2004. Berlin:Springer-Verlag. 906.

KEPHART, J.O. and GREENWALD, A.R. 1999. Shopbot economics. In:
Proceedings of the Fifth European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. Seattle. 208-220.

KETTUNEN, P. and LAANTI, M. 2004. How to steer an embedded software project:
tactics for selecting the software process model. Information and Software

References

195

Technology, 47, 587-608.

KINNY, D. and GEORGEFF, M. 1997 Modelling and design of multi-agent systems.
Intelligent Agents III, LNAI 1193, Springer-Verlag, 1-20.

KLEIN, H.K. and MYERS, M.D. 1999. A set of principles for conducting and
evaluating interpretive field studies in Information Systems. MIS, 23, 67-94.

KORB, W., ENGEL, D., BOESECKE, R. and EGGERS, G. 2003. Risk analysis for a
reliable and safe surgical robot system. International Congress Series, 1256,
766-770.

KOTZ, D. and GRAY, R. 1999. Mobile agents and the future of the Internet.
Operating systems review, 33, 7-13.

KOTZ, D., JIANG, G., GRAY, R., CYBENKO, G. and PETERSON, R. 2000.
Performance Analysis of Mobile Agents for Filtering Data Streams on
Wireless Networks. Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM 2000). Boston, Massachusets. ACM
Press. 85-94.

KRUPANSKY, J.W. 2003. What is a software agent? URL:
http://agtivity.com/agdef.htm. Accessed 12/10/2005.

KRUSZYK, M., GANZHA, M., GAWINECKI, M. and PAPRZYCKI, M. 2007. Pitfalls
of agent system development on the basis of a travel support system. In:
Proceedings of the Business Information Systems BIS 2007 Conference.
Poznan, Poland. LNCS 4439, Springer-Verlag, 488-499.

LANGE, D.B. and OSHIMA, M. 1998. Programming and deploying Java Mobile
agents with Aglets. Reading, Massachusetts: Addison-Wesley. 225.

LANGE, D.B. and OSHIMA, M. 1999. Seven good reasons for mobile agents.
Communications of the ACM, 42, 88-89.

LETHBRIDGE, T.C. and LAGANIERE, R. 2001. Object-oriented Software
Engineering: Practical Software development using UML and Java. London:
McGraw-Hill.

LEUNG, H.K.N. and POON, C. 1999. Multi-Agent environment for Quality

Assurance, In: Proceedings of the Euromicro Conference, AUTOQ. Milan,
2294.

LIND, J. 2001. Issues in Agent-oriented software engineering. In: PIANCARINI, P.
and WOOLDRIDGE, M. (Eds). Proceedings of the First International
workshop AOSE-2000. Berlin: Springer-Verlag 1957, 45-58.

LINGAU, A., DROBNIK, O. and DOMEL, P. 1995. An HTTP-Based Infrastructure for
Mobile Agents. URL: http://citeseer.nj.nec.com/lingau95httpbased.html.

References

196

Accessed 09/03/2005.

LUCK, M. and D'INVERNO, M. 2004. A Conceptual Framework for Agent Definition
and Development. URL: http://www.agentlink.org. Accessed 26/05/2007.

LUCK, M., MCBURNEY, P., SHEHORY, O., WILLMOTT, S., and AGENTLINK
COMMUNITY. 2005. Agent Technology Roadmap. URL:
http://ww.agentlink.org. Accessed 25/7/2005.

MAES, P. 1994. Agents that reduce work and information overload.
Communications of the ACM, 37(7) 31-40.

MARCH, S. and SMITH, G. 1995. Design and natural science research on
information technology. Decision support systems, 15, 251-266.

MARCHEWKA, J.T. 2003. Information Technology Project Management. Northern
Illinois: Wiley and Sons. 319.

MAURER, F. 1996. Project Coordination in Design Processes. In: Proceedings of
the 5th International Workshop for enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE’96). Stanford, CA: IEEE Computer
Society. 191-198.

MCBRIDE, T., HENDERSON-SELLERS, B. and ZOWGHI, D. 2004. Project
Management Capability Levels: An Empirical Study. In: Proceedings of the
11th Asia-Pacific Software Engineering Conference (APSEC '04). Busan,
Korea. The Computer Society. 56-63.

MCMICHAEL, B. and LOMBARDI, M. 2007. ISO 9001 and Agile Development. In:
MAURER, F., DAVIES, R., MELNIK, G. and POLLICE, G. (Eds). Agile 2007,
Proceedings. 978-0-7695-2872-4 ed. Washington, DC, IEEE Computer SOC.
262-265.

MEHANDJIEV, N., LAYZELL, P., BRERETON, P., LEWIS, G., MANNION, M. and
COALLIER, F. 2002. Thirteen knights and the seven-headed dragon; an
Interdisciplinary software engineering framework. In: Proceedings of the 10th
International Workshop on Software Technology and Engineering Practice (STEP
‘02). Washington, DC: IEEE. 46-54.

MEREDITH, J.R. and MANTEL, S.J. 2002. Project Management – A Managerial
Approach. Fifth Edition. New York: John Wiley and Sons. 765.

MICHAEL, K. and JAY, J. 1998. Developing Intelligent Agents for Distributed
Systems. New York: McGraw-Hill. 385.

MILES, M.B. and HUBERMAN, A.M. 1994. Qualitative Data Analysis. Thousand
Oaks, London: SAGE Publications. ISBN 0-8039-4653-8.

MILOJICIC, D., BREUGST, M., BUSSE, I., CAMPBELL, J., COVACI, S.,

References

197

FRIEDMAN, B., KOSAKA, K., LANGE, D., ONO, K., OSHIMA, M., THAM, C.,
VIRDHAGRISWARAN, S. and WHITE, J. 1998. MASIF: The OMG Mobile
Agent System Interoperability Facility. Personal Technologies, 2, 117-128.

MOREAU, L., ZAINI, N., CRUICKSHANK, D. and DE ROURE, D. 2003. SoFAR: An
agent framework for distributed information management. In: Plekhanova, V.
(Ed.). Intelligent agent software engineering. London: Idea Group Publishing.

MOUTON, J. 2001. How to succeed in your Master's and Doctoral Studies. Pretoria:
Van Schaik Publisher. 280.

MŰLLER, J.P., BAUER, B. and FRIESE, T. 2004. Programming Software agents as
designing executable business processes: a model driven perspective.
Programming Multi-Agents systems, LNAI 3067, 49-71.

MYERS, K., BERRY, P., BLYTHE, J., CONLEY, K., GERVASIO, M.,
McGUINNESS, D., MORLEY, D., PFEFFER, A., POLLACK, M. and TAMBE,
M. 2007. An Intelligent Personal Assistant for Task and Time Management.
Artificial Intelligence Magazine, 28, 1-19.

MYERS, M.D. 2006. Qualitative research in Information Systems. MIS Quarterly, 21,
241-242.

NIELSEN, A. 2006. The ISO Survey of certifications - 2006. Geneva, Switzerland,
ISO Central Secretariat.

NIENABER, R. and BARNARD, A. 2005. Software Quality management supported
by Software Agent Technology. In: Proceedings of the Informing Science and
Information Technology Conference (INSITE 2005). Flagstaff, USA. 659-670.

NIENABER, R.C. and BARNARD, A. 2007. A Generic Agent Technology
Framework to Support the Various Software Project Management Processes.
In: Proceedings of the International Conference on Issues in Informing
Science and Information Technology (INSITE 2007). Llubljana, Slovenia.
ISSN 1555-1245. 108.

NIENABER, R.C. and CLOETE, E. 2003. A Software Agent Framework for the
support of Software Project Management. In: Proceedings of the International
Conference on IT Research in Developing Countries (SAICSIT 2003).
Midrand, Gauteng. 111-113.

NIENABER, R.C., SMITH, E., BARNARD, A. and VAN ZYL, T. 2008. Software
Agent Technology supporting Risk Management in SPM. In: Proceedings of
the IADIS International Conference on Applied Computing (IADIS2008).
Algarve, Portugal. ISBN 978-972-8924-522. 373.

NWANA, H.S. and NDUMU, D.T. 1996a. An Introduction to agent technology. BT
Technology Journal, 14, 55-67.

References

198

NWANA, H.S. and NDUMU, D.T. 1996b. Research and development challenges for
agent-based systems. IEEE/BCS Software Engineering Journal, 144(1), 2-
10.

OBJECT MANAGEMENT GROUP. (2000). Mobile agent facility specification. URL:
http://www.omg.org. Accessed 08/12/2004.

O'CONNOR, R. and GAFFNEY, E. 1998. A Distributed Framework for implementing
a Multi-agent Assistant System. Dublin, Ireland, Dublin City University. 1-12.

O'CONNOR, R. and JENKINS, J. 1999. Using Agents for Distributed Software
Project Management. In: 8th International Workshop on Enabling
Technologies: Infrastructures for Collaborative Enterprises. Stanford, USA.
IEEE Computer Society Press. 54-60.

O'CONNOR, R. and MOYNIHAN, T. 2000. An Agent Model of Decision Support for
Software Project Management. Advances in Decision Technology and
Intelligent Information Systems, 1, 26-30.

OATES, B. 2006. Researching Information Systems and Computing. London: Sage
Publications Ltd.

OBUDIYI, J.B., KOCUR, D.J. and WEINSTEIN, S.M. 1997. SAIRE: A scalable
agent-based information retrieval system. In: Proceedings of the First
International Conference on Autonomous Agents. Marina del Rey, USA: ACM
Press. 292-299.

ODELL, J. 2001. Key issues for agent technology. JOOP, 13, 23-27.

OGHMA: 2003. Types of Software Agents. Oghma: Open Source. URL:
http://www.oghma.org/. Accessed 20/05/2003.

OLIVIER, M. 2004. Information Technology Research. Johannesburg: B and D
Printers. 176.

OLSON, C.E. 2002. The Plan, Do, Check, Act Cycle and ISO 9001:2000. Systems
Quality Consulting. Alta Loma, Systems Quality Consulting. URL:
http://www.systemsquality.com. Accessed 13/02/2008.

OLSON, D.L. 2004. Information Systems Project Management. Second Edition.
Boston: McGraw-Hill. 308.

OMICINI, A. 2001. SODA: Societies and Infrastructures in the Design and Analysis
of Agent-Based Systems. Agent-Oriented Software Engineering, LNCS 1975,
185-193.

PAI, W.C., WANG, C.C. and JIANG, D.R. 2000. A Software development model
based on quality measurement. In: Proceedings of the 13th International
conference on computer applications in Industry and Engineering. ICSA

References

199

‘2000. Seattle. 40-43.

PARUNAK, H.V.D., BAKER, A.D. and CLARK, S.J. 1997. The AARIA Agent
architecture: An example of requirements-driven Agent-based system design.
In: Proceedings of the First International Conference on Autonomous agents.
ICAA-79. Marina Del Rey, CA. New York: ACM Press. 482-483.

PETRIE, C., GOLDMAN, S. and RAQUET, A. 1999. Agent-based project
management. Lecture Notes on Artificial Intelligence (LNAI), 1600, 1-23.

PHILLIPS, D. 1998. The Project Manager's handbook. IEEE Computer Society.

PINTO, J.K. and SLEVIN, D. 1987. Critical factors in successful project
Implementation. IEEE Transactions on Engineering Management, 34, 22-27.

PROJECT MANAGEMENT INSTITUTE (PMI). 2004. The Guide to the Project
Management Body of Knowledge (PMBOK). URL: www.pmi.org. Accessed
10/04/2006.

PURVIS, R.L., MCCRAY, G.E. and ROBERTS, T.L. 2003. The impact of Project
Management Heuristics to IS Projects. In: Proceedings of the 36th Hawaii
International Conference on System Sciences. Big Island, Hawaii, IEEE. 1-7.

RIGAUD, E. and GUARNIERI, F. 2002. Towards an Agent Oriented Virtual
Organization Dedicated to Risk Prevention in Small and Medium Size
Companies. In: Proceedings of the 13th International Workshop on Database
and Expert Systems Applications (DEXA'02). IEEE Computer Society.

ROMANO, N.C., CHEN, F. and NUNAMAKER, J.F. 2002. Collaborative Project
Management Software. In: Proceedings of the 35th Hawaii International
Conference on System Sciences. Big Island, Hawaii. IEEE. 15.

ROODE, D. 2003. Information Systems Research: A Matter of Choice? SA
Computing Journal, 30, 1-2.

ROSE, J., PEDERSEN, K., HOSBOND, J.H. and KRAEMMERGAARD, P. 2007.
Management competences, not tolls or techniques: A grounded examination
of software project management at WM-data. Information and Software
Technology, 49, 605-24.

ROTH, V. 2004. Obstacles to the adoption of Mobile Agents. In: Proceedings of the
IEEE International Conference on Mobile Data Management (MDM'04). Los
Alamitos, CA, IEEE Computer Society. 296-297.

ROY, G.G. 2004. A Risk Management Framework for Software Engineering
Practice. In: Proceedings of the Australian Software Engineering Conference
(ASWEC'04). Australia, IEEE Computer Society.

SAMARAS, G. 2004. Mobile Agents: What about them? Did they deliver what they

References

200

promised? Are they here to stay? In: Proceedings of the IEEE International
Conference on Mobile Data Management (MDM'04). Los Alamitos, CA, IEEE
Computer Society. 294-295.

SATZINGER, J. W., JACKSON, R.B. and BURD, S.D. 2004. Systems Analysis and
Design in a changing world. Boston, Massachusetts: Thompson Course
Technology. 779.

SAUER, J. and APPLERATH, H. 2003. Scheduling the supply chain by teams of
agents. In: Proceedings of the 36th Hawaii International Conference on
System Sciences. Big Island, Hawaii. 81.

SCHOEMAN, M.A. 2005. An Approach to facilitating the training of mobile agent
programmers and encouraging the progression to an agent-oriented
paradigm. MSc School of Computing. Pretoria, University of South Africa.

SCHWALBE, K. 2006. Information Technology Project Management. Canada:
Thomson Course Technology.

SHEHORY, O., GOLDSTEIN, M., SHULMAN, A., STURM, A. and YUROVITSKY, B.
2002. Bi-concurrent Layered Architecture for eCommerce Agents. In:
Proceedings of the First International Joint Conference on Autonomous
Agents and Multi-agent Systems. Bologna, Italy. 1035-1036.

SHERER, S.A. 2004. Managing Risk beyond the Control of IS Managers: The Role
of Business Management. In: Proceedings of the 37th Hawaii International
Conference on System Sciences. Big Island, Hawaii. 1-10.

SMITS, H. and PSHIGODA, G. 2007. Implementing Scum in a distributed software
development organization. In: MAURER, D., MELNIK, P (Eds). Agile 2007.
Washington, DC: IEEE Computer Soc. 371-375.

SOMMERVILLE, I. and RODDEN, T. 1996. Human, social and organizational
influences of the software process. Chichester: Wiley. 89-109.

SONNEKUS, R. and LABUSCHAGNE, L. 2004. Establishing the relationship
between IT project management and IT project success in a South African
context. In: Proceedings of the Global Knowledge for Project Management
Professionals: PMSA International Conference. Johannesburg, South Africa.
183-192.

SUNDSTED, T. 1998. An Introduction to agents. JavaWorld. URL:
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-howto.html. Accessed
03/05/2004.

SZEJKO, S. 2002. Requirements Driven Quality Control. In: Proceedings of the
Computer Software and Applications Conference. Oxford, England. 125-130.

References

201

SZYMCZAK, M., FRACKOWIAK, G., GANZHA, M., GAWINECKI, M., PAPRZYCKI,
M. and PARK, J. 2007. Resource Management in an Agent-based Virtual
Organization. MaSeB Workshop. Los Alamitos, CA: IEEE CS Press. 458-
462.

TAGUE, N.R. 2004. Project Planning and Implementing Tools. The Quality Toolbox.
Second edition, ASQ Quality Press. 390-392.

TAHARA, Y., OHSUGA, A. and HONIDEN, S. 1999. Agent System Development
Method Based on Agent Patterns. In: Proceedings of the 21st International
Conference on Software Engineering. 356-367.

TANAIR, D. 2005. Editorial. Journal of Mobile Information Systems, 1, 1-2.

THAMHAIN, H.J. 2003. Project Management Minitrack: Levering Information
Technology. In: Proceedings of the 36th Hawaii International Conference on
System Sciences. Big Island, Hawaii, IEEE Computer Society. 248.

THE STANDISH GROUP INTERNATIONAL. 1995. The Chaos Report. In:
JOHNSON, J. (Ed.). Application Development Trends. URL:
www.standishgroup.com. Accessed 06/06/2006.

THE STANDISH GROUP INTERNATIONAL. 2001. Xtreme Chaos. URL:
www.standishgroup.com. Accessed 06/03/2006.

THE STANDISH GROUP INTERNATIONAL. 2003. Latest Standish Group Chaos
Report. URL: http://www.standishgroup.com. Accessed 4/03/2005.

THE STANDISH GROUP INTERNATIONAL. 2005. Latest Standish Group Chaos
Report. Chaos Chronicles. Massachusetts. URL:
http://www.standishgroup.com. Accessed 04/03/2005.

VAN ZYL, T.L. 2005. Integrating Secure Resource Negotiating Agents into
Telemanufacturing. MSc. University of Johannesburg.

VENNERS, B. 1997. Under the hood: Architecture of aglets. URL:
http://www.javaworld.com/jw-04-1997/jw-04-hood_p.html. Accessed
23/11/2004.

VERNER, J., OVERMYER, S. and MCCAIN, K. 1999. In the 25 years since The
Mythical Man-Month, what have we learned about project management?
Information and Software Technology, 41, 1021-1026.

VERNER, J.M. and CERPA, N. 2005. Australian Software Development: What
Software Project Management Practices Lead to Success? In: Proceedings
of the 2005 Australian Software Engineering Conference (ASWEG). Austria.
IEEE Computer Society Press.

VUKMIROVIC, M., GAWINECKI, M., KOBZDEJ, P., GANZHA, M. and PAPRZYCKI,

References

202

M. 2007. Implementing message exchange between airlines' GDSs and
travel systems with ontologically demarcated data. In: Proceedings of the
29th Conference on ITI. Berlin, Springer-Verlag.

WHITE, J. 1995. Telescript technology: The foundation of the electronic market
place. General Magic white paper.

WHITTEN, J.L., BENTLEY, L.D. and DITTMAN, K.C. 2004. Systems Analysis and
Design in a changing world. Boston: McGraw-Hill Irwin.

WONG, J., HELMER, G., NAGANATHAN, V., POLAVARAPU, S., HONOVAR, V.
and MILLER, L. 2001. SMART mobile agent facility. The Journal of Systems
and Software, 56, 9-22.

WOOLDRIDGE, M. 2002. MultiAgent Systems. West Sussex, England: John Wiley
and Sons, Ltd.

WOOLDRIDGE, M., JENNINGS, N.R. and KINNY, D. 2000. The GAIA Methodology
for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-
Agents Systems, 3, 285-312.

WU, C. and SIMMONS, D.B. 2000. Plan Tracking Knowledge base. In: Proceedings
of the 24th Annual International Computer Software and Applications
Conference, COMPSAC '00. Taipei, Taiwan. IEEE CS Press. 299-304.

WURMAN, P. 2001. Dynamic pricing in the Virtual marketplace. IEEE Internet
Computing, 5, 52-60.

ZAMBONELLI, F., JENNINGS, N.R., OMICINI, A. and WOOLDRIDGE, M. 2001.
Software Engineering with Agents: Pitfalls and Pratfalls. IEEE Internet
Computing, 20-27.

ZANONI, R. and AUDY, J.L.N. 2003. Project Management Model for Physically
Distributed Software Development Environment. In: Proceedings of the 36th
Hawaii International Conference on System Sciences (HICSS’03). Big Island.
Hawaii. 249, 1-7.

A-1

A. APPENDIX A

Paper presented at SAICSIT2003, The South African International Conference on

Computer Science and Information Technology Research in Developing Countries,

Fourways, Gauteng, September 2003.

Paper published in the conference proceedings. ACM. ISBN: 1-58113-774-5, 16-23.

Proceedings of SAICSIT

 APPENDIX A A-2

A Software Agent Framework for the Support of Software Project
Management

RITA NIENABER

UNIVERSITY OF SOUTH AFRICA
AND

ELSABE CLOETE
UNIVERSITY OF SOUTH AFRICA

__

Numerous software development projects do not live up to expectations or sadly fail. This can be seen in the fact that software
projects often do not comply with the traditional standard measurements of success, namely time, cost and specifications.
Traditionally, individual software projects were executed at a single location. However, due to globalisation and advances in
computing technologies, this has changed, and software projects are developed and deployed in distributed and collaborative
environments. This means that traditional project management methods cannot and do not address the added complexities found in a
distributed environment, such as efficient task scheduling, tracking and monitoring, as well as effective sharing of information and
knowledge among project contributors. High levels of collaboration, task interdependence and distribution have become essential
across time, space and technology. In this paper the utilisation of stationary and mobile software agents is investigated as a potential
tool to improve software project management processes. We also propose and discuss a software agent framework to support
distributed software project management. Although still in its initial phases, this research shows promise of significant results in
enabling software developers to meet market expectations, and produce projects timeously, within budget and to users’ satisfaction

Categories and Subject Descriptors: D1.3 [Programming Techniques]: Concurrent Programming - Distributed Programming;
Concurrent Programming; K6.1 [Management of Computing and Information Systems]: Project and People Management -
Systems development; Strategic information planning; K6.3 [Management of Computing and Information Systems]: Software
Management - Software process.
General Terms: Design, Experimentation, Management
Additional Key Words and Phrases: Software agent computing, Software project management, Collaborative distributed software
projects.
__

1. INTRODUCTION

Software applications are integrated into almost every business application today. It is the quality,
effectiveness and efficiency of these applications that determine the success or failure of many business
solutions. As a result, businesses often find that they need to attain a competitive advantage through the
development of software projects that support crucial business activities. The quality of a software project
is determined by the quality of the software development process. Improvements in the development
process can result in significant improvement in software quality [Schwalbe 2000].
Over the past few decades, software projects generally failed to come up to user expectations, were
commonly delivered late, and mostly ran over the set budget. Indeed, much of this still holds true today,
and it has alerted software developers and managers to the fact that these issues have to be addressed in
concrete terms, and as a result the field of Software Project Management (SPM) has evolved. SPM
involves the management of all aspects and issues that are involved in the development of a software
project, namely scope and objective identification, planning, evaluation, project development approaches,
software effort and cost estimation, activity planning, monitoring and control, risk management, resource
allocation and control, as well as managing contracts, teams of people and quality. Initially, traditional
Project Management (PM) techniques were applied to the development of software projects. Different
standard project management approaches exist, which are applicable to different areas of SPM, such as
PRINCE 2, BS 6079. However, over time PM methods seemed to lack in the ability to address the unique
characteristics of the software development arena [Hughes and Cotterell 2002]. This led to the development
of SPM as an independent application area and field of study.

In order to address the existing shortcomings in managing software projects, practitioners also attempted to
apply several Software Engineering principles to different SPM processes [Lethbridge and Laganiere

Proceedings of SAICSIT

 APPENDIX A A-3

2000]. They explored standard structured analysis and design methods, and also incorporated object-
oriented approaches to overcome the aforementioned shortcomings [Gelbard et al. 2002; Lethbridge and
Laganiere 2000]. Yet disappointment remained since many software projects still failed to comply with the
triple constraints of scope, time and cost [Oghma:Open Source 2003]. The triple constraints refer to the
fact that the failure of software projects can mostly be attributed to the fact that they are not delivered on
time and do not meet the expectations of the client (scope), and as a result have cost implications.

The SPM environment is rapidly changing due to globalisation and advances in computing technology.
This implies that the traditional single project, which was commonly executed at a single location, has
evolved into distributed, collaborative projects. The focus in the SPM processes has clearly shifted from
the position that it held two decades ago. Consequently, tools for effective sharing of information and
knowledge among project contributors, as well as efficient task scheduling, tracking and monitoring are
sorely needed. High levels of collaboration, task interdependence and distribution have become essential
across time, space and technology [Chen et al. 2003].

A promising solution to addressing software management problems in a distributed environment is offered
by software agent technology. According to this technology, software agents are used to support the
development of SPM systems in which data, control, expertise, or resources are distributed. Software agent
technology provides a natural metaphor for support in a team environment, where software agents can
monitor and coordinate events and meetings and distribute documentation [Balasubramanian 2001].

SPM skills, especially in the distributed computing environment, are greatly in demand. Moreover, there is
a desperate need for technologies and systems to support the management of software projects in these
environments. Our research is therefore aimed at software practitioners and software developers, but will
also be beneficial to researchers working in the field of SPM.

In this paper the use of software agents is investigated as a potential tool to improve the SPM processes.
We concern ourselves with the question of how software agents can be used to improve SPM processes in a
distributed environment. As a result, we propose a software agent framework to support distributed SPM.
Although our research is not yet complete, initial indications are that it will be significant in enabling
software developers to meet market expectations, which will bring about savings in cost, time and effort.

Section 2 contains a background study and a discussion on research in this area. Section 3 provides a
generic-type framework for one of the key SPM processes. This framework can be adapted to support all
SPM processes and further extended using a (similar) multi-agent grid structure framework to coordinate
the individual processes. Finally, Section 4 presents a conclusion.

2. BACKGROUND

2.1 Software Agents

A software agent is a computer program that is capable of autonomous (or at least semi-autonomous)
actions in pursuit of a specific goal. The autonomy characteristic of a software agent distinguishes it from
general software programs. Autonomy in agents implies that the software agent has the ability to perform its
tasks without direct control, or at least with minimum supervision, in which case it will be a semi-
autonomous software agent. Software agents can be grouped, according to specific characteristics, into
different software agent classes. Literature does not agree on the different types or classes of software
agents. For example, Krupansky [2003] distinguishes between ten different types of software agents, while
the Oghma Open Source [2003] web site identifies sixteen different types of software agents. Because
software agents are commonly classified according to a set of characteristics, different classes of software
agents often overlap, implying that a software agent might belong to more than one class at a time. For the
purpose of this research, we distinguish between two simple classes of software agents, namely stationary
agents and mobile agents. Agents in both these classes might, or might not have, any or a combination of
the following characteristics: a user interface, intelligence, adaptivity, flexibility and collaborative
properties.
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other agents
or hosts. User interfaces are commonly only found where agents interact with humans. According to
Woolridge [2001] intelligence implies the inclusion of at least three distinct properties, namely reactivity,

Proceedings of SAICSIT

 APPENDIX A A-4

proactiveness and social ability. Reactivity refers to the agent’s ability to perceive its environment and
respond timeously to changes that occur in order to achieve its design goals. Proactiveness is the agent’s
ability to take initiative in its environment in order to achieve its design goals. Social ability alludes to the
collaborative nature of the agent. There are different definitions to define the collaborative nature of
software agents. For the purpose of this paper we use Croft’s [1997] definition in which the collaborative
nature of a software agent refers to the agent’s ability to share information or barter for specialized services
to cause a deliberate synergism amongst agents. It is expected of most agents to have a strong collaborative
without necessarily implying other intelligence properties. Adaptivity is a characteristic that can also be
regarded as an intelligence property, although it is not counted as a prerequisite to identify an agent as
intelligent. Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences.
An agent is considered flexible when it can dynamically choose which actions to invoke, and what
sequence, in response to the state of its external environment [Pai et al. 2000].

We consider a stationary agent to be a piece of autonomous (or semi-autonomous) software that
permanently resides on a particular host. Such an agent performs tasks on its host machine such as
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security
policies and so forth.

We consider a mobile agent to be a software agent that has the ability to transport itself from one host to
another in a network. The ability to travel allows a mobile agent to move itself to a host that contains an
object with which the agent wants to interact, and then to take advantage of the computing resources of the
object’s host in order to interact with that object. Full autononomy, migratability and collaborativeness are
the most important characteristics that should be imbedded in each mobile agent. When a mobile agent
possesses these three intelligence requirements, it is often referred to as a robot [Krupansky 2003].

2.2 Software Project Management

The IEEE defines SPM as the process of planning, organizing, staffing, monitoring, controlling, and
leading a software project [IEEE Standards Board 1987]. A more detailed exposition shows that SPM
involves the planning, monitoring and controlling of people and processes that are involved in the creation
of executable programs, related data and documentation [Elec 4704 2003]. Figure 1 illustrates these issues
in a framework that contains the key elements in the field of SPM. We distinguish between three key
elements: project stakeholders, project management knowledge areas, and project management tools and
techniques.
The project stakeholders are the people involved in all the different project activities and include the project
sponsor, project team, support staff, customers, users, suppliers and even opponents. Good relationships, as
well as communication and coordination between all of these stakeholders, are essential to ensure that the
needs and expectations of stakeholders are understood and met. Knowledge areas include the key
competencies concerned during the software project management process. The core functions, namely
scope, time, cost and quality management lead to specific project objectives and are supported by the
facilitating functions. The facilitating functions represent the means through which different objectives are
to be met and include human resource management, communication, risk, and procurement management.
Stretched across all these knowledge areas are the project management tool and techniques (on the right-
hand side of the framework diagram). These are used to assist team members and project managers in
carrying out their respective tasks.

This framework refers to the SPM of a single project, in which the SPM manager allocates tasks and gives
instructions to various role players. However, as mentioned earlier, factors such as business globalisation,
rapid technology advancement, and distributed team membership have influenced the SPM environment to
such an extent that traditional tools and techniques supporting the key management areas are no longer
adequate [Chen et al.2003]. For example, the focus of the communication and cooperating mechanisms has
changed. As a result, the communication between various role players is not sufficiently supported in this
environment to coordinate and schedule activities, and support document distribution. The 1995 Standish
Group study found that the three major factors related to information technology project success were user
involvement, executive management support and a clear statement of requirements [Krupansky 2003]. All
these depend on having good communication and coordination skills among the stakeholders. Poor,
ineffective or untimely communication, contradictions, omissions, failure to notify all of meetings and

Proceedings of SAICSIT

 APPENDIX A A-5

decisions, and failure to store information are often cited as reasons for projects failing or running over
time. Traditional reporting tools use a simple passive reporting mechanism, which does not provide
sufficient reporting support to a collaborative distributed system [Chen et al.2003]. Communication is,
however, enhanced and supported by the use of a common repository. A paper-based repository has several
disadvantages, such as retrieval delays, lost documentation and error-proneness, but most of all, may result
in insufficient project documentation in the distributed environment. Another common problem in
communication is that many project processes, contexts, rationales, or artefacts may not be captured at all.
An electronic repository might overcome some of these disadvantages.

2.3 Software Agents in SPM

Software agent technology is being explored as a promising way to support and implement complex
distributed systems. Using software agents for SPM processes is a new field of research and as such,
literature in this regard is not commonly available. However, some work on using agents has been done to
address at least some of the aspects of SPM. In this section, the authors briefly consider how agent
technology is currently being deployed in SPM by considering some application examples.
The first application that we mention is intended for the broader project management environment, and is
not specific to the SPM environment. Nevertheless, we refer to this example as it applies agent technology
to scheduling tasks, which are common to both environments.

Figure 1: Software Project Management Framework (adapted from Schwalbe).

Furthermore, the authors find it worthy of mention it since it is focussed on in the distributed environment.
In recent work, Sauer & Applerath [2003] presented an approach that involves using a generic agent
framework to support the scheduling tasks within the supply chain in the PM environment. The framework
allows for the consistent design of agents that reside on several levels of the organization. To prevent
communication overhead (found in earlier multi-agent systems), agent teams are formed. All the agents in a
team then collaborate to solve a specific scheduling task on a particular level. Furthermore, every agent (in
its personal capacity) is also responsible for a specific schedule (the schedule of the resources that it
represents). Therefore each agent is provided with the scheduling knowledge that is necessary to create or
maintain the schedule without contacting the members of the team.

In another example, Maurer [1996] proposes a system (the CoMo Kit) in which methods and tools were
developed to plan and manage complex workflows, especially in design domains. According to this system,
tasks can be decomposed into subtasks and for every task, several alternative decompositions (methods)

K
N

O
W

LE
D

G
E

A
R

EA
S

CORE FUNCTIONS

Scope
Management

Time
Management

Cost
Management

Quality
Management

FACILITATING FUNCTIONS

Human Resource
Management

Communication
Management

Risk
Management

Procurement
Management

ST
A

K
EH

O
LD

ER
S

TO
O

LS
 &

 T
EC

H
N

IQ
U

ES

PROJECT MANAGEMENT INTEGRATION

Proceedings of SAICSIT

 APPENDIX A A-6

can be defined. Every task is associated with a set of agents, humans or computers, which are able to solve
it. The problem-solving process, for example the application of methods to tasks, is distributed via a local
area network. The proposed system uses agent technology as a tool for planning, coordinating and
designing process execution. This approach follows a centralised black-box agent approach. The system
architecture consist of a modeller, which does project planning; a scheduler, which supports project
execution and manages information produced; and an information assistant that allows access to the current
state of the project. During SPM, the modeller gathers information through interaction with the project
manager or other stakeholders, and as a result presents a model of this information to the scheduler as
input. The scheduler then manages agendas that contain the tasks to be carried out by an agent. To work on
the task, the agent can access all relevant information (using the information assistant) for solving the
problem.

3. SPM FRAMEWORK SUPPORTED BY SOFTWARE AGENT TECHNOLOGY

As described earlier, the software project management environment has changed in the past decade into a
dynamic and complex environment where flexible and adaptive behaviour and management techniques are
required. Agent-based solutions are exactly applicable to this environment since they are appropriate in
highly dynamic, complex, centralised as well as distributed situations. In addition to the advantages of
distributed and concurrent problem-solving, agent technology has the advantage of sophisticated patterns of
interaction, namely cooperation, coordination and negotiation [Hall et al. 2003].
Before discussing our proposed SPM framework, we briefly reconsider the distinct knowledge areas and
practices entailed in software project management (illustrated in Figure 1), to emphasise the focus of our
work for this paper. The SPM management areas consist of four objective functions and four facilitator
functions. The solution presented by Sauer and Applerath [2003] primarily focuses on the Time
Management and certain aspects of the Communication Management functions. Maurer’s solution [1996] is
applicable to the Scope Management, Time Management and to a certain extent the Communication
Management functions. We believe that each of these key processes/functions could successfully be
addressed by following a black box approach that is based on agent technology. Each black box consists of
collaborative software agents ensuring cooperation, coordination and synergy between the different black
boxes. Within such a black box a component-based development approach is followed. According to this
approach, we use multiple (simple) agents, each with a particular objective, rather than fewer (complex)
agents of which each has a long list of tasks to accomplish. For the purpose of this paper, we discuss our
approach to only one of the SPM key processes, namely Communications Management, and describe the
agent framework to accomplish the so called black box for this process.

Communications Management in a software project is an enabling and supporting action that ensures
timely and appropriate generation, collection, dissemination, storage and disposition of project information
[Schwalbe 2000]. Effective communication and sharing of information and knowledge among project
contributors are needed. Schwalbe [2000] identifies five distinct functions associated with Communications
Management, namely (1) communications planning; (2) information distribution; (3) performance
reporting; (4) administrative closure; and (5) teamwork support. The communications planning function
determines the who, when and how of the project, while the information distribution function entails
disseminating information to keep all the stakeholders informed. Performance reporting alludes to the
generation of reports such as status, progress and forecasting reports, while the administrative closure
function involves project archiving and formal acceptance of reports. Finally the teamwork support
function refers to the functions pertaining to collaborative project tasks, and hence includes the scheduling
of meetings for these collaborative tasks. It therefore facilitates a collaborative working environment as
well as document distribution.

To describe how software agents can be used to address the different functions of Communications
Management, we use a set of agent teams to address the individual functions and then define specialised
software agents operating within these teams, or on their own where applicable. In defining these
specialised software agents, we find that it is less intricate to design the behaviour of each agent.
Furthermore, the specialised agents also make it possible to describe the various interactions between
different agents explicitly, which in turn reduces the general complexity of the agent system. The various

Proceedings of SAICSIT

 APPENDIX A A-7

programming patterns [Aridor and Lange 1998; Kendall et al. 2000; Tahara et al.1999] available,
accomplish specific agent-associated tasks, such as creation, migration, suspension, and collaboration. The
design of the overall system, based on components (specialised agents) simplify the design and
programming of agents. The following specialised working agents are used:

− Messaging agent: an agent responsible for carrying messages between different agent teams. A
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the
different agent teams may work in a distributed environment.

− Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accomplish his
or her tasks by providing maximum assistance. This agent also has a collaborative nature, and relies on
other agents to provide it with the information that it needs to sustain its owner. The PA agent is not
computer-bound, but human-bound, as its stakeholders may be required to work on different computers
when working in a distributed environment.

− Task agent: an agent that supports a specific project task. This agent collaborates with other objective
and facilitator functions to support a specific task. This agent is commonly invoked by a PA agent to
allow a stakeholder to work on a specific task, and is continuously monitored by a monitoring agent.

− Monitoring agent: an agent responsible for monitoring tasks, reporting back to the communications
planning and information distribution functions where scheduling and rescheduling of tasks as well as
the notification of stakeholders can take place. A monitoring agent is mobile, with intelligence,
flexibility and strong collaborative properties.

− Client agent: a stationary agent responsible for a specialised task such as information retrieval or
gathering. Client agents may or may not have intelligence, depending on their specific task, but must
have a collaborative nature to interact with other agents in their agent team.

− Team Manager agent: an agent that is responsible for managing a team of agents, ensuring
coordination between the sub-tasks of the different members of a team to accomplish the objective of
the agent team.

Figure 2 illustrates the main operations in the Management Communications function and how agent teams
cooperate to accomplish the objectives of these operations.

The software project manager, or other designated stakeholders, interacts with the communications
planning function through a special user interface. This user interface, which sits on top of the
communications planning function, uses personal agents, task agents and messaging agents. The interface
assigns a personal agent to the user who has supervision rights over other personal agents. During
interaction with the interface, the user defines team members or relevant stakeholders as well as the tasks
that are assigned to them, and defines milestones, objectives, et cetera.

Proceedings of SAICSIT

 APPENDIX A A-8

Figure 2: SPM Communication Management function supported by software agent technology.

The interface then assigns a personal agent to each person, to be invoked with a user name and password.
(For simplicity’s sake, the username and password could be the same as a person’s network login Id and
password, but the choice depends on the individual, or the manager, should he or she decide differently for
the sake of security.) Required schedules and resources may be allocated at this stage or omitted if it is
assumed that the Time Management agent system will do detailed scheduling. Client and task agents are
used for automation where necessary, for example to do resource allocation, or calculations. Once the user
has entered the required information into the system, messaging agents take the information to a central
repository and the information distribution function

The information distribution function uses an agent team that consists of messaging agents, task agents,
client agents and a team manager agent. The agent team of this function accepts incoming messaging
agents from the user interface and uses its own messaging agents to interact with the stakeholders, the
teamwork support function and the administrative closure function. It uses client agents to gather
information from the incoming messaging agents and task agents to perform information integration and
coordination.

In addition to the three primary intelligence properties, client (and task) agents at this level must also be
adaptable in the sense that they remember specific properties of personal agents from previous work on the
project, or even from previous projects and as a result, adjust their computing (based on a generic model) to
integrate these characteristics. The above intelligence properties also imply flexibility. Developing these
agents with the suggested intelligent properties is not a simple task, but since generic patterns exist for
many of the other agents, more time can potentially be spent on this part of the development of the SPM
tool.

As before, task agents are included for specialised computing tasks. For the information distribution
function, task agents may or may not be included at this level, depending on the elaborativeness of the
client agents. We advocate the use of task agents to simplify the design and improve the maintenance of
the SPM tool software. As mentioned before, the client agent typically has a number of functions including

ST
A

K
EH

O
LD

ER
S

User Interface

Performance
Reporting

Administrative
closure

Information
Distribution

Repositor

Teamwork
Support

User Interface

Communication
Planning

Proceedings of SAICSIT

 APPENDIX A A-9

interacting with (and thus receiving) incoming messaging agents, understanding (interpreting) incoming
information, translating incoming information to a syntax that makes it processable, processing the
incoming information, and deciding on distribution conduct (based on its generic approach to handling
information as well as previous knowledge and experience). The client agent is also tasked with the
responsibility to interact with the outgoing messaging agents, which must disseminate the processed
information, and must also send the information to the administrative closure function that interacts with
the central repository as well as with the teamwork support function. To simplify the design of a client
agent, these individual tasks can be designed as task agents reporting to the client agent via the team
manager agent.

The performing reporting agents, responsible for generating reports, commonly include client agents and
messaging agents. Should this function use the same approach as advocated above, task agents are also to
be included. A decision on whether or not to follow this approach depends on the complexity of the
expected reports. The messaging agents interact with the information distribution function and
administrative closure functions. In the first instance, mobile agents provide the reports to the information
distribution function for dissemination, while they also present the report information to the administrative
closure function for storing and archiving procedures, maintaining system persistence.

The teamwork support function is primarily responsible for collaborative scheduling tasks. Agents
associated with scheduling are monitoring agents, personal assistant agents, client agents (and task agents
where applicable), as well as messaging agents. Messaging agents are defined as before. Monitoring agents
are responsible for monitoring the incoming messages from messaging agents in order to determine the
necessity or urgency to suggest new or earlier meeting schedules than those already being scheduled during
the previous communication rounds, or by the teamwork support function. The primary responsibilities of
the client and task agents are to facilitate teamwork, perform scheduling task on teamwork, and distribute
collaborative documents. When an individual team member works on a collaborative document, his or her
personal assistant agent must be cognisant of any extraordinary circumstances when the user is falling
behind schedule. This could for example be done by special-prompting-task-agents asking specific
questions or monitoring agents comparing set dates to real dates. The personal assistant agent passes this
information to the (manager) monitoring agent, which either sends the agent to the general client agent at
this level, or makes special suggestions with regard to extraordinary meetings to be scheduled. A user
interface is available at this level through which team members can interact with the collaborative task
environment.

The administrative closure function interacts between the performance reporting function and the central
repository. It also keeps a history through the use of monitoring agents to coordinate incoming reports
before storing or archiving the information to the central repository. As expected, this function includes
both messaging agents and client agents (potentially also task agents to assist the client agents) to
coordinate the incoming reports and archiving processes.

4. CONCLUSIONS

The advances in computing technology have evolved over the past decade to a point where distributed
computing has become the de facto working platform. This has changed the characteristics of SPM, and as
a result, the traditional methods and techniques of SPM do not meet the new requirements posed by this
new working platform. Software agent technology, although primarily applied to other fields, such as e-
commerce, information retrieval and network management, is ideally suited to meeting the new challenges
faced by the SPM characteristics such as appropriate tools for effective sharing of information and
knowledge among project contributors, as well as efficient distributed task scheduling, tracking and
monitoring mechanisms. In this paper we investigated an approach to using software agent technology to
address these challenges. We also focussed on one of the key elements of SPM and designed a generic
agent framework to address all the tasks of this key element. This framework forms a basis for other key
elements, and could easily be adapted into individual frameworks and then coordinated by an overall multi-
agent system to achieve the objectives of SPM. Our framework followed an approach of agent teams being
composed of specialised software agents, each tasked with a manageable (atomic) task. This implied that
the complexity of creating and maintaining tasks could be greatly reduced. Although we have not yet
completed the programming of the proposed system, we believe that our solution is significant, based on

Proceedings of SAICSIT

 APPENDIX A A-10

our experience in other fields that advocate component-based development. We do, however, recognize the
fact that programming of the model will have to be completed and the model thoroughly tested against
other SPM tools before its true value will become apparent.

5. REFERENCES

ARIDOR, Y., AND LANGE, D.B. 1998. Agent Design Patterns: Elements of Agent Application Design. In Proceedings of the 2nd

International Conference on Autonomous Agents. Minneapolis/St. Paul, USA. 108 - 115.
BALASUBRAMANIAN, S. BRENNAN, R. W. AND NORRIE, D. H. 2001. An Architecture for metamorphic control of holonic

manufacturing systems. Computers in Industry. Vol 46, 1, 13-31.
CHANDRASHEKAR, S., MAYFIELD, B. AND SAMADZADEH, M. 1993. Towards automating software project management.

International Journal of Project Management. Elsevier Science Ltd.
CHEN, F, NUNAMAKER, J. F., ROMANO, N. C. AND BRIGGS, R. O. 2003. A Collaborative Project Management Architecture.

Proceedings of the 36th Hawaii International Conference on System Sciences. Big Island, Hawaii.
CROFT, D.W. 1997 Intelligent Software Agents: Definitions and Applications.

http://www.alumni.caltech.edu/~croft/research/agent/definition/
EARNSHAW, R. AND VINCE, J. (Eds) 2002. Intelligent agents for mobile and virtual media. Springer.
ELEC 4704 - Software Project Management. Department of Electrical and Information Engineering. University of Sydney.

http://www.ee.usyd.edu.au/elec4704/lec-01.html Accessed May 2003.
GARDINER, A. 2002 Implementing PRINCE2 in a Business Change Environment. Project Magazine. Vol 4, 2
GELBARD, R. PLISKIN, N. AND SPIEGLER, I. 2002. Integrating systems analysis and project management tools. International

Journal of Project Management. Elsevier Science Ltd.
HALL, G, GUO, Y. AND DAVIS R. A. 2003. Developing a Value-Based Decision-making Model for Inquiring Organizations.

Proceedings of the 36th Hawaii International Conference on System Sciences. Big Island, Hawaii.
HUGHES, B. AND COTTERELL, M. 2002. Software Project Management. Third Edition. McGraw-Hill.
IEEE STANDARDS BOARD. 1987. IEEE Standard for Software Project Management Plans. IEEE Std 1058.1-1987. 16pp. PDF:

ISBN 0-7381-0409-4, SS12138.
KENDALL, E.A., KRISHNA, P.V., SURESH C.B. AND PATHAK, C.V. 2000. An Application Framework for Intelligent and

Mobile Agents. ACM Computing Surveys. Vol 32. 1.
KRUPANSKY J.W. 2003. What is a Software Agent. http://agtivity.com/agdef.htm Accessed May 2003
LAZANSKY, J., STEPANKOVE, O. MARIK, V. AND PECHOUCHEK, M. 2000. Application of the multi-agent approach in

production planning and modelling. Engineering Applications of Artificial Intelligence. Vol 13, 3, 369-376.
LETHBRIDGE, T. C. AND LAGANIERE, R. 2001. Object-oriented Software Engineering: Practical Software development using

UML and Java. McGraw-Hill.
LINNHOFF-POPIEN, C. AND HEGERING, H. 2000. Trends in Distributed Systems: Towards a Universal Service market. Lecture

Notes in Computer Science. Proceedings of 3rd International IFIP/GI Working Conference, USM 2000 Munich, Germany, Sept
2000.

MAURER, F. 1996. Project Coordination in Design Processes. Proceedings of the 5th International Workshops for enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE’96) IEEE

OGHMA: OPEN SOURCE. Types of Software Agents. http://www.oghma.org/. Accessed May 2003
PAI, W.C., WANG, C.C. AND JIANG, D.R. 2000. A software development model based on quality measurement. Proceedings of the

ICSA 13th International Conference. Computer Applications in Industry and Engineering, 40-43.
PROJECT MANAGEMENT INSTITUTE (PMI) STANDARDS COMMITTEE. 2000. A Guide to the Project Management body of

Knowledge (PMBOK).
SCHWALBE, K. 2000. Information Technology Project Management. Thompson learning.
SAUER, J AND APPELRATH, H. 2003. Scheduling the supply chain by teams of agents. Proceedings of the 36th Hawaii

International Conference on System Sciences. Big Island, Hawaii.
TAHARA, Y., OHSUGA, A. AND HONIDEN, S. 1999. Agent System Development Method Based on Agent Patterns. In

Proceedings of the 21st International Conference on Software Engineering. Los Angeles, CA, USA.356 - 367.
THE STANDISH GROUP. http://www.standishgroup.com/
WOOLRIDGE M. 2001. An Introduction to MultiAgent Systems. John Wiley AND Sons. Chichester, UK.
WOOLDRIDGE, M. J., JENNINGS, N. R. 1999. Software engineering with agents: pitfalls and pratfalls. IEEE Internet Computing,

20 -27.

APPENDIX B B-1

B. APPENDIX B

Paper presented at the Global Business and Economic Conference, August 2004,

Istanbul, Turkey.

Paper published in the Proceedings of the Global Business and Economic Conference,

August 2004, Istanbul, Turkey. The Business Review, Cambridge 2, (1) August 2004.

APPENDIX B B-2

Software Project Risk Management
Supported by Agent Technology

Rita Nienaber, University of South Africa
Elsabe Cloete, University of South Africa

Andries Barnard, University of South Africa

ABSTRACT

The software project management environment is rapidly changing due to globalisation and advances
in computing technologies. Currently software projects are developed and deployed in distributed and
collaborative environments. This means that traditional project management methods cannot and do not
address the added complexities found in a distributed environment, such as effective sharing of
information, messages and knowledge among project contributors, as well as efficient task scheduling,
tracking and monitoring. Numerous software development projects do not live up to expectations or
sadly fail. This is demonstrated by the fact that software projects often do not comply with the
traditional standard measurements of success, namely time, cost and specifications. In this paper the
utilisation of stationary and mobile software agents is investigated as a potential tool to improve
software project risk management. We also propose and discuss a software agent framework to support
risk management. Although still in its initial phases, this research shows promise of significant results
in enabling software developers to meet market expectations, and produce projects timeously, within
budget and to users’ satisfaction, while ameliorating the risk associated with software project
development.

1 INTRODUCTION
Computing technology is becoming faster, less expensive and more reliable, however, the

complexities and risks of software projects continue to increase (Marchewka, 2003.) Over the past two
decades, software projects generally failed to satisfy user expectations, were commonly delivered late,
and mostly ran over the set budget. The Standish Group (2000) studied 13,522 projects since their
famous 1995 report in a follow-up survey, dubbed the EXTREME CHAOS report (2000). This study
determined that 23 percent of the surveyed projects failed, 49 percent did not meet the requirements
and only 28 percent succeeded. In March 2003 the group reported that success rates increased to a
third of all projects, but time overruns now measure 82 percent, whilst only 52 percent of required and
specified functions and features were included in the final product.

Software developers and managers are alerted to the fact that these issues have to be addressed in
concrete terms. Initially, techniques utilized in traditional Project Management (PM) practices were
applied to the development of software projects. However, standard PM methods seemed to lack in the
ability to address the unique characteristics of the software development arena (Hughes & Cotterell,
2002). This led to the development of software project management as an independent application area
and field of study. Software project management (SPM) includes amongst other the management of all
issues involved in the development of a software project, namely scope and objective identification,
planning, evaluation, project development approaches, software effort and cost estimation, activity
planning, monitoring and control, risk management, resource allocation, as well as managing contracts,
teams of people and quality.

Practitioners attempted to apply several Software Engineering (SE) principles to different SPM
processes in order to address the existing shortcomings in managing software projects (Lethbridge &
Laganiere, 2000). Standard structured analysis and design methods were explored, and furthermore
object-oriented approaches to overcome the aforementioned shortcomings were incorporated (Gelbard
et al. 2002; Lethbridge & Laganiere, 2000). Standards, such as ISO9001 were formulated, and
compliance of the development process to these standards tested. Different software project
management approaches based on standards have been developed and are used, namely PRINCE 2 and
BS 6079. Yet disappointment remained since many software projects still failed to comply with the
triple constraints of scope, time and cost (Oghma: Open Source, 2003). The triple constraints refer to
the fact that the failure of software projects can mostly be attributed to the fact that they are not

APPENDIX B B-3

delivered on time and do not meet the expectations of the client (scope), and as a result have cost
implications. The SPM environment is continuously changing due to globalisation and advances in
computing technology. This implies that the traditional single project, commonly executed at a single
location, has evolved into distributed, collaborative projects. The traditional focus of SPM processes
has shifted from the position aforded to it two decades ago. Consequently, the size, complexity and
strategic importance of information systems currently being developed require stringent measures to
determine why projects might fail. As organizations continue to invest time and resources in
strategically important software projects, managing the risk associated with the project becomes a
critical area of concern. While various risk checklists (e.g. the top 10 list of risk factors described by
Boehm, 1988) and different frameworks (Marchewka, 2003) have been proposed, there are relatively
few tools or methods available to assist project managers to identify, categorize and evaluate risk
factors to develop risk management strategies.

 Software agent technology offers a promising solution to addressing software management
problems in a distributed environment. According to this technology, software agents are used to
support the development of SPM systems in which data, control, expertise, or resources are distributed.
Software agent technology provides a natural metaphor for support in a team environment, where
software agents can support the project manager and team members to monitor and coordinate tasks
and in particular to identify, evaluate and monitor risks. SPM skills, especially in the distributed
computing environment, are greatly in demand. Moreover, there is a need for technologies and systems
to support the management of software projects in these environments. Our research is therefore aimed
at software practitioners and software developers, but will also be beneficial to researchers working in
the field of SPM.

In this paper the use of software agents is investigated as a potential tool to improve management
of SPM processes. We specifically concern ourselves with the question of how software agents can be
used to improve risk management in a distributed environment. As a result, we propose a software
agent framework to support risk management. Although our research is not yet complete, initial
indications are that it will be useful in enabling software developers to meet market expectations and to
manage risk factors accordingly. This, in turn, will bring about savings in cost, time and effort.

Section 2 of this paper contains a background study of SPM as well as agent computing, and a
short discussion regarding each is presented. Section 3 provides a generic-type framework for one of
the facilitating SPM processes, namely risk management. This framework can be adapted to support
all SPM processes and further extended using a (similar) multi-agent grid structure framework to
coordinate the individual processes. We conclude the paper in section 4 by arguing that using agent
technology to assist with risk management of SPM, may prove useful to the software developer.

2 BACKGROUND

2.1 SOFTWARE PROJECT MANAGEMENT

SPM is defined as the process of planning, organizing, staffing, monitoring, controlling, and
leading a software project (IEEE Standards Board, 1987). A more detailed exposition shows that SPM
involves the planning, monitoring and controlling of people and processes that are involved in the
creation of executable programs, related data and documentation (Elec 4704, 2003). Figure 1 on the
following page illustrates a framework of the key elements in SPM identified by the Project
Management Body of Knowledge (PMBOK). We distinguish between three key elements: project
stakeholders, project management knowledge areas, and project management tools and techniques.
The project stakeholders include those people involved in all the different project activities and should,
at least, consist of the project sponsor, project team, support staff, customers, users, suppliers, and even
opponents. Good relationships, as well as communication and coordination between all of these
stakeholders, are essential to ensure that the needs and expectations of stakeholders are understood and
met. Knowledge areas include the key competencies concerned during the software project
management process. The core functions, namely scope, time, cost and quality management lead to
specific project objectives and are supported by the facilitating functions. The facilitating functions
represent the means through which different objectives are to be met and include human resource
management, communication, risk, and procurement management. Stretched across all these
knowledge areas are the project management tool and techniques (on the right-hand side of the
framework diagram). These are used to assist team members and project managers to carry out their
respective tasks.

APPENDIX B B-4

This framework depicts key elements concerned during the management of a single project, in
which the SPM manager allocates tasks and gives instructions to various role players. However,
traditional tools and techniques supporting the key management areas are no longer adequate in a
coordinated, distributed team-development environment (Chen et al., 2003). The 1995 Standish Group
study found that the three major factors related to information technology project success were user
involvement, executive management support

Figure 1: Software Project Management Framework (adapted from Schwalbe, 2003).

and a clear statement of requirements (Standish Group, 1995). In the 2000 report executive
management support, user involvement, an experienced project manager and a clear statement of
requirements top the list of requirements for success (Standish Group, 2000). All these aspects can be
addressed and improved by enhancing risk management.

Schwalbe (2003) describes project risk management as the art and science of identifying,
analyzing and responding to risks throughout the life cycle of the project. The Webster’s dictionary
defines risk as hazard, peril or exposure to loss or injury, whereas the PMBOK defines project risk
management as the systematic process of identifying, analyzing, and responding to project risk. The
objective of risk management is to minimize or avoid the adverse effects of unforseen events. Many
projects do not follow a formal risk management plan, which lead to a state of perpetual crisis.
According to Marchewka (2003) the reasons for this include among others that (1) the benefits of risk
management is not clearly understood by the project leader; (2) adequate time is not provided for risk
management; and (3) not identifying and assessing risk using a standardized approach.

Project management and planning is based on the understanding of various role-players of the
current situation, the information available and the assumptions to be made. But as environments may
change dynamically, events may not proceed according to plan and various degrees of uncertainties
exist which cannot be predicted with total accuracy. To ensure eventual success, those unexpected
events must be addressed and managed throughout the life cycle of the project and to ensure that
project risk is minimized.

2.2 SOFTWARE AGENTS

A software agent is a computer program that is capable of autonomous actions in pursuit of a
specific goal. The autonomy characteristic of a software agent distinguishes it from general software
programs. Autonomy in agents implies that the software agent has the ability to perform its tasks
without direct control, or at least with minimum supervision, in which case it will be a semi-
autonomous software agent (Wooldridge, 2001). Software agents can be grouped, according to specific
characteristics, into different software agent classes. Literature does not agree on the different types or
classes of software agents. For example, Krupansky (2003) distinguishes between ten different types of
software agents, while the Oghma Open Source (2003) web site identifies sixteen different types of
software agents. Because software agents are commonly classified according to a set of characteristics,

K
N

O
W

LE
D

G
E

A
R

EA
S

CORE FUNCTIONS

Scope
Management

Time
Management

Cost
Management

Quality
Management

FACILITATING FUNCTIONS

Human Resource
Management

Communication
Management

Risk
Management

Procurement
Management

ST
A

K
EH

O
LD

ER
S

TO
O

LS
 &

 T
EC

H
N

IQ
U

ES

PROJECT MANAGEMENT INTEGRATION

APPENDIX B B-5

different classes of software agents often overlap, implying that a software agent might belong to more
than one class at a time. For the purpose of this research, we distinguish between two simple classes of
software agents, namely stationary agents and mobile agents. Agents in both these classes may, or may
not have, any or a combination of the following characteristics: a user interface, intelligence,
adaptivity, flexibility and collaborative properties.

Whether or not an agent has a user interface, depends on its potential collaboration with
humans, other agents or hosts. User interfaces are commonly only found where agents interact with
humans. According to Wooldridge (2001) intelligence implies the inclusion of at least three distinct
properties, namely reactivity, proactiveness and social ability. Reactivity refers to the agent’s ability to
perceive its environment and respond timeously to changes that occur in order to achieve its design
goals. Proactiveness is the agent’s ability to take initiative in its environment in order to achieve its
design goals. Social ability alludes to the collaborative nature of the agent. There are different
definitions to define the collaborative nature of software agents. For the purpose of this paper we use
Croft’s (1997) definition in which the collaborative nature of a software agent refers to the agent’s
ability to share information or barter for specialized services to cause a deliberate synergism amongst
agents. It is expected of most agents to have a strong collaborative nature without necessarily implying
other intelligence properties. Adaptivity is a characteristic that can also be regarded as an intelligence
property, although it is not considered to be a prerequisite to identify an agent as being intelligent.
Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences. An agent
is considered flexible when it can dynamically choose which actions to invoke, and in what sequence,
in response to the state of its external environment (Pai et al. 2000).

We consider a stationary agent to be a piece of autonomous (or semi-autonomous) software that
permanently resides on a particular host. Such an agent performs tasks on its host machine such as
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security
policies and so forth. We consider a mobile agent to be a software agent that has the ability to transport
itself from one host to another in a network. The ability to traverse a network of potential hosts, allows
a mobile agent to move itself to a host that contains an object with which the agent wants to interact,
and then to take advantage of the computing resources of the object’s host in order to interact with that
object. Full autononomy, migratability and collaborativeness are the most important characteristics that
should be imbedded in each mobile agent. When a mobile agent possesses these three intelligence
requirements, it is referred to as a robot (Krupansky, 2003).

2.3 AGENT TECHNOLOGY IN SPM

Software agent technology is being explored as a promising way to support and implement
complex distributed systems, see Balasubramanian (2001) and Chen (2003). Using software agents in
the SPM environment, and in particular in SPM of a distributed environment, is a relative novice field
of research and as such, literature in this regard is not commonly available. However, some work on
using agents has been performed to address certain aspects pertaining to SPM, refer to Maurer (1996),
O’Connor (1999) and Sauer and Appelrath (2003). In this section, the authors briefly consider how
agent technology is currently being deployed in SPM by considering some application examples.

The first application that we mention applies risk analysis for a safe, reliable surgical robot

system. Korb et al (2003) applies a basic level of risk management in clinical research to implement
the robot system RobaCKa for craniotomies. A systematic approach was implemented to support fault-
free design, error detection and quality assurance in the design of the robot system. The system was
implemented and tested, while further clinical investigations will be carried out in the next two years.

In a second example software agents are used to control and monitor activity execution at various
sites in an open source platform supporting distributed software engineering processes. This
environment is being developed as part of the GENESIS project (Gaeta and Ritrovato, 2002).
Although this project does not relate to risk management, it uses agents to support the control of
software processes as well as the communication among distributed software engineering teams.
Agents are mainly utilized for the synchronizing of process instances executed on different sites, the
dynamic reconfiguration of software processes, process data collection, process monitor and artefact
retrieval. Other examples of agent utilization in SPM can be found in Maurer (1996), O’Connor (1999)
and Sauer and Appelrath (2003).

APPENDIX B B-6

3 SOFTWARE AGENT TECHNOLOGY SUPPORT FOR RISK MANAGEMENT

3.1 CONTEXT

As described earlier, the SPM environment has changed in the past decade into a dynamic and
complex environment where flexible and adaptive behaviour and management techniques are required.
We argue that agent-based solutions are not only applicable to this environment, but that they are
appropriate in highly dynamic, complex, centralised as well as distributed situations. In addition to the
advantages of distributed and concurrent problem-solving, agent technology has the advantage of
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall et al.
2003).

Before discussing our proposed SPM framework, we briefly reconsider the distinct knowledge
areas and practices entailed in SPM (illustrated in Figure 1), to emphasise the focus of this paper. The
SPM management areas consist of four objective functions and four facilitator functions. The solution
presented by Sauer and Appelrath (2003) primarily focuses on the time management and certain aspects
of the communication management functions. Maurer’s solution (1996) is applicable to the scope
management, time management and to a certain extent the communication management functions. We
believe that each of these key processes/functions could successfully be addressed by following a black
box approach that is based on agent technology. Each black box consists of collaborative software
agents ensuring cooperation, coordination and synergy between the different black boxes. Within such
a black box a component-based development approach is followed. According to this approach, we use
multiple /simple/ agents, each with a particular objective, rather than fewer /complex/ agents of which
each has an extensive repertoire of tasks to perform. For the purpose of this paper, we limit our
approach to only one of the SPM key processes, namely risk management, and describe the agent
framework to accomplish the black-box for this process.

Various models or frameworks exist to ameliorate the risk associated with software project
development. This basically entails two aspects (Marchewka, 2003), namely risk analysis and risk
management. Risk analysis includes risk identification, qualitative and quantitative risk analysis,
evaluation and assessment. Risk management on the other hand entails risk planning, monitoring and
control. Hughes and Cotterel (2002) identify two major areas including eight distinct functions
associated with risk management, based on Boehms model (1988) depicted in Figure 2.

Figure 2: Software Risk Engineering (Boehm, 1988).

For the model we present in this paper, we will adopt a combination of these functions: the risk
identification function will identify threats, discrepancies and overall inconsistencies with the project
plan schedule, budget or time frame, while the risk estimation and risk evaluation function will
determine what the likelihood is of a particular risk occurring and what impact it will have. It also
contains information on how to deal with a particular type of risk, using qualitative and quantitative
measures. This will support the project manager to prioritize risks. Risk planning alludes to the
generation of risk strategies that may be implemented to deal with identified risks and will be stored in
the repository. The risk control, risk monitor, risk directing and risk staffing function involves
implementing those strategies and plans with respect to specific risks and reporting it to the
stakeholders.

Risk
engineering

Risk
analysis

Risk
management

Risk
estimation

Risk
identification

Risk
evaluation

Risk
monitoring

Risk
control

Risk
planning

Risk
directing

Risk
staffing

APPENDIX B B-7

We propose a risk management model that addresses two categories of risks: first, the risks
identified by the stakeholders throughout the project, and second the unexpected risks detected by our
agent monitoring system at any time throughout the lifetime of the project. Due to the technical
content, as well as the constraints on the length of this report, we will only discuss the management of
the first type of risk in this article. The second type of risk will be supported by a risk monitor model
based on personal agents that monitor stakeholders as well as teams, and in the event of detecting
possible risks, will react accordingly.

To describe how software agents are used to address the different functions of risk management,
we use a set of agent teams to address the individual functions and then define specialised software
agents operating within these teams, or on their own where applicable. In defining these specialised
software agents, we find that it is less intricate to design the behaviour of each agent. Furthermore, the
specialised agents also make it possible to describe the various interactions between different agents
explicitly, which in turn reduces the general complexity of the agent system. The various programming
patterns (Aridor and Lange 1998; Kendall et al. 2000; Tahara et al.1999) available, accomplish specific
agent-associated tasks, such as creation, migration, suspension, and collaboration.

The design of the overall system, based on components (specialised agents) simplify the design
and programming of agents. The following specialised working agents are used in our discussion of the
risk model that we present in the next subsection. These working agents include:

− Messaging agent: an agent responsible for carrying messages between different agent teams. A
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the
different agent teams may function in a distributed environment.

− Personal assistant agent (PA agent): an agent that supports an individual stakeholder to
accomplish his or her tasks by providing maximum assistance. This agent also has a collaborative
nature, and relies on other agents to provide it with the information that it requires to sustain its
owner. The PA agent is not computer-bound, but human-bound, as its human stakeholder may
work on different computers in a distributed environment.

− Task agent: an agent that supports a specific project task. This agent collaborates with other
objective and facilitator functions to support a specific task. This agent is commonly invoked by a
PA agent to allow a stakeholder to work on a specific task, and is continuously monitored by a
monitoring agent.

− Monitoring agent: an agent responsible for monitoring tasks. A monitoring agent is mobile, with
intelligence, flexibility and strong collaborative properties.

− Client agent: a stationary agent responsible for a specialised task such as information retrieval or
gathering. Client agents may or may not have intelligence, depending on their specific task, but
must have a collaborative nature to interact with other agents in their agent team.

− Team manager agent: an agent that is responsible for managing a team of agents, ensuring
coordination between the sub-tasks of the different members of a team to accomplish the objective
of the agent team.

Figure 3 illustrates the main operations in the risk management function and how agent teams
cooperate to accomplish the objectives of these operations.

3.2 THE RISK MANAGEMENT MODEL

The software project manager, or other designated stakeholders, interacts with the risk
management function through a special user interface. This user interface, which resides on top of the
risk identification function, uses personal agents, task agents and messaging agents. The interface
assigns a personal agent to the user who has supervision rights over other personal agents. During
interaction with the interface, the user defines team members or relevant stakeholders as well as the
tasks that are assigned to them, and defines milestones, objectives, risks, et cetera.

The interface then assigns a personal agent to each person, to be invoked with a user name and
password. (For simplicity’s sake, the username and password could be the same as a person’s network
login Id and password, but the choice depends on the individual, or the manager, should s/he decide
differently for the sake of security.) Required schedules and resources may be allocated at this stage or
omitted if it is assumed that the time management agent system will perform the detailed scheduling.
Client and task agents are used for automation purposes where necessary, for example to effect
estimations, risk analysis or calculations.

The risk identification function uses an agent team that consists of messaging agents, task agents,
client agents and a team manager agent. The agent team of this function accepts incoming messaging

APPENDIX B B-8

agents from the user interface and uses its own messaging agents to interact with the stakeholders, the
risk estimation and risk evaluation function. It uses client agents to gather information from the
incoming messaging agents and task agents to perform risk identification, risk estimation and risk
evaluation.

In addition to the three primary intelligence properties, client (and task) agents at this level must
also be adaptable in the sense that they remember specific properties of personal agents from previous
work on the project, or even from previous projects and as a result, adjust their computing (based on a
generic model) to integrate these characteristics. The above intelligence properties also imply
flexibility. Developing these agents with the suggested intelligent properties is not a simple task, but
since generic patterns exist for many of the other agents, more time can potentially be spent on this part
of the development of the SPM tool. Task agents are included for specialised computing tasks.

Figure 3: Risk management model for identified risks.

For the risk planning function, task agents may or may not be included at this level, depending on
the elaborativeness of the client agents. We advocate the use of task agents to simplify the design and
improve the maintenance of the SPM tool software. As mentioned before, the client agent typically has
a number of functions including interacting with, /and thus receiving/ incoming messaging agents,
understanding or interpreting incoming information, translating incoming information to a syntax that
makes it processable, processing the incoming information, and deciding on distribution conduct /based
on its generic approach to handling information as well as previous knowledge (strategies) and
experience/. The client agent is also tasked with the responsibility to interact with the outgoing
messaging agents, which must disseminate the processed information, and must also send and extract
when necessary the information to the central repository as well as the risk control and risk monitor
function. To simplify the design of a client agent, these individual tasks can be designed as task agents
reporting to the client agent via the team manager agent.

4 CONCLUSIONS

Advances in computing technology have evolved over the past decade to a point where distributed
computing has become the de facto working platform. This has changed the characteristics of SPM,
and as a result, the traditional methods and techniques of SPM do not meet the new requirements posed
by this new working platform. Software agent technology, although primarily applied to other fields,
such as e-commerce, information retrieval and network management, is ideally suited to meeting the
new challenges faced by SPM. Examples of these are appropriate tools for the identification and
evaluation of project risk, as well as efficient risk management, tracking and monitoring. In this paper
we investigated an approach of using software agent technology to address these challenges. We also
focussed on one of the key elements of SPM and designed a generic agent framework to address all the
tasks of this key element. This framework forms a basis for other key elements, and could be adapted

ST
A

K
EH

O
LD

ER
S

 User Interface

 Risk planning

User Interface Risk estimation

Risk evaluation

Repository

Risk Identification

Risk control

Risk monitor

Risk directing

Risk staffing

APPENDIX B B-9

into individual frameworks and then coordinated by an overall multi-agent system to achieve the
objectives of SPM. Our framework follows an approach of agent teams being composed of specialised
software agents, each tasked with a manageable /atomic/ task. This implied that the complexity of
creating and maintaining tasks could be greatly reduced. Although we have not yet completed the
programming of the proposed system, we believe that our solution in the form of a framework, can
potentially be significant, based on our experience in other fields that advocate component-based
development. We do, however, recognize the fact that programming of the model will have to be
completed and the model thoroughly tested against other SPM tools before its true value will become
apparent. This research is based upon work supported by the National Research Foundation of South
Africa under Grant number 2054319.

5. REFERENCES

ARIDOR, Y., AND LANGE, D.B. 1998. Agent Design Patterns: Elements of Agent Application
Design.
 In Proceedings of the 2nd International Conference on Autonomous Agents. Minneapolis/St. Paul,
USA. 108 - 115.
BOEHM, B. W. 1988. A Spiral Model of Software Development and Enhancement. Computer (May)
61-72.
CHEN, F, NUNAMAKER, J. F., ROMANO, N. C. AND BRIGGS, R. O. 2003. A Collaborative
Project
Management Architecture. In: Proceedings of the 36th Hawaii International Conference on System
Sciences.Big Island, Hawaii.
CROFT, D.W. 1997 Intelligent Software Agents: Definitions and Applications.
http://www.alumni.caltech.edu/~croft/research/agent/definition/
ELEC 4704 - Software Project Management. Department of Electrical and Information Engineering.
University of Sydney. http://www.ee.usyd.edu.au/elec4704/lec-01.html Accessed May 2003.
GAETA, M. & RITROVATO, P. 2002 Generalized Environment for Process Management in
Cooperative
Software Engineering. In: 26th Annual International Computer Software and Applications Conference.
Oxford England.
GELBARD, R. PLISKIN, N. AND SPIEGLER, I. 2002. Integrating systems analysis and project
management tools. International Journal of Project Management. Elsevier Science Ltd.
HALL, G, GUO, Y. AND DAVIS R. A. 2003. Developing a Value-Based Decision-making Model for
Inquiring Organizations. Proceedings of the 36th Hawaii International Conference on System Sciences.
Big Island, Hawaii.
HUGHES, B. AND COTTERELL, M. 2002. Software Project Management. Third Edition. McGraw-
Hill. Berkshire, UK.
IEEE STANDARDS BOARD. 1987. IEEE Standard for Software Project Management Plans. IEEE
Std 1058.1-1987. 16pp. ISBN 0-7381-0409-4, SS12138.
JONES, T. C. 1994. Assessment and Control of Software Risks. Upper Saddle River, N.Yourdon
Press/Prentice Hall.
KORB, W. ENGEL, D. BOESECKE, R. EGGERS, G et al. 2003. Risk analysis for a reliable and safe
surgical robot system. In: International Congress Series. 1256, 766-770. Elsevier Science B. V.
KENDALL, E.A., KRISHNA, P.V., SURESH C.B. AND PATHAK, C.V. 2000. An Application
Framework for Intelligent and Mobile Agents. ACM Computing Surveys. Vol 32. 1.
KRUPANSKY J.W. 2003. What is a Software Agent. http://agtivity.com/agdef.htm Accessed May
2003
LETHBRIDGE, T. C. AND LAGANIERE, R. 2001. Object-oriented Software Engineering: Practical
Software development using UML and Java. McGraw-Hill.
MAURER, F. 1996. Project Coordination in Design Processes. Proceedings of the 5th International
Workshops for enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’96)
IEEE
MARCHEWKA, J.T. 2003. Information Technology Project Management. Wiley. Danvers, USA.
O’CONNOR, R. and JENKINS, J. 1999. Using Agents for Distributed Software Project Management.
In: Proceedings of 8th Intenational Workshop on Enabling Technologies, pp 54-60, IEEE Computer
Society Press.
OGHMA: OPEN SOURCE. Types of Software Agents. http://www.oghma.org/. Accessed May 2003
PAI, W.C., WANG, C.C. AND JIANG, D.R. 2000. A software development model based on quality

APPENDIX B B-10

measurement. Proceedings of the ICSA 13th International Conference. Computer Applications in
Industry and Engineering, 40-43.
PROJECT MANAGEMENT INSTITUTE (PMI) STANDARDS COMMITTEE. 2000. A Guide to the
Project Management body of Knowledge (PMBOK).
SCHWALBE, K. 2004. Information Technology Project Management. Thompson learning. Course
Technology. Canada.
SAUER, J AND APPELRATH, H. 2003. Scheduling the supply chain by teams of agents.
Proceedings of the 36th Hawaii International Conference on System Sciences. Big Island, Hawaii.
TAHARA, Y., OHSUGA, A. AND HONIDEN, S. 1999. Agent System Development Method Based
on Agent Patterns. In Proceedings of the 21st International Conference on Software Engineering. Los
Angeles, CA, USA.356 - 367.
THE STANDISH GROUP. 1995.CHAOS. http://www.standishgroup.com/
THE STANDISH GROUP. 2000. EXTREMECHAOS. http://www.standishgroup.com/
WOOLDRIDGE M. 2001. An Introduction to MultiAgent Systems. John Wiley & Sons. Chichester,
UK.

Issues in Informing Science and Information Technology

APPENDIX C C-1

C. APPENDIX C

Paper presented at INSITE 2006: The Informing Science and Information Technology

Conference, Flagstaff, June 2006.

Paper published in the proceedings of The Informing Science and Information

Technology Conference (INSITE 2006), Flagstaff, Arizona, USA. ISSN: 1547-5840,

659-669.

Issues in Informing Science and Information Technology

APPENDIX C C-2

Software Quality Management supported by Software Agent
Technology

RC Nienaber, A Barnard
University of South Africa, Pretoria, South Africa

nienarc@unisa.ac.za barnaa@unisa.ac.za

Abstract
Software technology and computing resources have evolved and developed considerably over the past
years and may be considered as the backbone of many business ventures today. However, the software
project management environment has also changed and is continuously evolving. Currently software
projects are developed and deployed in distributed, pervasive and collaborative environments. This means
that traditional software project management methods cannot, and do not, address the added complexities
found in a pervasive, distributed global environment. Projects thus have a high rate of failure. More
specifically, software projects often do not comply with the traditional standard measurements of success,
namely time, cost and specifications. There is thus a need for new methods and measures to support
software project management.
In this paper, software agent technology is explored as a potential tool for enhancing software project
management practices in general. We propose and discuss a software agent framework, specifically to
support software quality management. Although still in its initial phases, research indicates some promise
in enabling software developers to meet market expectations and produce projects timeously, within budget
and to users’ satisfaction.
Keywords: Software Project Management, Software Agent Technology, Project Quality Management.

Introduction
Information Systems (IS) play a major role in today’s daily business activities, ranging from small business
operations to enterprise-wide operations throughout the worldwide business community. With the advent
of the Internet and related global networking capabilities becoming more pervasive, cost-effective
computing resources will continue to play a major role in improving organizational operations.
Yet, over the past two decades, software projects frequently failed to live up to user expectations, were
commonly delivered late, and mostly ran over the set budget. The Standish Group studied 13,522 projects
in a survey named EXTREME CHAOS (2000). This study determined that 23 percent of the surveyed
projects failed, 49 percent did not meet the requirements and only 28 percent succeeded. In March 2003
the group reported that success rates increased to a third of all projects, but time overruns increased to 82
percent, whilst only 52 percent of required and specified functions and features were included in the final
product. Software developers and managers are alerted to the fact that these issues have to be addressed in
concrete terms. In particular Brooks (1987) listed the invisibility, complexity, conformity, and inflexibility
of software as complicating factors in managing software projects. Initially, techniques utilized in
traditional Project Management (PM) practices were applied to the development of software projects.
However, standard PM methods seemed to lack the capacity to address the unique characteristics of the
software development arena (Hughes & Cotterell, 2002).
This led to the development of Software Project Management (SPM) as an independent application area
and field of study. SPM includes, amongst other things, the management of all issues involved in the
development of a software project, namely scope and objective identification, planning, evaluation, project
development approaches, software effort and cost estimation, activity planning, monitoring and control,
risk management, resource allocation, as well as managing contracts, teams of people and quality.

The SPM environment is continuously changing as a result of globalization and advances in computing
technology. This implies that the traditional single project, commonly executed at a single location, has
evolved into distributed, collaborative projects. A number of emerging capabilities, e.g. agent technology

Issues in Informing Science and Information Technology

APPENDIX C C-3

and automation, network-centric operations (Durham & Torrez, 2004) and grid/distributed computing are
providing a novel infrastructure for connecting otherwise isolated computing resources, and supporting the
development and management of distributed software projects.
The focus in SPM processes has thus clearly shifted from the position that it held two decades ago.
Consequently, the size, complexity and strategic importance of information systems currently being
developed require stringent measures to determine why projects might fail. Project or software quality
management concerns itself with the prevention of failure and discrepancies. The purpose of quality
management is to ensure that the product satisfies the needs of the stakeholders. As organizations continue
to invest time and resources in strategically important software projects, software quality management
becomes a critical area of concern.
 Software agent technology offers a promising solution to addressing software quality management
problems in a distributed environment. According to this technology, software agents are used to support
the development of SPM systems in which data, control, expertise, or resources are distributed. Software
agent technology provides a natural metaphor for support in a distributed team environment, where
software agents can help the project manager and team members to monitor and coordinate tasks, to apply
quality control measures, to validate and verify, as well as to ensure proper change control. SPM skills,
especially in the distributed computing environment, are greatly in demand. Moreover, there is a need for
technologies and systems to support the quality management of software projects in these environments.
Our research is therefore aimed at software practitioners and software developers, but will also be
beneficial to researchers working in the field of SPM.
In this paper the use of software agents is investigated as a potential tool for improving the quality
management of SPM processes. We specifically concern ourselves with the question of how software
agents can be used to improve quality management in a distributed environment. After investigating the
various SPM key processes and some factors impacting on software quality management we propose a
software agent framework to support software quality management. Although our research is not yet
complete, initial indications are that it will enable software developers to meet market expectations and to
manage risk factors accordingly. This, in turn, will bring about savings in cost, time and effort.
The next section contains a background study and a discussion on software quality management in the
context of the software project management framework. The following section presents a topology of
existing standards and measures for software quality management. We then provide background
information on agent technology, whereas the next section provides a generic-type multi-agent framework
for quality management. This framework can be adapted to support all SPM processes and further
extended using a (similar) multi-agent grid structure framework to coordinate the individual processes. We
conclude by speculating that the proposed framework for enhancing software quality management may also
be adapted to address other key SPM processes.

Software Project Management Background

Software Quality Management
The Project Management Body of Knowledge (PMBOK) defines project quality management as the
processes required to ensure that the project will satisfy the needs for which it was undertaken. It includes
all activities of the overall management function that determine the quality policy, objectives and
responsibility, and implements these by means of quality planning, quality assurance, quality control and
quality improvement, within the quality system. Quality management not only includes the concepts, tools
and methods of quality assurance, but also validation and verification, as well as change control during the
development process.
Major quality management processes identified by Schwalbe (2004) are:
 Quality planning: determining which quality standards are relevant to this specific project and

deciding how these standards will be met.

 Quality assurance: involves evaluating overall performance regularly to ensure conformance to the set
standards. Quality audits or reviews can support this function.

 Quality control: monitoring the activities and end results of the project to ensure compliance with the
standards utilizing various available tools and techniques.

Issues in Informing Science and Information Technology

APPENDIX C C-4

However, quality management should not be considered as a separate developmental phase but should be
an inextricable part of all phases and all processes during software project management.
SPM is defined as the process of planning, organizing, staffing, monitoring, controlling and leading a
software project (IEEE Standards Board, 1987). A more detailed exposition shows that SPM involves the
planning, monitoring and controlling of people and processes that are involved in the creation of executable
programs, related data and documentation (Elec 4704, 2003). Figure 1 illustrates a framework of the key
elements in SPM identified by the PMBOK (Schwalbe, 2004). We distinguish between three key elements:
project stakeholders, project management knowledge areas, and project management tools and techniques.
Project stakeholders comprise all the people involved in the different project activities and include the
project sponsor, project team, support staff, customers, users, suppliers and even opponents. Good
relationships, as well as communication and coordination between all of these stakeholders, are essential to
ensure that the needs and expectations of stakeholders are understood and met. Knowledge areas include
the key competencies involved in the software project management process. The core functions, namely
scope, time, cost and quality management lead to specific project objectives and are supported by the
facilitating functions. The facilitating functions represent the means through which different objectives are
to be met and include human resource management, communication, risk and procurement management.
Reaching across all these knowledge areas are the project management tool and techniques (see Figure 1).
These are used to assist team members and project managers in carrying out their respective tasks.
However, traditional tools and techniques supporting the key management areas are not adequate (Chen et
al., 2003) in a coordinated, distributed team-development environment. The 1995 Standish Group study
found that the three major factors related to information technology project success were user involvement,
executive management support and a clear statement of requirements (Standish Group, 1995). In the 2000
report of the Standish Group, executive management support, user involvement, an experienced project
manager and a clear statement of requirements top the list of requirements for success. Software quality
management can address and improve all of these aspects.

Figure 1: Software Project Management Framework (adapted from Schwalbe, 2004).

Hughes & Cotterel (2002) recommend that quality aspects of the project plan should be reviewed
constantly. In considering the three phases of quality management, the following phases are of importance:
The quality-planning phase should identify variables having a direct influence on the outcome of the
project. Thus, aspects affecting the scope of the project are functionality, system outputs, performance and
reliability. All these factors should be included in the quality assurance plan. The quality assurance phase
involves evaluation measures throughout the project. Tools used include quality audits, templates
specifying required documentation, quality assurance procedures, problem-reporting procedures, quality

K
N

O
W

LE
D

G
E

A
R

EA
S

CORE FUNCTIONS

Scope Management Time Management Cost Management Quality
management

FACILITATING FUNCTIONS

Human
ResourceManage

Communication
Management

Risk Management

Procurement
Management

ST
A

K
EH

O
LD

ER
S

TO
O

LS
&

TE
C

H
N

IQ
U

ES
PROJECT MANAGEMENT INTEGRATION

Issues in Informing Science and Information Technology

APPENDIX C C-5

assurance metrics and quality assurance check list forms. The quality control phase mainly consists of the
following: acceptance decisions to determine whether the products or services produced will be accepted or
rejected; if not accepted, rework specified on the items; and process adjustments to correct or prevent
further quality problems. Various tools and techniques may be utilized during this phase. Process as well
as product quality measures should be implemented. Several standards and measures have been developed
over the past few years in an effort to give structure and uniformity to this process. These standards will be
discussed in the following section.

Existing Standards and Measures
Various factors enhancing quality have been identified over the years in an attempt to improve quality
measures, but lack of conformity of definitions and terms posed a problem. Software development is a fast
growing industry and the lack of standards has significant implications for society and the economy. In an
attempt to solve this problem various national and international standards bodies proceeded to set standards
for this area of development.
The PMI (Project Management Institute) coded the Project Management Body of Knowledge’s (PMBOK)
first published standard in 1983, namely the Project Management Quarterly Special Report: Ethics,
Standards and Accreditation. This was further developed and the PMBOK Standards were published in
1987, whilst the Guide to Project Management Body of Knowledge was published in 1996. Currently PMI
is working on the OPM3 standard, as the global standard for organizational project management.
The ISO standard 9126 was published in 1991 (Hughes & Cotterel, 2002) to address the problem of
defining software quality. ISO 9126 identified six software quality characteristics, namely functionality,
reliability, usability, efficiency, maintainability and portability. Sub-characteristics for each of these are
also identified. Measurements correlating to each quality are identified, and then tested and mapped onto a
scale to indicate compliance with the specific quality metric.
The British Standards Institution set the BS EN ISO 9001:2000 standard, identical to the international
standard ISO 9000:2000, followed by the 2001 and 2004 standards respectively.
The capability maturity model (CMM) was developed at the Software Engineering Institute in the United
States. This model defines different stages of process maturity, implying sophistication and quality of
production practices in which an organization may find itself. The assessment is done by an external team
of assessors, who will also make recommendations on improving the quality processes. Bootstrap, a
European initiative, allows assessment at project level.
Hughes and Cotterel (2002) define practical software quality measures, such as reliability, which might
measure availability, mean time between failures, failure on demand and support activities. Other practical
measures are maintainability and extendibility.
Measurement of quality concerns intangible, invisible factors. Techniques to enhance quality (Hughes and
Cotterel, 2002) are cited as increased visibility, procedural structure and checking of intermediate stages:
Increasing visibility of the development process consists of utilizing ego-less programming to encourage
the practice of programmers scanning each other’s code.
Procedural structure implies the use of methodologies, where every process in the development cycle has
carefully laid out plans.
Checking intermediate stages involves the continuous checking of quality and correctness of work done
throughout the development phases.
Other techniques recommended are inspections, structured programming and clean-room software
development, formal methods and software quality circles.
Different approaches to quality control are also utilized. Mehandjiev et al (2002) state that a goal-driven
approach is more appropriate to handle adaptability and productivity requirements, whereas Szejko (2002)
promotes requirements-driven quality control.

Issues in Informing Science and Information Technology

APPENDIX C C-6

Using Agent Technology to Enhance Quality
Standards

Agent Technology
A software agent is a computer program that is capable of autonomous (or at least semi-autonomous)
actions in pursuit of a specific goal (Krupansky, 2003). The autonomy characteristic of a software agent
distinguishes it from general software programs. Autonomy in agents implies that the software agent has
the ability to perform its tasks without direct control, or at least with minimum supervision, in which case it
will be a semi-autonomous software agent. Software agents can be grouped, according to specific
characteristics, into different software agent classes (d’Inverno & Luck, 2001). Literature does not agree on
the different types or classes of software agents. As software agents are commonly classified according to a
set of characteristics, different classes of software agents often overlap, implying that a software agent
might belong to more than one class at a time. For the purpose of this research, we distinguish between two
simple classes of software agents, namely stationary agents and mobile agents. Agents in both these classes
might, or might not have, any or a combination of the following characteristics: a user interface,
intelligence, adaptivity, flexibility and collaborative properties (Pacheco & Carmo, 2003).
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other agents
or hosts. User interfaces are commonly only found where agents interact with humans. According to
Wooldridge (2001), intelligence implies the inclusion of at least three distinct properties, namely reactivity,
pro-activeness and social ability. Reactivity refers to the agent’s ability to perceive its environment and
respond timeously to changes that occur in order to achieve its design goals. Pro-activeness is the agent’s
ability to take the initiative in its environment in order to achieve its design goals. Social ability alludes to
the collaborative nature of the agent. There are different definitions to define the collaborative nature of
software agents. For the purpose of this paper we use Croft’s (1997) definition in which the collaborative
nature of a software agent refers to the agent’s ability to share information or barter for specialized services
to cause a deliberate synergism amongst agents. It is expected of most agents to have a strong collaborative
nature without necessarily implying other intelligence properties. Adaptivity is a characteristic that can also
be regarded as an intelligence property, although it is not counted as a prerequisite for identifying an agent
as intelligent. Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences.
An agent is considered flexible when it can dynamically choose which actions to invoke, and in what
sequence, in response to the state of its external environment (Pai et al. 2000).
A stationary agent can be seen as a piece of autonomous (or semi-autonomous) software that permanently
resides on a particular host. An example of such an agent is one that performs tasks on its host machine
such as accepting mobile agents, allocating resources, performing specific computing tasks, enforcing
security policies and so forth. A well known example of a stationary agent is Clippie, the Microsoft Office
Assistant. Clippie exhibits similar features of a stationary, intelligent agent and its settings are global for
all programs in the Microsoft Office Suite.
A mobile agent is a software agent that has the ability to transport itself from one host to another in a
network. The ability to travel allows a mobile agent to move to a host that contains an object with which
the agent wants to interact, and then to take advantage of the computing resources of the object’s host in
order to interact with that object. An example of a mobile agent is provided by a flight booking system
where a logged request is transferred to a mobile agent that on its part traverses the web seeking suitable
flight information quotations as well as itineraries. Full autonomy, migratability and collaborativeness are
the most important characteristics that should be embedded in each mobile agent. When a mobile agent
possesses these three intelligence requirements, it is often referred to as a ‘robot’ (Krupansky 2003). For a
more detailed discussion of mobile agent systems and associated design concepts refer to Schoeman &
Cloete, 2004.

Software Agents in SPM
Software agent technology is being explored as a promising way to support and implement complex
distributed systems. In this section, the authors briefly consider how agent technology is currently being
deployed in SPM by considering some application examples. As described earlier, the software project
management environment has changed in the past decade into a dynamic and complex environment in

Issues in Informing Science and Information Technology

APPENDIX C C-7

which flexible and adaptive behaviour and management techniques are required. Agent-based solutions are
most applicable to this environment since they are appropriate in highly dynamic, complex, centralised as
well as distributed situations. In addition to the advantages of distributed and concurrent problem solving,
agent technology has the advantage of sophisticated patterns of interaction, namely cooperation,
coordination and negotiation (Hall et al. 2003).
The first application that we mention, utilizes agents for project planning and process management in a
distributed environment. O’Connor & Jenkins (1999) propose an intelligent assistant system to assist the
project team during planning, scheduling and risk management.
In a second example software agents are used to control and monitor activity execution at various sites in
an open source platform supporting distributed software engineering processes. This environment is being
developed as part of the GENESIS project (Gaeta and Ritrovato, 2002). Although this project does not
relate to quality management, it uses agents to support the control of software processes as well as the
communication among distributed software engineering teams. Agents are mainly utilized for the
synchronizing of process instances executed on different sites, the dynamic reconfiguration of software
processes, process data collection, monitoring of the processes and artefact retrieval. Other relevant
examples of agent utilization in SPM can be found in Maurer (1996) and Sauer and Appelrath (2003).
Sauer and Applerath (2003) presented an application using agents to focus primarily focus on the Time
Management function and certain aspects of the Communication Management function. Maurer’s solution
(1996) is applicable to the Scope Management, Time Management and to a certain extent the
Communication Management functions.

Multi-Agent Model for Software Quality Management
We briefly reconsider the distinct knowledge areas and practices that in software project management
entails (illustrated in Figure 1), to emphasise the focus of our work for this paper. The SPM management
areas consist of four objective functions and four facilitator functions. We believe that each of these key
processes/functions could successfully be addressed by following a black-box approach that is based on
agent technology. Each black box consists of collaborative software agents ensuring cooperation,
coordination and synergy between the different black boxes. Within such a black box a component-based
development approach is followed. According to this approach, we use multiple (simple) agents (discussed
on the following page), each with a particular objective, rather than fewer (complex) agents of which each
has a long list of tasks to accomplish. For the purpose of this paper, we discuss our approach to only one of
the SPM key processes, namely Quality Management, and describe the agent framework to accomplish the
black-box for this process. (Models for the communication management and risk management function can
be consulted in previous work of the authors.)
To describe how software agents are used to address the different functions of quality management, we use
a set of agent teams to address the individual functions and then define specialised software agents
operating within these teams, or on their own where applicable. In defining these specialised software
agents, we find that it is less intricate to design the behaviour of each agent. Furthermore, the specialised
agents also make it possible to describe the various interactions between different agents explicitly, which
in turn reduces the general complexity of the agent system. The various programming patterns (Aridor and
Lange 1998; Kendall et al. 2000) available, accomplish specific agent-associated tasks, such as creation,
migration, suspension, and collaboration.
The design of the overall system, based on components (specialised agents), simplifies the design and
programming of agents. The following specialised working agents are used in our discussion of the quality
management model that we present in the next subsection. These working agents include:
Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accomplish his or
her tasks by providing maximum assistance. This agent also has a collaborative nature, and relies on other
agents to provide it with the information that it requires to sustain its owner. The PA agent is not computer-
bound, but human-bound, as its human stakeholder may work on different computers in a distributed
environment.
Messaging agent: is an agent responsible for carrying messages between different agent teams. A
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the different
agent teams may function in a distributed environment.

Issues in Informing Science and Information Technology

APPENDIX C C-8

Task agent: an agent that supports a specific project task. This agent collaborates with other objective and
facilitator functions to support a specific task. This agent is commonly invoked by a PA agent to allow a
stakeholder to work on a specific task, and is continuously monitored by a monitoring agent.
Monitoring agent: is an agent responsible for monitoring tasks. A monitoring agent is mobile, with
intelligence, flexibility and strong collaborative properties.
Team manager agent: an agent that is responsible for managing a team of agents, ensuring coordination
between the subtasks of the different members of a team to accomplish the objective of the agent team.
Figure 2 illustrates the main operations in the quality management function. Various agents, as described
above will be developed and utilized to support every function of quality management. Agent teams will
cooperate to accomplish the objectives of these functions.
The interaction between different functions are depicted by arrows illustrating the direction of the
interaction.
For the model we present in this paper, we will adopt a combination of these functions:
Quality planning consists of determining which quality standards are relevant to this specific project and
deciding how these standards will be met. Obviously a quality plan must be devised and set. In our
discussion we assume quality measures derived from: (1) requirements and (2) standards. Agents utilized
will be:

Task agents to set and identify relevant quality measures,
mobile agents to communicate to stakeholders and teams,
monitoring agents to receive and distribute

teamwork agents to coordinate agents.
Quality assurance involves evaluating overall performance regularly to ensure conformance to the set
standards. Quality audits or reviews can support this function. Agents involved will be:
 Task agents to evaluate compliance to set relevant standards, and give warning messages,
 mobile agents to communicate,
 messaging agents to deliver messages,
 monitoring agents to control and execute audits.

Figure 2: Software Project Quality Management Framework.

Quality control involves monitoring the activities and end results of the project to ensure compliance with
the standards utilizing various available tools and techniques.
 Task agents to execute monitoring tasks,

S
T
A
K
E
H
O
L
D
E
R
S

User interface

Quality Planning

REPOSITORY

Quality Control

Quality Assurance

User interface

Validation/
Verification

Change control

Issues in Informing Science and Information Technology

APPENDIX C C-9

 mobile agents to receive and carry information,
 messaging agents, personal agents,
 monitoring agents to control and check that tasks meet measures.

Conclusion
In this paper we investigated an approach of using software agent technology to address the challenges
posed in the software project management arena. We focused on one of the key elements of SPM, namely
software quality management, and designed a generic agent framework to address all the tasks of this key
element. This framework forms a basis for other key elements, and could be adapted into individual
frameworks and then coordinated by an overall multi-agent system to achieve the objectives of SPM. Our
framework follows an approach of agent teams being composed of specialised software agents, each tasked
with a manageable /atomic/ task. This implied that the complexity of creating and maintaining tasks could
be greatly reduced. Although we have not yet completed the programming of the proposed system, we
believe that our solution in the form of a framework can potentially be significant, based on our experience
in other fields that advocate component-based development. We do, however, recognize the fact that
programming of the model will have to be completed and the model thoroughly tested against other SPM
tools before its true value will become apparent.

Acknowledgements
This research is based upon work supported by the National Research Foundation of South Africa under
Grant Number (GUN 2054319) in cooperation with the University of South Africa (UNISA). Any opinion,
findings and conclusions or recommendations expressed in this material are those of the authors and
therefore the NRF does not accept any liability in regard thereto.

References
Aridor, Y., & Lange, D.B. (1998). Agent design patterns: Elements of agent application design. Proceedings of the 2nd International

Conference on Autonomous Agents. Minneapolis/St. Paul, USA. 108 - 115.
Chen, F, Nunamaker, J. F., Romano, N. C. & Briggs, R. O. (2003). A collaborative project management architecture. Proceedings of

the 36th Hawaii International Conference on System Sciences.Big Island, Hawaii.
Croft, D.W. (1997) Intelligent software agents: Definitions and Applications.

http://www.alumni.caltech.edu/~croft/research/agent/definition/
Hall, G., Guo, Y.. & Davis R. A. (2003). Developing a value-based decision-making model for inquiring organizations. Proceedings

of the 36th Hawaii International Conference on System Sciences. Big Island, Hawaii.
Hass, A. M. J., Johansen, J., & Pries-Heje, J. (1998) Does ISO 9001 increase software development maturity. Proceedings of the 24th

EUROMICRO Conference. 1089-6503/98 1998 IEEE.
Hughes, B. & Cotterel, M. (2002). Software project management. Third Edition. McGraw-Hill.
D’Inverno, M. & Luck, M. (2001) Understanding Agent Systems, Springer-Verlag, Berlin.
Durham J. T. & Torrez, W. C. (2004) Net-Centric human-robotics operations. Proceedings of the IEEE International Conference on

Web Services (ICWS’04). IEEE 2004.
ELEC 4704 - Software project management. Department of Electrical and Information Engineering. University of Sydney. Retrieved

May 2004 from http://www.ee.usyd.edu.au/elec4704/lec-01.html
IEEE Standards Board. (1987). IEEE Standard for software project management Plans. IEEE Std 1058.1-1987. 16pp. PDF: ISBN 0-

7381-0409-4, SS12138.
Kendall, E.A., Krishna, P.V., Suresh C.B. & Pathak, C.V. (2000). An Application Framework for Intelligent and Mobile Agents. ACM

Computing Surveys. Vol 32. 1.
Krupansky, J.W. 2003. What is a Software Agent. Website. Retrieved May 2003 from http://agtivity.com/agdef.htm
Marchewka, J.T. (2003). Information technology project management. Wiley.
Maurer, F. (1996). Project Coordination in design processes. Proceedings of the 5th International Workshops for enabling

Technologies: Infrastructure for Collaborative Enterprises (WET ICE’96) IEEE.
Mehandjiev, N., & Layzell, P., Brereton, P., Lewis, G., Mannion, M, & Coallier, F. (2002) Thirteen knights and the seven-headed

dragon; an Interdisciplinary software engineering framework. Proceedings of the 10TH International Workshop on Software
Technology and Engineering Practice (STEP ‘02). 2002 IEEE

O’Connor, R. & Jenkins, J. (1999). Using agents for distributed software project management. Proceedings of 8th Intenational
Workshop on Enabling Technologies, pp 54-60, IEEE Computer Society Press.

Pacheco, O & Carmo, J. (2003). A Role Based Model for Normative Specification of Organized Collective Agency and Agents
Interaction, Autonomous Agents and Multi-Agent Systems, (Sycara, K.(ed)), Kluwer Academic Publishers, 6 (2).

Pai, W.C., Wang, C.C., & Jiang, D.R. (2000). A software development model based on quality measurement. Proceedings of the ICSA
13th International Conference. Computer Applications in Industry and Engineering, 40-43.

Sauer, J, & Applerath, H. (2003). Scheduling the supply chain by teams of agents. Proceedings of the 36th Hawaii International
Conference on System Sciences. Big Island, Hawaii.

Issues in Informing Science and Information Technology

APPENDIX C C-10

Schoeman, M. A, & Cloete, E. (2004). Design concepts for mobile agents. SA Computer Journal. Vol 32.
Schwalbe, K. (2004). Information technology project management. Third Edition. Thompson Learning.
Szejko, S. (2002) Requirements driven quality control. Proceedings of the 26TH International Computer Software and Applications

Conference (COMPSA)
The Standish Group. (1995).CHAOS. Retrieved 2003 from http://www.standishgroup.com/
The Standish Group. (2000). EXTREMECHAOS. Retrieved April 2003 from http://www.standishgroup.com/
Wooldridge M. (2001). An introduction to multi-agent systems. John Wiley & Sons. Chichester, UK.

Ms Rita C Nienaber is currently a senior lecturer at the University of South Africa in the Department of
Software Development, School of Computing. She obtained her Master of Science (Information
Technology), from the University of South Africa in 1996 and is currently enrolled for a doctorate degree
at Unisa. Whilst lecturing on modules namely database systems development, system analysis and design
and software project management, her areas of publishing focus on software project management and
software agent technology.

Andries Barnard, associate professor in the Department of Computer Science and Information Systems,
University of South Africa, holds a PhD (Computer Science). He teaches undergraduate courses in
automata theory and formal languages and project management, as well as postgraduate courses in project
management and research methodology. His research interests include software project management and
software agent technology, computer ethics as well as graph grammar languages.

Issues in Informing Science and Information Technology

APPENDIX D D-1

D. APPENDIX D

Paper presented at InSITE 2007: The Informing Science and Information Technology

Conference, Llubjana, Slovenia, June 2007.

This paper was published in the Interdisciplinary Journal of Information, Knowledge

and Management, Volume 2, 149-162 January 2008.

Issues in Informing Science and Information Technology

APPENDIX D D-2

A Generic Agent Framework to Support Various
Software Project Management Processes

Rita C Nienaber and Andries Barnard
School of Computing, University of South Africa, Pretoria,

South Africa

nienarc@unisa.ac.za barnaa@unisa.ac.za

Abstract

Despite various research efforts originating from both academia and industry, software projects have a
high rate of failure, more specific, software projects often do not comply with the traditional standard
measurements of success, namely time, cost and requirements specification. Thus, there is a need for
new methods and measures to support the software project management process.
Globalisation and advances in computing technologies has changed the software project management
environment. Currently software projects are developed and deployed in distributed, pervasive and
collaborative environments and traditional project management methods cannot, and do not, address
the added complexities inherent to this environment.
In this paper the utilisation of stationary and mobile software agents is investigated as a potential tool
to assist with the improvement of software project management processes. In particular we propose
and discuss a software agent framework to support software project management. Although still in its
initial phases, this research shows promise of significant results in enabling software developers to
meet market expectations, and produce projects timeously, within budget and to users’ satisfaction.

Keywords: Software Project Management, Software Agent Technology, Project Scope
Management, Project Time management, Project Cost Management, Project Quality
Management, Project Risk Management, Project Communication Management, Project
Human Resource Management, Project Procurement Management,

Introduction

Software Project Management (SPM) has become a critical task in many organisations. Managing
software projects is a complex task, further complicated by a continued increase in the size and
complexity of the software-intensive system. In the 1980’s SPM methodologies primarily focused on
providing schedule and resource data to management (Schwalbe, 2006.) However, present-day SPM
activities involve much more. With the advent of the Internet, improvement of computer hardware,
software, and networks, global interdisciplinary work teams have changed the working environment
addressed by SPM. Global networking capabilities have become more pervasive with the result that
cost-effective computing resources will continue to play a major role in improving organisational
operations.
SPM involves the management of all issues involved in the development of a software project, namely
scope and objective identification, evaluation, planning, project development approaches, software
effort and cost estimation, activity planning, monitoring and control, risk management, resource
allocation and control, as well as managing contracts, teams of people and quality.

Since publication of the 1995 report of The Standish Group (The Standish Group, 1995), this same
organisation studied 13,522 projects in a follow-up survey, aptly dubbed EXTREME CHAOS (The
Standish Group, 2000). This study determined that 23 percent of the surveyed projects failed, 49
percent did not meet the requirements and only 28 percent succeeded. In March 2003 the group reports
that success rates increased to a third of all projects, but time overruns increased to the 82nd percentile,
whilst only 52 percent of required and specified functions and features were included in the final
product (The Standish Group, 2003).

Issues in Informing Science and Information Technology

APPENDIX D D-3

Many software projects still failed to comply with the triple constraints of scope, time and cost
(Oghma: Open Source, 2003). These triple constraints refer to the fact that the failure of software
projects can mostly be attributed to projects not delivered on time and that it does not meet the
expectations of the client (scope), and as a result have cost overrun implications. As previously
mentioned, the SPM environment is continuously changing due to globalisation and advances in
computing technology. This implies that the traditional single project, commonly executed at a single
location, has evolved into distributed, collaborative projects. The focus in SPM processes has clearly
shifted from the position that it held two decades ago. Consequently, the size, complexity and strategic
importance of information systems currently being developed require stringent measures to ensure that
software projects do not fail. As organisations continue to invest time and resources in strategically
important software projects, managing the risk associated with the project becomes a critical area of
concern.

Software agent technology offers a promising solution in order to address SPM problems in a
distributed environment. According to this technology, software agents are used to support the
development of SPM systems in which data, control, expertise, or resources are distributed. Software
agent technology provides a natural metaphor for support in a distributed team environment, where
software agents can support the project manager and team members to monitor and coordinate tasks,
apply quality control measures, validation and verification, as well as change control. Agent
technology has distinct advantages over client/server technology as distributed system instantiation.
SPM skills, especially in the distributed computing environment, are greatly in demand. Moreover,
there is a need for technologies and systems to support management of related aspects of software
projects in such environments. Our research is therefore aimed at software practitioners and software
developers, but will also be beneficial to researchers working in the field of SPM.
In this paper the use of software agents is investigated as a potential tool to improve the management of
related SPM processes. We specifically concern ourselves with the question of how software agents
can be used to improve all core and facilitating management functions in distributed environments. As
a result, we propose two software agent frameworks to support SPM in such environments. Although
our research is not yet complete, initial indications are that it will enable software developers to meet
market expectations and to manage risk and associated core and facilitating factors accordingly. This,
in turn, will bring about savings in cost, time and effort.
In Section 2 of this paper, brief information regarding agent technology is provided. Section 3 contains
a background study on SPM and a discussion on agents utilised in SPM. In Section 4 the phases of the
core and facilitating functions during SPM are discussed, as well as a proposal of a generic multi-agent
framework supporting SPM. This framework supports the entire spectrum of SPM processes and as
instantiation thereof, has been conformed to include our previously identified frameworks for risk,
quality and communication management (Nienaber & Cloete, 2003; Nienaber, Cloete & Barnard, 2004;
Nienaber & Barnard, 2005). Finally, Section 5 presents a conclusion.

Software Agent Technology

This section presents a discussion on software agent technology. Differentiating properties of software
agents are explained.
A software agent is a software program that is capable of autonomous (or at least semi-autonomous)
actions in pursuit of a specific goal. The autonomy characteristic of a software agent distinguishes it
from general software programs. Autonomy in agents implies that the software agent has the ability to
perform its tasks without direct control, or at least with minimum supervision, in which case it will be a
semi-autonomous software agent. Software agents can be grouped, according to specific
characteristics, into different software agent classes. Literature does not agree on the different types or
classes of software agents. As software agents are commonly classified according to a set of
characteristics, different classes of software agents often overlap, implying that a software agent might
belong to more than one class at a time (d’Inverno and Luck, 2001). For the purpose of this research,
we distinguish between two simple classes of software agents, namely stationary agents and mobile
agents. Agents in both these classes may, or may not have, any or a combination of the following
characteristics: a user interface, intelligence, adaptivity, flexibility and collaborative properties
(Wooldridge, 2001).
Whether or not an agent has a user interface, depends on whether it collaborates with humans, other
agents or hosts. User interfaces are commonly only found where software agents are required to
interact with humans. According to Wooldridge (2001) intelligence implies the inclusion of at least
three distinct properties, namely reactivity, proactiveness and social ability. Reactivity refers to the

Issues in Informing Science and Information Technology

APPENDIX D D-4

agent’s ability to perceive its environment and respond timeously to changes that occur in order to
achieve its design goals. Proactiveness is the agent’s ability to take initiative in its environment in
order to achieve its design goals. Social ability alludes to the collaborative nature of the agent. There
are different definitions to define the collaborative nature of software agents. For the purpose of this
paper we use Croft’s (1997) definition in which the collaborative nature of a software agent refers to
the agent’s ability to share information or barter for specialised services to cause a deliberate synergism
amongst agents. It is expected of most agents to have a strong collaborative nature without necessarily
implying other intelligence properties. Adaptivity is a characteristic that can also be regarded as an
intelligence property, although it is not counted as a prerequisite to identify an agent as intelligent.
Adaptivity refers to an agent’s ability to customize itself on the basis of previous experiences. An
agent is considered flexible when it can dynamically choose which actions to invoke, and in what
sequence, in response to the state of its external environment (Pai, Wang & Jiang, 2000).

A stationary agent can be seen as a piece of autonomous (or semi-autonomous) software that
permanently resides on a particular host. Such an agent performs tasks on its host machine such as
accepting mobile agents, allocating resources, performing specific computing tasks, enforcing security
policies and so forth.
A mobile agent is a software agent that has the ability to transport itself from one host to another in a
network. The ability to travel allows a mobile agent to move itself to a host that contains an object
with which the agent wants to interact, and then to take advantage of the computing resources of the
object’s host in order to interact with that object. Full autonomy, migratability and collaborativeness
are the most important characteristics that should be imbedded in each mobile agent. When a mobile
agent possesses these three intelligence requirements, it is often referred to as a robot (Krupansky,
2003).

Software Project Management (SPM)

Software Project Management Framework
SPM is defined as the process of planning, organising, staffing, monitoring, controlling, and leading a
software project (IEEE Standards Board, 1987). A more detailed exposition shows that SPM involves
the planning, monitoring and controlling of people and processes that are involved in the creation of
executable programs, related data and documentation (Elec 4704, 2003). Figure 1 illustrates a
framework of the key elements in SPM identified by The Project Management Body of Knowledge
(PMBOK), (Project Management Institute, 2004). We distinguish between three key elements: project
stakeholders, project management knowledge areas, and project management tools and techniques.

Figure 1: Software Project Management Framework (adapted from Schwalbe (2006)).

K
N

O
W

LE
D

G
E

A
R

EA
S

CORE FUNCTIONS

Scope Management

Time Management Cost Management

Quality Management

FACILITATING FUNCTIONS

Human Resource
Management

Communication
Management

Risk Management Procurement
Management
M t

ST
A

K
EH

O
LD

ER
S

TO
O

LS
 &

 T
EC

H
N

IQ
U

ES

PROJECT MANAGEMENT INTEGRATION

Issues in Informing Science and Information Technology

APPENDIX D D-5

Project stakeholders are those individuals involved in all different project activities and
include the project sponsor, project team, support staff, customers, users, suppliers and even
opponents of the project. Although these stakeholders may have different views and
expectations, good relationships as well as communication and coordination between all of
these stakeholders are essential to ensure that the needs and expectations of stakeholders are
understood and met.

Software project management knowledge areas include the key competencies concerned
during the software project management process. These areas are categorised as core and
facilitating functions. The core functions, namely scope, time, cost and quality management
lead to specific project objectives and are supported by the facilitating functions. The
facilitating functions represent the means through which different objectives are to be met and
include human resource management, communication, risk, and procurement management.
Stretched across all these knowledge areas are the project management tools and techniques
(on the right-hand side of the framework diagram). These are used to assist team members
and project managers in carrying out the core and facilitating functions.

Software Agents in SPM
Software agent technology is at present explored as a promising way to support and implement
complex distributed systems and a useful supplement to client/server systems. In this section, the
authors briefly consider how agent technology is currently deployed in SPM by considering some
application examples. As described earlier, the SPM environment has changed in the past decade into a
dynamic and complex environment where flexible and adaptive behaviour and management techniques
are required. Agent-based solutions are applicable to this environment since they are appropriate in
highly dynamic, complex, centralised as well as distributed situations (Dowling, 2000). In addition to
the advantages of distributed and concurrent problem-solving, agent technology has the advantage of
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall, Guo &
Davis, 2003).
The first application that we mention utilises agents for project planning and process management in a
distributed environment. O’Connor & Jenkins (1999) propose an intelligent assistant system to support
the project team during planning, scheduling and risk management. Joslin & Poole (2005) adapts a
simulation-based planning algorithm to the problem of planning for SPM.
In another example software agents are used to control and monitor activity execution at various sites
in an open source platform supporting distributed software engineering processes. This environment is
being developed as part of the GENESIS project (Gaeta & Ritrovato, 2002). Software agents are used
in this project to support the control of software processes as well as the communication among
distributed software engineering teams. Agents are mainly utilised for the synchronisation of process
instances executed on different sites, the dynamic reconfiguration of software processes, process data
collection, monitoring of the processes, as well as artefact retrieval. Other relevant examples of agent
utilisation in SPM can be found, among others, in Maurer (1996) and Sauer & Appelrath (2003). Sauer
& Applerath (2003) present an application using agents to primarily focus on Time Management and
certain aspects of the Communication Management function. Maurer’s solution (1996) is applicable to
Scope Management, Time Management and, to a certain extent, the Communication Management
function. Agent technology has been more commonly applied to areas such as network and system
management (Kendall, Krishna, Suresh & Pathak, 2000), decision and logic support (Burstein,
McDermott & Smith, 2000), interest matching (Object Management Group, 2000), data collection in
distributed and heterogenous environments, searching and filtering, negotiating, and monitoring
(Venners, 1997).

Multi-Agent Model for Software Project Management

Software project management phases
In order to identify and compile a general multi-agent model to facilitate (in the following two
sections) all of the SPM processes involved, the steps comprising each process of each of the key areas
will be elaborated on below:

Issues in Informing Science and Information Technology

APPENDIX D D-6

Software scope management:
Schwalbe (2006) identifies the following specific phases of software project scope management namely
initiation, scope planning, scope definition, scope verification and scope change control. Initiation of
the project involves the commitment of an organisation to a project. Scope planning identifies and
refines project scope and creates a formal scope statement document, scope definition involves the
division of major project deliverables into smaller and more manageable components and scope
verification includes formal acceptance of the scope of the project by the various key stakeholders.
Software time management:
Time management involves the processes required to measure timely completion of a project and as
such involves not only the creation of an activity plan, but also the estimation of each task and activity,
resulting in the overall duration of the project. Activity planning constitutes the baseline for project and
resource scheduling, supporting a number of objectives (Hughes & Cotterel, 2006), namely feasibility
assessment, resource allocation, detailed costing, motivation and coordination of the project. The main
processes involved in time management (Schwalbe, 2006) are briefly reflected on below:
Activity definition involves the identification of each task or activity that must be executed in order to
produce the project deliverables. Activity sequencing indicates when each of the identified activities
should occur. Activity duration estimation concerns estimating the work periods to be executed.
Schedule development involves utilising the previous two activities, as well as resource requirements,
to create the project schedule. Schedule control refers to the controlling and managing of changes to
the initial schedule.
Software cost management:
Cost management can be seen as all processes required to ensure that a project team completes a
project within an approved budget (Schwalbe, 2006). Cost estimation refers to the process of
developing an approximation or estimate of the costs of all actions, resources and procedures, and cost
budgeting involve using the project cost estimate and allocating this to individual work items. Cost
control and monitoring includes monitoring cost performance, reviewing changes and notifying
stakeholders and team members of changes related to cost.
Software quality management:
The Project Management Body of Knowledge (PMBOK) defines project quality management as
processes required to ensure that the project will satisfy the needs for which it was undertaken. It
includes all activities of the overall management function that determine the quality policy, objectives,
and responsibility and implements these by means of quality planning, quality assurance, quality
control and quality improvement, within the quality system. Major quality management processes
identified by Schwalbe (2006) are quality planning during which quality standards are identified and
applied. Quality assurance involves evaluating overall performance regularly, quality audits or
reviews can support this function. Quality control concerns monitoring activities and end results to
ensure compliance to standards.
Software human resource management:
Human resource management involves all processes required to effectively utilise all resources
involved in a project. A resource may be seen as any item or person required for the execution of a
project. Human resource management concerns all project stakeholders involved in developing the
project. The main focus of this process is to allocate resources to activities, and to create a work
schedule from the activity plan. Hughes & Cotterell (2006) identifies 7 categories of resources to be
managed for a project, namely labour, equipment, materials, space, services, time and money.
Schwalbe (2006) identifies three phases, namely organisational planning, staff acquisition and team
development.
Software communication management:
Communications management in a software project is an enabling and supporting action that ensures
timely and appropriate generation, collection, dissemination, storage and disposition of project
information (Schwalbe, 2006). Effective communication and sharing of information and knowledge
among project contributors are required. Schwalbe (2006) identifies five distinct functions associated
with communications management, namely: The communications planning function that determines
the who, when and how of the project, whilst the information distribution function entails disseminating
information to keep all stakeholders informed. Performance reporting alludes to the generation of
reports such as status, progress and forecasting reports, while the administrative closure function
involves project archiving and formal acceptance of reports. Finally the teamwork support function
refers to the functions pertaining to collaborative project tasks, and hence includes the scheduling of

Issues in Informing Science and Information Technology

APPENDIX D D-7

meetings for these collaborative tasks. It therefore facilitates a collaborative working environment as
well as document distribution.
Software risk management:
Various models or frameworks exist to ameliorate the risk associated with software project
development. According to Marchekwa (2003), this basically entails two aspects, namely risk analysis
and risk management. Risk analysis includes risk identification, qualitative and quantitative risk
analysis, evaluation and assessment. Risk management on the other hand entails risk planning,
monitoring and control. Similarly, Hughes and Cotterel (2006) identify two major areas, namely risk
analysis and risk management, based on Boehm’s model (1989), including the following functions
namely risk identification, risk evaluation, risk planning, risk control, and risk monitoring
Software procurement management:
During the process of software project development, products, goods or items that are not readily
available within the organisation (perhaps in the form of software, hardware or people) must be
acquired (Marchewka, 2003). Procurement refers to the process of acquiring goods or services from an
outside source. Procurement management thus entails a set of procedures to facilitate acquisition of
such products, expediting external work and to ensure the satisfactory standard of work throughout a
given organisation. These may involve rules for acquisition, purchase order documentation required by
a specific organisation and creating and maintaining lists of trustworthy, qualified vendors (Hughes &
Cotterel, 2006). Project procurement management consists of six main processes, namely procurement
planning, solicitation planning, solicitation, source selection, contract administration, and contract
close-out (Schwalbe, 2006).
However, these phases should not be considered as separate development phases but should be
entwined in all phases and all processes during the SPM undertaking. The following table depicts the
phases utilised during execution of the core and facilitating functions:

Table 1: Software Project Management core and facilitating functions.
Scope
Manage-
ment

Time
Manage-
ment

Cost
Management

Quality
Managem
ent

HR
Manage-
ment

Communica-
tion
Management

Risk
Manage-
ment

Procurement
Management

Initiation Activity
definition

Cost &
resource
planning

 Identification Identification Identification

Definition Activity
sequencing
Activity
duration
estimation

Cost
estimation

Planning Planning
Team
development

Planning
Team support

Estimation
Evaluation
Assessment

Solicitation
Planning

Planning Time
schedule
development

Budgeting Assurance Monitor &
control

Information
Distribution

Planning
Staffing

Contract
administration

Control Time
schedule
control

Control Control Performance
Reporting

Monitor
Control

Control

Verificatio
n

 Validation Admin closure

.
As abstraction of this table the correlating phases of the core and facilitating functions will be used to
compile a generic model in a subsequent section.

Software agents to support SPM
Software agent technology provides a useful paradigm for the use of distributed computational
resources. Mobile agents (Butte, 2002) enable a shift in the communication paradigm of distributed
systems from data shipping to function shipping. Using mobile agent technology, in comparison to the
classic well-known Remote Procedure Call (RPC), or its object-oriented equivalent Remote Method
Invocation (RMI), due to the autonomous code it entails may attain a higher level of abstraction. This
autonomy reduces network load and communication overhead in distributed applications. Distributed
applications based on RPC techniques are suitable for stable and static system structures, which is not
always the case in a distributed environment.
To describe how software agents are used to address the different functions, we use a set of agent
teams to address the individual functions and then define specialised software agents operating within
these teams, or on their own where applicable. In defining these specialised software agents, we find
that it is less intricate to design the behaviour of each agent. Furthermore, the specialised agents also

Issues in Informing Science and Information Technology

APPENDIX D D-8

make it possible to describe the various interactions between different agents explicitly, which in turn
reduces the general complexity of the agent system. The various programming patterns (Aridor &
Lange, 1998; Kendall, et al, 2000) available, accomplish specific agent-associated tasks, such as
creation, migration, suspension, and collaboration.
The design of the overall system, based on components (specialised agents) simplifies the design and
programming of agents. The following specialised working agents are used in our discussion of the
generic multi-agent framework that we present in the next subsection.
These working agents include:
Personal assistant agent (PA agent): an agent that supports an individual stakeholder to accomplish
his or her tasks by providing maximum assistance. This agent also has a collaborative nature, and
relies on other agents to provide it with the information that it requires to sustain its owner. The PA
agent is not computer-bound, but human-bound, as its human stakeholder may work on different
computers in a distributed environment.
Messaging agent: an agent responsible for transporting messages between different agent teams. A
messaging agent has strong collaborative characteristics and is by nature a mobile agent since the
different agent teams may function in a distributed environment.
Task agent: an agent that supports a specific project task. This agent collaborates with other objective
and facilitator functions to support a specific task. Such an agent is commonly invoked by a PA agent
to allow a stakeholder to work on a specific task, and is continuously monitored by a monitoring agent.
Monitoring agent: an agent responsible for monitoring tasks. A monitoring agent is mobile, with
intelligence, flexibility and strong collaborative properties.
Team manager agent: an agent that is responsible for managing a team of agents, ensuring
coordination between the sub-tasks of the different members of a team to accomplish the objective of
the agent team.
For the model we present in this paper, we will adopt a combination of these agents.

Software agent framework to support SPM
We briefly reconsider the distinct knowledge areas and practices entailed in software project
management (illustrated in Figure 1 and summarised in table 1), to emphasise the focus of our work for
this paper. The SPM areas consist of four core functions and four facilitator functions. We believe that
each of these key processes/functions could successfully be addressed by following a black box
approach that is based on agent technology. Each black box consists of collaborative software agents
ensuring cooperation, coordination and synergy between the different black boxes. Within such a black
box a component-based development approach is followed. According to this approach, we use
multiple (simple) agents, each with a particular objective, rather than fewer (complex) agents of which
each has a long list of tasks to accomplish. An abstraction of the generic functions of a key SPM
process was compiled into a generic model (Figure 2).

Figure 2: Generic model for SPM processes

Repository

User Interface

Initiation

S
T
A
K
E
H
O
L
E
R
S

Analysis /
evaluation

Control &
monitor

Validation

User Interface

Planning

Issues in Informing Science and Information Technology

APPENDIX D D-9

This abstraction will be used to compile two generic multi-agent frameworks supporting all phases of
SPM. In particular we discuss our approach to the entire spectrum of the SPM key processes, and
describe the agent framework to accomplish the black-box for these processes.
As mentioned previously, an abstraction of the functions of the key SPM processes was compiled into a
generic model (Figure 2). This abstraction can then be used to compile a conceptual model or
framework for each of the key SPM processes. To illustrate this process risk management is used as an
example. Software risk management consist of the following phases: risk identification, risk analysis
that includes risk assessment and evaluation, risk planning, monitoring and control. An agent
framework depicting this key area is illustrated in Figure 3.

 Figure 3. Software risk management.

The generic model as depicted in Figure 2 was instantiated to one key area, namely risk management,
resulting in Figure 3 above. In a similar way the basic generic model will be detailed, elaborated and
expanded on to compile an overall framework and two conceptual models will be created depicting the
core functions and the facilitating functions, Figure 4 and Figure 5 respectively. A conceptual model
for the SPM core functions: time management, cost management, quality management & scope
management are shown on the following page in Figure 4.

S
T
A
K
E
H
O
L
D
E
R
S

User interface
Risk
Identification

User Interface
Risk planning
interface

Risk assessment
& evaluation

Risk monitor &
control

 Repository

Issues in Informing Science and Information Technology

APPENDIX D D-10

Figure 4: Conceptual model for the core functions: time management, cost management, quality
management & scope management.

The SPM facilitating functions: communication management, risk management, procurement
management and human resource management are depicted in Figure 5 on the following page.

STAKEHOLDERS

User Interface

Activity define &
sequencing

User Interface

Time schedule
development

REPOSITORY

Activity duration
estimation

Time schedule
control

Cost estimation

User Interface

Cost & resource
planning

User Interface

Cost control

Cost budgeting

STAKEHOLDERS

Quality Control

User Interface

Quality
assurance

Change
control

Validation

Scope initiation

User Interface

Scope Control

User Interface

Quality Planning

User Interface

Scope
planning

Scope
definition

Scope
verification

Issues in Informing Science and Information Technology

APPENDIX D D-11

Figure 5: Conceptual model for facilitating functions: communication management, risk management,
procurement management and human resource management

We believe that both these models may be implemented as agent black boxes in support of SPM
functions.
As prototype of this model one key core function, namely risk management, is currently being
implemented in Java and will subsequently be tested. To implement a software agent system an
adaptive and flexible framework is needed that supports multi-agent features that permits the set up of a
distributed application, as well as an appropriate level of reasoning capability.
As Java contains most of the required technologies to implement software and mobile agents, such as
multithreading, remote method invocation, portable architecture, security features, broadcast support
and database connectivity (Wooldridge, 2002), it is viable to implement the system in Java. JADE
(Java Agent Development Framework) is a software framework to de
velop agent-based applications in compliance with the FIPA specifications for interoperable intelligent
multi-agent systems. It supports debugging and deployment, the agent platform can be distributed
across machines, and the graphical user interface (GUI) can be controlled and changed via a remote

User Interface

Risk planning

Risk monitor
Risk control

Risk evaluation
Risk assessment

REPOSITORY

Admin
closure

Performance
reporting

Information
distribution

STAKEHOLDERS

User Interface

Risk
identification

User Interface

Team support

User Interface

Communication
identif ication
planning

H R Team
development

User Interface

HR organizational
planning

User Interface

Procurement
identification
plan

User Interface

Contract
administration

User Interface

H R Monitor
H R Control

Planning Contract
closure

Procurement
solicitation

STAKEHOLDERS

Issues in Informing Science and Information Technology

APPENDIX D D-12

GUI. The goal is to simplify the development while ensuring compliance to standards through a
comprehensive set of system services and agents. JADE can be considered as agent middleware that
implements an agent platform and sustains a development framework. JADE facilitates mobile agent
application development, providing key features for distributed network programming. The
development and implementation detail, as well as test results, will be detailed in further research.
 As part of our research we regard the ISO standards as important guidelines. ISO27001 utilises a
model, namely the PDCA cycle to develop and improve an organisation’s management system. This
cycle was originally designed by Walther Shewart, but revised by the Quality Management authority W
Edwards Deming and is currently known as the Plan-Do-Check-Act standard (ISO17799, 2006). This
cycle is used to coordinate continuous improvement efforts, supports daily routine management,
supports general problem-solving processes, and also supports SPM, vendor management, human
resource management and product development.
Our proposed generic model as illustrated in figure 2 are compared to the ISO standard PDCA Cycle in
table 2. The first three phases conforms to that of the PDCA cycle’s last three phases. This work will
be elaborated on in further research.
Tabel 2: Comparison of PDCA cycle and generic model for software agent frame
PDCA Cycle Generic model for software agents
 Initiation / evaluation
Plan Planning
Do Control / Monitor
Check Validation / verification
Act

Conclusion
In this paper we investigated an approach of using software agent technology to address the challenges
posed in the Software Project Management (SPM) arena. We focussed on compiling a generic model
supporting all key areas of SPM, and designed a generic agent framework to address the common tasks
of the key elements. This abstract model was instantiated and detailed to form two comprehensive
overall frameworks, supporting all core and facilitating functions. The framework forms a basis for all
core and facilitating functions to achieve the objectives of SPM. Our framework follows an approach
of agent teams being composed of specialised software agents, each tasked with a manageable / atomic
task. This implies that the complexity of creating and maintaining tasks can be greatly reduced. The
prototype of this system is currently being implemented for one core function in Java’s development
platform JADE. We believe that our solution in the form of a framework can potentially be significant
based on our experience in other fields that advocate component-based development. Our framework
complies with the ISO 27001 standard PDCA cycle, and as such it supports a recognised standard
utilised during SPM.

References
Aridor, Y. & Lange, D.B. (1998). Agent design patterns: Elements of agent application design. Proceedings of the
2nd International Conference on Autonomous Agents. Minneapolis/St. Paul, USA. 108 - 115.
Boehm, B. W. (1989). A Spiral Model of Software Development and Enhancement. Computer (May) 61 -72.
Burstein, M., McDermott, D. & Smith D.R. (2000). Derivation of glue-code for agent interoperation. Proceedings
of the 4th International Conference on Autonomous agents. ACM Press.
Butte, T. (2002) Technologies for the development of agent-based distributed applications. Crossroads Vol 8 issue
3 pp 8 – 15.
Croft, D.W. (1997) Intelligent software agents: Definitions and Applications. Retrieved May 3, 2003 from
http://www.alumni.caltech.edu/~croft/research/agent/definition/
d’Inverno, M. and Luck, M. (2001), Understanding Agent Systems, Springer-Verlag, Berlin.
Dowling, C. (2000), Intelligent agents: some ethical issues and dilemmas, AICE 2000, Retrieved August 1, 2003
from http://www.businessit.bf.rmit.edu.au/aice/events/AICE2000/papers/dow.pdf.
ELEC 4704 - Software project management. Department of Electrical and Information Engineering. University of
Sydney. Retrieved May 12, 2004 from http://www.ee.usyd.edu.au/elec4704/lec-01.html
Gaeta, M. & Ritrovato, P. (2002). Generalised Environment for Process Management in Cooperative Software
Engineering. Proceedings of the 26th Annual International Computer Software and Applications Conference.
Oxford England.
Hall, G., Guo, Y. & Davis R. A. (2003). Developing a value-based decision-making model for inquiring
organizations. Proceedings of the 36th Hawaii International Conference on System Sciences. Big Island, Hawaii.
Hughes, B. & Cotterel, M. (2006). Software project management. Fourth Edition. McGraw-Hill.

Issues in Informing Science and Information Technology

APPENDIX D D-13

IEEE Standards Board. (1987). IEEE Standard for software project management Plans. IEEE Std 1058.1-1987.
16pp. PDF: ISBN 0-7381-0409-4, SS12138.
ISO 17799 Central. The A-Z guide for BS7799 and ISO17799 Information. Retrieved November 11, 2006, from
http://www.17799central.com/pdca.htm
Joslin, D. & Poole, W. (2005). Agent-based simulations for software project planning. Proceedings of the 2005
Winter Simulation Conference. IEEE 2005
Kendall, E.A., Krishna, P.V., Suresh C.B. & Pathak, C.V. (2000). An Application Framework for Intelligent and
Mobile Agents. ACM Computing Surveys. Vol 32. 1.
Krupansky, J. W. (2003). What is a Software Agent. Retrieved October 12, 2005 from
http://agtivity.com/agdef.htm
Marchewka, J.T. (2003). Information technology project management. Wiley.

Maurer, F. (1996). Project Coordination in design processes. Proceedings of the 5th International Workshops for
enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’96) IEEE
Nienaber, R C & Cloete, E. (2003) A Software agent framework for the support of software project management.
Proceedings of SAICSIT 2003. pp 16-23
Nienaber, R C, Cloete, E & Barnard, A. (2004) Software project risk management supported by agent technology.
The Business Review Journal, pp 452-459
Nienaber, R C & Barnard, A. (2005). Software Quality Management supported by Software Agent Technology.
Issues in Informing Science and Information Technology, pp 659-670
Object Management group (2000). Mobile Agent Facility Specification. Retrieved October 8, 2002, from
http://www.omg.org
O’Connor, R. & Jenkins, J. (1999). Using agents for distributed software project management. Proceedings of 8th
Intenational Workshop on Enabling Technologies, pp 54-60, IEEE Computer Society Press.
Oghma: Open Source (2003) Types of Software Agents. Retrieved May 4, 2003 from http://www.oghma.org
Pai, W.C., Wang, C.C. & Jiang, D.R. (2000). A software development model based on quality measurement.
Proceedings of the ICSA 13th International Conference. Computer Applications in Industry and Engineering, 40-
43.
Project Management Institute, (PMI) 2004. A Guide to the Project Management body of Knowledge (PMBOK
Guide).
Sauer, J & Applerath, H. (2003). Scheduling the supply chain by teams of agents. Proceedings of the 36th Hawaii
International Conference on System Sciences. Big Island, Hawaii.
Schwalbe, K. (2006). Information technology project management. Fourth Edition. Thompson Learning.
The Standish Group. (1995).CHAOS. Retrieved May 4, 2005 from http://www.standishgroup.com/
The Standish Group. (2000). EXTREME CHAOS. Retrieved May 4, 2005 from http://www.standishgroup.com/
The Standish Group. (2003). Latest Standish group CHAOS report shows product success rates have improved by
50%. Retrieved March 30, 2005 from http://www.standishgroup.com/
Venners, B. (2000). Inside the Java Virtual Machine. Second Edition. McGraw-Hill.
Wooldridge, M. (2002). An introduction to multi-agent systems. John Wiley & Sons. Chichester, UK.

APPENDIX E E-1

E. APPENDIX E

Paper presented at IADIS, 2008: The International Applied Computing Conference,

10 -13 April, Algarve, Portugal.

This paper was published in the conference proceedings. ISBN 978-972-8924-52-2

APPENDIX E E-2

SOFTWARE AGENT TECHNOLOGY SUPPORTING
RISK MANAGEMENT IN SPM

Nienaber RC, Smith E, & Barnard A,
University of South Africa

South Africa

Van Zyl T
The Meraka Institute

South Africa

ABSTRACT

Globalisation and advances in computing technologies have changed the software project management
environment. Currently software projects are developed and deployed in distributed, pervasive and collaborative
environments and traditional project management methods cannot, and do not, address the added complexities
inherent to this environment. Thus, there is a need for new methods and measures to support the software project
management process.

In this paper software agents are investigated as a potential tool to assist with the enhancement of software
project management processes. In particular the authors propose to enhance software project management
processes with a software agent framework, which forms part of the SPMSA model. A prototype is developed for
the risk management function area of this model, to prove that the model, and specifically the agent framework, is
not merely a theoretical concept, but can indeed be implemented. This research shows promise of significant
results in enabling software developers to meet market expectations, and produce projects timeously, within budget
and to users’ satisfaction.

KEYWORDS:

 Software Project Management, Software Agent Technology, Risk management

1. INTRODUCTION

Software Project Management (SPM) has become a critical task in many organizations. Over the past
years, development of software projects regularly failed to come up to user expectations, were
commonly delivered late, and mostly ran over the set budget. Much of this still holds true in the present
context, and these issues have to be addressed in concrete terms (Chen, Nunamaker, Romano & Briggs,
2003). As a result the field of software project management (SPM) is receiving increasing attention and
various methods and techniques are utilized to optimise the SPM processes.

SPM involves the management of all aspects and issues that are involved in the development of a
software project, namely identification of scope and objectives, project development approaches,
software effort and cost estimation, activity planning, monitoring and control, risk management,
resource allocation and control, as well as managing contracts, teams of people and quality (Hughes &
Cotterel, 2006). Furthermore, SPM processes comprise their own unique features. Characteristics
unique to software projects are invisibility, complexity, conformity and flexibility. These aspects
contribute to the difficulty in pinpointing a software project as an exact task with a specific beginning,
an end and deliverables. The unique nature of SPM is seen as a contributing factor to the difficulties
experienced with managing software projects and the failure of such projects.

During the past decade computer technology expanded and management and control functions were
automated and supported by software tools and techniques in an effort to support SPM management
and control (Chen et al., 2003). Currently the SPM environment is still changing due to business
globalization and information technology advances that support distributed and virtual teams and
projects (Chen et al., 2003). The increasing number of distributed projects involving software project
collaborators from different locations, organizations and cultures, changes the SPM paradigm of a
traditional project focussing on a single project executing at a specific location (Jonsson, et al., 2001;
Smits & Pshigoda, 2007). The focus of SPM processes has clearly shifted from the position that it held
two decades ago. Consequently, tools for effective sharing of information and knowledge among

APPENDIX E E-3

project contributors, as well as efficient task scheduling, tracking and monitoring are needed. High
levels of collaboration, task interdependence and distribution have become essential across time, space
and technology (Chen et al., 2003).

The need for flexible management of ever changing organizational structures such as dealt with in
SPM, are suitably addressed by the computational mechanism of agent systems (Jennings, 2001).
Jennings and Wooldridge (1998) define a software agent as an autonomous system, capable of flexible
autonomous action in order to meet its design objectives. Software agents are appropriate in highly
dynamic, complex, centralised as well as distributed situations (Butte, 2002). In addition to the
advantages of distributed and concurrent problem-solving, agent technology has the advantage of
sophisticated patterns of interaction, namely cooperation, coordination and negotiation (Hall, et al.,
2003). Agent computing provides explicit benefits for open and dynamic environments. In particular
software agent technology provides a useful paradigm for the use of distributed computational
resources. Mobile agents enable a shift in the communication paradigm of distributed systems from
data shipping to function shipping (Butte, 2002). Using mobile agent technology, in comparison to the
classic well-known Remote Procedure Call (RPC), or its object-oriented equivalent Remote Method
Invocation (RMI), due to the autonomous code it entails will enable the designer to attain a higher level
of abstraction. This autonomy reduces network load and communication overhead in distributed
applications. Furthermore agents are naturally heterogeneous, thus mobile agents can execute on
different hardware and software platforms. Software agent technology therefore provides a natural
metaphor for support in a distributed team environment, where software agents can support the project
manager and team members to monitor and coordinate tasks, apply quality control measures, to
validate and verify, as well as change control.

In previous work we reported on the development of a model for SPM, where the SPM processes
are supported by software agents (Nienaber & Barnard, 2007). The model entitled “SPMSA” (Software
Project Management supported by Software Agents) aims to enhance the SPM processes by addressing
the intrinsic unique aspects of SPM. This model is unique in that it aims to support and enhance the
entire environment of the SPM arena. The purpose of this paper is to report on work-in-progress
regarding implementing one section of the SPMSA model i.e. the risk management function. This
implementation serves to illustrate that the proposed SPMSA model (see reference for more detail on
this model) can be implemented and is not merely a theoretical concept. Due to paper length it is not
possible to discuss the implementation of the entire model.

2. OVERVIEW OF THE SPMSA MODEL

The main goal of the proposed SPMSA model is to support the teams and individual team members in
the SPM environment while executing their tasks. The team leader, teams and individual team
members will be supported during each process of software project management to simplify the
environment, eliminate the complexities, enhance coordination and communication, implement
dynamic changes in the system and support task scheduling. Figure 1 on the following page presents a
conceptual view of the proposed model.

Software project management knowledge areas include the key competencies concerned during the
software project management process. These areas are categorised as core and facilitating functions.
The core functions, namely scope, time, cost and quality management lead to specific project
objectives and are supported by the facilitating functions. The facilitating functions represent the means
through which different objectives are to be met and include human resource management,
communication, risk, and procurement management. Stretched across all these knowledge areas are the
project management tools and techniques. These are used to assist team members and project
managers in carrying out the core and facilitating functions. These form the basic key function areas of
SPM.

Each key function has a number of basic phases. On close inspection overlapping phases can be
identified, as executed in each of these processes. An abstraction of these functions may be mapped to
a generic model, containing overlapping phases for each function or process of SPM (Nienaber &
Barnard, 2007 for more detail).

APPENDIX E E-4

Figure 1. Conceptual view of the SPMSA model

A generic model of software development for each key function is represented by the top part of

figure 1 i.e. the different phases. During phase 1 (Identification, initiation and definition of key
functions) elements concerning each key function are defined, scrutinized and initiated. In phase 2
concepts of the key function concerned is assessed and evaluated. The planning for the “concepts of the
particular process” of the key function is conducted in phase 3. Finally, in phase 4 the different
functions associated with each key function are monitored, controlled and managed.

Although a few additional functions may exist according to the specific key function, all functions
have these basic phases in common. During the implementation of these phases the phase will be
tailored to each individual key function, i.e. cost or time management. The upper section of figure 1
therefore represents the SPM processes that will be supported by an agent framework.

Each of the key functions of SPM will be supported by a combination of one or more of the agents
as shown in figure 1 – bottom part. The software agents will support the generic functions for each of
the key SPM processes (with minor practical differences, i.e. risk or time initiation). The various
phases of SPM will be supported by agents or teams of agents (the agent framework). For illustrative
purposes this basic configuration is represented as a conceptual view of the operational environment of
3 team members, which will probably be geographically dispersed, and is depicted in figure 1.

To describe how software agents can generically be used to address different functions of SPM, we
use a set of agent teams to address the functions and then define specialised software agents operating

Phases of software development for each key SPM function

Identification, initiation &
definition of key functions

Assessment and evaluation of
key concepts

Monitoring, control and
management

Planning for
concepts

SPM team members

Phase 1

Phase 2

Phase 3

Phase 4

Apply Software Agent Framework to support each SPM key function

Team MemberA

Team MemberB

Team MemberC

Project mana-
ger agent

Task agent

Monitoring
agent

PA agentA PA agentB

PA agentC

agent
management
agent

Client
agent

Directory
facilitator Team leader

agent

Development of software projects

APPENDIX E E-5

STAKEHOLDERS

User Interface
Risk identification

Risk assessment

REPOSITORY

Risk monitor

User Interface
Risk analysis (plan)

within these teams, or on their own where applicable. For a detailed discussion on software agent
technology, the interested reader is referred to Wooldridge (2002) and Butte (2002). The following
specialised working mobile and stationary agents are used:
A Personal Assistant Agent (PA agent) supports each individual team member to accomplish his or her
tasks by providing maximum assistance, as well as providing an interface between the team member
and other agents. The PA agent is not computer-bound, but human-bound, as its stakeholders may be
required to work on different computers when working in a distributed environment.
The Task Agent (TA) is an agent that supports a specific project task. This agent collaborates with other
objective and facilitator functions to support a specific task. This mobile agent is commonly invoked by
a PA agent to allow a stakeholder to work on a specific task.
The Client Agent (CA) is a stationary agent responsible for a specialized task, such as information
retrieval.
The Monitoring Agent (MA) is a mobile agent responsible for monitoring tasks, reporting back to
enable scheduling, rescheduling of tasks, as well as the notification of stakeholders.
The Directory Facilitator (DF) provides a yellow page functionality that assists agents to discover
services provided by one another.
The Agent Management Agent (AM) is responsible for managing a team of agents, ensuring
coordination between the sub-tasks of the different members of a team to accomplish the objective of
the agent team. This agent enables communication, mobility, instantiation and destruction amongst
other tasks.
Team Leader (TL) is an agent that is responsible for managing a team of agents, ensuring coordination
between the sub-tasks of the different members of a team.
Project Manager (PM) is an agent that takes on the project manager role, assists with the creation of
the project, initial specification of the tasks, and allocation of tasks to personnel.

3. SOFTWARE PROJECT RISK MANAGEMENT

This paper focuses on the risk management function area (part of the facilitating functions – as
mentioned in the previous section) of the proposed model only. For the proposed of this study, risk
analysis comprises the risk identification function (i.e. identifies potential risks), the risk assessment
function (i.e determine what the likelihood of a particular risk occurring is), the risk planning and
analysis (i.e. determine risk strategies to deal with identified risks), and the risk monitor function (i.e.

monitor the environment to pinpoint possible
changes that needs attention). Figure 2
depicts a graphical representation of the
different risk management stages as described
above. Each of these key functions could
successfully be addressed by following a
black box approach that is based on agent
technology. Each black box consists of
collaborative software agents ensuring
cooperation, coordination and synergy
between the different black boxes. Within
such a black box a component-based

development approach is followed. This will be further addressed by the prototype in the next section.

4. PROTOTYPING THE RISK MANAGEMENT FUNCTION AREA

The purpose of this section is to illustrate how one functional area of the SPMSA model, namely risk
management, can be implemented. Other functional areas of the model will be implemented in a
similar way.

As Java contains most of the required technologies to implement software and mobile agents, such
as multithreading, remote method invocation, portable architecture, security features, broadcast support
and database connectivity (Wooldridge, 2002), it is viable to implement the risk management function
area of the proposed model in Java. JADE (Java Agent Development Framework) is a software
framework to develop agent-based applications in compliance with the FIPA specifications for

Figure 2. Risk management stages

APPENDIX E E-6

interoperable intelligent multi-agent systems. It supports debugging and deployment, the agent
platform can be distributed across machines, and the graphical user interface (GUI) can be controlled
and changed via a remote GUI. The goal is to simplify the development while ensuring compliance to
standards through a comprehensive set of system services and agents. JADE can be considered as agent
middleware that implements an agent platform and sustains a development framework. JADE
facilitates mobile agent application development, providing key features for distributed network
programming.

The JADE platform allows for easier communication by adhering to the FIPA standard for Agent
Communication referred to as FIPA-ACL. Agent interaction is explicitly handled by the JADE
framework through the Directory Facilitator (DF). The DF acts as a yellow page directory to enable the
discovery of agents and agent services. The entire process of agent management including agent
mobility, suspension, awaking, creation and destruction is handled by the Agent Management System
(AMS). The JADE container provides a context for agent existence and can be extended by other
containers to form a distributed environment (Bellifemine et. al., 2001). The risk management stages
as illustrated in figure 2 will be supported by a team of agents on the JADE platform.

The risk identification phase entails that specific risks are identified by the project manager and the
team members. The Project Manager agent uses the Directory Facilitator agent to identify Personal
Assistant agents of all the members of the team. The project manager then identifies possible risks for
this project. The Agent Manager agent is responsible for managing the team of agents, ensuring
coordination between the sub-tasks, communication between agents and location distribution of agents.
The project leader defines the parameters of the project with the assistance of the PA agent, adds tasks
and subtasks, and allocates tasks to team members, with the support of the PA agent. The monitoring
agent will be responsible for monitoring tasks, reporting back to the PA’s where rescheduling of tasks
as well as the notification of stakeholders can take place. Task documents, attached to a specific task,

will also be monitored. The task agent
will traverse the distributed network for
input of all team members on the
selected risks, which will enhance the
process by sending the functionality to
the various team members. Network
load is lightened and communication
overhead lessened. Task documents
will also automatically be distributed
over the distributed network, lessening
the work load of each team member.

During risk assessment the task
agent further traverse the distributed
network of team members,
communicating with each team
members’ personal assistant agent.
Each team member will allocate a
weight to relevant risks in the form of
the probability of occurrence on a scale

of 1-100. The task agent will perform the calculation of risk probability for each risk identified, as well
as correlating the input of all team members. The two columns in figure 3, Risk probability and Money
value, will be populated once it is calculated by the task agent. The team members will continuously be
informed of the risk probability and monetary value implications if known at this stage. Furthermore,
each team member will be prompted on the percentage that each task is completed, at regular time
intervals. The task documents will also be attached to a task. Thus this function will enhance the risk
management function by continuously updating team members on the probability of a certain risk
occurring. The status of each task will also be monitored by the task and monitoring agent. In other
words if a task runs late, the preceding tasks will be sent a message that there is a problem, and when
the task is finished completed deliverables and documents are automatically distributed amongst the
team.

The risk monitor and control phase will provide the team and the team leader with information on
the status of each specific task; a warning message if tasks or deliverables are overdue or on schedule;
the probability of occurrence of identified risks, on a scale of 1 – 100. Due to paper length only one
screen of the prototype is shown, namely figure 3, which report on the task status. Task Design
Database is on track and thus no action needs to be taken. The SPM process is enhanced by the
additional information supplied to the team and team leader on a daily basis. The team leader will be

Figure 3. Task status

APPENDIX E E-7

informed of the status of all tasks of the specific project. If a task falls behind schedule immediate
action can be taken. Communication overhead and network load are lessened. Distributed teams can
also communicate and coordinate through this heterogeneous nature of the agent system. Note that the
risk planning phase, does not yet form part of the scope of the prototype. This prototype is being
refined and will be evaluated in a real-life scenario, as well as verified by comparing it to an ISO
standard.

5. CONCLUSION

In this paper we illustrated that our SPMSA model can be implemented by agents and we
highlighted the benefits of such a supporting agent framework in the SPM arena. Our prototype
currently implements only certain sections of the model as it is implemented as ‘proof of concept’ but it
can be expanded to include the entire model as well as all areas of SPM.

Our research is aimed at software practitioners and software developers, but will also be beneficial
to researchers working in the field of SPM. The development of software projects supporting crucial
business activities may be utilized to attain a competitive advantage for that organization. Thus, the
quality of the software development process, as well as improvements in the development of project
management software may potentially result in significant improvement in software quality (Schwalbe,
2006).

REFERENCES

Bellifemine, F., Poggi, A. and Rimassa, G. 2001. JADE: a FIPA2000 compliant agent development environment,
Proceedings of the fifth international conference on Autonomous agents, pp 216-217.

Butte, T. 2002. Technologies for the development of agent-based distributed applications. Crossroads, Vol 8. No
3, pp 8–15.

Chen, F, Nunamaker, J., Romano, N. and Briggs, R. 2003. A Collaborative Project Management Architecture,
Proceedings of 36th Hawaii International Conference on System Sciences. Big Island, Hawaii, pp .

Hall, G., Guo, Y. and Davis R. A. 2003. Developing a value-based decision-making model for inquiring
organizations. Proceedings of the 36th Hawaii International Conference on System Sciences. Big Island,
Hawaii, pp.

Hughes, B. & Cotterel, M. 2006. Software project management. Fourth Edition, McGraw-Hill, London.
Jennings,N.R. 1999. Agent-Based Computing: Promise and Perils. Proceedings of 16th joint Conference on

Artificial Intelligence (IJCAI-99), pp 1429-1459.
Jonsson, N., Novosel. D., Lillieskold & Eriksson, 2001. Successful Management in Complex Multinational R & D

Projects. Proceedings of the 34th Hawaii International Conference on System Sciences. Maui, Hawaii.
Nienaber, R. C. and Barnard, A. 2007. A Generic Agent Technology Framework to support the Various Software

Project Management Processes. Interdisciplinary Journal of Information, Knowledge and Management, Vol 2,
pp 149-162.

Schwalbe, K. 2006. Information technology project management. Fourth Edition, Thompson Learning, Canada.
Smits, H. and Pshigoda, G. 2007. Implementing Scrum in distributed software development organization. In

Proceedings of AGILE2007 Conference, pp 371-375, Washington, DC.
Wooldridge, M. 2002. An introduction to multi-agent systems. John Wiley & Sons, Chichester, UK.

APPENDIX F F-1

F. APPENDIX F

Paper was submitted to the International Journal of Information Management in June

2008.

APPENDIX F F-2

Enhancing and supporting SPM: the Software Project
Management Supported by Software Agents model

1RC Nienaber & 2E Smith

School of Computing, University of South Africa, Pretoria
1nienarc@unisa.ac.az, 2smithe@unisa.ac.za

Abstract

The scope, environment and implementation of traditional software projects have changed because of
various factors such as globalisation, advances in computing technologies and, last but not least, the
development and deployment of software projects in distributed, collaborative and virtual environments. As
a result, traditional project management methods fail to address the added complexities found in this ever-
changing environment.

In this paper the authors propose a software project management (SPM) model, entitled SPMSA (Software
Project Management Supported by Software Agents), that aims to enhance SPM by taking the unique
nature and changing environment of software projects into account. The SPMSA model is unique in that it
supports the entire spectrum of SPM functionality, thereby supporting and enhancing each key function
with a team of software agents. The project manager and the individual team members will be supported
during software project management processes to simplify their tasks, eliminate the complexities, automate
actions and enhance coordination and communication. At the same time, virtual teamwork, knowledge
management, automated workflow management and process and task coordination will be supported.

The phases of the SPMSA model also compare favourably with the basic phases of software development
as prescribed by the ISO 10006:2003 standard for projects. It can therefore be concluded that the SPMSA
makes a fresh contribution to enhancing SPM by utilising software agent technology.

Key terms
Software projects; software project management; software agent technology

1. Introduction

Most business undertakings these days are commonly supported by software applications. The quality,
effectiveness and efficiency of these applications determine the success or failure of many business
solutions. As a result, businesses often find that they need to attain a competitive advantage through the
development of software projects that support crucial business activities. The quality of the software
development process plays a key role in the quality of the software implementation. Improvements in the
development of project management software used to manage software development can result in
significant improvement in software quality (Schwalbe, 2006).

The literature reveals that ongoing research aims to address the existing shortcomings in managing
software projects (Roy, 2004; The Standish Group, 2005). Practitioners have attempted to apply several
software engineering principles to different software project management (SPM) processes (Lethbridge &
Laganiere, 2001). They have explored standard structured analysis and design methods and also
incorporated object-oriented approaches to overcome the aforementioned shortcomings (Gelbard, Pliskin &
Spiegler, 2002; Hughes & Cotterell, 2006). Different standard project management approaches exist,
which are applicable to different areas of software project management, such as PRINCE 2 and BS
6079:1996 (Hughes & Cotterell, 2006). Yet many software projects have failed to comply with the triple

APPENDIX F F-3

constraints of scope, time and cost (Oghma: Open Source, 2003). These triple constraints refer to the fact
that the failure of software projects can mostly be attributed to the fact that they are not delivered on time
and do not meet the expectations of the client (scope), with the result that they have cost implications.

The abovementioned problems can be ascribed to various factors, but mainly to the fact that the SPM
environment has changed over the past decade, and is still rapidly changing due to globalisation and
advances in computing technology (Zanoni & Audi, 2003). The traditional single project, which was
commonly executed at a single location, has evolved into distributed, collaborative projects deployed in
distributed and collaborative environments. This means that traditional project management methods
cannot address the added complexities found in a distributed environment, such as efficient task
scheduling, tracking and monitoring, as well as effective sharing of information and knowledge among
project contributors. Therefore there is a clamant need for managing software project risks in such a way
that this complex distributed environment is addressed and supported optimally.

The purpose of this paper is to propose an SPM model – entitled Software Project Management Supported
by Software Agents (SPMSA) – that enhances SPM processes by incorporating a software agent
technology framework (Chen, Nunamaker, Romano & Briggs, 2003). The first part of this paper highlights
the unique features of the project management environment, as well as the changing nature thereof. In the
second part of the paper, the suitability of software agents to support SPM is explained, and the third part is
devoted to a discussion of the SPMSA model. The paper culminates in a verification of the SPMSA model
against the ISO standard 10006:2003.

2. Unique nature and changing environment of SPM

Software project management (SPM) differs from general project management as certain inherent
characteristics are unique to software development (Brooks, as quoted by Hughes & Cotterell, 2006).
These characteristics are invisibility, complexity, conformity and flexibility. Invisibility implies that the
development process of the software cannot be seen visually, which makes controlling, monitoring,
measuring and estimating project progress difficult. Furthermore, complexity of software projects is
increased in that software projects include not only the development of a system, but also the
implementation and maintenance of a system that may be distributed and which interfaces with many
existing systems. The conformity of software is essential because software projects involve a variety of
resources where the software is expected to conform to the requirements of humans and organisations.
Finally, flexibility is needed as software systems are required to conform to the standards of the
organisation and are therefore subject to a high degree of change. These aspects contribute to the difficulty
in clearly pinpointing a software project as an exact task with a specific beginning, an end and deliverables.

The dynamic environment of SPM adds to the complexity of these systems, resulting in higher levels of
interconnectivity, higher levels of data and knowledge sharing, task tracking and monitoring. These issues
should be supported optimally by SPM processes to enable project managers to concentrate on crucial
issues, thus striving for less failure and higher success rates in software projects.

3. Software agent technology

SPM practices should take full cognisance of the unique nature and changing environment of SPM.
Traditional SPM methods do not address the added complexities found in an ever-evolving distributed
environment. The authors investigated the possibility of using software agent technology to address SPM
problems in a distributed environment to enhance SPM processes.

Table 1 lists the unique requirements of SPM and how agent technology may address these.

APPENDIX F F-4

Table 1 SPM features to be addressed by agent technology

SPM Software agent technology
Changing environment of SPM systems leads to a
complex distributed environment.

Agents allow distribution and communication over a
geographical area, irrespective of the geographical
location. Agents overcome network latency by
executing locally and reduce network load (Lange &
Oshima, 1999). Parallel execution enables tasks to be
executed in parallel at different workstations.

SPM distributed environments may require and
incorporate mobile devices and fragile network
connections.

Agent systems can incorporate large network systems
and mobile devices. Tasks can be embedded into
mobile agents, which can traverse the network and
execute asynchronously and autonomously, without
relying on a continued connection (Lange & Oshima,
1999).

A distributed environment requires a high level of
collaboration and cooperative problem solving
between teams and team members.

Teams of agents can coordinate actions toward a
similar goal in a distributed environment. Software
agent technology provides a natural metaphor for
support in a team environment, where software agents
can traverse the network in order to monitor and
coordinate events (Wooldridge, 2002).
Communication and cooperation is strongly supported
by agent teams.

A distributed environment results in virtual,
dynamically changing collaborative teams.

Agents adapt dynamically to changes. Agents are
aware of their environment and can respond to
changes in it. Agents have the computational
mechanisms for flexibly forming, maintaining and
disbanding organisational structures (Jennings, 2001)

Collaboration between team leader and
distributed team members requires continuous
control, monitoring and measurement
(invisibility aspect).

Agents are perfectly suited to control, monitor and
measure elements in a distributed environment (Braun
et al., 2001).

A distributed environment requires
heterogeneous technology and databases that
have to interact and share information.

Agents are naturally heterogeneous and mobile and
can execute on different hardware and software
platforms (Lange & Oshima, 1999).

The changing SPM environment requires
flexibility and conformity of the system.

Agents adapt dynamically to changes in their
environment, therefore this aspect will be excellently
supported (Kotz & Gray, 1999).

Virtual software project teams over dispersed
environments need to access information and
documents.

Agents support the distributed retrieval and
dissemination of information and documents and can
automate routine tasks (Maes, 1996; Green et al.,
1997).

From table 1 we can conclude that software agent technology provides a suitable framework for supporting
and possibly enhancing SPM processes in a complex distributed environment. The need for flexible
management of ever-changing organisational structures, such as are dealt with in SPM, is suitably
addressed by the computational mechanism of agent systems (Jennings, 2001). As stated in table 1, agent
behaviour can be used to support the individual team members in numerous tasks, such as coordination and
cooperation with team members, document retrieval and distribution, workflow monitoring and control,
scheduling and organising meetings, and reminders for tasks and overdue dates or deliverables.

4. The SPMSA model

Having established that agent technology is suitable for supporting the SPM environment, the authors
compiled a comprehensive model of SPM functionality to be supported by software agent technology. The

APPENDIX F F-5

SPMSA model enhances and supports all core and facilitating functions of SPM by utilising an agent
framework to enhance the SPM processes. This model thus addresses the entire spectrum of software
project management.

4.1 Conceptual view of the SPMSA model

Having investigated and delineated all SPM processes, the authors defined the SPM core and facilitating
functions, as depicted in table 2; these form the basis of the proposed SPMSA model (Schwalbe, 2006;
Hughes & Cotterell, 2006; Boehm, 1991; Olson, 2004 and Marchewka, 2003).

Table 2 SPM core and facilitating functions

Scope
manage-
ment

Time
manage-
ment

Cost
manage-
ment

Quality
manage-
ment

HR
manage-
ment

Communicati
on manage-
ment

Risk
manage-
ment

Procuremen
t
managemen
t

Initiation Activity
definition

 Identification
& planning

Risk
identificati
on

Procurement
planning

Planning Activity
sequencing
; duration
estimation

Resource
planning

Planning Organisa-
tional
planning

Team support Risk
analysis &
prioritisa-
tion

Solicitation
planning

Defini-
tion

Time
schedule
develop-
ment

Cost
estimation

Assurance Team
develop-
ment &
staff
acquisition

Information
distribution

Risk
manageme
nt planning

Solicitation
& source
selection

Verifica-
tion

Time
schedule
control

Cost
budgeting

Control Manage-
ment:
monitoring
&
control

Performance
reporting

Monitoring

Contract
administratio
n

Change
control

 Monitoring
&
control

 Admin closure Resolution Contract
closure

When examining table 2 closely, overlapping phases can be identified, as executed in each of these
functions. An abstraction of these functions may be mapped to a generic model of software development,
containing the overlapping phases depicted in figure 1 (top part), for each function (or process) of SPM.
These phases will be supported by an agent framework. Figure 1 aims to explain the concept of this
process of support. Figure 1 consists of the two basic concepts, namely the phases of software development
for each SPM key function and the software agent framework that will address each key area of SPM
individually.

APPENDIX F F-6

Figure 1 Conceptual view of the SPMSA model

Phases of software development for each SPM key function

Requirements:

1. The phases must be tailored to each individual key function, i.e. cost or time management.
2. The unique aspects of each SPM key function must be addressed.

 Features:
- Support distribution & communication of teams over a wide geographical area, thus SPM complexity.
- Incorporates large networks, mobile devices & supports fragile network connections, thus adaptability.
- Provides a high level of collaboration and cooperative problem solving, thus supports SPM invisibility.
- Supports dynamically changing collaborative teams, thus SPM conformity & heterogeneous systems.

Identification, initiation &
definition of key functions

Analyse, assess and evaluate
key concepts

Monitoring, control and
management

Planning for
concepts

SPM team members

Phase 1

Phase 3

Phase 2

Phase 4

Apply software agent framework to support each SPM key function

Development of software projects

Team member A

Team member B

Team member C

Project
manager
agent

Task agent

Monitoring
agent

Personal
assistant Personal

assistant

Personal
assistant

Agent
management
agent

Team leader
agent

Directory
facilitator

Client
agent

APPENDIX F F-7

The primary goal of the proposed SPMSA model is to support the teams and individual team members in
the SPM environment while they are executing their tasks and, in so doing, to enhance the complete SPM
environment. This support is enabled by an agent framework as depicted in figure 1 (bottom half). The
team leader, teams and individual team members will be supported during each process of software project
management, utilising an agent framework to simplify the environment, eliminate the complexities,
enhance coordination and communication, implement dynamic changes in the system, support task
scheduling and enhance all processes.

Table 3 provides a summary of the purpose of each agent (depicted in figure 3) forming part of the agent
teams of the different SPM key functions of the SPMSA model.

Table 3 Agents and their tasks

Agents Purpose Mobile Stationa
ry

Agent management
agent

• Manages the team of agents
• Keeps track of the distribution location of all

agents
• Enables communication of agents
• Enables mobility of agents
• Tracks instantiation of tasks

 X

Client agent • Executes a specialised task at a workstation
• Interacts with the agent team
• Receives input from task agent

 X

Directory facilitator • Automated JADE facility
• Provides Yellow Pages functionality to agents
• Provides agents with information on services

provided by other agents

 X

Personal assistant • Allocated to a specific team member
• Assists the team member
• Interface between team member and other agents
• Collaborative nature

 X

Messaging agent • Traverses the network of agents
• Carries messages to and from agents
• Collaborates with agents

X

Monitoring agent • Monitors agent movement
• Monitors tasks and activities
• Coordinates agents

X

Project manager
agent

• Supports and directs the team of agents
• Takes on project manager role
• Helps create & initialise project
• Specification of tasks
• Allocation of tasks to members

X

Task agent • Supports a specific task, i.e. information
gathering, information distribution, information
retrieval

• Traverses the network of team members for input
• Calculates various measures, such as probability

of risk occurring, ROI, NPV
• Gives feedback to personal assistant agents

X

Team leader agent • Manages the team of agents X

APPENDIX F F-8

The phases of software development for each of the SPM key functions, as illustrated in table 1, were
delineated and investigated in detail to compile the comprehensive SPMSA model. The SPMSA model
comprises all processes of SPM as supported by an agent framework, which are illustrated in figures 2 and
3. The core functions and the facilitating functions are presented separately, owing to space limitations.

Figure 2 SPMSA model for core functions: scope, time, cost and quality management

STAKEHOLDERS

User interface

Activity definition

User interface

Time schedule
development

REPOSITORY

Activity sequencing
Duration estimation

Time schedule
control

Cost estimation

User interface

Resource planning

User interface

Cost control &
monitoring

Cost budgeting

STAKEHOLDERS

Quality control

User interface

Quality
assurance

Scope initiation

User interface

Scope control

User interface

Quality planning

User interface

Scope
planning

Scope
definition

Scope
verification

User interface

STAKEHOLDERS

APPENDIX F F-9

Figure 3 SPMSA model for facilitating functions: human resource, communication, risk and procurement
management

The SPMSA model aims to enhance SPM processes by addressing the unique intrinsic aspects of SPM.
The comprehensive framework of agents that forms part of the SPMSA model supports the entire SPM
process, thereby aiming to eliminate failure and address shortcomings in this environment. This model will
be unique in that it aims to support and enhance the entire environment of the SPM arena, and not only a
section of it. Current software agent applications target only a section of this environment, for example
planning or resource management. Unlike other programming paradigms, software agent technology not
only provides support to the dynamically changing environment of SPM, but also support for the complex

APPENDIX F F-10

heterogeneously distributed environment it encompasses. Furthermore, regular tasks may be automated and
intelligence added to further support and enhance the workload of each team member.

4.2 Advantages of using agent technology for SPM

This study reveals that the limitations in the SPM environment can be supported by agent technology. A
summary of the advantages of how the SPMSA model addresses the limitations of current SPM approaches
through software agents is given in table 4.

Table 4 Limitations of SPM addressed by agent technology

Limitations of current SPM approaches Agent enhancement
Environmental factors

Stakeholders in virtual teams may have
different goals and different backgrounds
(Chen et al., 2003)

Virtual teams, supported by automated agent interaction, work
toward a similar goal through coordination and collaboration
of team members

Support communication in homogeneous
environments and will need additional
features or measures to connect
heterogeneous elements (O’Connor &
Jenkins, 1999)

Agents support heterogeneous environments, thus improving
and enabling
• communication
• coordination

The systems are executed synchronously
and must be connected to be executed
(Maes, 1997)

Agent system executes asynchronously and
autonomously, thus less network load & fewer
communication overheads

Do not sufficiently support the knowledge
representation of the SPM area (O’Connor
& Gaffney, 1998)

Agent systems provide assistance in knowledge
management, namely knowledge of plans and designs and
mechanisms to reason on these elements

Human interaction/automated control
Documents distributed by human action,
thus allowing for human error, such as
omission (Purvis, McCray & Roberts, 2000)

Automated workflow management to all relevant team
members:
• documents and information dispersed
• documents and information retrieved from repository

Team member interaction dependent on
human interaction, thus prone to errors
(Petrie, Goldmann & Raquet, 2005)

Automates team member interaction:
• regular prompting for input ensures that the data is

current & tasks are not forgotten
• improves productivity

All actions and coordination to be executed
by team members without specific process
coordination measures (Petrie et al., 2005)

Automates process coordination, which will improve
programmer productivity as well as minimise errors

Tasks
Complexity of tasks and environment is one
of the reasons for failure (Benfield et al.,
2006)

Complexity of tasks is minimised by automated support, such
as automated calculations, thus reducing complexity of the
solution and improving programmer productivity

Large systems are difficult to maintain
consistently over set period of time. Current
tools do not provide proper change
notification (Petrie et al., 2005)

• Maintenance is automated and users are prompted for
input on changes

• Change control is automated and users are regularly
prompted for input. Changes are incorporated
dynamically

Current tools support reporting and
calculation facilities, but not continuous
progress management (Chandrashekar et al.,
2002)

Management of progress status automated, e.g. risk
monitoring and risk status checked on daily basis, enabling the
project manager to identify problems early and take proactive
measures (Roy, 2004)

Risks are commonly identified at the start of
a project, but only 50% followed the risk
through during development (Verner &

Agents monitoring risk will automate the continuous
monitoring of risks, thus following all risks throughout the
project

APPENDIX F F-11

Limitations of current SPM approaches Agent enhancement
Cerpa, 2005)
Overemphasise passive corporative
reporting aspects (Chen et al., 2003) of SPM
by different team members

Continuous input of task status and sharing of information
changes passive reporting to a system that supports dynamic
reporting, improving coordination and cooperation between
team members

Data, tasks and results will be sent over a
network to execute at the user’s workstation

 Tasks embedded into agent behaviour, thus traversing the
network agents, which lessens communication overheads
and network load – tasks are executed at team member’s site

Ineffective and inefficient communication,
i.e. untimely information, failure to notify
all team members (Chen et al., 2003)

Collaborative tool providing automated support on structures
for efficient information sharing, set format for information
storing and structures for communication will promote
adequate and timely information sharing (Gawinecki,
Kruszyk, Paprzycki & Ganzha, 2007)

Quality measures and standards selected by
team. Human inaccuracy and omissions
possible (O’Connor & Jenkins, 1999)

Continuous automated input of all team members regularly for
quality control, as well as measures and directives
conforming to standards

Current SPM tools provide no intelligent
support on standards or best practices
(O’Connor & Moynihan, 2000)

Agents with intelligence may encapsulate areas of experience,
such as standards, and advise the project leader on best
practices and standardisation, thus providing knowledge base
support (Gawinecki et al., 2007)

Intelligent support
Bidding and negotiation done by humans
((Badica, Popescu, Vukmirovic, Gawinecki,
Kobzdej, Ganzha, & Paprzycki, 2007)

AI advantages of bidding and negotiating agents.
Automation of these functions will mean less work and
additional productivity for the developer /s

Current SPM tools that make projections
concerning tasks and decisions are static and
do not support dynamic simulation (Joslin &
Poole, 2005)

Agent systems support dynamic simulation concerning
planning of uncertainty, i.e. dynamic resource allocation.
Simulations may help managers to anticipate critical
conditions earlier and enable them to implement preventive
measures; thus proactive SPM

All interaction through stakeholders but no
support in decision making process of
project manager (O’Connor & Gaffney,
1999; Purvis et al., 2003)

Personal assistant agent supports each individual team
member and manages and analyses large amounts of project
data (Gawinecki et al., 2007)

5. Verification of the SPMSA model

The SPM phases of the SPMSA model are compared with the processes in the ISO 10006:2003 standard
(which targets projects specifically) to determine the relevance of the SPMSA model regarding software
project management processes – see table 5. In table 5 the correlating phases are marked in the same
colour, e.g. if the SPMSA model’s phase correlates with clause 4: Quality management of ISO 10006:2003,
both the SPMSA model’s phase and the ISO clause are marked in red. Each similar set of processes is
colour-coded (see colour code at the top of table 5).

The ISO 10006:2003 standard consists of a full and extensive list of clauses. Similar to ISO 9001:2000, the
ISO 10006:2003 standard consists of 8 main clauses, 27 sub-clauses and 61 sub-sub clauses. Main clauses
1–3 concern only descriptive background, such as the scope of the document, normative references that
state its correlation with ISO 9001:2000, as well as terms and definitions. These clauses are omitted from
table 5 as they contain information and not processes to implement. In the standard, each first sub-clause,
i.e. 1.1.1, 1.2.1 and 1.3.1, is a general clause, which is also omitted.

APPENDIX F F-12

Table 5 SPMSA model vs ISO 10006:2003
Colour coding: all processes on:
Quality management: red Scope management : turquoise Communication management: grey
Review evaluations: green Time management: light blue Risk management: olive green
Resource management: blue Cost management: orange Purchasing management: pink

ISO 1006:2003 processes

SPMSA model

Non-process clauses

4 Quality management
systems
4.1 Project
characteristics

4.1.2 Organisations
4.1.3 Processes in projects
4.1.4 Project management processes

Quality
manage-
ment

None

4.2 Quality management
systems

4.2.1 Quality management principles
4.2.2 Project quality management
4.2.3 Quality plan for project

None Quality assurance
Quality control

Quality planning

Process clauses

5 Management
responsibility
5.2 Strategic process
5.3 Reviews and
progress evaluations

 None

Performance reporting
(communication
management)

6. Resource
management

6.1.2 Resource planning

6.1.3 Resource control

Human
resource
manage-
ment

Resource planning (cost
management)
Management:
monitoring & control

6.2
Personnel-related
processes

6.2.2 Establish project
organisational structure
6.2.3 Allocation of personnel
6.2.4 Team development

 Organisational planning

Staff acquisition

Team development

7 Product realisation
7.2
Interdependency-related
processes

7.2.2 Project initiation &
management plan development
7.2.3 Interaction management
7.2.4 Change management
7.2.5 Process and project closure

 None

 None
Change control (scope)
Admin closure
(communication)

7.3
Scope-related processes

7.3.2 Concept development
7.3.3 Scope development &
control
7.3.4 Definition of activities
 None
7.3.5 Control of activities

Scope
manage-
ment

Initiation
Planning
Definition
Verification
Change control

7.4
Time-related processes

7.4.2 Planning of activity
dependencies
7.4.3 Estimation of duration
7.4.4 Schedule development
7.4.5 Schedule control

Time
manage-
ment

Activity definition &
sequencing
Duration estimation
Time schedule
development

APPENDIX F F-13

Time schedule control
None

7.5
Cost-related processes

7.5.2 Cost estimation
7.5.3 Budgeting
7.5.4 Cost control

Cost
manage-
ment

Cost estimation
Cost budgeting
Monitoring & control

7.6
Communication-
related processes

7.6.2 Communication planning
None
7.6.3 Information management
7.6.4 Communication control
None
None

Communi-
cation
manage-
ment

Identification & planning

Team support
Information distribution

None
Performance reporting (5)
Admin closure (7.2.5)

7.7
Risk-related processes

7.7.2 Risk identification
7.7.3 Risk assessment
7.7.4 Risk treatment
7.7.5 Risk control
 None

Risk
manage-
ment

Risk identification
Risk analysis &
prioritisation
Risk planning
Monitoring
Resolution

7.8
Purchasing-related
processes

7.8.2 Purchasing planning &
control
7.8.3 Documentation of purchasing
requirements
7.8.4 Supplier evaluation
7.8.5 Contracting
7.8.6 Contract control

Procure-
ment
manage-
ment

Procurement planning
Solicitation planning
Solicitation &
source selection
Contract administration
Contract closure

8
Measurement analysis
8.1 Improvement
processes

8.1 Improvement

None

8.2 Measurement &
analysis

8.2 Measurement & analysis None

All the key areas in the SPMSA model, namely scope management, time management, as well as cost,
quality, human resource, communication, risk and procurement management, are reflected in the standard.
ISO 10006:2003 also lists management responsibility (clause 5), product realisation (clause 7) and
measurement analysis & improvement (clause 8) as separate clauses. The SPMSA model contains ten
processes not reflected in the ISO model. The majority of processes in the SPMSA model correlate with
processes in ISO 10006:2003. Furthermore, the eight core and facilitating functions of the SPMSA model
are reflected in the ISO 10006:2003 standard.

The above comparisons clearly indicate that the SPMSA model conforms to the ISO 10006:2003 standard
and, as such, can justifiably be applied to the software project management area. The SPMSA model
addresses the shortcomings in current SPM applications, and the underlying technology, namely agent
technology, will support the unique nature and changing environment of SPM.

6. Conclusion

It is clear from this research study that traditional methods and techniques of SPM do not meet the
requirements posed by this dynamically changing and unique working platform. Software agent
technology, although primarily applied to other fields, such as e-commerce, information retrieval and
network management, is ideally suited to meeting the new challenges faced by the SPM characteristics,
such as appropriate tools for effective sharing of information and knowledge among project contributors, as
well as efficient distributed task scheduling, tracking and monitoring mechanisms. In this paper we propose
an approach to using software agent technology to address these challenges. The SPMSA model was

APPENDIX F F-14

compiled to enhance standard SPM practices and thus also to address challenges encountered due to the
unique and changing environment of SPM. The SPMSA model is specifically tailored to address each of
the unique features, namely complexity, flexibility, conformity and invisibility, through the agent
framework. As is evident from this investigation, agent technology is extremely suitable for handling
complex and dynamically changing environments. We believe that our solution is significant, based on our
experience in other fields that advocate component-based development.

This research is aimed at software practitioners and software developers, but will also be beneficial to
researchers working in the field of SPM. The development of software projects supporting crucial business
activities may be utilised to attain a competitive advantage for that organisation.

7. References

BADICA, C., POPESCU, E., FRACKOWIAK, G., GANZHA, M., PAPRZYCKI, M., SZYMCZAK, M. &

PARK, M. 2008. On Human Resource Adaptibility in an Agent-Based Virtual Organization. In:
Conference on Adaptive Networked Systems and Media, ANSYM 2008. Wroclaw, Poland.

BENFIELD, S., HENDRICKSON, J. & GALANTI, D. 2006. Making a strong business case for Multiagent
Technology. In: Proceedings of the AAMAS '06. 1-59593-303 ed. Hokkaido, Japan, ACM
Computing surveys. 8-12.

BOEHM, B. W. 1991. Software Risk Management: Principles and Practices. IEEE Software, 8 (1), 32-41.

BRAUN, P., EISMANN, J., ERFURTH, C. & ROSSAK, W. 2001. TRACY A Prototype of an Architected
Middleware to support Mobile Agents. In: Proceedings of the Eight Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS'01). IEEE. 6

CHANDRASHEKAR, S., MAYFIELD, B. & SAMADZADEH, M. 1993. Towards automating software
project management. The International Journal of Project Management. Elsevier Science Ltd.
11(1), 29-39.

CHEN, F., NUNAMAKER, J., F, ROMANO, N. C. J. & BRIGGS, R. O. 2003. A Collaborative Project
Management Architecture. In: Proceedings of the 36th Hawaii International Conference on
System Sciences. Big Island, Hawaii. IEEE.

GAWINECKI, M., KRUSZYK, M., PAPRZYCKI, M. & GANZHA, M. 2007. Pitfalls of agent system
development on the basis of a Travel Support System. In : W Abramowicz (ed), Peoceedings of
the BIS 2007 Conference, Springer, Berlin, LNCS 4439, 488-499.

GELBARD, R., PLISKIN, N. & SPIEGLER, I. 2002. Integrating systems analysis and project management
tools. International Journal of Project Management. Elsevier Science Ltd. 20 (6), 461-468.

GREEN, S., HURST, L., NANGLE, B., CUNNINGHAM, P., SOMERS, F. & EVANS, R. 1997. Software
agents: a review. URL: http://www.cs.tcd.ie/Brenda.Nangle/iag.html Accessed 20/05/2005.

HUGHES, B. & COTTERELL, M. 2006. Software Project Management, Fourth Edition. London:
McGraw-Hill. ISBN 10-0077-109899. 356.

JENNINGS, N. R. 2001. An Agent-Based approach for building Complex Software Systems.
Communications of the ACM, 44, 35-39.

JOSLIN, D. & POOLE, W. 2005. Agent-based simulations for software project planning. In: Proceedings
of the 2005 Winter Simulation Conference. Orlando. IEEE Computer Society. 8.

KOTZ, D. & GRAY, R. 1999. Mobile agents and the future of the Internet. Operating systems review, 33,
7-13.

LANGE, D. B. & OSHIMA, M. 1999. Seven good reasons for mobile agents. Communications of the
ACM, 42, 88-89.

LETHBRIDGE, T. C. & LAGANIERE, R. (2001) Object-oriented Software Engineering: Practical
Software development using UML and Java., London: McGraw-Hill.

APPENDIX F F-15

MAES, P. Agents that reduce work and information overload. Communications of the ACM. 37(7) 31-40.

MARCHEWKA, J. T. 2003. Information Technology Project Management, Northern Illinois: Wiley and
Sons. 319.

O'CONNOR, R. & GAFFNEY, E. 1998. A Distributed Framework for implementing a Multi-agent
Assistant System. Dublin, Ireland, Dublin City University. 1-12.

O'CONNOR, R. & JENKINS, J. 1999. Using Agents for Distributed Software Project Management. 8th
International Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprises.
Stanford, USA. IEEE Computer Society Press. 54-60.

O'CONNOR, R. & MOYNIHAN, T. 2000. An Agent Model of Decision Support for Software Project
Management. Advances in Decision Technology and Intelligent Information Systems, 1, 26-30.

OGHMA: 2003. Types of Software Agents. Oghma: Open Source. URL: http://www.oghma.org/.
Accessed 20/05/2003.

OLSON, D. L. 2004. Information Systems Project Management, Nebraska, Second Edition.
Boston:McGraw-Hill. 308.

PETRIE, C., GOLDMAN, S. & RAQUET, A. 1999. Agent-based project managemnt. Lecture Notes on
Artificial Intelligence (LNAI), 1600, 1-23.

PURVIS, R. L., MCCRAY, G. E. & ROBERTS, T. L. 2003. The impact of Project Management Heuristics
to IS Projects. In: Proceedings of the 36th Hawaii International Conference on System Sciences.
Hawaii, IEEE. 1-7.

ROY, G. G. 2004. A Risk Management Framework for Software Engineering Practice. In: Proceedings of
the Australian Software Engineering Conference (ASWEC'04). Australia, IEEE Computer Society.

SCHWALBE, K. 2006. Information Technology Project Management, Canada: Thomson Course
Technology.

THE STANDISH GROUP INTERNATIONAL. 2005. Latest Standish Group Chaos Report. Chaos
Chronicles. Massachusets. URL: http://www.standishgroup.com. Accessed 04/03/05.

VERNER, J. M. & CERPA, N. 2005. Australian Software Development: What Software Project
Management Practices Lead to Succsess. In: Proceedings of the 2005 Australian Software
Engineering Conference (ASWEG). IEEE Computer Society Press.

WOOLDRIDGE, M. 2002. MultiAgent Systems, West Sussex, England: John Wiley & sons, Ltd.ZANONI,
R. & AUDY, J. L. N. 2003. Project Management Model for Physically Distributed Software
Development Environment. In: Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS’03). Big Island. Hawaii. 249 (1-7).

	Title page
	Dedication
	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	PART I
	CHAPTER 1
	CHAPTER 2
	PART II
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	PART III
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	PART IV
	CHAPTER 10
	11 REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F

