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Abstract

This research investigates existing relationships between the three apparently unre-

lated subjects: Markov process, Semigroups and Partial di�erential equations.

Markov processes de�ne semigroups through their transition functions. Conversely

particular semigroups determine transition functions and can be regarded as Markov

processes. We have exploited these relationships to study some Markov chains.

The in�nitesimal generator of a Feller semigroup on the closure of a bounded domain

of Rn; (n � 2), is an integro-di�erential operator in the interior of the domain and veri�es

a boundary condition.

The existence of a Feller semigroup de�ned by a di�erential operator and a boundary

condition is due to the existence of solution of a bounded value problem. From this re-

sult other existence su�cient conditions on the existence of Feller semigroups have been

obtained and we have applied some of them to construct Feller semigroups on the unity

disk of R2.

Key-words

Markov process, semigroup, partial di�erential equation, Feller semigroup, in�nitesimal

generator, birth and death process.
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Introduction

It is often convenient to describe a system by a family (Xt)t�0 of random variables in

order to handle imprecision related to its evolution. In this representation, the random

variable Xt is interpreted as the state of the system at time t [13]. It can be for instance

the inventory of some commodity at time t, a position of a particle that moves on a given

surface at time t, etc. . . . Such a family is called a stochastic process. A stochastic process

is said to be Markovian if it has the so-called Markov property: the future state of the

process given the current state at time t is independent on observed states during the

time interval [0; t) [17]. Any Markov process is mainly described by its initial distribution

(which gives the initial state of the process) and its transition probabilities (which de�ne

the probabilities for the process to move from a state to another).

A semigroup on a Banach space E is a family of bounded linear operators (Tt)t�0

which veri�es the so-called \semigroup propert": the composite of Ts and Tt is equal to

Ts+t and such that T0 is the identity map. If these operators are contractions and strongly

continuous, the semigroup is completely described by a linear operator, called its in�ni-

tesimal generator [11], [12], [17].

Roughly speaking, a Partial di�erential equation is an equation that depends on a func-

tion u(x; y; : : :), some of its partial derivatives and the independent variables (x; y; : : :):

If the unknown function is restricted to some initial values or boundary conditions, the

term \Boundary value problem" is used instead of Partial di�erential equation.

These three subjects are from di�erent branches of Mathematics, Probability theory

for the �rst, Functional Analysis for the second and its own area for the third. Yet there

are many interplays between them. The purpose of this dissertation is to highlight some

of these relationships and to show how they can be used with good reasons to the study

of particular Markov chains and to the construction of Markov processes.

Markov processes are related to Semigroups through their transition functions. The

Chapman-Kolmogorov equation is equivalent to the semigroup property. Conversely, one

can associate transition functions (and hence Markov processes) to some semigroups, and

Feller semigroups in particular. The construction uses mainly the \Riesz representation
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Theorem"[4], [19].

Semigroups and Partial di�erential equations are related through the in�nitesimal

generator of the semigroup. There are methods of solving partial di�erential equations

using semigroup theory based on the Hille-Yosida theory. For details on these matters,

an interested reader may consult [12].

The in�nitesimal generator of a Feller semigroup on the closure of a bounded domain

of Rn, (n � 2), is de�ned by an integro-di�erential operator in the interior of the do-

main. A boundary condition which turns out to be an integro-di�erential operator is also

veri�ed. In the particular case where no integral terms appear in these operators, they

become di�erential operators [3], [17].

This observation has raised the problem of knowing under which conditions a di�eren-

tial operator A and a boundary condition L determine a Feller semigroup on a bounded

domain. It has been established that the existence of such a Feller semigroup is due to

the existence of solutions of a bounded value problem de�ned from A and L [3],[17].

From this, other more e�cient conditions on the existence of Feller semigroups have been

obtained.

Our dissertation is organized as follows. In Chapter 1, the basic de�nitions and prop-

erties of Markov processes, semigroups and partial di�erential equations are provided.

Useful results from Probability and Measure theory, Stochastic processes, Topology, Lin-

ear operators theory, Semigroups, Di�erential geometry and Partial di�erential equations

have been also included.

In Chapter 2, relationships between Markov processes, Semigroups and Partial di�er-

ential equations are discussed. It has been shown that Semigroups are related to Markov

processes. The form of the in�nitesimal generator of a Feller semigroup in the closure of a

bounded domain of Rn has also been presented. The last section of the chapter discusses

some su�cient conditions under which a di�erential operator and a boundary condition

de�ne a Feller semigroup on the closure of a bounded domain of Rn.

In Chapter 3, the Semigroups associated with Markov chains and the \birth and death

processes", in particular, are investigated. We have applied some existence Theorems of

Chapter 2 to construct Feller semigroups on the unity disk of R2. The dissertation ends

with some concluding remarks.
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Chapter 1

Basics of Markov Processes,

Semigroups and Partial Di�erential

Equations

1.1 Basic notions on probability and measure theory

1.1.1 Probability space

De�nition 1.1 Let 
 be a set. A family F = (Ai)i2I of subsets of 
 is called a ��algebra
on 
 if the following three properties hold:

1. 
 2 F ;

2. for any sequence A1; A2; : : : of elements of F , [1n=1An 2 F ;

3. for any A 2 F , the complement A = 
� A 2 F :

If F is a ��algebra on 
; then the pair (
;F) is called a measurable space. The

elements of F are termed F -measurable sets or simply measurable sets.

IfH is a family of subsets of 
 then there exists at least one ��algebra on 
 containing

H. The smallest ��algebra on 
 containing H is called the ��algebra generated by H.

De�nition 1.2 Let (
;F) be a measurable space. A measure on (
;F) is a function �

from F into the set [0;1] such that the following properties hold:

1. for any sequence A1; A2; : : : ; An; : : : of mutually exclusive elements of F ,

�([1n=1An) =
1X
n=1

�(An):

2. �(�) = 0.

3



If � is a measure on a measurable space (
;F); then (
;F ; �) is called a measure space.

De�nition 1.3 A probability on a measurable space (
;F) is a measure P on (
;F)
verifying the condition P (
) = 1:

If P is a probability on (
;F) , then (
;F ; P ) is called a probability space.

1.1.2 Notions from Topology

De�nition 1.4 A topological space is a set E endowed with a family T of subsets of E

such that the following three properties hold:

1. the empty subset and E belong to T ,

2. if (Oi)i2I is a family of elements of T then [i2IOi 2 T :

3. if O1; O2; : : : ; On are elements of T then \ni=1Oi 2 T :

Elements of T are called the open subsets of E.

A complement of an open subset is called a closed subset.

A neighborhood of a point x 2 E is any subset of E that contains an open set containing

the point x.

The closure of a subset A of E is the smallest closed subset of E containing A:

If E and F are topological spaces, a map f : E ! F is continuous if for any open subset

O of F , f�1(O) is an open subset of E. If in addition f is bijective and f�1 is also

continuous, f is called an homeomorphism.

De�nition 1.5 A topological space E is separated if for any x; y 2 E, there exist neigh-

borhoods Vx and Vy of x and y respectively such that Vx \ Vy is empty.
A separated topological space E is compact if for any family (Oi)i2I of open subsets of E

such that

[i2IOi = E;

there exists a �nite subset J of I such that

[i2JOi = E:

A subset K of E is compact if it is compact as a subspace of E.

A separated topological space E is locally compact if each point x of E has a compact

neighborhood in E.

A topological space is connected if it cannot be written as a union of two disjoint open

sets. A topological space E is separable if it contains a countable and dense subset.

The space Rn is an example of a separable locally compact space. A subset of this space

is comapct if and only if it is bounded and closed.
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De�nition 1.6 Let E be a topological space and f : E ! R be a continuous function.

The support of f is the closure of the set

fx 2 E : f(x) 6= 0g:

De�nition 1.7 Let E be a topological space and T be the set of open subsets of E. The

��algebra on E generated by T is called the Borel ��algebra on E.

When a topological space is considered as a measurable space, measurable sets are mem-

bers of the Borel ��algebra.
De�nition 1.8 Let B be the Borel ��algebra on Rn. There exists a measure � on (Rn;B)
such that for any intervals Ai = (ai; bi) of R with ai � bi,

� (A1 � A2 � : : :� An) = (b1 � a1)(b2 � a2) : : : (bn � an):

This measure is called the Lebesgue measure on Rn.

1.1.3 Measurable functions, Random variables

De�nition 1.9 Let (
;F) and (E; E) be measurable spaces. A function f from 
 into E

is termed a measurable function if

8A 2 E ; f�1(A) 2 F :

De�nition 1.10 Let (
;F ; P ) be a probability measure. A function X from 
 into R is

called a random variable if it is measurable, that is, for any Borelian A of R,

X�1(A) 2 F :

In the sequel we will use the term random variable in the genral sense of being a measur-

able function from a probability space into a measurable space. We will always have to

specify the second space.

Let X be a random variable from (
;F ; P ) into R. The probability distribution of X

is the function PX : R! [0; 1] de�ned by

PX(x) = Pfw 2 
 : X(w) < xg:

De�nition 1.11 Let 
 be a nonempty set and X be a function from 
 into a measurable

space (E; E). The set
�(X) = fX�1(A) : A 2 Eg

is the smallest ��algebra on 
 such that X is measurable. It is called the ��algebra
generated by X.

5



The ��algebra generated by a family (Xi)i2I of functions Xi : 
! (E; E) is the smallest
��algebra on 
 for which all the functionsXi are measurable. It is equal to the ��algebra
on 
 generated by the sets of the form X�1

i (Ai) , where for any i 2 I; Ai 2 E :

De�nition 1.12 Let (Ei; Ei)i2I be a family of measurable spaces. Consider the coordinate
maps

�i :
Y
i2I

Ei ! (Ei; Ei)

de�ned by:

8e = (ei)i2I ; �i(e) = ei; 8i 2 I: (1.1)

The ��algebra on Qi2I Ei generated by these maps is called the product of the �� algebras

(Ei)i2I and is denoted
Q
i2I Ei:

This ��algebra is also generated by the sets of the form

Y
i2I

Ai

where 8i 2 I; Ai 2 Ei and Ai = E except for a �nite number of indices.

If

(Ei; Ei) = (E; E); 8i 2 I;

then the product space (
Q
i2I Ei;

Q
i2I Ei) is simply denoted (EI ; EI): In this case, EI rep-

resents the set of all maps from I into E.

The following theorem will be used in the sequel.

Theorem 1.1 (The monotone class theorem) Let V be a vector space of real-valued

bounded functions de�ned on 
 verifying the following properties:

1. the constant function 1 2 V;

2. if (fn)n�0 is a sequence of functions from V to R that converges uniformly to f ,

then f 2 V ,

3. if (fn) is a nondecreasing sequence of elements of V such that

sup
n

 
sup
x2


jfn(x)j
!
< +1;

then

lim fn 2 V:

Let C be a subset of V , such that for any f; g 2 C, the product fg 2 C: Then V contains

all bounded measurable functions with respect to the ��algebra �(C) generated by C on

V .
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A proof of this theorem along with some more details may be found elsewhere [4], [9].

The following result also from [4] is a consequence of Theorem 1.1 and will be used in the

sequel.

Theorem 1.2 Let C be a set of subsets of 
 such that for any A;B 2 C, A [B 2 C and

the complement �A = 
� A 2 C. Let F be the ��algebra on 
 generated by C. If P and

P 0 are two probability measures on (
;F) such that P = P 0 on C, then P = P 0

1.1.4 Integration

De�nition 1.13 Let (
;F ; �) be a measure space. A measurable function f : 
 ! R

is said to be a step function if there exists a partition A1; A2; � � � ; An of 
 such that the

subsets Ai are measurable and f is constant on each of them.

If f = ai on Ai, then the integral of the function f is de�ned by

Z
fd� =

nX
i=1

ai�(Ai): (1.2)

For any A 2 F and any step function f ,

Z
A
fd� =

Z
f:1Ad�

where 1A is the characteristic function of A.

De�nition 1.14 Let f : 
 ! R be a nonnegative measurable function. It can be shown

that there exists an nondecreasing sequence (fn) of nonnegative measurable step functions

that converges to f . The integral of the function f is

Z
fd� = lim

n!1

Z
fnd�:

De�nition 1.15 Let f : 
! R be a measurable function. If

Z
jf jd� <1;

then the function f is said to be ��integrable.

The integral of the function f is

Z
fd� =

Z
f+d��

Z
f�d�

where

f+ = sup(f; 0); f� = inf(�f; 0):

The integral
R
fd� is also denoted by

R
f(x)d�(x):

7



De�nition 1.16 Let E be a compact topological space and E be its Borel ��algebra. A

sequence (�n)n�0 of measures on (E; E) converges weakly to a measure � on the same

space if for any continuous function f : E ! R the following property holds:

lim
n!1

Z
E
f(x)d�n(x) =

Z
E
f(x)d�(x): (1.3)

Theorem 1.3 If (�n)n�0 is a sequence of measures on the space (E; E) where E is a

compact space and E is the Borel ��algebra on E and if

sup
n�0

�n(E) <1 (1.4)

then the sequence (�n)n�0 contains a subsequence which converges weakly to a measure �

on (E; E):

An interested reader may consult [17] for proof of this theorem.

Theorem 1.4 (The Riesz representation Theorem) Let E be a locally compact space.

Let Cc(E) be the set of continuous functions f : E ! R with compact support. Let

L : Cc(E)! R

be a nonnegative linear map. Then there exists a ��algebra E on E containing the Borel

��algebra of E, and there exists a unique measure � on (E; E) such that the following

properties hold:

1. L(f) =
R
E f(x)d�(x); 8f 2 Cc(E)

2. for any compact subset K of E, �(K) <1
3. for any A 2 E, �(A) = inff�(V ) : A � V; and V open in Eg
4. for any A 2 E such that �(A) < +1,

�(A) = supf�(K) : K � A;K compactg

A complete and very comprehensive proof of this theorem is given in [19]. Other equivalent

forms of this theorem may be found in [4].

1.1.5 Conditional expectation, Independency

De�nition 1.17 Let (
;F ; P ) be a probability space and X : 
 ! R be a random

variable. If X is P�integrable, then the expectation of X is de�ned by

E(X) =
Z
X(w)dP (w):

8



De�nition 1.18 Let (
;F ; P ) be a probability space and X : 
! R a random variable.

Let H be a sub ��algebra of F . If X is P�integrable then there exists a random variable

Y : 
! R , H� measurable, such that

Z
B
XdP =

Z
B
Y dP; 8B 2 H: (1.5)

The class of such random variables is called the conditional expectation of the random

variable X with respect to the sub ��algebra H and is denoted E(XjH). If Z and Y are

two members of this class then, Y and Z are equal almost surely (a.s.), that is,

Pfw 2 
 : Y (w) = Z(w)g = 0: (1.6)

Formally, we write Z
B
XdP =

Z
B
E(XjH)dP; 8B 2 H (1.7)

Here are some properties of the conditional expectation [4], [10].

1. If X � 0 then

E(XjH) � 0: (1.8)

2. If X is integrable, then E(XjH) is also integrable and

E(E(XjH)) = E(X): (1.9)

3. If H = f;;
g, then
E(XjH) = E(X): (1.10)

4. If X is H�measurable then

E(XjH) = X a:s: (1.11)

5. If G and H are two sub ��algebra of F such that G � H then

E(E(XjH)jG) = E(XjG) a:s: (1.12)

6. If X and Y are integrable random variables such that Y is H - measurable, and XY

is integrable then

E(XY jH) = Y E(XjH) a:s: (1.13)

De�nition 1.19 Let (
;F ; P ) be a probability space and let (E; E) be a measurable space.
Let X1 : (
;F ; P ) ! (E; E) and X2 : (
;F ; P ) ! R be random variables. The condi-

tional expectation of the random variable X2 given X1 is de�ned as follows:

E(X2jX1) = E(X2jH) (1.14)

9



where H = �(X1) is the sub ��algebra of F generated by X1:

The following result, the detail of which may be found elsewhere [4], is usually used to

show that the conditional expectation E(X2jX1) can be seen as a function of X1.

Theorem 1.5 Let X be a random variable de�ned on a probability space (
;F ; P ) and
taking value in a measurable space (E; E) and let f : 
 ! R be a function. Let H be

the ��algebra generated by X. Then f is H�measurable if and only if there exists a

measurable function g : (E; E)! R such that

f = g �X:

Now returning to the notations above, we have that the function

X1 : (
;F ; P )! (E; E)

is measurable and since

E(X2jX1) : (
;F ; P )! R

is �(X1)� measurable then from Theorem 1.5, there exists a measurable function

g : (E; E)! R

such that

E(X2jX1) = g �X1 a:s: (1.15)

De�nition 1.20 Let (
;F ; P ) be a probability space. Let H be a sub �� algebra of F and

let A 2 F . The conditional probability P (AjH) of A given H is the conditional expectation

E(1AjH)

where 1A is the characteristic function of A in 
.

We have that P (AjH) is a H-measurable random variable such that

Z
B
P (AjH)dP = P (A \B); 8B 2 H: (1.16)

De�nition 1.21 Let (
;F ; P ) be a probability space and A1; A2; : : : An be elements of F .
Then A1; A2; : : : An are said to be independent if for any integer k such that 1 � k � n

and any subset fi1; i2; : : : ikg of f1; 2; � � � ; ng of k elements, one has:

P (Ai1 \ Ai2 \ : : : \ Aik) = P (Ai1)P (Ai2) : : : P (Aik): (1.17)

De�nition 1.22 Let (
;F ; P ) be a probability space and let (Ft)t2T be a family of sub

��algebras of F . These sub �� algebras are said to be independent if for any �nite subset

10



ft1; t2; : : : tkg of T and distinct elements Ati 2 Fti, (i = 1; 2; : : : k), one has:

P (At1 \ At2 \ : : : \ Atk) = P (At1)P (At2) : : : P (Atk): (1.18)

De�nition 1.23 A family (Xt)t2T of random variables de�ned from a probability space

(
;F ; P ) to a measurable space (E; E) is said to be independent if for any �nite subset

ft1; t2; : : : tkg of T and distinct elements At1 ; At2 ; : : : ; Atk of E, one has:

PfXt1 2 At1 ; Xt2 2 At2 ; : : : ; Xtk 2 Atkg =
kY
i=1

PfXti 2 Atig: (1.19)

The following property obtained from [4] is very useful.

Theorem 1.6 Let (
;F ; P ) be a probability space and let F1;F2; � � � ;Fn be independent

sub ��algebras of F . Let X1; X2; : : : ; Xn be independent and integrable random variables

from (
;F ; P ) into R and measurable with respect to F1;F2; : : : ;Fn respectively. Then

the product X1:X2: : : : :Xn is integrable and

E[X1:X2: : : : :Xn] = E[X1]:E[X2]: : : : :E[Xn]: (1.20)

De�nition 1.24 Let (
;F ; P ) be a probability space. Let F1;F2;F3 be three sub ��
algebras of F . The �� algebras F1 and F2 are said to be conditionally independent given

F3 if for all nonnegative random variables X1; X2 : (
;F ; P ) ! R, measurable with

respect to F1;F2 respectively one has:

E[X1:X2jF3] = E[X1jF3]:E[X2jF3] a:s: (1.21)

The following result [4] can be used to check the conditional independency.

Theorem 1.7 Let F1;3 be the sub ��algebra generated by F1 and F3. Then the sub

��algebras F1;F2 are conditionally independent given F3 if and only if for any integrable

random variable Y : (
;F ; P )! R and measurable with respect to F2 one has

E[Y jF1;3] = E[Y jF3] a:s: (1.22)

1.1.6 Kernels

Another key concept that will be helpful in the study of Markov processes and semigroups

is that of kernel.

De�nition 1.25 Let (
;F) and (E; E) be measurable spaces. A kernel from 
 to E is a

function

N : 
� E ! [0;+1]

satisfying the following properties.

11



1. For any x 2 
 the function N(x; :) de�ned by

N(x; :)(A) = N(x;A); 8A 2 E

is a measure on (E; E):

2. For any A 2 E, the function N(:; A) de�ned by

N(:; A)(x) = N(x;A) 8x 2 


is F� measurable.

The measure N(x; :) will be denoted N(x; dy):

The kernel N is said to be a Markov kernel if

N(x;E) = 1;8x 2 
: (1.23)

It is said to be a sub-Markov kernel if

N(x;E) � 1; 8x 2 
: (1.24)

It is said to be bounded if

N(x;E) < +1;8x 2 
: (1.25)

A sub-Markov kernel can be transformed into a Markov kernel by the following procedure

[6],[11].

LetN be a sub-Markov kernel from a measurable space (E; E) into itself. Let E@ = E[f@g
where @ is an element not in E and let E@ be the ��algebra on E@ generated by

E [ f@g:

Then the kernel ~N de�ned on (E@; E@) as follows:

for any x 2 E;A 2 E ,

~N(x;A) = N(x;A)

~N(x; f@g) = 1�N(x;E)

and for any A 2 E@,

~N(@;A) =

8<
: 1 if @ 2 A

0 otherwise

is a Markov kernel and is an extension of N . We have the following important facts.

12



Theorem 1.8 Let N be a kernel from (
;F) to (E; E) and let f : E ! [0;+1] be a

nonnegative measurable function. Then the function

Nf : 
! [0;+1]

de�ned as follows

Nf(x) =
Z
E
f(y)N(x; dy) (1.26)

is F-measurable.
Let � be a measure on the measurable space (
;F). Then the function

�N : E ! [0;+1]

de�ned as follows

�N(A) =
Z


N(x;A)d�(x) (1.27)

is a measure on the space (E; E):

For the proof of this theorem and more details on kernels, the reader may consult [5], [17].

1.2 Stochastic Processes

1.2.1 De�nitions

De�nition 1.26 Let (
;F ; P ) be a probability space and (E; E) be a measurable space. A
stochastic process de�ned on 
 with state space E is a family (Xt)t2T of random variables

de�ned from (
;F ; P ) to (E; E) and indexed by a set T:

The space (
;F ; P ) is called the base space of the process and the space (E; E) is called
the state space of the process. The index set T will generally be a subset of R+. For any

t 2 T , the random variable Xt is called the state of the process at time t:

De�nition 1.27 Let (Xt)t2T be a stochastic process with base space (
;F ; P ) and state

space (E; E): Let J = ft1; t2; : : : ; tng be a �nite subset of T: There exists a unique measure

�J on the product space (EJ ; EJ) such that, for any A1; A2; : : : ; An 2 E,

�J

 
nY
i=1

Ai

!
= P

�
\ni=1X�1

ti
(Ai)

�
: (1.28)

The measure �J is called the �nite-dimensional distribution of the process (Xt)t2T corre-

sponding to the subset J . It is the joint distribution of the random variables Xt1 ; Xt2 ; : : : ; Xtn :

De�nition 1.28 Let X = (Xt)t2T be a stochastic process. For any w 2 
, the function

X(w) : T ! E such that

X(w)(t) = Xt(w); 8t 2 T

13



is called the path of the process X corresponding to w:

If T = R+ or any interval of R, E is a topological space and E its Borel ��algebra, we
can consider continuity of the paths of the process X since they are maps between two

topological spaces. We have the following the following de�nition.

De�nition 1.29 The process X is continuous if all its paths are continuous almost surely,

that is:

Pfw 2 
 : X(w) is continuous g = 1:

1.2.2 Equivalent stochastic processes

De�nition 1.30 Let (Xt)t2T and (X
0

t)t2T be stochastic processes with base spaces (
;F ; P )
and (


0

;F 0

; P
0

) respectively and the same state space (E; E): These stochastic processes

are said to be equivalent if they have the same �nite-dimensional distributions.

That is, for any �nite sequence (t1; t2; : : : ; tn) of elements of T and any �nite sequence

A1; A2; : : : ; An of elements of E ,

Pf\ni=1X�1
ti
(Ai)g = P 0f\ni=1X

0�1
ti

(Ai)g: (1.29)

An example of equivalent stochastic process is as follows [4].

Let (Xt)t2T be a stochastic process with base space (
;F ; P ) and state space (E; E):
Consider the product measurable space (ET ; ET ) where ET is the set of functions from T

into E and ET is the �� algebra generated by the coordinate maps

�t : E
T ! (E; E)

de�ned by:

�t(e) = et; 8e = (es)s2T 2 E: (1.30)

Then the map

� : (
;F)! (ET ; ET )

that maps any element w 2 
 to its path (Xt(w))t2T is measurable. Indeed, for any

B 2 E , we have:

��1(��1t (B)) = fw 2 
 : �(w) 2 ��1t (B)g
= fw 2 
 : Xs(w)s2T 2 ��1t (B)g
= fw 2 
 : Xt(w) 2 Bg
= X�1

t (B):

Then ��1(��1t (B) 2 F and the property follows since ET is generated by the sets of the

form ��1t (B) with B 2 E .

14



The map � de�nes therefore a probability measure � on (ET ; ET )as follows:

�(M) = Pfw 2 
 : �(w) 2Mg = Pf��1(M)g: (1.31)

Then the coordinate maps (�t)t2T form a stochastic process with base space (ET ; ET ; �)
and state space (E; E):
This process is equivalent to the original process (Xt)t2T : The process (�t)t2T is called the

canonical stochastic process associated with the process (Xt)t2T : It is an easy matter to

show that two equivalent stochastic processes have the same canonical process.

1.2.3 Kolmogorov extension Theorem

Let (Xt)t2T be a stochastic process taking values in (E; E) and given in its canonical

form. This means the random variables Xt are considered as the canonical coordinate

maps de�ned from (ET ; ET ; �) to (E; E) where � is a probability measure on (ET ; ET ).
Let A1; A2; : : : An be elements of E and let J = ft1; t2; : : : ; tng be a �nite subset of T . Let
�J be the �nite-dimensional distribution corresponding to J. Let tn+1; tn+2; : : : ; tm; (m �
n) be other elements of T and let

K = ft1; t2; : : : ; tn; tn+1; tn+2; : : : ; tmg:

Let us take

An+1 = An+2 = � � � = Am = E:

Then

�
�
\mi=1X�1

ti
(Ai)

�
= �

�
\ni=1X�1

ti
(Ai)

�

= �J

 
nY
i=1

Ai

!
:

This means that

�K (A1 � A2 � : : :� An � E : : :� E) = �J (A1 � A2 � : : :� An) : (1.32)

Let �J : E
T ! EJ be the canonical projection map de�ned as follows:

8e = (es)s2T 2 ET ; �J(e) = (es)s2J = (Xs(e))s2J :

It is clear that this map is measurable (with respect to the product �� algebras). If ��1J

is the map from EJ to ET de�ned as follows:

��1J (A) =
n
e 2 ET : �J(e) = (es)s2J 2 A

o
(1.33)

15



then

� � ��1J = �J : (1.34)

Indeed, let C be the set of �nite unions of subsets of EJ of the form A1 � A2 � : : :� An

where Ai 2 E ;8i: It is an easy matter to show that C satis�es the conditions of Theorem

1.2. We have that

� � ��1J (A1 � : : :� An) = �
�
fe 2 ET : (es)s2J 2 A1 � : : :� An

o
= �

�
fe 2 ET : Xti(e) 2 Ai; 8i 2 Jg

�
= �

�
\ni=1X�1

ti
(Ai)

�
= �J (A1 � : : :� An)

and relation (1.34) follows from Theorem 1.2 since C generates ET .
De�nition 1.31 Let (E; E) be a measurable space and T be a nonempty set. Let Fin(T )

denote the set of all �nite nonempty subsets of T . For any J 2 Fin(T ), let �J be a

probability measure on the �� algebra (EJ ; EJ). For any J;K 2 Fin(T ) such thatJ � K,

let

�J : E
T ! EJ ; �KJ : EK ! EJ

be the canonical projection maps.

The family (�J)J2Fin(T ) is said to be a projective family of measures if the equality

�J = �K � (�KJ )�1 (1.35)

holds for all J � K 2 Fin(T ).
Theorem 1.9 The �nite-dimensional distributions of a stochastic process form a projec-

tive family.

Proof. This is so since �J = � � ��1J and obviously �J = �KJ � �K �
As mentioned in [14], an immediate consequence of this proposition is that a necessary

condition for a family of �nite-dimensional distributions to be �nite-dimensional distrib-

utions of a stochastic process is to form a projective family. A necessary and su�cient

condition for such a family to be extended to the full distribution of a stochastic process

is given by the well known Kolmogorov Theorem. Here, one version of this important

theorem is given.

Theorem 1.10 (Kolmogorov extension Theorem) Let (E; E) be a measurable space

where E is a separable locally compact metric space and E its Borel ��algebra. Let T be

an index set. For any �nite nonnempty subset J of T , let �J be a probability measure

on the measurable space
�
EJ ; EJ

�
. Then there exists a unique probability measure � on�

ET ; ET
�
such that

�J = � � ��1J
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if and only if the measures �J form a projective family.

A proof of this theorem as well as other versions of this theorem can be found elsewhere

[4], [14].

Another key notion in the theory of stochastic processes is that of adapted stochastic

processes. This notion will be briey discussed in the next section.

1.2.4 Adapted stochastic processes

Let (
;F) be a measurable space and let (Ft)t2T be a family of sub ��algebras of F .
This family is said to form a �ltration of (
;F) if

Fs � Ft; 8s � t 2 T:

The sub ��algebra Ft is usually interpreted as the set of events prior to time t.

De�nition 1.32 Let (Xt)t2T be a stochastic process on a measurable space (
;F) with
state space (E; E) and let (Ft)t2T be a �ltration of (
;F). The process (Xt)t2T is said to be

adapted to the �ltration (Ft)t2T if for any t 2 T , the random variable Xt is Ft�measurable.

An obvious example is given by any stochastic process (Xt)t2T with base space (
;F)
and state space (E; E) where the sub �� algebra Ft is the ��algebra

� (Xs : s � t)

generated by the family (Xs)s�t. This �ltration is called the natural �ltration of the

process (Xt)t2T .

We are now ready to de�ne a Markov process.

1.3 Markov Processes

1.3.1 Markov property

Roughly speaking, the Markov property of a stochastic process means that the past and

the future are conditionally independent given the present. This section is intended to

formalize this idea.

Let (
;F ; P ) be a probability space and (E; E) be a measurable space. Let (Xt)t2T�R+

be a stochastic process with base space (
;F ; P ) and state space (E; E). Assume (Xt)t

is adapted to a �ltration (Ft)t2T of F .
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De�nition 1.33 The process (Xt)t2T is said to be a Markov process with respect to the

�ltration (Ft)t2T if it veri�es the following property called the Markov Property: for any

t > s in T , and for any bounded measurable function f : E ! R,

E[f �XtjFs] = E[f �XtjXs] a:s: (1.36)

Since the conditional expectation E[XjY ] of a random variable X given another random

variable Y is a function of Y , the Markov property can also be stated as follows:

for any t > s in T , and for any bounded measurable function f : E ! R, there exists a

measurable function g : E ! R such that:

E[f �XtjFs] = g �Xs a:s: (1.37)

This means that: Z
A
f �XtdP =

Z
A
g �XsdP; 8A 2 Fs: (1.38)

In the case where no �ltration is explicitly given, the natural �ltration is the one to be

considered.

In what follows, some equivalent statements of the Markov property are given in order to

have a full understanding of its probability meaning [6], [11]. But before giving them, we

need to state some assumptions.

Let (Xt)t2T be a stochastic process on a probability space (
;F ; P ), taking values in
a measurable space (E; E) and let (Ft)t2T be its natural �ltration, that is

Fs = �(Xt : t � s);8s 2 T:

Let

Gs = �(Xs : t � s); s 2 T:

The �� algebras Fs and Gs are said to represent respectively the past and the future of

the process since their events are determined by the process up to time s and after time

s respectively. The ��algebra generated by Xs represents the present (of course at time

s). Under these assumptions, we have:

Theorem 1.11 The following statements are equivalent:

1. The process (Xt)t2T is Markovian.

2. The past Fs and the future Gs are independent conditional on the present.

3. For any s � 0; A 2 Fs; B 2 Gs

P (A \BjXs) = P (AjXs):P (BjXs):
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4. For any s � 0; B 2 Gs
P (BjFs) = P (BjXs):

5. For any s � 0; A 2 Fs

P (AjGs) = P (AjXs):

Proof. It is important to note from Theorem 1.7, that Property (2) in Theorem 1.11 is

equivalent to the following: for any function h : 
 ! R, Gs�measurable and integrable,

one has

E[hjFs] = E[hjXs] a:s: (1.39)

since the �� algebra generated by the past Fs and the present �(Xs) is clearly equal to

Fs.

1. (2)) (1). Suppose (2) is true. For any bounded and measurable function f : (E; E)!
R and any t � s, the function f �Xt is bounded and Gs�measurable since Xt is one of

the variables generating Gs. Hence it is integrable since each measurable and bounded

function is obviously integrable. Then from equation (1.39), one has

E[f �XtjFs] = E[f �XtjXs] a:s:

and hence (1) is also true.

2. (1) ) (2). Let V be the set of bounded measurable and integrable functions h :

(
;F)! R such that

E[hjFs] = E[hjXs] a:s: (1.40)

and let C be the set of functions of the form

(f1 �Xt1):(f2 �Xt2) : : : (fn �Xtn) (1.41)

where n is a positive integer, t1; t2; : : : ; tn are real numbers such that

s � t1 � t2 � : : : � tn

and f1; f2; : : : ; fn are bounded and measurable functions from (E; E) to R. It is clear that

V is a vector space and veri�es all the properties of Theorem 1.1. The only no obvious

property is that C is a subset of V and this is proved by induction as follows. Let

h = (f1 �Xt1):(f2 �Xt2) : : : (fn �Xtn) 2 C:

(i) If n = 1 , and t1 = s , then

E[f1 �XsjFs] = f1 �Xs = E[f1 �XsjXs]
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since f1 �Xs is Fs - measurable. Otherwise if t1 > s , then

E[f1 �Xt1jFs] = E[f1 �Xt1jXs]

by the Markov property. Then for n = 1, we have that h 2 V .
(ii) Suppose that the property holds for n� 1. Let us show that it holds for n. De�ne

h0 = E[hjFtn�1 ]:

Then

E[hjFs] = E
h
E
h
hjFtn�1

i
jFs

i
a:s: since Fs � Ftn�1 (see equation (1.12))

= E[h0jFs] a:s:

By the same argument,

E[hjXs] = E[h0jXs] a:s: (1.42)

Since all the functions (f1 �Xt1); (f2 �Xt2); : : : ; (fn�1 �Xtn�1) are measurable with respect

to Ftn�1 then

h0 = E
h
(f1 �Xt1):(f2 �Xt2) : : : (fn �Xtn)jFtn�1

i
= (f1 �Xt1):(f2 �Xt2) : : : (fn�1 �Xtn�1)E

h
fnjFtn�1

i
= (f1 �Xt1):(f2 �Xt2) : : : (fn�1 �Xtn�1)E

h
fnjXtn�1

i

where the last equality follows from the Markov property.

Since E
h
fnjXtn�1

i
can be written as g � Xtn�1 where g : E ! R is a bounded and

E�measurable function, it follows that

h0 = (f1 �Xt1):(f2 �Xt2) : : : ((fn�1:g) �Xtn�1):

Therefore h0 2 V since there are only n� 1 factors. Thus,

E[hjFs] = E[h0jFs] = E[h0jXs] (since h0 2 V )

and hence from equation (1.42), we have

E[hjFs] = E[hjXs]

and therefore h 2 V:
By Theorem 1.1, the space V contains all bounded integrable �(C)�measurable functions
h : 
 ! R. It is clear that �(C) � Gs since Xt is measurable with respect to Gs for any
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t � s. Also, Gs � �(C) since for any A 2 E

X�1
t (A) = (1A �Xt)

�1(f1g) 2 �(C)

meaning that Xt is �(C)�measurable, for any t � s: It follows that for any function

h : 
! R that is Gs� measurable and integrable, one has

E[hjFs] = E[hjXs] a:s:

3. (2)) (3) is straightforward. For any A 2 Fs; B 2 Gs,we have

P (A \BjXs) = E[1A\BjXs]

= E[1A:1BjXs]

= E[1AjXs]:E[1BjXs]

= P (AjXs):P (BjXs)

4. (3)) (4). Indeed, let A 2 Fs; B 2 Gs: Then

E[1A:P (BjXs)jXs] = P (BjXs):E[1AjXs] a:s:

since P (BjXs) is measurable with respect to �(Xs): Then

E[1A:P (BjXs)jXs] = P (BjXs):P (AjXs)

= P (A \BjXs) a:s:

= E[1A\BjXs] a:s:

By taking expectation of both sides, we obtain that:

E[1A:P (BjXs)] = E[1A:1B] since 1A\B = 1A:1B

and then, from the de�nition of conditional expectation, it follows that

E[P (BjXs)jFs] = E[1BjFs] a:s:

Since the random variable P (BjXs) is measurable with respect to Fs, this equality implies

that

P (BjXs) = P (BjFs) a:s:

as desired.

5. (3)) (5). Here we have just to exchange the role of A and B in step 4.

6. (4)) (2). Let h : 
! R be a bounded and measurable function. If h is a nonnegative
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step function, say h =
Pn

i=1 ai1Ai
(where ai 2 R; Ai 2 Gs;8i), then

E[hjFs] =
nX
i=1

aiE[1Ai
jFs]

=
nX
i=1

aiP (AijFs)

=
nX
i=1

aiP (AijXs)

= E[hjXs]:

If h is nonnegative then it is known that h can be represented as a limit of a nondecreasing

sequence (hn) of simple functions [9] and then

E[hjFs] = E[limhnjFs] = limE[fnjFs] = E[hjXs]:

If h is not nonnegative, then h is a sum of two nonnegative measurable functions and the

property follows immediately.

7. The same argument can be used to show that (5)) (2) and we are done �

Another important characteristic of Markov processes is their transition functions. We

discuss these functions in the next section.

1.3.2 Transition function of a Markov process

De�nition 1.34 A transition function on a measurable space (E; E) is a family (Ps;t)0�s�t
of sub-Markovian kernels on (E; E) such that for any A 2 E and any x 2 E, the following
properties hold.

1. For any t � 0,

Pt;t(x;A) =

8<
: 1 if x 2 A

0 otherwise.
(1.43)

2. For any nonnegative real numbers s � t � u

Ps;u(x;A) =
Z
E
Ps;t(x; dy)Pt;u(y; A): (1.44)

De�nition 1.35 Let (Xt)t�0 be a Markov process taking value in a measurable space

(E; E). A transition function (Ps;t)0�s�t on (E; E) is said to be a transition function of the

Markov Process (Xt)t�0 if for any bounded function f : E ! R and for any nonnegative

real numbers s; t such that s < t one has:

(Ps;tf) �Xs = E[f �XtjXs] a:s: (1.45)
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A transition function (Ps;t)0�s�t is said to be homogeneous if Ps;t depends only on the

length t� s of the interval [s; t]. This means that if

t� s = t
0 � s

0

;

then

Ps;t = Ps0 ;t0 :

In this case, Ps;t is simply denoted by Pt�s. In what follows only homogeneous transition

functions will be considered.

A Markov transition function with homogeneous transition function is termed a homoge-

neous Markov process.

It is pointed out in [6], that it is hard to construct a transition function from a Markov

process and that in practice, Markov processes are usually given with corresponding tran-

sition functions. However, given a transition function on particular measurable spaces, it

is possible to construct a Markov process that admits it as its transition function. The

process is summarized in the following section.

1.3.3 Realisation of a transition function

Let (Xt)t�0 be a homogeneous Markov process on a probability space (
;F ; P ) taking
value in a measurable space (E; E) with respect to a �ltration (Ft) with transition function

(Pt). Let � be distribution (or probability law) of X0. It is called the initial distribution

of the process. Then the distribution �t of Xt is given by

�t = �Pt (1.46)

This means that

�t(A) = PfXt 2 Ag =
Z
E
Pt(x;A)d�(x); 8A 2 E : (1.47)

Indeed, for any A 2 E , we have from equation (1.9) that:

E[1A �Xt] = E[E[1A �Xt]jX0]: (1.48)

But clearly

E[1A �Xt] = E[1X�1
t (A)] = PfXt 2 Ag:

Since (Pt) is the transition function of the Markov process (Xt), from equation (1.45) we

have that

E[1A �XtjX0] = (Pt1A) �X0 a:s:

Then

PfXt 2 Ag = E[(Pt1A) �X0]:
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For any Borel set B of R, we have that:

Pfw 2 
 : Pt:1A �X0(w) 2 Bg = PfX�1
0 ((Pt:1A)

�1(B))g
= �((Pt:1A)

�1(B))

= �fx 2 E : Pt:1A(x) 2 Bg:

Then

E[(Pt1A) �X0] =
Z
E
Pt:1A(x)d�(x)

and since

Pt:1A(x) =
Z
E
Pt(x; dy)1A(y) = Pt(x;A)

it follows that

E[(Pt1A) �X0] =
Z
E
Pt(x;A)d�(x):

Therefore

PfXt 2 Ag =
Z
E
Pt(x;A)d�(x)

as desired.

This means that if the transition function of a Markov process is given along with its

initial distribution, then we can determine the distributions of the variables Xt; t > 0.

The �nite-dimensional distributions of the process are also expressed in terms of the

transition function and the initial distribution in the following way.

Let 0 = t0 < t1 < : : : < tn be real numbers and Xt0 ; Xt1 ; : : : ; Xtn be the corresponding

random variables. The distribution �t0;t1;:::;tn of (Xt0 ; Xt1 ; : : : ; Xtn) on the measurable

space (En+1; En+1) is such that, for any A0; A1; : : : An 2 E ,

�t0;t1;:::;tn(A0 � A1 � : : :� An) =
Z
A0
�(dx0) �

Z
A1
Pt1(x0; dx1) : : : (1.49)Z

An

Ptn�tn�1(xn�1; dxn):

These �nite-dimensional distributions are consistent in the sense that for any real numbers

0 = t0 < t1 < : : : < tn < tn+1 < : : : < tm and any A0; A1; : : : An 2 E , we have

Pf\ni=0X�1
ti
(Ai)g = PfXt0 2 A0; Xt1 2 A1; : : : ; Xtn 2 An; Xtn+1 2 E; : : : ; Xtm 2 Eg:

Conversely let E be a separable locally compact metric space and E its Borel ��algebra.
Let (Pt)t�0 be a transition function on (E; E) and � be a probability measure on E. Con-

sider now the product measurable space (ET ; ET ) where T stands for the set of nonnegative

real numbers. The coordinate maps (Xt)t�0 de�ned from ET into E by Xt(w) = w(t) for

any w 2 ET form a stochastic process.

Then for any subset J = ft0; t1; : : : ; tng of T with 0 = t0 < t1 < : : : < tn, let �J : E
T ! EJ

be the projection map and let �J be the measure de�ned on (EJ ; EJ) such that:
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�J(A0 � A1 � : : :� An) =
Z
A0
�(dx0) �

Z
A1
Pt1(x0; dx1) : : :Z

An

Ptn�tn�1(xn�1; dxn); Ai 2 E ; 8i:

These �nite-dimensional distributions form a projective system. from the Kolmogorov

extension theorem (Theorem 1.10), the projective limit measure P exists and is such that

is such that

�J = P � ��1J : (1.50)

This means that:

�J(A) = P (��1J (A));8A 2 EJ :

The measure P is the unique probability measure on the measurable space (ET ; ET )
such that (Xt)t�0 is a Markov process on (ET ; ET ; P ), with transition function (Pt) and

initial measure � [6], [11].

The Markov process (Xt) is called a realization of the transition function (Pt):

A particular case is to consider that the initial distribution is centred at a particular

point x of E, that is

�0(A) = �x(A) =

8<
: 1 if x 2 A

0 otherwise

The process (Xt)t�0 is said to start at the point x. We have that for any t > 0 and any

A 2 E ,
PfXt 2 Ag =

Z
A
Pt(x; dy) = Pt(x;A): (1.51)

Then Pt(x;A) has the intuitive meaning to be the probability that the state of the process

will be in A at time t given that it starts at position x.

For more details on transition functions of Markov processes, the reader may consult [6],

[7], [11].

1.4 Semigroups on Banach spaces

1.4.1 Notions from Functional Analysis

De�nition 1.36 A Banach space is a normed vector space E de�ned on R or C in which

each Cauchy sequence converges.

De�nition 1.37 Let E and F be Banach spaces. A linear operator from E into F is a

pair (D(T ); T ) where D(T ) is a subspace of E and T is a linear map from D(T ) to F that
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is,

T (�x+ �y) = �T (x) + �T (y);8�; � 2 C; x; y 2 D(T ): (1.52)

The subspace D(T ) is called the domain of the operator and the subspace

R(T ) = fT (x) : x 2 D(T )g

is called the range of the operator.

De�nition 1.38 A linear operator (D(T ); T ) from E into F is bounded if there exists a

constant C such that kT (x)k � Ckxk for any x 2 D(T ).

If (D(T ); T ) is a bounded linear operator then its norm is de�ned as follows:

kTk = supfkT (x)k : x 2 D(T ) and kxk = 1g: (1.53)

It is important to notice that

kT (x)k � kTkkxk; 8x 2 D(T ): (1.54)

De�nition 1.39 A linear operator (D(T ); T ) from E into F is said to be closed if its

graph

�(T ) = f(x; T (x)) : x 2 D(T )g (1.55)

is a closed subset of the space E � F endowed with the topology de�ned by the norm

k(x; y)k = kxk+ kyk: (1.56)

This operator is said to be closable if it can be extended to a closed operator. Any closable

operator has a minimum closed extension [12].

Theorem 1.12 (i) A linear operator (D(T ); T ) is closed if and only if for any sequence

(xn) of D(T ) such that (xn) converges to x and T (xn) converges to y, x 2 D(T ) and

T (x) = y.

(ii) A linear operator (D(T ); T ) is closable if and only if for any sequence (xn) of D(T )
such that (xn) converges to 0 we have that T (xn) converges to 0 or does not converge.

Proof. Part (i) follows from the fact that the product E � F of two Banach spaces E

and F is also a Banach space by the norm (1.56). Part (ii) is now a consequence of (i).

Indeed, de�ne the operator

(D( �T ); �T )

as follows.

For any sequence (xn) of D(T ) such that (xn) converges to x and T (xn) converges to y

we put
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x 2 D( �T ) and �T (x) = y:

Then it is clear that the linear operator

(D( �T ); �T )

is the minimal closed extension of (D(T ); T ):

Conversely let �T be a closed extension of T and let (xn) be a sequence in D(T ) that
converges to zero. If �T (xn) = T (xn) converges to y, then we have �T (0) = y since �T is

closed. And by linearity, we get y = 0 �

Corollary 1.1 If an operator (D(T ); T ) is closable and (D(T ); T ) is its minimal closed
extension, then

�( �T ) = �(T )

R( �T ) � R(T )

Proof. Let (x; y) 2 �( �T ), then x 2 D( �T ) and �T (x) = y: Hence there exists a sequence

(xn) in D(T ) that converges to x and such that T (xn)! y: Then we have that

(xn; T (xn)) 2 �(T )

and (x; y) = lim(xn; T (xn)): It follows that

(x; y) 2 �(T ):

Conversely, let

(x; y) 2 �(T ):

There exists a sequence (xn; T (xn)) in �(T ) that converges to (x; y). This means that xn

converges to x and T (xn) converges to y. Then �T (x) = y and hence (x; y) 2 �( �T ) and we

have proven (i).

(ii) can be proven in a similar way �

De�nition 1.40 Let E be a Banach space on the �eld C of complex numbers. The

resolvent of a linear operator (D(T ); T ) on E is the set of linear operators

R�(T ) = (T � �I)�1; � 2 C

where the operator (T � �I) is one-to-one.

The resolvent set of the operator (D(T ); T ) is the set of complex numbers � such that
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R�(T ) exists (that is (T ��I) is one-to-one), is bounded and its domain is a dense subset

of E.

The spectrum of the operator (D(T ); T ) is the complement of its resolvent set.

Remark 1.1 (particular case: bounded linear maps) If the domain of a linear op-

erator (D(T ); T ) from E into F is known to be equal to E, the term linear map will be

used instead of linear operator:

Let E and F be Banach spaces. The set L(E;F ) of bounded linear maps from E into F

is a Banach space with norm

kTk = supfkT (x)k : x 2 E and kxk = 1g: (1.57)

A linear map T from E ito F is said to be continuous if for any sequence (xn) of E that

converges to x, the sequence (T (xn) converges to T (x) in F . A linear map is continuous

if and only it is bounded.

De�nition 1.41 Let (D(T ); T ) be a bounded linear operator on a Banach space E. The

exponential operator eT is de�ned as follows

eT =
1X
k=0

1

k!
T k (1.58)

It is also a bounded linear operator and veri�es the following property

keAk � ekAk: (1.59)

Furthermore if T1 and T2 are two bounded linear operators such that

T1T2 = T2T1:

then

eT1+T2 = eT1eT2 (1.60)

For more details on these matters the reader is referred to [11], [12].

1.4.2 De�nition of Semigroups

De�nition 1.42 Let E be a Banach space. A semigroup on E is a family (Tt)t�0 of

bounded linear maps on E such that the following two properties hold.

1. For any t, s � 0; Tt+s = Tt:Ts:

2. T0 is the identity map

28



A semigroup (Tt)t�0 is said to be strongly continuous if

lim
t#0
kTt(x)� xk = 0; 8x 2 E: (1.61)

If in addition, operators Tt are contractions, that is,

kTtk � 1; 8t � 0; (1.62)

then (Tt)t�0 is said to be a strongly continuous contraction semigroup.

De�nition 1.43 Let (Tt)t�0 be a strongly continuous semigroup on a Banach space E.

The in�nitesimal generator of the semigroup (Tt)t�0 is the linear operator (D(U);U) de-
�ned on E as follows:

D(U) =
�
x 2 E : lim

t#0

1

t
(Tt(x)� x) exists in E

�
and (1.63)

U(x) = lim
t#0

1

t
(Tt(x)� x) : (1.64)

As we will see later on, the in�nitesimal generator is an important characteristic of a

semigroup on a Banach space. Here some properties of the in�nitesimal generator of a

semigroup are given[11], [12].

Theorem 1.13 For any strongly continuous semigroup (Tt)t�0 on a Banach space E with

in�nitesimal generator (D(U);U) and for all t > s; x 2 E, the following properties hold.

1. limt#s kTt(x)� Ts(x)k = 0:

2.

lim
h#0

1

h

Z t+h

t
Ts(x)ds = Tt(x): (1.65)

3.
R t
0 Ts(x)ds 2 D(U) and

U
�Z t

0
Ts(x)ds

�
= Tt(x)� x: (1.66)

4. If x 2 D(U), then Tt(x) 2 D(U)and

d

dt
Tt(x) = U(Tt(x)) = Tt(U(x)) (1.67)

Tt(x)� Ts(x) = U
�Z t

s
Th(x)dh

�
=
Z t

s
Th(U(x))dh: (1.68)

Corollary 1.2 The in�nitesimal generator of a strongly continuous contraction semi-

group (Tt)t�0 de�ned on a Banach space E is a closed linear operator and its domain is a

dense subset of E.
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Proof. From Theorem 1.13, we have that for any x 2 E;
1

t

Z t

0
Ts(x)ds 2 D(U)

and

lim
t#0

1

t

Z t

0
Ts(x)ds = T0(x) = x:

Now let (tn) be a sequence of positive real numbers that converges to 0 and let

yn =
1

tn

Z tn

0
Ts(x)ds:

The sequence (yn) of elements of D(U) converges to x. This means that D(U) is dense in
E. The closeness follows from the fact that if (xn) is a sequence of D(U) that converges
to x and if U(xn) converges to y then

1

t
(Tt(x)� x) =

1

t
(Tt( lim

n!1
xn)� lim

n!1
xn)

= lim
n!1

1

t
(Tt(xn)� xn)

=
1

t
lim
n!1

Z t

0
TsU(xn)ds

=
1

t

Z t

0
Ts(y)ds since U(xn)! y:

Then

U(x) = lim
t#0

1

t
(Ttx� x) = lim

t#0

1

t

Z t

0
Ts(y)ds = y �

1.4.3 The Hille-Yosida Theorem

The Hille-Yosida Theorem provides necessary and su�cient conditions for a linear oper-

ator to be an in�nitesimal generator of a strongly continuous contraction semigroup.

Let (Tt)t�0 be a contraction strongly continuous semigroup on a Banach space E. It

is shown in [11] that any real � > 0, for any x 2 E, the integral
Z 1

0
e��tTt(x)dt (1.69)

exists in E since Z 1

0
ke��tTt(x)kdt � kxk

�

In addition, the map R� de�ned on E by

R�(x) =
Z 1

0
e��tTt(x)dt (1.70)
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is linear and is bounded as we have

kR�k � 1

�
: (1.71)

Hence R� is bounded.

De�nition 1.44 The set of the linear operators R�; � � 0 is called the resolvent of the

semigroup (Tt)t�0.

The following property justi�es the name resolvent.

Theorem 1.14 Let (D(U);U) be the in�nitesimal generator of a strongly continuous

semigroup (Tt)t�0 on a Banach space E. Then for any real number � > 0, the opera-

tor

�I � U

is a bijection from D(U) onto E and

(�I � U)�1 = R�: (1.72)

Proof. For any x 2 E and any h � 0,

Th(R�(x))�R�(x) = Th

Z 1

0
e��tTt(x)dt�

Z 1

0
e��tTt(x)dt

=
Z 1

0
e��tTt+h(x)dt�

Z 1

0
e��tTt(x)dt

= (e�h � 1)
Z 1

h
e��tTt(x)dt�

Z h

0
e��tTt(x)dt

Dividing by h and taking the limit when h! 0, it follows that

U(R�(x)) = �R�(x)� x:

Therefore

R�(x) 2 D(U)

and

(�I � U)R� = I:

Moreover, for any x 2 D(U), one has that

R�(U(x)) =
Z 1

o
e��td(Tt(x))

since

Tt(U(x)) = U(Tt(x)) = d(Tt(x))

dt
:
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This gives, after integrating by parts,

R�U(x)� �R�(x) = �x:

And hence

R�(�I � U) = I;

that is

R� = (�I � U)�1 �

Theorem 1.15 Let (D(U);U) be a linear operator on a Banach space E. Suppose that

the following two conditions hold.

1. U is a closed operator and its domain D(U) is dense in E.

2. For any real number � > 0, � belongs to the resolvent set of the operator U and

veri�es

k(�I � U)�1k � 1

�
:

Let R� = �I � U : Then U has the following properties.

1. For any x 2 E,
lim
�!1

�R�(x) = x: (1.73)

2. For any real number � > 0 the operator

U� = �UR� (1.74)

is bounded and veri�es

lim
�!1

U�(x) = U(x); 8x 2 D(U): (1.75)

3. For any � > 0, the family (T �
t )t�0 de�ned by

T �
t = et�U� (1.76)

is a strongly continuous contraction semigroup on E and U� is its in�nitesimal

generator.

4. For any t � 0,

lim
�!1

T �
t (x) 2 E; x 2 E:

5. The map Tt; t � 0 de�ned on E as follows

Tt(x) = lim
�!1

T �
t (x) = lim

�!1
et�U�(x)
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is linear and bounded. Furthermore, the the family (Tt)t�0 is a strongly continuous

contraction semigroup and U is its in�nitesimal generator.

The operator Tt of this theorem is usually denoted eUt.

A proof of this Theorem can be found elsewhere [11]. We can now state the Hille-Yosida

Theorem:

Theorem 1.16 (Hille-Yosida Theorem) A linear operator (D(U);U) on a Banach

space E is an in�nitesimal generator of a strongly continuous semigroup of contractions

on E if and only if the following two conditions hold.

1. U is a closed operator and its domain is dense in E.

2. Any positive real number � belongs to the resolvent set of the operator U and veri�es:

k(�I � U)�1k � 1=�:

The fact that the conditions are necessary is clear from Corollary 1.2 and Theorem 1.14

and the fact that the conditions are su�cient as well as the procedure to construct the

semigroup is given by Theorem 1.15.

Other versions of the Hille-Yosida theorem are given elsewhere [6], [12].

In the next subsection, we introduce particular semigroups which will be used in the

sequel.

1.4.4 Feller semigroups

De�nition 1.45 Let E be a locally compact metric space. Let @ be a point not in E and

E@ = E [ f@g:

De�ne a topology T on E@ by

T = fO;O [ f@g : O is an open subset of Eg

Endowed with this topology, the space E@ is compact and is called the one-point Alexandrov

compacti�cation of E:

Let E be a locally compact metric space and let E@ be its one-point Alexandrov

compacti�cation of E. Let Cb(E) be the Banach space of bounded continuous functions

f : E ! R. Let C0(E) denote the set of functions f 2 Cb(E) such that

lim
x!@

f(x) = 0
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in the sense that, for any � > 0, there exists a compact subset K � E such that

jf(x)j < �; 8x 2 E �K:

It is clear that C0(E) is a closed subspace of Cb(E) and therefore a Banach space.

De�nition 1.46 A semigroup (Tt)t�0 on the space C0(E) is called a Feller semigroup on

E if it is strongly continuous, non-negative and contractive, that is: for any f 2 C0(E)

one has:

1. limt#0 kTtf � fk = 0;

2. if f � 0, then Ttf � 0; 8t � 0;

3. kTtk � 1.

If the space E is compact, then C0(E) is identi�ed with Cb(E) [17]. We will denote simply

C(E) since each continuous function on a compact space is bounded. It is this particular

case that will be considered in the sequel.

Theorem 1.17 (The Hille-Yosida-Ray theorem) Let E be a locally compact and sep-

arable metric space and A be a linear operator on Cb(E).

1. If

the domain D(A) of A is dense in Cb(E) and there exists an open and

dense subset F of E such that for any u 2 D(A), if u attains its positive

maximum at a point x0 2 F then Au(x0) � 0

then the operator A has a closed extention in Cb(E):

2. If

for any u 2 D(A) that takes its positive maximum at a point x0 2 E one

has Au(x0) � 0 and there exists a constant �0 � 0 such that the range of

the operator �0I � A is dense in Cb(E),

then the minimum closed extension of A is the in�nitesimal generator of a Feller

semigroup on E.

For the proof of this theorem and more details on these matters, the reader is referred to

[6],[17].

1.5 Notions on Di�erential Manifolds

Notions and results on di�erential manifolds contained into Rn that will be used in the

sequel are discussed in this section.
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1.5.1 De�nitions and Examples of Maninfolds

De�nition 1.47 Let U and V be open subsets of Rn. A map f : U ! V is called a

di�eomorphism of class Ck if it is bijective, k�continuously di�erentiable and its inverse

f�1 is also k�continuously di�erentiable.

De�nition 1.48 Let M be a topological space and let n; k be nonnegative integers with

k � 1: An n�dimensional atlas of class Ck on M is a family of pairs f(Ui; 'i)gi2I such

that the following properties hold.

1. For any i 2 I; Ui is an open subset of M and [i2IUi =M:

2. For any i 2 I; 'i is an homeomorphism from Ui onto an open subset of Rn:

3. For any i; j 2 I; the map

'j � '�1i : 'i(Ui \ Uj)! 'j(Ui \ Uj)

is a di�eomorphism of class Ck:

Any pair (Ui; 'i) of an atlas is called a chart. If x 2 Ui; then (Ui; 'i) is said to be a

chart at x: If

'i(x) = (x1(x); x2(x); : : : ; xn(x));8x 2 Ui;

the functions x1; x2; : : : ; xn are called the local coordinates associated with this chart.

Two n�dimensional atlases of same class on M are said to be compatible if their union

is also another n-dimensional atlas of the same class on M: The compatibility relation in

the set of all atlases on M is an equivalence relation [2].

De�nition 1.49 A di�erential manifold of dimension n of class Ck is a pair (M;A) of
a topological space M and an equivalent class A of n�dimensional atlases of class Ck on

M .

In practice, a di�erential manifold is de�ned by taking just one atlas and considering the

structure de�ned by its equivalence class. A chart of a di�erential manifold is a chart of

an atlas equivalent to the �xed atlas.

Example 1.1 For any positive integer n, Rn is a C1� di�erential manifold of dimension

n with the obvious atlas (Rn; id) where id is the identity map in Rn.

In general any open subset U of Rn is a C1� di�erential manifold of dimension n with

the obvious atlas (U; idU) (called canonical atlas on U). We will always assume that any

open subset of Rn is endowed with its canonical di�erential structure.

Let Sn be the unit sphere of Rn+1, that is

Sn = f(x1; x2; : : : ; xn+1) 2 Rn+1 :
n+1X
i=1

x2i = 1g:
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De�ne U1 = Sn � f(0; 0; : : : ; 0; 1)g and U2 = Sn � f(0; 0; : : : ; 0;�1)g and the maps '1 :

U1 ! Rn and '2 : U2 ! Rn as follows:

'1(x1; x2; : : : ; xn+1) =
1

1� xn+1
(x1; x2; : : : ; xn);

'2(x1; x2; : : : ; xn+1) =
1

1 + xn+1
(x1; x2; : : : ; xn):

It is an easy matter to show that f(U1; '1); (U2; '2)g is a C1�atlas of dimension n on

Sn and hence Sn is a C1�di�erential manifold of dimension n: This atlas is called the

canonical atlas of Sn.

De�nition 1.50 Let M be a di�erential manifold of class Ck and dimension n and let p

be a nonnegative integer such that p � k: A map f :M ! R is said to be a di�erentiable

function of class Cp (or a Cp�function) if for any x in M , there exists a chart (U;') of

M at x such that the function

f � '�1 : '(U)! R

is di�erentiable of class Cp.

The set of Cp�di�erentiable functions on M is denoted Cp(M).

If p = 0, C0(M) is simply denoted C(M) and it is the set of continuous functions on M:

One should note that for a function de�ned on an open subset U of Rn, di�erentia-

bility in the sense of di�erential manifold is equivalent to di�erentiability in the common

sense.

1.5.2 Tangent space

De�nition 1.51 LetM be a n�dimensional di�erential manifold of class Ck. Let x 2M
and (U;') be a chart at x with coordinate system (x1; x2; : : : ; xn). A curve of M at the

point x is a map  : I ! M where I is an open interval of R containing 0 such that the

function ' �  is Ck�di�erentiable at 0. Let Cx(M) be the set of curves of M at x: In

this set, the relation � de�ned as follows:

 � � () d(' � )
dt

(0) =
d(' � �)

dt
(0) (1.77)

is an equivalence relation and it is independent of the choice of the chart. The equivalence

class of the curve  is denoted 
0

(0). The quotient space is called the tangent space of M

at the point x and denoted TxM . Its elements are called tangent vectors of M at x. If

V 2 TxM and V = 
0

(0), then the vector V is said to be tangent to the curve  at the

point x.
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This construction does not change if we consider any interval I that does not contain 0

and take derivatives at t such that (t) = x. But we will use the �rst approach for the

sake of simpli�cation.

The choice of the chart (U;') induces a map from h : TxM ! Rn. Indeed, let

V 2 Tx(M) and suppose that V is tangent to a curve . Let

h(V ) =
d(' � )

dt
(0) =

 
d(x1 � )

dt
(0); : : : ;

d(xn � )
dt

(0)

!
: (1.78)

The map h is well de�ned and it is bijective [16]. We can now transfer the vector structure

of Rn to TxM by taking

V + V 0 = h�1(h(V ) + h(V 0); �V = h�1(�h(V )); V; V 0 2 TxM; � 2 R:

Furthermore this structure is independent of the choice of the chart. The vector space

TxM is of dimension n.

Elements of TxM can also be seen as derivatives [16].

Suppose that M is of class C1. A derivative on M at x is a function D : C1(M) ! R

such that

D(f:g) = f(x):D(g) + g(x):D(f); 8f; g;2 C1(M):

Let us denote Dx the set of all derivatives on M at x. Consider the map L : TxM ! Dx

de�ned as follows: for any V 2 TxM (tangent to the curve  at x), L(V ) is the derivative

such that

L(V )(f) =
d(f � )
dt

(0); f 2 C1(M):

This map is well de�ned, bijective and linear. More precisely, for any D 2 Dx, if (U;') is

such that '(x) = (0; 0; : : : ; 0), then

D(f) =
d(f � )
dt

(0); f 2 C1(M)

where  is a curve on M at x such that

' � (t) = (tD(x1); tD(x2); : : : ; tD(xn)): (1.79)

This means that L(V ) = D where V is a tangent vector to the curve  at x. For this

reason, TxM is identi�ed with (D)x by identifying L(V ) and V . Consider now the curves

i (i = 1; 2; : : : ; n) de�ned as follows:

xj � i(t) = �ji :t; 8j = 1; 2; : : : ; n: (1.80)
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Then the tangent vector V de�ned by i is such that

L(V )(f) =
d(f � )
dt

(0)

=
nX
i=1

@f

@xi
(x)

dxi
dt

(0)

=
@f

@xi
(x):

This means that

L(V ) =

 
@

@xi

!
x

where the indice x indicates that the derivative is taken at the point x.

Furthermore, the system

B =

( 
@

@x1

!
x

;

 
@

@x2

!
x

; : : : ;

 
@

@xn

!
x

)
(1.81)

forms a basis of TxM .

Any vector V 2 TxM tangent to  can be expressed as:

V =
nX
i=1

dxi
dt

(0)

 
@

@xi

!
x

: (1.82)

The dual of TxM is called the cotangent space and is denoted T �
xM . The dual basis

of B is simply denoted

B� = fdx1; d2; dxng:

Example 1.2 Consider the C1�di�erential structure de�ned on the sphere S2 in Exam-

ple 1.1 and the curve

 : (��=6; �=6)! S2; given by (t) = (cos 2t sin 3t; sin 2t sin 3t; cos 3t):

This curve passes through the point x = (0; 0; 1).

We have that in the chart (U2; '2),

'2 � (t) = 1

1 + cos 3t
(cos 2t sin 3t; sin 2t sin 3t):

Then

dx1
dt

(0) = 3;

dx2
dt

(0) = 0:
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The tangent vector to  at this point is

V = 
0

(0) = 3

 
@

@x1

!
x

:

For further discussion on di�erential manifolds, the reader may refer to [2], [16].

1.6 Partial di�erential equations

1.6.1 De�nitions

Notations For any � = (�1; �2; : : : ; �n) 2 Nn (called a multi-index), j�j; D�j
j and D�

are de�ned as follows:

j�j = �1 + �2 + : : :+ �n;

D
�j
j =

@�j

@x
�j
j

;

D� = D�1
1 D

�2
2 : : : D�n

n :

De�nition 1.52 Let 
 be an open subset of Rn. Let u and f be functions from 
 to R.

A partial di�erential equation in u is an equation of the form

F (x1; : : : ; xn; u;D
�u;D�u; : : :) = f(x1; x2; : : : ; xn) (1.83)

where F is a function taking value in R and �; �; : : :, are multi-index and u is the unknown

function.

The order of this equation is the highest derivative that appears in it. A solution of this

equation is any function u that makes it an identity.

In general for practical reasons the unknown function u is assumed to verify some

boundary or initial conditions and the problem of �nding such a function is called a

boundary value problem.

We will be interested by linear equations of order two which are briey discussed in the

next section.

1.6.2 Linear partial di�erential equation

De�nition 1.53 A second order linear partial di�erential equation is an equation of the

form:
nX

i;j=1

aij(x)
@2u

@xi@xj
+

nX
i=1

bi(x)
@u

@xi
+ c(x)u = f (1.84)

where aij; bi; c; f are functions de�ned on an open subset 
 of Rn and aij = aji.
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Let us consider the di�erential expression

L(x; :) =
nX

i;j=1

aij(x)
@2

@xi@xj
+

nX
i=1

bi(x)
@

@xi
+ c(x) (1.85)

L(x; :) is a linear operator on the space C(
) of continuous functions f : 
 ! R. It is

called a di�erential operator of order two [17]. We have that

L(x; i�) = �
nX

i;j=1

aij(x)�i�j + i
nX
i=1

bi(x)�i + c(x) (1.86)

where � 2 Rn.

The principal part of L(x; i�) is

Q(�) = �
nX

i;j=1

aij(x)�i�j;8� 2 Rn (1.87)

and it is a quadratic form on Rn.

The equation (1.84) is said to be elliptic if the quadratic form Q is strictly de�nite, that

is

8� 2 Rn � f0g; Q(�) > 0 or 8� 2 Rn � f0g; Q(�) < 0

It is said to be hyperbolic if Q is inde�nite, that is, it vanishes only for � = 0 and changes

the sign in Rn. It is parabolic if the quadratic form Q is degenerate, that is, there exists

a nonzero vector at which Q vanishes.

The equation is elliptic if and only if all eigenvalues of the matrix (aij) are di�erent from

zero and have the same sign, it is hyperbolic if some of them are negative and other are

positive but no one is null, and is parabolic if and only if at least one eigenvalue is null.

An interested reader is invited to consult [12] for more details on Linear partial di�erential

equations.

1.6.3 Existence Theorem for elliptic bounded value problems

De�nition 1.54 Let 
 be a subset of Rn and let � be a real number such that 0 < � < 1.

A function u : 
! R is said to be H�older continuous on 
 with exponent � if

sup
x;y2
;x 6=y

ju(x)� u(y)j
jx� yj�

is �nite. A function u is locally H�older continuous on 
 with exponent � if it is H�older

continuous with exponent � on any compact subset of 
:

The following de�nitions and notations will be used in the sequel.

1. Ck(
) is the set of functions u : 
 ! R such that D�u is continuous in 
 for any

� 2 Nn such that j�j � k,
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2. C�(
) is the set of locally H�older continuous functions on 
 with exponent �.

3. Ck+�(
) is the set of functions u 2 Ck(
) such that their k-th derivatives are in

C�(
).

4. Ck(�
) is the set of functions u 2 Ck(
) such that D�u can be continuously extended

to �
, for any � 2 Nn such that j�j � k.

5. Ck+�(�
) is the set of functions u 2 Ck(
) such that for any � 2 Nn such that

j�j = k, D�u 2 C�(�
).

If 
 is bounded then, Ck+�(�
) is a Banach space with the norm

kuk = sup
x2�
;j�j�k

jD�u(x)j+ sup
j�j=k

[D�u]:

where

[D�u] = sup
x;y2
;x 6=y

ju(x)� u(y)j
jx� yj� :

De�nition 1.55 A subset 
 of Rn is a domain if it is open and connected. A bounded

domain 
 of Rn is said to be of class Ck (0 � k � 1) if for any x 2 @
 there exists an

open neighborhood U of x in Rn such that U \ @
 is the graph of a Ck� di�erentiable

function of n� 1 variables from the canonical variables x1; x2; : : : ; xn of U .

Any open ball of Rn is a C1�domain. If D is a C1�domain its boundary @D is a

C1�di�erential manifold.

The following theorem [15], [17] gives conditions for existence and uniqueness of a

solution for an elliptic linear bounded problem.

Theorem 1.18 (Existence and uniqueness of solution) Let 
 be a

bounded domain of Rn and let @
 be its boundary. Let

L(x; :) =
nX

i;j=1

aij(x)
@2

@xi@xj
+

nX
i=1

bi(x)
@

@xi
+ c(x)

be a di�erential operator of order two with real coe�cients such that

there exists � 2 (0; 1) with the following properties:

1. aij 2 C�(
);

2. aij = aji;
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3. there exists a0 > 0 such that

nX
i;j=1

aij(x)�i�j � a0k�k2; 8x 2 
; � 2 Rn;

4. bi 2 C�(
);

5. c 2 C�(
) and c(x) � 0;8x 2 
:

Let f and � be functions de�ned in 
 and @
 respectively. Then the so-called Dirichlet

problem of �nding a function u de�ned on the closure 
 such that

8<
: L(x; u) = f in 


u = � on @

(1.88)

is such that:

if the domain 
 is of class C2 and if f 2 C�(
) and � 2 C(@
), then the it

has a unique solution

u 2 C(
) \ C2+�(
):
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Chapter 2

Relationships between Markov

processes, Semigroups and Partial

di�erential equations

2.1 Markov Processes and Semigroups

In this section relationships between Markov processes and Semigroups are investigated.

Throughout this section, any Markov process is de�ned by its transition function. It

will be shown later that the Chapman-Kolmogorov relation expresses in some sense the

semigroup property and that Markov Processes can be constructed from some special

semigroups. All Markov processes are supposed to be homogeneous and indexed by the

set of nonnegative real numbers.

2.1.1 Semigroups associated to Markov Processes

Theorem 2.1 Let (
;F ; P ) be a probability space and (E; E) be a measurable space. Let

(Xt)t�0 be a Markov process on (
;F ; P ), taking value in (E; E) with transition function

(Pt)t�0. Let bE be the Banach space of bounded and measurable functions f : (E;F)! R.

For any t � 0, let Tt : bE ! bE be the map de�ned as follows:

Tt(f)(x) =
Z
E
f(y)Pt(x; dy); 8f 2 bE ; x 2 E: (2.1)

Then Tt is a linear map and the family (Tt)t�0 is a contraction semigroup on the Banach

space bE :

Proof. The linearity of Tt is an obvious property of the integral and the measurability

follows from the fact that Pt is a kernel (see Theorem 1.8). It is also clear that T0 is the

identity map. Let s; t � 0; f 2 bE ; x 2 E. Then

Ts+tf(x) =
Z
E
f(y):Pt+s(x; dy):
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Since

8A 2 E ; Pt+s(x;A) =
Z
E
Pt(x; dz):Ps(z; A);

then

Ts+tf(x) =
Z
E
f(y):

Z
E
Ps(x; dz):Pt(z; dy)

=
Z
E
Ps(x; dz)

Z
E
f(y)Pt(z; dy)

=
Z
E
Ps(x; dz)Ttf(z)

= Ts(Ttf)(x):

Therefore

Ts+t = Ts:Tt:

We have also that:

jTtf(x)j =
����
Z
E
f(y)Pt(x; dy)

����
�

Z
E
jf(y)jPt(x; dy)

� kfk
Z
E
Pt(x; dy)

� kfkPt(x;E)
� kfk since Pt(x;E) � 1

It follows that

kTtfk = sup
x2E

jTtf(x)j � kfk

and hence

kTtk = sup
kfk=1

kTtfk � 1

which means that Tt is a contraction �

As particular case, we consider the so-called Feller transition functions described in

the section below.

De�nition 2.1 Let E be a locally compact metric space and E its Borel ��algebra. A

Feller transition function on E is a homogeneous transition function (Pt)t�0 on the mea-

surable space (E; E) such that for any t � 0 and any bounded and continuous function

f : E ! R the function Ttf : E ! R de�ned by

Ttf(x) =
Z
E
f(y)Pt(x; dy) (2.2)

is continuous.

The following property from [17] builds a gap between a Feller transition function and a
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semigroup.

Theorem 2.2 The operators associated to a Feller transition function form a contraction

semigroup on the space Cb(E) of bounded continuous functions from E into R:

Proof. Since a continuous function f : E ! R is measurable with respect to the Borel

��algebras, we have that
Cb(E) � bE :

Furthermore, since

Ttf 2 Cb(E); 8f 2 Cb(E)

we conclude from Theorem 2.1 that (Tt)t�0 is a contraction semigroup on the space

Cb(E) �

The question that can be raised now is that of how to associate a transition function

to a semigroup. This is the subject matter of the next section.

2.1.2 Markov Processes associated to Semigroups

Theorem 2.3 Let E be a separable compact metric space and let (Tt)t�0 be a nonnegative

and contraction semigroup on C(E). There exists a unique Feller transition function

(Pt)t�0 on E such that

Ttf(x) =
Z
E
Pt(x; dy)f(y) 8f 2 C(E);8x 2 E: (2.3)

Proof. Let t � 0 and x 2 E and let us consider the function L : C(E)! R de�ned as

follows: by

L(f) = Ttf(x) (2.4)

It is clear that L is linear and nonnegative since Tt is linear and nonnegative. Since E is

compact, for any f 2 C(E), the support of f is compact. Then we have that the set of

continuous functions on E with compact support is equal to C(E), that is

Cc(E) = C(E):

From the Riesz representation Theorem (Theorem 1.4) there exists a unique measure

Pt(x; dy) on (E; E) (E being the Borel ��algebra on E) such that the following properties
hold.

1. For any f 2 C(E);
L(f) =

Z
E
f(y)Pt(x; dy):
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2. For any compact subset K of E;

Pt(x;K) <1:

3. For any A 2 E ,

Pt(x;A) = inffPt(x; V ) : A � V; V open in Eg:

4. For any A 2 E such that Pt(x;A) < +1,

Pt(x;A) = supfPt(x;K) : K � A;K compactg:

Then for any t � 0, Pt is a map from E � E into [0;+1].

Let us �rst show that the family (Pt)t�0 is a transition function.

1. For any f 2 C(E),

jL(f)j = jTtf(x)j � kTtfk
� kTtk:kfk
� kfk:

Then jL(f)j � kfk and in particular, since L is nonnegative, we have that:

L(1) = jL(1)j � k1k = 1:

Hence,

Pt(x;E) =
Z
E
Pt(x; dy) = L(1) � 1:

2. Let A 2 E ; let us show that the function

Pt(:; A) : (E; E)! R

is measurable.

For any measurable function

f : (E; E)! R;

let Pt(:; f) : E ! R be the function de�ned as follows:

Pt(x; f) =
Z
E
Pt(x; dy)f(y): (2.5)

Let us �rst show that Pt(:; f) is measurable.

(i) If f is continuous, then

Pt(x; f) = Ttf(x); 8x 2 E:
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This means that

Pt(:; f) = Ttf

and therefore

Pt(:; f) 2 C(E)

by de�nition of Tt: It follows that Pt(:; f) is measurable.

(ii) In the general case, consider the set V of functions f : E ! R such that Pt(:; f) is

measurable and the set C of functions h : E ! R that can be written as a �nite product

f1:f2 : : : fn of continuous functions from E into R. It is clear that C and V verify all

the conditions of the Monotone class Theorem (Theorem 1.1). Then V contains all the

functions from E to R measurable with respect to the ��algebra �(C) generated by C.

But �(C) = E . Indeed, for any continuous function g : E ! R, the ��algebra �(g)
generated by g is contained into E and since the product of continuous functions is also

continuous, it follows that �(C) � E .

Conversely, let A be an open subset of E. Consider the sequence (fn)n�1 of functions

de�ned from E to R as follows [17]:

fn(x) = minfn:d(x;E � A); 1g

where d is the distance de�ned on E. It is clear that all the functions fn are continuous

and the sequence (fn) is nondecreasing. Furhtermore, the limit f of this sequence is the

characteristic function of the subset A in E. Also, we have that:

f�1n (f1g) � f�1m (f1g); for m � n

and

A = [1n=1f�1n (f1g):

Since fn is continuous for any n, it follows that

f�1n (f1g) 2 �(C)

and hence

A 2 �(C):

It follows that �(C) � E and therefore �(C) = E .
We conclude that V contains all E�measurable functions and hence for any E�measurable
function f : E ! R, the function Pt(:; f) is also E�measurable.
In particular for any A 2 E the function Pt(:; A) = Pt(:; 1A) is E� measurable.

3. It remains to verify the Kolmogorov-Chapman equation. Here we will refer to the

Riesz representation Theorem (Theorem 1.4).

47



For any s; t � 0; x 2 E; f 2 C(E),
Z
E
Ps+t(x; dz)f(z) = Tt+sf(x)

= Tt(Tsf)(x)

=
Z
E
Tsf(y)Pt(x; dy)

=
Z
E
Pt(x; dy)

Z
E
f(z)Ps(y; dz)

=
Z
E

�Z
E
Pt(x; dy):Ps(y; dz)

�
f(z):

Then for any f 2 C(E),

Tt+sf(x) =
Z
E

�Z
E
Pt(x; dy):Ps(y; dz)

�
f(z): (2.6)

Consider now the map � : E ! R de�ned as follows:

�(A) =
Z
E
Pt(x; dy):Ps(y; A) (2.7)

It is obvious that this map is a measure and from equation (2.6) we have that

Tt+sf(x) =
Z
E
f(z)�(dz): (2.8)

Therefore Z
E
f(z)�(dz) =

Z
E
Ps+t(x; dz)f(z): (2.9)

Let us verify that the measure � satis�es the assumptions of the Riesz representation

Theorem (Theorem 1.4).

1. For any compact subset K of E,

�(K) =
Z
E
Pt(x; dy)Ps(y;K) �

Z
E
Pt(x; dy)Ps(y; E)

�
Z
E
Pt(x; dy):1 (since Ps(y; E) � 1)

� Pt(x;E)

� 1

and we have that �(K) <1:

2. For any A 2 E ,

Pt(x;A) = inffPt(x; V ) : A � V; V open in Eg

Then

�(A) =
Z
E
Pt(x; dy)Ps(y; A)
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=
Z
E
Pt(x; dy): inf fPs(y; V ) : A � V; V open in Eg

= inf
�Z

E
Pt(x; dy)Ps(y; V ) : A � V; V open in E

�
= inf f�(V ) : A � V; V open in Eg :

3. The same argument can be used to show that for any A 2 E such that Pt(x; V ) <

+1,

�(A) =
Z
E
Pt(x; dy)Ps(y; A)

=
Z
E
Pt(x; dy) sup fPs(y;K) : K � A;K compactg

= sup
�Z

E
Pt(x; dy)Ps(y;K) : K � A;K compact

�
= sup f�(K) : K � A;K compactg :

By the Riesz representation theorem, we conclude that

�(A) = Pt+s(A): (2.10)

That is

Pt+s(A) =
Z
E
Pt(x; dy):Ps(y; A); A 2 E : (2.11)

This is the Chapman -Kolmogorov equation �
We have then constructed a transition function on E and then a Markov process as

desired.

2.2 In�nitesimal generators of Feller semigroups on

a Bounded Domain

The purpose of this section is to describe the form of the in�nitesimal generator of a Feller

semigroup on the closure of a bounded domain of Rn. This in�nitesimal generator is the

key of relationships between semigroups and partial di�erential equations.

In this section, D is a bounded domain of Rn (n � 2). To simplify notations, the closure

of D will be denoted E instead of �D and as usual E is the corresponding Borel ��algebra.
We will assume that D is a C1�di�erential manifold de�ned by its canonical atlas. We

begin by considering the case of interior points of the domain and later we will consider

points on the boundary of the domain.
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2.2.1 Form of in�nitesimal generators in the interior of the Do-

main

The following theorem gives the general form of the in�nitesimal generator of a Feller

semigroup in the interior of D.

Theorem 2.4 Let E be the closure of a bounded domain D in Rn. Let (Tt)t�0 be a

Feller semigroup on E and U its in�nitesimal generator. Suppose that at any point

x0 2 D, there exists a local coordinate system (x1; x2; : : : ; xn) and continuous functions

�1; �2; : : : ; �n de�ned from E to R that extend x1; x2; : : : ; xn respectively such that the

functions 1; �1; �2; : : : ; �n and
Pn

i=1 �
2
i belong to the domain D(U) of U :

Then for any f 2 D(U) \ C2(E),

Uf(x0) =
nX

i;j=1

aij(x0)
@2f

@xi@xj
(x0) +

nX
i=1

bi(x0)
@f

@xi
(x0) + c(x0)u(x0)

+
Z
E
e(x0; dy)

"
f(y)� f(x0)�

nX
i=1

@f

@xi
(x0)(�i(y)� �i(x0))

#
; (2.12)

where

1. (aij(x0)) is a symmetric and positive semi-de�nite matrix,

2. bi(x0) = U(�i � �i(x0))(x0);

3. c(x0) = U(1)(x0);

4. e(x0; :) is a measure on (E; E) such that

e(x0; EnU) < 1;Z
U
e(x0; dy)

"
nX
i=1

(�i(y)� �i(x0))
2

#
< 1;

for any neighborhood U of x0.

Proof. We give just the main steps of the proof. A complete proof may be found else-

where [17].

Since (Tt)t�0 is a Feller semigroup, then by Theorem 2.3, there exists a unique transi-

tion function (Pt)t�0 such that for any f 2 C(E),

Ttf(x) =
Z
E
Pt(x; dy)f(y): (2.13)

Then for any f 2 D(U) \ C2(E) and for any x0 2 D we have:

Uf(x0) = lim
t#0

Ttf(x0)� f(x0)

t
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= lim
t#0

1

t

Z
E
Pt(x; dy)f(y)� f(x0): (2.14)

Putting f(y) in the equivalent form:

f(y) = f(x0) +
nX
i=1

@u

@xi
(x0)(�i(y)� �i(x0))

+ f(y)� f(x0)�
nX
i=1

@u

@xi
(x0)(�i(y)� �i(x0));

we have that

Uf(x0) = lim
t#0

1

t

�Z
E
Pt(x0; dy)� 1

�
f(x0)

+
1

t

nX
i=1

Z
E
Pt(x0; dy)(�i(y)� �i(x0))

@f

@xi
(x0)

+
1

t

Z
E
Pt(x0; dy)[f(y)� f(x0)�

nX
i=1

@f

@xi
(x0)(�i(y)� �i(x0)): (2.15)

Let

c(x0) = lim
t#0

Tt1(x0)� 1

t
= U1(x0) (2.16)

bi(x0) = lim
t#0

Tt[�i � �i(x0)](x0)

t
= U(�i � �i(x0))(x0) (since (�i � �i(x0))(x0) = 0) (2.17)

d(x0; y) =
nX
i=1

[�i(y)� �i(x0)]
2 (2.18)

~f(x0; y) =
f(y)� f(x0)�Pn

i=1
@f
@xi

(x0) [�i(y)� �i(x0)]

d(x0; y)
; (2.19)

where y 2 E � fx0g. We get

Uf(x0) = c(x0)f(x0) +
nX
i=1

bi(x0)
@f

@xi
(x0)

+ lim
t#0

1

t

Z
E�fx0g

Pt(x0; dy) ~f(x0; y)d(x0; y): (2.20)

De�ne now a measure ~Pt(x0; :) on the measurable space (E; E) as follows

~Pt(x0; A) =
1

t

Z
A
Pt(x0; dy)d(x0; y); 8A 2 E : (2.21)

Now we have

Uf(x0) = c(x0)f(x0) +
nX
i=1

bi(x0)
@f

@xi
(x0)

+ lim
t#0

Z
E�fx0g

~Pt(x0; dy) ~f(x0; y): (2.22)
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For any su�ciently small t � 0, one has that ~Pt(x0; E) � lims#0 Ps(x0; E) + 1. Then,

~Pt(x0; E) � lim
s#0

Z
E
Ps(x0; dy)d(x0; y) + 1

� U
 

nX
i=1

(�i � �i(x0))
2

!
(x0) + 1 (2.23)

by de�nition of d(x0; y) and since the function (�i � �i(x0))
2 vanishes at x0.

Let us now construct a compact space containing E �fx0g in which the function ~f(x0; :)

can be continuously extended as follows.

For any i; j = 1; 2; : : : ; n, de�ne a function zij(x0; :) from E � fx0g into R by

zij(x0; y) =
(�i(y)� �i(x0))(�j(y)� �j(x0))

d(x0; y)
: (2.24)

By de�nition of d(x0; y), one has that

8y 2 E � fx0g; jzij(x0; y)j � 1 (2.25)

and all the principal minors of the matrix (zij(x0; y)) are nonnegative , that indicates that

this matrix is positive semi-de�nite. This matrix is symmetric since zij(x0; y) = zji(x0; y).

Let M be the set of positive semi-de�nite symmetric matrices (zij) of order n on R such

that jzijj � 1.

It is clear that M , considered as a subset of Rn2 is bounded and closed. Consider now

the map �x0 : E � fx0g ! E �M de�ned as follows

�x0(y) = (y; zij(x0; y)): (2.26)

It is clear that this map is continuous. It is also one-to-one and hence we can identify

E � fx0g with its image �x0(E � fx0g). That is we identify an element y of E � fx0g
with the pair (y; zij(x0; y)).

The function ~f(x0; :) can now be considered as a function from �x0(E � fx0g) to R by

taking

8(y; zij(x0; y)) 2 �x0(E � fx0g); ~f(x0; (y; zij(x0; y))) = f(x0; y): (2.27)

Consider the closure

Hx0 = �x0(E � fx0g) (2.28)

in E �M . We have that Hx0 is a compact subset of the compact space E �M which is

itself a compact subspace of Rn+n2 .

Let (yn; zij(x0; yn)) be a sequence in �x0(E � fx0g) that converges to (x0; zij). Taking a

development of f(yn) in a neighborhood of x0 yields:

f(yn) = f(x0) +
nX
i=1

@f

@xi
(x0)(�i(yn)� �i(x0))
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+
nX

i;j=1

Z 1

0

@2f

@xi@xj
(x0 + �(yn � x))(1� �)d� �

(�i(yn)� �i(x0))(�j(yn)� �j(x0)): (2.29)

Then by de�nition of ~f(x0; yn), and zij(x0; yn) (see equations (2.19) and (2.24)) one has:

~f(x0; yn) =
nX

i;j=1

Z 1

0

@2f

@xi@xj
(x0 + �(yn � x))(1� �)d�zij(x0; yn): (2.30)

Then

lim
n!1

~f(x0; yn) =
nX

i;j=1

Z 1

0

@2f

@xi@xj
(x0)(1� �)d�zij

=
1

2

nX
i;j=1

@2f

@xi@xj
(x0)zij: (2.31)

Then we can extend the function ~f(x0; :) on Hx0 as follows:

~f(x0; (x0; zij)) =
1

2

nX
i;j=1

@2f

@xi@xj
(x0)zij: (2.32)

Then we obtain a function
~f(x0; :) : Hx0 ! R

de�ned as follows: for any h = (y; zij) 2 Hx0 ,

~f(x0; h) =

8>>>><
>>>>:

f(y)�f(x0)�
Pn

i=1

@f
@xi

(x0)(�i(y)��i(x0))

d(x0;y)
if h 2 �x0(E � fx0g)

1
2

Pn
i;j=1

@2f
@xi@xj

(x0)zij otherwise:

(2.33)

Now we consider the measurable space (Hx0 ;H) where H denotes the Borel ��algebra
on the topological space Hx0 . The injection �x0 is measurable since it is continuous and

we can transfer the measure ~Pt(x0; :) on (Hx0 ;H) by de�ning a new measure P̂t(x0; :) as

follows:

P̂t(x0; A) = ~Pt(x0;�
�1
x0
(A)); 8A 2 H: (2.34)

Then

P̂t(x0; Hx0) = ~Pt(x0;�
�1
x0
(Hx0))

� ~Pt(x0; E)

� lim
s#0

~Ps(x0; E)

= U
 

nX
i=1

(�i � �i(x0))
2

!
(x0) + 1 (from equation (2.23))
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where the �rst inequality comes from the fact that

��1
x0
(Hx0) � E � fx0g � E:

Since the space Hx0 is compact, from Theorem 1.3, we have that the family (Pt(x0; :))t�0

contains a subsequence that converges weakly to a measure on Hx0 : More precisely, there

exists a nonincreasing sequence (tn) of nonnegative real numbers converging to zero such

that the measures P̂tn(x0; :) converges to a measure P̂ (x0; :) on Hx0 , in the sense that: for

any continuous function f : Hx0 ! R;

lim
n!1

Z
Hx0

f(h)P̂tn(x0; dh) =
Z
Hx0

f(h)P̂ (x0; dh): (2.35)

Returning to Uf(x0), the limit term in equation (2.22) can be calculated by noting that:

Z
E�fx0g

~Pt(x0; dy) ~f(x0; y) =
Z
Hx0

P̂t(x0; dh) ~f(x0; h)

since for any Borel set A of Hx0 ,

P̂t(x0; A) = ~Pt(x0;�
�1
x0
(A)):

Then

lim
t#0

Z
E�fx0g

~Pt(x0; dy) ~f(x0; y) = lim
t#0

Z
Hx0

P̂t(x0; dh) ~f(x0; h)

= lim
n!1

Z
Hx0

P̂tn(x0; dh) ~f(x0; h)

=
Z
Hx0

P̂ (x0; dh) ~f(x0; h):

And therefore

Uf(x0) = c(x0)f(x0) +
nX
i=1

bi(x0)
@f

@xi
(x0)

+
Z
Hx0

P̂ (x0; dh) ~f(x0; h): (2.36)

Now we give a clear meaning to the integral term in equation (2.36).

Let ~P (x0; :) be the measure de�ned on E�fx0g as follows: for any Borel set A of E�fx0g,

~P (x0; A) = P̂ (x0;�x0(A)): (2.37)

Let Z : E �M !M be the function de�ned by:

Zij(h) = (zij); 8h = (y; (zij)) 2 E �M: (2.38)
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Then

Z
Hx0

P̂ (x0; dh) ~f(x0; h) =
Z
Hx0��x0 (E�fx0g)

P̂ (x0; dh) ~f(x0; h)

+
Z
�x0 (E�fx0g)

P̂ (x0; dh) ~f(x0; h):

Since for h = (y; (zij)) 2 Hx0 � �x0(E � fx0g),

~f(x0; h) =
1

2

nX
i;j=1

@2f

@xi@xj
(x0)zij;

we have that

Z
Hx0��x0 (E�fx0g)

P̂ (x0; dh) ~f(x0; h) =
1

2

nX
i;j=1

Z
Hx0��x0 (E�fx0g)

P̂ (x0; dh)

� Zij(h)
@2f

@xi@xj
(x0):

We have also that that

Z
�x0 (E�fx0g)

P̂ (x0; dh) ~f(x0; h) =
Z
E�fx0g

~P (x0; dy) ~f(x0; y)

Now letting

aij(x0) =
1

2

Z
Hx0��x0 (E�fx0g)

P̂ (x0; dh)Zij(h); (2.39)

we get

Uf(x0) = c(x0)f(x0) +
nX
i=1

bi(x0)
@f

@xi
(x0)

+
nX
i=1

aij(x0)
@2f

@xi@xj
(x0)

+
Z
(E�fx0g)

~P (x0; dy) ~f(x0; y): (2.40)

De�ne now a measure e(x0; :) on (E; E) as follows:

e(x0; fx0g) = 0 (2.41)

e(x0; A) =
Z
A�fx0g

~P (x0; dy)

 
1

d(x0; y)

!
; 8A 2 E : (2.42)

Then we have that

Z
E�fx0g

~P (x0; dy) ~f(x0; y) =
Z
E
e(x0; dy)[f(y)� f(x0)�

nX
i=1

@f

@xi
(x0)(�i(y)� �i(x0))]:
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Now we have the formula

Uf(x0) =
nX

i;j=1

aij(x0)
@2f

@xi@xj
(x0) +

nX
i=1

bi(x0)
@f

@xi
(x0) + c(x0)u(x0)

+
Z
E
e(x0; dy)

"
f(y)� f(x0)�

nX
i=1

@f

@xi
(x0)(�i(y)� �i(x0))

#
: (2.43)

The matrix (aij(x0)) is symmetric and positive semide�nite since the function Z takes

values in M �

Remark 2.1 It is worth mentioning that if there exists a continuous Markov process that

admits the transition function (Pt)t�0 de�ned by the Feller semigroup (Tt)t�0; then the

integral part of relation (2:43) above vanishes [17]. In this case the in�nitesimal generator

of (Tt)t�0 is such that: for any u 2 D(U) \ C2(E), for any x0 in the interior of E,

Uf(x0) =
nX

i;j=1

aij(x0)
@2f

@xi@xj
(x0) +

nX
i=1

bi(x0)
@f

@xi
(x0) + c(x0)f(x0) (2.44)

and therefore U is a di�erential operator of second order in the interior of E.

In the proof of Theorem 2.4, the closure Hx0 of the image �x0(E�fx0g) in E�M has

been intensively used. Let us illustrate the construction in dimension two. We know that

the closure of a subset A of Rn is formed by the limits of converging sequences (xn) such

that all the points xn are in A.We recall also that for i; j = 1; 2, and for any y 2 E�fx0g,

zij(x0; y) =
(�i(y)� �i(x0))(�j(y)� �j(x0))

d(x0; y)
2 R:

Let (y; (zij)) 2 Hx0 . Then, there exists a sequence (yn; (zij(x0; yn))) in �x0(E �fx0g that
converges to (y; (zij)): If y 6= x0, then we have that

(yn; (zij(x0; yn)) = �x0(yn)! �x0(y)

since �x0 is continuous. Then

�x0(y) = (y; (zij))

by the unicity of the limitand hence

(y; (zij)) 2 �x0(E � fx0g):

If y = x0, then

(y; (zij)) 2 Hx0 � �x0(E � fx0g):

It follows that Hx0 ��x0(E�fx0g) is the set of elements of the form lim(yn; (zij(x0; yn)))

where (yn) is a sequence in E�fx0g converging to x0 such that the sequence (zij(x0; yn))

also converges.
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This means that Hx0��x0(E�fx0g) is the set of elements of the form (x0; lim(zij(x0; yn)))

where (yn) is a sequence in E�fx0g converging to x0 such that the sequence (zij(x0; yn))

also converges.

To characterize this set we �rst state and prove the following lemma.

Lemma 2.1 With the notations used in Theorem 2.4, for any sequence (yn) in E�fx0g,
converging to x0, the sequence of matrices (zij(x0; yn)) where

zij(x0; yn) =
(�i(yn)� �i(x0))(�j(yn)� �j(x0))

d(x0; yn)

converges , if and only if , the quotient

�2(yn)� �2(x0)

�1(yn)� �1(x0)

converges to a �nite limit or its square tends to in�nity.

Proof. Suppose that

lim z11(x0; yn) = l; and lim z12(x0; yn) = a: (2.45)

The �rst equality means that

lim
(�1(yn)� �1(x0))

2

(�1(yn)� �1(x0))2 + (�2(yn)� �2(x0))2
= l:

Then by dividing the terms of this fraction by (�1(yn) � �1(x0))
2 (note that this term

does not vanish for any y 2 E � fx0g)we get

lim
1

1 + (�2(yn)��2(x0))2

(�1(yn)��1(x0))2

= l: (2.46)

If l 6= 0; then

lim
(�2(yn)� �2(x0))

2

(�1(yn)� �1(x0))2
=

1

l
� 1:

By the same procedure, we get that

lim
(�2(yn)� �2(x0))=(�1(yn)� �1(x0)

1 + (�2(yn)� �2(x0))2=(�1(yn)� �1(x0))2
= a

and hence

lim
�2(yn)� �2(x0)

�1(yn)� �1(x0)
=
a

l
:

If l = 0; then equation (2.46) implies that

lim
(�2(yn)� �2(x0))

2

(�1(yn)� �1(x0))2
=1:
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Conversely, if
�2(yn)� �2(x0)

�1(yn)� �1(x0)

converges to � 2 R then clearly

lim z11(x0; yn) =
1

1 + �2
;

lim z12(x0; yn) =
�

1 + �2
;

lim z22(x0; yn) =
�2

1 + �2
:

Also if  
�2(yn)� �2(x0)

�1(yn)� �1(x0)

!2
!1;

then

lim z11(x0; yn) = 0; lim z12(x0; yn) = 0 and lim z22(x0; yn) = 1:

The same situation occurs if

�2(yn)� �2(x0)

�1(yn)� �1(x0)
!1 �

From this lemma, we have that Hx0 ��x0(E�fx0g) is the set of elements of the form
(x0; lim(zij(x0; yn))) where (yn) is a sequence in E � fx0g such that

lim
�2(yn)� �2(x0)

�1(yn)� �1(x0)
= � 2 [�1;+1]:

In the case where for any � 2 [�1;1] one can construct a sequence (yn) such that

lim
�2(yn)� �2(x0)

�1(yn)� �1(x0)
= �;

we have that Hx0 � �x0(E � fx0g) is identi�ed to the set

( 
x0;

1

1 + �2
;

�

1 + �2
;

�

1 + �2
;

�2

1 + �2

!
: � 2 [�1;1]

)
:

We have now the following theorem (using notations of Theorem 2.4)

Theorem 2.5 If for any � 2 [�1;1] there exists a sequence (yn) such that

lim
�2(yn)� �2(x0)

�1(yn)� �1(x0)
= �

then the space Hx0 � �x0(E � fx0g) is equal to the set

( 
x0;

1

1 + �2
;

�

1 + �2
;

�

1 + �2
;

�2

1 + �2

!
: � 2 [�1;1]

)
: (2.47)
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This set can be written as x0 �C where C is a curve situated on the unity sphere of R4.

In the next section, we investigate the form of the in�nitesimal generator on the

boundary of E:

2.2.2 Form of the in�nitesimal generator on the boundary of

the Domain

As in the previous section, we suppose that E is the closure of a bounded domain D of

Rn of class C1. Having seen the form of the in�nitesimal generator in the domain D, this

section is intended to give the general form of the in�nitesimal generator on the boundary

@D.

Let (Tt)t�0 be a Feller semigroup on E and let U be its in�nitesimal generator.

As in [3], [18] let us suppose that for any point x0 2 @D, there exists an open neighborhood
U of x0 in �D and a bijection ' from U onto an open subset of the subspace

Rn
+ = f(a1; a2; : : : ; an) : an � 0g

de�ned by '(x) = (x1(x); x2(x); : : : ; xn�1(x); xn(x)) such that the following properties

hold.

1. for any x 2 U , x 2 U \D () xn(x) > 0 and x 2 U \ @D () xn(x) = 0;

2. the functions (x1; x2; : : : ; xn�1; xn) form a local coordinate system of U\D, meaning
that

(U \D;'jU\D)

is a chart of D (considered as a C1�di�erential manifold as in Example 1.1),

3. the functions (x1; x2; : : : ; xn�1) form a local coordinate system of U \ @D, meaning
that

(U \ @D;'jU\@D)

is a chart of @D considered also as a C1�di�erential manifold.

Suppose also that the functions (x1; x2; : : : ; xn�1; xn) can be extended respectively to

C1�functions �1; �2; : : : ; �n�1; �n de�ned from Rn to R such that for any x0 2 U \ @D

d(x0; y) = �n(y) +
n�1X
i=1

(�i(y)� �i(x
0))2 > 0; 8y 2 E � fx0g (2.48)

and

�n(y) � 0; 8y 2 Rn: (2.49)

Then we have the following theorem [17].
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Theorem 2.6 Any function f 2 D(U) \ C2(E), veri�es at each x0 2 @D, a condition of

the form:

n�1X
i;j=1

�ij(x
0)

@2f

@xi@xj
(x0) +

n�1X
i=1

�i(x0)
@f

@xi
(x0) + (x0)f(x0)

+�(x0)
@f

@xn
(x0)� �(x0)Uf(x0)

+
Z
E
�(x0; dy)[f(y)� f(x0)�

n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))] = 0 (2.50)

where: for any x0 2 @D,

1. the matrix �ij(x
0) is symmetric and positive semi-de�nite,

2. (x0) � 0;

3. �(x0) � 0,

4. �(x0) � 0;

5. �(x0; :) is a measure on (E; E) such that for any neighborhood W of x0 in Rn,

�(x0; E �W ) < 1;Z
W\E

�(x0; dy)

"
�n(y) +

n�1X
i=1

(�i(y)� �i(x
0))2

#
< 1:

Proof. For the sake of space we give here only the main steps of the proof. A detailled

proof is provided in [17]. Another form of this theorem is given in [20].

We consider the unique transition function (Pt)t�0 on E such that: for any f 2 C(E),

Ttf(x) =
Z
E
Pt(x; dy)f(y):

Then for any f 2 D(U) \ C2(E), and for any x0 2 @D, from the identity

f(y) = f(x0) +
n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))]

+ f(y)� f(x0)�
n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))];

one has, for any t > 0,

1

t
(Ttf(x

0)� f(x0)) =
1

t
(Pt(x

0; E)� 1) f(x0) +

+
1

t

n�1X
i=1

Z
E
Pt(x

0; dy)(�i(y)� �i(x
0))
@f

@xi
(x0)
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+
1

t

Z
E
Pt(x

0; dy)[f(y)� f(x0)�
n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))]: (2.51)

De�ne now the following functions:

t(x
0) =

1

t
(Pt(x

0; E)� 1) ; (2.52)

�tj(x
0) =

1

t

Z
E
Pt(x

0; dy)(�j(y)� �j(x
0)); (2.53)

d(x0; y) = �n(y) +
n�1X
i=1

(�i(y)� �i(x
0))2;8y 2 E � fx0g; (2.54)

~f(x0; y) =
f(y)� f(x0)�Pn�1

i=1
@f
@xi

(x0)(�i(y)� �i(x
0))

d(x0; y)
(2.55)

where y 2 E � fx0g.
Then we get

1

t
(Ttf(x

0)� f(x0)) = t(x
0)f(x0) +

n�1X
i=1

�tj(x
0)
@f

@xi
(x0) +

+
1

t

Z
E�fx0g

Pt(x
0; dy) ~f(x0; y)d(x0; y): (2.56)

Now introduce the function

lt(x
0) =

1

t

Z
E
Pt(x

0; dy)d(x0; y): (2.57)

Since by hypothesis d(x0; y) > 0 for any y 2 E � fx0g, we have that

lt(x) � 0; 8x0 2 @D:

Now we consider two cases: lt(x
0) > 0 and lt(x

0) = 0.

Suppose �rst that lt(x
0) > 0. De�ne a measure ~qt(x

0; :) on (E; E) as follows:

~qt(x
0; A) =

1

tlt(x0)

Z
A
Pt(x

0; dy)d(x0; y): (2.58)

Then the last term in equation (2.56) is:

1

t

Z
E�fx0g

Pt(x
0; dy) ~f(x0; y)d(x0; y) =

1

t
tlt(x

0)
Z
E�fx0g

~qt(x
0; dy) ~f(x0; y)

= lt(x
0)
Z
E�fx0g

~qt(x
0; dy) ~f(x0; y): (2.59)
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Note that the measure ~qt(x
0; :) is such that

~qt(x
0; E � fx0g) =

1

tlt(x0)

Z
E�fx0g

Pt(x
0; dy)d(x0; y)

=
1

tlt(x0)

Z
E
Pt(x

0; dy)d(x0; y)

= 1

where the second equality follows the fact that d(x0; x0) = 0 and the last comes from the

to the de�nition of lt(x
0) (2.57).

Let us consider the case where lt(x
0) = 0. From equation (2.57)), we have that

Z
E
Pt(x

0; dy)d(x0; y) =
Z
E�fx0g

Pt(x
0; dy)d(x0; y) = 0 (2.60)

since d(x0; x0) = 0. Since the function d(x0; :) is positive on E � fx0g, the last equality in

relation (2.60) implies that:

Pt(x
0; E � fx0g) = 0:

Let x0 be a �xed interior point of E. Consider the measure ~qt(x
0; :) on (E; E) de�ned as

follows:

8A 2 E ; ~qt(x
0; A) =

8<
: 1 if x0 2 A

0 otherwise:
(2.61)

It follows, as in the �rst case, that

1

t

Z
E�fx0g

Pt(x
0; dy) ~f(x0; y)d(x0; y) = lt(x

0)
Z
E�fx0g

~qt(x
0; dy) ~f(x0; y)

since the two terms are zero. It is also clear that

~q(x0; E � fx0g) = 1 since x
0 6= 0:

Now in the two cases there exists a measure ~qt(x
0; :) such that

1

t

Z
E�fx0g

Pt(x
0; dy) ~f(x0; y)d(x0; y) = lt(x

0)
Z
E�fx0g

~qt(x
0; dy) ~f(x0; y) (2.62)

and

~qt(x
0; E � fx0g) = 1: (2.63)

It follows that

1

t
(Ttf(x

0)� f(x0)) = t(x
0)f(x0) +

n�1X
i=1

�tj(x
0)
@f

@xi
(x0) +

+ lt(x
0)
Z
E�fx0g

~qt(x
0; dy) ~f(x0; y): (2.64)

62



Now as in the previous proof, the function ~f(x0; :) should be extended to a compact space

containing x0. To this end we consider the functions w(x0; :) and zij(x
0; :) de�ned for

y 2 E � fx0g as follows:

w(x0; y) =
�n(y)

d(x0; y)

zij(x
0; y) =

(�i(y)� �i(x
0))(�j(y)� �j(x

0))

d(x0; y)

8i; j = 1; 2; : : : ; n� 1:

Clearly we have that:

1. 0 � w(x0; y) � 1; 8y 2 E � fx0g:

2. For any i; j = 1; 2; : : : ; n� 1; jzij(x0; y)j � 1 (by using the inequality jabj � a2+ b2

for any a; b 2 R.)

3. w(x0; y) +
Pn�1

i=1 zii(x
0; y) = 1:

4. The matrix (zij(x
0; y)) is symmetric and positive semi-de�nite as in the previous

proof.

Let M be the set of symmetric and positive semi-de�nite matrices (zij) of order n� 1 on

R such that jzijj � 1 and let H be the subset of E � [0; 1]�M de�ned as follows:

(y; w; (zij)) 2 H () w +
n�1X
i=1

zij = 1: (2.65)

Let �x0 be the injection de�ned from E � fx0g to H as follows:

�x0(y) = (y; w(x0; y); (zij(x
0; y))): (2.66)

Let

Hx0 = �0
x(E � fx0g) (2.67)

be the closure of �0
x(E�fx0g) in H. As before, we identify the set E�fx0g and its image

�0
x(E � fx0g), by identifying y 2 E � fx0g with (y; w(x0; y); (zij(x

0; y)).

Let (ym; w(x
0; y); zij(x

0; ym)) be a sequence in �x0(E � fx0g) that converges to (x0; w; zij)

in H. We can take a Taylor's development of f(ym) in a neighborhood of x0 and get:

f(ym) = f(x0) +
n�1X
i=1

@f

@xi
(x0)(�i(ym)� �i(x

0))

+
@f

@xn
(x0)(�n(ym)
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+
n�1X
i;j=1

Z 1

0

@2f

@xi@xj
(x0 + �(ym � x0))(1� �)d� �

(�i(ym)� �i(x
0))(�j(ym)� �j(x

0)): (2.68)

Then by de�nition of ~f(x0; :),and zij(x0; :) we have:

~f(x0; ym) =
@f
@xn

(x0)�n(ym)

d(x0; ym)

+
n�1X
i;j=1

Z 1

0

@2f

@xi@xj
(x0 + �(ym � x))(1� �)d�zij(x

0; ym):

Moreover by de�nition of w(x0; :), we have that:

~f(x0; ym) =
@f

@xn
(x0)w(x0; ym) +

n�1X
i;j=1

Z 1

0

@2f

@xi@xj
(x0 + �(ym � x))

� (1� �)d� � zij(x
0; ym): (2.69)

By letting m!1, we get

f(x0; ym)! @f

@xn
(x0)w +

1

2

n�1X
i=1

@2f

@xi@xj
(x0)zij: (2.70)

We can therefore extend the function ~f(x0; y) on Hx0 by taking:

~f(x0; (x0; w; zij)) =
@f

@xn
(x0)w +

1

2

n�1X
i;j=1

@2f

@xi@xj
(x0)zij: (2.71)

Then we obtain a function
~f(x0; :) : Hx0 ! R

de�ned as follows: for any h = (y; w; zij) 2 Hx0 ,

~f(x0; h) =

8>>>><
>>>>:

f(y)�f(x0)�
Pn�1

i=1

@f
@xi

(x0)(�i(y)��i(x
0))

d(x0;y)
if h 2 �x0(E � fx0g)

@f
@xn

(x0)w + 1
2

Pn�1
i;j=1

@2f
@xi@xj

(x0)zij otherwise:

(2.72)

Let us de�ne a measure q̂t on Hx0 as follows:

q̂t(x
0; A) = ~qt(x

0;��1
x0 (A)) (2.73)

for any Borel set A of Hx0 .

We have that

q̂t(x
0; Hx0) = ~qt(x

0; E � fx0g) = 1 (2.74)
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that means that q̂t(x
0; :) is a probability measure. We have also that

1

t
(Ttf(x

0)� f(x0)) = t(x
0)f(x0) +

n�1X
i=1

�tj(x
0)
@f

@xi
(x0)

+ lt(x
0)
Z
Hx0

q̂t(x
0; dh) ~f(x0; h): (2.75)

Now consider the following functions:

�m(x
0) = �1=m(x0) +

n�1X
i=1

j�1=mj (x0)j+ l1=m(x
0); m = 1; 2; : : : : (2.76)

We have that �m(x
0) � 0 since t(x

0) � 0 and lt(x
0) � 0 for all x0 2 @D. Two cases are to

be considered:

Case 1. Suppose that there exists a subsequence (�mk
) of (�m) that converges to zero.

Then we have from equation (2.76) that

1=mk
(x0)! 0; �

1=mk

j (x0)! 0 and l1=mk
(x0)! 0:

Taking t = 1=mk in equation (2.75) and letting mk !1, we get:

Uf(x0) = 0:

In this case, we can take

�ij(x
0) = �j(x

0) = (x0) = �(x0) = 0;

�(x0) = 1; �(x0; :) = 0

and get (2.50). Case 2. Suppose that there exists a subsequence (�mk
) of (�m(x

0)) that

converges to a real number �(x0) > 0. At this step, let us take t = 1=mk in equation

(2.75). By dividing the resulting equation by �mk
one gets

��k(x
0)
Ttf(x

0)� f(x0)

tk
= �k(x

0)f(x0) +
n�1X
i=1

��kj (x
0)
@f

@xi
(x0)

+ �lt(x
0)
Z
Hx0

�qk(x
0; dh) ~f(x0; h);

where

tk =
1

mk
;

��k(x
0) =

1

�mk
(x0)

;

�k(x
0) =

tk(x
0)

�mk
(x0)

;
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��kj (x
0) =

�tkj (x
0)

�mk
(x0)

;

�lk(x
0) =

ltk(x
0)

�mk
(x0)

�qk(x
0; :) = q̂tk(x

0; :):

Letting mk !1, we get the relation:

�(x0)Uf(x0) = (x0)f(x0) +
n�1X
i=1

�j(x
0)
@f

@xi
(x0)

+ l(x0)
Z
Hx0

q̂(x0; dh) ~f(x0; h) (2.77)

where �(x0) = lim ��k(x
0); (x0) = lim �k(x

0)

�j(x
0) = lim ��kj (x

0); l(x0) = lim�lk(x
0),

q̂(x0; :) = lim q̂k(x
0; :)

At this step, we de�ne a measure ~q(x0; :) on E � fx0g by taking, for any Borel set A of

E � fx0g:
~q(x0; A) = q̂(x0;�x0(A)): (2.78)

Consider the functions W and Z from E � [0; 1]�M to [0; 1] and M respectively de�ned

as follows:

W (h) = w and Z(h) = (zij); 8h = (y; w; (zij)) 2 E � [0; 1]�M: (2.79)

Now we have that

l(x0)
Z
Hx0

q̂(x0; dh) ~f(x0; h) = l(x0)
Z
Hx0��x0 (E�fx

0g)
q̂(x0; dh) ~f(x0; h)

+l(x0)
Z
�x0 (E�fx

0g)
q̂(x0; dh) ~f(x0; h)

= l(x0)
Z
Hx0��x0 (E�fx

0g)
q̂(x0; dh)W (h)

@f

@xn(x0)

+l(x0)
1

2

n�1X
i;j=1

Z
Hx0��x0 (E�fx

0g)
q̂(x0; dh)Zij(h)

@2f

@xi@xj
(x0)

+l(x0)
Z
(E�fx0g

~q(x0; dh) ~f(x0; h): (2.80)

Let us take

�(x0) = l(x0)
Z
Hx0��x0 (E�fx

0g)
q̂(x0; dh)W (h); (2.81)

�ij(x
0) =

l(x0)

2

Z
Hx0��x0 (E�fx

0g)
q̂(x0; dh)Zij(h): (2.82)
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De�ne the measure �(x0; :) on (E; E) as follows:
8<
: �(x0; fx0g) = 0

�(x0; A) =
R
A�fx0g

~P (x0; dy)
�

1
d(x0;y)

�
:

(2.83)

We get

l(x0)
Z
Hx0

q̂(x0; dh) ~f(x0; h) =
n�1X
i=1

�ij(x
0)

@2f

@xi@xj
(x0) +

+ �(x0)
@f

@xn
(x0) +

Z
E
�(x0; dy)[f(y)� f(x0)

�
n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))];

and hence

n�1X
i;j=1

�ij(x
0)

@2f

@xi@xj
(x0) +

n�1X
i=1

�i(x
0)
@f

@xi
(x0) + (x0)f(x0)

+�(x0)
@f

@xn
(x0)� �(x0)Uf(x0)

+
Z
E
�(x0; dy)[f(y)� f(x0)�

n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))] = 0

as desired �
Remark 2.2 As previously let us illustrate the construction of the subspace,

Hx0 � �x0(E � fx0g)

in dimension 2. We will illustrate this set in the case of two dimensions as previously.

With the same argument as in Remark 2.1, we have that Hx0 � �x0(E � fx0g) is the set
of elements of the form

(x0; w(x0; yn); lim(zij(x
0; yn)))

where (yn) is a sequence in E � fx0g converging to x0 such that the sequences w(x0; yn)

and (zij(x
0; yn)) also converge. As in Lemma 2.1, we have that the sequences w(x0; yn)

and (z11(x
0; yn)) converge if and only if the fraction

(�2(yn))
1=2

�1(yn)� �1(x0)
! � 2 [�1;1]

or its square tends to in�nity (as n!1). And if this happens, then

lim z11 =
1

1 + �2
;

limw(x0; yn) =
�2

1 + �2
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with the obvious extension if � is in�nite. In the case where for any � 2 [�1;1] one

can construct a sequence (yn) such that

(�2(yn))
1=2

�1(yn)� �1(x0)
! �;

the space

Hx0 � �x0(E � fx0g)

is the set ( 
x0;

1

1 + �2
;

�2

1 + �2

!
: � 2 [�1;+1]

)
:

Then, we have the following theorem (using notations in Theorem 2.6):

Theorem 2.7 In dimension two, if for any � 2 [�1;1] there exists a sequence (yn)

such that
(�2(yn))

1=2

�1(yn)� �1(x0)
! � 2 [�1;+1] (2.84)

then the space Hx0 � �x0(E � fx0g) is equal to the set

( 
x0;

1

1 + �2
;

�2

1 + �2

!
: � 2 [�1;1]

)
: (2.85)

In the particular case where there are no integral terms in equations (2.12) and (2.50),

the Feller semigroup (or its generator) is characterized by the di�erential operators, A
and L such that

Au(x) =
nX

i;j=1

aij(x)
@2u

@xi@xj
(x) +

nX
i=1

bi(x)
@u

@xi
(x) + c(x)u(x); x 2 �D (2.86)

Lu(x) =
n�1X
i;j=1

�ij(x)
@2u

@xi@xj
(x) +

n�1X
i=1

�i(x0)
@u

@xi
(x) + (x)u(x)

+ �(x)
@u

@xn
(x)� �(x)Au(x) = 0; x0 2 @D: (2.87)

The converse problem can now be posed and this is the subject matter of the next

section.

2.3 Feller Semigroups and Bounded value problems

This section is intended to explain the relationships between Feller semigroups and bound-

ary value problems. It was shown that the in�nitesimal generator of Feller semigroup on

the closure of a bounded domain in Rn (n � 2) can be described by a di�erential opera-

tor in the interior of the domain and a boundary condition. In this section, the converse

problem is investigated. Under which conditions a second order linear di�erential oper-

ator in a domain D and a boundary condition on the boundary @D of D, determine a
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Feller semigroup on D.

2.3.1 Statement of the Problem

Let D be a bounded domain of Rn of class C1. One can show that this implies that the

boundary @D of D is a C1�di�erential manifold of dimension n. We will suppose [3],

[18] that for any point x0 2 @D, there exists an open neighborhood U of x0 in �D and a

bijection ' from U onto an open subset of the subspace

Rn
+ = f(a1; a2; : : : ; an) : an � 0g

de�ned by '(x) = (x1(x); x2(x); : : : ; xn�1(x); xn(x)) such that the following properties

hold:

1. for any x 2 U , x 2 U \D () xn(x) > 0 and x 2 U \ @D () xn(x) = 0;

2. the functions (x1; x2; : : : ; xn�1; xn) form a local coordinate system of U\D, meaning
that

(U \D;'jU\D)

is a chart of D (considered as a C1�di�erential manifold as in Example 1.1),

3. the functions (x1; x2; : : : ; xn�1) form a local coordinate system of U \ @D, meaning
that

(U \ @D;'jU\@D)

is a chart of @D (considered also as a C1�di�erential manifold).

We will suppose, in particular, that the function xn is the distance to the boundary @D,

that is

xn(x) = dist(x; @D) = inf fjx� yj : y 2 @Dg

Consider a second-order elliptic operator of the form:

Au(x) =
nX

i;j=1

aij(x)
@2u

@xi@xj
(x) +

nX
i=1

bi(x)
@u

@xi
(x) + c(x)u(x) (2.88)

which veri�es the following conditions:

1. aij 2 C1(Rn), aij = aji and there exists a constant a0 > 0 such that

nX
i;j=1

aij(x)�i�j � a0j�j2; 8x; � 2 Rn; (2.89)

2. bi 2 C1(Rn);

3. c 2 C1(Rn) and c � 0 on �D.
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Furthermore, consider a boundary condition of the form:

Lu(x0) =
n�1X
i;j=1

�ij(x
0)

@2u

@xi@xj
(x0)

+
n�1X
i=1

�i(x0)
@u

@xi
(x0) + (x0)u(x0)

+ �(x0)
@u

@xn
(x0)� �(x0)Au(x0) = 0; (2.90)

which satis�es the following conditions.

1. �ij 2 C1(@D) , �ij = �ji, the �ij are components of a 2-contravariant tensor on

@D (a tensor on a manifold at a given point is a tensor on the tangent space of this

manifold at this point) and for any x0 2 @D,
n�1X
i=1

�ij(x
0)�i�j � 0; 8� =

n�1X
i=1

�idxi 2 T �
x0(@D): (2.91)

2. �i 2 C1(@D).

3.  2 C1(@D) and (x0) � 0;8x0 2 @D:

4. � 2 C1(@D) and �(x0) � 0; 8x0 2 @D:

5. � 2 C1(@D) and �(x0) � 0;8x0 2 @D:
Now the problem is posed as follows:

Doest it exist a Feller semigroup on �D whose in�nitesimal generator is equal

to A and satis�es the boundary condition Lu(x0) = 0 on @D?

The condition L is called a Ventcel' boundary condition.

2.3.2 Existence of Feller semigroups

The purpose of this subsection is to derive su�cients conditions on the operators A and

L under which Feller semigroups exist. The results are stated without complete proofs

and we refer the reader to [17] for broad and detailed arguments.

Here we summarize, in di�erent steps, the solution of the problem in the case

n � 2 as presented in [17].

Consider the following Dirichlet problem: Let � be a �xed positive constant and let

f and ' be given functions. Find a function u de�ned in �D such that

8<
: (�� A)u = f in D

u = ' on @D
(2.92)
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We know from Theorem 1.18 that for any �xed

� 2 (0; 1); f 2 C�( �D); ' 2 C2+�(@D)

this problem has a unique solution u 2 C2+�( �D). In particular, for any f 2 C�( �D), let

G0
�f 2 C2+�( �D)

be the solution of the problem (2.92) for ' = 0, and for any ' 2 C2+�(@D), let

H�' 2 C2+�( �D)

be the solution of problem (2.92) for f = 0. Then we have then de�ned two linear

operators:

G0
� : C�( �D)! C2+�( �D)

H� : C2+�(@D)! C2+�( �D):

The operator G0
� can be seen as an operator from C( �D) to itself with domain C�( �D) and

the operator H� can be considered as an operator from C(@D) to C( �D) with domain

C2+�( �D). Seen in this form, they have the following properties:

1. The operators G0
� and H� are nonnegative, continuous and verify:

kG0
�k = kG0

�1k = sup
x2 �D

G0
�1(x);

kH�k = kH�1k = sup
x2 �D

H�1(x):

2. The operator G0
� has a unique nonnegative bounded linear extension, from C( �D) to

itself denoted also G0
�, with domain C( �D) such that

kG0
�k = kG0

�1k �
1

�
:

It has also the following properties: for any f 2 C( �D),

(a) G0
�f = 0 on @D;

(b) for any � > 0,

G0
�f �G0

�f + (�� �)G0
�fG

0
�f = 0; (2.93)

(c) for any x 2 D,

lim
�!1

�G0
�f(x) = f(x)
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and if f = 0 on @D; then

lim
�!1

kG0
�f � fk = 0

(d) for any non-negative integer k, if f 2 Ck+�( �D) then G0
�f 2 Ck+2+�( �D):

3. The operator H� has also a unique nonnegative bounded linear extension, from

C(@D) to C( �D), denoted again H�, with domain C(@D) and norm

kH�k = 1:

Furthermore it has the following properties: for any ' 2 C(@D),

(a) H�' = ' on @D;

(b) for any � > 0, H�'�H�'+ (�� �)H�'H�' = 0;

(c) for any non-negative integer k, if ' 2 Ck+�(@D) then H�' 2 Ck+2+�( �D):

Let us consider the operator A : C( �D)! C( �D) with domain C2( �D) de�ned as follows:

Au =
nX

i;j=1

aij
@2u

@xi@xj
+

nX
i=1

bi
@u

@xi
+ cu:

We have the following property:

Theorem 2.8 The operator A is closable and its minimum closed extension, �A, is an

operator from C(D) to itself.

proof. Suppose that a function u 2 C2( �D) attains its positive maximum at a point

x0 2 D. Then the gradient

 
@u

@x1
(x0);

@u

@x2
(x0); : : : ;

@u

@xn
(x0)

!

vanishes at x0 and the Hessian

H(x0) =

 
@2u

@xi@xj
(x0)

!
i;j

is negative semi-de�nite [8]. Note that

nX
i;j=1

aij
@2u

@xi@xj
(x0)

is the trace of the product of matrix H(x0) by the matrix (aij(x0)). Since the �rst is

negative semi-de�nite and the latter is positive semi-de�nite then the product is negative
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semi-de�nite and hence its trace is nonpositive. It follows that:

Au(x0) =
nX

i;j=1

aij(x0)
@2u

@xi@xj
(x0) + c(x0)u(x0) � 0

since c � 0 in D.

Then from Theorem 1.17, A is closable in C( �D) and in particular its minimum closed

extension is an operator from C( �D) to itself �

For any u 2 C( �D), we can consider u as a distribution, that is, we identify u with the

function from C1(D) to R, denoted again u de�ned as follows:

u(g) =
Z
D
u(x)g(x)dx:

In this sense, for any multi-index �, the derivative D�u of u is the distribution on D

de�ned as follows:

D�u(g) = (�1)j�j
Z
D
f(x)D�g(x); g 2 C1(D):

This will be the sense of derivatives when functions are considered only continuous. More

details on the theory of Distributions can be found elsewhere [12], [17].

Some properties of G0
� and H� are given below [17]:

Theorem 2.9 Let D( �A) denote the domain of �A. Then the operators G0
� : C( �D)! C( �D)

and H� : C( �D)! C( �D) are such that:

1. for any f 2 C( �D),

G0
�f 2 D( �A); and (�I � �A)G0

�f = f in D;

2. for any ' 2 C(@D),

H�' 2 D( �A); and (�I � �A)H�' = 0 in D;

3. for any u 2 D( �A),
u = G0

�u1 +H�u2

where

u1 = (�I � �A)u; and u2 = u on @D:

Proof. These properties are based mainly on the fact that the spaces C�( �D) and

C2+�(@D) are dense respectively in the spaces C( �D) and C( �D) [17].
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For any f 2 C( �D) there exists a sequence (fk) in C�( �D) that converges to f . Then

lim
k!1

G0
�fk = G0

�f

since the operator G0
� is continuous. Furthermore we have, from the de�nition of G0

�, that

(�� A)G0
�fk = fk in D:

Since �A = A on C�( �D), we get

lim
k!1

(�� �A)G0
�fk = f:

Since �A is closed then from Theorem 1.12, we get that

G0
�f 2 D( �A); and (�I � �A)G0

�f = f in D:

The same argument can be used to show the second property.

Consider the linear operator LG0
� : C( �D)! C(@D) whose domain is

D(LG0
�) = ff 2 C( �D) : G0

�f 2 C2( �D)g

and de�ned as follows:

LG0
�f = L(G0

�f)

where L is the boundary condition (2.90).

We have that for any f 2 C�( �D),

G0
�f 2 C2+�( �D) � C2( �D)

and hence

C�( �D) � D(LG0
�):

Further this operator has the following properties:

Theorem 2.10 There exists a unique non-negative and bounded linear operator

LG0
� : C( �D)! C(@D)

that extends the operator LG0
�. Furthermore, for any f 2 C( �D), for any � > 0

LG0
�f � LG0

�f + (�� �)LG0
�G

0
�f = 0: (2.94)
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Proof. Since C�( �D) is dense in C( �D) and C�( �D) � D(LG0
�), we can take:

LG0
�f = lim

k!1
LG0

�fk

where (fk) is a sequence of C�( �D) that converges to f in C( �D): Equation (2.94) is an

immediate consequence of equation (2.93) �

As before consider the linear operator LH� : C(@D)! C(@D) whose domain is

D(LH�) = C2+�(@D)

and de�ned from the boundary condition (2.90) as follows:

LH� = L(H� ):

The following result holds:

Theorem 2.11 This operator enjoys the following properties

1. For any  2 D(LH�), if  takes its positive maximum at some point x0 2 @D; then
LH�(x

0) � 0:

2. The operator LH� is closable and its minimal closed extension LH� in an operator

from C(@D) to itself.

3. Furthermore, for any � > 0, the operators LH� and LH� has the same domain and

for any  in the domain:

LH� � LH� + (�� �)LG0
�H� = 0: (2.95)

We are now ready to link Feller semigroups on the boundary of the domain D to

boundary value problems. We have the following result:

Therorem 2.12 Let � > 0. If the operator LH� : C(@D) ! C(@D) is the in�nitesimal

generator of a Feller semigroup on @D then for any constant � > 0; there exists a dense

subset K of C(@D) such that for any ' 2 K, the problem

8<
: (�� A)u = 0 in D

(�� L)u = ' on @D
(2.96)

has a solution u in C2+�( �D).

Conversely, if there exists � � 0 and a dense subset K of C(@D) such that for any ' 2 K,

the problem above has a solution u in C2+�( �D), then the operator LH� is the in�nitesimal

generator of a Feller semigroup on @D:
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Proof. Suppose that the operator LH� is the in�nitesimal generator of a Feller semi-

group on @D. Then since a Feller semigroup is strongly continuous, we have from Theorem

1.14 that for any � > 0, the operator �I � LH� is a bijection from its domain to C(@D).

Then its range R(�I�LH�) is equal to C(@D). Since �I�LH� is equal to the minimum

closed extension of �I � LH� we have from Corollary 1.1 that

R(�I � LH�) � R(�I � LH�)

and hence

R(�I � LH�) = C(@D):

Then R(�I � LH�) is a dense subset of C(@D).

Let ' 2 R(�I � LH�). Since the domain of LH� is C2+�(@D) then there exists

 2 C2+�(@D) such that

' = (�I � LH�)( ) = (�� L)H� ;

where the last equality follows the fact that

LH� 2 C(@D):

From the de�nition of H�, we have that

u = H� 2 C2+�( �D)

is a solution of Problem (2.96).

The converse is a consequence of Theorem 1.17. Let us suppose that there exists � � 0

and a dense subset K of C(@D) such that for any ' 2 K, Problem (2.96) has a solution

u in C2+�( �D): Let ' 2 K and let u 2 C2+�( �D) be a solution of the problem

8<
: (�� A)u = 0 in D

(�� L)u = ' on @D
(2.97)

Since u 2 C2+�( �D); then the restriction uj@D of u on @D belongs to C2+�(@D) and we

have that

u = H�(uj@D):

Then we have from equation (2.97) that:

�uj@D � Lu = '

and then
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�uj@D � LH�(uj@D) = ':

Then

(�� LH�)uj@D = '

and therefore

' 2 R(�� LH�):

It follows that

K � R(�� LH�)

and hence the range R(� � LH�) of � � LH� is also dense in C(@D). Now adding the

Property 1 of Theorem 2.11 we get by Theorem 1.17 that �I � LH� is the in�nitesimal

generator of some Feller semigroup on @D �

The following de�nition will be used in the sequel.

De�nition 2.2 The Ventecel' boundary condition L (2:90) is said to be transversal if

�(x0) + �(x0) > 0;8x0 2 @D:

Now we are ready to state the theorem which gives the solution to the problem [17].

Theorem 2.13 Suppose that the di�erential operator A given by equation (2:88) satis�es

conditions (2:89) and the boundary condition L de�ned by equation (2:90) satis�es all the

conditions (2:91) and is transversal on @D. Suppose also that the following conditions are

satis�ed:

1. There exist constants � � 0 and � � 0 and a dense subset K of C(@D) such that

for any ' 2 K, the boundary value problem

8<
: (�� A)u = 0 in D

(�� L)u = ' on @D
(2.98)

has a solution u in C( �D):

2. There exists a constant � > 0 such that any solution to the problem

8<
: (�� A)u = 0 in D

Lu = 0 on @D
(2.99)

that belongs to C( �D) vanishes in the domain D.

Then there exists a Feller semigroup (Tt)t�0 on �D whose in�ntesimal generator U has

domain

D(U) = fu 2 C( �D) : Au 2 C( �D); Lu = 0g
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and such that

Uu = Au

where Au and Lu are taken in the sense of distribution.

It is not easy to apply directly this result to construct Feller semigroups since the

existence of solutions of the given bounded value problem can be very di�cult to handle.

There is another result deduced from this theorem that will be used in the sequal [17].

First, we have the following de�nitions.

De�nition 2.3 Let x0 2 @D and let v 2 Tx0(@D). Then v can be written as

v =
n�1X
i;j=1

vj
@

@xi
(x0)

where vj are constants. The vector v is said to be subunit for the operator

L0 =
n�1X
i;j=1

�ij
@2

@xi@xj

if  
n�1X
i=1

vi�i

!2
�

n�1X
i;j=1

�ij(x
0)�i�j; 8� =

n�1X
i=1

�idxj 2 T �
x0(@D): (2.100)

De�nition 2.4 Let � > 0. A path  : [0; �]! @D is said to be Lipschitz if there exists a

constant C > 0 such that for any t; s

j(t)� (s)j � Cjt� sj:

De�nition 2.5 For any � > 0, let BL0(x
0; �) be the set of all points y 2 @D such that

there exists a Lipschitz path  : [0; �] ! @D joining y to y for which the tangent vector

0(t) to @D at the point (t) is subunit for L0 for almost every t (with respect to the

Lebesgue measure).

The set BL0(x
0; �) is called the non-Euclidean ball of radius � about x0 de�ned by the

operator L0.

For any � > 0, let BE(x
0; �) be the set de�ned as follows:

BE(x
0; �) = fy 2 @D : jx0 � yj � �g:

BE(x
0; �) is the closed Euclidean ball of @D of radius � about x0.

We have the following theorem [17].

Theorem 2.14 Suppose that the di�erential operator A given by equation (2:88) satis�es

conditions (2:89) and the boundary condition L (equation (2:90) satis�es all the conditions
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(2:91) and is transversal on @D.

If there exist constants 0 < � � 1; C > 0 such that for any su�ciently small � > 0, the

following property holds

BE(x
0; �) � BL0(x

0; C��); 8x0 2M = fx0 2 @D : �(x0) = 0g (2.101)

then there exists a Feller semigroup (Tt)t�0 on �D whose in�nitesimal generator U is such

that its domain is

D(U) = fu 2 C( �D) : Au 2 C( �D); Lu = 0g (2.102)

and veri�es the following property:

Uu = Au; 8u 2 D(U): (2.103)

The generator U is equal to the minimum closed extension in C( �D) of the restriction of

A to the space fu 2 C2( �D) : Lu = 0g.

We will apply this theorem to construct some Feller semigroup and hence Markov

processes on the closed unity disk of R2 in Section 3.2.

For further details on the existence of Feller semigroups, we refer the reader to [3], [17].
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Chapter 3

Applications

3.1 Semigroups associated to Markov Chains

3.1.1 Discrete-Time Markov Chains

De�nition 3.1 A Markov chain is a Markov process (Xt)t2T whose state space E is

discrete (that is �nite or countably in�nite). If, in addition, the index set T is discrete ,

a Markov chain is termed a discrete-time Markov chain and if T is not discrete, the term

continuous-time Markov chain is used.

We will suppose that the discrete state space E is endowed with its discrete topology (any

subset of E is an open set). In this case, any subset of E is also a Borel set of E. We

will denote as usual the Borel ��algebra on E by E . From Theorem 1.11, we can simply

de�ne a discrete-time Markov chain as follows [1],[13].

De�nition 3.2 Let (X0; X1; X2; : : : ; ) be a sequence of random variables de�ned from

a probability space (
;F ; P ) to a discrete topological space E. The stochastic process

� = (Xn)n�0 is said to be a (discrete-time) Markov chain if for any positive integer n and

any states i0; i1; : : : ; in; j 2 E, one has :

PfXn+1 = jjXn = in; Xn�1 = in�1; : : : ; X0 = i0g = PfXn+1 = jjXn = ing:

The conditional probabilities

pij(n) = PfXn+1 = jjXn = ig

are called one-step transition probabilities. If this probabilities does not depend on n, the

chain is said to be homogeneous.

We will always assume that this is the case and denote pij instead of pij(n):

The matrix

Q = (pij)i;j2E
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is called the one-step transition matrix of the chain.

More generally, the conditional probabilities

pn(i; j) = PfXn = jjX0 = ig

are called the n-step transition probabilities of the Markov chain �: These probabilities

verify the Chapman-Kolmogorov equations [1], [7] [13]:

pn+m(i; j) =
X
k2E

pn(i; k)pm(k; j) (3.1)

and hence the matrix (pn(i; j))ij is equal to Q
n.

Let us de�ne the functions

pn : E � E ! R; n = 0; 1; 2; : : :

as follows:

pn(i; A) = PfXn 2 AjX0 = ig: (3.2)

We have that

p1(i; j) = pij;8i; j:

The following result holds:

Theorem 3.1 The family (pn)n�0 de�ned in equation (3:2) is the transition function of

the Markov chain � = (Xn)n�0:

Proof. It is clear that for any n 2 N and any A 2 E the function pn(:; A) from E into

R is measurable since in general any function de�ned on E is measurable. Also, for any

x 2 E, the function pn(x; :) de�ned from E into R by

pn(x;A) = PfXn 2 AjX0 = ig

is a measure since P is itself a measure. Furthermore, we have that:

pn(x;E) = PfXn 2 EjX0 = ig = 1:

This means that pn is a Markov kernel on (E; E).
Adding to this the Chapman-Kolmogorov equation, we get that the family (pn)n � 0 is a

transition function on (E; E). It remains to prove the validity of the equation (1.45).

Let f : E ! R be a bounded function.

E[f �XnjXm] = (pn�mf) �Xm a.s. (3.3)
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Let H be the ��algebra generated by the random variable Xm. Then we have to show

that the function (pn�mf) �Xm is H�measurable and that for any A 2 H,
Z
A
f �XndP =

Z
A
pn�mf �XmdP: (3.4)

The H�measurability of (pn�mf) �Xm is obvious since pn�mf is measurable. Let A 2 H:
we have that: Z

A
f �XndP =

X
j2E

PfX�1
n (j) \ Agf(j) (3.5)

Since for any i 2 E,

pn�mf(i) =
Z
E
pn�m(i; dy)f(y) =

X
j2E

pn�m(i; j)f(j)

we have that for any x 2 
,

pn�mf �Xm(x) =
X
j2E

pn�m(Xm(x); j)f(j):

Then

Z
A
pn�mf �XmdP =

X
j2E

f(j)
Z
A
pn�m(Xm(x); j)dP (x)

=
X
j2E

f(j)
X
i2E

pn�m(i; j)PfX�1
m (i) \ Ag:

Since A 2 H = X�1
m (E) then there exists K � E such that A = X�1

m (K): Therefore

8<
: X�1

m (i) \ A = X�1
m (i) if i 2 K

X�1
m (i) \ A = ; otherwise.

Then we get

X
i2E

pn�m(i; j)PfX�1
m (i) \ Ag =

X
i2K

pn�m(i; j)PfX�1
m (i)g

=
X
i2K

PfXn = jjXm = ig:PfXm = ig

=
X
i2K

P (fXn = jg \ fXm = ig)

= P ffXn = jg \ [[i2KfXm = ig]g
= P

n
X�1

n (j) \ A
o
:

Then Z
A
pn�mf �XmdP =

X
j2E

P
n
X�1

n (j) \ A
o
f(j): (3.6)

From equations (3.5) and (3.6), we have that (3.4) holds true �
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We can now construct the semigroup associated to a Markov chain. Let bE the set of

bounded and E� measurable functions f : E ! R: Since E contains all subsets of E, it

is clear that bE contains all bounded functions de�ned on E. In the special case where E

is also �nite, bE contains all functions de�ned on E.

Let (Tn)n�0 be the semigroup on bE associated with the Markov chain � = (Xn)n�0. Then

from Theorem 2.1 we have that: for any n � 0, for any f 2 bE ; for any x 2 E,

Tnf(x) =
Z
E
pn(x; dy)f(y)

and then

Tnf(x) =
X
y2E

pn(x; y)f(y): (3.7)

Now if we take E = f1; 2; : : :g and identify any function f 2 bE ; with the sequence

(f(0); f(1); f(2); : : : ; ) [6], we can see the right hand side of equation (3.7) as a product

of matrices and then

Tnf = Qnf; 8n 2 N; (3.8)

since the probabilities pn(x; y) are the elements of Q
n where Q is the one-step transition

matrix of the chain. It follows that

Tn = Qn: (3.9)

Now we state:

Theorem 3.2 The semigroup of a discrete-time Markov chain with one-step transition

matrix Q is the sequence (Qn)n�0 of the nonnegative powers of the matrix Q.

Let us check whether the converse of this result is also true.

Suppose that E is a �nite set and as before suppose that E is the discrete topology on E.

Let us now study the form of contractive nonnegative semigroups (T0; T1; T2; T3; : : :) on

E and the associated Markov chains. First we have the following de�nition.

De�nition 3.3 Let A be a square matrix of nonnegative real numbers. A is said to be a

substochastic matrix if the entries of each row sum up to a number less or equal to 1. If

the sum of the entries of each row is equal to 1, A is said to be a stochastic matrix.

Let us suppose that E = f1; : : : ;mg: Since E is �nite and its topology is discrete, any

function f : E ! R is bounded and continuous and as before, f is identi�ed with the

vector

(f(1); f(2); : : : ; f(m)) 2 Rm:

The set of continuous and bounded functions de�ned on E is therefore identi�ed with the

vector space Rm: Let

(Tn)n�0 = (T0; T1; T2; : : :)

be a semigroup on E which is contractive and nonnegative. With the identi�cation above,

for any n 2 N, Tn is a linear map on Rm. Let Q be the matrix of T1 with respect to the
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canonical basis of Rm: (We will simply write T1 = Q since by �xing a basis any linear

map is represented by one matrix and conversely any matrix represents one linear map).

Then for any nonnegative vector

x = (x1; x2; : : : ; xm)
T 2 Rm;

T1(x) = Qx � 0

since T1 is nonnegative. Then the matrix Q has only nonnegative entries. Also we have

that:

kT1k = kQk = supfkQxk : kxk = 1g � 1

where

kxk = supfjxij : i = 1; 2; : : : ;mg:

Then by taking x = (1; 1; : : : ; 1)T ; we get that the sum of all the entries of each row of

the matrix Q is less or equal to 1. Then the matrix Q is substochastic.

From

Tn+m = Tn:Tm

we have that:

T2 = T1:T1 = Q2

and by induction

Tn = Qn; 8n 2 N:

From Theorem 2.3, there exists a unique transition function pn(x; dy) on E such that for

any n � 0:

Tnf(x) =
Z
E
pn(x; dy)f(y) 8f 2 C(E); 8x 2 E:

In the current situation, this can be written as:

(Qnx)i =
X
j2E

pn(i; j)xj 8x 2 Rm;

where (Qnx)i is the ith component of the vector Qnx; meaning that, if Qn = (aik) then

(Qnx)i =
mX
k=1

aikxk

By taking successively x = (1; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : (0; 0; : : : ; 1) we get

pn(i; 1) = ai1; pn(i; 2) = ai2; : : : ; pn(i;m) = aim

that is

pn(i; j) = aij:
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We conclude that the transition function pn is such that for any states i; j pn(i; j) is the

(i; j)� entry of the matrix Qn: We can now state:

Theorem 3.3 For any �nite and discrete topological space E, any contractive and non-

negative semigroup (T1; T2; T3; : : :) on C(E) is of the form Qn where Q is a substochastic

matrix of order m = jEj: If the matrix Q is stochastic, then any Markov chain associated

to this semigroup is such that its one-step transition matrix is equal to Q:

If we take for example

E = f1; 2; 3g;

we have that the space of continuous function de�ned on E is identi�ed with R3, that is

C(E) = R3:

For any substochastic matrix Q of order 3, the sequence (Qn)n=1;2;::: is a contractive and

nonnegative semigrouop on R3. Conversely, any contractive and nonnegative semigroup

(T1; T2; T3; : : :) on C(E) is of the form

Tn = Qn;

where Q is a substochastic matrix Q of order 3.

Let us consider for example,

Q =

0
BBB@

1=2 1=3 1=6

1=4 1=2 1=4

1=3 1=3 1=3

1
CCCA :

Q is a stochastic matrix and fI;Q;Q2; Q3; : : :g is a contraction semigroup and any Markov

chain on f1; 2; 3g associated to this semigroup is that its one-step transition matrix is equal
to Q.

We cannot do more for a discrete-time Markov chain since the notion of in�nitesimal

semigroup requires at least that the semigroup must be de�ned on a continuous index set.

3.1.2 Continuous-time Markov chains

De�nition 3.4 Let (Xt)t�0 be a stochastic process whose base space is the probability

space (
;F ; P ) and state space is a discrete topological space E. The process (Xt)t�0 is

said to be a continuous-time Markov chain if for any real numbers 0 � s � t and any

states j; i; iu(0 � u < s):

PfXt = jjXs = i;Xu = iu(0 � u < s)g = PfXt = jjXs = ig: (3.10)

If the probabilities in (3.10) depend only on the di�erence t� s; the Markov chain is said

to be homogeneous. In the sequel, we consider only homogeneous Markov chains.
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We also suppose that E = f0; 1; 2; : : :g and we will denote by RE the set of all sequences

of terms in R indexed by elements of E, that is

RE = f(xi)i2E : xi 2 R;8i 2 Eg:

The conditional probabilities

pij(t) = PfXt = jjX0 = ig; i; j 2 E

are called the transition probabilities of the process. We will also assume that:

lim
t!0

pij(t) = �ji : (3.11)

and that X
j2E

pij(t) = 1; 8i 2 E; 8t � 0: (3.12)

Let

Q(t) = (pij(t)):

The probabilities pij(t) verify the Chapman-Kolmogorov equation [1], [7],[13]:

pij(t+ s) =
X
k2E

pik(t)pkj(s): (3.13)

Let us de�ne the functions

pt : E � E ! R

as follows:

pt(i; A) = PfXt 2 AjX0 = ig; t � 0:

It is now clear that the functions (pt)t�0 form a transition function on the measurable

space (E; E) and we have that:

Theorem 3.4 The family (pt)t�0 is the transition function of the Markov chain (Xt)t�0:

Let (Tt)t�0 be the semigroup on bE (the space of bounded functions de�ned on E)

associated to the transition function (pt)t�0. As before, for any t � 0, the operator Tt is

identi�ed with the transition matrix

Q(t) = (pij(t)): (3.14)

This means that, for any bounded sequence

x = (x0; x1; x2; : : :) 2 RE;

Ttx = (y0; y1; y2; : : :); with yi =
X
j2E

pij(t)xj; 8i 2 E: (3.15)
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Now we have the following result [6].

Theorem 3.5 The semigroup (Tt)t�0 associated to a continuous-time Markov chain with

transition probabilities pij(t) verifying equation (3:11) is strongly continuous and contrac-

tive.

Proof. For any t � 0, we have that:

kTtk = kQ(t)k = supfkQ(t)xk : kxk = 1g = 1 (3.16)

since X
j2E

pij(t) = 1

and the maximum value in equation (3.16) is attained for x = (1; 1; : : : ; 1; : : :): Further-

more, for any bounded sequence

x = (x0; x1; x2; : : :) 2 RE

we have that:

8i 2 E; lim
t#0

������
X
j2E

pij(t)xj � xi

������ =
������
X
j2E

�jixj � xi

������ = 0

Then since all the components of Ttx� x converge to 0, it follows that

lim
t#0
kTtx� xk = 0 �

Remark 3.1 For the special case where E is �nite, the semigroup (Tt)t�0 is clearly a

Feller semigroup since in this case E is compact and the space C(E) of continuous func-

tions on E is equal to the space bE (of bounded measurable functions on E).

Let us now study the in�nitesimal generator of this semigroup.

Let U be the in�nitesimal generator of the semigroup (Tt)t�0: It is a linear operator on

the space bE and can be seen as an operator on the space of bounded sequences of real

numbers. We know that

Ux = lim
t#0

Ttx� x

t
(3.17)

and its domain is the set of sequences x for which the limit in equation (3.17) exists.

Then

Ux = lim
t#0

Q(t)x� x

t

= lim
t#0

Q(t)x�Q(0)x

t
:
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If

x = (x0; x1; x2; : : :) and

Ux = (u0; u1; u2; : : :);

then

ui = lim
t#0

X
j2E

pij(t)� pij(0)

t
xj:

Now if all the functions pij(t) are di�erentiable at zero, we get:

ui =
X
j2E

p0ij(0)xj:

Then we can identify the operator U with the matrix

Q0(0) = (p0ij(0)): (3.18)

Remark 3.2 The time that a continuous-time Markov chain spends in each state before

making a transition is a random variable with exponential distribution.

Suppose now that for each state i 2 E, the rate of this exponential random variable is vi.

Let pij be the probability that the next state of the Markov chain will be j when it leaves

state i: We have that:

8i 2 E; pii = 0; and
X
j2E

pij = 1:

The discrete-time Markov chain on E with one-step transition matrix

P = (pij)

is called the embedded Markov chain of the continuous-time Markov chain (Xt): The quan-

tities pij; vi along with the initial distribution determine completely a continuous Markov

chain on a set E [13].

Let

qij = vipij: (3.19)

This quantity represents the rate at which the chain makes a transition in state j if

it is currently in state i and are called \instantaneous transition rates". The following

properties hold [13].

Theorem 3.6 With the notations above

lim
t#0

1� pii(t)

t
= vi and (3.20)

lim
t#0

pij(t)

t
= qij for i 6= j: (3.21)
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Since

lim
t#0

pij(t) = �ji ;

we get:

p0ii(0) = �vi (3.22)

p0ij(0) = qij for i 6= j (3.23)

and the in�nitesimal generator U of the semigroup (Tt) is fully determined:

U =

0
BBBBBB@

�v0 v0p01 v0p02 : : :

v1p10 �v1 v1p12 : : :

v2p20 v2p21 �v2 : : :
...

...
...

. . .

1
CCCCCCA
:

We can therefore compute the semigroup (Tt) from U as follows:

Tt = eUt; t � 0: (3.24)

Conversely, let v0; v1; v2; : : : be real numbers and pij; (i; j 2 E) be nonnegative real num-
bers such that X

j2E�fig

pij = 1;8i 2 E:

Let

U =

0
BBBBBB@

�v0 v0p01 v0p02 : : :

v1p10 �v1 v1p12 : : :

v2p20 v2p21 �v2 : : :
...

...
...

. . .

1
CCCCCCA
: (3.25)

Then U is the in�nitesimal generator of the semigroup associated to a continuous-time

Markov chain with state space E. This Markov chain is such that the time that it spends

in each state before making a transition is a random variable with exponential distribution

of rate vi. Furthermore, the probability that the next state of the Markov chain will be j

when it leaves state i is pij:

Then any matrix

A = (hij) (3.26)

where

1. hii < 0;

2. hij � 0, for all i; j 2 E with i 6= j;

3.
P

j2E hij = 0, for any i 2 E;

generates a contraction and strongly continuous semigroup on E and hence a continuous
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Markov chain.

Remark 3.3 Let (Xt)t�0 be a continuous-time Markov chain on E with transition proba-

bilities (pij(t)) and instantaneous transition rates qij and let vi be the rates of the amounts

of time spent in states i whenever the chain enters state i: Under suitable conditions, the

functions (pij(t)) verify the following di�erential equations called respectively the Kol-

mogorov's Backward equations and the Kolmogorov's forward equations [7], [13].

p0ij(t) =
X

k2E�fig

qijpkj(t)� vipij(t) (3.27)

p0ij(t) =
X

k2E�fjg

qkjpik(t)� vjpij(t) (3.28)

8i; j 2 E;8t > 0:

Using the in�nitesimal generator U of the semigroup associated to the chain (Xt)t�0,

these equations can be written as follows:

Q0(t) = U :Q(t); 8t � 0 (3.29)

Q0(t) = Q(t):U ; 8t � 0; (3.30)

where

Q(t) = (pij(t)):

Remark 3.4 Suppose that the chain (Xt)t�0 is such that starting in any state, it is pos-

sible to enter any other state and starting in any state the expected amount of time to

return to the same state is �nite. Then for any j 2 E, the limit

pj = lim
t!1

pij(t) (3.31)

exists and is independent of the initial state i, and pj represents the long-run proportion

of time that the process is in state j: In addition, the pj's are the solutions of the system:

vjpj �
X

k2E�j

qkjpk = 0; 8j 2 E (3.32)

X
j2E

pj = 1 (3.33)

obtained from the Kolmogorov's forward equations [13].

The �rst equation of this system can be written in term of the in�nitesimal generator

U as:

L:U = 0 (3.34)

where L is the matrix of order n such that all the entries of each row are p0; p1; p2; : : :.

We have therefore that:

lim
t!1

Q(t) = L: (3.35)
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Let us consider the following application to discrete-time Markov chain.

Consider a discrete-time Markov chain (Ym)m�0 on E = f1; 2; : : : ; ng with transition

matrix

P = (aij):

We know that P is a stochastic matrix. Then the matrix

U = P � I (3.36)

(I is the identity matrix) has the form of equation (3.25) whith

vi = 1� aii (3.37)

and

pij =

8<
:

aij
vi

if vi 6= 0

0 otherwise.

Then there exists a continuous-time Markov chain (Xt)t�0 such that its associated semi-

group Q(t) is generated by U . This Markov chain is such that:

1. If the chain enters state i, the time it spends in this state is exponentially distributed

with rate vi = 1� aii:

2. If the chain is to leave state i, then it enters state j (i 6= j) with probability

pij = aij=vi:

Now we have the following result:

Theoreme 3.7 The expected amount of time that the discrete-time chain (Ym) spends

in state i whenever it enters it, is the same as the expected amount of time that the

continuous-time Markov chain (Xt) spends in state i (whenever it enters it).

If the two chains (Ym) and (Xt) has limiting probabilities, then they are equal, that is:

lim
n!1

P n = lim
t!1

Q(t): (3.38)

Proof. Let T be the amount of time that the discrete-time Markov chain (Ym) spends

in state i whenever it enters it. We have that for any positive integer n, T = n if and

only if n� 1 successive transitions have left the chain in state i and the n�th transition

takes the process into another state. Since the probability to remain in state i for each

transition is aii and the probability to leave it is 1� aii, by the Markov property, we have

that:

PfT = ng = an�1ii (1� aii): (3.39)
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This means that T has the geometric distribution with parameter p = 1 � aii: Then the

expectation of T is

E[T ] =
1

1� aii
: (3.40)

Let G be the amount of time that the continuous-time Markov chain (Xt) spends in state

i whenever it enters it. We know that G is exponentially distributed with rate vi = 1�aii
and then its expectation is

E[G] =
1

vi
=

1

1� aii
= E[T ]: (3.41)

Let

L = lim
n!1

P n:

Then we have that:

L:U = L:(P � I) = L:P � L = L� L = 0: (3.42)

Then

lim
t!1

Q(t) = L �

We can also start by a continuous-time Markov chain (Xt) on E with a bounded

in�nitesimal generator

U = (uij): (3.43)

Consider the stochastic matrix P obtained by taking

P =
1

�
U + I (3.44)

where � is a positive real number such that:

juijj � �; 8i; j 2 E:

Then we have that:

U = �(P � I): (3.45)

We have the following result:

Theorem 3.8 Let (Yn) be a discrete-chain Markov chain on E whose one-step transition

matrix is P . Let also (Xt) be a continuous-time Markov chain on E whose in�nitesimal

generator is U such that equation (3:45) holds. If the two chains (Ym) and (Xt) have

limiting probabilities, then they are equal, that is:

lim
n!1

P n = lim
t!1

Q(t) = lim
t!1

eUt: (3.46)
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Proof. Let L = limn!1 P n: Then

L:U = L:�(P � I)

= �(L:P � L)

= �(L� L)

= 0:

And therefore

lim
t!1

Q(t) = L �

An illustative example is given at the end of the next subsection.

3.1.3 In�nitesimal generators of birth and death processes

De�nition 3.5 Let (�n)n�0 and (�n)n�1 be sequences of nonnegative real numbers. For

any t � 0, let Xt be the number of people in a given system at time t: Suppose that

whenever there are n people in the system, the amount of time required for a new arrival

(called a birth) in the system is an exponential random variable with rate �n. Suppose also

that the amount of time required for the new departure (called a death) is an exponentially

distributed random variable with rate �n.

The process Xt is called a \birth and death process" of birth rates (�n)n�0 and death rates

(�n)n�1:

It is clear that the process (Xt)t�0 is a continuous-time Markov chain with state space

E = f0; 1; 2; 3; : : :g:
Whenever there is 0 people in the system, the rate of arrival is equal to �0: If there are n

(n � 1) people in the system, then the process remains in state n up to the new event (a

birth or a death). This means that the amount of time that the process spends in state n

is the minimum of two exponential random variables with rates �n and �n. It is also an

exponential random variable with rate �n + �n since the minimum of two exponentially

distributed random variable is also an exponentially distributed random variable [13]. Let

vn be the rate of the amount of time spent in state n: Then

v0 = �0;

vn = �n + �n; for n � 1:

Let pij be the probability that the next state of the Markov chain will be j when it leaves

state i: We have that:

p01 = 1; (3.47)

pi;i+1 =
�i

�i + �i
; for i � 1; (3.48)
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pi;i�1 =
�i

�i + �i
; for i � 1; (3.49)

pij = 0 for j 2 E � fi� 1; i+ 1g: (3.50)

The second and the third equations are based on the fact that if X and Y are two

exponential random variables de�ned on (
; P;F) and taking values in the same space

E, then [13]:

Pfmin(X; Y ) = Xg = E[X]

E[X] + E[Y ]

where the letter E stands for the expectation.

It is also clear that:

lim
t!0

pij(t) = �ji :

Then from Theorem 3.6, we have that

p011(0) = �v0 = ��0;
p0ii(0) = �vi = ��i � �i for i � 1;

p0i;i�1(0) = qi;i�1 = vipi;i�1 = �i for i � 1;

p0i;i+1(0) = qi;i+1 = vipi;i+1 = �i for i � 1;

p0ij(0) = 0 for j 2 E � fi� 1; i+ 1g:

Then the in�nitesimal generator U of the semigroup associated to the birth and death

process is the matrix

U =

0
BBBBBBBBB@

��0 �0 0 0 0 : : : 0 : : :

�1 ��1 � �1 �1 0 0 : : : 0 : : :

0 �2 ��2 � �2 �2 0 : : : 0 : : :

0 0 �3 ��3 � �3 �3 : : : 0 : : :
...

...
...

...
...

...
...

. . .

1
CCCCCCCCCA
:

From U we can now deduce the semigroup (Tt)t�0 associated to the birth and death

process by the usual formula:

Tt = eUt

and then determine the pij(t):

As a particular case, we consider the Poisson process

3.1.4 Particular case: Poisson process

A birth and death process for which �n = 0 and �n = � where � is a positive constant is

called a Poisson process of rate �. The in�nitesimal generator of the semigroup associated

to the Poisson process can be identi�ed to the matrix:
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U =

0
BBBBBBBBB@

�� � 0 0 0 : : : 0 : : :

0 �� � 0 0 : : : 0 : : :

0 0 �� � 0 : : : 0 : : :

0 0 0 �� � : : : 0 : : :
...

...
...

...
...

...
...

. . .

1
CCCCCCCCCA
:

We have that for any sequence x = (x1; x1; x2; : : :) of real numbers:

Ux = �(x2 � x1; x3 � x2; : : : ; xn � xn�1; : : :) (3.51)

By considering the linear operator A on RE de�ned as follows:

8x = (x1; x2; x3; : : :) 2 RE; Ax = (x2; x3; : : :) (3.52)

we get that

Ux = �(Ax� x) (3.53)

and then

U = ��(I � A): (3.54)

3.1.5 Illustrative Example

Consider the following problem [13].

Example 3.1 A job shop consists of three machines and two repairmen. The amount of

time a machine works before breaking down is exponentially distributed with mean 10. If

the amount of time it takes a single repairman to �x a machine is exponentially distributed

with mean 8, then

1. what is the average number of machines not in use?

2. what proportion of time are both repairmen busy?

We can model this system by a birth and death process.

We will suppose that the lifetimes of these machines are independent, the repair times

for the two repairmen are also independent and independent with the lifetimes. Let us

suppose that the system is in state i whenever there are i machines down. Let us also

suppose that a birth occurs if a machine breaks down and a death occurs whenever a

machine is repaired. Then the state space is E = f0; 1; 2; 3g. We can now determine the

in�nitesimal generator of the corresponding semigroup.

It is important to note that the minimum of independent random variables exponentially

distributed with rates a1; a2; : : : ; an also is a random variable exponentially distributed

with rate a1+ a2+ : : :+ an [13]. If there are 0 machine down then all the three machines
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are working and the system remains in this state until a failure occurs. Since the lifetime

of each machine is a random variable with exponential distribution of mean 10 then the

amount of time up to the �rst failure is also a random variable exponentially distributed

with rate 3=10. Then �0 = 3=10.

By the same procedure, we have that: �1 = 2=10; �2 = 1=10; �3 = 0 and �0 = 0; �1 =

1=8; �2 = 2=8; �3 = 2=8. The in�nitesimal generator is therefore:

U =

0
BBBBBB@

�3=10 3=10 0 0

1=8 �13=40 2=10 0

0 2=8 �14=40 1=10

0 0 2=8 �2=8

1
CCCCCCA
:

We can now compute the transition probabilities by the formula

(pij(t)) = etU ; 8t � 0

or to get at least approximative values.

Using equation (3.34) and the fact that the limiting probabilities should sum up to 1, we

get that the limiting probabilities of the chain are:

p0 = 125=761; p1 = 300=761; p2 = 240=761; p3 = 96=761:

Then the average number of machines not in use is

0p0 + 1p1 + 2p2 + 3p3 + 4p4 = 1:4113

and the proportion of time both repairman are busy is p2 + p3 = 44:15%:

In order to illustrate the results of Theorem 3.7 and Theorem 3.8, let us consider the

matrix

P = I + U =

0
BBBBBB@

7=10 3=10 0 0

1=8 27=40 2=10 0

0 2=8 26=40 1=10

0 0 2=8 6=8

1
CCCCCCA
:

It is a stochastic matrix and hence de�nes a discrete-time Markov chain. Let us suppose

that transitions occur each minute, that is one transition per minute. If this chain enters

state 0, the amount of time it spends in this state before making a transition is a random

variable of geometric distribution with parameter 1 � 7=10 = 3=10. The mean of this

variable is therefore 10=3 minutes. This is exactly the same value for the given continuous

chain.
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Furthemore, we have that:

lim
n!1

P n = lim
t!1

etU =

0
BBBBBB@

125=761 300=761 240=761 96=761

125=761 300=761 240=761 96=761

125=761 300=761 240=761 96=761

125=761 300=761 240=761 96=761

1
CCCCCCA
:

The one-step transition matrix of the embedded chain doesn't verify this propery. Indeed,

it is given by

M =

0
BBBBBB@

0 1 0 0

5=13 0 8=13 0

0 5=7 0 2=7

0 0 1 0

1
CCCCCCA

and

lim
n!1

Mn =

0
BBBBBB@

0:308641975 0 0:691358025 0

0 0:802469136 0 0:197530864

0:308641975 0 0:691358025 0

0 0:802469136 0 0:197530864

1
CCCCCCA
:

Then the chain that we have constructed represents better the continuous-time Markov

chain well than the embedded chain.

3.2 Feller semigroups on a closed disk

In this section, we want to construct some examples of Feller semigroups and hence Markov

processes on the closed unity disk of R2 by using Theorem 2.14. The main di�culty on

applying this theorem is the estimation of the non-Euclidean ball BL0(x
0; �).

This set has interesting intuitive interpretation [17].

We will use notations and hypotheses of Section 2.3.

3.2.1 Atlas on the unity circle

Consider the open unity disk

D = f(x; y) : x2 + y2 < 1g � R2:

We have that

�D = f(x; y) : x2 + y2 � 1g; @D = f(x; y) : x2 + y2 = 1g

We recall that

R2
+ = f(a1; a2) : a2 � 0g:
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We begin by de�ning on @D an atlas having the required form described in Section 2.3.

Consider the following open subsets of �D :

� U1 = f(x; y) 2 �D : y > 0g;

� U2 = f(x; y) 2 �D : y < 0g;

� U3 = f(x; y) 2 �D : x > 0g;

� U4 = f(x; y) 2 �D : x < 0g:
Consider also the maps 'i : Ui ! R2

+ de�ned for any P = (x; y)as follows:

'i(x; y) = (x; dist(P; @D) =
�
x; 1�

q
x2 + y2

�
; for i = 1; 2

and

'i(x; y) = (y; dist(P; @D) =
�
y; 1�

q
x2 + y2

�
; for i = 3; 4

where dist stands for distance: It is clear that for any i, 'i is one-to-one and

'i(Ui) =
��
x; 1�

q
x2 + y2

�
: x2 + y2 � 1 and y > 0

�

= f(x; z) : z = 1�
q
x2 + y2; x2 + y2 � 1 and y > 0g

= f(x; z) : 0 � z < 1� jxj; jxj < 1g

where the last equality follows the fact that by �xing x such that jxj < 1, the function z

varies from 0 to 1� jxj.
It follows that 'i is a bijection from Ui onto V = 'i(Ui) and clearly V is an open subset

of R2
+.

Its inverse is given by

'�1i (x; y) =

8<
:
�
x;
q
(1� y)2 � x2

�
for i= 1, 2�q

(1� y)2 � x2; x
�

for i= 3, 4

Furthermore,

f(Ui \D;'ijUi\D)i=1;:::;4g

is an atlas of D equivalent to its canonical atlas de�ned in Example 1.1.

Also for any (x; y) 2 Ui \ @D, we have that

'i(x; y) =

8<
: (x; 0) if i = 1, 2

(y; 0) if i = 3, 4

and then 'ijU\@D(x; y) can be identi�ed to x for i = 1; 2 and to y for i = 3; 4. It is an

easy matter to show that

B = f(Ui \ @D;'ijUi\@D)i=1;2;3;4g
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form an atlas on the circle @D which is compatible with its canonical atlas de�ned in

Example 1.1.

In the sequel, we will suppose that @D is endowed with atlas B.
This construction can be generalized to the unity open ball D of Rn.

3.2.2 Euclidean and non-Euclidean balls on the unity circle

Consider an operator A of form (2.88):

Au(x) =
2X

i;j=1

aij(x)
@2u

@xi@xj
(x) +

2X
i=1

bi(x)
@u

@xi
(x) + c(x)u(x) (3.55)

and which veri�es the conditions (2.89). Let us also consider a boundary condition L of

the form

Lu(x0) = �(x0)
@2u

@x21
(x0) + �(x0)

@u

@x1
(x0) + (x0)u(x0) (3.56)

+�(x0)
@u

@x2
(x0)� �(x0)Au(x0) (3.57)

verifying conditions (2.91).

In this section, we will consider the particular case where the function � is the constant

function 1. We want to construct a Feller semigroup on �D de�ned by data (A;L) using

Theorem 2.14.

In this case, the operator L0 associated to L in De�nition 2.3 is de�ned as follows:

L0 =
@2

@x21
: (3.58)

For any � > 0, and for any

x0 = (cos �; sin �) 2 @D; � 2 [0; 2�];

we have �rst to determine the Euclean ball BE(x
0; �) on the unity circle @D.

We know that BE(x
0; �) is obtained by taking the intersection of the closed disk of R2 of

radius � and centre x0 with the circle @D.

If � < 2, then this intersection is the path of @D that contains x0 and whose extremities

(x; y) are solutions of the following system:

8<
: (x� cos �)2 + (y � sin �)2 = �2

x2 + y2 = 1:

The solutions of this system are

(x; y) =

 
(2� �2) cos � � �

p
4� �2 sin �

2
;

(2� �2) sin � � �
p
4� �2 cos �

2

!
:
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This means that

(x; y) = (cos(� � �); sin(� � �))

where

� = cos�1
�
1� �2=2

�
:

Then for � < 2, BE(x
0; �) is the path of @D containing x0 and with end points

(cos(� � �); sin(� � �)):

We have therefore that:

BE(x
0; �) =

n
(cos(� � t); sin(� � t)) 2 R2 : 0 � t � cos�1

�
1� �2=2

�o
: (3.59)

Secondly, we discuss the non-Euclidean ball BL0(x
0; �) on the unity circle @D. The

determination of this set is not an easy task.

We begin by the case x0 = (0; 1) in order to show the origin of our procedure. It is

assumed that � is a small positive number (� < 1). Points in BL0(x
0; �) should be found

on @D by looking in both sides from x0. This means that points on this set are of the

form

(cos(�=2� �); sin(�=2� �)); whith � � 0:

We consider therefore a path  on @D of the form

(t) = (cos f(t); sin f(t)); t 2 [0; �] (3.60)

where f is a di�erentiable function such that the curve  is Lipschitz and f(0) = �=2. It

will be also assumed that  is at least of class C3 in an open interval containing 0. We

want to derive the form of the function f for which we can reach the maximum number

of points of @D from the point x0. The reader should note �rst that the function f is

restricted to the subunit property as follows.

In the local chart (U1 \ @D;'1jU1\@D); we have that

0(t) =
d

dt
('1 � )(t) @

@x1

=
d

dt
(cos f)(t)

@

@x1

= �f 0(t) sin(f(t)) @

@x1
: (3.61)

From the de�nition of L0, a tangent vector

v = v1
@

@x1
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is subunit to the operator L0 if and only if for any

� = �1dx1 2 T �
x0(@D);

one has

(v1�1)
2 � �21:

Then v is subunit for L0 if and only if jv1j � 1: Hence v = 0(t) is subunit for L0 if and

only if

jf 0(t) sin(f(t))j � 1: (3.62)

A Taylor expansion of the function f in a small neighborhood of 0 yields:

f(t) =
�

2
+ f 0(0)t+ f 00(0)

t2

2
+ f 000(0)

t3

6
+ o(t3): (3.63)

In order to get a large path, we need to take f 0(0) as large as possible.

If we consider the particular function

f(t) =
�

2
+ t

we have that for any 0 � t � �, inequality (3.62) holds. Thus we should take f 0(0) � 1.

If we suppose that f 0(0) > 1, then since

f 0(t) = f 0(0) + f 00(0)t+ f 000(0)
t2

2
+ o(t2) and

sin f(t) = cos

 
f 0(0)t+ f 00(0)

t2

2
+ f 000(0)

t3

6
+ o(t3)

!

= 1� t2

2
(f 0(0))2 + o(t2);

we have that for su�ciently small t > 0

f 0(t) sin f(t) = f 0(0) + f 00(0)t+ f 000(0)
t2

2
+ o(t2): (3.64)

Therefore

f 0(t) sin(f(t)) > 1; in a small open interval (0; �); � > 0:

Then 0(t) is not subunit for L0 for any t 2 (0; �). Since the interval (0; �) has measure

� 6= 0, from De�nition 2.5 we reject the case f 0(0) > 1. We will therefore assume that

f 0(0) = 1.

Furthermore, since we want to have a large curve, the number f 00(0) should be nonnegative

because if f 00(0) < 0 then the function f yields a small curve than t + �
2
. If we take
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f 00(0) > 0, then from equation (3.64), we have as before that

f 0(t) sin(f(t)) > 1; in a small open interval (0; �):

This implies that we should take f 00(0) = 0:

Then we get

f 0(t) = 1 + f 000(0)
t2

2
+ o(t2);

f 0(t) sin(f(t)) = 1 + (f 000(0)� 1)
t2

2
+ o(t2):

For the same reason as above we will have f 000(0) � 1 and then an optimal choice is

f 000(0) = 1.

Therefore, we have that the function f is of the form

f(t) =
�

2
+ t+

t3

6
+ o(t3) (3.65)

and it can be exactly determined by developing to high orders.

In particular the exact function

f(t) =
�

2
+ t+

t3

6
(3.66)

is such that for su�ciently small � > 0, the vector 0(t) is subunit for L0 for every t 2 [0; �]:

We conclude that for small � > 0, the set BL0(x
0; �) contains the path

 
cos

 
�

2
+ t+

t3

6

!
; sin

 
�

2
+ t+

t3

6

!!
; t 2 [0; �]:

This set contains also the path

 
cos

 
�

2
� t� t3

6

!
; sin

 
�

2
� t� t3

6

!!
; t 2 [0; �]

since

sin

 
�

2
+ t+

t3

6

!
= cos

 
t+

t3

6

!

= 1� t2

2
� 3t4

24
+ o(t4)

and hence

f 0(t) sin

 
�

2
+ t+

t3

6

!
= 1� 9

24
t4 + o(t4) � 1 in a small interval [0; �]:
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It follows that

BL0(x
0; �) �

( 
cos

 
�

2
� (t+

t3

6
)

!
; sin

 
�

2
� (t+

t3

6
)

!!
; t 2 [0; �]

)
: (3.67)

We can now compare the balls BE(x
0; �) and BL0(x

0; �). To this end, let us denote

dE(�) and dL(�) the lengths of the paths BE(x
0; �) and BL0(x

0; �) respectively. From (3.59)

and (3.67), we have that for su�ciently small � > 0,

dE(�) = 2 cos�1(1� �2=2) and (3.68)

dL(�) � 2

 
�+

�3

6

!
: (3.69)

Expanding dE(�), we get, for su�ciently small � > 0,

dE(�) = 2 cos�1(1� �2=2) = 2(�+ o(�3)) � 2

 
�+

�3

6

!
: (3.70)

It follows that for su�ciently small � > 0 we have:

BE(x
0; �) � BL0(x

0; �): (3.71)

The discussion above can be generalized to any point x0 2 @D.
If we take

x0 = (cos �; sin �); with 0 < � < � or � < � < 2�;

then the function

f(t) = � + t+
t3

6
; t 2 [0; �]

determines a path of @D contained in BL0(x
0; �). It is so since

f 0(t) sin(f(t)) = sin � + t cos � +
8

18
t3 cos � + o(t3)

and for su�ciently small � and � 6= �=2, we have that

jf 0(t) sin(f(t))j � 1:

If we take � = 0, that is, x0 = (1; 0) then we can consider the local chart

(U3 \ @D;'3jU3\@D) that contains x0. The path

(t) = (cos f(t); sin f(t)); t 2 [0; �]
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where

f(t) = t+
t3

6

is such that

0(t) =
d

dt
('3 � )(t) @

@x1

=
d

dt
(sin f)(t)

@

@x1

= f 0(t) cos(f(t))
@

@x1
:

We have that

f 0(t) cos f(t) =

 
1� t2

2

! 
1� t2

2
� 7t4

24
+ o(t4)

!

= 1� 13t4

24
+ o(t4):

Hence

jf 0

(t) cos f(t)j � 1; 0 � t � �

for su�ciently small � > 0.

For the case � = �, that is, x0 = (�1; 0) we can consider the chart (U4\@D;'4jU4\@D)
and the function

f(t) = � + t+
t3

6
:

We have that

(t) = f 0(t) cos f(t)
@

@x1

= �
 
1 +

t2

2

!
cos

 
t+

t3

6

!
@

@x1

and we conclude as before.

We can summarize the above construction by the following theorem.

Theorem 3.9 For any su�ciently small number � > 0, and any

x0 = (cos �; sin �); 0 � � � 2�;

if

L0 =
@2

@x21
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then BL0(x
0; �) contains the path

( 
cos

 
� � (t+

t3

6
)

!
; sin

 
� � (t+

t3

6
)

!!
; t 2 [0; �]

)

and

BL0(x
0; �) � BE(x

0; �):

3.2.3 Examples of Feller semigroups

We can now apply Theorem 3.9 and Theorem 2.14 to construct Feller semigroups on the

disk �D. We have the following result.

Theorem 3.10 For any operator

Au(x) =
2X

i;j=1

aij(x)
@2u

@xi@xj
(x) +

2X
i=1

bi
@u

@xi
(x) + cu(x) (3.72)

such that conditions (2.89) holds and for any transversal boundary condition

Lu(x0) =
@2u

@x21
(x0) + �(x0)

@u

@x1
(x0) + (x0)u(x0)

+ �(x0)
@u

@x2
(x0)� �(x0)Au(x0) (3.73)

on @D verifying conditions (2.91), there exists a Feller semigroup (Tt)t�0 on �D whose

in�nitesimal generator is de�ned as follows:

1. the domain of U is

D(U) = fu 2 C( �D) : Au 2 C( �D); Lu = 0g (3.74)

2.

Uu = Au; 8u 2 D(U): (3.75)

Let us give now some numerical examples.

Example 3.2 Consider the operator A and the boundary conditions L de�ned as follows:

Au(x; y) = �u(x; y) =
@2u

@x21
(x; y) +

@2u

@x22
(x; y); (x; y) 2 �D:

Lu(x; y)) =
@2u

@x21
(x; y) +

�
x2 + (y � 1)2

� @u

@x2
(x; y)� Au(x; y); (x; y) 2 @D:

There exists a Feller semigroup (Tt)t�0 in the disk �D whose in�nitesimal generator U has

domain

D(U) = fu 2 C( �D) : �u 2 C( �D); Lu = 0g
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and such that

Uu = �u:

The Feller semigroup generated by U is an example of what is called ��di�usion process

on �D [18].

Example 3.3 Consider the operator A and the boundary condition L de�ned by

Au(x; y) = ex
@2u

@x21
(x; y) + ey

@2u

@x22
(x; y)� u(x; y); (x; y) 2 �D:

Lu(x; y) =
@2u

@x21
(x; y)� ex+yAu(x; y); (x; y) 2 @D:

As before, there exists a Feller semigroup (Tt)t�0 in the disk �D whose in�nitesimal gener-

ator U has domain

D(U) = fu 2 C( �D) : Au 2 C( �D); Lu = 0g

and such that

Uu = Au:

From the operator U one can determine the operators Tt using Theorem 1.15. Further by

Theorem 2.3 one can determine the transition function associated to this semigroup (at

least numerically). Any realization of this transition function is a Markov process on �D

determined by the operator A with the boundary condition L.
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Concluding remarks

In this dissertation we have highlighted relationships between three completely di�erent

subjects of Mathematics, namely:Markov processes, Semigroups and Partial di�erential

equations. We have then illustrated these relationships in the particular case of Markov

chains and applied them to construct examples of Feller semigroups and hence Markov

processes on the unity disk of R2:

The main lessons that can be drawn from our investigations are as follows:

1. For any Markov process (Xt)t�0 on a topological space E with transition function

(Pt)t�0, the linear operators Tt de�ned on the Banach space bE of bounded and measurable

functions on E as follows:

Tt(f)(x) =
Z
E
f(y)Pt(x; dy); f 2 bE ; x 2 E;

form a semigroup on bE .
2. Conversely, if E is a separable compact metric space and if (Tt)t�0 is a nonnegative

and contraction semigroup on the Banach space C(E) of continuous functions on E, then

there exists a unique Feller transition function (Pt)t�0 on E such that

Ttf(x) =
Z
E
Pt(x; dy)f(y); 8f 2 C(E); 8x 2 E:

This transition function induces a Markov process on E if an initial distribution is given.

3. Under some regularity conditions, the form of the in�nitesimal generator of a Feller

semigroup in the closure of a bounded domain of Rn (with n � 2) is of the form:

Uu(x0) =
nX

i;j=1

aij(x0)
@2u

@xi@xj
(x0) +

nX
i=1

bi(x0)
@u

@xi
(x0) + c(x0)u(x0)

+
Z
E
e(x0; dy)

"
u(y)� u(x0)�

nX
i=1

@u

@xi
(x0)(�i(y)� �i(x0))

#

in the interior of the domain and veri�es a boundary condition of the form
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n�1X
i;j=1

�ij(x
0)

@2f

@xi@xj
(x0) +

n�1X
i=1

�i(x0)
@f

@xi
(x0) + (x0)f(x0)

+�(x0)
@f

@xn
(x0)� �(x0)Uf(x0)

+
Z
E
�(x0; dy)[f(y)� f(x0)�

n�1X
i=1

@f

@xi
(x0)(�i(y)� �i(x

0))] = 0

on the boundary of the domain. In the special case where there are no integral terms

in these equations, these integro-di�erential operators reduce to di�erential operators.

Computing of the coe�cient functions aij(x0) and (�ij) in these operators uses integration

over the spaces Hx0��x0(E�fx0g) and Hx0��x0(E�fx0g) and we have explicitly given

the elements of these spaces in particular cases.

4. Conversely given a second order elliptic di�erential operator A and a boundary

condition L on the closure of a bounded domain of Rn the existence of Feller semigroup

de�ned by A and L can be studied by bounded value problems.

5. Semigroups associated to discrete Markov processes are the sets of its transition

matrices and the corresponding in�nitesimal generators can also be identi�ed with matri-

ces. In �nite case, it is possible to associate to a continuous-time Markov chain, using its

in�nitesimal generator, a discrete-time Markov chain which has similar properties with

the �rst chain. This has been illustrated in the case of birth and death processes.

6. If D is the open unity disk of R2, then for any su�ciently small number � > 0, and

any x0 of the circle @D if

L0 =
@2

@x21
;

then the non-Euclidean ball BL0(x
0; �) of radius � about x0 of @D contains the Euclidean

ball BE(x
0; �) of centre x0 and radius x0. Feller semigroups and Markov processes can be

constructed on the disk �D from this result.

The non-Euclidean balls BL0(x
0; �) play a fundamental role in the construction of

Markov processes. Since they are not fully described, further investigations should be

made in this direction. It should also be important to investigate how the relationships

between Markov processes, Semigroups and Partial di�erential equations discussed in this

disseretation can be applied to model real life systems.
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