
AN INVESTIGATION INTO THE APPLICATION
OF SYSTEMATIC SOFTWARE REUSE IN A

PROJECT-CENTRIC ORGANISATION

by

MARK JONATHON CHAPMAN

Submitted in part fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF. A J VAN DER MERWE

JANUARY 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/43165114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

The software development continues to become more competitive and demanding,
placing pressure on developers. Changes in the international political climate have
resulted in shrinking military budgets, putting developers of defence software under
further pressure. At present, systematic reuse is probably the most realistic way of
addressing this pressure by improving software development productivity and quality.
Software product line (SPL) engineering provides a comprehensive approach to
systematic software reuse and is becoming widely accepted.

The focus of this interpretive case study was ground station software development in
a small multidisciplinary project-centric company which produces avionics systems
for military aircraft. The purpose of the study was to investigate the potential
implementation of systematic software reuse in the company.

The study consisted of three phases, a literature study, a contextualisation and a set
of field interviews, and used elements of the Carnegie-Mellon Software Engineering
Institute (SEI) Product Line Practice Framework to examine the suitability of SPL
engineering for the company.

The findings of the study highlight the potential challenges that SPL engineering
poses for the company, and emphasise how the company’s project-centric structure
could impede its implementation of systematic software reuse.

Keywords
Systematic software reuse, software product line engineering, project-centric,
defence software, qualitative, interpretive, case study.

Notes on Writing Style

I have chosen to write my dissertation using the first person voice, in spite of this still
being regarded as unscholarly by some. I have done so based on Amir’s (2005)
suggestion that the writer should choose a style which reflects his “world-views,
beliefs and values”. Amir (2005) reports that in qualitative research the use of the first
person is no longer regarded as less scholarly than the third person, and also that it
supports the narrative writing style of reporting case studies.

In several places in my dissertation I use the pronouns “he” and “his” in their gender-
neutral form, and as others have done, I encourage readers to replace these with the
pronouns of their choice.

3

Acknowledgements

I express my thanks to the following people whose assistance and cooperation made

this study possible.

The participants: for their valuable time and willing cooperation.

My company: for granting permission to conduct this study and for subsidising my

tuition.

My supervisor, Prof. Alta van der Merwe: for her positive attitude and enthusiastic

supervision.

Prof. John Barrow: for his advice and help in getting my study started.

My wife, Hildegard: for her unwavering support, understanding, and patience; also

for turning a blind eye to my occupation of the dining room table.

4

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 9
1.1 BACKGROUND ...10
1.1.1 General Background to the Study.. 10
1.1.2 Defence Software... 11
1.1.3 What is a HUMS?... 12
1.1.4 What is a Project-centric Organisational Structure? .. 13
1.2 PURPOSE OF THE STUDY...15
1.3 RESEARCH QUESTION..15
1.4 RATIONALE...16
1.4.1 Personal ... 16
1.4.2 Scientific ... 17
1.5 RESEARCH STRATEGY...18
1.6 CONTEXT, SCOPE AND LIMITATIONS ...18
1.6.1 Context of the Study... 18
1.6.2 Scope of the Study... 19
1.6.3 Limitations of the Study.. 19
1.7 OUTLINE OF CHAPTERS ...20
CHAPTER 2. THEORETICAL FRAMEWORK .. 22
2.1 INTRODUCTION ..22
2.2 THE EVOLUTION OF SOFTWARE REUSE STRATEGIES..................................23
2.3 WHAT IS SOFTWARE PRODUCT LINE (SPL) ENGINEERING?27
2.4 SPL PRACTICE ...29
2.4.1 Essential Activities ... 30
2.4.2 Practice Areas.. 31
2.4.2.1 Software Engineering Practice Areas .. 31
2.4.2.2 Technical Management Practice Areas ... 35
2.4.2.3 Organisational Management Practice Areas ... 37
2.5 SPL ADOPTION MODELS ..41
2.6 SUCCESS FACTORS..41
2.7 ADVANTAGES AND DISADVANTAGES..44
2.8 SUMMARY ...47
CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 50
3.1 INTRODUCTION ..50
3.2 BACKGROUND TO RESEARCH METHODOLOGY...50
3.2.1 Information Systems (IS) as a Research Discipline... 50
3.2.2 The Nature of Information Systems Research... 51
3.2.3 Qualitative Field Studies .. 53
3.2.4 Practitioner Research... 54
3.2.5 The Importance of Context... 55
3.2.6 Prejudice and the Participant Researcher ... 56
3.3 RESEARCH DESIGN...56
3.3.1 Research Question .. 56
3.3.2 Motivation for Chosen Research Methodology.. 57
3.3.3 Scope of the Study... 59
3.3.4 Data Collection... 60

5

3.3.5 Interview Process... 62
3.3.6 Interview Questions.. 63
3.3.7 Participant Selection .. 65
3.3.8 Interview Transcription ... 67
3.3.9 Interview Data Analysis.. 67
3.3.10 Summary.. 68
CHAPTER 4. CONTEXTUAL ANALYSIS ... 70
4.1 INTRODUCTION ..70
4.2 BACKGROUND ...70
4.3 SOURCE OF INFORMATION..71
4.4 INTERNATIONAL AND NATIONAL MARKET CONTEXT73
4.5 ORGANISATIONAL CONTEXT...74
4.6 PROJECT AND INDIVIDUAL CONTEXT ..76
4.7 SUMMARY ...79
CHAPTER 5. DATA ANALYSIS.. 80
5.1 INTRODUCTION ..80
5.2 OVERVIEW ..80
5.3 PRESENTATION OF FINDINGS: PRIMARY THEMES...81
5.3.1 General Need and Suitability ... 81
5.3.1.1 The Need to Improve the Software Development Process.. 82
5.3.1.2 The Need for Reuse... 83
5.3.1.3 The Perceptions on Practicality of SPL Engineering ... 84
5.3.1.4 The Suitability of SPL Engineering .. 85
5.3.1.5 The Negative Perceptions of SPL Engineering.. 87
5.3.1.6 Summary of Findings: General Need and Suitability ... 89
5.3.2 Organisational Themes.. 90
5.3.2.1 Motivation for Maintaining a Project-Centric Structure .. 90
5.3.2.2 Making an SPL Business Case.. 92
5.3.2.3 SPL Customer Interface Management... 93
5.3.2.4 SPL Funding .. 94
5.3.2.5 Summary of Findings: Organisational Themes.. 96
5.3.3 Technical Themes.. 97
5.3.3.1 Software Development Processes... 97
5.3.3.2 Configuration Management and Change Control .. 99
5.3.3.3 Problem Domain Knowledge ... 100
5.3.3.4 Tools and Training ... 101
5.3.3.5 Software Architecture... 103
5.3.3.6 Component Technology ... 105
5.3.3.7 Summary of Findings: Technical Themes.. 106
5.4 PRESENTATION OF FINDINGS: EMERGENT THEMES...................................107
5.4.1 Project-Centric Development Environment.. 108
5.4.1.1 Contextual Issues... 108
5.4.1.2 Developer Attitudes.. 108
5.4.1.3 Summary of Findings: Project-Centric Development Environment.................................... 110
5.4.2 SPL Development Environment... 111
5.4.2.1 Product Line Vision .. 111
5.4.2.2 Implementation Strategy .. 112
5.4.2.3 Management Support and Leadership... 113
5.4.2.4 Organisational Structure .. 115
5.4.2.5 Organisation Size... 116
5.4.2.6 Mindset... 116
5.4.2.7 General Advantages and Disadvantages .. 117

6

5.4.2.8 Summary of Findings: SPL Development Environment... 119
5.4.3 Comparative Themes... 119
5.4.3.1 Intellectual Property ... 120
5.4.3.2 Human Resources and Career Development .. 122
5.4.3.3 Software Development Frustrations... 124
5.4.3.4 Support and Maintenance.. 126
5.4.3.5 Summary of Findings: Comparative Themes... 127
5.5 SUMMARY ...128
CHAPTER 6. DISCUSSION OF FINDINGS... 129
6.1 INTRODUCTION ..129
6.2 DISCUSSION OF SUBSIDIARY QUESTIONS..129
6.2.1 SQ1: Generally Accepted Approach to Systematic Reuse.. 130
6.2.2 SQ2: Context of the Study ... 131
6.2.3 SQ3: Reasons for Maintaining a Project-centric Structure .. 132
6.2.4 SQ4: Need for Systematic Reuse .. 132
6.2.5 SQ5: Suitability of Software Product Line Engineering.. 133
6.2.6 SQ6: Potential Systematic Software Reuse Adoption Issues.. 133
6.3 EMERGENT THEMES ...136
6.3.1 Project-Centric Development Environment Themes.. 136
6.3.2 SPL Development Environment Themes... 136
6.3.3 Comparative Themes... 138
6.4 SUMMARY OF FINDINGS...139
6.5 REFLECTION...143
6.5.1 Methodological Reflection .. 143
6.5.2 Scientific Reflection.. 144
6.6 RECOMMENDATIONS FOR FURTHER RESEARCH ..145
6.7 CONCLUSION ...146

7

List of Figures

Figure 1-1: Organisation Type and Project Management Authority (US Air Force,
2003) ... 13

Figure 1-2: Project-oriented Structure .. 14
Figure 1-3: Function-oriented Structure.. 14
Figure 1-4: Matrix Structure.. 14
Figure 1-5: Conceptual View of the Study .. 21
Figure 3-1: Comparison between Action Research and this Study........................... 59
Figure 5-1: Organisation of Data Analysis Theme Categories.................................. 81

List of Tables

Table 1-1: Software Groups in the Company.. 19
Table 1-2: Outline of Chapters.. 20
Table 3-1: Summary of Soft versus Hard Research Dichotomies (Fitzgerald &

Howcroft, 1998) ... 52
Table 3-2: Interview Questions: General Need and Suitability.................................. 63
Table 3-3: Interview Questions: Organisational Issues... 64
Table 3-4: Interview Questions: Technical Issues .. 64
Table 3-5: Field Interview Participant Summary ... 66
Table 3-6: Field Interview Participant Details.. 66
Table 4-1: IS Levels of Analysis ... 71
Table 4-2: Framework Proposed by Korpela et al. (2001) .. 71
Table 4-3: Information Sources per Framework Level.. 72
Table 4-4: Summary of Elite Interview Questions... 72
Table 5-1: Summary of Findings: General Need and Suitability 89
Table 5-2: Summary of Findings: Organisational.. 96
Table 5-3: Summary of Findings: Technical ... 106
Table 5-4: Emergent Themes... 108
Table 5-5: Disincentives among Development Staff (Lynex & Layzell, 1998)......... 109
Table 5-6: Examples of Disincentives Recognised by Participants 109
Table 5-7: Summary of Findings: Project-Centric Development Environment 111
Table 5-8: Summary of Findings: SPL Development Environment Themes........... 119
Table 5-9: Software Development Frustrations .. 124
Table 5-10: Summary of Findings: Comparative Themes 127
Table 5-11: Key to Data Analysis Result Summaries ... 128
Table 6-1: Relationship between Subsidiary Questions and Data Sources............ 130
Table 6-2: Condensed Summary of Findings Relating to Subsidiary Research

Questions .. 140
Table 6-3: Condensed Summary of Findings Relating to the Emergent Themes... 141

8

Abbreviations

COTS Commercial off–the-shelf
DAU Data acquisition unit
DBMS Database management system
FLS Flight line systems
GSAM Guidelines for successful acquisition and management (of

software-intensive systems)
HUMS Health and usage monitoring system
IEEE Institute of Electronic and Electrical Engineers
IP Intellectual property
IS Information systems
J2EE Java 2 Enterprise Edition
PC Personal computer
R&D Research and development
SEI Software Engineering Institute (at Carnegie Mellon University)
SME Small and medium enterprises
SPL Software product line

9

Chapter 1. Introduction

Although software reuse is almost as old as software itself (Frakes & Kang, 2005), it

is still seen as potentially the most promising strategy for increasing productivity and

improving quality in the software industry (Lynex & Layzell, 1998; H. Mili, Mili, & Mili,

1995; Morisio, Ezran, & Tully, 2002). Although it is a deceptively simple concept,

history reveals that, in practice, software reuse is frustratingly difficult to implement

successfully (Morisio, Tully, & Ezran, 2000; W. Myers, 1997).

Software reuse research, which has been intense over the past two or three decades

(Frakes & Kang, 2005), continues to improve our understanding of the topic; for

example, we now know that for reuse to be effective and sustainable it should be

systematic reuse (i.e. carefully planned and managed) as opposed to opportunistic or

ad hoc reuse (Laguna, González-Baixauli, López, & García, 2003; Schmidt &

Buschmann, 2003). In addition, although software reuse was previously considered

to be a purely technical issue, evidence shows that organisational issues have a

significant effect on the success of software reuse programmes (Birk, Heller, John,

von der Maßen et al., 2003; Dikel, Kane, Ornburn, Loftus, & Wilsin, 1997;

Fafchamps, 1994; Lynex & Layzell, 1998).

Proven strategies for adopting comprehensive software reuse now exist. An example

of one such strategy is SPL engineering, which aims to exploit the potential for reuse

that exists within families of similar software products (Bosch, 2002b; Schmid & John,

2002).

This dissertation documents an interpretive case study undertaken to gain insight into

the potential implementation of systematic software reuse in a small multidisciplinary

company that produces avionics1 systems for military aircraft. The organisational

structure of the company is predominantly project-oriented or project-centric2.

Chapter 1 provides the background to the study and gives an overview of the

research methods used.

1 Electronics applied to aviation.
2 The term “project-centric” is used to describe an organisation in which the dominant
organisational structure is the project. For a more detailed description see section 1.1.4.

10

1.1 BACKGROUND

1.1.1 General Background to the Study

The company which forms the context of this study produces aircraft avionics

systems for military aircraft and has a two-decade history of operation in the defence

electronics market. The development of aircraft avionics systems requires

multidisciplinary skills which include software development. Operators in this market

have traditionally, to a large degree, been project-orientated (C. Jones, 2002) – a

situation that can probably be ascribed to issues such as the uniqueness of contracts

and special requirements for functionality, qualification and security.

For the past decade, the company has focused on a branch of avionics classified as

health and usage monitoring systems (HUMS). A HUMS typically monitors various

parameters to establish the status of the health or airworthiness of the aircraft and to

record its usage or life consumption. The purpose of a HUMS is to improve safety

and to provide data to facilitate the efficient management of a fleet of aircraft.

In spite of narrowing its business focus, the company’s level of benefit from software

reuse remains limited. This situation is becoming a concern as the increase in

competition in the industry translates into a demand for improvements in productivity

and quality.

A preliminary search revealed that most of the published software reuse success

stories feature large organisations with ample resources, large research and

development (R&D) budgets and sizeable development teams, such as Hewlett

Packard, Phillips, Nokia, Motorola and Boeing (Gacek, Knauber, Schmid, &

Clements, 2001; Knauber, Muthig, Schmid, & Widen, 2000). The same search also

revealed that historically, software reuse research focused on the technical issues

(Lynex & Layzell, 1998), and consequently there are relatively few papers dealing

with the organisational issues. The shortage of software reuse research into

organisational and social issues is worrying, especially if one considers that general

information systems research indicates that it is these issues that pose the real

challenges (Harvey & Myers, 1995).

11

Much of the literature which does address the organisational issues of software reuse

promotes an organisational structure that separates the development for reuse

function (also called domain engineering) from the development with reuse function

(also called application engineering) within an organisation (Clements & Northrop,

2001, pp. 312-326; Czarnecki & Eisenecker, 1999; Jacobson, Griss, & Jonsson,

1997; Laguna et al., 2003). This suggests that the traditional project-centric software

development environment is not ideal for supporting software reuse. In a project-

centric environment, individual software products are developed by insular project

teams that are responsible for their own technical decisions and there is little or no

sharing of personnel and reusable assets between teams (Clements & Northrop,

2001, p. 312; Cohen, 2002).

In contrast to large organisations, small and medium-sized organisations often owe

their success to their responsiveness and flexibility in satisfying customer

requirements (Knauber et al., 2000). As a result, these organisations might become

vulnerable if they adopted a reuse strategy that threatens these qualities. Smaller

organisations often also lack the necessary financial resources to invest in long-term

reuse strategies and organisational restructuring.

1.1.2 Defence Software

The software that this study addresses is categorised as defence software and

although it has a great degree of similarity to general commercial software, there are

significant differences.

According to Jones (2002), defence software is a term used for software developed

for use by or in support of a country’s defence forces. This software is in most cases

produced by civilian contracting companies for a procurement organisation acting on

behalf of a defence force. It is common practice for large organisations to win major

contracts and then sub-contract smaller specialist companies to provide the

subsystems. The company on which this study focused falls into this smaller

specialist company category.

Defence software is distinguished from other software by its adherence to military

standards, which dictate the levels of documentation, quality controls, requirement

management, auditing, reporting, and qualification procedures. This difference is the

12

main reason that a military software project typically has three times the paperwork of

a comparable civilian project, a great deal of which only serves to prove compliance

with contractual commitments (C. Jones, 2002). The additional overheads make

defence software considerably more expensive to produce, and consequently the

potential benefits offered by software reuse are even more attractive.

1.1.3 What is a HUMS?

A typical health and usage monitoring system (HUMS) acquires data from the

airframe, the engine and other avionics systems on the aircraft during the flight. The

data is processed and analysed to derive information on the health (or condition) and

usage of an aircraft’s critical components. This information is used to assist the fleet

manager to monitor and optimise the use of the aircraft. A HUMS usually comprises

three functionally and physically distinct components: the data acquisition unit (DAU)

on board the aircraft; the ground station for processing, storing and analysing the

data; and the flightline3 system (FLS) for transferring data between the DAU and the

ground station. In general, the ground station will be a personal computer-based

workstation located in an office environment and the FLS will be a ruggedised4

notebook computer.

The HUMS software effort consists of the development of embedded software and

the development of personal computer (PC) based software. The embedded

software resides in the DAU on board the aircraft and the PC-based software is for

the ground support equipment, which comprises the flightline system and the ground

station.

Since the case study focuses on the ground station software development, this

component of the HUMS is described in extra detail. Although the ground station

application is generally categorised as engineering software, there is little difference

between it and a conventional information system. The ground station application

3 The flightline is a designated area of an airfield where an aircraft is parked for the purpose
of loading and servicing. The flightline system is typically used to transfer data from the
DAU while the aircraft is on the flightline.

4 A ruggedised computer is built to withstand a moderate level of mechanical shock and to
operate in a harsh environment (e.g. with exposure to climatic extremes and chemical
substances).

13

provides for the processing, storage and analysis of data for a fleet consisting of

twenty to thirty aircraft over its lifespan of twenty-five to thirty years. A database is

maintained to record the configuration status of each aircraft and engine, the serial

numbers, accumulated life, and operational status of all critical aircraft components

as well as the details of each flight. Data acquired by the DAU is processed by the

ground station using complex algorithms to determine the life consumed for each

aircraft component per flight. The ground station application also checks for damage-

causing exceedances5 of various parameters. Reports are generated and provision is

made for the graphical analysis of processed data for various purposes, such as: to

identify components that are approaching end-of-life; to identify fault conditions; and

to identify unexpected differences, changes or trends in various parameters. After the

ground station has processed the raw data captured by the DAU, the data is stored in

a repository6 to facilitate subsequent detailed analysis of the data parameters of

individual flights should the need arise.

1.1.4 What is a Project-centric Organisational Structure?

The Guidelines for Successful Acquisition and Management of Software-Intensive

Systems (US Air Force, 2003), commonly known as GSAM, maintains that, from a

project management point of view, an organisation is function-oriented, project-

oriented or some type of matrix structure in between, see Figure 1-1.

Figure 1-1: Organisation Type and Project Management Authority (US Air Force,
2003)

In a project-oriented or project-centric organisation (see Figure 1-2) the dominant unit

of management control is the project, which is under the authority of a project

5 An exceedance is a condition in which a single parameter or a set of parameters represents
a state that exceeds a range that represents the normal expected operation of the system.

6 The repository is a dedicated area on the ground station’s hard disk set aside for the
storage of raw data from the DAU.

14

manager. The project manager reports directly to senior management and has

almost unrestricted authority within the context of the project.

Project 1 Project 2 Project 3
<activity> <activity> <activity>
<activity> <activity> <activity>
<activity> <activity>

<activity>

Figure 1-2: Project-oriented Structure

In a function-oriented organisation, the dominant unit of management control is the

division under the authority of a divisional or line manager, who reports to upper

management. In this structure, the project manager’s function is reduced to

managing activities for the line managers.

software <activity><activity><activity>
electronics <activity><activity><activity>
mechanical <activity>
control <activity><activity>

integration <activity><activity><activity>

Figure 1-3: Function-oriented Structure

A mix between the project-oriented and function-oriented structure is the matrix

structure in which the project manager negotiates with the line manager for the

resources required by the project (see Figure 1-4).

 Project 1 Project 2 Project 3
software <activity> <activity> <activity>
electronics <activity> <activity> <activity>
mechanical <activity> N/A N/A

control <activity> N/A <activity>

Figure 1-4: Matrix Structure

The Concise Oxford Dictionary describes -centric as a suffix used to form “adjectives

with the sense ‘having a (specified) centre’”. For example: Eurocentric means “having

or regarding Europe as its centre”. In the context of this study, a project-centric

organisation is one that regards the project as the centre or focus of its organisational

structure. The literature more commonly uses the term project-oriented to cover this

type of structure. The structure of the company at the centre of this study could be

described as project-centric at the start of the study, but during the execution of the

15

study a matrix structure was introduced. The ownership of the company changed and

the principal reason for the structural change was to align the structure of the

company with that of the new mother company. In spite of the change, the company

remains predominantly project-oriented and would still be located decidedly to the left

of the graph in Figure 1-1.

1.2 PURPOSE OF THE STUDY

The purpose of this study was to investigate the potential implementation of

systematic software reuse in a small project-centric organisation.

For software reuse to be successful it needs to be systematic (Laguna et al., 2003;

Schmidt & Buschmann, 2003). The adoption of a systematic software reuse strategy

involves a transition that imposes organisational and technical requirements on a

company. The level of effort required depends on the magnitude of the changes

necessary to achieve this transition.

There is limited coverage in IS literature of the difficulties and challenges that

organisations might face in adopting systematic software reuse (see Section 1.4.2).

This study identifies and investigates a selection of these difficulties and challenges

for a small project-centric organisation.

1.3 RESEARCH QUESTION

Numerous technical and organisational issues need to be addressed during the

introduction of a systematic software reuse programme. Some of the challenges

posed by these issues will naturally differ according to the environment or context.

The purpose of the study was to identify and investigate the issues that could prove

to be challenging when implementing systematic software reuse in the context of a

small project-centric organisation.

The primary research question addressed by the research study was:

What are the issues related to the introduction of systematic software reuse in

a small project-centric organisation?

16

During the research design, I divided the primary research question into six

subsidiary questions (SQs). The subsidiary questions were of an exploratory nature

and served to demarcate and guide the study. The questions are as follows:

• SQ1: What is a generally accepted approach to systematic software reuse within

the industry? The aim of this question is to identify a particular approach in order

to provide a theoretical context for investigating systematic software reuse.

• SQ2: What is the context of the study and, more specifically, what are the

historical factors which contributed to the organisation being project-centric? This

question seeks to determine and comprehend the historical and social context of

the study.

• SQ3: Are there motivating factors for maintaining a project-centric organisational

structure? This question seeks to establish and comprehend the contemporary

context of the study.

• SQ4: To what degree is there a need within the organisation for systematic

software reuse? This question is intended to assess the level of need for software

reuse in the company.

• SQ5: How suitable is the generally accepted approach for adoption by the

organisation? This question aims to determine the level of compatibility of the

identified software reuse approach for the company.

• SQ6: What are some of the technical and organisational issues that might

influence the implementation of systematic software reuse within the

organisation? The purpose of this question is to identify potential technical and

organisational factors that could pose a challenge for the company.

1.4 RATIONALE

1.4.1 Personal

As a long-time employee involved in software development in the company targeted

by this study, I have become aware of, and concerned about, the difficulty

experienced in achieving software reuse. A motivating factor for undertaking this

17

study is a desire to understand this phenomenon. My hope is that a more informed

opinion will facilitate achieving a valid and convincing critical analysis of the

phenomenon, which could contribute to an improved strategy for software reuse in

the company.

Diverse statements made in the company on the topic of software reuse have served

to increase my aspiration to achieve an improved understanding of the allied reuse

issues. Examples of such statements are:

• “Software reuse doesn’t work! Company X tried it and found it to be a waste of

time and money” – Senior Executive.

• “Why don’t we just reuse the software from project X.” – Senior Executive.

• “… but isn’t your software reusable?” – Project Manager.

• “Why didn’t project X reuse my software?” – Software Developer.

These statements are indicative of some of the negativity and misconceptions that

characteristically accompany software reuse. Prominent among these

misconceptions is the notion that software reuse can succeed without systematic

planning, active management, and sufficient resources, or that software reuse is

purely a technical issue.

1.4.2 Scientific

There are numerous papers covering case studies of successful reuse projects

(Brownsword & Clements, 1996; Clements, 2002; Clements & Northrop, 2002;

Cohen, 2002; Vernazza, Galfione, Valerio, Succi, & Predonzani, 2000). There are

also several papers covering case studies on software reuse across a group of

organisations (i.e. horizontal case studies) (Morisio et al., 2002; Rothenberger,

Dooley, Kulkarni, & Nader, 2003). However, a literature search revealed that there

are few papers addressing the practical challenges faced by individual organisations

attempting systematic software reuse. I hope that this dissertation will contribute

towards redressing this situation.

18

The success of software reuse strategies depends largely on contextual factors such

as the organisational structure, organisational culture, the adoption strategy and the

supportive processes (Bühne et al., 2004). In spite of this, studies that deal with

these factors are scarce (Bühne et al., 2004). It therefore follows that studies

addressing these contextual factors in small and/or project-centric organisations are

even scarcer. By considering these factors in a small project-centric company, this

study will also contribute to addressing this scarcity and will hopefully also create an

increased awareness in similar organisations.

As it is a single case study, the findings of this research are not immediately suitable

for generalisation. Although, as Myers (1999) suggests, generalisation could be

effected across several similar studies, the emphasis of a single case study is more

on particularisation than generalisation (Stake, 1995. p. 8). Accordingly, the

emphasis in this study is on understanding the particular case rather than comparing

it with others (Stake, 1995. p. 8).

1.5 RESEARCH STRATEGY

I conducted a detailed literature study to determine the background of software reuse

and its current trends and practices. In order to set the study in its social and

historical context, I expanded the literature study for this purpose and conducted an

elite interview with a long-standing senior employee.

I held a series of semi-structured field interviews based on open-ended questions to

determine perceptions among participants of the company’s need for software reuse

and the suitability of a selection of systematic software reuse practices. The

discussions that accompanied the interviews also revealed perceptions of software

reuse disincentives caused by the company’s project-centric environment.

1.6 CONTEXT, SCOPE AND LIMITATIONS

1.6.1 Context of the Study

The context of this study is a small, multidisciplinary, avionics-equipment company

that produces health and usage monitoring systems (HUMS). Owing to the

importance of the context in qualitative research in general, and in information

19

systems research in particular (see Section 3.2.5), a comprehensive analysis of the

study context is presented in Chapter 4.

1.6.2 Scope of the Study

This study investigates the potential implementation of systematic software reuse

within the context of the small, multidisciplinary, avionics-equipment company with a

project-centric organisational structure. To be pragmatic in the light of limited time

and resources, I restricted the scope of the study to the ground station software

development element of a series of HUMS development projects.

Various other development efforts within the company have equally good reuse

potential and are suitable case study material. However, the ground station element

was chosen because of the convenience offered by access to suitable interview

participants, ease of description, and my personal involvement and familiarity with

the material.

1.6.3 Limitations of the Study

The software developed by the company being studied can be separated into three

groups, see Table 1-1.

Table 1-1: Software Groups in the Company

SOFTWARE GROUP CLASSIFICATION OF SOFTWARE DEVELOPED

On board embedded data acquisition unit software

Ground support ground station and flightline system software

Test systems software for the control of test benches and aircraft
simulation benches for testing and qualification of the
system

The scope of the study was purposely limited to the ground station element of the

company’s software development (see Section 1.6.2). Given sufficient time and

resources, the coverage of the study could be extended either horizontally or

vertically.

20

The coverage of the study could be extended horizontally to address any or all of the

other software elements belonging to the other two software groups. As discussed in

Section 2.2, in addition to software, there are many physical and intellectual assets

associated with the software development that can also be reused (Desouza, Raider,

& Davenport, 2003). Taking this idea a step further, the study could be extended to

non-software elements, such as electronic hardware and mechanical-housing

development.

Perhaps the most practical way of extending this study vertically would be to expand

it to a full action research study, in which a software reuse strategy is applied and its

effectiveness is measured, the strategy is modified, and so on, until a suitable

strategy is reached. Obviously a study of this nature would take significantly more

time and effort.

1.7 OUTLINE OF CHAPTERS

Table 1-2 outlines the content of the chapters of this document.

Table 1-2: Outline of Chapters

CHAPTER CHAPTER OVERVIEW

1 Introduction
Chapter 1 introduces the study, provides the background to the study and
gives an overview of the research methods used.

2 Theoretical Framework
Chapter 2 establishes a theoretical framework for the study, it provides a
brief coverage of the history of software reuse, it shows how the identified
systematic reuse strategy evolved, it provides an overview of reuse
practices, and discusses models for adopting a strategic software reuse
strategy as well as associated advantages, disadvantages and issues.

3 Research Methodology and Design
Chapter 3 motivates and describes the research design used for this
study. Before describing and motivating the research design, it provides
relevant background information to contextualise the methods that
influenced and contributed to the research design.

4 Contextualisation
Chapter 4 sets the study in its social and historical contexts and provides
a detailed discussion of the factors which have led to the company
adopting and maintaining its project-centric structure.

21

CHAPTER CHAPTER OVERVIEW

5 Data Analysis
Chapter 5 documents the results of the analysis of the field interview
transcripts. The chapter presents a view based on the perceptions of
participants regarding the company’s potential for adopting systematic
software reuse.

6 Discussion of Results
Chapter 6 summarises the study and its findings, discusses the findings
and provides a conclusion.

Figure 1-5 provides a conceptual view of the study illustrating the relationships

between the research question, the data collection methods, the analysis of the data

and the study findings. The only data collection method not represented in Figure 1-5

is participant observation (see Section 3.3.4).

Research
Question

Subsidiary
Research
Questions

Literature Study
Objectives

Contextual
Interview
Questions

Field Interview
Questions

Literature
Study

Elite
Interview

Field
Interviews

Theoretical
Framework
(Chapter 2)

Contextual
Analysis

(Chapter 4)

Data Analysis
(Chapter 5)

Discussion of
Findings

(Chapter 6)

Figure 1-5: Conceptual View of the Study

22

Chapter 2. Theoretical Framework

2.1 INTRODUCTION

Software development cannot possibly become an engineering discipline so
long as it has not perfected a technology for developing products from
reusable assets in a routine manner, on an industrial scale. (A. Mili, Yacoub,
Addy, & Mili, 1999, p. 22)

According to Kranzberg (1964, p. 307), the Industrial Revolution, which began almost

simultaneously in Britain, Europe and the USA in the mid 1700s, marked the

transformation of society rather than a specific period. Despite its name, this

transformation was more of an evolution than a revolution, and was caused in part by

technological advances such as improved materials, new tools, the application of

science to industry and the introduction of the factory system with production lines.

The factory system gave rise to the division of labour and the specialisation of

functions. These advances made possible the mass-production of goods.

The Industrial Revolution transformed a society in which individual craftsmen

handcrafted one-off products from basic materials, to one where a wide range of

product variants could be rapidly assembled using standard components (Greenfield

& Short, 2004, p. 5). This transformation resulted in the large-scale reduction of costs

and an increased availability of products of consistent quality.

The success of industrial manufacturing can be attributed directly to the broad-

spectrum reuse of physical and intellectual assets such as components, designs,

processes, skills, experience, tools, machinery, facilities and so on. Anything that can

be meaningfully reused can be considered to be a reusable asset. Consequently, the

success of industrial manufacturing can be ascribed to the judicious application of

reusable assets.

The Standish Group (1995) published the now frequently quoted and aptly titled

Chaos Report, which claimed that only 16% of software development projects finish

on time and within budget and that as many as 31% of software development

projects are abandoned before completion. Although the situation has undoubtedly

improved since 1994, software development remains very much the realm of

23

craftsmen (Czarnecki & Eisenecker, 1999) and has yet to enjoy the benefits of

manufacturing processes.

The software development industry has not managed to benefit fully from the

valuable lessons of the Industrial Revolution. Greenfield and Short (2003) point this

out to be somewhat ironical considering the substantial contribution made by

software and information systems to the automation of processes in other industries.

The situation can possibly be attributed to the fact that software is predominantly

logical or conceptual rather than physical.

The industrialised production of physical goods provides rewards owing to economy

of scale and economy of scope. Economy of scale is the benefit realised by

producing many identical instances of the same product. Economy of scope, on the

other hand, is realised when a range of different but closely related products is

produced from similar designs using common components and shared production

processes. In the production of software, economy of scale is technically a non-issue

owing to the simplicity of copying a software executable. However, in software the

real challenge is to achieve economy of scope by benefiting from the production of a

range of closely related software products. This is also the challenge of software

reuse.

This chapter presents the findings of the literature study, the purpose of which is to

establish a theoretical framework for the overall study by identifying a generally

accepted approach to systematic software reuse within the industry as well as the

practices relating to this approach. The chapter provides brief coverage of the history

of software reuse; describes the evolution of SPL engineering; gives an overview of

the product line practices; discusses models for SPL adoption; and addresses SPL

advantages, disadvantages and issues.

2.2 THE EVOLUTION OF SOFTWARE REUSE STRATEGIES

Software reuse is the use of existing software or software knowledge to
construct new software (Frakes & Kang, 2005, p. 529).

For software reuse to be effective it must be systematic rather than opportunistic

(Laguna et al., 2003; Schmidt & Buschmann, 2003). Systematic reuse is carefully

planned reuse that has sufficient resources allocated to it and forms part of an

24

institutionalised software development effort (Schmidt & Buschmann, 2003).

Opportunistic reuse, on the other hand, is spontaneous, ad hoc, and neither carefully

planned nor managed (Lim, 1998; Morisio et al., 2000). When an organisation

exploits software reuse as part of its strategy to enter new markets and gain initiative

and competitive advantage, it is called strategic reuse (Lim, 1998).

Deliberate software reuse efforts started in the late 1950s with the introduction of

functions and subroutines (Raccoon, 1997). This was essentially opportunistic reuse;

programmers would cut snippets of existing code, paste them into new programs and

then apply modifications as required.

The introduction of modules and modular programming in the late 1970s advanced

the reuse effort because modules tended to be developed specifically with reuse in

mind (Raccoon, 1997). Unfortunately, the temptation to modify the reused code often

resulted in a multitude of variations of the same module. Although object libraries

went some of the way in remedying this problem by denying the developer access to

the source code, they often lacked sufficient flexibility, which ultimately resulted in

their rejection.

In the late 1980s and early 1990s, the object-oriented development paradigm was

unveiled and with it came the concepts of classes, inheritance, polymorphism and

data encapsulation (Raccoon, 1997). These concepts facilitate the development of

reusable code. Inheritance in particular promotes code reuse, since common code

can be located in a superclass, which can subsequently be inherited by any number

of subclasses. Inheritance is labelled as white-box reuse because it requires an

understanding of the class’s internal implementation (Foote & Yoder, 1995). Some of

the initial euphoria that accompanied the advent of object-oriented development was

based on the misconception that it would automatically guarantee reusability

(Jacobson et al., 1997). Although the approach provides powerful mechanisms for

supporting code reuse, the ultimate reusability of the software depends largely on the

careful selection and implementation of appropriate classes. A significant

disadvantage of this technology was that only classes written in the same or

compatible languages could be combined to create applications (Pree, 1997).

25

The perceived shortcomings of classes shifted the attention of the software reuse

community to the idea of the software component. The idea, proposed by Brad Cox,

was to use software components in a similar fashion to electronic components or

integrated circuits (Johnson, 1997). A software component differs from a class by

generally being language-independent and encapsulating a complete concept, rather

than a partial concept (Pree, 1997). Component-based reuse is often referred to as

coarse-grained, whereas class reuse is considered fine-grained, because it usually

requires a collection of classes to implement a complete concept (Pree, 1997). For a

component to be effective, its interface should be simple and intuitive and it should

hide the internal implementation, allowing the developer to consider the component

as a black-box subsystem not requiring knowledge of its internal implementation. The

coarse-grained, black-box nature of components is deemed more desirable than the

fine-grained, white box nature of classes, principally because this helps to boost

developer productivity by raising the level of design abstraction.

A common criticism of component-based development is that it is essentially a

bottom-up strategy (Bosch, 2000; Matinlassi, 2004; H. Mili et al., 1995). The logic

behind this criticism is that component-based development does not address the

high-level design or architecture of an application (Ran, 1999). Effectively, the same

basic set of components can be used to produce applications with a variety of

architectures. Another problem is that the interface of a component intended for

general usage is complicated by the variety of options required for an unspecified

range of application contexts. Finally, the lack of stable and established component

standards makes it risky and difficult to commit to a particular technology, and has

resulted in the market for commercial off-the-shelf (COTS) components being

somewhat limited. However, there is some optimism that this problem has been be

resolved by the recent emergence of the Java 2 Enterprise Edition (J2EE) and

Microsoft .NET component technologies (Carlson, 2004; Schmidt & Buschmann,

2003).

Software architecture is a multifaceted subject for which there is little agreement on a

standard definition (Clements & Northrop, 1996; Kruchten, Obbink, & Stafford, 2006).

Clements and Northrop (1996, p. 3) suggest the use of Garlan and Perry’s definition7:

7 see (Garlan & Perry, 1995)

26

“The structure of the components of a program/system, their interrelationships, and

principles and guidelines governing their design and evolution over time”.

Software architecture serves to characterise the context within which the software

components are to function, permitting developers to optimise components for their

intended context. Because the design of software architecture is demanding and

time-consuming, it adds a large overhead to software development (Pasetti & Pree,

2000). Consequently, in terms of time and effort, the reuse of software architecture is

an extremely rewarding practice that results in applications with a high degree of

uniformity.

Software design patterns are based on a technique established by Christopher

Alexander in the late 1970’s for architecture in the building environment, which

addresses the documenting of problem solutions (Bahrami, 1999, p. 72). The idea is

to identify a recurring software problem, and to record the solution strategy with the

intention of reusing it when a similar problem occurs. Although the concept of

patterns specifically addresses design and makes no attempt to address specific

code reuse, it is in practice often coupled with object-oriented programming.

Application frameworks provide a way of combining the reuse of software

architecture and components. An application framework is basically a set of

cooperating classes assembled according to a specific architecture to provide a

template for applications in a specific problem domain. According to Bahrami (1999,

p. 78), an application framework is “the physical realization of one or more software

pattern solutions”. However, Schmidt & Buschmann (2003, p. 697), describe an

application framework as "a semi-complete application that programmers can

customise to form complete applications by extending reusable components in the

framework”.

The technologies described thus far all focus on the reuse of either code or software

architecture or both, but as with reuse in industrial manufacture, there are many other

physical and intellectual assets associated with the software development that can

also be reused (Desouza et al., 2003). Software product line engineering is a reuse

approach that is comprehensive in that it addresses the reuse of software as well as

27

all other associated assets, such as documents, plans, processes, schedules and

tools (Clements, 1997).

2.3 WHAT IS SOFTWARE PRODUCT LINE (SPL) ENGINEERING?

Software product line (SPL) engineering is emerging as a promising and practical

approach to systematic software reuse (Böckle et al., 2002; Knauber & Succi, 2002;

Northrop, 2002b). The software product line “epitomises” systematic software reuse

(Northrop, 2002a) and is currently the “most dominant form” thereof (A. Mili et al.,

1999, p. 25). It is aimed at “exploiting the enormous reuse potential” of software

product families (Schmid & John, 2002, p. 1). According to Northrop (2002b, p. 40)

“the industry trend toward software product lines seems indisputable”. From this

information we can conclude that SPL engineering is a generally accepted form of

systematic software reuse.

Software applications have become substantially more complex since the early days

of computing. This complexity necessitates in-depth knowledge and understanding of

the problem domain. End-users, frequently exposed to sophisticated software

features, now expect a similar standard from all applications. Customers are also

demanding shorter lead times for software production (Lam, 1998). To survive these

challenges, organisations sharpen their focus and specialise in specific application

areas, also called problem domains (Frakes & Kang, 2005). This effectively presents

a fertile environment for comprehensive software reuse. It also provides an

opportunity for the organisation to accumulate intellectual capital in the form of

strategic knowledge and experience in the specific problem domain.

Exceptional software reuse opportunities appear in organisations that produce

families of similar applications for a particular problem domain by exploiting the

commonalities of these applications (Northrop, 2002b). SPL engineering provides

organisations with a set of practices for optimising these opportunities. Although the

idea of SPL engineering first emerged in the mid-1990s, the concept of a family of

software applications was recognised somewhat earlier by Parnas (1976).

All too often organisations ignore their software reuse opportunities and continue to

address each new application as a one-off or single product development. The

project teams often either ‘do their own thing” and start from scratch or, at best,

28

“clone and own” a previous application. Clone and own is a common form of

opportunistic reuse in which a new development is undertaken by making a copy of

an existing application and then applying the necessary changes (Clements &

Northrop, 2001, p. 12; Staples & Hill, 2004). This approach is suboptimal and often

results a multitude of similar, but unmanaged and diverging instances of the initial

application and has the makings of a software maintenance nightmare. The clone

and own approach also frequently results in applications inheriting an unsuitable

architecture.

The Carnegie-Mellon Software Engineering Institute (SEI), one of the principal

proponents of SPLs, uses the following definition for an SPL:

A software product line is a set of software-intensive systems sharing a
managed set of features that satisfy the specific needs of a particular market
segment from a common set of core assets in a prescribed way. (Northrop,
2002b, p. 32)

The core assets mentioned in this definition “include but are not limited to the

reusable software components, architecture, domain models, requirements,

statements, documentation and specifications, performance models, schedules,

budgets, test plans, test cases, work plans and process descriptions” (Clements &

Northrop, 2001, p. 14). The set of core assets developed for a product line will grow

as the product line matures and will obviously vary from one software product

member to another.

There is an element of disagreement on what the term software product line actually

denotes. Di Nitto and Fuggetta (1996, p. 51) say that although the term might be

“intuitively pleasing” it lacks clear meaning. In their opinion, SEI’s definition of a

software product line actually describes a software product family, whereas and the

term software product line implies a set of different products that do not necessarily

have commonality but complement one another, for example: the products that

collectively constitute Microsoft Office. However, Clements and Northrop (2001, p.

14) argue that the concept, rather than the terminology, is the issue of real

importance.

Many well-known organisations, such as Hewlett Packard, Phillips, Boeing, Alcatel,

Robert Bosch Gmbh, Nokia, Raytheon, Siemens, Schlumberger, Lucent and

29

CelciusTech (now SAAB Systems) have documented successful SPL engineering

ventures (Cohen, 2002; Northrop, 2002a).

In 1996, the Institute of Electronic and Electrical Engineers (IEEE) Software

Engineering Standards Committee Reuse Planning Group released an action plan

which provided the following list of proposed principles for software reuse these are

(Moore, 1997):

• Build a software domain architecture as a framework for reuse activities.

• Use a software development process that promotes and controls reuse.

• Reuse more than just code.

• Practice domain engineering.

• Integrate reuse into the project management and the software engineering

activity.

• Organise the enterprise to facilitate partnering to achieve reuse across product

boundaries.

• Use automation to support reuse.

• Couple modern reuse theory with natural, traditional organisational reuse

practices.

An important assertion made by this planning group was that the main factors that

influence software reuse are non-technical (Moore, 1997). SPL engineering

acknowledges this fact, while complying with most of the planning group’s proposed

principles.

2.4 SPL PRACTICE

Implementing an SPL is a significant undertaking involving extensive planning,

restructuring, investment, action and commitment at various levels within an

organisation (Northrop, 2002b; Schmid, 2002a). Although the concept of SPL

engineering is well researched and widely implemented, there is no fixed recipe or

formula for putting it into practice. This can be attributed to the fact that the approach

to be followed is to a large degree determined by the contextual characteristics of the

organisation, such as size, available resources, process maturity, culture and

30

organisational structure, as well as the chosen application domain (Bosch, 2002b;

Bühne et al., 2004).

Rather than attempting to provide a prescription for SPL implementation, SEI (2006)

proposes a framework of what it perceives to be the required activities and practice

areas. SEI (2006) publishes its Product Line Practice Framework as a living web-

based document, which is indicative that this is an evolving body of knowledge. The

Product Line Practice Framework is intended as a source of guidance for

organisations wishing to adopt or maintain an SPL. Although authors such as Bosch

(2000), and Schmid and Verlage (2002) use slightly different terminology, their

descriptions of SPL practices are in effect similar to those of SEI.

2.4.1 Essential Activities

According to the SEI there are three activities essential to the implementation of an

SPL: core asset development, product assembly and the management of these two

activities (Northrop, 2002b).

Core asset development establishes the capability to assemble product line products.

The outputs of the core asset development activity are the product line scope, the

software architecture, the software components, the application framework and the

production plan. The product line scope is a document that defines the boundaries of

the problem domain to be addressed by the product line. The production plan sets

out the documented processes that collectively describe the assembly of a product

using the core assets.

Product development effectively becomes the implementation of the processes in the

production plan to assemble an application, also referred to as an SPL member.

Both core asset development and product development activities require technical

and organisational management. Technical management is required to ensure that

plans are made and followed, and organisational management is necessary to

establish and support suitable organisational structures and to allocate the necessary

resources.

31

2.4.2 Practice Areas

The practice areas that need to be mastered in order to accomplish the essential

activities are organised into three distinct categories, namely software engineering,

technical management and organisational management.

2.4.2.1 Software Engineering Practice Areas

The software engineering practice areas support the technical aspects of the

essential activities. Examples of the software engineering practice areas are:

• understanding the problem domain;

• requirement engineering and architecture definition;

• component and framework development; and

• testing.

Each of these is addressed below.

Understanding the Problem Domain: The importance of understanding the

problem domain is emphasised, because a thorough understanding of the

environment within which the SPL members are to be used is crucial to its overall

success (Northrop, 2002b). Organisations contemplating SPL engineering have an

advantage if they already possess comprehensive knowledge of the problem domain,

however, organisations can attempt to fast-track understanding of the domain by

consulting domain experts (Clements & Northrop, 2001, pp. 137-141).

Examples of elements of this knowledge are:

• characterisation of the role players that will depend on the product;

• terminology and procedures that they use;

• features of competing products; and

• applicable standards and relevant legislation.

Information of this nature is seldom likely to feature in the client’s requirement

specification document, should one even exist.

32

In-depth knowledge of the problem domain also serves as valuable input for the

development of the software architecture and the application framework, because it

contributes to products that are more intuitive to the user. Additionally, knowledge of

the problem domain puts the software developers and sales personnel in a strong

position to negotiate with clients and to guide them in structuring their requirements

to coincide with the overall SPL vision and philosophy.

Requirement Engineering and Architecture Definition: Requirement engineering

takes on added importance in the context of SPL engineering. Requirements that are

likely to be common to all members of the SPL should be satisfied by the collection of

core assets. Customer-specific requirements should be met via planned mechanisms

for application variability, known as variation points (Bosch, 2002b).

The success of an SPL depends heavily on the underlying software architecture

(McGregor, Northrop, Jarrad, & Pohl, 2002). This dictates the need for the software

architect to make a special effort to identify the architecturally significant

requirements. The architecturally significant requirements are those that influence

architecture design decisions. An example of architecturally significant requirements

is a category termed quality requirements, which covers qualities such as

performance, testability, maintainability, consistency, and intuitiveness of the user

interface. Quality requirements can often only be met if they are specifically

addressed at the outset by the software architecture (O’Brien, Stoermer, & Verhoef,

2002). Additional architecturally significant requirements stem from:

• the need to interface with other systems;

• the need to provide support for network or Internet-based operation;

• the choice of the component technology and middleware framework; and

• the desire to exploit COTS components or legacy software.

An SPL architecture must be sufficiently robust to support the necessary range of

variability or optionality, which may also imply the disabling of functional parts,

without the architecture losing its consistency (Bosch, 2000). In some cases the

range of variation at a variation point is fully understood and can be implemented as

a set of selectable options, in other cases the range of variability may be unknown, or

only partially known, in which case the architecture must provide for an interface or

33

component that allows for controlled extension (Greenfield & Short, 2004, pp. 365-

366).

Owing to the importance of software architecture, an architecture-centred design

approach is widely recommended for the development of SPLs (Bergey, Fisher,

Gallagher, & Jones, 2000; Bosch, 2002a; McGregor et al., 2002). This design

approach dictates that architecturally significant requirements be identified as early

as possible in the SPL development in order to provide for them in the common

architecture. Attempting to correct architectural defects or inadequacies at an

advanced stage of the development cycle can be costly because of the far-reaching

influence of the architecture. In the case of SPLs, architectural defects are potentially

even more costly, considering that these defects are likely to be propagated to a

number of members of the product line (Kuloor & Eberlein, 2002).

The requirement engineering process must be systematic in the analysis,

categorisation and management of all requirements, especially those originating from

the customer (Birk, 2002). Eliciting requirements from the customer can prove to be a

difficult and thorny process (Kuloor & Eberlein, 2002), which is further complicated if

the customer lacks the necessary experience or expertise. Customer requirements

are probably the single most sensitive input to be considered when implementing the

product line and assembling the individual products, because a prospective customer

who doubts that his requirements will be met is unlikely to become a customer.

The outputs of domain analysis also provide valuable inputs for the requirement

engineering process. The domain analysis outputs not only serve to identify

additional requirements, but can also be used as a framework to support the

elicitation and interpretation of customer requirements.

Components and Framework Development: In theory, component development is

a well understood concept. In practice, however, it is complicated by the mismatch or

lack of interoperability of the available component technologies, as well as the rapidly

changing component industry. The selection of a component technology is a crucial

decision because of the cost and time it takes to change component technologies

late in the product line life cycle. It is also desirable to select a technology that has an

34

established COTS component market because this can serve as a valuable source of

standard components.

As already mentioned, a framework is effectively a partially completed application

used as the foundation for a new product. An application framework forms the

starting point of a new product line application. Products produced for different

customers will display differences at the variation points. Variation points are

locations and components in the software framework, identified during development,

at which variation is expected.

The following are examples of mechanisms commonly employed to manage

variability:

• Conditional Compilation: Most modern programming languages include

directives that can be used to conditionally include or exclude code based on

constant values defined at compilation time. This mechanism is only valid where

there is access to the source code, which is often not the case with COTS

components. Conditional compilation has the disadvantage of making code

difficult to comprehend and manage effectively.

• Parameterisation: The components of a framework are implemented with

options that are invoked to customise their performance at run time via

parameters and properties. The disadvantage of this is that these component

interfaces can become complex and difficult to use.

• Inheritance: When a component method needs to be changed, a virtual

method replaced, or a new method needs to be introduced, inheritance can be

used. Unfortunately not all component technologies support inheritance.

• Event-handlers or Callbacks – the application supplies methods that are

called in response to predefined events.

The above variability mechanisms are employed during the assembly of the

application. There are also mechanisms for managing variations at run time, such as

the use of plug-ins and run-time libraries. A benefit of this approach is that certain

application enhancements and upgrades can be provided without having to provide a

complete rebuild of the application.

35

Variations will inevitably also be necessary at places where they were not initially

expected; this may demand the introduction of new variation points. However, this

has to be a carefully judged decision, because injudicious adding of variation points

could negatively affect the architecture or result in components that are unacceptably

complex.

Testing: The testing of product line software is made more challenging by the need

to exercise fully all variation points. It is usually necessary to develop test harnesses

to test individual components, especially during the early stages of core asset

development, before a sufficient part of the application framework exists. However

because core assets are reused many times in the product line, it pays dividends to

ensure that the architecture and the components are designed to facilitate testing,

with the ultimate goal being the support of automated testing. Built-in test support is

of particular value for applications, such as safety-critical applications, requiring proof

of the requirement testing for qualification or certification purposes.

2.4.2.2 Technical Management Practice Areas

The technical management practice areas are those concerned with the

establishment and support of the development infrastructure. Examples of the

technical management practice areas are:

• processes;

• configuration management and change control;

• tools; and

• scoping.

Each of these is dealt with below.

Processes: Product lines are inherently process-intensive and the application and

maintenance of the product line must be fully documented in the form of repeatable

processes which are subjected to regular review and improvement. As with all forms

of industrialisation, automation of process tasks, which are repetitive or labour-

intensive and thus prone to human error, is of particular value.

36

Configuration Management and Change Control: Discipline and precision are

essential in the management of the core assets and the configuration of developed

products. In addition to the control of source code, all other core assets also require

configuration management system and change control procedures. Most of the core

assets are likely to undergo change as the SPL evolves and matures, making it

important to keep track of all versions of these assets and to record the versions

used to construct the application framework and the assembled products (Staples,

2004). Since core assets are shared across products and are used by different

stakeholders, change control requires considerably more attention than for a single

application.

As Birk, Heller, John, Joos et al. (2003, p. 16) explain: “(The) multitude of different

products together with the high number of versions leads to a huge complexity, well

exceeding the complexity of the existing software development”.

The development tools, middleware frameworks, COTS components, DBMSs and

operating systems may also be upgraded regularly. Consequently, it is also

necessary to record the configuration of the development environments and

platforms used for core asset and product development, deployment and subsequent

maintenance.

Tools: Industrial production is characterised by the considered application of tools to

the automation of processes. In SPL engineering the challenge is to select a suitable

mix of tools to support the product-line development practices. These tools must

serve to improve the effectiveness of the developers by relieving them of repetitive,

time-consuming and error-prone tasks. Tools can also be configured to encourage,

measure, or even enforce adherence to coding and design standards and to extract

metrics for management purposes.

In addition to code generation, tools can be applied to tasks, such as requirement

engineering, software architecture representation, generation of design

documentation, database schema design, development of user interfaces, provision

of context-sensitive help and user manuals, defect reporting, and collaboration

between developers.

37

Scoping: Product line scoping is the process of establishing the boundaries of the

problem domain targeted by the product line. The product line scope is a statement

of the types of systems to be addressed by the product line, and possibly also the

types of systems to be excluded. Put another way, “it defines what’s in and what’s

out” (Clements, 2002, p. 28).

The scoping practice area is necessary for the planning of possible variations and

variation points, for limiting and focusing the core asset development effort and for

identifying the target client base for the product line products.

If the scope of the product line is set too wide, costs, timescales and complexity

could escalate. Conversely, if the scope is too narrow, variability options are

compromised, limiting the applicability of the product line and possibly resulting in

missed opportunities (Schmid, 2002b).

2.4.2.3 Organisational Management Practice Areas

Organisational management practices are those related to the implementation of

changes to the organisational structure, the support of the new structure and the non-

technical management of the product line. Examples of the organisational

management practice areas, which will be dealt with below, are:

• business case analysis;

• customer relationship management;

• funding;

• structuring the organisation; and

• training.

Business Case Analysis: It is pointless to establish an SPL that generates less

profit than the development of the products in a series of one-off projects; hence it is

essential to precede the product line effort with a detailed business case analysis

(Boehm, 1999). This analysis should cover the likely costs of establishing and

maintaining the product line, the potential profits, as well as the benefits and the

perceived risks (Clements & Northrop, 2002). Lim (1998) points out that this form of

software reuse should not be seen purely as a long-term cost cutting exercise, but

38

also as a means of gaining competitive advantage in terms of quality, features,

performance and time to market. For the product line to be successful, management

buy-in is essential (Birk, Heller, John, von der Maßen et al., 2003) and the business

case analysis provides a key means of achieving this.

The extent of the SPL implementation cost is a function of the product line adoption

model and the prior existence of material suitable for transformation into core assets.

It is unlikely that there will be an advantage in implementing a product line for

producing one or even two products. Typically, the break-even point occurs at around

three products (McGregor et al., 2002) and only beyond this does the approach really

start to provide a return on investment.

Böckle, Clements, McGregor, Muthig, & Schmid (2004) provide a comprehensive

treatment of the return of investment for SPLs.

Customer Relationship Management: An SPL organisation should carefully

manage the relationship with its customers to ensure that they appreciate both the

benefits and constraints that this approach presents for them (Clements, Jones,

Northrop, & McGregor, 2005). It is also important that a suitable contractual

relationship exists between an organisation and its product line customers. If the

value of each development contract is based purely on the level of development

effort, the financial benefits provided by the product line will accrue to the customer

rather than the development organisation.

Elements of the organisation’s problem domain knowledge might be the intellectual

property of one or more customers. Care should be taken not to include such

proprietary material in the core assets, as this could result in legal action, especially if

the product line customers are competitors.

Staff that interface with the customer should understand the product line well enough

to be capable of guiding the customer in the specification of requirements. More often

than not, the customer can get what he wants, albeit in a form that has been aligned

with the product line philosophy. Although this could prove challenging, it is important

not to accept customer requirements without careful consideration, especially those

that are not within the product line scope. In such cases, the problem should be

addressed in consultation with technical management in order to decide whether the

39

scope can be extended without disturbing the architectural integrity of the product

line. Failing this, the organisation could consider accommodating the customer by

way of a one-off development – inevitably at a greater cost.

As Clements (1999. p. 5) expresses it: “Marketers can no longer agree to anything

the customers want but must instead nudge customers to set their requirements so

that they can be fulfilled by a version of the product line within the planned scope of

variation”. Contrary to some expectations, informed guidance of this type usually

results in a more confident and satisfied customer (Clements, 1999).

Maintaining an ongoing relationship with customers can help to maintain the

alignment of their thinking with the product line vision and provide further

opportunities in the form of support agreements and product upgrades, while serving

as a valuable source of domain knowledge and feedback for product line

improvement.

Funding: SPL development is an expensive exercise that requires a funding plan.

This contrasts with one-off development for which the customer ultimately foots the

bill (Clements & Northrop, 2002). In SPL engineering, a considerable portion of the

development involves the establishment, evolution and maintenance of the core

assets which are used to assemble members of the product line. The SPL

establishment costs can be amortised over a number of product line members, and

the more products that are built, the more the cost can be spread (Böckle et al.,

2004), but predicting the number of members to be produced can prove to be

difficult.

Structuring the Organisation: This practice area addresses the structuring of the

organisation in order to support the SPL initiative. Fundamental organisational

changes are needed when moving from project-centric, single application

development to an SPL approach (Knauber et al., 2000). Since these changes

involve development practices and organisational structures, they require thorough

planning and careful management (Birk, Heller, John, von der Maßen et al., 2003).

Morisio et al. (2000, p. 59) see two distinct activities, according to which the SPL

effort can be structured: “Usually a product line is built through domain engineering

and application engineering. Domain engineering aims at defining and implementing

40

domain commonalities in a generic product. Application engineering produces

individual applications for customers starting from the generic product.”

Accordingly, implementation and operation of a product line usually requires the

establishment of a two-tiered organisational structure. In this structure, one tier,

responsible for domain engineering, develops and supports the core assets and the

other tier, responsible for application engineering, uses the core assets to assemble

the products (Braun, 1999). This structure also makes it possible for the organisation

to gain optimum benefit from its domain specialists by capturing their knowledge in

the form of core assets for use in assembling products.

Some recent SPL literature disputes the need for a two-tiered structure and Northrop

(2002b) provides evidence of successful organisations that have been successful in

implementing product lines within a single unit.

Training: The introduction of SPL engineering to an organisation involves exposure

to new practices, different concepts and cultural adjustments (Clements et al., 2005).

The training practice area is aimed at addressing the demands posed by these

changes on the organisation. The set of product line practices should all be

described in the form of processes that form a solid framework on which to establish

the training programme.

Whereas a series of one-off projects requires a number of teams of generalist

software practitioners, an SPL requires less manpower, principally owing to the man-

hour savings accruing from reuse. A team of technical specialists is required for

developing core assets, as well as small teams of trained product line integrators for

assembling the products. The specialist roles are well defined, making it simpler to

identify the training requirements. The product development processes can also

serve as a useful basis for training newcomers to product line concepts, and the

specialist roles offer a valuable opportunity for mentorship of new developers.

Tool support plays an important role in the automation of SPL processes. To use the

tools consistently and to gain full benefit, developers require the appropriate training.

41

2.5 SPL ADOPTION MODELS

There are various approaches for adopting an SPL within an organisation. Krueger

(2002) identifies three adoption models: proactive, reactive and extractive. In the

proactive model, the organisation plans and implements the product line and then

uses it. In the reactive model, the problem domain and application requirements are

initially not yet fully understood, so the core assets are developed based on the

current, possibly incomplete, knowledge. The core assets evolve as knowledge of the

application and domain requirements increases. In the extractive model, the

organisation already has one or more existing products at the time that the decision

is made to adopt SPL engineering.

With the proactive and reactive models, the organisation effectively begins with a

clean sheet and attempts to establish processes and infrastructure before venturing

into production. In the extractive model, the software exists before the processes and

infrastructure, a situation which could prove to be awkward to manage.

The proactive model is more of a “big bang” approach and stands to provide rewards

more quickly, while carrying more risk. The reactive and extractive models depend on

an iterative and evolutionary approach, taking longer to produce rewards while

bearing less risk.

2.6 SUCCESS FACTORS

Not only is the introduction of an SPL expensive, it is also disruptive and brings with it

numerous risks, making it imperative that the decision makers are fully aware of the

factors that enhance the likelihood of a successful outcome. These factors include:

Management Commitment: The commitment of the organisation’s management is

necessary to enter into an SPL venture. This commitment is required to provide the

manpower, time, finance, training and incentives, as well as to establish a suitable

organisational structure (Bühne et al., 2004). This is confirmed by Morisio et al.

(2002), who after conducting research on software reuse projects in European

companies, concluded that it is essential to have management commitment to

achieve the changes necessary for a reuse programme.

42

Management needs to consider carefully the risks and benefits before committing to

an SPL initiative, but once a commitment is made it should be “strong and

unswerving” (Clements & Northrop, 2001, p. 516). SPLs are primarily suited to

organisations prepared to make an honest, long-term commitment to a particular

problem domain (Jacobson et al., 1997) and are unsuitable for those seeking a quick,

“hit-and-run” venture for quick financial gain.

Process Orientation: The successful establishment of an SPL and its continuing

success rely on the establishment and commitment to high quality processes. The

SPL is regarded as “institutionalised” once these processes are considered to be

“stable and indispensable” (Böckle et al., 2002, p. 56).

Organisations that are already comfortable with the disciplined application of

processes tend to make the transition to SPL engineering with greater ease

(Clements & Northrop, 2001, p. 517). Bayer et al. (2001) caution that the effort and

costs of establishing SPL processes in an “immature environment” could be

prohibitive.

Problem Domain: Another priority for success is to ensure that the chosen problem

domain is sufficiently stable (Knauber et al., 2000). The risk of SPL failure is

significantly reduced if the problem domain is relatively mature and established.

Henninger (1996, p. 124) confirms this by saying: “Research in software reuse has

observed that most successful reuse efforts have been achieved using collections of

components within well-defined and well-understood domains”.

Comprehensive knowledge of, and experience in, the targeted problem domain

cannot be valued highly enough. A good understanding of the end-users,

environment, habits, customs, terminology, problems, desires and trends greatly

enhances the probability of successful product line implementation. Since domain

knowledge is essential for success and constitutes a valuable intellectual asset, it is

important that it be documented rather than being allowed to reside purely in the

heads of individuals.

Product Line Vision: The organisation needs to have a clear and coherent vision for

the product line (Knauber et al., 2000). The vision needs to address the present state

of the product line as well as its medium- and long-term growth paths (Knauber et al.,

43

2000). The vision is built and evolved in a similar fashion to domain knowledge,

through a combination of experience and research. Knowledge that contributes to the

vision is derived from customer feedback, conferences, industry publications, web

sites, trade shows, sales material from the competition and networking with

customers and other industry players. Since the vision encompasses strategies from

diverse disciplines, various individuals should contribute to it, such as domain

experts, technology experts, marketing personnel and the product line champion (see

Product Line Champion below).

The product line vision presents a long-term view, allowing the company to plan

resources, training and marketing, and to invest in infrastructure. This contrasts with

the short-term vision that characterises a project-centric strategy. In a project-centric

organisation the vision is to a large degree determined by the company’s mix of

projects which tend to vary over time.

The product line vision has to be dynamic to take account of changing market forces.

It must be reviewed regularly and realigned when necessary. Ideally, there should

also be an overall corporate vision that addresses the organisational strategy and

encompasses the individual product line visions. The corporate vision should ensure

that the company achieves its desired portfolio coverage and that there is no

unintended overlapping of product lines.

Product Line Champion: According to Clements and Northrop (2001), a product line

champion is an individual, or a small group, who has an excellent comprehension of

product line principles, a detailed understanding of the problem domain, a clear

understanding of the product line vision, and the ability to communicate these. The

champion should be involved in all product line decisions and must contribute to a

free flow of information between all parties involved. The champion must have the

resources, authority and management support required to ensure that the efforts and

actions of all parties remain aligned with the interests of the product line.

Schmid (2003, p. 9) suggests that the a product line champion should be “a person

with strong social and communication skills who is in continuous contact with the

development personal and is in favour of product line development ideas and

communicates this strongly and convincingly”.

44

Education Drive: Changes to the structure of an organisation could possibly

threaten the comfort zones of individuals and sectors of staff. To enhance the

likelihood of success, it is important that people be informed of the reasons for

adopting a product line, the likely benefits, the implementation plans and the

progress being made (Birk, 2002). It is also important for sales staff to be sufficiently

informed to uphold the SPL vision and principles when planning their sales

strategies.

Morisio et al. (2000) report on how four European companies that successfully

adopted SPL engineering avoided “problems with human aspects” by having a

management presence, using consultants, conducting presentations and

implementing training plans.

2.7 ADVANTAGES AND DISADVANTAGES

The advantages of SPL engineering over one-off development are derived from the

production economies that are made possible by developing each application from a

common set of assets in a prescribed manner (Clements & Northrop, 2001, p. 5).

The advantages provided by systematic software reuse, in general, are faster time to

market, reduced development costs and risks, and significant gains in productivity

and long-term quality. Lim (1998, p. 85) points out that organisations should also

recognise the opportunity for strategic advantages to be gained from reuse, “such as

entering new markets, increased agility in response to a dynamic marketplace and

competitive positioning”. Since SPL engineering specifically extends reuse to all

aspects of the software development lifecycle, these advantages are enhanced still

further.

Other important advantages are:

• Uniformity and Standardisation: Members of the product line have a high

degree of commonality providing benefits for the organisation owing to

uniformity and standardisation. These benefits extend to development

documentation, user manuals, user training, maintenance support, marketing

and many other functions.

45

The uniformity of the products in the product line also presents the opportunity

for establishing user groups and for holding user conferences. Provided that

these are well run, they can serve as an invaluable source of feedback and

general domain knowledge, while acting as a useful communication network.

• Definition of Roles: In a project-centric organisation, the workforce is of

necessity made up of generalists (i.e. jacks-of-all-trades) because project

members are required to take on varying roles as the development lifecycle

progresses from initial conception through to maintenance.

In contrast, SPL developers have well-defined roles and responsibilities,

allowing for the optimisation of training resources and tools. This also supports

the establishment of specialists, who are used to benefit all SPL members and

even other product lines.

The benefit of using specialists is manifested in improved quality in the

development and support of the core assets.

• Continuous Improvement: The ongoing reuse of core assets and feedback

received from users promote continuous improvement, which will benefit all

product line members at the same time advancing knowledge of the problem

domain. This is in contrast with the development of a one-off application, which

typically terminates once all requirements have been met.

• Explicit Knowledge Representation: As a result of SPL engineering, domain

knowledge is consolidated and explicitly represented in the form of various core

assets and processes. The organisation is thus protected from having its

intellectual capital reside predominantly in the memory of individual specialists,

with the risk of being lost when an individual resigns. Explicit knowledge

representation8 also facilitates the sharing of knowledge and provides a

valuable basis for the training of new staff.

• Product Delineation: Product line engineering naturally provides the platform

for the logical identification and delineation of products, which in turn facilitates

the establishment and coordination of a product range, product image and

8 Explicit knowledge representation is a term believed to be coined by the Fraunhofer
Institute.

46

branding. This can also contribute to an organisation’s strategic planning and

marketing efforts.

It is difficult to achieve significant technical progress without introducing elements of

cost and risk; similarly, establishing an SPL will initially involve both of these

elements (Bosch, 2000, p. 188). However, a successful SPL effort will, in the longer

term, result in significantly lower development costs, reduced risk and improved

quality (Clements & Northrop, 2001, p. 23).

SPL engineering deliberately sets out to limit unanticipated and unplanned variability.

Processes are specifically established to control changes and to prevent

unsanctioned modification of core assets (Brownsword & Clements, 1996). This

inevitably translates into a reduction of flexibility when compared with one-off

development (Knauber et al., 2000).

SPL engineering poses additional challenges for small and medium-sized

organisations. It is apparent that most of the widely-published SPL success stories

involve large organisations with ample resources (Gacek et al., 2001). Smaller

organisations tend to lack the resources and the long-term planning capability

necessary for SPL engineering (Knauber et al., 2000).

Smaller organisations can seldom rely on a steady flow of development orders,

making it essential to have a versatile, rather than a specialised, workforce that can

easily be redeployed according to demands. Product line protagonists argue that a

promising business case should exist before committing to the product line, and

having committed to it, the organisation is in a better position proactively and

selectively to seek out new jobs that fall within the scope of the product line.

SPL practice requires more careful selection and management of customers. Unlike

small organisations, large organisations can usually afford to be more selective of

their customers. Small organisations are often very flexible and more willing to

produce software precisely tailored to each customer’s specifications. They also

usually cooperate closely with their customers and are more aware of the customer’s

specific needs (Knauber et al., 2000). These organisations are thus more vulnerable

to the potential loss of flexibility brought about by an SPL, especially since this

flexibility is often the particular attribute sought out by their customers. Some small

47

organisations, desperate to secure big orders might be tempted to sell their souls –

so to speak – to satisfy demanding customers, making them inherently unsuitable

candidates for SPL engineering (Gacek et al., 2001).

Smaller organisations also have certain advantages over larger organisations when

implementing SPLs, because their small size allows for quicker communication,

making it simpler to instil the product line vision, to establish new processes and to

share domain knowledge (Gacek et al., 2001).

2.8 SUMMARY

SPL engineering has evolved out of a longstanding need to bring some of the

benefits of industrial scale manufacturing to the field of software development.

Product lines are well established in other manufacturing industries, and many of the

concepts and practices proposed by SPL engineering have actually existed in

software development for some time. However, it is probably the first truly

comprehensive approach to systematic software reuse.

An organisation with an established SPL owns a collection of core assets that allow it

to consistently produce consistently high quality applications that coincide with the

product line scope. The staff members working on the product line have well-defined

roles, are appropriately trained and can also be regarded as core assets. They

assemble an application according to the product line production plan, starting with

an application framework, which preserves the product line architecture, and then

implement the application-specific functionality via the carefully provided variation

points. The components making up the framework are developed by specialists,

continually improved and thoroughly tested. The framework and components are

designed to facilitate testing, making all subsequent testing comprehensive, quick

and inexpensive. Project plans, requirements specifications, design descriptions, test

plans, user manuals and all other application-specific documentation are derived

directly from existing, proven product line assets. The development effort for new

applications is substantially less than for a conventional single development, so

timescales, costs and risks are reduced accordingly.

Market forces encourage organisations to focus on problem domains for which they

have acquired knowledge, and to produce applications with a large degree of

48

commonality. SPL engineering provides a proactive approach for systematically

capturing the knowledge required to produce these applications in the form of a set of

core assets. Substantial production economies result when applications are

produced using these assets in the prescribed way (Clements, Donohoe, Kang,

McGregor, & Northrop, 2001).

 Although the adoption of SPL engineering is a major undertaking that initially

demands additional overheads and might require organisational restructuring, it can

provide a substantial return on investment and could be the solution for many

organisations in their struggle to thrive in a competitive market.

The literature study identifies several technical and organisational issues that require

careful attention when considering the implementation of an SPL.

Among the technical issues are the following:

• acquiring, managing, applying and protecting domain knowledge;

• establishing, institutionalising and improving processes;

• selecting and applying tools for automating processes;

• adopting architecture-centred development;

• selecting and applying a suitable component technology; and

• strictly and consistently implementing configuration management and change

control.

Among the organisational issues are the following:

• funding of the SPL;

• giving special consideration to customer relationship;

• establishing a compelling business case; and

• selecting and implementing an appropriate organisational structure.

This chapter described how software reuse has evolved and identified SPL

engineering as a generally accepted, comprehensive solution to systematic software

reuse. The Product Line Practice Framework was used as the basis of the

49

description of SPL engineering and, in addition, aspects such as adoption models,

success factors and advantages were considered.

50

Chapter 3. Research Methodology and Design

3.1 INTRODUCTION

This chapter starts by providing the background to qualitative information systems

(IS) research in order to contextualise the methods which contributed to the research

design. The second part of the chapter makes use of this information to describe and

motivate the research design.

3.2 BACKGROUND TO RESEARCH METHODOLOGY

This section covers background and supporting information relevant to the research

methods used in this study.

3.2.1 Information Systems (IS) as a Research Discipline

Information systems (IS) is a young, rapidly changing field of study that draws upon a

large variety of reference disciplines, such as computer science, mathematics,

linguistics, economics, political science, ethics, sociology and psychology (Avison &

Elliot, 2006, p. 5). Although IS boasts a rich heritage, it is criticised for being reactive,

opportunistic, lacking academic rigour, confused and for suffering from an identity

crisis (Avison & Elliot, 2006; Khazanchi & Munkvold, 2000; Pather & Remenyi, 2004).

Debates surface regularly on whether IS serves as a reference discipline for other

disciplines (Lee & Liebenau, 1997; Wade, Biehl, & Kim, 2006) or whether IS even

deserves to be called a discipline or science (Baskerville & Myers, 2002; Khazanchi

& Munkvold, 2000).

Information systems is a dynamic and exciting field of study and distinguished IS

research authors, Baskerville and Myers (2002), not only recognise it as a discipline,

but are also convinced that current trends show IS to be well positioned to address

all of its challenges and criticisms.

51

3.2.2 The Nature of Information Systems Research

“The goal of Information Systems research is to produce knowledge that
enables the application of information technology for managerial and
organizational purposes” (Hevner & March, 2003, p. 111).

According to Avison and Elliot (2006, pp. 6-7), IS research “focuses more on

interactions between people and organizations (the ‘soft’ issues) and technology

rather than on the technologies themselves”. In practice, it is also these soft issues

that prove to be the most challenging in information systems (Harvey & Myers, 1995).

Although natural science research methods have been successfully applied to IS

technology, these methods are “inadequate and inappropriate” for dealing with the

soft issues (Lee & Liebenau, 1997, p. 3). This suggests that qualitative methods,

intended for the study of people in their “social and cultural contexts” (Myers, 2006),

are better suited for the research of IS. At the research paradigm level, a positivist

perspective is more appropriate for hard issues and an interpretive perspective for

soft issues (Fitzgerald & Howcroft, 1998). According to Myers (2006), the underlying

philosophical assumptions of a qualitative researcher can be positivist, interpretive or

critical, so the assumption that qualitative is simply a synonym for interpretive is

incorrect.

In IS research, especially in North America, there is a long tradition of academics

employing positivist research methods in order to achieve rigour (Evaristo &

Karahanna, 1997). Sometimes this rigour is achieved at the cost of practical

relevance, and results in dissatisfaction from practitioner interest groups (Harvey &

Myers, 1995). This preference for positivist methods, which aim to present an “a-

historical and a-contextual” picture, is also in conflict with the special significance that

context has in the study of information systems (Harvey & Myers, 1995).

Although information systems research has historically been preoccupied with hard

technological issues, interest is shifting more towards the soft organisational issues

(Darke, Shanks, & Broadbent, 1998; Fitzgerald & Howcroft, 1998; Myers, 2006).

There are ongoing comparative debates on the hard and soft research approaches

for IS research. Table 3-1 provides a useful summary some of the competing

dichotomies between these approaches.

52

Table 3-1: Summary of Soft versus Hard Research Dichotomies
(Fitzgerald & Howcroft, 1998)

Soft Hard
PARADIGM LEVEL

Interpretivist
No universal truth. Understanding and interpretation
come from researcher’s own frame of reference.
Uncommitted neutrality impossible. Realism of
context is important.

Positivist
Belief that world conforms to fixed laws of causation.
Complexity can be tackled by reductionism.
Emphasis on objectivity, measurement and
repeatability.

ONTOLOGICAL LEVEL
Relativist
Belief that multiple realities exist as subjective
constructions of the mind. Socially-transmitted terms
direct how reality is perceived and this will vary
across different languages and cultures.

Realist
Belief that external world consists of pre-existing
hard, tangible structures which exist independently of
an individual’s cognition.

EPISTEMOLOGICAL LEVEL
Subjectivist
Distinction between the researcher and research
situation is collapsed. Research findings emerge from
the interaction between researcher and research
situation, and the values and beliefs of the researcher
are central mediators.

Objectivist
Both possible and essential that the researcher
remain detached from the research situation. Neutral
observation of reality must take place in the absence
of any contaminating values or biases on the part of
the researcher.

Emic/Insider/Subjective
Origins in anthropology. Research orientation centred
on native/insider’s view, with the latter viewed as the
best judge of adequacy of research.

Etic/Outsider/Objective
Origins in anthropology. Research orientation of
outside researcher who is seen as objective and the
appropriate analyst of research

METHODOLOGICAL LEVEL
Qualitative
Determining what things exist rather than how many
there are. Thick description. Less structured and
more responsive to needs and nature of research
situation.

Quantitative
Use of mathematical and statistical techniques to
identify facts and causal relationships. Samples can
be larger and more representative. Results can be
generalised to larger populations within known limits
of error.

Exploratory
Concerned with discovering patterns in research
data, and to explain/understand them. Lays basic
descriptive foundation. May lead to generation of
hypotheses

Confirmatory
Concerned with hypothesis testing and theory
verification. Tends to follow positivist, quantitative
modes of research.

Induction
Begins with specific instances which are used to
arrive at overall generalisations which can be
expected on the balance of probability. New evidence
may cause conclusions to be revised. Criticised by
many philosophers of science, but plays an important
role in theory/hypothesis conception.

Deduction
Uses general results to ascribe properties to specific
instances. An argument is valid if it is impossible for
the conclusions to be false if the premises are true.
Associated with theory verification/falsification and
hypothesis testing.

Field
Emphasis on realism of context in natural situation,
but precision in control of variables and behaviour
measurement cannot be achieved.

Laboratory
Precise measurement and control of variables, but at
expense of naturalness of situation, since real-world
intensity and variation may not be achievable.

Idiographic
Individual-centred perspective which uses naturalistic
contexts and qualitative methods to recognise unique
experience of the subject.

Nomothetic
Group-centred perspective using controlled
environments and quantitative methods to establish
general laws.

53

Soft Hard
AXIOLOGICAL LEVEL

Relevance
External validity of actual research question and its
relevance to practice vital, rather than constraining
the focus to that researchable by ‘rigorous’ methods.

Rigour
Research characterised by hypothetico-deductive
testing according to the positivist paradigm, with
emphasis on internal validity through tight
experimental control and quantitative techniques.

3.2.3 Qualitative Field Studies

Qualitative field studies, which include in-depth case studies, ethnography and action

research, are suitable for “understanding complex phenomena in situ” (Sim, 1999, p.

68). The case study is undoubtedly the most widely used qualitative research method

(Darke et al., 1998; Myers, 2006). Yin defines a case study as: “… an empirical

enquiry that investigates a contemporary phenomenon within its real-life context,

especially when the boundaries between phenomenon and context are not clearly

evident” (2003, p. 13).

In IS research, ethnography is a qualitative research method that is closely allied to

the case study, with the distinguishing factors being the greater level of direct

involvement of the researcher, the extended duration of the study and the use of

participant observation as a method of data collection (Myers, 1999). In ethnography,

the researcher becomes immersed in the group being studied in order to observe

phenomena in their social and cultural context (Myers, 1999, p. 4). Ethnographic

studies usually have considerable depth but limited breadth, providing rich insight

into a specific situation (Klein & Myers, 1999). This lack of breadth makes

ethnographic research unsuitable for generalisation, but as Myers (1999) points out

that generalisation can be applied across several suitable individual ethnographies.

Whereas the positivists’ preoccupation with rigour has led to dissatisfied practitioner

groups, Harvey and Myers (1995) consider ethnography to be a method that can

produce IS research with both rigour and relevance, thus satisfying both the

academic and the practitioner interest groups.

Action research, sometimes described as learning by doing, is a mix of theory and

practice that attempts to test a theory by applying it to a real problem (McKay &

Marshall, 2000). It involves a cyclic process of studying the problem, planning steps

to apply a theory in an attempt to solve the problem, applying the steps, measuring

the effects, reflecting on the results and if necessary modifying either the application

54

of the theory or the theory itself. Avison, Lau, Myers, and Nielsen (1999) aptly

summarise action research as follows: “Action research is an iterative process

involving researchers and practitioners acting together on a particular cycle of

activities, including problem diagnosis, action intervention, and reflective learning”.

3.2.4 Practitioner Research

When the phenomenon being studied lies within the researcher’s own professional

field of practice, the research can be classified as practitioner research. Practitioner

research allows researchers to achieve greater understanding of their own profession

and in so doing possibly influence the transformation of their work environment

(Tricoglus, 2001). To paraphrase Tricoglus (2001, p. 136) for the purpose of this

study: practitioner research is often the only option available to IS developers

because in a practical sense they have neither the time nor the opportunities

necessary to study the practice of others. Darke et al. (1998, p 209) provide an

insightful definition of practitioner research:

Practitioner research is often portrayed as having the purposes of
professional empowerment and transformation of the self, colleagues and the
work context. Such a portrayal positions practitioner research as a means for
developing deeper understandings of practitioners’ work that, in turn, provide
a platform for changing practice(s).

Although frequently associated with action research (Brooker & Macpherson, 1999),

the term practitioner research reveals the nature of the researcher’s commitment to

the study (Tricoglus, 2001), rather than implying a particular research method.

Tricoglus (2001), for example, suggests critical ethnography as an appropriate

approach to practitioner research.

Whereas academic research is criticised for favouring rigour over relevance

(Khazanchi & Munkvold, 2003), practitioner research is occasionally criticised for lack

of rigour (Brooker & Macpherson, 1999; McWilliam, 2004). Tricoglus (2001) suggests

the need for the researcher to be reflexive and self-aware throughout the research

process in order to improve rigour and to ensure that findings can withstand critical

scrutiny. It is also important for practitioner research to go beyond mere prosaic

description and provide outcomes that do, in fact, make a difference to the practice

(Brooker & Macpherson, 1999; Sim, 1999).

55

3.2.5 The Importance of Context

Because current IS research typically “focuses more on interactions between people

and organizations and technology rather than on the technologies themselves”

(Avison & Elliot, 2006, p. 6-7) (i.e. on the soft rather than the hard issues), the social

and historical contexts of the information system research take on special

significance.

Harvey and Myers (1995, p. 16) comment on the increasing awareness of context in

IS research as follows: “It would seem that information systems researchers are

becoming more accepting of the need to adopt techniques which consider the

historical and contextual aspects of information systems.”

Context is a topic on which the positivist and interpretivist perspectives differ. While

positivists attempt to present information systems from an “a-historical and a-

contextual” perspective (Harvey & Myers, 1995, p. 6), interpretivists use methods that

aim at “producing an understanding of the context of the information system”

(Walsham, 1993, p. 4).

The case study, ethnography, and action research are all methods which not only

permit, but actually encourage, the researcher to take account of the research

context (Stake, 1995, p. 39; Wolcott, 1999, p. 79). In fact, Yin (2003, p. 13) regards

the ability of case study research to deal with the context of the case as one of its

particular strengths. The boundaries of a case study are seldom well defined, but this

is not usually a problem, because the context of the case is at least of as much

interest as the case itself (Yin, 2003, p. 13). Ethnographic methods are particularly

suitable for the studying the “highly complex, constantly changing, social context” of

information systems (M. D. Myers, 1997) and the practical aspects of action research

means that it too is highly context sensitive.

This importance of context in IS interpretive field studies is demonstrated by the use

of contextualisation as a specific principal or tool to establish how a situation under

observation came about, by taking account of its “social and historical context” (Klein

& Myers, 1999, p. 73).

56

The importance of context for this specific study is emphasised by the fact that

experience indicates that the challenges of implementing systematic software reuse

relate mores to the organisational environment than to technical issues (Fafchamps,

1994; Lynex & Layzell, 1998) .

3.2.6 Prejudice and the Participant Researcher

Whereas the positivist perspective considers prejudice to be a serious barrier to

knowledge, the interpretivist perspective views prejudice as “the necessary starting

point of understanding” (Klein & Myers, 1999). The interpretivist perspective accepts

that it is unrealistic to expect the researcher to rid himself of all prejudice, but it does

expect the researcher to acknowledge these prejudices and address them during

data collection and analysis (Klein & Myers, 1999; Weber, 2004). Prejudgement and

prejudice stem from initial or prior knowledge and true interpretivists recognise that

these fulfil a valuable role in human understanding, but emphasise the need to

distinguish between “true prejudice” which leads to understanding and “false

prejudice” which leads to misunderstanding (Klein & Myers, 1999).

In interpretive field studies of this type, the researcher fulfils a role similar to that of

the participants: observing, interpreting and analysing (Klein & Myers, 1999).

Consequently, the bias or prejudice of the researcher is an issue which is essential to

acknowledge (Darke et al., 1998; Gillham, 2001; Yin, 2003). Gillham (2001, p. 47)

cautions the researcher to be aware that participant observation, in particular, can be

“fallible and highly selective”. Stake (1995, pp. 133-136) recommends reflection as a

tool that can be used by the researcher to address bias during the collection and

analysis of data.

3.3 RESEARCH DESIGN

3.3.1 Research Question

The research question is:

What are the issues related to the introduction of systematic software reuse in

a small project-centric organisation?

57

The research question and its subsidiary questions are addressed in detail in Section

1.3.

3.3.2 Motivation for Chosen Research Methodology

The research methodology which I have chosen can be described as a practitioner

research-based interpretive case study, which has been influenced by the qualitative

research methods of ethnography.

The purpose of this study was to investigate the potential implementation of

systematic software reuse in a small project-centric organisation. A preliminary scan

of the reuse literature confirmed that, in keeping with IS research in general, software

reuse programs tend to be dominated by organisational and contextual issues

(Fafchamps, 1994; Lynex & Layzell, 1998; Moore, 1997; Morisio et al., 2002). Issues

of this nature are best handled by qualitative methods. This study has an interpretive

perspective because it is based on the interpretation of the perceptions of individuals

in their natural setting (Orlikowski & Baroudi, 1991; Walsham, 1995).

As the researcher, my long and close involvement with the case study and its

context, as well as the influence of observation on the study, suggest the suitability of

ethnographic study methods. Ethnographic research is regarded as “an inductive

mode of enquiry”, and, in character with this, the objectives this study started as little

more than a general “statement of interest” (Sim, 1999, p. 67). Owing to the iterative

nature of this type of research, the statement of interest evolved into a statement of

purpose, which was subjected to regular scrutiny and revision as the study

progressed and new facts were revealed. As the focus of the research changed, the

research questions were revised and aligned accordingly.

Where this study may differ from traditional ethnography is in respect of the role of

the researcher. Although this study corresponds with ethnography with respect to

research methods used and the researcher being immersed in the group being

studied, an important aspect of ethnography is for researcher to enter the research

as an outsider who is suitably primed to identify aspects that are unusual or out of the

ordinary. In the literature on ethnography, there is frequent reference to the

researcher going native (Harvey & Myers, 1995; Wolcott, 1999, pp. 146-156). This

implies that the researcher is non-native to begin with and becomes native for the

58

purpose of the study. In this study I, the researcher, was already a native, and, as

such, potentially lost the ability to distinguish between what is ordinary and what is

out of the ordinary. The labels autoethnography and insider ethnography are

sometimes used for ethnography that covers the researcher’s own group or has an

autobiographical element (Wolcott, 1999, pp. 170-174).

This study stems directly from a desire to achieve an improved understanding of a

phenomenon within my professional workplace. Although, I undertook the study from

a purely interpretive perspective, the findings include both interpretive and critical

elements that could lead to changes to the workplace. Consequently, the study can

also be classified as practitioner research.

As already stated, practitioner research is commonly associated with action research,

which Avison et al. (1999, p. 95) summarise as follows: “In action research, the

researcher wants to try out a theory with practitioners in real situations, gain

feedback from this experience, modify the theory as a result of this feedback, and try

it again”.

The situation covered by this study provides an ideal opportunity for action research.

A real problem situation exists (i.e. the need for systematic software reuse), and as

part of the study a theory is to be identified (i.e. a systematic software reuse strategy

is determined by the literature study). In a true action research study, the next steps

would be to apply the theory, determine its success and, if necessary, modify the

theory (or the application thereof) and repeat the cycle. However, instead of applying

the theory, I tested participants’ perceptions of the theory and reported the findings. A

simple comparison between the approach taken for this study and action research is

illustrated in Figure 3-1 below.

59

identify problem

identify suitable
theory

apply theory

determine effects

stisfaction

report findings

modify theory

YES

NO

identify problem

identify suitable
theory

determine
perceptions

report findings

Basic Steps in Action Research Basic Steps of this Study

Figure 3-1: Comparison between Action Research and this Study

In summary, this is practitioner research-based interpretive case study employing

qualitative research methods.

3.3.3 Scope of the Study

Yin (2003, p. 42) describes how a case study can comprise more than one unit of

analysis. Although the scope of this case study is the company, we could consider

the individual elements of a HUMS as separate units of analysis within this case

study. The focus of this case study was purposely limited to the HUMS ground

station software element for the following pragmatic reasons:

Ease of Description: Although the ground station software is fairly complex, it has

well-defined functions and forms a complete concept that is simple for participants to

identify, comprehend and discuss.

60

Reuse Potential: At least five ground station applications have been developed by

the organisation all having a large degree of commonality. Consequently, the chosen

case study covers applications with good software reuse potential.

Access to Participants: A number of people have been directly involved in the

ground station development projects and they were easily accessible for interview

purposes. This is desirable in qualitative research of this nature because, as facts

unfolded, it was necessary to revisit certain participants to clarify their responses.

Focus: The purpose of choosing the specific case study was mainly to have a well-

defined example that could be used to focus and delimit the scope covered by the

interview questions and discussions. There are other development efforts within the

company, with good reuse potential, that could also serve as case studies. However,

I chose the ground station development projects because of my familiarity with it.

Issues: In spite of the ground station development projects having good reuse

potential, a number of issues that conflict with a systematic software development

effort are immediately apparent. An example of one of these issues is the relationship

with the customer. I wanted the research effort to explore these issues in more detail

and possibly expose additional issues.

3.3.4 Data Collection

The study collected data from one secondary and three primary sources:

1. literature study (secondary)
2. semi-structured field interviews (primary)
3. participant observation (primary)
4. an elite interview (primary)

Literature Study: I conducted a study of the published literature to investigate and

establish a theoretical framework for the research. The aims of the literature study

were to determine the current trends in systematic software reuse, the issues

associated with implementing a systematic software reuse programme and the

significance of these issues for small and medium-sized organisations as well as

project-centric organisations. The literature study also explored the significance of

61

organisational structure in software reuse, the background to SPL engineering and

proposed strategies for supporting the implementation of SPLs.

Semi-structured Field Interviews: The main purpose of the field interviews was to

uncover facts and determine participants’ personal perspectives on the need for

reuse in the company and the suitability of a selection of reuse practices. The

responses to the field interview questions also contributed to the contextualisation of

the research context.

I conducted the interviews using a semi-structured set of open-ended questions. The

interview process was semi-structured in that participants were only expected to

answer questions relevant to their role in the software development process, but they

were encouraged to provide opinions in response to the remaining questions. Open-

ended questions allow a participant to respond with as much information as he

chooses. Prompts and probe questions were used to steer the conversation and to

increase the likelihood of uncovering relevant facts.

Participant Observation: The value gained from participant observation is

experience (Wolcott, 1999, p. 46), however, Wolcott (1999, p 44) cautions that the

term participant observation has become an “umbrella term” used to describe almost

everything that researchers do in the field that is not interviewing.

Ebrahim and Sullivan (1995) explain that participant observation indicates that the

researcher views the study subjectively from within. This contrasts with non-

participant observation in which the researcher views the study objectively from a

distance (Ebrahim & Sullivan, 1995). The term from within could be interpreted in

either of two ways: firstly as implying from within the study and secondly from within

the phenomenon (or group) being studied. The first interpretation suggests that the

participant observation takes place during the period covered by the study, and the

second suggests that it takes place during the period that the phenomenon exists.

The fact that the evidence of participant observation normally is in the form of field

notes, implies that the participant observation is a deliberate activity that takes place

during the study.

62

I joined the company in 1988 and have participated in all projects covered by the

case study’s unit of analysis since 1998. Observations that I made over this period:

• motivated this study;

• sensitised me to the problems relating to the company’s reuse problem;

• led me to suspect that certain contextual issues contributed to the problem; and

• guided the research design.

The period covered by this participant observation obviously relates to the

phenomenon rather than the study. In order to avoid possibly misleading the reader, I

refer to this data source as personal experience.

Elite Interview9: Taking into account the relevance of context in a qualitative study of

this nature (see Section 3.2.5), an important element is the contextualisation. In order

to supplement the contextual information derived from the literature study and

personal experience, I conducted a single elite interview with a colleague who has

been associated with the company since 1985.

3.3.5 Interview Process

Systematic software reuse involves technical concepts that are fairly common

knowledge among individuals who use these practices, but are otherwise less

familiar. This posed a problem for the field interviews for which my intention was to

put questions to technical and non-technical participants. As an initial attempt to

avoid the problem, two introductory papers were selected for participants to study

prior to the interview. However, in a dry-run pilot interview the participant expressed

too much uncertainty on the subject, so an introductory paper based on the literature

review was used as preparatory reading material for all participants.

In most cases participants were interviewed on site. In one case a participant who

has left the company was interviewed at his home. Each interview lasted about an

hour, and participants spent about two hours studying the preparatory reading

material. The interviews were conducted in English. Although, most of the

9 An elite interview is an interview with an authoritative person capable of providing a special
insight on a topic (Gillham, 2001, p. 63). Wolcott (1999, p. 52) refers to such a person as a
“key informant”.

63

participants are Afrikaans-speaking, they are all fluent in English. One participant did

however choose to answer certain questions in Afrikaans.

The interviews were recorded using a miniature digital voice recorder, model Sony

ICD-P210. The small size and simple operation of this device minimised the intrusive

and interruptive nature that is often attributed to conventional tape recorders. The

device also allows for automatic voice activation and the convenient organisation of

interview responses in participant-specific folders.

3.3.6 Interview Questions

I divided the set of field interview questions into three categories addressing general

need and suitability, organisational issues, and technical issues. These categories

are summarised in Table 3-2, Table 3-3 and Table 3-4 respectively, which indicate

the basic theme of each question, as well as the objectives of related groups of

questions. The interview questions for the organisational issues and technical issues

categories are based on information from the Product Line Practice Framework (SEI,

2006).

Table 3-2: Interview Questions: General Need and Suitability

Interview Question Theme Objective

G1 Is there a need to make the company’s
development of software lower risk, more efficient
and more deterministic?

Need for
software
development
improvement

To determine the
need for systematic
reuse

G2 Could the company benefit from software and
intellectual asset reuse to a greater degree than it
does currently?

Need for reuse

G3 In general, would you regard software product
line engineering as a practical approach to
systematic software reuse?

Perception of
SPL engineering

To determine the
perceived general
suitability of SPL
engineering

G4 Do you think that it would be practical to
implement software product line engineering
within the company?

Suitability of SPL
engineering

G5 Do you envisage any negative consequences of
implementing software product line engineering
for the company?

Negative
perceptions of
SPL

64

Table 3-3: Interview Questions: Organisational Issues

Interview Question Theme Objective

O1 What do you see as the motivation for
maintaining a project-centric structure within the
company?

Project-centric
structure
motivation

To determine the
perceived
organisational
issues with adopting
SPL engineering

O2 What do you anticipate that the outcome of a
business case analysis would be for a HUMS
Ground Station software product line?

SPL business
case

O3 Considering the company’s relationship with its
current ground station customers, would you
anticipate any problems with developing solutions
for these customers using a software product
line?

SPL customer
relationship

O4 A software reuse effort requires initial funding and
ongoing maintenance and support funding. What
strategy would the company use to fund a product
line effort?

SPL funding

Table 3-4: Interview Questions: Technical Issues

Interview Question Theme Objective

T1 Software product line engineering requires the
establishment of and strict adherence to
processes. Do you foresee that the company
would have any problems in this regard?

SPL processes To determine the
perceived technical
issues with adopting
SPL engineering

T2 Software product line engineering requires
considerable discipline with regards to
configuration management and change control.
Do you foresee that the company would have any
problems in this regard?

SPL
configuration
management

T3 Software product line engineering requires a
comprehensive knowledge and understanding of
the problem domain – in this case aircraft health
and usage monitoring ground stations. How
would you rate the current level of problem
domain knowledge within the company with
regard to aircraft HUMS ground stations?

SPL domain
knowledge

T4 Do you think that the company would have any
problems investing in software development tools,
provision of adequate training and enforcing the
standardisation and consistent use of these
tools?

SPL tools and
training

65

Interview Question Theme Objective

T5 The success of a software product line is
dependent on having a suitable and robust
software architecture. Would this pose a
challenge for the company’s software
developers?

SPL software
architecture

T6 Before investing in the development or purchase
of reusable software components, it is necessary
to choose a suitable component technology that
has a reasonably long-term future. What are your
opinions in this regard?

SPL component
technology

T7 Are there any other technical issues, concerning
software product lines, which you consider could
be a challenge or of interest within the context of
the company and HUMS ground stations?

SPL additional
technical issues

3.3.7 Participant Selection

The field interview participants were selected from three groups: organisational

management, technical management and software developers. These are all the

groups that are involved in, or that directly influence, software development within our

company.

The organisational management group consisted of three senior managers who were

responsible for the management of the company at the time that the research

commenced. The technical management group consisted of two project managers, a

systems engineer and a software quality officer who have been directly involved in

the projects that are covered by the study. The software developer group was made

up of three software engineers who have been responsible for developing ground

station software for the projects covered by the case study’s unit of analysis.

In total, ten people participated in the interview process. The original plan was to

involve twelve participants. However, a senior manager and a system engineer, who

were approached, could not find the time to contribute to the study.

As described in Section 3.3.1, the interview questions are divided into three groups –

general issues, organisational issues and technical issues. Although the

organisational issues are of more relevance to managers, and the technical issues to

the technical staff, participants were encouraged to answer whatever questions they

had opinions on.

66

Table 3-5 summarises the groups of interview participants. The direct relationship

between roles and identification codes is purposely avoided in order to provide a

level of protection for participants’ anonymity.

Table 3-5: Field Interview Participant Summary

GROUP INDIVIDUAL ROLES IDENTIFICATION CODES

Organisational managers 1 x managing director

1 x sales director

1 x technical director

OM1 – OM3

Technical managers 2 x project managers

1 x systems engineer

1 x software quality officer

TM1 – TM4

Software developers 3 x software engineers SD1 – SD3

Table 3-6 provides details of the level of education, the interview date, software bias

and language of each participant. The Change column indicates whether the

interview took place before or after the company’s change in structure.

Table 3-6: Field Interview Participant Details

CODE FIELD OF STUDY TERTIARY
EDUCATION

INTERVIEW
DATE

S/W
BIAS10

CHANGE HOME
LANGUAGE

OM1 Business Management
Electrical Engineering

Masters
Bachelors

1 Aug 2006 No After Afrikaans

OM2 Business Management
Electrical Engineering

Masters
Bachelors

16 Oct 2006 No After Afrikaans

OM3 Business Management
Electrical Engineering

Masters
Bachelors

15 Aug 2006 No After Afrikaans

TM1 Electrical Engineering Masters 14 Mar 2006 No Before English

TM2 Electrical Engineering Masters 28 Aug 2006 No After Afrikaans

TM3 Business Management
Military Science

Masters
Bachelors

5 Oct 2006 No After Afrikaans

TM4 Electrical Engineering Bachelors 9 Sept 2006 Yes After Afrikaans

SD1 Electrical Engineering Masters 7 Sept 2006 Yes After Afrikaans

10 Indicates that the participant has direct experience in software development.

67

CODE FIELD OF STUDY TERTIARY
EDUCATION

INTERVIEW
DATE

S/W
BIAS10

CHANGE HOME
LANGUAGE

SD2 Electrical Engineering Bachelors 24 Mar 2006 Yes Before Afrikaans

SD3 Electrical Engineering Diploma 22 Mar 2006 Yes Before Afrikaans

KEY Electrical Engineering Masters 29 Oct 2006 Yes After English

3.3.8 Interview Transcription

Approximately seven hours of interview data was recorded. Owing to the equipment

used, the data was recorded in Sony’s proprietary digital voice file format (DVF).

Each interview question discussion with a participant was allocated a separate file.

The individual files were transferred to a computer hard disk, renamed and

systematically organised in a folder per interview question.

As Yin (2003, p. 92) points out, transcription is “a process that takes enormous time

and energy”. For pragmatic purposes the full interviews were not transcribed, and the

transcription was limited to excerpts of particular interest and has been included as

an appendix to this document.

3.3.9 Interview Data Analysis

The field interview transcript data was systematically analysed using a basic form of

analytic coding, which served to uncover themes in the data and develop categories.

Analytic coding involves questioning the data to discover themes, and exploring the

themes to develop new categories which allow one to make comparisons (Morse &

Richards, 2002). The analytic coding process was implemented via a combination of

open coding and axial coding.

The purpose of open coding is to open up the data with the aim of identifying

concepts within the data (Morse & Richards, 2002). In order to achieve this, a table

was set up for each interview question in a Microsoft Word document. A table row

was allocated to excerpts of each participant’s answer. Each answer was analysed

and Word’s highlighter tool was used to identify each segment of text considered to

represent a specific and relevant concept. Different colours were used to distinguish

between concepts, but no particular meanings were attributed to the colours. A

column added to the left of the transcript text was used to record an initial list of the

68

concepts identified. Each identified concept generally consisted of a short phrase,

such as problem with establishing ownership of intellectual property and concern

over lack of flexibility.

Whereas the purpose of open coding is to break open, or fracture, the data, axial

coding aims to reassemble the data by clustering the themes identified into

categories. To achieve the axial coding, an Excel spreadsheet was used to collect

the initially identified concept phrases in one column and a second column was used

to record the theme relating to each concept. This required a number of iterations for

refinement and the Excel data sorting function was useful for grouping the concepts

according to theme. Each theme was identified typically by a one or two word title or

code, such as domain knowledge and customer management.

Each concept in the left column of the transcription tables was then translated into its

theme code and recoded in a column to the right of the transcription. The transcripts

were then studied again in conjunction with the allocated themes, and the list of

themes was revised and categorised. An extra column was appended to the extreme

right of the transcription tables and used to record the revised themes, which were

then used for discussing the data.

3.3.10 Summary

Information Systems is a young and dynamic field of study that draws on a wide

range of reference disciplines. It is usually the soft issues involving human interaction

that produce the challenges in IS practice, and thus qualitative methods are well-

suited to IS research. Case study, ethnography and action research are examples of

qualitative methods commonly used for IS research. These research methods

attribute special significance to the research context and the influence of the

researcher on the study. When the researcher focuses on his own profession with

the possibility of transforming his workplace, it can be classified as practitioner

research.

This study is an interpretive, practitioner case study employing qualitative research

methods that are influenced by ethnography. The context of the study is a small

project-centric company and the purpose is to investigate the potential

implementation of systematic software reuse within this context. Data was collected

69

by way of a literature study, an elite interview, a set of field interviews and personal

experience. The literature study contributed to the theoretical framework on which the

study was based. The interviews were recorded electronically and key passages

were transcribed. The transcriptions were systematically analysed using a basic form

of coding.

70

Chapter 4. Contextual Analysis

4.1 INTRODUCTION

The primary research question addressed by the research study is:

What are the issues related to the introduction of systematic software reuse in

a small project-centric organisation?

Experience has consistently shown that it is the “social and organizational contexts of

information systems design, development and application which lead to the greatest

practical problems” (Harvey & Myers, 1995, p.16). Accordingly, the phrase “in a small

project-centric organisation” in the primary research question is intentionally

prominent to emphasise the significance of context to this study.

The purpose of this chapter is to provide a detailed understanding of the historical

and social factors which have led to the company adopting and maintaining its

project-centric structure. The context of the study is analysed using a framework

proposed by Korpela et al. (2001). The chapter starts by providing some essential

background information to this framework and describes the sources of the

contextual information used. It concludes by providing an analysis of the context at

the levels suggested by the framework.

4.2 BACKGROUND

The importance of context in qualitative research, and in IS studies in particular, was

discussed in Section 3.2.5. Walsham (2000) encourages IS researchers to ensure

that their studies consider all the relevant integrative levels of context. Table 4-1

summarises the five levels of analysis suggested by Walsham (2000) and compares

them with those suggested by Korpela et al. (2001) and Bühne et al. (2004).

71

Table 4-1: IS Levels of Analysis

Walsham (2000) Korpela et al. (2001) Bühne et al. (2004)
Society Society Market
Inter-organisation Organisation Organisation
Organisation Group/activity Business unit
Group Individual Individual
Individual

Korpela et al. (2001) propose a framework comprising four levels of analysis and

they suggest an extra dimension by addressing each level of analysis from two

perspectives: within the unit of analysis and between similar units of analysis (see

Table 4-2). In addition, they propose an historical or temporal element, which in effect

means that each of the eight (2 x 4) levels of analysis should be considered over time

rather than merely as a snapshot.

Table 4-2: Framework Proposed by Korpela et al. (2001)

LEVEL OF ANALYSIS INTRA-VIEWPOINT
EXAMPLES

INTER-VIEWPOINT
EXAMPLES

Society Country International
Organisation Company Between companies
Group/activity Project Between projects
Individual Programmer Between programmers

As Korpela et al. (2001) pointed out, not all these levels of analysis are applicable to

all studies, but it is important for the researcher to reflect on the significance of each

level to the study. I followed the guidelines of Korpela et al. (2001) in analysing the

context of this study.

4.3 SOURCE OF INFORMATION

This chapter is based on information drawn from a variety of sources. Details relating

to the history and state of the international defence industry were derived mainly from

the literature. Details of the local industry were extracted from the literature study, an

elite interview and personal experience. Details of the company, the projects and

individuals came from the elite interview, the semi-structured field interviews and

personal experience. Table 4-3 summarises the source of information according to

the levels of the framework proposed by Korpela et al. (2001).

72

Table 4-3: Information Sources per Framework Level

LEVEL OF ANALYSIS LITERATURE
STUDY

ELITE
INTERVIEW

FIELD
INTERVIEWS

PERSONAL
EXPERIENCE

Society
Organisation
Group/activity
Individual

The original literature study revealed the importance of context with respect to

software reuse (Böckle et al., 2002; Bühne et al., 2004; Fafchamps, 1994; Gacek et

al., 2001; Knauber et al., 2000; Lim, 1998; Lynex & Layzell, 1998). The literature was

also extended specifically to provide additional information to support the

contextualisation of the study (C. Jones, 2002; Korpela et al., 2001; Rogerson, 1996).

I conducted an elite interview with a colleague who has been associated with the

company since 1985. Quotes from this source are identified with the tag [KEY]. Table

4-4 provides a summary of the interview questions used for the elite interview.

Table 4-4: Summary of Elite Interview Questions

INTERVIEW QUESTION

The company has always been a project-centric organisation. There are various factors
that influence an organisation’s choice of structure, for example: some organisations
tend to mirror the industry in which they operate.

Please comment on how the following have influenced the company’s choice of
organisational structure:

TOPIC

C1 The company’s original business model.

C2 The nature of the defence electronics industry of the 1980s
and early 1990s.

Historical
context

C3 The business model and development funding model adopted
by the state’s defence equipment procurement corporation.

C4 A project-centric structure reduces management effort and
overheads.

Contemporary
context

Analysis of the field interviews also revealed a variety of contextual information

especially at the organisational, group and individual levels. I relied on personal

73

experience and knowledge gained since joining the company in October 1988 to

identify information gaps and to guide the literature search and elite interview.

4.4 INTERNATIONAL AND NATIONAL MARKET CONTEXT

This section describes the international and national context that has influenced the

defence software market.

During the Cold War, military budgets were massive and this coupled with the fact

that neither the defence forces nor their procurement organisations are intended to

be profit making organisations, meant that there was very little incentive to improve

software productivity. This is confirmed by the fact that the United States Department

of Defense software standard in use at the time makes no reference to software

reuse (US DoD, 1988).

The Cold War ended in 1991 with the dissolution of the Soviet Union, the easing of

international tensions, and the diminishing of the global nuclear war threat (US

Congress, 1992). With the end of the Cold War, came significant international

disarmament and the down-scaling of military budgets (Abrahams, 2001; Rogerson,

1996), and procurement organisations were forced to spend less and to spend it

more wisely. At this juncture, software development costs were consuming a major

portion of most defence budgets.

The post-Cold War era brought dramatic changes in the local political climate, which

saw the strategic importance of the domestic defence industry wane rapidly.

Although the political changes saw local opportunities for the defence industry

decline (Abrahams, 2001), these changes also cleared the path for some to the now

more competitive, but still potentially more lucrative, international market.

Abrahams (2001, p. 1) reported the situation in the local environment as follows:

Although the South African defence industry had difficulty in coping with the
dramatic decline in the defence budget, there was sufficient prior warning to
industries that the cut in the defence budget meant a decline in defence
orders. By the late 1980s, South African defence industries were faced with
numerous challenges. They needed to convert, diversify and/or increase
exports.

74

4.5 ORGANISATIONAL CONTEXT

This section describes the company within the context of the local industry.

Our company has about ninety employees and produces avionics systems for

military aircraft. The company was founded in the mid-1980s as small breakaway

group from a large national corporate. Most companies in the local defence industry

at the time relied primarily on contracts from the state’s armaments procurement

corporation. However, the procurement corporation blacklisted our company in an

attempt to discourage further breakaways from fragmenting and destabilising the

industry.

[The procurement organisation] had a clear picture for work distribution within
the industry and various companies were identified for building up expertise
in critical defence areas. With [us] on the outside, this meant that only
fragments of bigger contracts would be given to [us] with no significant area
of expertise being earmarked for the company. [KEY]

Only in the early 1990s was the company removed from the blacklist and permitted to

compete alongside the mainstream defence companies.

Our company’s business model and structure, like most other companies in the local

defence industry, was influenced by the procurement corporation’s project-based

contracting model.

[The company] evolved as a project-centric organisation as from the start it
survived on work packages, consulting and engineering studies. All work was
broken down into tasks and to a large extent costing was based on an hourly
rate. [KEY]

In the local defence industry a contracted company was typically responsible for all

aspects of the contract from initial concept to production. Consequently, our

company, like many of our competitors, was established as a multidisciplinary

company, employing various types of engineers – mechanical, electronic, control,

software, industrial and aeronautical.

People were recruited on the basis of what they knew and not to be trained
for a specific role. No provision was made for a synergistic company in which
people were focused in any one area with a common vision. [The company]

75

was mercenary in the sense that work was accepted from all possible
engineering areas, from market studies to the building of [mechanical]
prototypes. [KEY]

Each contract was run as a project, typically funded according to level-of-effort plus

cost of materials, managed by a project manager in our company and monitored by a

project manager in the procurement corporation.

All orders were linked to a project account and there was no cross-
subsidisation. This business model created an efficient company with
talented people who had a diverse knowledge, but with a structure that had
no depth – a jack-of-all-trades company. [KEY]

In order to survive after the political changes in the early 1990s, the company needed

to secure international contracts, which motivated it to increase the level of

specialisation and to become more competitive. Although the international defence

market was also depressed at the time owing to budget cuts which resulted in

downsizing and merging (C. Jones, 2002), new opportunities were presented for

small efficient and dynamic subcontractors that could assist the big international

conglomerates to fulfil the, now much leaner, major contracts at a profit.

Our past history of successful involvement in the development of aircraft health and

usage monitoring systems (HUMS) coupled with a burgeoning interest in the

international avionics industry in HUMS, made this a natural choice for our area of

specialisation. In spite of its successful specialisation in HUMS, the company

continues to maintain its project-orientation structure. Although software development

forms an increasing part of the business, the company remains multidisciplinary

because it also designs and builds the on board computer, or DAU, which involves

electronics, harnessing and mechanical housings.

There are usually between six and ten developers involved in the company’s ground

station development at any time. From a software development perspective, it would

thus be considered as a small software development unit.

In May 2006, the ownership of the company was transferred from a small group of

directors to a large international company. This event was followed by a noteworthy

structural change; the introduction of a matrix structure. Three line functions –

76

electronics development, embedded software, and ground support software – were

added with a line manager for each. If one views the current projects as vertical

elements, the new line functions can be seen as horizontal elements that intersect

each project (see Section 1.1.4). The function of the line managers is to supply

suitable human technical resources to the projects and to ensure that these

resources receive training and use the appropriate technology. Line managers also

have the responsibility to encourage intellectual asset reuse as well as the consistent

adherence to processes.

The change to a matrix structure should, over time, address some of the undesirable

symptoms of the project-centric environment, but it falls short of providing the ideal

environment for systematic software reuse.

4.6 PROJECT AND INDIVIDUAL CONTEXT

This section describes how projects function within the company and how individual

function within the projects.

Projects in our company typically run for a period of between eight and twenty-four

months and involve a fulltime project team of between eight and sixteen members.

Defence software projects almost always involve lengthy bidding, contract

negotiation and specification phases, and as a result, by the time that the contract is

eventually awarded, the project is “immediately under schedule pressure” (C. Jones,

2002, p. 26). The pressures are aggravated by the budgetary cutbacks and the now

fiercely competitive market conditions.

In a project-centric environment, the project manager reports directly to senior

management and has relatively unrestricted control of the project (US Air Force,

2003). The project manager in a commercial company such as ours is tasked with

maximising the project profit while delivering a product of acceptable quality. The

project manager is responsible for the decisions on how best to reach the target

profit, with limited interference from senior management.

In a project-centric environment, the developer effectively belongs to a project for its

duration and is affected by the project’s short-term, profit-driven goals. From a

77

software development perspective, these short-term goals, coupled with the typical

schedule pressures, have the following consequences:

• Software development tools are only bought if they are essential to the project’s

success.

• Project schedules and budgets can seldom accommodate the training of

software developers, so projects use the skills and tools available. A

consequence is that projects follow their own inclinations and the resulting lack

of uniformity creates a barrier to asset reuse.

• There are few incentives for projects to collaborate on the selection of tools or

the scheduling of training, making the sharing of assets between projects

impractical.

• Projects hold on to key developers for fear of losing them to other projects. This

situation not only limits a developer’s career path, but also limits the cross-

pollination of ideas between projects.

• Developers are expected to fulfil a variety of rolls on a project. This situation

favours individuals with general rather than specialist skills, which in turn limits

the level of excellence attainable by the project and thus the company.

• The processes and standards adopted by projects are generally high, but they

are to a large degree dictated by the customer. This reduces the payback of

process automation and reduces the potential for reusing assets.

These consequences indicate that a project-centric environment is incompatible with

systematic software reuse and the optimisation of the company’s performance.

In a project-centric company, all development work takes place only under the control

of a project, so if reusable assets are to be developed they need to be project by-

products. In some cases, project-centric companies use internally funded research

and development projects to generate reusable assets for externally funded projects.

Historically, our company has funded very few (if any) research and development

projects of this nature.

Many of the above issues were confirmed by the filed interview participants:

78

[We are] used to processes and procedures to the extreme … actually mind-
bogglingly tedious stuff that they really should have tools [for]… it’s
dehumanising to get people … engineers, who are qualified to do
engineering work, to have them sit and do documentation by hand. [SD1]

… it always boils down to “why can’t you do the job with the tools we have?”
[SD3]

For sure in the past we have … sort of not invested sufficiently in tools and all
of that. We have skipped on that. We have tried to maximise our cash flow.
[OM1]

… the project manager doesn’t want to send off all the software [team]
members for a course on new tools … there’s no time. There’s never time for
training. [TM4]

… I mean my goal [as a project manager] is just to win the race and training
and that (must wait). [TM2]

Because we are project-based, the project managers don’t want to invest in
the creation of tools that will lead to long term benefits. [TM4]

[Currently] we’re wasting resources. Software people are hard to come by
and they’re scarce … and if you waste a resource like that it’s not in the
company’s interest. That’s one of the big disadvantages [of a project-centric
structure]. [TM3]

[In ‘n “project-centric” struktuur] jy het baie goed verloor ... jy kyk nie na
mannekrag nie, jy kyk nie in die sin van enige opleiding vir die mannekrag
nie. Jy voel vere vir die mannekrag en daai goed. Daar’s baie goed wat op
die grond val ten opsigte van jou mens bestuur. In daardie [“project-centric”]
approach is dit a kwessie van jy lewer en klaar. [OM3]

With all these negative consequences, one might wonder why a company would

persist with this structure. However, there were good reasons for establishing and

maintaining this structure. As described earlier, the project-centric structure was

suitable for operating in the defence market, which previously had fewer schedule

pressures and no real software reuse incentives. In the past, there were periods

when the company attempted to establish more of a matrix structure by establishing

a software and a hardware division, but these disappeared when business dropped

79

off. A project-centric structure is suitable for a company in survival mode that needs

to minimise costs, especially when the company cannot afford to be selective of the

contracts it accepts. This structure carries very little in the way of overheads, and

each project serves to encapsulate and limit the extent of risks.

I think we’ve come to the conclusion that it’s been suitable for the era after
[previous owners], where we started off with virtually nothing and we had to
get new clients and build a track record and all of that from … very quickly.
So I think it was ideally suited for that era and the size of the company and all
of that I think now’s the right time with being part of [new owners] and also
thinking a bit bigger and long-term … it’s the right time to change. [OM1]

4.7 SUMMARY

Context is an important aspect of qualitative IS research and Walsham (2000)

encourages IS researchers to address all aspects of the context of their studies. The

phrase in a small project-centric organisation in the primary research question

acknowledges the importance of context in this study.

This study makes use of a framework proposed by Korpela et al. (2001), which

expands on Walsham’s (2000) suggestions. The contextualisation makes use of data

derived from four sources: the literature study, the field interviews, an elite interview

and personal experience. It places the study in its social and historical context by

describing factors at the societal, organisational, group, and individual levels which

contributed to the company’s project-centric structure.

80

Chapter 5. Data Analysis

5.1 INTRODUCTION

This chapter addresses the data analysis of the field interview transcripts. The results

of the analysis are presented according to themes identified during the coding

process. The themes are organised into two classes: the primary themes and the

emergent themes. The primary themes, relating directly to the interview questions,

are discussed first, followed by a discussion of a selection of relevant themes that

emerged during the analysis. The two classes are divided into logical categories and

examined in detail using quotes from the interviews where appropriate.

5.2 OVERVIEW

In Chapter 4, the context of the study was explored from a social and historical

perspective. In this chapter, a view is presented based on current perceptions

relating to the adoption of a systematic software reuse strategy within the case study

context. Information for this chapter was drawn from the semi-structured field

interviews conducted with the sample group described in Section 3.3.7.

The field interviews were based on a fixed set of questions described in Section

3.3.6. The questions were open-ended and participants were encouraged to discuss

their answers. The discussions were recorded and transcribed as explained in

Sections 3.3.5 and 3.3.8 respectively. The transcripts were systematically analysed

according to the basic coding strategy described in Section 3.3.9. This approach

produced two classes of themes, firstly, those that relate directly to the topics of the

interview questions, and secondly, the additional themes that emerged during the

analysis.

Each class comprises three categories. The primary themes class consists of the

same three categories as the interview questions. The emergent themes class is

organised into project-centric development environment themes, SPL development

environment themes and themes that allow for comparison between the two

environments. The organisation of theme categories is depicted in Figure 5-1 below.

81

Findings

Primary
themes

Emergent
themes

General
need and
suitability

Organisational

Technical

Project
centric

environment

SPL
environment

Comparative

Figure 5-1: Organisation of Data Analysis Theme Categories

5.3 PRESENTATION OF FINDINGS: PRIMARY THEMES

In this section, the findings relating to the primary themes are discussed in the

following three categories:

• general need and suitability;

• organisational; and

• technical.

5.3.1 General Need and Suitability

The general need and suitability category is made up of the following primary

themes:

82

QUESTION PRIMARY THEME SECTION

G1 Need for improvement to the software development process 5.3.1.1

G2 Need for reuse 5.3.1.2

G3 Perceptions on practicality of SPL engineering 5.3.1.3

G4 Suitability of SPL engineering 5.3.1.4

G5 Negative perceptions of SPL engineering 5.3.1.5

5.3.1.1 The Need to Improve the Software Development Process

To determine the participants’ perceptions of the need to improve the current

software development process, the question asked was:

G1: Is there a need to make the company’s development of software lower risk, more

efficient and more deterministic?

Eight11 of the ten participants answered this question positively. The most quoted

reasons related to the need to address the time, cost and risk pressures currently

experienced on projects.

All the projects I’ve been working on are late. [TM3]

There is a big cost pressure from our customers. [OM1]

We have to be able to meet out targets and our dates a lot better than we are
doing. …I think the time of giving a date and just missing it by two … three
weeks is long gone … especially in the aerospace industry. [TM2]

… most of our projects are in high risk and especially in software
development we are never in time, or on budget and in time. [TM4]

The participants that gave negative responses did so in what clearly appears to be

an expression of frustration with the shortcomings of company’s project-centric

strategy and its short-term outlook rather than a genuinely negative opinion.

11 Three organisational managers, four technical managers and one software developer

83

… if you think short-term then there might not be any need because you want
to make as much money as you want in the shortest amount of time. So it
depends on the management. If they want to think long-term … [SD2]

I’d say there is no serious need due to the nature of the projects. [SD3]

One software developer suggested that as long as the company is contracted to

conduct projects on a level-of-effort12 basis, there is no real incentive to attempt to

work more efficiently.

Ja I think you know [our organisation] has got this strange environment in
which they operate and they get paid by the hour for their development work
and they are just a small fish in a big pond full of big fishes that do the same
thing. So I think in a competitive environment where your development cost is
an expense to you. In the environment where they are … you know that’s
their business … selling man-hours. [SD1]

The latter view fails to acknowledge the time and cost pressures being experienced

by many of the current projects.

To summarise, the majority opinion confirms that there is a definite need to make the

company’s software development more efficient and more deterministic. The

rationale behind this opinion is the need to relieve project pressures of time, cost and

risk.

5.3.1.2 The Need for Reuse

To determine participants’ perceptions of the need for software reuse in the

company, the question asked was:

G2: Could the company benefit from software and intellectual asset reuse to a

greater degree than it does currently?

Two technical managers expressed the view that the company currently gains very

little from reuse, and eight13 of the ten participants agreed that the company could

benefit more from reuse. One software developer gave the negative response again

12 In this form of contracting the contract price is determined by estimating the amount of
effort (in man-hours) required to complete the contract.

13 Two organisational managers, four technical managers and two software developers

84

as an expression of frustration with the company’s persistence with its project-centric

strategy, and an organisational manager expressed doubt that a reuse programme

would be practical. The latter opinion was based on an experience with a failed

attempt to implement a preferred-parts list for machine screws in the company’s

mechanical designs.

One software developer expressed disappointment that some software reuse was

happening in the company, but was going unnoticed.

I mean ... the management don’t even know about the reuse of software that
we’ve reused so far. I’ve reused software many many times. [SD3]

The problem here is that experience has shown that for software reuse to work it

needs to be systematic (Laguna et al., 2003; Morisio et al., 2002) and if management

is unaware of it, it is unlikely to be systematic. Systematic reuse requires

management support in terms of planning, the implementation of processes, and the

allocation of resources.

Four14 participants identified the project-centric structure as presenting a potential

barrier for the implementation of a reuse strategy.

… we will have to move away from the project structure … [OM1]

... if you have a strictly project-driven company then … they [the projects] go
in their own direction … [SD2]

In summary, there was general agreement between the participants that the

company stands to benefit by increasing software and intellectual asset reuse

beyond its current limited levels.

5.3.1.3 The Perceptions on Practicality of SPL Engineering

To determine participants’ perceptions on the general practicality of SPL engineering,

the question asked was:

G3: In general, would you regard software product line engineering as a practical

approach to systematic software reuse?

14 One organisational manager, two technical managers and one software developer

85

All participants agreed that SPL engineering appears to be a practical approach to

systematic software reuse, however four15 participants voiced reservations. Two16 of

these were concerned that SPL engineering might only be applicable to large

organisations:

I think it’s a comprehensive approach. I just don’t know how big a company
must be to be able to do this properly. [SD1]

Maybe it’s a question of critical mass. It might become more do-able if we
were doing 10-times as much ground station work. [OM2]

One participant, an organisational manager, was concerned that the transition

necessary to take our company from its current situation to an SPL environment

would possibly be too great.

… within limits. I think the full Monty that you explain here [in the supplied
paper] could be quite drastic from where we are here. In between there is just
getting used to reusing and then going to the tools and methods and all of
that and at the end having a total factory. [OM1]

A technical manager mentioned that the challenges of implementing of an SPL might

originate from the customer.

… the constraints normally come from the customer. So to some extent some
customers will not allow the product line mode to work very well … one
needs to try and convince the customer that he needs to go in this direction
and the long term benefits will pay off for him … [TM1]

Although there was general consensus that SPL engineering provides a practical

approach, there were reservations concerning its general applicability and

implementation. The reservations concerned the suitability for small companies and

customer acceptance of the concept.

5.3.1.4 The Suitability of SPL Engineering

To determine participants’ perceptions on the suitability of SPL engineering for the

company, the question asked was:

15 Two organisational managers, one technical managers and one software developer
16 One organisational managers and one software developer

86

G4: Do you think that it would be practical to implement software product line

engineering within the company?

Although not all participants answered this question positively, none actually

answered it negatively. Among the positive responses were

I think [the company] is now at the point where they have quite a nice set of
products and it can refocus and regroup almost and then say this is what the
strategy should be and we should look at moving into product lines. [TM1]

There’s a lot of generic functions in HUMS and what you guys have done
here can definitely be transferred. The detail [of other systems] will differ but
a lot of the scope will not change at all. [TM3]

Most participants qualified their response with provisions or reservations. One of the

organisational managers felt that SPL engineering is probably more suitable to the

HUMS ground station than it is to the company’s on board embedded software. The

argument being that the onboard software is customer “unique”. This opinion is

somewhat contentious, if one takes the HUMS DAU as an example, its primary

function is to acquire, filter and store data and it typically has no human user

interface, making it a simple system to model. In comparison, ground stations have a

very broad human user interface consisting of menus, graphical displays, tabular

displays, event logs and reports, making them considerably more susceptible to

individual customer requirements, and thus a greater SPL challenge.

Among the reservations expressed were:

I think it’s going to be more difficult because we are already in the process …
I mean we’ve already got products … we’ve already got a lot of software. I
think it’s going to be more difficult to do it. But the fact that its going to be
more difficult does not mean we should not do it. [TM2]

What’s also important is that we have a couple of prima donnas that want to
do things their way and that has to stop. An architecture has to be set up and
we have to fit into that … even if you don’t agree with it one hundred percent.
[TM2]

One of the organisational managers saw the customer relationship and loss of

flexibility of the product line software as potential challenges.

87

In a typical [customer] specification which has got every requirement
identified and you have to meet each of those requirements it’s going to be
difficult. You might have to change so much to fit into that spec that it’s not
worthwhile. [OM1]

One that I could see is the loss of flexibility to customer requirements … ja
exactly. There’s quite a great variability in customer requirements you know
and to have your variation points for all this variability might defeat the object.
I think it’s once again suited to something that doesn’t vary too much from a
central core concept. [OM1]

An organisational manager brought up the ever-important issue of software

qualification and certification. In the aerospace industry, especially when human

safety is involved, considerable evidence is demanded by the certification authority.

The type, format and content of this evidence differ according to the authority and the

level of certification necessary. Software certification is a costly exercise which

makes exploitation of reuse opportunities attractive. The challenge lies in establishing

a strategy, acceptable to certification authorities, that optimises the level of reuse,

thus reducing the effort and cost of certification.

The problem is maybe not with [our company] specifically, but it’s a bigger
problem in the aerospace industry where you’ve got qualification and
certification because each customer’s requirement is different. [OM2]

Although participants had various reservations, these reservations largely concerned

the anticipation of SPL adoption issues typically experienced during the transition

from a project-centric to an SPL mentality (Bühne et al., 2004).

5.3.1.5 The Negative Perceptions of SPL Engineering

To determine what negative perceptions participants might have on SPL engineering,

the question asked was:

G5: Do you envisage any negative consequences of implementing software product

line engineering for the company?

OM1 was concerned that because our customers have differing requirements, SPL

engineering might restrict the flexibility that we offer our customers at present. From

another perspective, he felt that attempting to cater for a wide variety of customers’

88

requirements would make the number of variation points excessive. He did, however,

believe that the ground station element of the HUMS solution was more suited to an

SPL solution.

One of the technical managers suggested that there are no real negatives but that

we would need to keep an open mind on when to attempt total reuse, when to

redevelop, or when to do something in between. He added:

If you design and code [everything] from day one every time … well you are
not going to make that much money as when you start reusing… and you’re
going to make the same mistakes again. [TM3]

Another technical manager considered the negatives to be short term.

In the short term yes … for sure the rattling of the cages and that is going to
have a short-term [negative] effect and because we already have software I
think it’s going to … in the short-term be a bit of a delay in the process … it
will take certain things longer to happen because people are not fully aligned
with that. But I think in the longer term you’ll get the benefit. [TM2]

A third technical manager suggested that SPL engineering would result in a long-

term increase in overheads. This opinion was unexpected because the primary long-

term benefits of the product line approach are considered to be reduced overheads

and increased profits (Northrop, 2002b; SEI, 2006).

TM4 felt that management would have to change “drastically” to accept that some of

the work force would be tied up developing reusable assets and not directly working

on a paying project.

According to OM3, for SPL engineering to work it will require a combination of strong

leadership and good planning.

All software developers predicted that management would adopt an unfavourable

view on the short-term effects that SPL engineering would have on company profits.

Most of the issues that were raised by participants are actually organisational issues

relating to SPL adoption. An exception is the concern over lack of flexibility in

addressing customer requirements. This was also identified in the literature study as

one of the potential disadvantages of SPL engineering that is of particular concern to

89

small organisations. The benefits promised by SPL engineering are dependent on

adopting a product-oriented approach as opposed to the typical project-oriented

single system approach (Bühne et al., 2004). This implies swapping the unrestrained

flexibility of single system development for the carefully planned and managed

variability of SPL engineering.

5.3.1.6 Summary of Findings: General Need and Suitability

Table 5-1 presents a summary of the finding relating to the general need and

suitability category of interview questions.

Table 5-1: Summary of Findings: General Need and Suitability

INTERVIEW QUESTION THEME FINDINGS

G1 Is there a need to make
the company’s
development of software
lower risk, more efficient
and more deterministic?

Need for
improvement to
the software
development
process

The majority opinion confirms that there is a
definite need to make the company’s
software development more efficient and
more deterministic. The rationale behind this
opinion is the need to relieve project
pressures of time, cost and risk.

G2 Could the company
benefit from software
and intellectual asset
reuse to a greater
degree than it does
currently?

Need for reuse There was general agreement among the
participants that the company stands to
benefit by increasing software and intellectual
asset reuse beyond its current limited levels.

G3 In general, would you
regard software product
line engineering as a
practical approach to
systematic software
reuse?

Perceptions on
practicality of SPL
engineering

Although there was general consensus that
SPL engineering provides a practical
approach, there were reservations
concerning its general applicability and
implementation. The reservations concerned
the suitability for small companies and
customer acceptance of the concept.

G4 Do you think that it would
be practical to implement
software product line
engineering within the
company?

Suitability of SPL
engineering

Although participants had various
reservations, these reservations largely
concerned the anticipation of SPL adoption
issues typically experienced during the
transition from a project-centric to an SPL
mentality.

G5 Do you envisage any
negative consequences
of implementing software
product line engineering
for the company?

Negative
perceptions of
SPL engineering

Concern expressed about loss of flexibility in
addressing customer requirements.

90

5.3.2 Organisational Themes

The organisational themes category of primary themes is made up of the following

individual themes:

QUESTION PRIMARY THEME SECTION

O1 Motivation for maintaining a project-centric structure 5.3.2.1

O2 Making an SPL business case 5.3.2.2

O3 SPL customer interface management 5.3.2.3

O4 SPL funding 5.3.2.4

5.3.2.1 Motivation for Maintaining a Project-Centric Structure

To determine participants’ opinions on possible motivation for the company to

maintain its project-centric structure, the question asked was:

O1: What do you see as the motivation for maintaining a project-centric structure

within the company?

All three of the software developers interviewed and two of the technical managers

shared the view that senior management would be motivated to maintain a project-

centric structure by its current success at making low-risk, short-term profits,.

I think what you’re up against here is the company’s been successful based
on this [project-centric] model and people [senior management] often have
the attitude “if it’s not broken why fix it? …The project structure has worked
even though you haven’t ended up with generic products because perhaps of
lack of competition in the HUMS sector. [TM1]

I think in principle, financial control and established [processes] … just the
way that they are used to doing it … the approach that they have been doing
for the past twenty years and you know to change it would be fairly
dramatic... [SD1]

I’m all for making your life simpler. If I was a manager or project manager or
the MD of the company, I’d also want to make my life as simple as possible
[by maintaining a project-centric structure]. … So I think that … you know

91

that’s definitely a motivating factor to have a project-centric company in that
sense. But I think that can only go so far. [SD2]

I think it’s a high comfort zone for people. People like having their own project
and like focusing on their own project. I think it’s more a human thing. [TM3]

In contrast, all three of the organisational managers and the remaining two technical

managers were of the opinion that there is no longer any motivation for maintaining a

project-centric structure.

None… ha ha ha … I don’t think there is a motivation to keep it. [TM2]

Well we don’t want to maintain it. I think we’ve come to the conclusion that
it’s been suitable for the [past] era … [OM1]

It’s going to be a matrix system and that’s the way we’re going to go. [OM3]

Some of the participants used this question to vent criticism of the project-centric

structure:

[Currently] we’re wasting resources. Software people are hard to come by
and they’re scarce … and if you waste a resource like that it’s not in the
company’s interest. That’s one of the big disadvantages [of a project-centric
structure]. [TM3]

[In ‘n “project-centric” struktuur] jy het baie goed verloor ... jy kyk nie na
mannekrag nie, jy kyk nie in die sin van enige opleiding vir die mannekrag
nie. Jy voel vere vir die mannekrag en daai goed. Daar’s baie goed wat op
die grond val teen opsigte van jou mens bestuur. In daardie approach
[“project-centric”] is dit a kwessie van jy lewer en klaar. [OM3]

But what they do now is reduce the time and reduce the cost and then we
upset the customers because we’re late and over budget and we upset
management… [Everyone on the project] is under extreme stress and
extreme unhappiness. [TM4]

This question uncovered general rejection of the project-centric structure. All

operational managers rejected the idea of maintaining the project-centric structure,

despite suspicions from the other groups that they might want to maintain it.

92

5.3.2.2 Making an SPL Business Case

To determine participants’ anticipations on the outcome of a business case analysis,

the question asked was:

O2: What do you anticipate that the outcome of a business case analysis would be

for a HUMS Ground Station software product line?

Three17 of the nine participants that answered this question were convinced that the

outcome of a business case analysis would be positive, and a further three18 were

also positive, but not totally convinced. Among the factors cited in support of a

positive business case outcome were:

• Many of the functions associated with a HUMS ground station are generic, which

makes the application a suitable candidate for a software product line.

• The increasing concern for aircraft safety makes the supply of HUMS solutions a

growing industry.

Organisational manager, OM1, argued that it would be difficult to quantify the costs,

benefits and disadvantages accurately in order to construct a business case, so the

decision to adopt an SPL approach would have to be a “gut feel thing” and “a leap of

faith”.

There was concern among several participants that management’s short-term

outlook and a reluctance to invest in tools, training and R&D would make it difficult to

convince senior management of the SPL business case. Unique and incompatible

customer demands, the limited market, and the limited resources of the company

were also seen as potential threats to a convincing business case.

Participants raised some issues that might threaten the chances a successful SPL

business case. These are mainly organisational issues relating to SPL adoption and

the perceived short-term project-centric view taken by senior management.

17 Two technical managers and one software developer
18 One organisational manager, one technical manager and one software developer

93

5.3.2.3 SPL Customer Interface Management

To determine participants’ anticipations of the difficulties that an SPL approach might

pose for customer relationships, the question asked was:

O3: Considering the company’s relationship with its current ground station

customers, would you anticipate any problems with developing solutions for these

customers using a software product line?

During the interviews, various customer-related problems were highlighted, primarily

concerning the business relationship with the customer and the ownership of

intellectual property.

In the defence industry it was fairly common for software development contracts to

be based on level-of-effort plus cost of materials. This model is not economically

suitable when the contractor’s intellectual property forms a significant part of the

product. In particular, if the product is a member of an SPL, the benefits derived from

reuse should accrue, not only to the customer, but also to the contractor. This point

resulted in a considerable debate.

… if you can do a job in three months and you ask two man-years of money
for it they would want to start squealing … they are actually paying for your
background IP (intellectual property) … that’s what they have to get used to.
[OM1]

[The difficulty of convincing a customer to pay for 100 hours when it actually
took 30 hours] … That’s why we have to have intellectual property so that the
30 hours that we sell comes at a premium … it’s not just paying the rate. It’s
not just the 70 dollars or whatever or 80 dollars an hour, it’s like 120 dollars
an hour. [TM2]

A related problem arises when, after close cooperation between the contractor and

the customer to create a product, it becomes unclear which party actually contributed

the specific elements of the intellectual property embedded in the product. This

situation could prove to be even more problematic when the contractor goes on to

produce a similar product for a different customer.

… we already have a problem with our customer in [country] on IP because
he paid for the customisation part but what we said to him was that we’re not

94

going to give him the [ownership of] IP to the whole product because there is
a lot of background knowledge that went into this product . So maybe it will
be better if you follow that strategy because you can actually prove that
you’ve got a product line and you only customise a little bit. So you can say
to the customer “look you only pay for this customisation bit. The rest is
clearly ours. [OM1]

A potential disadvantage of the product line approach is that after adopting it, the

organisation possibly becomes less flexible and less responsive to customer

requirements.

…maybe that’s one of the reasons why we have been successful is that
we’ve been so flexible in meeting customer requirements. I know the bigger
companies like [name of big defence contractor] have the tendency to say [to
the customer] “This is what we’ve got … take it or leave it”. [OM1]

This flexibility or willingness to please can become problematic when the customer

becomes too involved in the development process, exacerbating the contracting

model and IP problems mentioned above.

… I am afraid to say it, but most [of our] customers [do] micromanage. [TM3]

According to one software developer, it would be more in our interest to maximise

development costs, rather than attempt to reduce them, and this business model is to

a large degree imposed on us by our major clients, who are very project-centric.

One of the more positive comments was:

But I think it will be so competitive if we do it right. If you’re competing with
another company and you can do the job in … you’ve got that margin to
compete with … and that’s a good position. [OM1]

The major issues highlighted by responses to this question concerned a possible

reduction in responsiveness to customer requirements, contracting model difficulties

and the issue of intellectual property ownership.

5.3.2.4 SPL Funding

To determine participants’ opinions of the possible SPL funding strategy that the

company might follow, the question asked was:

95

O4: What strategy would the company use to fund a product line effort?

All participants were of the opinion that the funding of an SPL effort would somehow

be problematic. Participants identified the company’s reluctance and the lack of a

mechanism to reinvest profits as the prime obstacles to funding.

I think the major problem for doing this great thing is funding … to tell
management or to ask management or to convince management that it will
be a good investment to do this. [TM4]

The current structure does not allow such funding, unless on a project…
[TM1]

But they seem to think that core business you make money out of and you
sell your hours there and that’s it. You don’t invest in anything there. The
customer pays for anything that you do there. [SD1]

The participants who made reference to the company’s new ownership had mixed

opinions on whether it would make funding more accessible.

… but our new dispensation with [the new parent organisation]. It becomes a
possibility [TM1]

I don’t think there’s going to be funding coming from [the new parent
organisation]. [TM3]

The general opinion was that the product line implementation would have to take

place “on the back of” one or more projects.

… funding will have to come from projects … ja from project profits. [TM3]

…it will most probably have to ride on a project. [OM1]

Several participants thought that the customer would end up having to fund the

product line implementation, which is unexpected if one considers that one of the

objectives of a product line strategy is to become more competitive (i.e. to provide

more economically attractive solutions to customers).

An interesting opinion expressed by a project manager was that the use of research

and development funds for product line development would strengthen the

company’s evidence of its investment in intellectual property. This would in turn help

96

to overcome the tendency of customers to expect to see a direct association between

the level-of-effort and cost.

Perhaps the most unexpected response came from an organisational manager who

suggested that the funding of the product line implementation would have to come

from employees’ overtime.

The widely varied responses to this question indicate that there is no obvious solution

to the funding of a software product line effort and this issue will require further

debate.

5.3.2.5 Summary of Findings: Organisational Themes

Table 5-2 presents a summary of the finding relating to the organisational themes

category of interview questions.

Table 5-2: Summary of Findings: Organisational

INTERVIEW QUESTION THEME FINDINGS

O1 What do you see as the
motivation for
maintaining a project-
centric structure within
the company?

Motivation for
maintaining a
project-centric
structure

This question uncovered general rejection of
the project-centric structure. All operational
managers rejected the idea of maintaining
the project-centric structure, despite
suspicions from the other groups that they
might want to maintain it.

O2 What do you anticipate
that the outcome of a
business case analysis
would be for a HUMS
Ground Station software
product line?

Making an SPL
business case

Participants raised some issues that might
threaten the chances of a successful SPL
business case. These are mainly
organisational issues relating to SPL
adoption and the perceived short-term
project-centric view taken by senior
management.

O3 Considering the
company’s relationship
with its current ground
station customers, would
you anticipate any
problems with
developing solutions for
these customers using a
software product line?

SPL customer
interface
management

The major issues highlighted by responses to
this question concerned a possible reduction
in responsiveness to customer requirements,
contracting model difficulties, and the issue of
intellectual property ownership.

97

INTERVIEW QUESTION THEME FINDINGS

O4 A software reuse effort
requires initial funding
and ongoing
maintenance and
support funding. What
strategy would the
company use to fund a
product line effort?

SPL funding The widely varied responses to this question
indicate that there is no obvious solution to
the funding of a software product line effort
and this issue will require further debate.

5.3.3 Technical Themes

The technical themes category of primary themes is made up of the following

individual themes:

QUESTION PRIMARY THEME SECTION

T1 SPL software development processes 5.3.3.1

T2 SPL configuration management and change control 5.3.3.2

T3 SPL problem domain knowledge 5.3.3.3

T4 SPL tools and training 5.3.3.4

T5 SPL software architecture 5.3.3.5

T6 SPL component technology 5.3.3.6

5.3.3.1 Software Development Processes

To determine whether participants anticipated problems relating to the adherence to

SPL processes, the question asked was:

T1: Software product line engineering requires the establishment of and the strict

adherence to processes. Do you foresee that the company would have any problems

in this regard?

One participant, a system engineer, did foresee problems, but considered these

problems to be widespread and not limited to our company.

I think it’s maybe a South African attitude towards engineering. We don’t like
processes. We don’t like documentation. There are too many engineers
South Africa-wide that think processes are just there to look nice and have

98

the quality stamp, but don’t actually follow them and that’s it … it’s window-
dressing. You need a major change in attitude … [TM3]

For all other participants, the initial response to this question expressed

overwhelming confidence that adherence to processes would not pose problems for

our company. The rationale being that, being in the defence industry, the company

has years of experience with processes and standards.

I think we already have strict processes in place. [SD2]

We are fairly mature for our size because we have operated in the military
environment. [OM1]

…generally the people they know what is expected of them and then they do
it that way. [SD1]

…our processes are well defined and it gets followed. [TM2]

We adhere to processes and procedures to the full [in] every project we do.
[TM4]

We are probably more disciplined than most companies. [TM1]

From the above evidence one could easily be convinced that processes would not

pose a problem, however more issues were revealed as participants discussed the

question further.

It’s too easy [for us] to deviate from the strategy … more controls are
required. [OM1]

[Our tendency towards window-dressing for processes] comes down to the
amount of resources available … [TM2]

That’s not the approach to take. If you want to do window-dressing, why
bother? [TM4]

The more controversial opinions came from the software developers:

…all we do is adhere to the processes absolutely to the minimum that we
have to in order to meet the deadline … [SD2]

The current procedures are already a schlep to follow. So additional
procedures would just add another burden … [SD3]

99

 [We are] used to processes and procedures to the extreme … actually mind-
bogglingly tedious stuff that they really should have tools [for]… it’s
dehumanising to get people … engineers, who are qualified to do
engineering work, to have them sit and do documentation by hand. [SD1]

The last of these comments highlights another problem: the need for tool support and

automation of processes.

Although the company’s long history in the defence industry means that it is familiar

and comfortable with formal processes, the consistent adherence to processes is an

issue that possibly requires attention.

5.3.3.2 Configuration Management and Change Control

To determine whether participants anticipated problems concerning the SPL

requirement for configuration management and change control, the question asked

was:

T2: Software product line engineering requires considerable discipline with regards to

configuration management and change control. Do you foresee that the company

would have any problems in this regard?

As described in Section 2.6, SPL engineering is much more demanding than single

application development when it comes to configuration management and change

control.

All participants except one agreed that configuration management and change

control are handled very well in the company. The single dissenting voice, a software

developer, felt that configuration management and change control were “already a

schlep” and product line engineering would only serve to aggravate this situation.

Some participants proposed changes to the current configuration management

system:

Maybe on the software side we need some more tools to do better change
control and so on. [OM1]

100

I don’t know about CVS [software version control system currently in use]
versus something that’s more visual in terms of the source code control.
[SD1]

Configuration management and change control have long been part of the company.

The perception is that improvements might be required, but in spite of the additional

demands of SPL engineering, this area is unlikely to prove a major challenge.

5.3.3.3 Problem Domain Knowledge

To determine participants’ rating of HUMS ground station problem domain

knowledge, the question asked was:

T3: Software product line engineering requires a comprehensive knowledge and

understanding of the problem domain – in this case aircraft health and usage

monitoring ground stations. How would you rate the current level of problem domain

knowledge within the company with regard to aircraft HUMS ground stations?

Six19 of nine participants answering this question agreed that the level of domain

knowledge was good.

I think it’s world-leading. I think we need to thank [our customers] for that.
[TM3]

I think our knowledge is pretty good for what we do … [TM2]

I think we have a very good knowledge of the problem domain. [TM4]

I think it’s fairly good … if you compare it [with that of our competitors]. [TM1]

Interestingly, of the two operational managers who answered this question, one

considered the level of domain knowledge to be weak and the other felt that software

developers did not require this knowledge.

I think it’s fairly weak. It’s maybe better now because we have a few products
in the field. [OM1]

19 One organisational manager, three technical managers and two software developers

101

Okay, but that is nothing to do with the software guys whatever… But it’s not
the software guy or the hardware guy … he’s not interested. That is not his
interest. [OM3]

A concern expressed by four20 participants was that, although the domain knowledge

is good, to a large degree it exists in the heads of a few individuals, making it

vulnerable.

…it’s in a few peoples’ heads and if you lose those few people you’ve lost the
capability. [TM3]

We have an excellent knowledge of the problem domain in some employees.
[SD2]

At the moment the intellectual property of the company lies in people’s heads
… and that’s a big problem. [TM4]

Another issue highlighted in two21 responses was that as a company we are not

proactive in seeking out domain knowledge. A technical manager suggested that the

domain knowledge that we have is coincidental and attributable only to our

interaction with our customers.

Although valuable HUMS domain knowledge has been accumulated, this knowledge

is limited to that which has been necessary to do the job and it is vulnerable because

it resides predominantly with certain individuals.

5.3.3.4 Tools and Training

To determine participants’ expectations of the company’s willingness to provide the

tools and training essential for an SPL effort, the question asked was:

T4: In software product line engineering, tools play an important part in the

automating of development processes, ensuring compliance with standards and the

eradicating of rote labour-intensive tasks. Do you think that the company would have

any problems investing in software development tools, providing adequate training,

and enforcing the standardisation and consistent use of these tools?

20 Three technical managers and one software developer
21 One technical manager and one software developer.

102

All participants agreed that there has been insufficient investment in tools and

training.

Tools are so important … it’s underestimated [in the company] what you can
do with tools … if you have the right tools. [SD2]

… as a project manager you’ve got to be quite clever, you’ve got to time your
request to when the cash flow is not a problem. If there’s a cash flow
problem, you’ll get turned down. [TM1]

… management don’t seem to regard software engineers’ time as money …
if they spend money on tools, the see that as spending money, but
individuals spending hours and hours of mindless testing [that could be
automated] they don’t see that as spending money. [SD2]

For sure in the past we have … sort of not invested sufficiently in tools and all
of that. We have skipped on that. We have tried to maximise our cash flow.
[OM1]

They won’t be prepared to invest in software development tools or training.
It’s just not done … unless the customer pays for it, they just don’t do it …
[SD1]

… it always boils down to “why can’t you do the job with the tools we have?”
[SD3]

There is, however, confidence that the situation might improve owing either to the

change of ownership or to the introduction of the matrix structure.

I think to answer the question: in the past we had issues and the issues were
really constrained by available funds … capital. That issue should be away
now. [OM1]

I think in the structure before we changed it would have been an issue, but
part of the reason why we changed the structure is to get advantages of this.
[TM2]

A few participants expressed the opinion that a certain critical mass of work in a

particular area is required before the investment in tools to automate the related

processes can be justified.

103

I think it all comes to critical mass. If you’ve got enough work to justify having
fairly expensive tools and then to automate some of the processes … [OM1]

It’s the critical mass thing …if you’ve got some matrix structure, you can now
say “… but look we can use this [tool] on this, this and this project”. [OM2]

An interesting secondary theme that emerged was the negative effect that the

project-centric structure has on tools and training. Projects that are already

experiencing time and budget pressures cannot be expected to invest in new tools

and training. Inevitably, this will only aggravate the situation.

… the project manager doesn’t want to send off all the software [team]
members for a course on new tools … there’s no time. There’s never time for
training. [TM4]

… I mean my goal [as a project manager] is just to win the race and training
and that [must wait]. [TM2]

In summary, there is acknowledgment across all groups that tools and training are

important and have been neglected in the past. Consequently, the fact that an SPL

approach depends on the consistent use of tools by trained developers should not

pose an insurmountable problem.

5.3.3.5 Software Architecture

To gauge participants’ opinion of the ability of the company’s software developers to

produce a software architecture to support an SPL, the question asked was:

T5: The success of a software product line is dependent on having a suitable and

robust software architecture. Would this pose a challenge for the company’s software

developers?

Only four of the nine participants actually ventured an opinion that could be classified

as being either positive or negative. One22 was negative and three23 were positive.

22 A software developer
23 An organisational developer, a technical manager and a software developer

104

Yes, I think definitely because [our organisation] is still in the dark ages
regarding software architecture and tools and frankly I think they will never
catch on. [SD3]

Certainly, I think we’ve got the right skills and experience in our make-up
here to be able to devise such an architecture. [OM1]

I think there are very talented software developers here and I think we will
definitely be able to rise up to the challenge. [SD2]

Ja, for sure. I think the senior guys will enjoy doing this. [TM4]

A variety of concerns were expressed. Three24 participants mentioned the general

reluctance of software developers to do properly planning.

… they don’t go through a decent phase of creating what should be done …
taking a global view of your system before you start designing architecture.
[TM3]

… we are so much in the habit of racing for deadlines … for meeting
deadlines and fighting fires so in that sense it would be a bit of a challenge
because we’d have to change our mindsets. [SD2]

I think the okes just don’t want to do the planning. They want to get into the
coding and start the [exciting stuff] ... [TM2]

One software developer, an electronic engineer, had the opinion that the company’s

lack of software architecture knowledge was due to a tendency of the company to

employ engineers and technicians rather than computer science graduates as

software developers. An organisational manager foresaw possible difficulty in getting

the cooperation of developers to accept a particular architecture.

Considering the participants’ responses, one can deduce that the SPL architectural

design should be allocated to suitably experienced and trained persons and sufficient

time should be budgeted.

24 Two technical managers and a software developer

105

5.3.3.6 Component Technology

To determine participants’ opinions relating to the selection of a suitable software

component technology for an SPL effort, the question asked was:

T6: Before investing in the development or purchase of reusable software

components, it is necessary to choose a suitable component technology that has a

reasonably long-term future. What are your opinions in this regard?

Owing to the obvious technical nature of this question only six participants25 felt

prepared to state an opinion. Of these, four26 recognised potential challenges of

choosing a component technology:

… there are standards already emerging and you have to now select the right
one …[OM1]

Obviously you need long-term solutions in this industry… You have to find
things that will be there for the long term. [TM2]

You’ve got to make some key decisions here and they could be tricky and
they could be wrong ones and you’ve got to take that into account. [TM1]

One software developer related a number of problems he had experienced

specifically with buying COTS (commercial off-the-shelf) software components and

attributed these to the immaturity of the software development profession especially

in comparison with electronic development.

… I think, in terms of the software component industry, you’ve got a problem
with the size of the companies. They give you something and the next week
they are not there anymore. The support is bad, the documentation is bad
and it just doesn’t work. [SD1]

… it’s changing so rapidly that … its so difficult to find something that is
stable. [SD1]

[Unlike electronic components] you don’t get something like a data sheet for
a piece of software. [SD1]

25 One organisational manager, two technical managers and three software developers
26 One organisational manager, two technical managers and one software developer

106

The participants recognised the importance of not only making a good choice of

component technology, but also of understanding some of the practical difficulties

involved.

5.3.3.7 Summary of Findings: Technical Themes

Table 5-3 presents a summary of the finding relating to the technical themes

category of interview questions.

Table 5-3: Summary of Findings: Technical

INTERVIEW QUESTION THEME FINDINGS

T1 Software product line
engineering requires the
establishment of and
strict adherence to
processes. Do you
foresee that the company
would have any
problems in this regard?

SPL software
development
processes

Although the company’s long history in the
defence industry means that it is familiar and
comfortable with formal processes, consistent
adherence to processes is an issue that
possibly requires attention.

T2 Software product line
engineering requires
considerable discipline
with regard to
configuration
management and
change control. Do you
foresee that the company
would have any
problems in this regard?

SPL configuration
management and
change control

Configuration management and change
control have long been part of the company.
The perception is that improvements might
be required, but in spite of the additional
demands of SPL engineering, this area is
unlikely to prove a major challenge.

T3 Software product line
engineering requires a
comprehensive
knowledge and
understanding of the
problem domain – in this
case aircraft health and
usage monitoring ground
stations. How would you
rate the current level of
problem domain
knowledge within the
company with regard to
aircraft HUMS ground
stations?

SPL problem
domain
knowledge

Although valuable HUMS domain knowledge
has been accumulated, this knowledge is
limited to that which has been necessary to
do the job and it is vulnerable because it
resides predominantly with certain
individuals.

107

INTERVIEW QUESTION THEME FINDINGS

T4 Do you think that the
company would have any
problems investing in
software development
tools, providing adequate
training and enforcing the
standardisation and
consistent use of these
tools?

SPL tools and
training

There is acknowledgment across all groups
that tools and training are important and have
been neglected in the past. Consequently,
the fact that an SPL approach depends on
the consistent use of tools by trained
developers should not pose an
insurmountable problem.

T5 The success of a
software product line is
dependent on having a
suitable and robust
software architecture.
Would this pose a
challenge for the
company’s software
developers?

SPL software
architecture

Considering the participants’ responses, one
can deduce that the SPL architectural design
should be allocated to suitably experienced
and trained persons and sufficient time
should be budgeted.

T6 Before investing in the
development or purchase
of reusable software
components, it is
necessary to choose a
suitable component
technology that has a
reasonably long-term
future. What are your
opinions in this regard?

SPL component
technology

The participants recognised the importance
of not only making a good choice of
component technology choice, but also of
understanding some of the practical
difficulties involved.

5.4 PRESENTATION OF FINDINGS: EMERGENT THEMES

During content analysis a number of secondary themes emerged. Even though some

of these themes are located on the periphery of the central focus of the research

topic, they were considered to contribute to the richness of the study and the

characterisation of its context. These themes are grouped as follows:

1. themes that relate specifically to a project-centric development environment;

2. themes that relate specifically to an SPL development environment; and

3. themes that allow comparison between a project-centric and an SPL software

development environment.

Table 5-4 provides a summary of the emergent themes according to their groupings.

108

Table 5-4: Emergent Themes

THEME SUB-CATEGORY SECTION

CATEGORY: PROJECT-CENTRIC DEVELOPMENT THEMES

Contextual issues Context 5.4.1.1

Developer attitudes Software engineering 5.4.1.2

CATEGORY: SOFTWARE PRODUCT LINE DEVELOPMENT THEMES

Vision Organisational 5.4.2.1

Implementation strategy Organisational 5.4.2.2

Management support and leadership Organisational 5.4.2.3

Organisational structure Organisational 5.4.2.4

Organisation size Organisational 5.4.2.5

Mindset General 5.4.2.6

Advantages and disadvantages General 5.4.2.7

CATEGORY: COMPARATIVE ISSUES

Intellectual property Organisational 5.4.3.1

Human resources and career development Context 5.4.3.2

Software development frustrations Software engineering 5.4.3.3

Support and maintenance Software engineering 5.4.3.4

5.4.1 Project-Centric Development Environment

This section discusses the following emergent themes relating to the project-centric

development environment:

• contextual Issues; and

• developer attitudes.

5.4.1.1 Contextual Issues

The issues relating to context were included in Chapter 4 to enrich the

contextualisation of the study.

5.4.1.2 Developer Attitudes

Based on a survey, Lynex and Layzell (1998) compiled an extensive list of issues

that act as barriers or disincentives to software reuse among software developers.

109

According to Lynex and Layzell (1998) these issues limit the success of a software

reuse programme and can even result in its failure. Table 5-5 itemises a selection of

items from this list that were confirmed by responses from interview participants

relating to examples of negative attitudes among some of our software developers.

Table 5-5: Disincentives among Development Staff (Lynex & Layzell, 1998)

DISINCENTIVE DESCRIPTION

Not-invented-here This label is given to the situation in which developers do not
trust reuse assets unless they produced them.

Fear of measurement Some developers feel insecure or threatened by the increased
level of assessment and exposure that reusable assets are
subjected to in a reuse programme.

Job protection Some developers regard the sharing of their knowledge in the
form of reusable assets as a threat to their job security.

Resistance to change
and
Fear of the unknown

Some developers resist the change necessary to create a
suitable reuse environment because processes in which they
have built confidence are replaced by new and unfamiliar
processes.

Builders not integrators Many developers find it more satisfying to develop software
from scratch than to integrate components developed by
others.

Unprofessional
developers

Some developers violate coding standards, produce obscure
code, or fail to comment and document their code sufficiently.
These developers may live in fear of exposure, while others
may become reluctant to reuse assets produced by them.

Table 5-6 presents some examples of comments made by participants belonging

technical management based on their experiences with software developers.

Table 5-6: Examples of Disincentives Recognised by Participants

COMMENT DISINCENTIVE

[They say] “It’s much easier to start from scratch … more
exciting as well”. [TM1]

Builders not integrators

[People are afraid of people] criticizing [their software] or
claiming ownership. If you have done a lot on your software, it’s
not nice if I take it, add a line above and add a line below and …
“nice software Koos this is really running well” and actually I’ve
taken your software and added two lines. [TM4]

Fear of measurement
Job protection

110

COMMENT DISINCENTIVE

As soon as you put your software in a pool it will be used on
various projects so you won’t be the HUMS king anymore,
because Piet and Koos will use your HUMS idea. [TM4]

Job protection

[They say] “I didn’t develop them, so they are badly
documented”. [TM1]

Not-invented-here

[People’s egos get in the way] … they want to put their stamp on
it. That’s probably my biggest concern to set it up properly with
that aim. [TM2]

Not-invented-here

[They say] “Why do you want to use tools or modules from a
previous project if they’re badly documented or often in your
opinion badly written?” [TM1]

Not-invented-here

[Some developers say] “I don’t like the way that this is set up …
you know … I don’t want it like that. I want it just 3 degrees to the
left “. [TM2]

Not-invented-here

… we have a couple of prima donnas that want to do things their
way [TM2]

Resistance to change
and fear of the unknown

… what happens is the technical guys, on the project, they will
determine where the project goes. They have got free reign. …
[They say] “This is the way I want to design the system…” [TM1]

Unprofessional
developers

Some developers … don’t want to do documentation. … There
are some guys that do really good coding but they can’t
document … they hate documentation. [TM4]

Unprofessional
developers

In summary, participants from the technical management group confirmed the

existence of a number of typical disincentives to systematic software reuse. Should

the company attempt an SPL venture, it would be sensible to address these

disincentives as well as the others in Lynex and Layzell’s list.

5.4.1.3 Summary of Findings: Project-Centric Development Environment

Table 5-7 presents a summary of the finding relating to the “Project-Centric

Development” category of emergent themes.

111

Table 5-7: Summary of Findings: Project-Centric Development Environment

PROJECT-CENTRIC DEVELOPMENT ENVIRONMENT THEMES
THEME SUB-CATEGORY FINDINGS

Contextual issues Context A variety of context-relevant information derived from
discussions with participants was used to complement the
contextualisation of the study.

Developer attitudes Technical In summary, participants from the technical management group
confirmed the existence a number of typical disincentives to
systematic software reuse. Should the company attempt an SPL
venture, it would be sensible to address these disincentives as
well as the others in Lynex and Layzell’s list.

5.4.2 SPL Development Environment

This section discusses the following emergent themes relating to the SPL

development environment:

• product line vision;

• implementation strategy;

• management support;

• leadership;

• organisational structure;

• organisation size;

• mindset; and

• advantages and disadvantages.

5.4.2.1 Product Line Vision

The product line vision (see Section 2.6) is a factor which distinguishes SPL

engineering from many other reuse strategies (Knauber et al., 2000). The product

line vision is a multifaceted concept because it needs to serve various purposes. It

must, for example, provide guidance for technical staff, management and sales staff

and if must address the present as well as the short- and long-term future directions.

Knauber et al. (2000) observed that small and medium-sized companies adopting an

SPL approach often initially lack a coherent vision for the products that they develop;

112

however, once they form such a vision it becomes invaluable for their strategic

planning.

The product line vision is an essential part of an SPL initiative. The significance of

this fact was sensed by certain of the participants.

We need to go and sit and see what the HUMS of the future is going to look
like … and develop that. But to be able to do that we’ve got to know the
market backwards and I am not sure that we [do]. [TM2]

The company’s decided that it wants to be in HUMS but that’s as far as it
goes. From a product strategy point of view there’s not too much in place …
that we want to develop generic products. What we basically do is look for
projects in the HUMS field no matter what they are. And I think there’s quite a
big difference if you look at it from that point of view. [TM1]

I think the biggest technical issue is that of technical vision. You need people
to have technical vision of where we should be going. For that to happen …
for people to be allowed to have technical vision … you need management
with … vision in management … they have to be able to look into the future
because what the management decide eventually filters down to what people
think. [SD2]

Currently there’s no proactive movement from [the company’s] side in terms
of looking at the bigger picture technologically-wise. It’s a per project thing …
what we need, we quickly learn that … and go with that. [SD3]

5.4.2.2 Implementation Strategy

There are various options for SPL implementation (see Section 2.5) but, because we

are dealing with a fully functional operating company, it is no surprise that most

participants who discussed this considered that an evolutionary strategy would be

most suitable.

Ek glo dit [SPL] is die manier hoe jy gaan dit doen. Dis die strategie hoe jy
daar gaan kom. We must grow it over a few projects. [OM3]

I think the “full Monty” that you explain here could be quite drastic from where
we are here. In between there is just getting used to reusing and then going
to the tools and methods and all of that and at the end having a total factory.
So I think we should start with component libraries and still have a bit more

113

flexibility in terms of the application framework side. Because if we do the
whole strategy now from where we are today I think that would be quite
drastic. [OM1]

I think it’s going to be more difficult because we are already in the process …
I mean we’ve already got products … we’ve already got a lot of software. I
think it’s going to be more difficult to do it. But the fact that its going to be
more difficult does not mean we should not do it. I think it will require a lot
more effort and detailed planning and management to get it to work that we
can see the big picture at the end. But I think its going to be a bit more
difficult than if we were starting from scratch … on a clean sheet. [TM2]

There are different ways of getting to this product line model. The one is
doing it right from the start … sort of from the birth of the company, you have
a strategy which says this is where we want to go. [TM1]

5.4.2.3 Management Support and Leadership

An essential ingredient for the success of an SPL initiative is high-level management

support (see Management Commitment in Section 2.6) in the form of adequate staff,

budget and time (Bühne et al., 2004). As Knauber and Succi (2002, p. 44) express it:

“… the one thing we can be sure about and that we have learnt in the last 15 years of

research on product lines and reuse, is that management support is essential”.

The importance of management support is further confirmed in studies conducted by

Clements and Northrop (2001) that identified “strong and unswerving management

commitment ” as a common factor present in successful product line organisations.

Several of the participants, especially those in the technical management group,

were sensitive to this fact, as echoed by the following statements:

They [management] must buy into this heart and soul. They must buy into
this and commit to this. [TM4]

… you have to get the management support, you have to get the structures
right, you have to get the champion in place so that everybody is focused,
you have to get the market to understand … everybody has to be aligned.
[TM2]

114

… it’s going to cost money to implement and it will take you three years or
five years to sort this thing out. It’s not going to be six months and it will cost
money and is going to be blood and guts. I think management will have to
realise that. [SD1]

I think if [managing director] should focus … if he thinks product lines is a
good idea he should definitely have a structure that supports that otherwise
its not going to work. I personally think it’s a difficult thing to manage. You
need all the support from organisation, from people like configuration
management. Every role player must support it; otherwise it’s not going to
work. The message I have is that everything must be in place otherwise it’s
not going to work. If you have one link missing the whole thing falls apart.
[TM3]

… you also mentioned management support and so on... I think that’s got a
good chance of succeeding. [OM1]

Participants felt that another essential ingredient for SPL success is strong

leadership:

Jy moet ’n sterk ou daar hê anderster gaan dit plat val en jy gaan nooit die
benefits daarvan kry nie. [OM3]

You either need a software product line software manager or you need a
chief engineer that’s in charge of …, but somebody’s got to drive it.
Somebody has to be in charge of it or it won’t happen. [SD2]

These sentiments are in accordance with the literature, which highlights the need for

leadership at product line and organisational levels. At SPL level, leadership should

come from a product line champion, appointed and empowered by senior

management. According to Northrop (2002b, p. 35), “This champion must be a

strong, visionary leader who can keep the organisation squarely pointed toward the

product line goals, especially when the going gets rough in the early stages”.

At organisational level, senior management need to ensure that leadership forms part

of the support they provide. Clements (2002, p. 30), asserts, “Putting an organization

on the same strategic page requires vision, strong management, technical

competence, process discipline, and no small amount of dedicated leadership”.

115

Leadership should not be limited to the SPL adoption phase, it has to be a

continuous, ongoing SPL support effort (Clements & Northrop, 2001, p. 45).

5.4.2.4 Organisational Structure

Early literature on SPL engineering encouraged a two-tired structure (see Section

2.4.2.3), one tier for developing for reuse and the other for developing with reuse.

Three ideas are common to most successful product line efforts: exploring
commonality among products to proactively reuse software artifacts,
encouraging architecture-centric development, and having a two-tiered
organizational structure. (McGregor et al., 2002)

As indicated in the above quote, there is common belief that for SPL success a two-

tier organisational structure is necessary; however, Northrop (2002b) argues that this

early principal has now been disproved by experience. Nevertheless, the

organisational structure chosen must support the SPL effort.

One of the technical managers considered that a total restructuring of the company

would be necessary.

You need a totally different organisational structure … core to the whole thing
is to reorganise the company. [TM1]

However, other technical managers seemed convinced that the company’s newly

adopted matrix structure was adequate.

You need a matrix structure otherwise it’s not going to work. [TM3]

I think in the [matrix] structure before we changed it would have been an
issue, but part of the reason why we changed the structure is to get
advantages of this. So you would have a bigger resource pool and you can
actually plan training and development and then I mean there are certain
people that are responsible for the tools. I think the way we are structured
now will improve. Obviously investment into tools in terms of money and that
… money needs to be available. [TM2]

These statements suggest an underestimation of the importance of a suitable

organisational structure as well as a misconception that a matrix structure alone

might be sufficient to achieve systematic reuse.

116

5.4.2.5 Organisation Size

Certain participants expressed apprehension about the required organisation size to

ensure the successful implementation of SPL engineering.

I think it’s a comprehensive approach. I just don’t know how big a company
must be to be able to do this properly... it looks to me like it’s a major
exercise and I think you need a fairly large organisation to implement that.
You need to have resources at your disposal. I don’t think a small company
can do that. It might not scale down easily. I think a small company can do
parts of it. [SD1]

Maybe it’s a question of critical mass. It might become more do-able if we
were doing ten times as much ground station work. … So with the critical
mass somewhere you’re going to get benefit. [OM2]

The actual concern of these participants was that the small size of our company

might make it less suitable for an SPL initiative.

5.4.2.6 Mindset

Numerous participants agreed that a product line initiative would require a significant

change of the mindset within our company.

[We have to] get the people to pull in the same direction … otherwise it’s that
mindset change that’s [got to happen]. [TM2]

… the rattling of the cages and that is going to have a short-term [negative]
effect … it will take certain things longer to happen because people are not
fully aligned with that. But I think in the longer term you’ll get the benefit.
[TM2]

… definitely. I think it’s maybe a South African attitude towards engineering.
We don’t like processes. We don’t like documentation. There are too many
engineers in South Africa wide that thinks processes are just there to look
nice and have the quality stamp but don’t actually follow them and that’s it.
It’s window-dressing. You need a major change in attitude, even from the
software engineers to change that … that’s for sure. [TM3]

… we are … so much in the habit of racing for deadlines … for meeting
deadlines and fighting fires so in that sense it would be a bit of a challenge
because we’d have to change our mindsets. [SD2]

117

[It’s a change of culture] and it’s a good time now to do this culture change
because we need to adapt to a new system and even if we can do this and
the convince them [management], it’s a good approach. You might just see
that they adapt to our system. [TM4]

I think the other thing is that the management style of product line-based
development versus project-based [development] is completely different. I
think with projects you’ve got control and [the company] knows how to do
that; they’ve got a budget and they’ve got schedules. With a product line it
becomes different. I think you’ll have to do a mind-switch and go through a
learning curve on how to manage that. I think it will be a learning curve and in
other words it’s going to cost money to implement and it will take you three
years or five years to sort this thing out. It’s not going to be six months and it
will cost money and is going to be blood and guts. I think management will
have to realise that. [SD1]

It is clear from these comments the participants recognise that there is a significant

variance between the company’s current project-centric mindset and the mindset

necessary for SPL engineering.

5.4.2.7 General Advantages and Disadvantages

During the interviews there was limited discussion directed specifically at the

perceived advantages and disadvantages of the SPL approach. Advantages

specifically mentioned concerned improved competitiveness and improved quality,

which are also professed benefits of systematic software reuse.

But I think it will be so competitive if we do it [SPL engineering] right. If you’re
competing with another company and you can do the job in … you’ve got that
margin to compete with … and that’s a good position. [OM1]

I think there’s [sic] advantages in terms of the quality … [SD1]

A disadvantage mentioned was the potential loss of flexibility. The following quote

from Knauber et al. (2000, pp. 92-93) explains the importance of flexibility to smaller

companies:

Typical for SMEs is their close cooperation with customers. This offers them
a marketing advantage over larger competitors because they not only know

118

early about their customers’ actual and potential needs but they are also able
to react more flexibly to these needs.

Our company is probably no different in this regard, and one of the operational

managers echoed this sentiment.

On the other hand, you have to quantify the potential loss of business
because you are so rigid. You might have an opportunity that you would
otherwise have taken but now you’ve got your own strategy which says I’m
not going to look at those special cases. [OM1]

Achieving a balance between flexibility (i.e. variability) and complexity is certainly one

of the challenges of SPL engineering. Insufficient variability limits the scope of

applicability of the product line and excessive variability make product instantiation

complex and tedious (Clements & Northrop, 2001, pp. 115-116). As Bosch (2000, p.

21) puts it: “The core element in successful software product lines is the software

architecture that should maximise the benefits of the commonalities between the

systems in the family, while providing sufficient variability for each family member”.

One of the organisational managers displayed insight into the developer’s psyche by

observing that developers might find the product line approach monotonous and

lacking in challenge.

I think a negative aspect might [be] long term because due to the fact that
you are getting so efficient on the one side and also focused on the other
side with this structure is that if you don’t take your people from one aspect to
another. … Dit kan baie eentonig raak en daar’s nie baie uitdagings vir n
ontwikkelaar nie. Hy gaan skep maar elke keer met hierdie ou komponentjie
en daardie ou komponentjie. So daar’s nie meer vermoë om te skep en dit
mag ’n negatiewe aspek wees. [OM3]

On the contrary, because of the limited level of reuse in a project-centric

environment, developers often develop similar functionality many times over and are

also likely to be frustrated by the lack of training and tool support. However, in a

product line environment, the common elements of products are developed once and

reused, so developers spend more time on the unique features (Clements &

Northrop, 2001, p. 21).

119

In summary, the prime issue of concern identified in the discussion of advantages

and disadvantage is the potential loss of flexibility in satisfying customer

requirements.

5.4.2.8 Summary of Findings: SPL Development Environment

Table 5-8 presents a summary of the finding relating to the SPL development

environment category of emergent themes.

Table 5-8: Summary of Findings: SPL Development Environment Themes

SOFTWARE PRODUCT LINE DEVELOPMENT ENVIRONMENT THEMES
THEME SUB-CATEGORY FINDINGS

Vision Organisational The product line vision is an essential part of an SPL initiative.
The significance of this fact was sensed by certain of the
participants.

Implementation
strategy

Organisational There are various options for SPL implementation but, because
we are dealing with a fully functional company, it is no surprise
that most participants who discussed this considered that an
evolutionary strategy would be most suitable.

Management
support and
leadership

Organisational Several of the participants were sensitive to the fact that
management support and leadership are essential ingredients
for SPL success.

Organisation
structure

Organisational A suitable organisational structure is required to support SPL
development. A section of management appears to
underestimate this requirement.

Organisation size Organisational Participants were concerned that the small size of our company
might make it less suitable for an SPL initiative.

Mindset General It is clear from their comments that the participants recognise
that there is a significant variance between the company’s
current project-centric mindset and the mindset necessary for
SPL engineering.

Advantages and
disadvantages

General The prime issue of concern identified in the discussion of
advantages and disadvantages is the potential loss of flexibility
in satisfying customer requirements.

5.4.3 Comparative Themes

This section discusses the following emergent themes that allow comparison

between the project-centric and SPL development environments:

• intellectual property;

• human resources and career development;

• software development frustrations; and

120

• support and maintenance.

5.4.3.1 Intellectual Property

In a project-centric company, software is developed according to customers’

requirements, making it difficult to isolate the customers’ intellectual property from its

own. A possible consequence of this is that intellectual property which evolves is not

specifically captured or documented, and therefore only exists in the memory of the

individuals who are directly exposed to it. This is obviously an undesirable situation,

because the company has no formal mechanism for accumulating intellectual

property and, in effect it operates as a labour broker and sells man-hours.

In discussions with the participants, some evidence of this phenomenon was

apparent.

Too much emphasis, that’s a syndrome of a small company, is placed on the
individual and he’s just expected to go ahead and deliver. People assume
that, because he is an engineer or comes from a computer science
background, he knows what he is doing and I think that is sometimes a bit of
a problem. [TM1]

I think it’s world-leading. I think we need to thank [our main customer] for
that. The problem is that it’s in a few peoples’ heads and if you lose those
few people you’ve lost the capability. I don’t know how you document that.
[TM3]

At the moment the intellectual property of the company lies in people’s heads
… and that’s a big problem. If any of the senior guys leaves … what do [the
company] do? Do they send them to a doctor to download their information?
It doesn’t work that way. Unless we put the knowledge in a repository, it’s
going to get lost as the people move on. [TM4]

We have an excellent knowledge of the problem domain in some employees.
[SD2]

In an organisation implementing an SPL strategy, a business factor that requires

attention concerns ownership of intellectual property rights. According to Bass,

Clements, Cohen, Northrop & Withey (1997), “… intellectual property rights must

remain with the developer rather than go out with each product, so that new products

based on old ones can continue to be sold …”

121

This issue was also recognised by some participants as a problem faced by the

company.

… we already have a problem with [one] customer … on IP because he paid
for the customisation part but what we said to him that we’re not going to give
him the IP to the whole product because there is a lot of background
knowledge that went into this product . So maybe it will be better if you follow
that strategy because you can actually prove that you’ve got a product line
and you only customise a little bit. So you can say to the customer “look you
only pay for this customisation bit. The rest is clearly ours”. [OM1]

But the problem is that the way we structure our contracts is that most of the
intellectual property sits with the customer because we sell our intellectual
property and that’s where the R&D funds need to be utilised so that we [have
evidence of our investment]. [TM2]

The mode of operation of a project-centric company makes it fairly simple for the

customer to determine roughly what the man-hour level-of-effort is and thereby

estimate the hourly rate being charged for development. This factor, coupled with the

lack of clarity on IP ownership, makes it difficult for a project-centric company to

charge for more than the obvious level of effort. This issue was acknowledged by one

of the technical managers.

We’re a resource broker. [Prompt: Is that what we want to be?] No … not at
all! What do we do? We get a spec, we execute the spec and we deliver the
product. So we are just supplying resources to a company to execute what
they want. We’re not adding value to this process by adding our IP. If we add
our IP, the price is different. [TM2]

That’s why we have to have intellectual property so that that thirty hours that
we sell comes at a premium … it’s not just paying the rate … it’s not just the
seventy dollars or whatever or eighty dollars an hour, it’s like a hundred and
twenty dollars an hour. [TM2]

There is little benefit in an organisation generating or evolving intellectual property if

there is no formal mechanism for capturing in some form of knowledge base. The

SPL assets provide a highly convenient mechanism for retaining this data in the form

of components and processes, which are evolved as lessons are learnt. The focused

scope of an SPL and the well-defined set of assets under configuration control

122

facilitate the capture of IP. The Fraunhofer Institute, one of the research institutes

that are well known for its contribution to product line theory and practice, aptly call

this SPL benefit “explicit knowledge representation”. The Institute (Fraunhofer

Institute, 2003) describes it like this, “Explicit knowledge representation: Application

domain knowledge is consolidated and made explicit. It can be used for

development, as well as for training new employees. In addition, the information is

not lost when experts leave the organization.”

One of the technical management participants expressed frustration at the lack of a

mechanism to capture project experience, which is a valuable contributor to IP.

Since I’m in [the company] we had once a “lessons learnt” [sic]. That was
[project manager’s name]. He organised this meeting he said “lessons learnt
on [the project]” and we all went down there and listed all the things …
lessons learnt. So we documented that … but [currently] it’s not
implemented, it’s not fed back, it’s not approved. There’s no structure to feed
it into. [TM4]

Whereas a project-centric structure makes it is difficult to accumulate and benefit

from IP, an SPL structure supports the accumulation of IP and facilitates benefiting

from it.

5.4.3.2 Human Resources and Career Development

In a project-centric environment, projects tend to hold on to developers out of fear of

losing them to other projects, so individuals become attached to projects and are

generally obliged to take on various roles as the project lifecycle progresses.

Consequently, developers are sometimes reduced to performing fairly mundane

tasks, effectively depriving the company of their specialist skills. It follows that a

project-centric environment is better suited to generalists, who are good at

performing a variety of tasks, rather than specialists.

This phenomenon not only means that products achieve suboptimal functionality and

quality, but it can also negatively impact developers’ career paths. The situation is

further aggravated by the lack of investing in tools and training typical in a project-

centric environment.

The following comments confirm that some participants are aware of these issues:

123

 [In ‘n “project-centric” struktuur] jy het baie goed verloor ... jy kyk nie na
mannekrag nie, jy kyk nie in die sin van enige opleiding vir die mannekrag
nie. Jy voel vere vir die mannekrag en daai goed. Daar’s baie goed wat op
die grond val ten opsigte van jou mens bestuur. In daardie approach
[“project-centric”] is dit ‘n kwessie van jy lewer en klaar. [OM3]

I notice that every year when I came back after the December holidays I think
this is what I want to do this year. I’ve got all these things in my mind that I
want to do and then what happens after a month and a half or so is you start
to regress to your normal habit of just trying to meet the deadline and going
home and coming back to work and the three months later you think “what
was I [thinking]?” [SD2]

We are paying engineers to format documents and using up critical
resources when we could be pay someone R—— an hour and they would do
a better job. [TM2]

[Currently] we’re wasting resources. Software people are hard to come by
and they’re scarce … and if you waste a resource like that it’s not in the
company’s interest. That’s one of the big disadvantages [of a project-centric
structure]. [TM3]

I don’t think so. I think [we are] used to processes and procedures to the
extreme … actually mind-bogglingly tedious stuff that they really should have
tools [for]. You cannot … it’s dehumanising to get people … engineers, who
are qualified to do engineering work, to have them sit and do documentation
by hand. To type documents … stupid character by character. [SD1]

By comparison, an SPL environment provides certain advantages for career

development. Peterson (2003, p. 383) identifies mobility as a career benefit provided

by an SPL environment for the individual: [The software product line environment

provides] “employees with more career development opportunities by standardizing

on the development environment and processes, thereby reducing the learning curve

associated with a move to a new project”.

Clements and Northrop (2001, p. 21) interviewed developers and concluded that

those working on SPLs displayed “higher morale and greater job satisfaction” than

those developing stand-alone products. Career benefits of an SPL environment also

include adequate tools and training, time to explore new technology, specialisation

124

opportunities, the satisfaction of producing high quality products, and a reduction of

the stress caused by tough schedules.

To summarise, the participants identified problems relating to career development

and wastage of human resources attributable to a project-centric structure. Potential

SPL solutions to these problems were sought in the literature and presented for

comparison.

5.4.3.3 Software Development Frustrations

Certain frustrations concerning software development were prominent and recurring

during the discussions relating to several of the interview questions. Interestingly, the

frustrations that were identified all concern issues that are typically addressed by a

systematic software reuse programme and certainly are addressed by SPL

engineering.

A selection of these frustrations was noted, categorised and is presented in Table 5-9

together with comments on how these frustrations are addressed by SPL

engineering.

Table 5-9: Software Development Frustrations

PROJECT-CENTRIC ENVIRONMENT FRUSTRATION SOFTWARE PRODUCT LINE SOLUTION

ISSUE: TIME AND BUDGET PRESSURES

All the projects I’ve been working on are
late. [TM3]

I think the time of giving a date and just
missing it by 2 … 3 weeks is long gone …
especially in the aerospace industry. [TM2]

Most of our projects are in high risk and
especially in software development we are
never in time, or on budget and in time.
[TM4]

In an SPL environment, a large percentage
of a new product is based on existing
assets (e.g. typically around 75% (Pronk,
2002), 70 – 90% (Clements & Northrop,
2001, p. 26)), which results into a
significant decrease in overall cost and
schedule (Northrop, 2002b).

125

PROJECT-CENTRIC ENVIRONMENT FRUSTRATION SOFTWARE PRODUCT LINE SOLUTION

ISSUE: LACK OF THE CONSISTENT USE OF PROCESSES

… every programme is managed in a
different way. System engineering … the
standard is different on every programme.
[TM3]

… the technical guys, on the project, they
will determine where the project goes. They
have got free reign. [TM1]

SPL engineering involves the definition,
implementation and measurement of
processes (Northrop, 2002b).

“Defined processes set the bounds for each
person’s roles and responsibilities so that
the collaboration is a successful and
efficient one” (Clements & Northrop, 2001,
p. 175)

ISSUE: TOO MUCH EMPHASIS ON SPECIFIC INDIVIDUALS

Too much emphasis, that’s a syndrome of a
small company, is placed on the individual
and he’s just expected to go ahead and
deliver. [TM1]

…it’s in a few peoples’ heads and if you
lose those few people you’ve lost the
capability. [TM3]

We have an excellent knowledge of the
problem domain in some employees. [SD2]

At the moment the intellectual property of
the company lies in people’s heads … and
that’s a big problem. [TM4]

The detailed documentation of processes,
the management of core assets, tool
support and training all serve to make SPL
engineering less dependent on individual
developers.

ISSUE: LACK OF LONG-TERM TECHNICAL VISION

if you think short-term then there might not
be any need because you want to make as
much money as you want in the shortest
amount of time [SD2]

I think the biggest technical issue is that of
technical vision. You need people to have
technical vision of where we should be
going.[SD2]

People are not built short term … they are
not built to say “oh I’ve just got to finish this
and then it’s done”. They want to contribute.
They want to look back and say “this is
what I have done.” [SD2]

SPL engineering is based on an overall
corporate vision of the product lines to be
established and the scope of each product
line.

“A major distinction between software
product lines and other reuse approaches
is that the product line is based on a clear
vision of which future products will be
developed” (Knauber et al., 2000, p. 91).

126

PROJECT-CENTRIC ENVIRONMENT FRUSTRATION SOFTWARE PRODUCT LINE SOLUTION

ISSUE: LACK OF TOOLS AND TRAINING

Because we are project-based, the project
managers don’t want to invest in the
creation of tools that will lead to long-term
benefits. [TM4]

I think they won’t have a problem enforcing
standardisation and consistent use of the
tools … if it [the tools] were there and that’s
not a problem. But to actually invest …
that’s always a problem … [SD1]

… it always boils down to “Why can’t you do
the job with the tools we have? [SD3]

The lack off tools and training means that
jobs take longer and people become
unhappy. [TM2]

Because SPL processes dictate a uniform
way in which activities are carried out, it
becomes worthwhile and meaningful to
automate these processes and
consequently easier to train people to
follow the processes.

5.4.3.4 Support and Maintenance

In a project-centric structure, the project manager is expected to complete a project

within the budget and timescale, using the resources available. Consequently,

optimisation occurs at project level rather than at organisational level. Although this

approach may optimise project profits in the short term, it lacks the potential benefits

of organisational level optimisation, such as identifying and exploiting recurring

patterns in terms of reuse. A serious long-term effect of this approach is that the

company accumulates an assortment of disparate systems that need to be

maintained and supported. Considering that, in the defence industry, some systems

need to be maintained for twenty to thirty years after delivery, the magnitude of this

problem can be appreciated. Obviously, it is considerably more difficult to maintain

ten very different systems, than it is to maintain ten systems based on a similar,

consistent design philosophy and shared assets, such as the members of an SPL.

The following quote, from one of the software developers interviewed, captures the

essence of this problem in a project-centric environment.

If you could reuse stuff in a controlled way and benefit from previous years of
debugging design and testing, … and guys that were experts at that point
might have even left the company but we can still benefit from their work …
you know it’s excellent. Once again … I remember just when I started on this
stuff … we did what you describe as opportunistic reuse … you know you

127

copy then go on from that and hack it to pieces. So you’ve got this new thing
you know. So you’ve got a good step and that’s how it’s always been
working. That’s copy and paste at a high level. You get this big initial step
and then you go off on your own. You now do work on this and that’s
fantastic work but you can’t take it back into that other product that you
copied from. They don’t benefit from it. And in the same way product A that
you originally copied they now proceed with development and they now do
some excellent work there and project B that was copied from it doesn’t
benefit from that. You diverge and split the two things up and from there on
you don’t benefit at all and in fact in the long term in terms of maintenance
and so on it gets a nightmare. [SD1]

Support and maintenance are important activities in our business, which are

complicated by our project-centric structure. An SPL structure would ensure

maximum commonality between products and therefore simplify these activities.

5.4.3.5 Summary of Findings: Comparative Themes

Table 5-10 presents a summary of the finding relating to the comparative themes

category. These are the emergent themes that allow comparison between a project-

centric and an SPL software development environment.

Table 5-10: Summary of Findings: Comparative Themes

COMPARATIVE THEMES
THEME SUB-CATEGORY FINDINGS

Intellectual
property

Organisational Whereas a project-centric structure makes it difficult to
accumulate and benefit from IP, an SPL structure supports
the accumulation of IP and facilitates benefiting from it.

Human resources
and career
development

Context In a project-centric environment, developers are sometimes
reduced to performing fairly mundane tasks which wastes
resources and negatively affects career development.

Software
development
frustrations

Technical A number of software development frustrations that recurred
in the discussions relating to several of the interview
questions. SPL engineering provides solutions to these
frustrations.

Support and
maintenance

Technical The wide variety of systems produced by the project-centric
approach present problems with respect to long-term support
and maintenance.

128

5.5 SUMMARY

This chapter described the findings of the analysis of the transcripts from the field

interviews. The transcripts were analysed using a simple coding process (see

Section 3.3.9), which was employed to uncover the themes running through data.

The themes are organised into two classes: the primary themes, relating directly to

the topics of the interview questions, and the emergent themes, which are relevant

themes that emerged during the coding process.

Both classes comprise three categories (see Figure 5-1). Table 5-11 provides a key

to the summary of analysis results for each category.

Table 5-11: Key to Data Analysis Result Summaries

THEME CATEGORY RESULT SUMMARY

PRIMARY THEMES

General need and suitability Table 5-1

Organisational Table 5-2

Technical Table 5-3

EMERGENT THEMES

Project-centric development environment Table 5-7

SPL development environment Table 5-8

Comparative themes Table 5-10

129

Chapter 6. Discussion of Findings

6.1 INTRODUCTION

The study consisted of three phases, the literature study, the contextualisation and

the field interviews. This chapter provides a discussion of the results drawn from

these three phases. The discussion begins with a brief summary of the study and

then proceeds to address the findings relating to the six subsidiary questions and the

emergent themes.

6.2 DISCUSSION OF SUBSIDIARY QUESTIONS

The primary research question is:

What are the issues related to the introduction of systematic software reuse in

a small project-centric organisation?

This research study consisted of three phases:

• A theoretical framework for the study was established using information derived

from a comprehensive literature study.

• The research study was contextualised to gain an understanding and

appreciation of the social and historical factors which led to the company’s

current situation.

• The perceptions of fellow practitioners were determined and analysed, based

on a series of in-depth field interviews.

The three phases made use of four data sources: a literature study, an elite

interview, field interviews and personal experience. During the research design, the

primary research question was decomposed into six subsidiary questions of an

exploratory nature. Table 6-1 illustrates how the four data sources contributed to the

answering of the subsidiary questions.

130

Table 6-1: Relationship between Subsidiary Questions and Data Sources
SU

B
SI

D
IA

R
Y

Q

U
ES

TI
O

N

SUBSIDIARY QUESTION TOPIC

LI
TE

R
A

TU
R

E
ST

U
D

Y

FI
EL

D

IN
TE

R
VI

EW
S

EL
IT

E
IN

TE
R

VI
EW

PE
R

SO
N

A
L

EX
PE

R
IE

N
C

E

SQ1 Generally accepted approach to systematic reuse
SQ2 Context of the study
SQ3 Reasons for maintaining a project-centric structure
SQ4 Need for systematic software reuse
SQ5 Suitability of accepted software reuse approach
SQ6 Potential systematic software reuse adoption issues

 = main data source, = additional data source

The research findings relating to each of the subsidiary questions are discussed in

Sections 6.2.1 to 6.2.6 and are followed by a discussion of the additional topics that

emerged from the analysis of the transcripts of the field interviews in Section 6.3.

6.2.1 SQ1: Generally Accepted Approach to Systematic Reuse

Question What is a generally accepted approach to systematic software reuse
within the industry?

Aim To identify a particular approach to provide a theoretical context for
investigating systematic reuse.

The literature study (see Chapter 2) established the theoretical framework for the

overall research study. To achieve this, it was necessary to investigate the theoretical

context of software reuse and to identify a single generally accepted and practical

software reuse approach to facilitate a debate of its general suitability for the

company and the applicability of the practices involved in this approach.

Early software reuse efforts concentrated almost exclusively on the reuse of code,

but later progressed to the reuse of design and architecture. Eventually, these efforts

were extended to cover all intellectual assets associated with the development and

support of software. The literature study revealed SPL engineering as a widely

accepted, practical and comprehensive approach to systematic software reuse. The

131

following passage repeated from Section 2.3 provides an apt summary of the findings

of subsidiary question SQ1: Software product line engineering is emerging as a

promising and practical approach to systematic software reuse (Böckle et al., 2002;

Knauber & Succi, 2002; Northrop, 2002b).

6.2.2 SQ2: Context of the Study

Question What is the context of the study and more specifically what are the
historical factors which contributed to the organisation being project-
centric?

Aim To determine and comprehend the historical and social context of the
study.

As Darke, Shanks, and Broadbent (1998, p. 285) remind us that: “The goal of

analysis in interpretive studies in information systems is to produce an understanding

of the contexts of information systems and the interactions between these systems

and their contexts”. This quote also holds true for the study of IS development

practices. The primary purpose of the contextualisation was to provide an

understanding of the circumstances and environment that led the company to adopt

and maintain its project-centric structure. The relevance of this purpose increased

when the literature study revealed the sensitivity of software reuse to its

organisational context and, in particular, suggested that a project-centric structure is

unsuitable for systematic software reuse. The latter view was later endorsed by

several of the interview participants.

Section 3.2.5 discusses the importance of context to a qualitative study. The

contextualisation of this study is covered in detail in Chapter 4. The context,

fundamental to an understanding of the company’s historical and contemporary

behaviour, was analysed using a simple framework that addresses the societal,

organisational, group and individual conceptual levels. In order to provide the reader

with an adequate contextual understanding, the contextualisation chapter precedes

the chapter on analysis of the field interviews (Chapter 5). The contextualisation

describes the circumstances and environment, revealed by this study, which led to

the company adopting a project-centric structure and business strategy.

132

6.2.3 SQ3: Reasons for Maintaining a Project-centric Structure

Question Are there motivating factors for maintaining a project-centric
organisational structure?

Aim To establish and comprehend the contemporary context of the study.

Although the field interviews revealed no real support for retaining the project-centric

structure, there were also no convincing indications of a real desire or intention to

make a substantial shift from this structure.

As reported, during the study a change to the company’s organisational structure

was effected, and although a matrix structure was introduced, the company still

remains strongly project-oriented. Given the necessary authority and resources, the

matrix structure can be used to address some of the problematic reuse issues, such

as selection of tools, provision of training, enforcing of processes and reuse of

assets. However, unless the company’s business strategy is changed from one that

is reactive and project-oriented to one that is proactive and product-oriented, the

benefits of systematic reuse are likely to be limited.

6.2.4 SQ4: Need for Systematic Reuse

Question To what degree is there a need within the organisation for systematic
software reuse?

Aim To assess the level of need for software reuse in the company.

The majority of the participants were in agreement that there is a need to make the

company’s software development more efficient and more deterministic. Motivations

given for this response were primarily the time and cost pressures experienced by

the project teams.

The interviews and ensuing discussions also revealed that there is very limited

systematic reuse currently being practised, and the general perception among

participants was that the company stands to benefit from the introduction of

systematic reuse.

133

6.2.5 SQ5: Suitability of Software Product Line Engineering

Question How suitable is the generally accepted approach for adoption by the
organisation?

Aim To determine the level of compatibility of the identified software reuse
approach for the company.

The dominant perception among participants was that SPL engineering provides a

practical approach to systematic software reuse. However, concern was expressed

that this approach might not be totally suitable for our company.

One concern expressed was that it might be better suited to larger companies and to

new product developments. Our company is relatively small and is already committed

to product development, especially with regard to HUMS ground stations. The issue

of organisation size is dealt with in Section 6.3.2.

Another concern was that SPL engineering would limit the company’s flexibility in

addressing customer requirements. This issue is addressed in Section 6.2.6.

6.2.6 SQ6: Potential Systematic Software Reuse Adoption Issues

Question What are some of the technical and organisational issues that might
influence the implementation of systematic software reuse within the
organisation?

Aim To identify potential technical and organisational factors that could pose a
challenge for the company.

Several topics were identified as potential challenges for the company concerning

systematic software reuse. Each of the topics covered specifically by interview

questions is now summarised:

Customer Interface Management: The specific issues that were identified on the

topic of customer interface management concerned intellectual property and the

responsiveness to customers’ requirements. The issue of intellectual property was

raised in response to several interview questions and is handled separately in

Section 6.3.3.

Since a single project or one-off development allows almost infinite flexibility, there is

little doubt that an SPL reduces flexibility and ultimately restricts customer

134

responsiveness. However, the key question to be asked is “Do we require more

flexibility than an SPL can practically allow for?” If the answer is affirmative, then an

SPL is not a suitable solution. For systematic software reuse and SPL engineering to

be successful, the problem domain must be sufficiently mature and stable. A mature

and stable problem domain has a well-established modus operandi and norms that

are generally accepted industry-wide, which effectively reduces the required range of

flexibility.

To summarise, if the required customer responsiveness is genuinely in danger of

compromise, then software product line engineering is possibly not an appropriate

solution. After all, SPL engineering is a strategy for exploiting the commonality

between products; if commonality is lacking, SPL engineering is not really applicable.

A lack of commonality would obviously restrict the potential benefits of any reuse

strategy.

Funding: The interview responses showed that there is almost no consensus on a

method of funding a potential SPL initiative. Funding is an issue that probably needs

to be addressed by a detailed business case analysis, however the study indicates

that it could prove to be a difficult issue on which to reach consensus.

Processes: Although the company has considerable experience with software

development processes, some participants expressed concern regarding the lack of

uniform and consistent application of these processes. Based on participants’

comments, this situation could be ascribed to the current autonomous nature of

projects and the level to which customers are allowed to influence our development

processes. In an SPL environment the structure makes it difficult to deviate from

processes and the customer also has much less opportunity to influence the

development.

Configuration Management and Change Control: In spite of the extra demand

placed on configuration management and change control, the general perception is

that this will be an area that poses little challenge for the company.

Problem Domain Knowledge: The literature study and discussions revealed that

there are multiple facets to problem domain knowledge. With respect to HUMS

ground stations, the company has, in the opinion of some participants, gained

135

considerable knowledge about HUMS aspects to which the project teams have been

directly exposed. Owing to the manner in which this knowledge has been acquired,

much of it is incidental and possibly incomplete. Consequently, our problem domain

knowledge lacks depth and is limited in areas to which we have been less exposed27.

There is also a lack of knowledge regarding the trends and future directions of

HUMS. An SPL effort must be supported by a deliberate drive to acquire and

accumulate knowledge of the problem domain in order to support the SPL vision and

strategy.

Tools and Training: The technical staff expressed an element of distrust of senior

management’s willingness to sanction the provision of tools and training in an SPL

environment. However, responses provided by the organisational management group

indicate an acknowledgement of the current problems in this regard and recognition

of the need to address the situation. In defence of senior management, the interview

discussions and the literature study also revealed the difficulties posed by a project-

centric environment for standardising on specific tools and training.

Software Architecture: The general perception among participants is that software

architecture is a purely technical issue, which should not pose a problem given

suitably trained developers, sufficient tools, and enough time.

Component Technology: Based on the recent history in which several component

technologies have come and gone, the selection of a suitable component technology

is certainly a challenge. However, as pointed out in the literature study the recent

emergence of J2EE and .NET component technologies has been greeted with some

optimism (Carlson, 2004; Schmidt & Buschmann, 2003). Participants acknowledged

the importance of making the right choice of component technology.

In summary, a several topics were discussed and some problems were exposed, but

it appears that most of the problems are well understood and the solutions are within

grasp. Customer responsiveness is probably the main exception and, as explained, if

the required responsiveness to customer requirements is genuinely in danger of

compromise, SPL engineering is probably not a suitable solution.

27 This opinion was expressed especially by members of the organisational management
group.

136

6.3 EMERGENT THEMES

In addition to the anticipated themes relating to the interview questions, several other

themes emerged from the field interview transcripts. Those that were considered to

contribute to the study fall into three categories:

• project-centric development environment;

• issues specific to the software product line development environment; and

• themes that allow for comparison between the project-centric and the SPL

development environments.

These categories are discussed in Sections 6.3.1, 6.3.2 and 6.3.3 respectively.

6.3.1 Project-Centric Development Environment Themes

Apart from project-centric issues, which were included in the discussion of context in

Chapter 4, the only other emergent theme specific to the project-centric environment

relates to the attitude of software developers.

Developer Attitudes: Several examples of problematic attitudes among software

developers were raised by participants in the technical management group. A

literature search revealed these to be common attitudes which act as software reuse

disincentives (Lynex & Layzell, 1998). These disincentives inhibit reuse success and

some can even result in the failure of a reuse initiative, but as Lynex and Layzell

(1998) express it: “Even though the inhibitors identified may at first seem immense

the real message is that it is better to start somewhere than not at all and that all

these problems may be overcome provided the will to succeed exists”.

6.3.2 SPL Development Environment Themes

Several themes specific to the SPL environment emerged from the field interview

transcripts. The findings on these themes are now summarised.

Vision: Owing to the reactive, single-system development mentality that exists in a

project-centric company, there is little incentive to establish organisational and

product-level visions (or strategies). However, SPL engineering, being a product-

oriented approach, requires the company to become proactive and an important part

137

of this is to establish these visions. These facts were revealed by the literature study

and clearly recognised by some participants.

Implementation Strategy: Bosch (2002b) confirms that, whereas a revolutionary

implementation strategy promises higher returns, an evolutionary approach carries

less risk. In spite of an evolutionary implementation strategy potentially costing more

and taking longer (Bosch, 2002b), the general participant perception was that this

would be a more pragmatic strategy for our company to follow.

Management Support and Leadership: Management support and leadership

should not be limited to the SPL adoption phase, it must be a continuous, ongoing

SPL support effort (Clements & Northrop, 2001, p. 45). This opinion was repeatedly

stressed by most of the technical managers and software developers throughout the

interview discussions.

Organisational Structure: An appropriate organisational structure is required to

support SPL engineering (see Section 2.4.2.3). As mentioned in Section 6.2.3, there

appears to be a perception – especially among some of the technical managers

interviewed – that the introduction of a matrix structure constitutes a suitable

organisational structure to support systematic reuse. This reinforces the opinion that

a major change in mindset (see Mindset below) would be necessary in the company

before an SPL effort can be attempted.

Organisation Size: There was concern among participants that SPL engineering is

only suitable for large companies; however, a number of authors provide evidence to

allay this concern. Gacek et al. (2001, p. 1) address the misconception that “software

product lines may be fine for large organisations, but not for small ones”. They cite an

example of a successful SPL development in a small organisation, and maintain that

the benefits promised by SPLs are of even greater importance to smaller

organisations. Knauber et al. (2000) cite a number of successes in small and

medium-sized organisations. Clements and Northrop (2001, pp. 485-511) provide a

detailed description of successful software product line development in a small

organisation. Thus, the evidence provided in the literature suggests that small

organisations are not excluded from successful SPL engineering.

138

Mindset: The literature also emphasises a need for organisations that adopt SPL

engineering to overcome the project mindset and to foster a product line culture

(Böckle et al., 2002; L. G. Jones, 1999). The perceptions among the participants

suggest that this is potentially one of the biggest hurdles facing our company,

particularly at organisational level.

To summarise: the identified SPL development themes could be added to a checklist

for special attention, should the company decide to make an SPL initiative.

Perceptions suggest that, should the company decided to adopt SPL engineering,

the necessary change in mindset might present a major hurdle; however the

company would also need to take an evolutionary implementation strategy, work on

establishing a clear product line vision, and provide continuous management support

and leadership.

6.3.3 Comparative Themes

Four themes allowing for comparison between a project-centric and a SPL

environment emerged from the field interview transcripts. The discussion of these

follows.

Intellectual Property: The literature study indicated potential problems relating to

intellectual property that a project-centric environment might encounter. The field

interview discussions confirm that intellectual property problems currently exist within

the company. Examples of these are:

• There is a lack of a suitable mechanism for securing IP and consequently much

of the company’s IP currently exists in individuals’ heads.

• Difficulty exists in distinguishing between IP belonging to the company and that

belonging to the customer.

Whereas a project-centric structure makes it is difficult to accumulate and benefit

from IP, an SPL structure supports the accumulation of IP and facilitates benefiting

from it. Participants anticipated that there might be difficulty in convincing customers

to pay for access to IP embedded in products. A participant mentioned that evidence

of internally funded R&D would strengthen our case for proving ownership of IP and

justifying its value.

139

Human Resources and Career Development: Interview participants identified

problems relating to career development and the wastage of human resources that

are attributable to the company’s project-centric structure. Although these problems

can possibly be ignored in the short-term, they are certain to have consequences in

the longer term, such as staff dissatisfaction and resignations. The literature indicates

that an SPL environment offers solutions to these problems in terms of providing

“more career development opportunities” (Peterson, 2003, p. 383) and resulting in

“higher morale and greater job satisfaction” (Clements & Northrop, 2001, p. 21)

among developers.

Software Development Frustrations: Discussions with participants highlighted a

variety of frustrations experienced by software developers in the project-centric

environment. I consulted the literature to see whether SPL engineering provides

solutions in this regard. Based on the evidence in Table 5-9, SPL engineering

provides potential solutions for addressing these frustrations.

Support and Maintenance: Long-term support and maintenance of a large number

of products with little or no design similarity could escalate into an unmanageable

situation, owing to the wide range of skills and knowledge required. Conversely,

support and maintenance is considerably easier if the products share a common

architecture, components, documentation and other assets. In fact, the SPL

approach presents an opportunity to optimise long-term support and maintenance

and could even turn it into a lucrative business opportunity.

To summarise: four comparative themes were identified, each representing a

problem or a class of problems that exists in a project-centric development

environment. In each case, SPL engineering offers a potential solution. This

information could be useful in motivating the adoption of an SPL initiative in the

company.

6.4 SUMMARY OF FINDINGS

The purpose of this study was to investigate the potential implementation of

systematic software reuse in a small project-centric organisation and the primary

research question was: What are the issues related to the introduction of systematic

software reuse in a small project-centric organisation?

140

In Chapter 5, the findings are addressed in two classes: findings related to the

subsidiary research questions and findings related to the emergent themes. Table

6-2 provides a condensed summary of each subsidiary question, its aim and findings.

Table 6-2: Condensed Summary of Findings Relating to Subsidiary Research
Questions

SQ1

Question What is the generally accepted approach to systematic software reuse
within the industry?

Aim To identify a particular approach to provide a theoretical context for
investigating systematic reuse.

Findings Software product line engineering is accepted as one of the most
promising approaches aimed at achieving software reuse.

SQ2

Question What is the context of the study and more specifically what are the
historical reasons for the organisation being project-centric?

Aim To determine and comprehend the historical and social context of the
study.

Findings The contextualisation describes the circumstances and environment,
revealed by this study, which led to the company’s project-centric structure
and business strategy.

SQ3

Question Are there motivating factors for maintaining a project-centric organisational
structure?

Aim To establish and comprehend the contemporary context of the study.

Findings Although the field interviews revealed no real support for retaining the
project-centric structure, there were also no indications of a real desire or
intention to make a substantial shift from this structure.

SQ4

Question To what degree is there a need within the organisation for systematic
software reuse?

Aim To assess the level of need for software reuse in the company.

Findings The majority of participants were in agreement that there is a need to
make the company’s software development more efficient and more
deterministic.

SQ5

Question How suitable is the generally accepted approach for adoption by the
organisation?

Aim To determine the level of compatibility of the identified software reuse
approach for the company.

141

Findings The dominant perception among participants was that SPL engineering
provides a practical approach to systematic software reuse. However,
concern was expressed that this approach might not be totally suitable for
our company.

SQ6

Question What are some of the technical and organisational issues that might
influence the implementation of systematic software reuse within the
organisation?

Aim To identify potential technical and organisational factors that could pose a
challenge for the company.

Findings Customer responsiveness is probably the main challenge and, if the
required responsiveness to customer requirements is genuinely in danger
of compromise, SPL engineering is probably not a suitable solution.

Table 6-3 provides a condensed summary of the findings relating to the emergent

themes.

Table 6-3: Condensed Summary of Findings Relating to the Emergent Themes

THEME FINDING

PROJECT-CENTRIC DEVELOPMENT THEMES

Developer attitudes Problematic attitudes exist among some of the software developers
which form reuse disincentives. Having identified these attitudes, it
is necessary to address them, otherwise they will inhibit the
success of the reuse strategy.

SPL DEVELOPMENT THEMES

Vision A clear and well-defined product vision is an essential foundation to
an SPL.

Implementation
strategy

The general perception is that an evolutionary implementation
strategy would be a more pragmatic strategy for the company.

Management support
and leadership

The technical managers and software developers stressed the need
for continuous management support and leadership to ensure
success.

Organisational
structure

An appropriate organisational structure is needed to support SPL
engineering.

Organisation size Although a number of participants were concerned that SPL
engineering was only suitable for large organisations, the literature
indicates that it has been successfully adopted by small
organisations.

Mindset The perceptions among the participants suggest that the change of
mindset from a project-centric company to a product-oriented
company is potentially one of the biggest hurdles facing our
company.

142

THEME FINDING

COMPARATIVE THEMES

Intellectual property SPL structure supports the accumulation of IP and facilitates
benefiting from it.

Human resources
and career
development

SPL environment provides “more career development opportunities”
(Peterson, 2003, p. 383) and results in “higher morale and greater
job satisfaction” (Clements & Northrop, 2001, p. 21) among
developers.

Software
development
frustrations

SPL engineering provides some solutions for addressing software
developers’ frustrations.

Support and
maintenance

The SPL approach provides an opportunity to optimise long-term
support and maintenance.

The contextualisation describes the national, international, inter-organisational and

organisational environments within which the company evolved and how factors in

these environments contributed to the company adopting its project-centric structure.

The contextualisation explains how changes in the industry have led to increased

pressure on software developers. It also discusses the negative consequences that

this project-centric context has for projects and individuals, especially with regard to

software reuse.

Although there was general agreement on the company’s need for systematic

software reuse and that SPL engineering is a practical approach to this, there was

concern that SPL engineering might be better suited to a larger organisation. The

literature, however, suggests that this concern is unwarranted.

Of the technical and organisational practice areas addressed by the field interviews,

management of the customer interface in general and responsiveness to customer

requirements appear to have the potential be the most problematic. The findings of

the literature study concur with this opinion (see Section 2.7).

The emergent themes provided insight into both problems currently existing within

the company, and possible problems, with the introduction of SPL engineering to the

company. SPL engineering offers potential solutions for all of the existing problems

identified, with the possible exception of the problem of software developer attitudes.

The advice offered in the literature for the developer attitude problem is to provide

training, education and incentives (Lynex & Layzell, 1998). A crucial task for a

143

company attempting the transition from single system development to SPL

engineering is the adoption and institutionalisation of a product line culture (Böckle et

al., 2002). This task involves all stakeholders and requires considerable amounts of

training, learning, debating and adapting. Only once the company is well into this task

can it be determined whether the potential problems of SPL engineering will become

real problems.

6.5 REFLECTION

6.5.1 Methodological Reflection

This section provides reflection on the appropriateness of the chosen research

methods and the level to which they might have influenced the findings.

As stated in Section 2.1, the purpose of the literature study was to establish a

theoretical framework for the overall study, by identifying a “generally accepted

approach to systematic software reuse within the industry” as well as practices

relating to this approach to provide a framework for debate. I considered certain of

the reuse practices identified during the literature study to be of special interest

because of the potential challenges that they might pose for the company. The

findings indicate that practices such as:

• making a business case;

• SPL funding; and

• configuration management and change control

actually contributed little in the way of interest to the study. The selection of specific

reuse practices for inclusion in the interview questions was subjective, and possibly

resulted in the omission of practices deemed by some participants to be of greater

relevance. This matter could have been addressed by adopting a two-phased

interview process to allow the participants in the initial phase first to identify the reuse

processes considered necessary for discussion.

Even among experienced software practitioners, software reuse is a widely-known

but generally poorly understood topic. In the field interview process, my aim was to

obtain a broad spectrum of opinions by targeting all of the parties directly involved.

144

My initial plan was to supply the interview participants with two papers that were

carefully selected to provide essential background information. However, as

mentioned in Section 3.3.5, a pilot run revealed that more comprehensive information

was required. A pragmatic solution to the problem was to give participants an initial

copy of the findings of my literature study (see Chapter 2). Although this solved the

specific problem, in retrospect it created a bias-related problem owing to the fact that

the literature study reflects a personal interpretation of the literature, which to some

degree influenced the perceptions of the participants.

An alternative solution might be to provide additional independent background

material, but this, too, has drawbacks, since it would inevitably require the participant

to do a lot more reading and it would also be necessary to ensure that the selection

of the background material carried no specific bias.

As mentioned, during the study the company changed ownership and an adjustment

was made to the organisational structure by introducing a matrix system. In spite of

this change, the company maintained its strong project-orientation. As shown in

Table 3-6, certain of the participants were interviewed before and others after the

change. A possible influence that the change had on the findings relates to the

opinions of the three organisational managers, who, prior to the change, are likely to

have argued in favour of maintaining the project-centric structure.

The purpose of this study was to investigate the potential implementation of

systematic software reuse in this company. Apart from the issues already addressed,

the chosen research methods were successful for achieving this purpose.

6.5.2 Scientific Reflection

This section provides reflection on what has been learned in this study and the

contribution it makes to the scientific body of knowledge.

Rothenberger and Nazareth (2002) claim that “despite the potential rewards from an

effective reuse program, it appears that widespread software reuse is not particularly

prevalent”. Lim (1998) points out that few of the organisations practicing reuse

actually achieve its full potential unless the reuse initiative is integrated into the

company’s business strategy in the way that SPL engineering permits.

145

Our company benefits to a limit degree from software reuse. The study highlights the

company’s need for software reuse and tests the perceptions of participants

regarding the applicability of SPL practices in the company. The study also reveals

the level to which the company’s project-centric structure impacts on reuse related

issues and how the SPL approach might remedy this.

Although software reuse, like most other aspects of information systems, is highly

context dependent, the findings of this study should provide useful guidance to small

companies contemplating a reuse initiative, especially those that are project-oriented

in structure and strategy.

Prominent among the aims of practitioner research is a transformation of the “self,

colleagues and work context” (Darke et al., 1998, p 209). In line with these aims, the

findings of this study will certainly contribute to the company’s understanding of itself

and could, in the future, contribute to a transformation of the workplace at various

levels.

Within our company, this study has:

• served to raise the awareness of the need for software reuse;

• improved the understanding of software reuse;

• highlighted the negative effects of a project-centric structure; and

• identified the potential challenges and solutions provided by SPL engineering.

6.6 RECOMMENDATIONS FOR FURTHER RESEARCH

SPL engineering optimises the level of reuse by addressing it at all levels of the

software development process, but an issue which this research accentuates is that

SPL engineering is specifically for use in a product-oriented environment. There are

companies that provide the service of custom software development and are

therefore non-product-oriented by choice. A company of this type is unlikely ever to

achieve the same level of reuse as a company producing a family of products with a

high level of commonality. However, there must be some benefits that a non-product-

oriented company can extract from software reuse. Possible areas of future research

might be to explore the differences between product- and non-product-oriented reuse

146

and the establishment of a non-product-oriented software reuse framework and

guidelines similar to those available for SPL engineering.

Another issue accentuated by this research is the comprehensiveness of SPL

engineering. As has been pointed out, because code only comprises a small portion

of a software development effort, it makes good sense to extend reuse efforts to all

aspects of the software development cycle. This idea could be taken further by

extending the reuse philosophy beyond the software development cycle to all

aspects of the product. In the case of our company, this would include aspects such

as electronic hardware and mechanical-housing development. A study could be done

to create a product line framework and guidelines for this which form a superset of

the SPL framework and guidelines.

6.7 CONCLUSION

The purpose of this study was to investigate the potential implementation of

systematic software reuse in a small project-centric organisation and thereby identify

the specific issues involved. Although recent history indicates that the company has

been successful with its project-centric organisational structure and business

strategy, the study highlighted a need for the company to improve its software

development efficiency via a systematic software reuse strategy.

The literature study identified SPL engineering as a generally accepted approach to

systematic software reuse. Elements from the SEI Product Line Practice Framework

were used as the basis of interview questions used to determine perceptions on the

suitability of this approach for the company. Although there was general agreement

that this is a practical approach to systematic reuse, the principal concern was that

SPL engineering could hamper the company’s responsiveness to customer

requirements.

Following the tradition of interpretive research, the study revealed useful findings

beyond those originally expected. The majority of these additional findings related to

problems in the company that are attributable to its project-centric structure and

issues anticipated with SPL engineering adoption.

147

The problems relating to the project-centric structure concern important issues such

as the management of intellectual property, career development and long-term

product support. These issues need to be addressed by the company irrespective of

whether a specific software reuse strategy is adopted. However, it is noteworthy that

SPL engineering offers potential solutions to the problems identified: a fact that could

be used to motivate the company’s adoption of SPL engineering.

Although the field interviews addressed some of the potential problems that the

company might experience with SPL engineering, additional potential problems were

also identified by participants. These related largely to organisational issues such as

establishing a product line vision, an implementation strategy, and a suitable

organisational structure, as well as ensuring the correct mindset and management

support. A company wishing to make the transition to SPL engineering needs to start

by establishing a product line culture. Assuming that this culture is successfully

adopted, the organisational requirements will be better appreciated, and some of

these potential problems should disappear. It would nevertheless be prudent to

manage a checklist of the potential problems identified.

The literature study indicates that SPL engineering optimises the level of reuse

across software products. It also recommends that a suitable organisational structure

is required to support SPL engineering. Although, the field interviews identified

certain perceived problems with adopting SPL engineering, they also uncovered

barriers to software reuse that are attributable to the company’s project-centric

structure. From the literature it appears that SPL engineering holds solutions to these

problems. These findings suggest that to achieve an optimal level of reuse, the

company needs to relinquish its project-centric structure and adopt a product-

oriented reuse strategy, such as SPL engineering.

In conclusion, the potential implementation of systematic software reuse was

investigated in a small project-centric company. In this respect, the study identified

potential issues as well as existing reuse-related issues attributable to the company’s

project-centric structure.

148

References

Abrahams, D. (2001). Defence Conversion in South Africa: A Faded Ideal? : Security
Sector Transformation Programme, Institute for Security Studies.

Amir, D. (2005). The Use of "First Person" Writing Style in Academic Writing: An
Open Letter to Journal Editors, Reviewers and Readers. Retrieved 15 February
2007, from http://www.voices.no/columnist/colamir140305.html

Avison, D., & Elliot, S. (2006). Scoping the Discipline of Information Systems. In J. L.
King (Ed.), Information Systems: The State of the Field (pp. 3-18). Hoboken, NJ: J
Wiley & Sons.

Avison, D., Lau, F., Myers, M. D., & Nielsen, P. A. (1999). Action Research.
Communications of the ACM, 42 (1), pp. 94-97.

Bahrami, A. (1999). Object Oriented Systems Development: McGraw-Hill.

Baskerville, R. L., & Myers, M. D. (2002). Information Systems as a Research
Discipline. MIS Quarterly, 26 (1), pp. 1-14.

Bass, L., Clements, P., Cohen, S., Northrop, L., & Withey, J. (1997). Product Line
Practice Workshop Report (No. CMU/SEI-97-TR-003). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Bayer, J., Muthig, D., & Göpfert, B. (2001). The Library Systems Product Line: A
KobrA Case Study: Fraunhofer IESE.

Bergey, J., Fisher, M., Gallagher, B., & Jones, L. (2000). Basic Concepts of Product
Line Practice for the DoD (No. CMU/SEI-2000-TN-001): Carnegie Mellon University,
Software Engineering Institute.

Birk, A. (2002). Three Case Studies on Initiating Product Lines: Enablers and
Obstacles. Paper presented at the PLEES’02.

Birk, A., Heller, G., John, I., Joos, S., Müller, K., Schmid, K., et al. (2003).
Requirements Engineering for Product Lines. Kaiserslautern, Germany: Fraunhofer
IESE.

Birk, A., Heller, G., John, I., von der Maßen, T., Müller, K., & Schmid, K. (2003).
Product Line Engineering Industrial Nuts and Bolts: Fraunhofer IESE.

Böckle, G., Bermejo Muñoz, J., Knauber, P., Krueger, C. W., do Prado Leite, J. C. S.,
van der Linden, F., et al. (2002). Adopting and Institutionalizing a Product Line
Culture. Paper presented at the SPLC2 - 2nd Software Product Line Conference.

Böckle, G., Clements, P. C., McGregor, J. D., Muthig, D., & Schmid, K. (2004).
Calculating ROI for Software Product Lines. IEEE Software, pp. 23-31.

Boehm, B. (1999). Managing Software Productivity and Reuse. IEEE Computer, pp.
111-113.

http://www.voices.no/columnist/colamir140305.html

149

Bosch, J. (2000). Design and Use of Software Architectures – Adopting and Evolving
a Product-line Approach: Addison-Wesley.

Bosch, J. (2002a). Architecture-Centric Software Engineering. Paper presented at
the International Conference on Software Reuse (ICSR), Austin, Texas, April 2002.

Bosch, J. (2002b). Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization. Paper presented at the 2nd Software Product Line
Conference (SPLC-2), San Diego, CA.

Braun, C. L. (1999). A Lifecycle Process for the Effective Reuse of Commercial Off-
the-Shelf (COTS) Software. Paper presented at the SRR'99, Los Angeles CA USA.

Brooker, R., & Macpherson, I. (1999). Communicating the Processes and Outcomes
of Practitioner Research: an opportunity for self-indulgence or a serious professional
responsibility? Educational Action Research, 7 (2), pp. 207-221.

Brownsword, L., & Clements, P. (1996). A Case Study in Successful Product Line
Development (No. CMU/SEI-96-TR-016): Carnegie Mellon University, Software
Engineering Institute.

Bühne, S., Chastek, G., Käkölä, T., Knauber, P., Northrop, L. M., & Thiel, S. (2004).
Exploring the Context of Product Line Adoption. Paper presented at the PFE 2003.

Carlson, B. (2004). Software Reuse is Dead, Long Live Software Reuse. Weblogic
Developer's Journal, 1.

Clements, P. C. (1997). Successful Product Line Engineering Requires More Than
Reuse. Paper presented at the WISR8 - Eighth Annual Workshop of Instituitionalizing
Software Reuse, Ohio State University, 23- 26 March 1997.

Clements, P. C. (1999). Software Product Lines: A New Paradigm for the New
Century. SEI Interactive, pp. 1-7.

Clements, P. C. (2002). Being Proactive Pays Off, Point-Counterpoint. IEEE
Software, pp. 28-30.

Clements, P. C., Donohoe, P., Kang, K., McGregor, J., & Northrop, L. M. (2001). Fifth
Product Line Practice Workshop, Technical Report: SEI.

Clements, P. C., Jones, L. G., Northrop, L. M., & McGregor, J. D. (2005). Project
Management in a Software Product Line Organization. IEEE Software, pp. 54-62.

Clements, P. C., & Northrop, L. M. (1996). Software Architecture: An Executive
Overview: Software Engineering Institute, Carnegie Mellon University.

Clements, P. C., & Northrop, L. M. (2001). Software Product Lines – Practices and
Patterns: Addison-Wesley.

Clements, P. C., & Northrop, L. M. (2002). Salion, Inc.: A Software Product Line
Case Study: SEI.

150

Cohen, S. (2002). Product Line State of the Practice Report (No. CMU/SEI-2002-TN-
017). Pittsburgh, PA: Carnegie Mellon University, Software Engineering Institute.

Czarnecki, K., & Eisenecker, W. (1999). Components and Generative Programming.
Paper presented at the Joint 7th European Software Engineering Conference and
ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (ESEC/FSE'99), Toulouse, France.

Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study
research: combining rigour, relevance and pragmatism. Information Systems Journal,
8, pp. 273-289.

Desouza, K. C., Raider, J. J., & Davenport, T. H. (2003). Intellectual Asset Reuse in
Software Development: Accenture Institute for Strategic Change.

Di Nitto, E., & Fuggetta, A. (1996). Product Lines: What are the Issues? Paper
presented at the 10th International Software Process Workshop, Dijon, France.

Dikel, D., Kane, D., Ornburn, S., Loftus, W., & Wilsin, J. (1997). Applying Software
Product-line Architecture. IEEE Computer, pp. 49-55.

Ebrahim, G. J., & Sullivan, K. (1995). Mother and Child Health: Research Methods.
London: Book-Aid.

Evaristo, J. R., & Karahanna, E. (1997). Is North American IS Research Different
from European IS Research? The Data Base for Advances in Information Systems,
28 (3), pp. 32-43.

Fafchamps, D. (1994). Organisational Factors and Reuse. IEEE Software, pp. 31-41.

Fitzgerald, B., & Howcroft, D. (1998). Competing Dichotomies in IS Research and
Possible Strategies for Resolution. Paper presented at the International Conference
on Information Systems (ICIS), Helsinki, Finland.

Foote, B., & Yoder, J. (1995). Evolution, Architecture, and Metamorphosis. Paper
presented at the Second Conference on Patterns Languages of Programs (PLoP
'95), Monticello, Illinois, September 1995.

Frakes, W. B., & Kang, K. (2005). Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31 (7), pp. 529 - 536.

Fraunhofer Institute. (2003). PuLSE™ Product Lines for Software Systems.
Kaiserslautern, Germany: Fraunhofer Institut Experimentelles Software Engineering
(IESE).

Gacek, C., Knauber, P., Schmid, K., & Clements, P. C. (2001). Successful Software
Product Line Develop Development in a Small Organization: A Case Study:
Fraunhofer IESE.

Garlan, D., & Perry, D. (1995). Guest Editorial. IEEE Transactions on Software
Engineering (April 1995).

151

Gillham, B. (2001). Case Study Research Methods (1st ed.). London: Continuum.

Greenfield, J., & Short, K. (2003). Software Factories – Assembling Applications with
Patterns, Models, Frameworks and Tools, OOPSLA ’03.

Greenfield, J., & Short, K. (2004). Software Factories – Assembling Applications with
Patterns, Models, Frameworks and Tools: Wiley.

Harvey, L. J., & Myers, M. D. (1995). Scholarship and practice: the contribution of
ethnographic research methods to bridging the gap. Information Technology &
People, 8 (3), pp. 13-27.

Henninger, S. (1996). Accelerating the Successful Reuse of Problem Solving
Knowledge Through the Domain Lifecycle. Paper presented at the International
Conference on Software Reuse (ICSR96), Orlando, Florida.

Hevner, A. R., & March, S. T. (2003). The Information Systems Research Cycle.
IEEE Computer, pp. 111-113.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Making the Reuse Business Work.
IEEE Computer.

Johnson, R. E. (1997). Frameworks = (Components + Patterns). Communications of
the ACM, 40 (10), pp. 39-42.

Jones, C. (2002). Defense Software Development in Evolution. Crosstalk: The
Journal of Defense Software Engineering, pp. 26-29.

Jones, L. G. (1999). Product Line Acquisition in the DoD: The Promise, The
Challenges: Carnegie Mellon University, Software Engineering Institute.

Khazanchi, D., & Munkvold, B. E. (2000). Is Information Systems a Science? An
Inquiry into the Nature of the Information Systems Discipline. The Data Base for
Advances in Information Systems, 31 (3), pp. 24-42.

Khazanchi, D., & Munkvold, B. E. (2003). On the Rhetoric and Relevance of IS
Research Paradigms: A Conceptual Framework and Some Propositions. Paper
presented at the 36th Hawaii International Conference on System Sciences
(HICSS’03).

Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating
Interpretive Field Studies in Information Systems. MIS Quarterly, 23 (1), pp. 67-94.

Knauber, P., Muthig, D., Schmid, K., & Widen, T. (2000). Applying Product Line
Concepts in Small- and Medium-Sized Companies. IEEE Software (September
2000), pp. 88-95.

Knauber, P., & Succi, G. (2002). Perspectives on Software Product Lines. ACM
SIGSOFT Software Engineering Notes, 27 (2), pp. 40-45.

152

Korpela, M., Mursu, A., & Soriyan, H. A. (2001). Two Times Four Integrative Levels
of Analysis: A Framework. Paper presented at the IFIP TC8/WG 8.2 Working
Conference, Boise, Idaho, USA.

Kranzberg, M. (1964). Industrial Revolution. In Encyclopaedia Britannica (Vol. 12, pp.
307): William Benton.

Kruchten, P., Obbink, H., & Stafford, J. (2006). The Past, Present and Future of
Software Architecture. IEEE Software (March/April), pp. 22-30.

Krueger, C. (2002). Eliminating the Adoption Barrier, Point-Counterpoint. IEEE
Software (July/August 2002), pp. 29-31.

Kuloor, C., & Eberlein, A. (2002). Requirements Engineering for Software Product
Lines. Paper presented at the 15th International Conference on Software & Systems
Engineering and their Applications (ICSSEA’02), Paris, France.

Laguna, M. A., González-Baixauli, B., López, O., & García, F. J. (2003). Introducing
Software Reuse in Mainstream Software Process. Paper presented at the
EuroMicro’03 - 29th Euromicro Conference.

Lam, W. (1998). A case-study of requirements reuse through product families.
Annals of Software Engineering, 5, pp. 253–277.

Lee, A. S., & Liebenau, J. (1997). Information Systems and Qualitative Research.
Paper presented at the International Conference on Information Systems and
Qualitative Research, Philadelphia, Pennsylvania, USA, 31 May - 3 June 1997.

Lim, W. C. (1998). Strategy-driven reuse: Bringing reuse from the Engineering
Department to the Executive Boardroom. Annals of Software Engineering, 5, pp. 85 -
103.

Lynex, A., & Layzell, P. J. (1998). Organisational Considerations for Software Reuse.
Annals of Software Engineering, 5, pp. 105–124.

Matinlassi, M. (2004). Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. Paper presented at the 26th
International Conference on Software Engineering (ICSE’04).

McGregor, J., Northrop, L., Jarrad, S., & Pohl, K. (2002). Initiating Software Product
Lines. IEEE Software (July/August 2002), pp. 24-27.

McKay, J., & Marshall, P. (2000). Quality and Rigour of Action Research in
Information Systems. Paper presented at the European Conference on Information
Systems, Vienna, Austria.

McWilliam, E. (2004). W(h)ither Practitioner Research? Australian Educational
Researcher, 31 (3), pp. 113-126.

Mili, A., Yacoub, S., Addy, A., & Mili, H. (1999). Toward an Engineering Discipline of
Software Reuse. IEEE Software, pp. 22-31.

153

Mili, H., Mili, F., & Mili, A. (1995). Reusing Software: Issues and Research Directions.
IEEE Transactions on Software Engineering, 21 (6), pp. 528-562.

Moore, J. W. (1997). Fundamental Principles of Software Reuse. Paper presented at
the WISR8 - Eighth Annual Workshop of Instituitionalizing Software Reuse, Ohio
State University, 23-26 March 1997.

Morisio, M., Ezran, M., & Tully, C. (2002). Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering, 28 (4), pp. 340-357.

Morisio, M., Tully, C., & Ezran, M. (2000). Diversity in Reuse Processes. IEEE
Software (July/August 2000), pp. 56-63.

Morse, J. M., & Richards, L. (2002). Readme First for a User's Guide to Qualitative
Methods. California: Sage Publications.

Myers, M. D. (1997). Critical Ethnography in Information Systems. Paper presented
at the International Conference on Information Systems and Qualitative Research,
Philadelphia, Pennsylvania, USA, 31 May - 3 June 1997.

Myers, M. D. (1999). Investigating Information Systems with Ethnographic Research.
Communications of the Association for Information Systems, 2 (23), pp. 1-20.

Myers, M. D. (2006). Qualitative Research in Information Systems. Retrieved 22 May,
2006, from http://www.qual.auckland.ac.nz

Myers, W. (1997). Software Reuse: Ostriches Beware. IEEE Computer, pp. 119-120.

Northrop, L. M. (2002a). Foreword. IEEE Software (July/August 2002).

Northrop, L. M. (2002b). SEI’s Software Product Line Tenets. IEEE Software
(July/August 2002), pp. 32-40.

O’Brien, L., Stoermer, C., & Verhoef, C. (2002). Software Architecture
Reconstruction: Practice Needs and Current Approaches, SEI Technical Report: SEI.

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying Information Technology in
Organizationa: Research Approaches and Assumptions. Information Systems
Research, 2 (1), pp. 1-28.

Parnas, D. (1976). On the Design and Development of Program Families. IEEE
Transactions on Software Engineering, 2 (1), pp. 1-9.

Pasetti, A., & Pree, W. (2000). A Reusable Architecture for Satellite Control Software.
Paper presented at the IEEE/AIAA 19-th Digital Avionics Systems Conference,
Philadelphia, PA, USA.

Pather, S., & Remenyi, D. (2004). Some of the Philosophical Issues Underpinning
Research in Information Systems: From Positivism to Critical Realism. Paper
presented at the SAICSIT.

http://www.qual.auckland.ac.nz/

154

Peterson, D. R. (2003). Economics of Software Product Lines. Paper presented at
the Proceedings of the Fifth International Workshop on Product Family Engineering
(PFE-5), LNCS 3014, Siena, Italy, November 2003.

Pree, W. (1997). Component-Based Software Development - A New Paradigm in
Software Engineering? (Vol. 18): Springer-Verlag.

Pronk, B. (2002). Product Line Introduction in a Multi-business Line Context - an
Experience Report. Paper presented at the PLEES’02.

Raccoon, L. (1997). Fifty Years of Progress in Software Engineering. ACM SIGSOFT
Software Engineering Notes, 22 (1), pp. 88-104.

Ran, A. (1999). Software Isn’t Built From Lego Blocks. Paper presented at the SSR
‘99 Los Angeles, USA.

Rogerson, C. M. (1996). Defence Economic Restructuring and Conversion in South
Africa. GeoJournal, 39, pp. 3-12.

Rothenberger, M., Dooley, J., Kulkarni, U. R., & Nader, N. (2003). Strategies for
Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE
Transactions on Software Engineering, 29 (9).

Rothenberger, M., & Nazareth, D. (2002). A Cost-Benefit Model for Systematic
Software Reuse. Paper presented at the ECIS 2002, Gdańsk, Poland.

Schmid, K. (2002a). An Assessment Approach to Analyzing Benefits and Risks of
Product Lines. Paper presented at the 25th Annual International Computer Software
and Applications Conference (COMPSAC'01).

Schmid, K. (2002b). A Comprehensive Product Line Scoping Approach and Its
Validation. Paper presented at the 24th International Conference on Software
Engineering (ICSE'02), Orlando, Florida, USA., 19-25 May 2002.

Schmid, K. (2003). People Management in Institutionalizing Product Lines (No. IESE-
Report No. 101.03/E): Fraunhofer IESE.

Schmid, K., & John, I. (2002). Developing, Validating and Evolving an Approach to
Product Line Benefit and Risk Assessment. Paper presented at the EuroMicro’02 -
28th Euromicro Conference

Schmid, K., & Verlage, M. (2002). The Economic Impact of Product Line Adoption
and Evolution. IEEE Software, pp. 50-57.

Schmidt, D. C., & Buschmann, F. (2003). Patterns, Frameworks, and Middleware:
Their Synergistic Relationships. Paper presented at the 25th International
Conference on Software Engineering (ICSE 2003), Portland, Oregon, USA.

SEI. (2006). A Framework for Software Product Line Practice Version 4.2. Retrieved
6 January 2007, from http://www.sei.cmu.edu/productlines/framework.html

http://www.sei.cmu.edu/productlines/framework.html

155

Sim, S. E. (1999). Evaluating the Evidence: Lessons from Ethnography. Paper
presented at the Proceedings of the Workshop on Empirical Studies of Software
Maintenance, Oxford, England, 3-4 September 1999.

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks, California,
USA: Sage.

Standish Group. (1995). The Chaos Report. Retrieved 6 January 2007, from
www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf

Staples, M. (2004). Change Control for Product Line Software Engineering. Paper
presented at the 11th Asia-Pacific Software Engineering Conference (APSEC’04).

Staples, M., & Hill, D. (2004). Experiences Adopting Software Product Line
Development without a Product Line Architecture. Paper presented at the 11th Asia-
Pacific Software Engineering Conference (APSEC’04).

Tricoglus, G. (2001). Living the Theoretical Principles of Critical Ethnography in
Educational Research. Educational Action Research, 9 (1), pp. 135-148.

US Air Force. (2003). Guidelines for Successful Acquisition and Management of
Software-Intensive Systems: Weapon Systems Command and Control Systems
Management Information Systems, Condensed Version 4.1: Department of the Air
Force: Software Technology Support Center.

US Congress. (1992). After the Cold War: Living With Lower Defense Spending. In
Office of Technology Assessment (Ed.) (pp. 1-229): U.S. Government Printing Office
- Washington, DC.

US DoD. (1988). DO-STD-2167A: Defense System Software Development (February
29, 1988 ed.): Naval Publications and Forms Centre.

Vernazza, T., Galfione, P., Valerio, A., Succi, G., & Predonzani, P. (2000). Moving
toward software product lines in a small software firm: a case study. Paper presented
at the ICSE 2000 Workshop on Software Product Lines: Economics, Architectures
and Implications, Limerick, Ireland, June 2000.

Wade, M., Biehl, M., & Kim, H. (2006). Information Systems is not a Reference
Discipline (and What We Can Do about It). Journal of the Association for Information
Systems, 7 (5), pp. 247-269.

Walsham, G. (1993). Interpreting Information Systems in Organizations (1st ed.).
Chichester, UK: John Wiley.

Walsham, G. (1995). The Emergence of Interpretivism in IS Research. Information
Systems Research, 6 (4), pp. 376-394.

Walsham, G. (2000). Globalization and IT: Agenda for Research. In R. Baskerville, J.
Stage & J. I. DeGross (Eds.), Organizational and Social Perspectives on Information
Technology (pp. 195-210). Boston: Kluwer Academic Publishers.

http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf

156

Weber, R. (2004). Editor's Comments - The Rhetoric of Positivism Versus
Interpretivism: A Personal View. MIS Quarterly, 28 (1), pp. iii-xii.

Wolcott, H. F. (1999). Ethnography - A Way of Seeing (1st ed.): AltaMira Press.

Yin, R. K. (2003). Case Study Research: Design and Methods (3rd ed.): Sage
Publications.

	Title page
	Abstract
	Acknowledgements
	CONTENTS
	Abbreviations
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography

