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CHAPTER 1 - INTRODUCTION 

Business organisations today are faced with the complex problem of dealing with 

evolution in their software information systems. This effectively concerns the 

accommodation and facilitation of change, in terms of both changing user 

requirements and changing technological requirements. Information systems in this 

context refers to any system having to manage the storing, structuring and processing 

of data. This research is particularly concerned with the database (persistent data) 

aspect of information systems and regards this as a core element that must be 

addressed in terms of the evolution problem. 

Evolution affects both structural and behavioural elements of the persistent store, or 

database. Any changes to the database will in tum influence applications dependent 

on the database schema - an aspect usually considered as stable and static in terms of 

structure and behaviour. However, change is inevitable, stemming from both user and 

organisational sources. The following trends define the nature of these evolution­

related pressures: 

• Integration pressures: Organisational mergers often require conversion and 

adaptation of database systems. However, the investment in persistent data is 

often considerable, requiring that any change not disrupt the integrity and 

consistency of persistent stores. The field of schema evolution is particularly 

relevant here and organisational dependencies on so-called "legacy systems" 

should not be underestimated. 

• Changing domain requirements: Evolution stemming from changing 

requirements in the underlying application domain (or Universe of Discourse 

(UoD)) is inevitable. This takes the form of changes in product lines, government 

regulations, or other organisational standards relating to particular domain entities 

or the inter-relationships and inter-actions between them. 

• Containment of software maintenance costs: Frequent software maintenance is 

expensive, both in terms of disruption to system availability and services, as well 

as increases in the complexity of the system. The latter can result in systems 

being difficult to comprehend by maintainers whom are not necessarily the same 

individuals that were responsible for designing the initial system. More efficient 

and effective maintenance mechanisms are sought. However, the ability to 
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accommodate evolution without resorting to any significant system maintenance 

is desirable. 

Technologically-oriented pressures also contribute to evolvability requirements. 

These include: 

• Personalised (Adaptive) software: The notion of software that dynamically 

evolves to suit its current environment, or context, is prevalent in software 

applications ranging from word-processors to e-commerce. An example of the 

latter would be the personalisation of product prices and discounts, depending on 

the customer, time of year, etc. From an information systems point of view, this 

requires consideration regarding the design of software that will model the core or 

fundamental aspects of the domain, as well as cater for the personalisation 

requirements and policies that may change over time. This has traditionally been a 

difficult problem, leading to software that ultimately becomes very difficult to 

maintain. 

• New application classes: More dynamic schemas and behaviour are required to 

manage the requirements stemming from application areas such as data mining 

and scientific databases modelling evolving entities (e.g. weather systems, 

biological systems). Here, data structures must evolve as they are discovered. This 

is clearly in conflict with traditional database development where schemas exist 

before any programs are run against them. 

• Platform evolution: The recent proliferation of different middleware platforms 

such as .NET, EJB and CO RB A, has made it difficult for enterprises to 

standardise on as single platform. Frequent platform changes are also disruptive to 

the organisation, resulting in loss of investment in certain implementation 

technology. Pressure for more conceptually-oriented development, that is also 

platform-independent, is increasing. 

The range of requirements presented here necessitates a consideration towards the 

way information systems, and their persistent stores in particular, are conceptualised, 

designed and finally implemented. An approach that uses the software development 

life-cycle (SDLC) as a vehicle to study the problem of evolution is therefore adopted. 
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This involves the stages of requirements analysis, system specification, design, 

implementation, and finally operation and maintenance. The maintenance phase is of 

particular interest to long-lived systems and especially to evolution-oriented 

requirements changes. These often necessitate a re-iteration through earlier phases 

and are notoriously expensive in terms of cost and disruption to system services. 

We now briefly discuss the content of this research in terms of the remaining 

chapters. 

Chapter 2 describes the stages of the SDLC with emphasis on the database aspect. 

Conceptual modelling as a means for describing the entities and relationships 

comprising an application domain is considered, as well as the issue of describing 

data not traditionally stored in DBMSs. In particular, the Extensible Mark-up 

Language (XML) is regarded as a means for describing data not easily characterised 

in terms of rigid schema structures. 

Having introduced the processes and artefacts involved in constructing, implementing 

and maintaining information systems, Chapter 3 proceeds to discuss the impact of 

evolution on the SDLC phases. The characteristics of traditional software 

development that affect evolvability are also discussed. These include: 

• The need for requirements analysis techniques that are better coupled and 

integrated with specifications so as to preserve consistency through numerous 

maintenance iterations. 

• The need to quantify and qualify evolvability in conceptual models (specification 

phase) and the need to model changing requirements. 

• The problem of design erosion as it affects the architectural design of the system. 

• The schema evolution issue and the associated problems of application and 

database compatibility. Weaknesses in current implementation technology are also 

considered. The problem of using disparate components (i.e. database systems, 

operating systems, communication systems, etc.) to realise an implementation is 

of particular concern. 
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Chapter 4 introduces a range of techniques presented in the literature as solutions to 

particular aspects of the evolution problem. These are once again discussed in terms 

of the SDLC phases and include the following: 

• The issue of stability and how it may be assessed in conceptual models. 

• Approaches to deal with the specification of evolving requirements - both in 

terms of structural and behavioural models. 

• The issue of accommodating evolvability into design-level artefacts. In particular, 

the interactions between design components emerges as a fundamental aspect in 

coping with evolution. 

• Solutions to the schema evolution problem are considered for their contribution 

towards facilitating maintainers with the means to evolve persistent stores whilst 

preserving semantic integrity. 

• Reflection, being 'the ability of a program to manipulate as data something 

representing the state of the program during its own execution' [Gabriel et al, 

1993], is considered as a means for facilitating dynamic behavioural evolution. 

• Persistent application systems and orthogonal persistence as a programming 

paradigm where developers are freed from the concerns of implementing explicit 

mappings and translations between disparate system components. For example, 

the impedance mismatch problem between programming languages and database 

query languages is a result of such "incompatibility". 

• A meta-modelling architecture as a means for realising high-level semantic 

compatibility between system components. In particular, the OMG's Model­

Driven Architecture (MDA) is presented as an approach where development is 

more specification-level and conceptually oriented. It uses Unified Modelling 

Language (UML) models that are mappable to platform specific implementation 

artefacts. This mapping is, for the most part, automated via tools. The benefits for 

managing evolution are considerable, particularly the assurance of consistency 

and controlled change propagation via a "meta-conforming" system model. 

Lastly, Chapter 5 provides a synopsis on the problem of evolution and its solutions. 

Section 5.2 briefly discusses the requirement of providing a framework to support 

evolution uniformly through the software development life-cycle. 
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CHAPTER 2 - DESIGN AND DEVELOPMENT OF 
INFORMATION SYSTEMS 

The development of an information system typically follows the phases of the 

software development life-cycle. These include a requirements analysis phase, 

followed by a system specification phase, design phase, implementation and testing 

phase, and finally an ongoing maintenance phase. 

Numerous techniques can be applied at the early stages of requirements analysis and 

specification in order to capture and model customer requirements for a particular 

application domain. These include: 

• The modelling of the entities and their relationships in the application domain. In 

particular, this refers to the database aspect where conceptual modelling provides 

the means to formally describe the real-world objects, their roles and inter­

relationships, as well as constraints or business rules. 

• Functional requirements (including those relating to the process and data flow in a 

system that define the transformations expected by the user) 

• Non-functional requirements (cost, reliability, availability and performance) 

The design phase in an information system development includes design of the overall 

system architecture where the components making up the system are described, as 

well as the relationships between them. This phase bridges the specification and 

implementation phases by considering how the specification might be realised as 

opposed to what it must realise. 

The implementation phase is the realisation of the design in terms of a set of programs 

or program units as well as the instantiation of a physical database schema. Testing 

now occurs to ensure that the system meets its specification. 

The maintenance phase is a particularly interesting and challenging one for long-lived 

information systems. It concerns the sustainability of the system in the face of 

changing requirements, changing technology, or the correction and improvement of 
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flaws. Through all this, the developer is required to maintain system integrity and 

consistency with minimum disruption to services. 

We now consider each stage of the development life-cycle in more detail, particularly 

with a view towards information systems where the persistence of data and its 

semantics must be addressed. 

Sections 2.1.1 through 2.1.5 consider requirements analysis, system specification, 

design, implementation and testing, and the maintenance phase in further detail. 

Section 2.2 presents an introduction to conceptual modelling - a key component for 

formally describing the database aspect of an information system. XML as a means to 

model Web, and other unstructured data, is introduced in section 2.2.2. 

2.1 The Software Development Life Cycle 

2.1.1 Requirements Analysis 

This phase is characterised by consultation with the client in order to determine the 

system's services, constraints and goals. The problems for which a solution is sought 

are documented so as to create an initial requirements definition. Sommerville 

[Sommerville 1992] suggests that although requirements are indeed stipulated at 

varying levels of abstraction, the initial liaison with the client should typically be 

written in a natural language style that is understandable by all stakeholders. Simple 

intuitive diagrams are also prevalent at initial meetings, particularly for indicating the 

major components of the system, their inter-relationships, as well as the relationship 

to the greater environment within which the system operates. A general 

recommendation is to also include a form of definition that is susceptible to logical 

reasoning. This is required to facilitate an effective transition to the next phase -

system specification. The requirements analysis stage tends to be iterative in the sense 

that better understanding and re-evaluation of the problem domain often result in 

revised documents. The extent of such "improvement" is naturally capped by the 

designer's or client's foresight at that time. 
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In addition, non-functional requirements such as restrictions on the freedom of the 

designer relating to cost, hardware limitations, resources, etc., should be expressed 

during this period. 

The phase is usually completed by a requirements definition document that includes 

the following [Sommerville 1992]: 

• Introduction: Motivation for the need of the system, and placing it into context as 

regards the overall business and strategic objectives of the organisation 

commissioning the software. 

• The system model: This should indicate the system components and the 

relationships between them, in addition to the relationships between the system 

and its environment. High-level abstract data models may be specified as well as 

simple action diagrams to indicate transformations that occur in the system. The 

aim is to indicate the real-world entities that are to be represented in the software 

system. 

• System evolution: The fundamental assumptions on which the system is based, 

together with anticipated changes due to hardware evolution and changing user 

needs, should be presented. 

• Functional requirements: The services provided for the user should be described 

in natural language terms. This would also include constraints on the nature of the 

system's functionality. However, as suggested earlier, a form that will facilitate 

cross-reference to a more formal specification is advantageous. 

• Non-functional requirements: Constraints imposed by the environment in which 

the software must operate should be related to the functional requirements. 

In order to progress to a more formalised interpretation of the system requirements, 

specifications are developed. These serve to bridge the gap between informal 

requirements analysis and system design. 

2.1.2 System specification 

This phase concerns the creation of an abstract description of the software. A basis is 

then established by the system designer for later design and implementation phases. 

The need for greater formality becomes paramount in order to avoid the ambiguity 
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and imprecision that is inherently part of informal natural language and informal 

graphically-based formats. 

There are different aspects of an information system to be specified. Broadly 

speaking, these include means to model the process and flow of control aspects 

(defining the sequencing of events or their synchronisation), the behavioural aspects, 

as well as the more structural or entity related concerns. So-called business rules 

should also be crystallised at this point. These essentially specify constraints on the 

behavioural aspect of the system. 

Developing a good specification is a difficult task. In particular this includes finding 

the right level of abstraction at which to decompose the system components, as well 

as finding an appropriate specification language or model that is sufficiently 

expressive. It should be noted that one of the prime objectives of using more 

formally-oriented specifications is to obtain a basis for sound representation of the 

system's semantics. An ability to support some form of logical reasoning is therefore 

established, allowing the specification to be interrogated. 

Balzer [Balzer 1986] elaborates on the principles and implications of good 

specifications. His criteria provide a sound basis for presenting what the specification 

phase of a system development should entail. These include the following notions: 

• Functionality must be separated from implementation in order to bolster the 

ability to reason logically about a specification without being hindered by 

implementation level constructs. Constraints on the functionality should be 

specified non-deterministically. 

• A means to model process oriented aspects, or stimulus-response type behaviour, 

is required in order to specify the dynamics of the system. Process algebras are 

noted as being favourable for formally describing the ordering of events in the 

system workflow sense. 

• Interaction and relationships with other system components, as well as the greater 

environment, should be modelled. This requires that a globally maintained model 

be used to capture the system context. He emphasises that a mutual dependence 

between interacting system parts and the environment can lead to implementation­

bias pitfalls. A demon capability, as an independent agent that deals with 
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environmental changes, is therefore recommended. This avoids specifying the 

methods regarding the interaction between components. 

• The system specification must be a cognitive model, in the sense that it 

corresponds to real-world objects and their actions in the domain as perceived by 

the user community. It must also aim to incorporate the rules or laws governing 

these objects, which may constrain certain states of the system, as well as specify 

how objects respond when acted upon. As a result of this, constraint statements 

are required. These are in addition to constraints that specify type-checking 

concerns in the sense that real-world objects are governed by belonging to one or 

more types. 

• An operational specification is advantageous in that it facilitates the validation of 

an implementation against a specification. 

• A specification should be capable of being augmented and dealing with 

incompleteness. Changes to invariants and underlying declarations should ideally 

be promulgated throughout the specification. 

• Lastly, the specification should be localised and loosely-coupled. Localisation 

facilitates that only a single piece of the specification requires alteration in the 

event of a system modification. Loose-coupledness facilitates the addition and 

removal of pieces of a specification. 

As suggested above, there are several aspects that need to be modelled; the primary 

ones relating to process control flow, some form of entity and relationship modelling, 

and behavioural modelling. Above all of this, a good specification would aim to 

integrate these in order to realise the benefits described in [Balzer 1986]. However, 

numerous factors, mostly pragmatic, also play a major part here. 

Firstly, as suggested by Wing [Wing 1990], developments that aim to use formal 

modelling techniques inevitably face the issue that no one method can satisfy all 

modelling requirements. Other issues such as available tool support, rapid application 

development requirements, unfamiliarity with formal notations, and so forth, also add 

to a system specification that is far less formal than Balzer' s [Balzer 1986] notion of a 

specification. 

Information system developments primarily follow a structured analysis type 

approach of which entity-relationship type modelling is a primary method for 
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specifying the database component. The focus here is more toward a conceptual 

model as the primary description of the objects stored in the database (Conceptual 

modelling approaches are discussed in further detail in section 2.2). Specifying the 

behavioural aspect of an application, whether it be encapsulated within the constructs 

of a conceptual model or not, can take a variety of forms ranging from formal 

methods with sound logical reasoning and mathematically-oriented constructs, to 

more pseudo-code type approaches with greater implementation bias. The more 

process-oriented requirements of an application are usually modelled separately, using 

techniques such as data flow diagrams to capture the activities and events that 

determine the flow of control. 

Overall, some form of modularization takes place during specification, rendering 

concrete entities of the application into abstract components of the specification. To 

progress the system's development, implementation-oriented abstractions of the 

specification are produced. The form and interaction of these more refined 

components characterise the next phase - design. 

2.1 .3 Design 

This phase is initially characterised by the development of an architectural design. 

This aims to obtain a more concrete description of the different software components 

or sub-systems along with their relationships. It must be emphasised that the 

relationship between specification and design is a close one. Sommerville 

[Sommerville 1992] notes that 'although the process of setting out a requirements 

specification as the basis of a contract is a separate activity, formalising that 

specification may be part of the design process. In practice, the designer iterates 

between specification and design'. 

For large enterprise developments in particular, the design process can be complicated 

by the volume and diversity of different components. These components may include 

those pertaining to the database aspect, components realising workflow-related 

concerns, as well as user-interface objects. The need to manage and relate these in 

more abstract terms has given rise to the field of Software Architectures. This has 

emerged as a means to assist developers at the design phase with a means for 

13 



specifying the overall system structure in terms of the elements that comprise the 

structure and the relationships between them. The aim is to provide the developer with 

a set of intermediate models and artefacts for bridging the gap between specification­

type entities and an implementation in the form of program code. As discussed in 

[Hofmann et al, 1996], coordination between components is conceptually handled by 

the notion of a connector. These "attach" to components via ports, which can be 

regarded as the interface of the component. 

For the purposes of this research, the issue to note is that the design phase concerns 

the macro-level view (software architecture) defining the overall system in terms of 

the components and the interactions between them, as well as the refinement of 

individual components' specifications. 

There are different design strategies for refining these components. The primary 

consideration is whether to adopt a functional or object-oriented approach. The former 

involves a decomposition into functional components with a centralised system state 

that is shared between the functions operating on that state. With an object-oriented 

approach, the system is viewed as a collection of objects with decentralised system 

state where each object manages its own state information. Objects communicate by 

calling a procedure or method associated with another object. The major consideration 

regarding design is that there is no "best" approach as such. Software systems are 

usually designed with a combination of both strategies but in such a way that they are 

complementary. Sommerville [Sommerville 1992] states that each may be applicable 

at different stages of the design process. This implicitly includes the specification 

phase as well, due to the iterative nature of development and specification refinement. 

It has been suggested that object-oriented techniques are most natural at the highest 

and lowest levels of system design. In particular, the natural high-level view of a 

system is as a set of objects, or architectural components. However, when the system 

is examined in further detail, functional descriptions of certain elements may tend to 

be more natural. Lower level detail would typically be concerned with manipulating 

objects, thus requiring an object-oriented approach once again. 

In summary, this pivotal phase between abstract specification and implementation is 

vast in the sense that it deals with the refinement of high-level definitions into low­

level implementation-oriented constructs. Through all this, verification of the design 

against the specification is required in order to ensure correctness, particularly in 
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terms of semantic integrity, i.e. is the design a correct interpretation of the 

specification. 

Amongst the system components being refined and verified is the database conceptual 

model - one of the primary aspects of an information system's architectural design. 

According to Bowers [Bowers 1993], the conceptual model is an abstract 

specification of the data to be included in a database system, while the conceptual 

schema is that same model but cast into a form which can be implemented. The 

process of transforming from conceptual model to conceptual schema is known as 

conceptual schema design. There are a number of distinct types of database systems, 

characterised by the principle structure used to represent data; for example, 

hierarchical, relational, or object-oriented structures. These, in essence, represent the 

logical implementation structure for the database. 

The architectural framework and its constituent components are finally refined to a 

point where they can be implemented. 

2.1.4 Implementation and Testing 

The implementation aspect involves the translation of the design into a set of 

executable programs or program units. Any outstanding details concerning functions 

to be performed and the nature of the data involved, need to be settled in order to 

allow the phase to reach a conclusion. Unless a prototype development was 

undertaken, certain requirements and design omissions may only be revealed at this 

point. Iteration through earlier stages would therefore be required. In addition, non­

functional requirements, for example those relating to performance requirements, are 

typically verified at this stage. 

As far as the database aspect is concerned, the logical schema is now implemented 

using a specific data definition language (DDL) for specifying the required types and 

structures, as well as any corresponding validity constraints. Bowers [Bowers 1993] 

notes that it is often the case that semantic and integrity-related features represented in 

a conceptual model are inadequately portrayed in an implementation, due to 

omissions or restrictions inherent in the particular DBMS software. Less than perfect 

workarounds usually result to minimise such shortcomings. 
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Implementation and testing usually takes place on a unit by unit basis followed by 

integration and testing of the parts into a whole. Verification against the specification 

plays a large role here and can be handled differently for different software 

components, depending on the development process. Developments, by formal 

transformation from specification to implementation, guarantee that the final 

implementation is indeed an adequate representation of the specification, while other 

less formally-oriented approaches rely on an adequate set of test cases to be run 

against the system. These are then verified against the specification. 

2.1.5 System Maintenance 

The system maintenance phase is of particular relevance to the problem of evolution: 

It is usually the longest phase in the life-cycle, especially so for information systems 

which are largely comprised of long-lived objects. 

Boehm's [Boehm 1981] definition of maintenance as 'the process of modifying 

existing operational software while leaving its primary functions intact', succinctly 

captures the role and intention of typical activities that occur during the maintenance 

phase. According to Lientz and Swanson [Lientz and Swanson, 1978], these would 

include the following: 

• Corrective maintenance (detecting and correcting errors, i.e. routine debugging) 

• Adaptive maintenance (accommodation of changes to the environment of the 

program - specifically hardware and newer software technologies for the 

implementation of system units) 

• Perfective maintenance (user requested enhancements, improved documentation, 

enhanced performance) 

Lientz and Swanson [Lientz and Swanson, 1980] reported that the respective 

categories count for 17%, 18% and 65% of the total maintenance activities, and that 

user requested enhancements, in particular, accounted for two-thirds of the last 

category. This would also include requirements changes, in the sense of changing 

business rules, new government regulations, etc., as introduced in Chapter 1. 

Software engineering research regarding the study of system change has followed a 

combination of both theoretical and empirical routes. These include investigations 

into the relationship of organisational factors to software systems, as well as the 
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design process used to engineer the software. The former considers both structural 

issues in organisations, affecting the way in which systems are initially 

conceptualised, as well as factors influencing the ease with which changes can be 

realised; for example, the size and complexity of the software, or the effectiveness of 

the resources allocated to realise the change. 

Investigative studies, regarding the engineering techniques used for developing 

software, have also proved informative. Overall, lifetime costs are generally 

decreased by an increase in effort during the earlier development phases. 

Furthermore, techniques such as object-oriented design, approaches encouraging 

module independence, and use of high-level programming languages, are all 

considered to be favourable towards aiding maintainability. 

As regards databases, the traditional ANSI/SP ARC architecture delivers data 

independence, whereby changes at the physical level do not compromise logical or 

conceptual schemas, and external or user schemas can be changed without affecting 

the database's conceptual schema. However, as implied above, requirements change is 

a serious issue resulting in considerable maintenance overhead - databases are not 

exempt from this. Methods to cope effectively and efficiently with such change across 

the information system infrastructure are welcomed - this includes the database and 

the application structures "surrounding" it. The issue of evolution, and how it might 

be dealt with, is considered extensively in later chapters. In particular, the effect at 

each stage of the development life-cycle is discussed, along with the problems that 

need to be addressed and the solutions presented in the literature. The requirement for 

addressing evolution coherently and consistently over all stages of the life-cycle, 

emerges as a distinct requirement for the long-term maintenance of an information 

system. 

As this research is particularly concerned with the persistent (database) aspect of 

information systems, we briefly survey conceptual modelling techniques. These 

provide the core representation for the (persistent) information content of an 

application domain, and are therefore an important reference when addressing 

evolution over the development life-cycle. 
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2.2 Conceptual Modelling for Databases 

The traditional role of a conceptual model is to provide an implementation­

independent representation of the information content of a particular application 

domain or Universe of Discourse (UoD ). It serves as a first step for creating a more 

structured and unambiguous view of real world objects and the roles they play within 

the application. A more design-oriented interpretation, or conceptual schema, is then 

established, whereby the permitted states and transitions of a database system are 

defined. This abstraction should not be concerned with data alone per se, but also 

about how it is used in order to provide a control for maintaining the integrity and 

validity of the system. The conceptual layer is, or should at least be, the most stable, 

unaffected by user-interface changes (external views), or any physical storage and 

access methods. The notion of conceptual model stability, and hence later conceptual 

schema stability, as it affects system evolution, is discussed in detail in Chapter 3. 

In order to provide a handle on formalising what the data in a database means, much 

research was initiated in the 1970's and 80's toward semantic modelling. In order to 

verify user requirements with a customer, analysts required a suitable means of 

representation of the environment. Secondly, the system designers needed this as a 

basis for their design of computer systems. Finding a technique that suits both camps 

sufficiently remains a challenge. In particular, the realisation of this would hold 

promise for managing user requirements change more consistently through the 

development life-cycle. Chapter 5 considers this in further detail. 

Date [Date 1990] characterises semantic modelling research as approaches in terms of 

the following steps: 

• Attempts to identify a set of semantic concepts that allow informal discussion 

about the real world. This typically includes the notions of entities 

(distinguishable objects), properties (a piece of information describing an entity), 

identity (a property of an entity that serves to identify it), relationships (an entity 

that interconnects or relates two or more other entities), subtypes and so on. 

• A more formal symbolic representation that corresponds to the above mentioned 

concepts. 
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• A set of formal integrity rules that constrain a model in such a way that the 

concepts expressed in it are valid in a meta sense, i.e. that the model is a valid 

instance of a meta-model. 

• A set of formal operators for manipulating the formal objects. These might be 

applied to construct a set of different user views from one base structure. 

Traditional conceptual modelling approaches, such as Chen's basic Entity­

Relationship model [Chen 1976] and its later extensions, have been widely used as a 

mechanism to capture semantic concepts including the notions of entity, property, 

relationship, and subtype. However, the role of a sound conceptual model is becoming 

increasingly pervasive where factors such as the semantic expressiveness of the 

model, ability to serve as a formal specification for a system, understandability by 

humans, and support for automated mapping to lower level DBMS structures are 

important. The ability to incorporate a system's behavioural characteristics is also 

becoming a necessary requirement, in order that both system state and process are 

modelled in a unified manner. 

The following section aims to provide a brief overview of the major conceptual 

modelling techniques. This should provide the reader with an appreciation of the 

scope of their role as well as an indication of their future potential for bolstering 

information system design and management. 

2.2.1 An oveNiew of Conceptual Modelling Techniques 

The Entity-Relationship (ER) Model 

Developed by Chen [Chen 1976] and still widely used today in numerous refined and 

extended forms. It delivers a set of analogues to the semantic concepts introduced 

above and also introduces a corresponding diagrammatic representation. Although 

useful as a basis for abstract database design, it is often cited as lacking in its ability to 

express integrity related constraints. This includes constraints pertaining to attributes 

of entities, and those describing the nature of relationships. By not dealing explicitly 

with constraints, instances of the ER model are vulnerable to mis-interpretation which 

can have far reaching effects when design transformations need to be applied. 
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Nonetheless it has served well as a simple and readily understood means for 

communicating the salient features of a particular database design. 

Object-Role Modelling (ORM) 

Using Natural Language Information Analysis Method (NIAM) as a basis, Halpin 

[Halpin 1995] specified the Object-Role Modelling (ORM) method as a technique 

that delivers an improved means for describing business rules and constraints. In 

particular, the exact relationship of an attribute to its entity is more explicitly 

modelled. Underlying domains, relationship cardinalities and optionalities, and an 

ability to be easily populated with real world instances, all help facilitate easier 

validation with users in natural language, in addition to providing a means that is 

more feasible to formulating, transforming, or evolving a design. Halpin [Halpin 

1995] indicates that the model has proved suitable as a conceptual basis for both 

relational and object-oriented data models. The latter is facilitated through better 

support for subtype and inheritance representation than that provided by the ER 

approach. 

He also states that ER diagrams can be abstracted from ORM diagrams, providing the 

means to present more compact and focused summaries. 

Object-Oriented Modelling 

Object-oriented database design originated from the approach introduced by object­

oriented programming languages, where the user need not deal with computer­

oriented constructs such as records and fields, but rather with objects and operations 

on those objects, thus resembling real world counterparts more closely. Date [Date 

1990] notes that object-oriented technology is not a semantic modelling technique per 

se, as the latter aims primarily to identify a set of constructs at a higher level of 

abstraction that are generically useful and which recur in some shape or form in a 

wide variety of applications. Halpin [Halpin 1995] mentions the object-oriented 

database approach as tending to be a mix of conceptual, logical and internal elements. 

The development of UML (Unified Modelling Language) is also providing a standard 
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notation for representing the structure of data in the object-oriented community. Its 

role in the OMG's Model Driven Architecture [OMO-Soley, 2000] as a means for 

managing evolution is particularly important. We discuss the MDA in detail in 

Chapter 4. At this juncture, a brief discussion of object-oriented modelling as a role 

player in conceptual specification is warranted. 

The principal terms and concepts of the object-oriented approach include object itself, 

class, method and class hierarchy. Every object has a unique object ID and may be as 

simple or as complex as required. Complex objects can be constructed from 

combinations of existing objects which can in turn be simple or complex. Whereas 

objects more or less correspond to the notion of variable in the programming language 

sense, classes correspond to type, or more appropriately, abstract data type. Classes 

therefore group objects based on common characteristics. These characteristics 

include attributes as well as methods. Methods are essentially operators that apply to 

objects and therefore add to the ability of this notion of object to model both state and 

behaviour of real-world objects. These methods are incorporated within the "public 

interface" for objects of a particular class, while the detail of their implementation is 

hidden or encapsulated from the user. Classes can also be grouped into superclasses 

based on some set of common characteristics among the subclasses. Each subclass in 

this hierarchy inherits the common set of attributes and methods from the superclass. 

Generally, subclasses can modify or override inherited characteristics, as well as add 

additional ones. A class hierarchy can also join with other hierarchies at a particular 

level, thereby allowing a class to inherit from multiple superclasses. As indicated in 

[Bukhres et al, 1996], the inheritance mechanism can prove useful for abstraction and 

polymorphism. Upper layers represent more generic and abstract views of lower-layer 

characteristics. Software reuse is also encouraged as subclasses are allowed to use 

code and storage structures defined in ancestor classes. Polymorphism in the object­

oriented sense applies to references (relationships or method invocations) that can 

refer to objects from multiple classes. The context of a reference can change over time 

as application needs change. For example, an application calculating the area of a 

shape for some object, will inherit the attribute of "enclosed area" and method of 

"surface area" from some more abstract class of geometric shape but, depending on 

the context, will utilise the particular method applying to square objects, round 

objects, or say triangular objects. 
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As mentioned earlier, UML is emerging as a standard notation for object-oriented 

modelling. This would seem promising for a start as the object-oriented data model 

has been plagued by the problem of not having an exact definition. UML presents a 

framework where classes of entity objects are essentially entities, and associations are 

relationships. Hay [Hay 1999] notes its more extensive capability to describe inter­

relationship constraints. Furthermore, it adds the ability to describe the behaviour of 

each object class - usually in the form of pseudo-code or C++. In summary, it 

attempts to provide a formalism suitable for both requirements analysis and design. 

However, some implementation level concerns creep into the notation and are 

sometimes criticised for being distracting and unnecessary from a conceptual point of 

view. 

The surge of Web-based and semi-structured data also requires consideration, 

especially as it is inherently prone to evolution. We now consider the Extensible 

Markup Language (XML) as a means to facilitate description of such data. 

2.2.2 XML - Describing data on the World-Wide Web 

As Tanaka et al. [Tanaka et al, 2000] state, there is also a need for treatment of data 

not stored in traditional DBMSs. In particular, this includes semi-structured data 

which is prevalent on the World-Wide Web and typified as being difficult to describe 

in terms of rigid schema structures. Techniques are therefore sought to deal with data 

that is irregular, unknown in advance, and often changing in structure. 

XML (Extensible Markup Language) has emerged as a universal data exchange 

format for the Web. It is capable of representing data structure in text and has 

commonality among different types of data sources, in the sense that almost any data 

source can be converted to XML format. Although it is not classed as a data 

modelling technique such as those discussed above, it currently provides a welcome 

means for describing structure in Web-type data. It should be noted that XML is only 

a mark-up language and does not have as associated data model as such. 

Like HTML (Hypertext Markup Language), XML is a subset of SGML (Standard 

Generalised Markup Language). The latter is a sophisticated tag language that has not 
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achieved widespread uptake due to its complexity and the complexity of the tools 

required. While HTML is used to describe pages to the Web by making use of tags 

that are interpretable by browser software, XML allows tags to be defined by users. 

Because of this approach, software cannot provide more interpretation to the 

structure, unless it is specifically written to do so. XML is therefore most useful in a 

community defining a set of common tags for its purpose, i.e. a type of meta-model. 

XML can however be augmented with an optional document type declaration (DTD). 

A DTD states what tags and attributes are used to describe content in an XML 

document, where each tag is allowed, and which tags can appear within other tags. 

Limitations in XML's ability to represent the finer points of data structure, ability to 

recognise sub-types and constraints, as well as a lack in facilitating modularity and 

reuse, have prompted the World-Wide Web Consortium (W3C) Working Group to 

develop a new generation of schemas for XML. The DTD approach is often 

considered to be more of a grammar-based concept, ensuring the well-formedness of 

an XML document. In order to ensure the validity of an XML document, W3C have 

introduced XML-Schema. W3C's requirements [W3C Malhotra, 1999] suggest that 

this should include key semantic modelling concepts. The list includes structural, 

datatype, and so-called conformance requirements. 

• Structural requirements : This includes mechanisms for constraining document 

structure and content, mechanisms to facilitate inheritance, an ability to 

"reference" the standard semantic understanding of a particular construct, 

mechanisms to specify application specific constraints and descriptions, 

mechanisms for addressing the evolution of schemata, and also mechanisms to 

enable the integration of structural schemas with primitive data types. 

• Datatype requirements : Allow for the definition of primitive data types, define a 

type system that allows for import and export from different database systems, 

distinguish requirements concerning lexical data representation from those 

governing an underlying information set, and to allow the definition of user 

defined datatypes. 

• Conformance requirements : These essentially include aspects that ensure the 

validity of XML components and their relationships. The XML Schema Language 

should therefore be capable of defining the relationship between schemas and 
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XML documents as well as playing a meta role by defining a useful XML schema 

for XML schemas. 

In spite of being a new concept, the notion of XML schema deserves serious 

consideration in the data modelling techniques arena. It is similar to the notion of 

object-oriented modelling discussed above, in the sense that it also concerns design 

phase concepts. 

XML as a means for building evolvability into structural specifications is considered 

in section 4.1.2.2. 

Having introduced the primary processes and artefacts involved in designing and 

developing an information system, we next consider the problem that arguably 

presents the biggest obstacle to the successful endurance of an information system -

evolution. This is discussed in terms of the impact on each of the SDLC phases. 
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CHAPTER 3 - THE PROBLEM OF EVOLUTION 

For long-lived software projects, such as large information system applications, the 

operational and maintenance phase of the life-cycle is by far the longest. Such 

systems continuously undergo changes arising from both user requirements, as well as 

changes to the environment in which the system operates. 

Researchers have specifically identified the field of software evolution as the area of 

study concerned with maintaining a system's structural and behavioural consistency 

after parts of a system have been changed. Evolutionary changes to a system can 

occur at various stages in its life-cycle for a number of reasons. These essentially 

correspond to the adaptive and perfective maintenance categories discussed in section 

2.1.5. Reasons for their occurrence include the following: 

• Optimal solutions are not always readily apparent. Better designs at both 

component and the greater architectural level may only be possible after 

implementation and actual experience of an operational system. 

• User and organisational requirements change. Additional functionality must be 

integrated into the existing system. 

• The underlying application domain which the system models undergoes change -

requiring that the system follows suit. As Falkenberg et al. [Falkenberg et al, 

1992] state, modern organisations must be flexible and adaptive in order to remain 

competitive in the global market place. Consumer needs are also becoming more 

demanding, and the need for information systems which can be easily adapted and 

evolved to the same extent as the information needs change is becoming crucial. 

In particular, it is the unforeseen changes that occur quite frequently, and need to be 

respected in information system developments. These are typical of the last category. 

In practice, development phases are repeated during the maintenance phase. The 

following sections therefore consider the phases of the SDLC as regards software 

evolution, with special focus on the subsequent issues. In particular, section 3.1.1 

considers the requirements analysis phase. Section 3.1.2 considers specification, with 

emphasis on the challenge of building evolvability into conceptual models. Section 

3.1.3 discusses the problem of design erosion as it affects software architectures. 
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Finally, the implementation issues are described in section 3.1.4 with emphasis on the 

schema evolution problem. This characterises the consistency and change propagation 

requirements that arise following an evolution. A brief consideration of the underlying 

problem of disparate implementation components as well as the need for a 

"supervisory" meta-model framework conclude the chapter. 

3.1 Evolution and the SDLC 

3.1 .1 Requirements Analysis 

As introduced in section 2.1.1, this phase aims to achieve a better understanding of 

users' needs as it proceeds. The phase itself is iterative, and concludes when a 

requirements definition document is produced where both functional and non­

functional requirements are stipulated. 

Changing user requirements on a new "green-fields" development is easily dealt with, 

particularly if later development phases have not yet been tackled: here, change 

propagation to design and implementation artefacts becomes a serious issue. 

However, large established information systems are characterised by having long life­

times spanning several years, if not decades. Functional changes to the underlying 

application domain are especially significant as they must be specified at the earlier 

stages of the life-cycle, and hence define the basis to which later design and 

implementation phases must adhere. Such changes usually arise due to changes in 

market, legislation, economy, and so forth. For instance, the production of new 

products or changes to the primary process of an organisation can alter the original 

application domain where new requirements may be as demanding as those that 

directed the initial construction. 

Incorporating these changes into a requirements document is obviously necessary in 

order to ensure an accurate and consistent documentation artefact of the system. Most 

software engineering practices encourage that the inevitability of change should be 

recognised and anticipated when producing a requirements document. The document 

should be organised to accommodate easy editing and revision. [Sommerville 1992] 

mentions minimisation of external references and modular document sections as 

factors influencing changeability in documents. Electronic tool support is also 
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regarded as a far more effective and efficient vehicle for managing change control, as 

opposed to unwieldy paper-driven systems. However, these can still be limited to the 

foresight that exists at the time of creating the initial document, and may not 

necessarily accommodate those requirements changes that occur once a system has 

reached the operational and maintenance phases of its life-cycle. As studies by Lientz 

and Swanson [Lientz and Swanson, 1981] and Banker et al. [Banker et al, 1993] have 

shown, it is not unusual to encounter a whole class of problems that only show up 

once a system becomes long-lived, typically involves persistent data, and grows in 

complexity and diversity. 

Of even greater concern is Sjoberg's [Sjoberg 1993] remark that most documentation 

is in fact notoriously poor and virtually always obsolete. The only reliable, up to date 

program information may be the source code itself or information that is 

automatically generated from source code. Even where documentation does exist, the 

incorporation of new requirements is challenging in order to preserve the integrity and 

consistency of the requirements definition. As mentioned in section 2.1.1, a 

requirements document that is amenable to a form of logical reasoning also bears 

advantages for the next stage which must deal with the more formally oriented system 

specification. 

3.1.2 System Specification and Conceptual Modelling 

This phase is characterised by the development of more formally-oriented models to 

represent the structural, behavioural and process or activity-related elements of an 

application. As this work is primarily concerned with the database aspect, focus is 

given to that which specifies the structure, behaviour, and relationships of objects in 

the application domain, i.e. the conceptual model. The structural framework generally 

represents the most static and stable view of the underlying Universe of Discourse 

(UoD). We begin by discussing the nature of the evolvability requirement for such 

structures. 

3.1.2.1 Evolvable Conceptual Models : Challenges and Issues 

Developing the conceptual model for an information system is a challenging task -

unfortunately with few guidelines and decision criteria to assist engineers. Intuition 

and design experience are heavily relied upon. One of the most relevant issues 
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concerns the fact that a large number of correct solutions may be produced for a given 

Universe of Discourse, but as Verelst [Verelst 1997] notes, each final model possesses 

significantly different characteristics in terms of understandability, maintainability, 

redundancy, enforcement of business rules, stability, and so forth. Simsion and 

Shanks [Simsion and Shanks, 1993] provide empirical evidence to support this where 

fifty novice- and expert data modellers used the Entity-Relationship technique for 

representing a small-scale requirements set. The main conclusions were that each 

resulting model was both different and correct to an acceptable level, and that there 

was considerable variety amongst the models, both in the number of entities and 

relationships used as in the use of generalisation. 

Researchers are challenged by providing guidelines to assist engineers in producing 

conceptual models that satisfy the evolvability quality for information systems. 

However, the first issue is to obtain a handle on the notion of evolvability at a 

conceptual level. 

Work by Wedemeijer [Wedemeijer 2000] and Verelst [Verelst 1997] tackle this, both 

from theoretical as well as more empirically-oriented approaches. 

Wedemeijer [W edemeijer 2000] indicates that a conceptual design is required to be 

stable enough to support a long-term systems lifetime, and be flexible enough to meet 

future information demands. Flexibility essentially concerns the adaptability and 

responsiveness of a model to future changes. Greater flexibility results in a smaller 

impact of change. Stability is similar, but where flexibility refers to a future capacity 

for change, stability refers to the history of the model in the sense that it is achieved if 

required changes have been accommodated : stability is proof that flexibility has been 

delivered. 

Flexibility 

We begin by considering flexibility as the more traditional measure of a conceptual 

model's quality to accommodate change. According to Wedemeijer [W edemeijer 

1999], three main design strategies exist that are widely accepted as delivering 

flexibility. These include: 
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• Active flexibility or adaptability: This aims to improve the design by arranging the 

constructs of the model in such a way that it is easy to modify. Normalisation, 

modularization, incremental design and the use of component libraries (if applied 

to reduce the time for response to a change) are based on this strategy. These are 

however inherently plagued by difficulties. Firstly, the arrangements of constructs 

are biased in that it assumes that future changes will be of the same type that the 

design was originally geared to handle. This issue relates to Verelst's [Verelst 

1998] concern regarding variability in horizontal abstractions and involves the 

choice among concepts on which to base the structure of the model on. He notes 

that it can be possible to treat all concepts as equivalent, but that certain primary 

dimensions are usually (unconsciously) chosen to determine the structure of the 

model. 

• Passive flexibility: This aims to decrease the need for future change in the model 

by incorporating more requirements into the design than those originating from 

the current Universe of Discourse. Wedemeijer [Wedemeijer 1999] lists reuse of 

"proven" designs, Business Data Modelling and the use of component libraries 

representing "good solutions" as examples. Once again, fundamental problems 

include how far ahead future requirements should be anticipated, which 

requirements are relevant, and which are beyond consideration. Creating models 

that are "over-flexible" can also lead to weaker constraint-specifications and a 

situation where "anything is possible". 

• Flexibility by abstraction: Such strategies aim to put less information into a 

conceptual model, thereby making it more abstract. Designers are however 

challenged in having to decide on the best level of abstraction. Verelst [Verelst 

1998] notes that models can become difficult to understand as abstraction 

increases. Furthermore, he cautions that abstractions can also define a certain 

"evolution path" where changes can be easily made, but changes outside of this 

scope can be awkward and inelegant. The transformation and relationship of 

abstract conceptual models to workable external and internal schemas can also be 

problematic. 

In essence, Wedemeijer's [Wedemeijer 1999] challenge to the claims of flexibility 

made by these, and other such approaches, centres on the following: 'why they should 
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enhance flexibility is often explained, sometimes demonstrated, but rarely proven by 

actual business cases'. In summary, considering flexibility alone as a measure for 

accommodating change is unsuitable since: 

• Flexibility can only be established "on the fly". A potential for change cannot 

become apparent on a new model, but only when a structural change occurs in the 

Universe of Discourse. 

• There is no distinction between structural changes that ought to be accommodated 

by the flexibility in the design and those beyond the desired flexibility, and 

• There is no way to verify that a given design has sufficient flexibility, or to 

discover that more is needed. 

Stability 

Given the emphasis on observing conceptual models in operational business 

environments and the issue of change over their operational life-times, Wedemeijer 

[Wedemeijer 1999,2000] suggests the study of stability. However, there is no 

generally accepted and unambiguous definition of the concept of stability. 

Wedemeijer [Wedemeijer 1999] suggests that a change in a conceptual model is a 

stable change if it is absolutely necessary to accommodate a change in the structure of 

the underlying Universe of Discourse. Any other change is deemed unstable. In an 

operational environment, enterprises try to keep the impact of change as small as 

possible and will naturally restrict the freedom of choice when adapting a conceptual 

model. The difficulty arises in ensuring that the adapted model is a good model of the 

changed Universe of Discourse, while still being as "close" as possible to the former 

conceptual model. This relates to demands for compatibility and extensibility in 

models. However, an underlying problem still remains, i.e. determining if changes are 

indeed stable: few guidelines and metrics are available to assist designers. Both 

Wedemeijer [Wedemeijer 1999,2000] and Verelst [Verelst 1997,1998] emphasise the 

need for empirical studies on actual business cases. Here, the relationship between 

changes in the Universe of Discourse and the operational conceptual model can be 

better understood. Unfortunately, such studies can be hindered, as changes are 

difficult to observe in real business environments. Studies that have been conducted 
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have either described symptoms of the stability problem rather than its essence, or 

have used limited or over-simplified taxonomies for detecting change. 

Lastly, it must be stressed that although factors such as the degree of encapsulation, 

information hiding, or abstraction in models can bolster the stability and also future 

evolvability of a model, the problem remains that multiple correct conceptual models 

can be built with similar levels of each factor, but yet have different evolvability 

characteristics. Once again, empirical studies are required to verify theoretical claims. 

3.1.2.2 Behavioural Evolution 

While recognition of evolution at the structural conceptual level is necessary, so too is 

behavioural evolution. As Saake et al. [Saake et al, 2000] indicate, the rules or axioms 

describing the allowed dynamic behaviour of entities may indeed change during the 

existence of those entities. He also comments that neither well-known approaches to 

conceptually describing information systems, such as UML, nor formal specification 

approaches, provide adequate support for dealing with changing requirements. 

Methods are sought whereby changes in the behavioural aspects of a conceptual 

specification can be accommodated. 

Furthermore, methods are also required whereby changes to the behavioural 

specification are consistent with the structural conceptual specification. Some form of 

meta-modelling would appear relevant as a means to control this, but the nature of its 

application requires further study such that a coherent framework is provided for 

designers. 

Design components and architectures are prone to the evolvability shortcomings of 

specifications, as they are essentially a more refined interpretation of conceptual 

artefacts. However, additional issues also arise. These are now discussed below. 

3.1.3 Design 

The early stages of the design phase for an information system are typically 

characterised by the creation of a design architecture where the different components 

are specified in terms of their relationships with one another. These components 

include software entities that handle data storage or computation for some aspect of 
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the information system. As indicated in section 2.1.3, this decomposition may 

comprise functional- or object-oriented elements. The aim is to realise a means to 

demonstrate that an eventual implementation of the various components will indeed 

satisfy stakeholders' requirements. 

3.1.3.1 Design Components and Software Architectures 

To facilitate maintenance, designs should be readily adaptable. This suggests that the 

components be loosely-coupled. Furthermore, components should be self-contained 

where usage or dependencies on externally defined components is minimised. As 

[Sommerville 1992] notes, this is somewhat contradictory to the practice of 

component reuse. Hence, a trade-off exists between the advantages of reusing 

components and the loss of adaptability that this entails. The reusability aspect is also 

relevant to the evolvability of the component model. This suggests that the adaptable 

or evolvable parts of components be differentiated. 

Object-oriented systems are amenable to adaptation and reuse in the sense that the 

adaptation mechanism does not rely on modifying the component, but rather on 

creating a new component whose attributes and operations are inherited from the 

original component. The original component and its dependants remain unaffected. 

However, for long lifetime systems, object-oriented systems require careful 

management in that their inheritance network can become increasingly complex as 

changes are made. Duplication of functionality can also result leading to redundancy 

issues. 

This addresses maintenance at a relatively low design level. Developers also require a 

better handle on the gross organisation of the system. The field of software 

architectures emerged as a natural evolution of design abstractions to address this 

issue. 

Software architectures were introduced in Chapter 2 as a valuable design 

methodology for information systems. Although structural, behavioural and control 

related aspects are described by different models, a software architecture must be 

aware of each, together with the mappings that exist between them in order to present 

a unified methodology for understanding the overall system. To further speed 
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development and facilitate reuse at an architectural level, different architectural styles 

emerged - design patterns, for example, have emerged as a means for the reuse of a 

solution for a specific design problem. They are usually considered in close 

connection with object-orientation and describe, in abstract terms, how a general 

arrangement of design elements (classes and objects) can solve a problem. Domain­

specific architectures, in particular, are popular for business information systems, 

where business processes and objects are organised and related to guide development 

of a new system. The sd&m architecture overviewed in [Hoffman 1996] is an 

example. As the design proceeds, lower level and more refined views of certain 

architectural aspects (e.g. components and connectors) are available. 

Unfortunately, fundamental problems remain in terms of design components and 

architectural structures. This concerns a lack in the capability to accommodate (isolate 

the effects of) changes and facilitate (assist and aid mechanisms or processes 

effecting) change. 

3.1.3.2 Design Erosion 

Although the likes of object-orientation and software architectures greatly benefit the 

construction of software, they do not adequately address the accommodation of 

changes during later operational stages. As Van Gurp and Bosch [Van Gurp and 

Bosch, 2001] note, software designs do indeed erode over time; to the point that 

redesigning from scratch becomes a viable alternative compared to prolonging the life 

of an existing design. Unforeseen requirements changes can invalidate design 

decisions that were once optimal. They suggest that design erosion is caused by a 

number of problems associated with the way in which software is commonly 

developed. These include: 

• Lack of traceability of design decisions: Notations used to create software can lack 

expressiveness that is needed to express concepts used during design. This results 

in difficulties when attempting to track and reconstruct design decisions from the 

system. 

• Increasing maintenance cost: Over time, the complexity of the system can 

increase. This leads designers to consider sub-optimal design decisions, either 
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because they do not understand the architecture, or because a more optimal 

decision would demand too much time and effort. 

• Accumulation of design decisions: When a design decision needs to be revised, so 

do other design decisions require reconsideration, possibly leading to developers 

having to work with a system that is no longer optimal for requirements it must 

now meet. 

• Iterative methods: A "proper" design is expected to accommodate future change 

requests. This, however, conflicts with the iterative nature of rapid prototyping 

development methods. These progressively incorporate new requirements but also 

have shortcomings. Sommerville [Sommerville 1992] notes that for large, long 

lifetime systems in particular, prototypes should be re-implemented anyway. This 

is due to characteristics such as performance, security, robustness and reliability 

usually being ignored during prototyping. Furthermore, as prototypes are changed 

to incorporate new requirements, it is likely that these changes are made in an 

uncontrolled way, resulting in the prototype code acting as the only design 

specification. This is inadequate for long-term maintenance. Lastly, prototypes 

tend to suffer from the "accumulation of design decisions" problem. Here, 

changes made during prototype development could have easily degraded the 

system structure, so that subsequent maintenance requirements become 

progressively more difficult to make. 

Good design methods, such as separation of concerns which can isolate the effect of 

changes, using sound design and architectural patterns to guide the design process, 

and in general, designing for change, are all noteworthy for delivering better designs 

but do not address the fundamental problems that cause design erosion. Van Gurp and 

Bosch [Van Gurp and Bosch, 2001] state that they only contribute by delaying the 

moment that a system needs to be retired. 

By using an experimental system, he was able to conclude that causes for design 

erosion problems did indeed range from accumulation of multiple design decisions 

(i.e. certain design decisions were taken because of earlier design decisions, even if 

they were the wrong decisions), to limitations of the object-oriented paradigm (e.g. 

inheritance constraining flexibility at runtime, encapsulation forcing objects to only 

interact via method parameters). Even optimal design strategies (i.e. no compromises 
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concerning cost or effort) proved to be insufficient for accommodating change in later 

evolution cycles. 

Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] have stated similar findings, 

where object-oriented techniques do indeed simplify the combination of components 

in a way that reflects interactions in the underlying application domain. However, 

changes on the implemented systems resulting from accommodation of new business 

rules cannot be performed in such a modular way. He indicates that this is due to 

interactions being "hard-wired" into code that implements the participating objects, 

thereby making it difficult to change or introduce new interactions without having to 

change the implementation of the objects as well. This in tum may have a ripple effect 

throughout the implementation of the system, compromising the architectural 

integrity. [Andrade and Fiadeiro, 2001] also indicates that while lower-level design 

strategies, such as those offered through design patterns, can deliver more flexible 

solutions, they are too low level to support an evolution process that takes place at 

higher levels of abstraction where business strategies and rules can be redefined. 

As the system enters its implementation and operational phase, the growth of 

persistent objects (both program and data) in particular, becomes an overhead that 

must be carefully managed by any evolution system. 

3.1.4 Implementation and Operation 

The developer is now required to realise the design artefacts from the previous phase 

in terms of program and code destined for a particular execution platform. 

Executables are delivered and users may begin to test and evaluate the system in 

liaison with the developer. As introduced in section 2.1.4, a cycle of validation and 

verification commences, which typically includes user requirements changes that need 

to be addressed. This problem is exacerbated once the system becomes operational. 

Persistent stores become populated with data, interruptions to working systems to 

accommodate maintenance are seldom acceptable, and more applications are 

developed that are associated around the database schema defining the persistent 

store. Future evolution requirements may also require that the system be able to 

integrate (horizontally) with other systems - the world-wide web all but demands this 

35 



from information system infrastructures. The effort involved in maintaining systems 

at this stage is in itself extremely significant : as the scale and complexity of systems 

increase, so too does the requirement for effective and usable tool support. 

The following areas are of interest to the evolution problem, particularly at the 

operational stage: 

• Schema and database evolution 

• Application (behavioural) evolution 

• The need to accommodate and ensure overall consistency of all information 

system components when faced with change. 

The field of system re-engineering is also relevant as it deals with legacy systems 

where modification and evolution to meet new and constantly changing requirements 

is resisted to such an extent that the system must be rewritten, or be completely or 

partially restructured. This research is limited to approaches that avoid resorting to re­

engineering and is more focused on methodologies that realise developments able to 

accommodate and facilitate evolution. Unfortunately, the extent and reliance on 

operational legacy systems cannot be underestimated, often necessitating substantial 

re-engineering efforts. 

We now discuss the areas that aim to address evolution of operational systems 

without unduly comprising the original development. This includes research that deals 

with the problem reactively and well as proactively. At this juncture, we focus on the 

issues and considerations regarding operational stage evolution in order to provide an 

indication of the types of solutions required. 

3.1.4.1 Schema and Database Evolution 

Schema evolution is essentially concerned with modifications of the database schema 

in such a way that conceptual consistency with respect to the underlying domain is 

maintained. A system supporting evolution would essentially be one where the 

database schema can evolve without the loss of any information. Following a schema 

change, database objects must also be consistent with the modified schema. 
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In particular, the following challenges need to be addressed: 

Semantic Integrity 

In order to ensure that schema evolution mechanisms are indeed consistency 

preserving and correct with respect to the underlying domain, an appeal must be made 

to design techniques applicable at earlier stages of the development life-cycle. This 

would typically included a need to relate conceptual schema designs, where one 

would aim to capture domain semantics formally, to internal database schemas on 

particular platforms. 

Architectural Issues 

Evolution may be achieved either completely, incrementally, by versioning, or by 

view-related approaches. 

Traditional techniques generally perform a complete evolution involving an entire 

recompilation of the schema, but with applications having to be suspended. 

Incremental mechanisms are generally facilitated via primitives. Each primitive is 

atomic by nature thereby promoting consistency and the potential for reversible 

modifications to the schema. Impact on running applications is less severe as 

modifications tend to be done in a more on-line mode. Modifications using this 

approach tend to be limited to simple schema changes. Tool support, in particular, is 

sought for managing more compound-oriented changes on types, such as the merging 

of object-oriented classes. 

Following a schema change, database objects must be consistent with the modified 

schema. Database availability and application compatibility are of particular concern. 

Approaches can either involve adaptation of the actual database objects, or rely on 

some mechanism to support "emulation" if objects conforming to one schema version 

have to be seen as objects of a different schema version. 

Adapting database objects involves the use of either immediate or deferred data 

transformations. Immediate transformations result in the entire database being in a 

state consistent with the new schema, but database availability is compromised. 
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Deferred techniques solve this by converting data objects on an as needed basis, but 

also result in a data access overhead and requirement for tracking and managing the 

history of updates. 

An attractive alternative to data conversion includes schema versioning and view­

based approaches - particularly for their intended lack of impact on database 

availability and application compatibility. Schema versioning techniques, for instance, 

aim to allow access to all data via both retrospective and prospective user definable 

version interfaces and, if possible, be extended to facilitate the update of data through 

historical schemata. However, while existing applications should experience minimal 

disruption, there is considerable overhead in managing multiple versions that access a 

single database. Following a similar approach, view support techniques are also 

attractive but are generally limited in their support for allowing updates or the 

addition of new data, as might be accomplished by adding new attributes to classes in 

an object-oriented database. 

Recent solutions to tackle the schema evolution issues presented above are considered 

in section 4.3.1. 

3.1.4.2 Application (Behavioural) Evolution 

Although the notions of compatibility via views or schema versioning approaches are 

attractive for the likes of legacy applications, implemented applications must 

themselves evolve. 

In particular the following requirements must be addressed: 

• Semantic integrity and consistency of the change process: Any change should be 

guided and constrained by the underlying specification. 

Furthermore, changes to the database schema of the system will reqmre 

modification to the application. Traditional approaches are generally capable of 

compiler-oriented warnings. Although useful, they are mostly limited to 

syntactical checks. Mechanisms are required that are more semantically-oriented, 

thereby facilitating a basis for tool support and a more automated means of 

ensuring that semantic integrity is preserved. 

38 



• Dynamic evolution: Applications, whose behaviour is dynamically determined by 

changes in the underlying domain, require advanced program restructuring 

techniques. An example would be a generic data structure browser where, on 

receiving a specification of the data structure, must automatically generate a 

program to browse over it. Application areas such as geographical information 

systems, CAD/CAM systems and multimedia systems, are also prone to requiring 

the facilitation of some sort of dynamic behavioural evolution. 

• Better integration with persistent store technology: The impedance mismatch 

problem concerns the fact that database query languages are inherently declarative 

and oriented to set-level processing, whereas programming languages are mostly 

procedural and oriented to record-at-a-time processing. Besides the overhead in 

the programmer having to manage the interface between the two, an overhead is 

also created for any required evolution management on the system. In particular, 

the propagation of change to ensure consistency and system integrity becomes 

complicated. The need for some sort of wholistic view is required, and is 

considered next in the broader context of all system components, including user­

interfaces and operating system interfaces. 

3.1.4.3 A Wholistic View : Issues and Considerations 

To re-emphasise, and as Sjoberg [Sjoberg 1993] indicates, the issue of ensuring 

consistency in the change propagation process for an information system is 

complicated by the fact that they are generally centred around a database. Changes to 

database schemata (schema evolution) may in turn have serious impacts on other parts 

of the schema, on extensional data, and on application programs (including interfaces 

for data entry, queries, report generation, etc.). Dealing with evolution separately 

among these components has been identified as impractical, inefficient and 

susceptible to corrupting the integrity of the system as a whole. This is also suggested 

in the 1998 Asimolar Report on Database Research [Asimolar 1998] where, from the 

database point-of-view, it is noted that code is not a first class object and co-equal to 

data in current database systems. The report also states that database systems need to 

be more application aware to facilitate the likes of large-scale system integration. 
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Better techniques are required for managing descriptions of application interfaces 

along with higher-level model-driven tools leveraging these to help integrate, evolve, 

migrate and replace application systems. Research work has also identified the 

following: 

• Some form of meta-modelling and meta-programming (possibly in combination) 

is required. The former helps to unify the different software components that 

ultimately comprise an implementation, in the sense that models are defined and 

constrained by meta-models, while meta-meta models can attempt to provide a 

global integration for all the meta-models in the software development scene. 

How this might be realised is an area receiving much research interest from both 

academic and vendor quarters. We consider this in section 4.3.4. 

• Disharmonies and incoherence in current implementation technologies is a 

fundamental contributor to evolution problems. Applications rely on disparate 

mechanisms including operating systems, communications systems, database 

systems, user interface systems, command languages, editors, file systems, query 

languages, etc. [Atkinson and Morrison, 1995] identifies Persistent Application 

Systems (PAS's) as long-lived, concurrently accessed, and potentially consisting 

of large bodies of data and programs. They typically outlive their individual 

components and implementation technologies. The aim, therefore, is to realise a 

coherent, wholistic design approach that eliminates these disharmonies and 

unnecessary sources of complexity, such as the impedance-mismatch problem. 

Atkinson's work on orthogonal persistence ([Atkinson and Morrison, 1995]) 

represents the main thrust of this research direction, and while attractive, also 

requires considerable effort in resolving numerous issues such as integration of 

types, data models, binding mechanisms and concurrency control between 

programming languages and databases. Technology to support such a system is 

also an issue. Orthogonal Persistence as a solution to the evolution problem is 

discussed in further detail in section 4.3.3. 

Chapter 4 considers different solutions proposed in the literature towards 

accommodating and facilitating evolution. The format is similar to this and previous 

chapters, with solutions presented in terms of their relevance at the different stages of 

the SDLC. 
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CHAPTER 4 - DEALING WITH THE EVOLUTION 
PROBLEM 

This chapter considers specific solutions to the problem of evolution through the 

information system development process. Issues and difficulties regarding evolution 

·were introduced in Chapter 3 by considering the different phases of the SDLC and the 

effect of change at each stage. Although the problem is far from solved, many 

contributions have been forthcoming, and collectively suggest criteria that 

information system developments must consider if they wish to successfully endure 

the inevitable change requirements that arise over an application's lifetime. To begin 

with, this chapter follows a similar approach to previous ones by considering 

solutions at specific stages of the SDLC. However, the need for a more pervasive 

framework governing all stages emerges as a distinct requirement in order to manage 

the promulgation of change from requirements analysis stages, through to 

implementation artefacts. 

No one particular method or methods were considered in detail for the requirements 

analysis phase. Recommendations and considerations are rather discussed in a 

synopsis presented in Chapter 5. 

We begin with proposals presented in the literature towards improving stability of 

specifications. This is discussed in section 4.1.1. The notion of explicitly specifying 

change is then considered in section 4.1.2 for both behavioural and structural 

evolution. This is followed in section 4.1.2 by a discussion regarding approaches 

enabling the accommodation of change in design architectures. Section 4.3 considers 

the schema evolution problem and its associated concerns, while section 4.3.2 briefly 

discusses reflection as a technique for effecting dynamic behavioural evolution. 

Section 4.3.3 discusses orthogonal persistence and the PJama project as a solution for 

improving and simplifying disparities in implementation technology, while section 

4.3.4 describes a meta-modelling implementation framework : the OMG's MDA 

approach, in particular, is seen as beneficial towards providing a more model-based 

approach to information system development. 
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4.1 Evolution-friendly specification 

As was indicated previously, current conceptual modelling techniques lack guidelines 

to assist designers in assessing the evolvability capabilities of a given model. This 

also applied to models where strategies such as encapsulation and abstraction were 

used. Furthermore, authors like Sjoberg [Sjoberg 1993] have indicated that traditional 

notions of stability in teaching and practice, data modelling, data schema construction, 

and so forth, must be breached in order that change be sufficiently accommodated. 

Two major aspects towards improving current practice in conceptual specification of 

information system structure and behaviour prevail in current literature. The first 

recognises that well-designed conceptual models will remain stable over time, and 

explores how designers might measure this stability over the operational life-time of 

the model in order to deliver higher quality designs that stand the test of time. The 

second aspect recognises that current modelling and specification technology does not 

allow designers to model or specify changes that might occur during the operational 

lifetime of a system in a flexible way. The degree to which these changes are 

successfully accommodated may then be appropriately measured in terms of the 

resulting stability. 

4.1.1 Stability Characteristics 

A conceptual model is generally regarded as the best means of perceiving a Universe 

of Discourse (UoD), not only at design time, but also as they both evolve over time. 

According to Wedemeijer [Wedemeijer 2000], a model suited to evolution would be 

one delivering stability, in the sense that any required changes have been 

accommodated and that flexibility has been delivered. The issue his work addresses in 

particular, is that current literature rarely addresses how such stability should be 

observed and measured in the operational business environment with evolving 

information needs and data structures. In order to attain a better understanding of the 

actual mechanisms involved in exploiting flexibility as a potential for change, 

Wedemeijer [Wedemeijer 2000] presents hypotheses and associated metrics on how 

conceptual schema stability ought to be expressed in operational environments. These 

are briefly discussed below: 
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• Justified change: A change in the conceptual structure is only justified if it is a 

change in the UoD's information structure that is causing it. The metric for this is 

the ratio of single conceptual model changes that can be associated with an 

appropriate change driver from the underlying UoD, to the total number of 

conceptual model changes that had to occur, regardless of whether they were 

associated with an apparent UoD change or not. Ideally, the ratio is equal to 1. 

• Proportional change: Every change in the conceptual model should be 

proportional to the change in the UoD that caused it. A small UoD change leading 

to a large change in the conceptual model would imply an unstable model. 

Measuring the size or severity of such a change can be somewhat subjective. As a 

guideline, Wedemeijer [Wedemeijer 2000] suggests a comparison between the 

number of paragraphs explaining the change in the UoD, to the number of affected 

constructs in the conceptual model. 

• Proportional rate of change: This essentially suggests that the rate of change in 

the conceptual model should be proportional to the rate of change in the UoD. 

Once again, there is a risk in precisely quantifying new user requirements and the 

lifetime of consecutive sets of user requirements against the number of conceptual 

model changes and the lifetime of consecutive conceptual model versions. 

• Compatibility: A new conceptual model is considered to be compatible with the 

old one if no data instances in any construct of the old model needs to be altered 

or discarded in order to suit the new model. This effectively eases any subsequent 

schema evolution overheads. Wedemeijer [Wedemeijer 2000] measures the extent 

of this by considering the size of the "external" view on the old conceptual model 

describing the affected data, relative to the size of the original conceptual view. 

Changes in the level of abstraction are regarded as particularly difficult to 

accommodate, as semantic discrepancies between versions require consideration. 

• Extensibility: New requirements should be catered for by extension or addition of 

new conceptual constructs, as opposed to modification of existing constructs. The 

latter measures the extent of non-extensibility of the model. As this suggests, 

changes by extension should leave old data instances fully compatible with the 

new schema. 

• Complexity hampers change: A typical measure of the complexity of a conceptual 

model would be the number of components in the model, the number of ways in 
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which they are interrelated, and how these interrelationships may change over 

time. Increases in complexity can be expected to lead to greater difficulties in 

accommodating change. A more complex conceptual structure should therefore 

change less frequently, indicating a favourable measure for stability. 

• Abstraction reduces the need for change: Related to the notion of complexity is 

the concept of abstraction. Designs that are more abstract are generally considered 

to be more stable due to a lower number of constructs that must be adapted to new 

requirements. The level of abstraction in the model, compared to the number of 

construct changes, can therefore provide some measure of stability. However, 

measuring the degree of abstraction in a model is a debatable issue. 

• Susceptibility to change: This recognises that some types of constructs in the 

model are more susceptible to change. Entities and relationships are presumed to 

have best stability, then attributes and relationship cardinalities, while integrity 

constraints and business rules are most volatile. Observing the number of 

changing constructs and their type could thus assist in measuring stability. 

• Preservation of entity identity: The means for identifying entities, such as 

candidate keys in relational data model theory, should not be changed. Such 

change is only acceptable when the entity itself is observed to change. 

• Further hypotheses are listed, viz. change is local, change is restricted to a single 

module, and modules are stable. These generally recognise the notions of 

localisation, cohesiveness, and loose-coupledness as bettering stability. 

These hypotheses and metrics are geared at assessing the stability of the constructs of 

a conceptual model when faced with changes from the underlying UoD. Although 

relevant in parts, they do not explicitly relate to behavioural modelling concerns as 

such. However, we can also appeal to the likes of Balzer's [Balzer 1986] work on 

properties of good specifications which was introduced in section 2.1.2. Localised and 

loosely-coupled specifications, for instance, should help in bolstering the stability of a 

specification. The use of "demon" capabilities, that act as independent agents for 

dealing with environmental changes, are claimed as being useful for absorbing change 

impacts that would otherwise cause overheads in maintaining interactions and 

relationships between system components - a high-level architecturally-related 

concern in particular. 
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Designers, however, require solutions and frameworks where changing requirements 

are accommodated and conceptual stability maintained. These are considered in the 

next section. 

4.1 .2 Specifying change 

Following the requirements definition phase, the designer typically begins to consider 

means to specify the system more formally. Numerous techniques exist to accomplish 

this and primarily aim to establish a semantic model for representing structural and 

behavioural aspects of the information system. As was discussed in section 3.1.2, the 

phase is complicated by the fact that multiple models can be built - all being correct 

as far as describing the application domain is concerned, but ultimately delivering 

varying degrees of evolvability. Even recent technologies such as the Unified 

Modelling Language (UML) are noted as not providing adequate support for dealing 

with changing requirements. It is especially the case of unforeseen changes that must 

be considered and catered for in a flexible way during the lifetime of a system. 

Work by Saake et al. [Saake et al, 2000] explores this with the aim of supporting 

continuous engineering of information systems at the conceptual level. His work takes 

cognisance of the fact that the behavioural aspect is the most volatile, and therefore 

appropriate to business rules which change over time. Here, the object-oriented model 

is considered in terms of accommodating an evolving behavioural specification and is 

now described in further detail below. 

Building evolvability into structural specifications is then considered m section 

4.1.2.2. 

4.1.2.1 Modelling change in behavioural specifications 

Traditional approaches require the behaviour of objects to be completely fixed at 

specification time, in the sense that dynamic behaviour is not modelled. Saake et al's 

[Saake et al, 2000] proposed solution stems from the premise that information 

systems consist of large numbers of long-lived objects, and that over time, conceptual 
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level requirements such as business rules and laws evolve. The associated system 

evolution therefore leads to changes in not only objects' states, but also the rules (or 

axioms) which describe the allowed dynamic behaviour of objects. Changing 

requirements during runtime therefore leads to new axioms being added, or existing 

ones being removed or changed. This may seem similar to implementation-level 

approaches, such as those used in SQL database management systems where 

insertion, modification and deletion of SQL functional units such as constraints, 

triggers and stored procedures, are supported during runtime of an application. 

However, to re-emphasise, the issue here is to support continuous engineering at a 

conceptual level, and to strive toward a more formal basis for specifying change. This 

allows later development stages to be better controlled, and formal reasoning at the 

conceptual level is in tum facilitated. 

Saake et al. [Saake et al, 2000] begin by using TROLL : a formal specification 

language-based technique with clear semantic underpinnings. More popular object­

oriented modelling approaches, such as OMT and UML, are cited as lacking clarity 

and being too restrictive for this purpose. TROLL is able to provide a framework for 

formally specifying structural as well as behavioural aspects of information systems. 

An extension is proposed that can cope with representation of dynamically 

changeable behaviour. Work by Balko [Balko 2000] also advocates such extensions to 

TROLL, particularly for the specification of an industrial production environment 

where the workflow specification for a group of machines is subject to dynamic 

change. 

According to [Saake et al, 2000], the extended framework is based on the following 

concepts: 

• During design, a separation of the rigid and the evolving part of application 

objects has to be performed. 

• A rigid specification level exists which fixes the signature of application objects 

as well as basic functions. 

• The evolution level of the specification manipulates specification fragments 

whose vocabulary is identical to that of the base level. 
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• Critical functions should be part of the base level. They are then safe from 

undesired modifications during evolution, and their properties can be formally 

verified through conventional approaches. 

To illustrate this, consider the example shown in Figure 4.1 below (adapted from 

[Saake et al, 2000]). This shows the signature and behavioural specification for a 

system which must cater for basic document management. 

object class Documents 
identification DocID: (DocNo) 
template 
attributes 

DocNo: int, 
DocType: {offer,contract}, 
Valid: date, 
Content: text; 

events 
birth create(DocNo:int,Content:text), 
revise(NewContent:text), 
death resolve; 

//behaviour specification starts here 
rigid axioms 

create (D, C) 
changing DocType = offer, 

DocNo = D, 
Content = C, 
Valid = now + 30 

calling DocManager.addDocToOffers(self); 
revise(C) 

enabled DocType = offer and Valid >= now, 
changing Content = C, 

Valid = now + 30, 

Figure 4.1 - Signature and Behaviour specification for document management system 

Figure 4.1 indicates that documents can be uniquely identified by a Docld specified 

by attribute DocNo. Attributes are also listed, as well as events (actions) which can 

change the values of attributes or cause the occurrence of other events in other 

objects. The create event, for instance, creates new objects and sets the initial state of 

the object. The revise event allows the changing of the contents of the document. The 

(fixed) behaviour specification of events declared in the signature part is also shown. 

Here, its effects on attributes (changing) , its enabling condition (enabled), and its 

communication effects (calling) are specified. 

Saake et al. [Saake et al, 2000] also indicate that linear temporal logic can be used at a 

semantical level to support reasoning concerning single objects. For example, the 

temporal logic formula 

\7'C(always(occurs(revise(C)) => next(Content(C))) 

states that it is always the case that if the revise event occurs with parameter C in a 

given system state, then in the next state the attribute Content has the value C. 
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As mentioned earlier, an evolution level is required to manage the specification of 

evolving object behaviour. This allows a separation between rigid axioms and 

evolving axioms. The latter represent the evolving behaviour part, allowing the 

behaviour of an object to be changed dynamically. Here, axioms are added or 

removed during runtime. 

In order to deal with this at a specification language level, Saake et al. [Saake et al, 

2000] introduce a special attribute, called axiom attribute, to store the currently valid 

set of evolving axioms. Events, called mutators, mutate the object's specification by 

changing the axiom attribute. These effectively change the behavioural description of 

the object at a meta level. Figure 4.2 below provides an indication of the constructs 

used in the extended specification language. 

object class Documents 
identification DocID: (DocNo) 
template 
attributes 

events 

rigid axioms 

axiom attributes 
Rules initialised{} 

mutators 
add_rule(Rule:spec) 
remove_rule(Rule:spec) 

dynamic specification 
add rule(Rule) 

"Changing Axioms = Axioms + {Rule} 
remove rule(Rule) 

changing Axioms = Axioms - {Rule} 
end object class 

Figure 4.2 - Extended specification to accommodate evolving object behaviour 

This framework is constructed such that the same language constructs are used for 

manipulating the base and meta levels. For instance, mutator events can also be 

guarded by defining enabling conditions. Figure 4.3 provides an example of using the 

mutator add_rule to restrict the enabling of a resolve event such that "contract" type 

documents are never resolved. 

add_rule (resolve 

enabled Doctype * contract) 

Figure 4.3 - Using the add_rule mutator 

A fundamental issue with this approach lies in determining which part of the object 

behaviour is specified in terms of rigid axioms, and which as .evolving axioms. 

Resorting to a behavioural specification comprised only of evolving axioms creates 

the problem that everything is possible. This hinders the ability to prove properties 

about the objects. Another inherent limitation concerns how far evolving behaviour 
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can be modelled in advance. A further issue is that a corresponding logic for 

interpreting evolving specifications is required: Saake et al. [Saake et al, 2000] 

propose an extension of the linear temporal logic introduced earlier called Dynamic 

Object Specification Logic. This provides so-called mutation event symbols and 

mutation attribute symbols to help model the semantics of mutations. The approach, 

however, requires consideration where the always operator is involved, as this 

influences the complete future of an object. The "state" of the specification therefore 

becomes relevant in order to determine the longevity of always-type axioms. This is 

noted as needing further research. Detail concerning the formalisation of this logic 

appears in [Conrad et al, 1998]. 

Lastly, this technique does scale to allow mutators to specify behavioural evolution at 

the class level. The granularity of changes can therefore be controlled to allow for 

exceptions to be dealt with at the object level. 

4.1.2.2 Building evolvability into structural conceptual specifications 

Having considered how an adaptive information system might be specified as far as 

accommodating behavioural change is concerned, we can also explore the equivalent 

notion for structural or schema-related specifications. This would aim to bolster the 

stability characteristics described earlier in section 4.1.1. 

However, information systems typically centre around a database schema where 

changes inevitably lead to issues which must be addressed by schema evolution 

research, viz. maintaining semantic and structural consistency as well as propagation 

of changes to database instances and associated applications. These can result in a 

considerable workload, making the idea of enhancing the adaptability and robustness 

of a schema design worth pursuing. The problem would then be dealt with proactively 

as opposed to reactively. 

This is explored as part of the EVOLVE project [Liu 1998] where adaptive 

specification techniques for object-oriented software evolution are considered. The 

techniques essentially involve the use of style rules, not only to verify desired 

properties of a schema design, but, if the schema is found not suitable, to also use 

these style rules as baselines to transform the schema into a better style while still 
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preserving semantics. Although the style rules are not generic (they focus on object­

oriented schemas in particular), they do advocate some of the notions related to 

achieving stability. These were introduced in section 4.1. l. Information localisation, 

for instance, is stated as a rule for enhancing extensibility in an object-oriented class 

hierarchy through abstraction of common components. Liu [Liu 1998] promotes this 

by encouraging inheritance along specialisation hierarchies. 

In general, the approach is limited in that it still tries to anticipate future requirements 

changes, and is therefore constrained by the foresight that exists at design time. 

However, application areas that are inherently evolutionary would seem promising. 

In particular, the recent explosion of Web- and multimedia-based data has 

necessitated studies relating to information sources that are characterised by semi­

structuredness and continuity (in the sense of persistent application systems 

introduced in section 3.1.4), as opposed to conventional DBMS technology which 

assumes formatted data and rigid database schema structures. Certain application 

areas, such as the modelling of biological data, are also evolutionary by nature. For 

example, characteristics of certain organisms may change over time, posing 

difficulties for conventional modelling structures. In general, the structure of this 

"non-traditional" DBMS data is sometimes irregular, unknown in advance, and often 

subject to change without notice. Solutions to this would appear to hold promise for 

the problem of accommodating evolution due to changing requirements. Proposals are 

discussed in the next section within the context of modern markup languages. These 

are receiving increasing attention as formalisms for data and knowledge modelling. 

However, their direct role in conceptual specification (as pertains to semantic 

modelling) is contentious, requiring careful consideration as was hinted at in section 

2.2.2 where the XML markup language was introduced as a means for describing data 

on the World-Wide Web in particular. 

Markup languages - A solution to modelling changing structure in Information 

Systems? 

Modern markup languages, such as SGML and XML, are generic in the sense that 

they serve to specify structure as opposed to layout of documents and data items. 
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They do not impose any predefined structure, nor predefined names for the structural 

elements occurring in data items. As indicated in [Bry and Eisinger, 2001], it is 

possible to faithfully model the structure of data items needed in applications and to 

name the structural elements of a chosen structure in a way that is natural in the 

application context. The example in Figure 4.4 depicts an address book entry in 

XML-type format. 

<person> 
<first_name> Harry </first_name> 
<last name> Smith </last name> 
<physical address> -

<street number> 4 </street number> 
<street> Elm </street> -
<Suburb> Oakwood </suburb> 
<City> Johannesburg </city> 

</physical address> 
<telephone=number> 011-789-0005 </telephone_number> 

</person> 

Figure 4.4 - Address book entry in XML format 

[Bryand Eisinger, 2001] also indicate that as the XML document stands in Figure 4, 

it is the use of application relevant names for structural elements that is at the origin 

of the expression of structure-conveying data. Data items structured in such a manner 

are not necessarily accompanied by a schema which might act as a specification of the 

structure of the underlying data items. This "absence" of a predefined schema 

structure is what has made XML attractive for modelling web content and other 

application areas such as modem biology. The following factors help characterise 

such areas and also suggest why markup languages may be useful: 

• They are subject to general structural constraints, such as the biological building 

laws that describe relationships between biological entities, as well as the 

exceptions to those laws: an area not well catered for by traditional modelling 

formalisms. 

• The underlying data items can be based on a multitude of data schemes as there is 

no generally accepted data model or ontology. The irregularities in structure are 

indeed another form of exception and suggest a case for modem markup 

languages. 

• Data items in these applications are often enriched with texts - modem markup 

languages were designed for text. 
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However, as indicated earlier, XML documents generally rely on tag-naming and on 

the software interpreting the documents for revelation regarding semantic 

relationships in the application domain. 

Therefore, in order to describe data in the same sense as more established formalisms, 

like UML for instance, the W3C developed the notion of XML-Schema introduced in 

section 2.2.2. Furthermore, recent research has investigated mappings from traditional 

semantic modelling techniques, such as ORM, to XML-Schema [Bird et al, 2000]. It 

has also been suggested that the core features of XML-Schema be formalised into a 

concise and precise grammar notation, such as those commonly found in formal 

language theory. Work by [Mani et al, 2001] typifies this. Here, the resulting 

formalism is compared to the ER model and suggests that the Extended ER model, in 

particular, can be mapped onto the formalised grammar notation. 

In general, the research community recognises the usefulness of the markup language 

approach in semi-structured environments, but at the same time recognises the need 

for reconciling and integrating this with traditional modelling techniques. This notion, 

along with the fact that proposals to accommodate schema evolution in XML-Schema 

are forthcoming, collectively culminates towards an approach that can contribute 

towards building evolvability into structural specifications. We now consider this in 

further detail. 

As discussed above, XML documents in isolation have proved successful for 

modelling evolving application domains, but require the inclusion of XML-Schema in 

order to provide a more complete foundation that is also capable of modelling and 

specifying the semantics and constraints of the underlying domain. Costello and 

Schneider [Costello and Schneider, 2000] address the issue that XML schemas must 

be designed to be evolvable as 'any (internet-related) system that fails to recognise 

and accommodate both chaos and order is less likely to succeed'. They list the 

following factors as characterising the requirements of an evolvable XML schema: 

• Addition of new elements/attributes to meet a new requirement and ways to 

mitigate the impact of such changes. (Unfortunately, dropped elements/attributes 

and restructuring changes are indicated as impacting systems using the schema 

and will have to be dealt with outside of the evolvability mechanisms of the 

schema itself). 
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• No "lock-step" upgrade of applications: Mechanisms must exist by which an 

application can obtain a view of an instance document that corresponds to the 

version of the schema it was designed for. This essentially corresponds to the 

notion of an external view in the traditional ANSI/SPARC database architecture. 

• Managing new requirements by using an open control model. In particular, this 

implies that an XML schema declared to have an open content model, allows an 

XML instance document to have any well-formed XML intermingled with the 

elements already defined in the schema. Systems should therefore be able to 

respond quickly in a changing environment. 

• Schema evolution using refinement can allow for a systematic and engineered 

approach for managing schema evolution. Here, a new schema can be created by 

importing and extending the original schema. 

[Costello and Schneider, 2000] also document the syntactic means whereby the 

relevant parts of an XML schema are augmented to indicate that open content is 

desired. In essence, this involves the incorporation of a "<any>" flag before and after 

those schema elements where additions are likely. 

In summary, it would therefore appear that this, together with research that is able to 

formally map XML schema structures to traditional formal techniques, collectively 

holds promise for a framework geared towards the following: 

• Provision of an "open" format for exchanging details concerning structural 

properties of application domains. This also facilitates potential to support 

"mixed" modelling in the sense that both (traditional) structured data as well as 

unstructured textual-type data can be accommodated. 

• A modelling paradigm that has formal underpinnings (mappings) to more 

established conceptual data modelling techniques that are able to support 

reasoning and consistency checking. However, it should be noted that much of the 

research concerning this is relatively recent. Approaches will in all likelihood 

need extensions to be able to cope with further semantic modelling requirements. 

For example, when compared to ORM, Bird et al. [Bird et al, 2000] cited XML­

Schema as lacking the ability to cater for multiple inheritance and certain 

exclusion constraints. 
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Further research is required to determine the approach whereby the latter may be best 

facilitated. The requirement for some form of meta-model, which is able to govern the 

evolving schema, is also important. This issue will be revisited in section 4.3.1 where 

schema evolution requirements are discussed. 

4.2 Design - Requirements and Solutions 

Although difficult to draw distinct boundaries between phases of the SDLC, the 

design phase of an information system is characterised as providing intermediate 

models and frameworks to assist developers in progressing from semantic entities and 

relationships, as well as functional descriptions of desired behaviour, to 

implementations on some sort of execution platform. 

In section 2.1.3 we considered the notion of software architectures as a means for 

guiding the "programming-in-the-large" perspective. Here, developers view the 

structure of the system in terms of components and their interconnections. The 

abstraction level of the components varies over the design phase and may deal with 

conceptually-oriented views in early stages, to more module-based and 

implementation-dependent artefacts in later, lower-level stages. 

Most literature tends to focus on the early design phase as a stage where evolution, in 

an architectural sense, should begin to be dealt with. The following work supports 

this: 

• Riebisch and Philippow [Riebisch and Philippow, 2001] note that the 

accommodation of new requirements into an existing product line typically 

degenerates the original software architecture that served to specify the system 

design. Practice has also shown that non-technical organisational factors 

contribute to this. These include support for human abilities, e.g. understanding 

solutions, mastering complexity, thinking at higher levels of abstraction, and 

detecting deficiencies. Better levels of understandability to developers are 

therefore needed along with improved tool support that can help reduce mistakes 

made during adaptation of a software architecture. 

• Van Gurp and Bosch [Van Gurp and Bosch, 2001] have suggested that current 

design notations lack expressiveness and that many concepts used during the 
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design phase are represented implicitly, leading to maintenance difficulties. In 

particular, object-oriented design is criticised for "hard-wiring" interactions 

between objects and is not amenable to accommodating changing business rules. 

A more conceptual separation of concerns is sought in terms of larger architectural 

components, as opposed to just isolating smaller pieces of code. 

We therefore begin by considering a conceptual approach for supporting evolution in 

terms of the interactions between architectural components, and motivate why this is a 

key area for addressing evolution. 

4.2.1 Accommodating evolution in design architectures 

Andrade and Fiadeiro's [Andrade and Fiadeiro, 2001] research has recognised that 

organisations require business and technology architecture whose components can be 

added, modified, replaced and reconfigured. Component-based development has often 

been proclaimed to deliver an approach that can indeed deal with the volatility in 

business and technological environments. Hopkins [Hopkins 2000], for instance, 

claims that 'software developers have long held the belief that complex systems can 

be built from smaller components, bound together by software that creates the unique 

behaviour and forms the system. Ideally, a new system can be built using mostly 

predefined parts, with only a small number of new components required ... In a well 

designed system, the changes will be localised, and the changes can be made to the 

system with little or no effect on the remaining components'. Andrade and Fiadeiro 

[Andrade and Fiadeiro, 2001] however recognise, through development experience in 

banking domains, that interactions and architectures in particular, are at the core of 

the problems that need to be addressed before component-based technology can 

sufficiently accommodate evolution. The major issue here concerns the fact that it is 

not changes to the computations performed by the components that are required, but 

changes to the way in which they interact. Furthermore, the global behaviour of a 

system is a product of local behaviour of components and the ways in which the 

components are interconnected. 

The solution that Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] propose bears 

similarities to Saake et al's [Saake et al, 2000] work on modelling adaptive 

55 



information systems. This was discussed in section 4.1.2.1 which considered that 

evolving behaviour could be formally specified through a set of axioms, the contents 

of which are controlled through mutators. Here, we are concerned with a more global 

level of interaction between system entities and need to consider issues that are more 

relevant to design. Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] recognise the 

problem of coding interactions into system components as a key contributor to 

evolution difficulties. Object-oriented methods are also criticised in that interactions 

are usually coded in the way messages are passed, features are called, and objects are 

composed. The end result is often an intricate mix of spaghetti-like structures where 

interactions are not explicitly revealed. The solution therefore lies in externalising 

component interactions by making them "first-class" entities. Systems can therefore 

exhibit their configuration structure explicitly and thereby provide a handle on the 

architecture for dealing with change. An overview of Andrade and Fiadeiro's 

[Andrade and Fiadeiro, 2001] Coordination Contracts as a new modelling primitive 

for managing information system evolution follows. 

4.2.1.1 Coordination Contracts - Enhancing Design Architectures 

Change is more easily perceived at the application domain level, suggesting an 

abstract component model. A mechanism for enabling evolution over such a 

compositional structure is therefore considered, with the following enhancement to 

component-based development in particular: 

• Provision for explicit representation of coordination mechanisms that regulate the 

way components behave and interact. 

• Enabling of the systems to support evolution through the reconfiguration of the 

coordination mechanisms in place. 

• This reconfiguration should not interfere with the way computations performed by 

the individual components are programmed. 

In essence, the proposed mechanism, or coordination contract, is defined in the sense 

of a UML association class. Figure 4.5 below indicates how such a contract might be 

defined. 
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contract <name> 
partners <list-of-partners> 
invariants <the relation between the partners> 
constants 
attributes 
operations 
coordination <behaviour superposed by the contract> 
behaviour <local behaviour of the contract> 

end contract 

Figure 4.5 - Definition of a coordination contract 

The important aspect concerns the partners, invariants, and coordination definitions. 

Partners specifies a collection of classes that may play a role in the contract. The 

actual instances of the partners, which may ultimately become coordinated by 

instances of the contract, are determined through a set of conditions specified as 

invariants. The behaviour that is required to be superposed over that of the partners is 

identified under the coordination definition in terms of trigger/reaction clauses of the 

form: 

<name>: when <condition> 
do <Set of actions> 
with <Condition> 

The intuitive semantics of this coordination is as follows: 

• Conditions under when establish the trigger of the clause and may take the form of 

actions or state changes in the partners. 

• The actions under do identify the reactions to be performed, and typically takes 

the form of actions of the partners or actions local to the contract itself. 

• Under with, further constraints on the actions stipulated under do are specified, i.e. 

preconditions. 

For example, in a banking scenario we might envisage the following: 

contract Traditional Account 
partners x: Account; y: Customer; 
invariants ?owns(x,y)=TRUE; 
coordination 

end contract 

tp: when y.calls(x.Withdrawal(z)) 
do x.Withdrawal(z) 
with x.Balance() >= z; 

Figure 4.6 - A coordination contract for a conventional bank account 

In the above example, contracts regulate only a specific class of interactions between 

customers and accounts: those that have subscribed to the contract Traditional 

Account. 

Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] indicate that the approach is 

backed by a formal mathematical basis for coordination, stemming from work relating 

57 



to the categorical semantics of architectural and coordination principles. This also 

underpins their current development of architectural configuration languages that are 

aimed at assisting in the process of controlling or programming the evolution of 

systems. This will also include logical mechanisms for reasoning about possible 

interactions of components. Further research is also directed towards suitable 

implementation mechanisms for the approach. Exploitation of polymorphism and 

subtyping in object-oriented programming languages are suggested. 

Andrade and Fiadeiro's [Andrade and Fiadeiro, 2001] work might also be considered 

as a particular instance of a more general solution towards dealing with evolution in 

software architectures. 

We now consider that the structure of a system, in terms of its constituent components 

and their interconnections, may itself need to evolve. This would typically be the case 

where requirements and concerns have changed to an extent that has exceeded the 

scope of the original design's ability to accommodate change and the designer's 

original anticipated areas of evolution. 

4.2.2 Evolving a Software Architecture · 

Architects may try to anticipate the types of future modifications to an architecture 

and design it accordingly. Unfortunately, unanticipated changes are still likely. A 

need arises for supporting architectural evolution such that detection of 

incompatibilities, inconsistencies, and conflicts during unanticipated evolution is 

catered for. Failure to do so results in the problems of design erosion - this was 

discussed in section 3.1.3. 

Mens et al. [Mens et al, 1999] propose so-called reuse contracts towards a framework 

that is able to deal with design- as well as run-time or dynamic evolution. In the latter 

case, changes may either be triggered by the current state or topology of the system, 

or given by the reuser on a more ad-hoc basis. 

A reuse contract essentially consists of a provider clause and a reuser clause that are 

related by means of a contract type. The provider aspect specifies the properties of an 
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evolvable software artefact that can be relied upon by other dependent artefacts. The 

evolver part specifies the modifications that are made to these properties. The 

contract type indicates the exact kind of modification that takes place. Basic contract 

types include extension, and cancellation of elements, while relationships between 

elements can be added or removed through refinement and coarsening contract types. 

Contract types may also consist of compositions of these basic types. 

Instead of distinguishing between the conventional notions of architectural 

components and connectors, Mens et al. [Mens et al, 1999] generalise everything as 

an architectural element where: 

• Elements have external gates allowing them to be linked to other elements 

• Elements may be primitive or composite. Composite elements may themselves 

constitute an entire architecture. 

These elements are then subject to the contract types extension, cancellation, 

refinement and coarsening - establishing a formalism to reason about the evolution of 

architectures. 

In particular, a basis is established for detecting architectural conflicts. Mens et al. 

[Mens et al, 1999] state that 'these conflicts will not only occur when the same 

architectural part is modified in different ways by different evolvers, but can also be 

used to check compliance between an architecture and its underlying implementation. 

If the implementation evolves in ways not supported by the architecture, a conflict will 

be detected. In this way, the problem of architectural drift can be tackled'. 

The important aspect to note about this work is that it aims to contribute to the larger 

research effort of providing integrated support for unanticipated evolution during the 

entire SDLC, ranging from requirements to implementation and maintenance stages. 

To complete the discussion of contributions to different phases of the SDLC as 

regards evolution, we next consider solutions concerned with implementation and 

maintenance level stages. 
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4.3 Implementation and Operation 

Designing systems, in such a way that they are able to absorb and dynamically 

accommodate changing requirements, can help establish implementations that are not 

overly compromised or disrupted, as can be the case when re-engineering is required 

in order to realise the required changes. 

However, as was introduced in section 3.1.4, once a development has reached its 

implementation and operational phase, additional factors become relevant and 

typically include: 

• Disparate technologies being called upon to realise a working system. These 

include database systems, operating systems, communication and network 

systems, as well as user-interface management systems (UIMS) and the 

application program itself. Interdependencies between these can be complex, and 

detract from the conceptual and design-level notions that allowed developers to 

focus more on the application itself and not the complexities imposed by the 

implementation technology. 

• A potentially large store of programs and data that are long-lived, and often 

concurrently accessed, now requires management and careful consideration, 

especially when facing any form of requirements evolution. Consequences of 

change must now be properly propagated, in addition to ensuring semantic 

integrity of the system relative to a higher-level conceptual specification. 

• Pressures for the system to be able to be integrated with other application systems, 

such as in the multidatabase sense, or to be able to deliver services to various 

client types. A typical example of the latter includes Web-related initiatives where 

information can be easily acquired and analysed as well as used to drive change. 

This is the case in e-commerce type applications where applications can be 

expected to dynamically evolve to suit customer requirements. 

Research has identified the following areas as contributors to solving evolution 

problems at the implementation and operation phase: 

• Progress in techniques to deal with the schema evolution problem. (Section 4.3.1) 

• Meta-programming, and in particular linguistic reflection, as a means for 

implementing generic specifications and providing an ability to accommodate 
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change without resorting to highly interpretive approaches or ad-hoc restructuring 

methods. (Section 4.3.2) 

• Persistent Application Systems (PASs) research, with emphasis on orthogonal 

persistence as a means for overcoming the obstacles imposed by using "disjoint" 

technologies for realising an information system. (Section 4.3.3) 

• Meta-modelling architectures, and in particular the Object Management Group's 

(OMG) four-level meta-modelling architecture. (Section 4.3.4) 

Each of these areas are considered in tum, followed by a discussion on the PJama 

project (Section 4.3.3.2) and the OMG's Model-Driven Architecture (MDA) (Section 

4.3.4.1). The former is a research project concerned with creating an orthogonally 

persistent Java while still addressing issues posed by evolution. The latter project 

claims to provide the foundations for building a variety of automatic and semi­

automatic software maintenance tools. 

4.3.1 Schema Evolution: Current Research and Related Work 

Schema evolution was introduced in section 3.1.4.1 and is primarily concerned with 

the ability of a database system to accommodate modifications of the database schema 

without loss of existing data. The major research directions are directed towards 

object-oriented database systems and focus on the following: 

Preservation of Semantic Integrity 

This concerns the maintenance of the integrity of a schema in terms of the object 

model, but can also be extended to include support that assists maintainers in ensuring 

that any change is indeed consistency preserving and correct with respect to the 

underlying domain. The first requirement has been well studied in work relating to the 

02 database project described in [Zaniolo et al, 1997]. Schema changes are effected in 

02 by modification primitives which include facilities for: 

• Modifications to class attributes (creation, deletion, renaming, and modification of 

the attribute domain) 
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• Modifications to class methods (creation, deletion, renaming, and signature 

modification). 

• Modification to the class inheritance graph (creation and deletion of 

superclass/subclass relationships). 

• Modifications to classes (creation, deletion and renaming). 

A set of invariants and rules for maintaining these invariants over schema changes are 

also defined. For example, the class hierarchy invariant states that the object class 

hierarchy must have one root and must be a connected directed acyclic graph (DAG) 

with distinct class names. The set of accompanying rules concerned with class 

hierarchy manipulation, address the aggregation and deletion of inheritance 

relationships between classes as well as the creation and removal of classes. These 

also call on a set of multiple inheritance rules to resolve any conflicts relating to 

definitions in subclasses. 

Requirements for semantically richer techniques in order to maintain consistency have 

also been identified. These deal with issues beyond structural consistency. 

Approaches to this generally involve incorporation of domain-specific knowledge into 

the schema in a formalised manner. This promotes the application of sound reasoning 

techniques to help guide and constrain the application of schema evolution operators. 

Franconi et al. [Franconi et al, 2000], for instance, advocate an approach that extends 

the object-oriented model in terms of an encoding that promotes the reduction of 

reasoning problems to corresponding description logics reasoning problems. Chen et 

al. [Chen et al, 1995] suggest the use of a domain meta-model as a framework for 

guiding evolution in accounting database systems in particular. By using a domain 

model, potential target schemas can be suggested. Domain specific heuristics are also 

included to guide the choice of a sequence of operators to evolve the current schema 

to the potential target schema. 

Compound schema changes 

Current systems are generally limited in that they only support changes local to 

individual types within a schema and thereby limit the richness of changes the 
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database administrator can perform. The need for tool support is especially relevant 

here, in order to achieve a more automated evolution of what would otherwise 

become a tedious and error-prone task. 

Pons [Pons and Keller, 1997] and Lerner [Lerner 2000] have proposed solutions. The 

former suggests an approach where a compound type change is decomposed into 

simpler well-defined primitives. However, identification of a correct sequence of 

primitives to collectively realise a compound change has proved difficult, leading to 

necessary human intervention. Lerner suggests a more algorithmic and semantically­

based approach by developing transformers that are able to infer how types have 

changed (given both old and new definitions of the type). A promising tool (TESS -

Type Evolution Software System) has been developed, but is limited to dealing with a 

type model that does not have inheritance. 

Change propagation to database instances 

Traditional approaches have involved changes made by the database administrator 

being immediately propagated to the data. Although ensuring that the entire database 

is in state consistent with the new schema, the technique generally results in the 

database being unavailable and encourages a centralised schema change operation -

an unattractive solution for systems demanding high availability. Subsequent 

approaches have suggested a lazy or deferred mechanism for converting the data only 

when required. Roddick [Roddick 1995] lists the following advantages: 

• Changes to the schema can be made more rapidly-improving availability. 

• Data are changed only when required, and thus the identification of obsolete data 

is not required on instantiation of the changed schema. 

• The immediate withdrawal of a schema change operation is possible without 

effect. Furthermore, compensating schema changes may result in no physical data 

changes at all. 

Both immediate and deferred conversions are supported by the 0 2 database system. 

Unfortunately, there is now a data access overhead imposed on the system. A study in 

[Zdonik 1997] indicates that while the approach is feasible on small databases or on 

systems where availability is important, real-time applications requiring predictable 
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response times, as well as large databases faced by a limited number of schema 

modifications, appeared to be better served by an immediate transformation method. 

A third approach, namely that of versioning by view-methods, has received much 

interest in recent research. Objects are not physically transformed and are instead 

presented via some emulation mechanism in order to make them appear as adhering to 

a new schema. The technique is especially attractive for application compatibility and 

is discussed below. 

Application Compatibility 

The need to support legacy applications, "as if nothing had happened", is a problem 

often faced in industry. Schema versioning extends the schema evolution problem by 

requiring that the system provide access to all data, both retrospectively and 

prospectively, through user definable version interfaces. Recent solutions vary and 

include the following: 

• View-based support: Work by Ra and Rudensteiner [Ra and Rudensteiner, 1997] 

in particular, represents the extent of progress as far as integrating schema 

evolution with view facilities is concerned. Unlike earlier versioning approaches, 

potential now exists to overcome problems related to storage overhead for 

redundant objects. Their Transparent Schema Evolution (TSE) system provides a 

means for users to specify schema changes to their personal (external) views, 

rather than directly to the shared base schema. The evolution neither affects other 

views nor existing application programs. Furthermore, the new views may be 

capacity-augmenting, which in tum requires augmentation of the global base 

schema and some database reorganisation at the instance level. Future work is 

directed towards support for more complex schema evolution operations (e.g. 

partitioning and coalescing of classes), as well as towards addressing performance 

issues surrounding the propagation of updates through chains of dependent 

classes. Ra and Rudensteiner [Ra and Rudensteiner, 1997], however, state that the 

complexity and overhead of maintaining many separate views can become 

excessive, necessitating that the conversion of legacy applications be 

reconsidered. 
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• Temporal Database Approaches: Roddick [Roddick 1995] defines temporal data 

models as being concerned with the accommodation of the inherent temporal 

nature of the object world, in addition to the time-dependent recording of facts 

relating to this object world in a database system. They lend themselves to 

supporting historical queries by allowing the interrogation of old schemas, as well 

as the interrogation of old data should temporal support be extended to the 

underlying database objects as well. Extending temporal support to the 

management of schema objects (meta-data) has also proved to lend itself to 

environments such as CAD and software design where design histories are now 

traceable. 

In general, the resulting complexities, performance, and storage overheads require 

careful consideration before committing to an implementation of this sort. 

Non-versioning approaches are also prevalent in achieving application compatibility. 

Instead of attempting to avoid change, they either guide the developer through the 

program parts requiring change by means of compiler warnings of some sort, or are 

more advanced in terms of supporting some form of program restructuring. 

Reflection-oriented techniques are useful as they allow their own program structures 

to be altered from within. These are now considered in further detail. 

4.3.2 Reflection 

Meta-programming encompasses concepts such as reflection, introspection, 

intercession and reification. Gabriel et al.'s [Gabriel et al, 1993] definition of these 

terms reads as follows: 

'Reflection is the ability of a program to manipulate as data something representing 

the state of the program during its own execution. There are two aspects of such 

manipulation: introspection and intercession. Introspection is the ability of a program 

to observe and therefore reason about its own state. Intercession is the ability of a 

program to modify its own execution state or alter its own interpretation or meaning. 

Both aspects require a mechanism for encoding execution state as data; providing 

such an encoding is called reification.' 
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It therefore becomes evident that any attempt at delivering a programmmg 

environment supporting reflection will need to consider the effect on compilation and 

loading mechanisms. Type checking, and the provision of a meta-level mechanism 

providing description of types that support the reification requirement, are also 

needed. 

Linguistic reflection, in particular, has received much interest. Stemple et al. [Stemple 

et al, 1992] define linguistic reflection as being the (introspective) ability of a running 

program to generate new program fragments, and to then integrate these into its own 

execution (thereby achieving intercession). Program behaviour is therefore 

dynamically modified. 

According to [Atkinson and Morrison, 1995] two mechanisms for realising linguistic 

reflection have evolved: 

• Compile-time linguistic reflection: This allows the user to define generators which 

produce representations of program fragments. These generators are executed at 

compile time. Their results are then type checked and made part of the program 

being compiled. 

• Run-time linguistic reflection: This is more concerned with the construction and 

binding of new components with existing components in an environment. Here, a 

compiler that can be invoked dynamically is required, in addition to a dynamic 

incremental loader. Type checking occurs in both compilation and binding phases. 

The technique has proved to be an effective component in systems addressing 

evolution. Atkinson and Morrison [Atkinson and Morrison, 1995] consider it an 

important contributor in persistent programming environments. In particular, they 

consider type-safe linguistic reflection (where type-checking constrains the allowed 

output of reflection) as extending the data modelling capability of the type system. 

This leads to an ability to implement highly abstract specifications, such as those used 

in query languages and data models, within a strongly typed programming language. 

Furthermore, a means of dealing with continual changes in data-intensive applications 

is provided. As an example, Kirby et al. [Kirby et al, 1997] have realised benefits for 

a weather monitoring application. Here, the schema describing the incoming data 

needs to dynamically change to suit the needs of the application, and by using 
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linguistic reflection, they are able to alter the schema in order to record any new 

structure discovered by applications in the data, programs or meta-data. 

We discuss persistent programming environments in further detail in section 4.3.3, 

and the PJama project, in particular, as an implementation level approach that can 

cope with evolution. 

Lastly, recent proposals to deal with software maintenance and evolution, such as 

[Brooks et al, 2001] and [Bezivin and Ploquin, 2001], recognise reflection as part of 

as part of a meta-modelling based approach where aspects implicit in system code are 

reified to become first-class meta-data objects. We explore this work further in 

section 4.3.4.1. 

Having considered database schema and application evolution concerns separately, 

the next sections now address the evolution problem on a broader scale, i.e. in the 

sense of aiming for a complete and coherent solution for the implementation phase. 

4.3.3 Persistent Application Systems and Orthogonal Persistence 

As was introduced in section 3.1.4.3, the development of any system that is 

characterised by long-lived, concurrently accessed, and potentially large bodies of 

data and programs, involves the employment of services from operating systems, 

database systems, user-interface management systems (UIMS), communication 

systems, compilers, etc. Unfortunately, variations in naming, type and binding 

schemes prevail, as well as differences in recovery, concurrency and transactional 

behaviour. This creates significant complications for the programmer, in addition to 

the need to maintain translations and mappings between the different components. 

The fact that database and programming language communities have followed 

different development philosophies, in spite of having to provide many similar 

services, is often cited as one of the key problems in attempting to improve the current 

state of affairs. 

Persistent Application Systems (PASs) research is aimed at addressing the fact that 

the application, as such, typically outlives its individual components and 
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implementation technology. Healthcare systems, CAD/CAM systems, scientific 

databases and environmental modelling systems, are all common examples of P ASs. 

Different implementation architectures have been proposed for persistent applications, 

including the combination of data models and programming languages, as well as the 

necessary extensions to either databases or programming languages : more complete 

type and computational facilities for the former, and persistence capabilities for the 

latter. 

In particular, Atkinson and Morrison [Atkinson and Morrison, 1995] clearly motivate 

that orthogonally persistent object systems represent the most likely approach towards 

realising an environment where the total composition of services (ranging from data 

definition and operations, to integrity, concurrency and distribution) is supported 

through one coherent design. They also motivate that 'the construction of persistent 

systems is made considerably easier when the whole computational environment is 

persistent. In such an environment, programs and processes may be regarded as data 

and manipulated in the same manner, allowing transformations traditionally 

regarded as being peiformed by a separate mechanism to be executed within the 

persistent environment.' In doing so, a basis also exists to simplify system 

maintenance and evolution. 

We begin by describing the notion of orthogonal persistence in further detail and 

explain why it serves as a foundation for managing evolution. This is followed by a 

brief overview of the PJama project : a promising realisation of an orthogonally 

persistent object system based on the Java programming language. 

4.3.3.1 Orthogonal Persistence 

The term persistence specifically concerns the support of data values for their full life 

time however brief or long these may be. This can range from transient results in 

expression evaluation and local variables, through to data that outlives versions of a 

persistent support system. There is a division in this range, where the former part is 

typically serviced by programming languages, and the latter by databases and file 

stores. Orthogonally Persistent Systems aim to treat data values independently of their 

longevity, size or type. 
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Realising this has involved consideration of how programming languages must evolve 

to cater for persistence, as well as how existing persistent systems (such as object­

oriented database systems) might be improved, beginning with the elimination of the 

impedance mismatch problem. 

An environment supporting orthogonal persistence would need to adhere to the 

following principles [Atkinson and Morrison, 1995]: 

• Principle of persistence independence: The semantics and form of a program is 

not changed by the longevity of the objects to which it is applied. Developers are 

therefore freed from the programming overhead of moving data between long­

term and short-term stores. 

• Principle of data type orthogonality: Any data object of any type can be made 

persistent. Data modelling is simplified as long-term forms of bulk data types 

need not be separated from short-term forms. 

• Principle of persistence identification: The means used to identify and provide 

persistent objects is independent of the Universe of Discourse of the system. In 

particular, the strategy of persistence by reachability, where an object is made 

persistent when it is reachable from another persistent object, satisfies this 

principle. 

As indicated in [Connor et al, 1994], orthogonally persistent programming systems 

allow all data (short and long-term forms) to remain under the control of a single 

persistent programming system for their entire lifetime. More specifically, the 

following two factors help establish the basis for an environment conducive to 

supporting software maintenance and evolution: 

• Protection mechanisms are provided over the whole environment through the use 

of a single enforceable programming model. 

• Referential integrity is preserved over the entire computational environment for 

the lifetime of the PAS. "Secure links" are maintained among the data, meta-data 

(schema), and program entities. In particular, Atkinson and Morrison [Atkinson 

and Morrison, 1995] indicate that 'the referential integrity of an object means 

that, once a reference to an object in the persistent environment has been 

established, the object will remain accessible via that reference for as long the 

reference exists'. 
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This support clearly assists in change management, where all consequences of a 

change must be properly propagated (to both data instances and programs). 

Furthermore, the consequences of change can be better understood in order to avoid 

unnecessary changes being made and provide better support to automated systems 

attempting to implement change. 

The following maintenance and evolution mechanisms are now better facilitated: 

• Incremental evolution: Early database methodologies generally advocated that 

schemas to "represent the enterprise" be designed first, followed by the addition 

of data and programs. This resulted in schemas being considered as relatively 

static components of a system. However, incremental development is more 

feasible where portions of an enterprise are understood, a corresponding design 

developed, and construction initiated. Orthogonally persistent systems aim to 

support evolution of program, data and meta-data (schema) by the same 

mechanisms. Here, all are considered equally and more flexibly and may be static 

or dynamic, or large or small, depending on the PAS under construction. 

Simply put, programs, data and meta-data evolve in tandem and in increments 

corresponding to the progressive understanding of the enterprise. There is no bias 

towards program being more or less incremental than types. 

• Hyper-programming: In an integrated persistent environment where program, data 

and meta-data are manipulated by the same mechanisms, programs can be 

constructed in such a way that objects accessed by the program may already be 

available at the time the program is composed. Bindings (links) to these objects 

can now be included as opposed to traditional textual descriptions of where to find 

persistent values. Such a program is called a hyper-program. As discussed in 

[Connor et al ,1994], the hyper-programming concept provides a technique for 

representing all executable programs, effectively establishing links between 

executables and their corresponding hyper-program source representations. This 

allows a compiler, for instance, to record which programs use which parts of a 

schema. 

• Linguistic Reflection: As demonstrated in a dynamic weather monitoring 

application proposed by Kirby et al. [Kirby et al, 1997], orthogonally persistent 
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systems overcome the ordering difficulty imposed by traditional database systems. 

As regards the latter, the database is constructed by first defining the meta-data 

(schema) and then initialising data in accordance with the meta-data description. 

Where data with a new structure is required, the process is repeated in the same 

order. Thus, programs discovering new structure about existing data have an 

ordering difficulty: the new structure must exist before the program runs but this 

is only discovered during execution. In an orthogonally persistent environment, 

computations over the meta-data, data and programs are possible. The basis is 

established for new meta-data, programs and data to be bound into the executing 

system, thereby facilitating linguistic reflection. 

To conclude this section we briefly discuss the PJama project - a research system 

geared at demonstrating the claim that orthogonal persistence is indeed a better 

application programming technology. 

4.3.3.2 The PJama Project 

The PJama project developed at the University of Glasgow, Scotland, in conjunction 

with Sun Microsystems, is focused on developing an orthogonally persistent version 

of the Java programming language. In doing so, a vehicle is established to test the 

claims that orthogonal persistence does indeed yield an improvement in application 

programming technology. 

Aside from its popularity as a language for enterprise application implementation, the 

following characteristics motivate Java as the language choice for the PJama project 

[Atkinson et al, 1996]. 

• Strong typing 

• Single inheritance 

• Object-oriented model 

• Automatic space management 

• No explicit manipulation of pointers 

• Validations to improve security, precision and productivity. 
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A detailed account of the recent progress in the project can be found in [Atkinson and 

Jordan, 2000]. We briefly survey the state of affairs, with respect to the requirements 

listed in [Atkinson and Jordan, 2000], in order to give the reader an appreciation of 

some of the challenges involved. 

• Orthogonality: In establishing orthogonality, the current support surrounding the 

use of java.jdbc and org.omg.corba class libraries (providing application 

programming interfaces to external databases) is hampered by the fact that they 

are inherently transient from the persistent program point of view. To overcome 

this, effort has been spent on investigating how the state of these "external 

computations" can be captured and how correct resumption of program threads 

(that persist through their reachability) can be supported should execution be 

interrupted. In general, resumption of such program threads is noted as a 

fundamental difficulty due to the intertwining of the java.lang. Thread class with 

the underlying Java Virtual Machine (JVM). 

• Persistence Independence: Here the Java language must remain completely 

unchanged (syntax, semantics and core classes) so that imported programs and 

libraries of classes work correctly. This has significant benefits for code reuse, 

allowing programmers to move freely between persistent and standard versions of 

the Java platform. Aside from requiring clarification on the semantics of code 

resumption on the Java platform, persistence independence is noted as essentially 

being achieved. 

• Durability: Durability, where loss of data is avoided due to software, platform or 

hardware failures, is presently limited to small development environments where 

"disruptive" off-line archives can be taken. This is clearly a problem in large scale 

enterprise deployments where continuous operation is mostly required. Support 

for evolution and migration technologies is also regarded as a pre-requisite - the 

need to discard stores so that an application can change to meet new requirements 

will result in a failure of durability. 

• Scalability: Developers must be protected from the effects of scale, whether the 

implementation is intended for hand-held devices or terabyte-size enterprise 

stores. The review in [Atkinson and Jordan, 2000] indicates experiments on 10 
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gigabyte stores, but with future PJama projects requiring between 2 and 5 terabyte 

stores. 

• Evolution: Like any persistent store, mechanisms are required to manage change 

to classes and instances. At present, the PJama evolution technology is focused on 

development-time evolution where developers are constantly making small 

changes to experimental or prototype persistent stores. The following characterise 

the nature of this support: 

• Specification of class changes and instance transformations: The developer 

can specify changes to class hierarchies as well as renaming, deletion and 

insertion of classes. Default transformation code exists to transform old 

instances of a class to new instances of that class or some related class. 

However, the developer may also use the Java programming language to 

specify arbitrary computations to obtain new values for instances where 

classes may have changed format. 

• Mutual consistency: Mutual consistency across classes is now achievable. The 

promotion of classes to first class persistent objects is especially useful for 

controlling consistency in terms of behaviour. For example, methods deleted 

from one class, but still called from another, can be detected. The so-called 

Persistent Build Technology, described in [Dmitriev, 2000], combines class 

evolution and recompilation of class sources, thereby keeping track of changes 

to application classes, and preventing them from being left incompatible after 

a change. 

• Atomic execution of transformations: Support for performing the 

transformation atomically is available. However, the current transformations 

run in an off-line environment (i.e. no on-line or concurrent evolution support 

at present). Object conversions are also complete, as opposed to lazy 

conversion methods. The latter is cited as adding much complexity to the 

evolutions support system. 

Further research work is focused on support for deployment-time evolution. This 

is complex, requiring that changes be installed on a customer's implementation 

without losing any investment in data and programs. Furthermore, interruptions to 

application availability are mostly unacceptable. Dmitriev [Dmitriev 2000] 

73 



indicates that versioning techniques, specifically those concerning the long-term 

co-existence of multiple versions of individual classes or collections of classes 

(schemas), are complex in the PJama environment and any attempt would require 

considerable effort. This is associated with the present restriction that PJama does 

not support multiple applications running concurrently over the same store. 

Lastly, developers would also require the integration of evolution management 

into development tools. This assists in easily managing and changing persistent 

stores during design. 

• Other challenges: Migration to other platforms, i.e. advances in the Java platform 

and use of new persistent store management platforms, requires careful 

consideration so as to preserve orthogonal persistence. Although current research 

is centred on off-line migration, the need for incremental evolution for large-scale 

systems must be accommodated. Related to this is the accessing of "external 

computations" (e.g. JDBC interface) so that interaction with autonomous 

components does not compromise the system's integrity. PJama extends the Java 

Remote Method Invocation (Java RMI) standard to combine persistence with 

distribution. However, Atkinson and Jordan [Atkinson and Jordan, 2000] indicate 

that solutions that are scaleable and more supportive of class evolution require 

further research. 

Further work is also required to allow many applications to run concurrently 

against the same store. At present, developers would have to manage this 

themselves, leading to solutions with excessive locking, poor performance and 

deadlocks. 

The next section explores a meta-modelling approach, where the notion of 

conformance to a meta-model, aims to provide developers with an abstract model­

driven implementation framework that is independent of the underlying execution 

platform. 

4.3.4 A Meta-Modelling Approach 

As systems become more complex, it has been recognised that methodologies that 

rely on increasingly more abstract mechanisms are required in order to ensure 
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manageability, especially in the face of evolution of implementation platform 

requirements and changing user requirements. Meta-modelling approaches generally 

employ a framework where a hierarchy of abstractions are used, such that evolution of 

any one layer is constrained (and guided) by the later above it. 

The four-layer meta-modeling architecture employed by the OMG is characterised as 

follows: 

• Meta-meta model layer: Provides a language for defining meta-models and can be 

thought of as a meta-grammar such as EBNF. The OMG's Meta-Object Facility 

(MOF) exists at this layer as a means for managing meta-models in a standardised 

manner. It defines the essential elements, syntax, and structure of meta-models 

that are used to construct object-oriented models of discrete systems. 

• Meta-model layer: Comprised of the descriptions that define the structure and 

semantics of meta-data, i.e. descriptions for the model layer. The notions of class, 

attribute, operation and component are specified here. 

• Model layer: This defines the language for specifying information domains. 

Elements like Student, Teacher and Course classes are domain-specific examples 

of elements belonging to this layer. 

• Instance layer: Comprises instances of the elements defined in the model layer; 

for example Student, Teacher and Course objects belonging to the classes defined 

previously. 

According to [OMG-MOF, 2000], this four-layer architecture has a number of 

advantages: 

• Assuming that the meta-meta model is rich enough, it can support most if not all 

kinds of meta-information imaginable. 

• It potentially allows different kinds of meta-data to be related. (This depends on 

the design of the framework's meta-meta model). 

• It potentially allows interchange of both meta-data (models) and meta-meta-data 

(meta-models). (This presupposes that the parties to the exchange are using the 

same meta-meta-model). 
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For an enterprise's information systems in particular, the need for a global integration 

framework arises since database, workflow, software process and component 

management meta-models are often independently defined and independently 

evolved. Furthermore, by establishing a framework where meta-data objects are 

reified to become first-class objects, a basis is provided that can support reflection, 

and hence dynamic configuration and reconfiguration of programs and data. This 

approach is widely supported in the literature but is receiving significant attention in 

its application to the OMG's Model-Driven Architecture (MDA) [OMG-Soley, 2000]. 

This has been primarily proposed as a means for being able to derive code from a 

stable model, and hence achieve greater independence from underlying 

implementation platforms. There are also benefits in managing software maintenance 

and evolution. We briefly consider the MDA vision below. 

4.3.4.1 Model Driven Architecture (MDA) 

The MDA extends from system specification, dealing with the modelling of business 

functionality and behaviour, through to implementation where subsequent 

interoperability issues across different middleware platforms become relevant. The 

latter is conventionally dealt with through using standard component interfaces across 

heterogeneous software systems. 

The MDA concept adopts a different approach by using formal system models to 

facilitate interoperability. As indicated in [Poole, 2001], the most significant aspect is 

the independence of the system specification from the implementation technology or 

platform. The system definition exists independently of any implementation model 

and has formal mappings to many possible platform infrastructures such as Java and 

XMUSOAP. 

By using the Unified Modelling Language (UML), Meta-Object Facility (MOF), 

XML Metadata Interchange (XMI) and Common Warehouse Meta-model (CWM), a 

basis is established for authoring, publishing and managing models within a model­

driven architecture. This includes the following: 
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• Platform-Independent Model: Firstly, in order to realise platform independence, 

the OMG advocates a Platform-Independent Model (PIM) expressed in UML - a 

MOP-compliant meta-model. OMG have also created CWM as a standard for 

representing database schemas. UML serves as the notational basis, but is 

extended with data warehousing and business analysis domain concepts. This is 

also used to describe non object-oriented artefacts such as relational, network, 

hierarchical or XML-based data sources. 

The PIM effectively represents the logical view in which the composition and 

behaviour of all components are fully specified (without implementation-level 

details). The intention is that this is then mappable to one or more Platform­

Specific Models (PSMs) which are again expressed in UML but now contain 

implementation-specific details. 

• Meta-data exchange: In order to realise interoperability across different meta­

models, a means for exchanging model information is required. The introduction 

of XMI has provided an interchange format for models (and meta-models) that is 

based on XML and MOF. XMI effectively defines how XML tags are used to 

represent serialised MOP-compliant models in XML. A basis is therefore 

established whereby both metadata (tags) and the instances they describe (element 

content) can be packaged together, enabling applications to readily "understand" 

instances via their metadata. This is clearly advantageous in distributed, 

heterogeneous environments and also enables UML models to serve as the basis 

for other tools such as code generators. 

• Common services: The OMG has also recognised that applications rely on a set of 

essential services, including persistence, transactions and security. When 

implemented on a particular platform, they also tend to take on the characteristics 

that restrict them to that platform, or ensure that they work best there. To address 

this, UML models of these services are presently being constructed for the PIM 

level. Their functionality and interfaces in multiple middleware targets is also 

being defined. 

Armed with the elements of shared metadata, formal PIM to PSM translations, and a 

vehicle for exchanging model information, the OMG's MDA vision is set towards 

facilitating software evolution and maintenance from different perspectives: 
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• Portability and interoperability between middleware platforms: As stated by 

Soley [OMG-Soley 2000], it is difficult for large enterprises to standardise on a 

single middleware platform. The most visible environments today include 

CORBA, EJB, XMUSOAP and .NET. However, it can be assumed that these will 

evolve and/or be replaced. The platform independence gained by using the MDA 

approach, helps counter the overhead of expensive and disruptive migrations to 

newer implementation platforms. Interoperability across platforms is also 

improved and defined more rigorously. 

• Business models and implementation technologies evolve independently: The 

separation between business models and the implementation technology, promote 

the preservation of the development invested in components when a technology 

shift occurs. Mappings to different implementation platforms exist in the MDA 

and can be augmented when new ones are introduced. The OMG will standardise 

these mappings, while vendors will implement them in their tools, enabling 

automatic interoperation with or porting to the new platform. 

• Structural (schema) and behavioural evolution is better accommodated: UML 

model maintenance, in particular, has conventionally required manual intervention 

to ensure consistent propagation of change to the associated code. The MDA 

framework aims to provide a more automated and systematic approach to this via 

formal metadata definitions that can assist in guiding and constraining evolution. 

The MDA also aims to incorporate highly generic core models of common 

computing environments, such as Enterprise Computing with its component 

structure and transactional interaction, or Real-Time Computing with its resource 

control requirements. These assist in providing semantic details to evolution 

mechanisms. Poole [Poole 2001] notes that highly domain-specific metadata that 

does not fit the generic model, is handled through the use of extension 

mechanisms that are predefined as part of the generic models (e.g. the use of UML 

extension mechanisms, such as tagged values, stereotypes, and constraints). 

Future MDA visions incorporate the notions of adaptive software and dynamic 

evolution. In particular, the run-time interpretation of shared metadata is central to 

the approach - this discipline is termed Adaptive Object Models (AOM). Poole 

78 



[Poole 2001] indicates that 'system functionality will gradually become more 

knowledge-based and capable of automatically discovering common properties of 

dissimilar domains, making intelligent decisions based on those discoveries, and 

drawing and storing resulting inferences. In general, "knowledge" is supported 

by an advanced and highly evolved concept of ubiquitous metadata, in which the 

ability to act upon, as well as revise, knowledge at run time is provided through 

Adaptive Object Models (AOMs).' 

This generalised metadata management, authoring and publishing capability holds 

promise for support of advanced reflection capabilities - both structural and 

behavioural. The intended result is the production of highly dynamic and self­

organising systems. These are then able to act directly on domain knowledge and 

realise a consistent and complete modification through the system model. 

The problem of evolution, in terms of issues and requirements, has been presented. 

This chapter considered different solutions proposed in the literature, and discussed 

some of the areas that future research would entail. The next chapter provides a 

synopsis of the problem, together with the techniques required towards improving the 

accommodation and facilitation of evolution. A future perspective on supporting 

evolution coherently and consistently over the SDLC is also considered. 
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CHAPTER 5 - A SYNOPSIS 

This chapter reconsiders the phases of the software development life-cycle in terms of 

their role in accommodating and facilitating evolution. A brief consideration of how 

future information system development can deal with the evolution problem 

concludes the chapter. 

5.1 A characterisation of current approaches 

In chapters 2 through 4, we discussed the development phases of an information 

system with particular emphasis on the database (persistent) component of the system. 

The issue of evolution was essentially considered in terms of two dimensions: 

• Conceptual and Design level accommodation of change: This concerned how 

systems can be conceptualised and designed in order to accommodate changing 

requirements, thereby lessening any later re-coding and re-implementation efforts 

that may be required to realise the change. 

• Implementation and Operation level accommodation of change: This deals with 

the mechanisms and technologies that must be in place to ensure semantic 

integrity and consistent propagation of changes to all the implementation artefacts. 

We now reconsider the software development life cycle (SDLC), the problem of 

evolution, and the contributions that have been forthcoming to deal with evolution. In 

particular, their advantages and disadvantages are considered, including their 

suitability towards the following: 

• Facilitating automation of change, i.e. contribution to tool support 

• Understandability to developers and other stakeholders (e.g. customers who are 

involved in the requirements specification phase) 

• Implementation feasibility 

• Support for ensuring semantic integrity of the system and the ability to ensure 

consistent propagation of change to all programs and data comprising the system. 

• Applicability and scope of the mechanism. For example, does the approach apply 

only to business systems, or does it hold relevance to scientific database 

applications as well. 
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• The nature of the evolution that is supported, i.e. does the approach only deal with 

a set of anticipated change requirements, or is the approach geared towards 

delivering a more generic solution where unanticipated change was also catered 

for. 

5.1.1 Requirements Analysis 

This phase serves to capture the customer's functional and non-functional 

requirements for the system. As indicated in section 2.1.1, this included a high-level 

abstract model of the system in terms of the major relationships and entities, as well 

as the transformations (actions) that occur in the system. The assumptions on which 

the system is based, in addition to the anticipated changes in user requirements, are 

usually documented. 

It is the one phase where all stakeholders of the end product have a view on the 

system that is void of any complex specification and design-level constructs or 

formalisms. Unfortunately, the following issues are prevalent and influence the 

evolvability of the system: 

• Lack of foresight: Future system requirements may, for instance, include the 

ability of a factory production management system to accommodate new product 

lines, changes in workflow, etc. Furthermore, any ignorance of the likely need to 

later integrate the system into a larger federated architecture 1 can weaken and 

complicate the extent of integration, particularly in reconciling semantic 

discrepancies. For example, an object-oriented database schema whose classes do 

not easily generalise into a common organisational class, or set of classes, could 

prove awkward in terms of reconciling inconsistencies along 

generalisation/specialisation class hierarchies. 

• Lack of formality: Natural language is inherently ambiguous and informal, leading 

to difficulties when reasoning about the system at the specification phase. 

Improved methods of requirements engineering are sought that can assist 

analysers in documenting the system within a framework serving both the need for 

1
In the sense of a federated database system where heterogeneous DBMS's are either affiliated via a central global schema or 

interact loosely via exchange schemas 
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understandability by non-technical stakeholders, as well as the need to provide a 

basis for more formal system specification. 

Techniques to guide the requirements analysis process can be employed. Firstly, 

Ghose [Ghose 1999] indicates that design rationale (the process of documenting the 

reasoning process undertaken in designing an artefact) can be useful in requirements 

engineering, particularly for resolving conflicting viewpoints on the system 

requirements. This is often the case in industrial software management systems, 

where organisational management requirements and shop floor supervision 

requirements tend to conflict. 

Although design compromises can sometimes result, the design rationale process can 

encourage participation towards more complete, more thorough, and more insightful 

requirements. Evolution-related requirements can also be better revealed and more 

cautiously considered in context with other requirements. 

Secondly, Wu and Han [Wu and Han, 2002] suggest the use of XML-based tools for 

managing system requirements as well as architectures. XML technology is inherently 

geared towards exchanging data across organisations and heterogeneous 

implementation platforms. It would therefore appear that using XML as the format for 

the information repository for a requirements analysis document is advantageous. In 

particular, requirements are more traceable - an important consideration should 

requirements need to be amended or evolved. The framework proposed by Wu and 

Han [Wu and Han, 2002] is essentially a fixed one, where requirements are captured 

in terms of stakeholders, goals, assumptions, components, services, quality of 

services, etc. Although this is feasible towards improving the formality and rigour of 

the requirements documentation, it also tends to dictate a certain path to establishing 

the system requirements. This can be awkward and restrictive to non-technical 

participants who are more at ease with articulating requirements using informal and 

natural language type approaches. 

Hypertext-based documentation management systems have assisted in providing 

"loose" associations between natural language documentation and structural 

documentation. References to entities and relationships in the underlying application 

domain are feasible, although behaviourally-oriented references are more complicated 

- semantics would need to be carefully considered. Any automated progression, from 
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a natural language basis to a more structured and formal interpretation, would require 

Artificial Intelligence (AI) participation. In particular, this would demand production 

of semantically correct specification-oriented artefacts that define both structural and 

behavioural concerns. The inherent ambiguity and informality of natural language 

constrains the feasibility of such approaches. 

5.1.2 Specification and Conceptual Modelling 

The specification phase is especially important in its role as a transition between more 

informally-oriented requirements documentation and system design - the latter 

providing the blueprint for an eventual implementation. Different specification 

formalisms are used to model the structural, behavioural and control flow aspects of 

the system. Conceptual models such as the Entity-Relationship approach define 

structural requirements. Functional specification techniques, ranging from model­

driven formalisms such as Z to pseudo-code like descriptions, define behavioural 

concerns, while data flow diagrams usually represent the transformations and control 

flow concerns. As most information system applications are centred around the 

conceptual model, common techniques were described in section 2.2.1, including 

object-role modelling (ORM) and object-oriented modelling. XML was also discussed 

as a valuable technique for describing semi-structured data and was also considered 

further in section 4.1.2.2 as a possible means towards building evolvability into 

structural specifications. 

From an evol vability point of view, the following issues are of particular interest: 

Assessing evolvability 

As discussed in section 3 .1.2.1, different conceptual models can be used to describe 

the same application domain, but exhibit different evolvability characteristics. 

Stability emerged as a desirable characteristic, and metrics were presented in section 

4.1.1 as a means for measuring this quality in conceptual models existing in 

operational environments. Although useful in assessing the stability of models, the 
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approach would appear to best serve prototype-style developments, where 

shortcomings can be addressed and rectified without any serious impact on 

implemented artefacts and persistent data. It does not explicitly address how 

evolvability requirements are specified. 

Modelling evolvable requirements 

Behavioural requirements are generally considered to be the most volatile. Business 

rules in particular are subject to change. In order to accommodate this anticipation of 

change in the specification, a separation of rigid and evolving parts was suggested and 

described in section 4.1.2.1. It was also indicated that the approach can be supported 

by an underlying temporally-based logic, but required the designer to determine the 

evolving parts from the rigid parts in advance. Constraint is also required, as resorting 

to a behavioural specification comprised only of evolving axioms creates the problem 

that everything is possible. 

Although generally less volatile than behavioural requirements, the notion of 

modelling evolving structural requirements was also considered. XML was discussed 

in section 4.1.2.2 due to its application toward modelling domains with irregular 

structure where predefined schema structures prove to be awkward. However, the 

need for structural specifications that are able to support reasoning and consistency 

checking, in order to maintain the semantic integrity of the system during evolution, 

are still required. The introduction of XML-schema, described in section 2.2.2, aimed 

to achieve this for XML-based systems in particular. There would therefore appear to 

be a tension between having a sound "semantically intact" model, while still being 

afforded the means to specify content that does not easily conform to traditional rigid 

schema structures. A likely solution would be the distinction of stable parts from 

evolvable parts, as was suggested for behavioural specifications. The stable parts 

could be specified using sound semantic modelling techniques, such as ORM, while 

"open content" could be specified in terms of XML constructs appended to the stable 

model. Such a solution may be useful in inventory management systems dealing with 

a large variety of product types. The price, quantity on hand, manufacturer, etc., are 

qualities applicable to any item. However, it may also be necessary to record 

information peculiar to certain products. For instance, the features of a digital camera 
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are entirely different from those of fresh produce! In general, the reasoning and 

consistency checking in such a scenario would mostly be limited to the stable parts. 

Any evolvable extensions must merely conform to XML's syntactic requirements. 

Uniform specification techniques 

It is desirable, especially from a transformational development point of view, to have 

a specification technique whereby structural, behavioural and control flow concerns 

are uniformly modelled. As indicated in section 2.1.2, no one method can adequately 

meet all modelling requirements. The object-oriented Unified Modelling Language 

(UML) appears to be the most popular approach to capturing both structural and 

behavioural concerns, with data flow being modelled more implicitly in terms of 

specifications describing system behaviour. The implementation bias towards object­

orientation in particular, is one of the criticisms levelled against UML as a 

specification phase technique. Potter et al. [Potter et al, 1996] indicate that an early 

deconstruction of the problem domain into objects, causes a hindrance to the process 

of considering and capturing system-wide invariants - an issue when reasoning about 

the system in a formal specification sense. 

However, the central role of UML in the OMG's Model Driven Architecture, 

described in section 4.3.4, tends to indicate that any disadvantages can be outweighed 

by significant advantages in terms of automated code generation. This approach is 

discussed again in section 5.2 as a valuable component of future-oriented solutions for 

coping with the evolution problem. 

5.1.3 Design 

The progression from abstract and mathematically-oriented specifications to design 

artefacts is difficult and usually informal. Designer creativity, in deciding on the 

system decomposition, is usually required. 

Software architectures were introduced in section 2.1.3 as a means for assisting 

designers of large enterprise systems. In particular, frameworks are usually provided, 
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indicating the decomposition of the system into components and how functionality is 

assigned to those components. 

The problem of design erosion was described in section 3.1.3.2. This leads to 

difficulties for designers in terms of the traceability, understandability, and inter­

relationships of design decisions. Furthermore, the fact that traditional design methods 

encourage the practice of creating a design in advance, causes conflict with the 

iterative nature of enhancing and augmenting a system design. Van Gurp and Bosch 

[Van Gurp and Bosch, 2002] indicated that successive iterations tend to erode the 

design in the sense that the original architectural framework is violated. This has far 

reaching consequences on the resultant code. Any introduction of external 

dependencies, such as the interaction with a global variable, would for instance 

violate the reusability of a component-based design. Although designs realising 

practices such as abstraction and modularity prove to be more maintainable and 

evolvable, the factors discussed above suggest that further issues contribute towards 

addressing evolvability. These include: 

• Expressiveness of design-level representations: Designs that are more conceptual 

in terms of the underlying application domain, promote an improved 

understandability of the complexity of the system. Once again, the virtues of a 

formal specification that is transformable to design-level artefacts come to bear. In 

particular, the inter-relationships of components and consistency of the system as 

a whole can be reasoned about. However, the overheads of formally specifying all 

aspects of a large-scale information system are considerable, causing developers 

to resort to building designs without specification-level foundations. 

• Externalising component interaction: Although component-based design is 

generally considered to aid evolution, as was discussed in section 4.2.1, it is 

specifically the interactions between design components that are most subject to 

evolution. The hard-wiring of these interactions into code contributes to 

difficulties when needing to evolve the way in which objects interact. The 

approach of externalising interactions (see section 4.2.1) effectively recognises the 

need to provide a design, and hence deployable artefact, of a requirement that is 

inherently conceptual in nature, i.e. the semantics of coordination between entities 

in the application domain. The benefit offered over conventional object-oriented 
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designs is that the evolution process, in terms of object interaction, can now be 

explicitly controlled. However, the extent of evolvability is still capped by the 

foresight that existed at the time of analysing the underlying application domain, 

since it is here that evolvable parts are conceptually separated from stable parts. 

• Reasoning about the evolution of software architectures: As discussed in section 

4.2.2, software architectures must themselves evolve in order to accommodate 

changing requirements and prevent the problem of design erosion. Reuse 

Contracts were then introduced as a means of formalising the modifications that 

can occur to an architecture. These establish a means to detect conflicts and 

preserve consistency with respect to the architecture. 

The design phase must be viewed as a bridge between early requirements 

specification and the detailed design phase where program and code are readily 

producable for the implementation phase. Few large-scale information system 

developments employ a transformational development style from detailed 

specification through to implementation. From an evolution point of view, this tends 

to place the onus on software architectures and design abstractions. These must ensure 

that expressibility of conceptual level concerns is possible, constructs exist to separate 

static from evolvable parts, and that the design is interrogatable in terms of preserving 

architectural integrity. 

5.1.4 Implementation and Operation 

At the implementation phase, design level abstractions are realised in terms of 

program and code destined for a particular execution platform. It is often the case that 

flaws and omissions in early requirements stages are only now revealed. This leads to 

developers re-iterating through earlier phases to rectify problems - an expensive 

process in terms of time and also contributing to the likely erosion of the original 

design. The range of problems increases once a system becomes fully operational and 

include corrective, adaptive and perfective maintenance as was discussed in section 

2.1.5. Furthermore, the recent surge in the internet and other Web-related initiatives 

such as e-commerce, also require horizontal integration of systems. Personalisation of 

software, in particular, is considered as a key requirement for e-commerce related 
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systems. Moreover, any system evolution to meet these requirements should be as 

dynamic as possible, necessitating the trend towards systems that are "self­

organising", in the sense that they adapt to the context in which they are used. 

Evolution on established systems is complicated by the existence of persistent stores 

of data and program, both accessed concurrently by end-users. This, together with the 

issues presented in the above paragraph, have resulted in numerous solutions being 

proposed in the literature. Some of these were discussed in Chapter 4, beginning with 

solutions to the schema evolution problem introduced in section 3.1.4.1. Approaches 

generally involved the propagation of changes to database instances and required 

modification of dependent application code, or the creation of emulation-type 

mechanisms such as views to provide a "virtual" change. Although these techniques 

are relatively advanced in terms of addressing schema evolution issues, they are also 

characterised by the following concerns: 

• Legacy-system oriented: Schema evolution techniques deal with the problem at 

the operational stage and, in general, tackle the symptoms of evolution as opposed 

to the cause (e.g. unstable conceptual design). However, they also take cognisance 

of the fact that established and operational systems generally have availability and 

application compatibility requirements. Here, a redesign and subsequent re­

implementation of database schemas would result in massive disruption. 

• Technically-oriented, complex and specialised: Many schema- and database 

evolution mechanisms tend to provide solutions that may be effective but carry 

significant overhead. An example is Ra and Rudensteiner's [Ra and Rudensteiner, 

1997] approach to schema versioning in terms of extended view support. This was 

described in section 4.3.1. While attractive in providing a solution to address 

multi-versioning concerns, it is complex in nature and requires maintenance of the 

dependencies between successive view implementations. 

Other approaches address the issue of semantic integrity of the evolution process, 

but tend to be limited to particular application domains. The evolution mechanism 

for accounting-based systems, described in [Chen et al, 1995] and discussed in 

section 4.3.1, is an example. 

• Manual intervention required and not conceptually-oriented: Current evolution 

systems are limited in their capacity to automatically realise compound-type 
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changes (e.g. merging of object classes), as well as lacking in their ability to 

preserve semantic consistency. As a result, many systems require manual 

intervention, or provide the user with a list of suggested approaches for evolving a 

particular aspect of a schema. Support for maintaining the consistency of 

dependent applications has either focused on view or versioning solutions to 

maintain compatibility, or is reliant on compiler-oriented warnings to guide 

maintainers to affected program parts. 

New implementation-level paradigms, such as orthogonally persistent systems 

(section 4.3.3) and meta-modelling approaches (section 4.3.4), have provided 

significant progress towards dealing with evolution at the implementation and 

operational stages. 

Orthogonal persistence was noted as: 

• Effectively eradicating the impedance mismatch problem. 

• Simplifying programming overhead by allowing developers to focus on the 

application domain, as opposed to how it may be implemented in terms of 

integrating disparate sub-systems (e.g. database systems, operating systems, 

communication systems, etc.). 

• Automatically promoting propagation of change through meta-data, data and 

program structures. 

At this time, orthogonally persistent systems are mostly limited to research 

environments, with further progress required in order to make them commercially 

viable. In particular, the efficiency and reliability of established DBMSs presents a 

benchmark for orthogonally persistent contenders. The role of orthogonally persistent 

systems, in terms of supporting evolution in the broader context of the entire software 

development life-cycle (SDLC), is considered in section 5.2. 

Another recent proposal for system implementation concerned the pervasive use of 

meta-models, such as the Model-Driven Architecture (MDA) described in section 

4.3.4.1, in order to establish a high-level abstraction whereby the following are 

achieved: 

• Design-centred development and platfonn independence: Development is centred 

on the creation of formal design-level models that are compliant to higher-level 
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meta-models. Mappings to implementation-level constructs are provided and 

facilitate automatic code-generation should the target platform change. The 

original design investment is therefore protected. 

• Horizontal integration: The approach is also centred on exchange of meta-data in 

order to promote interoperability across different meta-models, be they meta­

models describing database, workflow, or component management concerns. This 

is generally seen as a progression towards more semantically consistent 

integration, as opposed to the conventional means of only realising 

interoperability though standard component interfaces. This is, in essence, similar 

to the aim of orthogonal persistence, where developers are freed from the 

concerns of interfacing heterogeneous system components. The integration, in the 

MDA case however, takes place at a low and detailed design-level abstraction as 

opposed to the implementation phase. 

As noted in section 4.3.4.1, the MDA vision is still incomplete, requiring the 

development of abstract models providing essential services such as persistence, 

transactions and security. 

Finally, orthogonal persistence and the meta-model vision should be seen as 

complementary solutions towards improving implementation technology that supports 

evolution. It should, however, be noted that the former encourages a "clean-slate" 

approach whereby applications are re-engineered into a orthogonally persistent 

environment. The MDA vision, in tum, offers promise for legacy systems in terms of 

offering meta-model descriptions on non object-oriented artefacts, such as relational 

or network-model data sources. However, this would appear to encourage "wrapper­

based" solutions. These can sometimes detract from the original conceptual 

specification of an application in terms of compromised and more restricted 

functionality. 

The next section explores the notion of the specification serving as the core artefact 

for system development and evolution. 
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5.2. A future perspective on supporting evolution over the 
Software Development Life-Cycle 

From section 5.1, it becomes evident that the earlier development stages of 

requirements analysis and specification are vital. The creation of abstract models to 

represent the underlying application domain provide a framework that is understood 

by customers of the system, as well as those responsible for developing and 

maintaining the resulting operational infrastructure. Evolution-related requirements 

are best catered for at this level and can suggest designs able to meet stability 

requirements (in the sense of conceptual stability discussed in sections 3.1.2 and 

4.1.1). This tends to suggest that a detailed and comprehensive specification would, 

through a transformational development style, be ideal as the "entry-point" for the 

implementation of any changes to the system. A sufficiently formal specification 

meeting Balzer's [Balzer, 1986] requirements for a "good" specification (section 

2.1.2), would also model the inter-relationships and dependencies between system 

components - certainly promising for ensuring the consistent propagation of change 

and preservation of semantic integrity following an evolution. 

Unfortunately, most commercial system developments face the following factors: 

• Pressure to produce deliverables: Procurers of a new system generally require the 

rapid production of deliverables in terms of executable system components. This 

leads to developers spending less time on specification, and more on producing 

low-level design artefacts that are readily transformable to implementation 

constructs for a particular platform. These may be prone to instability at later 

operational phases. Transformational developments from specification through to 

implementation are also regarded as complex, particularly the verification of 

transformation steps - tool support may exist, but often requires much user 

intervention to ensure that the conceptual constructs in a specification are 

correctly mapped to the different heterogeneous components that ultimately 

comprise an implementation. 

• Heterogeneous specification methods: One specification method can seldom meet 

all requirements. In particular, Object-Role Modelling (ORM) may be used for 

specifying entities and their relationships, while the functional specification is 

based on either a model-driven approach such as Z, or pseudo-code constructs. 
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These factors are generally typical of the disadvantages of any formal methods 

development. 

However, the emergence of mapping technology between specification formalisms, 

orthogonal persistence, and the meta-modelling oriented MDA, collectively improve 

the notion of the specification as the core artefact for system development and 

evolution. 

By being able to convert different specification constructs into one homogeneous 

specification, a basis can be established for further refinement into implementation­

level artefacts. Polack [Polack, 1992], for instance, describes a technique (capable of 

being automated) for formalising an Entity-Relationship model into a series of Z state 

schemas. Kim and Carrington [Kim and Carrington, 2000] also describe a formal 

mapping between Z and UML. The progression from a specification to 

implementation is significantly simplified in an orthogonally persistent environment. 

The primary reason is that the late design-level and early implementation-level 

concerns of integrating diverse system components is all but removed. 

Current system developments are, however, very reliant on the provision of a software 

architecture to guide the developer from specification to implementation. Although 

the MDA approach is primarily targeted at making development more model-based to 

counter the proliferation of middleware platform changes, the "side-effect" benefit of 

generation of code from model structures better supports the implementation of 

requirements changes. Consistency and propagation of changes through to system 

components on implementation platforms is now better facilitated. Conceptually­

oriented development is also more documentation- and hence maintenance-friendly. 

This would significantly improve the poor documentation and specification artefacts 

in industrial and commercial environments where high IT staff turnover cannot allow 

for the maintenance onus to lie on an individual or group of individuals. In essence, 

the MDA approach would also seem to address both the adaptive and perfective 

maintenance categories introduced earlier in section 2.1.5. The approach does 

however constrain development to conforming to MDA meta-models in order to 

achieve the benefits of simplified maintenance. 

92 



CHAPTER 6 - CONCLUSION 

Requirements changes, both in terms of application domain and implementation 

platform evolution, necessitate the study of the design and development of 

information systems, in addition to the issues involved at later operational and 

maintenance phases. In particular, the impact of evolution was considered in terms of 

the software development life-cycle, ranging from requirements analysis stages 

through to operational stages. 

The earlier user-centred and specification-level artefacts emerged as vital components 

in improving the current state of affairs. Any significant evolution, or maintenance on 

operational systems, demands documentation that is consistent with the 

implementation artefacts. 

As discussed in section 5.2, orthogonal persistence and MDA-type approaches hold 

promise for realising a transformational development style, from system model to 

implementation platform. Such transformations do, however, require a very detailed 

specification (effectively bordering on design-level constructs) in order to be realised. 

Future work regarding orthogonal persistence is largely focused on the PJama project, 

described in section 4.3.3.2. Benefits to be realised by such implementations also 

include the exploitation of linguistic reflection as a means to facilitate adaptive 

behaviour. Similarly, the MDA approach is focused on adaptive objects, i.e. software 

capable of automatic discovery of properties of its environment and adaptation to that 

environment. Poole [Poole, 2001] indicates that 'our ability to engineer such systems 

will come largely as the result of our extensive experiences with the use of meta­

models and ontologies in influencing system behaviour and decision making. We will 

eventually learn how to build systems in which a considerable amount of domain 

knowledge is pushed up into higher abstraction levels. Systems will understand how 

to efficiently extract and act on that information.' 

The accommodation of change, in terms of building evolvability into system 

specifications, was also considered. Dealing with the problem as proactively as 

possible would reduce the maintenance overhead once the system reaches its 

operational phase. 
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Section 4.1 discussed the need to measure the stability of conceptual models as a 

means for gauging the evolvability characteristics of a particular model, i.e. the ease 

with which the information system can be adapted to changing functional 

requirements. The metrics presented are most applicable when researching the 

conceptual models in their "natural environment", the operational business. 

Contributions from Wedemeijer [Wedemeijer 2000] and Verelst [Verelst 1997] are 

valuable in addressing the issue that multiple correct conceptual models may exist for 

a particular application domain, but differ in their evolvability characteristics. 

Stability was considered as a major contributor towards achieving evolvability. 

Approaches for (explicitly) specifying evolving requirements were also addressed in 

terms of behavioural and structural concerns. As described in section 5 .1, the primary 

issue is the distinction of stable parts from evolvable parts - a decision that needs to 

be made well in advance of the design phase. Such a separation was also suggested as 

a solution to counter the problem of design erosion in software architectures -

described in section 3.1.3.2. The so-called externalisation of component interactions 

emerged as a primary goal and was discussed in section 4.2, both in terms of a 

specific domain application and for software architectures in general. 

The schema evolution problem was then discussed in section 4.3.1 as a means to cope 

with change affecting established persistent stores of data and program. The major 

concerns include the propagation of change and preservation of the semantic integrity 

of the system in terms of its underlying conceptual specification. Technical solutions 

dominate the field and often tend to be complex. Schema versioning approaches either 

present significant storage overheads or are complex in nature. At present, however, 

the solutions do provide a way of coping with compatibility and consistency concerns 

- both in terms of dependent application systems and database instances of the 

schemas. 

As far as future work is concerned, novel approaches deserve consideration. In 

particular, Parsons and Wand [Parsons and Wand, 2000] tackle the more generic and 

underlying problem of preferred classification. They propose an instance-based 

model (as opposed to class-based) as a vehicle for solving the problems resulting from 

this. Here, membership of instances to classes is defined purely in terms of the 

properties that the instance possesses. In particular, users are no longer limited to 

accessing data through a designer's preferred schema, and schema evolution issues 
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are also avoided in the sense that classes can now be changed without reference to the 

underlying population. The approach is unconventional with constraint definition, 

query capabilities, security restrictions, and general performance aspects being noted 

as requiring further consideration regarding any implementation of the model. 

However, these should not detract from the potential benefits that can be realised. 

Finally, the problem of evolution is one requiring proactive as well as reactive 

solutions for any given application domain. Even "best designs" are limited in dealing 

with unanticipated evolution and require implementation phase paradigms that can 

facilitate an evolution correctly (semantic integrity), efficiently (minimal disruption of 

services) and consistently (all affected parts are consistent following the change). 

Orthogonal persistence and meta-modelling frameworks, such as the MDA, present 

significant progress in this direction. 

While presenting different approaches towards dealing with the evolution problem 

over the SDLC, it is hoped that this research also indicates that accommodating and 

facilitating information system evolution requires more emphasis on the conceptual 

and specification artefacts. This prevents the traditionally steep maintenance 

overheads that characterise any realisation of requirements change on operational 

systems. Moreover, the benefits of presenting simpler and less technical development 

platforms for designers and system procurers are considerable. 
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GLOSSARY OF ABBREVIATIONS AND ACRONYMS 

.NET 

AI 

Pronounced "dot net". A Microsoft operating system platform 
primarily designed to facilitate development of interoperable Web 
applications. This incorporates applications, in addition to a suite of 
tools and services. 

Artificial Intelligence: Broadly, the study of how to make computers 
perform tasks that are currently better performed by humans. In the 
context of this research, reasoning and natural language 
understanding are relevant. 

ANSI/SPARC American National Standards Institute/Systems Planning and 
Requirements Committee. Used to refer to the three-level (internal, 
external, conceptual) architecture to model database systems. 

AOM 

C++ 

CAD 

CAM 

CASE 

CO RB A 

Adaptive Object Model: Implementations employing such 
technology provide dynamic system behaviour based on the runtime 
interpretation of meta-models. 

An object-oriented programming language. 

Computer Aided Design: CAD software is used by engineers, 
architects, etc., to create precision drawings or technical illustrations 
in 2-dimensional or 3-dimensional form. The management of the 
software library of design components and the relationships between 
design components are relevant to this research in the database 
schema sense. Also see CAM. 

Computer Aided Manufacturing: Computer-aided control of the 
manufacturing process for a product. CAD/CAM systems allow 
engineers to design a product and control its manufacturing process. 
The required information system management facilities for such 
environments are relevant to this research. 

Computer Aided Software Engineering: Automated support for 
software engineering. 

Common Object Request Broker Architecture: An architecture that 
enables program objects to communicate with one another regardless 
of what programming language they were written in or what 
operating system they're running on. CORBA is an OMG standard. 
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CWM 

DAG 

DBMS 

DDL 

DFD 

DTD 

EBNF 

e-commerce 

EJB 

ER 

EVOLVE 

Common Warehouse Meta-model: A MOF-compliant meta-model 
for representing both the business and technical metadata that's most 
often found in data warehousing and business analysis domains. 
Provides support for the ability to model legacy and non-legacy data 
resources, including relational databases, record-oriented databases, 
and XML- and object-based data resources. 

Directed Acyclic Graph: In this research, used to refer to an object­
oriented schema where the relationships between classes must be 
such that they resemble a directed graph without cycles. 

Database Management System: A collection of programs that enable 
the storage, modification, and extraction of information from a 
database. 

Data Definition Language: Language supporting the definition or 
declaration of database objects. 

Data Flow Diagram: These graphically illustrate how input data is 
transformed to output results through a sequence of functional 
transformations. 

Document Type Definition: A DTD states what tags and attributes 
are used to describe content in an SGML document, where each tag 
is allowed, and which tags can appear within other tags. 

Extended Backus-Naur Form: BNF (Backus-Naur Form) is used to 
formally define the grammar of a language. EBNF is a variation on 
the basic BNF meta-syntax and includes additional constructs. 

Electronic Commerce: Conducting business on-line (typically over 
the internet). 

Enterprise Java Beans: A Java application programming interface 
that defines a component architecture for multi-tier client-server 
systems. The EJB component model simplifies the development of 
middleware applications by providing automatic support for services 
such as transactions, security, database connectivity, and more. 

Entity-Relationship. In the sense of Chen's Entity-Relationship 
approach described in section 2.2.1. 

A object-oriented notation described in [Liu, 1998] for specifying 
structural and behavioural requirements. 
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HTML 

Java 

Java RMI 

JDBC 

JVM 

MDA 

MOF 

NIAM 

OMG 

OMT 

ORM 

Hypertext Markup Language: The authoring language used to create 
documents on the World Wide Web. HTML is similar to SGML, 
although it is not a strict subset. 
HTML defines the structure and layout of a Web document by using 
a variety of tags and attributes. 

An object-oriented programming language similar to C++. Designed 
to be executable on different platforms. Developed by Sun 
Microsystems. 

Java Remote Method Invocation: RMI is the Java version of what is 
generally known as a remote procedure call (RPC), but with the 
ability to pass one or more objects along with the request. 

Java Database Connectivity: A programming interface that enables 
Java programs to interact with SQL-compliant databases. 

Java Virtual Machine: An abstract computing machine, or virtual 
machine. JVM is a platform-independent execution environment that 
converts compiled Java code into machine language for execution. 

Model-Driven Architecture: An OMG initiative for system 
specification and interoperability based on the use of formal models. 

Meta Object Facility: An OMG standard defining a common, 
abstract language for the specification of meta-models, such as 
CWM. MOF is an example of a meta-meta model (or model of the 
meta-model). 

Nijssen's Information Analysis Methodology: A predecessor of the 
ORM approach to conceptual modelling. Was later generalised to 
"Natural language Information Analysis Method". Also see ORM. 

Object Management Group: A consortium providing a common 
framework for developing applications using object-oriented 
programming techniques. 

Object Modelling Technique: Uses DFDs, hybrid E-R diagrams, and 
statecharts to model software requirements using object-oriented 
concepts. The OMT notations are only partially formal. 

Object Role Modelling: A conceptual modelling technique 
developed by Halpin. It describes objects and their relationships, as 
well as domain constraints in a formal (graphical) notation. It 
involves a step-by-step design procedure based on verbalisation in 
natural language. Further detail can be found in [Halpin 1995]. 
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PAS 

PIM 

PJama 

PSM 

SDLC 

SGML 

SOAP 

SQL 

TESS 

TROLL 

Persistent Application System: Systems where the application as 
such outlives its individual components and even its implementation 
technology. 

Platform-Independent Model: The basis of an MDA-based 
application. It is defined in terms of UML, allowing an application 
model to be constructed, viewed, developed and manipulated in a 
standard way at analysis and design time. 

A research project in progess at the University of Glasgow, Scotland 
in conjunction with Sun Microsystems. It is aimed as a vehicle for 
implementing and testing an orthogonal persistent version of the 
Java programming language. Orthogonal persistence is described in 
section 4.3.3.1. 

Platform-Specific Model: The platform specific interpretation of a 
PIM. It contains the same information as a fully-coded application, 
but is expressed in UML instead if code and associated files. 

Software Development Life Cycle: The process of developing 
information systems through requirements analysis, specification, 
design, implementation and maintenance. 

Standard Generalized Markup Language. A system for organising 
and tagging elements of a document. SGML was developed and 
standardised by the International Organization for Standards (ISO) in 
1986. 

Simple Object Access Protocol. This provides a way for applications 
to communicate with each other over the internet independent of 
platform. It is an XML-based protocol that is designed to exchange 
structured and typed information on the Web. It consists of three 
parts: an envelope that defines a framework for describing what is in 
a message and how to process it, a set of encoding rules for 
expressing instances of application-defined data types, and a 
convention for representing remote procedure calls and responses. 

Structured Query Language: Standardised declarative language for 
formulating relational operations (i.e. operations that define and 
manipulate data in relational form). 

Type Evolution Software System: An acronym for Lerner's [Lerner 
2000] software tool for dealing with compound type changes. 

A language for the object-oriented specification of information 
systems. It is designed to describe the Universe of Discourse (UoD) 
as a system of concurrently existing and interacting objects. See 
[Jungclaus, et al, 1991]. 
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TSE 

UIMS 

UML 

UoD 

W3C 

XMI 

XML 

z 

Transparent Schema-Evolution System: An acronym for Ra and 
Rudensteiner's [Ra and Rudensteiner, 1997] tool for managing 
schema versioning. 

User Interface Management System: Allows a programmer to 
"connect" the behaviour at the user interface with the underlying 
functionality of a system. 

Unified Modelling Language: An OMG notation used for 
representing the structure of data in object-oriented systems. It also 
adds the ability to describe the behaviour of each object class/entity. 

Universe of Discourse: Used to refer to the real world domain 
underlying an application. 

World Wide Web Consortium: An international consortium of 
companies involved with the Internet and the Web. The 
organisation's purpose is to develop open standards so that the Web 
evolves in a single direction rather than being splintered among 
competing factions. 

XML Metadata Interchange: An OMG standard that maps the MOF 
to XML. XMI effectively defines how XML tags are used to 
represent serialised MOP-compliant meta-models in XML. 

Extensible Markup Language. A specification developed by the 
W3C. XML is a subset of SGML, designed especially for Web 
documents. Designers are able to create their own customised tags (a 
command inserted into a document, specifying the format of a 
document or part thereof) enabling the definition, transmission, 
validation, and interpretation of data between applications and 
between organisations. 

A model-based formal software specification language. It uses 
mathematical concepts and notation, including set theory, to build 
models of systems. 
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