
COPING WITH EVOLUTION IN INFORMATION SYSTEMS -
A DAT ABASE PERSPECTIVE

by

GREGORY LAWRENCE

SUMMARY:

Business organisations today are faced with the complex problem of dealing with
evolution in their software information systems. This effectively concerns the
accommodation and facilitation of change, in terms of both changing user
requirements and changing technological requirements. An approach that uses the
software development life-cycle as a vehicle to study the problem of evolution is
adopted. This involves the stages of requirements analysis, system specification,
design, implementation, and finally operation and maintenance. The problem of
evolution is one requiring proactive as well as reactive solutions for any given
application domain. Measuring evolvability in conceptual models and the
specification of changing requirements are considered. However, even "best designs"
are limited in dealing with unanticipated evolution, and require implementation phase
paradigms that can facilitate an evolution correctly (semantic integrity), efficiently
(minimal disruption of services) and consistently (all affected parts are consistent
following the change). These are also discussed.

KEY TERMS:

Software evolution; Requirements change; Schema evolution; Conceptual Modelling;
Meta-modelling; Model-Driven Architecture; Orthogonal Persistence; Persistent
Application System; Evolvability; Software development life-cycle; Information
System design and development; Database design; Database evolution; Application
evolution; Unanticipated change

COPING WITH EVOLUTION IN INFORMATION SYSTEMS -
A DATABASE PERSPECTIVE

by

GREGORY LAWRENCE

submitted in part fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

atthe

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF K.V. RENAUD

NOVEMBER 2002

2

TABLE OF CONTENTS
CHAPTER 1 - INTRODUCTION .. 4

CHAPTER 2 - DESIGN AND DEVELOPMENT OF INFORMATION SYSTEMS 8

2.1 THE SOFTWARE DEVELOPMENT LIFE CYCLE .. 9
2.1.l Requirements Analysis .. 9
2.1.2 System specification .. 10
2.1.3 Design ... 13
2.1.4 lmplementation and Testing .. 15
2.1.5 System Maintenance .. 16

2.2 CONCEPTUAL MODELLING FOR DATABASES ... 18
2.2.l An overview of Conceptual Modelling Techniques ... 19

CHAPTER 3 - THE PROBLEM OF EVOLUTION ... 25

3.1 EVOLUTION AND THE SDLC ··· 26
3.1.l Requirements Analysis .. 26
3.1.2 System Specification and Conceptual Modelling .. 27

3.1.2.1 Evolvable Conceptual Models: Challenges and Issues .. 27
3.1.2.2 Behavioural Evolution .. 31

3.1.3 Design ... 31
3.1.3.1 Design Components and Software Architectures .. 32
3.1.3.2 Design Erosion .. 33

3.1.4 lmplementation and Operation ... 35
3.1.4.1 Schema and Database Evolution ... 36
3.1.4.2 Application (Behavioural) Evolution .. 38
3.1.4.3 A Wholistic View : Issues and Considerations ... 39

CHAPTER 4 - DEALING WITH THE EVOLUTION PROBLEM ... 41

4.1 EVOLUTION-FRIENDLY SPECIFICATION ... 42
4.1.l Stability Characteristics .. 42
4.1.2 Specifying change ... 45

4. l .2.1 Modelling change in behavioural specifications .. .45
4.1.2.2 Building evolvability into structural conceptual specifications .. .49

4.2 DESIGN - REQUIREMENTS AND SOLUTIONS .. 54
4.2.l Accommodating evolution in design architectures .. 55

4.2.1.1 Coordination Contracts - Enhancing Design Architectures .. 56
4.2.2 Evolving a Software Architecture ... 58

4.3 IMPLEMENTATION AND OPERATION .. 60
4.3.l Schema Evolution: Current Research and Related Work ... 61
4.3.2 Reflection .. 65
4.3.3 Persistent Application Systems and Orthogonal Persistence .. 67

4.3.3.1 Orthogonal Persistence ... 68
4.3.3.2 The PJama Project. .. 71

4.3.4 A Meta-Modelling Approach ... 74
4.3.4.1 Model Driven Architecture (MDA) .. 76

CHAPTER 5 - A SYNOPSIS .. 80

5.1 A CHARACTERISATION OF CURRENT APPROACHES .. 80
5.1.l Requirements Analysis .. 81
5.1.2 Specification and Conceptual Modelling .. 83
5.1.3 Design ... 85
5.1.4 lmplementation and Operation ... 87

5 .2. A FUTURE PERSPECTIVE ON SUPPORTING EVOLUTION OVER THE SOFfW ARE DEVELOPMENT LIFE-

CYCLE ·· 91

CHAPTER 6 - CONCLUSION ... 93

CHAPTER 7 - REFERENCES ... 96

GLOSSARY OF ABBREVIATIONS AND ACRONYMS ... 103

3

CHAPTER 1 - INTRODUCTION

Business organisations today are faced with the complex problem of dealing with

evolution in their software information systems. This effectively concerns the

accommodation and facilitation of change, in terms of both changing user

requirements and changing technological requirements. Information systems in this

context refers to any system having to manage the storing, structuring and processing

of data. This research is particularly concerned with the database (persistent data)

aspect of information systems and regards this as a core element that must be

addressed in terms of the evolution problem.

Evolution affects both structural and behavioural elements of the persistent store, or

database. Any changes to the database will in tum influence applications dependent

on the database schema - an aspect usually considered as stable and static in terms of

structure and behaviour. However, change is inevitable, stemming from both user and

organisational sources. The following trends define the nature of these evolution­

related pressures:

• Integration pressures: Organisational mergers often require conversion and

adaptation of database systems. However, the investment in persistent data is

often considerable, requiring that any change not disrupt the integrity and

consistency of persistent stores. The field of schema evolution is particularly

relevant here and organisational dependencies on so-called "legacy systems"

should not be underestimated.

• Changing domain requirements: Evolution stemming from changing

requirements in the underlying application domain (or Universe of Discourse

(UoD)) is inevitable. This takes the form of changes in product lines, government

regulations, or other organisational standards relating to particular domain entities

or the inter-relationships and inter-actions between them.

• Containment of software maintenance costs: Frequent software maintenance is

expensive, both in terms of disruption to system availability and services, as well

as increases in the complexity of the system. The latter can result in systems

being difficult to comprehend by maintainers whom are not necessarily the same

individuals that were responsible for designing the initial system. More efficient

and effective maintenance mechanisms are sought. However, the ability to

4

accommodate evolution without resorting to any significant system maintenance

is desirable.

Technologically-oriented pressures also contribute to evolvability requirements.

These include:

• Personalised (Adaptive) software: The notion of software that dynamically

evolves to suit its current environment, or context, is prevalent in software

applications ranging from word-processors to e-commerce. An example of the

latter would be the personalisation of product prices and discounts, depending on

the customer, time of year, etc. From an information systems point of view, this

requires consideration regarding the design of software that will model the core or

fundamental aspects of the domain, as well as cater for the personalisation

requirements and policies that may change over time. This has traditionally been a

difficult problem, leading to software that ultimately becomes very difficult to

maintain.

• New application classes: More dynamic schemas and behaviour are required to

manage the requirements stemming from application areas such as data mining

and scientific databases modelling evolving entities (e.g. weather systems,

biological systems). Here, data structures must evolve as they are discovered. This

is clearly in conflict with traditional database development where schemas exist

before any programs are run against them.

• Platform evolution: The recent proliferation of different middleware platforms

such as .NET, EJB and CO RB A, has made it difficult for enterprises to

standardise on as single platform. Frequent platform changes are also disruptive to

the organisation, resulting in loss of investment in certain implementation

technology. Pressure for more conceptually-oriented development, that is also

platform-independent, is increasing.

The range of requirements presented here necessitates a consideration towards the

way information systems, and their persistent stores in particular, are conceptualised,

designed and finally implemented. An approach that uses the software development

life-cycle (SDLC) as a vehicle to study the problem of evolution is therefore adopted.

5

This involves the stages of requirements analysis, system specification, design,

implementation, and finally operation and maintenance. The maintenance phase is of

particular interest to long-lived systems and especially to evolution-oriented

requirements changes. These often necessitate a re-iteration through earlier phases

and are notoriously expensive in terms of cost and disruption to system services.

We now briefly discuss the content of this research in terms of the remaining

chapters.

Chapter 2 describes the stages of the SDLC with emphasis on the database aspect.

Conceptual modelling as a means for describing the entities and relationships

comprising an application domain is considered, as well as the issue of describing

data not traditionally stored in DBMSs. In particular, the Extensible Mark-up

Language (XML) is regarded as a means for describing data not easily characterised

in terms of rigid schema structures.

Having introduced the processes and artefacts involved in constructing, implementing

and maintaining information systems, Chapter 3 proceeds to discuss the impact of

evolution on the SDLC phases. The characteristics of traditional software

development that affect evolvability are also discussed. These include:

• The need for requirements analysis techniques that are better coupled and

integrated with specifications so as to preserve consistency through numerous

maintenance iterations.

• The need to quantify and qualify evolvability in conceptual models (specification

phase) and the need to model changing requirements.

• The problem of design erosion as it affects the architectural design of the system.

• The schema evolution issue and the associated problems of application and

database compatibility. Weaknesses in current implementation technology are also

considered. The problem of using disparate components (i.e. database systems,

operating systems, communication systems, etc.) to realise an implementation is

of particular concern.

6

Chapter 4 introduces a range of techniques presented in the literature as solutions to

particular aspects of the evolution problem. These are once again discussed in terms

of the SDLC phases and include the following:

• The issue of stability and how it may be assessed in conceptual models.

• Approaches to deal with the specification of evolving requirements - both in

terms of structural and behavioural models.

• The issue of accommodating evolvability into design-level artefacts. In particular,

the interactions between design components emerges as a fundamental aspect in

coping with evolution.

• Solutions to the schema evolution problem are considered for their contribution

towards facilitating maintainers with the means to evolve persistent stores whilst

preserving semantic integrity.

• Reflection, being 'the ability of a program to manipulate as data something

representing the state of the program during its own execution' [Gabriel et al,

1993], is considered as a means for facilitating dynamic behavioural evolution.

• Persistent application systems and orthogonal persistence as a programming

paradigm where developers are freed from the concerns of implementing explicit

mappings and translations between disparate system components. For example,

the impedance mismatch problem between programming languages and database

query languages is a result of such "incompatibility".

• A meta-modelling architecture as a means for realising high-level semantic

compatibility between system components. In particular, the OMG's Model­

Driven Architecture (MDA) is presented as an approach where development is

more specification-level and conceptually oriented. It uses Unified Modelling

Language (UML) models that are mappable to platform specific implementation

artefacts. This mapping is, for the most part, automated via tools. The benefits for

managing evolution are considerable, particularly the assurance of consistency

and controlled change propagation via a "meta-conforming" system model.

Lastly, Chapter 5 provides a synopsis on the problem of evolution and its solutions.

Section 5.2 briefly discusses the requirement of providing a framework to support

evolution uniformly through the software development life-cycle.

7

CHAPTER 2 - DESIGN AND DEVELOPMENT OF
INFORMATION SYSTEMS

The development of an information system typically follows the phases of the

software development life-cycle. These include a requirements analysis phase,

followed by a system specification phase, design phase, implementation and testing

phase, and finally an ongoing maintenance phase.

Numerous techniques can be applied at the early stages of requirements analysis and

specification in order to capture and model customer requirements for a particular

application domain. These include:

• The modelling of the entities and their relationships in the application domain. In

particular, this refers to the database aspect where conceptual modelling provides

the means to formally describe the real-world objects, their roles and inter­

relationships, as well as constraints or business rules.

• Functional requirements (including those relating to the process and data flow in a

system that define the transformations expected by the user)

• Non-functional requirements (cost, reliability, availability and performance)

The design phase in an information system development includes design of the overall

system architecture where the components making up the system are described, as

well as the relationships between them. This phase bridges the specification and

implementation phases by considering how the specification might be realised as

opposed to what it must realise.

The implementation phase is the realisation of the design in terms of a set of programs

or program units as well as the instantiation of a physical database schema. Testing

now occurs to ensure that the system meets its specification.

The maintenance phase is a particularly interesting and challenging one for long-lived

information systems. It concerns the sustainability of the system in the face of

changing requirements, changing technology, or the correction and improvement of

8

flaws. Through all this, the developer is required to maintain system integrity and

consistency with minimum disruption to services.

We now consider each stage of the development life-cycle in more detail, particularly

with a view towards information systems where the persistence of data and its

semantics must be addressed.

Sections 2.1.1 through 2.1.5 consider requirements analysis, system specification,

design, implementation and testing, and the maintenance phase in further detail.

Section 2.2 presents an introduction to conceptual modelling - a key component for

formally describing the database aspect of an information system. XML as a means to

model Web, and other unstructured data, is introduced in section 2.2.2.

2.1 The Software Development Life Cycle

2.1.1 Requirements Analysis

This phase is characterised by consultation with the client in order to determine the

system's services, constraints and goals. The problems for which a solution is sought

are documented so as to create an initial requirements definition. Sommerville

[Sommerville 1992] suggests that although requirements are indeed stipulated at

varying levels of abstraction, the initial liaison with the client should typically be

written in a natural language style that is understandable by all stakeholders. Simple

intuitive diagrams are also prevalent at initial meetings, particularly for indicating the

major components of the system, their inter-relationships, as well as the relationship

to the greater environment within which the system operates. A general

recommendation is to also include a form of definition that is susceptible to logical

reasoning. This is required to facilitate an effective transition to the next phase -

system specification. The requirements analysis stage tends to be iterative in the sense

that better understanding and re-evaluation of the problem domain often result in

revised documents. The extent of such "improvement" is naturally capped by the

designer's or client's foresight at that time.

9

In addition, non-functional requirements such as restrictions on the freedom of the

designer relating to cost, hardware limitations, resources, etc., should be expressed

during this period.

The phase is usually completed by a requirements definition document that includes

the following [Sommerville 1992]:

• Introduction: Motivation for the need of the system, and placing it into context as

regards the overall business and strategic objectives of the organisation

commissioning the software.

• The system model: This should indicate the system components and the

relationships between them, in addition to the relationships between the system

and its environment. High-level abstract data models may be specified as well as

simple action diagrams to indicate transformations that occur in the system. The

aim is to indicate the real-world entities that are to be represented in the software

system.

• System evolution: The fundamental assumptions on which the system is based,

together with anticipated changes due to hardware evolution and changing user

needs, should be presented.

• Functional requirements: The services provided for the user should be described

in natural language terms. This would also include constraints on the nature of the

system's functionality. However, as suggested earlier, a form that will facilitate

cross-reference to a more formal specification is advantageous.

• Non-functional requirements: Constraints imposed by the environment in which

the software must operate should be related to the functional requirements.

In order to progress to a more formalised interpretation of the system requirements,

specifications are developed. These serve to bridge the gap between informal

requirements analysis and system design.

2.1.2 System specification

This phase concerns the creation of an abstract description of the software. A basis is

then established by the system designer for later design and implementation phases.

The need for greater formality becomes paramount in order to avoid the ambiguity

10

and imprecision that is inherently part of informal natural language and informal

graphically-based formats.

There are different aspects of an information system to be specified. Broadly

speaking, these include means to model the process and flow of control aspects

(defining the sequencing of events or their synchronisation), the behavioural aspects,

as well as the more structural or entity related concerns. So-called business rules

should also be crystallised at this point. These essentially specify constraints on the

behavioural aspect of the system.

Developing a good specification is a difficult task. In particular this includes finding

the right level of abstraction at which to decompose the system components, as well

as finding an appropriate specification language or model that is sufficiently

expressive. It should be noted that one of the prime objectives of using more

formally-oriented specifications is to obtain a basis for sound representation of the

system's semantics. An ability to support some form of logical reasoning is therefore

established, allowing the specification to be interrogated.

Balzer [Balzer 1986] elaborates on the principles and implications of good

specifications. His criteria provide a sound basis for presenting what the specification

phase of a system development should entail. These include the following notions:

• Functionality must be separated from implementation in order to bolster the

ability to reason logically about a specification without being hindered by

implementation level constructs. Constraints on the functionality should be

specified non-deterministically.

• A means to model process oriented aspects, or stimulus-response type behaviour,

is required in order to specify the dynamics of the system. Process algebras are

noted as being favourable for formally describing the ordering of events in the

system workflow sense.

• Interaction and relationships with other system components, as well as the greater

environment, should be modelled. This requires that a globally maintained model

be used to capture the system context. He emphasises that a mutual dependence

between interacting system parts and the environment can lead to implementation­

bias pitfalls. A demon capability, as an independent agent that deals with

11

environmental changes, is therefore recommended. This avoids specifying the

methods regarding the interaction between components.

• The system specification must be a cognitive model, in the sense that it

corresponds to real-world objects and their actions in the domain as perceived by

the user community. It must also aim to incorporate the rules or laws governing

these objects, which may constrain certain states of the system, as well as specify

how objects respond when acted upon. As a result of this, constraint statements

are required. These are in addition to constraints that specify type-checking

concerns in the sense that real-world objects are governed by belonging to one or

more types.

• An operational specification is advantageous in that it facilitates the validation of

an implementation against a specification.

• A specification should be capable of being augmented and dealing with

incompleteness. Changes to invariants and underlying declarations should ideally

be promulgated throughout the specification.

• Lastly, the specification should be localised and loosely-coupled. Localisation

facilitates that only a single piece of the specification requires alteration in the

event of a system modification. Loose-coupledness facilitates the addition and

removal of pieces of a specification.

As suggested above, there are several aspects that need to be modelled; the primary

ones relating to process control flow, some form of entity and relationship modelling,

and behavioural modelling. Above all of this, a good specification would aim to

integrate these in order to realise the benefits described in [Balzer 1986]. However,

numerous factors, mostly pragmatic, also play a major part here.

Firstly, as suggested by Wing [Wing 1990], developments that aim to use formal

modelling techniques inevitably face the issue that no one method can satisfy all

modelling requirements. Other issues such as available tool support, rapid application

development requirements, unfamiliarity with formal notations, and so forth, also add

to a system specification that is far less formal than Balzer' s [Balzer 1986] notion of a

specification.

Information system developments primarily follow a structured analysis type

approach of which entity-relationship type modelling is a primary method for

12

specifying the database component. The focus here is more toward a conceptual

model as the primary description of the objects stored in the database (Conceptual

modelling approaches are discussed in further detail in section 2.2). Specifying the

behavioural aspect of an application, whether it be encapsulated within the constructs

of a conceptual model or not, can take a variety of forms ranging from formal

methods with sound logical reasoning and mathematically-oriented constructs, to

more pseudo-code type approaches with greater implementation bias. The more

process-oriented requirements of an application are usually modelled separately, using

techniques such as data flow diagrams to capture the activities and events that

determine the flow of control.

Overall, some form of modularization takes place during specification, rendering

concrete entities of the application into abstract components of the specification. To

progress the system's development, implementation-oriented abstractions of the

specification are produced. The form and interaction of these more refined

components characterise the next phase - design.

2.1 .3 Design

This phase is initially characterised by the development of an architectural design.

This aims to obtain a more concrete description of the different software components

or sub-systems along with their relationships. It must be emphasised that the

relationship between specification and design is a close one. Sommerville

[Sommerville 1992] notes that 'although the process of setting out a requirements

specification as the basis of a contract is a separate activity, formalising that

specification may be part of the design process. In practice, the designer iterates

between specification and design'.

For large enterprise developments in particular, the design process can be complicated

by the volume and diversity of different components. These components may include

those pertaining to the database aspect, components realising workflow-related

concerns, as well as user-interface objects. The need to manage and relate these in

more abstract terms has given rise to the field of Software Architectures. This has

emerged as a means to assist developers at the design phase with a means for

13

specifying the overall system structure in terms of the elements that comprise the

structure and the relationships between them. The aim is to provide the developer with

a set of intermediate models and artefacts for bridging the gap between specification­

type entities and an implementation in the form of program code. As discussed in

[Hofmann et al, 1996], coordination between components is conceptually handled by

the notion of a connector. These "attach" to components via ports, which can be

regarded as the interface of the component.

For the purposes of this research, the issue to note is that the design phase concerns

the macro-level view (software architecture) defining the overall system in terms of

the components and the interactions between them, as well as the refinement of

individual components' specifications.

There are different design strategies for refining these components. The primary

consideration is whether to adopt a functional or object-oriented approach. The former

involves a decomposition into functional components with a centralised system state

that is shared between the functions operating on that state. With an object-oriented

approach, the system is viewed as a collection of objects with decentralised system

state where each object manages its own state information. Objects communicate by

calling a procedure or method associated with another object. The major consideration

regarding design is that there is no "best" approach as such. Software systems are

usually designed with a combination of both strategies but in such a way that they are

complementary. Sommerville [Sommerville 1992] states that each may be applicable

at different stages of the design process. This implicitly includes the specification

phase as well, due to the iterative nature of development and specification refinement.

It has been suggested that object-oriented techniques are most natural at the highest

and lowest levels of system design. In particular, the natural high-level view of a

system is as a set of objects, or architectural components. However, when the system

is examined in further detail, functional descriptions of certain elements may tend to

be more natural. Lower level detail would typically be concerned with manipulating

objects, thus requiring an object-oriented approach once again.

In summary, this pivotal phase between abstract specification and implementation is

vast in the sense that it deals with the refinement of high-level definitions into low­

level implementation-oriented constructs. Through all this, verification of the design

against the specification is required in order to ensure correctness, particularly in

14

terms of semantic integrity, i.e. is the design a correct interpretation of the

specification.

Amongst the system components being refined and verified is the database conceptual

model - one of the primary aspects of an information system's architectural design.

According to Bowers [Bowers 1993], the conceptual model is an abstract

specification of the data to be included in a database system, while the conceptual

schema is that same model but cast into a form which can be implemented. The

process of transforming from conceptual model to conceptual schema is known as

conceptual schema design. There are a number of distinct types of database systems,

characterised by the principle structure used to represent data; for example,

hierarchical, relational, or object-oriented structures. These, in essence, represent the

logical implementation structure for the database.

The architectural framework and its constituent components are finally refined to a

point where they can be implemented.

2.1.4 Implementation and Testing

The implementation aspect involves the translation of the design into a set of

executable programs or program units. Any outstanding details concerning functions

to be performed and the nature of the data involved, need to be settled in order to

allow the phase to reach a conclusion. Unless a prototype development was

undertaken, certain requirements and design omissions may only be revealed at this

point. Iteration through earlier stages would therefore be required. In addition, non­

functional requirements, for example those relating to performance requirements, are

typically verified at this stage.

As far as the database aspect is concerned, the logical schema is now implemented

using a specific data definition language (DDL) for specifying the required types and

structures, as well as any corresponding validity constraints. Bowers [Bowers 1993]

notes that it is often the case that semantic and integrity-related features represented in

a conceptual model are inadequately portrayed in an implementation, due to

omissions or restrictions inherent in the particular DBMS software. Less than perfect

workarounds usually result to minimise such shortcomings.

15

Implementation and testing usually takes place on a unit by unit basis followed by

integration and testing of the parts into a whole. Verification against the specification

plays a large role here and can be handled differently for different software

components, depending on the development process. Developments, by formal

transformation from specification to implementation, guarantee that the final

implementation is indeed an adequate representation of the specification, while other

less formally-oriented approaches rely on an adequate set of test cases to be run

against the system. These are then verified against the specification.

2.1.5 System Maintenance

The system maintenance phase is of particular relevance to the problem of evolution:

It is usually the longest phase in the life-cycle, especially so for information systems

which are largely comprised of long-lived objects.

Boehm's [Boehm 1981] definition of maintenance as 'the process of modifying

existing operational software while leaving its primary functions intact', succinctly

captures the role and intention of typical activities that occur during the maintenance

phase. According to Lientz and Swanson [Lientz and Swanson, 1978], these would

include the following:

• Corrective maintenance (detecting and correcting errors, i.e. routine debugging)

• Adaptive maintenance (accommodation of changes to the environment of the

program - specifically hardware and newer software technologies for the

implementation of system units)

• Perfective maintenance (user requested enhancements, improved documentation,

enhanced performance)

Lientz and Swanson [Lientz and Swanson, 1980] reported that the respective

categories count for 17%, 18% and 65% of the total maintenance activities, and that

user requested enhancements, in particular, accounted for two-thirds of the last

category. This would also include requirements changes, in the sense of changing

business rules, new government regulations, etc., as introduced in Chapter 1.

Software engineering research regarding the study of system change has followed a

combination of both theoretical and empirical routes. These include investigations

into the relationship of organisational factors to software systems, as well as the

16

design process used to engineer the software. The former considers both structural

issues in organisations, affecting the way in which systems are initially

conceptualised, as well as factors influencing the ease with which changes can be

realised; for example, the size and complexity of the software, or the effectiveness of

the resources allocated to realise the change.

Investigative studies, regarding the engineering techniques used for developing

software, have also proved informative. Overall, lifetime costs are generally

decreased by an increase in effort during the earlier development phases.

Furthermore, techniques such as object-oriented design, approaches encouraging

module independence, and use of high-level programming languages, are all

considered to be favourable towards aiding maintainability.

As regards databases, the traditional ANSI/SP ARC architecture delivers data

independence, whereby changes at the physical level do not compromise logical or

conceptual schemas, and external or user schemas can be changed without affecting

the database's conceptual schema. However, as implied above, requirements change is

a serious issue resulting in considerable maintenance overhead - databases are not

exempt from this. Methods to cope effectively and efficiently with such change across

the information system infrastructure are welcomed - this includes the database and

the application structures "surrounding" it. The issue of evolution, and how it might

be dealt with, is considered extensively in later chapters. In particular, the effect at

each stage of the development life-cycle is discussed, along with the problems that

need to be addressed and the solutions presented in the literature. The requirement for

addressing evolution coherently and consistently over all stages of the life-cycle,

emerges as a distinct requirement for the long-term maintenance of an information

system.

As this research is particularly concerned with the persistent (database) aspect of

information systems, we briefly survey conceptual modelling techniques. These

provide the core representation for the (persistent) information content of an

application domain, and are therefore an important reference when addressing

evolution over the development life-cycle.

17

2.2 Conceptual Modelling for Databases

The traditional role of a conceptual model is to provide an implementation­

independent representation of the information content of a particular application

domain or Universe of Discourse (UoD). It serves as a first step for creating a more

structured and unambiguous view of real world objects and the roles they play within

the application. A more design-oriented interpretation, or conceptual schema, is then

established, whereby the permitted states and transitions of a database system are

defined. This abstraction should not be concerned with data alone per se, but also

about how it is used in order to provide a control for maintaining the integrity and

validity of the system. The conceptual layer is, or should at least be, the most stable,

unaffected by user-interface changes (external views), or any physical storage and

access methods. The notion of conceptual model stability, and hence later conceptual

schema stability, as it affects system evolution, is discussed in detail in Chapter 3.

In order to provide a handle on formalising what the data in a database means, much

research was initiated in the 1970's and 80's toward semantic modelling. In order to

verify user requirements with a customer, analysts required a suitable means of

representation of the environment. Secondly, the system designers needed this as a

basis for their design of computer systems. Finding a technique that suits both camps

sufficiently remains a challenge. In particular, the realisation of this would hold

promise for managing user requirements change more consistently through the

development life-cycle. Chapter 5 considers this in further detail.

Date [Date 1990] characterises semantic modelling research as approaches in terms of

the following steps:

• Attempts to identify a set of semantic concepts that allow informal discussion

about the real world. This typically includes the notions of entities

(distinguishable objects), properties (a piece of information describing an entity),

identity (a property of an entity that serves to identify it), relationships (an entity

that interconnects or relates two or more other entities), subtypes and so on.

• A more formal symbolic representation that corresponds to the above mentioned

concepts.

18

• A set of formal integrity rules that constrain a model in such a way that the

concepts expressed in it are valid in a meta sense, i.e. that the model is a valid

instance of a meta-model.

• A set of formal operators for manipulating the formal objects. These might be

applied to construct a set of different user views from one base structure.

Traditional conceptual modelling approaches, such as Chen's basic Entity­

Relationship model [Chen 1976] and its later extensions, have been widely used as a

mechanism to capture semantic concepts including the notions of entity, property,

relationship, and subtype. However, the role of a sound conceptual model is becoming

increasingly pervasive where factors such as the semantic expressiveness of the

model, ability to serve as a formal specification for a system, understandability by

humans, and support for automated mapping to lower level DBMS structures are

important. The ability to incorporate a system's behavioural characteristics is also

becoming a necessary requirement, in order that both system state and process are

modelled in a unified manner.

The following section aims to provide a brief overview of the major conceptual

modelling techniques. This should provide the reader with an appreciation of the

scope of their role as well as an indication of their future potential for bolstering

information system design and management.

2.2.1 An oveNiew of Conceptual Modelling Techniques

The Entity-Relationship (ER) Model

Developed by Chen [Chen 1976] and still widely used today in numerous refined and

extended forms. It delivers a set of analogues to the semantic concepts introduced

above and also introduces a corresponding diagrammatic representation. Although

useful as a basis for abstract database design, it is often cited as lacking in its ability to

express integrity related constraints. This includes constraints pertaining to attributes

of entities, and those describing the nature of relationships. By not dealing explicitly

with constraints, instances of the ER model are vulnerable to mis-interpretation which

can have far reaching effects when design transformations need to be applied.

19

Nonetheless it has served well as a simple and readily understood means for

communicating the salient features of a particular database design.

Object-Role Modelling (ORM)

Using Natural Language Information Analysis Method (NIAM) as a basis, Halpin

[Halpin 1995] specified the Object-Role Modelling (ORM) method as a technique

that delivers an improved means for describing business rules and constraints. In

particular, the exact relationship of an attribute to its entity is more explicitly

modelled. Underlying domains, relationship cardinalities and optionalities, and an

ability to be easily populated with real world instances, all help facilitate easier

validation with users in natural language, in addition to providing a means that is

more feasible to formulating, transforming, or evolving a design. Halpin [Halpin

1995] indicates that the model has proved suitable as a conceptual basis for both

relational and object-oriented data models. The latter is facilitated through better

support for subtype and inheritance representation than that provided by the ER

approach.

He also states that ER diagrams can be abstracted from ORM diagrams, providing the

means to present more compact and focused summaries.

Object-Oriented Modelling

Object-oriented database design originated from the approach introduced by object­

oriented programming languages, where the user need not deal with computer­

oriented constructs such as records and fields, but rather with objects and operations

on those objects, thus resembling real world counterparts more closely. Date [Date

1990] notes that object-oriented technology is not a semantic modelling technique per

se, as the latter aims primarily to identify a set of constructs at a higher level of

abstraction that are generically useful and which recur in some shape or form in a

wide variety of applications. Halpin [Halpin 1995] mentions the object-oriented

database approach as tending to be a mix of conceptual, logical and internal elements.

The development of UML (Unified Modelling Language) is also providing a standard

20

notation for representing the structure of data in the object-oriented community. Its

role in the OMG's Model Driven Architecture [OMO-Soley, 2000] as a means for

managing evolution is particularly important. We discuss the MDA in detail in

Chapter 4. At this juncture, a brief discussion of object-oriented modelling as a role

player in conceptual specification is warranted.

The principal terms and concepts of the object-oriented approach include object itself,

class, method and class hierarchy. Every object has a unique object ID and may be as

simple or as complex as required. Complex objects can be constructed from

combinations of existing objects which can in turn be simple or complex. Whereas

objects more or less correspond to the notion of variable in the programming language

sense, classes correspond to type, or more appropriately, abstract data type. Classes

therefore group objects based on common characteristics. These characteristics

include attributes as well as methods. Methods are essentially operators that apply to

objects and therefore add to the ability of this notion of object to model both state and

behaviour of real-world objects. These methods are incorporated within the "public

interface" for objects of a particular class, while the detail of their implementation is

hidden or encapsulated from the user. Classes can also be grouped into superclasses

based on some set of common characteristics among the subclasses. Each subclass in

this hierarchy inherits the common set of attributes and methods from the superclass.

Generally, subclasses can modify or override inherited characteristics, as well as add

additional ones. A class hierarchy can also join with other hierarchies at a particular

level, thereby allowing a class to inherit from multiple superclasses. As indicated in

[Bukhres et al, 1996], the inheritance mechanism can prove useful for abstraction and

polymorphism. Upper layers represent more generic and abstract views of lower-layer

characteristics. Software reuse is also encouraged as subclasses are allowed to use

code and storage structures defined in ancestor classes. Polymorphism in the object­

oriented sense applies to references (relationships or method invocations) that can

refer to objects from multiple classes. The context of a reference can change over time

as application needs change. For example, an application calculating the area of a

shape for some object, will inherit the attribute of "enclosed area" and method of

"surface area" from some more abstract class of geometric shape but, depending on

the context, will utilise the particular method applying to square objects, round

objects, or say triangular objects.

21

As mentioned earlier, UML is emerging as a standard notation for object-oriented

modelling. This would seem promising for a start as the object-oriented data model

has been plagued by the problem of not having an exact definition. UML presents a

framework where classes of entity objects are essentially entities, and associations are

relationships. Hay [Hay 1999] notes its more extensive capability to describe inter­

relationship constraints. Furthermore, it adds the ability to describe the behaviour of

each object class - usually in the form of pseudo-code or C++. In summary, it

attempts to provide a formalism suitable for both requirements analysis and design.

However, some implementation level concerns creep into the notation and are

sometimes criticised for being distracting and unnecessary from a conceptual point of

view.

The surge of Web-based and semi-structured data also requires consideration,

especially as it is inherently prone to evolution. We now consider the Extensible

Markup Language (XML) as a means to facilitate description of such data.

2.2.2 XML - Describing data on the World-Wide Web

As Tanaka et al. [Tanaka et al, 2000] state, there is also a need for treatment of data

not stored in traditional DBMSs. In particular, this includes semi-structured data

which is prevalent on the World-Wide Web and typified as being difficult to describe

in terms of rigid schema structures. Techniques are therefore sought to deal with data

that is irregular, unknown in advance, and often changing in structure.

XML (Extensible Markup Language) has emerged as a universal data exchange

format for the Web. It is capable of representing data structure in text and has

commonality among different types of data sources, in the sense that almost any data

source can be converted to XML format. Although it is not classed as a data

modelling technique such as those discussed above, it currently provides a welcome

means for describing structure in Web-type data. It should be noted that XML is only

a mark-up language and does not have as associated data model as such.

Like HTML (Hypertext Markup Language), XML is a subset of SGML (Standard

Generalised Markup Language). The latter is a sophisticated tag language that has not

22

achieved widespread uptake due to its complexity and the complexity of the tools

required. While HTML is used to describe pages to the Web by making use of tags

that are interpretable by browser software, XML allows tags to be defined by users.

Because of this approach, software cannot provide more interpretation to the

structure, unless it is specifically written to do so. XML is therefore most useful in a

community defining a set of common tags for its purpose, i.e. a type of meta-model.

XML can however be augmented with an optional document type declaration (DTD).

A DTD states what tags and attributes are used to describe content in an XML

document, where each tag is allowed, and which tags can appear within other tags.

Limitations in XML's ability to represent the finer points of data structure, ability to

recognise sub-types and constraints, as well as a lack in facilitating modularity and

reuse, have prompted the World-Wide Web Consortium (W3C) Working Group to

develop a new generation of schemas for XML. The DTD approach is often

considered to be more of a grammar-based concept, ensuring the well-formedness of

an XML document. In order to ensure the validity of an XML document, W3C have

introduced XML-Schema. W3C's requirements [W3C Malhotra, 1999] suggest that

this should include key semantic modelling concepts. The list includes structural,

datatype, and so-called conformance requirements.

• Structural requirements : This includes mechanisms for constraining document

structure and content, mechanisms to facilitate inheritance, an ability to

"reference" the standard semantic understanding of a particular construct,

mechanisms to specify application specific constraints and descriptions,

mechanisms for addressing the evolution of schemata, and also mechanisms to

enable the integration of structural schemas with primitive data types.

• Datatype requirements : Allow for the definition of primitive data types, define a

type system that allows for import and export from different database systems,

distinguish requirements concerning lexical data representation from those

governing an underlying information set, and to allow the definition of user

defined datatypes.

• Conformance requirements : These essentially include aspects that ensure the

validity of XML components and their relationships. The XML Schema Language

should therefore be capable of defining the relationship between schemas and

23

XML documents as well as playing a meta role by defining a useful XML schema

for XML schemas.

In spite of being a new concept, the notion of XML schema deserves serious

consideration in the data modelling techniques arena. It is similar to the notion of

object-oriented modelling discussed above, in the sense that it also concerns design

phase concepts.

XML as a means for building evolvability into structural specifications is considered

in section 4.1.2.2.

Having introduced the primary processes and artefacts involved in designing and

developing an information system, we next consider the problem that arguably

presents the biggest obstacle to the successful endurance of an information system -

evolution. This is discussed in terms of the impact on each of the SDLC phases.

24

CHAPTER 3 - THE PROBLEM OF EVOLUTION

For long-lived software projects, such as large information system applications, the

operational and maintenance phase of the life-cycle is by far the longest. Such

systems continuously undergo changes arising from both user requirements, as well as

changes to the environment in which the system operates.

Researchers have specifically identified the field of software evolution as the area of

study concerned with maintaining a system's structural and behavioural consistency

after parts of a system have been changed. Evolutionary changes to a system can

occur at various stages in its life-cycle for a number of reasons. These essentially

correspond to the adaptive and perfective maintenance categories discussed in section

2.1.5. Reasons for their occurrence include the following:

• Optimal solutions are not always readily apparent. Better designs at both

component and the greater architectural level may only be possible after

implementation and actual experience of an operational system.

• User and organisational requirements change. Additional functionality must be

integrated into the existing system.

• The underlying application domain which the system models undergoes change -

requiring that the system follows suit. As Falkenberg et al. [Falkenberg et al,

1992] state, modern organisations must be flexible and adaptive in order to remain

competitive in the global market place. Consumer needs are also becoming more

demanding, and the need for information systems which can be easily adapted and

evolved to the same extent as the information needs change is becoming crucial.

In particular, it is the unforeseen changes that occur quite frequently, and need to be

respected in information system developments. These are typical of the last category.

In practice, development phases are repeated during the maintenance phase. The

following sections therefore consider the phases of the SDLC as regards software

evolution, with special focus on the subsequent issues. In particular, section 3.1.1

considers the requirements analysis phase. Section 3.1.2 considers specification, with

emphasis on the challenge of building evolvability into conceptual models. Section

3.1.3 discusses the problem of design erosion as it affects software architectures.

25

Finally, the implementation issues are described in section 3.1.4 with emphasis on the

schema evolution problem. This characterises the consistency and change propagation

requirements that arise following an evolution. A brief consideration of the underlying

problem of disparate implementation components as well as the need for a

"supervisory" meta-model framework conclude the chapter.

3.1 Evolution and the SDLC

3.1 .1 Requirements Analysis

As introduced in section 2.1.1, this phase aims to achieve a better understanding of

users' needs as it proceeds. The phase itself is iterative, and concludes when a

requirements definition document is produced where both functional and non­

functional requirements are stipulated.

Changing user requirements on a new "green-fields" development is easily dealt with,

particularly if later development phases have not yet been tackled: here, change

propagation to design and implementation artefacts becomes a serious issue.

However, large established information systems are characterised by having long life­

times spanning several years, if not decades. Functional changes to the underlying

application domain are especially significant as they must be specified at the earlier

stages of the life-cycle, and hence define the basis to which later design and

implementation phases must adhere. Such changes usually arise due to changes in

market, legislation, economy, and so forth. For instance, the production of new

products or changes to the primary process of an organisation can alter the original

application domain where new requirements may be as demanding as those that

directed the initial construction.

Incorporating these changes into a requirements document is obviously necessary in

order to ensure an accurate and consistent documentation artefact of the system. Most

software engineering practices encourage that the inevitability of change should be

recognised and anticipated when producing a requirements document. The document

should be organised to accommodate easy editing and revision. [Sommerville 1992]

mentions minimisation of external references and modular document sections as

factors influencing changeability in documents. Electronic tool support is also

26

regarded as a far more effective and efficient vehicle for managing change control, as

opposed to unwieldy paper-driven systems. However, these can still be limited to the

foresight that exists at the time of creating the initial document, and may not

necessarily accommodate those requirements changes that occur once a system has

reached the operational and maintenance phases of its life-cycle. As studies by Lientz

and Swanson [Lientz and Swanson, 1981] and Banker et al. [Banker et al, 1993] have

shown, it is not unusual to encounter a whole class of problems that only show up

once a system becomes long-lived, typically involves persistent data, and grows in

complexity and diversity.

Of even greater concern is Sjoberg's [Sjoberg 1993] remark that most documentation

is in fact notoriously poor and virtually always obsolete. The only reliable, up to date

program information may be the source code itself or information that is

automatically generated from source code. Even where documentation does exist, the

incorporation of new requirements is challenging in order to preserve the integrity and

consistency of the requirements definition. As mentioned in section 2.1.1, a

requirements document that is amenable to a form of logical reasoning also bears

advantages for the next stage which must deal with the more formally oriented system

specification.

3.1.2 System Specification and Conceptual Modelling

This phase is characterised by the development of more formally-oriented models to

represent the structural, behavioural and process or activity-related elements of an

application. As this work is primarily concerned with the database aspect, focus is

given to that which specifies the structure, behaviour, and relationships of objects in

the application domain, i.e. the conceptual model. The structural framework generally

represents the most static and stable view of the underlying Universe of Discourse

(UoD). We begin by discussing the nature of the evolvability requirement for such

structures.

3.1.2.1 Evolvable Conceptual Models : Challenges and Issues

Developing the conceptual model for an information system is a challenging task -

unfortunately with few guidelines and decision criteria to assist engineers. Intuition

and design experience are heavily relied upon. One of the most relevant issues

27

concerns the fact that a large number of correct solutions may be produced for a given

Universe of Discourse, but as Verelst [Verelst 1997] notes, each final model possesses

significantly different characteristics in terms of understandability, maintainability,

redundancy, enforcement of business rules, stability, and so forth. Simsion and

Shanks [Simsion and Shanks, 1993] provide empirical evidence to support this where

fifty novice- and expert data modellers used the Entity-Relationship technique for

representing a small-scale requirements set. The main conclusions were that each

resulting model was both different and correct to an acceptable level, and that there

was considerable variety amongst the models, both in the number of entities and

relationships used as in the use of generalisation.

Researchers are challenged by providing guidelines to assist engineers in producing

conceptual models that satisfy the evolvability quality for information systems.

However, the first issue is to obtain a handle on the notion of evolvability at a

conceptual level.

Work by Wedemeijer [Wedemeijer 2000] and Verelst [Verelst 1997] tackle this, both

from theoretical as well as more empirically-oriented approaches.

Wedemeijer [W edemeijer 2000] indicates that a conceptual design is required to be

stable enough to support a long-term systems lifetime, and be flexible enough to meet

future information demands. Flexibility essentially concerns the adaptability and

responsiveness of a model to future changes. Greater flexibility results in a smaller

impact of change. Stability is similar, but where flexibility refers to a future capacity

for change, stability refers to the history of the model in the sense that it is achieved if

required changes have been accommodated : stability is proof that flexibility has been

delivered.

Flexibility

We begin by considering flexibility as the more traditional measure of a conceptual

model's quality to accommodate change. According to Wedemeijer [W edemeijer

1999], three main design strategies exist that are widely accepted as delivering

flexibility. These include:

28

• Active flexibility or adaptability: This aims to improve the design by arranging the

constructs of the model in such a way that it is easy to modify. Normalisation,

modularization, incremental design and the use of component libraries (if applied

to reduce the time for response to a change) are based on this strategy. These are

however inherently plagued by difficulties. Firstly, the arrangements of constructs

are biased in that it assumes that future changes will be of the same type that the

design was originally geared to handle. This issue relates to Verelst's [Verelst

1998] concern regarding variability in horizontal abstractions and involves the

choice among concepts on which to base the structure of the model on. He notes

that it can be possible to treat all concepts as equivalent, but that certain primary

dimensions are usually (unconsciously) chosen to determine the structure of the

model.

• Passive flexibility: This aims to decrease the need for future change in the model

by incorporating more requirements into the design than those originating from

the current Universe of Discourse. Wedemeijer [Wedemeijer 1999] lists reuse of

"proven" designs, Business Data Modelling and the use of component libraries

representing "good solutions" as examples. Once again, fundamental problems

include how far ahead future requirements should be anticipated, which

requirements are relevant, and which are beyond consideration. Creating models

that are "over-flexible" can also lead to weaker constraint-specifications and a

situation where "anything is possible".

• Flexibility by abstraction: Such strategies aim to put less information into a

conceptual model, thereby making it more abstract. Designers are however

challenged in having to decide on the best level of abstraction. Verelst [Verelst

1998] notes that models can become difficult to understand as abstraction

increases. Furthermore, he cautions that abstractions can also define a certain

"evolution path" where changes can be easily made, but changes outside of this

scope can be awkward and inelegant. The transformation and relationship of

abstract conceptual models to workable external and internal schemas can also be

problematic.

In essence, Wedemeijer's [Wedemeijer 1999] challenge to the claims of flexibility

made by these, and other such approaches, centres on the following: 'why they should

29

enhance flexibility is often explained, sometimes demonstrated, but rarely proven by

actual business cases'. In summary, considering flexibility alone as a measure for

accommodating change is unsuitable since:

• Flexibility can only be established "on the fly". A potential for change cannot

become apparent on a new model, but only when a structural change occurs in the

Universe of Discourse.

• There is no distinction between structural changes that ought to be accommodated

by the flexibility in the design and those beyond the desired flexibility, and

• There is no way to verify that a given design has sufficient flexibility, or to

discover that more is needed.

Stability

Given the emphasis on observing conceptual models in operational business

environments and the issue of change over their operational life-times, Wedemeijer

[Wedemeijer 1999,2000] suggests the study of stability. However, there is no

generally accepted and unambiguous definition of the concept of stability.

Wedemeijer [Wedemeijer 1999] suggests that a change in a conceptual model is a

stable change if it is absolutely necessary to accommodate a change in the structure of

the underlying Universe of Discourse. Any other change is deemed unstable. In an

operational environment, enterprises try to keep the impact of change as small as

possible and will naturally restrict the freedom of choice when adapting a conceptual

model. The difficulty arises in ensuring that the adapted model is a good model of the

changed Universe of Discourse, while still being as "close" as possible to the former

conceptual model. This relates to demands for compatibility and extensibility in

models. However, an underlying problem still remains, i.e. determining if changes are

indeed stable: few guidelines and metrics are available to assist designers. Both

Wedemeijer [Wedemeijer 1999,2000] and Verelst [Verelst 1997,1998] emphasise the

need for empirical studies on actual business cases. Here, the relationship between

changes in the Universe of Discourse and the operational conceptual model can be

better understood. Unfortunately, such studies can be hindered, as changes are

difficult to observe in real business environments. Studies that have been conducted

30

have either described symptoms of the stability problem rather than its essence, or

have used limited or over-simplified taxonomies for detecting change.

Lastly, it must be stressed that although factors such as the degree of encapsulation,

information hiding, or abstraction in models can bolster the stability and also future

evolvability of a model, the problem remains that multiple correct conceptual models

can be built with similar levels of each factor, but yet have different evolvability

characteristics. Once again, empirical studies are required to verify theoretical claims.

3.1.2.2 Behavioural Evolution

While recognition of evolution at the structural conceptual level is necessary, so too is

behavioural evolution. As Saake et al. [Saake et al, 2000] indicate, the rules or axioms

describing the allowed dynamic behaviour of entities may indeed change during the

existence of those entities. He also comments that neither well-known approaches to

conceptually describing information systems, such as UML, nor formal specification

approaches, provide adequate support for dealing with changing requirements.

Methods are sought whereby changes in the behavioural aspects of a conceptual

specification can be accommodated.

Furthermore, methods are also required whereby changes to the behavioural

specification are consistent with the structural conceptual specification. Some form of

meta-modelling would appear relevant as a means to control this, but the nature of its

application requires further study such that a coherent framework is provided for

designers.

Design components and architectures are prone to the evolvability shortcomings of

specifications, as they are essentially a more refined interpretation of conceptual

artefacts. However, additional issues also arise. These are now discussed below.

3.1.3 Design

The early stages of the design phase for an information system are typically

characterised by the creation of a design architecture where the different components

are specified in terms of their relationships with one another. These components

include software entities that handle data storage or computation for some aspect of

31

the information system. As indicated in section 2.1.3, this decomposition may

comprise functional- or object-oriented elements. The aim is to realise a means to

demonstrate that an eventual implementation of the various components will indeed

satisfy stakeholders' requirements.

3.1.3.1 Design Components and Software Architectures

To facilitate maintenance, designs should be readily adaptable. This suggests that the

components be loosely-coupled. Furthermore, components should be self-contained

where usage or dependencies on externally defined components is minimised. As

[Sommerville 1992] notes, this is somewhat contradictory to the practice of

component reuse. Hence, a trade-off exists between the advantages of reusing

components and the loss of adaptability that this entails. The reusability aspect is also

relevant to the evolvability of the component model. This suggests that the adaptable

or evolvable parts of components be differentiated.

Object-oriented systems are amenable to adaptation and reuse in the sense that the

adaptation mechanism does not rely on modifying the component, but rather on

creating a new component whose attributes and operations are inherited from the

original component. The original component and its dependants remain unaffected.

However, for long lifetime systems, object-oriented systems require careful

management in that their inheritance network can become increasingly complex as

changes are made. Duplication of functionality can also result leading to redundancy

issues.

This addresses maintenance at a relatively low design level. Developers also require a

better handle on the gross organisation of the system. The field of software

architectures emerged as a natural evolution of design abstractions to address this

issue.

Software architectures were introduced in Chapter 2 as a valuable design

methodology for information systems. Although structural, behavioural and control

related aspects are described by different models, a software architecture must be

aware of each, together with the mappings that exist between them in order to present

a unified methodology for understanding the overall system. To further speed

32

development and facilitate reuse at an architectural level, different architectural styles

emerged - design patterns, for example, have emerged as a means for the reuse of a

solution for a specific design problem. They are usually considered in close

connection with object-orientation and describe, in abstract terms, how a general

arrangement of design elements (classes and objects) can solve a problem. Domain­

specific architectures, in particular, are popular for business information systems,

where business processes and objects are organised and related to guide development

of a new system. The sd&m architecture overviewed in [Hoffman 1996] is an

example. As the design proceeds, lower level and more refined views of certain

architectural aspects (e.g. components and connectors) are available.

Unfortunately, fundamental problems remain in terms of design components and

architectural structures. This concerns a lack in the capability to accommodate (isolate

the effects of) changes and facilitate (assist and aid mechanisms or processes

effecting) change.

3.1.3.2 Design Erosion

Although the likes of object-orientation and software architectures greatly benefit the

construction of software, they do not adequately address the accommodation of

changes during later operational stages. As Van Gurp and Bosch [Van Gurp and

Bosch, 2001] note, software designs do indeed erode over time; to the point that

redesigning from scratch becomes a viable alternative compared to prolonging the life

of an existing design. Unforeseen requirements changes can invalidate design

decisions that were once optimal. They suggest that design erosion is caused by a

number of problems associated with the way in which software is commonly

developed. These include:

• Lack of traceability of design decisions: Notations used to create software can lack

expressiveness that is needed to express concepts used during design. This results

in difficulties when attempting to track and reconstruct design decisions from the

system.

• Increasing maintenance cost: Over time, the complexity of the system can

increase. This leads designers to consider sub-optimal design decisions, either

33

because they do not understand the architecture, or because a more optimal

decision would demand too much time and effort.

• Accumulation of design decisions: When a design decision needs to be revised, so

do other design decisions require reconsideration, possibly leading to developers

having to work with a system that is no longer optimal for requirements it must

now meet.

• Iterative methods: A "proper" design is expected to accommodate future change

requests. This, however, conflicts with the iterative nature of rapid prototyping

development methods. These progressively incorporate new requirements but also

have shortcomings. Sommerville [Sommerville 1992] notes that for large, long

lifetime systems in particular, prototypes should be re-implemented anyway. This

is due to characteristics such as performance, security, robustness and reliability

usually being ignored during prototyping. Furthermore, as prototypes are changed

to incorporate new requirements, it is likely that these changes are made in an

uncontrolled way, resulting in the prototype code acting as the only design

specification. This is inadequate for long-term maintenance. Lastly, prototypes

tend to suffer from the "accumulation of design decisions" problem. Here,

changes made during prototype development could have easily degraded the

system structure, so that subsequent maintenance requirements become

progressively more difficult to make.

Good design methods, such as separation of concerns which can isolate the effect of

changes, using sound design and architectural patterns to guide the design process,

and in general, designing for change, are all noteworthy for delivering better designs

but do not address the fundamental problems that cause design erosion. Van Gurp and

Bosch [Van Gurp and Bosch, 2001] state that they only contribute by delaying the

moment that a system needs to be retired.

By using an experimental system, he was able to conclude that causes for design

erosion problems did indeed range from accumulation of multiple design decisions

(i.e. certain design decisions were taken because of earlier design decisions, even if

they were the wrong decisions), to limitations of the object-oriented paradigm (e.g.

inheritance constraining flexibility at runtime, encapsulation forcing objects to only

interact via method parameters). Even optimal design strategies (i.e. no compromises

34

concerning cost or effort) proved to be insufficient for accommodating change in later

evolution cycles.

Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] have stated similar findings,

where object-oriented techniques do indeed simplify the combination of components

in a way that reflects interactions in the underlying application domain. However,

changes on the implemented systems resulting from accommodation of new business

rules cannot be performed in such a modular way. He indicates that this is due to

interactions being "hard-wired" into code that implements the participating objects,

thereby making it difficult to change or introduce new interactions without having to

change the implementation of the objects as well. This in tum may have a ripple effect

throughout the implementation of the system, compromising the architectural

integrity. [Andrade and Fiadeiro, 2001] also indicates that while lower-level design

strategies, such as those offered through design patterns, can deliver more flexible

solutions, they are too low level to support an evolution process that takes place at

higher levels of abstraction where business strategies and rules can be redefined.

As the system enters its implementation and operational phase, the growth of

persistent objects (both program and data) in particular, becomes an overhead that

must be carefully managed by any evolution system.

3.1.4 Implementation and Operation

The developer is now required to realise the design artefacts from the previous phase

in terms of program and code destined for a particular execution platform.

Executables are delivered and users may begin to test and evaluate the system in

liaison with the developer. As introduced in section 2.1.4, a cycle of validation and

verification commences, which typically includes user requirements changes that need

to be addressed. This problem is exacerbated once the system becomes operational.

Persistent stores become populated with data, interruptions to working systems to

accommodate maintenance are seldom acceptable, and more applications are

developed that are associated around the database schema defining the persistent

store. Future evolution requirements may also require that the system be able to

integrate (horizontally) with other systems - the world-wide web all but demands this

35

from information system infrastructures. The effort involved in maintaining systems

at this stage is in itself extremely significant : as the scale and complexity of systems

increase, so too does the requirement for effective and usable tool support.

The following areas are of interest to the evolution problem, particularly at the

operational stage:

• Schema and database evolution

• Application (behavioural) evolution

• The need to accommodate and ensure overall consistency of all information

system components when faced with change.

The field of system re-engineering is also relevant as it deals with legacy systems

where modification and evolution to meet new and constantly changing requirements

is resisted to such an extent that the system must be rewritten, or be completely or

partially restructured. This research is limited to approaches that avoid resorting to re­

engineering and is more focused on methodologies that realise developments able to

accommodate and facilitate evolution. Unfortunately, the extent and reliance on

operational legacy systems cannot be underestimated, often necessitating substantial

re-engineering efforts.

We now discuss the areas that aim to address evolution of operational systems

without unduly comprising the original development. This includes research that deals

with the problem reactively and well as proactively. At this juncture, we focus on the

issues and considerations regarding operational stage evolution in order to provide an

indication of the types of solutions required.

3.1.4.1 Schema and Database Evolution

Schema evolution is essentially concerned with modifications of the database schema

in such a way that conceptual consistency with respect to the underlying domain is

maintained. A system supporting evolution would essentially be one where the

database schema can evolve without the loss of any information. Following a schema

change, database objects must also be consistent with the modified schema.

36

In particular, the following challenges need to be addressed:

Semantic Integrity

In order to ensure that schema evolution mechanisms are indeed consistency

preserving and correct with respect to the underlying domain, an appeal must be made

to design techniques applicable at earlier stages of the development life-cycle. This

would typically included a need to relate conceptual schema designs, where one

would aim to capture domain semantics formally, to internal database schemas on

particular platforms.

Architectural Issues

Evolution may be achieved either completely, incrementally, by versioning, or by

view-related approaches.

Traditional techniques generally perform a complete evolution involving an entire

recompilation of the schema, but with applications having to be suspended.

Incremental mechanisms are generally facilitated via primitives. Each primitive is

atomic by nature thereby promoting consistency and the potential for reversible

modifications to the schema. Impact on running applications is less severe as

modifications tend to be done in a more on-line mode. Modifications using this

approach tend to be limited to simple schema changes. Tool support, in particular, is

sought for managing more compound-oriented changes on types, such as the merging

of object-oriented classes.

Following a schema change, database objects must be consistent with the modified

schema. Database availability and application compatibility are of particular concern.

Approaches can either involve adaptation of the actual database objects, or rely on

some mechanism to support "emulation" if objects conforming to one schema version

have to be seen as objects of a different schema version.

Adapting database objects involves the use of either immediate or deferred data

transformations. Immediate transformations result in the entire database being in a

state consistent with the new schema, but database availability is compromised.

37

Deferred techniques solve this by converting data objects on an as needed basis, but

also result in a data access overhead and requirement for tracking and managing the

history of updates.

An attractive alternative to data conversion includes schema versioning and view­

based approaches - particularly for their intended lack of impact on database

availability and application compatibility. Schema versioning techniques, for instance,

aim to allow access to all data via both retrospective and prospective user definable

version interfaces and, if possible, be extended to facilitate the update of data through

historical schemata. However, while existing applications should experience minimal

disruption, there is considerable overhead in managing multiple versions that access a

single database. Following a similar approach, view support techniques are also

attractive but are generally limited in their support for allowing updates or the

addition of new data, as might be accomplished by adding new attributes to classes in

an object-oriented database.

Recent solutions to tackle the schema evolution issues presented above are considered

in section 4.3.1.

3.1.4.2 Application (Behavioural) Evolution

Although the notions of compatibility via views or schema versioning approaches are

attractive for the likes of legacy applications, implemented applications must

themselves evolve.

In particular the following requirements must be addressed:

• Semantic integrity and consistency of the change process: Any change should be

guided and constrained by the underlying specification.

Furthermore, changes to the database schema of the system will reqmre

modification to the application. Traditional approaches are generally capable of

compiler-oriented warnings. Although useful, they are mostly limited to

syntactical checks. Mechanisms are required that are more semantically-oriented,

thereby facilitating a basis for tool support and a more automated means of

ensuring that semantic integrity is preserved.

38

• Dynamic evolution: Applications, whose behaviour is dynamically determined by

changes in the underlying domain, require advanced program restructuring

techniques. An example would be a generic data structure browser where, on

receiving a specification of the data structure, must automatically generate a

program to browse over it. Application areas such as geographical information

systems, CAD/CAM systems and multimedia systems, are also prone to requiring

the facilitation of some sort of dynamic behavioural evolution.

• Better integration with persistent store technology: The impedance mismatch

problem concerns the fact that database query languages are inherently declarative

and oriented to set-level processing, whereas programming languages are mostly

procedural and oriented to record-at-a-time processing. Besides the overhead in

the programmer having to manage the interface between the two, an overhead is

also created for any required evolution management on the system. In particular,

the propagation of change to ensure consistency and system integrity becomes

complicated. The need for some sort of wholistic view is required, and is

considered next in the broader context of all system components, including user­

interfaces and operating system interfaces.

3.1.4.3 A Wholistic View : Issues and Considerations

To re-emphasise, and as Sjoberg [Sjoberg 1993] indicates, the issue of ensuring

consistency in the change propagation process for an information system is

complicated by the fact that they are generally centred around a database. Changes to

database schemata (schema evolution) may in turn have serious impacts on other parts

of the schema, on extensional data, and on application programs (including interfaces

for data entry, queries, report generation, etc.). Dealing with evolution separately

among these components has been identified as impractical, inefficient and

susceptible to corrupting the integrity of the system as a whole. This is also suggested

in the 1998 Asimolar Report on Database Research [Asimolar 1998] where, from the

database point-of-view, it is noted that code is not a first class object and co-equal to

data in current database systems. The report also states that database systems need to

be more application aware to facilitate the likes of large-scale system integration.

39

Better techniques are required for managing descriptions of application interfaces

along with higher-level model-driven tools leveraging these to help integrate, evolve,

migrate and replace application systems. Research work has also identified the

following:

• Some form of meta-modelling and meta-programming (possibly in combination)

is required. The former helps to unify the different software components that

ultimately comprise an implementation, in the sense that models are defined and

constrained by meta-models, while meta-meta models can attempt to provide a

global integration for all the meta-models in the software development scene.

How this might be realised is an area receiving much research interest from both

academic and vendor quarters. We consider this in section 4.3.4.

• Disharmonies and incoherence in current implementation technologies is a

fundamental contributor to evolution problems. Applications rely on disparate

mechanisms including operating systems, communications systems, database

systems, user interface systems, command languages, editors, file systems, query

languages, etc. [Atkinson and Morrison, 1995] identifies Persistent Application

Systems (PAS's) as long-lived, concurrently accessed, and potentially consisting

of large bodies of data and programs. They typically outlive their individual

components and implementation technologies. The aim, therefore, is to realise a

coherent, wholistic design approach that eliminates these disharmonies and

unnecessary sources of complexity, such as the impedance-mismatch problem.

Atkinson's work on orthogonal persistence ([Atkinson and Morrison, 1995])

represents the main thrust of this research direction, and while attractive, also

requires considerable effort in resolving numerous issues such as integration of

types, data models, binding mechanisms and concurrency control between

programming languages and databases. Technology to support such a system is

also an issue. Orthogonal Persistence as a solution to the evolution problem is

discussed in further detail in section 4.3.3.

Chapter 4 considers different solutions proposed in the literature towards

accommodating and facilitating evolution. The format is similar to this and previous

chapters, with solutions presented in terms of their relevance at the different stages of

the SDLC.

40

CHAPTER 4 - DEALING WITH THE EVOLUTION
PROBLEM

This chapter considers specific solutions to the problem of evolution through the

information system development process. Issues and difficulties regarding evolution

·were introduced in Chapter 3 by considering the different phases of the SDLC and the

effect of change at each stage. Although the problem is far from solved, many

contributions have been forthcoming, and collectively suggest criteria that

information system developments must consider if they wish to successfully endure

the inevitable change requirements that arise over an application's lifetime. To begin

with, this chapter follows a similar approach to previous ones by considering

solutions at specific stages of the SDLC. However, the need for a more pervasive

framework governing all stages emerges as a distinct requirement in order to manage

the promulgation of change from requirements analysis stages, through to

implementation artefacts.

No one particular method or methods were considered in detail for the requirements

analysis phase. Recommendations and considerations are rather discussed in a

synopsis presented in Chapter 5.

We begin with proposals presented in the literature towards improving stability of

specifications. This is discussed in section 4.1.1. The notion of explicitly specifying

change is then considered in section 4.1.2 for both behavioural and structural

evolution. This is followed in section 4.1.2 by a discussion regarding approaches

enabling the accommodation of change in design architectures. Section 4.3 considers

the schema evolution problem and its associated concerns, while section 4.3.2 briefly

discusses reflection as a technique for effecting dynamic behavioural evolution.

Section 4.3.3 discusses orthogonal persistence and the PJama project as a solution for

improving and simplifying disparities in implementation technology, while section

4.3.4 describes a meta-modelling implementation framework : the OMG's MDA

approach, in particular, is seen as beneficial towards providing a more model-based

approach to information system development.

41

4.1 Evolution-friendly specification

As was indicated previously, current conceptual modelling techniques lack guidelines

to assist designers in assessing the evolvability capabilities of a given model. This

also applied to models where strategies such as encapsulation and abstraction were

used. Furthermore, authors like Sjoberg [Sjoberg 1993] have indicated that traditional

notions of stability in teaching and practice, data modelling, data schema construction,

and so forth, must be breached in order that change be sufficiently accommodated.

Two major aspects towards improving current practice in conceptual specification of

information system structure and behaviour prevail in current literature. The first

recognises that well-designed conceptual models will remain stable over time, and

explores how designers might measure this stability over the operational life-time of

the model in order to deliver higher quality designs that stand the test of time. The

second aspect recognises that current modelling and specification technology does not

allow designers to model or specify changes that might occur during the operational

lifetime of a system in a flexible way. The degree to which these changes are

successfully accommodated may then be appropriately measured in terms of the

resulting stability.

4.1.1 Stability Characteristics

A conceptual model is generally regarded as the best means of perceiving a Universe

of Discourse (UoD), not only at design time, but also as they both evolve over time.

According to Wedemeijer [Wedemeijer 2000], a model suited to evolution would be

one delivering stability, in the sense that any required changes have been

accommodated and that flexibility has been delivered. The issue his work addresses in

particular, is that current literature rarely addresses how such stability should be

observed and measured in the operational business environment with evolving

information needs and data structures. In order to attain a better understanding of the

actual mechanisms involved in exploiting flexibility as a potential for change,

Wedemeijer [Wedemeijer 2000] presents hypotheses and associated metrics on how

conceptual schema stability ought to be expressed in operational environments. These

are briefly discussed below:

42

• Justified change: A change in the conceptual structure is only justified if it is a

change in the UoD's information structure that is causing it. The metric for this is

the ratio of single conceptual model changes that can be associated with an

appropriate change driver from the underlying UoD, to the total number of

conceptual model changes that had to occur, regardless of whether they were

associated with an apparent UoD change or not. Ideally, the ratio is equal to 1.

• Proportional change: Every change in the conceptual model should be

proportional to the change in the UoD that caused it. A small UoD change leading

to a large change in the conceptual model would imply an unstable model.

Measuring the size or severity of such a change can be somewhat subjective. As a

guideline, Wedemeijer [Wedemeijer 2000] suggests a comparison between the

number of paragraphs explaining the change in the UoD, to the number of affected

constructs in the conceptual model.

• Proportional rate of change: This essentially suggests that the rate of change in

the conceptual model should be proportional to the rate of change in the UoD.

Once again, there is a risk in precisely quantifying new user requirements and the

lifetime of consecutive sets of user requirements against the number of conceptual

model changes and the lifetime of consecutive conceptual model versions.

• Compatibility: A new conceptual model is considered to be compatible with the

old one if no data instances in any construct of the old model needs to be altered

or discarded in order to suit the new model. This effectively eases any subsequent

schema evolution overheads. Wedemeijer [Wedemeijer 2000] measures the extent

of this by considering the size of the "external" view on the old conceptual model

describing the affected data, relative to the size of the original conceptual view.

Changes in the level of abstraction are regarded as particularly difficult to

accommodate, as semantic discrepancies between versions require consideration.

• Extensibility: New requirements should be catered for by extension or addition of

new conceptual constructs, as opposed to modification of existing constructs. The

latter measures the extent of non-extensibility of the model. As this suggests,

changes by extension should leave old data instances fully compatible with the

new schema.

• Complexity hampers change: A typical measure of the complexity of a conceptual

model would be the number of components in the model, the number of ways in

43

which they are interrelated, and how these interrelationships may change over

time. Increases in complexity can be expected to lead to greater difficulties in

accommodating change. A more complex conceptual structure should therefore

change less frequently, indicating a favourable measure for stability.

• Abstraction reduces the need for change: Related to the notion of complexity is

the concept of abstraction. Designs that are more abstract are generally considered

to be more stable due to a lower number of constructs that must be adapted to new

requirements. The level of abstraction in the model, compared to the number of

construct changes, can therefore provide some measure of stability. However,

measuring the degree of abstraction in a model is a debatable issue.

• Susceptibility to change: This recognises that some types of constructs in the

model are more susceptible to change. Entities and relationships are presumed to

have best stability, then attributes and relationship cardinalities, while integrity

constraints and business rules are most volatile. Observing the number of

changing constructs and their type could thus assist in measuring stability.

• Preservation of entity identity: The means for identifying entities, such as

candidate keys in relational data model theory, should not be changed. Such

change is only acceptable when the entity itself is observed to change.

• Further hypotheses are listed, viz. change is local, change is restricted to a single

module, and modules are stable. These generally recognise the notions of

localisation, cohesiveness, and loose-coupledness as bettering stability.

These hypotheses and metrics are geared at assessing the stability of the constructs of

a conceptual model when faced with changes from the underlying UoD. Although

relevant in parts, they do not explicitly relate to behavioural modelling concerns as

such. However, we can also appeal to the likes of Balzer's [Balzer 1986] work on

properties of good specifications which was introduced in section 2.1.2. Localised and

loosely-coupled specifications, for instance, should help in bolstering the stability of a

specification. The use of "demon" capabilities, that act as independent agents for

dealing with environmental changes, are claimed as being useful for absorbing change

impacts that would otherwise cause overheads in maintaining interactions and

relationships between system components - a high-level architecturally-related

concern in particular.

44

Designers, however, require solutions and frameworks where changing requirements

are accommodated and conceptual stability maintained. These are considered in the

next section.

4.1 .2 Specifying change

Following the requirements definition phase, the designer typically begins to consider

means to specify the system more formally. Numerous techniques exist to accomplish

this and primarily aim to establish a semantic model for representing structural and

behavioural aspects of the information system. As was discussed in section 3.1.2, the

phase is complicated by the fact that multiple models can be built - all being correct

as far as describing the application domain is concerned, but ultimately delivering

varying degrees of evolvability. Even recent technologies such as the Unified

Modelling Language (UML) are noted as not providing adequate support for dealing

with changing requirements. It is especially the case of unforeseen changes that must

be considered and catered for in a flexible way during the lifetime of a system.

Work by Saake et al. [Saake et al, 2000] explores this with the aim of supporting

continuous engineering of information systems at the conceptual level. His work takes

cognisance of the fact that the behavioural aspect is the most volatile, and therefore

appropriate to business rules which change over time. Here, the object-oriented model

is considered in terms of accommodating an evolving behavioural specification and is

now described in further detail below.

Building evolvability into structural specifications is then considered m section

4.1.2.2.

4.1.2.1 Modelling change in behavioural specifications

Traditional approaches require the behaviour of objects to be completely fixed at

specification time, in the sense that dynamic behaviour is not modelled. Saake et al's

[Saake et al, 2000] proposed solution stems from the premise that information

systems consist of large numbers of long-lived objects, and that over time, conceptual

45

level requirements such as business rules and laws evolve. The associated system

evolution therefore leads to changes in not only objects' states, but also the rules (or

axioms) which describe the allowed dynamic behaviour of objects. Changing

requirements during runtime therefore leads to new axioms being added, or existing

ones being removed or changed. This may seem similar to implementation-level

approaches, such as those used in SQL database management systems where

insertion, modification and deletion of SQL functional units such as constraints,

triggers and stored procedures, are supported during runtime of an application.

However, to re-emphasise, the issue here is to support continuous engineering at a

conceptual level, and to strive toward a more formal basis for specifying change. This

allows later development stages to be better controlled, and formal reasoning at the

conceptual level is in tum facilitated.

Saake et al. [Saake et al, 2000] begin by using TROLL : a formal specification

language-based technique with clear semantic underpinnings. More popular object­

oriented modelling approaches, such as OMT and UML, are cited as lacking clarity

and being too restrictive for this purpose. TROLL is able to provide a framework for

formally specifying structural as well as behavioural aspects of information systems.

An extension is proposed that can cope with representation of dynamically

changeable behaviour. Work by Balko [Balko 2000] also advocates such extensions to

TROLL, particularly for the specification of an industrial production environment

where the workflow specification for a group of machines is subject to dynamic

change.

According to [Saake et al, 2000], the extended framework is based on the following

concepts:

• During design, a separation of the rigid and the evolving part of application

objects has to be performed.

• A rigid specification level exists which fixes the signature of application objects

as well as basic functions.

• The evolution level of the specification manipulates specification fragments

whose vocabulary is identical to that of the base level.

46

• Critical functions should be part of the base level. They are then safe from

undesired modifications during evolution, and their properties can be formally

verified through conventional approaches.

To illustrate this, consider the example shown in Figure 4.1 below (adapted from

[Saake et al, 2000]). This shows the signature and behavioural specification for a

system which must cater for basic document management.

object class Documents
identification DocID: (DocNo)
template
attributes

DocNo: int,
DocType: {offer,contract},
Valid: date,
Content: text;

events
birth create(DocNo:int,Content:text),
revise(NewContent:text),
death resolve;

//behaviour specification starts here
rigid axioms

create (D, C)
changing DocType = offer,

DocNo = D,
Content = C,
Valid = now + 30

calling DocManager.addDocToOffers(self);
revise(C)

enabled DocType = offer and Valid >= now,
changing Content = C,

Valid = now + 30,

Figure 4.1 - Signature and Behaviour specification for document management system

Figure 4.1 indicates that documents can be uniquely identified by a Docld specified

by attribute DocNo. Attributes are also listed, as well as events (actions) which can

change the values of attributes or cause the occurrence of other events in other

objects. The create event, for instance, creates new objects and sets the initial state of

the object. The revise event allows the changing of the contents of the document. The

(fixed) behaviour specification of events declared in the signature part is also shown.

Here, its effects on attributes (changing) , its enabling condition (enabled), and its

communication effects (calling) are specified.

Saake et al. [Saake et al, 2000] also indicate that linear temporal logic can be used at a

semantical level to support reasoning concerning single objects. For example, the

temporal logic formula

\7'C(always(occurs(revise(C)) => next(Content(C)))

states that it is always the case that if the revise event occurs with parameter C in a

given system state, then in the next state the attribute Content has the value C.

47

As mentioned earlier, an evolution level is required to manage the specification of

evolving object behaviour. This allows a separation between rigid axioms and

evolving axioms. The latter represent the evolving behaviour part, allowing the

behaviour of an object to be changed dynamically. Here, axioms are added or

removed during runtime.

In order to deal with this at a specification language level, Saake et al. [Saake et al,

2000] introduce a special attribute, called axiom attribute, to store the currently valid

set of evolving axioms. Events, called mutators, mutate the object's specification by

changing the axiom attribute. These effectively change the behavioural description of

the object at a meta level. Figure 4.2 below provides an indication of the constructs

used in the extended specification language.

object class Documents
identification DocID: (DocNo)
template
attributes

events

rigid axioms

axiom attributes
Rules initialised{}

mutators
add_rule(Rule:spec)
remove_rule(Rule:spec)

dynamic specification
add rule(Rule)

"Changing Axioms = Axioms + {Rule}
remove rule(Rule)

changing Axioms = Axioms - {Rule}
end object class

Figure 4.2 - Extended specification to accommodate evolving object behaviour

This framework is constructed such that the same language constructs are used for

manipulating the base and meta levels. For instance, mutator events can also be

guarded by defining enabling conditions. Figure 4.3 provides an example of using the

mutator add_rule to restrict the enabling of a resolve event such that "contract" type

documents are never resolved.

add_rule (resolve

enabled Doctype * contract)

Figure 4.3 - Using the add_rule mutator

A fundamental issue with this approach lies in determining which part of the object

behaviour is specified in terms of rigid axioms, and which as .evolving axioms.

Resorting to a behavioural specification comprised only of evolving axioms creates

the problem that everything is possible. This hinders the ability to prove properties

about the objects. Another inherent limitation concerns how far evolving behaviour

48

can be modelled in advance. A further issue is that a corresponding logic for

interpreting evolving specifications is required: Saake et al. [Saake et al, 2000]

propose an extension of the linear temporal logic introduced earlier called Dynamic

Object Specification Logic. This provides so-called mutation event symbols and

mutation attribute symbols to help model the semantics of mutations. The approach,

however, requires consideration where the always operator is involved, as this

influences the complete future of an object. The "state" of the specification therefore

becomes relevant in order to determine the longevity of always-type axioms. This is

noted as needing further research. Detail concerning the formalisation of this logic

appears in [Conrad et al, 1998].

Lastly, this technique does scale to allow mutators to specify behavioural evolution at

the class level. The granularity of changes can therefore be controlled to allow for

exceptions to be dealt with at the object level.

4.1.2.2 Building evolvability into structural conceptual specifications

Having considered how an adaptive information system might be specified as far as

accommodating behavioural change is concerned, we can also explore the equivalent

notion for structural or schema-related specifications. This would aim to bolster the

stability characteristics described earlier in section 4.1.1.

However, information systems typically centre around a database schema where

changes inevitably lead to issues which must be addressed by schema evolution

research, viz. maintaining semantic and structural consistency as well as propagation

of changes to database instances and associated applications. These can result in a

considerable workload, making the idea of enhancing the adaptability and robustness

of a schema design worth pursuing. The problem would then be dealt with proactively

as opposed to reactively.

This is explored as part of the EVOLVE project [Liu 1998] where adaptive

specification techniques for object-oriented software evolution are considered. The

techniques essentially involve the use of style rules, not only to verify desired

properties of a schema design, but, if the schema is found not suitable, to also use

these style rules as baselines to transform the schema into a better style while still

49

preserving semantics. Although the style rules are not generic (they focus on object­

oriented schemas in particular), they do advocate some of the notions related to

achieving stability. These were introduced in section 4.1. l. Information localisation,

for instance, is stated as a rule for enhancing extensibility in an object-oriented class

hierarchy through abstraction of common components. Liu [Liu 1998] promotes this

by encouraging inheritance along specialisation hierarchies.

In general, the approach is limited in that it still tries to anticipate future requirements

changes, and is therefore constrained by the foresight that exists at design time.

However, application areas that are inherently evolutionary would seem promising.

In particular, the recent explosion of Web- and multimedia-based data has

necessitated studies relating to information sources that are characterised by semi­

structuredness and continuity (in the sense of persistent application systems

introduced in section 3.1.4), as opposed to conventional DBMS technology which

assumes formatted data and rigid database schema structures. Certain application

areas, such as the modelling of biological data, are also evolutionary by nature. For

example, characteristics of certain organisms may change over time, posing

difficulties for conventional modelling structures. In general, the structure of this

"non-traditional" DBMS data is sometimes irregular, unknown in advance, and often

subject to change without notice. Solutions to this would appear to hold promise for

the problem of accommodating evolution due to changing requirements. Proposals are

discussed in the next section within the context of modern markup languages. These

are receiving increasing attention as formalisms for data and knowledge modelling.

However, their direct role in conceptual specification (as pertains to semantic

modelling) is contentious, requiring careful consideration as was hinted at in section

2.2.2 where the XML markup language was introduced as a means for describing data

on the World-Wide Web in particular.

Markup languages - A solution to modelling changing structure in Information

Systems?

Modern markup languages, such as SGML and XML, are generic in the sense that

they serve to specify structure as opposed to layout of documents and data items.

50

They do not impose any predefined structure, nor predefined names for the structural

elements occurring in data items. As indicated in [Bry and Eisinger, 2001], it is

possible to faithfully model the structure of data items needed in applications and to

name the structural elements of a chosen structure in a way that is natural in the

application context. The example in Figure 4.4 depicts an address book entry in

XML-type format.

<person>
<first_name> Harry </first_name>
<last name> Smith </last name>
<physical address> -

<street number> 4 </street number>
<street> Elm </street> -
<Suburb> Oakwood </suburb>
<City> Johannesburg </city>

</physical address>
<telephone=number> 011-789-0005 </telephone_number>

</person>

Figure 4.4 - Address book entry in XML format

[Bryand Eisinger, 2001] also indicate that as the XML document stands in Figure 4,

it is the use of application relevant names for structural elements that is at the origin

of the expression of structure-conveying data. Data items structured in such a manner

are not necessarily accompanied by a schema which might act as a specification of the

structure of the underlying data items. This "absence" of a predefined schema

structure is what has made XML attractive for modelling web content and other

application areas such as modem biology. The following factors help characterise

such areas and also suggest why markup languages may be useful:

• They are subject to general structural constraints, such as the biological building

laws that describe relationships between biological entities, as well as the

exceptions to those laws: an area not well catered for by traditional modelling

formalisms.

• The underlying data items can be based on a multitude of data schemes as there is

no generally accepted data model or ontology. The irregularities in structure are

indeed another form of exception and suggest a case for modem markup

languages.

• Data items in these applications are often enriched with texts - modem markup

languages were designed for text.

51

However, as indicated earlier, XML documents generally rely on tag-naming and on

the software interpreting the documents for revelation regarding semantic

relationships in the application domain.

Therefore, in order to describe data in the same sense as more established formalisms,

like UML for instance, the W3C developed the notion of XML-Schema introduced in

section 2.2.2. Furthermore, recent research has investigated mappings from traditional

semantic modelling techniques, such as ORM, to XML-Schema [Bird et al, 2000]. It

has also been suggested that the core features of XML-Schema be formalised into a

concise and precise grammar notation, such as those commonly found in formal

language theory. Work by [Mani et al, 2001] typifies this. Here, the resulting

formalism is compared to the ER model and suggests that the Extended ER model, in

particular, can be mapped onto the formalised grammar notation.

In general, the research community recognises the usefulness of the markup language

approach in semi-structured environments, but at the same time recognises the need

for reconciling and integrating this with traditional modelling techniques. This notion,

along with the fact that proposals to accommodate schema evolution in XML-Schema

are forthcoming, collectively culminates towards an approach that can contribute

towards building evolvability into structural specifications. We now consider this in

further detail.

As discussed above, XML documents in isolation have proved successful for

modelling evolving application domains, but require the inclusion of XML-Schema in

order to provide a more complete foundation that is also capable of modelling and

specifying the semantics and constraints of the underlying domain. Costello and

Schneider [Costello and Schneider, 2000] address the issue that XML schemas must

be designed to be evolvable as 'any (internet-related) system that fails to recognise

and accommodate both chaos and order is less likely to succeed'. They list the

following factors as characterising the requirements of an evolvable XML schema:

• Addition of new elements/attributes to meet a new requirement and ways to

mitigate the impact of such changes. (Unfortunately, dropped elements/attributes

and restructuring changes are indicated as impacting systems using the schema

and will have to be dealt with outside of the evolvability mechanisms of the

schema itself).

52

• No "lock-step" upgrade of applications: Mechanisms must exist by which an

application can obtain a view of an instance document that corresponds to the

version of the schema it was designed for. This essentially corresponds to the

notion of an external view in the traditional ANSI/SPARC database architecture.

• Managing new requirements by using an open control model. In particular, this

implies that an XML schema declared to have an open content model, allows an

XML instance document to have any well-formed XML intermingled with the

elements already defined in the schema. Systems should therefore be able to

respond quickly in a changing environment.

• Schema evolution using refinement can allow for a systematic and engineered

approach for managing schema evolution. Here, a new schema can be created by

importing and extending the original schema.

[Costello and Schneider, 2000] also document the syntactic means whereby the

relevant parts of an XML schema are augmented to indicate that open content is

desired. In essence, this involves the incorporation of a "<any>" flag before and after

those schema elements where additions are likely.

In summary, it would therefore appear that this, together with research that is able to

formally map XML schema structures to traditional formal techniques, collectively

holds promise for a framework geared towards the following:

• Provision of an "open" format for exchanging details concerning structural

properties of application domains. This also facilitates potential to support

"mixed" modelling in the sense that both (traditional) structured data as well as

unstructured textual-type data can be accommodated.

• A modelling paradigm that has formal underpinnings (mappings) to more

established conceptual data modelling techniques that are able to support

reasoning and consistency checking. However, it should be noted that much of the

research concerning this is relatively recent. Approaches will in all likelihood

need extensions to be able to cope with further semantic modelling requirements.

For example, when compared to ORM, Bird et al. [Bird et al, 2000] cited XML­

Schema as lacking the ability to cater for multiple inheritance and certain

exclusion constraints.

53

Further research is required to determine the approach whereby the latter may be best

facilitated. The requirement for some form of meta-model, which is able to govern the

evolving schema, is also important. This issue will be revisited in section 4.3.1 where

schema evolution requirements are discussed.

4.2 Design - Requirements and Solutions

Although difficult to draw distinct boundaries between phases of the SDLC, the

design phase of an information system is characterised as providing intermediate

models and frameworks to assist developers in progressing from semantic entities and

relationships, as well as functional descriptions of desired behaviour, to

implementations on some sort of execution platform.

In section 2.1.3 we considered the notion of software architectures as a means for

guiding the "programming-in-the-large" perspective. Here, developers view the

structure of the system in terms of components and their interconnections. The

abstraction level of the components varies over the design phase and may deal with

conceptually-oriented views in early stages, to more module-based and

implementation-dependent artefacts in later, lower-level stages.

Most literature tends to focus on the early design phase as a stage where evolution, in

an architectural sense, should begin to be dealt with. The following work supports

this:

• Riebisch and Philippow [Riebisch and Philippow, 2001] note that the

accommodation of new requirements into an existing product line typically

degenerates the original software architecture that served to specify the system

design. Practice has also shown that non-technical organisational factors

contribute to this. These include support for human abilities, e.g. understanding

solutions, mastering complexity, thinking at higher levels of abstraction, and

detecting deficiencies. Better levels of understandability to developers are

therefore needed along with improved tool support that can help reduce mistakes

made during adaptation of a software architecture.

• Van Gurp and Bosch [Van Gurp and Bosch, 2001] have suggested that current

design notations lack expressiveness and that many concepts used during the

54

design phase are represented implicitly, leading to maintenance difficulties. In

particular, object-oriented design is criticised for "hard-wiring" interactions

between objects and is not amenable to accommodating changing business rules.

A more conceptual separation of concerns is sought in terms of larger architectural

components, as opposed to just isolating smaller pieces of code.

We therefore begin by considering a conceptual approach for supporting evolution in

terms of the interactions between architectural components, and motivate why this is a

key area for addressing evolution.

4.2.1 Accommodating evolution in design architectures

Andrade and Fiadeiro's [Andrade and Fiadeiro, 2001] research has recognised that

organisations require business and technology architecture whose components can be

added, modified, replaced and reconfigured. Component-based development has often

been proclaimed to deliver an approach that can indeed deal with the volatility in

business and technological environments. Hopkins [Hopkins 2000], for instance,

claims that 'software developers have long held the belief that complex systems can

be built from smaller components, bound together by software that creates the unique

behaviour and forms the system. Ideally, a new system can be built using mostly

predefined parts, with only a small number of new components required ... In a well

designed system, the changes will be localised, and the changes can be made to the

system with little or no effect on the remaining components'. Andrade and Fiadeiro

[Andrade and Fiadeiro, 2001] however recognise, through development experience in

banking domains, that interactions and architectures in particular, are at the core of

the problems that need to be addressed before component-based technology can

sufficiently accommodate evolution. The major issue here concerns the fact that it is

not changes to the computations performed by the components that are required, but

changes to the way in which they interact. Furthermore, the global behaviour of a

system is a product of local behaviour of components and the ways in which the

components are interconnected.

The solution that Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] propose bears

similarities to Saake et al's [Saake et al, 2000] work on modelling adaptive

55

information systems. This was discussed in section 4.1.2.1 which considered that

evolving behaviour could be formally specified through a set of axioms, the contents

of which are controlled through mutators. Here, we are concerned with a more global

level of interaction between system entities and need to consider issues that are more

relevant to design. Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] recognise the

problem of coding interactions into system components as a key contributor to

evolution difficulties. Object-oriented methods are also criticised in that interactions

are usually coded in the way messages are passed, features are called, and objects are

composed. The end result is often an intricate mix of spaghetti-like structures where

interactions are not explicitly revealed. The solution therefore lies in externalising

component interactions by making them "first-class" entities. Systems can therefore

exhibit their configuration structure explicitly and thereby provide a handle on the

architecture for dealing with change. An overview of Andrade and Fiadeiro's

[Andrade and Fiadeiro, 2001] Coordination Contracts as a new modelling primitive

for managing information system evolution follows.

4.2.1.1 Coordination Contracts - Enhancing Design Architectures

Change is more easily perceived at the application domain level, suggesting an

abstract component model. A mechanism for enabling evolution over such a

compositional structure is therefore considered, with the following enhancement to

component-based development in particular:

• Provision for explicit representation of coordination mechanisms that regulate the

way components behave and interact.

• Enabling of the systems to support evolution through the reconfiguration of the

coordination mechanisms in place.

• This reconfiguration should not interfere with the way computations performed by

the individual components are programmed.

In essence, the proposed mechanism, or coordination contract, is defined in the sense

of a UML association class. Figure 4.5 below indicates how such a contract might be

defined.

56

contract <name>
partners <list-of-partners>
invariants <the relation between the partners>
constants
attributes
operations
coordination <behaviour superposed by the contract>
behaviour <local behaviour of the contract>

end contract

Figure 4.5 - Definition of a coordination contract

The important aspect concerns the partners, invariants, and coordination definitions.

Partners specifies a collection of classes that may play a role in the contract. The

actual instances of the partners, which may ultimately become coordinated by

instances of the contract, are determined through a set of conditions specified as

invariants. The behaviour that is required to be superposed over that of the partners is

identified under the coordination definition in terms of trigger/reaction clauses of the

form:

<name>: when <condition>
do <Set of actions>
with <Condition>

The intuitive semantics of this coordination is as follows:

• Conditions under when establish the trigger of the clause and may take the form of

actions or state changes in the partners.

• The actions under do identify the reactions to be performed, and typically takes

the form of actions of the partners or actions local to the contract itself.

• Under with, further constraints on the actions stipulated under do are specified, i.e.

preconditions.

For example, in a banking scenario we might envisage the following:

contract Traditional Account
partners x: Account; y: Customer;
invariants ?owns(x,y)=TRUE;
coordination

end contract

tp: when y.calls(x.Withdrawal(z))
do x.Withdrawal(z)
with x.Balance() >= z;

Figure 4.6 - A coordination contract for a conventional bank account

In the above example, contracts regulate only a specific class of interactions between

customers and accounts: those that have subscribed to the contract Traditional

Account.

Andrade and Fiadeiro [Andrade and Fiadeiro, 2001] indicate that the approach is

backed by a formal mathematical basis for coordination, stemming from work relating

57

to the categorical semantics of architectural and coordination principles. This also

underpins their current development of architectural configuration languages that are

aimed at assisting in the process of controlling or programming the evolution of

systems. This will also include logical mechanisms for reasoning about possible

interactions of components. Further research is also directed towards suitable

implementation mechanisms for the approach. Exploitation of polymorphism and

subtyping in object-oriented programming languages are suggested.

Andrade and Fiadeiro's [Andrade and Fiadeiro, 2001] work might also be considered

as a particular instance of a more general solution towards dealing with evolution in

software architectures.

We now consider that the structure of a system, in terms of its constituent components

and their interconnections, may itself need to evolve. This would typically be the case

where requirements and concerns have changed to an extent that has exceeded the

scope of the original design's ability to accommodate change and the designer's

original anticipated areas of evolution.

4.2.2 Evolving a Software Architecture ·

Architects may try to anticipate the types of future modifications to an architecture

and design it accordingly. Unfortunately, unanticipated changes are still likely. A

need arises for supporting architectural evolution such that detection of

incompatibilities, inconsistencies, and conflicts during unanticipated evolution is

catered for. Failure to do so results in the problems of design erosion - this was

discussed in section 3.1.3.

Mens et al. [Mens et al, 1999] propose so-called reuse contracts towards a framework

that is able to deal with design- as well as run-time or dynamic evolution. In the latter

case, changes may either be triggered by the current state or topology of the system,

or given by the reuser on a more ad-hoc basis.

A reuse contract essentially consists of a provider clause and a reuser clause that are

related by means of a contract type. The provider aspect specifies the properties of an

58

evolvable software artefact that can be relied upon by other dependent artefacts. The

evolver part specifies the modifications that are made to these properties. The

contract type indicates the exact kind of modification that takes place. Basic contract

types include extension, and cancellation of elements, while relationships between

elements can be added or removed through refinement and coarsening contract types.

Contract types may also consist of compositions of these basic types.

Instead of distinguishing between the conventional notions of architectural

components and connectors, Mens et al. [Mens et al, 1999] generalise everything as

an architectural element where:

• Elements have external gates allowing them to be linked to other elements

• Elements may be primitive or composite. Composite elements may themselves

constitute an entire architecture.

These elements are then subject to the contract types extension, cancellation,

refinement and coarsening - establishing a formalism to reason about the evolution of

architectures.

In particular, a basis is established for detecting architectural conflicts. Mens et al.

[Mens et al, 1999] state that 'these conflicts will not only occur when the same

architectural part is modified in different ways by different evolvers, but can also be

used to check compliance between an architecture and its underlying implementation.

If the implementation evolves in ways not supported by the architecture, a conflict will

be detected. In this way, the problem of architectural drift can be tackled'.

The important aspect to note about this work is that it aims to contribute to the larger

research effort of providing integrated support for unanticipated evolution during the

entire SDLC, ranging from requirements to implementation and maintenance stages.

To complete the discussion of contributions to different phases of the SDLC as

regards evolution, we next consider solutions concerned with implementation and

maintenance level stages.

59

4.3 Implementation and Operation

Designing systems, in such a way that they are able to absorb and dynamically

accommodate changing requirements, can help establish implementations that are not

overly compromised or disrupted, as can be the case when re-engineering is required

in order to realise the required changes.

However, as was introduced in section 3.1.4, once a development has reached its

implementation and operational phase, additional factors become relevant and

typically include:

• Disparate technologies being called upon to realise a working system. These

include database systems, operating systems, communication and network

systems, as well as user-interface management systems (UIMS) and the

application program itself. Interdependencies between these can be complex, and

detract from the conceptual and design-level notions that allowed developers to

focus more on the application itself and not the complexities imposed by the

implementation technology.

• A potentially large store of programs and data that are long-lived, and often

concurrently accessed, now requires management and careful consideration,

especially when facing any form of requirements evolution. Consequences of

change must now be properly propagated, in addition to ensuring semantic

integrity of the system relative to a higher-level conceptual specification.

• Pressures for the system to be able to be integrated with other application systems,

such as in the multidatabase sense, or to be able to deliver services to various

client types. A typical example of the latter includes Web-related initiatives where

information can be easily acquired and analysed as well as used to drive change.

This is the case in e-commerce type applications where applications can be

expected to dynamically evolve to suit customer requirements.

Research has identified the following areas as contributors to solving evolution

problems at the implementation and operation phase:

• Progress in techniques to deal with the schema evolution problem. (Section 4.3.1)

• Meta-programming, and in particular linguistic reflection, as a means for

implementing generic specifications and providing an ability to accommodate

60

change without resorting to highly interpretive approaches or ad-hoc restructuring

methods. (Section 4.3.2)

• Persistent Application Systems (PASs) research, with emphasis on orthogonal

persistence as a means for overcoming the obstacles imposed by using "disjoint"

technologies for realising an information system. (Section 4.3.3)

• Meta-modelling architectures, and in particular the Object Management Group's

(OMG) four-level meta-modelling architecture. (Section 4.3.4)

Each of these areas are considered in tum, followed by a discussion on the PJama

project (Section 4.3.3.2) and the OMG's Model-Driven Architecture (MDA) (Section

4.3.4.1). The former is a research project concerned with creating an orthogonally

persistent Java while still addressing issues posed by evolution. The latter project

claims to provide the foundations for building a variety of automatic and semi­

automatic software maintenance tools.

4.3.1 Schema Evolution: Current Research and Related Work

Schema evolution was introduced in section 3.1.4.1 and is primarily concerned with

the ability of a database system to accommodate modifications of the database schema

without loss of existing data. The major research directions are directed towards

object-oriented database systems and focus on the following:

Preservation of Semantic Integrity

This concerns the maintenance of the integrity of a schema in terms of the object

model, but can also be extended to include support that assists maintainers in ensuring

that any change is indeed consistency preserving and correct with respect to the

underlying domain. The first requirement has been well studied in work relating to the

02 database project described in [Zaniolo et al, 1997]. Schema changes are effected in

02 by modification primitives which include facilities for:

• Modifications to class attributes (creation, deletion, renaming, and modification of

the attribute domain)

61

• Modifications to class methods (creation, deletion, renaming, and signature

modification).

• Modification to the class inheritance graph (creation and deletion of

superclass/subclass relationships).

• Modifications to classes (creation, deletion and renaming).

A set of invariants and rules for maintaining these invariants over schema changes are

also defined. For example, the class hierarchy invariant states that the object class

hierarchy must have one root and must be a connected directed acyclic graph (DAG)

with distinct class names. The set of accompanying rules concerned with class

hierarchy manipulation, address the aggregation and deletion of inheritance

relationships between classes as well as the creation and removal of classes. These

also call on a set of multiple inheritance rules to resolve any conflicts relating to

definitions in subclasses.

Requirements for semantically richer techniques in order to maintain consistency have

also been identified. These deal with issues beyond structural consistency.

Approaches to this generally involve incorporation of domain-specific knowledge into

the schema in a formalised manner. This promotes the application of sound reasoning

techniques to help guide and constrain the application of schema evolution operators.

Franconi et al. [Franconi et al, 2000], for instance, advocate an approach that extends

the object-oriented model in terms of an encoding that promotes the reduction of

reasoning problems to corresponding description logics reasoning problems. Chen et

al. [Chen et al, 1995] suggest the use of a domain meta-model as a framework for

guiding evolution in accounting database systems in particular. By using a domain

model, potential target schemas can be suggested. Domain specific heuristics are also

included to guide the choice of a sequence of operators to evolve the current schema

to the potential target schema.

Compound schema changes

Current systems are generally limited in that they only support changes local to

individual types within a schema and thereby limit the richness of changes the

62

database administrator can perform. The need for tool support is especially relevant

here, in order to achieve a more automated evolution of what would otherwise

become a tedious and error-prone task.

Pons [Pons and Keller, 1997] and Lerner [Lerner 2000] have proposed solutions. The

former suggests an approach where a compound type change is decomposed into

simpler well-defined primitives. However, identification of a correct sequence of

primitives to collectively realise a compound change has proved difficult, leading to

necessary human intervention. Lerner suggests a more algorithmic and semantically­

based approach by developing transformers that are able to infer how types have

changed (given both old and new definitions of the type). A promising tool (TESS -

Type Evolution Software System) has been developed, but is limited to dealing with a

type model that does not have inheritance.

Change propagation to database instances

Traditional approaches have involved changes made by the database administrator

being immediately propagated to the data. Although ensuring that the entire database

is in state consistent with the new schema, the technique generally results in the

database being unavailable and encourages a centralised schema change operation -

an unattractive solution for systems demanding high availability. Subsequent

approaches have suggested a lazy or deferred mechanism for converting the data only

when required. Roddick [Roddick 1995] lists the following advantages:

• Changes to the schema can be made more rapidly-improving availability.

• Data are changed only when required, and thus the identification of obsolete data

is not required on instantiation of the changed schema.

• The immediate withdrawal of a schema change operation is possible without

effect. Furthermore, compensating schema changes may result in no physical data

changes at all.

Both immediate and deferred conversions are supported by the 0 2 database system.

Unfortunately, there is now a data access overhead imposed on the system. A study in

[Zdonik 1997] indicates that while the approach is feasible on small databases or on

systems where availability is important, real-time applications requiring predictable

63

response times, as well as large databases faced by a limited number of schema

modifications, appeared to be better served by an immediate transformation method.

A third approach, namely that of versioning by view-methods, has received much

interest in recent research. Objects are not physically transformed and are instead

presented via some emulation mechanism in order to make them appear as adhering to

a new schema. The technique is especially attractive for application compatibility and

is discussed below.

Application Compatibility

The need to support legacy applications, "as if nothing had happened", is a problem

often faced in industry. Schema versioning extends the schema evolution problem by

requiring that the system provide access to all data, both retrospectively and

prospectively, through user definable version interfaces. Recent solutions vary and

include the following:

• View-based support: Work by Ra and Rudensteiner [Ra and Rudensteiner, 1997]

in particular, represents the extent of progress as far as integrating schema

evolution with view facilities is concerned. Unlike earlier versioning approaches,

potential now exists to overcome problems related to storage overhead for

redundant objects. Their Transparent Schema Evolution (TSE) system provides a

means for users to specify schema changes to their personal (external) views,

rather than directly to the shared base schema. The evolution neither affects other

views nor existing application programs. Furthermore, the new views may be

capacity-augmenting, which in tum requires augmentation of the global base

schema and some database reorganisation at the instance level. Future work is

directed towards support for more complex schema evolution operations (e.g.

partitioning and coalescing of classes), as well as towards addressing performance

issues surrounding the propagation of updates through chains of dependent

classes. Ra and Rudensteiner [Ra and Rudensteiner, 1997], however, state that the

complexity and overhead of maintaining many separate views can become

excessive, necessitating that the conversion of legacy applications be

reconsidered.

64

• Temporal Database Approaches: Roddick [Roddick 1995] defines temporal data

models as being concerned with the accommodation of the inherent temporal

nature of the object world, in addition to the time-dependent recording of facts

relating to this object world in a database system. They lend themselves to

supporting historical queries by allowing the interrogation of old schemas, as well

as the interrogation of old data should temporal support be extended to the

underlying database objects as well. Extending temporal support to the

management of schema objects (meta-data) has also proved to lend itself to

environments such as CAD and software design where design histories are now

traceable.

In general, the resulting complexities, performance, and storage overheads require

careful consideration before committing to an implementation of this sort.

Non-versioning approaches are also prevalent in achieving application compatibility.

Instead of attempting to avoid change, they either guide the developer through the

program parts requiring change by means of compiler warnings of some sort, or are

more advanced in terms of supporting some form of program restructuring.

Reflection-oriented techniques are useful as they allow their own program structures

to be altered from within. These are now considered in further detail.

4.3.2 Reflection

Meta-programming encompasses concepts such as reflection, introspection,

intercession and reification. Gabriel et al.'s [Gabriel et al, 1993] definition of these

terms reads as follows:

'Reflection is the ability of a program to manipulate as data something representing

the state of the program during its own execution. There are two aspects of such

manipulation: introspection and intercession. Introspection is the ability of a program

to observe and therefore reason about its own state. Intercession is the ability of a

program to modify its own execution state or alter its own interpretation or meaning.

Both aspects require a mechanism for encoding execution state as data; providing

such an encoding is called reification.'

65

It therefore becomes evident that any attempt at delivering a programmmg

environment supporting reflection will need to consider the effect on compilation and

loading mechanisms. Type checking, and the provision of a meta-level mechanism

providing description of types that support the reification requirement, are also

needed.

Linguistic reflection, in particular, has received much interest. Stemple et al. [Stemple

et al, 1992] define linguistic reflection as being the (introspective) ability of a running

program to generate new program fragments, and to then integrate these into its own

execution (thereby achieving intercession). Program behaviour is therefore

dynamically modified.

According to [Atkinson and Morrison, 1995] two mechanisms for realising linguistic

reflection have evolved:

• Compile-time linguistic reflection: This allows the user to define generators which

produce representations of program fragments. These generators are executed at

compile time. Their results are then type checked and made part of the program

being compiled.

• Run-time linguistic reflection: This is more concerned with the construction and

binding of new components with existing components in an environment. Here, a

compiler that can be invoked dynamically is required, in addition to a dynamic

incremental loader. Type checking occurs in both compilation and binding phases.

The technique has proved to be an effective component in systems addressing

evolution. Atkinson and Morrison [Atkinson and Morrison, 1995] consider it an

important contributor in persistent programming environments. In particular, they

consider type-safe linguistic reflection (where type-checking constrains the allowed

output of reflection) as extending the data modelling capability of the type system.

This leads to an ability to implement highly abstract specifications, such as those used

in query languages and data models, within a strongly typed programming language.

Furthermore, a means of dealing with continual changes in data-intensive applications

is provided. As an example, Kirby et al. [Kirby et al, 1997] have realised benefits for

a weather monitoring application. Here, the schema describing the incoming data

needs to dynamically change to suit the needs of the application, and by using

66

linguistic reflection, they are able to alter the schema in order to record any new

structure discovered by applications in the data, programs or meta-data.

We discuss persistent programming environments in further detail in section 4.3.3,

and the PJama project, in particular, as an implementation level approach that can

cope with evolution.

Lastly, recent proposals to deal with software maintenance and evolution, such as

[Brooks et al, 2001] and [Bezivin and Ploquin, 2001], recognise reflection as part of

as part of a meta-modelling based approach where aspects implicit in system code are

reified to become first-class meta-data objects. We explore this work further in

section 4.3.4.1.

Having considered database schema and application evolution concerns separately,

the next sections now address the evolution problem on a broader scale, i.e. in the

sense of aiming for a complete and coherent solution for the implementation phase.

4.3.3 Persistent Application Systems and Orthogonal Persistence

As was introduced in section 3.1.4.3, the development of any system that is

characterised by long-lived, concurrently accessed, and potentially large bodies of

data and programs, involves the employment of services from operating systems,

database systems, user-interface management systems (UIMS), communication

systems, compilers, etc. Unfortunately, variations in naming, type and binding

schemes prevail, as well as differences in recovery, concurrency and transactional

behaviour. This creates significant complications for the programmer, in addition to

the need to maintain translations and mappings between the different components.

The fact that database and programming language communities have followed

different development philosophies, in spite of having to provide many similar

services, is often cited as one of the key problems in attempting to improve the current

state of affairs.

Persistent Application Systems (PASs) research is aimed at addressing the fact that

the application, as such, typically outlives its individual components and

67

implementation technology. Healthcare systems, CAD/CAM systems, scientific

databases and environmental modelling systems, are all common examples of P ASs.

Different implementation architectures have been proposed for persistent applications,

including the combination of data models and programming languages, as well as the

necessary extensions to either databases or programming languages : more complete

type and computational facilities for the former, and persistence capabilities for the

latter.

In particular, Atkinson and Morrison [Atkinson and Morrison, 1995] clearly motivate

that orthogonally persistent object systems represent the most likely approach towards

realising an environment where the total composition of services (ranging from data

definition and operations, to integrity, concurrency and distribution) is supported

through one coherent design. They also motivate that 'the construction of persistent

systems is made considerably easier when the whole computational environment is

persistent. In such an environment, programs and processes may be regarded as data

and manipulated in the same manner, allowing transformations traditionally

regarded as being peiformed by a separate mechanism to be executed within the

persistent environment.' In doing so, a basis also exists to simplify system

maintenance and evolution.

We begin by describing the notion of orthogonal persistence in further detail and

explain why it serves as a foundation for managing evolution. This is followed by a

brief overview of the PJama project : a promising realisation of an orthogonally

persistent object system based on the Java programming language.

4.3.3.1 Orthogonal Persistence

The term persistence specifically concerns the support of data values for their full life

time however brief or long these may be. This can range from transient results in

expression evaluation and local variables, through to data that outlives versions of a

persistent support system. There is a division in this range, where the former part is

typically serviced by programming languages, and the latter by databases and file

stores. Orthogonally Persistent Systems aim to treat data values independently of their

longevity, size or type.

68

Realising this has involved consideration of how programming languages must evolve

to cater for persistence, as well as how existing persistent systems (such as object­

oriented database systems) might be improved, beginning with the elimination of the

impedance mismatch problem.

An environment supporting orthogonal persistence would need to adhere to the

following principles [Atkinson and Morrison, 1995]:

• Principle of persistence independence: The semantics and form of a program is

not changed by the longevity of the objects to which it is applied. Developers are

therefore freed from the programming overhead of moving data between long­

term and short-term stores.

• Principle of data type orthogonality: Any data object of any type can be made

persistent. Data modelling is simplified as long-term forms of bulk data types

need not be separated from short-term forms.

• Principle of persistence identification: The means used to identify and provide

persistent objects is independent of the Universe of Discourse of the system. In

particular, the strategy of persistence by reachability, where an object is made

persistent when it is reachable from another persistent object, satisfies this

principle.

As indicated in [Connor et al, 1994], orthogonally persistent programming systems

allow all data (short and long-term forms) to remain under the control of a single

persistent programming system for their entire lifetime. More specifically, the

following two factors help establish the basis for an environment conducive to

supporting software maintenance and evolution:

• Protection mechanisms are provided over the whole environment through the use

of a single enforceable programming model.

• Referential integrity is preserved over the entire computational environment for

the lifetime of the PAS. "Secure links" are maintained among the data, meta-data

(schema), and program entities. In particular, Atkinson and Morrison [Atkinson

and Morrison, 1995] indicate that 'the referential integrity of an object means

that, once a reference to an object in the persistent environment has been

established, the object will remain accessible via that reference for as long the

reference exists'.

69

This support clearly assists in change management, where all consequences of a

change must be properly propagated (to both data instances and programs).

Furthermore, the consequences of change can be better understood in order to avoid

unnecessary changes being made and provide better support to automated systems

attempting to implement change.

The following maintenance and evolution mechanisms are now better facilitated:

• Incremental evolution: Early database methodologies generally advocated that

schemas to "represent the enterprise" be designed first, followed by the addition

of data and programs. This resulted in schemas being considered as relatively

static components of a system. However, incremental development is more

feasible where portions of an enterprise are understood, a corresponding design

developed, and construction initiated. Orthogonally persistent systems aim to

support evolution of program, data and meta-data (schema) by the same

mechanisms. Here, all are considered equally and more flexibly and may be static

or dynamic, or large or small, depending on the PAS under construction.

Simply put, programs, data and meta-data evolve in tandem and in increments

corresponding to the progressive understanding of the enterprise. There is no bias

towards program being more or less incremental than types.

• Hyper-programming: In an integrated persistent environment where program, data

and meta-data are manipulated by the same mechanisms, programs can be

constructed in such a way that objects accessed by the program may already be

available at the time the program is composed. Bindings (links) to these objects

can now be included as opposed to traditional textual descriptions of where to find

persistent values. Such a program is called a hyper-program. As discussed in

[Connor et al ,1994], the hyper-programming concept provides a technique for

representing all executable programs, effectively establishing links between

executables and their corresponding hyper-program source representations. This

allows a compiler, for instance, to record which programs use which parts of a

schema.

• Linguistic Reflection: As demonstrated in a dynamic weather monitoring

application proposed by Kirby et al. [Kirby et al, 1997], orthogonally persistent

70

systems overcome the ordering difficulty imposed by traditional database systems.

As regards the latter, the database is constructed by first defining the meta-data

(schema) and then initialising data in accordance with the meta-data description.

Where data with a new structure is required, the process is repeated in the same

order. Thus, programs discovering new structure about existing data have an

ordering difficulty: the new structure must exist before the program runs but this

is only discovered during execution. In an orthogonally persistent environment,

computations over the meta-data, data and programs are possible. The basis is

established for new meta-data, programs and data to be bound into the executing

system, thereby facilitating linguistic reflection.

To conclude this section we briefly discuss the PJama project - a research system

geared at demonstrating the claim that orthogonal persistence is indeed a better

application programming technology.

4.3.3.2 The PJama Project

The PJama project developed at the University of Glasgow, Scotland, in conjunction

with Sun Microsystems, is focused on developing an orthogonally persistent version

of the Java programming language. In doing so, a vehicle is established to test the

claims that orthogonal persistence does indeed yield an improvement in application

programming technology.

Aside from its popularity as a language for enterprise application implementation, the

following characteristics motivate Java as the language choice for the PJama project

[Atkinson et al, 1996].

• Strong typing

• Single inheritance

• Object-oriented model

• Automatic space management

• No explicit manipulation of pointers

• Validations to improve security, precision and productivity.

71

A detailed account of the recent progress in the project can be found in [Atkinson and

Jordan, 2000]. We briefly survey the state of affairs, with respect to the requirements

listed in [Atkinson and Jordan, 2000], in order to give the reader an appreciation of

some of the challenges involved.

• Orthogonality: In establishing orthogonality, the current support surrounding the

use of java.jdbc and org.omg.corba class libraries (providing application

programming interfaces to external databases) is hampered by the fact that they

are inherently transient from the persistent program point of view. To overcome

this, effort has been spent on investigating how the state of these "external

computations" can be captured and how correct resumption of program threads

(that persist through their reachability) can be supported should execution be

interrupted. In general, resumption of such program threads is noted as a

fundamental difficulty due to the intertwining of the java.lang. Thread class with

the underlying Java Virtual Machine (JVM).

• Persistence Independence: Here the Java language must remain completely

unchanged (syntax, semantics and core classes) so that imported programs and

libraries of classes work correctly. This has significant benefits for code reuse,

allowing programmers to move freely between persistent and standard versions of

the Java platform. Aside from requiring clarification on the semantics of code

resumption on the Java platform, persistence independence is noted as essentially

being achieved.

• Durability: Durability, where loss of data is avoided due to software, platform or

hardware failures, is presently limited to small development environments where

"disruptive" off-line archives can be taken. This is clearly a problem in large scale

enterprise deployments where continuous operation is mostly required. Support

for evolution and migration technologies is also regarded as a pre-requisite - the

need to discard stores so that an application can change to meet new requirements

will result in a failure of durability.

• Scalability: Developers must be protected from the effects of scale, whether the

implementation is intended for hand-held devices or terabyte-size enterprise

stores. The review in [Atkinson and Jordan, 2000] indicates experiments on 10

72

gigabyte stores, but with future PJama projects requiring between 2 and 5 terabyte

stores.

• Evolution: Like any persistent store, mechanisms are required to manage change

to classes and instances. At present, the PJama evolution technology is focused on

development-time evolution where developers are constantly making small

changes to experimental or prototype persistent stores. The following characterise

the nature of this support:

• Specification of class changes and instance transformations: The developer

can specify changes to class hierarchies as well as renaming, deletion and

insertion of classes. Default transformation code exists to transform old

instances of a class to new instances of that class or some related class.

However, the developer may also use the Java programming language to

specify arbitrary computations to obtain new values for instances where

classes may have changed format.

• Mutual consistency: Mutual consistency across classes is now achievable. The

promotion of classes to first class persistent objects is especially useful for

controlling consistency in terms of behaviour. For example, methods deleted

from one class, but still called from another, can be detected. The so-called

Persistent Build Technology, described in [Dmitriev, 2000], combines class

evolution and recompilation of class sources, thereby keeping track of changes

to application classes, and preventing them from being left incompatible after

a change.

• Atomic execution of transformations: Support for performing the

transformation atomically is available. However, the current transformations

run in an off-line environment (i.e. no on-line or concurrent evolution support

at present). Object conversions are also complete, as opposed to lazy

conversion methods. The latter is cited as adding much complexity to the

evolutions support system.

Further research work is focused on support for deployment-time evolution. This

is complex, requiring that changes be installed on a customer's implementation

without losing any investment in data and programs. Furthermore, interruptions to

application availability are mostly unacceptable. Dmitriev [Dmitriev 2000]

73

indicates that versioning techniques, specifically those concerning the long-term

co-existence of multiple versions of individual classes or collections of classes

(schemas), are complex in the PJama environment and any attempt would require

considerable effort. This is associated with the present restriction that PJama does

not support multiple applications running concurrently over the same store.

Lastly, developers would also require the integration of evolution management

into development tools. This assists in easily managing and changing persistent

stores during design.

• Other challenges: Migration to other platforms, i.e. advances in the Java platform

and use of new persistent store management platforms, requires careful

consideration so as to preserve orthogonal persistence. Although current research

is centred on off-line migration, the need for incremental evolution for large-scale

systems must be accommodated. Related to this is the accessing of "external

computations" (e.g. JDBC interface) so that interaction with autonomous

components does not compromise the system's integrity. PJama extends the Java

Remote Method Invocation (Java RMI) standard to combine persistence with

distribution. However, Atkinson and Jordan [Atkinson and Jordan, 2000] indicate

that solutions that are scaleable and more supportive of class evolution require

further research.

Further work is also required to allow many applications to run concurrently

against the same store. At present, developers would have to manage this

themselves, leading to solutions with excessive locking, poor performance and

deadlocks.

The next section explores a meta-modelling approach, where the notion of

conformance to a meta-model, aims to provide developers with an abstract model­

driven implementation framework that is independent of the underlying execution

platform.

4.3.4 A Meta-Modelling Approach

As systems become more complex, it has been recognised that methodologies that

rely on increasingly more abstract mechanisms are required in order to ensure

74

manageability, especially in the face of evolution of implementation platform

requirements and changing user requirements. Meta-modelling approaches generally

employ a framework where a hierarchy of abstractions are used, such that evolution of

any one layer is constrained (and guided) by the later above it.

The four-layer meta-modeling architecture employed by the OMG is characterised as

follows:

• Meta-meta model layer: Provides a language for defining meta-models and can be

thought of as a meta-grammar such as EBNF. The OMG's Meta-Object Facility

(MOF) exists at this layer as a means for managing meta-models in a standardised

manner. It defines the essential elements, syntax, and structure of meta-models

that are used to construct object-oriented models of discrete systems.

• Meta-model layer: Comprised of the descriptions that define the structure and

semantics of meta-data, i.e. descriptions for the model layer. The notions of class,

attribute, operation and component are specified here.

• Model layer: This defines the language for specifying information domains.

Elements like Student, Teacher and Course classes are domain-specific examples

of elements belonging to this layer.

• Instance layer: Comprises instances of the elements defined in the model layer;

for example Student, Teacher and Course objects belonging to the classes defined

previously.

According to [OMG-MOF, 2000], this four-layer architecture has a number of

advantages:

• Assuming that the meta-meta model is rich enough, it can support most if not all

kinds of meta-information imaginable.

• It potentially allows different kinds of meta-data to be related. (This depends on

the design of the framework's meta-meta model).

• It potentially allows interchange of both meta-data (models) and meta-meta-data

(meta-models). (This presupposes that the parties to the exchange are using the

same meta-meta-model).

75

For an enterprise's information systems in particular, the need for a global integration

framework arises since database, workflow, software process and component

management meta-models are often independently defined and independently

evolved. Furthermore, by establishing a framework where meta-data objects are

reified to become first-class objects, a basis is provided that can support reflection,

and hence dynamic configuration and reconfiguration of programs and data. This

approach is widely supported in the literature but is receiving significant attention in

its application to the OMG's Model-Driven Architecture (MDA) [OMG-Soley, 2000].

This has been primarily proposed as a means for being able to derive code from a

stable model, and hence achieve greater independence from underlying

implementation platforms. There are also benefits in managing software maintenance

and evolution. We briefly consider the MDA vision below.

4.3.4.1 Model Driven Architecture (MDA)

The MDA extends from system specification, dealing with the modelling of business

functionality and behaviour, through to implementation where subsequent

interoperability issues across different middleware platforms become relevant. The

latter is conventionally dealt with through using standard component interfaces across

heterogeneous software systems.

The MDA concept adopts a different approach by using formal system models to

facilitate interoperability. As indicated in [Poole, 2001], the most significant aspect is

the independence of the system specification from the implementation technology or

platform. The system definition exists independently of any implementation model

and has formal mappings to many possible platform infrastructures such as Java and

XMUSOAP.

By using the Unified Modelling Language (UML), Meta-Object Facility (MOF),

XML Metadata Interchange (XMI) and Common Warehouse Meta-model (CWM), a

basis is established for authoring, publishing and managing models within a model­

driven architecture. This includes the following:

76

• Platform-Independent Model: Firstly, in order to realise platform independence,

the OMG advocates a Platform-Independent Model (PIM) expressed in UML - a

MOP-compliant meta-model. OMG have also created CWM as a standard for

representing database schemas. UML serves as the notational basis, but is

extended with data warehousing and business analysis domain concepts. This is

also used to describe non object-oriented artefacts such as relational, network,

hierarchical or XML-based data sources.

The PIM effectively represents the logical view in which the composition and

behaviour of all components are fully specified (without implementation-level

details). The intention is that this is then mappable to one or more Platform­

Specific Models (PSMs) which are again expressed in UML but now contain

implementation-specific details.

• Meta-data exchange: In order to realise interoperability across different meta­

models, a means for exchanging model information is required. The introduction

of XMI has provided an interchange format for models (and meta-models) that is

based on XML and MOF. XMI effectively defines how XML tags are used to

represent serialised MOP-compliant models in XML. A basis is therefore

established whereby both metadata (tags) and the instances they describe (element

content) can be packaged together, enabling applications to readily "understand"

instances via their metadata. This is clearly advantageous in distributed,

heterogeneous environments and also enables UML models to serve as the basis

for other tools such as code generators.

• Common services: The OMG has also recognised that applications rely on a set of

essential services, including persistence, transactions and security. When

implemented on a particular platform, they also tend to take on the characteristics

that restrict them to that platform, or ensure that they work best there. To address

this, UML models of these services are presently being constructed for the PIM

level. Their functionality and interfaces in multiple middleware targets is also

being defined.

Armed with the elements of shared metadata, formal PIM to PSM translations, and a

vehicle for exchanging model information, the OMG's MDA vision is set towards

facilitating software evolution and maintenance from different perspectives:

77

• Portability and interoperability between middleware platforms: As stated by

Soley [OMG-Soley 2000], it is difficult for large enterprises to standardise on a

single middleware platform. The most visible environments today include

CORBA, EJB, XMUSOAP and .NET. However, it can be assumed that these will

evolve and/or be replaced. The platform independence gained by using the MDA

approach, helps counter the overhead of expensive and disruptive migrations to

newer implementation platforms. Interoperability across platforms is also

improved and defined more rigorously.

• Business models and implementation technologies evolve independently: The

separation between business models and the implementation technology, promote

the preservation of the development invested in components when a technology

shift occurs. Mappings to different implementation platforms exist in the MDA

and can be augmented when new ones are introduced. The OMG will standardise

these mappings, while vendors will implement them in their tools, enabling

automatic interoperation with or porting to the new platform.

• Structural (schema) and behavioural evolution is better accommodated: UML

model maintenance, in particular, has conventionally required manual intervention

to ensure consistent propagation of change to the associated code. The MDA

framework aims to provide a more automated and systematic approach to this via

formal metadata definitions that can assist in guiding and constraining evolution.

The MDA also aims to incorporate highly generic core models of common

computing environments, such as Enterprise Computing with its component

structure and transactional interaction, or Real-Time Computing with its resource

control requirements. These assist in providing semantic details to evolution

mechanisms. Poole [Poole 2001] notes that highly domain-specific metadata that

does not fit the generic model, is handled through the use of extension

mechanisms that are predefined as part of the generic models (e.g. the use of UML

extension mechanisms, such as tagged values, stereotypes, and constraints).

Future MDA visions incorporate the notions of adaptive software and dynamic

evolution. In particular, the run-time interpretation of shared metadata is central to

the approach - this discipline is termed Adaptive Object Models (AOM). Poole

78

[Poole 2001] indicates that 'system functionality will gradually become more

knowledge-based and capable of automatically discovering common properties of

dissimilar domains, making intelligent decisions based on those discoveries, and

drawing and storing resulting inferences. In general, "knowledge" is supported

by an advanced and highly evolved concept of ubiquitous metadata, in which the

ability to act upon, as well as revise, knowledge at run time is provided through

Adaptive Object Models (AOMs).'

This generalised metadata management, authoring and publishing capability holds

promise for support of advanced reflection capabilities - both structural and

behavioural. The intended result is the production of highly dynamic and self­

organising systems. These are then able to act directly on domain knowledge and

realise a consistent and complete modification through the system model.

The problem of evolution, in terms of issues and requirements, has been presented.

This chapter considered different solutions proposed in the literature, and discussed

some of the areas that future research would entail. The next chapter provides a

synopsis of the problem, together with the techniques required towards improving the

accommodation and facilitation of evolution. A future perspective on supporting

evolution coherently and consistently over the SDLC is also considered.

79

CHAPTER 5 - A SYNOPSIS

This chapter reconsiders the phases of the software development life-cycle in terms of

their role in accommodating and facilitating evolution. A brief consideration of how

future information system development can deal with the evolution problem

concludes the chapter.

5.1 A characterisation of current approaches

In chapters 2 through 4, we discussed the development phases of an information

system with particular emphasis on the database (persistent) component of the system.

The issue of evolution was essentially considered in terms of two dimensions:

• Conceptual and Design level accommodation of change: This concerned how

systems can be conceptualised and designed in order to accommodate changing

requirements, thereby lessening any later re-coding and re-implementation efforts

that may be required to realise the change.

• Implementation and Operation level accommodation of change: This deals with

the mechanisms and technologies that must be in place to ensure semantic

integrity and consistent propagation of changes to all the implementation artefacts.

We now reconsider the software development life cycle (SDLC), the problem of

evolution, and the contributions that have been forthcoming to deal with evolution. In

particular, their advantages and disadvantages are considered, including their

suitability towards the following:

• Facilitating automation of change, i.e. contribution to tool support

• Understandability to developers and other stakeholders (e.g. customers who are

involved in the requirements specification phase)

• Implementation feasibility

• Support for ensuring semantic integrity of the system and the ability to ensure

consistent propagation of change to all programs and data comprising the system.

• Applicability and scope of the mechanism. For example, does the approach apply

only to business systems, or does it hold relevance to scientific database

applications as well.

80

• The nature of the evolution that is supported, i.e. does the approach only deal with

a set of anticipated change requirements, or is the approach geared towards

delivering a more generic solution where unanticipated change was also catered

for.

5.1.1 Requirements Analysis

This phase serves to capture the customer's functional and non-functional

requirements for the system. As indicated in section 2.1.1, this included a high-level

abstract model of the system in terms of the major relationships and entities, as well

as the transformations (actions) that occur in the system. The assumptions on which

the system is based, in addition to the anticipated changes in user requirements, are

usually documented.

It is the one phase where all stakeholders of the end product have a view on the

system that is void of any complex specification and design-level constructs or

formalisms. Unfortunately, the following issues are prevalent and influence the

evolvability of the system:

• Lack of foresight: Future system requirements may, for instance, include the

ability of a factory production management system to accommodate new product

lines, changes in workflow, etc. Furthermore, any ignorance of the likely need to

later integrate the system into a larger federated architecture 1 can weaken and

complicate the extent of integration, particularly in reconciling semantic

discrepancies. For example, an object-oriented database schema whose classes do

not easily generalise into a common organisational class, or set of classes, could

prove awkward in terms of reconciling inconsistencies along

generalisation/specialisation class hierarchies.

• Lack of formality: Natural language is inherently ambiguous and informal, leading

to difficulties when reasoning about the system at the specification phase.

Improved methods of requirements engineering are sought that can assist

analysers in documenting the system within a framework serving both the need for

1
In the sense of a federated database system where heterogeneous DBMS's are either affiliated via a central global schema or

interact loosely via exchange schemas

81

understandability by non-technical stakeholders, as well as the need to provide a

basis for more formal system specification.

Techniques to guide the requirements analysis process can be employed. Firstly,

Ghose [Ghose 1999] indicates that design rationale (the process of documenting the

reasoning process undertaken in designing an artefact) can be useful in requirements

engineering, particularly for resolving conflicting viewpoints on the system

requirements. This is often the case in industrial software management systems,

where organisational management requirements and shop floor supervision

requirements tend to conflict.

Although design compromises can sometimes result, the design rationale process can

encourage participation towards more complete, more thorough, and more insightful

requirements. Evolution-related requirements can also be better revealed and more

cautiously considered in context with other requirements.

Secondly, Wu and Han [Wu and Han, 2002] suggest the use of XML-based tools for

managing system requirements as well as architectures. XML technology is inherently

geared towards exchanging data across organisations and heterogeneous

implementation platforms. It would therefore appear that using XML as the format for

the information repository for a requirements analysis document is advantageous. In

particular, requirements are more traceable - an important consideration should

requirements need to be amended or evolved. The framework proposed by Wu and

Han [Wu and Han, 2002] is essentially a fixed one, where requirements are captured

in terms of stakeholders, goals, assumptions, components, services, quality of

services, etc. Although this is feasible towards improving the formality and rigour of

the requirements documentation, it also tends to dictate a certain path to establishing

the system requirements. This can be awkward and restrictive to non-technical

participants who are more at ease with articulating requirements using informal and

natural language type approaches.

Hypertext-based documentation management systems have assisted in providing

"loose" associations between natural language documentation and structural

documentation. References to entities and relationships in the underlying application

domain are feasible, although behaviourally-oriented references are more complicated

- semantics would need to be carefully considered. Any automated progression, from

82

a natural language basis to a more structured and formal interpretation, would require

Artificial Intelligence (AI) participation. In particular, this would demand production

of semantically correct specification-oriented artefacts that define both structural and

behavioural concerns. The inherent ambiguity and informality of natural language

constrains the feasibility of such approaches.

5.1.2 Specification and Conceptual Modelling

The specification phase is especially important in its role as a transition between more

informally-oriented requirements documentation and system design - the latter

providing the blueprint for an eventual implementation. Different specification

formalisms are used to model the structural, behavioural and control flow aspects of

the system. Conceptual models such as the Entity-Relationship approach define

structural requirements. Functional specification techniques, ranging from model­

driven formalisms such as Z to pseudo-code like descriptions, define behavioural

concerns, while data flow diagrams usually represent the transformations and control

flow concerns. As most information system applications are centred around the

conceptual model, common techniques were described in section 2.2.1, including

object-role modelling (ORM) and object-oriented modelling. XML was also discussed

as a valuable technique for describing semi-structured data and was also considered

further in section 4.1.2.2 as a possible means towards building evolvability into

structural specifications.

From an evol vability point of view, the following issues are of particular interest:

Assessing evolvability

As discussed in section 3 .1.2.1, different conceptual models can be used to describe

the same application domain, but exhibit different evolvability characteristics.

Stability emerged as a desirable characteristic, and metrics were presented in section

4.1.1 as a means for measuring this quality in conceptual models existing in

operational environments. Although useful in assessing the stability of models, the

83

approach would appear to best serve prototype-style developments, where

shortcomings can be addressed and rectified without any serious impact on

implemented artefacts and persistent data. It does not explicitly address how

evolvability requirements are specified.

Modelling evolvable requirements

Behavioural requirements are generally considered to be the most volatile. Business

rules in particular are subject to change. In order to accommodate this anticipation of

change in the specification, a separation of rigid and evolving parts was suggested and

described in section 4.1.2.1. It was also indicated that the approach can be supported

by an underlying temporally-based logic, but required the designer to determine the

evolving parts from the rigid parts in advance. Constraint is also required, as resorting

to a behavioural specification comprised only of evolving axioms creates the problem

that everything is possible.

Although generally less volatile than behavioural requirements, the notion of

modelling evolving structural requirements was also considered. XML was discussed

in section 4.1.2.2 due to its application toward modelling domains with irregular

structure where predefined schema structures prove to be awkward. However, the

need for structural specifications that are able to support reasoning and consistency

checking, in order to maintain the semantic integrity of the system during evolution,

are still required. The introduction of XML-schema, described in section 2.2.2, aimed

to achieve this for XML-based systems in particular. There would therefore appear to

be a tension between having a sound "semantically intact" model, while still being

afforded the means to specify content that does not easily conform to traditional rigid

schema structures. A likely solution would be the distinction of stable parts from

evolvable parts, as was suggested for behavioural specifications. The stable parts

could be specified using sound semantic modelling techniques, such as ORM, while

"open content" could be specified in terms of XML constructs appended to the stable

model. Such a solution may be useful in inventory management systems dealing with

a large variety of product types. The price, quantity on hand, manufacturer, etc., are

qualities applicable to any item. However, it may also be necessary to record

information peculiar to certain products. For instance, the features of a digital camera

84

are entirely different from those of fresh produce! In general, the reasoning and

consistency checking in such a scenario would mostly be limited to the stable parts.

Any evolvable extensions must merely conform to XML's syntactic requirements.

Uniform specification techniques

It is desirable, especially from a transformational development point of view, to have

a specification technique whereby structural, behavioural and control flow concerns

are uniformly modelled. As indicated in section 2.1.2, no one method can adequately

meet all modelling requirements. The object-oriented Unified Modelling Language

(UML) appears to be the most popular approach to capturing both structural and

behavioural concerns, with data flow being modelled more implicitly in terms of

specifications describing system behaviour. The implementation bias towards object­

orientation in particular, is one of the criticisms levelled against UML as a

specification phase technique. Potter et al. [Potter et al, 1996] indicate that an early

deconstruction of the problem domain into objects, causes a hindrance to the process

of considering and capturing system-wide invariants - an issue when reasoning about

the system in a formal specification sense.

However, the central role of UML in the OMG's Model Driven Architecture,

described in section 4.3.4, tends to indicate that any disadvantages can be outweighed

by significant advantages in terms of automated code generation. This approach is

discussed again in section 5.2 as a valuable component of future-oriented solutions for

coping with the evolution problem.

5.1.3 Design

The progression from abstract and mathematically-oriented specifications to design

artefacts is difficult and usually informal. Designer creativity, in deciding on the

system decomposition, is usually required.

Software architectures were introduced in section 2.1.3 as a means for assisting

designers of large enterprise systems. In particular, frameworks are usually provided,

85

indicating the decomposition of the system into components and how functionality is

assigned to those components.

The problem of design erosion was described in section 3.1.3.2. This leads to

difficulties for designers in terms of the traceability, understandability, and inter­

relationships of design decisions. Furthermore, the fact that traditional design methods

encourage the practice of creating a design in advance, causes conflict with the

iterative nature of enhancing and augmenting a system design. Van Gurp and Bosch

[Van Gurp and Bosch, 2002] indicated that successive iterations tend to erode the

design in the sense that the original architectural framework is violated. This has far

reaching consequences on the resultant code. Any introduction of external

dependencies, such as the interaction with a global variable, would for instance

violate the reusability of a component-based design. Although designs realising

practices such as abstraction and modularity prove to be more maintainable and

evolvable, the factors discussed above suggest that further issues contribute towards

addressing evolvability. These include:

• Expressiveness of design-level representations: Designs that are more conceptual

in terms of the underlying application domain, promote an improved

understandability of the complexity of the system. Once again, the virtues of a

formal specification that is transformable to design-level artefacts come to bear. In

particular, the inter-relationships of components and consistency of the system as

a whole can be reasoned about. However, the overheads of formally specifying all

aspects of a large-scale information system are considerable, causing developers

to resort to building designs without specification-level foundations.

• Externalising component interaction: Although component-based design is

generally considered to aid evolution, as was discussed in section 4.2.1, it is

specifically the interactions between design components that are most subject to

evolution. The hard-wiring of these interactions into code contributes to

difficulties when needing to evolve the way in which objects interact. The

approach of externalising interactions (see section 4.2.1) effectively recognises the

need to provide a design, and hence deployable artefact, of a requirement that is

inherently conceptual in nature, i.e. the semantics of coordination between entities

in the application domain. The benefit offered over conventional object-oriented

86

designs is that the evolution process, in terms of object interaction, can now be

explicitly controlled. However, the extent of evolvability is still capped by the

foresight that existed at the time of analysing the underlying application domain,

since it is here that evolvable parts are conceptually separated from stable parts.

• Reasoning about the evolution of software architectures: As discussed in section

4.2.2, software architectures must themselves evolve in order to accommodate

changing requirements and prevent the problem of design erosion. Reuse

Contracts were then introduced as a means of formalising the modifications that

can occur to an architecture. These establish a means to detect conflicts and

preserve consistency with respect to the architecture.

The design phase must be viewed as a bridge between early requirements

specification and the detailed design phase where program and code are readily

producable for the implementation phase. Few large-scale information system

developments employ a transformational development style from detailed

specification through to implementation. From an evolution point of view, this tends

to place the onus on software architectures and design abstractions. These must ensure

that expressibility of conceptual level concerns is possible, constructs exist to separate

static from evolvable parts, and that the design is interrogatable in terms of preserving

architectural integrity.

5.1.4 Implementation and Operation

At the implementation phase, design level abstractions are realised in terms of

program and code destined for a particular execution platform. It is often the case that

flaws and omissions in early requirements stages are only now revealed. This leads to

developers re-iterating through earlier phases to rectify problems - an expensive

process in terms of time and also contributing to the likely erosion of the original

design. The range of problems increases once a system becomes fully operational and

include corrective, adaptive and perfective maintenance as was discussed in section

2.1.5. Furthermore, the recent surge in the internet and other Web-related initiatives

such as e-commerce, also require horizontal integration of systems. Personalisation of

software, in particular, is considered as a key requirement for e-commerce related

87

systems. Moreover, any system evolution to meet these requirements should be as

dynamic as possible, necessitating the trend towards systems that are "self­

organising", in the sense that they adapt to the context in which they are used.

Evolution on established systems is complicated by the existence of persistent stores

of data and program, both accessed concurrently by end-users. This, together with the

issues presented in the above paragraph, have resulted in numerous solutions being

proposed in the literature. Some of these were discussed in Chapter 4, beginning with

solutions to the schema evolution problem introduced in section 3.1.4.1. Approaches

generally involved the propagation of changes to database instances and required

modification of dependent application code, or the creation of emulation-type

mechanisms such as views to provide a "virtual" change. Although these techniques

are relatively advanced in terms of addressing schema evolution issues, they are also

characterised by the following concerns:

• Legacy-system oriented: Schema evolution techniques deal with the problem at

the operational stage and, in general, tackle the symptoms of evolution as opposed

to the cause (e.g. unstable conceptual design). However, they also take cognisance

of the fact that established and operational systems generally have availability and

application compatibility requirements. Here, a redesign and subsequent re­

implementation of database schemas would result in massive disruption.

• Technically-oriented, complex and specialised: Many schema- and database

evolution mechanisms tend to provide solutions that may be effective but carry

significant overhead. An example is Ra and Rudensteiner's [Ra and Rudensteiner,

1997] approach to schema versioning in terms of extended view support. This was

described in section 4.3.1. While attractive in providing a solution to address

multi-versioning concerns, it is complex in nature and requires maintenance of the

dependencies between successive view implementations.

Other approaches address the issue of semantic integrity of the evolution process,

but tend to be limited to particular application domains. The evolution mechanism

for accounting-based systems, described in [Chen et al, 1995] and discussed in

section 4.3.1, is an example.

• Manual intervention required and not conceptually-oriented: Current evolution

systems are limited in their capacity to automatically realise compound-type

88

changes (e.g. merging of object classes), as well as lacking in their ability to

preserve semantic consistency. As a result, many systems require manual

intervention, or provide the user with a list of suggested approaches for evolving a

particular aspect of a schema. Support for maintaining the consistency of

dependent applications has either focused on view or versioning solutions to

maintain compatibility, or is reliant on compiler-oriented warnings to guide

maintainers to affected program parts.

New implementation-level paradigms, such as orthogonally persistent systems

(section 4.3.3) and meta-modelling approaches (section 4.3.4), have provided

significant progress towards dealing with evolution at the implementation and

operational stages.

Orthogonal persistence was noted as:

• Effectively eradicating the impedance mismatch problem.

• Simplifying programming overhead by allowing developers to focus on the

application domain, as opposed to how it may be implemented in terms of

integrating disparate sub-systems (e.g. database systems, operating systems,

communication systems, etc.).

• Automatically promoting propagation of change through meta-data, data and

program structures.

At this time, orthogonally persistent systems are mostly limited to research

environments, with further progress required in order to make them commercially

viable. In particular, the efficiency and reliability of established DBMSs presents a

benchmark for orthogonally persistent contenders. The role of orthogonally persistent

systems, in terms of supporting evolution in the broader context of the entire software

development life-cycle (SDLC), is considered in section 5.2.

Another recent proposal for system implementation concerned the pervasive use of

meta-models, such as the Model-Driven Architecture (MDA) described in section

4.3.4.1, in order to establish a high-level abstraction whereby the following are

achieved:

• Design-centred development and platfonn independence: Development is centred

on the creation of formal design-level models that are compliant to higher-level

89

meta-models. Mappings to implementation-level constructs are provided and

facilitate automatic code-generation should the target platform change. The

original design investment is therefore protected.

• Horizontal integration: The approach is also centred on exchange of meta-data in

order to promote interoperability across different meta-models, be they meta­

models describing database, workflow, or component management concerns. This

is generally seen as a progression towards more semantically consistent

integration, as opposed to the conventional means of only realising

interoperability though standard component interfaces. This is, in essence, similar

to the aim of orthogonal persistence, where developers are freed from the

concerns of interfacing heterogeneous system components. The integration, in the

MDA case however, takes place at a low and detailed design-level abstraction as

opposed to the implementation phase.

As noted in section 4.3.4.1, the MDA vision is still incomplete, requiring the

development of abstract models providing essential services such as persistence,

transactions and security.

Finally, orthogonal persistence and the meta-model vision should be seen as

complementary solutions towards improving implementation technology that supports

evolution. It should, however, be noted that the former encourages a "clean-slate"

approach whereby applications are re-engineered into a orthogonally persistent

environment. The MDA vision, in tum, offers promise for legacy systems in terms of

offering meta-model descriptions on non object-oriented artefacts, such as relational

or network-model data sources. However, this would appear to encourage "wrapper­

based" solutions. These can sometimes detract from the original conceptual

specification of an application in terms of compromised and more restricted

functionality.

The next section explores the notion of the specification serving as the core artefact

for system development and evolution.

90

5.2. A future perspective on supporting evolution over the
Software Development Life-Cycle

From section 5.1, it becomes evident that the earlier development stages of

requirements analysis and specification are vital. The creation of abstract models to

represent the underlying application domain provide a framework that is understood

by customers of the system, as well as those responsible for developing and

maintaining the resulting operational infrastructure. Evolution-related requirements

are best catered for at this level and can suggest designs able to meet stability

requirements (in the sense of conceptual stability discussed in sections 3.1.2 and

4.1.1). This tends to suggest that a detailed and comprehensive specification would,

through a transformational development style, be ideal as the "entry-point" for the

implementation of any changes to the system. A sufficiently formal specification

meeting Balzer's [Balzer, 1986] requirements for a "good" specification (section

2.1.2), would also model the inter-relationships and dependencies between system

components - certainly promising for ensuring the consistent propagation of change

and preservation of semantic integrity following an evolution.

Unfortunately, most commercial system developments face the following factors:

• Pressure to produce deliverables: Procurers of a new system generally require the

rapid production of deliverables in terms of executable system components. This

leads to developers spending less time on specification, and more on producing

low-level design artefacts that are readily transformable to implementation

constructs for a particular platform. These may be prone to instability at later

operational phases. Transformational developments from specification through to

implementation are also regarded as complex, particularly the verification of

transformation steps - tool support may exist, but often requires much user

intervention to ensure that the conceptual constructs in a specification are

correctly mapped to the different heterogeneous components that ultimately

comprise an implementation.

• Heterogeneous specification methods: One specification method can seldom meet

all requirements. In particular, Object-Role Modelling (ORM) may be used for

specifying entities and their relationships, while the functional specification is

based on either a model-driven approach such as Z, or pseudo-code constructs.

91

These factors are generally typical of the disadvantages of any formal methods

development.

However, the emergence of mapping technology between specification formalisms,

orthogonal persistence, and the meta-modelling oriented MDA, collectively improve

the notion of the specification as the core artefact for system development and

evolution.

By being able to convert different specification constructs into one homogeneous

specification, a basis can be established for further refinement into implementation­

level artefacts. Polack [Polack, 1992], for instance, describes a technique (capable of

being automated) for formalising an Entity-Relationship model into a series of Z state

schemas. Kim and Carrington [Kim and Carrington, 2000] also describe a formal

mapping between Z and UML. The progression from a specification to

implementation is significantly simplified in an orthogonally persistent environment.

The primary reason is that the late design-level and early implementation-level

concerns of integrating diverse system components is all but removed.

Current system developments are, however, very reliant on the provision of a software

architecture to guide the developer from specification to implementation. Although

the MDA approach is primarily targeted at making development more model-based to

counter the proliferation of middleware platform changes, the "side-effect" benefit of

generation of code from model structures better supports the implementation of

requirements changes. Consistency and propagation of changes through to system

components on implementation platforms is now better facilitated. Conceptually­

oriented development is also more documentation- and hence maintenance-friendly.

This would significantly improve the poor documentation and specification artefacts

in industrial and commercial environments where high IT staff turnover cannot allow

for the maintenance onus to lie on an individual or group of individuals. In essence,

the MDA approach would also seem to address both the adaptive and perfective

maintenance categories introduced earlier in section 2.1.5. The approach does

however constrain development to conforming to MDA meta-models in order to

achieve the benefits of simplified maintenance.

92

CHAPTER 6 - CONCLUSION

Requirements changes, both in terms of application domain and implementation

platform evolution, necessitate the study of the design and development of

information systems, in addition to the issues involved at later operational and

maintenance phases. In particular, the impact of evolution was considered in terms of

the software development life-cycle, ranging from requirements analysis stages

through to operational stages.

The earlier user-centred and specification-level artefacts emerged as vital components

in improving the current state of affairs. Any significant evolution, or maintenance on

operational systems, demands documentation that is consistent with the

implementation artefacts.

As discussed in section 5.2, orthogonal persistence and MDA-type approaches hold

promise for realising a transformational development style, from system model to

implementation platform. Such transformations do, however, require a very detailed

specification (effectively bordering on design-level constructs) in order to be realised.

Future work regarding orthogonal persistence is largely focused on the PJama project,

described in section 4.3.3.2. Benefits to be realised by such implementations also

include the exploitation of linguistic reflection as a means to facilitate adaptive

behaviour. Similarly, the MDA approach is focused on adaptive objects, i.e. software

capable of automatic discovery of properties of its environment and adaptation to that

environment. Poole [Poole, 2001] indicates that 'our ability to engineer such systems

will come largely as the result of our extensive experiences with the use of meta­

models and ontologies in influencing system behaviour and decision making. We will

eventually learn how to build systems in which a considerable amount of domain

knowledge is pushed up into higher abstraction levels. Systems will understand how

to efficiently extract and act on that information.'

The accommodation of change, in terms of building evolvability into system

specifications, was also considered. Dealing with the problem as proactively as

possible would reduce the maintenance overhead once the system reaches its

operational phase.

93

Section 4.1 discussed the need to measure the stability of conceptual models as a

means for gauging the evolvability characteristics of a particular model, i.e. the ease

with which the information system can be adapted to changing functional

requirements. The metrics presented are most applicable when researching the

conceptual models in their "natural environment", the operational business.

Contributions from Wedemeijer [Wedemeijer 2000] and Verelst [Verelst 1997] are

valuable in addressing the issue that multiple correct conceptual models may exist for

a particular application domain, but differ in their evolvability characteristics.

Stability was considered as a major contributor towards achieving evolvability.

Approaches for (explicitly) specifying evolving requirements were also addressed in

terms of behavioural and structural concerns. As described in section 5 .1, the primary

issue is the distinction of stable parts from evolvable parts - a decision that needs to

be made well in advance of the design phase. Such a separation was also suggested as

a solution to counter the problem of design erosion in software architectures -

described in section 3.1.3.2. The so-called externalisation of component interactions

emerged as a primary goal and was discussed in section 4.2, both in terms of a

specific domain application and for software architectures in general.

The schema evolution problem was then discussed in section 4.3.1 as a means to cope

with change affecting established persistent stores of data and program. The major

concerns include the propagation of change and preservation of the semantic integrity

of the system in terms of its underlying conceptual specification. Technical solutions

dominate the field and often tend to be complex. Schema versioning approaches either

present significant storage overheads or are complex in nature. At present, however,

the solutions do provide a way of coping with compatibility and consistency concerns

- both in terms of dependent application systems and database instances of the

schemas.

As far as future work is concerned, novel approaches deserve consideration. In

particular, Parsons and Wand [Parsons and Wand, 2000] tackle the more generic and

underlying problem of preferred classification. They propose an instance-based

model (as opposed to class-based) as a vehicle for solving the problems resulting from

this. Here, membership of instances to classes is defined purely in terms of the

properties that the instance possesses. In particular, users are no longer limited to

accessing data through a designer's preferred schema, and schema evolution issues

94

are also avoided in the sense that classes can now be changed without reference to the

underlying population. The approach is unconventional with constraint definition,

query capabilities, security restrictions, and general performance aspects being noted

as requiring further consideration regarding any implementation of the model.

However, these should not detract from the potential benefits that can be realised.

Finally, the problem of evolution is one requiring proactive as well as reactive

solutions for any given application domain. Even "best designs" are limited in dealing

with unanticipated evolution and require implementation phase paradigms that can

facilitate an evolution correctly (semantic integrity), efficiently (minimal disruption of

services) and consistently (all affected parts are consistent following the change).

Orthogonal persistence and meta-modelling frameworks, such as the MDA, present

significant progress in this direction.

While presenting different approaches towards dealing with the evolution problem

over the SDLC, it is hoped that this research also indicates that accommodating and

facilitating information system evolution requires more emphasis on the conceptual

and specification artefacts. This prevents the traditionally steep maintenance

overheads that characterise any realisation of requirements change on operational

systems. Moreover, the benefits of presenting simpler and less technical development

platforms for designers and system procurers are considerable.

95

CHAPTER 7 - REFERENCES

[Andrade and
Fiadeiro, 2001]

[Asimolar 1998]

[Atkinson and
Jordan, 2000]

[Atkinson and
Morrison, 1995]

[Atkinson et al,
1996]

[Balko 2000]

[Balzer 1986]

[Banker et al,
1993]

[Bezivin and
Ploquin, 2001]

Andrade Land Fiadeiro J. Coordination Technologies for
Managing lnfonnation Systems Evolution, Proceedings
CAISE'Ol, Dittrich K, Geppert A and Norrie M (Eds), LNCS
2068, Springer-Verlag, 2001, pp. 374-387.

Bernstein P, Brodie M, Ceri S, DeWitt D, et al. The Asimolar
Report on Database Research, ACM SIGMOD Record 27(4),
December 1998.

Atkinson M and Jordan M. A Review of the Rationale and
Architectures of P Jama: a Durable,Flexible, Evolvable and
Scalable Orthogonally Persistent
Programming Platfonn, Sun Microsystems Technical Report,
TR-2000-94, June 2000.

Atkinson M and Morrison R. Orthogonally Persistent Object
Systems, VLDB Journal 4, 3 (1995), pp. 319-401.

Atkinson M, Daynes L, Jordan M, Printezis T and Spence S. An
Orthogonally Persistent Java, ACM SIGMOD Record,
December 1996.

Balko S. Adaptive specifications of technical infonnation
systems, Database Schema Evolution and Meta-modelling,
Balsters H, de Brock B, Conrad S (Eds), LNCS 2065, Springer­
Verlag, 2000, pp. 61-67.

Balzer R and Goldman N. Principles of good software
specification languages, Appearing in Software Specification
Techniques, Gehani N and McGettrick (Eds), Addison-Wesley,
1986, pp. 25-39.

Banker R, Datar S, Kemerer C and Zweig D. Software
Complexity and
Maintenance Costs. Communications of the ACM, Vol. 36, No.
11, 1993, pp. 81-94.

Bezivin J and Ploquin N. Tooling the MDAframework: a new
software maintenance and evolution schema proposal. Position
paper for ECOOSE : OOPS LA 2001 (Workshop on Engineering
Complex Object-Oriented Systems for Evolution), 2001.
Available from
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml,
[Accessed 17-Nov-2002].

96

[Bird et al, 2000]

[Boehm 1981]

[Bowers 1993]

[Brooks et al,
2001]

[Bryand Eisinger,
2001]

[Bukhres et al,
1996]

[Chen 1976]

[Chen et al, 1995]

[Connor et al,
1994]

[Conrad et al,
1998]

Bird L, Goodchild A and Halpin T. Object-Role Modelling and
XML-Schema, Proceedings Conceptual Modelling ER 2000,
Laender A, Liddle S, Storey V (Eds.), LNCS 1920, Springer­
Verlag 2000, pp. 309-322.

Boehm B, Software Engineering Economics, Englewood Cliffs
NJ, Prenice Hall, 1981.

Bowers D, From Data to Database, 2nd edition, Chapman and
Hall, 1993.

Brooks P, Estrella F, Kovacs Z, Le Goff JM, Mathers G and
McClatchey R. Handling System Evolution Through
Information Abstraction. Position paper for ECOOSE :
OOPSLA 2001 (Workshop on Engineering Complex Object­
Oriented Systems for Evolution), Available from
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml,
[Accessed 17-Nov-2002].

Bry F and Eisinger N, Data Modelling with Markup Languages
(DM2L), University of Munich, Germany, Available from
http://www. pms.informatik. uni­
muenchen.de/forschung/datamodeling-markup.html [Accessed
l-Nov-2002].

Bukhres A, Elmagarmid O,Gherfal F, Liu X, Barker K, Schaller
T. The Integration of Database Systems. Appearing in Object­
Oriented Multidatabase Systems. Bukhres A and Elmagarmid 0
(eds) Prentice-Hall, 1996, pp. 37-56

Chen P, The Entity-Relationship Model - Toward a Unified
View of Data, ACM TODS 1, No 1, March 1976.

Chen J, McLeod D and O'Leary D. Domain-Knowledge-Guided
schema evolution for accounting database systems. Expert
Systems with Applications, Vol 9, No 4, 1995, pp. 491-501.

Connor R, Cutts Q, Kirby G and Morrison R. Using persistence
technology to control schema evolution. Proceedings 9th ACM
Symposium on Applied Computing, Phoenix, Arizona, March
1994, pp. 441-446

Conrad S, Ramos J, Saake G and Semadas C. Evolving Logical
Specifications in Information Systems. In Chomicki J and Saake
G (eds), Logics for Databases and Information Systems, Kluwer
Academic Publishers, Boston, 1998, Chapter 7, pp. 199-228.

97

[Costello and
Schneider, 2000]

[Date 1990]

[Dmitriev, 2000]

[Falkenberg et al,
1992]

[Franconi et al,
2000]

[Gabriel et al,
1993]

[Ghose 1999]

[Halpin 1995]

[Hay 1999]

[Hofmann et al,
1996]

[Hopkins 2000]

Costello Rand Schneider J, Challenge of XML Schemas­
Schema Evolution, MITRE Corp., May 29, 2000. Available
from http://www.xfront.org/evolvableschemas.html, [Accessed
24-August-2002].

Date C, An Introduction to Database Systems, Volume 1, 5th
Edition, Addison-Wesley, 1990.

Dmitriev M, Class and Data Evolution Support in the P Jama
Persistent Platform. Technical Report TR-2000-57, Department
of Computing Science, University of Glasgow, Glasgow G 12
SQQ, UK, November 2000.

Falkenberg E, Oei J and Proper H. Evolving Information
Systems: Beyond
Temporal Information Systems. In Tjoa A and Ramos I (Eds).
Proceedings of the Data Base and Expert System Applications
Conference (DEXA 92), Valencia, Spain, September 1992, pp.
282-287.

Franconi E, Grandi F and Mandreoli F. A semantic approach for
schema evolution and versioning in object-oriented databases.
Lecture Notes in Artificial Intelligence 1861, Springer-Verlag,
Berlin 2000, pp. 1048-1062.

Gabriel R, Bobrow D and White J. CLOS in Context- The
Shape of the Design Space. In Object-Oriented Programming­
the CLOS perspective, Chapter 2, MIT Press 1993, pp. 29-61.

Ghose A, Managing Requirements Evolution: Formal support
for functional and non-functional requirements, Proceedings of
the 1999 International Workshop on Principles of Software
Evolution, Fukuoka, Japan, 1999, pp. 118-124.

Halpin, T. Conceptual Schema & Relational Database Design,
Second Edition, Prentice-Hall, 1995

Hay D, A Comparison of Data Modelling Techniques, Essential
Strategies Inc., October 1999. Available from
http://www.essentialstrategies.com, [Accessed 30-Jul y-2002].

Hofmann C, Hom E, Keller W, Renzel K, Schmidt M. The Field
of Software Architecture. Technical Report TUM - 19641,
Technische Universitat Miinchen, 1996

Hopkins J, Component Primer, Communications of the ACM
43(10), 2000, pp 27-30.

98

[Jungclaus et al,
1991]

[Kim and
Carrington ,2000]

[Kirby et al, 1997]

[Lerner 2000]

[Lientz and
Swanson, 1978]

[Lientz and
Swanson, 1980]

[Lientz and
Swanson, 1981]

[Liu 1998]

[Mani et al, 2001]

[Mens et al, 1999]

Jungclaus R, Saake G, Hartmann T and Sernadas C. Object­
oriented specification of information systems: The TROLL
language. Informatik-Bericht 91-04, Technishe U niversitlit
Braumschweig, 1991.

Kim S and Carrington D, A Formal Mapping between UML
Models and Object-Z Specifications, appearing in Formal
Specification and Development in Z and B, First International
Conference of Band Z Users, York, UK, August 29 -
September 2, 2000, Proceedings, LCNS, 1878 Springer 2000

Kirby G, Morrison R, Connor R Zdonik S. Evolving Database
Systems: A Persistent View. University of St. Andrews
Technical Report CS/97/5 (1997)

Lerner B. A model for compound type changes encountered in
schema evolution. ACM Transactions on Database Systems, Vol
25, No 1, March 2000, pp. 83-127

Lientz, B and Swanson E, Characteristics of application
software maintenance, Communications of the ACM, 21, 6
(June 1978), pp 466-481.

Lientz Band Swanson E, Software Maintenance Management,
Reading MA, Addison-Wesley, 1980.

Lientz B and Swanson E. Problems in Application Software
Maintenance.
Communications of the ACM, Vol. 24, No. 11, 1981, pp. 763-
769.

Liu L. EVOLVE: Adaptive Specification Techniques for Object­
oriented Software Evolution. In: the 31st Hawaii International
Conference on Systen Sciences (HICSS-31) -- Modelling
Technologies and Intelligent Systems Track, January 6-9, 1998

Mani M, Lee D and Muntz R. Semantic Data Modelling using
XML Schemas. Conceptual Modelling - ER 2001, Kunii H,
Jajodia S, Solvberg A (Eds.), LNCS 2224, Springer-Verlag
2001, pp 149-163.

Mens K, Mens T, Wouters Band Wuyts R. Managing
unanticipated evolution of software architectures, in
Proceedings Object-Oriented Technology, ECOOP'99, Moreira
A, Demeyer S (Eds), 1999, pp. 75-76. Also available at
http://citeseer.nj.nec.com/mens99managing.html. Accessed [17-
Nov-2002].

99

[OMG-MOF 1997] OMG/MOF Meta Object Facility (MOF) Specification. OMG
Document AD/97-08-14. September 1997.

[OMG-MOF,
2000]

[OMG-Soley,
2000]

[Parsons and
Wand, 2000]

[Polack, 1992]

[Pons and Keller,
1997]

[Poole, 2001]

[Potter et al, 1996]

[Ra and
Rudensteiner,
1997]

[Riebisch and
Philippow, 2001]

OMG, MetaObject Facility (MOF) Specification, Version 1.3,
March 2000. Available at
http://www.omg.org/technology/documents/formal/mof.htm
[Accessed 17-September-2002].

OMG: Soley R and OMG Staff Strategy Group, Model Driven
Architecture, White paper, Draft 3.2, November 2000. Available
at http://www.omg.org. [Accessed 17-September-2002].

Parsons J and Wand Y. Emancipating instances from the
tyranny of classes in information modelling. ACM Transactions
on Database Systems, Vol 25(2), June 2000, pp 228-268

Polack F, Integrating formal notations and system analysis:
using entity relationship diagrams, Software Engineering
Journal, September 1992, pp 363-371.

Pons A and Keller R. Schema evolution in object databases by
catalogs. Proceedings of the 1997 Intl. Database Engineering
and Applications Symposium (IDEAS'97), 1997 IEEE.

Poole J, Model-Driven Architecture: Vision, Standards and
Emerging Technologies, Position paper submitted to ECOOP
2001: Workshop on Metamodeling and Adaptive Object
Models, Hyperion Solutions Corporation, April 2001. Available
at www .cwmforum.org/Model-Driven %20Architecture.pdf,
[Accessed 17-September-2002]

Potter B, Sinclair J and Till D, An Introduction to Formal
Specification and Z, Second Edition, Prentice Hall International
Series in Computer Science, 1996.

Ra Y and Rudensteiner E. A Transparent Schema-Evolution
System based on Object-Oriented View Technology. IEEE
Transactions on Knowledge and Data Engineering, Vol 9. No 4,
July/August 1997.

Riebisch M and Philippow I, Evolution of Product Lines using
Traceability, Position paper for ECOOSE: OOPSLA 2001
(Workshop on Engineering Complex Object-Oriented Systems
for Evolution), 2001. Available from
http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml,
[Accessed 17-November-2002].

100

[Roddick 1995]

[Saake et al, 2000]

[Shaw and Garlan,
1996]

[Simsion and
Shanks, 1993]

[Sjoberg 1993]

[Sommerville
1992]

[Soni 1995]

[Stemple et al,
1992]

[Tanaka et al,
2000]

[Van Gurp and
Bosch, 2001]

Roddick J. A survey of schema-versioning issues for database
systems. Information and Software Technology 1995. 37 (7) pp.
383-393

Saake G, Tilrker C, and Conrad S, Evolving Objects:
Conceptual Description of Adaptive Information Systems,
Database Schema Evolution and Meta-modelling, Balsters H, de
Brock B, Conrad S (eds), LNCS 2065, Springer-Verlag, 2000,
pp. 163-181

Shaw M and Garlan D, Software Architecture: Perspectives on
an Emerging Discipline, Upper Saddle River, N.J., Prentice
Hall, 1996

Simsion G and Shanks G. Choosing Entity Types - a study of 51
data modellers. Technical Report 17/93, Monash University,
Melbourne, Australia, 1993.

Sjoberg D, Managing Change in Information Systems :
Technological Challenges. Available at
http://citeseer.nj.nec.com/118144.html. Accessed [17-
N ovember-2002].

Sommerville I, Software Engineering, 4th edition, Addison­
W esley, 1993

Soni D, Nord R, and Hofmeister C. Software Architecture in
Industrial Applications, Proceedings of the 17th International
Conference on Software Engineering, Seattle, WA. Available at
http://citeseer.nj.nec.com/soni95software.html. [Accessed 17-
November-2002].

Stemple D, Stanton R, Sheard T, Philbrow P, Morrison R, et al.
Type-Safe Linguistic Reflection: A Generator Technology.
ESPIRIT BRA Project 3070 FIDE Technical Report
FIDE/92/94, 1992.

Tanaka K, Ghandeharizadeh Sand Kambayashi Y, Information
Organisation and Databases, appearing in Information
Organisation and Databases - Foundations of Data
Organisation, Ghandeharizadeh Sand Kambayashi Y (eds),
Kluwer Academic Publishers, 2000.

Van Gurp J and Bosch J, Design Erosion: Problems and
Causes, Journal of Systems and Software 61 (2002), pp 105-
119.

101

[Verelst 1997]

[Verelst 1998]

[W3C Malhotra
1999]

[Wedemeijer
1999]

[Wedemeijer
2000]

[Weiderhold 1995]

[Wing 1990]

[Wu and Han,
2002]

[Zaniolo et al,
1997]

Verelst J, Factors in Conceptual Modelling Influencing
Evolvability of Information Systems. In: Proceedings of the
Doctoral Consortium of the 3rd IEEE International Symposium
on Requirements Engineering [1997: Annapolis, Calif.], 1997,
pp.93-100

Verelst J. The influence ofdomain-specific abstraction on
evolvability of software architectures for information systems. :..
In: Object-oriented technology: ECOOP'98 Workshop reader I
Demeyer S, et al.. (Eds), Berlin, Springer, 1998, pp. 56-57

World-Wide Web Consortium (W3C), XML Schema
Requirements, Malhotra A and Maloney M (eds), W3C Note 15
February 1999. Available at
http://www.w3.org!fR/1999/NOTE-xml-schema-req-19990215.
[Accessed 17-September-2002].

Wedemeijer L. Design the flexibility, maintain the stability of
conceptual schemas. Lecture Notes in Computer Science 1626,
1999, pp461-471.

Wedemeijer L, Defining metrics for conceptual schema
evolution, 9th International Workshop on Foundations of Models
and Languages for Data and Objects, Germany, Sept 2000,
Springer-Verlag series LCNS 2065, pp. 220-244.

Weiderhold G, Modelling and System Maintenance. Appearing
in OOER'95: Object-Oriented and Entity Relationship
Modelling; Proceedings, ER-00 conference, Papazoglou, M
(ed.) LNCS, 1021, December 1995, pp 1-20.

Wing JM, A specifier's introduction to formal methods,
Computer, 23(9), 1990, pp. 8-22.

Wu J and Han J, xmlTRAM+: Using XML Technology to
Manage Software Requirements and Architectures, The Eighth
Australian World Wide Web Conference, July 2002, Available
at http://ausweb.scu.edu.au/aw02/papers/refereed/wu/paper.html
[Accessed 1-November-2002].

Zaniolo C, Ceri S, Faloutsos C, Snodgrass R, Subrahmanian
Vand Zicari R. Advanced Database Systems. Morgan
Kaufmann, 1997

102

GLOSSARY OF ABBREVIATIONS AND ACRONYMS

.NET

AI

Pronounced "dot net". A Microsoft operating system platform
primarily designed to facilitate development of interoperable Web
applications. This incorporates applications, in addition to a suite of
tools and services.

Artificial Intelligence: Broadly, the study of how to make computers
perform tasks that are currently better performed by humans. In the
context of this research, reasoning and natural language
understanding are relevant.

ANSI/SPARC American National Standards Institute/Systems Planning and
Requirements Committee. Used to refer to the three-level (internal,
external, conceptual) architecture to model database systems.

AOM

C++

CAD

CAM

CASE

CO RB A

Adaptive Object Model: Implementations employing such
technology provide dynamic system behaviour based on the runtime
interpretation of meta-models.

An object-oriented programming language.

Computer Aided Design: CAD software is used by engineers,
architects, etc., to create precision drawings or technical illustrations
in 2-dimensional or 3-dimensional form. The management of the
software library of design components and the relationships between
design components are relevant to this research in the database
schema sense. Also see CAM.

Computer Aided Manufacturing: Computer-aided control of the
manufacturing process for a product. CAD/CAM systems allow
engineers to design a product and control its manufacturing process.
The required information system management facilities for such
environments are relevant to this research.

Computer Aided Software Engineering: Automated support for
software engineering.

Common Object Request Broker Architecture: An architecture that
enables program objects to communicate with one another regardless
of what programming language they were written in or what
operating system they're running on. CORBA is an OMG standard.

103

CWM

DAG

DBMS

DDL

DFD

DTD

EBNF

e-commerce

EJB

ER

EVOLVE

Common Warehouse Meta-model: A MOF-compliant meta-model
for representing both the business and technical metadata that's most
often found in data warehousing and business analysis domains.
Provides support for the ability to model legacy and non-legacy data
resources, including relational databases, record-oriented databases,
and XML- and object-based data resources.

Directed Acyclic Graph: In this research, used to refer to an object­
oriented schema where the relationships between classes must be
such that they resemble a directed graph without cycles.

Database Management System: A collection of programs that enable
the storage, modification, and extraction of information from a
database.

Data Definition Language: Language supporting the definition or
declaration of database objects.

Data Flow Diagram: These graphically illustrate how input data is
transformed to output results through a sequence of functional
transformations.

Document Type Definition: A DTD states what tags and attributes
are used to describe content in an SGML document, where each tag
is allowed, and which tags can appear within other tags.

Extended Backus-Naur Form: BNF (Backus-Naur Form) is used to
formally define the grammar of a language. EBNF is a variation on
the basic BNF meta-syntax and includes additional constructs.

Electronic Commerce: Conducting business on-line (typically over
the internet).

Enterprise Java Beans: A Java application programming interface
that defines a component architecture for multi-tier client-server
systems. The EJB component model simplifies the development of
middleware applications by providing automatic support for services
such as transactions, security, database connectivity, and more.

Entity-Relationship. In the sense of Chen's Entity-Relationship
approach described in section 2.2.1.

A object-oriented notation described in [Liu, 1998] for specifying
structural and behavioural requirements.

104

HTML

Java

Java RMI

JDBC

JVM

MDA

MOF

NIAM

OMG

OMT

ORM

Hypertext Markup Language: The authoring language used to create
documents on the World Wide Web. HTML is similar to SGML,
although it is not a strict subset.
HTML defines the structure and layout of a Web document by using
a variety of tags and attributes.

An object-oriented programming language similar to C++. Designed
to be executable on different platforms. Developed by Sun
Microsystems.

Java Remote Method Invocation: RMI is the Java version of what is
generally known as a remote procedure call (RPC), but with the
ability to pass one or more objects along with the request.

Java Database Connectivity: A programming interface that enables
Java programs to interact with SQL-compliant databases.

Java Virtual Machine: An abstract computing machine, or virtual
machine. JVM is a platform-independent execution environment that
converts compiled Java code into machine language for execution.

Model-Driven Architecture: An OMG initiative for system
specification and interoperability based on the use of formal models.

Meta Object Facility: An OMG standard defining a common,
abstract language for the specification of meta-models, such as
CWM. MOF is an example of a meta-meta model (or model of the
meta-model).

Nijssen's Information Analysis Methodology: A predecessor of the
ORM approach to conceptual modelling. Was later generalised to
"Natural language Information Analysis Method". Also see ORM.

Object Management Group: A consortium providing a common
framework for developing applications using object-oriented
programming techniques.

Object Modelling Technique: Uses DFDs, hybrid E-R diagrams, and
statecharts to model software requirements using object-oriented
concepts. The OMT notations are only partially formal.

Object Role Modelling: A conceptual modelling technique
developed by Halpin. It describes objects and their relationships, as
well as domain constraints in a formal (graphical) notation. It
involves a step-by-step design procedure based on verbalisation in
natural language. Further detail can be found in [Halpin 1995].

105

PAS

PIM

PJama

PSM

SDLC

SGML

SOAP

SQL

TESS

TROLL

Persistent Application System: Systems where the application as
such outlives its individual components and even its implementation
technology.

Platform-Independent Model: The basis of an MDA-based
application. It is defined in terms of UML, allowing an application
model to be constructed, viewed, developed and manipulated in a
standard way at analysis and design time.

A research project in progess at the University of Glasgow, Scotland
in conjunction with Sun Microsystems. It is aimed as a vehicle for
implementing and testing an orthogonal persistent version of the
Java programming language. Orthogonal persistence is described in
section 4.3.3.1.

Platform-Specific Model: The platform specific interpretation of a
PIM. It contains the same information as a fully-coded application,
but is expressed in UML instead if code and associated files.

Software Development Life Cycle: The process of developing
information systems through requirements analysis, specification,
design, implementation and maintenance.

Standard Generalized Markup Language. A system for organising
and tagging elements of a document. SGML was developed and
standardised by the International Organization for Standards (ISO) in
1986.

Simple Object Access Protocol. This provides a way for applications
to communicate with each other over the internet independent of
platform. It is an XML-based protocol that is designed to exchange
structured and typed information on the Web. It consists of three
parts: an envelope that defines a framework for describing what is in
a message and how to process it, a set of encoding rules for
expressing instances of application-defined data types, and a
convention for representing remote procedure calls and responses.

Structured Query Language: Standardised declarative language for
formulating relational operations (i.e. operations that define and
manipulate data in relational form).

Type Evolution Software System: An acronym for Lerner's [Lerner
2000] software tool for dealing with compound type changes.

A language for the object-oriented specification of information
systems. It is designed to describe the Universe of Discourse (UoD)
as a system of concurrently existing and interacting objects. See
[Jungclaus, et al, 1991].

106

TSE

UIMS

UML

UoD

W3C

XMI

XML

z

Transparent Schema-Evolution System: An acronym for Ra and
Rudensteiner's [Ra and Rudensteiner, 1997] tool for managing
schema versioning.

User Interface Management System: Allows a programmer to
"connect" the behaviour at the user interface with the underlying
functionality of a system.

Unified Modelling Language: An OMG notation used for
representing the structure of data in object-oriented systems. It also
adds the ability to describe the behaviour of each object class/entity.

Universe of Discourse: Used to refer to the real world domain
underlying an application.

World Wide Web Consortium: An international consortium of
companies involved with the Internet and the Web. The
organisation's purpose is to develop open standards so that the Web
evolves in a single direction rather than being splintered among
competing factions.

XML Metadata Interchange: An OMG standard that maps the MOF
to XML. XMI effectively defines how XML tags are used to
represent serialised MOP-compliant meta-models in XML.

Extensible Markup Language. A specification developed by the
W3C. XML is a subset of SGML, designed especially for Web
documents. Designers are able to create their own customised tags (a
command inserted into a document, specifying the format of a
document or part thereof) enabling the definition, transmission,
validation, and interpretation of data between applications and
between organisations.

A model-based formal software specification language. It uses
mathematical concepts and notation, including set theory, to build
models of systems.

107

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:
	Button9:

