
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2016

Campus-scale Mobile Crowd-tasking:
Deployment and Behavioral Insights
Thivya KANDAPPU
Singapore Management University, thivyak@smu.edu.sg

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Shih-Fen CHENG
Singapore Management University, sfcheng@smu.edu.sg

Nikita JAIMAN
Singapore Management University, nikitaj@smu.edu.sg

Randy TANDRIANSIYAH
Singapore Management University, rtdaratan@smu.edu.sg

See next page for additional authors

DOI: https://doi.org/10.1145/2818048.2819995

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information

Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KANDAPPU, Thivya; MISRA, Archan; CHENG, Shih-Fen; JAIMAN, Nikita; TANDRIANSIYAH, Randy; CHEN, Cen; LAU,
Hoong Chuin; CHANDER, Deepthi; and DASGUPTA, Koustuv. Campus-scale Mobile Crowd-tasking: Deployment and Behavioral
Insights. (2016). CSCW '16: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work and Social Computing:
San Francisco, February 27 - March 2. 800-812. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3181

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2818048.2819995
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Author
Thivya KANDAPPU, Archan MISRA, Shih-Fen CHENG, Nikita JAIMAN, Randy TANDRIANSIYAH, Cen
CHEN, Hoong Chuin LAU, Deepthi CHANDER, and Koustuv DASGUPTA

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3181

https://ink.library.smu.edu.sg/sis_research/3181?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3181&utm_medium=PDF&utm_campaign=PDFCoverPages


Campus-Scale Mobile Crowd-Tasking:
Deployment & Behavioral Insights

Thivya Kandappu†, Archan Misra†, Shih-Fen Cheng†, Nikita Jaiman†, Randy Tandriansiyah†,
Cen Chen†, Hoong Chuin Lau†, Deepthi Chander∗, Koustuv Dasgupta∗

† School of Information Systems, Singapore Management University
∗ Xerox Research Centre, India

{thivyak@, archanm@, sfcheng@, nikitaj@, rtdaratan@, cenchen.2012@phdis., hclau@}smu.edu.sg,
{deepthi.chander, koustuv.dasgupta}@xerox.com

ABSTRACT
Mobile crowd-tasking markets are growing at an unprece-
dented rate with increasing number of smartphone users.
Such platforms differ from their online counterparts in that
they demand physical mobility and can benefit from smart-
phone processors and sensors for verification purposes. De-
spite the importance of such mobile crowd-tasking markets,
little is known about the labor supply dynamics and mobility
patterns of the users.

In this paper we design, develop and experiment with a real-
wporld mobile crowd-tasking platform, called TA$Ker. Our
contributions are two-fold: (a) We develop TA$Ker, a sys-
tem that allows us to empirically study the worker respons-
es to push vs. pull strategies for task recommendation and
selection. (b) We evaluate our system via experimentation
with 80 real users on our campus, over a 4 week period with
a corpus of over 1000 tasks. We then provide an in-depth
analysis of labor supply, worker behavior & task selection
preferences (including the phenomenon of super agents who
complete large portions of the tasks) and the efficacy of push-
based approaches that recommend tasks based on predicted
movement patterns of individual workers.

INTRODUCTION
Mobile crowd-tasking, where a group of individuals uti-
lize their smartphones to perform a variety of location-
sensitive tasks, has become an increasingly popular comput-
ing paradigm. In particular, early evidence in favor of such
crowd-tasking/sourcing1 suggests that a variety of real-world,
time-sensitive urban tasks can be performed more effective-
ly, by utilizing a time-varying pool of “citizen volunteers”,
who opportunistically perform tasks that best match their own
commuting and lifestyle patterns. Examples of such crowd-
sourced tasks include retail sensing (e.g., reporting on the

1In this paper, we use the terms “crowd-sourcing” and “crowd-
tasking” interchangeably.
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queuing delays at food courts and movie theaters), compli-
ance and auditing (e.g., verifying if a product category is dis-
played in the right shelf in a convenience store) and logistics
(e.g., picking up and dropping off packages within a business
district).

Despite the compelling benefits of such a participatory and
distributed model, it is difficult to guarantee a predictable
level and quality of task execution, given the underlying un-
certainties associated with crowd-worker participation. Re-
search on mobile crowd-tasking thus addresses multiple as-
pects of this complex problem, including task selection
(which tasks are best suited for which workers?), task speci-
fication (what types of location-specific tasks are users will-
ing to perform?), incentive design (what pricing approaches
effectively match available tasks to willing workers?) and re-
dundancy planning (how does one quantify and mitigate the
risks of workers failing to perform their agreed-upon tasks?)
However, the overwhelming majority of such research is p-
resently theoretical (typically evaluated by synthetic agent-
based models), and fails to capture the real-world behavioral
traits of an opportunistic pool of workers.

To gain more empirical understanding of this collaborative
task execution paradigm, we have built and deployed a mo-
bile crowd-tasking platform, called TA$Ker, on a large urban
campus. TA$Ker provides voluntary student participants the
opportunity to earn real monetary rewards by performing var-
ious useful campus-oriented tasks, such as “reporting on the
cleanliness of restrooms”, “verifying the availability of spe-
cific drinks in a vending machine” and “validating the crowd-
edness of study areas”. While admittedly narrower than a
city-wide deployment, the choice of the campus-scale setting
is deliberate: it allows (a) longitudinal studies over a worker
population that is persistent, and (b) fine-grained observations
on user movement to be captured (via a Wi-Fi based location
system) and incorporated into task selection strategies. While
TA$Ker’s back-end infrastructure is flexible enough to allow
longer-term studies on different techniques for task selection,
incentive design and redundancy planning, this paper focuses
on the use of TA$Ker to experimentally study two different
models of task selection:

• Pull-based: In this conventional decentralized model of
crowd-sourcing (e.g., FieldAgent, GigWalk), individual
users choose from the full set of available tasks (often s-
electing tasks that are close to the user’s current location).



• Push-based: In this more modern, centrally-orchestrated
model [2], the crowd-tasking engine recommends tasks
that are based on an individual user’s predicted movement
trajectory (preferring tasks that minimize an individual’s
detour overhead). An individual then selects from this
more-limited recommended set.

Given such an empirical crowd-tasking platform, there are
several questions that we seek to empirically investigate:

• Are there any tangible overall benefits from the push-based
(i.e., proactive recommendation) model, compared to the
conventional pull-based approach, especially given the er-
rors/uncertainties in location and movement estimation that
are present in the real world? In particular, we hypoth-
esize that the proposed model of recommending tasks so
as to minimize expected detours may provide either higher
rates of task acceptance/completion or lower travel over-
heads for the task-workers.

• Given the underlying variability in individual-level be-
haviors, how predictable is the overall task accep-
tance/completion pattern (across days, at different loca-
tions)? And how does this performance metric depend on
other factors, such as the type of task, the demographic at-
tributes of task-workers, just to name a few?

• Are there observable behavioral differences between the
push-based vs. the pull-based models, in the way task-
workers accept and perform tasks? And, can such differ-
ences lead to better models for quantifying the risk of task
dereliction; i.e., the likelihood that users will not complete
assigned tasks within the stipulated time frame? In particu-
lar, we hypothesize that push-based recommendations may
allow workers to accept tasks with higher lead time (espe-
cially if they anticipate that their itinerary will take them
to the task location at a later time) vs. pull-based models
where workers are likely to be more myopic and oppor-
tunistic (selecting tasks that are near their current location
and thus they can complete “right away”).

Key Contributions: This paper reports on both the design
and empirical experiences with the deployment of the TA$Ker
App, to a pool of approximately 80 undergraduate students
over a period of around 4 weeks. We make the following
major contributions:

• Feasibility of Campus-based Mobile Crowd-tasking: We
show that our designed and deployed TA$Ker App actually
works: 80 users used it, over the initial launch period of
4 weeks, to perform a total of 800 tasks, and earn real re-
wards of $800. We shall show how appropriately designed
route-prediction and task-recommendation engines allow
us to perform reasonably accurate detour-minimizing rec-
ommendations, even under (a) location errors of ±6− 8
meters that are typical of real-world location technologies,
and (b) real-world uncertainty in the on-campus movement
of the users.

• Superiority of Trajectory-aware Proactive Recommenda-
tions: We empirically demonstrate that the performance

of urban crowd-tasking is significantly better (via statis-
tical measures) when tasks are proactively recommended
vs. when individuals pull tasks without any central coordi-
nation. In particular, we show that the push-based model
achieves better task completion rates (56% vs. 44%), and
also results in a lower average detour overhead (3.8 mins
vs. 5.4 mins).

• Certain tasks are preferred over others: We discover that
the ease of executing tasks (using the smartphone) plays an
importance role in the overall acceptance and completion
rate of tasks–e.g., tasks that involve simple multiple-choice
based questions achieve 40 times higher completion rates,
compared to tasks that require the use of the camera. Note
that the differences in task execution time (about 60 secs)
are much smaller than the travel detour overheads (approx-
imately 5 minutes). However, users prefer to perform tasks
whose actual execution is simpler, even if the task itself
might require them to take a disproportionately longer de-
tour.

• Planned vs. Impulsive Task Performance: We observe a
clear difference in the task acceptance and execution dy-
namics between push-based vs. pull-based workers. In par-
ticular, push-based workers often accept tasks in advance,
perhaps anticipating that they will eventually be at the rele-
vant task location. In contrast, pull-based workers exhibit a
significantly more opportunistic execution pattern: on av-
erage, they accept a task only 3 minutes before its actual
execution and when they are only 40 seconds away (i.e.,
when they are located in a section that is adjacent to the
task’s location) from the task location.

• Behavioral Differences between Regular and “Super-
Agents”: Similar to results reported by Musthag and Gane-
san [11], we observe the existence of super agents, a s-
mall set of workers who perform a significant majority of
tasks. We empirically show that the higher rewards of su-
per agents come because they are willing to undertake sig-
nificantly longer total detours (approx. 10 times higher)
compared to regular workers. Moreover, we additional-
ly demonstrate that push-based super agents are more effi-
cient (earn 25% more per unit detour overhead) than pull-
based super agents.

We like to emphasize our twin goals for this paper: (a) to
gain an empirical understanding of the technological feasibil-
ity of such campus-level crowd-tasking, and (b) to discover
key behavioral patterns related to mobile crowd-tasking, and
thus help shape our community’s research agenda around this
collaborative computing model.

RELATED WORK
Mobile crowd-sourcing is a relatively recent phenomenon
that allows workers to contribute by physically moving to
specified locations and performing the relevant tasks. There
are already a number of well-established commercial opera-
tors, such as FieldAgent 2, GigWalk 3, and NeighborFavor 4.
2http://www.fieldagent.net/
3http://www.gigwalk.com/
4http://www.favordelivery.com/



In most of these commercial operations, workers pull tasks
by browsing through task listings sorted by proximity to their
current locations.

Task Assignment: Some researchers have proposed to im-
prove current practices by making the process more interac-
tive; for example, Kazemi et al. [6] propose an iterative as-
signment framework where central operators query workers
near a task one by one in order to determine worker’s avail-
ability. All pull-based approaches suffer from what Musthag
and Ganesan [11] describe as the super-agent phenomenon;
i.e., a small percentage (less than 10%) of workers domi-
nating the task selection, and thereby leading to progressive
dropout by the rest of the worker population.

Follow-up studies by Kokkalis et al. [9] and Talamadupu-
la et al. [12] showed that one potential solution to counter
such undesirable outcomes is to provide workers with rec-
ommended action plans. A recently proposed framework,
called TRACCS (including both the deterministic version [2]
and the more recent stochastic variant [3]), builds on top of
these insights, and utilizes knowledge about a worker’s usual
movement patterns to produce task recommendations. Broad-
ly speaking, these approaches seek to improve the decen-
tralized or first-come-first-served models of task assignmen-
t, a topic that Kittur et al. [8] have identified as critical to
the sustainable operation of future crowd-tasking platforms.
However, such academic research is quite disconnected from
the pull-based approaches that current mobile crowd-tasking
platforms employ.

Task Acceptance & Completion Behavior: Limited stud-
ies have explored the relationship between task attributes and
worker behavior, especially for the crowd-sourced execution
of location-dependent tasks. Wang [13] studied the task com-
pletion times of online tasks (posted on Amazon Mechanical
Turk), and established a power-law relationship between task
completion times and task-related features, such as the type
of the task, the task price and the day the task was posted.
Alt et al. [1] used an independently developed mobile crowd-
sourcing platform to discover a variety of worker preferences,
including preference for performing tasks before and after
business hours or involving relatively simple chores (e.g., tak-
ing pictures). More recently, Thebault-Spieker [5] conducted
studies on the relationship between task pricing and location,
at city-scale, and showed that workers preferred to perform
tasks with lower detours and that were outside economically-
disadvantaged areas.

In contrast to this body of academic work on task recommen-
dation and experimental studies on city-scale worker behav-
ior, our focus is to empirically investigate the human dynam-
ics of mobile crowd-tasking in an urban campus-like setting,
and to uncover key behavioral differences arising from the
use of push vs. pull models for task recommendation and
selection.

SYSTEM DESIGN
Our long-term goal is to make our TA$Ker App an experi-
mental platform to empirically investigate a variety of open
issues related to mobile crowd-tasking, with emphasis on (A)

Internet 

 
 
 

Indoor Location Tracking 

TA$Ker App 
(for Worker) 

Worker 
Interaction 
Manager 

Worker Profile 
Manager 

Task 
Recommender Task 

Management 
Portal 

Route Predictor 

Historical Movement Traces 

TA$Ker Platform 

Worker’s predicted routes 

Results 
Analyzer 

Figure 1. Overall architecture of the TA$Ker framework.

better task recommendation strategies, and (B) better design
of incentives to facilitate higher task execution rates. While
the overall TA$Ker architecture is flexible enough to permit
experimentation on both dimensions, in this paper, we focus
principally on goal (A), i.e., on studying alternative task rec-
ommendation/ selection strategies (specifically push vs. pull
models) and the corresponding behavior of crowd-workers.

At the outset we recognize that TA$Ker’s campus-based
crowd-tasking model (deployed over 5-6 university buildings
and a maximum population of 2000-3000 students) is signif-
icantly smaller, both in terms of spatial scale and number of
participants, than a true city-scale mobile crowd-tasking ser-
vice. However, we believe that TA$Ker provides an invalu-
able platform for experimental studies, as our campus envi-
ronment and student participants allow for a far higher level
of rigorous and longitudinal experimentation than would be
otherwise possible.

Fig. 1 shows the overall architecture of the proposed frame-
work, and illustrates the various individual components and
their interactions. To support the push-based recommenda-
tion models (such as the ones proposed in [2] and [3]), the
server infrastructure needs to (a) perform longitudinal moni-
toring of an individual’s location traces, and then predict the
individual’s likely movement trajectories, and (b) implement
a centralized model for recommending tasks to each individ-
ual, based on these predicted movement trajectories. The key
functional components of the TA$Ker infrastructure include:

• Task Management Portal: This back-end server component
allows system administrators or task owners to specify var-
ious attributes of tasks, such as the time window or com-
pletion deadline by when a task must be performed), the
associated rewards, the task’s location and the redundan-
cy factor (the number of independent workers per task re-
quired to achieve the required levels of “truth discovery”).

• Route Predictor: This utilizes historical traces of individ-
ual user movement to develop a predictive trajectory pro-
file. Note that this component is needed only for the proac-



tive push-based model of task recommendation. To provide
such predictions, this component assumes the existence of
an underlying Location Tracking Infrastructure (outlined
separately in Fig. 1). More specifically, TA$Ker takes ad-
vantage of a campus-wide, server-side Wi-Fi based indoor
location tracking system (similar to approaches described
in [10]) that has been operationally deployed for the past 18
months, which provides continuous location tracking of all
Wi-Fi connected mobile devices (with a median location
error of ±6−7 meters and a refresh rate of approximately
2 minutes).

• Task Recommender: This component is responsible for
taking as inputs both (a) the list of location-dependent
tasks, and (b) the predicted movement profiles of workers,
and then determining the set of tasks recommended to each
individual worker. Each crowd-worker may, of course,
choose to accept (or not accept) one or more of these rec-
ommended tasks. For the pull-based model of operation,
the Recommender’s job is to simply list the entire set of
available tasks (irrespective of the task’s on-campus loca-
tion or its time-window constraints). For the push-based
model, however, the Recommender must implement an al-
gorithm that provides each worker a smaller set of recom-
mended tasks, that are best suited to each individual’s pre-
dicted movement pattern. This component is implemented
modularly, with different recommendation algorithms im-
plemented as add-on libraries.

• Worker Interaction Manager: This server component is re-
sponsible for handling interactions of individual worker-
s with back-end components via the TA$Ker mobile Ap-
p. Such interactions include providing the App with a list
of recommended tasks, capturing the results of the execut-
ed tasks (i.e., the values or content reported by the crowd-
worker) and capturing the details of the individual crowd-
worker’s interaction with the mobile App (e.g., the time
taken to view tasks before selecting them).

• Results Analyzer: This server component is used to an-
alyze the results of various experimental strategies, and
thus deduce insights into the effectiveness of various task
recommendation/incentivization strategies and their effect-
s on individual/aggregated crowd-worker/s behavior. This
component applies appropriate statistical analysis over the
datasets captured by various other server-side components.

• The TA$Ker App: Finally, this is a client-facing
mobile App that crowd-workers use to view avail-
able/recommended tasks, select tasks to perform, execute
those tasks (e.g., enter free-form text or upload pictures),
and also view various outcomes (such as the amount of re-
wards earned). This App interacts with the back-end Work-
er Interaction Manager component.

Our experimental investigation of different recommendation
and reward pricing strategies requires us to iteratively modi-
fy the policies/algorithms in the Task Management and Task
Recommender components. For example, to investigate a d-
ifferent recommendation strategy for a subset of workers, we
simply need to specify the use of a different add-on library

for that pool of workers. While this overall architecture is
conceptually similar to other crowd-tasking frameworks, we
would like to emphasize that: (a) By explicitly incorporat-
ing real-world movement profiles and permitting easy selec-
tion of different recommendation algorithms, our architecture
is among the first that is geared to experimentally study the
impact of different push-based recommendation strategies;
and (b) Developing a real-world platform that supports use-
ful push-based recommendation is not a trivial goal, as the
components must be designed to handle the real-world lo-
cation errors and the “seemingly random” movement behav-
iors of individuals in campus environments. In fact, in the
next section, we focus especially on the Route Predictor and
Task Recommender components and discuss how they are de-
signed to remain useful even under real-world noise, location
errors, and uncertainties of movement behavior.

ROUTE PREDICTION ENGINE
In this section we develop a route prediction algorithm that
utilizes historical mobility traces of users to generate routes
that a user will choose within a time window. We then explain
how we gathered indoor mobility traces, extracted reference
locations and found regular routes.

The Mobility Traces Data
The mobility traces data consists of a series of tuples of the
form < participantID, locationID, timestamp >, where the
participantID is an anonymized ID representing a hash of the
Wi-Fi MAC identifier of a Wi-Fi connected device and loca-
tionID refers to a location coordinate (successive coordinates
are separated by a distance of 3 meters) in one of five academ-
ic buildings on our campus and a publicly accessible under-
ground concourse connecting these buildings. The location
data is obtained via a server-side Wi-Fi fingerprinting tech-
nique (employing the same location tracking approach as [7]),
and provides a median accuracy of 6-8 meters; due to limi-
tations on the commercial Wi-Fi infrastructure, the location
updates occur sporadically, with a mean interval of approxi-
mately 3 minutes.

We consider the location data from a full academic term from
January to April in 2015. This movement data was captured
for all Wi-Fi connected users on campus and consists of an
average of 9,000 distinct devices observed daily. From this
raw data we extracted reference locations and routes, a pro-
cess we describe next.

From Traces to Routes
Our route prediction algorithm depends on knowledge of a
user’s past trips, but the data gives no explicit indication of
when a trip begins or ends. This section explains how we go
from raw data to a plausible set of routes per user.

For the purposes of this paper, we define a route to be a se-
quence of locations on campus in the order of visits. We cre-
ate a three-stage process to transform the raw data to routes:
first, we extract reference locations in which user stays more
in a time segment (30 minutes in our case); second, we for-
mulate the movement of a user for a given time window (e.g.,
9am – 12pm) as a transition graph; and third we find the best



route represented as a sequence of reference locations that
maximize the likelihood that this route would generate all ob-
servations we have seen from the data of a user. The entire
route is then generated by finding the shortest path between
the two identified reference locations of adjacent time seg-
ments. These steps are described in detail below.

Reference Location Extraction: We first sort each user’s
raw mobility data chronologically and calculate the amount
of time spent in each location within every non-overlapping
30-minute time segment throughout the day. We then rank
locations based on the amount of time spent and this process
is repeated over all 30-minute time segments.

Transition Graph: Once reference locations are extracted,
a transition graph is constructed to find out all the possible
routes a user can take within a time window, and attach each
route with a corresponding probability. In the graph, each
node Rt

i represents the reference location i in time segment t,
and a directed edge et,t+1

i, j can only exist from time t to (t+1),
indicating a user’s transition from location i to j between two
consecutive time segments. Note that it’s possible that i = j,
which indicates that a user stays at the same location. Each
edge comes with a probability p, which is estimated from the
raw data, and is essentially the normalized dwell time over
the entire set of this user’s destinations in time (t +1).

Route Prediction: Using the transition graph, the likelihood
of each route can be simply calculated by multiplying al-
l probabilities of edges along this route. To focus on only the
most probable routes, only top k routes are chosen per user.
Note that these identified routes contain only “reference lo-
cations”, which might be some distance apart. The real walk
paths are generated by applying standard shortest path algo-
rithm for all connected reference location pairs. The value of
k in our experiments is set to 5, as the top 5 routes can explain
more than 50% of all transitions for 75% of users.

Figure 2. A sample transition graph.

For example, consider a user u. To predict his route on a typi-
cal Monday between 9am and 11am, the algorithm considers
the past mobility traces of user u on Mondays and finds refer-
ence locations in all the 30-minute time segments (four time
segments for our example). The extracted reference location
Rt

i is denoted as reference location i in the tth time segmen-
t and the weight of Rt

i is defined as normalized stay time of
location i over the total stay time in time segment t.

The transition graph is then generated (see Fig. 2), with the
transition probability from node Rt

i to Rt+1
j defined as the

weight of node Rt+1
j . Global route likelihood is then calcu-

lated as the product of weights of all edges traversed in the
route. The best route (maximizing the global route likeli-
hood) is graphed using red line in Fig. 2.

Prediction Accuracy
The accuracy of our prediction is evaluated based on the mo-
bility traces of 80 students who installed our App (described
later in §Prototype Implementation). We split our data into
two parts for training and testing. The training data comes
from the month of February, and the testing data comes from
the first week of March. For each weekday (Monday to Fri-
day), a transition graph is constructed for each user based on
four weekdays in February. The generated predictions for
each weekday in the first week of March is then compared
against the ground truth. We observe that our prediction al-
gorithm achieves 68% precision and 75% recall.

RECOMMENDATION ENGINE
In this section, we present the algorithm that is implemented
in the recommendation engine. As reviewed earlier, most ex-
isting commercial mobile crowd-tasking platforms typically
employ a “pull-based” model, where workers have to manu-
ally browse through and select from a list of available tasks.
As demonstrated by recent research, such as the model pro-
posed by Chen et al. [3], the efficiency and effectiveness of a
mobile crowd-tasking platform can be significantly improved
if task recommendations are “pushed” to workers based on
predictions of worker’s trajectory.

The input to the algorithm is a tuple comprising three ele-
ments: (1) a graph representing the geographical network; (2)
worker information (each worker’s desired detour time and
the probability distribution of predicted routine routes); and
(3) task information (task location, estimated task execution
time, and reward). The output is a list of task recommenda-
tions for each worker.

More specifically, we follow the formulation from [3], and
formulate the above task recommendation problem as a s-
tochastic integer linear programming (ILP) model, whose ob-
jective is to maximize the expected rewards collected by all
workers under route uncertainties. This ILP formulation can
be seen as a specialized routing problem which recommends
tasks to workers subject to a set of worker-specific time bud-
get constraints, route connectivity constraints, and predicted
route requirements.

The ILP model can be solved by using standard solvers such
as CPLEX up to limited problem size. To scale up the solu-
tion approach to real world problem, we apply a well-known
Lagrangian Relaxation (LR) heuristics [4] on a set of glob-
al constraints connecting the task recommendation and task
completion decision variables (adopted from [3]). Having
observed a clear worker-route level separable structure in the
formulation, we further decompose the relaxed problem into
two classes of much smaller subproblem: a recommendation



(a) Consent form. (b) All tasks. (c) Detailed task description.

Figure 3. Screenshots of Android App showing: (a) the consent form to be accepted, (b) list of available tasks, and (c) perform screen.

subproblem and worker-route level routing subproblem for
each worker’s predicted routine route.

The performance of this LR-based method depends on how
subproblems are solved. Following [3], we solve each sub-
problem by a greedy heuristic to further improve scalabili-
ty. Each worker starts with one of its routine routes, and
the heuristic repeatedly inserts a task into the routine route
at a position that maximizes the gain among all feasible in-
sertions. The LR-based method progresses iteratively using a
standard subgradient descent algorithm. This method is de-
noted as LR-Greedy. To further speed up this method, some
performance-boosting preprocessing steps are implemented:
a) for each subproblem, infeasible tasks are excluded (based
on the amount of detour time), and b) all-pair shortest paths
are pre-computed.

By default, a task is recommended to at most one worker.
To enhance the robustness of the recommendation scheme (in
case a worker fails to carry out some committed tasks, or the
quality of the work is low), we might want to recommend
a task to more than one worker. This requires only minor
modification to the model, and is controlled by a parameter
η, which means that we want to ensure that a task is recom-
mended to at least η agents. This newly added constraint will
be all-or-nothing, i.e., we will either recommend η agents to
a task, or not at all if this is not possible. The objective is
also slightly modified to maximize the expected reward col-
lected by all the workers, but now normalized to η (since each
completed task will be executed η times).

To make the recommendation algorithm work on our testbed
campus, we divide the whole campus into 165 smaller sec-
tions/locations and physically map all locations into a graph.
Each node in the graph represents a unique location and each

weighted edge represents the travel time between two directly
connected nodes (measured in minutes).

In this trial, we assume that execution time for each task is
5 minutes, and each worker has a detour time budget of 10
minutes over a three-hour planning horizon.

PROTOTYPE IMPLEMENTATION
We now describe the prototype we built to evaluate our sys-
tem with real users. We then discuss interesting insights ob-
tained from a four-week trial involving 80 campus students
(whose historical location traces are available to us).

System Components
Our TA$Ker prototype consists of two parts, conforming to
the architecture presented earlier in Fig. 1 – a front-end An-
droid application for users to perform tasks, and a back-end
database/server that stores user data and communicates with
the App using HTTP messages. Screenshots for the Android
App (originally built on Android 3.0 and above) are shown
in Fig. 3. The opening screen allows the user to read and ac-
cept the consent form (mandatory to proceed with the App)
(Fig. 3(a)) followed by the terms and conditions of the Ap-
p. A list of the available tasks is shown on the next screen
(Fig. 3(b)), along with the details of task location and the va-
lidity time period – in this example the user clicks the Help
us to beat the queues! task and the relevant task description
pops up. Tapping Accept will add the task in the user’s To
Do list to be performed during the task’s validity period. The
perform screen (Fig. 3(c)) lists the detailed description of the
task, giving user the flexibility to either perform and submit
the relevant response to the server or delete the task from the
To Do list. The About-Us screen provides an overview about
the TA$Ker App.



(a) List of tasks. (b) Graphical results.

Figure 4. Screenshots of task owner portal showing: (a) the list of tasks posted by the owner, and (b) graphical results.

Figure 5. Number of completed tasks in a day.

The server was implemented using the CodeIgniter web
framework (written in PHP) and uses a MySQL database to
store various data related to users, tasks and the user inter-
actions with the tasks. Tasks (and associated details) are en-
tered into the database via an Web interface accessible only
to administrators. Fig. 4 shows screen shots of the web in-
terface. The first screen (Fig. 4(a)) shows the list of creat-
ed tasks. This same interface allows individual task-workers
to be assigned to different control/treatment classes for field
experiments. Once a task is completed (i.e., when the task
receives the expected number of responses), the Results An-
alyzer component computes graphical results (shown in Fig.
4(b)) that can be studied along multiple dimensions, such as
user demographics, task location and task validity duration.

User Study Details
Results presented here are obtained from a user study con-
ducted with student participants on our university campus.
All experimental studies are conducted with approval from
our Institutional Review Board on campus. As part of the s-
tudy, we recruited 80 students, who were briefed on the func-
tionalities of the App (but not told about the push vs. pul-
l modes of task recommendation). To protect privacy, we
did not extract any personally identifiable information such as
name, date of birth, age and contact details. We then asked the
students to perform tasks using our App at various locations
on the campus. The trials were conducted over a four-week
period towards the end of the academic session. During the

trial, each student was free to use the TA$Ker App to perform
any task that was in her list of Available Tasks.

To study the relative efficacy of push vs. pull models, 80
students were randomly and equally divided into two pool-
s “Push” and “Pull”. For students belonging to the “push”
class, they were provided task recommendations tailored to
their respected itineraries (identified from historical location
traces). In contrast, for students in the “pull” class, they were
able to see the entire set of available tasks, and have to make
their own task selection. The user study was governed by
several important parameters:

• Task Time Windows: To provide users a diversity of tasks
with execution deadlines broadly aligned to student’s typ-
ical schedule on campus, each day was divided into three
3-hour time windows: (a) 9am – 12pm, (b) 12pm – 3pm,
and (c) 3pm – 6pm. New tasks were pulled into the App at
the beginning of every new time window (i.e., at 9am, 12p-
m and 3pm). Any task not completed by the end of its time
window was considered expired and was removed from the
list of available tasks.
• Reward per Task: As our study did not focus on incentive

design, we adopted a flat (location, time and task type in-
dependent) reward structure: every successfully completed
task resulted in an earning of $1.
• Max. Tasks per Time Window: The TA$Ker back-end serv-

er was configured to allow an individual the ability to per-
form at most Max(t) tasks within a time window t. This
upper bound was deliberately specified to prevent scenar-
ios where students began to neglect their academic duties
and focus instead on obtaining larger rewards by perform-
ing a large number of tasks. Each student was allowed to
perform at most 2 and 3 tasks per time window during the
first and last two-weeks of our trial period, respectively.
• Varying η: During the 4-week study period, η (the mini-

mum set of workers needed to be assigned per task) was
varied, starting from η = 1 and increasing by 1 each week.
This allowed us to examine the effect of η on the task com-
pletion rate.
• Types of Tasks: To maintain a constantly evolving, diverse

set of tasks, and to also study the response of workers to
different task types, our studies involve 4 distinct task cat-
egories:



(a) Posted tasks vs. completed tasks. (b) Popularity vs. completed tasks. (c) Posted tasks vs. popularity.

Figure 6. Demographic differences of super agents.

1 Discrete-valued multiple choice tasks: Here, the user
selects the most appropriate answer (usually boolean-
valued) from a predefined set of categorical values
(e.g., reporting on the availability of group study
rooms, checking the availability of snacks in a vend-
ing machine).

2 Counting based tasks: Here, the user had to enter a
numerical value (e.g., report the queue length in front
of a food stall, or count the unoccupied benches in a
study area).

3 Free-text based tasks: Here, the user had to key-in
some free-form textual description (e.g., report on the
cleanliness of the restrooms, check the price of pas-
tries in the coffee shop).

4 Picture taking tasks: Here, the user was asked to visit
the task location and upload a picture taken with his s-
martphone camera (e.g., taking a photo of the corridor
of a building, click a picture outside the cafe).

Figure 7. Super-agent phenomenon.

RESULTS AND KEY INSIGHTS
Our work represents perhaps the first attempt at tracking user
behaviors in mobile crowd-tasking systems in a campus set-
ting. In this section we report key findings of our trial analy-
sis.

Demographics

During the four-week trial period, more than 1000 tasks were
posted and 800 were completed by fifty active users (refer to
Fig. 5 to see the number of completed tasks on a daily basis).
Active users are those who have completed at least one task.
Each task can only be performed by at most one user and a
user can perform at most nine tasks in a day (three tasks per
time window). No tasks were posted during the weekends
and Easter Friday (4th of April, 2015).

We find that there are significantly more male active user-
s (75%) than their female counterparts. Similarly, we could
also notice that most active users come from the School of
Business of this university (31% – normalized over the num-
ber of registered students from the same school), followed by
the School of Information Systems.

We next investigate how the properties of a location or the
number of posted tasks affected the corresponding number
of completed tasks. Fig. 6 shows the scatter plots (pairwise)
among the three variables: (i) number of posted tasks, (ii)
number of completed tasks, and (iii) a location’s popularity
(measured by average number of active users at that loca-
tion). Clearly, more popular places had a larger number of
tasks posted (and completed). To further understand this phe-
nomenon, we computed the correlation, jointly, between the
number of completed tasks in each location (as the dependent
variable) and (i) the number of posted tasks and (ii) the loca-
tion’s popularity. The corresponding correlation coefficients
were ρ = 0.096 (for number of posted tasks) and ρ = 0.67
(for location popularity), indicating that the likelihood of task
completion is significantly more affected by the overall occu-
pancy levels of the task’s location, rather than the volume of
available tasks.

Push-class students are more active in completing tasks:
As expected, we find more tasks are completed by users from
push class (56% of the total completed tasks). This is despite
the fact that this class has fewer active students than pull class
(22 in push vs. 28 in pull). A t-test confirms that push class
completes significantly more tasks than pull class, with p-
value less than 0.0001.



(a) Demographics: Gender. (b) Demographics: Field of study.

Figure 8. Demographic differences of super agents.

The tasks are mainly performed in library: Our campus li-
brary building includes many prime locations where many s-
tudent activities are usually carried out (and thus exhibit high-
est occupancy counts), which explains why most number of
the tasks were completed (43%) in this building as anticipat-
ed.

Lunch breaks are good times to perform tasks: The largest
plurality (37%) of completed tasks occurred during the sec-
ond time window (12pm – 3pm). Considering the fact that
the first and last time windows are the peak-hours for lectures,
it’s not surprising that the second time window accounts for
more tasks completed. This result is consistent with the find-
ings in [1], which reported that crowd-workers preferred to
perform tasks outside their core business hours.

Picture-based tasks are least popular: In Table 1, we tab-
ulate the task completion statistics categorized based on task
type, such as, percentage of completed tasks, detour incurred
and execution time. Interestingly, multiple-choice question
type was the most popular task category among the partici-
pants (40% of the completed tasks belong to this category – as
a proportion of total tasks), while picture-based tasks are least
popular (only 1.6% of completed task belong to this catego-
ry – as a proportion of total tasks). One explanation for this
might be the task execution time: the average task execution
time for picture-taking tasks is three times longer compared
to multiple-choice tasks.

Table 1. Task completion statistics.
Task % of comp. Detour Execution time
type tasks (in min) (in secs)

Multiple-choice 40.31% 5.7 30
Counting 38.6% 2.4 48

Text 19.48% 2.5 72
Photo 1.6% 0.5 96

Another interesting finding was that users prefer to perform
tasks whose actual execution is simpler, even if the task itself
might require them to take a disproportionally longer detour.
For example, although picture-taking tasks take much longer
to complete, the required detour time is actually much short-
er than multiple-choice tasks (30 seconds for picture-taking

tasks vs. 5.7 minutes for multiple-choice tasks). This might
be due to the fact that 75% of the completed photo tasks were
performed by push class users.

Super-Agent Phenomenon
While examining TA$Ker users’ behavior, we observe an in-
teresting trend – a relatively small core-group of users gener-
ate a disproportionally large fraction of task responses. Fig. 7
shows that 25% of active agents are responsible for 80% of to-
tal earnings or total tasks done on TA$Ker (depicted by dotted
line). The existence of such heavily skewed behavior makes
it important to focus on this critical group of users since they
play an important role in the overall dynamics of the system
and contribute more value to the task owners. We refer to this
top 25% of active agents as super agents.

We investigate how the size of the group of super agents
varies across weeks (depicted by four color lines in Fig. 7).
We observe that as the weeks progress and more students
register for the App, the percentage of super agents gradu-
ally decreases. However, with an increasing pool of available
tasks, the average number of tasks completed per super agent
increases as the weeks passby.

Further, we examine the demographic (i.e., gender and field
of study) differences among super agents on a weekly basis. It
is interesting to see that in Fig. 8(a) and Fig. 8(b), the majority
of the super agents belong to male category (75%) and to the
School of Business on our campus (42%).

(a) Push vs. pull. (b) Super vs. normal users.

Figure 9. Task acceptance time.

To study the task accepting and submitting nature (e.g.,
browsing time, acceptance time, types of tasks performed)
of individuals, in Fig. 9, we show how the cumulative num-
ber of accepted tasks evolves with time. From Fig. 9(a) we



Table 2. Summary of the metrics across classes and agent categories.
Metrics Push vs Pull Super vs Normal Push Class Pull Class

Push Pull Super Normal Super Normal Super Normal
Total detour 3.8 5.4 175 18 131 21 210 15

(in min.) (avg. per task) (avg. per task)
Detour efficiency 28 25 27 26 27 28 21 28
(in cents per min.)

Task selection 10 20 15 15 10 11 22 19
efficiency (in min.)

Performance 9 3 6 5 10 9 4 3
interval (in min.)

Performance one adjacent 3 levels 2 levels one 3-4 levels 2-3 sections adjacent
efficiency (in distance) building section away away building away away section

see that the difference between push and pull class users in
accepting tasks along time is not very significant. However,
as anticipated, in Fig. 9(b), super agents outperform normal
agents by accepting tasks at a higher rate as time evolves.

Efficiency of Users
In this section, we define and study user’s efficiency in per-
forming mobile crowd-tasking tasks. If we know exactly how
long a user spent in detours when performing selected tasks,
we can straightforwardly define his detour efficiency as dol-
lars earned per minute of detour. To further understand the
user’s efficiency during different stage of task performance,
we can further split his time spent into two stages: planning,
which refers to his efforts involved in browsing and select-
ing tasks on the App, and physical movement, which refers
to his actual physical efforts in moving to and performing s-
elected tasks. Table 2 summarizes the metrics we considered
to compare the users across push and pull classes, agent cate-
gories and users’ behavior (super agents and non super agents
behavior when they are assigned to push and pull mode).

Detour: To compute detour efficiency, we first need to es-
timate detours that are related to the performance of tasks.
However, measuring the total time traveled by a user is not s-
traightforward since we first need to identify the neighboring
stay locations (both prior to and after the task performance) in
which he stays for a significant amount of time (in our case,
more than 4 minutes) to calculate additional time elapsed for
him to reach his next location after deviating from his usual
route to perform the chosen task.

Let the task location be denoted as Z, we analyze the location
traces, and identify locations this user stayed at, for consider-
ably longer time before and after going to Z. We denote the
location this user stayed before Z as X , and the location after
Z as Y . The detour time is then (tX ,Z + tZ,Y )− tX ,Y , where tX ,Z
denotes the travel time to reach location Z from location X .

Fig. 10 shows the histogram of the total detour made per us-
er throughout our trial period. We find that users from the
push class incurred a detour of 3.8 minutes per task, which
is 1.6 minutes shorter on average than users in the pull class.
A t-test confirms that the push class indeed incurs statisti-
cally lesser detour time than the pull class with a p-value of
0.0016. In terms of labor supply, super agents contributed on

Figure 10. Total detour incurred during the trial.

average 175 minutes while an ordinary agent contributed only
18 minutes.

To further study how the push and pull modes affect behav-
iors of super agents, we separately analyze behaviors of super
agents and normal agents in both push and pull classes. In the
push class, super agents incurred 130 minutes of detour while
normal agents incurred only 20 minutes. The same trend is
observed in the pull class – super agents made significantly
more detour compared to normal users (210 and 15 minutes,
respectively).

Detour Efficiency: We have seen that super agents are will-
ing to contribute more detour time, but does the extended
travel lead to more earning opportunities? Fig. 11 shows the
histogram of detour efficiency for all active users (i.e., who
have at least completed one task during our trial). We find
that super agents have higher detour efficiency in all excep-
t the first two quartiles of agents, where the trend flips. This
demonstrates that that super agents are actually willing to take
longer detours (and thus sacrifice detour efficiency), so as to
complete a larger number of tasks. The higher detour effi-
ciency for some other users also arises from the fact that they
perform only a few tasks that are indeed very close to their s-
tay locations. In terms of average detour efficiency (measured
by cents earned per unit detour), super agents and others earn
on average 27 and 26 cents per minute, respectively.

We find that push and pull class users earn 28 and 25 cents in
a minute, respectively. However, super agents in the pull class



have significantly lower (about 25% lower detour efficiency)
than regular agents in the pull class, while this discrepancy is
noticeably absent in the push class. Thus, a benefit of push-
based crowd-tasking is that it allows super agents to select
and perform a larger number of tasks without incurring a dis-
proportionally higher detour overhead. The amount of mon-
ey earned per unit detour by agents in both categories (super
and normal) is same regardless of the classes (push and pull)
they belong to.

Temporal Efficiency: Having looked at the mobility patterns
of users in TA$Ker , we now turn to the temporal aspects of
their behaviors. Specifically, we look at how efficiently they
use their time on TA$Ker . The time that a user spends on
the TA$Ker App can be split into two parts: (a) the time that
a user spends on going through the list of available tasks to
search for tasks to commit to, and (b) the time that a user
spends on performing a task, regardless of its type. We are
able to accurately compute time allocation in these two parts
since our App collects all activity traces when users interact
with our App.

Task Selection Efficiency: The temporal efficiency of a user
not only depends on the time spent in performing the tasks,
but also on the time he spent looking for the tasks to perform.
In this metric we look at the amount of time a user spends on
searching and planning. We define the task selection efficien-
cy as the amount of time it takes to find an appropriate task
from the list of available tasks and accept it. For each time
window, we estimate time selection efficiency within it as the
time difference between the moment a user opens the App for
the first time or browses through the list of tasks (whichev-
er happens first) and the moment he accepts a task. Similar
to earlier metrics, we provide comparison across two dimen-
sions: between push and pull classes, and between super a-
gents and ordinary users.

While users from push class spent 10 minutes browsing
through the tasks list and accept the tasks, users from pull
class spent twice as long as their counterparts. This is consis-
tent with our intuition that users from push class have the ad-
vantage (over pull class) of browsing only the tasks in the rec-
ommended list. However, similar trend can not be observed
between super agents and ordinary users. Both super agents
and ordinary users spend 15 minutes in task planning. This is
partly due to the fact that super agents come from both push
and pull classes, and partly due to the earlier confirmed fact
that super agents are willing to spend more time.

While analyzing both agent categories in each class separate-
ly, we notice that super agents in push class outsmart the super
agents in pull class while taking lesser time to select the rele-
vant tasks to perform (10 minutes for push class super agents,
which is two times lower than the super agents in pull class).
The similar trend is observed between the normal agents in
push and pull classes (11 and 19 minutes respectively). This
proves our intuition again that regardless of the super agent
behavior, users in push class are benefited by browsing the
tasks only in the recommended list.

Performance Interval: To understand how far in advance
does a user commit to his tasks, we also measure the time
in between task selection, and the task performance. We find
that a user from push class submits a task after 9 minutes since
the acceptance time; however, pull class users submit after a
mere 3 minutes. However, a similar trend is not observed
between super agents and normal users. Both categories of
users perform the tasks after 5 minutes since the acceptance
time. Super agents in the pull class submitted tasks quicker
(in 4 minutes) than super agents in the push class (in 10 min-
utes). The normal agents also behaved similarly, confirming
that pull class users are being more opportunistic while per-
forming tasks.

We also notice that users from the pull class mostly search
for jobs in the vicinity of their current location – when they
are only 40 seconds (on average) away from task locations,
and accept tasks to perform immediately. On the other hand,
push-class users are more likely to accept a task further away,
even when they are several buildings away.

Task Failure Analysis
Finally, we investigate why some tasks are accepted yet not
completed. Overall we observe that 49 tasks were accepted
but not performed by users. Based on the tracking history,
we observe that 34 tasks were accepted but responsible users
did not even open the App until the time window had expired,
despite the reminder notifications that were sent 15 minutes
prior to the deadline.

Such failures were distributed unevenly among push and pull
class users: 70% of these failed tasks were accepted by push
class users. Our conjecture is that as push class users tend
to accept tasks in advance (as observed in the previous sec-
tion), future changes in their travel plans might render some
tasks infeasible, thus causing them to ignore these tasks. Pull
class users have significantly less such cases most likely be-
cause they only choose tasks when they are close to the task
locations.

CONCLUSIONS AND FUTURE WORK
While mobile crowd-tasking is an attractive paradigm for dis-
tributed and collaborative execution of location-centric urban
tasks, there is a dearth of testbeds that allow us to experimen-
tally understand how humans respond to changes in various
parameters, such as task recommendation or task pricing s-
trategies. To address this limitation, we have built a large-
scale crowd-tasking platform (front-ended by a mobile App
called TA$Ker) for our university campus, where participat-
ing students are rewarded for performing a variety of campus-
centric crowd-sourced tasks. We have described how we use
an underlying indoor location tracking infrastructure to devel-
op medium-grained predictions about individual-level move-
ments on the campus, and use such predictions to support an
advanced task recommendation strategy (which seeks to allo-
cate tasks so as to minimize expected travel detours) in addi-
tion to the more conventional pull-based approach.

TA$Ker was deployed to a pool of 80 student volunteers, who
performed around 800 total tasks over an initial deployment



(a) Push-class users. (b) Pull-class users.

Figure 11. Detour efficiency of (a) push-class and (b) pull-class users.

period of 4 weeks. Our empirical results demonstrate a few
key results:

• The push-based crowd-tasking model outperforms the con-
ventional pull-based approach, resulting in not only a high-
er (and statistically significant) task completion rate, but
also an approx. 50% lower average detour overhead. This
is in spite of the 6-8 meter error in the underlying location
technology, and the 68% accuracy of movement prediction
observed on the campus testbed.
• Workers seem to prefer tasks that are simple and easy to

execute (e.g., selecting one from a pre-defined set of re-
sponses) over slightly more complex tasks (e.g., using the
smartphone camera to capture an image), even if the re-
duction in task execution time is less than the associated
increase in the detour overhead.
• Providing individualized recommendations that utilize pre-

dicted travel patterns has an additional benefit (even though
workers are themselves unaware that the recommended
tasks are being personalized to their travel patterns): work-
ers tend to accept such tasks earlier (as opposed to a more
opportunistic strategy where they accept tasks only when
they are near a task location) and perform them later (but
within the specified task completion limit). Such behavior
provides a platform with better lookahead on the tasks that
are unassigned, which may then need additional incentives.

In ongoing and future work, we shall systematically study
the impact of different task reward structures and incentive
strategies (ranging from conventional micro-payment models
to group-oriented, macro-reward models).
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