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ABSTRACT
User identity linkage across social platforms is an important
problem of great research challenge and practical value. In
real applications, the task often assumes an extra degree
of difficulty by requiring linkage across multiple platforms.
While pair-wise user linkage between two platforms, which
has been the focus of most existing solutions, provides rea-
sonably convincing linkage, the result depends by nature on
the order of platform pairs in execution with no theoretical
guarantee on its stability. In this paper, we explore a new
concept of “Latent User Space” to more naturally model the
relationship between the underlying real users and their ob-
served projections onto the varied social platforms, such that
the more similar the real users, the closer their profiles in
the latent user space. We propose two effective algorithms, a
batch model(ULink) and an online model(ULink-On), based
on latent user space modelling. Two simple yet effective op-
timization methods are used for optimizing objective func-
tion: the first one based on the constrained concave-convex
procedure(CCCP) and the second on accelerated proximal
gradient. To our best knowledge, this is the first work to
propose a unified framework to address the following two
important aspects of the multi-platform user identity link-
age problem — (I) the platform multiplicity and (II) on-
line data generation. We present experimental evaluations
on real-world data sets for not only traditional pairwise-
platform linkage but also multi-platform linkage. The re-
sults demonstrate the superiority of our proposed method
over the state-of-the-art ones.

Keywords
User identity linkage; Latent User Space; Social network

1. INTRODUCTION
The problem of User Identity Linkage (UIL), which aims

to identify the accounts of the same user across different
social platforms, has recently been attracting an increasing
amount of attention and effort due to both the significant
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research challenges and the immense practical value of the
problem. For example, in [11], Liu et al pointed out com-
pleteness, consistency and continuity as three major bene-
fits for user profiling from successful user identity linkage, an
essential task in today’s social-data-enabled business intelli-
gence. In industry, human-centric data fusion from various
sources has become a key component for most leading data
intelligence companies such as Palantir1. In a nutshell, the
ability of integrating data across various platforms down to
the granularity of individuals lies at the very core of the
data-driven analytical paradigm for business and consumer
insight.

However, the methodologies and approaches adopted by
the existing solutions have so far fallen short of successfully
addressing the following two essential characteristics of this
problem.

• Platform Multiplicity : The power of user identity link-
age lies in piecing up information from multiple sources,
typically more than two. However, most existing so-
lutions have focused on pair-wise user linkage between
two platforms, i.e., identifying the two accounts IDA
and IDB for the same user on two platforms A and
B respectively. For three or more platforms, existing
methods would have to first match users between pairs
of platforms and then integrate the matching results to
derive the final user linkage across all platforms. Since
different orders of such pair-wise platform linkage, as
demonstrated by our experiments in Section 6, would
lead to different final linkage results, it therefore raises
serious concern for the result stability, especially when
no theoretical bound has been known as yet.

• Online Data Generation: The existing approaches ex-
amine a snapshot of two platforms at a certain time
point and compute the best possible linkage result with
the current data. On the other hand, users generate
content continually on social platforms. An intelligent
linkage algorithm should be able to take advantage
of the incremental data updates to continuously im-
prove the linkage quality with much lower computa-
tional cost than re-computing everything again from
scratch at every data update.

To better address the two above-mentioned challenges, we
introduce in this paper a new concept Latent User Space, to
more naturally model the reality. The main idea is to take
advantage of the fact that, after all, underlying all these

1https://www.palantir.com/



different accounts that we try to link, there does exist this
real user as a natural person, if these accounts indeed be-
long to the same user. We call each such an underlying user
a “user-in-itself”, borrowing inspiration rooted in western
Philosophy 2. Every user-in-itself corresponds to a point in
the latent user space. If a real user has accounts on mul-
tiple social platforms, each account is deemed simply as a
projection of the underlying “ user-in-itself”, which we may
call it the “ user-as-observed”. More specifically, all that are
observed from the “ user-as-observed” on a social platform,
i.e., profile, behaviour data, contents, etc., are the projec-
tion of the “user-in-itself” constrained by the features and
structures provided by the platform.

It follows from this model that when we project data from
different platforms back to this space, the data points of
the same user should be close to each other (ideally, they
should be projected back to a single data point). In essence,
the more different the two users, the greater the distance
between their data points in the latent user space.

Figure 1 gives an illustration with results on real data. We
show four real users each with corresponding accounts on
two popular Chinese social platforms, Renren and Weibo,
denoted as ui and vi, 1 ≤ i ≤ 4 (user profile images are
blurred for privacy concerns). When their accounts from
the two platforms are projected back to the underlying la-
tent user space, it is clear that accounts belonging to the
same user would project back to data points that are much
closer to each other than data points from accounts belong-
ing to different users (the values along the edges denote the
distances between data points in the latent user space, e.g.,
the distance between u1 and v1 is 0.09). The details of dis-
tance calculation in the latent user space are given in Section
4.

An important feature of our work is that, compared with
previous work on UIL problem, our proposed Latent User
Space frees the model from focusing on either the design
of distance rules or building models depending on specific
data forms, but rather on examining the intrinsic structure
of user. While latent space has been introduced for analyz-
ing dynamic social networks [19]. to our best knowledge,
our work is the first to apply the latent user space for UIL
problem across multiple social platforms.

Based on the Latent User Space concept, we propose ULink,
a multi-platform linking user identity framework based on
modeling latent user space, and ULink-On, an online frame-
work for the same task. In ULink framework, we build the
Latent User Space through projection matrix, and address
this problem by jointly optimizing objective function with
matching pair information, non-matching pair information
and intra-platform relation constraints across different plat-
forms. Inspired by Marginal Structured SVM, two efficient
methods based on the concave-convex procedure (CCP) and
accelerated proximal gradient(APG) are applied for solving
the optimization problem. We further propose an online
learning framework(ULink-On) by considering constrain of
batch model. We conduct empirical studies on real social
network data to show the effectiveness and efficiency of our
approach.

2A notion in the Philosophy of Immanuel Kant, a “thing-
in-itself” is what a thing really is as different from how it
appears to us — an object as it would appear to us if we did
not have to approach it under the conditions of space and
time.
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Figure 1: An illustration of latent user space. (a)
Four users in Renren and Weibo data. (b) Latent
user space

We summarize our key contributions as follows:

• We propose a new model for the multi-platform user
identity linkage problem based on a new concept of La-
tent User Space, which more naturally models the re-
lationship among the underlying real user and the var-
ious accounts belonging to her on different platforms.
It goes beyond pair-wise platform user linkage treat-
ing user attributes (user features) as main direction to
focusing on the intrinsic structure of the underlying
user, which is particularly powerful in linkage settings
with multiple platforms.

• To take advantage of the continual online generation
of user data on social platforms, we extend our batch
framework ULink to propose an online version, called
ULink-On, which is able to take advantage of the incre-
mental data updates to continually improve the link-
age quality. We also develop efficient optimization for
ULink-On.

• We conduct experiments on real-world data sets to
comprehensively evaluate the performance of our pro-
posed algorithms. For both pairwise platform and
multi-platform settings, our algorithm have consistently
outperformed the state-of-the-art existing methods with
greater stability. We provide discussions for some im-
portant aspects of our framework for future explo-
ration.

The rest of this paper is organised as follows: Section
2 examines the related work. We introduce the proposed
framework in Section 4 and Section 5. The experimental
evaluation is detailed in Section 6. We also give a discussion
in Section 7 and conclude the paper in Section 8.



2. RELATED WORK
A closely-related problem long studied by database com-

munity is that of Record Linkage, which aims to find records
in a data set across different data sources that refer to the
same entity. The concept of modern record linkage orig-
inated from geneticist Howard Newcombe, who introduced
odds ratios of frequencies and the decision rules for delineat-
ing matches and non-matches[15, 16]. A large number of al-
gorithms, both supervised and unsupervised, have been de-
veloped in recent years to solve the record linkage problem,
which can be grouped mainly into two types: probabilis-
tic linkage and deterministic linkage. The former approach,
which is often rule-based and strives for exact one-to-one
matching of user name and other user attributes[17, 5], usu-
ally works well for simple linkage problems or in the presence
of special domain knowledge of the matching. Probabilistic
linkage [18], on the other hand, assigns probabilistic weight-
ing to records and accepts record pairs with sufficiently high
weights as linked pairs. [4] provided the formal mathemat-
ical foundations and some theoretical analysis. Despite the
similarity with the record linkage problem, the UIL prob-
lem that we consider in this paper distinguishes itself with
unique characteristics of social data to make possible break-
throughs previously unattainable.

The User Identity Linkage problem was initially formal-
ized as connecting corresponding identities across commu-
nities in [27], and was addressed with a web-search-based
approach. Considering social network diversity and informa-
tion asymmetry, many early works were proposed based on
user information, including user-profile-based, user-generated-
content-based and user-behavior-model-based. User-profile-
based methods collect tagging information provided by users
[7] or user profiles, e.g., user-name, description, location,
etc. [24, 10, 29]. User-generated-content-based ones collect
personal identifiable information from user personal reading
records[1] or user-generated content. User-behavior-model-
based methods [28] analyze behavior patterns and build fea-
ture models from user names, language and writing styles.
As most of these algorithms are often tailored to a particu-
lar pattern, they face serious challenges in identifying cross-
platform linkage if required data patterns are not available
on all platforms.

More recent approaches have been proposed in both super-
vised and unsupervised learning frameworks. [11] proposed
a supervised multi-objective learning framework to link up
user accounts of the same natural person across different
social network platforms. [9] studied link prediction meth-
ods for homogeneous networks based on massive unsuper-
vised link indicators. To solve the collective link identifica-
tion problem, [30] proposed a unified link prediction frame-
work. [31] studied the multi-network link prediction prob-
lem across partially aligned networks with a PU link pre-
diction framework. However, Most existing solutions have
focused on pair-wise user linkage between two platforms.
Even though a few of them can handle multiple platforms,
the computation complexity is too high for practical applica-
tions and the models tend to depend on specific data forms,
e.g., location and friendship.

Other relevant approaches include subspace learning-based
approaches [25], an important learning framework in multi-
view learning which aims to obtain a latent subspace shared
by multiple views by assuming that the input views are gen-
erated from this subspace. The structured support vector

Table 1: Notations
SYMBOL DESCRIPTION

O The set of real users in LUS

Si ith social media platform
Pi The set of users on Si
d The user feature dimension in LUS

oi ith user in LUS, oi ∈ Rd
ni The number of users on Si
mi The user feature dimension on Si
uij jth user on Si, u

i
j ∈ Rmi

wi The projection matrix for Si, wi ∈ Rd×mi

machine[23] is a machine learning algorithm that general-
izes the Support Vector Machine (SVM) classifier. [21] de-
veloped a method for structured margin classification, and
an online framework was proposed by [14].

Before introducing the detail of our proposed framework,
we will give the formal definitions of many important con-
cepts.

3. PROBLEM FORMULATION
We formulate our problem in this section by first intro-

ducing the concept of latent user space as follows.

Definition 3.1. [Latent User Space (LUS)] We de-
fine the Latent User Space (LUS) as a triple (O,A,D) where
O = {o1, o2, . . . , oN} is the set of all N real users each cor-
responding to a natural person, A = (a1, a2, . . . , ad) denotes
the vector of d attributes by which every real user is repre-
sented, i.e., oi = (ai1, a

i
2, . . . , a

i
d), 1 ≤ i ≤ N , and D repre-

sents the distance function such that D(oi, oj) is the distance
between any two users oi, oj ∈ O.

We denote a set of e different social media platforms as S
={S1, S2, . . ., Se}, and for each Si ∈ S, Si = (Pi,Fi) where
Pi = {u1, u2, . . . , uni} denotes the set of all user accounts
on Si and Fi = (f1, f2, . . . , fmi) denotes the feature vector

to represent each user such that uj = (f j1 , f
j
2 , . . . , f

j
mi

) for
1 ≤ j ≤ ni.

We refer to every user x in LUS as a “user-in-itself”. For
any platform Si, we refer to every user u on Si as a “user-as-
observed”, which corresponds to a “user-in-itself” x in LUS
through the projection function of Si as defined below.

Definition 3.2. [Projection Function] We denote as
Φi the projection function of Si such that for each oj ∈ O
in latent user space, we have Φi(oj) = Φi((a

j
1, a

j
2, . . . , a

j
d)) =

uik, uik ∈ Pi. We also denote as Φ−1
i the inverse function

of Φi such that Φ−1
i (Φi(o)) = o holds for all o ∈ O and

1 ≤ i ≤ e.

Notice that in general, the projection function Φi is un-
known to us for a given social platform Si. The user iden-
tity linkage problem defined for multiple platforms is given
as follows. It is clear that definitions for the same problem
for two platform case as in [11] is just a special case of this
more general definition.

Definition 3.3. [Multi-platform User Identity Link-
age (MUIL)] Given the latent user space (O,A,D), a set
of e social media platforms S ={S1, S2, . . ., Se} where each



Si = (Pi,Fi), the problem of Multi-platform User Identity
Linkage (MUIL) is to find a binary function f such that for
any given vector ~u of user accounts ~u = (u1, u2, . . . , ue), ui ∈
Pi, 1 ≤ i ≤ e

f(~u) =

{
1 , if ∃x ∈ X, s.t. ui = Φi(o), 1 ≤ i ≤ e
0 , otherwise

The binary function f as in Definition 3.3 decides per-
fectly if a set of user accounts on various social platforms
correspond to the same real user. In reality, however, such
an ideal function is hard to identify as both the latent user
space and true projection functions Φi are unknown. Our
approach in this paper is therefore to turn the MUIL prob-
lem into an optimization problem by the intuition that the
more similar the two real users oa, ob in latent user space, the
smaller the distance when they are projected back from the
social platforms to the latent user space, i.e., D(Φ−1

i (Φi(oa)),
Φ−1
j (Φj(ob))) for all 1 ≤ i, j ≤ e. Hence the following opti-

mization version of the MUIL problem.
Given the latent user space (O,A,D), a set of e social me-

dia platforms S ={S1, S2, . . ., Se} where each Si = (Pi,Fi),
we solve the MUIL problem by finding a set of projection
functions Φi, 1 ≤ i ≤ e such that for any given vector of user
accounts (u1, u2, . . . , ue), ui ∈ Pi, 1 ≤ i ≤ e corresponding
to the same real user, i.e., ∃o ∈ O such that ui = Φi(o) for
1 ≤ i ≤ e. We search for projection functions Φi for the
MUIL problem by minimizing following objective function:

min
Φ−1

∑
1≤i,j≤e

D(Φ−1
i (ui),Φ−1

j (uj)) (1)

where ui and uj are same user on Si and Sj .
Considering that fully aligned networks hardly exist in the

real world, in this paper, we also adopt the assumption of
partially aligned social platforms as proposed in [31]. Table
1 summarizes the notations in this paper.

4. PROPOSED METHOD
4.1 ULink Framework

Eqn.(1) is a direct way to model LUS to obtain inverse
projection function Φ−1. We would further consider the user
relation in both LUS and the original space in our proposed
ULink framework.

Let {uil, ujρ(l)}
L be a set of same user pairs(matching pairs)

for any two social media platforms Si and Sj , ρ(·) is an in-
dex mapping function to represent ρ(l)th user in Sj match-
ing lth user in Si. Let {uil, ujk}

UL be a set of different user
pairs(non-matching pairs). Following the definition 3.3, we
aim to obtain all projection matrix wz for each inverse func-
tion projection Φ−1 given same user pairs and different user
pairs. The proposed framework ULink is to minimize objec-
tive function such that

min
w,ξ

1

2
(

e∑
z=1

||wz||2F ) + C
∑

ξ

s.t. D(Φ−1
i (uil),Φ

−1
j (ujk))− D(Φ−1

i (uil),Φ
−1
j (ujρ(l)))

≥ Bδ(ujk, u
j
ρ(l))− ξkρ(l), ∀i, j, l, k

i, j ∈ {1, 2, · · · , e}, i 6= j; l ∈ {1, 2, · · · , ni},
k, ρ(l) ∈ {1, 2, · · · , nj}, ρ(l) 6= k; ξ ≥ 0

(2)

where, e represents the number of social platform, ξ is a slack
variable. δ(·) is a flexible constant which is regarded as intra-
platform relation in original space. Since the positive of the
right side of constraint always make same user be close to
each other, and different user be separated from each other
in LUS. In particular, the greater the value of the difference
between users in original space δ(·), the more apparent this
relation.

Specifically in this work, we take the Euclidean distance
as the distance function D. i.e., D(Φ−1

i (uil),Φ
−1
j (ujk)) =

||uilwTi − ujkw
T
j ||22. Euclidean distance is also considered for

δ(·) throughout this work, i.e., δ(ujk, u
j
ρ(l)) = ||ujk − u

j
ρ(l)||

2
2.

For ease of exposition, we can formulate Eqn.(2) on two
platforms. x and y are used for representing the user on two
platforms such as u1 and u2, x ∈ Rm1 , y ∈ Rm2 . As men-
tioned above, {xi, yk}UL is the set of non-matching pairs,
and {xi, yΦ(i)}L is the set of matching pairs. The Eqn.(2)
becomes:

min
w1,w2,ξ

1

2
(||w1||2F + ||w2||2F ) + C

∑
i

∑
k

ξik

s.t. ||xiwT1 − ykwT2 ||22 − ||xiwT1 − yρ(i)wT2 ||22
≥ Bδ(yρ(i), yk)− ξik, ∀i, k; ρ(i) 6= k

i ∈ {1, 2, ..., N}, k, ρ(i) ∈ {1, 2, ...,M}, ξρ(i)k ≥ 0

(3)

where M and N are the number of users on two platforms.
Ideally, we should consider all non-matching pairs for mod-
eling. However, this would result in exponential computa-
tional cost with the number of non-matching pairs. There-
fore, in this paper we select a limited number of non-matching
pairs as experimental set. We give an analysis and discuss
some feasible solutions for this problem in Section 7.

For convenience, we combine variables w1, w2 to W =[
wT1
wT2

]
, W ∈ R(m1+m2)×d and matching pair vector dl =[

xi −yΦ(i)

]
, non-matching pair vector dul =

[
xi −yk

]
, dul, dl ∈

Rm1+m2 . Therefore, the optimization problem Eqn.(3) can
be rewritten as

min
W,ξik

1

2
||W ||2F + C

∑
i

∑
k

ξik

s.t. ||dulW ||22 − ||dlW ||22 ≥ Bδ(yρ(i), yk)− ξik,∀i, k; ρ(i) 6= k

i ∈ {1, 2, ..., N}, ρ(i), k ∈ {1, 2, ...,M}, ξik ≥ 0
(4)

It is a non-trivial task to solve Eqn.(4), because the con-
strains of Eqn.(4) are non-longer convex, and the minimiza-
tion is not a convex problem. However, it is interesting to
note that our objective function is very similar to the state-
of-the-art framework structural SVMs[8], which is to learn
the classifier w:

min
w,ξ

Ω(w) + C
∑

ξi

s.t. wT [Ψ(xi, yi)−Ψ(xi, yi)] ≥ δ(yi, yi)− ξi, ∀i

where, the structured input-output pairs (x, y) ∈ X × Y ,
X and Y are the spaces of the input and output variables,
δ(·) is a loss function that quantifies the loss associated with
predicting y when y is the correct output value. Further-
more, Ψ(·) is a joint feature vector that describes the rela-
tionship between input x and structured output y, Ω(·) is
regarded as regular term and ξi is a slack variable. Inspired
by this work, we adopt two simple yet effective strategies



for handling this optimization problem. One is based on the
constrained concave-convex procedure(CCCP) used in [20],
and the second is a gradient descent algorithm(accelerated
proximal gradient[22]). The details will be given as follows.

4.2 Optimization
Smola et.al. [20] provide a strategy to use the constrained

concave-convex procedure for constrained problems. The
idea of the concave-convex procedure (CCP) can also be
applied to the optimization problem of Eqn.(4).

Denote by fi, gj real-valued convex and differentiable func-
tions on a vector space X for all i ∈ {0, . . . , n}, and let ci ∈ R
for i ∈ {1, . . . , n}. Then, the Constrained Concave Convex
Procedure is defined:

min
x
f0(x)− g0(x)

s.t. fi(x)− gi(x) ≤ ci, ∀i

Denote by Tn{f, x}(x′) the nth order Taylor expansion
of f at location x, that is, T1{f, x}(x′) = f(x)+ < x′ −
x,∇f(x) >. Thus, the above optimization problem can be
replaced by finding xt+1 as the solution to the convex opti-
mization problem until the convergence of xt:

xt+1 = min f0(x)− T1{g0, xt}(x)

s.t. fi(x)− T1{gi, xt}(x) ≤ ci, ∀i

Note that [20] presents the proof of its convergence, and
shows this algorithm can be customized to various cases to
efficiently solve the optimization problem.

It is clear that Eqn.(4) satisfies the conditions of Con-
strained CCP. we define:

f0(W ) =
1

2
||W ||2F + C

∑
i

∑
k

ξik

fi(W ) = Bδ(yρ(i), yk)− ξik + ||dlW ||22
gi(W ) = ||dulW ||22, g0(W ) = 0

(5)

thus, each iteration requires solving the following optimiza-
tion problem:

Wt+1 = min
W,ξik

1

2
||W ||2F + C

∑
i

∑
k

ξik

s.t. 2 ∗ dulWtW
T (dul)T − dlWWT (dl)T − dulWtW

T
t (dul)T

≥ Bδ(yρ(i), yk)− ξik,∀i, k; ρ(i) 6= k

i ∈ {1, 2, ..., N}, ρ(i), k ∈ {1, 2, ...,M}, ξik ≥ 0
(6)

Since Eqn.(6) is a convex optimization problem, a quadrat-
ically constrained quadratic program (QCQP) can be used
to solve it. We use CVX: Matlab Software for Disciplined
Convex Programming[6] to optimize this function. In sum-
mary, the sketch of the optimization process is described in
Algorithm 1.

Algorithm 1 ULink-CCP

1: initialize: W0 with a random value , B, C - parameters
2: Wt = W0

3: repeat
4: find Wt+1 as the solution of the optimization problem

in Eqn.(6)
5: until convergence of Wt

6: Obtain w1 and w2 by Wt+1

Another effective optimal algorithm Accelerated Proximal
Gradient (APG)[22] is used for solving our problem as fol-
lows.

According to Eqn.(4), we define a symmetric positive semi-

definite matrix Q : Q = WWT , Q ∈ R(m1+m2)×(m1+m2).
Thus, Eqn.(4) can be transformed to the following problem:

min
Q,ξik

1

2
trace(Q) + C

∑
i

∑
k

ξik

s.t. (dul)Q(dul)T − (dl)Q(dl)T ≥ Bδ(yρ(i), yk)− ξik
∀i, k; ρ(i) 6= k, i ∈ {1, 2, ..., N}, ρ(i), k ∈ {1, 2, ...,M}
ξik ≥ 0

(7)

Note that any feasible(or optimal) solution to Eqn.(7)
gives a feasible (or optimal) solution to Eqn.(4), and vice
versa[32].

We can apply the accelerated proximal gradient (APG)
method[12] to efficiently solve the primal form of Eqn.(7).
Let p(Q) = 1

2
trace(Q) and f(Q) = C

∑
i

∑
k ξik. ξik =

max{0, Bδ(yΦ(i), yk) + (dl)Q(dl)T − (dul)Q((dul)T }. We de-
fine: F (Q) = f(Q) + p(Q). The derivative of f is denoted
by ∇f . [26] shows that ∇f is Lipschitz continuous on Q.
For any symmetric positive semi-definite matrix Z, consider
the following QP problem of F (Q) at Z:

Aτ(Q;Z) = f(Z)+ < ∇f(Z);Q− Z >

+
τ

2
||Q− Z||2F + p(Q)

=
τ

2
||Q−G||2F + p(Q) + f(Z) +

1

2τ
||∇f(Z)||2F

(8)

where τ > 0 is a constant and G = Z − 1
τ
∇f(Z). To

minimize Aτ(Q;Z) w.r.t. Q, it is reduced to following :

arg min
Q

τ

2
||Q−G||2F + p(Q) (9)

Thus, take the derivative of the objective function, and get
Q = G − 1

2τ
I. Note that G can be take the SVD as G =

UGUT , and Q = UGUT− 1
2τ
UUT , then Q = U(G− 1

2τ
I)UT .

We use 0 to replace the negative entries in G− 1
2τ

. Finally,
the projection matrix W can be obtained by symmetric pos-
itive semi-definite matrix Q. Note that convergence criteria
for this optimal solution was given in [12], which is a similar
algorithm.

5. FROM BATCH TO ONLINE
An intelligent linkage algorithm should be able to take

advantage of the incremental data updates to continuously
improve the linkage quality. In this section, we extend our
batch framework(ULink) to an online learning framework
(ULink-On), and formalize our online framework(ULink-On)
based on Eqn.(7).

Note that we assume one matching pair (xt, yt)
L and

one non-matching pair (xt, y
′
t)
UL would arrive at every time

stamp t. As mentioned before, let dlt and dult be a pair of
same user and a pair of different users at time t. We consider
the objective function scale quadratically with ξ as follows:

Qt+1 = min
Q,ξ

1

2
||Q−Qt||2F +

1

2
Cξ2

t

s.t. (dult )Q(dult )T − (dl(t))Q(dlt)
T

≥ Bδ(y′t, yt)− ξt

(10)



Like Online Passive-Aggressive algorithm[3], the objec-
tive function in Eqn.(10) attempts to keep the norm of the
change to the parameter vector as small as possible on each
update, while incorporating the assumption of LUS.

Before optimize Eqn.(10), we need to initialize a symmet-
ric positive semi-definite matrix Qt. Thus, the Lagrangian
of the optimization problem Eqn.(10) is defined as:

L(Q, ξ) =
1

2
||Q−Qt||2F +

1

2
Cξ2

t

+ β(Bδ(y′t, yt)− ξt
+ (dlt)Q(dlt)

T − (dult )Q(dult )T )

(11)

where β ≥ 0 is a Lagrange multiplier. Setting the partial
derivatives of L with respect to the elements of Q to zero,
this yields:

Q = Qt − βH, H = (dlt)
T (dlt)− (dult )T (dult )

Setting the partial derivatives of the Lagrangian with re-
spect to ξ and setting that partial derivative to zero :

∂L(Q, ξ)

∂ξ
= Cξt − β = 0, ξt =

β

C
.

we can rewrite Eqn(11) as,

L(Q, ξ) =
1

2
||Qt + βH −Qt||2F +

1

2
C(

β

C
)2

+ β(Bδ(y′t, yt)−
β

C

+ (dlt)Q(dlt)
T − (dult )Q(dult )T )

Setting the derivative β of the above to zero, this yields

β =
V +Bδ(y′t, yt)

2Z − ||H||2F + 1
C

(12)

where,

Z = (dlt)H(dlt)
T − (dult )H(dult )T

V = (dlt)Qt(d
l
t)
T − (dult )Qt(d

ul
t )T

(13)

As described above, the pseudo-code for this algorithm is
given in Algorithm 2

Algorithm 2 ULink-On

Input: dlt, d
ul
t - pairwise data; B, C - parameters

Output: Q
1: initialize: Qt - symmetric positive semi-definite matrix
2: for t=1,2,· · · do
3: Calculate Z and V use (13)
4: Calculate β use (12)
5: Calculate Q = Qt − βH, where H = (dlt)

T (dlt) −
(dult )T (dult ).

6: Qt=Q
7: end for

Note that it is often the case that more than two plat-
forms are involved for user linkage in the real applications.
Yet, most previous works have focused on pair-wise user
linkage problem. If a third platform is needed to link with
the existing platforms, many algorithms may suffer from
optimization problem. For proposed batch model (4) and
online model (10), combining the alternative optimization
technique into the CCP framework can be adopted to han-
dle this problem, i.e., we optimize one variable w1 by using

the fixed other values w3 and w2. One salient feature of
our model is that we directly connect multiple platforms
by considering diverse connection relationship, instead of
integrating results from pair-wise connections. Note that
the optimization problem has been turned into one with
one variable optimization, such that many algorithms can
be used to solve this problem. In a nutshell, the sketch of
the optimization process for proposed model is easy to be
adapted to multiple social platforms, as demonstrated in our
experiments with three platforms in Section 6.2.1.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Data Sets. We use the following four real data sets to
assess the performance of all methods in comparison:

• Weibo (http://www.weibo.com/): Weibo is one of the
most popular Chinese micro-blogging websites with
450 million active users, akin to a hybrid of Twitter
and Facebook.

• Renren (http://www.renren.com/): Renren is a lead-
ing real-name social networking Internet platform in
China, often dubbed as the Facebook of China with
162 million registered users.

• 36.cn (http://www.36.cn/): 36.cn is an online job-
hunting service in China serving more than 100 thou-
sand businesses with user-uploaded resumes.

• Zhaopin (http://www.zhaopin.com/): Zhaopin is an-
other publicly-listed company providing online job-hunting
service in China with more than 22 million resumes.

For Weibo and Renren, the ground-truth user linkage pairs
across these two platforms are manually annotated. For
the other three platforms (Renren, 36.cn, and Zhaopin), the
ground-truth user linkage across the three platforms are pro-
vided by our industrial partner who have access to the users’
real names and emails. A summary of the ground truth in-
formation is given in Table 2.

Table 2: A summary of cross-platform ground-truth
user linkage.

Data Set Weibo Renren 36.cn Zhaopin
Weibo NA 2186 NA NA
Renren 2186 NA 11268 9495
36.cn NA 11268 NA 2698

Zhaopin NA 9495 2698 NA

Renren & Zhaopin & 36.cn
835

Competing Algorithms. To evaluate the performance of
ULink, we chose three state-of-the-art supervised classifiers
— HYDRA[11], COSNET[33] and SVM[2] — and one non-
parametric method of KNN, explained as follows:

1. HYDRA [11]:a large-scale social identity linkage frame-
work via heterogeneous behavior modeling which learns
the mapping function by multi-objective optimization
incorporating both supervised learning on pair-wise ID
linkage information and the cross-platform structure
consistency maximization.



Table 3: A summary of user features used for each data set.
Data Set User Features

Weibo gender; birthday; location; educational background
Renren gender; nationality; birthday; location; educational background
36.cn gender; nationality; birthday; marital status; degree; work experience

Zhaopin gender; birthday; mailing address; educational background

2. COSNET [33]: an algorithm that addresses the UIL
problem by considering both local and global consis-
tency (network structure) among multiple networks,
which is useful in our setting as the requirement of
global consistency of network structure is not satis-
fied for some data sets. The training set is composed
of linked pairs and unlinked pairs. An efficient sub-
gradient algorithm is developed to train the model by
converting the original objective function into its dual
form.

3. SVM [2]:a binary prediction on user pairs using sup-
port vector machines on the proposed similarity calcu-
lation schemes for pairwise linkage setting. The train-
ing data is composed of linked pairs and unlinked pairs,
which is represented by 1 and -1 as the label respec-
tively.

4. KNN: We use K-Nearest-Neighbor (KNN) as a non-
parametric method as follows. When matching users
between two platforms Si and Sj , we take the user fea-
ture vectors of both platforms to form a unified feature
vector. For each testing user ui on Si, we use KNN
to generate k = 5 nearest users on Sj as matching
candidates. The final linkage is the result of majority
voting.

5. ULink-CCP: our batch model with Constrained Con-
cave Convex Procedure optimization method.

6. ULink-APG: our batch model with Accelerated Prox-
imal Gradient Update optimization method.

7. ULink-On: our online version of the ULink model.

Experiment Settings. Table 3 lists the information used
for each social platform. We adopt the bag-of-words model
for raw text data processing, and replace with the value of
0 for missing attributes. All methods are executed in the
MATLAB environment with the following implementations:
LIBSVM package[2] is used for modeling SVM; The codes
for both HYDRA and COSNET are developed based on the
original papers. We employ K-Nearest-Neighbor as predic-
tive classifier in LUS.

Experiments are conducted for both pairwise and multi-
platform (e.g., three platforms) linkage settings. Each ex-
periment is repeated for 10 times and both the mean and
the standard variance of the performance are reported. The
ground-truth linked pairs are divided into 5 folds every time,
4 folds being the training set and 1 fold being the testing
set. In the training set and testing set, non-matching pairs
are randomly sampled by setting two different ratios, 1:5
and 1:10, between the ground-truth matching pairs to non-
matching pairs. It is easy to set parameter B by 10n, n ∈ Z.
A guide of setting d is mentioned in section 7. The coef-
ficient C in our algorithm, SVM and COSNET is selected
via cross validation on the training data. For HYDRA, the

parameter p, which determines how the model learned ap-
proximates the Utopia solution, is set as 5 according to the
original paper. The two parameters, γL and γM , which de-
termine the relative importance of the problems in HYDRA
framework from a decision maker’s perspective, are set by
tuning on the validation set. For COSNET, the matching
graph is generated with the relation between users.
Evaluation Metrics. A well-established and widely-used
evaluation metric in many real user linkage applications is
to compare the top-k candidates for user linkage. In this
paper, we set k = 5 and evaluate all methods by computing
top-k precision for each test user as follows:

h(x) =
k − (hit(x)− 1)

k
.

where hit(x) represents the position of correct linked user
in the returned top-k users. Then precision, represented
by the symbol “hit-precision”, is calculated on N test users

by
∑N h(xi)

N
. For example, given the result of top-k users

{y1, y2, .., yk} for test data x, if y1 hits ground truth, hit(x) =
1, and h(x) = 1. Similarly, if y4 hits the ground truth,
hit(x) = 4, and h(x) = k−3

k
. For the multiple platforms,

average “hit-precision” will be report.

6.2 Experimental Results
We first evaluate our algorithm for the batch data setting

in Subsection 6.2.1, including both the pair-wise platform
case and multi-platform case, and then for the online data
setting in Subsection 6.2.2.

6.2.1 Batch Data Setting
Pairwise Platform Case. This section illustrates the re-
sults of the user linkage problem for pairwise platform case
on four real-world data sets. Figure 2 and Figure 3 respec-
tively show the performance on different ratio of unlinked
pairs and linked pairs.

Summary. Our proposed ULink models — both ULink-
CCP and ULink-APG — have consistently produced higher
hit-precision in all data sets than any other method, with
noticeable leading advantage over the rest except for the
“Weibo & Renren” case. Among other competing methods,
COSNET and HYDRA, both of which are partially based
on the structure of SVM each with their own advance, show
better performance than SVM in some data sets. While
KNN needs no training and runs faster, its performance fell
behind others in all sdata sets.

Detailed Analysis.

• HYDRA learns the linkage function via optimizing two
objective functions, i.e., the supervised learning using
the reliable ground truth, and the structure consis-
tency maximization by modeling the core social net-
work behavior consistency. Its performance, as demon-
strated by our experiments, hinges heavily upon the
availability of the consistent structure of friendship
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(d) 36.cn & Zhaopin

Figure 2: Pair-wise platform user linkage comparison for batch data setting (with ratio between the ground-
truth matching pairs to non-matching pairs being 1:5).

0.0

0.2

0.4

0.6

0.8

1.0

hi
t-p

re
ci
si
on

 

 SVM            KNN  
 HYDRA       COSNET  
 ULink-CPP  ULink-APG

0

(a) Weibo & Renren

0.0

0.2

0.4

0.6

0.8
hi
t-p

re
ci
si
on

 

 SVM            KNN  
 HYDRA       COSNET  
 ULink-CPP  ULink-APG

0

(b) Renren & 36.cn

0.0

0.2

0.4

0.6

0.8

1.0

hi
t-p

re
ci
si
on

 

 SVM            KNN  
 HYDRA       COSNET  
 ULink-CPP  ULink-APG

0

(c) Renren & Zhaopin

0.0

0.2

0.4

0.6

0.8

1.0

hi
t-p

re
ci
si
on

 

 SVM            KNN  
 HYDRA       COSNET  
 ULink-CPP  ULink-APG

0

(d) 36.cn & Zhaopin

Figure 3: Pair-wise platform user linkage comparison for batch data setting (with ratio between between the
ground-truth matching pairs to non-matching pairs being 1:10).
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Figure 4: User linkage on three platforms. (a)Result
of building model with different connection orders.
A: Renren, B: 36.cn, C: Zhaopin. (b) Result of user
linkage on three platforms.

network across platforms. It performed worse than
our ULink model in the three cases where such con-
sistent structure is not available, and excelled for the
Renren-Weibo case, the only one where its hypothesis
is supported. For example, in online job-hunting data
sets of Zhaopin and 36.cn where users are indepen-
dent and observed social links are weak, the absence of
the constraint of structure consistency critical for ob-
jective function optimization resulted in its degraded
performance similar as SVM. On the other hand, it is
also worth noting that the pre-computation of affinity
scores as a prerequisite for the building model imposes
extra computation time upon HYDRA.

• COSNET is found to be in a similar situation as HY-
DRA. Its performance could rival ours in data sets
where the matching graph based on friend relation-
ship is available, as in Renren-Weibo case, yet it fared
not as well in all other data sets.

• SVM presents in general an average performance in all
cases. The more important reasons why it is not a good

choice for the MUIL problem are that, while it enjoys
easy deployment for pairwise linkage classification, it
suffers from a number of challenging issues including
the high computational complexity if using Gaussian
kernel, the difficulty in finding right parameters and
missing values.

• KNN results in the worst performance in general al-
though it is the simplest and fastest among all with no
training required. On the other hand, this illustrates
the significance of our proposed concept of latent user
space (LUS) because, while applying KNN directly in
the space defined by the feature vectors of the link-
ing social platforms has been shown to work poorly,
our ULink methods do achieve the best performance
by applying KNN in the LUS.

• ULink-CCP and ULink-APG achieve the best perfor-
mance in most of the data sets, making them in general
the best choices for the MUIL problem. The factors
of consideration when choosing between them are (I)
ULink-APG is a better choice in terms of time com-
plexity when the number of dimensions is high; and
(II) The influence of initial condition of ULink-CCP is
smaller than ULink-APG.

Multi-Platform Case. We demonstrate in this part why
existing solutions suffer from inherent defects when solving
the user identity linkage problem on more than two plat-
forms, driving home the importance of a new framework like
our proposed ULink. which more naturally models the fun-
damental structure of the MUIL problem. Figure 4 shows
the result of user identity linkage for multi-platform case,
i.e., the three platforms of Renren, 36.cn and Zhaopin.

First of all, since existing solutions consider a pair of plat-
forms at a time, one needs to derive the final user linkage
result for the three platforms by integrating the results of
two pairwise linkage, i.e., A→ B and B → C. As shown in
Figure 4 (a), for different orders of integrating the pairwise
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Figure 5: Result of online framework in the different data sets.

linkage, all the final results of each competing algorithm ex-
hibits noticeable inconsistency. This clearly illustrates the
limitation of trying to handle the multi-platform case with
pairwise linkage approach, an worrying issue particularly im-
portant when no theoretical analysis is known as yet on the
stability of the final linkage results thus obtained. Notice
that the problem only gets exacerbated as the number of
platforms involved increases.

Furthermore, in Figure 4 (b), we take the best results
among the different ordering for each method to compare
with ULink-CCP. In fact, different connection orders has
already been considered in our ULink framework, so that
ULink-CCP still outperforms all the rest demonstrates that
our model not only provides a stable linkage result unavail-
able from previous methods, but also offers a better one by
a model of greater generality. In particular, the hypoth-
esis of structure consistency is hard to be all satisfied for
multi-platform case, the performance of HYDRA is there-
fore similar as SVM. COSNET is not compared due to the
unavailability of necessary information for building match-
ing graph.

6.2.2 Online Data Setting
In this part we show how our proposed ULink-On model

is able to benefit from new linkage information and improve
performance in the online data setting. We notice that this
is the first time an online model is proposed for the user
identity linkage problem, we therefore choose the state-of-
the-art online learning algorithm Passive-Aggressive (PA)[3]
for comparison 3.

Figure 5 shows that ULink-On is able to take advantage
of new input of user pairs from incoming data stream to
update and improve model — the hit-precision of ULink-On
increases continuously with the increasing number of linkage
pairs. In contrast, the performance of PA-I does not exhibit
similar improvement. We assume each incoming piece of
data contains one linked pair and one unlinked pair, and
verify algorithms on fixed test data set.

In a nutshell, two important characteristics of our pro-
posed ULink-On make it particularly useful for the online
setting of the MUIL problem where new data input are con-
stantly generated on various social platforms: (I) It has the
ability to update model with improved performance with
incremental new data input, e.g., one linked pair and one
unlinked pair; and (II) It does not need to store a large
amount of data for model construction.

3The code used is from Online Multiclass Prediction toolbox
at http://www.cs.huji.ac.il/ shais/code/

7. DISCUSSION
We discuss two further challenges of the MUIL problem,

together with our solution in plan as future work.
(1) One challenge for any learning algorithm to solve the

MUIL problem is how to efficiently handle the exponentially
large number of known non-matching user pairs. This issue
can be addressed in our framework by applying the cutting
plane method[8, 23] to the optimization problem — The
constraints most violated are iteratively added to the set of
cutting planes for model training until convergence. Alter-
natively, the latest ensemble method EasyEnsemble[13] can
be used to build Ensemble Latent User Space model, which
will not ignore useful information by under-sampling, and
obtain the final result by majority voting.

(2) The curse of dimensionality has remained a challeng-
ing issue hard to be dealt away in the MUIL problem. In
our framework, LUS is built through projection matrix with
dimensions adjustable according to measures such as the
separability of users. In particular, we can use user simi-
larity as a measure to guide the setup of dimensions for a
given platform before model training: the higher the user
similarity, the larger the value of dimension d.

8. CONCLUSION
This paper introduces the concept of Latent User Space

to address in a unified ULink framework two important is-
sues not yet sufficiently explored for the MUIL problem,
i.e., platform multiplicity and online data generation. The
proposed batch framework ULink based on LUS could be
easily shifted into online framework ULink-On. Experiments
on real-world data sets have demonstrated the effectiveness
of both the proposed batch mode algorithm and the online
version, with user linkage results outperforming the state-
of-the-art existing methods for both pairwise-platform and
multi-platform settings.

Our future work would further advance the efficiency and
scalability of our proposed framework with improved per-
formance, and explore theoretical foundation for the latent
user space model. It is also in our interest to extend the idea
of Latent User Space to unsupervised learning framework.
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