
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2016

Sinabro: A Smartphone-Integrated Opportunistic
Electrocardiogram Monitoring System
Sungjun KWON
Seoul National University

Dongseok LEE
Seoul National University

Jeehoon KIM
Seoul National University

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Seungwoo KANG

See next page for additional authors

DOI: https://doi.org/10.3390/s16030361

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Part of the Medicine and Health Sciences Commons, and the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KWON, Sungjun; LEE, Dongseok; KIM, Jeehoon; LEE, Youngki; KANG, Seungwoo; SEO, Sangwon; and PARK, Kwangsuk. Sinabro:
A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System. (2016). Sensors. 16, (3), 1-16. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3175

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/43163581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/s16030361
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Author
Sungjun KWON, Dongseok LEE, Jeehoon KIM, Youngki LEE, Seungwoo KANG, Sangwon SEO, and
Kwangsuk PARK

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/3175

https://ink.library.smu.edu.sg/sis_research/3175?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/3175?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages


sensors

Article

Sinabro: A Smartphone-Integrated Opportunistic
Electrocardiogram Monitoring System

Sungjun Kwon 1, Dongseok Lee 1, Jeehoon Kim 1, Youngki Lee 2, Seungwoo Kang 3,
Sangwon Seo 4 and Kwangsuk Park 5,*

1 Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul 08826,
Korea; sjkwon@bmsil.snu.ac.kr (S.K.); azuremoon@bmsil.snu.ac.kr (D.L.); jhkim119@bmsil.snu.ac.kr (J.K.)

2 School of Information Systems, Singapore Management University, Singapore 178902, Singapore;
youngkilee@smu.edu.sg

3 School of Computer Science and Engineering, KOREATECH, Cheonan, 31253, Korea;
swkang@koreatech.ac.kr

4 The 7th R&D Institute, Agency for Defense Development, Daejeon, 32024, Korea; prizeworthy3@gmail.com
5 Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Korea;

pks@bmsil.snu.ac.kr
* Correspondence: pks@bmsil.snu.ac.kr; Tel.: +82-2-2072-3135

Academic Editor: Ki H. Chon
Received: 4 February 2016; Accepted: 7 March 2016; Published: 11 March 2016

Abstract: In our preliminary study, we proposed a smartphone-integrated, unobtrusive
electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically
during daily smartphone use without explicit user intervention. The proposed system also monitors
ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the
pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and
affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor
device; (2) improving the feature extraction process; and (3) evaluating extensions of the system.
We evaluated these extensions with a good set of algorithm parameters that were suggested based
on empirical analyses. The results showed that the system could capture ECG reliably and extract
highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily
smartphone use.

Keywords: opportunistic sensing; unobtrusive sensing; smartphone-integrated; phone case-type;
ECG; sensor

1. Introduction

Daily electrocardiogram (ECG) monitoring provides pervasive healthcare applications with new
opportunities. It enables heart diseases, such as arrhythmias, to be detected and can prevent sudden
death caused by heart attack [1,2]. In addition, ECG can be utilized to infer stress level, emotion and
sleep quality, since it is a sensitive indicator that shows changes in the autonomic nervous system
(ANS) [1,3–5]. Daily ECG monitoring in various life situations is compelling, in order to bring these
applications to reality.

Despite the high potential of daily ECG monitoring, its obtrusiveness makes it challenging for
it to become widely deployed and available. Fundamentally, ECG sensing requires more than two
body parts (with a sufficient electric potential difference) that are stably attached to the electrodes of a
sensor. With this requirement, users of existing ECG monitoring systems need to intentionally touch
the sensor electrodes continuously or wear uncomfortable wearable devices.

Prior studies have addressed such obtrusiveness. A popular approach is to reduce the user’s
attention and consciousness by embedding the sensors into accessories, such as a wristband and a
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belt [2,3,6,7]. However, in this approach, monitoring is only possible when users are wearing such
sensor-embedded accessories, limiting the use cases to clinical or fitness scenarios. Another interesting
approach has been to integrate the sensing function with personal daily items, such as a smartphone.
For instance, AliveCor [8] is a smartphone case equipped with an ECG sensor, enabling a user to
measure ECG anywhere and anytime. However, AliveCor requires explicit initiation and attention
from users. The user should consciously contact the sensor on the back of the case with the skin of
the chest or hold the sensors with both hands to capture ECG. Such explicit attention being required
makes consistent ECG monitoring challenging.

Our primary goal is to address this obtrusiveness by overlaying ECG monitoring onto daily
smartphone use. For example, an ECG signal is opportunistically sensed without the user’s
consciousness while the user is using his or her smartphone for calling, texting or gaming. This
approach reduces the obtrusiveness by avoiding user intervention for sensing. Moreover, this
approach enables diverse healthcare applications to be realized in everyday situations. For instance, a
smartphone application can inform users of their stress levels or emotional status during phone calls
and allow the users to respond appropriately, as they do naturally during face-to-face conversation.

While prior works have studied smartphone-integrated ECG sensing systems [2,3,6,8],
opportunistic sensing approaches have hardly been considered. We need to overcome two main
challenges in order to realize the opportunistic approach. First, we should investigate whether
there are sufficient sensing opportunities during the user’s daily smartphone use to infer his/her
health status. Second, we need to develop a technique to improve the reliability of the data that are
opportunistically captured during the user’s natural smartphone use. The quality of the ECG signal
captured by a smartphone-integrated sensor is easily reduced by various motion artifacts, e.g., playing
an interactive game with continuous touching gestures. Such unreliable ECG data are likely to decrease
the accuracy of inferring health status or even make it impossible.

In our preliminary study [9,10], we proposed an initial design for Sinabro and studied its
performance. In this paper, we have extended the study’s scope by: (1) upgrading the sensor device;
(2) improving the feature-extraction process; and (3) evaluating extensions of the system. First, we
enhanced the design of Sinabro’s prototype sensor. The number of electrodes and their placement
were changed to monitor ECG more reliably. On top of the raw ECG signal, Sinabro extracts diverse
and reliable ECG-derived health features, such as heart rate (HR) and heart rate variability (HRV)
parameters. For reliable feature extraction, we improved the extraction process, which intelligently
removes noisy signals caused by motion artifacts and interpolates missing data, if possible. It also
drops data with consecutively long, missed features to guarantee the reliability of the extracted
features. We evaluated these extensions using a good set of algorithm parameters suggested based on
empirical analyses.

2. Potential Opportunities for Daily ECG Monitoring

In the design of the Sinabro system, it is essential to understand whether sufficient opportunities
to measure ECG signals during daily smartphone use exist. In this respect, we first review our previous
study [9], in which we performed an experiment to answer the following questions:

‚ How many potential opportunities exist per day?
‚ How long does each opportunity last?
‚ How reliably can ECG signals be captured during the opportunities?

Fourteen participants (male/female: 10/4, age: 23–34) using an Android smartphone were
recruited in this study. We collected their smartphone usage logs, which included a wide range of
user interaction events, i.e., start/end times of call events, touch events for typing, screen orientation
change events and app use events, for six days, on average, using a custom-developed logging app.
We analyzed the logs to figure out the number of ECG-sensing opportunities and their durations.
The analysis focused on three smartphone use cases: (1) calling without using earphones, a headset
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or speakerphone; (2) text typing; and (3) gaming and taking pictures in landscape orientation. We
targeted the smartphone use cases that included two hand contact or one hand and an ear contact
with a smartphone. Users often hold a smartphone with two hands when typing on a keyboard,
playing a game and taking a picture. During a phone call without accessories, users usually hold
their smartphone with one hand and touch its head to one ear. The collected events were classified
into five groups by time duration. The time durations were 10–30 s and 30–60 s for heart rate (HR)
and ultra-short-term heart rate variability (HRV) analysis [5,11], 1–2 min for the high-frequency HRV
components [1], 2–5 min for the low-frequency HRV components [1] and five or more minutes, which
is the typically recommended duration for HRV analysis [1,4]. Note that the potential opportunities
are not the opportunities when the ECG signal could actually be captured, but the potential feasibility
for sensing.

The results showed that numerous potential opportunities existed for unobtrusive ECG
monitoring throughout the day, as shown in Figure 1. The average number of potential opportunities
varied from about 1.7–23.3, depending on the time durations (Figure 1a). Almost 30 opportunities
existed for HR and ultra-short-term HRV analysis (10–30 s, 30–60 s) per day. Although the number of
opportunities varied between individuals, the lowest number of potential opportunities was more
than eight, and three users who used smartphones frequently showed more than 80 opportunities,
on average. The average number of opportunities differed depending on the use case (see Figure 1b).
The largest number of opportunities came out in the typing case. In the typing case, the number of
opportunities with 10–30-second durations was remarkably larger than those of the other two cases,
which might be opportunities for HR and ultra-short-term HRV analysis. The call and landscape cases
had increased numbers of opportunities for larger time durations. Phone calls and gaming are likely to
be continued for relatively longer; therefore, ECGs captured during those opportunities might enable
HRV analyses lasting more than 2 min to be performed.
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3. Sinabro Design and Prototype

Sinabro includes a phone case-type sensor and smartphone middleware. The sensor and the
middleware work collaboratively to monitor reliable ECG-derived contexts and to deliver them to
multiple pervasive healthcare applications through Sinabro APIs. As mentioned, we proposed the
concept of an unobtrusive smartphone-integrated ECG monitoring system during natural smartphone
use and an early prototype in our previous study [9]. In this study, we considerably extend our early
work mainly in two aspects. First, we enhanced the sensor design of the Sinabro prototype for reliable
ECG sensing. The number of electrodes and their placement were changed to capture ECG more
reliably. The sensing hardware was also upgraded to capture multiple ECG channels at the same
time. The simultaneously sensing of multiple ECG channels can feasibly enhance the quality of the
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captured signal using blind source separation techniques, such as independent component analysis
(ICA) [12]. Second, we significantly improved the feature extraction process and developed a reliable
QRS-peak-detection algorithm that intelligently removes noisy signals caused by motion artifacts and
interpolates missing data, if possible. It also drops a long segment of consecutively-missed data from
the feature extraction to guarantee the reliability of the extracted features. In the following subsections,
we present the details of the new sensor design and the feature extraction process.

3.1. Phone-Case-Type ECG Sensor

We designed the Sinabro sensor device for reliable and durable ECG monitoring without user
intervention during daily smartphone use. The new sensor prototype is shown in Figure 2. Multiple
metal-based dry electrodes (Figure 2a, a©- d©) are placed on the outer frame of the case to come into
contact with the user’s two hands during natural smartphone use. We also placed an electrode on the
head of the front (Figure 2a, a©-front) to sense ECG from the user’s ear during a call. The electrode
a©-front is the continuation of the electrode a©. We used aluminum film for the electrodes, since it has

enough conductivity to capture ECG and high durability against sweat and humidity. Furthermore, its
thinness makes it easy to adapt to the curved surfaces of a smartphone. Our phone case-type sensor
enables users to easily adapt the Sinabro system onto their existing smartphones.
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The design of the prototype sensor mainly targets three use cases in daily smartphone use
situations: phone calls, two hands in landscape orientation (e.g., during gaming, photo taking) and
in portrait orientation (e.g., typing, gaming). During a phone call, the user’s ECG is captured from
his/her ear and the hand that holds the smartphone by a combination of the electrode a©-front and b©
or c©. During the use cases with two hands in portrait orientation, ECG is captured by the electrodes b©
and c©. In landscape orientation, the electrodes a©-rear and d© cover ECG sensing. As we mentioned
in Section 1, ECG sensing fundamentally requires more than two body parts to be in contact with
the sensor, which have a sufficient electric potential difference. With this requirement, holding the
smartphone with one hand in portrait orientation was excluded in a target situation despite this
quite frequent use case. The sensor device simultaneously monitors multiple ECG channels from
four combinations of electrodes ( a©, b©, a©– c©, b©, c© and a©– d©). We used a low-power integrated
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ECG front-end ADC (ADS1298, Texas Instruments, USA) (Figure 2a, 2©) to perform major sensor-side
processing. It extracts multiple ECG channels and converts the analog signals into 24-bit digital data.
The digitalized multi-channel data are delivered to the micro controller unit (MCU) (ATMEGA128A,
Atmel, USA) (Figure 2a, 1©) via the serial peripheral interface (SPI), and the data are wirelessly
forwarded to the smartphone through a Bluetooth interface (ESD-200, SENA, Korea) (Figure 2a, 3©).
The MCU parses the command from the middleware and controls the device, e.g., sensing turned
on/off, configuring the sampling rate, etc. It also handles the Bluetooth module and ADC. To conserve
energy consumption, the processing and communication modules on the sensor device are only turned
on when the middleware detects a potential opportunity for ECG sensing. The default sampling
frequency is 250 Hz, and it can be controlled as 125 Hz, 250 Hz or 500 Hz by Sinabro middleware in real
time. There is a trade-off between the reliability of HRV parameters and the processing cost. A higher
sampling rate reduces the error of RR intervals and it enables HRV parameters to be extracted more
accurately. On the other hand, it requires more battery consumption and processing cost by increasing
the data rate and wireless communication. Therefore, our system has an option to control the sampling
rate at diverse resolutions depending on the purpose of the pervasive healthcare application using our
system. The device consumes 166.5 mWh during processing and communicating and only 51 mWh in
standby mode.

3.2. Sinabro Middleware for Extracting ECG-Derived Features

The Sinabro middleware manages and controls the sensor device by monitoring the user’s usage.
It extracts ECG-derived features from the captured ECG and delivers them to multiple pervasive
healthcare applications. Figure 2b shows the architecture of the middleware. The middleware
turns the sensor device on when a potential opportunity is detected and selects the most proper
channel (a combination of electrodes) to sense ECG reliably by monitoring the user’s smartphone use
(Figure 2b, 1©). When the proper channel is selected, the middleware receives raw ECG data from the
channel via Bluetooth connection and delivers them in real time to the preprocessor and the feature
extraction module (Figure 2b, 2©, 3©). The raw ECG data and the extracted features can be delivered in
real time to multiple applications using Sinabro APIs (Figure 2b, 4©).

The overall operations for feature extraction are conducted as follows. First, the preprocessor of
the middleware applies a digital bandpass filter (bandwidth: 7 Hz–35 Hz) to the raw ECG data, in
order to reduce noise caused by environmental power, electromyogram (EMG) and hand motion. The
applied cutoff frequency also helps to clarify QRS peaks in the signals. Then, the QRS peak detector
intelligently filters out the noisy ECG data and finds reliable QRS peaks efficiently. It also includes
a correction process for missed or wrongly-detected QRS peaks by detecting abnormal RR intervals.
Finally, ECG-derived features (HR and HRV parameters) are calculated using RR intervals from the
results of the QRS peak detector. To reduce the error of the extracted features in highly noisy situations,
the QRS peak detector determines the data segments with many missing or incorrectly-detected peaks,
which make it hard to perform accurate correction, and drops them from the extraction process. Note
that the feature extraction process is applied to 30-s window data and is executed every second. The
window size is compatible with ultra-short-term heart rate variability (HRV) analysis [5,11]. Other
high-level features, such as stress level and affective state, can be further derived based on the extracted
features [4,5].

3.2.1. QRS Peak Detector

In many of the potential opportunities targeted by the Sinabro system, the users’ hands might
interact with his or her smartphone continuously. Therefore, the captured signals can easily be exposed
to the artifacts caused by the hand motion. It is difficult to detect QRS peaks correctly from ECG
signals that are seriously distorted by artifacts. These wrongly-detected or missed QRS peaks can
degrade the reliability of the QRS interval-based derived features, such as HR and HRV.
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We developed a custom QRS peak detection algorithm that is suitable for the limited computing
environment of smartphones to address the problem. It guarantees the reliability of the extracted
features by dropping noisy data from the extraction process. In designing the algorithm, we prioritized
the reliability of the features. Considering the results of our preliminary study (see Section 2), which
showed the existence of numerous and frequent sensing opportunities in daily smartphone use, we
thought that providing reliable ECG-derived features to healthcare apps was more important than
providing more of them. We designed the algorithm to reconstruct missing or dropped ECG data, if
possible, to increase the chances of feature extraction.

The processing flow of the algorithm is as follows (see Figure 3). First, the algorithm receives
bandpass-filtered ECG data from the preprocessor and filters out the data with a lower amplitude
than a low-amplitude threshold, th_la (Figure 3a). After the bandpass filtering, R waves are relatively
clarified, so that their amplitude level becomes quite distinct from that of other waves, i.e., P, Q, S, and T
waves. Low-amplitude filtering applied to such ECG data can efficiently sort out QRS peak candidates
and reduce the amount of data that the algorithm needs to manage and process. For example, assume
that one-second windows of ECG data are collected at a sampling rate of 250 Hz and that the user’s
heart rate is 60 BPM. Then, only one or two samples among 250 are a QRS peak, and the other samples
are not. An important issue in this step is how to determine the threshold, th_la, since a more precise
threshold can result in more accurate QRS peak detection. The threshold is obtained by a coefficient
value times the mean of the QRS peak amplitudes. For the mean QRS peak amplitude, we considered
that different users usually show different ECG features, such as QRS peak amplitude, and different
use cases may also affect the signal power. Thus, we obtained the mean of the QRS peak amplitudes in
a personalized way with calibration data, which are individually collected for 30 s in three use cases,
i.e., calling, holding in landscape orientation and holding in portrait orientation, while maintaining
stable contact between the sensor and body through the user’s cooperation. Accordingly, we can set
the personalized and case-sensitive thresholds for different users. The coefficient value was set as 0.6,
which was determined based on our empirical analysis (see Section 4.2.).

Next, the algorithm detects noisy sections among the QRS peak candidates and filters them using
a smoothing technique. When the smoothing technique is applied to the candidate data, the noisy
data involve longer time durations than the clear QRS peaks (Figure 3b). Thus, the algorithm detects a
noisy section whose width is larger than a certain threshold. The threshold is also empirically obtained;
it is currently 1.05-times the mean width of the R wave from the smoothed calibration data. Through
this step, most invalid QRS peak candidates can be removed.

The third step is a correction process for wrongly-detected or missed QRS peaks. This is important
to improve the reliability of the derived features, such as HRV parameters. Wrongly-detected or
missed QRS peaks degrade the accuracy of the derived features by inducing inaccurate RR intervals
(Figure 3c). The correction process removes wrongly-detected QRS peaks mapped to abnormal
intervals and recovers the missed QRS peaks using interpolation (Figure 3e). The details of the
correction process are as follows. First, the algorithm detects invalid intervals. We statistically set the
range of a valid interval length using the reference ECG data acquired for evaluation. We calculated
mean and standard deviation (SD) of valid RR intervals in the reference data and set the range as
mean RR interval ˘ 1.96 ˆ SD. Next, the algorithm sequentially iterates all RR intervals to determine
whether two detected peaks mapped to each of them are valid using the correction rule (shown in
Table 1), which considers the conditions of the previous and later intervals. The head and tail peaks
are defined as the front and rear peaks in two peaks mapped to the current interval, respectively.
Thirteen intervals shown in Figure 3c were calculated from the detected peaks shown in Figure 3b.
The correction results for the QRS peaks are shown in Figure 3d. The correction rule should be applied
sequentially to the intervals. For example, when the correction process iterates the 11th interval, the
current interval is invalid, so the tail peak is not fixed in this iteration. In the next iteration for the 12th
interval, the current interval is invalid, and the head peak is not fixed; so the tail peak is not fixed, and
the head peak is decided to be invalid.
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Figure 3. The detection and correction process of the QRS peak detector. (a) Blue solid line:
bandpass-filtered ECG data; black solid line: the threshold for low-amplitude filtering, th_la; (b) blue
line: low-amplitude-filtered data; black solid line: smoothed signal of the blue line; red circle: detected
QRS candidates; red bar: noisy section; blue bar: valid QRS peak section; (c) gray box: the range of
valid intervals; blue solid lines: valid intervals; red dotted lines: invalid intervals; (d) O: valid QRS
peak; X: invalid QRS peak; (e) blue solid line: bandpass-filtered ECG; red circle: detected QRS peaks
after correction; magenta star: interpolated QRS peaks.

Table 1. The correction rule for the wrongly-detected QRS peaks by invalid short intervals.

Current Interval Head Peak Tail Peak

valid
valid valid

invalid valid
not fixed Ñ valid valid

invalid
valid not fixed

invalid not fixed
not fixed Ñ invalid not fixed

After the correction process, the algorithm re-calculates the RR intervals from the corrected QRS
peaks and finds the section where the QRS peaks are missing by detecting invalid long intervals. The
algorithm interpolates the sections mapped to the invalid long intervals (Figure 3d) into multiple short
intervals using a custom-developed interval split model [13] to recover the missed QRS peaks. The
model predicts possible cases for the interpolation, including the estimated number and length of
the short intervals. It uses the piecewise cubic Hermite (PCH) method for the interpolation. If the
number of cases is greater than one, the model will choose the best case to be the one whose sum of the
estimated lengths of the short intervals is most similar to the original length of the invalid long section.

The PCH method shows superior performance in interpolating missed QRS peaks [14]. However,
if many QRS peaks are consecutively-missed, the performance of the interpolation would degrade
rapidly. Therefore, the algorithm drops windows that include invalid long intervals with more than
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an estimated three missed QRS peaks. This threshold was also set based on the empirical analysis
described in Section 4.2.

We conducted a simple test to measure the power consumption of Sinabro middleware in
monitoring mode and standby mode using the “Battery” menu in the Android settings. According to
the test, the power consumption of middleware in monitoring mode is 290.7 mWh. In standby mode,
the “Battery” menu did not show the consumption because of its negligible amount.

3.2.2. Sinabro APIs

Sinabro provides APIs to support diverse pervasive healthcare applications. Table 2 shows the key
APIs of Sinabro. Two primitives, registerHRListener() and registerHRVListener(), enable applications
to trace HR and HRV on the fly. Once an application is registered, it receives updates for the requested
features from Sinabro. The application also assigns the target use cases using a condition argument,
e.g., a phone call application monitors the user’s heart rate when the user is on the phone with a friend.
Applications can also retrieve the user’s high-level contexts, such as stress and affective states, using
registerContextListener(), which are derived from HR and HRV. The high-level contexts are derived
using existing methods [4,5], and the methods are easily incorporated into our feature extraction logics.
The applications also obtain historical data using getHistory(), e.g., “Let me know my HR and stress
values when I was on a subway train to the office.” Sinabro provides a SQL interface to easily query
stored information.

Table 2. Key APIs. HRV, heart rate variability.

Monitoring HR and HRV

registerHRListener(callback(HR), condition)
registerHRVListener(callback(HRV), condition)
* condition = TARGET_APP|TARGET_MODE
class HR {long timestamp; int HR;}
class HRV {long timestamp; float LF; float HF; float LF/HF;
float RMSSD; float SDNN; . . . };

Monitoring HR-/HRV-derived contexts registerContextListener(callback(Context), condition, type)
* type = STRESS|AFFECTIVE_STATE| . . .

4. Evaluation

4.1. Experimental Setup

Fourteen participants were recruited from Seoul National University (male/female: 9/5; average
age: 25.1; SD: 2.36) for this study. This study was approved by the Institutional Review Board of
Seoul National University Hospital (IRB No. C-1512-110-728). We provided the participants with a
smartphone equipped with the Sinabro prototype; we used the Samsung Galaxy S4 for the prototype.
The sampling rate of the sensor device was set as 250 Hz. To collect raw ECG data and extract
feature data from the Sinabro system, we asked them to use the smartphone naturally under five
predetermined use cases: texting in the portrait and landscape orientations, playing highly and less
interactive games in landscape orientation and calling without a hands-free device. Each use case was
performed for 5 min.

The detailed settings for each use case were as follows. In the texting case, we asked the
participants to have a conversation with the experimenter through a messenger app for following
their natural typing. In the gaming case, they were asked to play two games with different interaction
levels. One is a highly interactive action game, Touch Fighter for Kakao, which incurs frequent and
strong inputs (at least 1–2 inputs per second, up to five). The other was the low-interaction baseball
game, Com2uS Professional Baseball 2015, which involves relatively less frequent, gentler inputs
(avg. 0.5 per second). Both games were played with two hands in landscape mode. For calling, the
participants were asked to have a conversation with the experimenter through a phone. They held the
phone with their left hand and touched it to their left ear.
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During the use cases, the raw ECG data sensed from a channel selected by the Sinabro middleware
were collected. The detected QRS peaks and derived features by the middleware were also obtained.
The reference ECG data were simultaneously collected using a conventional ECG acquisition system,
BIOPAC MP150 with the ECG100C module [15], with Ag/AgCl electrodes, which were attached to the
left and right forearms.

Before the experiment, we collected raw ECG data for 30 s under stable contact with the sensors’
electrodes as the personal calibration data. The calibration data were collected for three cases: holding
in the portrait and landscape orientations and calling without any motion in the contacted body parts.

4.2. Parameter Setup in the QRS Peak Detector

In this subsection, we present empirical analyses to determine the parameter values used in QRS
peak detection. As mentioned, the QRS peak detector uses multiple thresholds to filter out unreliable
ECG data before feature extraction, in order to provide accurate peak detection and reliable feature
extraction, e.g., the threshold for low-amplitude filtering, detecting noisy sections in smoothed data of
QRS peak candidates and dropping data with long, consecutively-missed QRS peaks. These thresholds
can make a trade-off between the reliability of the extracted features and the rates of the dropped
or filtered data. Precisely-refined thresholds allow us to avoid incorrect filtering and to keep the
reliability of the extracted features at a reasonable level. Before the system evaluation, we performed
three analyses to find better thresholds, in order to decrease the error of the extracted features and the
rates of the dropped data at the same time. We used the average error of the HRV parameters and
the average rates of the dropped data as the evaluation metrics for the analyses. The parameters are
described in Section 4.3.

4.2.1. The Number of Consecutively-Missed QRS Peaks for Data Drop

First, we looked into the desirable number of consecutively-missed QRS peaks to decide whether
a window of data should be dropped. If the number is large, we can include many data windows
for feature extraction. However, the error of the extracted features, such as the HRV parameters,
can increase, since there are many consecutively-missed peaks, which make it difficult to correctly
interpolate the missed peaks. On the other hand, if the number is small, we might drop many data
windows, and thus, the chance to extract the features can decrease. However, the reliability of the
extracted features from the remaining windows would be improved. We calculated the average error
of HRV parameters and the average drop rates of the data windows under different thresholds, i.e.,
1~6. We controlled the coefficient value for the low-amplitude filtering threshold as 0.6 and used
personalized and case-sensitive thresholds for this analysis.

The results show the trade-off between the average error of HRV and the drop rate by the
threshold (see Figure 4). In the threshold from 1–3, the drop rate decreased rapidly, but the error
slightly increased. From 3–6, the trends of increasing error and decreasing drop rate are similar. Based
on the results, we empirically set the threshold as three for data drop.
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4.2.2. The Effect of the Personalized, Case-Sensitive Threshold

Next, we examined the effect of a threshold for low-amplitude filtering. As shown in Figure 3a, the
QRS peak detector first applies low-amplitude filtering to select QRS peak candidates. A key parameter
for determining the threshold, th_la, is the mean of the QRS peaks’ amplitudes in the calibration data.
QRS peaks usually show different amplitudes, depending on the user. In addition, since Sinabro
captures ECG signals under different use cases, the amplitudes of the captured QRS peaks can be
different, even for the same user. This is mainly because the size of the electrodes contacting the body
and the body parts differs in different use cases. For example, a user’s hand posture in landscape
orientation might be different from that in portrait orientation, and the body parts contacting the
sensors while playing a game are different from those when calling. We investigated the effect of
a personalized and case-sensitive threshold on the performance of the feature extraction to set the
thresholds, by considering individually different ECG features and different sensing conditions in
different use cases. We compared the evaluation metrics from the calibrated thresholds with those
from the unified threshold. While the unified threshold was set as the mean peak amplitude from the
calibration data of all of the participants in all of the use cases, the personalized threshold was set as
the mean peak amplitude from the personal calibration data. The case-sensitive threshold was set as
the mean peak amplitude from the calibration data of all of the participants in the target use case. The
number of consecutively-missed QRS peaks for data drop and the coefficient value for low-amplitude
filtering were controlled as three and 0.6, respectively.

Figure 5 shows the analysis results. When the unified threshold was used, the average error and
the drop rate were 8.3% and 39.5%, respectively, which were the highest among all of the thresholds.
When applying the case-sensitive threshold, the HRV error decreased by 2%, and the drop rate also
decreased slightly, by 1.2%. With a personalized threshold, the drop rate decreased significantly to
22.2%, and the HRV error also decreased by 2.6%. The smallest HRV error and drop rate were obtained
when a personalized and case-sensitive threshold was applied. The results show that the personalized
and case-sensitive threshold filtered out the noise signals more precisely than the unified threshold.
While the personalized and case-sensitive threshold has the advantage of better performance, personal
calibration data need to be collected from users in order to apply the personalized and case-sensitive
threshold. Since the calibration data collection would be a one-time operation and the time for it is
reasonably short, about 30 s for each of the target use cases, it would only be a minor burden for users.
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4.2.3. The Coefficient Value to Derive the Threshold for Low-Amplitude Filtering

We analyzed the performance of the feature extraction with different coefficient values to
set the refined value of the threshold, th_la, for the low-amplitude filtering. We calculated the
evaluation metrics by changing the coefficient value from 0.3 to 0.8. For this analysis, we set the
number of consecutively-missed QRS peaks for dropping data as three and used a personalized and
case-sensitive threshold.

Figure 6 shows the results of the analysis. The drop rate greatly decreased by 54%, with the
coefficient value increasing from 0.3 to 0.6, and it was saturated at 0.6. The average error decreased
from the range of 0.3–0.6 and increased again after 0.6. Based on the results, we set the coefficient
value of the threshold for low-amplitude filtering as 0.6, which showed the smallest error, as well as a
low drop rate.
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4.3. Sensing and Feature Extraction in Actual Opportunities

We evaluated three aspects of the Sinabro prototype. First, we investigated how reliably
the Sinabro sensor device can capture ECG signals in actual sensing opportunities. Second, we
evaluated the accuracy of QRS peak detection. Third, we examined the performance of the feature
extraction. We assumed that the actual sensing opportunity is the moment when the users interact
with their smartphones using two hands or when they are on the phone without using an earphone or
hands-free device.

The evaluation metrics were as follows. First, we used the QRS peak detection ratio (PDR) to
evaluate the sensing reliability of the Sinabro device. The PDR is defined as the ratio of the number of
QRS peaks that experienced experts could manually detect from pre-filtered ECG data provided by
Sinabro to the number of the QRS peaks detected from the reference ECG data. Because the experts
could correctly detect more QRS peaks from clearer ECG data, the PDR shows the reliability of the
ECG data sensed by the Sinabro device.

Second, we used sensitivity (Se), the positive predictive value (PPV) and error (Er) as evaluation
metrics to evaluate the accuracy of the QRS peak detection algorithm. This is important, since the
accuracy of the QRS peak detection is a key factor to reliably derive the RR interval-based features.
The definitions of the metrics are given in Equation (1). TP, FP and FN were calculated by comparing
the QRS peaks detected by the peak detection algorithm with the QRS peaks that the experienced
expert detected manually from the reference ECG data.
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Se “
TP

TP` FN
ˆ 100 p%q, PPV “

TP
TP` FP

ˆ 100 p%q, Er “
FP` FN
TP` FN

ˆ 100 p%q ,

TP: the number of valid QRS peaks correctly detected by the algorithm
FP: the number of QRS peaks wrongly detected as valid peaks by the algorithm
FN: the number of valid QRS peaks not detected by the algorithm

(1)

Se is how many real QRS peaks were correctly detected or interpolated by the algorithm. PPV is
how many peaks that were detected as valid were real QRS peaks. Er is the ratio of the missed and
wrongly-detected peaks to the real QRS peaks.

Third, we calculated the average error rate of the derived features, including the HR and HRV
parameters, to evaluate the feature extraction performance. The error rate was obtained by comparing
the HRV parameters derived from the QRS peaks provided by Sinabro with those from the reference
ECG data. We also investigated the linear relationship between the HRV parameters from Sinabro and
those from the reference data using the Pearson correlation.

Feature extraction was performed every second with 30-s sliding time windows. The coefficient
value of the threshold for the low-amplitude filtering was 0.6, and we set personalized and
case-sensitive thresholds using the calibration data. The number of consecutively missed QRS peaks
for the data drop threshold was set as three. The extracted HRV parameters included the time-domain
parameters, mean HR, SDNN and RMSSD, frequency-domain parameters, LF, HF, normalized HF
(nHF), normalized LF (nLF), TF and LF/HF [1]. SDNN is SD of all normal RR intervals, and RMSSD is
the square root of the mean of the squares of the successive differences between adjacent RR intervals.
LF and HF are the power distribution across the low frequency from 0.04 HZ to 0.15 Hz and high
frequency from 0.15 HZ to 0.4 Hz, respectively. TF is total spectral power under 0.4 Hz. Because of
the limitation of the size of time windows, the extracted parameters do not include VLF, which is
the power distribution across the very low frequency from 0.0033 HZ to 0.04 Hz. LF/HF is the ratio
calculated by dividing LF power by HF power.

4.3.1. Sensing Reliability

Figure 7 shows the results of PDR. There were no missed QRS peaks in the 30-second holding cases.
This shows that our device can capture clear ECG signals under the condition of stable contact between
the sensor and the hands. For texting in portrait orientation and calling, most of the QRS peaks were
correctly detected; the PDRs were 98.7% and 96.5%, on average, respectively. In contrast, there were
relatively more missed peaks in the other three cases, i.e., texting and playing high- and low-interaction
games in landscape orientation. The average PDRs varied from 81.4% to 90.8%, and their SDs were
relatively large (11.8%–22.6%). We observed that four participants among the fourteen showed quite
low PDRs in the case of highly interactive gaming (33.2%–66.9%). While playing the low-interactive
game and texting in landscape orientation, two and three participants, respectively, also showed much
lower PDRs (54.8%–77.5%). Except for those participants, the average PDRs were larger than 96%.
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4.3.2. Performance of the QRS Peak Detector

The QRS peak detector precisely detected or corrected almost all of the QRS peaks in reliable ECG
data. Se was 99.9% on average, and only 0.1% of real QRS peaks were not detected. PPV was also very
high, and Er was very low: 99.6% and 0.5%, respectively. Only 0.4% of the peaks detected by Sinabro
were not correct QRS peaks. The results did not show significant differences among the different use
cases. Even in the case of highly interactive gaming, for which the algorithm showed the worst results,
the QRS peak detector missed only 0.2% of the real QRS peaks, and only 0.5% of the detected peaks
were wrong. However, about 38% of the data were dropped in that case. Note that Se, PPV and Er
were calculated by counting the matched peaks in the results from the QRS peak detector with the
real QRS peaks in the reference ECG data, which were manually detected by the experienced experts.
Therefore, these results do not include the accuracy of the RR intervals calculated from the results of
the QRS peak detector.

The QRS peak detector dropped an average of 21.6% of the data from the feature-extraction
process. Relatively more data were dropped in the use cases in landscape orientation. Those use cases
showed an average 32.3% drop rate. Participants 3, 7, 9 and 14 showed higher average drop rates than
the others in the use cases. Except for the results of these four participants, the average drop rate was
decreased to 8.1%. For calling and texting in portrait orientation, only 3.9% and 8.7% of the data were
dropped on average, respectively.

4.3.3. Performance of the Feature Extraction

The results showed that the Sinabro system can feasibly provide highly reliable ECG-derived
features. Figure 8a shows the average error of the HRV parameters and the average drop rates for
the different use cases. Overall, the average error of the HRV parameters was only 5.6%. The error in
the low-interaction gaming was slightly high, 8.3%, while the errors of the other use cases were less
than 5.6%. The use case of low-interaction gaming showed a different noise pattern that was short and
had a similar amplitude as the QRS peaks, but frequently appeared between QRS peaks. Therefore,
much of the data in that case were filtered by the smoothing technique, but not dropped, because of its
shortness. This means that many of the data’s QRS peaks were interpolated by the correction process,
which increased the error. In the use case of highly-interactive gaming, once the noise occurred, it
was relatively long and had a high amplitude. Therefore, its drop rate was about 5% higher than the
low-interaction gaming, even though its error was slightly lower.
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In the average errors of different parameters (see Figure 8b), most of the parameters showed less
than an average of 10% error, except LF/HF. The time-domain parameters SDNN, RMSSD and mean
HR showed relatively low error. The average error of SDNN was only 1.9%. The average error of mean
HR was especially low, at only 0.1%, which is almost completely accurate heart rate estimation. In
the frequency-domain parameters, few parameters showed somewhat noticeable errors. The average
errors of LF and HF showed relatively high error rates, and they caused the high error of LF/HF. They
were sensitive to the interval errors from the interpolated QRS peaks. However, the other parameters,
TF, nLF and nHF, showed less than 5.3% average error.

Sinabro also showed high feasibility in providing reliable variation trends of HRV parameters.
The HRV parameters extracted by Sinabro showed significantly high Pearson correlations with those
from the reference data (see Table 3). The average correlation was 0.97, and the SD was only 0.04.
We calculated the average correlation using only the correlations whose p-values were less than 0.01
to guarantee that the results would be statistically significant. Most of the data showed p-values
lower than 0.01. The ratio of the low p-value data was an average of 97%. The errors of LF, HF
and LF/HF were relatively high: greater than 5%. However, they showed a very significant linear
relationship (a correlation greater than 0.95) with the reference data. Therefore, Sinabro has an
advantage in supporting pervasive healthcare applications with an interest in the variation trends of
HRV parameters.

Table 3. The average correlation, SD and ratio of the correlations whose p-values are less than 0.01.

SDNN RMSSD Mean HR LF HF TF nLF nHF LF/HF Average

avg. correlation 0.99 0.95 1.00 0.98 0.95 0.98 0.98 0.98 0.96 0.97
SD 0.05 0.09 0.01 0.06 0.06 0.05 0.02 0.02 0.03 0.04

ratio, p < 0.01 96.9% 96.9% 98.4% 96.9% 95.3% 98.4% 96.9% 96.9% 96.9% 97.0%

5. Discussion and Future Work

Unobtrusiveness is a key factor to turn daily physiological sensing into reality. Attaching
additional sensors onto the body and carrying a separate device for monitoring are possible solutions.
However, users often feel that carrying more devices and initiating manual measurements are
cumbersome, making daily monitoring challenging. On the other hand, we are inspired by the
increasing adoption of metal bands in commercial smartphone designs (e.g., iPhone series, Vega
IRON). Sinabro opportunistically senses ECG signals during daily smartphone use using a phone
case-type sensor, reducing the users’ burden for manual sensing significantly.
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The study in the computer–human interface (CHI) community will help Sinabro detect potential
opportunities more accurately. There is a rich body of work on recognizing smartphone use activities
in the CHI community. For instance, Kim et al. [16] proposed a system to recognize hand grip patterns
when using mobile devices. They covered an array of capacitive touch sensors on mobile devices and
estimated the user’s hand grip by monitoring the activated touch sensors. Goel et al. [17] proposed a
system to detect the hand posture and pressure on a smartphone. The system infers the user’s hand
posture by recognizing the rotation of the device, the strength of touch and the shape of the swipe
arc using built-in sensors. The system detects diverse hand postures, such as one-hand grip during
smartphone use. Sinabro can improve its reliability and save processing costs by accurately detecting
potential opportunities based on such prior techniques.

We have several interesting findings beyond those reported earlier, which could lead to improved
performance for Sinabro. For instance, the drop rates during the landscape-mode use of the phone
showed a high correlation with the participant’s thumb length. Figure 9 shows the average drop rates
of the participants and their thumb length. The overall average thumb length of the participants was
59.8 mm (SD: ˘8.5). The thumb lengths of three participants—3, 9 and 14—who showed relatively
large drop rates were 53, 49, and 50 mm, respectively. They had shorter thumbs than the others.
According to the Pearson correlation, the correlation coefficient was ´0.58, and the p-value was 0.03
(<0.05). Currently, many commercial smartphones are equipped with big screens with vertical sizes
above 11 cm. When using a smartphone with both hands in the landscape mode, users often touch
the screen using their thumbs. Users with short thumbs are likely to change their hand posture (more
than those with longer thumbs) when they touch the center area of the screen. Such changes in hand
posture cause significant motion artifacts and reduce sensing accuracy by temporarily separating the
hands and electrodes.
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6. Conclusions

In this paper, we first introduced an unobtrusive smartphone-integrated ECG monitoring system,
Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit
user intervention. We extended the proposed system by: (1) upgrading the sensor device; (2) improving
the feature extraction process; and (3) evaluating extensions of the system. We conducted experiments
to evaluate the fully-functioning Sinabro system. The results showed that the sensor device could
capture ECG reliably in target situations and that the middleware could extract highly accurate
HRV features with a reasonable rate of data drop. We are planning further studies to retrieve users’
high-level contexts, such as stress and affective state level features, on the Sinabro system and will
develop pervasive smartphone healthcare apps based on our system.

Author Contributions: Sungjun Kwon and Dongseok Lee designed the algorithm to enhance the system’s
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