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Mining User Viewpoints in Online Discussions
Minghui Qiu

Abstract

Online discussion forums are a type of social media which contains rich user-

contributed facts, opinions, and user interactions on diverse topics. The large vol-

ume of opinionated data generated in online discussions provides an ideal testbed

for user opinion mining. In particular, mining user opinions on social and political

issues from online discussions is useful not only to government organizations and

companies but also to social and political scientists. In this dissertation, we propose

to study the task of mining user viewpoints or stances from online discussions on so-

cial and political issues. Specifically, we will talk about our proposed approaches for

these sub-tasks, namely, viewpoint discovery, micro-level and macro-level stance

prediction, and user viewpoint summarization.

We first study how to model user posting behaviors for viewpoint discovery. We

have two models for modeling user posting behaviors. Our first model takes three

important characteristics of online discussions into consideration: user consistency,

topic preference, and user interactions. Our second model focuses on mining inter-

action features from structured debate posts, and studies how to incorporate such

features for viewpoint discovery. Second, we study how to model user opinions for

viewpoint discovery. To model user opinions, we leverage the advances in sentiment

analysis to extract users opinions in their arguments. Nevertheless, user opinions

are sparse in social media and therefore we propose to apply collaborative filter-

ing through matrix factorization to generalize the extracted opinions. Furthermore,

we study micro-level and macro-level stance prediction. We propose an integrated

model that jointly models arguments, stances, and attributes. Last but not least, we

seek to summarize the viewpoints by finding representative posts as one may find

the amount of posts holding the same viewpoint is still large.



In summary, this dissertation discusses a number of key problems in mining

user viewpoints in online discussions and proposes appropriate solutions to these

problems. We also discuss other related tasks and point out some future work.
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Chapter 1

Introduction

Online social media such as social networks, blogs, forums and debates provides

ample opportunities for netizens to express their opinions. The large volume of

opinionated data generated in online social media is an ideal testbed for user opinion

mining. In particular, mining user opinions on social and political issues is useful

not only to researchers but also to government organizations and companies. In

this dissertation, we study the task of mining user viewpoints on social and political

issues in online social media.

User viewpoint or stance1 refers to an overall position held by a person toward

an object, idea or proposition [92]. For example, a person may either support or

oppose the “Affordable Care Act.” To discover or predict user viewpoints from so-

cial media is central to understanding public opinion towards a controversial issue.

Particularly, to discover or predict user viewpoints toward issues in domains such

as politics and religion is useful to policy makers and government organizations. It

supports a wide range of applications, including identification of social groups [83],

ideological groups [2], user demographic information [31], and building better rec-

ommender or personalization systems [66].

With the popularity of online social media and advances of search engines, for a

heated or controversial issue, one may easily find a large number of user comments,

1We use the terms viewpoint and stance interchangeably in this dissertation.

1



posts, or web pages on it. For example, for the threat of “Ebola”, we can find more

than 30 million search results in a commercial search engine such as Google. For

a policy maker or domain expert who wants to know the public opinions on how to

defeat the threat of Ebola, the first question he may ask is what the major viewpoints

are on the threat of Ebola. In this case, there is a need to discover the major view-

points from the large number of user-generated data on the threat of Ebola. We refer

to this task as viewpoint discovery, whose main goal is to find the major viewpoints

on a given issue. For the above example, the major viewpoints probably include

“we should ban people from traveling to west Africa”, “we should send more health

workers to west Africa”, “we need to work harder to find vaccination for Ebola”,

etc. Given the major viewpoints on the issue, an immediate next question may be

what the percentage of users holding a certain stance is for the issue. We refer to

this task as macro-level stance prediction. However, to do this task, one may first

need to predict a particular user’s viewpoint on the issue, i.e., micro-level stance

prediction. An aggregation of all users’ viewpoints on the issue provides macro-

level stances. Now, given the discovered major viewpoints and corresponding posts

or users holding those viewpoints, one may find the number of posts or users hold-

ing a certain viewpoint is still large. For example, we may find a large number of

posts or users taking the viewpoint of “we need to work harder to find vaccination

for Ebola”. A plausible way to help understand these viewpoints is to extract the

essence of all the related information through viewpoint summarization. Here we

define viewpoint summarization as a task to find the representative posts for each

viewpoint of a given issue.

In summary, mining user viewpoints on an issue includes these four tasks.

• Viewpoint discovery. Given an issue and all the comments/posts on this issue,

this task is to cluster posts or users into different viewpoint groups. In this

case, the viewpoints may not be simply two-sided, i.e., to support or oppose

something or someone, but rather they can be different perspectives on an

issue.

2



• Micro-level user stance prediction. This task is to predict a given user’s stance

on a target issue on which there is no metadata such as vote-up and vote-down

to explicitly indicate the user’s stance. The challenge here is cold-starting, i.e.,

some users may not have any past stances on related issues or arguments on

the target issue. In cases where user may have expressed his or her stance in

text, we have to draw clues from the arguments on the respective issue. In

cases where user has not commented on an issue, we may also be able to infer

her stance based on her past stances on related issues.

• Macro-level user stance prediction. We also consider macro-level stance pre-

diction, where we estimate the percentage of users holding a certain stance

for a particular issue. This can be done by aggregating micro-level stance

prediction results on all users or a group of representative users.

• Viewpoint summarization. Given a controversial issue and all the comments/-

posts grouped by their viewpoints, our task is to find representative posts for

each viewpoint.

1.1 Motivation

Traditional means of user viewpoint discovery include polls and surveys. While

they have shown to be very effective, for example the opinion polling for the U.S.

presidential election2, they require a large number of manpower support.

With the rise of online social media, there is a growing interest in inferring pub-

lic opinion from freely available online social media texts and metadata [68, 72, 95].

Such approaches have the potential to complement traditional surveys and polls.

Among the various social media platforms, online discussions are a type of social

media which contains rich user-contributed texts, opinions, and interactions on di-

2http://en.wikipedia.org/wiki/Historical polling for U.S. Presidential elections
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verse topics. Online discussion platforms range from online forums3 and debates4 to

any websites supporting “comment” or allowing a formation of discussions. In fact,

in the era of web 2.0, all the major websites allow users to comment and form dis-

cussions. Examples include Wikipedia, Facebook, Twitter, Google+. They provide

a rich wealth of information for the task of user viewpoint discovery. In a nutshell,

the advantages of mining user viewpoints form such online discussions include the

following: 1) Online discussion platforms allow netizens to express their opinions,

to ask for advice, and to form online communities; they usually have a large user

base which may be representative for the public. For example, the most popular

online discussion forum in China, “Tianya Club”, has over 94 million of registered

users5; 2) Responses to major sociopolitical events and issues can be found in dis-

cussion forums. For example, after the presidential debate between Barack Obama

and Mitt Romney, there were heated discussions in online forums such as Creat-

eDebate6.

In this dissertation, we study the task of mining user viewpoints in online dis-

cussions. We will focus on four tasks, namely, viewpoint discovery, micro-level

stance prediction, macro-level stance prediction and user viewpoint summarization.

In a netshell, we visualize the task of mining user viewpoints in Figure 1.1.

1.2 Challenges

Online discussion forums have been explored in the past for predicting user

stances [92, 93, 74]. However, there are data structures and properties of online

discussions which we need to be aware of when we design user viewpoint mining

methods. Specifically, we will consider the following important characteristics of

online discussion data for mining user viewpoints.

Threaded-structure. Arguments are organized in threaded structures. Each argu-
3www.tianya.cn, forums.asiaone.com/
4wiki.idebate.org,www.createdebate.com, www.debate.org
5www.tianya.cn
6www.createdebate.com
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Figure 1.1: An overview of the task of mining user viewpoints.

ment can be an independent post or a reply to an earlier argument. To differentiate

between these two types of posts is useful, as the former tends to contain more

independent contents, while the latter contains more agreement or disagreement ex-

pressions.

User interactions and opinions. A thread is like a conversation, where users not

only directly comment on the issue but also comment on each other’s posts. The in-

teraction expressions in the exchanged posts may help to infer the relation between

two users and subsequently infer the viewpoints of the corresponding posts. Fur-

thermore, to back up their viewpoints, users may also express their opinions toward

other opinion targets besides the recipient users. To mine such opinions can further

help the task.

Low user participation rate. There may be a low online participation rate of Internet

users in online discussion forums relating to any particular issue. To infer a user’s

viewpoint on the issue, we need to draw on clues from other related issues on which

a user’s viewpoint has been explicitly expressed as well as other users with similar

patterns of viewpoints.

Rich user attributes. Users may also reveal their personal information. In fact,
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major discussion forums allow users to reveal their demographic information. For

example, CreateDebate website allows users to state their age, nationality, political

orientation, religion, etc. How to make use of such information for the task of user

viewpoint discovery is interesting to explore.

In brief, to mine user viewpoints from online discussions involves a fine grained

analysis of issues, users, arguments, interactions and opinions in the context of

threaded structure.

1.3 Objective and contribution

In this dissertation, our research objective is to propose principled approaches for

these three tasks in online discussions, namely, viewpoint discovery, micro-level

and macro-level stance prediction, and provide some empirical studies on viewpoint

summarization. We propose probabilistic models for mining user viewpoints by

taking advantage of the availability of different sources of information in online

discussions.

Below we give a high-level overview of the various chapters of this dissertation.

• Modeling user posting behaviors for viewpoint discovery. In this part, we

study how to model each user’s posting behaviors in terms of how he chooses

topics and interacts with others when he expresses his viewpoint in online

discussions. We will discuss our two works related to this task.

Our first model takes three important characteristics into consideration,

namely, user consistency, topic preference, and user interactions. The first

one refers to the observation that a user’s opinion on an issue usually remains

unchanged during a certain time period. The second one models the obser-

vation that users with different viewpoints tend to focus on different topics.

This is close to a phenomenon called “framing” [96]. The last one refers

to the observation that in a forum thread, like in conversations, users inter-

act with each other by commenting on each other’s posts. Thus, modeling

6



the agreement/disagreement expressions among users can help find different

viewpoints.

As shown in above work, to tackle the task, it is important to exploit user

posts that implicitly contain support and dispute (interaction) information.

The challenge we face is how to mine such interaction information from the

content of posts and how to use them to help identify stances. We propose

a two-stage solution based on latent variable models: an interaction feature

identification stage to mine interaction features from structured debate posts

with known sides and reply intentions; and a clustering stage to incorporate

interaction features and model the interplay between interactions and sides for

debate side clustering. Empirical evaluation shows that the learned interaction

features provide good insights into user interactions and that with these fea-

tures our debate side model shows significant improvement over other base-

line methods.

• Modeling user opinion matrices for viewpoint discovery. Our third model ad-

dresses the sparsity of user interactions in online discussions. We first make

use of the advances in sentiment analysis to extract user opinions in online

user interactions. Based on this, we build two user opinion matrices, one

for user interactions, the other for user-aspect opinions. As these user opin-

ion matrices are still very sparse, we propose to apply collaborative filtering

through matrix factorization to generalize and improve the extracted opinion

matrices from forum posts. The resulting low-rank latent factor representa-

tions of users makes it feasible to cluster users by their viewpoints.

• Micro-level and macro-level stance prediction. We study viewpoint discovery

for a new issue which has a low online participation rate of Internet users

in online discussion forums. We propose an integrated model that jointly

models texts, user viewpoints and social networks. We consider hidden factor

models to model user viewpoints, and user texts to give a human-interpretable
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explanation for each hidden factor. We also incorporate social context to boost

the model performance. Our experiments show promising results on both

micro-level stance prediction and macro-level stance prediction.

Last but not least, we have an empirical study on user viewpoint summarization

by leveraging information learnt by our viewpoint discovery model. We acknowl-

edge that these studies are no way near the exhaustive list of tasks in user viewpoint

mining, but rather a set of important tasks that need to be considered beforehand.

We leave the discussion of other related tasks to Chapter 7.

1.4 Dissertation structure

The studies presented in this dissertation were originally reported in [80, 82, 83, 84].

The dissertation gives a more thorough extensions to them and present more de-

tailed results. The reminder of this dissertation is organized as follows: Chapter 2

is a literature review which examines closely related research work. Chapter 3 in-

vestigates how to model user posting behaviors for viewpoint discovery. Chapter 4

studies how to extract user opinions from texts and how to use them to help the

task of viewpoint discovery. Furthermore, Chapter 5 proposes an integrated model

to jointly model user arguments, interactions, and attributes. Chapter 6 proposes to

summarize viewpoints by leveraging information leant by our viewpoint discovery

model. Finally, Chapter 7 summarizes the contributions of this dissertation.
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Chapter 2

Literature Review

In this chapter, we discuss related work to the task of mining user viewpoints in

online discussions. We will introduce four types of work, namely, viewpoint dis-

covery, micro-level stance prediction, macro-level stance prediction, and user view-

point summarization.

2.1 Viewpoint discovery

Existing approaches for viewpoint discovery have focused on these types of infor-

mation mined from text, (i.) Users arguments directly related to the issue [18, 53,

73], i.e. those users’ arguments that are related to statements to support their main

claim. For example, for someone who supports gun control, his/her arguments may

include “gun control can reduce the number of murders every year,” “gun control re-

duces suicide,” etc. Here each statement can be seen as a reason to support the main

claim. (ii.) User interactions, which indicate whether two users hold the same view-

point or not [1, 19, 11, 7, 84]. Users also write arguments to reply to other users.

For users with different viewpoints, we may see many arguments with disagreement.

And for users with the same viewpoint, we may find more agreements. For exam-

ple, we find this post between two users with different viewpoints: “Actually, I have

to disagree with you.” (iii.) Users opinions towards certain entities closely related

9



to the issue, which are often correlated with the users stance on the issue [2, 83].

Users also express their opinions towards some issue related entities, for example,

many users pose their opinions on “Republican Party” when discussing the issue on

“Do you support Obama?” These opinions are often correlated with user’s stance.

For example, we find a “Support-Obama” user posted his disappointment towards

Republican party: “I simply point out how absolutely terrible the Republican party

is.” Below we discuss how these types of information can be used for viewpoint

discovery.

2.1.1 Arguments related to the issue

The availability of texts associated with issues and user viewpoints provided a rich

source of linguistic data from which we can improve viewpoint discovery. Assum-

ing users’ arguments are mostly related to the issue, one may find that users with

different viewpoints tend to focus on different topics. For example, for someone

who supports gun control, his arguments may be more on the negative sides of us-

ing guns like “murders” or “suicide” involved with guns. While for someone who

opposes gun control, his arguments may be on: citizen gun ownership acts as a de-

terrent against criminals, or education on safe gun ownership can reduce the gun

risks. Thus many existing studies [18, 53, 73] make use of viewpoint-specific topic

preference to help predict user viewpoints, as discussed in the following.

Paul et al. [73] used a topic-aspect model to jointly model topics and viewpoints.

They assume these two concepts are orthogonal. The work assumes that each user

has written an article about his/her viewpoint on an issue. While there are multiple

topics associated with the given issue, they assume that users with different view-

points will use different words when talking about the same topic. Fang et al. [18]

proposed a model that also combines topics and viewpoints. They assume that doc-

uments are already grouped by viewpoints, based on which they extract viewpoint-

specific word distributions. The work in [92] mined the web to augment existing
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data with learnt associations that are indicative of opinion stances in debates. In

our work [80], we study each user’s posting behaviors in terms of how he chooses

topics and interacts with others when he expresses his viewpoint in online discus-

sions. The model takes three important characteristics into consideration, namely,

user consistency, topic preference, and user interactions. One important factor of

this paper is that we model two types of textual content, one for inferring topics,

the other for inferring user interaction polarity. Experiments show it is beneficial to

extract texts related to user interactions and model the interplay between user inter-

actions and viewpoints. This work is more suitable for online discussion posts as

rich user interactions are observed.

2.1.2 User interactions

Besides users’ arguments related to the issue, we also observe a large amount of

posts in online discussions are related to user interactions. A user interaction refers

to texts exchanged between users that indicate whether two users hold the same

viewpoints or not. For example, this post is a user interaction between two users

with different viewpoints: “Actually, I have to disagree with you.”

To infer user interaction polarity is crucial to viewpoint discovery as users within

the same viewpoint tend to have positive interactions while users with different

viewpoints tend to have negative interactions. To infer interaction polarity is re-

lated to detecting agreement/ disagreement or contradiction from text. For this task,

normally supervised methods are used [1, 19]. Besides, the argumentation theory

has been used to recognize the entailment and contradiction relationships between

two texts in [11]. In [7], the quotations are classified to specific topics and polarity

(pro/con) using language models in debate corpus. A probabilistic model is studied

in [65] to extract different types of expressions including agreement/disagreement

expressions. In our work in [84], we take a different approach by exploiting the spe-

cial structure of CreateDebate. We also explore rich language units like N-grams
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and dependency relations and illustrate their usefulness for viewpoint discovery.

Part of the method uses sentiment analysis to extract opinions from text. This is

built on top of a large body of existing work on opinion extraction, e.g. [12] and

[103]. As the sentiment analysis component is not our main contribution, we do not

review existing work along this direction in detail here. Interested readers can refer

to [71].

Another closely related task is subgroup detection, i.e. to cluster users holding

similar viewpoints (sides). There is a range of work that studies clustering-based

approaches for the task [3, 14, 35]. [35] proposed to predict the polarity of in-

teractions between users based on their textual exchanges. They defined a set of

interaction features using sentiment analysis and applied supervised learning for

polarity prediction. Both textual content and social interactions are studied in [54]

to find opposing network from online forums.

2.1.3 User opinions

Not only user opinions toward other recipient is important to the task of mining

user viewpoints, user opinions toward other opinion targets should also be taken

into consideration. The work in [2] proposed to build discussant attitude profiles

(DAP) from online posts, where a DAP is a vector that contains the attitudes of

a discussant towards other discussants and a set of opinion targets. Based on the

extracted DAPs, we can then cluster users into subgroups. In Chapter 3, we also

extract opinions of users towards other users and opinion targets from posts, which

are similar to DAPs. User opinions may be sparse, i.e., not all the users will pose

their opinions on other users or opinion targets. To alleviate this problem, we further

apply probabilistic matrix factorization to derive a low-rank representation from

the raw opinion scores. Our comparison with DAP-based clustering shows that

probabilistic matrix factorization can improve subgroup detection.
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2.2 Micro-level stance prediction

Existing approaches for micro-level stance prediction have focused on taking ad-

vantage of the availability of different sources of information.

2.2.1 User arguments

There is a line of research work in micro-level stance prediction by employing lin-

guistic features in user arguments. Specifically, Lin et al. [52] observe that people

from opposing perspectives seem to use words in differing frequencies. Kim and

Hovy [62] use unigrams, bigrams and trigrams for election prediction from forum

posts. The work in [93] focuses on identifying stances (sides) in online debates by

extracting useful linguistic features and making use of curated sentiment and ar-

gument lexicons. This work is complementary to that by Greene and Resnik [32],

which focuses on syntactic packaging for stance prediction. The task here is es-

sentially a supervised stance prediction task based on linguistic features where rich

user generated texts are required.

2.2.2 User past stances

If we have a user’s past stances, this problem is similar to item recommendation,

where using a user’s purchase history, his preference for a new item is to be pre-

dicted. In Chapter 5, we use a recommendation-based approach to predict a user’s

stance on an issue based on her past stances on related issues. This is based on the

idea of collaborative filtering. Collaborative filtering [28] is a technique commonly

used to alleviate the data sparsity problem in item recommendation. When applied

to our stance prediction problem, the idea is to draw on clues from other issues

on which a user’s stance has been explicitly expressed as well as other users with

similar patterns of stances. Collaborative filtering is a large research area, whose

techniques can be readily applied to our user stance-issue matrix (see [94] for a sur-

vey). In our problem, we specifically consider PMF methods (proposed in [87]),
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because of its successful use in real-world problems [9, 45, 55, 99].

The above method doesn’t rely on any user arguments, but if we also have user

arguments along with user stances, we can model such information into PMF frame-

work. Specifically, we can use a latent Dirchlet allocation topic model [10] to reduce

the dimensionality of the text, and combine text data with latent factors from the user

stance matrix, grounding each dimension of the hidden factor using inferred topics.

To achieve this, one may consider to adapt the models used in these studies [57, 99].

2.2.3 User social networks

Social behavior between users is another important factor for macro-level stance

prediction. There are two types of social networks that are useful. One type is the

topic-independent one which is usually more long-term and stable, e.g., networks

of friends and enemies. The other type is topic-specific social network reflecting

user relationship on a particular topic.

• Topic-independent social behaviors. Topic-independent social behavior is

an important component used in several studies for prediction, recommen-

dation and community detection tasks. For instance, the work in [55] pro-

posed SocRec to extend a collaborative filtering framework with social net-

work information to perform social recommendation. The basic idea of social

recommendation is that a person’s social network will affect personal behav-

iors like purchasing behavior on the Web. Similarly, there are studies on

using trust-based recommendations, which incorporate trust network infor-

mation [40, 41, 105].

• Topic-specific social behaviors. Topic-specific social network can be ob-

tained from user interactions, e.g., like/dislike or thubsup/thumbsdown on

other users’ feedback for a specific topic, or agreement/disagreement inferred

from texts exchanged between users. An important observation is that in fo-

rums or debate sites, users tend to dispute or agree with others on the debate
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issues by replying directly to the commenter. The work [107] observed that

users not only interact with others who share same views, but also actively

engage with whom they disagree. It’s thus important to incorporate such in-

formation for the task. In [31], an integrated model is proposed to jointly

model user stances, user social network, and topic-specific social network.

The model provides a hidden factor representation for each user, which can

be used to cluster users or infer user stances. Similarly, in our work [82], we

also incorporate user interactions to help the task of micro-level and macro-

level stance prediction.

2.2.4 User attributes

Users with different “ideological” beliefs tend to take different stances or positions

towards critical policies and sociopolitical issues. To collect user attributes that

are close to “ideological” beliefs can help to reveal user stances towards different

issues. One important type of attribute is user’s political affiliation or political lean-

ing. As shown in [30], a user who is associated with the Democratic Party in the

U.S. tends to support abortion and oppose gun rights. In our work [82], we study

the usefulness of different types of attributes from user’s demographic information:

party (e.g., republican, democrat), religion (e.g., catholic, christian), gender (e.g.,

male, female), status (e.g., single, married), education (e.g., in college, post grad.),

and country (e.g., U.S., Singapore). Experiment shows that only these two types

of attributes improve our base model: party and religion. This shows that those

attributes related to “ideology” are useful for the task of stance prediction.

2.3 Macro-level stance prediction

There is a growing amount of research work related to analyzing publicly available

social media data to infer user opinions in the larger population [13, 68, 72, 77, 95].

The task of macro-level stance prediction in online discussions is closely related
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to these studies. But our notion of macro-level stance prediction is different from

existing work in that we study online discussion forums which have well structured

user arguments, opinions, and interactions on diverse topics, to seek to predict user

stances on a wider variety of social topics. To the best of our knowledge, there is no

previous work related to macro-level stance prediction in online discussions.

Note that we can resolve the task of macro-level stance prediction to micro-level

stance prediction providing the following two types of information.

• User arguments. If all the users or the majority of the users have posted

arguments on all the issues, we can simply predict any user’s stance on an

issue by examining all his arguments under the issue. We can consider work

such as [52, 62, 93, 32] for this task.

• User past stances. In real-world scenario, we have data sparsity problem. For

any specific issues, we only observe a few users participating and expressing

their opinions. To alleviate this problem, we need to consider collaborative

filtering, where the idea is to predict a user’s stance based on other issues on

which the user’s stance has been explicitly expressed as well as other users

with similar patterns of stances. We can also consider these work [31, 30, 57,

99] to model other information that is useful for the tasks, e.g., user social

network and attributes. In our work [85], we propose an integrated model

that jointly models user arguments, interactions, and attributes for the task of

stance prediction. The model can be used for both micro-level and macro-

level stance prediction.

2.4 User viewpoint summarization

For the task of user viewpoint summarization, we can borrow techniques from

multi-document summarization which has been extensively studied in the NLP

community, with most efforts on extractive summarization. Different features and
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ranking strategies have been studied. Radev et al. [86] proposed to implement

MEAD as a centroid-based summarizer by combining several predefined features

like TF*IDF, cluster centroid and position to score sentences. Lin and Hovy [51]

built the NeATS multi-document summarization system using term frequency, sen-

tence position and stigma words. Nenkova et al. [67] proved that high-frequency

words were significant in reflecting the focus of documents. Ouyang et al. studied

the influence of different word positions in summarization [69]. Graph-based rank-

ing algorithms nowadays are also successfully applied in summarization. This kind

of algorithms takes global information into consideration rather than relying only

on vertex-specific information, and therefore has been proved successful in docu-

ment summarization. LexPageRank [17] is the representative work which is based

on the PageRank [70] algorithm. Some methods have been proposed to extend the

conventional graph-based models recently [59, 75, 98]. We have also studied using

keyphrases [81] to summarize search results.

Integer Linear Programming (ILP) based framework is introduced as a global

inference algorithm for multi-document summarization by [58], which considers

informativeness and redundancy at sentence level. The framework is used by many

studies for multi-document summarization [34, 39, 49, 88, 104]. In our study in

Chapter 6, we consider this framework for user viewpoint summarization. [27]

studies information and redundancy at a sub-sentence, “concept” level, modeling

the value of a summary as a function of the concepts it covers. In their concept-

based model, they use word bigrams weighted by the number of input documents

in which they appear. We choose to build our solution based on ILP framework

partially because in our preliminary analysis it outperforms other methods. Further-

more, it can be easily extended to incorporate more information. In our task, we

make use of the information leant by our viewpoint discovery model in Chapter 3,

and based on which we define a post relevance score by considering topic coverage

and viewpoint distribution. We hypothesize that a good viewpoint specific summary

should cover more viewpoint-specific topics and be relevant to the viewpoint.
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Chapter 3

Modeling User Posting

Behaviors

In this chapter, we study the problem of viewpoint discovery in forum threads. Since

many controversial issues contain two contrastive viewpoints, e.g., for the issue “Do

you believe God?”, people will take either yes or no viewpoint, in this chapter, we

focus on issues with two contrastive viewpoints. Nevertheless, the framework we

developed can be potentially used to discover more than two viewpoints.

We focus on how to model each user’s posting behaviors in terms of how he

chooses topics and interacts with others when he expresses his viewpoints in online

discussions. We will discuss two work related to this task.

We first introduce a latent variable model that jointly models user viewpoints,

topics, and interactions for viewpoint discovery in online discussions. Our model

takes three important characteristics into consideration, namely, user consistency,

topic preference, and user interactions. The first one refers to the observation that

a user’s opinion on an issue usually remains unchanged during a certain time pe-

riod. The second one models that users with different viewpoints tend to focus on

different topics. This is close to a phenomenon called “framing” [96]. The last one

refers to the observation that in a forum thread, like in conversations, users interact
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with each other by commenting on each other’s posts. Thus, modeling the agree-

ment/disagreement expressions among users can help find different viewpoints.

As shown in above work, to tackle the task, it is important to exploit user posts

that implicitly contain support and dispute (interaction) information. The challenge

we face is how to mine such interaction information from the content of posts and

how to use them to help identify stances. We proposes a two-stage solution based on

latent variable models: an interaction feature identification stage to mine interaction

features from structured debate posts with known sides and reply intentions; and a

clustering stage to incorporate interaction features and model the interplay between

interactions and sides for debate side clustering. Empirical evaluation shows that

the learned interaction features provide good insights into user interactions and that

with these features our debate side model shows significant improvement over other

baseline methods.

3.1 Modeling Viewpoints, Topics and Interactions

Recently there has been some work on finding contrastive viewpoints from text. The

model proposed by [74] assumes viewpoints and topics are orthogonal dimensions.

Another model proposed by [18] assumes that documents are already grouped by

viewpoints and it focus on identifying contrastive viewpoint words under the same

topic. However, these existing studies are not based on interdependent documents

like threaded forum posts. As a result, at least two important characteristics of

threaded forum data are not considered in these models. (1) User identity: The

user or publisher of each forum post is known, and a user may publish several

posts in the same thread. Observed from our data sets, the same user’s opinion on

an issue usually remains unchanged. Hence posts published by the same user are

likely to contain the same viewpoint. (2) User interactions. A thread is like a

conversation, where users not only directly comment on the issue under discussion

but also comment on each other’s posts. Users having different viewpoints may
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express their disagreement or even attack each other while users having the same

viewpoint often support each other. The interaction expressions in forum posts may

help us infer the relation between two users and subsequently infer the viewpoints

of the corresponding posts.

In this chapter, we propose a novel latent variable model for viewpoint discovery

from threaded forum posts. Our model is based on the following observations: First,

posts with different viewpoints tend to focus on different topics. To illustrate this

point, we first apply the Latent Dirichlet Allocation (LDA) model [10] on a thread

about “will you vote Obama” and obtain a set of topics. This thread comes from a

data set that has each user’s viewpoint annotated. Using the ground truth viewpoint

labels, we group all posts published by users with viewpoint 1 (or viewpoint 2) and

compute the topic proportions. The two topic distributions are shown in Figure 3.1.

We can see that indeed the two viewpoints each have some dominating topics. Our

second observation is that the same user tends to hold the same viewpoint. In our

model, we use a user-level viewpoint distribution to capture this observation, and

the experiments show that it works better than assuming a global viewpoint distri-

bution. Third, we define positive interaction as a user’s reply to another user with

agreement information, while negative interaction as a user replying to another user

with disagreement. We observe that users with the same viewpoint are likely to have

positive interactions while users with different viewpoints tend to have negative in-

teractions. Using a sentiment lexicon, we can first predict the polarity of interaction

expressions. We then propose a novel way to incorporate this information into the

latent variable model. In summary, we capture the three observations above in a

principled generative latent variable model. We present the details of our model in

Section 3.1.1.

We use two tasks to evaluate our model. In the first task, we evaluate how well

posts with different viewpoints are separated. In the second task, we evaluate how

well our model is able to group users with different viewpoints. For both tasks, we

compare our model with an existing model as well as a few degenerate versions of
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Figure 3.1: Topic distributions of two viewpoints for the thread “will you vote
Obama?” The dotted line is the average topic probability.

our model. The results show that our model can clearly outperform the baselines in

terms of three evaluation metrics. The experiments are presented in Section 3.1.3.

The contributions of our work are threefold: (1) We identify the importance of

using user interactions to help infer viewpoints in forum posts. (2) We propose a

principled latent variable model to jointly model topics, viewpoints and user inter-

actions. (3) We empirically verify the validity of the three assumptions in our model

using real data sets.

3.1.1 Model

Motivation

Before we formally present our latent variable model for viewpoint discovery, let us

first look at the assumptions we would like to capture in the model.

Viewpoint-based topic distribution: The first assumption we have is that different

viewpoints tend to touch upon different topics. This is because to support a view-

point, users need to provide evidence and arguments, and for different viewpoints

the arguments are likely different. To capture this assumption, in our model, we let

each viewpoint have its own distribution of topics. Given the viewpoint of a post,

the hidden topic of each word in the post is chosen according to the corresponding

topic distribution associated with that viewpoint.

User identify: The second assumption we have is that the same user tends to talk

from the same viewpoint, although there are also users who do not clearly have a
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viewpoint. In our model, we assume that there is a user-level viewpoint distribution.

For each post by a user, its viewpoint is drawn from the corresponding viewpoint

distribution.

User interaction: An important difference between threaded forum posts and regu-

lar document collections such as news articles is that posts in the same thread form a

tree structure via the “reply-to” relations. Many reply posts start with an expression

that comments on a previous post or directly addresses another user. These interac-

tion expressions may carry positive or negative sentiment, indicating an agreement

or a disagreement. For example, Table 3.1 shows the interaction expressions from a

few sample posts with words such as “correct,” “agree,” and “delusional,” implying

the polarity of the interaction expressions. The polarity of these interaction expres-

sions can help us infer whether two posts or two users hold the same viewpoint or

not. In our model, we assume that the polarity of each interaction expression can be

detected. Details of how we perform this detection are in Section 3.1.1.

Post

+
You are correct. Obama got into office w/ everything · · ·
I agree with your post Dan. Obama is so · · ·

− Most of your post is delusional, especially the part · · ·
Are you freaking nutz? Palin is a BIMBO!

Table 3.1: Sample posts with positive (+) and negative(−) interactions.

While the way to capture the first two assumptions discussed above is fairly

standard, modeling user interactions is something new. In our model, we assume

that the polarity of an interaction expression is generated based on the viewpoint

of the current post and the viewpoint of post(s) that the current post replies to.

The intuition is that if the viewpoints are the same, we are more likely to see a

positive interaction whereas if the viewpoints are different we are more likely to see

a negative interaction.
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Model description

We use the following notation to represent our data. We consider a set of forum

posts published by U different users on the same event or issue, where user u (1 ≤

u ≤ U ) has published Nu posts. Let wu,n,l (1 ≤ l ≤ Lu,n ) denote the l-th word in

the n-th post by user u, where Lu,n is the number of words in the n-th post by user

u. wu,n,l is represented by an index between 1 and V where V is the vocabulary size.

Furthermore, we assume that some of the posts have user interaction expressions,

where the polarity of the expression is known. Without loss of generality, let su,n ∈

{0, 1} denote the polarity of the interaction expression of the n-th post by user u. In

addition, for each post that has an interaction expression, we assume we also know

the previous post(s) it replies to. (In the case when the current post replies to a user,

we assume all that user’s existing posts are being replied to.) We refer to these posts

as the parent posts of the current post.

We assume that there are T topics where each topic is essentially a word distribu-

tion, denoted as ψt. We also assume that there are Y different viewpoints expressed

in the collection of posts. For most controversial issues, Y can be set to 2. Each

viewpoint y has a topic distribution θy over the T topics. While these T topics are

meant to capture the topical differences between viewpoints, since these viewpoints

are all about the same issue, there are also some words commonly used by different

viewpoints. We therefore introduce a background topic ψB to capture these words.

Finally, each user u has a distribution over the Y viewpoints, denoted as ϕu.

Figure 3.2 shows the plate notation of the complete model. We assume the

following generation process in our model. When user u generates her n-th post,

she first samples a viewpoint from ϕu. Let this viewpoint be represented by a hidden

variable yu,n. For the l-th word in this post, she first samples an indicator variable

xu,n,l from a Bernoulli distribution parameterized by π. If xu,n,l = 0, then she draws

wu,n,l from ψB. Otherwise, she first samples a topic, denoted as zu,n,l, according to

θyu,n , and then draws wu,n,l from ψzu,n,l .
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Figure 3.2: Plate notation of the Joint Viewpoint-Topic Model with User Interaction
(JVTM-UI). The dotted circle for Y means the variables represented by Y are not
new variables but a subset of the y variables.

Furthermore, if this post is a reply to a previous post or another user, she may

first comment on the parent post(s). The polarity of the interaction expression in the

post is dependent on the viewpoint yu,n and the viewpoints of the previous post(s).

Let us use Yu,n to denote the set of y variables associated with the parent posts of

the current post. The user draws su,n according to following distribution:

p(su,n = 1|yu,n,Yu,n, δ) =

∑
y′∈Yu,n I(yu,n == y′) + δ

|Yu,n|+ 2δ
,

p(su,n = 0|yu,n,Yu,n, δ) = 1− p(su,n = 1|yu,n,Yu,n, δ), (3.1)

where I(·) is 1 if the statement inside is true and 0 otherwise, and δ > 0 is a

smoothing parameter.

Finally, we assume that ψB, ψt, ϕu, θy and π all have some uniform Dirichlet

priors.

Inference

We use collapsed Gibbs sampling to estimate the model parameters. In the ini-

tialization stage of Gibbs sampling, for a reply post to a recipient, we initialize its

corresponding reply polarity s according to all the labeled polarity of interaction
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words. Specifically, if the majority of labeled interaction words are positive, we set

s = 1, otherwise we set s = 0.

Let Y denote the set of all y variables, and Y¬(u,n) denote Y excluding yu,n.

Similar notation is used for the other variables. We sample yu,n using the following

formula.

p(yu,n = k|Y¬(u,n),Z,S,X, α, η, δ)

∝ p(yu,n = k,Y¬(u,n)|α)

p(Y¬(u,n)|α)
· p(Z|yu,n = k,Y¬(u,n),X, η)

p(Z¬(u,n)|Y¬(u,n),X¬(u,n), η)

·p(S|yu,n = k,Y¬(u,n), δ)

=
Ck
u,¬n + α

C
(·)
u,¬n + Y α

·
∏T

t=1

∏Ct
u,n−1

a=0 (Ct
k,¬(u,n) + η + a)∏C

(·)
u,n−1

b=0 (C
(·)
k,¬(u,n) + Tη + b)

·p(S|yu,n = k,Y¬(u,n), δ). (3.2)

Here all Cs are counters. Ck
u,¬n is the number of times we observe the viewpoint

k from u’s posts, excluding the n-th post, based on Y¬(u,n). Ct
u,n is the number

of times we observe topic t from user u’s n-th post, based on Zu,n. And Ct
k,¬(u,n)

is the number of times we observe topic t associated with viewpoint k, excluding

user u’s n-th post. Note that we need X to know which words are assigned to

the background topic so we can exclude them for Ct
u,n and Ct

k,¬(u,n). C
(·)
u,¬n is the

number of times we observe any viewpoint from u’s posts, excluding the n-th post.

C
(·)
u,n and C(·)

k,¬(u,n) are defined similarly.

The last term is further expanded as follows:

p(S|yu,n = k,Y¬(u,n), δ) = p(su,n|yu,n = k,Yu,n, δ)

·p(S¬(u,n)|yu,n = k,Y¬(u,n), δ). (3.3)

Here p(su,n|yu,n = k,Yu,n, δ) is computed according to Eqn. (3.1). For the latter

term, we need to consider posts which reply to user u’s n-th post because the value
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of yu,n affects these posts.

p(S¬(u,n)|yu,n = k,Y¬(u,n), δ)

∝
∏

(u′,n′):yu,n∈Yu′,n′

p(su′,n′|yu′,n′ ,Yu′,n′ , δ). (3.4)

Next, we show how we jointly sample xu,n,l and zu,n,l. We jointly sample them

because when xu,n,l = 0, zu,n,l does not need a value. We have the following

formulas:

p(xu,n,l = 1, zu,n,l = t|X¬(u,n,l),Z¬(u,n,l),Y,W, γ, η, β, βB)

∝
C1
¬(u,n,l) + γ

C
(·)
¬(u,n,l) + 2γ

·
Ct
yu,n,l,¬(u,n,l) + η

C
(·)
yu,n,l,¬(u,n,l) + Tη

·
C
wu,n,l

t,¬(u,n,l) + β

C
(·)
t,¬(u,n,l) + V β

, (3.5)

p(xu,n,l = 0|X¬(u,n,l),Z¬(u,n,l),Y,W, γ, η, β, βB)

∝
C0
¬(u,n,l) + γ

C
(·)
¬(u,n,l) + 2γ

·
C
wu,n,l

B,¬(u,n,l) + βB

C
(·)
B,¬(u,n,l) + V βB

. (3.6)

Here again the Cs are counters defined in similar ways as before. For example,

C1
¬(u,n,l) is the number of times we observe 1 assigned to an x variable, excluding

xu,n,l.

Interaction polarity prediction

The problem of detecting agreement and disagreement from forum posts is rela-

tively new. One possible solution is to use supervised learning, which requires

training data [1, 6, 19]. However, training data are also likely domain and language

dependent, which makes them hard for re-use. For our task, we take a simpler ap-

proach and use a sentiment lexicon together with some heuristics to predict the po-

larity of interaction expressions. Specifically, we first identify interaction sentences

following the strategies from [35]. We assume sentences containing mentions of the

recipient of a post are interaction sentences. Next, we consider words within a text

window of 8 words surrounding these mentions. We then use a subjectivity lexicon

to label these words. To form an English lexicon, we combine three popular lex-
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icons: the sentiment lexicon used by [38], Multi-Perspective Question Answering

Subjectivity Lexicon by [102] and SentiWordNet by [8]. Since we also work with a

Chinese data set, to form the Chinese sentiment lexicon, we use opinion words from

HowNet1 and NTUSD by [46]. To predict the polarity of an interaction expression,

we simply check whether there are more positive sentiment words or more negative

sentiment words in the expression, and label the interaction expression accordingly.

We would like to stress that since this interaction classification step is indepen-

dent of the latent variable model, we can always apply a more accurate method, but

this is not the focus of this work.

3.1.2 Models for Comparison

In our experiments, we compare our model, Joint Viewpoint-Topic Model with User

Interaction (JVTM-UI), with the following baseline models.

JVTM: The model is shown in Figure 3.3(a), a variant of JVTM-UI that does not

consider user interaction. Through comparison with it, we can evaluate the effect of

modeling user interactions.

JVTM-G: We consider JVTM-G in Figure 3.3(b), a variant of JVTM which as-

sumes a global viewpoint distribution. Comparison with it allows us to evaluate the

usefulness of user identity in the task.

UIM: The third model we consider is a User Interaction Model (UIM) in Fig-

ure 3.3(c), where we rely on only the users’ interactions to infer the viewpoints.

We use it to evaluate how well viewpoints can be discovered from only user inter-

action expressions.

TAM: The last model we consider is the one by [74]. As input for TAM, it assumes

each user has an article on an issue. In our data set, each user has a set of posts.

We first concatenate all the posts by the same user into a pseudo document and then

apply TAM.

1http://www.keenage.com/html/e_index.html
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Figure 3.3: (a) JVTM: Joint Viewpoint-Topic Model. (b) JVTM-G: JVTM with a
global viewpoint distribution. (c) UIM: User-Interaction Model.

3.1.3 Experiments and Analysis

In this section, we evaluate our model with a set of baseline models using two data

sets.

Data Sets and Experimental Settings

We focus our work on finding users’ viewpoints on a controversial issue, where we

assume that there are two contradictory viewpoints. We use two data sets on con-

troversial issues. The first data set comes from [2] and [35]. This data set originally

was used for finding subgroups of users, so the annotations were done at user level,

i.e. for each user there is a label indicating which subgroup he/she belongs to. We
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Name Issue #Posts #Users

EDS1 Vote for Obama 2599 197
EDS2 Arizona Immigration Law 738 59
EDS3 Tax Cuts 276 26

CDS1 Tencent and Qihoo dispute 30137 2507
CDS2 Fang Zhouzi questions Han Han 76934 1769
CDS3 Liu Xiang in London Olympics 29486 2774

Table 3.2: Some statistics of the data set.

use the top-3 mostly discussed threads with two subgroups for our study.

In reality, controversial issues are often discussed across threads. We thus con-

structed another large data set which contains more than one thread for each issue.

We chose three hot issues from one of the most popular Chinese online forums —

TianYa Club2. The three issues are “Fang Zhouzi questions Han Han”3, “Tencent

and Qihoo dispute”4, and “Liu Xiang in London Olympics”5. All these issues trig-

gered heated discussions on the forum and we found that most of the users were

divided into two different groups.

We crawled the data set using the TianYa API6. The API allows users to issue

queries and get threads most related to the queries. For each issue, we used entities

involved in the event as queries and obtained 750 threads for each query. We then

extracted all the posts in the threads. As there are users who posted irrelevant posts

in the forum, we then filtered out those users who did not mention the entities or

had fewer than 4 posts.

We refer to the first set of data in English as EDS1, EDS2 and EDS3, and the

second set of data in Chinese as CDS1, CDS2 and CDS3. Some statistics of the

resulting data set are shown in Table 3.2.

For all the models, we set Y = 2. We set T = 10 for the English data sets

and T = 40 for the Chinese data sets. We run 400 iterations of Gibbs sampling

as burn-in iterations and then take 100 samples with a gap of 5 to obtain our final

2http://en.wikipedia.org/wiki/Tianya_Club
3http://en.wikipedia.org/wiki/Fang_Zhouzi
4http://en.wikipedia.org/wiki/360_v._Tencent
5http://en.wikipedia.org/wiki/Liu_Xiang
6http://open.tianya.cn/index.php
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results. We empirically set β = 0.01, βB = 0.1, γ = 10 and δ = 0.1 for our model

on all the data sets. α and η are set through grid search where they take values in

{0.01, 0.001}. For each data set, we choose the best setting for each model and

report the corresponding results.

Identification of viewpoints

We first evaluate the models on the task of identifying viewpoints. For fair com-

parison, each model will output a viewpoint label for each post. For JVTM-UI,

JVTM, JVTM-G and UIM, after we learn the model, each post will directly have

a viewpoint assignment. For TAM we cannot directly get each post’s viewpoint as

the model assumes a document-level viewpoint distribution. To estimate each post’s

viewpoint in this model, we use viewpoint assignment at the word level learnt from

the model. Then for each post, we label its viewpoint as the viewpoint that has the

majority count in the post.

Ideally, we would like to manually label all the posts to obtain the ground truth

for evaluation. Since there are too many posts, we only labeled a sample of them.

For each issue, we randomly selected 150 posts to label their viewpoints. For each

post, we asked two different annotators to label its viewpoint. We made sure that the

annotators understand the issue and the two major viewpoints before they annotated

the posts. Specifically, as the Chinese data sets are about some controversial issues

around the entities involved, we then defined two major viewpoints as support and

not support the entity who initiated the event. The entities of data set CDS1, CDS2

and CDS3 are Fang Zhouzi, Tencent and Liu Xiang respectively. For each given

post, the annotators were asked to judge whether the post has expressed viewpoints

and if so, what is its corresponding viewpoint. We measure the agreement score

using Cohen’s kappa coefficient. The lowest agreement score for an issue is 0.61

in the data set, showing good agreement. We then used the set of posts that were

labeled with the same viewpoint by the two annotators as our evaluation data for all

the models.
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Since our task is essentially a clustering problem, we use purity and entropy

to measure the performance [56]. Furthermore, we also use accuracy where we

choose the better alignment of clusters with ground truth class labels and compute

the percentage of posts that are “classified” correctly. For purity and accuracy, the

higher the measure the better the performance. For entropy, the lower the measure

is the better the performance.
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Figure 3.4: Averaged results of the models in identification of viewpoints.

We give an overview of all the averaged model results on the data sets in Fig-

ure 3.4. We observed that UIM performs relatively better than other methods except

our model. This shows user interactions are important features to identify post view-

points. Overall, our model has a better performance as it is with higher purity and

accuracy, and lower entropy.

Table 3.3 shows the detailed results on the data sets. We perform the 2-tailed

paired t-test as used by [2] on the results. All the result differences are at 10%

significance level if not with further clarification. First, JVTM has a better perfor-

mance over JVTM-G, which shows it is important to consider user identity in the

task. Second, JVTM and TAM have similar performance on EDS1 and CDS2, but

JVTM has a relatively better performance on EDS2, EDS3, CDS1 and CDS3. This

shows it is helpful to consider each viewpoint’s topic preference. Although as stud-

ied by [74], by only using unigram features, TAM may not be able to cluster view-

points accurately. Our study shows that the results can be improved when adding

each viewpoint’s topic focus. Third, UIM has relatively better performance than
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JVTM-UI UIM JVTM TAM JVTM-G

EDS1
P 0.77 0.74 0.64 0.65 0.63
E 0.72 0.76 0.90 0.92 0.94
A 0.77 0.74 0.61 0.60 0.57

EDS2
P 0.82 0.78 0.68 0.65 0.64
E 0.69 0.73 0.79 0.86 0.90
A 0.81 0.78 0.68 0.68 0.65

EDS3
P 0.79 0.73 0.65 0.64 0.62
E 0.67 0.79 0.88 0.89 0.87
A 0.79 0.73 0.65 0.64 0.62

CDS1
P 0.87 0.83 0.83 0.82 0.82
E 0.61 0.64 0.65 0.66 0.64
A 0.60 0.58 0.59 0.58 0.57

CDS2
P 0.71 0.65 0.61 0.63 0.60
E 0.80 0.85 0.92 0.95 0.96
A 0.71 0.65 0.61 0.61 0.59

CDS3
P 0.78 0.78 0.78 0.78 0.78
E 0.73 0.75 0.70 0.72 0.73
A 0.67 0.59 0.67 0.66 0.63

Table 3.3: Results on viewpoint identification on the all data sets.

the other models, which demonstrates that user interactions alone can do a decent

job in inferring viewpoints. Finally, our proposed model has the best performance

across the board in terms of all three evaluation metrics. Note that, our proposed

model significantly outperforms other methods at 5% significance level except at

10% significance level over JVTM model. This shows by jointly modeling topics,

viewpoints and user interactions, our model can better identify posts with different

viewpoints.

Identification of user groups

We also use another task to evaluate our model. The task here is finding each user’s

viewpoint and subsequently grouping users by their viewpoints. This task has been

studied by [3], [14], [2] and [35]. For the English data set, the user-level group labels

are provided by the original data set. For the Chinese data set, we randomly selected

150 users for each issue and manually labeled them according to their viewpoints as

reflected by their posts. If a user’s posts do not clearly suggest a viewpoint, we label

her as neutral. Again we asked two human judges to do annotation. The agreement
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scores are above 0.70 for all issues, showing substantial agreement. This score is

higher than viewpoint identification, which suggests that it is easier to judge a user’s

viewpoint than a single post’s viewpoint. We use the set of users who have got the

same labels by the two human judges for our experiments. Similarly we compute

purity, entropy and accuracy to evaluate the clustering results.
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Figure 3.5: Averaged results of the models in identification of user groups.

Figure 3.5 shows the averaged results of all the models. Similar to previous

experiment, our model has a better performance compared to the competing models.

JVTM-UI UIM JVTM TAM JVTM-G

EDS1
P 0.67 0.67 0.67 0.67 0.67
E 0.85 0.88 0.89 0.89 0.91
A 0.63 0.59 0.58 0.59 0.57

EDS2
P 0.77 0.77 0.77 0.77 0.77
E 0.72 0.76 0.74 0.75 0.76
A 0.62 0.59 0.60 0.58 0.59

EDS3
P 0.68 0.63 0.61 0.61 0.58
E 0.90 0.92 0.95 0.96 0.97
A 0.68 0.63 0.61 0.58 0.57

CDS1
P 0.64 0.60 0.61 0.61 0.60
E 0.91 0.97 0.96 0.96 0.97
A 0.61 0.55 0.55 0.56 0.53

CDS2
P 0.69 0.69 0.69 0.69 0.69
E 0.83 0.89 0.85 0.89 0.89
A 0.62 0.57 0.56 0.58 0.54

CDS3
P 0.67 0.63 0.64 0.60 0.60
E 0.89 0.91 0.92 0.93 0.96
A 0.64 0.62 0.60 0.56 0.54

Table 3.4: Results on identification of user groups on all the data sets.

The results on the each data set are shown in Table 3.4. The tables show that
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similar trends can be observed for the task of user group identification. We also

perform the 2-tailed paired t-test on the results. We find our model significantly

outperforms other models in terms of accuracy at 5% significance level, and purity

and entropy at 10% significance level. Overall speaking, our joint model performed

the best among all the models for this task for all three metrics. This shows that it is

important to consider the topical preference of individual viewpoint, user’s identify

as well as the interactions between users.

Figure 3.6: The user interaction network in a discussion thread about “will you
vote obama.” Green (left) and white (right) nodes represent users with two differ-
ent viewpoints. Red (thin) and blue(thick) edges represent negative and positive
interactions.

User interaction network

To gain some direct insight into our results, we show the user interaction network

from one thread in Figure 3.6. Here each node denotes a user, and its color denotes

the predicted viewpoint of that user. A link between a pair of users means these

users have interactions and the interaction types have a dominant polarity. The po-

larities of these links are predicted using the interaction expressions and a sentiment

lexicon, whereas the viewpoints of different users are learned by JVTM-UI, mak-

ing use of the interaction polarities. The figure shows that clearly there are mostly

positive interactions between users with the same viewpoint and mostly negative

interactions between users with different viewpoints. Note that, our method to iden-
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tify user interaction polarity is rule-based. As this step serves as a preprocessing

step for our latent variable model, we can always use a more accurate method to

improve the performances.

3.1.4 Summary

In this piece of work, we proposed a novel latent variable model for viewpoint

discovery from threaded forum posts. Our model is based on the three important

factors: viewpoint specific topic preference, user identity and user interactions. Em-

pirical evaluation on the real forum data sets showed that our model could cluster

both posts and users with different viewpoints more accurately than the baseline

models.

3.2 Modeling Interactions Features

Online discussion forums are popular social media platforms for users to express

their opinions and discuss controversial issues with each other. Most online discus-

sion forums do not require users to explicitly indicate their stances or sides when

they publish posts. Automatically clustering posts or users by their sides on an is-

sue, also known as finding stances or sides, is an important task to help mine online

opinions. In this chapter we focus on the task of clustering users/posts by sides on

controversial issues.

So far, most existing work on finding viewpoints focuses on the topic differ-

ences in terms of the usage of words between documents with different view-

points [18, 73]. Besides side-specific words and expressions, another important

piece of information that is not yet well studied is user interactions, i.e. the interac-

tion expressions exchanged between users. These interactions indicate if the users

or posts support each other or disagree with each other.

This is especially evident when we look at online discussions, where user inter-

actions are observed to be rich especially for those controversial discussion topics.
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Examples include debate forums on social, political and cultural issues such as Cre-

ateDebate7, where we find that the majority (∼80%) of the posts are interaction

posts, i.e. posts that reply to other posts or users. Among these interaction posts,

language units indicating user interactions are common.

Table 3.5 shows some sample posts from a debate page in CreateDebate. We ob-

serve that reply posts often contain interaction units that express opinions towards

other users, e.g. unigrams like right, wrong and foolishness, trigrams like how

can we and how can you. Another interesting finding is that many of these interac-

tion related language units have polarities, and the polarity often indicates whether

the sides of the two posts are the same. For example, positive unigrams like yes

and right are used between User A and User C, who are on the same side, whereas

negative unigrams like wrong and foolishness are used between User A and User

B, who are on different sides. This is also true for trigrams. For example, how can

you tends to be used between users with different sides like User K and User L. This

also shows that to model interaction polarity, one may need to consider N-grams too.

Besides this, one may find dependency relations can also be used to infer interaction

polarity. For example, in the sentence you cannot even prove it, a dependency

relation like ¬nsubj(prove,you)8 indicates a negative interaction while by solely

looking at N-grams, it is not clear to infer its polarity. In summary, these sample

posts suggest that it is important to use interaction-related language units to infer

interaction polarity and model the interplay between interactions and sides for side

clustering or prediction. For the rest of the chapter, we use interaction features to

refer to these interaction-related language units including N-grams and dependency

relation tuples.

There have been some recent advances in analyzing user interactions, e.g. to ex-

tract agreement and disagreement expressions [65, 64] and to infer user relations by

looking at their textual exchanges [35]. These approaches require either sentiment

7http://www.createdebate.com/
8nsubj(prove,you) means you is the subject of prove and ¬ means one of the words has

been negated.
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Debate: Does God Exist?
“Yes” Side (Side 0) “No” Side (Side 1)

User A:
Theists: I believe God exists. Atheists: I
believe God doesn’t exist. Both rely on be-
lief . . . (Side 0)
�User B (Disputed):
�Whoops. wrong. more like “I don’t be-
lieve in god.” . . . it is gullibility and fool-
ishness. . . (Side 1)
��User A (Disputed):
��. . . You BELIEVE there’s no God. you
cannot even prove it (Side 0)
�User C (Disputed):
�Yes, that is right. Believe or not believe
that is depend on the thinking and be-
lief of everybody. I don’t care anymore
. . . (Side 1)

User J:
If there is no evidence leading up to a God,
I dont believe. . . (Side 1)
�User K (Disputed):
�. . . if God is the very fabric of the universe
and existence itself, how can we prove that
it doesn’t exist??? have no choice but to ac-
cept it (Side 0)
��User L (Disputed):
��So how can you argue for something
that you cannot even interact with on a com-
parable level? (Side 1)
��User M (Supported):
��Question:Why did the crusades happen?
Answer: god told the people to kill muslims
. . . (Side 1)

Table 3.5: Sample posts on the debate “Does God Exist?”

lexicons, which may not be designed for user interactions, or labeled training data,

which is labor-intensive to create. In the interaction feature identification stage, we

propose a different approach to analyze user interactions. We observe that in some

online forums such as CreateDebate, the intention of a reply post, i.e. whether it

is supporting or disagreeing with the previous post, is clearly indicated. The side

of each post is also known. When we have such rich structural information about

the debate posts, we can make use of these labels to infer interaction features. In

particular, we propose an Interaction Model (IM) to mine interaction features from

these labeled debate posts. Another advantage of our model is that we adopt rich

language features instead of the traditional “bag-of-words” features, which helps us

gain more insights into user interactions.

After we mine the interaction features from the labeled debates, in the clustering

stage, we propose a Debate Side Model (DSM) for side clustering by incorporating

the learned interaction features. DSM can be applied for any forum threads whose

reply structure is evident but side labels and interaction polarities are unknown.

DSM segregates the interaction features from side-specific features to aid our side

clustering tasks. It also automatically infers the interaction polarities of reply posts
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and considers the interplay between interactions and sides. As demonstrated in

our experiments, our two-stage solution yields better performance than all other

competing methods we consider for evaluation.

Our contributions are: (1) To analyze user interactions, while most existing ap-

proaches require either sentiment lexicons or labeled training data, we propose to

mine interaction features from structured debate posts with known sides and reply

intentions. Experiment results show our extracted interaction features are insight-

ful. (2) We propose a new debate side model to cluster posts or users by sides for

general threaded discussions. The model incorporates two important factors: in-

teraction features and the interplay between interactions and sides. (3) Empirical

evaluation shows the advantages of our proposed models and the benefits of consid-

ering the aforementioned two factors.

3.2.1 Stage One - Model Interactions

In this section, we discuss our first stage to show how to model interaction features

from CreateDebate data.

Data property. As presented in Table 3.5, a reply post in CreateDebate has three

pieces of information: the debate side, the recipient post, and the reply intention

– “support,” “dispute” or “clarify.” We treat “support” and “clarify” as a positive

interaction (P) while “dispute” as a negative interaction (N).

We study different types of language features to represent posts.

Bag-of-Words. This simply considers all the unigram words.

N-grams. This considers all the N-grams inside a post, where N ∈ {2, 3}. For

a sentence: you cannot prove, besides all the unigrams, we have three N-gram

features: you cannot, cannot prove and you cannot prove.

Dependency Relations. As syntactic information can improve the accuracy of sen-

timent models [43], we thus consider adding syntactic features to our model. For

each post, we use the Stanford parser [44] to get its dependency relations. For ex-
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ample, for the above sentence, we will get these relations:nsubj(prove,you), aux

(prove,can) and neg(prove,not)9. This representation is referred to as full-tuple

representation. As this representation has low generalization power, split-tuple rep-

resentation is used in [32, 43]. In split-tuple representation, each dependency rela-

tion will be split into two relations. For example, nsubj(prove,you) will be split

to nsubj(prove,*) and nsubj(*,you).

Negation. We also consider negation features as studied in [74]. For a relation tu-

ple rel(a,b), if either a or b is negated, we rewrite the tuple as ¬rel(a,b); for the

above sentence, we have ¬nsubj (prove,you) and ¬aux(prove,can) as features

in full-tuple representation, and based on which we can re-build split-tuple features.

With the three types of language features defined above, each post is now repre-

sented as a bag of these features. In the probabilistic model we present below, we

use “word” to refer to any of these features, i.e. a word can be a unigram, an N-

gram, or a negated or non-negated dependency relation.

Interaction Model

Our Interaction Model is a generative latent variable model that takes into consider-

ation the data structure of the posts from CreateDebate to model interaction features.

Specifically, we assume three types of words in debate posts.

Thread-specific word distribution φT. This models words specific to a debate

thread. Taking the debate “Does God Exist?” for example, words such as god and

existence can be thread-specific.

Side-specific word distribution φS. This models those words specific to each side

of a debate. The intuition is that users from different sides tend to have different

focuses and usage of words, which is close to a phenomenon called “framing” [54,

96]. For example, we find users on the “Yes” side talk more about the bible and

use words like religion and belief. On the other hand, those on the “No” side
9you cannot prove will be tokenized as you can not prove by using the Stanford

parser [44]
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Figure 3.7: Interaction Model for modeling interaction words using the CreateDe-
bate data. Dashed variables will be collapsed out in Gibbs Sampling.

tend to use words like logic, rationality and science.

Interaction word distribution φI. If a post is a reply to another post, it is highly

possible that we observe some interaction words. For example, yes, right and

wrong as shown in Table 3.5.

Assuming we have a set of debate threads where each thread focuses on a partic-

ular debate topic. Each thread has a set of posts where each post has a side. We use

sd,n ∈ {+,−} to denote the side of the n-th post of the d-th thread, rd,n ∈ {P,N}

to denote the relation of this post to its parent post10. We assume that the words

in each post are generated from the three types of word distributions as described

above, i.e. φT, φS, and φI. The plate notation of the model is in Figure 3.7 and the

generative process is in Figure 3.8.

Beyond interaction words

The interaction words we are interested in are mostly opinion words. After some

preliminary experiments, we find it more effective to only allow certain words to be

assigned as interaction words. This treatment is similar to [18] where the authors

assume opinion words are adjectives, verbs and adverbs.

In our study, we approximate this step by considering three types of features:

(1) All the adjectives and adverbs. These adjectives and adverbs are identified by
10Both sd,n and rd,n are evident from CreateDebate structure.
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• Draw selector distribution π ∼ Dir(γ)
• For each interaction type r ∈ {P,N}

– Draw φIr ∼ Dir(βI)
• For the d-th thread (d = 1, 2, · · · , D)

– Draw φTd ∼ Dir(βT)
– Draw φSd,s ∼ Dir(βS) for each side s
– For the n-th post (n = 1, 2, · · · , Nd)
◦ For the l-th word (l = 1, · · · , Ld,n)

- Let s = sd,n, r = rd,n, y = yd,n,l, and w = wd,n,l
- Draw y from Multi(π)
- Draw w as follows:

w ∼


Multi(φTd ) if y = 0
Multi(φSd,s) if y = 1

Multi(φIr) if y = 2

Figure 3.8: The generative process of the interaction model for CreateDebate. “Dir”
and “Multi” stand for Dirichlet and Multinominal respectively.

the Stanford POS tagger. Note that these are unigrams; (2) Words that appear in

one of the following opinion lexicons: the sentiment lexicon used in [38], Multi-

Perspective Question Answering Subjectivity Lexicon [102] and SentiWordNet [8];

(3) Any N-grams containing at least one word from the above two types. We also

consider N-grams that contain pronouns and verbs as these are oftentimes associated

with opinions as studied in [65]; (4) Any negated and non-negated dependency re-

lation tuples with at least M occurrences in the data set, e.g. prep with(agree,*)

and ¬prep with(agree,*). We empirically set M to 5.

We use collapsed Gibbs sampling to obtain samples of the hidden variable as-

signment and to estimate the model parameters from these samples. With Gibbs

sampling, we can deduce the following estimation for interaction word distribution:

φI
r,w =

C I
r,w + βI∑V

w=1C
I
r,w + V βI

. interaction-word distribution. (3.7)

where V is the vocabulary size, C I
r,w is the number of times that word w co-occurs

with interaction r. The interaction word distribution φI
i,w is used in the later stage to

infer interaction polarities of posts.
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3.2.2 Stage Two - Cluster Sides

Clustering the posts or users participating in a debate based on their sides can help us

understand the contentions and user groups exhibited in the debate. These two tasks

are different as users may not always explicitly express their opinions in a post, nor

do they always hold the same side throughout all the posts. The tasks are especially

useful for understanding online debates with unknown side information for posts.

We propose a generative model which can be applied for any forum settings for

these tasks. Our model is adapted from the model in our previous work [80], specif-

ically we borrow these two assumptions: user consistency and interplay between

interactions and sides.

User Consistency: The same user tends to be on the same side for a given debate,

although there are also users who do not have a clear side. In our model, we assume

that there is a user-level side distribution. For each post by a user, its side is drawn

from the corresponding side distribution.

Interplay between interactions and sides: An important difference between de-

bate posts and regular document collections such as news articles is that posts in

the same thread form a tree structure via the “reply-to” relations. The interaction

polarity reflects the two users’ side relation. Typically, if the sides are the same, we

are more likely to see a positive interaction whereas if the sides are different we are

more likely to see a negative interaction.

Note that we didn’t consider user-topic preference as it shows little improvement

over these two assumptions. And different from [80], the model will automatically

infer the interaction polarity by using the learnt interaction words. Below we discuss

the model in detail.

Debate Side Model

Our Debate Side Model is a generative model which assumes that interaction word

distribution φI
r is known. Given the learned interaction word distributions, we also
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Figure 3.9: Plate notation for the Debate Side Model (DSM) on a given debate.
Dashed variables will be collapsed out in Gibbs sampling. Double bordered dash
variables are not new variables but a subset of the s variables.

assume a selector y which takes three values that correspond to thread-specific

words, side-specific words and interaction words. For a given debate, we assume

the polarities of the reply relations between posts and the side information of each

post are unknown. We assume the same generative process to draw the words as

in Figure 3.8. The plate notation of DSM is in Figure 3.9 and the generative pro-

cess for the reply relations and the side information for the n-th post is shown in

Figure 3.10.

• Draw µu ∼ ε for each participating user u
• For the n-th post

– Let un be the author of the post
– Draw side sn ∼ Multi(µun)
– If the current post is a reply post, let spn denote the parent post’s side. Draw

interaction type rn from p(r|sn, spn)
Figure 3.10: The generative process of the debate side model.

The polarity of the interaction expression in the post is dependent on the side sn

of the post itself and the side spn of the parent post. The user draws rn according to

the following distribution:

p(rn = 1|sn, spn, δ) =
I(spn == sn) + δ1

1 + δ1 + δ0

, (3.8)

p(rn = 0|sn, spn, δ) = 1− p(rn = 1|sn, spn, δ),

43



where I(·) is 1 if the statement inside is true and 0 otherwise, and δ1,δ0 are smooth-

ing parameters. rn = 1 when interaction is positive and 0 otherwise.

We also use Collapsed Gibbs sampling to estimate the parameters in our model.

The main challenge in derivation is to consider the interplay between the side vari-

able s and interaction type r, similar to the one studied in [80]. With Gibbs sam-

pling, we can deduce the following estimation:

φT
w =

CT
w + βT∑V

w=1 C
T
w + V βT

. thread-word distribution (3.9)

φS
s,w =

CS
s,w + βS∑V

w=1 C
S
s,w + V βS

. side-word distribution (3.10)

Models for Comparison

We study both degenerate models and existing approaches for comparison.

DSM-1: The model is presented in Figure 3.11(a). By comparing it to DSM, we

evaluate the importance of adding the interplay between interactions and sides.

DSM-2: The model is presented in Figure 3.11(b). Comparing it to DSM-1, we

evaluate the importance of adding interaction words into the model.

DSM-SA: The model is the same with DSM except that the learned interaction

words are replaced by opinion lexicons. By comparing it to DSM, we evaluate

whether our learned interactions words can be replaced by simple opinion lexicons.

TAM: The Topic-Aspect Model (TAM) was proposed in [74, 73] for finding view-

points without any learned interaction features. By comparing it with DSM-2, we

can evaluate the necessity of adding interaction features.

K-Means: For each post or user, we use vector space model to build a vector on it

using all the features. We then use K-Means to cluster them. By comparing it with

DSM-2, we can see the effectiveness of considering side-specific features.
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Figure 3.11: (a) DSM-1: A side clustering model that does not consider the in-
terplay between interactions and sides. (b) DSM-2: A side clustering model that
does not consider user interactions. Dashed variables will be collapsed out in Gibbs
sampling.

3.2.3 Experiments

In this section, we first explain our corpus, then design our experiments to evaluate

both Interaction Model and Debate Side Model.

Data

We crawled the top-80 popular debates from CreateDebate. We use top half of the

debates for learning the interaction features using our Interaction Model and the

other half for evaluating the Side Clustering Model. The statistics are shown in

Table 5.2.

A. Post# A. User# VW VF Inter.%

Train 273.6 66.2 32,677 40,874 0.81
Test 168.7 45.3 21,186 29,414 0.80

Table 3.6: Some statistics of the data set. A. Post# and A. User# refer to average
number of posts and users for a thread, VW and VF are the total number of unique
words and features. Inter.% stands for the percentage of reply posts.

For all the models, we set S = 2 for all debates. The model results are averaged

from 10 runs, where for each run we perform 500 iterations of Gibbs sampling in
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the burn-in stage and take 20 samples with a gap of 5 iterations to obtain our final

results. We set δ1 to 0.4 and δ0 to 0.6 for our model11. For the other parameters ε, βT,

and βS, we select the optimal setting based on average of 10 runs where they take

values from {0.1, 0.01}. We use the same setting for our method and the baseline

models (DSM-1, DSM-2 and DSM-SA). For TAM, we use the same setting in the

paper [73]. We also vary the parameters in the above way and report the optimal

results. For K-Means, we set K = 2 and use Euclidean distance.

Qualitative analysis of interaction features

We first qualitatively analyze the interaction features discovered by our Interaction

Model.

PW NW P NG N NG P DEP NEG N DEP NEG

good choose i agree never like prep with(agree,*) ¬aux(*,do)
agree easy agree with you have no nn(lol,*) ¬aux(*,is)
affirm knowledge i do you are not advmod(agree,*) amod(*,natural)
love actually i agree with how is dep(agree,*) dobj(provide,*)
better book thank you no longer admod(*,well) advmod(*,actually)
children logical not believe are you prep to(*,religion) ¬xcomp(need,*)
winning against we can you do advmod(needed,*) cop(irrelevant,*)
terrorism irrelevant believe in what you nsubj(*,love) aux(arguing,*)
true belief even though they you seem to amod(*,good) ¬nsubj(is,*)
destroy failed do believe is actually advmod(feel,*) ¬dobj(have,*)

Table 3.7: Top unigrams(W), N-gram (NG), dependency relation and negation fea-
tures for P(positive) and N(negative) interactions. As negation features are added
directly into dependency relation features, we use DEP NEG to denote their com-
binations.

We present top interaction features in Table 3.7. We find that: (1) The positive

interaction words are often with positive sentiment like true and love, while the

negative interaction words contain negative words like against and irrelevant.

This shows the extracted interaction words are meaningful.12 (2) N-grams tend to

feature more identifiable expressions. E.g., i agree and agree with you show

11δ1 and δ0 represent to what extent we believe users from the same side tend to have positive
interaction and from different sides with negative interaction. We set δ1 + δ0 = 1 and vary δ1 from
0.3 to 0.7 with an interval of 0.1. We do not observe significantly result differences for our model.
But we find δ1 < 0.5 yields relatively better results. This correlates to our data set property, as we
observe users with different sides almost always “dispute” to each other, while users with the same
side do not always “support” or “clarify” each other.

12The interaction words are not all sentiment words, e.g. actually. Although not shown in
table, we observe many other none sentiment words, e.g. spiritually and yep for positive
interactions and simply for negative interactions.
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clear positive opinions, while you have no and you are not are oftentimes asso-

ciated with negative opinions. (3) Positive dependency relations to be meaningful

as well, e.g. prep with (agree,*) and nn(lol,*) are popular for positive inter-

actions. Moreover, we observe many negated expressions, e.g. ¬aux(*,do) and

¬aux(*,is). In summary, with N-grams, dependency relation and negation fea-

tures we can find more reasonable positive and negative interaction features to help

infer interaction polarity.

Identification of interaction polarity

Now we use the task of predicting whether a reply post is positive (i.e. support or

clarify) or negative (i.e. dispute) to evaluate the quality of the interaction features

discovered by the Interaction Model. We use the Debate Side Model to learn the

interaction polarity for each reply post by using the learned interaction features in

the first stage. We then evaluate its accuracy. Recall that in CreateDebate, reply

polarity is explicitly given in each reply post, which is used as the ground truth.

We consider a sentiment lexicon approach as baseline, where the approach will

estimate the post’s reply polarity by looking at the majority polarity of all the sen-

timent words with the post. If most of the sentiment words are positive, then it

predicts the interaction as positive, otherwise predicts as negative.

We use purity (the higher the better) and entropy (the lower the better) to evalu-

ate the performance of post clustering. We further use accuracy obtained by choos-

ing the best alignment of clusters with the ground truth class labels and computing

the percentage of users that are classified correctly.

As shown in Table 3.8, by using sentiment lexicon, an accuracy of 0.59 can

be achieved. With bag-of-word representation, our model outperforms the lexicon

based method. By sequentially adding N-grams, dependency relation and negation

features, the model results can be further improved. Furthermore, we observe that

there exists negative interactions among users with the same side, and these posts

are often used to show partial disagreement with the recipients and do not contain
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many negative interaction words. In this case, these negative interactions will be

mis-labeled as positive interactions. This shows it will be interesting to further

analyze the language usage in negative interactions to further improve accuracy; we

leave it as future work.

Methods Accuracy Purity Entropy F1-W

Lexicon 0.592 0.823 0.654 0.621

DSM + FW 0.619 0.836 0.643 0.650
DSM + FW, NG 0.622 0.836 0.643 0.662
DSM + FW, NG, DEP 0.625 0.836 0.641 0.671
DSM + FW, NG, DEP, NEG 0.664 0.836 0.641 0.689

Table 3.8: Interaction polarity identification. DSM + FW, NG, DEP, NEG stands for
DSM with bag-of-words, N-gram, dependency relation and negation features. F1-
W is the average score of F1 measure scores on positive and negative interaction
prediction weighted by their proportions.

In summary, our method shows advantage over the lexicon based approach, and

by adding N-grams, dependency relation and negation features its performance can

be further boosted. We note that our focus here is not to propose a perfect solution to

identify user interaction polarity, but rather to use a reasonable solution to identify

interaction features to help the following side clustering tasks.

Clustering posts by sides

We evaluate our Debate Side Model on the task of post side clustering. In this

task, for fair comparison, each model should output a side label for each post. For

our model, the two degenerate models (DSM-1 and DSM-2) and DSM-SA, each

post has a side label. For TAM, the side of a post is the one that has the majority

word count in the post. For K-Means, we use the cluster index as the side of a

post. We again use purity, entropy and accuracy to evaluate the performance of

post clustering.

Results: We present the average results of all the debates in Table 3.9. We per-

form Wilcoxon signed-rank test on the performance of all debates. Our findings

are the follows. (1) The fact that DSM-2 significantly outperforms K-Means at
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5% significance level in terms of all the criteria shows it is importance to separate

side-specific words apart from thread-specific words. (2) DSM-1 significantly out-

performs DSM-2 at 10% significance level in terms of all the criteria. This shows by

bringing in interaction features we can better identify sides. (3) We find modeling

the interplay between interactions and sides in the DSM model can further boost the

performances, as DSM significantly outperforms DSM-1 at 1% significance level.

(4) DSM shows significantly better results than DSM-SA, at 5% significance level,

which shows using standard opinion lexicons is not sufficient for the task. In sum-

mary, our DSM model shows significantly better performance than other baseline

models, at least 5% significance level. This result clearly shows the effectiveness of

considering interaction words and the importance of modeling the interplay between

interactions and sides.

DSM DSM-1 DSM-2 DSM-SA TAM K-Means

A 0.664‡ 0.636 0.619 0.637 0.548 0.563
P 0.702‡ 0.675 0.666 0.678 0.557 0.566
E 0.813‡ 0.860 0.869 0.851 0.982 0.973

Table 3.9: Post side clustering results. ‡ means the result is better than others in
the same column at 5% significance level measured by Wilcoxon signed rank test.
A,P,E denote Accuracy, Purity and Entropy respectively.

Clustering users by sides

We also use the task of finding each user’s side and subsequently grouping users by

their sides to evaluate our model. This task has been studied by [2, 3, 14, 35]. For

fair comparison, each model should output a side label for each user. For our model

and the two degenerate models, each user has a side distribution and we select the

side which has the higher probability as the user’s side. For TAM, we aggregate all

the posts from a user to form a “document” and choose the side that has the majority

word count in the “document” as this user’s side. For K-Means, we use all posts of

a user to form a feature vector and use the cluster index as the user’s side. Similarly

we use purity, entropy and accuracy to evaluate the clustering results.
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DSM DSM-1 DSM-2 DSM-SA TAM K-Means

A 0.622‡ 0.564 0.569 0.550 0.594 0.563
P 0.618† 0.591 0.592 0.577 0.609 0.566
E 0.942� 0.955 0.955 0.968 0.942� 0.973

Table 3.10: User side clustering results. ‡ means the result is better than others in
the same column at 5% significance level measured by Wilcoxon signed rank test, †

is at 10% level, � means the results is better than others without this symbol in the
same column at 5% significance level. A,P,E denote Accuracy, Purity and Entropy
respectively.

Results: We present the average performance of all the debates in Table 3.10. We

again perform Wilcoxon signed-rank test on the performance of all debates. Our

findings are similar to the evaluation at the post level. As the number of users

is much smaller than the number of posts, we find the result differences are not

as significant as in post-level evaluation. Nevertheless, we still observe a better

performance by DSM than other baseline models in terms of accuracy and entropy

at 10% significance level. TAM shows a similar performance with DSM in terms of

purity. By comparing DSM with DSM-1, we can still see the benefits of considering

the interplay between interactions and sides. Again, we can still observe DSM

significantly outperforms DSM-SA, at 5% significant level, which further shows

the advantage of learned interaction features over standard opinion lexicons. All

these results drive home that to consider interaction words and model the interplay

between interactions and sides can help the debate side clustering task.

Impact of balanced data sets

In this section, we will present an analysis on the balance level of our data sets to

further evaluate the robustness of these models. Not all debates are balanced on

the two sides. To see whether our model has a robust performance on unbalanced

data sets, we split our data sets based on different balance levels and compare the

accuracy of all models for both post and user clustering tasks. The balance level of

a data set is measured by the percentage of the minority side, which is binned into
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three ranges: [0.2, 0.3), [0.3, 0.4) and [0.4, 0.5).

 0.4
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[0.2 0.3)-P [0.3 0.4)-P [0.4 0.5)-P [0.2 0.3)-U [0.3 0.4)-U [0.4 0.5)-U

Accuracy
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DSM-1
DSM-2

DSM-SA
TAM

K-Means

Figure 3.12: Comparisons of post side clustering (“-P”) and user side clustering
(“-U”) accuracy in terms of data sets on different balance levels.

Results in Figure 3.12 shows that our model DSM clearly outperforms the base-

line models including TAM and K-Means when the data sets are relatively balanced.

For the unbalanced data set on user side clustering, K-Means shows better accuracy

as we observe that K-Means tends to generate two unbalanced clusters, one with the

majority points and the other with a few outlier points. K-Means also has relatively

good performance on the unbalanced data set on post side clustering, but our model

has better performance than it. In all, the average accuracy of DSM over all data

sets on different balance levels is still the best, which shows the robustness of our

model.

Impact of different types of features

We evaluate how our model performs on using different types of features in split-

tuple representation as it shows better results than full-tuple representation.

Results are shown in Figure 3.13. We can make these observations: (1) The

model results can be slightly improved by using N-gram features comparing to bag-

of-word features. (2) Dependency features are proved to be important as adding

which the model results are improved. (3) By adding negation features, the model

results can be further improved comparing to adding dependency features. In terms

of Accuracy, by adding negation features shows clear advantage by significantly

outperforming other methods at 5% significance level measured by Wilcoxon signed
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rank test. In all, by adding all three types of features, the model results can be sig-

nificantly improved over the model with bag-of-words representation, at 1% signif-

icance level measured by Wilcoxon signed rank test.

 0.4

 0.6

 0.8

 1

Accuracy-P Purity-P Entropy-P Accuracy-U Purity-U Entropy-U

FW
FW, NG

FW, NG, DEP
FW, NG, DEP, NEG

Figure 3.13: Impacts of different types of features on DSM in post side clustering
(“-P”) and user side clustering (“-U”). FW, FNG, FDEP, and FNEG stand for bag-of-
words, N-gram, dependency relation and negation features respectively.

We have also studied adding polarity information to the opinionated features,

the same as used in [74]. However, it does not improve the performance. One

reason is that most of polarized features can be captured by the interaction model.

We would like to emphasize that the language features studied in this work may be

no way near all the language signals exhibit in user interactions, but rather a good

set of language features that one can use to help the side clustering task in debates.

Generality of interaction features

Since our training data for learning interaction features and test data for user or post

side cluttering are all from popular debates, it is thus possible to observe threads

with similar topics in the training data with the test data. A natural question is

whether the learned interaction features are only helpful to threads with similar top-

ics. In other words, are our learned interaction features general enough for threads

from other domains? To answer this question, we conduct the following experiment.

We asked an external examiner to evaluate whether the test data set has over-

lapping topics with the training data set (the data set used for finding interaction

features). The study shows we have totally 11 debates out of 40 with topics similar
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to those in the training data. Most of them are on the popular debate topics like

“Does god exists?” (7 overlaps), “same-sex marriage”(2 overlaps) and “abortion”(2

overlaps). We then removed these overlapping debates and re-evaluated the results

on the rest of the debates.

Method
Post Side Clustering User Side Clustering

Accuracy Purity Entropy Accuracy Purity Entropy

DSM 0.653‡ 0.708† 0.793† 0.592‡ 0.615 0.943�

DSM-1 0.624 0.690 0.820 0.567 0.596 0.969
DSM-2 0.620 0.651 0.888 0.580 0.601 0.955
DSM-SA 0.615 0.676 0.860 0.556 0.585 0.965
TAM 0.545 0.555 0.982 0.582 0.600 0.941�

Kmeans 0.559 0.561 0.976 0.578 0.596 0.961

Table 3.11: Comparisons of post side clustering and user side clustering results on
data set without overlapping topics with training data set. ‡ means the result is better
than others in the same column at 5% significance level measured by Wilcoxon
signed rank test, † is at 10% level, and � means the result is better than other methods
without this symbol at 10% significance level.

We report the results in Table 3.11. In post side clustering, we find our model

still significantly outperforms other baseline methods at 10% significant level. In

user side clustering, we find our model still shows advantage over other models,

but the differences between our model and other models are not as significant as the

task of post side clustering. TAM shows a good performance on user side clustering,

mainly because of the rich features used. Except for TAM, our model outperforms

other methods at 10% significant level.

In summary, we actually observe similar findings where our model still shows

better performance than other baseline models. This shows our model still has an

advantage on training and test data sets with different topics. It suggests that the

interaction features learned by our model are those general interaction features from

different domains and may not be affected by domain shift.
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Parameter Analysis - δ

Recall that parameter δ in our model serves as pseudo counts for the statement in

the indicator function, as presented in Eqn. (3.8). In this section, we will study how

this parameter affects the model performance. To simplify the comparison, we set

δ1 + δ0 = 1. Note that, δ1 and δ0 represent to what extent we believe users from

the same side tend to have positive interactions and users from different sides with

negative interaction. If δ1 < δ0, we are inclined to have a stronger belief that users

from different sides tend to have negative interactions.

 0.4

 0.6

 0.8

Accuracy Purity Entropy

δ1=0.3, δ2=0.7
δ1=0.4, δ2=0.6
δ1=0.5, δ2=0.5
δ1=0.6, δ2=0.4
δ1=0.7, δ2=0.3

Figure 3.14: Impacts of δ on our model results in the post side clustering task.

Figure 3.14 compares our model for different ranges of values for δ in the post

side clustering task. Although the performances measures are quite close, we ob-

serve that setting δ1 < δ0 yields relative better performance, which means we have

more confidence in users with different sides having negative interactions than the

same side having positive interactions. This correlates to our data set property, as

we observe users with different sides almost always “dispute” to each other, while

users with the same side do not always “support” or “clarify” each other. We find

to model the interplay between interactions and sides is a challenging task. In the

near future, we will apply more linguistic analysis to undercover the underlying

relationship between them.
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3.2.4 Summary

In this work, we propose an Interaction Model to uncover interaction features from

structured debate posts with known sides and reply intentions such as those from

CreateDebate. We then design our Debate Side Model to consider interaction fea-

tures for debate side clustering. Empirical evaluation shows our DSM can perform

significantly better for side clustering than the baseline models.

3.3 Discussion

In our first work, we proposed a novel latent variable model for viewpoint discovery

from threaded forum posts. Our model is based on the three important factors:

viewpoint specific topic preference, user identity and user interactions. Our

proposed model captures these observations in a principled way. In particular,

to incorporate the user interaction information, we proposed a novel generative

process. Empirical evaluation on the real forum data sets showed that our model

could cluster both posts and users with different viewpoints more accurately than

the baseline models we consider. To the best of our knowledge, our work is the

first to incorporate user interaction polarity into a generative model to discover

viewpoints.

K-Means. Note that if we purely use bag-of-word representation, K-Means shows

better performance than the Topic-Aspect Model (TAM) [74] in terms of post-level

stance clustering as shown in Section 3.2.2. We test TAM and K-Means on the data

sets used in Chapter 3 as well. We find that K-Means also shows better performance

than TAM on the data set CDS2. A close examination shows that CDS2 and the

data set used in Section 3.2.2 have high user interactions, where more than 80%

of posts are reply posts. This shows that comparing to K-Means, TAM is more

suitable for data sets with more user arguments related to the issue. For forum

data sets, we observe a large amount of data sets are with user interactions, and by
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modeling interaction features, our model has better performance than both TAM

and K-Means.

Document representation. In this chapter, we shows that with more complex lex-

ical units such as n-grams [65] and dependency triplets [74] can improve the per-

formance of topic models. In our second work, we propose an Interaction Model

to uncover interaction features from structured debate posts with known sides and

reply intentions such as those from CreateDebate. We then design our Debate Side

Model to consider interaction features and the interplay between interactions and

sides for debate side clustering. Empirical evaluation shows our DSM can perform

significantly better for side clustering than the baseline models.

In our data set, we observe some cases where users from the same side “dispute”

with each others, which shows although two users may share the same side on a

controversial topic, they may still disagree with each other on some factors. This

relates to the controversy property of topics; some topics tend to be so controversial

that users with the same side may not reach a good agreement. We would like to

mine such controversy property of topics to help the side clustering tasks in the

future.
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Chapter 4

Modeling User Opinions

Advances in sentiment analysis have enabled extraction of user relations implied

in online textual exchanges such as forum posts. However, recent studies in this

direction only consider direct relation extraction from text. As user interactions can

be sparse in online discussions, we propose to apply collaborative filtering through

probabilistic matrix factorization to generalize and improve the opinion matrices

extracted from forum posts. Experiments with two tasks show that the learned latent

factor representation can give good performance on a relation polarity prediction

task and improve the performance of a subgroup detection task.

4.1 Introduction

The fast growth of the social Web has led to a large amount of interest in online

social network analysis. Most existing work on social network analysis relies on

explicit links among users such as undirected friendship relations [50], directed

following relations [37] and trust/distrust relations [48]. However, besides these

explicit social relations, the various kinds of interactions between online users often

suggest other implicit relations. In particular, in online discussion forums, users

interact through textual posts and these exchanged texts often reveal whether two

users are friends or foes, or whether two users share the same viewpoint towards a

57



given issue.

To uncover such implicit relations requires text analysis and particularly senti-

ment analysis. Recently, [35] studied predicting the polarity of user interactions in

online discussions based on textual exchanges. They found that the automatically

predicted signed relations had an accuracy above 80%. The extracted signed net-

work was further used to detect ideological subgroups. This is a piece of pioneering

work that extracts online social relations based on text analysis.

In this chapter, we further extend the idea of mining social relations from online

forum posts by incorporating collaborative filtering. Our work is motivated by the

observation that direct textual exchanges between users are sparse. For example,

in the data set we use, only around 13% of user-user pairs have direct interactions.

Collaborative filtering is a commonly used technique in recommender systems to

predict missing ratings. The key assumption is that if two people have the same

opinion on an item A, they are likely to also have the same opinion on a differ-

ent item B. In online discussion forums, users express their opinions about each

other as well as the various aspects of the topic under discussion, but not every user

comments on every aspect or every other user. Collaborative filtering allows us to

identify users with the same opinion even if they have not directly interacted with

each other or commented on any common aspect.

Our method starts with extracting opinions on users and topic aspects from on-

line posts using sentiment analysis. The results are two matrices indicating the

sentiment polarity scores between pairs of users and pairs of a user and an as-

pect. To incorporate collaborative filtering, we choose probabilistic matrix factor-

ization (PMF) [87], a technique that has been successfully applied for collaborative

filtering-based recommendation problems. PMF automatically discovers a low-rank

representation for both users and items based on observed rating data. In our prob-

lem, the predicted sentiment polarity scores are treated as rating data, and the results

of PMF are low-rank vectors representing each user in online discussions.

We evaluate our method on two tasks. The first is to predict the polarity of
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interactions between two users not from their own textual exchanges but from their

interactions with other users or comments on topic aspects. The second is to use

the latent vectors to group users based on viewpoints. We find that the latent factor

representation can produce good prediction results for the first task and improve the

clustering results of the second task compared with a number of baselines, showing

the effectiveness of collaborative filtering for mining social relations from online

discussions.

4.2 Method Overview

In this section, we provide an overview of our method. We first introduce some

concepts.

User: We use user to refer to a discussant in an online discussion. Each user has

an online ID, which can be used by other users to refer to him/her in a post. Users

are both opinion holders and opinion targets. For example, User 1 below expresses

a negative opinion towards another user in the following snippet.

User 1: Actually, I have to disagree with you.

Aspect: We use topic aspect or aspect to refer to an opinion target that is related to

the topic under discussion. For example, when debating about whether one should

vote for Obama, people may express opinions on targets such as “President Obama”

and “Republican party,” as shown in the following snippets. These aspects are all

related to Obama’s presidential campaign. As we will explain later, the aspects we

consider are named entities and frequent noun phrases.

User 2: Americans should vote for President Obama because he picks good

corporations as winners.

User 3: I simply point out how absolutely terrible the Republican party is.

Polarity Score: A sentiment polarity score is a real number between 0 and 1, where

0 indicates a completely negative opinion and 1 indicates a completely positive
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Figure 4.1: Salient aspects and number of users who express opinions on them in
the thread “Will you vote for Obama?”

opinion.

User-User Opinion Matrix: The opinions extracted from posts between users are

represented by a user-user opinion matrix S, where entry si,j is a polarity score

between the i-th user and the j-th user. We assume that the polarity scores are

symmetric.

User-Aspect Opinion Matrix: The opinions held by different users on the various

topic aspects are represented by a user-aspect opinion matrix R, where entry ri,k is

a polarity score indicating the i-th user’s opinion towards the k-th aspect.

Given the matrices S and R, we perform probabilistic matrix factorization to

derive a low-rank vector representation for users and aspects such that if the polarity

score between two users or a user and an aspect is high, the dot product between the

corresponding two vectors is also high.

In Section 4.3, we will explain in detail how we identify topic aspects from a

discussion thread and how we obtain polarity scores from posts. In Section 4.4, we

will present the details of our probabilistic matrix factorization model.

4.3 Construction of Opinion Matrices

The opinion matrices are constructed from a single forum thread discussing some

controversial topic.
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4.3.1 Aspect Identification

As we have pointed out, there are two kinds of opinion targets, namely users and

aspects. Users are clearly defined and can often be identified in posts by their IDs

or second person pronouns. For aspects, however, there is not a pre-defined set.

We observe that these topic aspects are usually named entities or noun phrases fre-

quently mentioned. We therefore use the OpenNLP toolkit1 to perform chunking

and obtain noun phrases and the Standford NER tagger2 to identify named entities

from the posts.

Some of the candidate aspect phrases identified above actually refer to the same

actual aspect, e.g. “Obama voter,” “Obama voters” and “the Obama voter.” We

remove stop words from each candidate phrase and use the WordNet by [61] to

obtain the lemma of each word such that we can normalize the candidate aspect

phases to some extent.

Finally, to select salient aspects for a given discussion topic, we count the num-

ber of times each candidate aspect has been expressed a positive or negative opinion

on by all users, and select those candidate aspects which have opinion expressions

from at least M users. We set M to 2 in our experiments. Figure 4.1 shows the

top salient aspects for the thread on “Will you vote for Obama?” We acknowledge

there are still duplicate aspects in the results like “Republican Party” and “GOP”.

To normalize these aspects, some additional information such as Wikipedia entries

and Google snippets may be considered. We will study this problem in our future

work.

4.3.2 Opinion Expression Identification

Our next step is to identify candidate opinion expressions. This problem has been

studied in [38], [78], and [36]. Based on previous work, we do the following. We

first combine three popular sentiment lexicons to form a single sentiment lexicon:

1http://opennlp.apache.org/
2http://nlp.stanford.edu/ner/index.shtml
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ID Dependency path rule Example

R1 ADJOP ← amod← NTR I simply point out how terrible REPUBLICAN PARTY
is.

R2 ADJOP → nsubj → NTR BUSH is even more reasonable for tax hike than Obama.
R3 VOP → dobj → NTR I would never support OBAMA.
R4 VOP → prep ∗ → NTR I’ll vote for OBAMA.
R5 VOP → nsubjpass→ NTR DEMOCRATIC PARTY are ultimately corrupted by

love of money.
R6 NOP ← dobj ← V → nsubj → NTR PAKISTAN is increasing terrorist threat.
R7 ADJOP ← amod← N → nsubj → NTR OBAMA was a top scorer for occidental college.
R8 ADVOP ← advmod← V → nsubj → NTR OBAMA is smarter than people.

Table 4.1: Examples of frequent dependency path rules in our training data. OP and
TR refer to the opinion and the target. The opinion words are in italic and the aspect
words are in uppercase.

the lexicon used in [38], MPQA Subjectivity Lexicon by [102] and SentiWordNet

by [8]. Our final sentiment lexicon contains 15,322 negative expressions and 10,144

positive expressions. We then identify candidate opinion expressions by searching

for occurrences of words in this lexicon in the posts.

4.3.3 Opinion Relation Extraction

Given a post that contains an aspect and an opinion expression, we still need to

determine whether the opinion expression is used to describe the aspect. This is

a relation extraction problem. We use a supervised learning approach based on

dependency paths. Previous work by [63], and [79] has shown that the shortest

path between a candidate opinion aspect and a candidate opinion expression in the

dependency parse tree can be effective in extracting opinion relations. We use the

Stanford Parser from [44] to obtain the dependency parse trees for each sentence in

the posts and then get the dependency paths between each pair of candidate aspect

and opinion expression. We use dependency relations and POS tags of nodes along

the path to represent a dependency path. Given a set of training sentences (we

use the one from [103]), we can get a set of dependency path rules based on their

frequencies in the training data. Table 4.1 shows the frequent dependency path rules

in our training data.

When a pair of aspect and opinion expression is identified to be related, we

use the polarity of the opinion expression to label the relation. Finally, given a
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pair of users, we use the percentage of positive interactions between them over all

subjective interactions (i.e. interactions with either positive or negative opinions)

as extracted from their exchanged posts as the sentiment polarity score between the

two users, regardless of the reply-to direction of the posts. Similarly, given a user

and an aspect, we also use the percentage of positive opinion relations extracted as

the sentiment polarity score between them. Thus the user-user opinion matrix and

the user-aspect opinion matrix are constructed. If there is no subjective interaction

detected between two users or between a user and an aspect, the corresponding entry

in the matrix is left empty. We will see later that empty entries in the matrices are

not used in the probabilistic matrix factorization step.

4.4 Probabilistic Matrix Factorization

As we have pointed out earlier, a problem with the matrices extracted as described in

Section 4.3 is that the matrices are sparse, i.e. many entries are empty. For the data

set we use, we find that around 87% of entries in the user-user opinion matrix and

around 90% of entries in the user-aspect opinion matrix are empty. In this section,

we describe how we use Probabilistic Matrix Factorization (PMF) to represent users

and aspects in a latent factor space and thus generalize the user preferences.

Our model is almost a direct application of probabilistic matrix factorization

from [87], originally proposed for recommender systems. The main difference is

that the user-user opinion polarity scores are symmetric. Our model is also similar

to the one used by [55]. We describe our model as follows.

We assume that there are K latent factors with which both users and aspects can

be represented. Let ui ∈ RK denote the vector in the latent factor space for the i-th

user, and ak the vector for the k-th aspect.

Recall that the opinions extracted from posts between users are represented by a

user-user opinion matrix S, and the opinions held by different users on the various

topic aspects are represented by a user-aspect opinion matrixR. We assume that the
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polarity scores si,j between the i-th and the j-th users and ri,k between the i-th user

and the k-th aspect in the two matrices S and R are generated in the following way:

p(si,j|ui, uj, σ2
1) = N (si,j|g(uTi uj), σ

2
1),

p(ri,k|ui, ak, σ2
2) = N (ri,k|g(uTi ak), σ

2
2),

where σ2
1 and σ2

2 are variance parameters, g(·) the logistic function, and N (·|µ, σ2)

is the normal distribution with mean µ and variance σ2.

We can see that with this generative assumption, if two users are similar in terms

of their dot product in the latent factor space, then they are more likely to have

positive interactions as extracted from their textual exchanges. Similarly, if a user

and an aspect are similar, then the user is more likely to express a positive opinion on

the aspect in his/her posts. The latent factors can therefore encode user preferences

and similarity between two users in the latent factor space reflects whether they

share similar viewpoints.

We also place the following prior over ui and ak:

p(ui|σ2
U) = N (ui|~0, σ2

UI),

p(ak|σ2
A) = N (ak|~0, σ2

AI),

where σ2
U and σ2

A are two variance parameters for users and aspects, respectively,

and I is the identify matrix.

Figure 4.2 shows the plate notation for the generative model.

Let U be a K × U matrix containing the vectors ui for all U users, and A be an

K ×A matrix containing the vectors ak for all A aspects. To automatically learn U
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Figure 4.2: Probabilistic matrix factorization model on opinion matrices.

and A, we minimize the following objective function:

L(U ,A,S,R)

=
1

2

U∑
i=1

A∑
k=1

I(ri,k)(ri,k − g(uTi ak))2

+
λ1
2

U∑
i=1

U∑
j=1

I(si,j)(si,j − g(uTi uj))2

+
λU
2
||U||2F +

λA
2
||A||2F , (4.1)

where λ =
σ2
1

σ2
2
, λU =

σ2
1

σ2
U

, and λA =
σ2
1

σ2
A

, I(s) is an indicator function which equals

1 when s is not empty and otherwise 0.

To optimize the objective function above, we can perform gradient descent on

U and A to find a local optimum point. The derivation is similar to [55].

Degenerate Versions of the Model

We refer to the complete model described above as PMF-UOM (PMF model based

on User Opinion Matrices). PMF-UOM has the following two degenerate versions

by considering either only the user-user opinion matrix or only the user-aspect opin-

ion matrix.

PMF-UU: In this degenerate version of the model, we use only the user-user opin-

ion matrix to learn the latent factor representation. Specifically, the objective func-

tion is modified such that we drop the sum of the square errors involving R and the
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regularizer on A.

PMF-UA: In this degenerate version of the model, we use only the user-aspect

opinion matrix to learn the latent factor representation. Specifically, the objective

function is modified such that we drop the sum of the square errors involving S.

4.5 Experiments

In this section, we present our experiments that evaluate our model.

4.5.1 Data Set and Experiment Settings

The data set we use comes from [80], [2] and [35]. The data set contains a set of

discussion threads collected from two political forums (Createdebate3 and Politi-

calforum4) and one Wikipedia discussion session. Some details of the data we use

are listed in Table 4.2. Note that although we use the same data sets from [80],

the experiment results are not comparable as our work here only focus on the user

opinion matrices extracted from the opinionated texts while the work in [80] also

uses non-opinionated texts.

ID topic #sides #sentences #users

EDS1 Vote for Obama 2 12492 197
EDS2 Arizona Immigration Law 2 2500 59
EDS3 Tax Cuts 2 1193 26
EDS4 Abortion Banned 6 3844 70
EDS5 Profile Muslims 4 2167 69
EDS6 England and USA 6 2030 62
EDS7 Political Spectrum 7 1130 50

Table 4.2: Some statistics of the data sets.

In our experiments, for the PMF-based methods, we set the number of latent

factors to be 10 as we do not observe big difference when varying the latent factor

size from 10 to 50. For the other parameters, we select the optimal setting for each

3www.createdebate.com
4www.politicalforum.com
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thread based on the average of 50 runs. λU is chosen from {0.1, 0.01}, λA from

{0.01, 0.001} and λ from {1, 0.1}.

4.5.2 Relation Polarity Prediction

The first task we use to evaluate our model is to predict the polarity of interactions

between two users. Different from [35], however, we are not using this task to

evaluate the accuracy of sentiment analysis from text. Our experimental setting is

completely different in that we do not make use of the text exchanges between the

two users but instead use their interactions with other users or aspects. The purpose

is to test the effectiveness of collaborative filtering.

Experimental Setting: The experiments are set up in the following way. Given a

pair of users i and j who have directly exchanged posts, i.e. si,j is not empty, we

first hide the value of si,j in the matrix S. Let the altered matrix be S¬(i,j). We then

use S¬(i,j) instead of S in the learning process as described in Section 4.4 to learn

the latent factor representation. Let ûi and ûj denote the learned latent vectors for

user i and user j. We predict the polarity of relation between i and j as follows:

ŝi,j =

 1 if g(ûTi ûj) > 0.5,

0 otherwise,

where g(·) is the logistic function to convert the dot product into a value between 0

and 1.

To judge the quality of the predicted polarity ŝi,j , we could compare it with

si,j . But since si,j itself is predicted from the textual exchanges between i and j,

it is not the ground truth. Instead, we ask two human annotators to assign the true

polarity label for user i and user j by reading the textual exchanges between them

and judging whether they are friends or foes in the discussion thread. The annotators

are asked to assign a score of 0 (indicating a negative relation), 0.5 (indicating a

neutral relation) or 1 (indicating a positive relation). The lowest agreement score
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based on Cohen’s kappa coefficient among the 6 threads we use is 0.56, showing

fair to good agreement. As ground truth, we set the final polarity score to 1 if the

average score of the two annotators is larger than 0.5 and 0 otherwise.
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Figure 4.3: Comparing all the methods
in terms of MAE.
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Figure 4.4: Comparing all the methods
in terms of RMSE.

We compare the PMF-based methods with two majority baselines: MBL-0 al-

ways predicts negative relations for all the user pairs (assuming most relations are

negative) and MBL-1 always predicts positive relations (assuming most relations

are positive).

We use MAE (mean absolute error) and RMSE (root mean square error) as de-

fined below as performance metrics:

MAE =

∑
i,j |ŝi,j − li,j |

N
,

RMSE =

√∑
i,j(ŝi,j − li,j)2

N
,

whereN is the total number of user pairs we test, and li,j is the ground truth polarity

score between user i and user j.

Results: We show the results of our model and of PMF-UU and PMF-UA in terms

of MAE in Figure 4.3 and RMSE in Figure 4.4. The MAE values range between

0.31 and 0.44 except for EDS3, which has a higher error rate of 0.53. The results

show that even without knowing the textual exchanges between two users, from
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their interactions with other users and/or with topic aspects, we can still infer the

polarity of their relation with decent accuracy most of the time.

The results also show the comparison between our model and the competing

methods. We can see that overall the complete model (PMF-UOM) performs bet-

ter than the two degenerate models (PMF-UU and PMF-UA). The differences are

statistically significant at the 5% level without considering EDS3, as indicated by a

2-tailed paired t-test. Comparing to the majority baselines, our model significantly

outperforms MBL-1 at 1% significance level while outperforms MBL-0 on all the

data sets except EDS3. A close examinations shows EDS3 has very unbalanced re-

lations (around 83% of relations are negative). Except for the unbalanced data set,

our model has reasonably good performance.

4.5.3 Subgroup Detection

The second task we study is the problem of detecting ideological subgroups from

discussion threads. The original data set has been labeled with the ground truth

for this problem, that is, for each thread the number of viewpoints is known and

the viewpoint held by each user is labeled. A subgroup is defined as a set of users

holding the same viewpoint.

Experimental Setting: Through this second experiment, we would like to verify

the hypothesis that using the learned latent factor representation U for users, we can

better detect subgroups than directly using the opinion matrices S and R. For all

the methods we compare, we first construct a feature vector representation for each

user. We then apply K-means clustering to group users. The number of clusters is

set to be the true number of viewpoints for each thread. The different methods are

described below:

PMF-based methods: We simply use the learned latent vectors ûi after opti-

mizing the objective function as the feature vectors to represent each user.

BL-1: This is our own implementation to simulate the method by [2]. Here
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each user is represented by a (3 × (U + A))-dimensional vector, where U is the

number of users and A is the number of aspects, i.e. (U +A) is the total number of

opinion targets. For each opinion target, there are 3 dimensions in the feature vector,

corresponding to the number of positive, neutral and negative opinion expressions

towards the target from the online posts.

BL-2: BL-2 is similar to BL-1 except that we only use a (U + A)-dimensional

vector to represent each user. Here for each opinion target, we directly use the

corresponding sentiment polarity score si,j or ri,j from the matrix S or R. For

empty entries in S and R, we use a score of 0.5.

We use Purity (the higher the better), Entropy (the lower the better) to evaluate

the performance of subgroup detection [56]. We further use Accuracy obtained

by choosing the best alignment of clusters with the ground truth class labels and

computing the percentage of users that are “classified” correctly.

Results: We first give an overview of the performance of all the methods on the task.

We show the average performance of the methods on all the data sets in Figure 4.5.

Overall, our model has a better performance than all the competing methods.

We present all the results in Figure 4.6, 4.7, and 4.8. We perform 2-tailed paired

t-test on the results. We find the PMF-UOM model outperforms its degenerative

models PMF-UU and PMF-UA at 10% significance level in terms of all the mea-

sures.

We observe that PMF-UOM achieves the best performance in terms of all the

measures for almost all threads. In particular, comparison with BL-1 and BL-2

shows that collaborative filtering can generalize the user preferences and help better

group the users based on their viewpoints. The fact that PMF-UOM outperforms

both PMF-UU and PMF-UA shows that it is important to consider both user-user

interactions and user-aspect interactions.

The Effects of Cluster Size: To test the effect of the number of clusters on the

experiment result, we vary the number of clusters from 2 to 10 in all methods. We

find that all methods tend to achieve better results when the number of clusters
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equals the ground truth cluster size. Overall, our method PMF-UOM shows a better

performance than the other four methods when the number of clusters changes,

which indicates the robustness of our method.
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Figure 4.5: An overview of the aver-
aged performance.
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Figure 4.6: Comparing all the methods
in terms of purity.
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Figure 4.7: Comparing all the methods
in terms of entropy.
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Figure 4.8: Comparing all the methods
in terms of accuracy.

Our results show: (i). BL-1 and BL-2 are strong baselines as they perform com-

parable to PMF-UU and PMF-UA. The fact that PMF-UOM outperforms BL-1 and

BL-2 show the effectiveness of using collaborative filtering way to find user groups;

(ii). PMF-UA shows good performance on the data sets, this means by looking at

users’ opinions towards aspects can help to find user groups; (iii). PMF-UA have

similar performance with PMF-UU shows that user aspect interaction have similar
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importance in this task; (vi). We find PMF-UOM shows a robust performance on all

the data sets, and it significantly outperforms PMF-UA and PMF-UU. This shows

the effectiveness of combining both user user interaction and user aspect interaction

for finding user groups.

4.6 Discussion

In this chapter, we studied how to use probabilistic matrix factorization, a common

technique for collaborative filtering, to improve relation mining from online dis-

cussion forums. We first applied sentiment analysis to extract user-user opinions

and user-aspect opinions from forum posts. The extracted opinions form two opin-

ion matrices. We then applied probabilistic matrix factorization using these two

matrices to discover a low-rank latent factor space which aims to better general-

ize the users’ underlying preferences and indicate user similarities based on their

viewpoints. Using a data set with 6 discussion threads, we showed that the learned

latent vectors can be used to predict the polarity of user relations well without using

the users’ direct interaction data, demonstrating the effectiveness of collaborative

filtering. We further found that for the task of subgroup detection, the latent vectors

gave better performance than using the directly extracted opinion data, again show-

ing that collaborative filtering through probabilistic matrix factorization can help

address the sparseness problem in the extracted opinion matrices and help improve

relation mining.

As future work, we seek to explore these tasks.

Differentiation between discriminate and general items. In stance prediction, it

is possible to differentiate between discriminate and general items. Take opinion-

targets as example, we find some opinion-targets are discriminate while others are

general. For example, in our data set EDS1, support-Obama and against-Obama

users tend to have different opinions to opinion-targets like Democrat Party, GOP,

and healthcare act., but share similar opinions toward tea party or green party. Using
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our model, we can predict all users’ opinions on these opinion-targets and further di-

vide these opinion-targets into discriminate and general ones. To better understand

those discriminate opinion-targets can help us to further understand the contrastive

opinions held among different subgroups.

Incorporation of general textual contents. This chapter focuses on mining user

opinions. As future work, we would like to explore how to incorporate textual con-

tents without opinionated expressions. One possible way is to consider ”framing”

in user arguments as studied in [80, 29, 89]. Another possible way is to consider the

combination of matrix factorization and topic modeling as studied by [99] where

we can use topic modeling to study textual contents.
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Chapter 5

Micro-level and Macro-level

Stance Prediction

Online debate forums are important social media for people to voice their opinions

and debate with each other. Mining user stances or viewpoints from these forums

has been a popular research topic. However, most current work does not address

an important problem: for a specific issue, there may not be many users participat-

ing and expressing their opinions. The reason may be the issue is not interested to

users or the issue is a new issue. Despite the sparsity of user stances, users may

provide rich side information, for example, users may write arguments to back up

their stances, interact with each other, and provide biographical information. In

this work, we propose an integrated model to leverage side information. Our pro-

posed method is a regression-based latent factor model which jointly models user

arguments, interactions, and attributes. Our method can perform stance prediction

for both warm-start and cold-start users. We demonstrate in experiments that our

method has promising results on micro-level stance prediction. Our empirical study

shows that our model has a good result on macro-level stance prediction, which

shows the potential to complement traditional surveys and polls.
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5.1 Introduction

Online debate forums are important social media for people to voice their opinions

and engage in debates with each other. Mining user stances and viewpoints from

these forums has been a popular research area [53, 92, 93]. One potential appli-

cation is understanding public opinion; e.g., what are the popular stances on the

Affordable Care Act, how do they associate with different subpopulations, and how

are they changing over time? However, there may be a low online participation rate

of Internet users in online discussion forums relating to any particular debate. For

example, in our dataset collected from the debating website CreateDebate,1 where

users can explicitly state their stances on user-created debate topics, 278 people

participated in the debate titled “Should guns be banned in America” while only 3

people participated in the debate “ObamaCare.” As a result, if we consider all the

registered users and existing debates on CreateDebate, only 0.4% of the full set of

user stances are observed in the data. In this chapter, we are interested in predicting

a user’s stance on a debate topic in which she has not participated.

A target user may not be interested in an issue, but it is still important to predict

her stance on the given issue. The reason is that for an issue such as one that may

affect a government’s or a company’s decision making, it is beneficial to predict

the public’s opinion on it. And by gathering all the individual users’ stances on an

issue will give a macro-level stance prediction result for an issue. We can model

the task as an item rating prediction task, where using a user’s purchase history,

her preference for a new item is to be predicted. Collaborative filtering [28] is a

technique commonly used to alleviate the data sparsity problem in rating prediction.

Probabilistic matrix factorization (PMF) [87] has been shown to be an effective

collaborative filtering algorithm, and we extend PMF in our work.

One notable problem with PMF is “cold-start”, i.e., it cannot perform stance

prediction for users without any past stances. To alleviate this problem, we incor-

1http://www.createdebate.com
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porate user attributes and user-generated content in online discussions. To be more

specific, we incorporate three types of information that are prevalent in online dis-

cussions: user arguments that are used to back up their stances, user interactions

from texts exchanged between users, and user attributes from their biographical in-

formation. Such rich information can help with stance prediction on both warm-start

users and cold-start users and provide valuable user and issue profiling. Hence, we

propose an integrated model that is capable of modeling such information, which

can provide insights into user behaviors and issues.

Using data from CreateDebate, we propose a unified model for the task of user

stance prediction. Firstly, to incorporate user attributes from their biographies,

we use a regression based latent factorization method [4] to profile users. In this

method, each user’s latent factors are aggregated from factors associated with the

user’s attributes and user specific deviations. This setting allows us to profile users

who have no past stances, i.e., we can do stance prediction on cold-start users.

We further introduce a novel Binomial Matrix Factorization (BMF) model in the

context of categorical ratings (i.e., user stances). This method extends the origi-

nal PMF [87] model, which is designed for numerical ratings. Furthermore, users

write arguments to support their stances, which provide textual cues to understand

different topics involved in the issue. Like [57], we associate each latent factor di-

mension with a topic so as to produce an intuitive explanation for the hidden factors

from BMF and improve stance prediction results. In addition, we find that incor-

porating features about a user’s interaction network provides us with a way to infer

relationships between users, which we can leverage to better predict user stances.

To infer the model parameters, we consider Monte Carlo EM [97, 100] and adapt a

fast inference method based on SparseLDA [106].

This work also aims to contribute to the problem of inferring public opinion

from freely available social media text and metadata [68, 72, 95]. Such approaches

have the potential to complement traditional surveys and polls. We focus on de-

bate forums with rich user-contributed texts, opinions, and interactions on diverse
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topics. We formulate the task around predicting held-out user stances. Although

online forums have been explored in the past for questions such as predicting user

stances [93, 92], detecting subgroups in online communities [2, 35, 14, 54], identi-

fying user interactions [6, 19, 65, 64], and knowledge discovery [29], to the best of

our knowledge, this is the first study on stance prediction in a debate forum lever-

aging rich user interaction metadata. We find our methods tend to agree with polls

from Gallup, despite the fact that aggregated user stances are different from Gallup.

This is promising as the polls are based on survey data collected through a labor-

intensive procedure, while our method could serve as a cheap and effective way to

complement them.

In summary, our contributions are as follows:

• We propose a regression based latent factor model which jointly models user

arguments, interactions and attributes for stance prediction.

• We study a fast inference method for the model.

• Our experiments show promising results on micro-level stance prediction for

both warm-start and cold-start users.

• Our experiments show that our model has a good result on macro-level stance

prediction, which shows the potential to complement traditional surveys and

polls.

5.2 Problem Definition

In Table 5.1, we present an excerpt of user arguments from a debate page in Cre-

ateDebate. In CreateDebate, each debate issue i focuses on a particular debate

question, for example, “Does God exist?” Each debate issue has defined stances,

which are usually “Yes” and “No” stances for the issue. In addition, each issue i has

a set of threaded arguments, where each argument can be an independent post or a

reply to an earlier argument. Each argument is authored by a user u, and explicitly
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contains his stance su,i on the particular issue, e.g., user A in our example takes the

“Yes” stance. One user can write multiple arguments on an issue. We represent the

text of the nth argument from user u on the issue i using a bag of bigrams wu,i,n.2

If the nth argument by user u is a reply/interaction post, the user u needs to specify

whether she wants to “dispute,” “support,” or “clarify” the recipient post. We take

advantage of this metadata using an interaction polarity lu,i,n ∈ {positive, negative},

and assign lu,i,n to be “negative” when the user’s argument disputes an earlier post

and “positive” otherwise.

Debate: Does God Exist?
“Yes” stance “No” stance

User A:
Theists: I believe God exists. Atheists: I be-
lieve God doesn’t exist. Both rely on belief
. . . (“Yes” stance)
�User B (Dispute):
�Whoops. wrong. more like “I don’t be-
lieve in God.” Both rely on belief. Thing
about theists is they look beyond what they
can see.. . . (“No” stance)
��User A (Dispute):
��. . . Athiesm relies on belief. You BE-
LIEVE there’s no God . . . (“Yes” stance)

User J:
If there is no evidence leading up to a God, I
dont believe. . . (“No” stance)
�User K (Disputed):
�. . . how can we prove that it doesn’t exist???
We have no choice but to accept it (“Yes”
stance)
��User L (Disputed):
��So how can you argue for something that
you cannot even interact with on a compara-
ble level? (“No” stance)

Table 5.1: Sample arguments on the debate “Does God Exist?”

We crawled all arguments of two-sided debates from all 14 categories in the Cre-

ateDebate website.3 For all the participants, we also collect these types of attributes

from their biographical information: party (e.g., republican, democrat), religion

(e.g., catholic, christian), gender (e.g., male, female), status (e.g., single, married),

education (e.g., in college, post grad.), and country (e.g., U.S., Singapore). We

leave other attributes like “age” and user self-description in biography as further

study. Table 5.2 displays some statistics on the CreateDebate corpus. We find user-

stance and interaction information are sparse in our data.

Our task is to predict a given user u’s stance on a target issue i when the user

has not expressed his stance on that issue. We refer to this as micro-level stance
2In this work, we use only a bigram representation. Eschewing unigrams have been shown to

provide for more human interpretable terms without hurting task performance [89].
3Website crawled in April 2013.
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# users 4,994
# issues 1,727
# arguments 39,549 (average 23 per issue)
# unigram tokens 55,308
# unique bigrams 154,724 (after pruning)
# user stances 17,843 (0.21% density)
# interaction links 23,935 (0.12% density based on a symmetric matrix, ex-

cluding self-links)
# user attributes party (1430), religion (926), gender (1430), status (1432),

education (835), country (1432)

Table 5.2: Statistics of the dataset. Bigrams containing stop words or punctuations
are removed during pruning.

prediction. In Section 5.5.3, we also consider macro-level stance prediction, where

we estimate the percentage of users holding a certain stance for a particular issue i.

5.3 Model

We approach the problem using a probabilistic graphical model. The graphical

representation of the model can be found in Figure 5.1.

The model is composed of four parts: i.) user profiling, which considers a re-

gression based latent factorization method to incorporate user attributes for profiling

users; ii.) user stance, which contains a binomial matrix factorization method for

modeling categorical stance data; iii.) user arguments, which incorporate textual

cues in threaded posts; and iv.) user interaction, which integrates the positive and

negative interaction attributes between users.

5.3.1 User Profiling

Inspired by the work in [4, 108], we consider a regression based latent factorization

method for profiling users. Let fu ∈ RP×1 denote user u’s attributes. We use a

binary representation, where each dimension of fu is set as 1 if the corresponding

attribute is present in user u, and 0 otherwise. In this study, we consider user at-

tributes in these categories: party, religion, gender, status, education, and country.
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Figure 5.1: Plate notation for our model. The dashed variables will be collapsed
out during Gibbs sampling. ρ = {c1, c2, qu, qun}, representing two parameters used
in user interaction modeling and two biases specific to a user and her recipient. vu,
vun , qu and qun are fixed by a regression based latent factorization method, detailed
in Section 5.3.1. Hyperparameters are omitted for clarity.

We then model user latent factors vu and bias qu as:

vu = G>fu + δu, (5.1)

qu = g>fu + bu,

where G ∈ RP×F is a regression coefficient matrix, g ∈ RP×1 is a regression

coefficient vector, δu ∈ RF×1 is user specific deviation, and bu is user specific bias.

We pose zero-mean Gaussian priors on G, g, δu, and bu.
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5.3.2 User Stance

We assume that latent factor vectors of issues are drawn from zero-mean spherical

Gaussian priors,

vi,s ∼ N (0, σ2
i I),

where i and s refer to issue and stance, while hyperparameters σ2
i are issue-related

variances. This differs from probabilistic matrix factorization in associating mul-

tiple factor vectors with a single issue. In this chapter, each issue corresponds to

two vectors denoting the support and oppose stances; more stances could also be

incorporated here.

Every user u has a rating on each stance s of an issue i,

rsu,i = v>u vi,s + qi,s, (5.2)

where qi,s is item-stance bias which is drawn from zero-mean Gaussian priors

N (0, σ2
q ).

Using a logit function, the probability of user u choosing a stance s on issue i is

p(su,i = s) ∝ exp{rsu,i}. (5.3)

We design such a setting to model the categorical rating data (stance) in debates.

It captures the intuition that a user chooses a stance based on her own “ratings” over

different stances. For example, in the debate “Do you support Obama or Romney

in the presidential election?”, a user tends to choose a stance “Obama” when her

rating of “Obama” is higher than that of “Romney,” i.e., rObama
u,i > rRomney

u,i .

We refer this way of modeling user stance as binomial matrix factorization

(BMF) as it extends probabilistic matrix factorization to two-sided stance data. This

framework can be easily extend to multinomial model when some issues are with

multiple sides.
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5.3.3 User Arguments

We use a latent Dirchlet allocation topic model [10] to reduce the dimensionality

of the text, and combine text data with latent factors from the user stance matrix,

grounding each dimension of the hidden factor using inferred topics. Particularly,

in our model, topics are in the same space as hidden factors, which is similar to the

setting in [57].

We assume a stance-specific topic mixture θi,s for each stance s of an issue.

The reason is that, for each issue, users with different stances tend to have different

topic preferences [80]. θi,s denotes the relative log-odds of the different topics in

issue i and stance s, encoding the distribution of topics that are likely to occur when

arguing for that particular issue-stance. Specifically, θ>i,s ∝ exp(v>i,s), where vi,s

denotes the hidden factors associated with issue i and stance s.

The advantage of associating topic distributions with latent factors are two-fold.

Firstly, the learnt topics provide an interpretation for factors, as each latent factor

dimension is associated with a topic-specific word distribution. Secondly, this helps

to reduce ambiguity for latent factors. In the BMF, vu and vi,s can be replaced by

Uvu and Uvi,s if U>U = 1, as v>u vi,s = (Uvu)
>(Uvi,s). This means, the factors

may change considerably while leaving the underlying model unchanged. With the

association, the θ learnt from texts will pose a regularization for the latent factors.

Moreover, we provide a fine-grained categorization of terms, where we assume

the terms in a user’s argument are drawn from one of the following four term distri-

butions. Note that in this session, we use term to denote “bigram”.

• Background term distribution φB. These are words uniformly distributed in

many issues. For example, “united states,” “no longer,” and “things like.”

• Issue-specific term distributions φI
i. Words that are related to the debate issue,

e.g.: “God existence,” “believe God” for the issue “Do you believe in God?”

• Topical term distributions φT
t for each topic t (1 ≤ t ≤ T ). For example,

terms like “health care,” “federal government,” and “tax cuts” are closely re-
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lated to the topic “health care” and thus tend to have high probabilities under

this topic.

• Interaction term distribution φL
l for each type of interaction l. These are words

related to “positive” and “negative” interactions, for example, “i agree,” “good

point” for “positive” interaction, and “not agree,” “not like” for “negative”

interactions. In our work, the interaction polarity of an argument is observed,

and this information is fed into our model to learn those interaction terms.

Recent work in [65] also consider modeling interaction terms, however, they

assume the interaction polarity is not available and use a Max-Ent component

to guide the model to find those interaction terms.

Additionally, we incorporate switching variables y to decide from which term

distribution a bigram is drawn [5, 73]. The generative story of our model on user

arguments is

• Draw switching variable type distribution π ∼ Dirichlet(γ).

• Draw φB ∼ Dirichlet(ηB).

• ∀ interactions l, draw φL
l ∼ Dirichlet(ηL).

• ∀ topics t, draw φT
t ∼ Dirichlet(ηT).

• ∀ issues i, draw φI
i ∼ Dirichlet(ηI).

• ∀ stances s in issue i, the issue-stance topic distribution is determined by a

logit function:

θti,s ∝ exp(vti,s).

• ∀ terms w in the m-th position of argument n from user u on issue i:

◦ Draw switch yu,i,n,m ∼ Discrete(π).

◦ Draw topic zu,i,n,m ∼ Discrete(θi,s).
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◦ Draw term w,

w ∼



Discrete(φB) if y = B

Discrete(φI
i) if y = I

Discrete(φT
zu,i,n,m

) if y = T

Discrete(φL
lu,i,n

) if y = L

5.3.4 User Interaction

In CreateDebate data, user interactions are observed. As illustrated in Table 5.3,

more positive user interactions are observed within users with the same stance and

negative interactions in difference stances. We thus use it to inform our model in

stance prediction, i.e., to guide the model to predict a user’s stance to be the same

with other users with who she has positive interactions, and different from those

who she has negative interactions.

Same stance Different stance

Positive interactions 2,677 (71%) 1,101 (29%)
Negative interactions 932 (26%) 2,691 (74%)

Table 5.3: Confusion matrix for positive/negative interaction user pairs vs. user
pairs with same/different stances. Interactions between users are aggregated across
all in issues in our corpus.

This motivates us to associate the similarity of users in the latent factors with the

polarity of user interactions. To measure the similarity of users in the latent factors,

we simply use dot product of user factors and user biases. We leave other alter-

natives as future work. We then enforce a high probability of observing a positive

interaction polarity for users who are highly similar. Specifically, let u′ denote the

recipient of user u’s nth post in issue i, we sample user interaction polarity lu,i,n as:

p(lu,i,n = +) = S

(
c1(v>u vu′ + qu + qu′)− c2

)
,

p(lu,i,n = −) = 1− p(lu,i,n = +), (5.4)

where S(·) is logistic function, c1 ∼ N (1, σ2) which encourages a positive value and
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c2 is also sampled from a Gaussian distribution with zero mean, i.e., c2 ∼ N (0, σ2);

qu and qu′ are user-specific biases, sampled from zero-mean Gaussian distribution

N (0, σ2
q ); vu, vu′ , qu, and qu′ are fixed by Eqn. 5.1.

5.4 Inference and Learning

Our goal is to learn the hidden factor vectors and topics of the textual content to ac-

curately model user stances and maximize the probability of generating the textual

content. Hence our objective function is defined as:

J = −
∑
u,i,n

(
log p(ru,i | ρu,i,n) + log p(lu,i,n | ρu,i,n)

+ log p(ρu,i,n | Υ) + log p(wu,i,n | lu,i,n, vi,s,Ω)

)
,

where u, i, n are user, issue and argument index respectively. ρu,i,n =

{vi, qi, G, g, δu, δu′ , bu, bu′ , c1, c2} refers to the set of latent variables related to user

u, recipient u′ of the nth post of user u, and issue i, and Υ is the set of Gaussian

priors for all the variables in ρu,i,n. Ω denotes all the Dirichlet prior hyperparam-

eters for φ. The first three terms denote the probability of generating user stance

and interaction given the priors Υ, where the variable in ρu,i,n are to be optimized

to minimize the objective function. The last term denotes the probability of observ-

ing the text conditioned on θi,s from learnt vector vi,s, interaction lu,i, and Dirichlet

priors Ω.

Exact inference under the posterior distribution is intractable. We use Monte

Carlo EM [97], an inference method that alternates between collapsed Gibbs sam-

pling and gradient descent, to estimate parameters in the model. In the E-Step, we

perform Gibbs sampling for variables {y, z}, fixing the values of ρ. In the M-step,

we perform gradient descent to update latent variables in ρ, fixing the values of

{y, z}.
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5.4.1 E-Step.

We present the derived Gibbs sampling update rules and assume the reader is famil-

iar with the approach. Interested readers are referred to [33] for more details.

For the term in themth position of argument n from user u on issue i, we jointly

sample its switching variable yu,i,n,m and topic zu,i,n,m, conditioned on its Markov

blanket. Let w = wu,i,n,m, s = su,i and l = lu,i,n, let d denote the set of variables

{u, i, n,m}.

p(yd = y, zd = z|y¬d , w, vi,s,Ω)

∝(Cy
¬d + γ) ·

[
Cw
y,¬d + ηBw∑V

w′=0C
w′
y,¬d + V ηB(·)

1

T

]I(y=B)

·
[

Cw
y,¬d,i + ηIw∑V

w′=0C
w′
y,¬d,i + V ηI(·)

1

T

]I(y=I)

·
[

Cw
y,¬d,z + ηTw∑V

w′=0C
w′
y,¬d,z + V ηT(·)

θzi,s

]I(y=T)

·
[

Cw
y,¬d,l + ηLw∑V

w′=0C
w′
y,¬d,l + V ηL(·)

1

T

]I(y=L)

, (5.5)

where Cw
y=I,¬d,i denotes the number of times that w is sampled as an issue-specific

term in issue i excluding the current term assignment; all the other Cs are defined

in the same way. I(·) is an indicator function. η(·) is a summation over all the terms

ηw. Note that, when y = T, the term is a topical term, we need to sample a topic

label from θi,s, which is a deterministic logit transformation of vi,s, specifically,

θzi,s =
exp(vzi,s)∑
t exp(vti,s)

.
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5.4.2 M-Step.

In this step, we perform gradient descent to learn latent variables in ρ by fixing the

values of y and z. We then reformulate the objective function.

Ju,i,n = −
∑
u,i,n

(
log p(ru,i | ρu,i,n) + log p(lu,i,n | ρu,i,n) +

log p(ρu,i,n | Υ) + log p({z}y=T|θi,s,Ω)

)
= −

∑
u,i,n

(
log p(ru,i | ρu,i,n) + log p(lu,i,n | ρu,i,n) +

log p(ρu,i,n | Υ) +
∑
z

N z
u,i,n log θzi,s

)
+O, (5.6)

where N z
u,i,n is the number of times topic z appears in user u’s arguments in is-

sue i. We used the expected counts obtained during the E-Step as we have as-

signed values to all the topics and switches. ρu,i,n refers a set of latent variables

{vi, qi, G, g, δu, δu′ , bu, bu′ , c1, c2}, and Υ is the set of Gaussian priors for all the

variables in ρu,i,n. O is a constant that does not depend on the variables in ρu,i,n.

By computing first derivatives of J with respect to the variables in ρ, we can

then update them using gradient descent.

5.4.3 Fast Inference.

Generally, the E-Step takes more time than the M-Step, since in the E-Step, we need

to update topic and switch assignments for all the terms (bigrams). For each term,

we jointly sample its corresponding topic z and switch y, and for y = T, we sample

topic from
Cw

y,¬d,z
+ηTw∑V

w′=0 C
w′
y,¬d,z

+V ηT
(·)
θzi,s, otherwise we don’t need to sample a topic label.

Hence, each term takes O(Y ) + O(T ) time to update, where Y is switch size, T is

topic size.

To speed up the inference step, we consider the inference method used in

SparseLDA [106]. In SparseLDA, it takes only O(Kw + Kd) instead of O(T ) time

to sample a topic for a word w in document d, Kw and Kd denote the number of
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topics associated with w and d respectively. However, unlike SparseLDA, θi,s is a

T -dimension dense term that cannot be further decomposed. Thus we resolve to use

the following treatment.

Cw
y,¬d,z + ηTw∑V

w′=0C
w′
y,¬d,z + V ηT(·)

θzi,s = A(z) +B(z).

where A(z) =
Cw
y,¬d,zθ

z
i,s∑V

w′=0C
w′
y,¬d,z + V ηT(·)

.

B(z) =
ηTwθ

z
i,s∑V

w′=0C
w′
y,¬d,z + V ηT(·)

.

Here A(z) contains Kw elements, corresponding to the number of topics co-

occurring with the term w, and B(z) has T elements. To sample a topic, we first

compute Ā =
∑

z A(z) and B̄ =
∑

z B(z). We then choose Ā or B̄ to proceed

based on their proportions. With the data structure used in SparseLDA, and by

storing encoded values of (z, Cw
y,¬d,z) in reverse-sorted arrays, we can calculateĀ

and sample topic from Ā in O(Kw) time. Note that B̄ is the same for all the terms

from issue i and stance s, that means to update B̄ is cheap. As a result, with an

initial cost for computing B̄, it takes only O(1) time to update B̄ for a term. But

to sample a topic from B̄ takes O(T ) time. This means we only have a speed gain

when we choose Ā to proceed.

In our experiment, we find Ā
Ā+B̄

> 0.8, which means, in most cases, we need

only O(Kw) to sample a topic. In all, to jointly sample a switch and a topic, for

more than 80% of cases, we only need O(Y ) + O(Kw) time. We find this to be

around three times as fast as the original method.

5.5 Experiments

Recall that our task is to predict a user’s stance on an issue that she has not com-

mented on. This problem setting is different from existing studies on stance pre-

diction (e.g., [73, 92, 93]) where a user’s arguments about an issue are observed
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but not her stance, which makes the existing work not comparable. We then design

experiments to: (i.) quantitatively evaluate our model with baselines on the tasks

of micro-level stance prediction on warm-start and cold-start users. (ii.) examine

our model on both macro-level stance prediction and compare it with polling data,

(iii.) conduct an error analysis on the results, (iv.) analyze the efficiency of our in-

ference method, and (v.) qualitatively examine term distribution of topics and issues

learnt by our model.

5.5.1 Qualitative Analysis

We present six popular topics based on θi,s across issues in Table 5.4. Topic labels

are manually assigned.

We find “existence of God” and “same-sex marriage” are popular topics in our

data. All these topics are readily identified based on their top topical words. Topical

terms are similar to high-level issues of the existence of God, healthcare, and same-

sex marriage. Since these topics are in the same space as the hidden factors in

matrix factorization, they can serve as interpretable labels for the corresponding

dimensions in matrix factorization.

We present top interaction words for both positive and negative interactions from

φL
l (see Table 5.5). These words are automatically learned by our model, making use

of interaction polarity of user arguments. The results show these interaction words

are quite intuitive. We also present top issue-specific terms from φI
i for popular

issues in Table 5.5. These issues are hand picked by the authors from popular issues

to cover a wider variety of issues as some issues are conceptually similar. Labels

are assigned manually. Overall, these issue-specific terms the model discovers are

easy to interpret. For example, on the issue “Does God Exist?”, top terms are “no

God”, “scientific method,” and “no proof.” This shows that some users talk about

the issue from a “science” perspective.
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“Religion” “Healthcare” “Politics” “Same-sex marriage” “Death Penalty” “Bin Laden”

god exists health care united states gay marriage death penalty bin laden
no god american people barack obama gay people morally correct al qaeda
prove god federal government white house sexual orientation life begins al queda
christian god tax cuts bin laden same-sex marriage intense suffering osama bin
richard dawkins health insurance foreign policy equal rights kill people united states
atheists believe wall street democratic party straight people gay marriage death penalty
agnostic atheist social security 8 years gay couple chemical energy no evidence
belief system private sector fox news civil rights moral agency true true
against god bush administration republican party gay couples past tense middle east
god told small businesses president obama opposite sex against israel civilian casualties
no bearing create jobs president bush sex marriage earn money human cost
lack belief raise taxes john mccain against gay no mind iraq war
harry potter economic crisis sarah palin consenting adults equally bad saudi arabia
evidence against al qaeda george bush homosexual parents evil equally foreign policy
no faith middle east black people gay rights good number military bases
modern science higher taxes osama bin civil unions thousand horsemen vietnam war
jesus christ voted against ron paul gay man twelve thousand armed forces
physical evidence financial crisis mitt romney federal government thousand stalls political gain
god exist track record iraq war gay sex electrical energy openly admit
believe god billion dollars bill clinton born gay muslim belief million people

Table 5.4: Top topic terms from φT
t .

Negative Positive “Does God Exist?” “Renewable Energy” “Marines Urinating
on Taliban”

“For/Against Gun
Control?”

no evidence good point no god wave energy war crime kill people
no god health care scientific method energy technology illegal invaded balsthis sucks
no reason no matter natural sciences offshore wave war crimes sucks balsthis
no matter minimum length no proof total efficiency official policy ban guns
bin laden totally agree infinite religions coal/nat gas u.s. military people kill
no longer completely agree jesus christ sustainable energy war logs black market
al qaeda god exists no deity onshore wave accurate picture gun control
no proof years ago natural laws energy harnessing invaded kuwait banning guns
united states looks like religious law good book like torture 2nd amendment
people like no reason blame god less feasilble military operates gun related
long time good argument morally perfect viable comparison dead bodies gun laws
christian god manhood academy natural science early 80s u.s. armed nuclear weapons
absolutely no live debate real science due primarily military code related deaths
side supporting dumb bitches credible source solar pv civilian casualties gun deaths
supporting mitt common sense vast majority fuel mix iraq invasion guns illegal
al queda look like herd instinct late 70s like pissing keep guns
sound like human nature infinite things david mckay little doubt death rate
no idea sounds like immoral acts cambridge david dead human less people
makes no pretty good great light natural philosophy u.s. army save lives
sounds like great point infinite number achieved efficiency talk specifics killing thousands

Table 5.5: Top interaction-specific terms from φL
l , and top issue-specific terms from

φI
i for popular issues.

5.5.2 Micro-Level Stance Prediction

We conduct a study on micro-level stance prediction, i.e., predicting user stances

on a given issue using learnt user and issue factor vectors and the user interaction

network. We perform 10-fold cross-validation on our dataset. For each fold, we

hold out as a test set 10% of the observed user-issue pairs, i.e., observed user stance

on an issue. For each test set, if the issue does not appear in the training set, i.e.,

its a cold-start item, we will put it back to the training set. As for the rest test data,

we split it into two datasets: one is for warm-start users, those users who have their

past stances in the training set, the other for cold-start users, those who have no
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past stances in the training set. Furthermore, we remove all the text associated with

user-issue pairs in the test set and the prediction is based solely on users and issues

factor vectors learnt from the training set. This setting mimics a real world scenario

where a user does not have any prior stance on an issue, but the user has expressed

stances on other issues and the issue has other users expressing their stances on it.

User Attributes.

We first examine the importance of different user attributes for stance prediction

task. We use prediction accuracy (Acc) to measure model performance: Acc =

1
|S|
∑

u,i I(ŝu,i = su,i).

We refer our base model without any user attributes as BMF-AI, binomial matrix

factorization with user arguments and interactions. We evaluate the results by first

considering only one type of attributes.

BMF-AI + P + R + G + S + E + C

Acc 0.703 0.707 0.705 0.651 0.654 0.698 0.662
SD 0.008 0.008 0.007 0.007 0.008 0.007 0.008

Table 5.6: Micro-level stance prediction results on warm-start users by only incor-
porating one type of user attributes, averaged across ten folds. P, R, G, S, E, C stand
for party, religion, gender, status, education, and country respectively. SD refers to
standard deviations.

Table 5.6 shows that only these two types of attributes improve BMF-AI: party

and religion. This shows that those attributes related to “ideology” are useful for

the task of stance prediction. Furthermore, if we incorporate both party and religion

attributes into the model, the results can be further improved to an accuracy of 0.712.

In the following experiments, we will only incorporate these two attributes.

Warm-start Users.

We evaluate the following competing models for comparison.

• MB: majority baseline. For each test issue, we predict a user’s stance based on

the majority stance on the issue from the training data. This method performs
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well when the stances are imbalanced, i.e., when an issue has a dominant

stance.

• PMF: probabilistic matrix factorization [87]. The original model is designed

for numerical ratings. We randomly map one stance of an issue to 0 and the

other to 1.

• BMF: binomial matrix factorization. This model differs from PMF in that it

assumes a rating for each stance of an issue and draws a stance based on a

logit function over stance-specific ratings.

• HFT: hidden factors as topics [57]. Based on PMF, this model further consid-

ers user arguments.

• Our model and its variants: BMF-A: BMF with user arguments. BMF-AI:

BMF with user arguments and interaction cues. BMF-AIA: BMF with user

arguments, interactions, and attributes; it corresponds to the full model pre-

sented earlier.

MB PMF BMF HFT BMF-A BMF-AI BMF-AIA

Acc 0.532 0.604� 0.607 0.642� 0.645 0.703� 0.712�
SD 0.015 0.012 0.012 0.011 0.012 0.008 0.007

Table 5.7: Micro-level stance prediction results, averaged across ten folds. � The
result is better than the method in the previous column at 5% significance level by
McNemar’s test. SD refers to standard deviations.

We find that (i.) MB performs poorly compared to other methods, suggesting

that the stance data is fairly balanced, (ii.) both PMF and BMF significantly outper-

form MB, showing the collaborative filtering framework improves over the simple

baseline, (iii.) BMF slightly outperforms PMF, implying that directly modeling of

user-stance categories in BMF has a slight advantage over mapping the categorical

ratings to numerical values as in PMF, (iv.) BMF-A significantly outperforms BMF,

at 5% significance level, meaning that text is helpful in modeling user stances; with

user arguments, we are able to bring together issues that are similar, as evidenced by
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similar topic distributions. Meanwhile, BMF-A outperforms HFT by a small mar-

gin, this also shows the BMF is more general for the task, and (v.) modeling the user

interactions can further boost performance, as shown by BMF-AI outperforming

BMF-A, at 5% significance level, (vi.) by incorporating user attributes, the resulting

model BMF-AIA achieves the best performance, significantly outperforms other

competing methods. This demonstrates the effectiveness of an integrated model

incorporating these information: user arguments, interactions, and attributes.

Cold-start Users.

“Cold-start” problem refers to predict new users’ ratings on items which do not have

any rating data; it is a common issue in recommendation systems. For a cold-start

user, although we don’t have her past stances, our model can still profile her using

her attributes. Specifically, for a cold-start user u, we set its factor deviations δu = 0,

and vu = G>fu. The user’s stance for a issue is from: arg maxs exp(v>u vi,s). Here

G and vi,s are learnt from training data.

MB
BMF-AI

+ Party + Religion + Both

Acc 0.552 0.651 0.662 0.655
SD n/a 0.028 0.029 0.027

Table 5.8: Micro-level stance prediction for cold-start users, averaged across ten
folds. SD refers to standard deviations, n/a means not available.

We compare our method with different types of attributes and a majority base-

line. The results are presented in Table 5.8. It shows that our model significantly

outperforms the majority baseline, at 1% significance level by McNemar’s test.

5.5.3 Macro-Level Stance Prediction

Recall that only 0.4% of the full set of user stances are observed in the data. We

consider the task of predicting all the users’ stances on all issues; the aggregate of

these gives a macro-level stance prediction. Using our model, we can predict any
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user’s stance on any issue in our data giving all the learnt variables in ρ according

to Eqn. 5.2 and Eqn. 5.1. Specifically, we set ŝu,i = arg maxs exp{rsu,i}, and the

macro stance for an issue i is defined as:

n̂si =
∑
u

I(ŝu,i = s). (5.7)

For a select number of issues with existing Gallup poll data,4 we can evaluate

the proportion of the total number of users holding each stance n̂s
i∑

s n̂
s
i

and compare

them against the poll data.

High-level issues # issues # users Majority stance proportions

Believe God 3 274 54% Yes
Same sex marriage 3 91 71% Support
Abortion 4 86 58% Pro-life
2012 election 2 48 55% For Obama
Gun control 3 317 67% Against
Obamacare 2 13 62% Against
Death penalty 3 61 63% In favor

Table 5.9: Stance proportions of CreateDebate high-level issues used for macro-
level stance predictions. The number of users and the majority stance in the table is
aggregated across all similar issues from known user stances in the data.

We find there are multiple issues that are phrased differently but arguably mean

the same thing, e.g., “Does God exist?” and “Is there a God?” We refer a group

of such similar issues as high-level issues. We chose seven high-level issues with

the most arguments and have corresponding Gallup polls. We select Gallup polls

whose (i.) poll date is closest to the CreateDebate data collection date5 and (ii.) poll

question is similar to all the issues in the high-level issue. For example, the high-

level issue “gun control” contains three related issues: “Gun Control: Should we

have it?”, “Should guns be banned?”, and “Should guns be banned in America?”

and it corresponds to [25].6

4http://www.gallup.com/
5The CreateDebate website was crawled during the first week of April 2013.
6The corresponding Gallup polls for these high-level issues are: believe God [20], abortion [21],

2012 elections [22], Obamacare [23], death penalty [24], gun control [25], and same sex marriage
[26].
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For each issue i in CreateDebate, we know the stances of a small number of

users and we can compute the proportions of users choosing the majority stance.

We can also predict the proportions of the majority stance across the entire Creat-

eDebate population with equation 5.7, and normalizing, n̂i,s

n̂i,s+n̂i,¬s
. Since we group

similar issues together into high-level issues, stance proportions for similar issues

are averaged to obtain stance proportions, which are presented in Table 5.9.

For these high-level issues, we identified Gallup poll results, from which we

denote the ratios on both sides of the issue as ci,s and ci,¬s. In Gallup polls, users

are allowed to provide “no opinion” as an answer, meaning we have ci,s + ci,¬s 6= 1.

We ignore this small subset of polled users, and instead normalize the ratios to get

for stance s: gi,s =
ci,s

ci,s+ci,¬s
.

High-level issues Gallup Prediction Known

Believe God (Yes) 0.92 0.71 0.54
Same-sex marriage (Support) 0.51 0.60 0.71
2012 election (For Obama) 0.49 0.50 0.55
Abortion (Pro-life) 0.52 0.54 0.58
Gun control (Against) 0.75 0.69 0.67
Death penalty (In Favor) 0.63 0.65 0.64
Obamacare (Against) 0.53 0.64 0.61

Table 5.10: Comparison betweeen predicted and known proportions of users. “Pre-
diction” refers to the predictions from our method, “Known” refers to the known
proportions from CreateDebate stances.

The demographic of participants in CreateDebate may not be representative of

the larger population surveyed by Gallup. Hence we expect that these stance esti-

mates from CreateDebate do not match up with polling data from Gallup exactly.

By comparing with polls from Gallup, we find our methods tend to agree with or

bring the stance prediction results closer to those online polls. For example, the

Gallup poll results for “2012 election,” [21] has 49% of users vote for Obama. The

CreateDebate corpus shows 55% of its users choosing against Obama. Our predic-

tion model can leverage other correlations in data, and help to estimate that around

50% of users support Obama, which is closer to the Gallup poll. This suggests
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that our methods can be used to complement traditional polling data collected via

surveys. There are some interesting disagreeements, suggesting future directions

improving the accuracy of text-measured public opinion and also text analysis to

automatically characterize idiosyncratic opinions held in subcommunities.

5.5.4 Error analysis

(I.) Stance-specific biases

For our study on macro-level stance prediction, we find the high-level issues of

“same sex marriage” and “belief God” have high prediction errors comparing to

others. We consider these in greater depth.
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Figure 5.2: Macro-level stance prediction results on “Do You Support Gay Mar-
riage?” (a) and (c) are two different issues but with the same title

Model q“Y es′′

i q“No′′

i q“Y es′′

i − q“No′′

i

(a) 1.68× 10−4 −1.68× 10−4 3.36× 10−4

(b) 0.02 -0.02 0.04
(c) 0.07 -0.07 0.14

Table 5.11: Item specific biases for the issue “Do You Support Gay Marriage?”

For the high level issue “same sex marriage,” we present results in individual

issues in (Figure 5.2). A good agreement is observed in both Figure 5.2(a) and (b)

but not in (c). One possible reason is that in (c), a relatively larger different between

stance-specific biases exists, i.e., |qi,s − qi,s′ | for issue i is relatively larger than for

other issues, as shown in Table 5.11.This large variance is due to the skewed user

stances in this issue, 9 on supporting stance versus only 1 on the opposing side. This

leads to the model explaining the data with larger bias on q“Yes” for the issue “Do you
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support gay marriage”, as exemplified in Table 5.11. With such biases, the model

prediction of stances may not diverge from the known stances too much. For the

Gallup poll results for “believe God,” we have the same problem. The CreateDebate

corpus has only 54% of its users choosing the “Yes” stance, while the Gallup poll

titled “Do you believe in God?” has 92% of users taking a “Yes” stance. Our model

predicts 71% which is closer to the Gallup results, but still it cannot diverge the

results too much from known stances. If our model is accurate, it also suggests a

dimension along which the population of CreateDebate users is quite different from

Gallup’s sample.

(II.) Representativeness of participants

CreateDebate reports that 89% of its users are between ages 20 and 40, 86.7% are

from the United States, 85% are male, and 92% are single. These are based on

self-reporting, but they give a strong sense that CreateDebate should not be taken as

representative. Hence we expect that macro-level stance estimates do not match up

with polling data from Gallup exactly. Moreover, no one—neither us nor Gallup—

can be certain that these estimates are accurate, due to difficulties in measuring

public opinion such as sampling biases, truthfulness of responses, the way questions

are framed, etc. (Of course, experts like those at Gallup have invested a great deal

in techniques for overcoming those challenges.) Nevertheless, understanding where

and how the results diverge may give us a sense of how the CreateDebate population

is different from the population polled by Gallup.

5.5.5 Efficiency

We test efficiency of our inference method with the original setting. Let Y denote

the number of switch options, and T to be topic size. Recall that the original setting

takes O(Y ) +O(T ) to assign a topic and switch to a word, while our method takes

onlyO(Y )+O(Kw) at most of the cases. We run both settings using a machine with
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2.5 GHz Intel Core i5 CPU, 8GB memory and 256GB SSD harddisk. We present

the running time of both methods in Figure 5.3. We find our method is around three

times as fast as the original setting.
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Figure 5.3: Running time of our fast inference method and the original setting.

Note that the efficiency of our inference method depends on the ratio of Ā
Ā+B̄

,

as shown in Section 5.4. We plot this ratio in different iterations in Figure 5.4. We

find, except for the first 200 iterations, the ratio is always larger than 86%. This

shows our inference method has a time complexity of O(Y ) +O(Kw) in more than

86% of cases after 200 iterations.
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Figure 5.4: The averaged ratio of Ā
Ā+B̄

from all the words in different iterations.

5.6 Discussion

In this work, we studied the novel setting of stance prediction task in the online

discussion forum CreateDebate, with the goal of alleviating the data sparsity prob-
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lem: there maybe a low online participation rate of Internet users in online discus-

sion forums relating to any particular debate. We seek to predict user stances on a

larger variety of topics and to complement traditional surveys and polls results. Our

model brings together user arguments, interactions, and attributes into a probabilis-

tic matrix factorization framework. To infer the model parameters, we considered

a fast inference method based on SparseLDA. Experiments show promising results

in micro-level stance prediction. Our empirical study also shows our model has a

good result on macro-level stance prediction, which shows its potential to comple-

ment the traditional polls.

Limitations. We discuss a few limitations of the current model as below.

• User interactions. Firstly, there are cases where users have positive interac-

tions on one issue, but negative interactions on another issue. This means

it may be better if we profile user interaction polarity as a function of both

user and issue factors. Furthermore, in our study, we find that people with

the same viewpoint have negative interactions toward each other on some of

the topics. For example, there is a case where two people believe in God, but

one of them doesn’t believe that “Jesus is God”, so they will disagree with

each other on this point. It would be beneficial to handle such inconsistency

between user interactions and viewpoints.

• A diverse range of debates. Currently, we apply our collaborative framework

on a diverse range of debates. We find that if we apply our method on just one

domain, say “politics”, the stance prediction results are better than the current

results. This suggests that some information learnt from one domain may not

be directly applied to other domain. For example, the model trained on the

“education” domain may not be applicable to the “politics” domain. We are

seeking ways to modify the current framework to adapt to different types of

debates.

Future work. As future work, from a modeling perspective, a model with more
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predictive power on unseen data may need to be considered. A simple extension

may be to pursue a full Bayesian treatment of the probabilistic matrix factorization

part. The idea is, instead of Gaussian priors, we assume Gaussian-Wishart priors on

all the model variables related to matrix factorization. According to [87], this set-

ting has higher predictive accuracy comparing to the original probabilistic matrix

factorization. From a data perspective, the demographics of participants in Creat-

eDebate may not be representative of the larger population. Hence we are interested

in working on other social media such as Twitter and Facebook to extend our study.
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Chapter 6

Viewpoint Summarization

In this chapter, we conduct an empirical study on viewpoint summarization. The

task here is to find representative posts for each viewpoint of an issue, which can be

viewed as viewpoint level extractive summarization. For such task, we can borrow

techniques from multi-document summarization, which has been extensively stud-

ied in the NLP community, with most efforts on extractive summarization. Among

all the summarization methods, Integer Linear Programming (ILP) based frame-

work is a popular method. In this chapter, we consider this framework for user

viewpoint summarization. We choose to build our solution based on ILP frame-

work partially because in our preliminary analysis it outperforms other methods.

Furthermore, it can be easily extended to incorporate more information. In our task,

we make use of the information leant by our viewpoint discovery model discussed

in Chapter 3, and based on which we score user posts by considering topic coverage

and viewpoint distribution. We hypothesize that a good viewpoint specific summary

should cover more topics and be more viewpoint specific.

In summary, our contributions are as follows:

• We extend the existing ILP based framework for the task of viewpoint sum-

marization by leveraging the information leant by our viewpoint discovery

model in Chapter 3.
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• We evaluate the summarization method on real data sets by comparing with

human generated reference summaries. Results show the proposed method

has better performance than baseline approaches.

6.1 Task definition and method overview

We consider a set of forum posts published by different users on the same event

or issue. For simplicity, we work on contrastive viewpoint data sets, i.e. data sets

with two contrastive viewpoints. We focus on extractive summarization where we

seek to find representative posts to form a summary for each viewpoint. As input,

we assume that we have a set of posts separated into two viewpoints. For each

viewpoint, the extractive summarization task is to select some representative posts

within a given length limit of the summary.

Our method. Given the input as described above, we then use our proposed

JVTM-UI model in Chapter 3.1 to automatically discover viewpoints. Note that

by applying our model, we don’t need to know user viewpoints beforehand. The

model is based on three important factors: viewpoint specific topic preference, user

identity and user interactions. Based on the model results, we seek to conduct a

viewpoint specific summary by using the results produced by our JVTM-UI model.

Specifically, we will make use of these two types of information: the relevance of

selected posts with respect to a viewpoint and the coverage of viewpoint-specific

topics. Below we present our method in details.

6.2 Model

In this section, we first briefly review ILP-based summarization framework and then

present our proposed improvements.

The ILP framework was introduced as a global inference algorithm for multi-

document summarization by [58], which considers informativeness and redundancy
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at the sentence level. The work in [27] studies information and redundancy at “con-

cept” level, modeling the value of a summary as a function of the concepts it covers.

In their concept-based model, they use word bigrams weighted by the number of in-

put documents in which they appear. The framework is recently used by many

studies for multi-document summarization [34, 39, 49, 88, 104]. The idea behind

the ILP framework by [27] is to maximize the coverage of so-called “concepts”

from the original corpus in the generated summary. Specifically, assuming we have

a set of posts from our data set, we use an index j to denote the j-th post. Let i be

an index of all the concepts from the original corpus, ai denote the weight of the

i-th concept computed based on its frequency and bi ∈ {0, 1} denote the absence or

presence of the concept, and L denote the length limit of the summary. The frame-

work aims to maximize
∑

i aibi, i.e. the total weighted coverage of the concepts,

subject to a set of constraints:

max:
∑
i

aibi (6.1)

s.t.:
∑
j

ljsj ≤ L, (6.2)

∀i, j : sjoi,j ≤ bi, ∀i :
∑
j

sjoi,j ≥ bi. (6.3)

where sj ∈ {0, 1} denotes the absence or presence of the j-th post, oi,j ∈ {0, 1}

denotes whether concept i occurs in post j.

Constraint 6.2 ensures the summary is under the length limit. Constraint 6.3

ensures that bi will be set to 1 when a post that contains the concept is selected, and

0 when no posts that contain the concept are selected.

Although this framework works well for standard summarization, our task is

different as we need to provide a summary for each discovered viewpoint. We seek

to provide a set of representative posts for each viewpoint by leveraging the output

of JVTM-UI model. Hence we opt to consider the following constraints to form a

summary.

Favoring viewpoint specific posts. The original ILP framework uses frequency
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to measure the weight of a concept, but the most frequent bigrams in posts about

a viewpoint may not be viewpoint specific as some of them may be related to the

issue but not viewpoint specific. Ideally, we expect the selected posts to be more

viewpoint specific. Hence we propose to use a score qy,j to measure the relevance

of the j-th post with respect to a viewpoint y, and we use this score to select posts

that are more relevant to viewpoint y. During pre-processing, a post with multiple

sentences is separated into different posts where each post contains only one sen-

tence. Recall that, we can learn the following variables by our model in Chapter 3.1:

a viewpoint specific topic distribution θy for a viewpoint y, user-specific viewpoint

distribution ϕu for each user u, and a topic-word distribution ψt for each topic t. We

then compute qy,j as follows.

qy,j ∝ p(y|uj)
lj∏
n=1

p(wj,n|y)

= ϕujy

lj∏
n=1

∑
t

p(wj,n|t)p(t|y)

= ϕujy

lj∏
n=1

∑
t

ψtwj,n
θyt , (6.4)

where uj is the author of post j, ϕujy , and ψtw and θyt are learnt by our JVTM-UI

model.

Here we use
∑

j qy,jsj to denote the relevance between the selected posts and

the viewpoint y. A larger
∑

j qy,jsj means the selected posts are more relevant to

the viewpoint y.

Covering viewpoint-specific topics: We hypothesize that a good viewpoint-

specific summary should mention more viewpoint-specific topics. Since the topic

label is at word level in our JVTM-UI model, we assign a topic label zj for each

post j by using this formula, zj = arg maxt∈T
∑

y ϕ
uj
y θ

y
t

∏
w∈~wj

ψtw. Let pj,k denote

whether topic t occurs in post j, i.e. pj,t is set as 1 when t = zj otherwise 0. Let ey,t

denotes whether topic t is present in the selected posts for viewpoint y. We weight

ey,t by θyt to consider its relevance to the viewpoint y. Thus a larger
∑

t θ
y
t ey,t means
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the selected posts cover more viewpoint specific topics.

Eventually, for a viewpoint y, the viewpoint-specific summarization task is for-

mulated as the following optimization problem:

max: λ1

∑
i aibi + λ2

∑
j qy,jsj + λ3

∑
t θ

y
t ey,t (6.5)

s.t.:
∑

j ljsj ≤ L,

∀i :
∑

j sjoi,j ≥ bi, ∀i, j : sjoi,j ≤ bi,

∀j :
∑

t sjpj,t ≥ ey,t, ∀j, t : sjpj,t ≤ ey,t.

where λ1 + λ2 + λ3 = 1, oi,j denotes whether concept i occurs in post j, and pj,t

denotes whether topic t occurs in post j.

We solve the above optimization problem using the IBM ILOG CPLEX Opti-

mizer1.

6.3 Experiments

6.3.1 Data and Experiment Setup

We need human generated summaries for evaluation. Since it is too time consum-

ing to ask human annotators to look through all the posts and generate structured

summaries, we instead opt to randomly choose a small set of our data to perform

evaluation. To form our ground truth summaries, from all the posts related to a par-

ticular viewpoint, we randomly select 100 posts and present to two annotators. The

annotators are asked to write a summary based on the given posts.

We use the following baseline algorithms for comparison: (1) Random, which

randomly picks summary posts. (2) ILP-BL, which is the method proposed by [27].

(3) the degenerative versions of our proposed method: M-VP refers to our method

without using viewpoint-specific posts, M-VT refers without using viewpoint-

1http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/
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specific topics. For our method, with some preliminary analysis, we set λ1 = 0.3,

λ2 = 0.35, and λ3 = 0.35. We use ROUGE [51] scores as performance metrics.

6.3.2 Results

We first evaluate our method with the baseline methods by using the English data

sets used in the Chapter 3. The results are evaluated against summaries from two

annotators and then averaged as final results. Table 6.3.2 shows that our proposed

method has better performance than other competing methods. The standard ILP

method shows better performance than Random method. Our method has better

performance when considering both viewpoint-specific posts and viewpoint-specific

topics.

EDS1 EDS2 EDS3
Method R-1 R-2 R-1 R-2 R-1 R-2
Random 0.30 0.09 0.19 0.03 0.31 0.08
ILP-BL 0.31 0.11 0.24 0.05 0.40 0.11
M-VT 0.32 0.13 0.26 0.06 0.44 0.13
M-VP 0.31 0.11 0.25 0.05 0.41 0.11
Our Method 0.35 0.14 0.28 0.07 0.45 0.15

Table 6.1: Comparison of the summarization results. M-VP refers to our method
without using viewpoint-specific posts, M-VT refers without using viewpoint-
specific topics.

EDS1 EDS2 EDS3
Method R-1 R-2 R-1 R-2 R-1 R-2
Random 0.30 0.09 0.19 0.03 0.31 0.08
ILP-BL 0.31 0.11 0.24 0.05 0.40 0.11
Our Method 0.35 0.14 0.28 0.07 0.45 0.15

Table 6.2: Comparison of the summarization results. M-VP refers to our method
without using viewpoint-specific posts, M-VT refers without using viewpoint-
specific topics.

We show a sample summary our method generates for EDS1 in Table 6.4. We

can see that all the posts selected by our method have high relevance to the corre-

sponding viewpoints.
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EDS1 EDS2 EDS3
Method R-1 R-2 R-1 R-2 R-1 R-2
ILP-BL 0.31 0.11 0.24 0.05 0.40 0.11
M-VT 0.32 0.13 0.26 0.06 0.44 0.13
M-VP 0.31 0.11 0.25 0.05 0.41 0.11
Our Method 0.35 0.14 0.28 0.07 0.45 0.15

Table 6.3: Comparison of the summarization results. M-VP refers to our method
without using viewpoint-specific posts, M-VT refers without using viewpoint-
specific topics.

Do you support Obama?

“Support” Obama “Against” Obama
Obama has actually cut useless or wasteful govern-
ment programs in order to save a few billion dollars
here and there.
Obama has spent less than Bush did . . .
Obama has frozen the federal budget for many agen-
cys, created a national debt commision, cut some
military spending, and turned the economy around
from massive reccesion to small growth.
Sure we would all like more , but his policies are far
better than republican ones . . .
The number of illegal immigrants deported is at
record highs. More troops are in Afghanistan and
on the Border.
Our allies like Obama a hell of a lit better than the
last republican . . .

Obama is the living breathing embodiment of Amer-
ican leftism and we hate American leftism with our
beings.
Obama’s 1st term increased the national debt 4x
more than Bush’s worst term.
He sent troops to middel eastern war than bush did.
In his healthcare bill, he used backdoor meetings to
secure votes by unions etc. . . .
I don’t think Democrats want to secure the border,
they want those new potential Democrat voters.
They are raising taxes as we write and the fire they
are putting under American butts is what is stem-
ming the tide of continued wasteful spending.
Democrats want to legalize the illegal immigrant ,
this is how they’ll get the vote.

Table 6.4: Excerpts from the summary generated from EDS1 by our method.

6.4 Discussion

In this chapter, we proposed a summarization framework to find representative posts

for different viewpoints for a controversial issue based on our proposed latent vari-

able model discussed in Chapter 3.1 and integer linear programming (ILP). The

latent variable model could align forum posts with different viewpoints for the con-

troversial issue, and based on which the ILP model is used to distill representa-

tive posts for each discovered viewpoint. Comparing to standard ILP methods, our

method additionally tries to cover more viewpoint-specific topics and viewpoint

specific words. Experiments show our method outperforms other competing meth-

ods.
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Chapter 7

Dissertation Conclusion and

Future Work

To automatically discover and summarize user viewpoints from online discussions

is important for both normal users and policy makers. In this dissertation, we study

the task of mining user viewpoints in online discussions. We proposed principled

approaches for these tasks in mining user viewpoints in online discussions, namely,

viewpoint discovery, micro-level and macro-level stance prediction, and conducted

an empirical study on user viewpoint summarization.

We start by two studies on modeling user posting behaviors for viewpoint dis-

covery. Our first model takes three important characteristics of online discussions

into consideration, namely, user consistency, topic preference, and user interactions.

Our second model focuses on mining interactions features for the task of viewpoint

discovery. Empirical evaluation shows our proposed models have significant im-

provement over other baseline methods. Furthermore, we study how to model user

opinion matrices for viewpoint discovery. Our model makes use of the advances

in sentiment analysis to extract user opinions in online user interactions, and feeds

them into a collaborative filtering framework to profile users in a low-rank latent fac-

tor space. Experiments show the resulting low-rank representations of users makes
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it feasible to cluster users by viewpoints. We also study micro-level and macro-

level stance prediction. We propose an integrated model that jointly models user

arguments, interactions, and attributes for stance prediction. Evaluation shows our

model has promising results on both micro-level stance prediction and macro-level

stance prediction. Last but not least, we study how to summarize user viewpoints.

We consider extractive summarization to find representative user arguments to sum-

marize viewpoints. We choose to build our solution on top of an integer linear pro-

gramming based framework proposed by [27]. Experiments show by using results

from our viewpoint discovery model, our method produces better summaries.

As future work, we consider a few directions to strengthen our studies as fol-

lows.

• Deep linguistic analysis. An immediate next step is to conduct deep linguistic

analysis on how users frame their arguments for their viewpoints. Our work

in [29] infers a low-dimensional, human-interpretable representation in the

domain of issues and positions1. Another recent work shows that, with some

known ideoogies, one may able to infer ideological cues from a corpus of

political writings and using which to measure political candidates ideological

positioning from their speeches. Inspired by these work, we seek to find cue

terms that are associated with users’ ideological behaviors and viewpoints to

help mine user stances.

• Deep neural networks. The current advances in deep neural network pro-

vide a new way to model the semantic meanings of words, phrases and sen-

tences [60, 76, 90]. It paves the way for the study of aspect based sentiment

analysis and can be potentially used for the task of mining user viewpoints.

Some recent works along this direction can be found in [16, 42, 47, 91, 101].

• Automatic detection of controversial topics. So far we have been worked
1This variable might serve to cluster debate sides according to “abstract” beliefs commonly

shared by a group of people, sometimes called ideologies. We do not claim that our model infers
ideologies.
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on data sets that are known to be on controversial topics. In online discus-

sions, many discussions are not controversial, hence to make the work more

useful, it’s important to automatic detect controversial issues from a general

corpus. To achieve this goal, we need to mine user opinions on different

opinion-targets in a given corpus, if we can find subgroups with high intra-

group agreement and high inter-group disagreement, we can define the corpus

as with controversial topics. We can then apply our developed models on the

data. This is especially useful for social medias like Twitter and Facebook

as in which rich user generated texts are observed but user viewpoints are

implicit. To understand the controversiness and underlying stances of user

arguments in these social medias can help to understand the public opinions

and characterize idiosyncratic opinions held in subcommunities.

Furthermore, user opinions expressed in texts and social networks can help to

profile users and provide better recommendation service. It’s thus beneficial to

jointly model texts, user interactions, and social network for user attribute discovery

and recommendation systems. We have done a few studies along this direction.

• User attribute discovery. User demographic attributes such as gender, age,

financial status, region are critically important for many business intelligence

applications such as targeted marketing as well as social science research.

Unfortunately, for reasons including privacy concerns, these pieces of user

information are not always available from online social media platforms. Au-

tomatic discovery of such attributes from other observable user behavior on-

line has therefore become an important research topic, which we call the user

attribute discovery problem for short. In this work [31], we proposed an unsu-

pervised integrated approach based on probabilistic matrix factorization that

combines social and interactions features in a principled way to discover user

demographics.

• Recommendation. Mining user interaction and opinion networks can be use-
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ful for recommendation systems. Our first work extends the probabilistic

matrix factorization method to incorporate user interaction network and user

opinion network for mining user relations [83]. Our second work [15] pro-

poses a recommendation model for jointly modeling aspects, ratings and sen-

timents for movie recommendation. Our models offer superior performance

by joint modeling. Moreover, we are able to address the cold start problem by

utilizing the information inherent in texts, user interactions or social networks.

Our work in [85] also shows the importance of modeling user behaviors to-

gether with the generated texts.

Lastly, with the rapid growth of online social media, there are always new chal-

lenges and applications in user profiling and recommendation systems that require

the advances of text mining, user opinion mining, and statistical machine learning.
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