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Event Identification and Analysis on Twitter
Qiming DIAO

Abstract

With the rapid growth of social media, Twitter has become one of the most widely

adopted platforms for people to post short and instant messages. Because of such

wide adoption of Twitter, events like breaking news and release of popular videos

can easily capture people’s attention and spread rapidly on Twitter. Therefore, the

popularity and importance of an event can be approximately gauged by the volume

of tweets covering the event. Moreover, the relevant tweets also reflect the public’s

opinions and reactions to events. It is therefore very important to identify and ana-

lyze the events on Twitter. In this dissertation, we introduce our work which aims

to (1) identify events from Twitter stream, (2) analyze personal topics, events and

users on Twitter, and (3) summarize the events identified from Twitter.

First of all, we focus on event identification on Twitter. We observe that the tex-

tual content coupled with the temporal patterns of tweets provides important insight

into the general public’s attention and interests. A sudden increase of topically sim-

ilar tweets usually indicates a burst of attention in some events that has happened

offline (such as a product launch or a natural disaster) or online (such as the spread

of a viral video). Based on these observations, we propose two models to iden-

tify events on Twitter, which are extended from LDA and a non-parametric model.

These two models share two common assumptions: (1) similar tweets emerged

around the same time are more likely about some events, and (2) similar tweets

published by the same user over a long term are more likely about the user’s per-

sonal background and interests. These two assumptions help separate event-driven

tweets from the large proportion of personal-interests-driven tweets. The first model

needs to predefine the number of events because of the limitation of topic models.

However, events emerge and die out fast along the time line, and the number can be



countable infinite. Our non-parametric model overcomes this challenge.

In the first task described above, we aim to identify events underlying the Twitter

stream, and we do not consider the relation between events and users’ personal

interest topics. However, the concept of events and users’ personal interest topics

are orthogonal in that many events fall under certain topics. For example, concerts

fall under the topic about music. Furthermore, being social media, Twitter users

play important roles in forming topics and events on Twitter. Each user has her own

topic interests, which influence the content of her tweets. Whether a user publishes

a tweet related to an event also largely depends on whether her topic interests match

the nature of the event. Modeling the interplay between topics, events and users can

deepen our understanding of Twitter content and potentially aid many predication

and recommendation tasks. For the second task, we aim to construct a unified model

of topics, events and users on Twitter. The unified model is a combination of a topic

model, a dynamic non-parametric model and matrix factorization. The topic model

part is to learn users’ personal interest topics. The dynamic non-parametric model

is to identify events from the tweets stream, and finally matrix factorization is to

model the interaction between topics and events.

Finally, we aim to summarize the events identified on Twitter. In the previous

two tasks, we utilize topic models and a dynamic non-parametric models to identify

events from tweets stream. For both methods, events are learnt as clusters of tweets

featured by multinomial word distributions. Therefore, users need to either read

the clusters of tweets or the word distribution to interpret the events. However, the

former is time-consuming and the latter cannot accurately represent the events. In

this case, we propose a novel graph-based summarization method that generates

concise abstractive summaries for the events.

Overall, this dissertation presents our work on event identification first. Then

we further analyze events, users and personal interest topics on Twitter, which can

help better understand users’ tweeting behavior on events. Finally, we propose a

summarization method to generate abstractive summaries for the events on Twitter.
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Chapter 1

Introduction

1.1 Motivation

With the rapid growth of social media on the Web and the fast adoption of smart mo-

bile devices, the way people consume information has been fundamentally changed.

For the younger generation, traditional media such as newspapers, TV and radio

have been replaced by new media such as Twitter. Moreover, social media allow

users to actively participate in generating content. In particular, Twitter as a mi-

croblog site allows people to publish short, instant textual posts anywhere and any-

time, making content generation ever easier. Till July 2014, Twitter contains more

than 600 millions active users, and these users publish around 58 millions of tweets

per day. A consequence of the wide adoption of Twitter is that major events can

easily catch eyes of the majority and cause heated discussion. Thus, the popularity

and importance of an event can be approximately gauged by the volume of tweets

covering the event. These events can be either news related (e.g. traffic accident,

election) or totally online (e.g. the spread of a viral video). Moreover, the relevant

tweets also reflect the public’s opinions and reactions to events such as elections and

scandals. It is therefore very useful to find popular events and their relevant tweets

from Twitter.

Identifying events and their relevant tweets is non-trivial. As Twitter is arguably

1



Figure 1.1: Example events on Twitter and some representative tweets. Note that
tweets can be both event related (colored) and personal life related (in white).

the most popular microblog site for user to post and share, most tweets are about

daily routines and personal interests, while only a small proportion of tweets under-

lying the Twitter torrent is event related. These personal interests are longstanding

and user specific. Figure 1.1 illustrates that user can tweet about both daily routines

and events. According to a Twitter study by PearAnalytics1, only 3.6% of tweet are

news-related and 8.7% have pass-along value. This makes Twitter different from the

traditional news stream and news-oriented forum, which used to be the best source

of information to detect and summarize events. For these traditional news dataset,

event detection is well studied under Topic Detection and Tracking (TDT) in the

information retrieval community (e.g. [54, 7, 55]). These work focuses on evolu-

tionary clustering of streaming news articles. Nevertheless, identifying events on

Twitter stream is more challenging, since we need to unearth event related tweets

from huge tweet flow.

The problem we study is similar to but different from event detection on Twitter

that has been a hot research topic in recent years. Existing work on event detection

from Twitter usually focuses on early, online detection of major events [44, 38, 50,

9, 32]. For example, Sakaki et al. studied realtime detection of earthquake events

1https://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
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for Japan [44]. Petrović et al. studied how to detect the first tweet covering a new

event [38]. These studies stress the importance of detecting the onset of an event

at the moment or shortly after the event happens, which is critical for monitoring

social media for unexpected events such as natural disasters, terrorist attacks and

outbreaks of contagious diseases. In contrast, our focus is to identify all tweets

related to an event.

Furthermore, being social media, Twitter users play important roles when pub-

lishing event related tweets. Each user has her own personal interests which can

be inferred from her past interest-related tweets. These user-specific interests will

influence the type of event she concerns. In this case, the concepts of personal inter-

ests and events are orthogonal in that many events fall under certain topics. Analysis

on the interplay of personal interests and events can deepen our understanding of

Twitter content and potentially aid many recommendation and prediction tasks.

Finally, when a significant event happens, it will cause heated discussion. How-

ever, it is time consuming for a user to read all the related tweets to interpret the

event. Therefore, we aim to summarize the identified events to help users better

interpret these events.

1.2 Research Objectives

In this dissertation, we therefore aim to (1) identify events from Twitter stream, (2)

analyse personal topics, events and users on Twitter, (3) summarize the identified

events on Twitter. Formally, we define an event to be something non-trivial that

happens at a certain time. An event can be either planned or unexpected. Example

of events include plane crashes, concerts, elections etc. We will refer to the first task

as Event Identification, the second task as Unified Analysis for Topics, Events and

Users on Twitter where topics stand for users’ personal interests, and the third task

as Event Summarization.

3



1.2.1 Event Identification

In this part, the key challenges are the following: (1) Existing methods which aim

to detect events from news stream assume that all documents are event-related. On

Twitter, however, many tweets are not related to a significant event. The majority

of tweets are about people’s interests and daily routines; (2) Events on Twitter are

always bursty. Due to the nature of Twitter, people usually use Twitter to spread or

comment on breaking news rather than old events.

To deal with these challenges, we propose two statistical model based ap-

proaches to model the generation of Twitter stream and identify events from Twitter:

• We propose a topic model designed for finding topical bursts from mi-

croblogs. Our model is based on the following two assumptions: (1) If a

post is about a global event, it is likely to follow a global topic distribution

that is time dependent; (2) If a post is about a personal topic, it is likely to

follow a personal topic distribution that is more or less stable over time. Sep-

aration of “global” and “personal” posts is done in an unsupervised manner

through hidden variables. Finally, we apply a state machine to detect topical

bursts within each topic, and each burst stands for an event.

• We propose a new non-parametric generative model to identify events from

Twitter. The basic assumptions is similar. We assume that posts about per-

sonal interests are likely to follow a user-specific topic distribution. However,

events on Twitter tend to emerge and die out fast. Thus, the number of events

can be countably infinite over the timeline. In this case, we propose a dynamic

non-parametric model to capture the events on Twitter.

1.2.2 Unified Analysis for Topics, Events and Users on Twitter

In this part, we propose a unified model for topics, events and users on Twitter.

Petrovic et al. [39] recently point out that Twitter stream does not lead news stream

4



for major news events, but Twitter stream covers a much wider range of events than

news stream. Our model aims to better understand these additional events and their

relation with users’ personal interests. Therefore, we point out two important con-

cepts (1) Topics. These are longstanding themes that many personal tweets revolve

around. Example topics range from music and sports to more serious ones like pol-

itics and religion. (2) Events. As what we have described, these are things that

take place at a certain time and attract many people’s short attention in social me-

dia. We use topic model and dynamic non-parametric model to capture topics and

events retrospectively. Moreover, a user’s tweeting behaviour on an event is similar

to adoption of an item during purchasing. Thus we use event-topic affinity vectors

inspired by PMF-based collaborative filtering. It uses the latent topics to explain

users’ preferences on events and subsequently infers the association between topics

and events.

1.2.3 Event Summarization

In previous parts introduced above, we use topic model and dynamic non-parametric

model to capture the events on Twitter. Both approaches model an event as a clus-

ter of tweets featured by a coherent multinomial word distribution. Therefore, to

understand an event, a user need to either read the cluster of tweets or the word

distribution. However, the former is very time consuming, and the latter cannot

accurately represent the event. In this case, we propose a word graph based novel

summarization framework. Within the graph, the nodes represent words with di-

rected edges representing relative positional information between the words within

each tweet. Thus, we cast the summarization task as finding paths with high scores

in the graph, which is an instance of the maximum arborescence problem for di-

rected graphs.
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1.3 Our Contributions

Our contributions in this dissertation are as follows:

1.3.1 Event Identification on Twitter

• We study the problem of finding topical bursts from Twitter streams. Because

existing work on burst detection from text streams may not be suitable for

microblogs, we propose a new topic model that considers both the temporal

information of tweets and users’ personal interests. We then apply a Poisson-

based state machine to identify bursty periods from the topics discovered by

our model. We compare our model with standard LDA as well as two de-

generate variations of our model on a real Twitter dataset. Our quantitative

evaluation shows that our model can more accurately detect unique topical

bursts where each of them represents an event. A limitation of this work is

that the number of topics is pre-determined, while the number of events can

be infinite over the timeline. Therefore, our next piece of work looks into

dynamic non-parametric model which can better capture the nature of events.

• We study the problem of event identification from Twitter stream. The Recur-

rent Chinese Restaurant Process is appealing for our task because it provides a

principled dynamic non-parametric model. However, our preliminary experi-

ment shows that RCRP is not directly applicable in our task for two reasons:

(1) events emerge and die out fast on Twitter, (2) most tweets are topical and

only a small proportion of them are event-related. Therefore, we propose a

novel duration-based probability discount to RCRP to capture the burstiness

character of events on Twitter. We then propose a probabilistic model to iden-

tify both events and topics simultaneously from Twitter. Our experiments

demonstrate that our proposed model can identify events accurately, which

shows the effectiveness of duration-based discount. Finally, we qualitatively
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show some interesting studies on users and event-topic correlations.

1.3.2 Unified Analysis for Topics, Events and Users on Twitter

• We propose a unified model to study topics, events and users jointly. The base

of our method is a combination of a LDA-like model and the Recurrent Chi-

nese Restaurant Process, which aims to model users’ longstanding personal

topic interests and events over time simultaneously. We use an inner popu-

larity bias parameter and event-topic affinity vectors to interpret an event’s

inherent popularity and its affinity to different topics. Our experiments quan-

titatively show that our proposed model can effectively identify meaningful

events and accurately find relevant tweets for these events. Furthermore, the

event-topic association inferred by our model can help an event recommen-

dation task and organize events by topics.

1.3.3 Event Summarization

• We propose a novel graph-based summarization framework that generates

concise abstractive summaries for events. The key idea is to use a directed

word graph structure to represent natural language tweet text and cast this

summarization problem as finding appropriate paths in the graph. Then we

can cast the summarization task as finding the highest scoring spanning tree,

which is an instance of the maximum arborescence problem for directed

graphs. Our experiments show that our framework has better agreement with

human summaries compared with baseline methods.

1.4 Road Map

The remaining part of the dissertation is structured as follows. We first review

related work in Chapter 2. We then present our work on event identification in Part I.
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This part includes two chapters: Chapter 3 presents our work about finding topical

bursts where each burst represents an event. We use a topic model based approach to

identify topics from Twitter, followed by a two state machine to detect bursts within

each topic. In this work, the number of topics need to be predefined, and post-

processing is needed to detect the bursts. To better model the generation process of

events on Twitter, we present our dynamic non-parametric model based approach

in Chapter 4, in which the model can directly identify events and better capture

their emergence. Next, Part II describes our work about unified analysis for topics,

events and users on Twitter. This part includes Chapter 5, which further explores

the underlying motivation of users’ tweeting behavior on events by studying the

relation between events and personal interests. Finally, in Part III, we introduce our

work about event summarization. This part includes Chapter 6, which introduces

our word graph based summarization framework in detail.
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Chapter 2

Literature Review

For the past few decades, people can easily access a vast amount of textual infor-

mation provided by various sources like newspaper, online media, and microblogs.

When a significant event happens, it tends to be “bursty” because the event can eas-

ily catch the majority’s eyes and cause heated discussion. Therefore, the first con-

cern of event identification is such “burstiness” property. To detect bursty patterns

from data streams, Kleinberg et al. [29] proposed a state machine to model the ar-

rival times of documents in a stream. Different states generate time gaps according

to exponential density functions with different expected values, and bursty intervals

can be discovered from the underlying state sequence. A similar approach by Ihler

et al. [28] models a sequence of count data using Poisson distributions. However,

these methods can only be applied to detect bursty patterns, given a single stream

about a certain topic (e.g. transportation, sports, politics, etc).

News stream provide various daily event-oriented information, which covers al-

most every area of public life. Topic Detection and Tracking (TDT) is a relatively

old research area, which mainly focuses on event identification on news stream.

However, each article in a news stream is event-related, which makes it quite differ-

ent from microblogs.

Due to the fast growth of Web 2.0, social media, especially Twitter, fundamen-

tally changed the way people seek information. Nowadays, when hearing or seeing
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an event, the first reaction of the majority is to post it on Twitter or other social

media sites. Such property makes social media a good source for event identifica-

tion. In addition, relevant tweets about an event can reflect the publics’ opinions

and reactions to events such as elections and scandals. It is therefore very useful to

find popular events and their relevant tweets from Twitter. There have been quite a

few work about event identification on twitter in recent years. These studies focus

on early event detection, while we study event identification of events from a given

segment of Twitter stream in a retrospective manner.

Overall, the inspiration of this dissertation comes from various tasks which in-

clude Topic Detection and Tracking (TDT) and event detection on Twitter. More-

over, the approaches we use are based on Beyesian statistical models. Finally, we

explore abstractive summarization for the events on Twitter. Therefore, we provide

literature review of the following areas:

• Topic Detection and Tracking

• Event Detection on Twitter

• Topic Modeling

• Summarization

2.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) is a relatively old research problem in the in-

formation retrieval community. A topic is defined as “a seminal event or activity,

along with all directly related events and activities [6].” More specifically, topic

detection involves detecting the occurrence of a new event such as a plane crash,

a murder, a jury trial result, or a political scandal in a stream of news stories from

multiple sources. Topic tracking is the process of monitoring a stream of news sto-

ries to find those that track (or discuss) the same event as one specified by a user.

Much work has been done along this direction [7, 55, 54, 29], and these studies

focus mostly on news articles, which used to be the best source of information to

10



detect and summarize events. These studies are mainly based on two approaches:

document-pivot and feature-pivot. The former aims to represent documents as vec-

tors and calculate similarities between documents, and then cluster documents into

events [7, 55, 54]. The latter aims to identify the features of the hidden events from

the stream first, and then detect events by clustering these features [29]. Never-

theless, identifying events on Twitter stream is more challenging and our approach

is quite different, due to several reasons: (1) Only a small proportion of tweets is

event-related in Twitter streams, while most news articles are event-oriented. (2)

Twitter content is user generated, where each user has her specific characteristics.

We use a probabilistic approach which detects events and considers users’ personal

interests at the same time.

2.2 Event Detection on Twitter

There have been quite a few studies on event detection on Twitter [44, 38, 50, 9,

32, 51]. Sakaki et al. trained a classifier to recognize tweets reporting earthquakes

in Japan [44]. Weng and Lee proposed a method that first characterizes temporal

patterns of individual words using wavelets and then groups them into events [50].

Petrović et al. proposed the first story detection task on Twitter [38]. Becker et

al. explored supervised approaches to distinguishing between messages about real-

world events and non-event messages for Twitter stream analysis [9]. Xie et al.

proposed a sketch-based topic model together with a set of techniques to achieve

real-time detection of bursty topics on Twitter [51]. As these studies focus on early

event detection, their major concerns are storage of past posts and efficient ways of

computing similarities between posts. However, recently, Petrović et al. pointed out

that Twitter does not necessarily lead traditional news media on major events, which

suggests that early event detection on Twitter may not be as critically important as

thought to be. Moreover, these work does not aim to identify all relevant tweets,

nor do they analyze the association of events with personal interests. In comparison,
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our work focuses on modeling topics, events and users as well as their relations.

2.3 Topic Modeling

Topic models provide a principled and elegant way to discover hidden topics from

large document collections [13, 23]. Latent Dirichlet Allocation (LDA) is a widely

adopted topic model [13] and many extensions of LDA have been proposed. For the

rest of this section, we mainly review work in topic modeling that is relevant to this

dissertation.

Temporal Topic Modeling and the Recurrent Chinese Restaurant

Process

Standard topic models do not consider temporal information. There have been many

extensions to topic model to capture the temporal aspects of topics [12, 48, 26]. Blei

and Lafferty considered the evolution of topics based on discretization of time [12].

Wang and McCallum model continuous time using a Beta distribution [48]. The

models proposed in [49] and in [15] assume a topic distribution within each time

epoch. However, these models need to pre-define the number of topics. Intuitively,

the number of events should reach countable infinite over time in text streams. The

Recurrent Chinese Restaurant Process overcomes this limitation by allowing topics

to emerge and disappear along the timeline [5]. Ahmed et al. proposed a unified

model which combines the Recurrent Chinese Restaurant Process with LDA to de-

tect events in news streams [3]. Tang et al. further extended the model by capturing

user interests in some news-centric social media streams [46]. These studies are

closely related to our approach.
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Collaborative Filtering with Topic Modeling

Users’ tweeting behavior on events is similar to how user adopt item during purchas-

ing. Therefore, our study is also related to the work on collaborative filtering based

on probabilistic matrix factorization (PMF) [45]. Recently there has been some

work combining topic model with PMF to recommend items with textual content

such as news articles and advertisements [47, 1]. They use topics to interpret the

latent structure of users and items. We borrow their idea but our items are events,

which are not known and have to be discovered by our model.

Topic Modeling on Twitter

Tweets generated from all over the world are expected to be about a variety of top-

ics. Figuring out which tweet is about which topic is interesting, because it enables

personalization, discovery, and targeted recommendation. However, standard LDA

might not work well on Twitter, since tweets are short and words used in Twitter

are informal. There has been some work in this area [53, 56, 25]. Hong and Davi-

son find that, by training a topic model on aggregated messages, they can obtain a

higher quality of learned model which results in significantly better performance in

two real-world classification problems [25]. Zhao et al. also suggest to aggregate

messages in user level [56]. Yang et al. propose a deployed topic modeling system

that infers topics of short noisy texts at high precision in real-time [53]. Our task

is related to this branch of work, while we focus on event identification rather than

purely modeling Twitter content.

2.4 Summarization

Abstractive summarization is also related to our task. Existing work in abstractive

summarization can be categorized into two categories: (1) approaches using prior

knowledge [41, 18], and (2) approaches using Natural Language Generation (NLG)
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systems [43, 27]. The first line of work needs considerable amount of manual effort

to define schemas such as frames and templates that can be filled with information

extraction technology. The second category of work uses deeper NLP analysis.

However, neither branch of work can be directly applied in our task for two reasons:

(1) Events keep happening everyday on Twitter, and the number of events can be

countablely infinite. Therefore, we cannot rely on methods with manual efforts. (2)

The language used in tweets is not formal. Thus deep NLP analysis may not be

applicable on Twitter.
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Part I

Event Identification
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Chapter 3

Finding Bursty Topics from

Microblogs

Microblogs such as Twitter reflect the general public’s reactions to major events.

Bursty topics from microblogs reveal what events have attracted the most online at-

tention. Although bursty event detection from text streams has been studied before,

previous work may not be suitable for microblogs because compared with other text

streams such as news articles and scientific publications, microblog posts are par-

ticularly diverse and noisy. To find topics that have bursty patterns on microblogs,

we propose a topic model that simultaneously captures two observations: (1) posts

published around the same time are more likely to have the same topic, and (2) posts

published by the same user are more likely to have the same topic. The former helps

find event-driven posts while the latter helps identify and filter out “personal” posts.

Our experiments on a large Twitter dataset show that there are more meaningful and

unique bursty topics in the top-ranked results returned by our model than an LDA

baseline and two degenerate variations of our model. We also show some case stud-

ies that demonstrate the importance of considering both the temporal information

and users’ personal interests for bursty topic detection from microblogs.
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3.1 Introduction

With the fast growth of Web 2.0, a vast amount of user-generated content has ac-

cumulated on the social Web. In particular, microblogging sites such as Twitter

allow users to easily publish short instant posts about any topic to be shared with

the general public. The textual content coupled with the temporal patterns of these

microblog posts provides important insight into the general public’s interest. A sud-

den increase of topically similar posts usually indicates a burst of interest in some

event that has happened offline (such as a product launch or a natural disaster) or

online (such as the spread of a viral video). Finding bursty topics from microblogs

therefore can help us identify the most popular events that have drawn the public’s

attention. In this chapter, we study the problem of finding bursty topics from a

stream of microblog posts generated by different users. We focus on retrospective

detection, where the text stream within a certain period is analyzed in its entirety.

Retrospective bursty event detection from text streams is not new [29, 19, 49],

but finding bursty topics from microblog steams has not been well studied. In his

seminal work, Jon Kleinberg proposed a state machine to model the arrival times of

documents in a stream in order to identify bursts [29]. This model has been widely

used. However, this model assumes that documents in the stream are all about a

given topic. In contrast, discovering interesting topics that have drawn bursts of

interest from a stream of topically diverse microblog posts is itself a challenge. To

discover topics, we can certainly apply standard topic models such as LDA [13],

but with standard LDA temporal information is lost during topic discovery. For

microblogs, where posts are short and often event-driven, temporal information can

sometimes be critical in determining the topic of a post. For example, typically a

post containing the word “jobs” is likely to be about employment, but right after

October 5, 2011, a post containing “jobs” is more likely to be related to Steve Jobs’

death. Essentially, we expect that on microblogs, posts published around the same

time have a higher probability to belong to the same topic.
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To capture this intuition, one solution is to assume that posts published within

the same short time window follow the same topic distribution. Wang et al. pro-

posed a PLSA-based topic model that exploits this idea to find correlated bursty

patterns across multiple text streams [49]. However, their model is not immedi-

ately applicable for our problem. First, their model assumes multiple text streams

where word distributions for the same topic are different on different streams. More

importantly, their model was applied to news articles and scientific publications,

where most documents follow the global topical trends. On microblogs, besides

talking about global popular events, users also often talk about their daily lives and

personal interests. In order to detect global bursty events from microblog posts, it is

important to filter out these “personal” posts.

In this chapter, we propose a topic model designed for finding bursty topics

from microblogs. Our model is based on the following two assumptions: (1) If a

post is about a global event, it is likely to follow a global topic distribution that

is time-dependent. (2) If a post is about a personal topic, it is likely to follow

a personal topic distribution that is more or less stable over time. Separation of

“global” and “personal” posts is done in an unsupervised manner through hidden

variables. Finally, we apply a state machine to detect bursts from the discovered

topics.

We evaluate our model on a large Twitter dataset. We find that compared with

bursty topics discovered by standard LDA and by two degenerate variations of our

model, bursty topics discovered by our model are more accurate and less redundant

within the top-ranked results. We also use some example bursty topics to explain

the advantages of our model.
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3.2 Method

3.2.1 Preliminaries

We first introduce the notation used in this chapter and formally formulate our

problem. We assume that we have a stream of D microblog posts, denoted as

d1, d2, . . . , dD. Each post di is generated by a user ui, where ui is an index be-

tween 1 and U , and U is the total number of users. Each di is also associated with

a discrete timestamp ti, where ti is an index between 1 and T , and T is the total

number of time points we consider. Each di contains a bag of words, denoted as

{wi,1, wi,2, . . . , wi,Ni
}, where wi,j is an index between 1 and V , and V is the vocab-

ulary size. Ni is the number of words in di.

We define a bursty topic b as a word distribution coupled with a bursty interval,

denoted as (ϕb, tbs, t
b
e), where ϕb is a multinomial distribution over the vocabulary,

and tbs and tbe (1 ≤ tbs ≤ tbe ≤ T ) are the start and the end timestamps of the bursty

interval, respectively. Our task is to find meaningful bursty topics from the input

text stream.

Our method consists of a topic discovery step and a burst detection step. At the

topic discovery step, we propose a topic model that considers both users’ topical

interests and the global topic trends. Burst detection is done through a standard

state machine method.

3.2.2 Our Topic Model

We assume that there are C (latent) topics in the text stream, where each topic c has

a word distribution ϕc. Note that not every topic has a bursty interval. On the other

hand, a topic may have multiple bursty intervals and hence leads to multiple bursty

topics. We also assume a background word distribution ϕB that captures common

words. All posts are assumed to be generated from some mixture of these C + 1

underlying topics.
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In standard LDA, a document contains a mixture of topics, represented by a

topic distribution, and each word has a hidden topic label. While this is a reasonable

assumption for long documents, for short microblog posts, a single post is most

likely to be about a single topic. We therefore associate a single hidden variable

with each post to indicate its topic. Similar idea of assigning a single topic to a

short sequence of words has been used before [22, 56]. As we will see very soon,

this treatment also allows us to model topic distributions at time window level and

user level.

As we have discussed in Section 3.1, an important observation we have is that

when everything else is equal, a pair of posts published around the same time is

more likely to be about the same topic than a random pair of posts. To model this

observation, we assume that there is a global topic distribution θt for each time

point t. Presumably θt has a high probability for a topic that is popular in the

microblogsphere at time t.

Unlike news articles from traditional media, which are mostly about current

affairs, an important property of microblog posts is that many posts are about users’

personal encounters and interests rather than global events. Since our focus is to find

popular global events, we need to separate out these “personal” posts. To do this,

an intuitive idea is to compare a post with its publisher’s general topical interests

observed over a long time. If a post does not match the user’s long term interests, it

is more likely related to a global event. We therefore introduce a time-independent

topic distribution ηu for each user to capture her long term topical interests.

We assume the following generation process for all the posts in the stream.

When user u publishes a post at time point t, she first decides whether to write

about a global trendy topic or a personal topic. If she chooses the former, she then

selects a topic according to θt. Otherwise, she selects a topic according to her own

topic distribution ηu. With the chosen topic, words in the post are generated from

the word distribution for that topic or from the background word distribution that

captures white noise. We use π to denote the probability of choosing to talk about a
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Figure 3.1: (a) Our topic model for burst detection. (b) A variation of our model
where we only consider global topical trends. (c) A variation of our model where
we only consider users’ personal topical interests.

global topic rather than a personal topic.

Formally, the generation process is summarized in Figure 3.2. The model is also

depicted in Figure 3.1(a).

There are two degenerate variations of our model that we also consider in our

experiments. The first one is depicted in Figure 3.1(b). In this model, we only con-

sider the time-dependent topic distributions that capture the global topical trends.

This model can be seen as a direct application of the model by Wang et al [49].

The second one is depicted in Figure 3.1(c). In this model, we only consider the

users’ personal interests but not the global topical trends, and therefore temporal in-

formation is not used. We refer to our complete model as TimeUserLDA, the model

in Figure 3.1(b) as TimeLDA and the model in Figure 3.1(c) as UserLDA. We also

consider a standard LDA model in our experiments, where each word is associated

with a hidden topic.

3.2.3 Learning

We use collapsed Gibbs sampling to obtain samples of the hidden variable assign-

ment and to estimate the model parameters from these samples.

First, for the i-th post, we know its publisher ui and timestamp ti. We can jointly

sample yi and zi based on the values of all other hidden variables. Let us use y to

denote the set of all hidden variables y and y¬i to denote all y except yi. We use
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1. Draw ϕB ∼ Dirichlet(β), π ∼ Beta(γ), ρ ∼ Beta(λ)

2. For each time point t = 1, . . . , T

(a) draw θt ∼ Dirichlet(α)

3. For each user u = 1, . . . , U

(a) draw ηu ∼ Dirichlet(α)

4. For each topic c = 1, . . . , C,

(a) draw ϕc ∼ Dirichlet(β)

5. For each post i = 1, . . . , D,

(a) draw yi ∼ Bernoulli(π)

(b) draw zi ∼ Multinomial(ηui) if yi = 0 or zi ∼ Multinomial(θti) if
yi = 1

(c) for each word j = 1, . . . , Ni

i. draw xi,j ∼ Bernoulli(ρ)

ii. draw wi,j ∼ Multinomial(ϕB) if xi,j = 0 or wi,j ∼
Multinomial(ϕzi) if xi,j = 1

Figure 3.2: The generation process for all posts.

similar symbols for other variables. We then have:

p(yi = p, zi = c|z¬i,y¬i,x,w)

∝ p(yi = p|y¬i) · p(zi = c|yi = p, z¬i,x,w)

∝ p(yi = p|y¬i) · p(zi = c|yi = p, z¬i) · p(wi|zi = c,xi, z¬i,x¬i,w¬i)

∝
∫
p(yi = p|π)p(π|y¬i)dπ ·

(∫
p(zi = c|ηui)p(ηui|z¬i)dηui

)1−p

·
(∫

p(zi = c|θti)p(θti|z¬i)dθti
)p

·
∫ ∏

j

p(wi,j|ϕc)xi,jp(ϕc|z¬i,x¬i,w¬i)dϕ
c

∝
Mπ

(p) + γ

Mπ
(·) + 2γ

·
M l

(c) + α

M l
(·) + Cα

·
∏V

v=1

∏E(v)−1

k=0 (M c
(v) + k + β)∏E(·)−1

k=0 (M c
(·) + k + V β)

, (3.1)

where l = ui when p = 0 and l = ti when p = 1. Here every M is a counter. Mπ
(0)

is the number of posts generated by personal interests, while Mπ
(1) is the number of
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posts coming from global topical trends. Mπ
(·) = Mπ

0 +Mπ
1 . Mui

(c) is the number of

posts by user ui and assigned to topic c, and Mui
(·) is the total number of posts by ui.

M ti
(c) is the number of posts assigned to topic c at time point ti, and M ti

(·) is the total

number of posts at ti. E(v) is the number of times word v occurs in the i-th post

and is labeled as a topic word, while E(·) is the total number of topic words in the

i-th post. Here, topic words refer to words whose latent variable x equals 1. M c
(v)

is the number of times word v is assigned to topic c, and M c
(·) is the total number of

words assigned to topic c. All the counters M mentioned above are calculated with

the i-th post excluded.

We sample xi,j for each word wi,j in the i-th post using:

p(xi,j = q|y, z,x¬{i,j},w)

∝ p(xi,j = q|x¬{i,j}) · p(wi,j|xi,j = q,x¬{i,j},y, z,w¬{i,j})

∝
∫
p(xi,j = q|ρ)p(ρ|x¬{i,j})dρ ·

∫
p(wi,j|ϕl)p(ϕl|xi,j = q,x¬{i,j},y, z,w¬{i,j})dϕ

l

∝
Mρ

(q) + λ

Mρ
(·) + 2λ

·
M l

(wi,j)
+ β

M l
(·) + V β

, (3.2)

where l = B when q = 0 and l = zi when q = 1. Mρ
(0) and Mρ

(1) are counters

to record the numbers of words assigned to the background model and any topic,

respectively, and Mρ
(·) = Mρ

(0) + Mρ
(1). M

B
(wi,j)

is the number of times word wi,j

occurs as a background word. M zi
(wi,j)

counts the number of times word wi,j is

assigned to topic zi, and M zi
(·) is the total number of words assigned to topic zi.

Again, all counters are calculated with the current word wi,j excluded.

3.2.4 Burst Detection

Just like standard LDA, our topic model itself finds a set of topics represented by

ϕc but does not directly generate bursty topics. To identify bursty topics, we use the

following mechanism, which is based on the idea by Jon Kleinberg [29] and Ihler et

[28]. In our experiments, when we compare different models, we also use the same
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burst detection mechanism for other models.

We assume that after topic modeling, for each discovered topic c, we can obtain

a series of counts (mc
1,m

c
2, . . . ,m

c
T ) representing the intensity of the topic at differ-

ent time points. For LDA, these are the numbers of words assigned to topic c. For

TimeUserLDA, these are the numbers of posts which are in topic c and generated by

the global topic distribution θti , i.e whose hidden variable yi is 1. For other models,

these are the numbers of posts in topic c.

We assume that these counts are generated by two Poisson distributions cor-

responding to a bursty state and a normal state, respectively. Let µ0 denote the

expected count for the normal state and µ1 for the bursty state. Let vt denote the

state for time point t, where vt = 0 indicates the normal state and vt = 1 indicates

the bursty state. The probability of observing a count of mc
t is as follows:

p(mc
t |vt = l) =

e−µlµ
mc

t
l

mc
t !

, (3.3)

where l is either 0 or 1. The state sequence (v0, v1, . . . , vT ) is a Markov chain

with the following transition probabilities:

p(vt = l|vt−1 = l) = σl, (3.4)

where l is either 0 or 1.

µ0 and µ1 are topic specific. In our experiments, we set µ0 = 1
T

∑
tm

c
t , that is,

µ0 is the average count over time. We set µ1 = 3µ0. For transition probabilities, we

empirically set σ0 = 0.9 and σ1 = 0.6 for all topics.

We can use dynamic programming to uncover the underlying state sequence for

a series of counts. Finally, a burst is marked by a consecutive subsequence of bursty

states.
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Method P@5 P@10 P@20 P@30
TimeLDA 0.800 0.700 0.600 0.633
UserLDA 0.800 0.700 0.850 0.833

TimeUserLDA 1.000 1.000 0.900 0.800

Table 3.1: Precision at K for the various models.

Method P@5 P@10 P@20 P@30
LDA 0.600 0.800 0.700 N/A

TimeLDA 0.400 0.500 0.500 0.567
UserLDA 0.800 0.500 0.500 0.600

TimeUserLDA 1.000 0.900 0.850 0.767

Table 3.2: Precision at K for the various models after we remove redundant bursty
topics.

3.3 Experiments

3.3.1 Data Set

We use a Twitter data set to evaluate our models. The original data set contains

151,055 Twitter users based in Singapore and their tweets. These Twitter users were

obtained by starting from a set of seed Singapore users who are active online and

tracing their follower/followee links by two hops. Because this data set is huge, we

randomly sampled 2892 users from this data set and extracted their tweets between

September 1 and November 30, 2011 (91 days in total). We use one day as our

time window. Therefore our timestamps range from 1 to 91. We then removed stop

words and words containing non-standard characters. Tweets containing less than 3

words were also discarded. After preprocessing, we obtained the final data set with

3,967,927 tweets and 24,280,638 tokens.

3.3.2 Ground Truth Generation

To compare our model with other alternative models, we perform both quantita-

tive and qualitative evaluation. As we have explained in Section 3.2.2, each model

gives us time series data for a number of topics, and by applying a Poisson-based
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Bursty Period Top Words Example Tweets Label
Nov 29 vote, big, awards, (1) why didnt 2ne1 win this

time!
Mnet Asian

bang, mama, win, (2) 2ne1. you deserved that
urgh!

Music Awards

2ne1, award, won (3) watching mama. whoohoo (MAMA)
Oct 5 ∼ Oct 8 steve, jobs, apple, (1) breaking: apple says steve

jobs has passed away!
Steve Jobs

iphone, rip, world, (2) google founders: steve jobs
was an inspiration!

death

changed, 4s, siri (3) apple 4 life thankyousteve
Nov 1∼Nov 3 reservior, bedok, ad-

lyn,
(1) this adelyn totally disgust
me. slap her mum?

girl slapping

slap, found, body, queen of cine? joke please can. mom
mom, singapore,
steven

(2) she slapped her mum and
boasted about it on fb
(3) adelyn lives in woodlands ,
later she slap me how?

Nov 5 reservior, bedok, ad-
lyn,

(1) bedok = bodies either
drowned or killed.

suicide near

slap, found, body, (2) another body found, in
bedok reservoir?

bedok reservoir

mom, singapore,
steven

(3) so many bodies found at
bedok reservoir. alamak.

Oct 23 man, arsenal, united, (1) damn you man city! we will
get you next time!

football game

liverpool, chelsea,
city,

(2) wtf 90min goal!

goal, game, match (3) 6-1 to city. unbelievable.

Table 3.3: Top-5 bursty topics ranked by TimeUserLDA. The labels are manually
given. The 3rd and the 4th bursty topics come from the same topic but have different
bursty periods.

state machine, we can obtain a set of bursty topics. For each method, we rank the

obtained bursty topics by the number of tweets (or words in the case of the LDA

model) assigned to the topics and take the top-30 bursty topics from each model. In

the case of the LDA model, only 23 bursty topics were detected. We merged these

topics and asked two human judges to judge their quality by assigning a score of

either 0 or 1. The judges are graduate students living in Singapore and not involved

in this project. The judges were given the bursty period and 100 randomly selected

tweets for the given topic within that period for each bursty topic. They can consult

external resources to help make judgment. A bursty topic was scored 1 if the 100

tweets coherently describe a bursty event based on the human judge’s understand-
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Rank LDA UserLDA TimeLDA
1 Steve Jobs’ death MAMA MAMA
2 MAMA football game MAMA
3 N/A #zamanprimaryschool MAMA
4 girl slapping mom N/A girl slapping mom
5 N/A iphone 4s N/A

Table 3.4: Top-5 bursty topics ranked by other models. N/A indicates a meaningless
burst.

ing. The inter-annotator agreement score is 0.649 using Cohen’s kappa, showing

substantial agreement. For ground truth, we consider a bursty topic to be correct

if both human judges have scored it 1. Since some models gave redundant bursty

topics, we also asked one of the judges to identify unique bursty topics from the

ground truth bursty topics.

3.3.3 Evaluation

In this section, we show the quantitative evaluation of the four models we consider,

namely, LDA, TimeLDA, UserLDA and TimeUserLDA. For each model, we set the

number of topics C to 80, α to 50
C

and β to 0.01 after some preliminary experiments.

Each model was run for 500 iterations of Gibbs sampling. We take 40 samples with

a gap of 5 iterations in the last 200 iterations to help us assign values to all the

hidden variables.

Table 3.1 shows the comparison between these models in terms of the precision

of the top-K results. As we can see, our model outperforms all other models for

K <= 20. For K = 30, the UserLDA model performs the best followed by our

model.

As we have pointed out, some of the bursty topics are redundant, i.e. they are

about the same bursty event. We therefore also calculated precision at K for unique

topics, where for redundant topics the one ranked the highest is scored 1 and the

other ones are scored 0. The comparison of the performance is shown in Table 3.2.

As we can see, in this case, our model outperforms other models with all K. We
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will further discuss redundant bursty topics in the next section.

3.3.4 Sample Results and Discussions
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Figure 3.3: Topic intensity over time for the topic on the Circle Line.
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Figure 3.4: Topic intensity over time for the topic about a Korean pop singer. The
dotted curves show the topic on Steve Jobs’ death.

In this section, we show some sample results from our experiments and discuss

some case studies that illustrate the advantages of our model.

First, we show the top-5 bursty topics discovered by the TimeUserLDA model

in Table 3.3. As we can see, all these bursty topics are meaningful. Some of these

events are global major events such as Steve Jobs’ death, while some others are

related to online events such as the scandal of a girl boasting about slapping her

mother on Facebook. For comparison, we also show the top-5 bursty topics discov-

ered by other models in Table 3.4. As we can see, some of them are not meaningful

events while some of them are redundant.

Next, we show two case studies to demonstrate the effectiveness of our model.

Effectiveness of Temporal Models: Both TimeLDA and TimeUserLDA tend

to group posts published on the same day into the same topic. We find that this

can help separate bursty topics from general ones. An example is the topic on the

Circle Line. The Circle Line is one of the subway lines of Singapore’s mass transit
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system. There were a few incidents of delays or breakdowns during the period

between September and November, 2011. We show the time series data of the topic

related to the Circle Line of UserLDA, TimeLDA and TimeUserLDA in Figure 3.3.

As we can see, the UserLDA model detects a much larger volume of tweets related

to this topic. A close inspection tells us that the topic under UserLDA is actually

related to the subway systems in Singapore in general, which include a few other

subway lines, and the Circle Line topic is merged with this general topic. On the

other hand, TimeLDA and TimeUserLDA are both able to separate the Circle Line

topic from the general subway topic because the Circle Line has several bursts.

What is shown in Figure 3.3 for TimeLDA and TimeUserLDA is only the topic on

the Circle Line, therefore the volume is much smaller. We can see that TimeLDA

and TimeUserLDA show clearer bursty patterns than UserLDA for this topic. The

bursts around day 20, day 44 and day 85 are all real events based on our ground

truth.

Effectiveness of User Models: We have stated that it is important to filter out

users’ “personal” posts in order to find meaningful global events. We find that our

results also support this hypothesis. Let us look at the example of the topic on the

Mnet Asian Music Awards, which is a major music award show that is held by

Mnet Media annually. In 2011, this event took place in Singapore on November 29.

Because Korean pop music is very popular in Singapore, many Twitter users often

tweet about Korean pop music bands and singers in general. All our topic models

give multiple topics related to Korean pop music, and many of them have a burst

on November 29, 2011. Under the TimeLDA and UserLDA models, this leads to

several redundant bursty topics for the MAMA event ranked within the top-30. For

TimeUserLDA, however, although the MAMA event is also ranked the top, there

is no redundant one within the top-30 results. We find that this is because with

TimeUserLDA, we can remove tweets that are considered personal and therefore

do not contribute to bursty topic ranking. We show the topic intensity of a topic

about a Korean pop singer in Figure 3.4. For reference, we also show the intensity
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of the topic on Steve Jobs’ death under each model. We can see that because this

topic is related to Korean pop music, it has a burst on day 90 (November 29). But

if we consider the relative intensity of this burst compared with Steve Jobs’ death,

under TimeLDA and UserLDA, this topic is still strong but under TimeUserLDA

its intensity can almost be ignored. This is why with TimeLDA and UserLDA this

topic leads to a redundant burst within the top-30 results but with TimeUserLDA

the burst is not ranked high.

3.4 Conclusions

In this chapter, we studied the problem of finding bursty topics from the text streams

on microblogs. Because existing work on burst detection from text streams may not

be suitable for microblogs, we proposed a new topic model that considers both the

temporal information of microblog posts and users’ personal interests. We then

applied a Poisson-based state machine to identify bursty periods from the topics

discovered by our model. We compared our model with standard LDA as well as

two degenerate variations of our model on a real Twitter dataset. Our quantitative

evaluation showed that our model could more accurately detect unique bursty top-

ics among the top ranked results. We also used two case studies to illustrate the

effectiveness of the temporal factor and the user factor of our model.
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Chapter 4

Recurrent Chinese Restaurant

Process with a Duration-based

Discount for Event Identification

from Twitter

In the previous chapter, we proposed an LDA-based model to capture bursty top-

ics and a two-state machine to identify events. In this chapter, we turn to a non-

parametric model to directly model events on Twitter. Recently the Recurrent Chi-

nese Restaurant Process (RCRP) has been successfully used for event identification

from news streams and news-centric social media streams. However, these models

cannot be directly applied to Twitter based on our preliminary experiments mainly

for two reasons: (1) Events emerge and die out fast on Twitter, while existing models

ignore this burstiness property. (2) Most Twitter posts are personal interest oriented

while only a small fraction is event related. Motivated by these challenges, we pro-

pose a new nonparametric model which considers burstiness. We further combine

this model with traditional topic models to identify both events and topics simul-

taneously. Our quantitative evaluation provides sufficient evidence that our model

can accurately detect meaningful events. Our qualitative evaluation also shows in-
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teresting analysis for events on Twitter.

4.1 Introduction

In the previous chapter, event identification is done through a post-processing step

using a two-state machine. In this chapter, we define the task of event identification

directly as to identify (gapped) subsequences of tweets from a segment of Twitter

stream where each subsequence contains tweets discussing the same event. Fig-

ure 1.1 illustrates the problem definition and shows some example events with their

representative tweets.

The problem can be regarded as an evolutionary clustering problem, where items

are ordered as a stream and clustered depending on not only their similarity but also

their closeness in time. For evolutionary clustering of streaming documents, several

methods have been proposed, including some from the information retrieval com-

munity to address the event detection problem under Topic Detection and Tracking

(TDT) (e.g. [54, 7, 55]) and others from the machine learning and data mining

communities (e.g. [2, 5]). In particular, Ahmed and Xing proposed a dynamic non-

parametric model called the Recurrent Chinese Restaurant Process (RCRP), which

performs evolutionary clustering of streaming documents in a principled and ele-

gant way [5]. Being a non-parametric model, it also allows a countably infinite

number of clusters and flexibly models the life cycle of each cluster. Because of

these appealing characteristics, we choose RCRP as the basis of our solution.

Although RCRP has been successfully applied to find events from news

streams [3] and news-centric social media streams [46], Twitter has some major

differences from news streams and therefore these existing models are not directly

applicable to our problem. (1) Existing models assume that all documents are event-

related and must be assigned to a cluster. On Twitter, however, many tweets are not

related to any significant event. According to a Twitter study by PearAnalytics1,

1http://www.pearanalytics.com/wp-content/uploads/2012/12/
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only 3.6% of tweets are news-related and 8.7% have pass-along value. The major-

ity of tweets are about people’s personal interests and daily routines. We therefore

separate tweets into topic tweets and event tweets, which capture user’s personal

life topics and major events on Twitter respectively. We identify the former using

a topic model and the latter using a RCRP-based model. Although this assumption

is a much simplified view of the wide range of tweets, we find it effective to de-

tect meaningful events and topics. (2) RCRP does not model the phenomenon that

events on Twitter are bursty. Because of the nature of microblogs, people usually

use Twitter to spread or comment on breaking news rather than old events, which

means events on Twitter tend to die out fast. However, RCRP only captures the

“rich get richer” phenomenon. We therefore need to introduce some mechanism to

favor bursty clusters.

In this chapter, we propose a new non-parametric generative model for iden-

tifying events from Twitter. Following [3] and [46], our model distinguishes be-

tween longstanding topics and bursty events. In our model, only events are mod-

eled by RCRP and allowed to emerge and disappear along the timeline. Different

from the previous models, we separate topical tweets from event-related tweets by

considering each user’s longstanding topical interests. Moreover, we introduce a

novel duration-based probability discount into RCRP, which penalizes longstand-

ing events and hence models the burstiness of events on Twitter.

We evaluate our model on a real Twitter dataset that contains the posts of 500

users published during a period of three months from April to June 2012. Our

experiments show that our proposed model can more accurately identify meaningful

events than two baseline methods. Our model also finds more relevant tweets and

generates better temporal profiles of events.

Our work has the following contributions: (1) We propose a principled uni-

fied probabilistic model for event identification on Twitter. Each event forms its

own cluster inside the model and no post-processing is needed. (2) Event-related

Twitter-Study-August-2009.pdf
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tweets can be separated from personal topical tweets automatically within our uni-

fied model. (3) We propose a novel duration-based probability discount for RCRP,

which allows us to capture the burstiness of events on microblogs.

4.2 Method

We first briefly review RCRP and its application for event identification. Because

our preliminary experiments show that existing RCRP based models cannot be di-

rectly applied in our task, we then introduce our method, which extends RCRP.

4.2.1 Recurrent Chinese Restaurant Process

The Recurrent Chinese Restaurant Process (RCRP) is a non-parametric model for

evolutionary clustering proposed by Ahmed and Xing [5], which basically chains

up the Chinese Restaurant Process (CRP) [10] based on the timeline. To model

streaming data, RCRP models a restaurant with infinite number of tables and cus-

tomers coming on different days. When the i-th customer on the t-th day comes

in, she can choose a table that either is serving some customers on day t or served

some customers on day t− 1 (or both) with probability
nk,t−1+n

(i)
k,t

Nt−1+i−1+α
, where nk,t−1 is

the number of customers sitting at table k at the end of day t− 1, n(i)
k,t is the number

of customers sitting at table k on day t before customer i comes, and Nt−1 is the

total number of customers served by the restaurant on day t− 1. This customer can

also choose to sit at a new empty table that did not even serve any customer on the

previous day with probability α
Nt−1+i−1+α

. With the RCRP metaphor, we can clus-

ter a sequence of items that are divided into epochs. Each resulting cluster not only

contains a set of items but also has a duration with a start time and an end time. The

RCRP model encourages popular clusters in epoch t − 1 to remain alive in epoch

t. Under RCRP, items from different epochs are no longer exchangeable. When

RCRP is applied for document clustering, we further assume that each cluster is

associated with a multinomial word distribution. We can then model the generation
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of documents from a cluster where each document is a bag of words. Such a model

allows us to prefer documents with similar word usage to be clustered together.

The RCRP model can be used to cluster news articles into storylines where each

story is a series of news articles about the same event [3, 46]. Ahmed et al. [3]

proposed a RCRP-LDA model which assumes that there is a fixed number of topics

that exist at all times and an infinite number of events that emerge and disappear

over time. Each document is assumed to belong to an event, but words inside a

document can be either topical or event related. Tang et al. further extended the

RCRP-LDA model to incorporate user interests by assuming that each event has a

user distribution [46]. They applied their model to some news-centric social media

streams such as Digg and online discussion forums.

4.2.2 Our Motivation

However, as we have stated earlier, a major difference between Twitter and news

article streams is that the majority of tweets is about trivial events and personal in-

terests, while only a small fraction of them is event related. Therefore, we cannot

directly apply existing RCRP based models or TDT methods, which assume each

document is related to an event. To illustrate this difference, we apply two repre-

sentative existing methods for event identification from news articles to a subset of

our Twitter data from September to November 2011. The first one is a TDT method

from [55], which aims to detect events from news streams retrospectively using hi-

erarchical group average clustering. The second method is from [46] for identifying

events from news-centric social media streams using RCRP and LDA. We show

some top-ranked events identified by the two methods in terms of top keywords in

Table 4.1. For each event, we also plot a temporal profile that shows the volume

of identified relevant tweets over time. We can see that the top keywords and the

temporal profiles do not clearly indicate any important event. Besides the special

property that not every tweet is event-related, another characteristic of events on
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Top words Temporal profile

time, love, good,
people, la, sleep, to-
day, im, day, work

day, #nowplaying,
gonna, video, song,
there’s, yeah, wait,
find, love

steve, jobs, love,
time, good, feel, rip,
happy, damn, miss

people, life, make,
love, moment, per-
son, awkward, hate,
smile, things

sleep, tired, im,
home, bed, early,
wake, gonna, rain,
feel

iphone, steve, jobs,
apple, 4s, ios, app,
phone, siri, rip

Table 4.1: Three of the top-ranked events identified by the models in [55] (top three)
and [46] (bottom three) from our data.

Twitter is that they tend to be bursty. Standard RCRP only models the “rich get

richer” phenomenon, which can lead to events with long durations.

To address the two problems above, we propose a different RCRP-based gen-

erative model for identifying events from Twitter. The proposed model assumes

that a tweet is either topical or event-related. It further introduces a duration-based

probability discount to favor bursty events.

4.2.3 Preliminaries

We first formally formulate our problem before we go to the detail of our method.

We assume that we have a stream of tweets that are divided into T epochs. (In

our experiments, we use one day as an epoch.) Let t ∈ {1, 2, . . . , T} denote the
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index of an epoch. Each epoch contains a sequence of tweets ordered by their exact

time stamps, and each tweet is a bag of words. Let V be the size of our vocabulary

and let wt,i,j ∈ {1, 2, . . . , V } denote the j-th word (represented by its index in the

vocabulary) from the i-th tweet in the t-th epoch. We also take note of the authors of

these tweets. Let ut,i ∈ {1, 2, . . . , U} denote the user who published the i-th tweet

in the t-th epoch, where U is the total number of users. Our goal is to identify a set

of events from these tweets, where each event is a set of tweets. Note that not every

tweet has to belong to an event.

Our general idea is to cluster these tweets such that each cluster represents an

event. But since not all tweets are event-related, we assume that each tweet is either

about a general longstanding topic (a topical tweet) or related to an event (an event-

related tweet). Only the event-related tweets will be clustered using the Recurrent

Chinese Restaurant Process. For the topical tweets, we assume that they are closely

related to each user’s topical interests.

4.2.4 A Duration-based Discount for RCRP

Recall that one problem we have identified with RCRP for Twitter is that RCRP only

models the “rich get richer” phenomenon. In other words, popular events tend to

attract even more users to tweet about them. However, on microblogs users also tend

to follow the newest trends. Once an event becomes old, it may no longer attract

much attention. In fact, [31] identified these two factors on both mainstream and

social media and termed them imitation and recency. They argued that any model of

the news cycle needs to incorporate some version of these two ingredients. RCRP

already captures the imitation factor. What is missing is the recency factor.

We therefore propose the following change to the standard RCRP. Recall that

in the RCRP metaphor, when the i-th customer of the t-th epoch comes in, the

probability to join an existing table k is proportional to (nk,t−1 + n
(i)
k,t), i.e. the

number of customers sitting at table k on the current and the previous days before
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customer i comes. Let t̄k denote the index of the epoch when table k was first

occupied. Based on the recency effect, the earlier a table was first occupied, the

older the table is and the less likely it will be chosen. We hence want to discount

the probability mass to join table k based on (t − t̄k). Here we propose a discount

of (nk,t−1+n
(i)
k,t)(1−e−λ(t−t̄k)), that is, after the discount, the remaining probability

mass is (nk,t−1+n
(i)
k,t)e

−λ(t−t̄k). Here λ > 0 is a parameter we can tune. It is obvious

that the older table k is, the smaller t̄k is and the smaller the probability mass for

table k is after the discount. On the other hand, the deducted probability mass will

be used for starting a new table.

Formally, define ∆
(i)
k,t as (nk,t−1 + n

(i)
k,t)(1− e−λ(t−t̄k)), the duration-based prob-

ability discount. Then for the i-th customer of the t-th epoch, she can choose to join

an existing table with probability
nk,t−1+n

(i)
k,t−∆

(i)
k,t

Nt−1+i−1+α
or start a new table with probabil-

ity
α+

∑
k′ ∆

(i)

k′,t
Nt−1+i−1+α

.

With the discounted RCRP model, customers prefer not only popular tables but

also “fresh” tables. This is the major distinction of our proposed model from the

standard RCRP. The discount model also maintains the total probability mass as

(Nt−1 + i− 1 + α), which simplifies the model inference later.

4.2.5 The Complete Model

We are now ready to formally present our complete model for event identification

from Twitter. We assume that there are A longstanding topics, each associated with

a multinomial word distribution ϕa. Each user u has a topic distribution θu. Events

are formed through the Recurrent Chinese Restaurant Process with the duration-

based discount, and each event k also has a multinomial word distribution ψk.

During the t-th epoch, for the i-th tweet, a binary variable yt,i is first sampled

from a user-specific Bernoulli distribution πut,i , which indicates a user’s tendency

to post topical or event-related tweets. If yt,i equals 0, a topic zt,i is sampled from

the user’s topic distribution θut,i . Then all words in this tweet are sampled from the
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1. For each topic a = 1, . . . , A

(a) draw ϕa ∼ Dirichlet(β)

2. For each user u = 1, . . . , U

(a) draw θu ∼ Dirichlet(γ), πu ∼ Beta(τ)

3. For each t and each i

(a) draw yt,i ∼ Bernoulli(πut,i)

(b) if yt,i = 0

i. draw zt,i ∼ Discrete(θut,i)

ii. for all j, draw wt,i,j ∼ Discrete(ϕzt,i)

(c) if yt,i = 1

i. draw st,i from the RCRP with discount
ii. if st,i is a new event

A. draw ψst,i ∼ Dirichlet(β)

B. set t̄st,i equal to t
iii. for all j, draw wt,i,j ∼ Discrete(ψst,i)

Figure 4.1: The generative process of our model.

word distribution ϕzt,i . If yt,i equals 1, then an event st,i is sampled from a Recurrent

Chinese Restaurant Process with the proposed duration-based discount. All words

in this tweet are then sampled from the word distribution ψst,i .

We place uniform Dirichlet priors over all the multinomial distributions. The

generative process is also described in Figure 4.1.

A major difference between the RCRP-LDA models in [3] and [46] and our

model is that the RCRP-LDA models differentiate between topics and events at

the word level, i.e. they allow a document to contain both topical words and event-

specific words, whereas in our model the entire content of a tweet is either topical or

event-related.Our preliminary experiment shows that when we apply such a setting

to Twitter, many tweets end up containing only topical words but are still wrongly

assigned to some event which is not related to the content of the tweet. We therefore
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Figure 4.2: For the formula of sampling events, Nk,t Ok,t and ηk,t vary under differ-
ent conditions.

differentiate between topics and events at the tweet level instead. Also, we do not

consider named entities as [3] do because NER on Twitter is less accurate and faces

more name variations.

4.2.6 Model Inference

We use collapsed Gibbs sampling to obtain samples of the latent variables based

on the conditional distributions derived from our model and finally use these sam-

ples to obtain the final hidden label assignment. We find that the conditional prob-

abilities derived from our model are rather complex. This is because unlike the

Chinese Restaurant Process, where items are exchangeable, or the Recurrent Chi-

nese Restaurant Process, where items within the same epoch are exchangeable,

our model lacks complete exchangeability because of the duration-based discount.

While we are able to derive the exact formulas for the conditional probabilities,

we find that in terms of efficiency, the exact formulas would incur high computa-

tional costs and are not feasible given the large volume of tweets. We then opt for

some approximation of the exact sampling formulas. We remove the terms that do

not affect the probabilities much and keep the terms that dominate the probability

mass. In the content that follows, we first derive the exact formulas for conditional

probabilities in detail and then describe the approximation.

For the exact conditional probabilities, we jointly sample yt,i, zt,i and st,i. The

formulas for yt,i = 0, zt,i = a and yt,i = 1, st,i = k are different.
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Topical:

First of all, for yt,i = 0 and zt,i = a, we have the following formula:

p(yt,i = 0, zt,i = a|y¬(t,i), z¬(t,i),w) ∝
n
(π)
u,0 + τ

n
(π)
u,(.) + 2τ

· n
(θ)
u,a + γ

n
(θ)
u,(.) + Aγ

·
∏V

v=1

∏E(v)−1

l=0 (n
(ϕ)
a,v + l + β)∏E(.)−1

l=0 (n
(ϕ)
a,(.) + l + V β)

,

where we use u to represent author ut,i. n
(π)
u,0 is the number of topical tweets by

user u, and it stems from integrating out user’s Bernoulli distribution πu. n(π)
u,(.) is the

total number of tweets by user u. Similarly, n(θ)
u,a is the number of tweets assigned

to topic a for this user, resulting from integrating out user’s topic distribution θu.

n
(θ)
u,(.) is the same as n(π)

u,0. E(v) is the number of times word type v appears in the

current tweet, and E(.) is the total number of words in the current tweet. n
(ϕ)
a,v is

the number of times word type v is assigned to topic a, and n(ϕ)
a,(.) is the number

of words assigned to topic a. Note that we calculate all these counting matrixes

without considering the current tweet.

Event-related:

Then for yt,i = 1 and st,i = k, we use the following formula:

p(yt,i = 1, st,i = k|y¬(t,i), s¬(t,i),w) ∝
n
(π)
u,1 + τ

n
(π)
u,(.) + 2τ

·Nk,t ·Ok,t · ηk,t ·
∏V

v=1

∏E(v)−1

l=0 (n
(ψ)
k,v + l + β)∏E(.)−1

l=0 (n
(ψ)
k,(.) + l + V β)

where n(π)
u,1 is the number of event-related tweets by user u, n(ψ)

k,v is the number

of times word type v is assigned to event k, and n(ψ)
k,(.) is the total number of words

assigned to event k. These word counters stem form integrating out each event’s

word distribution, and are set to zero when k is a new born event.

In Table 4.2, we show the values of Nk,t Ok,t and ηk,t under various conditions.
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These conditions are based on the temporal relation between the current tweet and

the candidate event k. Here nk,t is the number of tweets in epoch t assigned to event

k, excluding the current tweet. ∆
(i)
k,t is as we defined before, ik is the index of the

tweet that started event k in epoch tk, and nk,(.) =
∑T

t′=t̄k
nk,t′ . To simplify the

formula, we use S(t, i) to represent
∑

k′ ∆
(i)
k′,t+α, which reflects the probability to

start a new table for the i-th document in epoch t.

Roughly speaking, Nk,t contains two factors: (1) The size of event k around

epoch t. (2) The time difference between the current time stamp t and the event’s

start time t̄k. Ok,t considers the effect of replacing the cluster starter (the ik-th

tweet in epoch t̄k) with the current tweet. Finally, ηk,t considers how the current

event assignment affects the events which emerge later than the current tweet. In

particular, in the condition when t̄k equals t+1, assigning the current tweet to event

k will bring the start date t̄k forward, and S(t̄k′ , ik′)
(t,i) is calculated2 after setting

t̄k to t.

Approximation:

Given the exact conditional probabilities as the previous formulas show, we opt to

approximate the formulas by ignoring the factor ηk,t. We omit this influence fac-

tor because we find that it has a minor effect on the probability mass but largely

increases the computational complexity. After using such approximation, the com-

plexity of our model is similar to a degenerate variation of our model (one of the

baselines in section 4.3.2), in which d-RCRP is replaced with RCRP. The differ-

ences are: (1) when sampling the i-th tweet at epoch t, our model need to record

and track the latent event variables of previous tweets in the same epoch to calcu-

late S(t, i); (2) when the i-th tweet at epoch t starts an event during the previous

iteration, we need to search for the nearest tweet which belongs to the same event to

start the event. Although we use this approximated formula for the exact conditional

2S(t̄k′ , ik′)(t,i) will be affected because of the factor ∆(ik′ )

k,t̄k′
. Since the start time t̄k is changed

from t+ 1 to t, the value of ∆(ik′ )

k,t̄k′
should be updated to (nk,t̄k′−1 + nk,t̄k′ )(1− e−λ(t̄k′−t)).
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probabilities, we find that in our experiments the formula works fine and generates

meaningful results.

4.3 Experiment

4.3.1 Dataset

We use a Twitter dataset that was previously used in [15] for finding bursty topics.

The original dataset contains the tweets published by a large number of Singapore

Twitter users. Since the entire dataset is huge, we pick 500 users, including 13

news media users, 2 journalists and 485 random users. We use their tweets between

April 1 and June 30, 2012 for our experiments. We use the CMU Twitter POS

Tagger3 to tag these tweets and remove the non-standard words (i.e. words tagged

as punctuation marks, emoticons, urls, at-mentions, pronouns, etc.) and stop words.

Tweets with less than three words are also discarded. In the end we get 701,878

tweets in total.

4.3.2 Quantitative Evaluation

In the experiments below, we refer to our own model as d-RCRP. We quantitatively

evaluate d-RCRP by comparing it with two baseline models:

RCRP: This is a modified version of our own model where we remove the duration-

based probability discount, i.e. we use the standard RCRP. Comparison with this

model helps us understand the effect of the duration-based discount.

TimeUserLDA: This model is from [15]. Similar to d-RCRP, TimeUserLDA also

separates personal topical tweets from event-related tweets. However, it groups the

event-related tweets into a fixed number of bursty topics and then uses a two-state

machine in a postprocessing step to identify events from these bursty topics, i.e.

events are not directly modeled within the generative process itself. In contrast,

3http://www.ark.cs.cmu.edu/TweetNLP/
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Figure 4.3: Top five events detected by d-RCRP (left) and RCRP (right). We show
each event’s name (manually given and N/A indicates a meaningless event), top
ranked words, and life cycle (the duration of the event).

d-RCRP and RCRP directly models events.

It is worth mentioning that both baselines separate topical tweets and event re-

lated tweets. We do not compare with the model in [3] or [46] because these meth-

ods are designed for news-centric data and treat all documents as event-related. The

results of both model are poor as seen from Table 4.1 in Section 4.1.

For the parameter settings, we empirically set A to 80, γ to 50
A

, β to 0.01, τ to

1, and α to 1. The duration-based discount parameter λ is set to 1. We run 300

iterations before we collect 10 samples with a gap of 5 iterations to obtain our final

latent variable assignment.

Event Quality

We first analyze the quality of the detected events. For each method, we rank the

detected events based on the number of tweets assigned to them and then pick the

top-30 events for each method. We randomly mix these events and ask two human

judges to label them. For each event, the judges are provided with 100 randomly

selected tweets (or all tweets if an event contains less than 100 tweets) together with

their time stamps. The judges are allowed to use external sources to help them. An

event is scored 1 if the 100 tweets coherently describe an event or 0 otherwise. The

inter-annotator agreement score is 0.639 using Cohen’s kappa. The final score of

an event is 1 if both judges have scored it 1. Table 4.2 shows the performance in
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terms of Precision@K, and Table 4.3 shows the top five events detected by d-RCRP

and RCRP respectively. The results show that our model outperforms the others

consistently.

Method P@5 P@10 P@20 P@30
d-RCRP 1.000 1.000 1.000 0.800
RCRP 0.400 0.500 0.600 0.600

TimeUserLDA 1.000 0.900 0.800 0.667

Table 4.2: Precision@K for the various models.

A close examination of the events reveals that RCRP identifies several events

that are longstanding general topics (as Table 4.3 shows), which verifies that bursti-

ness is an important factor to consider for identifying events on Twitter. It is inter-

esting to see that TimeUserLDA outperforms RCRP. We believe that it is because

TimeUserLDA also considers burstiness. However, TimeUserLDA requires a post-

processing step whereas d-RCRP achieves event identification inside the generative

model itself.

Tweet Quality

Event d-RCRP RCRP TimeUserLDA
Amanda swaggie 0.91 0.88 0.79
Mother’s day 0.86 0.82 0.77
April fools 0.85 0.85 0.97
City harvest church scandal 0.86 0.85 0.82
Father’s day 0.86 0.77 0.65

Table 4.3: Precision of tweets for the 5 common events.

The evaluation above is at event-level. We also want to evaluate the relevance

of the tweets assigned to each event. To make fair comparison, we select common

events identified by all three methods. We further ask two human judges to score the

100 tweets as either 1 or 0 based on their relevance to the event. We obtain a Cohen’s

kappa of 0.760, which shows high agreement. Table 4.3 shows the precision of the

tweets for all 5 common events. We find that for 4 of them, our model obtains

the highest precision. The false positive tweets by RCRP are mislabeled mainly
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because the duration of the event tends to be long. For example, several tweets

about Labor Day are clustered into the event of Mother’s Day. The false positive

tweets by TimeUserLDA are the ones with related words. For example, several

“happy birthday” tweets are clustered into the event of Father’s Day. For April

Fools, after we take a close look at the corresponding tweets, we find that our model

does not outperform other models mainly because most tweets of this event adopt

similar words, such as ”aprilfool”, ”fraud” and ”prank”, which are quite distinctive

and can separate the relevant tweets from other general tweets. Roughly speaking,

TimeUserLDA performs well when the event is globally popular (i.e. festivals, or

some major events) and the words of the event are distinctive.

Temporal Profile Quality

Besides the quality of the top-ranked events and their tweets, we also evaluate the

temporal profiles of the events. Essentially the temporal profile of an event shows

how the number of tweets related to an event changes over time. As it is hard for

us to obtain the ground truth of the temporal profile of an event through human

judgment we use hashtags to help us [26]. Twitter users create specific hashtags

when significant events happen. These hashtags are widely used because of the

diffusion effect on Twitter’s huge network. We rank the hashtags in our data set

based on their numbers of tweets. From the top-ranked ones, we pick 7 hashtags

that are related to some meaningful events. We obtain a temporal profile of each of

these hashtags based on the daily tweet counts. Our hypothesis is that this is close to

the real temporal profile of the corresponding event. Then for each of the methods

we consider, we pick the corresponding event for each hashtag and also obtain a

temporal profile based on the daily tweet counts returned by that method. Finally,

we convert the temporal profiles into distributions over time through normalization,

and for each hashtag and each method, we compute the JS-divergence between the

two distributions, one based on the hashtag and the other based on the method. We

believe that the lower the JS-divergence is, the better the temporal profile of an event
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obtained by the method matches the ground truth. Table 4.4 shows the results. We

can see that d-RCRP consistently gives lower JS-divergence scores than the other

two methods except for #aprilfools. It shows that the tweets identified by d-RCRP

for an event usually better reflect the real evolution of the event on Twitter.

HashTag/Event d-RCRP RCRP TimeUserLDA
#ss4encore 0.0282 0.0448 N/A

#bigbangmonster 0.0055 0.1749 N/A
#ss4shanghai 0.0004 0.0738 N/A
#3years2ne1 0.0344 0.0616 N/A

#chc 0.0419 0.0465 0.1443
#aprilfools 0.0797 0.0882 0.0656

#getwellsoongaga 0.1416 0.2178 N/A

Table 4.4: The JS-divergence scores of the three methods. N/A means there is no
corresponding event.

4.3.3 Qualitative Evaluation

In this section, we show some example results from our experiments that illustrate

the advantages of our proposed model. Moreover, we can do various event-centric

analyses (i.e. users’ tendency to tweet about events, event-topic correlation), be-

cause our unified model considers both personal interests and events on Twitter.

These analyses help better interpret events in Twitter.

Case Study

Events Start date Top words
candidate announce-
ment

10 May hougang, choo, desmond, png, can-
didate

nomination day 16 May #hougangbyelection, hougang, wp,
desmond, png,

polling day 26 May #hougangbyelection hougang, pap,
png, desmond,

Table 4.5: Case study on Hougang by-election.
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For events that span a relatively long duration, our model tends to identify the

most significant sub-events and treat these sub-events as events. For example, our

data set covers the Singapore Hougang by-election, which lasted for around twenty

days. There were three major events during this period: Election candidates were

announced on May 10, the nomination day was on May 16, and the polling day was

on May 26. Table 4.5 shows that our model correctly finds these major sub-events.

User Analysis

Figure 4.4: User’s tendency to tweet on topics or events.

Since our model learns a user’s tendency to tweet about topics or events, we can

compare such tendency of normal users, media users (e.g. YahooNews) and jour-

nalists in our data. For each category of users, we average their Bernoulli parameter

πu and show the results in Figure 4.4. We can clearly see that media users are more

likely to tweet about events compared with normal users. It may appear strange

that media users also have a high probability to tweet about topics. This is because

many news events tweeted by media users do not attract much attention on Twit-

ter, and therefore these news events are not identified as popular events on Twitter

but become general topics by our model. We also find that journalists’ tendency to

tweet about events lies between normal users and media users, which makes sense

because journalists play dual roles as both a normal user and a media user.
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Event-Topic Correlation Analysis

Our model does not directly model the correlation between events and topics. How-

ever, we expect that some events are more related to certain topics than others and

therefore more likely to be tweeted by users interested in those topics. E.g. a Ko-

rean pop music concert is more related to the general topic on music or entertain-

ment while the event on Eurocup is more related to the topic on sports. We can find

such correlations through the following postprocessing. First, we average the topic

distributions of all normal users to obtain a background topic distribution of our

data. Denote this as θB. Then for each event, we obtain all users who have tweeted

about the event and average these users’ topic distributions. We thus obtain a topic

distribution θk for each event k. By measuring the JS-divergence between θB and

θk, we can rank the events.

We show 19 events tweeted by at least 20 users in increasing order of the JS-

divergence scores in Table 4.6. We can see that the top-ranked events (with low

JS-divergence) are those that tend to be tweeted by all users, while the low-ranked

ones (with high JS-divergence) are those that are more related to certain topics than

others and therefore tend to be tweeted by a subgroup of users. E.g. event 19 is about

Super Junior, a Korean idol group, and this event is likely to be only interesting to K-

pop fans. By analyzing the correlation between events and topics, we can potentially

recommend relevant events to a user based on her topic interests.

4.4 Conclusions

In this chapter, we study the problem of event identification from Twitter stream.

The Recurrent Chinese Restaurant Process is appealing for our task because it pro-

vides a principled dynamic non-parametric model. However, our preliminary ex-

periment shows that RCRP is not directly applicable in our task for two reasons:

(1) events emerge and die out fast on Twitter, (2) most tweets are topical and only a
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Rank Event Name Score
1 Mother’s day 0.0068
2 Father’s day 0.0073
3 Indonesia tsunami 0.0106
4 April fool’s day 0.0113
5 Tsunami hit Singapore 0.0114
6 Alex push old lady 0.0162
7 Amanda swaggie 0.0170
8 Ferrari accident 0.0198
9 City harvest church scandal 0.0231

10 Staraward(Rui En) 0.0259
11 Hougang election polling day 0.0263
12 Hougang election nomination day 0.0263
13 Bigbang concert ticket sell 0.0320
14 Bigbang album “Monster” 0.0328
15 Euro cup 2012 0.0341
16 Mozambique fashion week 0.0354
17 Staraward(Jay Park) 0.0362
18 LionsXII 9-0 Sabah FA 0.0543
19 Super Junior new album 0.0805

Table 4.6: Events ranked based on JS-divergence.

small proportion of them are event-related. Therefore, we propose a novel duration-

based probability discount to RCRP to capture the burstiness character of events

on Twitter. We then propose a probabilistic model to identify both events and top-

ics simultaneously from Twitter. Our experiments demonstrate that our proposed

model can identify events accurately, which shows the effectiveness of duration-

based discount. Finally, we qualitatively show some interesting studies on users

and event-topic correlations.
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Part II

Unified Analysis for Topics, Events

and Users on Twitter
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Chapter 5

A unified model of topics, events and

users on Twitter

In this chapter, we try to model topics, events and users on Twitter in a unified

way. We propose a model which combines an LDA-like topic model and the Re-

current Chinese Restaurant Process to capture topics and events. We further pro-

pose a duration-based regularization component to find bursty events. We also pro-

pose to use event-topic affinity vectors to model the association between events and

topics. Our experiments shows that our model can accurately identify meaningful

events and the event-topic affinity vectors are effective for event recommendation

and grouping events by topics.

5.1 Introduction

In this chapter, we consider two concepts that have been repeatedly visited: (1)

Topics. These are longstanding themes that many personal tweets revolve around.

Example topics range from music and sports to more serious ones like politics and

religion. Much work has been done to analyze topics on Twitter [42, 25, 56, 30].

(2) Events. These are the same as we have discussed in previous chapters.

The concepts of topics and events are orthogonal in that many events fall under

52



certain topics. For example, concerts fall under the topic about music. Furthermore,

being social media, Twitter users play important roles in forming topics and events

on Twitter. Each user has her own topic interests, which influence the content of her

tweets. Whether a user publishes a tweet related to an event also largely depends

on whether her topic interests match the nature of the event. Modeling the interplay

between topics, events and users can deepen our understanding of Twitter content

and potentially aid many prediction and recommendation tasks. In this chapter, we

aim to construct a unified model of topics, events and users on Twitter. Although

there has been a number of recent studies on event detection on Twitter, to the best

of our knowledge, ours is the first that links the topic interests of users to their

tweeting behaviors on events.

Specifically, we propose a probabilistic latent variable model that identifies both

topics and events on Twitter. To do so, we first separate tweets into topic tweets

and event tweets. The former are related to a user’s personal life, such as a tweet

complaining about the traffic condition or wishing a friend happy birthday. The

latter are about some major global event interesting to a large group of people, such

as a tweet advertising a concert or commenting on an election result. Although

considering only topic tweets and event tweets is a much simplified view of the

diverse range of tweets, we find it effective in finding meaningful topics and events.

We further use an LDA-like model [13] to discover topics and the Recurrent Chinese

Restaurant Process [5] to discover events. Details are given in Section 5.2.1.

Our major contributions lie in two novel modifications to the base model de-

scribed above. The first is a duration-based regularization component that punishes

long-term events (Section 5.2.2). Because events on Twitter tend to be bursty, this

modification presumably can produce more meaningful events. More specifically,

we borrow the idea of using pseudo-observed variables to regularize graphical mod-

els [8], and carefully design the pseudo-observed variable in our task to capture the

burstiness of events. The second modification is adding event-topic affinity vectors

inspired by PMF-based collaborative filtering [45] (Section 5.2.3). It uses the latent
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Figure 5.1: Plate notation for the whole model, in which pseudo-observed variables
and distributions based on empirical counts are shown as dotted nodes.

topics to explain users’ preferences of events and subsequently infers the association

between topics and events.

We use a real Twitter data set consisting of 500 users to evaluate our model

(Section 5.3). We find that the model can discover meaningful topics and events.

Comparison with our base model and with an existing model for event discovery

on Twitter shows that the two modifications are both effective. The duration-based

regularization helps find more meaningful events; the event-topic affinity vectors

improve an event recommendation task and helps produce a meaningful organiza-

tion of events by topics.

5.2 Our Model

In this section, we present our model for topics, events and users on Twitter. We

assume that we have a stream of tweets which are divided into T epoches. Let

t ∈ {1, 2, . . . , T} be the index of an epoch. Each epoch contains a set of tweets and

each tweet is a bag of words. We use wt,i,j ∈ {1, 2, . . . , V } to denote the j-th word

of the i-th tweet in the t-th epoch, where V is the vocabulary size. The author of the

i-th tweet in the t-th epoch (i.e. the Twitter user who publishes the tweet) is denoted

as ut,i ∈ {1, 2, . . . , U}, where U is the total number of Twitter users we consider.
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We first present our base model in Section 5.2.1. We then introduce a duration-

based regularization mechanism to ensure the burstiness of events in Section 5.2.2.

In Section 5.2.3 we discuss how we model the relation between topics and events us-

ing event-topic affinity vectors. Finally we discuss model inference in Section 5.2.4.

5.2.1 The Base Model

Recall that our objective is to model topics, events, users and their relations. As in

many topic models, our topic is a multinomial distribution over words, denoted as ϕa

where a is a topic index. Each event is also a multinomial distribution over words,

denoted as ψk where k is an event index. Because topics are long-standing and

stable, we fix the number of topics to beA, whereA can be tuned based on historical

data. In contrast, events emerge and die along the timeline. We therefore use a non-

parametric model called the Recurrent Chinese Restaurant Process (RCRP) [5] to

model the birth and death of events. To model the relation between users and topics,

we assume each user u has a multinomial distribution over topics, denoted as θu.

As we have discussed, we separate tweets into two categories, topic tweets and

event tweets. Separation of these two categories is done through a latent variable y

sampled from a user-specific Bernoulli distribution πu. For topic tweets, the topic

is sampled from the corresponding user’s topic distribution θu. For event tweets,

the event is sampled according to RCRP. We now briefly review RCRP. Generally

speaking, RCRP assumes a Chinese Restaurant Process (CRP) [10] for items within

an epoch and chains up the CRPs in adjacent epochs along the timeline. Specifically,

in our case, the generative process can be described as follows. Tweets come in

according to their timestamps. In the t-th epoch, for the i-th tweet, we first flip a

biased coin based on probability πu to decide whether this tweet is event-related. If

it is, then we need to decide which event it belongs to. It could be an existing event

that has at least one related tweet in the previous epoch or the current epoch, or it

could be a new event. Let nk,t−1 denote the number of tweets related to event k at
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the end of epoch (t − 1). Let n(i)
k,t denote the number of tweets related to event k

in epoch t before the i-th tweet comes. Let Nt−1 denote the total number of event-

related tweets in epoch (t − 1) and N (i)
t denote the number of event-related tweets

in epoch t before the i-th tweet. Then RCRP assumes that the probability for the

i-th tweet to join event k is
nk,t−1+n

(i)
k,t

Nt−1+N
(i)
t +α

and the probability to start a new event is

α

Nt−1+N
(i)
t +α

, where α is a parameter. As we can see, RCRP naturally captures the

“rich-get-richer” phenomenon in social media.

Finally we place Dirichlet and Beta priors on the various parameters in our

model. Formally, the generative process of our base model is outlined in Figure 5.2,

excluding the lines in bold and blue. We also show the plate notation in Figure 5.1,

in which the Recurrent Chinese Restaurant Process is represented as an infinite dy-

namic mixture model [5] and θrcrpt means the distribution on an infinite number of

events in epoch t. Dt is the total number of tweets (both event-related and topic

tweets), while Nt represents the number event-related tweets in epoch t.

5.2.2 Regularization on Event Durations

As we have pointed out, events on Twitter tend to be bursty, i.e. the duration of

an event tends to be short, but this characteristic is not captured by RCRP. While

there can be different ways to incorporate this intuition, here we adopt the idea

of regularization using pseudo-observed variables proposed recently by [8]. We

introduce a pseudo-observed binary variable rt,i for each tweet, where the value of

rt,i is set to 1 for all tweets. We assume that this variable is dependent on the hidden

variables y and s. Specifically, if yt,i is 0, i.e. the tweet is topic-related, then rt,i

gets a value of 1 with probability 1. If yt,i is 1, then we look at all the tweets that

belong to event st,i. Our goal is to make sure that this tweet is temporally close

to these other tweets. So we assume that rt,i gets a value of 1 with probability

exp(−
∑T

t′=1,|t′−t|>1 λ|t − t′|nst,i,t′), where nst,i,t′ is the number of tweets in epoch

t′ that belong to event st,i and λ > 0 is a parameter. We can see that when we factor
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1. For each topic a = 1, . . . , A

(a) draw ϕa ∼ Dirichlet(β)

2. For each user u = 1, . . . , U

(a) draw θu ∼ Dirichlet(γ), πu ∼ Beta(τ)

3. For each epoch t and tweet i

(a) draw yt,i ∼ Bernoulli(πut,i)

(b) If yt,i = 0

i. draw zt,i ∼ Multinomial(θut,i)

ii. For each j, draw wt,i,j ∼ Multinomial(ϕzt,i)

(c) If yt,i = 1

i. draw st,i from RCRP
ii. If st,i is a new event

A. draw ψst,i ∼ Dirichlet(β)

B. draw η0st,i ∼ Gaussian(0, ι−1)

C. draw ηst,i ∼ Gaussian(0, ι−1IA)

iii. draw rt,i ∼ Bernoulli(ρst,i,t), where ρst,i,t =

exp(−
∑T

t′=1,|t′−t|>1 λ|t′ − t|nst,i,t′)
iv. draw ct,i ∼ Gaussian(η0st,i + ηTst,i · z̄ut,i , ϵ

−1)

v. For each j, draw wt,i,j ∼ Multinomial(ψst,i)

Figure 5.2: The generative process of our model, in which the duration-based reg-
ularization (section 5.2.2) and the event-topic affinity vector (section 5.2.3) are in
blue and bold lines.

in the generation of these pseud-observed variables r, we penalize long-term events

and favor events whose tweets are concentrated along the timeline. Generation of

these variables r is shown in bold and blue in Figure 5.2.

5.2.3 Event-Topic Affinity Vectors

So far in our model topics and events are not related. However, many events are

highly related to certain topics. For example, a concert is related to music while a

football match is related to sports. We would like to capture these relations between
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topics and events. One way to do it is to assume that event tweets also have topical

words sampled from the event’s topic distribution, something similar to the models

in [3] and by [46]. However, our prelimiary experiments show that this idea does

not work well on Twitter, mainly because tweets are too short. Here we explore an-

other approach inspired by recommendation methods based on probabilistic matrix

factorization [45]. The idea is that when a user posts a tweet about an event, we

can treat the event as an item and this posting behavior as adoption of the item. If

we assume that the adoption behavior is influenced by some latent factors, i.e. the

latent topics, then basically we would like the topic distribution of this user to be

close to that of the event.

Specifically, we assume that each event k has associated with it an A-

dimensional vector ηk and a parameter η0k. The vector ηk represents the event’s

affinity to topics. η0k is a bias term that represents the inner popularity of an event

regardless of its affinity to any topic. We further assume that each tweet has another

pseudo-observed variable ct,i that is set to 1. For topic tweets, ct,i gets a value of 1

with probability 1. For event tweets, ct,i is generated by a Gaussian distribution with

mean equal to η0st,i + ηst,i · z̄ut,i , where z̄u is an A-dimensional vector denoting the

empirical topic distribution of user u’s tweets. This treatment follows the practice

of fLDA by [1]. Let C̄u,a be the number of tweets by user u assigned to topic a,

based on the values of the latent variables y and z. Then

z̄u,a =
C̄u,a∑A
a′=1 C̄u,a′

,

ct,i ∼Gaussian(η0st,i + ηst,i · z̄ut,i , ϵ
−1),

where ϵ is a parameter. We generate ηk and η0k using Gaussian priors once event

k emerges. The generation of the variables c is shown in bold and blue in Figure 5.2.
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5.2.4 Inference

We train the model using a stochastic EM sampling scheme. In this scheme, we

alternate between Gibbs sampling and gradient descent. In the Gibbs sampling part,

we fix the values of η0k and ηk for each event k, and then we sample the latent

variables yt,i ,zt,i and st,i for each tweet. In the gradient descent part, we update the

event-topic affinity vectors ηk and the bias term η0k of each event k by keeping the

assignment of the variables yt,i ,zt,i and st,i fixed.

For the Gibbs sampling part, we jointly sample yt,i = 0, zt,i = a (topic tweet)

and yt,i = 1, st,i = k (event tweet) as follows:

Topic tweet:

p(yt,i = 0, zt,i = a|y¬t,i, z¬t,i,w, r, c, ut,i)

∝
n
(π)
u,0 + τ

n
(π)
u,(.) + 2τ

n
(θ)
u,a + γ

n
(θ)
u,(.) + Aγ

∏V
v=1

∏E(v)−1

i=0 (n
(ϕ)
a,v + i+ β)∏E(.)−1

i=0 (n
(ϕ)
a,(.) + i+ V β)∏

t′,i′∈Iu

N (ct′,i′|η0st′,i′ + ηst′,i′ · z̄
∗
u, ϵ

−1)

N (ct′,i′|η0st′,i′ + ηst′,i′ · z̄u, ϵ
−1)

Event tweet:

p(yt,i = 1, st,i = k|y¬t,i, z¬t,i,w, r, c, ut,i)

∝
n
(π)
u,1 + τ

n
(π)
u,(.) + 2τ

1

N

(
nRCRP
k,t N (ct,i|η0st,i + ηst,i · z̄u, ϵ

−1)

· exp(−
T∑
t′=1

|t′−t|>1

λ|t− t′|nk,t′)
)∏V

v=1

∏E(v)−1

i=0 (n
(ψ)
k,v + i+ β)∏E(.)−1

i=0 (n
(ψ)
k,(.) + i+ V β)
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in which,

nRCRP
k,t =



(nk,t−1 + nk,t)

· nk,t+nk,t+1

nk,t
if nk,t−1 > 0, nk,t > 0,

nk,t−1 if nk,t−1 > 0, nk,t = 0,

nk,t+1 if nk,t+1 > 0, nk,t = 0,

α if k is a new event,

where we use u to represent ut,i. n
(π)
u,0 is the number of topic tweets by user u

while n(π)
u,1 is the number of event tweets by user u. They stem from integrating out

the user’s Bernoulli distribution πu. n(π)
u,(.) is the total number of tweets by user u.

Similarly, n(θ)
u,a is the number of tweets assigned to topic a for this user, resulting

from integrating out the user’s topic distribution θu. n(θ)
u,(.) is the same as n(π)

u,0. E(v)

is the number of times word type v appears in the current tweet, and E(.) is the

total number of words in the current tweet. n(ϕ)
a,v is the number of times word type

v is assigned to topic a, and n(ϕ)
a,(.) is the number of words assigned to topic a. n(ψ)

k,v

is the number of times word type v is assigned to event k, and n
(ψ)
k,(.) is the total

number of words assigned to event k. These word counters stem form integrating

out each event’s word distribution and are set to zero when k is a new event. Iu =

{t′, i′|yt′,i′ = 1, ut′,i′ = u}, which is the set of event tweets published by user u, and

u represents ut,i for short. z̄∗
u is the empirical counting vector which considers the

current tweet’s topic assignment, while z̄u and all other counters do not consider

the current tweet. Finally, N is a local normalization factor for event tweets, which

includes the RCRP, event-topic affinity and regularization on event duration.

With the previous Gibbs sampling step, we can get the assignment of variables

yt,i ,zt,i and st,i. Given the assignment, we use gradient descent to update the values

of the bias term η0k and the event-topic affinity vectors ηk for each current existing
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event k. First, we can get the logarithm of the posterior distribution:

lnP (y, z, s, r, c|w,u, all priors)

= constant−
∞∑
k=1

{ ι
2
(η0k

2
+ ηk · ηk)

+
U∑
u=1

nu,k
ϵ

2
[1− (η0k + ηk · z̄u)]2},

where nu,k is the number of event tweets about event k published by user u. The

derivative of the logarithm of the posterior distribution with respect to the bias term

η0k and the event-topic affinity vector ηk are as follows:

∂ lnP

∂η0k
= −ιη0k +

U∑
u=1

ϵnu,k[1− (η0k + ηk · z̄u)],

∂ lnP

∂ηk
= −ιηk +

U∑
u=1

ϵnu,k[1− (η0k + ηk · z̄u)]z̄u.

5.3 Experiment

5.3.1 Dataset and Experiment Setup

We evaluate our model on a Twitter dataset that contains 500 users. These users

are randomly selected from a much larger pool of around 150K users based in Sin-

gapore. Selecting users from the same country/city ensures that we find coherent

and meaningful topics and events. We use tweets published between April 1 and

June 30, 2012 for our experiments. For preprocessing, we use the CMU Twitter

POS Tagger1 to tag these tweets and remove those non-standard words (i.e. words

tagged as punctuation marks, emoticons, urls, at-mentions, pronouns, etc.) and stop

words. We also remove tweets with less than three words. After preprocessing, the

dataset contains 655,881 tweets in total.

Recall that our model is designed to identify topics, events and their relations

1http://www.ark.cs.cmu.edu/TweetNLP/
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Event Top words Duration Inner popularity (η0k)

debate caused by
Manda Swaggie

singapore, bieber, europe, amanda, justin,
trending, manda, hates, swaggie, hate

17 June - 19 June 0.9457

Indonesia tsunami tsunami, earthquake, indonesia, singapore,
hit, warning, aceh, 8.9, safe, magnitude

10 April - 12 April 0.9439

SJ encore concert #ss4encore, cr, #ss4encoreday2, hyuk,
120526, super, leader, changmin, fans, teuk

26 May - 28 May 0.8360

Mother’s Day day, happy, mother’s, mothers, love, mom,
mum, everyday, mother, moms

11 May - 14 May 0.9370

April Fools’ Day april, fools, day, fool, joke, prank, happy, to-
day, trans, fool’s

1 April - 3 April 0.9322

Table 5.1: The top-5 events identified by Base+Reg+Aff. We show the story name
which is manually labeled, top ten ranking words, lasting duration and the inner
popularity (η0k) for each event.

with users. We therefore would like to evaluate the quality of the identified topics

and events as well as the usefulness of the discovered topic distributions of users

and event-topic affinity vectors. Because our topic discovery mechanism is fairly

standard and a quick inspection shows that the discovered topics are generally mean-

ingful and comparable to those discovered by standard LDA, here we do not focus

on evaluation of topics. In Section 5.3.2 we evaluate the quality of the discovered

events. In Section 5.3.3 we show how the discovered event-topic affinity vectors

can be useful.

For comparison, we consider an existing method called TimeUserLDA intro-

duced in our previous work [15]. TimeUserLDA also models topics and events by

separating topic tweets from event tweets. However, it groups event tweets into a

fixed number of bursty topics and then uses a two-state machine in a postprocess-

ing step to identify events from these bursty topics. Thus, events are not directly

modeled within the generative process itself. In contrast, events are inherent in our

generative model. We do not compare with other event detection methods because

our objective is not online event detection.

We also compare our final model with two degenerate versions of it. We refer to

the base model described in Section 5.2.1 as Base and the model with the duration-

based regularization as Base+Reg. Comparison with these two degenerate models

allows us to assess the effect of the two modifications we propose. We refer to the
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final model with both the duration-based regularization and the event-topic affinity

vectors as Base+Reg+Aff.

For the parameter setting, we empirically set A to 40, γ to 50
A

, τ to 1, β to 0.01,

α to 1, ι to 10, ϵ to 1, and the duration regularization parameter λ to 0.01. When a

new event k is created, the inner popularity bias term η0k is set to 1, and the factors in

event-topic affinity vectors ηk are all set to 0. We run the stochastic EM sampling

scheme for 300 iterations. After Gibbs sampling assigns each variable a value at

the end of each iteration, we update the values of η0k and ηk for the existing events

using gradient descent.

5.3.2 Events

First we quantitatively evaluate the quality of the detected events. Our model finds

clusters of tweets that represent events. We first assess whether these events are

meaningful. We then judge whether the detected event tweets are indeed related to

the corresponding event.

Quality of Top Events

Method P@5 P@10 P@20 P@30

Base+Reg+Aff 1.000 1.000 0.950 0.900
Base+Reg 1.000 1.000 0.950 0.867

Base 0.000 0.200 0.250 0.367
TimeUserLDA 1.000 0.800 0.750 0.600

Table 5.2: Precision@K for the various methods.

Usually we are interested in the most popular events on Twitter. We therefore as-

sess whether the top events are meaningful. For each method, we rank the detected

events based on the number of tweets assigned to them and then pick the top-30

events for each method. We randomly mix these events and ask two human judges

to label them. The judges are given 100 randomly selected tweets for each event (or
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all tweets if an event contains less than 100 tweets). The judges can use external

sources to help them. If an event is meaningful based on the 100 sample tweets, a

score of 1 is given. Otherwise it is scored 0. The inter-annotator agreement score

is 0.744 using Cohen’s kappa, showing substantial agreement. Finally we treat an

event as meaningful if both judges have scored it 1.

Table 5.2 shows the performance in terms of precision@K, and Table 5.1 shows

the top 5 events of our model (i.e., Base+Reg+Aff). We have the following find-

ings from the results: (1) Our base model performs quite poorly for the top events

while Base+Reg and Base+Reg+Aff perform much better. This shows that the

duration-based regularization is critical in finding meaningful events. A close ex-

amination shows that the base model clusters many general topic tweets as events,

such as tweets about transportation and music and even foursquare tweets. (2)

TimeUserLDA performs well for the very top events (P@5 and P@10) but its per-

formance drops for lower-ranked events (P@20 and P@30), similar to what was

reported by [15]. A close examination shows that this method is good at finding

major events that do not have strong topic association and thus attract most peo-

ple’s attention, e.g. earthquakes, but not good at finding topic-oriented events such

as some concerts and sports games. This is because this method mixes topics and

events first and only detects events from bursty topics in a second stage of post-

processing. In contrast, our model performs well for topic-oriented events. (3)

The difference between Base+Reg and Base+Reg+Aff is small, suggesting that the

event-topic affinity vectors are not crucial for event detection.

Precision of Event Tweets

Next, we evaluate the relevance of the detected event tweets to each event. To make

a fair comparison, we select only the common events identified by all the methods.

We pick 3 out of 5 common events shared by all methods within top-30 events

(we pick “Fathers’ day” to represent public festivals, and ignore the similar events

“Mothers’ day” and “April fools”). We also pick one event shared by three RCRP
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Event TimeUserLDA Base Base+Reg Base+Reg+Aff

Father’s Day 0.61 0.63 0.71 0.72
debate caused by Manda Swaggie 0.73 0.74 0.84 0.80
Indonesia tsunami 0.75 0.75 0.82 0.80
Super Junior album release N/A 0.72 0.78 0.81

Table 5.3: Precision of the event tweets for the 4 common events.

based models. We further ask one of the judges to score the 100 tweets as either

1 or 0 based on their relevance to the event. The precision of the 100 tweets for

each event and each method is shown in Table 5.3. We can see that again Base+Ref

and Base+Ref+Aff perform similarly, and both outperform the other two methods.

We also take a close look at the tweets and find that the false positives mislabeled

by Base is mainly due to the long-duration of the discovered events. For example,

for the event “Super Junior album release,” Base finds other music-related tweets

surrounding the peak period of the event itself.

In summary, our evaluation on event quality shows that (1) Using the non-

parametric RCRP model to identify events within the generative model itself is

advantageous over TimeUserLDA, which identifies events by postprocessing. (2)

The duration-based regularization is crucial for finding more meaningful events.

Comparison with Duration-based Discount Method

Recall that, in Chapter 4 we introduced a duration-based discount method to capture

the burstiness of the events on Twitter. The disadvantage of the duration-based dis-

count method is that the model now lacks exchangeability, which makes it hard for

inference. In Chapter 4 we had to use some approximation to simplify the model in-

ference. In this chapter, we use a duration-based regularization method (Base+Reg)

to capture the burstiness of Twitter events, where the tweets within the same epoch

are exchangeable. It is natural to compare these two different ways of modeling

burstiness. In this section, we compare the two methods by evaluating the quality of

the top-ranked events, using the data set mentioned in Section 4.3. Table 5.4 shows
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the precision@K for the two methods.

Method P@5 P@10 P@20 P@30
d-RCRP 1.000 1.000 1.000 0.800

Base+Reg 1.000 1.000 1.000 0.850

Table 5.4: Precision@K for the two models.

As the result shows, the two models perform similarly when K ≤ 20, which

suggests that both duration-based discount and duration-based regularization are

helpful to capture the significant events. However, when K equals 30, the model

with duration-based regularization (Base+Reg) performs better. The main reason is

that duration-based regularization forces the event-related clusters to peak at a cer-

tain timestamp, which may better match the nature of events on Twitter. However,

duration-based discount only penalizes the event-related clusters with long duration.

This comparison shows that duration-based regularization has both the advantage of

allowing faster computation and the advantage of capturing better events.

5.3.3 Event-Topic Association

Besides event identification, our model also finds the association between events and

topics through the event-topic affinity vectors. The discovered event-topic associa-

tion can potentially be used for various tasks. Here we conduct two experiments to

demonstrate its usefulness.

Event Recommendation

Recall that to discover event-topic association, we treat an event as an item and a

tweet about the event as indication of the user’s adoption of the item. Following

this analogy with item recommendation, we define an event recommendation task

where the goal is to recommend an event to users who have not posted any tweet

about the event but may potentially be interested in the event. Intuitively, if a user’s

topic distribution is similar to the event-topic affinity vector of the event, then the

user is likely to be interested in the event.
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Event
TimeUserLDA

Base Base+Reg Base+Reg+Aff Inner popularity
(η0k)

debate caused by Manda Swaggie 0.3533 0.3230 0.3622 0.2956 0.943
Father’s Day 0.3811 0.3525 0.3596 0.4362 0.917
Big Bang album release 0.1406 0.1854 0.1533 0.1902 0.893
City Harvest Church scandal N/A 0.2832 0.1874 0.3347 0.890
Alex Ong pushing an old lady N/A 0.1540 0.1539 0.1113 0.876
final episode of Super Spontan
(reality show)

N/A 0.0177 0.0331 0.2900 0.862

Super Junior album release N/A 0.0398 0.0330 0.5900 0.792
LionsXII 9-0 Sabah FA (soccer) 0.0711 0.1207 0.2385 0.3220 0.773

MAP N/A 0.1845 0.1901 0.3213

Table 5.5: For the 8 test events that happened in June 2012, we compute the Average
Precision for each event. We also show the Mean Average Precision (MAP) when
applicable.

Topic Top words of the topic Related event Top words of the event

Food eat, food, eating, ice, hungry, din-
ner, cream, lunch, chicken, buy

Ben&Jerry free
cone day

free, cone, day, ben, jerry’s, today, b&j, zoo,
#freeconeday, singapore

Super Junior
encore concert

#ss4encore, cr, #ss4encoreday2, hyuk,
120526, super, leader, changmin, fans, teuk

Korean Music

music, big, cr, super, bang, junior,
love, concert, bank, album

Super Junior
Shanghai concert

#ss4shanghai, cr, 120414, donghae, eun-
hyuk, giraffe, solo, hyuk, ryeowook, shang-
hai

Super Junior
Paris concert

#ss4paris, cr, paris, super, 120406, ss4, ju-
nior, siwon, show, update

Malay aku, nak, tak, kau, ni, lah, tk, je,
mcm, nk

final episode of
Super Spontan

zizan, johan, friendship, jozan, #superspon-
tan, skips, forever, real, juara, gonna

LionsXII 9-0
Sabah FA

sabah, 9-0, #lionsxii, lions, singapore, 7-0,
amet, sucks, sabar, goal

Soccer win, game, man, chelsea, match,
city, goal, good, united, team

Man City
crowned English

champions

man, city, united, qpr, fuck, bored, lah, love,
glory, update

Table 5.6: Example topics and their corresponding correlated events.

Specifically, we use the first two months’ data (April and May 2012) as training

data to learn all the users’ topic distributions. We then use a ransom subset of 250

training users and their tweets in June to identify events in June as well as the event-

topic affinity vectors of these events. We pick 8 meaningful events that are ranked

high by all methods for testing. For each event, we try to find among the remaining

250 users those who may be interested in the event and compare the results with

ground truth obtained by human judgment. Because it is time consuming to obtain

the ground truth for all 250 users, we randomly pick 100 of these 250 users for

testing purpose. For each test user and each event, we manually inspect the user’s
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tweets around the peak days of the event to judge whether she has commented on

the event. This is used as ground truth.

With our complete model Base+Reg+Aff, we can simply rank the 100 test users

in decreasing order of ηk · z̄u. For the other methods, because we do not have

any parameter that directly encodes event-topic association, we cannot rank users

based on how similar their topic distributions are to the event’s affinity to topics.

We instead adopt a collaborative filtering strategy and rank the test users by their

similarity with those training users who have tweeted about the event. Specifically,

each of these methods produces a topic distribution θu for each user. In addition, for

each test event these methods identify a list of training users who have tweeted on

it. By taking the average topic distribution of these training users and compute its

cosine similarity with a test user’s topic distribution, we can rank the 100 test users.

Since we have turned the recommendation task into a ranking task, we use Av-

erage Precision, a commonly used metric in information retrieval, to compare the

performance. Average Precision is the average of the precision value obtained for

the set of top items existing after each relevant item is retrieved [34]. We also rank

the 8 events in decreasing order of their inner popularity η0k learned by our complete

model. The results are shown in Table 5.5. We have the following findings from the

table. (1) Our complete method outperforms the other methods for 6 out of the 8 test

events, suggesting that with the inferred event-topic affinity vectors we can do bet-

ter event recommendation. (2) The improvement brought by the event-topic affinity

vectors, as reflected in the difference in Average Precision between Base+Reg+Aff

and Base (or Base+Reg) is more pronounced for events with lower inner popular-

ity. Recall that the inner popularity of an event shows the inherent popularity of an

event regardless of its association with any topic, that is, an event with high inner

popularity attracts attention of many people regardless of their topic interests, while

an event with low inner popularity tends to attract attention of certain people with

similar topic interests. The finding above suggests that the event-topic affinity vec-

tors are especially useful for recommending events that attract only certain people’s
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attention, such as those related to sports, music, etc.

One may wonder for the events with low inner popularity why we could not

achieve the same effect by Base or Base+Reg where we consider the topic similar-

ity of test users with training users who have tweeted about the event. Our close

examination shows that for these events although Base and Base+Reg may identify

relevant event tweets with decent precision, the users they identify who have tweeted

about the event may not share similar topic interests. As a result, when we average

these users’ topic interests, we cannot obtain a clear skewed topic distribution that

explains the event’s affinity to different topics. In contrast, Base+Reg+Aff explic-

itly models the event-topic affinity vector and prefers to assign a tweet to an event

if its author’s topic distribution is similar to the event’s affinity vector. Through

the training iterations, the users who have tweeted about an event as identified by

Base+Reg+Aff will gradually converge to share similar topic distributions.

Grouping Events by Topics

Finally, we show that the event-topic affinity vectors can also be used to group

events by topics. This can potentially be used to better organize and present popular

events in social media. In Table 5.6 we show a few highly related events for a

few popular topics in our Twitter data set. Specifically given a topic a we rank the

meaningful events that contain at least 70 tweets based on ηk,a. We can see from

the table that the events are indeed related to the corresponding topic. The event

“LionsXII 9-0 Sabah FA” is particularly interesting in that it is highly related to

both the topic on Malay and the topic on soccer. (LionsXII is a soccer team from

Singapore and Sabah FA is a soccer team from Malaysia.)

5.4 Conclusions

In this chapter, we propose a unified model to study topics, events and users jointly.

The base of our method is a combination of an LDA-like model and the Recur-
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rent Chinese Restaurant Process, which aims to model users’ longstanding personal

topic interests and events over time simultaneously. The Recurrent Chinese Restau-

rant Process is appealing in the sense that it provides a principled dynamic nonpara-

metric model in which the number of events is not fixed overtime. We further use a

time duration-based regularization to capture the fast emergence and disappearance

of events on Twitter, which is effective to produce more meaningful events. Fi-

nally, we use an inner popularity bias parameter and event-topic affinity vectors to

interpret an event’s inherent popularity and its affinity to different topics. Our exper-

iments quantitatively show that our proposed model can effectively identify mean-

ingful events and accurately find relevant tweets for these events. Furthermore, the

event-topic association inferred by our model can help an event recommendation

task and organize events by topics.
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Part III

Event Summarization

71



Chapter 6

Event Summarization

In previous chapters, we defined an event as a set of tweets which are published in

a short time period and share similar content. Multinomial distributions over words

are used to capture the content of the events. In this case, to interpret these events,

users need to read either the sets of tweets or the word distributions. The former

is time-consuming and the latter cannot accurately represent the event. Therefore,

we propose a novel graph-based summarization framework that generates concise

abstractive summaries for the events. Evaluation results show that our framework

has better agreement with human summaries compared with baseline methods.

6.1 Introduction

We have explored event identification on Twitter using Bayesian statistical models.

Specifically, we utilize topic model and dynamic non-parametric model to detect

events. For both methods, each event is modeled as a cluster featured by a multi-

nomial word distribution and each tweet has a latent variable that indicates which

event it belongs to. Although the word distribution and the set of tweets of each

event are often intuitively meaningful, a major challenge is to accurately interpret

the event. Specifically, it is time consuming for users to read all tweets related to

the events, and the word distribution of the event can not accurately represent the
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events. It is thus desirable to generate a concise summary to help the users bet-

ter understand the story of each event. We propose a summarization framework to

generate abstractive summaries for the events using their related tweets.

Our work is related to labeling of topic models [11, 13, 24, 40, 36, 35]. To

interpret the semantics of topics, in existing work of statistical modeling, people

generally either the select top words from word distributions [11, 13, 24], or gen-

erate more meaningful labels in a subjective manner [40, 36]. Mei et al. proposed

a probabilistic approach to automatically labeling multinomial topic models in an

objective way, which considers the representativeness and redundancy of the labels

[35]. However, our task is different from this branch of work, since we are not

generating the summaries using the multinomial word distributions of events. More

specifically, such word distribution lacks readability because of the bag-of-words

assumption, while our task is to generate abstractive sentences from the original

tweets.

We propose an abstractive summarization framework based on the directed word

graph, where the nodes record the words and the edges together with corresponding

weights encode the relative positional information between word pairs. Secondly,

we cast the summarization task to finding maximum spanning tree of the graph.

Finally, we use a greedy algorithm to select the candidate sentences (i.e. paths),

which are highly representative and with low redundancy.

6.2 Method

Our models in Chapter 4 and Chapter 5 can identify events directly from the Twitter

stream. We use the set of tweets Ik = {dt′,i′|yt′,i′ = 1, st′,i′ = k} to represent the set

of tweets about event k, where dt′,i′ means the i′-th tweet in timestamp t′, yt′,i′ = 1

means it is event-related, and st′,i′ is the latent event variable. The notation follows

section 5.2. We present a summarization framework which can generate abstractive

summaries for Ik. Section 6.2.1 will introduce the generation of word graph for
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each event, section 6.2.2 will introduce the generation of the candidate sentences,

and finally section 6.2.3 will describe the selection of these candidate sentences.

Our approach is similar to the work proposed by Ganesan et al. [20]. They proposed

an approach which first builds an Opinosis-Graph using the positional information

and Part-of-Speech (POS) tags of all the words within the textual reviews, and then

picks the top-ranked paths in the graph utilizing various scoring functions. However,

their methods cannot be directly applied for our problem mainly because of two

reasons: (1) Tweets are informal, which makes the POS tagger unreliable; (2) When

a significant event happens, it will cause a large number of tweets talking about

it, which makes it computationally costly to score all the possible paths. Thus,

instead of considering all paths, in our solution we first cast the word graph to a tree

structure.

6.2.1 Word Graph Generation

Our key idea is to use a word graph structure to represent natural language tweet and

cast this summarization problem as finding appropriate paths in the graph. Graphs

have been commonly used for extractive summarization problems (e.g. [17],[37]).

However, in these work, the graph is always undirected with sentences as nodes and

similarity as edges. Our graph structure is different, in which nodes represent words

with directed edges representing relative positional information between the words

within each tweet.

For each event k, we construct a directed word graphGk = (Vk, Ek,Wk). Vk are

the nodes which stand for all the unique words appeared in Ik,Ek is the set of edges,

and Wk is the set of edge weights which encode the relative positional information

between the word pairs. Table 6.1 outlines the steps involved in building a word

graph Gk for event k based on the tweet set Ik. An example word graph for the

event ‘City Harvest Church Scandal’ is shown in Figure 6.2.

The word graph contains some unique properties that are crucial in generating
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• Set Vk, Ek,Wk = {}
• For each tweet d′ in Ik

- Vk ← tokenize(d′)
- For each word pair < vd,j, vd,j′ >, where j = 1 to length(d′) − 1 and
j′ = j + 1 to length(d′)
* if Ek contains edge vd,j → vd,j′

. wvd,j→vd,j′
+ = 1/(j′ − j)

* else
. AddEdge(vd,j → vd,j′ ,Ek)
. AddWeight(wvd,j→vd,j′ = 1/(j′ − j), Wk)

Figure 6.1: Word Graph Gk Generation Process

Figure 6.2: Word Graph for City Harvest Church Scandal in Singapore

abstractive summaries: (1) the edge with high weight indicates the corresponding

word pair co-occurs closely and frequently; (2) the direction of the edge reflects the

readability of the words sequence; (3) gapped positional information between words

pairs is captured, which makes it possible to generate new summary sentences.

Given a word graph for a specific event, to generate a summary with N sen-

tences, an intuitive way is to select N valid paths over the graph that can cover as

many highly scored edges as possible and reduce the redundancy simultaneously.

However, since we record all gapped information between all word pairs, our word

graph is densely connected. Thus, to exhaustively enumerate all possible combina-

tions of N paths is computationally very expensive. We therefore go for an approx-
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Figure 6.3: Maximum Spanning Tree for City Harvest Church Scandal in Singapore

imate solution where we first find the maximum scoring forest of the word graph

and then greedily select highly scored paths from the forest.

6.2.2 Candidate Sentence Generation

Motivated by these properties of the word graphs mentioned above, we can cast the

summarization problem as finding paths with high scores in the graph.

Thus, once we get the word graph Gk for each event, we can find the highest

scoring spanning tree, which is an instance of the maximum arborescence problem

for directed graphs. It can be solved efficiently in quadratic time using the greedy,

recursive Chu-Liu-Edmonds algorithm [52, 16]. Note that the word graph Gk may

not be a connected graph. In this case, we apply Chu-Liu-Edmonds algorithm to

each part of the graph, and we can get a maximum scoring forest. We regard each

path (from a root to a leaf) as a candidate sentence for the summary of the event, and

we denote the set of all paths as Pk = {pi|pi = (vi,1, · · · , vi,|pi|)}
|Pk|
i=1 . An example

spanning tree of the event ’City Harvest Church Scandal’ is shown in Figure 6.3,

and the number of paths |Pk| equals to 6 in this case.
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1. Input: Pk = {pi|pi = (vi,1, · · · , vi,|pi|)}
|Pk|
i=1

2. Parameters: Threshold, N

3. Output: Out = {}

4. Rank the paths within Pk in descending order, based on the average
weights along each path.

5. For each path pi in Pk:

(a) If Out is empty:

i. AddPath(pi, Out)

(b) Else:

i. For each path p′i in Out:
A. If Cosine(pi, p

′
i) > Threshold: continue and jump to

step(5).
ii. AddPath(pi, Out).

(c) If |Out| = N :

i. Break and jump to the output step(6).

6. Output the result summaries Out.

Figure 6.4: Candidate sentences selection

6.2.3 Candidate Sentence Selection

Given the spanning forest of an event, we can score each path within Pk using

the average edge weight along the path. However, intuitively, we can not simply

select the top-N paths to summarize the event because of the redundancy between

each path pairs. For example, the path “city harvest church founder Kong arrested”

captures the same meaning as the path “city harvest church founder Kong charged”.

Therefore, we use a greedy algorithm as Figure 6.4 shows. Basically, we want

to select the Top-N representative paths (i.e. the paths with the highest scores),

and reduce the redundancy at the same time. Thus, we compare the similarity with

the current candidate path pi with all currently selected paths Out. If the current

path is not similar to all selected paths, we add the path to the output path set Out.
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To quantify the similarity between two paths, we measure the cosine similarity be-

tween the two paths, while ignoring the shared part of them. We take the two paths

“city harvest church founder Kong arrested” and “city harvest church founder Kong

charged” as an example. We ignore the shared part, and just measure the similarity

between the two remaining parts “arrested” and “charged”. For each remaining part,

we learn the language model over all the tweets which contain at least one word in

this remaining part. Then, we use the cosine similarity over the two remaining parts

as the similarity between the two paths. Specifically, for example we compute the

cosine similarity between two language models learnt from the tweets which con-

tain “arrested” and “charged” retrospectively. The intuition behind is that we use all

the tweets contains a specific word to represent its semantic meaning, while using

external sources like WordNet can be an alternative solution.

6.3 Experiments

We evaluate our summarization framework based on the results of Section 5.3.

Twenty-seven events are judged as true out of the top-30 events using the proposed

method Base+Reg+Aff. For these events, we further ask the two annotators to sum-

marize these events. For each event, they are required to read all the tweets assigned

to the event, and then use several sentences or word sequences (including hashtag)

to summarize the event. Each sentence is no more than 10 words.

Baseline and Evaluation Metrics

We compare our summarization framework with an existing summarization

method [21] (referred to as ILP for short in this part), which utilizes Integer Linear

Program for exact inference under a maximum coverage model for automatic sum-

marization. Specifically, it considers information and redundancy at a sub-sentence,

“concept” level (e.g. unigram, bigram, etc.), modeling the value of a summary as a

function of the concepts it covers. With ci an indicator for the presence of concept

78



i in the summary, and its weight wi, the objective function is:

Maximize:
∑
i

wici

Subject to:
∑
j

sj ≤ N (6.1)

sjOccij ≤ ci,∀i, j (6.2)∑
j

sjOccij ≥ ci,∀i (6.3)

ci ∈ {0, 1},∀i

sj ∈ {0, 1},∀j

where sj is an indicator for the presence of sentence j in the summary, and Occij

is an indicator for the occurrence of concept i in sentence j. The constraints ensure

that (1) the number of sentences in the summary is limited by N , (2) selecting

a sentence necessitates selecting all the concepts it contains, and (3) selecting a

concept is only possible if it is present in at least one selected sentence. Here, we

use bigrams as concepts, which is commonly used previous work [21, 14]. The

bigrams are weighted by the number of input sentences in which they appear.

Given the human generated event summarization, To compare our framework

with ILP, we use ROUGE [33], which is officially applied by Document Under-

standing Conference (DUC) for document summarization performance evaluation.

The summarization quality is measured by counting the overlapping units. Here

we use ROUGE-1 and ROUGE-2, which means using unigram and bigram as units

retrospectively. ROUGE-1 and ROUGE-2 generate three scores (Recall, Precision

and F-measue). For each method, we calculate the three scores by comparing with

the two manually generated summaries and then taking the average.
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Methods N ROUGE-1 ROUGE-2
ROUGE-1-P ROUGE-1-R ROUGE-1-F ROUGE-2-P ROUGE-2-R ROUGE-1-F

Summarization Framework
1 0.5180 0.4108 0.4181 0.3870 0.3067 0.3054
3 0.3098 0.5792 0.3713 0.2019 0.4080 0.2455
5 0.2433 0.6967 0.3373 0.1458 0.4665 0.2071

ILP
1 0.4062 0.5129 0.4180 0.2328 0.3211 0.2439
3 0.1913 0.7595 0.2943 0.1212 0.5147 0.1870
5 0.1239 0.7929 0.2081 0.0839 0.5694 0.1410

Table 6.1: ROUGE-1 and ROUGE-2 for our summarization framework and ILP,
using N ∈ {1, 3, 5} sentences as summary.

Quality of Summarization

For both our method and ILP, we use top-N sentences to summarize the events,

where N ∈ {1, 3, 5}. We compare our summarization framework with ILP using

ROUGE-1 and ROUGE-2 as evaluation metrics. We average the ROUGE-1 and

ROUGE-2 value over the 27 summaries, compared with both manually generated

summary, for each method. For our method, we set the similarity threshold (i.e.

Threshold mentioned in section 6.2.3) to be 0.8. The results is shown in Table 6.1.

From the results, we have several observations: (1) For both ROUGE-1 and

ROUGE-2, our method outperforms ILP in terms of F-measure. (2) Compared with

our framework, ILP has high recall and low precision. It is mainly because ILP is

an extractive summarization method, which aims to selection representative tweets.

However, tweet itself contains many informal words, which makes it noisy. Thus,

many words within the tweets selected by ILP are not useful(i.e. low precision),

although these tweets can capture some important key units of the event (i.e. high

recall). However, our method is abstractive, which is able to generate new repre-

sentative sentence. (3) For ROUGE-2, compared with ILP, our framework performs

better, which shows that our method (especially the word graph) can capture the

sequential information.

Recall that in section 6.2.3, to reduce the redundancy among the selected sen-

tences, we utilize a similarity threshold (i.e. Threshold) to filter out the sentences

which is similar to the selected ones. To further test the effect of the threshold, we

varies the value of the threshold by fixing number of sentences N = 5. The result
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Figure 6.5: ROUGE-1 and ROUGE-2 when varies the similarity threshold for our
summarization framework

is shown in Figure 6.5. We can see that, by decreasing the similarity threshold, the

precision is increasing while the recall is dropping. It suggests that the redundancy

among the selected sentences is increasing.

Readability of Summaries

ROUGE scores measure the quality of the summaries based on the overlapping

units shared by the summaries and the ground truth. Here, we further measure

the readability of the summaries. We randomly mix the tweets selected by ILP

together with the summary sentences generated by our framework (N = 3), and ask

a human judge for each presented sentence whether it is a tweet (manually written)

or not a tweet (automatically generated). The results show that 85.7% of the tweets

selected by ILP is judged as real tweets, and 80.1% of the sentences generated by

our framework is judged to be real tweets. We take a close look at the summaries,

and find that: (1) ILP selects tweets to maximize the information coverage. So

it tends to select relatively long tweets. The selected tweets therefore sometimes

contain infrequent words. Thus, a small proportion of selected tweets are judged

as not true tweets. (2) Our algorithm captures the sequential information using the

word graph. Thus, the sentences generated by our framework is relatively readable
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compared with the real tweets selected by ILP.

6.4 Conclusions

In this part, we propose a word graph based summarization framework to sum-

marize the events on Twitter. The word graph is novel, in which nodes represent

words with directed edges representing relative positional information between the

words within each tweet. Therefore, we cast the summarization task as finding the

paths with highest scores. Then, we utilize the Chu-Liu-Edmonds algorithm and a

greedy algorithm to select the representative sentences and reduce the redundancy

at the same time. The performance in terms of ROUGE-N shows that our approach

outperforms the baseline method.
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Chapter 7

Dissertation Conclusion and Future

Work

In this chapter, we summarize the findings of this thesis, present an integrated frame-

work for event identification and analysis on Twitter, and point out some future

research directions.

7.1 Summary of Contribution

Nowadays, when a significant event happens, the first reaction of the majority is

to tweet about it and share their opinions, which makes Twitter the best source to

know what happens everyday. It thus triggers event identification and analysis as a

crucial task like never before. However, this task is non-trivial because of several

challenges: (1) only a small proportion of tweets is event-related, while most of

them are about daily routines and personal interests, (2) it lacks study on the inter-

action between users’ tweeting behaviour on events and users’ personal interests,

especially when both of them are unknown in the tweets flood, (3) a summarization

technology is needed to provide concise abstractive summaries for the events on

Twitter. To deal with these challenges, this thesis focuses on three tasks, and the

corresponding contributions are listed as follows:
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Event Identification on Twitter

We used a topic model based approach to identify events on Twitter. The first ap-

proach we proposed regards event identification as bursty topics detection from the

text streams on Twitter. We introduced a new topic model that considers both the

temporal information of tweets and users personal interests, because existing work

is not applicable. Then a state machine as a post-processing step is needed to detect

the bursty states for the discovered topics. Our experiments showed that our model

outperforms standard LDA and its two degenerate variations. However, a limitation

of this method is that the number of topics is predetermined, while the events can

emerge and die out along the time line. What’s more, the model lacks generative

ability for the events, so that a post-processing step is needed.

Motivated by the limitations mentioned above, we looked into methods that al-

low appearance and disappearance of topics along the time line. Recurrent Chinese

Restaurant Process provides a principled way where the number of clusters is not

fixing over time. However, RCRP cannot be directly applied to our task, since it

just captures rich get richer phenomenon while events on Twitter tend to be bursty.

Therefore, we proposed a novel duration-based probability discount to RCRP to

capture the burstiness character of events on Twitter. We then combined the modi-

fied RCRP with topic model to identify both events and topics simultaneously from

Twitter. Our experiments demonstrated that our unified model can identify events

accurately, which shows the effectiveness of duration-based discount.

Unified Analysis for Topics, Events and Users on Twitter

In the first task, we aimed to separate events from the large proportion of personal

interests driven tweets, while ignoring the interaction between the events and per-

sonal interests topics. Therefore, we focused on analyzing topics, events and users

jointly in this task. Similarly, we combined a modified RCRP with topic model to

identify events and topics simultaneously. Then we used an inner popularity bias
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parameter and event-topic affinity vectors to interpret an events inherent popularity

and its affinity to different topics. Our experiments quantitatively showed that our

proposed model can effectively identify meaningful events and accurately find rel-

evant tweets for these events. Furthermore, the event-topic association inferred by

our model can help an event recommendation task and organize events by topics.

Event Summarization

The approaches mentioned above can detect events by finding all the tweets related

to each event. However, it is difficult for users to interpret these events by reading

all related tweets. It is thus desirable to generate a concise summary to help the

users better understand the story of each event. We proposed a word graph based

summarization framework to summarize the events on Twitter. Then we could cast

the summarization task as finding the paths with highest scores. Then, we utilized

the Chu-Liu-Edmonds algorithm together with a greedy algorithm to select the most

representative sentences and reduce the redundancy at the same time. The perfor-

mance in terms of ROUGE-N showed that our approach outperforms the baseline

method.

7.2 Future Direction

In the future, we plan to study a few new directions related to event identification

and analysis on Twitter.

• In the event identification task (Part I), we introduced our approaches to iden-

tifying events from Twitter streams. Moreover, our work in Chapter 4 can

capture the temporal pattern, i.e. birth and death, of the events. However, due

to the evolving nature, events often exhibit much more complicated temporal

patterns. For example, an event may branch into multiple variant sub-events,

and these sub-events overtime often form a evolutionary tree like structure.

85



Such tree structure can better illustrate the evolving information of a event.

To capture the evolutionary tree structure for the events on Twitter, the combi-

nation of the Nested Chinese Restaurant Franchise Process [4] and the Recur-

rent Chinese Restaurant Process[5] can be a future direction. The former one

is able to model the hierarchical structure by extending Chinese Restaurant

Process to nested structure. The latter makes sure that the path from the root

to a leaf follows evolutionary pattern over the time line.

• We explored the interaction among events, users and topics on Twitter in

Part II. We proposed a unified model which can identify events, personal

interests, and their relations s in a retrospective and offline manner. However,

Twitter is appealing in terms of its fast reaction to the events. It can even leads

news streams for some events. Moreover, the users always want the freshest

events to be recommended. Therefore, it is more practically valuable to de-

velop an online event identification system, and recommend the fresh events

to the users based on their personal interests.

• Twitter is a social system with complicated follower and followee networks,

which makes it possible to propagate information rapidly. However, our cur-

rent work only focuses on the textual stream of Twitter, while we ignore the

network structure. Intuitively, at the micro level, users’ retweet and mention

behaviors over the network make an event popular. Therefore, it is interesting

to explore what kind of social roles (e.g. whistleblowers) the users play when

a certain type of events happens.

With the rapid growth of adoption of Twitter and user generated content in

such microblogs, there are always new directions for event identification and event-

oriented analysis that trigger urgent and important tasks.
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