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Abstract

The automatic recovery of the three-dimensional structure of a scene from a sequence of
two-dimensional images has been the subject of considerabl e research in the field of machine vi-
sion, with applicationsas wide-ranging as object recognition, virtual reality and robot navigation.
Traditional attemptsto solvethisstructurefrommotion (SFM) problemrely on calibrated cameras
and involve the detection and tracking of features through successive images in the sequence.

When considering long image sequences, taken with an ordinary hand-held video camera,
the problem is significantly harder, since both camera calibration parameters and matched feature
information are difficult to obtain accurately. An additional complicationisthat small errorsinthe
recovered structure will accumulate over long sequences, possibly resulting in a reconstruction
which isinternally inconsistent. To date, there has been no discussion in the SFM literature of
attempts to tackle thisimportant issue.

Recently, a number of different techniques have been developed for scene reconstruction
using uncalibrated cameras. In such cases the recovered structure is correct up to a projective
transformation of thereal structure. In thisthesis, an original, incremental reconstruction system
is described, based on this uncalibrated approach. A novel implementation for computing the
fundamental matrix from apair of imagesis presented, from which a projectivereconstructionis
obtained. For thefirst image pair in the sequence, asmall number of ground truth pointsare used
to upgrade from projective to Euclidean structure. This structure is propagated through succes-
siveframesto obtain a compl ete Euclidean reconstructionfor the entire scene. Theinconsistency
problem is addressed by attempting to detect when previously viewed sections of the scene are
re-encountered. A solution method using the geometric hashing model-based object recognition
paradigm is proposed.
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Chapter 1

| ntroduction

Thework described in thisthesisismotivated by aseemingly simpletask - to determinethe struc-
tureof asceneasviewed inasegment of video footage, typically obtained using an ordinary hand-
held video camera. Our particular concerniswith* extended environments’, for whichasmall part
of the sceneisvisiblein each frame. Reconstruction of such environmentsintroduces associated
problems in ensuring the internal consistency of the recovered structure. In particular, structures
that are seen more than once during the image sequence must be correctly identified with each

other.

In terms of machinevision, thetask isacombination of the fundamental problemsof struc-
ture from motion (SFM) and structure matching, which have, and continue to be, extensively re-
searched. The aim of thiswork isto bring together ideas and techniques from these two areas in
an attempt to solve the overall task at hand. A successful system would have many, varied uses,
for example in constructing avirtua reality ‘walk-through’ of areal building, navigating a mov-
ing robot, automatic acquisition of CAD models etc. Ideally, it should not be dependent on the
type of camera motion, or the nature of the scene being viewed. Sample images from the kinds

of sequences such a system might be expected to deal with are shownin figure 1.1.
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Figure 1.1: Sampleimages.
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1.1 Approach Taken

The choice of approach is dependent on the nature of the input image sequence. In our case the
large disparity between successive images called for the use of feature-based SFM, rather than
optical flow [1]. A manual corner detection and matching system isused, to avoid the additional

difficulties caused by poor localisation and fal se matches inherent in automatic methods.

Evenif al theimagesin the sequence are taken with the same camera (which islikely, but
not certain), there is no guarantee that the internal camera parameters do not change during the
course of the sequence, for example due to zooming. Thusit is necessary to employ an uncali-
brated reconstructiontechnique. Notethat even camera self-calibration[13] isnot possible, since
this depends on unchanging intrinsic parameters. The procedure is based around the cal culation
of the fundamental matrix, which embodiesthe epipolar geometry of apair of images. The calcu-
lationis performed viaanovel combination of the well-known 8-point algorithm [39], arecently

devel oped normalisation technique[26] and the RANSAC parameter estimation paradigm [15].

The fundamental matrix is factorised to obtain a representation for the camera matrices,
and the structure of the scene in the two imagesis recovered by back-projection. The reconstruc-
tion so obtained is only correct up to a projective transform of the real structure. Knowledge of
a small number of ground truth pointsin the first image pair is used to compute a projectivity,
which transforms the projective structure to Euclidean. For subsequent image pairs, the projec-
tivity calculation is performed using previously estimated Euclidean structure instead of ground
truth. Thus, asthe sequenceis processed, acomplete reconstruction of the sceneisincrementally

acquired.

The second major part of thiswork is motivated by the acceptance of the fact that the re-
construction system will not produce perfect results, and as the sequence is processed, errorsin
the recovered structure will accumulate. If part of the scene is re-encountered, it will have two
Euclidean structure estimates, at some displacement and orientation in the world coordinate sys-
tem. In order to be able to update the structure so that it isinternally consistent, it is necessary to
obtai n the mapping between the pointsin thetwo structure estimates. This, in turn, dependsupon

the ability of the system to recognise when structure that has been seen previously has come back
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into view.

These two problems are addressed by incorporating a model-based object recognition sys-
tem into the reconstruction process. A variation of the standard geometric hashing algorithm is
employed, whereby model acquisition and recognition are performed concurrently, the usual off-
line preprocessing step being omitted. At each step of the reconstruction process, anew segment
of structureisrecovered. Thisiscombined with other recently acquired structureto obtainalocal
structure patch. The hash tableis updated using Euclidean invariants computed from this set of
3D points. Thus, recognition should occur if any of these patches of structure are re-encountered
later in the sequence. In this case the information stored in the hash table permits the mapping

between old and new scene structure to be immediately obtained.

1.2 Overview of the Thes's

The remainder of the thesisis organised as follows:

Chapter 2: A review of the relevant background material and related research.

Chapter 3: A description of anovel method used to estimate the fundamental matrix, based on

anormalised version of the 8-point algorithm.

Chapter 4: A descriptionof an original incremental reconstruction system for recovering the Eu-

clidean structure of a scene from along image sequence.

Chapter 5: A description of aversion of the geometric hashing algorithm which has been incor-
porated into the reconstruction systemin an attempt to allow previously encountered scene

structure to be recognised.
Chapter 6: Conclusionsand adiscussion of future work.
Appendix A: An overview of some of the essential principlesof projective geometry.
Appendix B: A detailed description of the RANSAC parameter estimation paradigm.

Appendix C: Thequadrangleimage sequence, whichisused in experimentsthroughout thiswork.
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1.3 Notation

We will use boldface letters to denote vectors and matricese.g. M. The notation M/;; denotesthe
element at the :"th row and ;'th column of matrix M. Transposition of vectors and matricesis
indicated by 7', e.g. M”, theinverse of amatrix M by M~! and theinverse transposeby M~
The determinant of amatrix is denoted det(M ). The cross product of two 3D vectors, x andy is
represented by x x y. Givensomevectort =(t,,1,, t ), itisuseful toconsider theanti-symmetric

matrix

0 —t, t,
[tlx =1 . 0 -t (1.1)
~t, ty 0

Thisisthe matrix representation of the cross product. For any vectorss and t,

sT[t]y =sxt (1.2)

and

[tlxs =1t xs (1.3

On arelated note, given the square matrix M, we use the notation M* to represent the
matrix of cofactors of M, that is, the matrix defined by M7 = (—1)"*7 det(M (%)) where M (%)
is the matrix derived from M by removing the i’th row and j'th column. If M is non-singular
then M* = det(M).(M~T). In other words M* ~ M~7, where ~ indicates equaity up to a
scalefactor. If a and b are 3x 1 vectors and M a3x3 matrix then Ma x Mb ~ M*(a X b).

Uppercase letters will be used to denote 3D points and lines, whereas |owercase lettersin-
dicate 2D features. We differentiate between the geometric objectsthemselvesand their represen-
tations. For example, a point in the image plane would be denoted by p, whereas its coordinate

vector would be p. Theline between two points P, and P, isrepresented by ( Py, P»).



Chapter 2

Background

2.1 Introduction

The recovery of the three-dimensional information lost when projecting a scene onto an image
planeisacentral problem in machine vision. At least two images are required, either taken by a
pair of camerasin a stereo configuration, or asinglemoving camera. Reconstructionviathelatter
of theseis termed structurefrom motion (SFM). An early structure from motion theorem, dueto

Ullman [66], states that:

Given three distinct orthographic projections of four non-coplanar pointsin arigid
configuration, the structure and motion compatible with the three views are uniquely

determined, up to areflection about the image plane.

Over theyears there have been innumerabl e structure from motion algorithmsdescribed in
the vision literature. Due to the assumption of orthographic projection!, which is not an accurate
model of the real image formation process, a general purpose structure recovery system based on
this theorem is impractical. However, it does serve to illustrate a number of the ways in which

structure from motion algorithms can be characterised.

!Where rays are projected from an object point along a direction parallel to the camera’s optical axis, so that they

strike the image plane orthogonally.
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First of al, there is the question of how many projections (images) are required for the
algorithm to function. Some systems work with just two or three images, others have these as
a minimum number for structure recovery, but are able to deal with long sequences of images.
With image sequences, there is the additional consideration of whether the images are actualy

processed sequentially or as abatch. The number and type of image features used are also varied.

Possibly thetwo most important characteristicsare the projection model and whether or not
the cameraiscalibrated. Themost general method of projectionfrom 3D spaceontoa2D imageis
per spective projection (see Appendix A). Other methods approximate thisunder certain imaging
conditions, for example scaled orthographic (weak perspective), paraper spective[48] and affine
[47]. A description of themost appropriate cameramodel for agiven situationisprovidedin[69],
along with a method for switching models during processing to ensure the best model is used at
all times. In our case, we make no assumptions about the nature of the scenes being viewed and

so use the full perspective model.

If camera calibration? isknown, scene structure can be recovered up to ascale factor [11].
However, the calibration process usually relies upon accurately measuring calibration objects and
isvery sensitiveto errors[64]. Secondly, calibration has to be recomputed if theinternal param-
eters change, for example, the camera zooms. These difficulties have led to the devel opment of
the projective approach to reconstruction, also known as uncalibrated stereo [52]. This method
model s the geometric relationship between the cameras, matched points and corresponding 3D
positions, which is encapsul ated in the fundamental matrix. The non-metric nature of this projec-
tive approach meansthereisno dependency on camera parameters, but recovered structurediffers

from thereal structure by a projective transformation.

The acquisition of the fundamental matrix and a projective reconstruction technique form
asignificant part of thiswork. These are fully detailed in Chapters 3 and 4. We continuein this
chapter with a more general background description of the two subjects. Thisis followed by a
review of current research on reconstruction from image sequences, most relevant to thisthesis.
The chapter concludes with an overview of some of the techniques of model-based recognition

and background material on the method we use: geometric hashing.

2Focal length, aspect ratio and principle point.
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This section opened with Ullman’s structure from motion theorem. In truth, the theorem
was originally due to Kruppa, sixty-four years earlier, and rediscovered by Ullman. Thisisjust
one of several cases in which results that have only recently been obtained in the vision com-
munity, have been known for many years by photogrammetrists. A fascinating potted history of
photogrammetry, from a projective geometry viewpoint, is givenin [9], whilst [27] explores the

rel ationship between photogrammetry and machine vision.

2.2 TheFundamental Matrix

In 1981 L onguet-Higgins published a seminal paper [39], in which he described a method for the
recovery of the structure of ascenefrom eight point correspondences. By establishing constraints
on the rel ationship between the two sets of image coordinates, their corresponding 3D points, and
the optical centres of the cameras, a 3x 3 matrix is defined, the essential matrix E, which con-
veniently encapsul ates the epipolar geometry (see section 3.2) of the imaging arrangement. Us-
ing homogeneous coordinates (see Appendix A) the essential matrix and a pair of corresponding

points p and p’ in the two images are related as follows:

pTEp =0 2.1)

This equation, known as the linear criterion or the Longuet-Higginsrelation, islinear and
homogeneous in the elements of E. Thus, given a set of at least eight point correspondences
(hence the name), the essential matrix can be solved for, up to ascaefactor. Intheoriginal paper,
itis shown how E can be factorised to obtain a pair of camera matrices, and hence the structure
of the scenerecovered. Thereistheimplicit assumptionin L onguet-Higgins descriptionthat the

cameras are calibrated - at least the focal length and principal point are known.

2.2.1 Fundamental v. Essential Matrix

There appears to have been some confusion amongst researchers about the distinction between

the essential and fundamental matrices. The 8-point algorithm can be used to compute either of
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them, and equation 2.1 applies equally to essential and fundamental matricesi.e. if F isa3x3

fundamental matrix, then

p/TFp =0 (2.2)

Thequestionistherefore: when doesthe 8-point al gorithm produce an essentia matrix and
when does it produce a fundamental matrix? The answer to this question liesin the camera cali-
bration. If theimages are formed by projection onto the unit sphere, then the matrix isthe product
of an orthogonal matrix and an anti-symmetric matrix and it i s therefore an essential matrix [13].
In the case of general projection, the matrix A of intrinsic camera parameters transforms theim-
ageinto the image that which would have been produced by projection onto the unit sphere. This

givesthe relation:

F=A'TEA™! (2.3)

Thus, when we are dealing with uncalibrated images, the 8-point algorithm is used to re-
cover the fundamental matrix. The essential matrix can be obtained if the images are taken with
acalibrated camera. The two matrices can al so be characteri sed as follows: the essential matrix
has zero determinant and itstwo non-zero singular values are equal, thusit depends on five inde-
pendent parameters. The fundamental matrix is singular and has rank two. As such, it depends
on seven independent parameters. Other properties of the essential matrix have been investigated
in[31] and [42].

2.2.2 Calculatingthe Fundamental Matrix

The main attraction of the 8-point algorithm isits conceptual and numerical simplicity, the fun-
damental matrix being obtained from a simple set of linear equations. Unfortunately, the 8-point
algorithm is susceptibleto noisein the matched feature data; poor localisation and fal se matches
causing the algorithmto fail. Until recently, it was generally held that this problem rendered the
8-point algorithm useless for any practical application, and research has concentrated on devel-
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oping other alternatives of computing the fundamental matrix, all of them more complex than the

8-point method.

However, in [26] a normalising technique was presented, that claimed to improve the per-
formance of the 8-point algorithmto alevel asgood as, and even surpassing, that of thesealterna-
tives. Therationa e was that the poor performance of the eight-point a gorithmis wholly due to
implementationswhich do not take account of the numerical considerationsinvolved, particularly
the conditioning of the set of linear equationsbeing solved. The proposed solutionto thisproblem
isasimplenormalisation (scal e and tranglation) of the matched point coordinates prior to process-
ing. Numerical analysisdemonstrates that thistransformation leads to a significant improvement
inthe conditioningof thesystem[26]. A detailed description of the normalisation method isgiven
in Chapter 3. Here we give a brief overview of some of the aternative methods that have been

proposed.

Implementations of the 8-point algorithm attempt to minimise ming Zi(p;TFpi ), which
isbased on thelinear criterion. Typically thisis solved either using a closed form solution, setting
one of the coefficients of F to 1, or viaaleast-eigenvector method, both described in section 3.5.
In [40] these linear methods are compared against a number of non-linear criteria, for example

minimising the distance of a point from its corresponding epipolar line.

In[62] it isshown that the fundamental matrix can be estimated from theimage correspon-
dences of only seven 3D pointsin general position. First, the correspondences are used to obtain
a non-unique solution to the standard system of equations formed from the linear criterion. A
further solution of a cubic equation is then necessary to determine the fundamental matrix that
correspondsto the given point configuration. Theideahereisto usetheleast possible number of

points in determining the fundamental matrix, to reduce the likelihood of including outliers.

An in-depth discussion of the application of robust parameter estimators to calcul ate the
fundamental matrix, isgivenin[60]. Methods considered here include, RANSA C (see appendix
B), the Hough transform [33] and M-estimators. Standard least squares attemptsto minimise the
sum of the squares of theresiduas 3" r? i.e. the difference between the observed and fitted data.
M-estimators replace r? by other functionsof theresiduas min 3~ p(r;), where p isasymmetric

positive-definite function.
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In [8] Boufama describes a completely new approach for computing the fundamental ma-
trix based on virtual parallax. This method still requires at least eight point matches, but instead
of computing thefundamental matrix directly, it relieson estimating the position of an epipoleand
a 2D homography. One advantage isthat this method implicitly constructs a fundamental matrix
that isof rank 2.

Unfortunately, errors in feature localisation and matching are not the only possible causes
of problems in fundamental matrix calculations. In the origina paper on the 8-point algorithm
[39], itisremarked that certain configurations of the eight pointswill cause the algorithm to fail,
due to linear dependencies entering the computation. Examples of such configurations are; four
of the points being in a straight line, seven pointsin a plane, or eight points at the vertices of
acube. A more complete analysis of the problem of degeneracy is givenin [62]. Torr defines
degenerate configurations of 3D points as those whose resulting image correspondences fail to
define a unique epipolar transform (section 3.2). Thus there exist two or more linearly indepen-
dent fundamental matrices which encapsul ate the epipolar geometry, and scene structure cannot
be recovered unambiguously. An algorithm for detecting such degenerate configurations, which

isrobust to the presence of outliers, is described.

A complete review of the issuesinvolved in fundamental matrix theory was recently pub-
lishedin [41].

2.3 Uncalibrated Reconstruction

In 1992 Faugeras published a ground-breaking paper [12] that proposed a technique for recov-
ering projective structure of a scene, from a set of matched pointsin a pair of uncalibrated im-
ages. Theideaisto constrain the form of the two camera matri ces. Thisisachieved by fixing the
coordinates of five of the 3D pointsto be the standard projective basis, and making appropriate
coordinate assignmentsfor their correspondingimage points. Asaresult the camera matrices can

be represented as functions of just two arbitrary parameters.

The exact determination of these parameters requires the coordinates of the epipoles and

hence, computation of thefundamental matrix. With thisdone, the camera matricesarefully spec-
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ified and thelocations of the 3D pointscan berecovered, relativeto the coordinate system defined
by thefive points. Thusthe reconstructionis correct up to aprojectivetransform of thereal struc-
ture. The problem with thismethod isin the reliance on the accuracy of the chosen basisfeatures.
Mismatched or poorly localised basisfeatureswill impair the quality of the projectivereconstruc-

tion.

Just one month later, Hartley published his paper [23], which achieved the same results,
in a different manner and without the reliance on basis points. In this case, the projective recon-
struction is achieved through the analysis of the fundamental matrix. Just as the essential ma-
trix can be factorised to obtain camera matrices, so too can the fundamenta matrix. In the latter
case however, it is shown that the factorisation is not unique, and that the camera matrices can be
transformed by an arbitrary projectivity and still be a valid factorisation. Hence, once again, the
recovered structure and camera locationsdiffer from thereal onesby a projectivetransform. The

projective reconstruction method employed in Chapter 4, is based around this technique.

The standard basis method above is one of severa projective reconstruction techniques
compared in a recent paper by Rothwell [52]. Rothwell places the basis method in a group of
what he calls explicit reconstruction a gorithms. The goal for each of theseisto computeapair of
camera matrices from a set of image correspondences. Two other explicit methods are described.
Oneestimates structure by computing theintersection of camerarays onwhich the 3D pointsmust
lie. Another uses singular value decompositionto obtain estimatesfor the camera matrices which
are consistent with the epipolar geometry. Two implicit techniques are described, which compute
structure using three-dimensional invariants of the camera configuration and point sets. All the
methods described in this paper assume knowledge of the weak calibration between the two cam-
eras; i.e. the fundamental matrix. Rothwell concludes that the most reliable reconstructions are
obtained using camera matrices derived via singular value decomposition, which is the method

we usein Chapter 4.
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Figure 2.1: Transfer.

2.3.1 Other Applicationsof the Fundamental Matrix

Transfer

One simple application which follows naturally from the definition of the fundamental matrix is
in the area of automatic feature matching. The fundamental matrix maps a point in one image
to its corresponding epipolar line in the other. This constraint can be used to reduce the search
space for the matching point. Thisideaextends to three images. The observation of the point P
inimage 1 can be used to generate an epipolar line [, 5 for P inimage 3; similarly, observation of
P inimage 2 can be used to generate a second epipolar line /55 for P inimage 3. Asshown in
figure 2.1 theintersection of the epipolar lines ;3 and /o3 uniquely defines where P must appear

inimage 3. This concept is known astransfer.
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Salf-Calibration

A new approach to calibrating cameras, called self-calibrationwas presented by Faugeraset a in
[13]. In contrast to existing techniques, which rely on calibration objects[64], al that isrequired
isaset of point matchestracked over three or more camera displacements. The displacementsare
used to calculate the fundamental matrix, using the non-linear minimisation of the image plane
distanceof apoint from itscorresponding epipolar line, mentioned earlier. The epipolar transform
(section 3.2) is derived from the fundamental matrix and used to solve for the coefficients of the

absolute conic, from which the camera intrinsic parameters are obtained[9].

The original authors[13] note that the precision of feature localisation required to obtain
reasonable calibration resultsis at the limit of even the best feature detectors. Nevertheless, the
method has been used in attempts to calibrate cameras automatically, and thus to recover Eu-

clidean structure[25, 2].

2.4 Sequence-Based SFM

In this section we present a brief review of some current related research into reconstruction from

image sequences.

The VSDF

The Variable Sate-Dimension Filter (V SDF) isnot really areconstruction system. Rather, itisa
recursive estimation algorithm which has been applied to the problem of structure from motion
[43]. Infact, one of the benefits of the VSDF isthat it can be applied to any problem that can be

formulated as a suitable measurement equation, for example [44].

The agorithm was designed specifically for real-time applications. Having computed op-
timal estimates for the structure and motion over a small number of initial images, the recursive

part of thea gorithm takes over and recomputes sub-optimal estimates, using new imagedata. An
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example reconstruction® is shown in figure 2.2.

Figure 2.2: Example reconstruction using VSDF.

Vanguard

Vanguard[4] isaproject being devel oped by a European Union consortium, includingthe Robotics
Research Group at Oxford University. Thegoal isautomatic 3D model building from long uncal -
ibrated monocular image sequences, and the use of these model sfor rendering scenesin telepres-
ence applications. This entails extracting both geometry and surface descriptions (reflectance) at

alevel suitable for high quality graphical rendering.

The system uses a robust tracking algorithm for corner and li ne segment features, based
on thetrifocal tensor [61]. Thetrifocal tensor performs asimilar role for three views as the fun-
damental matrix does for two: it encapsulates al geometric constraints between the three views,

that are independent of scene structure. Given point correspondencesin two images, the trifocal

This reconstruction was obtained using software kindly supplied by the VVSDF author, Phil McL auchlan.
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tensor determinesthe position of thepointinthethird. Thisissimilar to transfer, described earlier

in this chapter, but more robust.

The trifocal tensor is computed from an initia set of feature matches in three images but
for future images does all the matching itself. Camera matrices are generated from the tensor
for these images, and used to instantiate 3D point and line structure. As each new image is pro-
cessed, matches between it and the previous image provide a correspondence between existing
3D structure and new features, enabling a camera matrix for the new image to be obtained, thus
determining the new camera position relative to the existing world coordinate system. Existing
structure estimates are updated using an Extended Kalman Filter. Figure 2.3 shows some sample
data and results obtained [59].

The Factorisation Method

Thefactorisation method, originally dueto Tomasi and Kanade[58], isabatch method for recov-
ering the structure and motion of an object from an image sequence. Point features are tracked
through the sequence and used to construct a measurement matrix. Structure and motion are ob-
tained by factorising the measurement matrix, using singular value decomposition [50]. Itisim-

plicitly assumed that cameraintrinsic parameters are known.

The method has been through many stages of devel opment, starting with simpl e planar mo-
tion, then moving on to arbitrary motion in 3D with 2D images obtained under the orthographic
cameramodel. The orthographic model wastoo simplisticto be of any practical use, being unable
to model even the effect of distance on image size, the scaling effect. Further updates followed
through the scaled orthographic and paraperspective model s [49] to the projective model [48].
While still in batch form the algorithm was unsuitable for usein real-time applications, and as a
result a sequential version was devel oped [46], but this needed most of the feature pointsto be

visiblein each frame, which is not feasible in an extended environment.

The latest addition to the factorisation approach was in arecent paper by Held [28], which
described an incremental windowed factorisation method. At each step Held applies a version

of Morita's sequential factorisation algorithm, to obtain a new shape matrix. Thisisthen related
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Sample Image Recovered Structure

LS

Two novel rendered views.

Figure 2.3: Example datafrom the VANGUARD project.
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to the shape matrix at the previous step by computing an affine transform between their shared
shape points, then applying it to the points which have just been lost. Thus the scene structureis

recovered incrementally as the * factorisation window’ moves through the image sequence.

The major differences between our method and Held’s are that he has gone back to using
the orthographic projection model, whereas we use full perspective, and he makes no attempt to

register between structure recovered at different times.

2.5 Model Based Recognition

The structure matching required within our framework is most closely ana ogousto model-based
approaches to object recognition. As background to our choice of matching strategy, thisfinal

part of the chapter reviews the major approachesin this area.

Object recognition is one of the most fundamental of all problems studied in machine vi-
sion. The aims of an object recognition system are twofold: to detect the presence of a given
object, and to establishitslocation and orientation. Thelatter of these is known as pose deter mi-
nation. The pose of an object can be expressed in terms of the rigid transformation required to

rotate and translate to the object position from the origin of the given coordinate system.

The most predominantly used approach to object recognition is model -based, which relies
upon the construction of explicit representations (models) of the geometric shape of the objects
which are to be recognised. In this section we provide a brief overview of a number of different
model -based recognition schemes, finishing with the geometric hashing paradigm, which is the
method used in thiswork. For more detail the reader isreferred to the general surveyson model-

based recognitionin [5] and [10].

In general, model-based recognition is a two-step process. hypothesis generation and ver-
ification, for example [51]. In the first stage, a number of likely candidate objects and poses are
singled out for further investigation. These are examined more closely in the second stage and
incorrect candidates are eliminated. Hypothesis generation involves matching subsets of model

and scene features, for example corner points and edges. Verification requires the computation
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of the transformation between the model and scene, in an attempt to induce more feature cor-
respondences and thus accept or reject the candidate match. In model-based recognition, pose

determination involves computing the transformation between the model and the scene.

Note that we use the terms model and scene without referring to their dimensionality, or
the nature of the transformation between them. For example, the model and scene could both be
imagefeatures, related by a2D transform[37]. Equally, they could both be setsof structure points,
related by a 3D transform, for example thiswork and [14]. The model and scene could even be

of different dimensionality, as in the case of recognising 3D objects from 2D images[16, 6].

Alignment

In an alignment scheme [32], candidate poses are hypothesi sed, based on the correspondence of a
minimal number of model and scenefeatures. Each minimal set of correspondencesisjust enough

to determine a unique pose, which is then verified.

Pose Clustering (Hough Transform)

Pose clustering is similar to alignment but uses a more intelligent, rather than exhaustive, ap-
proach to selecting candidate poses for verification. Theideaiseach pairing of model/scene fea-
turestalliesavote for the pose they determine. Correct poses should be voted for many times by
different pairings of features and only high-scoring poses are considered for verification. In prac-
tice, things are not quite as simple asthat, since correct feature pairings will generally determine

poses that are similar, but not identical, due, for example, to measurement error.

The solution is to look for clusters of poses (hence the name). The usua way of doing
thisis by creating a parameterised pose space in which to taly the votes. For example, a 2D
affine transform can be represented by by six independent parameters. Thusvoting is performed
in a six-dimensional pose space, represented by a multi-dimensional array, with al elements, or
bins, initialy zero. Although each parameter may take on continuous values, each dimension of
the pose space is quantised, resulting in a set of six-dimensiona volumes of admissible poses.

The parameters of each candidate pose are calculated and used to increment the vote count at
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the corresponding bin. When all votes have been cast, the pose clusters correspond to those bins
contai ning more than some given number of votes. A pose at the centre of each cluster is passed

on to the verification stage.

Pose clustering methods are generalisations of the Hough transform [3], which was origi-
nally used for the detection of straight linesin images[30]. A survey of the Hough transform is
givenin[33].

Interpretation Tree Search

Alignment and pose clustering techniques produce candidate poses from correspondences be-
tween model and scene features, eliminating incorrect candidates by direct verification. In con-
trast to this, interpretation tree search methods [21, 19] attempt to assign model features to all
scene features, in al feasible combinations. Such assignments are called interpretations and the
method involves performing atree search to generate al of the combinationsof interpretationsas

required.

Nodes in the first level of the tree contain assignments for the first scene feature. Those
at the second level contain explicit assignments for the second scene feature, and an implicit as-
signment for thefirst, and so on for each level of thetree. Likewise, each branch correspondsto a
different model feature. Each nodein thetreerepresentsa partial match between model and scene
features and the path to the node from the root of thetree givesall the correspondencesin the par-
tial match. Finally, each leaf node defines a complete candidate match (interpretation) between

the model and the scene.

As described, the method isinfeasible, since there is a vast number of interpretations for
even amoderately complex model. Theideaisto eliminatethe need to verify many false matches
by pruning the tree. Thisis possible because false matches can be identified without needing to
assign al the pairings. Each time a new nodeis to be added to the tree a set of fast consistency
checksareperformed against all nodesonthe path back tothe treeroot. For example, if attempting
to match aset of planar surface patchesagainst amodel in 3D, the angle between the surface patch

normal s could be examined to ensureit fall sbetween somerange of values, thisrange having been
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obtained by preprocessing the model before the search begins. Thus, thetreeispruned below any

partial interpretation that is found to be inconsi stent.

Indexing and Geometric Hashing

An dternative model-based recognition paradigm has been proposed, known as indexing. All
indexing schemes share acommon approach to therecognition problem. They computeinvariants
[47] from scene features and use them to index a look-up table containing references to model
objects. Thelook-up table returns aweighted set of candidate matches, for verification. Whereas
the methods described previously must be applied separately for each of the models they should
recognise, indexing schemes attempt to recognise all models simultaneously. This has obvious

efficiency benefits when the size of the model databaseislarge.

Indexing techniques have been applied to anumber of problems. For example, in [45] Mo-
han describes amethod for recognising 3D objectsfrom a2D image sequence, assuming theweak
perspective camera model. Object models are acquired automatically from the image sequence
by tracking features through at | east three frames, and extracting Euclidean (similarity) invariants
[68]. In[54, 56, 55] Rothwell et al. describethe devel opment of acompl ete model-based recogni-
tion system (LEWIS). Their system al so acquiresits modelsdirectly from images, thistime using

projective invariants to index the look-up table.

Perhaps the best-known indexing method is geometric hashing, originally developed for
the task of recognising flat rigid objects[35, 34, 36] from images, using an affine approximation
to the full perspective camera. However, the same approach can be used for many recognition
problemsinvolving avariety of transformationsin two and three dimensions[37]. A full descrip-
tion of the method is given in Chapter 5, where it has been applied to the problem of recognising
familiar segments of 3D structure, as they are recovered by the reconstruction system. Geomet-
ric hashing has an additional property which makes it ideal for our purposes; the nature of the
information stored in the hash table means that the pose of an object is known as soon asiit is

recogni sed.

There has been some discussion about the susceptibility of geometric hashing to sensor



CHAPTER 2. BACKGROUND 22

error [20]. A simple technique for taking errors into account is shown in [70], which involves
tallying votesin a region of the hash table, rather than at a single, indexed location. Other addi-
tions to the original geometric hashing method have been developed. For example, in [63] Tsai
presents a system which uses invariants computed from line features, under the assumption that

these can be acquired from images with greater accuracy then points.

In [14] an interesting application of geometric hashing is described, that of matching pro-
tein molecules. The system uses a two-atom basis and indexes the hash tabl e using the lengths of
the sides of the triangl e the basis forms with each of the remaining atoms. This approach reduces
the complexity of the process from O(n?) to O(n?) at the expense of a non-unique representa
tion of the atoms®. Constraints on the allowable lengths of the triangle sides mean that not all

basi s/atom pairs need to be considered.

Finally, a new technique has recently been proposed, called enhanced geometric hashing
[38]. This extends the basic method in two ways. First of al, the use of quasi-invariants[7]
extracted from connected segments, reduces the number of invariants that have to be computed.
Secondly, the voting scheme is augmented through the use of pose clustering. Each candidate
pose, obtained via the normal voting procedure, defines a geometric transform, which is param-
eterised and used to vote in the pose space, as described above. Clusters form around coherent
poses and the matched model istaken to be the one whose pose space containsthe highest density

cluster.

*Where n isthe number of points used to define abasis for the transformation being considered.
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Acquiring the Fundamental Matrix

3.1 Introduction

Since the pioneering work of Faugeras [12] and Hartley [24], there has been a great deal of re-
search into devel oping methods for recovering the structure of a scene from images taken with
uncalibrated cameras. A recurring theme in thiswork, and in the method we describe in the next
chapter, isthe requirement for the accurate estimation of the fundamental matrix. The fundamen-
tal matrix is of vital importance in the the analysis of pairs of uncalibrated images, because it
encapsulates all the information about camera motion, camera parameters and epipolar geometry
that can be obtained from a set of point correspondences. The most simple method of computing
the fundamental matrix is the 8-point algorithm, due to Longuet-Higgins[39]. Thisinvolvesthe
solution of aset of linear equationsderived from thelinear criterion, which relates the fundamen-

tal matrix, image pointsand corresponding epipolar lines.

A common criticism of the 8-point algorithmisthat it isvery sensitiveto noisein the mea-
sured image features. In fact, the prevailing view is that this flaw renders the 8-point algorithm
useless for any practical application [40]. This has led to the development of a number of alter-
native methods of solution, as discussed in Chapter 2. These are, without exception, more com-
plicated than the 8-point algorithm, involving iterative schemes [25] or non-linear minimisation

[13, 40]. However, in arecent paper [26], Hartley described a novel normalisation technique,

23
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which claimed to improve the performance of the 8-point algorithm to a level as good as (and

even surpassing) that of the more complex methods.

Thistechniquewasbased on numerical analysisof a particul ar method of implementing the
8-point a gorithm. One of the aims of this chapter isto determine what effect, if any, the normali-
sation process has when a different implementation method isused. Hartley described a series of
experiments, in which the fundamental matrix was computed using different sized subsets of the
matched image points. For each subset size, severd trials were performed, each time randomly
selecting the pointsused in the cal culation. Given ameasure of the accuracy of afundamental ma-
trix, resultswere presented in terms of subset size versusthe median accuracy val ue obtained over
all thetrials. We have carried out similar experiments, but in contrast, our results show the effects
of normalisation and subset size on the best accuracy values. Thereisthe additiona problem of
determining the best subset of matched pointsto use to estimate the fundamental matrix. Rather
than simply choosing the one that gives highest accuracy value over al thetrias, we employ a

more efficient, elegant solution based on the RANSAC parameter estimation paradigm [15].

This chapter describes our implementation and experiencesin using the normalised 8-point
algorithm to compute the fundamental matrix. We begin with an overview of epipolar geometry
and derive the linear criterion on which the 8-point algorithm is based. Thisis followed by a
brief description of some of theimportant properties of the fundamental matrix. Next we describe
two different methods of solving thelinear criterion equations. We then outlinethe normalisation
processitself and explain how it can helpimprovethe accuracy of the solution of these equations.
Finally, we present theresults of aseriesof experimentsto compute the fundamental matrix, using
avariety of real and syntheticdata, and show how we can embed the normalised 8-point algorithm
into the RANSAC paradigm.

Appendices A and B provide essentia background material on projectivegeometry and the
RANSAC paradigm, respectively.
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Figure 3.1: Epipolar Geometry: Two images of apoint P are taken by a moving camera, whose
optical centreisat positionsC' and C’. The planethrough C' PC’ isthe epipolar planefor P. This

plane intersects the images along the two epipolar lines/ and I’

3.2 An Overview of Epipolar Geometry

Figure 3.1 illustrates the epipolar geometry. Suppose we have a pair of images of a scene, taken
with either asingle moving cameraor astereo pair. The 3D locationsof the camera optical centres
areat C' and C’. The 3D scene point P isprojected along rays L and L’ onto the image planes at
pand p’, respectively. Projection of C' along thelinejoining the two optical centres, givesapoint
¢’ in the second image, known as the epipole. Similarly, projecting C’ givesthe epipolee in the
first image. Note that, for reasons of clarity, the imaging arrangement we have shown resultsin
the epipol eslying withinthe bounds of thetwoimages. In practicethisisnot necessarily the case,

indeed the line between the two optical centres may only intersect the image planes at infinity.

The 3D point P and thetwo optical centres define the epipolar planefor P. Thisintersects
the image planes along the epipolar lines/ and /. It can be seen that / isthe projection of theray
L’ onto thefirst image and !’ is the projection of theray I, onto the second image. This property
has important implications when attempting to match pointsin the two images. If the 3D point
P has been observed at position p in the first image, then P must lie somewhere on theray I.

This, in turn, constrainsthe position of p’: it must lie somewhere along the projection of L inthe
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second image i.e. on the epipolar line I’. Consequently, given a mechanism for calculating the
epipolar line corresponding to a point in one image, the search space for the matching point can
be dramatically reduced from the whole image to just a line. The fundamental matrix provides

such amechanism.

Image

Epipole

~ 7

Epipolar Lines

Figure 3.2: Each 3D point defines a plane with the camera optical centres. These planesintersect

the images, forming two pencils of epipolar lines, with intersections at the epipoles

Consider figure 3.2 and imagine a set of 3D points at general positionsin the scene. Each
point forms a different epipolar planewith theoptical centres. Aswe have seen, each planeforms
an epipolar lineat itsintersection with theimage planes, thusmultipleplanes|ead to theformation

of a pencil of lines, which intersect at the epipolein either image.

Let IT be any such plane, then II projects to an epipolar line [ in the first imageand !’ in
the second. The correspondences TIA! and ITA!" are homographies between the two pencils of
epipolar linesand the pencil of planesthrough the optical centres. ! It followsthat the correspon-
dence [Al’ isaso ahomography. Thishomography isthe epipolar transform. It is determined by
the coordinates of the two epipoles and three [Al’ correspondences. It follows that the epipolar
transform depends on seven independent parameters. In fact, it can be shown ([13, 41]) that the

epipolar transform determines, and isitself determined by, the fundamental matrix.

'We use the symbol A to denote homographic correspondence.
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3.3 Derivation of theLinear Criterion

In this section we describe an aternative derivation of the linear criterion, due to Hartley [24].
This projective geometry version fits better with the uncalibrated/projective nature of the fun-
damental matrix than the calibrated/Cartesian method used by Longuet-Higginsin the original

paper.

Given the same imaging arrangement as in figure 3.1, we fix the first camera position, ',
at the origin of our object space coordinate system. The second camera, C”, islocated at some
displacement from this. We can represent the two cameras by the 3x 4 transformation matrices
they use to project from 3D object space coordinatesto the 2D image planes (see Appendix A).

We can assign the two camera matrices as follows:
C = (I]o) and C’' = (R| - Rt) (3.1

where we have partitioned the 3x 4 matricesinto a3x 3 left sub-matrix and a3x 1 column vector,
I isthe identity matrix, R isa3D rotation matrix and t = (¢,,¢,,t,) isa3D translation matrix.

These two cameras matrices project a3D image point P = (X, Y, Z, 1)T asfollows:
p=CP & (u,0,w)" =(IO)(X,Y, Z,1)" (32

and

p'=CP & (v, v, v) = (R|-Rt)(X,Y, Z,1)T (3.3)

Now, aswesaw intheprevioussection, givenapoint p inthefirst image, the corresponding
point, p’ in the second image is constrained to lie on the epipolar line, I, whichisthe projection of
L by C'. Another way of looking at L isasthe set of al 3D pointswhich project onto p under C'.
We now choose two points from this set; the camera origin (0, 0,0, 1)7 and the point at infinity
(u,v,w,0)T. The coordinates of the projections of these points in the second image are —Rt
and R(u, v, w)” respectively. Thehomogeneousequation of theepipolar line, I', passing through

these two points can now be recovered using the cross product:

(a,b,¢)T = Rt x R(u,v,w)T = R(t x (u,v,w)T) (3.4)
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wherel' = (a, b, ¢) representstheline au + bv + cw = 0. If we now define the anti-symmetric

matrix S = [t]« as.

0 —t. t,
.0 —t, (3.5)
—t, t, 0

the properties of the cross product allow usto rewrite equation 3.4 as:
(a,b,¢)T = RS(u,v,w)? (3.6)
Weset F = RS, giving F as the 3x 3 fundamental matrix and can now write:

I'=Fp (3.7)

Thus, given a point in one image, the fundamental matrix alows us to compute the cor-
responding epipolar linein the other. It isalso clear that, since, by definition, the corresponding

image point, p’ belongsto epipolar line !’, we obtain the linear criterion:
0=pTFp (3.8

It isworth noting that by reversing the roles of the two images in this derivation, the fun-

damental matrix is switched to itstranspose. That is, the following relations also hold:

1=FTp’ and 0=plFTp (3.9

3.4 Other Propertiesof F

It has already been mentioned that F determines and is determined by the epipolar transform,
which has only seven independent parameters. Although the fundamental matrix has nine ele-
ments, it too has only seven independent parameters. We can account for one of the degrees of
freedom by noting that F is only defined up to a scale factor. That is, applying an arbitrary scale

to F will have no effect on the results of equations 3.7and 3.8.

The other degree of freedom is taken care of by the fact that the fundamental matrix must

have rank 2. To see why thisis so it may be necessary to consider figure 3.1 once again. Aswe
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know, application of the fundamental matrix to a point in one image, yields the corresponding
epipolar line in the other, but what if the point in question is one of the epipoles? For example,
Fe = l.. Geometrically, [. isthe projection of theray (C', ) onto the second image, but by con-
structionthislineisreduced to apoint, the corresponding epipolee’. Thus, we havethefollowing
property:

Fe=FTe'=0 (3.10)

Consequently, F issingular, has zero determinant and itsrank must be lessthan or equal to
2. Ingeneral itisof rank 2. It isnot possiblefor the rank to be 1, since thisimpliesthat theline

between the optical centres belongsto theintersection of the image planes[41].

3.5 Implementingthe 8-Point Algorithm

Equation 3.8 islinear and homogeneousin the nine unknown coefficients of the fundamental ma-
trix. Thus, in general, given a set of eight point matches p; < p; in the two images, we will
be able to obtain a unique solution for F', up to a scale factor. Taking one such pair of points
p = (u,v,1),p’ = (¢,7,1) and labelling the coefficients of F, gives an expanded linear crite-
rion equation:
fll f12 f13
(', 1)T far Sz fos | (w0, 1)=0 (3.11)
f31 f32 f33

Multiplying out and rearranging in terms of the known coordinates of p and p’ gives:

uv fig +ou' fro + o' frs +uv for + 00 fao + 0 fos Fufsi + v faat fa3 =0 (3.12)

Each pair of matched pointsgives one such equation. With more matches, we can build up
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a set of homogeneous linear equations Af = 0:

fu
fi2
we' vu W ow v’ v ow v 1 fi3 0
................................... I
................................... for | = - (B.13)
................................... Fas
................................... far
f32
f33

The process of generating and solving the above system of equationsis the 8-point algo-
rithm. Inpractice, we are given many morethan just eight matches, resultingin an over-determined

set of equations.

In order for there to exist a non-trivial solution to Af = 0, the matrix A must be rank-
deficient, that is, athough A has nine columns, its rank will be at most eight. Thisis generally
trueif we are dealing with perfect data, but in practice inaccuracies in the matched pointslead to
A having full rank. In this case we seek a least-sgquares solution to thelinear criterion equations.

We will now ook at two different methods of obtaining this solution.

3.5.1 Solution Via Singular Value Decomposition - SVD

Since F is only defined up to a scale factor, we can fix one of its coefficients to a known value
and then compute a closed-form solution to the linear criterion equations. Numerical analysis of
non-linear solutions has shown that the choice of this normalising coefficient is not arbitrary: it

should be one of the first six [40]. By setting fi3 = 1 we obtain the following modified system
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of linear equations Af = —u’:

fll
fi2
f21
fa2
f23
f31
a2
fa3

- .. (3.14)

Thissystem can then be solved, using Singul ar Value Decomposition[50], which isknown
to givethe best estimate for the remaining coefficients of F, in aleast-squares sense. Thisis per-
haps the simplest method for computing the fundamental matrix, and possibly the one which is
most prone to the effects of noise and outliersin the matched features. Although the normalisa
tion transform, discussed in the next section, was not designed specifically with this approach in
mind, it will be interesting to see what effects it has. In the sequel we will refer to this method of

solutionas SVD.

3.5.2 Solution Via Eigenvector - EIG

Another, more popular, method of computing the fundamental matrix is to formulate the linear

criterion equations as a classic minimisation problem and seek the vector f which minimises:
mfinHAfH subject to IIf]l =1 (3.15)

where ||. || indicates the Frobenius norm 2. It iswell known that the solution to this problemisthe
unit norm eigenvector of AT A, corresponding to the smallest eigenvalue. In our implementation
we solvethis problem by first reducing AT A to tri-diagonal form, viathe Househol der method.
The eigenvalues and el genvectors can then be recovered using the QL algorithm. See[50] for the

details. From now on we will refer to this solution method as EI G.

2The square root of the sum of squaresof the coefficients. For a vector, the Frobenius normis equivalent to thetwo

norm.
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3.5.3 Enforcingthe Rank Constraint

Asnoted in section 3.4, important properties of the fundamental matrix are that it is singular, has
rank 2 and det(F) = 0. In fact, most applications of F', depend on thissingularity or rank con-
straint. However, in general, the fundamental matrix obtained using the methods based on the
linear criterion will not have these properties, or, to put it another way, the linear criterion cannot
express the rank constraint. To see the effect this has, consider a fundamental matrix, F, com-
puted viaalinear criterion method, a point p = (u, v, 1) in thefirst image and its corresponding
epipolar line!’. Furthermore, we denote the coordinate vector of the epipol ein thefirst image by
e = (ey, €, 1) and fix the horizontal and vertical offsetsof p from e as « and y, respectively. We

can Now eXPress p as:

U €y — T
p=| v =] e -y (3.16)
1 1

Now, applying the fundamental matrix, gives:

€y — T T
1/ = Fp =F €y — Y = Fe-F Y (317)
1 0
——
loffset

If Fissingular, Fe = 0, exactly, and theright hand side of the equation simplifiesto l,gset
whichisan epipolarline, asrequired. However, when F isnon-singular, I’ isthe sum of aconstant
residual vector r = Fe and the vector lofsct, Whosenormisbounded by /22 + y2||F||. It canbe
seenthat asp — e so (¢, y) — (0,0) and thus!’ — r, which isinconsistent with the principles
of epipolar geometry. In fact, the closer p gets to the epipole, the greater will be the error in its
corresponding epipolar line. Thus, if the epipole lies within the bounds of the image, then the
epipolar geometry encompassed in a fundamental matrix obtained using the linear criterion will

be inaccurate.

Fortunately, this problem is not insurmountable. The solution is to correct the estimated
fundamental matrix to ensureit hastherequired rank. To dothisweemploy atechniquedevel oped

by Tsai and Huang [65], whereby F isreplaced by the matrix ¥ that minimises:
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|F—F|| subjectto  det(F)=0 (3.18)

Thisisachieved by first computing the singular value decomposition, F = UDV?', where
D isadiagona matrix D =diag(r,s,t)suchthat r > s > t. Setting ¥ = Udiag(r, s,0)VT has

been shown to give I as the closest singular matrix to F under Frobenius norm.

3.5.4 Normalisation

Here we give a brief description of a recently developed technique [26] for improving the accu-
racy of the fundamental matrix computed using the 8-point a gorithm. This approach is based
on numerical anaysisof the EI G method of solving thelinear criterion equations. It is theorised
that the poor performance of the 8-point algorithm can be attributed to methods of implementa-
tion that do not take sufficient account of the conditioning of the set of equations being solved.

The condition number, x of amatrix M is given by

ko= MV (3.19)

It plays an important role in the analysis of linear problems. When « islarge, asmall changein
the data can lead to large variationsin the computed solution. Thus, we aim to make « as small
as possible, improving the conditioning of the system of equations and leading to a more stable

and accurate solution.

The EI G method of solving Af = 0 requiresthe computation of the unit norm eigenvector
of AT A. Assuch, theresult of Hartley’sanalysiswasthe devel opment of anormalisingtransform
to reduce the condition number of the AT A matrix, allowi ng usto obtain a better estimate for F'.
However, as we will show, the beneficia effect of normalisation is not just limited to the EIG

implementation, it also improves the results of the SV D method.

Thenormalisation processisstraightforward. Prior to generating thelinear constraint equa-
tions, the coordinates of the matched image pointsundergo a combined translation and scal etrans-

formation such that the centroid of the pointsis at the origin and the average distance of a point
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from theoriginis /2.

The effect of the translation isintuitively obvious. Consider a set of pointsin a 200x 200
image, whose u-coordinates are 101, 102, 103. Translating by 100 resultsin 1,2, 3. Thusin the
untranslated coordinates, the important values are not found until the third significant figure, be-
ing obscured by the offset of 100. This has a detrimental effect on the conditioning of ATA.
However, this problem can be solved by a simple translation which promotes the coordinates

significant figures.

Thetheory behind the scaling effect isquite complex and wewill not discussit in any great
depth here. In essence, alower bound for the condition number of the AT A isderived, based on
the interlacing property® for the eigenvalues of a symmetric matrix and their relationship with
the values of the diagonal elementsof AT A.. Clearly, the magnitudes of these diagonal el ements
are themselves related to the coefficients in equation 3.12, which, in turn, are determined by the
matched point coordinates. Thus, it can be shown that scaling so that the average homogeneous

point coordinateis unity will improve the conditioningof ATA.

Notethat thetranslation and scal etransformsare computed separately for eachimage. Each
pair of transformsis then combined to give a single transformation matrix T and T, for thefirst
and second image respectively. Thus two matched image coordinates p and p’ are replaced by

their normalised versions as follows;
p=Tp ad p =Tp (3.20)

thus
T'p=p ad p T T=pT (3.21)

which, by the linear criterion (3.8), gives:

p T -TFT1p = 0 (3.22)

®If A, denotestheleading r x r principal sub-matrix of an »n x » symmetric matrix A, and X; (A) representsthe
i-th largest eigenvalue of A, thenforr = 1,2,..., n — 1 the following interlacing property holds [18]:

Arg1(Arg1) <A (AR) <A (Arir) <o € 2(A 1) € A1(A) < A (Arga)
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Thisimpliesthat ¥', the fundamental matrix for the normalised point correspondencesis:
F=1"TFT ! (3.23)

and we can recover F by:

F=T'TET (3.24)

Thus we can outline the normalised 8-point algorithm as foll ows:

1. Given aset of pairs of matched image points p; — p’, apply the normalising transforma-
tions T and T’ to obtain p; = Tp; and p’; = T'p!.

2. Compute the fundamental matrix ¥ corresponding to these normalised points.

3. Recover thefundamental matrix F correspondingtothe‘un-normalised’ pointsas F = T'TFT.

Inthesequel wewill refer to thenormalised i mplementationsas SYDNORM and EI GNORM.

3,55 Quantifying Success

Our overal aim isto obtain the best possible estimate for the fundamental matrix, based on the
linear criterion, for later usein our structure recovery sy stem. In doing so, we can evauate which
combination of normalisation and method of solution (SVD/EI G) provides the best results. The
guestion is, how to quantify ‘best’ ?

Themeasure we useisbased upon therel ati onshi p between matched pointsand their epipo-
lar lines. Specificaly, givenl’ = Fp, we know that p’ should lie somewhereon !’. In fact, thisis
only exactly true when the computed F is perfect and in practice the point will actualy lie some
distance from its epipolar line. We can use this as a measure of the quality of F. Formally, we
define the quality of afundamental matrix, denoted by ¢) -, to be the average perpendicular dis-
tance of each point from its corresponding epipolar line. Thus we would like @) 7 to be as low
as possible. A method for computing the perpendicular distance of a homogeneous point from a

homogeneouslineisgivenin Appendix A.
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The aim of the normalisation processisto obtain a better estimate for F' by improving the
conditioning of alinear system. In thisrespect, its success or failure is easy to quantify. For the
SVD method we keep track of the condition number, «, of the matrix A in Af = —u’ (section
3.5.1). For the EI G method of solution, we areinterested in the condition number of matrix ATA

in Af = 0 (section 3.5.2).

3.6 Resultsand Conclusions

3.6.1 [Initial Experiments

In this section we describe the results of our experimentsto determine the effects of the normal-
ising transform on our two implementations of the 8-point a gorithm. Experiments were per-
formed on a variety of synthetic data and real images, using manua and automatic feature de-

tection/matching methods. Here we give a representative sample of the results obtained.

In order to be able to make avalid comparison, our experiments follow along similar lines
tothosecarried out in Hartley’soriginal paper on normalisation[26], in that we show the effect of
varying the number of matched points used in the computation of the fundamental matrix. Thus,
given a dataset containing M matched points, we begin by selecting a random 8-point subset,
S, which is used to obtain an estimate for F. The condition number, «, of the solved system of
equations is recorded, as is the quality measure, (). This process is repeated for a number of
trials, each time selecting a different random subset of matched points. Once al thesetrias are
completed, we then do exactly the same thing using 9-point subsets, then 10-point subsets, etc.,
until we have computed F using all subset sizes 5 € [8...M].

For each dataset we plot graphs which show how « and ()  change as S isvaried. Herewe
use the median values obtained over all thetrialsfor each size subset. Note that, regardless of the
subset size, all M matches are used in the determination of @ 7. In addition, we vary the number
of trials used per subset as afraction of the total number of 5'-point subsetsin M. A pseudo-code

overview of the experimentsis as follows:
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G ven an M point dataset:

for subset size S =

{

8 to M

for sone variable nunber of trials T

{

random y select an S-point subset fromM

conpute F using this subset and each of the 4 nethods

enforce the rank constraint

record the kappa and ¥ values for this particular subset

}

record the nedian

3.6.2 Synthetic Data

and best kappa/ QX values for this size subset
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We begin by applying the algorithmsto a perfect dataset. The ideawasto obtain aframe of refer-
ence for future experiments and to see whether any differences could be detected when the algo-
rithmswere used under ideal conditions. We simulated a scene consisting of 60 randomly gener-
ated pointswithin aconstrained 3D volume. Two arbitrarily placed cameras project the 3D scene
points into the perfect 2D matched data. Figures 3.3 and 3.4 show how varying the number of
points used in the fundamental matrix calculation affects ¢) r and .

Looking at the graphsof «, two thingsareimmediately obvious. Firstly, itisclear that nor-
malisation has resulted in adramatic reduction in the condition number for both the SYDNORM
and EIGNORM methods, theimprovement being of the order of 10¢ and 10° respectively. Sec-
ondly, it would seem that as the subset size increases, so « isreduced. It isaso particularly no-
ticeable that the EI G implementation, in both its basic and normalised forms, is extremely ill-

conditioned when 8-point subsets are used to compute F'.

Asonewould expect for thiskind of dataset, the values of () - are very low, on the whole
to sub-pixel accuracy. However, it doeslook as though the EI G method is producing marginally
more accurate results. One thing that is aso worth mentioning at this point isthat for any given
8-point subset, both methods determine an exact solution for the el ements of the fundamental ma-
trix. Thus they generate F' matrices that are the same, to within a scale factor, and hence, give

identical valuesfor Q) 7.

3.6.3 Real Data: Corridor Images

The two images used here are part of a larger, widely-used sequence of a corridor. * Feature

detection and matching was done by hand, to produce 40 matched point pairs.

Figure 3.5 showsthat, aswith perfect data, normalisation | eads to areduction in the condi-
tion number of the system, for both methods of solution, but, again, we notethe high x valuesfor
EIG and EIGNORM when using exactly eight matched points. However, overall the improve-
ments were of the order of 10® for EIGNORM and 10° for SYDNORM.

Theimpact thishason ¢) - is easier to see than with the previous dataset (figure 3.6). Both

*This sequencewas provided by the Robotics Research Group at the University of Oxford.
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normalised methodsresult inasmall, but consi stent, decrease in perpendicul ar pixel error, relative
to their basic counterparts. The sub-pixel accuracy can be attributed to the fact that this manually

generated dataset contains only small errorsin localisation and no false matches.

Overdl, EIGNORM isthe best performer, but thereis very littleto choose between any of
thefour methods. Thisisemphasised by figure 3.7, which showstheimage pair overlaid by epipo-
lar lines generated by the best® fundamental matrices, obtained using each of the four methods.

As can be seen, the locations of the epipolesand lowest () = values are very similar.

3.6.4 Real Data: House Images

These images of atoy house were obtained from the VASC image database®. They are part of
a large image sequence (over 180 images) which has been used extensively for machine vision
research, particularly structure from motion, for example [48]. Theimages were processed using
the INRIA epipolar geometry server”, which in this case found a set of 116, rather noisy, point

matches (see figure 3.8).

Figure 3.9 shows that, once again, the normalisation process has the desired effect of im-
proving the conditioning of the systems, areductionin » of the order of 10'° for EIGNORM and
10° for SYDNORM . As before, thisleadsto a decrease in the median valuesof Q 5, asshownin
figure 3.10. For this noisy dataset, the beneficial effect ismore dramatic than we have seen previ-
ously, reducing () - by more than 3 pixels, when the computation involveslarge subsets. It isalso
noticeablethat, for thebasic EI G and SVD methods, ¢) r beginsto increase as the subset size ap-
proaches the total number of matched points. Thisis another feature of our noisy dataset. When
large numbers of points are used, there is a greater likelihood that the subset will include false

point matches, thus degrading the least-squares solution. However, the monotonically decreas-

®The fundamental matrix with the lowest Q@ » over al trials and all subset sizes.
5 Available on the World Wide Web at http://www.ius.cs.cmu.edu/l US/ppt_usrOlyx/idbm/image_html
"This enables users to have a pair of their own images processed remotely on the INRIA computer, via the World

Wide Web. Matched point correspondencesare obtained [71] and fed into an algorithm which computes the epipolar
geometry [8]. All resulting information is available, for example detected/matched features, the fundamental matrix,
images overlaid with matches, epipolar lines etc. This provided an alternative method of obtaining point matchesand

auseful check on the accuracy of our own results. The URL is: http://www.inria.fr/robotvis/demo/f-http/html/
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(@ EIG Qr = 0.54

(d) SYDNORM Qr = 0.55

Figure 3.7: Sample epipolar linesusing the four best F matrices from the corridor image pair.
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ing curves for the EIGNORM and SYDNORM methods suggest that the normalisation process

goes some way towards counteracting this effect.

Thetwo normalised methodsare clearly the best performers onthisdataset, with EIGNORM
doing dlightly better than SYDNORM. Although the basic methods give relatively poor results
for median ) = val ues, figure 3.11 showsthat the best fundamental matrices obtained over al their

trials are very similar to those of their normalised counter parts.

3.7 Initial Conclusions

In every experiment we performed, the normalisation process had the desired effect of improving
the conditioning of the system of linear equations. For theleast eigenvector method, the reduction
in x was of the same order of magnitudeas reported by Hartley, at approximately 10%. Thetheory
behind normalisationis specifically linked to thismethod of solutionand oneof thethingswewere
interested in was whether it could also be used to enhance the conditioning of the SVD method.
Indications are that thisisthe case, with our results showing a reduction of about 10*. The mag-
nitude of the improvement is clearly dependent on the quality of the dataset, the most beneficial
effects occurring with noisy data, containing may fal se matches and localisation errors. The same
applies with respect to the perpendicular pixel error; normalisation gave the biggest decreasesin
@) F on the noisiest datasets.

In every one of our EIGNORM experiments the enhanced conditioning resulted in lower
values for Q). Inthe vast mgjority of cases, SYDNORM gave only slightly poorer results, but

occasionally it was unstable (see figure 3.12).

Here, in spite of the lower condition number, SYDNORM actually givesworse resultsfor
Q) than basic SVYD. Whilethe SVYD method itself gives quite erratic values, it at least showsthe
familiar decreasing curve as the subset size increases, whichisnot the case for SYDNORM. One
possible cause of these anomalies could be the composition of the dataset, which in this case con-
tained alarge proportion of projectionsof planar 3D points. Hence, many of the random matched
point subsetswould have contai ned degenerate configurations[62]. We have not yet carried out a

more in depth investigation of this phenomenon, sincewe are primarily interested in a high-level
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(d) SYDNORM Qp = 1.82

Figure 3.11: Sample epipolar lines using the four best F matrices from the house image pair.
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comparison of themethods of solution. Herewe merely noteits, albeit infrequent, occurrence and

the fact that the EIG and EI GNORM methods seem unaffected.

In short, for this series of tests, the EIGNORM method produced consistently lower per-
pendicular pixel errors and better estimates for the coordi nates of the epipoles. The algorithm
copesvery well with noisy data, and its performance degrades gracefully asthelevel of noiseisin-
creased. Therefore, we have concluded that of the variousimplementationstested, the normalised
eigensystem method is the clear winner, and from now on thisis the method of implementation

we have used.

3.7.1 Further Experiments

The experiments we have performed so far have confirmed Hartley’s findings, that the normal-
isation process does lead to more accurate estimation of the fundamental matrix viathe 8-point
algorithm. However, theway these experimentswere carried out isnot avery practicable solution
to the problem. Rather than doing alaborious series of trial sfor different sized subsetswe would
prefer amore efficient way of finding the best fundamental matrix for agiven dataset. L ooking at
the graphs of subset size against perpendicular pixel error that we have presented, one might con-
clude that the best way to calculate F would be to use the largest possible subset size. However,
it must be remembered that these graphs plot the median values of () . Consider instead, figure
3.13. Thisis an example plot of the lowest values of ¢) » for each subset size, obtained during

the experiment on the house images described previously, but it istypical of the resultsfor other
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datasets.
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Looked at inisolation, without the swamping effect of being compared with the high error,
basic method, it is clear that the EIGNORM performance also degrades as the subset size ap-
proaches the total number of matches. As has aready been mentioned, thisis dueto the fact that
large subsets are more likely to include outliers in the data; false matches which taint the least-
squaresresult. The use of large subsetswhen computing F causes other problems. Clearly, asthe
size of our subset approaches that of the complete matched point set (5 — M ), the number of
permutations of pointsin that subset i ncreases exponentially, as does the number of trialsrequired
tofind thebest 5'-point subset. In additionlarger subsetsincur acomputati onal overhead, because
they lead to bigger systems of equationswhich take longer to solve.

However, itisequally apparent from this, and many other experimentson real data, that the
answer isnot to do the computation using the small est possibl e (8-point) subset. 1t may well bethe
case that afundamental matrix estimated from an 8-point subset isvery accuratein terms of those
8 points, but is not so good when applied to al the matched points. It seems that the optimum
subset sizei.e. the one that givesthe lowest ) -, can be anywhere except at the extremes of the
range S € [8...M]. Thequestionis, how tofindit? A bruteforce and ignorance solution, which
we will refer to as BEST-F, issimply to choose the best F matrix over al trialsand subset sizes.

However, we would prefer amore intelligent and efficient approach.
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Thesolutionwe employ isavariant of theRANSAC parameter estimation paradigm, which
wedenoteby RANSAC*.# Asbeforeaseriesof trialsare performed using randomly sel ected sub-
sets of the total number of matched points, but here 8-point subsets are chosen. At each tria, we
take the computed F and find all the point matches whaose perpendicular pixel error is beneath
some threshold value. These matches form the consensusset. The (> 8) pointsin the consensus
set are then used to compute another estimatefor F for which we calculate @ r, in the usua man-
ner. The old consensus set is replaced if the new consensus set is of equal or larger size and has
alower () . The process terminates either once al trials have been completed or the consensus
set sizeor () = reach a specified target. In detail, the RANSAC* version of our experimentsisas

follows:

Given adataset, M, of point matches, then for some fixed number of trias:

1. Randomly select an 8-point subset from M.
2. Compute F for this subset using EIGNORM.
3. Enforcetherank constraint.

4. Determine the consensus set C' of matches whose perpendicular pixel error iswithin some

threshold.
5. Computeanew F’ based on C'.
6. Caculate )y for F'.
7. Replacetheold consensus set if €' isthe same size or bigger, and has lower ) vaue.
8. Terminateif the size of C' or () i reach specified targets.
At the end of this procedure, we hope to have obtained a fundamental matrix, based on

many of thematched points, withalow ¢) - value, and to have donesoinarelatively small number

of trials.

#For afull description, refer to appendix B.
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3.7.2 Further Reaults

Thereislittle point in attempting to quantify the increase in speed of RANSAC* relative to the
BEST-F approach, since, by atering thenumber of trial s per subset sizeinthelatter case, wecould
come up with whatever figures we liked. Instead, we notethat for a given dataset, however many
trial sper subset size are needed in order to obtain agood estimate for F using BEST-F, invariably,
RANSAC* requires fewer trialsto give afundamental matrix which isalmost as accurate. Some

example results on different datasets” are givenintable 3.1.

Dataset Matched BEST-F RANSAC*
Points | Qr SubsetSize Trials | Qr ConsensusSize Trids
Perfect 60 0.30 52 4413 | 031 45 2340
Corridor 40 0.54 31 23674 | 0.62 23 6166
Quadrangle 43 0.43 23 32842 | 0.55 32 4570
House 116 181 50 42839 | 1.90 43 5666

Table 3.1: Comparison of results of obtaining F using the BEST-F and RANSAC* algorithms

The RANSAC* method resultsin dlightly inferior ¢) - values than can be obtained using
BEST-F. However, this small decrease in accuracy is outweighed by big improvements in effi-
ciency. To put the performance of RANSAC™ into perspective, table 3.2 shows how it compares

against some of the more complicated aternative methodsfor estimating thefundamental matrix.

NONLIN isanon-linear | east-squares method, L MEDS istheleast median of squaresand
M-EST usesthe M-estimators technique, as discussed in Chapter 2. Clearly, thereisvery littleto
choosebetween thevari ousimplementations. With perfect data, asonewould expect, they al give
virtually the sameresults, especially when applied to our noisiest dataset, the houseimages. There
ismore of adifferential when using hand-matched data, containing only small localisationerrors,
but we are still only talking in terms of afew hundredths of a pixel accuracy. The performance

of RANSAC* is even more impressive with our automatically processed house dataset, which

°We have already seen the perfect dataset and the corridor and house images. The quadrangle dataset is a pair
of hand-matched images from an outdoor image sequence of part of the Leeds University campus. The entire image

seguenceis shown in Appendix C.
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Dataset Qr
RANSAC* | NONLIN | LMEDS | M-EST
Perfect 0.31 0.31 0.31 0.31
Corridor 0.62 0.56 0.56 0.55
Quadrangle 0.55 0.49 0.47 0.45
House 1.90 1.92 184 1.90

Table 3.2: Comparing RANSAC* with more complicated algorithms

includes many mismatches. Hereit is only bettered by the least-median of squares algorithm.

3.8 Conclusions

In this chapter we have investigated Hartley’s normalisati on technique for improving the perfor-
mance of the 8-point algorithm. Although thistechniqueis based on numerical analysis of one
particular method of solution (El G), we have shown that its beneficial effects are quitegeneral in

that its application to another solution method (SVD) a so leadsto more accurate results.

We have demonstrated that, when using the normalised 8-point algorithm (EI GNORM)
to estimate the fundamental matrix, the size of the matched point subset used in the computation
is of great importance. We can obtain an excellent solution simply by carrying out thousands
of trials for each possible subset size and then picking the best solution overall, however, this
is very time-consuming. To this end, we have embedded EIGNORM within a RANSAC-style
procedure which attemptsto obtain a quick, accurate estimate for the fundamental matrix, based
on amedium-sized point subset (RANSAC*). We do not claim that thiswill produce an optimum
solution, but have shown that results of our simple, linear method are similar to those obtained
with other, more complex aternatives. In the next chapter we will use the fundamental matrices

acquired using RANSAC*, as the starting point for our 3D scene reconstruction.



Chapter 4

Reconstruction

4.1 Introduction

In hisseminal paper [12] Faugeras showed that it is possibleto obtain the projective structure of a
scene, givenjust aset of matched pointsinapair of imagestaken with uncalibrated cameras. This
generated agreat deal of interest in the development of algorithmsfor performing uncalibrated
stereo, that is, recovering the three-dimensional structure of a scene, without explicit knowledge
of the intrinsic or extrinsic camera parameters. Descriptions of some of these algorithms have
been given in Chapter 2. In the absence of any other information or simplifying assumptions, the
reconstructionwill be correct up to aprojectiveambiguity i.e. it will differ from thereal Euclidean

structure by a projective transformation.

Projective structure can be very useful in itsown right, for example, objects may be recog-
nised via projective invariants [56]. However, although geometrically related, it is unlikely that
the projective and Euclidean structures will ook anything like each other. If the intention isto
use the recovered structure for graphical reconstruction and subsequent viewing by aperson, this

clearly poses a problem.

A method of converting from a projective to Euclidean reconstruction was presented in
[25]. This uses the constraint of unchanging intrinsic camera parameters, which is the basis of

camera self-calibration theory[13], requiring at | east three views of the scene, taken with the same

50
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camera. The method is highly complex and relies heavily on the Levenberg-Marquardt iterative
parameter estimation algorithm [50]. Although it appears to give good results using synthetic
data, the method’s performance on images of real scenesis lessimpressive. For thisreason, we
have adopted a simpler approach, using ground truth points. If the Euclidean positionsof five or
more of the pointsin the projective structure are known, it i s possibleto compute the projectivity
that maps between them. This can then be applied to all the projective points to achieve a full

Euclidean reconstruction.

In thischapter we describe our implementati on of aEuclidean reconstructi on method, based
on the properties of the fundamental matrix. Rather than restricting ourselvesto a single pair of
images, we present anovel incremental version of the basic algorithm which allowsusto recover

the Euclidean structure of an extended environment viewed over along image sequence.

4.2 Outlineof the method

Before embarking on a detailed description of each of the stagesin our implementation, we first
provide a brief overview of the entire system. A diagrammatic representation is given in figure

41.

We begin by estimating the fundamental matrix for thefirst pair of imagesin the sequence,
using the algorithm described in the previous chapter. This is then factorised in a manner which
allows us to construct estimates for the pair of camera matri ces used in the formation of the two
images. Next, we recover the projective structure of each of the matched points by computing
the intersection of the two rays, projecting back from the two cameras through the corresponding

image features.

For thefirst image pair only, we transform our projective structureinto a Euclidean frame,
using a projectivity derived from asmall number of user-supplied ground truth points. With sub-
sequent images, we proceed in a similar manner. A new fundamental matrix is estimated, using
matched pointsin the current and previousimages. As before, thisis factorised to obtain a pair
of camera matrices and hence, another batch of projective structure. Once again, we upgrade the

projective structure using a projective transform, but here, the ground truth information is not
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Figure 4.1: Overview of the system

supplied directly by the user. Instead, we use common points from our previously computed Eu-

clidean structure.

The entire processisrepeated, generating new Euclidean structure as we step through each
pair of imagesin the sequence. Notethat, as the sequenceis processed, old pointswill disappear

and new ones come into view: thereis no requirement for pointsto be visiblein all the images.

4.3 I mage Sequence Processing

Before embarking on a description of the reconstruction algorithm we first consider some of the
inherent problems of image sequence processing and the effects these have on the overall design

of our system.

Any systemwhichinvolvesthe processing of |ong image sequences must addressanumber
of issues. First of al, unlessthe systemiscapable of processinglivevideo directly from acamera,

or some other input source such asaV CR, then the sequence must be digitised onto disk, and thus
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we need to look at the space requirements. Take, for example, our quadrangle sequence. In this
case, six and a half minutes of original video footage, digitised at full frame rate (25 frames per
second), took up over agigabyteof disk space! We simply did not have enough resourcesto keep

thisamount of data on our system for any length of time, so had to find away to reduce the size.

Oneaobvioussolutionwas simply to reducethedigitisingframerate. When attemptingtodo
so, it was important to remember that each pair of imagesin the resulting sequence must contain
enough overlap to allow usto obtain aset of matched features, for usein our fundamental matrix
algorithm. Now, our footage was filmed by walking around with an ordinary palm-corder and the
route we followed involved a number of twistsand turns, some of them quite sharp. Assuch, it
was extremely difficult to keep the cameramoving at asteady pace and so some parts of the scene
passed in and out of view much more quickly than others. Where thiswas so, it was essentia to
digitiseat full frame rate, to ensure enough inter-frame overlap, but el sewherethisresulted in lots

of almost identical, redundant frames.

Idedlly, we would have liked to have been able to vary the digitisation rate, based on the
speed of camera motion. Without thisfacility, the best solutionwe could manage wasto digitiseat
full frame rate and then manually extract representative frames, discarding the rest. This process
reduced over 10000 digitised frames to 104, resulting in the image sequence shown in Appendix
C, which only takes up 10 megabytes of disk space.

Unfortunately, this space saving comes at a cost. Suppose we have processed apair of im-
ages from our sequence, with a corner detector, for example[22, 57, 67]. Thenext task isto solve
the correspondence problem i.e. find the set of matching corners between the two images. The
fact that there is such a relatively large baseline between our images, causes problems for local
strategies, such as nearest-neighbour, which search for a match in the area of the second image

corresponding to the location of the other corner in the first. For example, consider figure 4.2.

Thisshowstheresult of applyingasimplelocal matching algorithm, based on cross-correlation,
to a set of corner features, found via the Plessey detector [22], in a pair of the corridor sequence
images. The usual match search area parameter of about ten pixelsis of no use for thisimage
pair, asthedisparity ismuch greater than that. However, it can be seen that using alarger valueis

not the answer. The image on theright is overlaid with matched corners, in red, and yellow lines
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Figure 4.2: Poor performance of alocal matching algorithm.

indicating the corner trgjectories. Clearly the matching process has not been very successful.

In order to have a chance of finding the correct match, the search area must be increased.
However, thisnot only increases the computational cost of the process, it also makesit more prone
to false matches. Thisis particularly so for scenes containing repeated structure (windows etc),

where it is easy to match one instance incorrectly against another.

The effect of false matches can be seen in Figure 4.3. Figure 4.3(a) shows the results of
processing thefirst pair of quadrangleimages with the INRIA point detection and matching a go-
rithm[71]. Evidently, asignificant number of fal se matches have been detected. Thefundamental
matrix estimated from these noi sy matches does not encapsul ate the correct epipolar geometry for
thispair of images. This can be seen by comparing the epipolar linesin figure 4.3(a), with those

in 4.3(c), which were generated by a fundamental matrix computed from hand-matched data.

We have already mentioned one possiblesol utionin the previous chapter. Thefundamental
matrix constrainsthelocation of amatched point to lie on agiven epipolar line, which can reduce
the search spacedramatically. Unfortunately, thisislikethe ' chickenand theegg’ situation, inthat
weneed to find at | east eight point matchesin order to compute thefundamental matrix! However,
if aninitial set of matchesisaobtained, by some other means, thefundamental matrix approach can

then be used to discard fal se matches in the set, as described in [71]. A variation on thisthemeis
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(c) Epipolar lines from hand-matched data..

Figure 4.3: Effects of false matches on epipolar geometry
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discussed in [4], which matches over three images using the trifocal tensor.

It was not the objective of thiswork to investigate automatic feature matching, whichisa
research topic in itself. For thisreason, asimple, manua feature detection and matching system
was developed, using an X11-based graphical user interface (see figure 4.4). The user can pro-
cess each image of the sequence in turn, matching existing features or specifying new ones, by
clicking the mouse button at the desired image location. Matched features are highlighted in red,

unmatched features are either old (yellow) or new (orange).

4.4 Constructing Camera Matrices

In the previous chapter a method was described for estimating the fundamental matrix, F, from a
pair of views of ascene, taken with an uncalibrated camera. Acquiring F isthe key to recovering
the projective structure of the scene, since it encapsulates all the geometric information relating
the scene and the cameras that can be extracted from aset of matched imagefeatures. Inparticular,

knowing F allows us to construct camera matrices for our two cameras.

Thereason for thisis directly related to the derivation of the linear criterion in section 3.3.
Thereit was shown that, by choosing C = (I|0) and C’ = (R| — Rt) as our partitioned camera
matrices, the fundamental matrix could befactorisedasF = RS, whereS = [t]. Now consider
the more general case, wherethetwo cameramatricesare C = (R|—Rt)and C’ = (R'|-R't’).
As before, it is possible to determine the epipolar line corresponding to a point (u, v, w) in the
first image. Two points which must lie on this line are the images under C’ of the first camera's

optical centre and the point at infinity, given by

t R (u, v, w)
and (4.1)
1 0

These project to R’(t — t') and R’R ™" (u, v, w) in the second image. The epipolar line, I' =

(¢, 7, s), through these pointsis given by the cross product

(¢,7,8) = R/(t —t') x RR™ " (u, v, w) (4.2)



Figure 4.4: Our manual feature detection and matching user interface.
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Which, by the properties of cofactor matrices, can be rewritten

(¢,7,8) = R™((t —t') x R (u, v, w)) 4.3
and
(¢,7,8) = R"[t =t/ R~ (u, v, w) (4.9
F

and thuswe obtain an expression for F' in terms of the components of our camera matrices.

F=R"[t-t],R™! (4.5)

It has been shown [23] that this relationship does not determine the two camera matrices
uniquely. In particular, if C; and C) are two camera transforms satisfying equation 4.5, then
so are C, = HC; and C, = HC/, where the matrix H is a4x4 projectivity. Consequently,
the 3D structure of a scene derived from any such pair of camera matrices is defined only up to
an arbitrary projective transformation. The task now is to construct a pair of camera matrices
for which equation 4.5 holds. A number of different ways of doing this have been proposed, for
example [23, 24, 4, 53]. A hybrid of some of these methods is described, which we believeleads

to amore intuitive solution.

45 FactorisingF

We follow convention and choose the origin of the world coordinate system as the optical centre
of the first camera, its axes aligned with the camera axes. The second camera is displaced from
thefirst by sometranslation and rotation, giving thetwo familiar camera matrices, C = (I|0) and

C’ = (R| — R't). Substitutinginto equation 4.5 gives:
F = R [-t]« (4.6)
The problem now isto find away to factorise F in the above form.

Thefirst step isto compute the singular value decomposition F = UDV', where U and

VT are orthogonal matricesand D isthe diagona matrix (r, s,0). ! Notethat one of the singular

! Some swapping of matrix rows and columns may be necessary sothat r > s > 0.
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values will always be zero, due to the enforcement of the rank constraint, discussed in section

3.5.3. Defining the two matrices:

0.0 —1.0 0.0 0.0 —1.0 0.0
E=1] 10 00 0.0 and Z=1| 1.0 0.0 0.0 (4.7)
0.0 0.0 1.0 0.0 0.0 0.0

The fundamental matrix can now be factorised as:
F = M~[e]« (4.8)

where

M* = Udiag(r,s,7)EVT (4.9)

with 4 any non-zero number, best chosen to lie between r and s, to make M as well-conditioned
as possible?, and

[e]x = VZVT (4.10)

where e is the coordinate vector for the epipolein the first image.

This works because the process of singular value decomposition explicitly constructs or-
thonormal bases for the nullspace and range of a matrix. Specifically, the rows of V7 (denoted
VI fori = 1,2,3) whose corresponding singular values are zero are an orthonormal basis for
the nullspace. Given the ordering of the singular values and the fact that Fe = 0, it is clear that
VI x VI = VI = e, which accountsfor [e], = VZVT. Furthermore, since F = M*[e],, it

followsthat e MTF ~ e’ M?M*[e], = e'[e], = 0. Hence, FT(Me) = 0 and so Me ~ €'
The end result of thisfactorisation, isthefollowing pair of camera matrices
C = (1]0) and C’' = (M|p)) (4.11)

Once again, it must be stressed that these are in no way intended to be the true camera matrices,
but they are related to them by a projectivetransformation, which isenough to allow usto recover

projective structure.

Onefina point of note with which to end this section: the matrix M* isthe epipolar trans-

form discussed in section 3.2. It provides the mapping between epipolar linesin the two images.

“Weset v = (r+s)/2.
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To see this, let p be apoint in the first image and let I’ be the corresponding epipolar linein the
second image, hencel’ = Fp. Theepipolar linethrough p inthefirstimageisl = p xe = [e]«p.
Hence, M*1 = M*[e]«p = Fp = I, asrequired. Thusthe matrix M maps epipoles to epipoles

and the matrix M* maps epipolar lines to epipolar lines.

4.6 ProjectiveReconstruction

Suppose C and C’ are camera matrices, consistent with the fundamenta matrix obtained from a
set of point matchesin apair of images. Armed withthisinformation, itisarelatively straightfor-
ward process to recover the corresponding projective structure of the scene. Consider one such
point matchp = (u,v,1) < p’ = (v',0v",1). Thepoint Pp = (X,Y, Z,T)in P? that projects
onto p and p’ islocated at theintersection of the two rayswhich originate from the optical centres
of the cameras and pass through the matched points. This places constraintson P p, based on the

standard perspective projection equations:

X
(857 011 012 013 C'14 %
av = 021 022 023 024 7 (412)
a C31 C3p (33 Czy
T
and
X
pu’ C{I Ciz 013 014 v
po' [ =] €y O Ch Oy (4.13)
Z
j Cy Cgy Cig Cy -

Multiplying out we get

au =Cp X+ CpY + CizZ + Ci4T
av = Cle + CQQY + CQgZ + CQ4T (414)
a =003 X +03Y + U332 + 34T
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and
pu’ = CHX + CRY + ClaZ + CLT

B = CHX + CLY + ChZ + CLT (4.15)
p= CZ/%IX + C:/azY + C§3Z + C:/34T
All the various camera matrix elements are known, as are «, v and «’, v’, so, cancelling out the
scalefactors, o and , then rearranging, givesa set of four linear equationsin the four unknowns
X,Y,ZandT.
Cip—uC3 Crp—uCz Ci3—uCsz C1qg—ulzy
Co1 —vC3  Cay—vl3 Cyz3—vl33 Chy— vl
Cly —uw'Cyy Oy —u'Cly Ciy—u'Chyy Cly—u/'Cyy
Ch =005 Oy —0'Chy Chy—0'Cly oy —0'Cyy T 0
With perfect data, the solution to this homogeneous system of equationsis Pp, the point of inter-

(4.16)

N <
o o O

section of thetwo rays. In practice, measurement errors mean the rays will not intersect and we
solve for the point of their closest approach. We generate and solve such a system for each pair

of matched pointsto build a complete projective reconstruction.

A variation on the aboveisto constrain the form of thepointsin P*toPp = (X,Y, Z,1).
Thisleads to a system of four linear equations in three unknowns, which can be solved by stan-
dard least-squares techniques. However, it has been pointed out [52] that this formulation makes
the, possibly invalid, assumption that the projective pointsdo not lie on theideal plane. As such,
some choices of camera matrices may give poor results. The two methods produceidentical pro-
jective structure estimates, so athough none of our experi ments have reproduced the af oremen-

tioned problem, we will stay with the original formulation.

In fact, our efforts to compare the two variations raised an interesting question: how to
check the correctness of the resulting structure? A visual i nspection of projective structure is of
littleuse, apoint made clear in figure 4.5. Thisshowsthefirst pair of images from our quadrangle
sequence, along with two views of the projective structurerecovered by our system. Itisquiteob-
viousthat the projective structure bears no resemblance whatsoever to thereal scene. In general,

thiswill be the case for any projective reconstruction.

In the absence of any other information there is no way to quantify the accuracy of the

projectivestructure. Thebest we can hopeforisto show that it isconsistent,i.e. thatitisactualy a
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Figure 4.5: Thefirst pair of imagesin the quadrangle sequence and two views of their projective

reconstruction.
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correct solutionto thereconstruction problem. The simplest way to do thisisto computeresiduals
for each system of linear equations. In other words, use the two camera matrices to reproject the
3D points and compare their reprojected image coordinates with those of the original matched
features. We compute the ratio of the ratios of the original and reprojected » and y coordinates
for each point pair. Ideally these values should all be 1, which provides an easy way to tell, at
aglance, if the projective structure is correct. Also measured isthe overall average distance, in

pixels, between the original and reprojected image points, which one would hope to be closeto

zexro.
Image 1 Image 2
Feature | Original Reprojected Original Reprojected
Label x y z’ y Ratio | = y z’ y Ratio

0 159 236 | 159.0 2355 | 0998 || 246 256 | 246.0 256.0 | 1.000
8 218 167 | 2180 167.4 | 1.002 | 307 184 | 307.0 184.0 | 1.000
16 32 135| 320 1348|0998 || 108 155 | 108.0 155.0 | 1.000
24 100 226 | 100.0 226.1 | 1.000 || 174 247 | 1740 247.0 | 1.000
34 77 139 | 770 139.0| 1.000 || 132 159 | 132.0 159.0 | 1.000
60 255 60 | 2550 599 | 0999 || 343 71 | 3430 71.0 | 1.000
76 142 61 | 1421 621 | 1018 || 222 77 |221.0 77.0 | 1.000
85 70 78 | 700 783 | 1004 | 146 96 | 1450 96.0 | 1.000
95 46 5 | 460 51 |1025 | 117 22 | 1160 220 | 1.000
109 17 74 | 170 737 | 0997 90 93 | 90.0 93.0 | 1.000

Average Absolute Image Coordinate Differences

002 037 0.00 0.00

Table 4.1: Results of reprojecting projective structure

Table 4.1 shows some exampl e results of these computations for the image pair and pro-
jective structure of figure 4.5, using a representative sample of matched points having a range of
coordinate values. The original, manually-detected, image points are shown to the nearest pixel,

while the reprojected coordinates are rounded to the nearest tenth of a pixel. The reason for this
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sub-pixel accuracy istoillustratethat the original and reprojected coordinates are not necessarily
identical. The ratio of ratios of the coordinates is given to three decimal places. Again, thisis
primarily to indicate that theratio is not always exactly 1, but it also servesto show that theratio
of ratiosis furthest from 1 when the z-coordinateis significantly larger than the y-coordinate, as

with feature 95.

As can be seen, in this case all the coordinate ratios are equal, or very closg, to 1, and the
overall average coordinatedifferences are extremely small. Thuswe can concludethat, regardliess
of what it looks like, the projective structure recovered by our system is indeed consistent with
the given point matches and fundamental matrix. It isinteresting to note the relative inaccuracy
of thelmage 1 reprojections. A possibleexplanationfor thisisthat whilethe lmage 2 camerawas
explicitly computed, the Image 1 camera matrix was fixed to C = (I|0). Further investigation
would be required to determine why the average Image 1 = and y-coordinates differences vary by

more than afactor of ten.

4.7 Upgradingto Euclidean Structure

471 Method 1: A Direct Solution

The recovered projective structure isrelated to the real scene structure by a 3D projective trans-
form. So, in order to obtain afull Euclidean reconstruction we need to determine the 4x 4 trans-
formation matrix, H, which mapsthe set of projective points Pp; to their Euclidean counterparts

Pg;. For one such pair of corresponding structure points, the mapping is

aXp Hyy Hiyp Hiz Hig Xp
aYg _ Hyy Hyy Hiyz Hoy Yp (4_17)
alZp Hszy Hszy Hsz Hsy Zp

« Hy Hiyy Hyz Hyy Tp

Multiplying out, cancelling the scale factor, «;, and rearranging, givesthe following set of

three linear equationsin the sixteen unknown elements of H:
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Hia
—Xp—Yp—Zp-TIp 0 0 0 0 0 0 0 0 XgXpXeYrXeZpXglp

0 0 0 0 —XP—YP—ZP—TP 0 0 0 0 YEXP YEYP YEZP YETP =0
0 0 0 0 0 0 0 0 —Xp—Yep—Zp—Tpr ZsXp Z5Yr ZeZpr Z5Tp :

HSS
(4.18)
The projectivity H isonly defined up to ascale factor (see Appendix A), and therefore has
just fifteen degrees of freedom. Since each correspondence Pp; < Pg; givesriseto three such
equations, we only need five ground truth pointsto solvefor the elements of H. Thistransforma

tion can then be applied to all the projective pointsto obtain Euclidean structure.

4.7.2 Method 2: An Indirect Solution

An aternative method for obtaining the projectivity has been suggested which does not rely di-
rectly on the projective structure [23]. Just as H maps from projective to Euclidean structure, its
inverse can be used to perform the reverse transformationi.e. Pp; = H~'Pg,. Thuswe can for-

mulate a set of constraintson the elementsof H~!, based on the perspective projection equations

XEi

QU
Y,

Q;0; = CH_l K (4.19)
A5

a;
TE;

and

XEi

Bl
Y,

gl |=cm | F (4.20)
A5

B
TE;

Multiplying out, cancelling the scale factors, «; and 5;, then rearranging, gives a set of
four, rather involved, linear equations for each combinati on of point matches and corresponding

ground truth. However, only three of these are linearly independent, so we need at | east five such
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combinationsto solvefor H , up to a scale factor. We can then invert, to obtain H and upgrade

our projective structure as before.

4.7.3 Initial Experiments

In order to compare the performance of the two methods, described above, we carried out a series
of simple experiments. Although only five ground truth pointsare actually needed to solvefor H,
it helpsto have more available, to be able to measure the accuracy of the projectivity with respect
to how it transforms points which were not used in its computation. For these experiments a set
of twelve® ground truth points Pr; was used, corresponding to matched pointsin the quadrangle

images, and chosen to give a good distribution in the 3D world space.

First of all, arandom subset of five of the ground truth points was selected. Thiswas used
to estimate projectivetransform matrices, H, and H, for each of thetwo methods. Next, the pro-
jectivitieswere appliedto all* of the projective points, to obtain new estimatesfor their Euclidean
locations H,Pp; = Py, and HyPp; = Ppy,. Finaly, measures of the quality of the projec-
tivities, () r7, and Q) r7, , were computed as the average Euclidean distance between the twelve esti-

mated Euclidean pointsand the corresponding groundtruth dist(P g1, P, ) and dist(P g, , P, ).

The experiment described above was performed 10000 times and the )y values for the
two methods were examined. There was little correlation between the two sets of values. That
is, a subset of correspondences that generated an accurate projective transform using the direct
method would not necessarily do so for the indirect method. We have not performed afull statis-
tical analysis of these results and so can only state that, on atrial for trial basis, the direct method

outperformed the indirect method on approximately 68% of occasions.

The sets of ¢) ;7 values were sorted and Figure 4.6 shows a graph of the 100 lowest values
obtained for each method. The ground truth points for this pair of images were spread over a

world space volume of approximately 50x 10x 50 metres, so both methods exhibit good best-case

*Thisisin fact just asubset of over ahundred ground truth pointsfor the initial images of the quadrangle sequence.
These were obtained by the author, with the aid of atrusty tape-measure, one cold, dark, miserable Sunday evening,

when the campus was, thankfully, deserted!
*In these experiments a total of 43 projective/Euclidean correspondenceswere available.
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Figure4.6: Comparison of theaccuracy of thedirect and indi rect methodsfor computing thetrans-

form from projective to Euclidean structure.

performances, getting the average Euclidean distance error downtowell under ametre. However,
itisclear that, on average, the direct method givesthe most accurate results. Inthe sequel, all our

discussionsand experimentswill be based on thismethod of solving for the projectivetransform.

Figures 4.7-4.10 show the Euclidean structure recovered by this method, using the trial
above which had the lowest () ;7 value, for the lecture theatre building in the image pair of figure
45. Asit israther difficult to portray three-dimensional structure on a two-dimensional page,
especialy using just point features, severa different views of the reconstruction are shown. A
partial triangulation of some of the pointsinto 3D facets is performed, and subsequent texture-
mapping® makesiit easier to see the relationship between the real and recovered structure. These
results demonstrate that it is possible to obtain a good estimate for the Euclidean structure of a

projective scene, if just five ground truth points are known.

®The texture-mapping processis very basic, simply interpol ating the pixel valuesfrom the original image between
the triangle vertices. Since camera calibration is unknown, there is no attempt to correct for camera motion, and thus

the texture-mapping only looks realistic when the structure is viewed from close to the original camera position.



Figure4.7: (a) Front view of the reconstructed points

Thisview of thereconstructionisfrom aposition closeto theoriginal cameralocation,
looking directly towards the lecture theatre building. The 'staircase’ of pointsin the
top half of (a) correspondsto the corners of windows on the front face of the building,
while the 12 points at the bottom right belong to the middle and right supporting pil-
lars. In (b), thefront face of the building has been modelled using 3 texture-mapped
triangles. The original image locations of these triangles are shown in (c). Thethin
triangles at the extreme left and bottom of (b) correspond to the | eft side of the build-
ing and the ground plane, respectively. These are easier to seein figures 4.8 and 4.9,

which show the reconstruction from different viewpoints.

(b) Partial triangulation with texture-mapping
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Figure 4.8: (a) Side view of the reconstructed points

Thisview of the recovered structureisfrom a position at the right-hand
side of the lecture theatre building, looking directly along the plane of
itsfront wall. The featureson thiswall (corners of windowsetc.) form a
vertical band of pointsin (a), whilefeatures on or near the ground plane
form aperpendicular group. Thetriangular facet in (b) is part of theleft-
hand wall of the building, but the texture-mapping is not consistent with
the viewpoint dueto the significant changein camera position. Theorig-

inal image location of the texture triangleis shownin (c).

(b) Partial triangulation with texture-mapping
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Figure 4.9: (a) Top view of the reconstructed points

Thisis atop-down view of the recovered structure of the lec-
ture theatre. The vertical band of pointsin (8) represents fea-
turesonthefront wall of thebuilding, whilethegroup of points
at thetop-right belongsto thepillarsand bollards at thel eft side
of the building. Clearly visiblein (b) isthe right-angled struc-
ture formed by the triangul ations of some of these points (as
shown in figures 4.7 and 4.8). The kite-shaped polygon, con-
sisting of two triangles, depictsthe ground plane. The original

image locations of the texture triangles are shown in (c).

(b) Partial triangulation with texture-mapping
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(c) Texturetrianglesin the original image
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Figure 4.10: Thisisanother top-down view of the lecture theatre reconstruction. The viewpoint
is slightly different to that in figure 4.9 to show more of the texture-mapping on the sides of the

building and give a better sense of the recovered structure.
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4.8 Incremental Reconstruction

Once a Euclidean structure estimate has been acquired for the scene in thefirst image pair, it can
be extended incrementally by processing each remaining image in the sequence. Theinitial steps

of this processing are identical to the ones used for the first image pair i.e.

1. Load the next image in the sequence and call it the current image.

2. Obtain aset of matched featuresin the current and previousimages.
3. Usethe matched features to estimate afundamental matrix.

4. Factorise the fundamental matrix to obtain a pair of camera matrices.

5. Use the camera matrices to determine a proj ective reconstruction for the matched points.

At this point we calculate the projective transform to upgrade to Euclidean structure, as
before. However, there is a difference: we no longer rely upon the user to supply the system
with ground truth data. If the newly-computed projective structure includes at least five points
for which there exist previously estimated Euclidean coordinates, then these correspondences are
used to obtainaprojectivetransform. Thisisthen beappliedtotheremaining® projectivestructure
to map it into the existing Euclidean frame. The whole processis repeated for each subsequent
image in the sequence, at each step ‘stitching’ new and old structure together via the projectivi-
ties. Thus a Euclidean model of the entire scene is gradually built, from a basis of asfew asfive

ground truth points.

This algorithm places some restrictions on the visibility of features between imagesin the
sequence. Ourincremental Euclidean reconstruction processrequiresfive or more projectivepoints
which have aready been assigned Euclidean 3D coordinates. In order for this to be true, these
points must previously have taken part in the process of fundamental matrix calculation, projec-
tivereconstruction and upgrade to Euclidean structure. Hence, at some point they must have been

included in a set of eight or more matches between two successive images. Thus, each extension

Those points without Euclidean correspondences.
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to our overall Euclidean structurerequiresfive pointswhich have been viewedin at |east threeim-
ages. Theseconstraintshave been builtinto our GUI-based feature detection/matching system, so
at each step the user knowsexactly how many image matches or 3D correspondences are required

to proceed.

There is one other implementation detail we have not yet discussed. So far, we have been
happy to assumethat the projectivity cal cul ation could be performed simply by choosing the best
result from asmall number of trials. Thisapproach is perfectly valid for thefirst pair of imagesin
the sequence, when we know the correspondences between proj ective pointsand accurate ground
truth data. Thisaccuracy also meansthat thereislittleto be gained from using morethanfive of the
ground truth points. However, when processing the remainder of the sequence, the projectivity is
computed using a set of previously estimated Euclidean points. Obvioudy, some of these will be
more accurate than othersand, hopefully, therewill be many morethan five correspondences. We
would liketo devise an efficient way to choose the best subset of thesewith whichto calculatethe
projective transform. The is reminiscent of the problem faced in section 3.7.1, when attempting
to estimate the fundamental matrix from a noisy set of matched image points. Here, we employ

asimilar solution.

481 A RANSAC Approach

We have embedded the direct method of computing the projective transformation matrix, H, into
aRANSAC* dgorithm. Given a set of five or more correspondences between projective and ex-
isting Euclidean structure, we perform a series of trials. In each trial, thefirst step isto select, at
random, a5-element subset, from all the correspondences. Thisisused to computethe projectivity
whichisthen applied to all the projective pointsto obtain new estimatesfor their Euclidean posi-
tions. We then compute the di stance between each newly estimated and existing Euclidean points.
Those correspondencesfor which this distanceis bel ow agiven threshold form the consensus set.
The (> 5) correspondencesin the consensusset are then used to cal cul ate another projectivity, for
which we compute the average Euclidean distance error, over all correspondences, as in section
4.7.3. The old consensus set is replaced if the new oneis of equal or larger size and has alower

Q i value. We then move on to the next trial and the process continues until either all thetrias
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have been completed or the consensus set size or () ;i value reach aspecified target. In detail, the

RANSAC* projectivity calculationis as follows:
Given five or more projective< Euclidean structure correspondences { Pp., Pr, }, then for
some fixed number of trias:
1. Randomly select a subset of 5 correspondences, Ps¢ C { Pp,, PEi 1.
2. Use Ps¢ to compute the projectivity H.
3. Apply H to obtain new Euclidean structure estimates HP p, = P ;-

4. Determinetheconsensusset C' of correspondenceswhose Euclidean distanceerror isbelow

some threshold.
5. Calculate anew projectivity, H’, based on C'.
6. Compute Q¢ for H'.
7. Replacetheold consensus set if (' isthe same size or larger, and has alower ) 7.

8. Terminateif the size of C' or () ;y reach specified targets.

At the end of this procedure, we hope to have obtained a projective transform, based on
many of the correspondences, with alow @)z value, and to have done so in a relatively small

number of trias.

48.2 Reaults

Figure4.11 showstheresultsof thereconstruction agorithm after processing theinitial ten frames
of the quadrangle sequence. Although the two-dimensional constraints of the page make it diffi-
cult to get afed for the recovered three-dimensional structure, this plan view indicates how the
structure has been extended from that shown in figure 4.9. Clearly visible at the middle right of
the diagram, istheright-angled corner of the building, whichisin view over thefirst few frames.
The set of pointsleading away from this, to the south, corresponds to a series of bollards, while

thelong straight, east-west configurati on representsthe strutsof acontinuousconcrete bench. The
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set of points at the very top of the figure consists of features on the vertical surface of a distant
building. The remaining pointsin the centre of the plan belong to various prominent scene fea-
tures. Although these do not provide much in terms of readily identifiable scene structure, they

are avauable source of extradatafor satisfying the constraints of section 4.8.

Figure 4.11: Plan view of the recovered quadrangle scene after 10 image pairs.

Althoughthealgorithm performswell at recovering the structure of objectswhich are close
to the camera, objects at long range cause problems. The reason for thisis the image resolution,
whichistoo low to alow feature pointson distant objectsto be detected and matched with suffi-
cient accuracy. Take, for example, the point at the top left of figure 4.11, which is approximately
fifty metres from the camera. Changing the coordinates of one of its corresponding image points
by just a single pixel resulted in a seven metre shift in its recovered Euclidean structure. These
erroneous structure points can have a detrimental effect on the overall reconstruction, if they are
used in the cal culation of the projectivetransform at later steps. For example, figure 4.12 showsa

plan view of another reconstruction of the same section of the quadrangle scene, which hasfailed
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for thisreason; the pointsat the upper left of the figure being completely wrong. At the moment,
this problem is avoided by only considering foreground structure when performing manual fea-

ture detection and matching.

- L ..
B °om
N

Figure 4.12: Failed reconstruction of part of the quadrangl e scene

Results indicate that at each step in the reconstruction process, the error in the recovered
Euclidean structure increases, even that of objects which are close to the camera. Thisisto be
expected, due to the knock-on effect of calculating the projective transform at each step using
previously estimated Euclidean structure. In the case of along image sequence, the accumulated
error could become very large, leading to inconsistenciesin the recovered structure. In the next

chapter we will describe our attemptsto deal with this problem.



Chapter 5

Structure Recognition and Matching

5.1 Introduction

Our experiments of the previous chapter have shown that errorsin the recovered Euclidean struc-
ture can accumulate rapidly, over the course of a few frames, and even when the reconstruction
process isinitialised with ground truth data. We must consider the effect this would have on a
long sequence of images, especially onein which the camera eventually returnsto view a part of
the scene that has been seen previously. For example, figure 5.1 shows a simple diagrammatic

representation of such an occurrence: a complete walk-around of arectangular building.

In thisexampl e, the reconstruction process startsby recovering structurefor the front of the
building. With our reconstruction system, this structureis extended incrementally as the viewer
walks clockwise around the building, until eventually, the camera returns to somewhere close to
its starting position. At this point it will be viewing the front of the building for the second time
and thus we will have obtained two different sets of Euclidean structure for this section of the
building. The errors in the structure recovery process will mean that the two structure segments
are not aligned correctly in the world coordinate frame. If our reconstruction system isto be of
any practical use, we need to find a way to turn thisinitia incorrect structure into one which is

internally consistent.

In order to do this, two problems must be solved. First of all, we must be able to recognise

77
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Figure 5.1: Errorsin the reconstruction process can lead to internally inconsistent structure.

when two recovered structure segments actually correspond to the same part of the real-world
scene. Once this has been accomplished, it is necessary to find the transformation which brings
the two structure segments into alignment. In terms of model-based recognition, these are the
problems of indexing and matching. The task is further complicated by the fact that occlusion
and/or a change of viewpoint could mean that the two segments do not contain exactly the same
points. We show that these problems can be solved using the geometric hashing paradigm, agen-
eral method for model -based object recognition. It was originally devel oped for thetask of identi-
fying flat rigid objects[35, 34] from images, using an affine approximationto thefull perspective
camera, but the same approach can be used for many recognition problemsinvolving a variety of

transformationsin two and three dimensions [37].

Classical geometric hashing is a two-stage process, object representation and matching.
Briefly, thefirst stage, whichis usualy done off-line, involvesthe construction of ahash table, to
provide an invariant representation for each of a series of model objectsthat are to be recognised.
In the second stage, features extracted from images of the scene are used to compute invariants,
with which to index the hash table and tally votesfor candidate modelsi.e. thosethat could feasi-

bly be present in the scene. A high vote count not only indicatesthelikely presence of an instance
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of aparticular model object in aview of the scene, but the corresponding invariantsdetermine the

model —view transformation.

The same basic algorithm can be used to solve our problem of matching two segments of
Euclidean structure, with oneimportant difference. Rather than havingapriori knowledge of aset
of model objectsto be recognised, our hash tabl e starts off completely empty. Astheincremental
reconstruction systemrecovers new estimated Euclidean points, these are hashed intothetable. In
asense, the system ’learns’ its own models of segments of scene structure asit goes along. Later
in the image sequence, if we come across the same structure segment again, the geometric hash-
ing system should recognise this, and provide the transform between the old and new segments,
thus solving both our indexing and matching problems. As with al indexing techniques, geo-
metric hashing allows for the recognition of many models simultaneously. Thisisimportant for
our application, in which an extended environment could be represented by hundreds of structure

segment models.

We begin this chapter with an overview of the original geometric hashing paradigm, fol-
lowed by adiscussion of thedetailsof our implementation. We describe our method for represent-
ing 3D structurein aform which isinvariant to Euclidean transformations, and present a simple,
symmetry-based approach for improving the efficiency of the hashing process. Finaly, we de-
scribe the way we have embedded the geometric hashing a gorithm into our structure recovery

system and discusstheinitial results of experiments on real image sequences.

5.2 An Overview of Geometric Hashing

In this section we review the geometric hashing paradigm in the context of its original applica
tion: the recognition of flat objects under the affine transformation (rotation, transl ation, scale and
shear). Thisallowsfor avery simple explanation of the algorithm’smain concepts and will help
usto show, later in the chapter, how our implementation differs from that of the standard method.

The genera scheme of the geometric hashing paradigm is shown in figure 5.2.

When viewing flat objects which are relatively distant from the camera, orthographic pro-

jection (with a scale factor), provides a good approximation to the full perspective camera[29].
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Figure 5.2: The general scheme of the geometric hashing algorithm
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Under thisassumption, two different images of the sameflat object arerelated by a2D affine trans-
formation T. In other words, there exist anon-singular 2x 2 matrix A and 2D vector b, such that
a non-homogeneous point p in thefirst image is transformed to the corresponding point Ap + b
in the second. The transformation has six degrees of freedom and can thus be fully determined
by three point correspondences. Assuming that sets of interest points have been extracted from
images of themodel objectsand the scene, the problem becomes that of determining if sometrans-
formed subset of scene pointsmatches asubset of any of themodel point-sets. Thekey tothislies

in representing the point setsin amanner which isinvariant to the affine transform.

5.21 2D Affinelnvariance

Suppose we have extracted a set of m points from an image of one of our model objects. We
can pick any ordered, non-collinear triplet of pointsfrom thisset and usethem to represent all the
other points. Consider figure 5.3. Let aqgg, @10 @nd aq; bethree, non-collinear pointsin theimage.
Thevectorsi = (ajg — ago) and j = (ap1 — ago) are linearly independent, hence they are a2D
linear basis. Any point p in the image can be represented as a linear combination of these two

basis vectors. In other words, thereis a pair of scalars («,/3) such that:

p = ai+ )+ ag = alaio — ag) + Hlagr — ago) + ago (5.1

Application of the linear affine transform T to this representation for p gives
Tp = a(Tajg — Tagg) + S(Tagr — Tago) + Tagg (5.2
Hence the transformed point Tp has the same coordinates («,/3) with respect to the affine
basis TagyTa o Tap; as has p with respect to agpaipag. For example. suppose we make the

following coordinate assignmentsfor the pointsin figure5.3: ago = (5, 1),a10 = (10, 1),a01 =

(7,5)and p = (24,9). Writing these in terms of equation 5.1 gives:

5 2
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Figure 5.3: Representing p using the affine basistriplet agoaora10-

which means, by inspection « = 3 and 3 = 2. Now, suppose we have an affine transform T =

Ax + b where
1 2 3
A = and b = (5.4
2 1 4

Applying thisto our four pointsgives. Tagy = (10, 15), Ta;o = (15,25), Tag; = (20,23) and
Tp = (45,61). Once again, in terms of equation 5.1 we have:

45 5 10 10
=« +05 + (5.5)
61 10 8 15
——— ———

Clearly o = 3 and 5 = 2 isasolutionto thissimplepair of linear equations. Thuswe have
obtained a representation for the point p whichisinvariant to the affine transform T. Armed with
the mechanism for computing such invariants, we proceed with a description of the two stepsthat

make up the geometric hashing method: model representation and matching.
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5.2.2 Mode Representation

Classical geometric hashing usually beginswith apreprocessing step, to generate ahash table con-
taining invariant descriptions of the model objects that the system needs to be able to recognise.
In the 2D &ffine case, this implies we have a database of images of our model objects, and that
from each of these we have extracted sets of interest points corresponding to model features. The
model representation is constructed by considering every possible three point subset of interest
points as an affine basis and, in each case, hashing the invariants computed for al the remaining

points. The outlinefor this preprocessing stageis as follows:

For each mode!:

1. Extract a set of m interest points.
2. For each ordered, non-collinear triplet of interest points (affine basis):

¢ Computetheinvariant coordinatesof theremaining m — 3 interest pointsin the affine

frame defined by the basistriplet.

¢ Passeach set of invariant coordinatesto a hash function which generates indicesinto
the hash table.

¢ At each given hash table location, known as a bucket, store a record of the model
and affine basis from which the invariants were obtained. Note that the finite size of
the hash tablewill often lead to collisions, whereby more than one (model ,basis) pair
needs to be stored in each bucket. In such cases the bucket holdsalist of these pairs

(seefigure 5.4).

The preparation of the hash table can belooked upon asakind of learning process, in which
various different representations of the models are memorised. Since it requires no knowledge
about the scenesin which the models are to be recognised, it is usually performed off-line. Once

preprocessing is compl eted, the geometric hashing systemis ready for the matching stage.
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Figure 5.4: Hash table organisation

5.23 Matching

In geometric hashing the object representation and matching stages follow along very similar
lines. When matching, we are presented with an image of a scene, and wish to determine which,

if any, of our model objects are currently in view. To do thiswe:

1. Extract a set of n interest pointsfrom the image.

2. Choose an arbitrary ordered triplet of non-collinear points and use them as a basis with

which to compute the affine invariant coordinates of the remaining » — 3 points.

3. Pass each set of invariant coordinates to the hash function which generates indicesinto the

hash table.

4. Check each indexed hash table bucket and tally a vote for every (model,basis) pair stored

there.

5. Look for a(model,basis) pair which scores a high number of votes. Each such pair implies
that an instance of thegiven model ispresent inthescene. Furthermoretheuniquely defined
affine transformation between the candidate model and image basis tripletsis assumed to

be the transformation that maps between the model and the scene.

6. Apply the transformation obtained in step 5to al the image pointsthat voted for the candi-
date model to induce additional model-image point correspondences. Find the best trans-

formation between all the correspondences, in aleast-squares sense.
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7. Transform the entire low-level representation of the model (which may include additional
information, such as edge features, colours etc.) viathe affine transformation obtained in
step 6 and verify it against the scene. If the verification confirms the existence and orienta-
tion of the model, the matching processis complete. If this candidate solution is rejected,
another one from step 5 is examined. If there are no more candi date solutions, go back to

step 2.

It should be noted that, in general, the voting scheme will not result in just one candidate
solution. In fact, that is not realy the aim. Rather, the intention is to reduce significantly the
number of candidates which make it through to the verification step. Also, since votes are cast
for all models simultaneously, the complexity of the recognition process is independent of the

size of the model database.

One of the nice features of geometric hashing isits ability to recognise partially occluded
objects. Thisis made possible by the preprocessing stage, which constructs model representa
tions using all the basis triplets from the points of interest. Thus, for matching to succeed it is
enough to pick three pointsin the scene which belong to some model, in which case the appro-

priate (model ,basis) pair will score highly in the voting procedure.

5.3 Hashing Euclidean Structure

The description of geometric hashing in the previous sections was based around the problem of
recognising models and scenes related by a 2D affine transform. Aswe have seen, computing in-
variants under such atransform requires athree-point basi s. Other transformations have different
basisrequirements. For example, recognition of objectswhich have undergonea 2D or 3D trans-
lation needs only a one-point basis, and a four-point basis for a projectivity between two planes
[37]. A projectivity from P? to P? requires afive-point basis[12]. In our case, we wish to match
two sets of 3D Euclidean structure, which differ by somerigid transformation. 1t will be shown

that this problem can be solved using a three-point! basis.

In fact, thisis also the casefor the 3D similarity transform, so we can solvefor this more general problem with no

additional complexity.
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In passing, we note that given aset of » model/sceneinterest pointsand a k-point basis, the
worst case complexity of the geometric hashing algorithm is O(n*+1) [37]. Thus, by upgrading
from projectiveto Euclidean structure as part of the reconstruction process, the complexity of the

recognition task has been reduced from O(n®) to O(n?).

5.3.1 Computing Euclidean Invariants

Supposewe have aset of four 3D Euclidean structurepoints. Three of these can be used to define
anew coordinate system (basis) in which the position of the fourth pointisinvariant to a 3D rigid
or similarity transform. Consider figure 5.5. The three points, £, Fy and Fs, define the unit
length and the zy-plane of our new coordinate system, X Yr 75, with X asthe origin. The
normal to this plane defines the new z-axis. Thetask isto compute the position P with respect to

this new coordinate frame.
Y

Figure5.5: Points 4, F» and F5 define a 3-point basisfor computing the new coordinates of P,

which are invariant under 3D rigid and similarity transformations.

We begin by constructing orthogonal vectors corresponding to the direction of each of our

new coordinate axes, as follows;
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1. Thenew z-axisvectorissimply Xz = E; — Eq.

2. To compute the new z-axis vector we first need to define the vector Vs = E3 — Eq. To-
gether, thevectors X i and V5 define our new zy-plane. We can now obtain our new z-axis

asthe normal to thisplane, given by the cross-product Zy = Xg X V3.

3. Finally, our new y-axis vector is given by the cross-product Yy = Zx x Xg.

Theinvariant coordinatesof the point P, denoted P,,,, = («, /3, v), are obtained by cal cu-
lating the component of thevector Vp = P — E4, inthedirection of each of our new coordinate

axis vectors, and dividing by the unit length, as follows:

1 a=(Vp-Xg/|Xg|)/|Xg|
2. =(Vp-Yg/|YE])/ Xl
3. v=(Vp-Zg/|Zgl)/ Xkl
Asaquick check that thismethod actually works, consider computing invariant coordinates
from aset of four 3D pointsunder some simpletransformations. In each case, thefirst three points

are used to computetheinvariant coordinates of the fourth. Firstly, theresultsfor theoriginal four

points.

10 20 14 15
Pi=| 10 [;Pz=]| 12 [:Ps=]| 20 [:Pa=] 11 (5.6)
10 12 15 25

These points give the invariant coordinates of P4 as (a, 5,7) = (0.76,0.51,1.22) and a unit
length of 10.39.

After scaling the points by afactor of two:

20 40 28 30
Pi=1| 20 |;Pa=] 24 |;Ps=] 40 [;P4s=] 22 (5.7)
20 24 30 50
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Asonewould expect, thistimetheunit length hasincreased to 20.78, but theinvariant coordinates

of P, remain as (0.76,0.51, 1.22).

Thistimeatranslation of (5, 10,20)7, followed by the same scaling as above, transforms

the pointsto:

30 50 38 40
Pi=| 40 [;Pa=| 44 |;Ps=| 60 |;Ps=| 42 (5.8)
60 64 70 90

Which givesidentical results to the previous test of unit length 20.78 and invariant coordinates

(0.76,0.51,1.22).

For one quick final test, the pointswere transformed by arotation of 180 degrees about the

z-axis, followed by arotation of 90 degrees about the xz-axis, giving:

10 —20 14 15
Pi=| —10 |;Pa=| 12 [;Ps=]| —15 |;Pa=| —25 (5.9
10 12 20 11

Once again, these give the invariant coordinates of P4 as(0.76,0.51, 1.22) and a unit length of

10.39.

5.3.2 Symmetry Considerations

For any given set of three points, A, B and C', there are six different ways of ordering them to
construct a Euclidean basis; ABC, ACB, BAC, BCA, CAB and C BA. Each of these bases
can be used to compute the invariant coordinates of a fourth point D = («y, 5;,7;), where i =
1...6. Aninteresting question is whether or not one would expect to obtain different invariant
coordinates with each basis, or if it is possibleto extrapol ate the result of one computation from

another and thus speed up the hashing process.

Let A;/By and A,/ B, be two different labellings for the points A and B corresponding
to the normal ordering of points (A BC') and when the positionsof A and B have been swapped
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Figure 5.6: Effect of basis point ordering on coordinate axes.

(BAC), respectively. Figure 5.6 showsthetwo bases A, B;C' and By A;C'. Asdescribed in sec-
tion5.3.1, thefirst stagein thecomputation of invariant coordinatesisthe construction of anew set
of coordinate axes. The z-axisvectorsfor thetwobasesae X; = By —A; and X, = By — A,,
which differ only in their signs. The next step is to compute the vectors U; = C — Ay and
U, = C — A,. Dueto the change of point ordering, these two vectors will be different. The
z-axes are computed as the cross-products Z, = Xy x Uy and Z, = X5 x Uy. ThusZ, and Z-
are both normal to the plane A BC', but have different signs. It follows, that the y-axes, which are

computed as the cross-products of the = and z-axes vectors, will be the same for both bases. 2

Now, consider figure 5.7 and the addition of a fourth point D. The invariant coordinates
of D are obtained by projecting the V; and V, vectors onto the coordinates axes defined by the

two bases. First of dl, it can be seen that the two vectors V; and V4 are related as follows:

Vi-Vy =Xy (5.10)

Thus, projecting in the direction of the X, , givesarelation between the invariant a-coordinates

for the point D in the two bases:

(6 5] + Qg = 1 (511)

®Sinceixj=k — —ix —j=k.
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Figure 5.7: Effect of basis point ordering on invariants.

The y-axis vectors for both bases are identical, therefore the invariant 5-coordinates are
identical. Similarly, the z-axis vectors differ by only by their signs, therefore so do the invariant
~ coordinates. Asaresult, if the three invariant coordinates are computed for one of these bases,

then the invariantsfor the other are trivially defined.

Thisresult holdsfor thebasispairs ABC / BAC, ACB/BC AandC AB/C BA. Thus, out
of apossible total of eighteen different invariant coordinates®, there are only nine independent
values, which can be obtained from just three of the basis orderings. Table 5.1 summarises the

rel ationships between the ordering of the basis points and the invariant coordinates.

ABC aq Bi | m

BAC | 1—ay | B | —™1

ACB Qg B2 | 72

BCA | 1—ay | B2 | =72

CAB as B3 | 73

CBA |1—-a3 | B3| —3

Table5.1: Effect of basis ordering on invariant coordinates.

Three for each of the six different bases.
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Thissymmetry property can be used to reduce the computation time of the hashing process,

since only haf of al the possiblebasis choicesfor agiven point set need to be considered.

The important point is that, in each of the related basis pairs, only the positions of the A
and B points have been swapped and therefore only the signs of the x-axis vectors differ. Other
positional changes have different effects. For example, consider the two bases A BC' and AC'B,
for which the positions of points B and C' have been exchanged. This effectively swaps the z-
axis vector X and the U vector, and changes the unit length. The z-axis vector, obtained as the
cross-product of these, only changes sign?, but the y-axis vector, which is the cross-product of
the » and z-axes vectors, will be different. Asaresult, projecting the point vector V onto each of
these axes and dividing by the unit length, will give different invariant coordinatesfor D in the

two bases.

5.4 Geometric Hashing and I mage Sequences

A geometric hashing system has been devel oped, based on the Euclidean invariantsdiscussed in
the previoussection. In thissectionwe describe how it hasbeen incorporated into our incremental

reconstruction system.

Themost important difference between our method and that of standard geometric hashing,
isthat we do not performa preprocessing step, at least, not in the usual sense. Thereason for this
issimple: there is nothing to preprocess, no predefined database of models to be recognised, no
a priori knowledge of the scene. Rather, the intention is that the system should acquire its own

model s automatically and do so concurrently with the matching stage.

Each step of the reconstruction system processes the next pair of images in the sequence
and, starting with a set of matched points, eventually recovers a 3D Euclidean structure segment
for the part of the scene currently being viewed. These segments are stitched together, incremen-

tally, to build up areconstruction for the entire scene.

*In fact, since no matter which ordering of pointsis chosen, the resultant X and U vectors alwayslie in the plane,

ABC, the z-axis vector is the same (up to a change of sign) for all these basis permutations.
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The model acquisition part of the geometric hashing system follows aong the same lines.
Asthe reconstruction system generates new structure segments, their 3D points are used to com-
pute Euclidean invariants(section 5.3.1) with which toindex and updatethe, initially empty, hash
table (section 5.2.2). Thus, a complete hash tabl e representation for the entire scene is gradually
obtained.

Similarly, in the recognition stage, recovered structure segments are used to compute in-
variants with which to index the hash table and tally votes (section 5.2.3). Hence, if a structure
segment containing pointsthat have previously been hashed comes back into view later in the se-
guence, the system shoul d recognisethisfact, in additionto providing the transformation between

the corresponding points.

54.1 PartitioningtheHash Table

One approach to updating the hash table with new structureinformation would be to hash the new
3D pointstogether with al of the old ones, which have previously been estimated. Thiswould
create one large model of the scene viewed over the whole image sequence, but it would be a
highly redundant representation, since the majority of combinations of pointsused in computing

the invariants could never actually be viewed together in the scene.

The hashing strategy actually used in the implementation of this schemeisbased around a
simple observation: both the model acquisition and recognition stages depend entirely upon the
recovered structure segments which contain only local information. In other words, for along
image sequence, each image only gives a view of a small section of the entire scene. Thus, a
more efficient approach to updating the hash table would be to compute invariants using only the
currently viewed structure segment. In fact, the method used isto compute invariants based on
pointsin the current and previous d structure segments’. This creates some overlap in the hash

table, but alowsfor recognition from a wider range of viewpoints.

In essence, when a segment of scene structureis viewed for the first time in the image se-

guence, it isused, along with neighbouring segments, to construct an invariant representation for

®Where d is determined by the disparity between pairs of imagesin the sequence.
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the local patch of structure. Thus, when updating the hash table, the information recorded is not
(basis,mode!), but (basis,patch).

5.4.2 Algorithm Outline

Each step in the reconstruction a gorithm resultsin a structure segment containing a set of newly
estimated Euclidean points. At the same time, a set of previously estimated old structure points
will have just gone out of view. The old points are used to update the hash table, while the new
ones are used for recognition. The benefit of thisapproach is to ensurethat the new pointsare not

used for model representation and matching at the same step.

Suppose, a some step ¢ of the reconstruction process, a structure segment has been recov-
ered and sets of old and new points, denoted Sor.p, and Sy gw,, have been determined. Model

acquisition and matching proceed as follows:

Model Acquisition

Combine the pointsin Soz,p, with those obtained at d previous stages (Sor.p,_, ---Sorp,_,),
to obtain alocal structure patch. Let this patch contain a total of m points. For each ordered,

non-collinear triplet of these points: (Euclidean basis):

1. Compute the invariant coordinates («, /3, ) of the remaining m — 3 points pointsin the

Euclidean coordinate frame defined by the basis triplet.
2. Usetheinvariantsto generate indicesinto a 3D hash table.

3. At each given hash table location, store a record of the patch and Euclidean basis from

which the invariants were obtai ned.

Matching

1. Suppose Sy Ew, containsatotal of » points.
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2. Choosean arbitrary ordered triplet of non-collinear poi ntsas a Euclidean basisand compute

theinvariant coordinates of the remaining » — 3 points.
3. Usetheinvariantsto generate indicesinto a 3D hash table.

4. Check each indexed hash table bucket and tally a vote for every (patch,basis) pair stored

there.

5. Look for a(patch,basis) pair which scores a high number of votes. Each such pair implies
that at least part of the given patch is present in the scene. The uniquely defined Euclidean
transformation between the candidate patch and scene segment bases is assumed to be the

transformation that maps between the patch and the scene.

6. Apply thetransformation obtainedin step 5to al the Sy gy, pointsthat voted for the can-
didate patch, to induce additional point correspondences. Find the best transformation be-

tween all the correspondences, in aleast-squares sense.

7. Compute the average Euclidean distance between the candidate patch points and those ob-

tained by applying the above transform to Sy gy, .

8. If thetransformation resultsin alow average Euclidean distance between pointsin Sy gw,
and the candidate patch, then the existence and orientation of the patch has been verified
and matching is complete. If not, this candidate solutionis rejected and another one from

step 5 isexamined. If there are no more candidate solutions, go back to step 2.

5.5 Resaults

55.1 SyntheticData: Smple Models

We beginwith avery basictest of the geometric hashing system, to ensurethat theimplementation
isagorithmically correct and bug-free.

Figure 5.8 showsaset of simple 3D model s, thefirst five of theseare quitedistinct, whilethe
sixthisasdlightly skewed (noisy) version of the first. The corner points of models 1-5 were used
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L - — 4 - — — —

Figure5.8: Theset of simplemodelsusedininitial testsonthe geometric hashing system. Models
1-5 are structure segments used to build the hash table structure. Model 6 is a skewed version of
model 1, used to seeif the system copes with noisy data.
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as structure patches, with which to initialise the hash table, as described in the previous section.
Subsets of the same points were then fed into the matching process, to see if the system could
recognise each of the models using perfect data. For thistest, an exhaustive® series of trialswere
performed, with the best match taken to be the model which received the most votesin any single

trial. Resultsare shown in Table5.2.

Subset | Matched | Most
Modél Modél Votes | Trid

aa A W DN P
o A W DN P
= W N O O

1
1
1
1
1

Table 5.2: Results of geometric hashing using perfect synthetic data.

As one would expect, the system had no difficulty matching the point data to the original
models. In every case the correct match, with the highest number of votes, was achieved with the
first choice of basis points. It isworth noting that each of the *Most Votes' valuesis actualy the
maximum number of votes possible, since an n-point structure patch will cast n — 3 votes per

basis’.

We mention, in passing, that exactly the same results as above were obtained from a sup-
plementary test, which attempted to match using model pointsthat had undergone arbitrary Eu-
clidean transformations. Thisis additional confirmation of the invariance property discussed in

section 5.3.1.

The next test of the system was an attempt matching with imperfect data. The sensitivity of
the geometric hashing paradigm to such errors was discussed in [20], while methods for dealing
with noisy datawere presented in [70] and [16]. The suggested approach is to modify the voting
part of the matching scheme. Rather than just indexing a single hash table bucket and tallying a

SUsing all possible basis/point combinations.
T Assuming, asin this case, an even distribution of basis/model pairs over the hash table, such that no pair appears

more than once in a given bucket.
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votefor each of theelementsit contains, al bucketswithin aregion of interest around theindexed
location take part in the voting process. The implementation of this idea required only a minor
extensionto our 3D geometric hashing system, whereby votes are cast in aspherical region around

theindexed location.

Theimperfect data we hoped to match was based on the sixth model of figure 5.8. In fact,
several variations of this model were created by adding different levels of random noise ® to the

original model 1. Resultsfrom a series of trials, as before, are shown in Table 5.3.

% Matched | Most | % Max
Noise | Model | Votes | Correct
0 1 5 100
5 1 4 100
10 1 4 100
15 1 3 100
20 1 2 90
30 1 1 66
40 3 1 46

Table 5.3: Results of geometric hashing using noisy synthetic data

The first thing to note from the table is that up to and including the 30% noise level the
geometric hashing system successfully matched the input data with model 1. However, as the
noiselevel increased, so thelargest number of votesscored inany singletrial decreased. Thefinal
column of thetabl e givesthe percentage of thetrial swith the highest vote count that proposed the
correct match. Inthe10-15% noiserangethiswasall of them. At the20% noiselevel thisdropped
to 90%, and with 30% noise only 66% of trials with the given highest vote count (1) matched
correctly. This means that although the matching process was successful eventually, many more
candidate matches had to go through the verification procedure. Unsurprisingly, with 40% noise
the matching system proposed the wrong match the majority of thetime.

#The noiselevel was calcul ated as a percentageof the size of the original model. Model 1 wasacubeof 10x10x 10

units, so, for example, anoise level of 10% means a random coordinate shift of 1 unit.
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55.2 Real Data: Recovered Structure

For thisseries of testswe attempted to match the structurerecovered from thefirst pair of quadran-
gle images, against the original ground truth. The structure correspondences were grouped into

five model s/patches according to 3D location, as shownin Table 5.4.

Model | Number of Description
Number Points of features
1 8 Supporting pillars at the front of the lecture theatre
2 9 Supporting pillars at the side of the lecture theatre
3 6 Features on the distant building
4 14 Windows on the |eft of the lecture theatre
5 13 Windows on the right of the lecture theatre

Table5.4: Grouping of features into structure patches

Each of the recovered structure patches was used as input to the matching process. Initia
experimentswiththisdatahighlightedaproblem. Thesystemwasproposing (incorrect) candidate
matcheswith a‘Most Votes' valuethat was three or four times the expected maximum. Thiswas
caused by an uneven distribution of invariant coordinate values, as shown in Figure 5.9. Asa
result, a given basis'/model pair could be stored many times in the same hash table bucket. Thus,
each timethat bucket wasindexed for voting, multiple voteswere cast for that pair. We attempted

to solvethis problem using alogarithm-based hash function.

The results of subsequent experiments are shown in Table 5.5. Unfortunately, none of the
recovered structure patches were successfully matched against the corresponding ground truth
data. The‘Most Votes' column still showsalarger number of votesfor the proposed match which
is bigger than the maximum we would expect from an evenly distributed hash table, but there has
been a marked improvement. The final column givesthe largest number of votescast in asingle
trial for the correct model. Only the trials with patches 4 and 5 result in a high number of votes

for the correct model. In the other trials the proposed best match seems amost arbitrary.

Thisisnotreally surprisingif wetakeacloser ook at thedatathe geometric hashing system
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Recovered | Matched | Most | Correct
Patch Model | Votes | Votes
1 4 12 0
2 5 13 7
3 4 5 0
4 1 17 14
5 4 16 15

Table5.5: Results of geometric hashing using real data.

hasto work with. For example, four pointschosen at random from set of correspondences number

2. The ground truth valuesfor these points are:

20.00 0.00 —662.00 —587.00
P, = 39.00 1Py = 39.00 i Ps = 108.00 1Py = 328.00
—350.00 —743.00 244.00 1050.00

Theinvariant coordinatesof P, are (a, 5,v) = (—3.47,—1.78,0.56), using thefirst three points

asabasis. If we now examine the corresponding recovered structure points:

—33.46 —75.79 —731.63 —535.36
P, = 26.53 s Po = 28.32 i Ps = 99.23 1Py = 325.74
—304.85 —688.49 331.68 935.04

These give the invariant coordinates of P, as («, 3,7) = (—3.05,—1.71,0.62). The g and v
valuesare quitesimilar, but in the context of the overall range, the o value has changed quite dra-
matically. Such differences between the computed invariants cause the wrong hash tablelocation

to be indexed, resulting in spurious votes being cast and incorrect candidate matches.
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5.6 Conclusions

Although the results of experiments with synthetic data have been encouraging, so far we have
been unableto get the geometric hashing system to recogniserea structure patches successfully.
It is apparent that the cause of this problem is not the geometric hashing system itself, but rather,

inaccuracies in the recovered Euclidean structure, which forms the input to the system.

A common approach to dealing with such noisy data is to use a region-based voting a-
gorithm, but this has also proved inadequate. The difficulty lies in determining the size of the
region of interest. Too small aregion achieves nothing, but if it istoo large then many candidate
matches are found, which defeatsthe object of performing geometric hashinginthefirst place. So
far we have been unableto devel op asensiblevaluefor thesize of thevoting regionwhichislarge
enough to alow recognition to take place but small enough to generate a manageable number of

candidate matches.

It may bethat performance can beimproved slightly by careful choiceof parameterssuch as
the size of the voting region or modifying the hash function, but, in conclusion, it woul d seem that
unless away can be found to produce more accurate structure estimates, the geometric hashing

method of matching will not be successful.



Chapter 6

Conclusions

6.1 Summary

Thework presented in this thesis addresses the problem of automatically reconstructing a model
of an extended environment, from along image sequence taken with an ordinary hand-held video
camera. An uncalibrated approach to structure recovery has been taken, based on the cal culation
of the epipolar geometry of successive pairs of images in the sequence. Knowledge of ground
truth data, for thefirstimage pair only, isused to propagate an estimatefor the Euclidean structure
of the entire scene. Over along image sequence, it is anticipated that errors will accrue, and asa
result, the recovered structure will beinternally inconsi stent. A method which attempts to detect

such anomalies has been devel oped, using the geometric hashing paradigm.

In Chapter 3 a method is described for acquiring the fundamental matrix from a set of
matched pointsinapair of uncalibratedimages. It isbased on anovel implementation of thewell-
known 8-point agorithm, which combines a recently developed normalisation technique with a
variation on the RANSAC parameter estimation algorithm. Thislinear method is simple, yet ef-
ficient, and experiments on arange of real and synthetic data show that it produces quantifiably
accurateresults. A direct comparison demonstratesthat the method generates fundamental matrix

estimates of similar quality to those of more complicated alternatives.

The fundamental matrix is the input to the reconstruction system presented in Chapter 4.

102
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We use Hartley’ smethod for factorising afundamental matrix, to construct apair of camera matri-
cesfor the correspondingimages. Theseare used to obtain an estimate for the projective structure
of the current view, viaback-projection. For thefirst pair of images in the sequence, five or more
ground truth pointsare required, in order to compute a projective transform matrix with which to
upgradefrom projectiveto Euclidean structure. The problem of cal culating the projectivity which
best fits the datais again formulated and solved using the RANSAC scheme.

An origina feature of the reconstruction system is the way in which remaining image se-
guence pairs are processed. Each is used to obtain a segment of projective structure, as outlined
above, but the upgrade to Euclidean is performed, not with ground truth data, but rather, using
previously estimated Euclidean structure. Thus a complete reconstruction for the sceneisincre-
mentally obtained, by stitching together the segmentsof Euclidean structure acquired at each step.
Results show that the reconstruction system performs well when recovering the structure of ob-
jects which are close to the camera, but copes poorly with distant objects. In the latter case, the
image resolution is insufficient to be able to detect and match point features accurately, even by
hand. Asaresult of this, very small changesin theimage coordinates of apoint can lead to large
changes in the recovered structure. Thisis a problem faced by any image feature-based recon-

struction system and is not due to the specific method used here.

At each step of thereconstruction system, new structureisacquired using old structurethat
wasitself estimated. As successive image pairs are processed the error in the recovered structure
will accumulate. In along image sequence there is the possibility that previously viewed parts
of the scene will be re-encountered. In this event there will be two structure estimates for the
scene segment; the current one and the one obtained the first time it was in view. It is required
that amatch between these two segmentsisfound and their rel ative orientation obtained, in order
that globally consistent structure can be maintained. Chapter 5 describes an method to tackle this
problem, using geometric hashing.

The geometric hashing system has been devel oped to work in tandem with the reconstruc-
tion process. Unlike conventional geometric hashing, there is no off-line preprocessing stage.
Rather, the models to be recognised are memorised while the system is running, and thisis done

concurrently with the matching stage. The modelsin question are patches of recovered Euclidean
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structure. At each step in the reconstruction, an additional patch of structureisused to update the
hash table. The systemisbased around 3D Euclidean invariantsand amethod for obtaining these
isdescribed. Also presented is a symmetry-based technique for improving the efficiency of the
hashing process.

The goal of the geometric hashing system is not to produce a unique match between the
scene structure and that which is stored in the hash table. Instead, it aims to obtain a manageable
number of candidate matches, which can be examined more closely. Unfortunately, thisaim has
not yet been achieved, asthe system either produces|arge numbers of candidate matches, or not at
al. Thisfailureis not due to the geometric hashing implementation, but rather, the data it works
with. The problem is caused by the fact that errors in the recovered Euclidean structure accumu-
late more quickly than expected. For the geometric hashing system to function as intended, the

accuracy of the reconstruction must be improved.

6.2 FutureWork

The calculation of the projective transform between projective and Euclidean structureisthe key
to the reconstruction process. The elements of the transform matrix are obtained viathe solution
of a set of homogeneous linear equations, using the least eigenvector method. Thisisthe same
approach taken when computing the fundamental matrix in Chapter 3, and it would be worth in-
vestigating the possibility of improving the result of this cal culation by developing anormalising
transform, based on the analysisin [26].

Another extension to the existing method might be to assign a measure of accuracy to each
reconstructed point, and only use the most accurate points in the projectivity calculation. The
measure might be based on the distance of the point from the camera, or recursively, on the accu-

racy of the pointsused when its structure was recovered.

A possiblecause of structurerecovery problemsistheinitial reliance on ground truth data.
Any measurement error in these points would have an adverse effect on the whole reconstruc-
tion. An alternative approach would be to estimate the Euclidean structure directly, using a self-
calibration, asin[25].
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Inits present form the geometric hashing systemisisbased on invariantsof a3D similarity
or rigid transform. However, since we are dealing with rigid structuresiit is possible to obtain
more discriminatory information, for example the size of the triangle formed by the three basis
points. This shape sighature can be used to ensure that only appropriate bases receive votes and

thus reduce the number of candidate matches[70].

Also, at present, thereisno indication of when therecognition processshouldtakeplace. Of
course, it ispossibleto attempt recognition after every reconstruction step and hash table update,
but thiswould be wasteful, since it is expected that previously viewed structure will only rarely
be re-encountered. The reconstruction process can provide an estimate for the pose of the camera
at each step and thisodometry information could be used to trigger recognition when approaching

structure that has been seen before.

In addition, once a match has been found, there is still the question of how best to update
the structure, so that it internally consistent. Thisisof particular importanceif the reconstruction
isto be of practical use, for example avirtual reality application, and is certain to be the subject

of future research.

6.3 Closing Comments

The problem we have tackled is an exceptionally difficult one, and the proposed solution brings
together elements from a number of areas of machine vision. To date, we have been unable to
demonstrate successful resolution of inconsistenciesin the reconstructed model, for reasons dis-
cussed in Chapter 5. However, the overall approach proposed remains plausibleand it is hoped
that future work, including some of the suggestions above, will succeed in producing internally

consistent models.



Appendix A

Essential Projective Geometry

In this appendix we review some of the most important concepts of projective geometry, which
we have used elsewhere in the thesis. For a more thorough introduction, the reader is referred to
[11] or the appendix of [47], which provide excellent discussions of the subject, from amachine

vision standpoint.

A.1 Homogeneous Coordinates

In projective geometry manipulation of points, lines, planesetc. iscarried out using homogeneous
coordinates. Projective transformations are linear in homogeneous coordinates, and some prob-
lems can be greatly simplified by expressing themin thismanner. Consider the case of perspective
projectionfrom 3D to 2D, whichisimportant in machinevisionasit representstheformation of an
image by a camera. Using Cartesian coordinates thistransformation is non-linear, but it is linear

in homogeneous coordinates [11].

In two dimensions, the Cartesian coordinates of a point are a 2-vector (z, y)”. The same
point in projective two-space, P2, can be represented in homogeneous coordinates by some 3-
vector (u,v,w)’. The simplest way to obtain the values of these three elementsisto set u =

x,v = yandw = 1, thus;
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(z,9)" = (2,9, )" (A.1)

However, an important property of projective geometry is that only the ratios of the ele-
ments of the homogeneous coordinates are important. Hence two homogeneousvectors represent

the same homogeneous point if oneisa multiple of the other. That is:

(2,9, )T = Az, Ay, AT (A.2)

where ) is some non-zero scalar. For example, (12, 10,2)7,(30,25,5)" and (-6, —5, —1)T al

represent the same homogeneous point.

Converting from homogeneous back to Cartesian coordinates is equaly straightforward.
Simply divide through the homogeneous vector by its third element and then remove the third

element (which will of course be 1),

Ar Ay A

T
e\ = (5.2L3) = @t = (e (A3

Or, without the explicit scale factor, (u, v, w)? — (u/w,v/w)’. Thus, in our example

above, the three homogeneous vectors al correspond to the Cartesian point (6, 5)7.

An additional benefit of homogeneous coordinatesisthat they make it possibleto represent
pointslocated at infinity on theimage plane. There isno such representation in Cartesian coordi-
nates. In homogeneous coordinates a point at infinity, called an ideal point has its third element
equal to zeroi.e. itisof the form (u,v,0)”. Idea points are treated in exactly the same way as
any other pointsin theimage plane. The set of al ideal and non-ideal pointsin projective 2-space
is called the projective plane and is denoted P2.

The equation of aline in two dimensions can be expressed in Cartesian coordinates as

ar +by+c=10 (A.9)

which can be rewritten in terms of homogeneous coordinates as
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aﬁ—l—bﬁ—l—c:OHau—l—bv—l—cwzo (A.5)
w w

or, using the vector dot product
Lp=20 (A.6)

where! = (a, b, )" isthe homogeneous 3-vector representation of the line. Aswith points, only
the ratios of the three elements are important, as we can see that multiplying equation A.5 by a

scalar has no effect.

A.2 Some Simple Constructions

A.21 Computing TheLine Through Two Points
From equation A.5 we can seethat for alinel = (a, b, c)” to pass through the two pointsp =
(Pus Pos D) @d q = (Gu, v, ¢) ", the following relations must be satisfied

apy +bpy+cpp =0  and  agy +bgy + cq =0 (A7)

The solution to these equations can be obtained from the cross product

l=pxq (A.8)

We can seethat thisis so by noting that if a point p lieson alinel, the dot product of their
two coordinate vectorsis zero (equation A.5). From the properties of the vector tripleproduct we

get p.1 = p.(p x q) = 0, and we obtain the result above' .

!Sincep.(p x q) = (p x p).gqandp x p = 0.
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A.2.2 Thelntersection of Two Lines

This is the dual of the previous problem and we obtain similar constraints in that the point of
intersection p = (u,v,w)’ of thetwo linesl = (14,1, 1.)" and m = (mgy, my, m.)T, must

satisfy

lbut+Lhv+lw=0 and matt + mgv + myw = 0 (A.9)

This similarity highlights the so-called principle of duality, which states that for any ma-
ni pulation involving projective points and lines, each point can be exchanged for alineand each
line can be exchanged for apoint, theresult being the dual manipulationto theoriginal. Thus, the

solution to this problem can be expressed simply as

p=1lxm (A.10)

A.2.3 Normalising Homogeneous Coordinates

When carrying out | otsof projectivegeometry cal cul ations, the homogeneouscoordinates of points
and lines may become very small or large. Therefore, it isagood ideato normalise the homoge-
neous coordinates at each stage in the computation, to avoid numerical error. Asahomogeneous
vector can be multiplied by any scalar and still represent the same point or line, normalisation can

be done quite simply. For apoint p = (u, v, w), we use the following normalisation:
T
(u,v,w)T—> (ﬁ,ﬁ,l) (A.11)

and for thelinel = (a, b, ¢)

T
T a b c
(a,b,c)" — (\/(a2 5 e T i T b2)) (A.12)
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A.24 ThePerpendicular Distance of a Point from aLine

The normalisation of points and lines described above, leads to a very simple method for com-
puting this quantity. Specifically, the perpendicular distance d of apoint p from alinel isgiven
by the dot product:

d=pl (A.13)

So in the case where the point and line are incident we get the anticipated result:

pl=0 (A.14)

A.3 Projective Transformations

Transformations within and between projective spaces are called projectivities. In mathematical
studies of projective geometry there is no emphasis on projective space of any particular dimen-

sion, but in computer vision, some cases are more interesting than others.

The previous sections have concentrated on the manipulation of points and linesin P2,
which have been widely used in our work on the fundamental matrix (chapter 3). Projective 3-
space, P2, isageneralisation of the projectiveplane, followingfrom the definition of 2 in section
A.1l. Again, homogeneous coordinates are used, here with all their dimensionsincreased by one.
That is, apointin P2 isrepresented by the homogeneous4-vector (X, Y, Z, T). Intheremainder

of this section we will briefly discuss two projective transformations of P3.

A31 P*topP?

A projectivity from P2 to P2 acts on and generates a homogeneous 4-vector. It is can therefore

be represented by the (non-singular) 4 x4 matrix H
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X’ hir hiz hiz hig X
Y’ h h h h Y
\ _ 21 hag haz hog (A15)
A hai hsy hsz hsg A
1 har haz haz hag 1
H

Note that the only effect of multiplying H by some non-zero scalar, isto change the value
of the scalefactor A on the left-hand side. However, as we have seen, all values of ) still refer to
the same homogeneous point. Thus H is defined only up to ascaefactor and hasonly 15 degrees

of freedom.

Multiplying out and eliminating the unknown scale factor, A, leavesthree equationsin the
elements of H. Thus given five corresponding pointsin 73, a system of linear equations can be
formed and solved for the unknown elements of H. If more than five point matches are known,

a least-squares sol ution can be obtained.

A32 P3toP?

Proj ection from aprojective spaceto one of lower dimensionality can be achieved by simply elim-
inating one of the coordinates of the transformed projective space. For example, projection from

P2 to P? can be performed by the 3x 4 matrix M as follows:

mi1r Mz hiz mag X
U
ma1 Moz haz Moy Y
Moo | = (A.16)
m31 M3z haz may Z
1
ma1 Maz haz My 1

M

Once again, the overall scale of the matrix M is unimportant. Hence, this transformation
has 11 essential parameters. Multiplying out and eliminating the scale factor, as before, leads to
apair of equationsin the unknowns. Thus, six or more 3D reference points, together with their

corresponding image points are sufficient to construct and solve a system of linear equations for
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the elements of M.

The general projective projection matrix M can account for many of the geometric aspects
of image formation, including the case of viewing the projection of a projection, for example, a
picture of apicture or the shape of a shadow in an image. Constraints can be applied to the form
of the matrix to account for the standard case of projection from 3D space onto an image plane
fromasinglepointi.e. perspectiveprojection. Inthis case, the perspective camera matrix M can

be decomposed as:

M = K(R| — Rt) (A.17)

where K isan upper triangular matrix, R isa3D Euclidean rotation matrix and t isatranslation
vector. K representsthe intrinsic parameters, which define the optical characteristics of the cam-
era. R and t encode the extrinsic parameters, which define the transformation between theworld
and camera coordinate systems. This factorisation of M can be computed by QR-factorisation
[18].



Appendix B

RANSAC

RANSAC (RANdom SAmple Consensus) is a paradigm for fitting amodel to experimental data.
It was introduced into the vision literature in 1981 by Fischler and Bolles [15], who described
one possibleapplicationin thefield of automated cartography. Here RANSA C was used to deter-
mine cameralocation from a set of 3D ground truth pointsand their corresponding image points.
However, the general RANSAC algorithm can be applied to an unlimited number of parameter

estimation and model -fitting problems.

The beauty of RANSAC liesin its ability to interpret/smooth data containing a significant
proportion of large errors, thus making it ideally suited to vision and image processing applica-
tions, which oftenrely on noisy dataprovided by error prone feature detectors, matchersetc. Clas-
sical parameter estimation techniques, such as |l east-squares, optimisethefit of amodel based on
all the presented data. They are averaging techniques which rely on the smoothing assumption,
that the maximum error in any given dataitemisafunction of thetota size of the dataset. Hence

there will always be enough accurate dataitems to smooth out the errors.

In many practical applications, thisassumption does not hold; i.e., the dataset contains un-
compensated gross errors (outliers). A common heuristic for dealing with thisisfirstly to use al
the datato compute the model parameters, then find the dataitem with the highest deviation from
the model fit, delete it, assuming it is an outlier, then recompute the model. This processisiter-

ated until either the maximum deviationis lessthan some given threshold or there isinsufficient

113
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data to continue. However, it can be seen that the presence of just one outlier can cause such a

heuristic to fail.

For example, consider the case of fitting alineto aset of seven 2D points. At each iteration,
we compute the equation of the line and discard the point with the largest perpendicul ar distance
to the line. Termination occurs when al remaining pointsliewithin 1.2 units of the line. Figure
B.1 shows the data sets and best fit lines computed at each of the necessary four iterations. Also
shown on each graphistheideal best fit which would be obtained if the outlier (the rightmost data

point) was ignored.
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FigureB.1: Effect of an outlier ontheaccuracy of fittingalineto a set of pointsusing least-squares

The tables below show which data pointswere used in each iteration, the parameters of the

fit line and the perpendicular distance of each data point from that line.
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Least Squares Approximations

Iteration Data Set Fitting Line
1 0,1,2,34,56| 050 + 3.00

2 0,1,23,56 | 03% + 281

3 0,1,2,56 0.38x + 2.35

4 1,2,5,6 0.17x + 372

Perpendicular Distances
Point | X Y | lteration1 | Iteration2 | lteration 3 | Iteration 4

0 1 1 2.23 2.05 161 -
1 2 3 0.89 0.56 0.10 1.05
2 3 5 0.44 0.92 1.40 0.74
3 4 7 1.78 241 - -
4 5 9 3.13 - - -
5 4 5 0.00 0.55 1.04 0.57
6 9 5 2.23 127 0.73 0.27

The RANSA C procedureisthe compl ete oppositeto such traditional smoothing techniques.
Instead of using as much of the dataset as possible to form an initial solution, then gradually
eliminating outliers, RANSAC starts off with the smallest feasible dataset and then enlarges this
with consistent data when possible. Fischler and Bolles describe the simple example of using
RANSAC for fitting a circleto aset of 2D data points. Start with athree point subset, sincethree
points are needed to define a circle. Compute the centre and radius of the candidate circle and
count the number of points close enough to the circumference to suggest they belong to the cir-
cle. If there are enough such points, RANSAC would then employ a smoothing technique, such
as | east-squares, to obtain an improved estimate for the parameters of the circle, based on the the

set of mutually consistent points.
More formally, the RANSAC paradigm can be stated as follows:

Given amodel that requires a minimum of »n data pointsto computeitsfree parameters and

a set of data points P such that P contains more than » elements:
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1. Randomly select an n-point subset 5 from P and use those points to instanti ate the model
M.

2. Obtainthesubset C' containing thosepointsin P that are within someerror tolerance of M.

Thisis called the consensus set.

3. If €' containsa number of points greater than some threshold ¢, which isafunction of the
number of outliersin P, then use C' to compute (possibly using | east-squares) anew model

M. Otherwise, randomly select another subset .5 and repeat the above process.

4. If, after some predetermined number of trials, no consensus set with ¢ or more el ements has
been found, either terminatewith an error or solvefor the model usingthelargest consensus

set that has been found.

5. Additional iterative steps can now be performed, if required. Once a new model M’ has
been computed from the consensus set, if any additiona pointsfrom P are consistent with

M', add them to C' and recompute the model.

Theorigina authorsgo onto giveguidelinesabout the choiceof thethreevariableRANSAC
parameters: the error tolerance when deciding on a point’s consistency, the threshold ¢ and the
number of subsetsto try. Clearly, the value of these parameters will vary depending on the par-

ticular RANSAC application.

In fact, some applicationswill require modifications to the algorithm outlined above. For
example, the termination condition in step 3 is dependent on athreshold value, which implies a
priori knowledge about the number of outliersin the dataset. Thisis often unavailable, asin our
estimation of the fundamental matrix in Chapter 3 and again in Chapter 4, when computing the
transform between proj ective and Euclidean 3D structure. | n such cases one simplesolutionisto
abandon the threshold check and use the largest consensus set obtained after some fixed number
of trials. Thisisthe method used by Geefor aRANSA C-driven pose estimation system[17]. An-
other alternativefor avoiding the direct dependency onthe threshold valueisused by Torrin[62],
inaRANSAC algorithmfor eliminating outliersfrom a set of matched points. He uses predeter-
mined estimates for the percentage of outliers present, to calculate the number of trials required

to obtain an optimum solution.
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In both our RANSAC applicationswe have away of obtaining a measure of the accuracy

of the model instantiations. Thus an an aternative formulation of step 3, isasfollows:

3. If C' contains a number of points greater than or equal to the previous best consensus set

then

e Use (' to compute anew model M'.
o Obtain ameasure' of the accuracy of M'.

o If M’ ismore accurate than the best previously model, record the details of A’ and

(' then continue.

Otherwise, randomly select another subset 5" and repeat the above process.

Using thisapproach givesmonotoni cally i ncreasi ng consensus set si zes, each of which gen-
erates a more accurate model than the previous one. In addition, it provides a termination con-
dition based on the accuracy of the computed models, not on the size of the consensus set. In
the main text, we denote this variation on the scheme as RANSAC*, to differentiate it from the

standard method.

! Exactly how this is obtained is dependent on the nature of the model being computed.



Appendix C

The Quadrangle | mage Sequence

Thisisan image sequence of a part of the campus at L eeds University, known as the quadrangle.
The original video footage was digitised into around 10000 separate frames. A number of frames
were selected, by hand, such that there was sufficient inter-frame overlap to be useful in our scene
reconstruction system. Thisresulted in a sequence of just 104 images of 384 x 288 pixels, whose
thumbnails are shown on the following pages.
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Figure C.1: ImagesOto 11
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Figure C.2: Images 12 to 35
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Figure C.3: Images 36 to 59
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Figure C.4: Images 60 to 83
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Figure C.5: Images 84 to 104
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