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ABSTRACT

MODERN CONSIDERATIONS FOR THE USE OF NAIVE BAYES IN THE SUPERVISED

CLASSIFICATION OF GENETIC SEQUENCE DATA

Genetic sequence classification is the task of assigning a known genetic label to an unknown

genetic sequence. Often, this is the first step in genetic sequence analysis and is critical to un-

derstanding data produced by molecular techniques like high throughput sequencing. Here, we

explore an algorithm called naive Bayes that was historically successful in classifying 16S riboso-

mal gene sequences for microbiome analysis. We extend the naive Bayes classifier to perform the

task of general sequence classification by leveraging advancements in computational parallelism

and the statistical distributions that underlie naive Bayes. In Chapter 2, we show that our imple-

mentation of naive Bayes, called WarpNL, performs within a margin of error of modern classifiers

like Kraken2 and local alignment. We discuss five crucial aspects of genetic sequence classifica-

tion and show how these areas affect classifier performance: the query data, the reference sequence

database, the feature encoding method, the classification algorithm, and access to computational

resources. In Chapter 3, we cover the critical computational advancements introduced in WarpNL

that make it efficient in a modern computing framework. This includes efficient feature encoding,

introduction of a log-odds ratio for comparison of naive Bayes posterior estimates, description of

schema for parallel and distributed naive Bayes architectures, and use of machine learning clas-

sifiers to perform outgroup sequence classification. Finally in Chapter 4, we explore a variant

of the Dirichlet multinomial distribution that underlies the naive Bayes likelihood, called the beta-

Liouville multinomial. We show that the beta-Liouville multinomial can be used to enhance classi-

fier performance, and we provide mathematical proofs regarding its convergence during maximum

likelihood estimation. Overall, this work explores the naive Bayes algorithm in a modern context

and shows that it is competitive for genetic sequence classification.
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Chapter 1

Introduction

Genetic sequence classification is fascinating in its deceptive simplicity. On the surface, this

problem is a simple comparison of strings: how many edits does it take to get from sequence A

to sequence B. This is an algorithm taught in introductory computer science courses that has well-

defined answers; but for genetic sequences, behind this simple facade is a rich problem that drives

at deep structural patterns in evolutionary theory. When we ask the question of "how many edits"

it takes to get from A to B, we are asking a question of distance: what is the distance between A

and B?

Distance is a well-studied geometric topic, and calculating a distance between two points is

simple when the geometric space is a familiar one, such as in Euclidean geometries. However,

in non-Euclidean spaces, the answer to the question of distance is not always clear or easy to

find. Perhaps in the dense city blocks of Manhattan, the shortest path between two points is not a

straight line but a path following the roads. Likewise, if the question is of distance travelled on foot

between two points on Earth, certainly we must follow the natural topology when calculating our

answer. And what for genetic sequences? We understand how to analyze complex geometries in

high dimensional spaces, but what do genetic tensors look like, and how can we calculate distances

between them?

The key to understanding genetic geometries is in defining an appropriate measure of evolu-

tionary distance. The problem with using simple edit distance for genetic sequences is that not

all edits have the same cost (Figure 1.1). Changes to a single nucleotide in the genetic code can

have drastic changes on protein tertiary structure; and since proteins are the workhorses of life,

detrimental changes to their function have important implications for organismal viability. Thus,

some changes to nucleic acid sequences cost more than others from an evolutionary perspective.

This phenomenon is well-studied and has already been incorporated into early bioinformatics ap-

plications via the work of Margaret Dayhoff in 1978, who introduced the concept of point accepted
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mutation matrices (PAM) that described the various costs associated with nucleotide and protein

edits [1].

In fact, this discussion of evolutionary cost will sound familiar to those who study phyloge-

netics, since these concepts form the foundation of the molecular clock hypothesis [2]. There has

been extensive work in phylogenetics on evolutionary models that offer answers to our question of

genetic distance. However, these models either require a great degree of prior knowledge regarding

the biological system under study or a dataset capturing variation in time and space (and the other

aspects of Hardy-Weinberg equilibrium) from which to infer the model parameters [3]. What if

our two sequences come from different evolutionary systems or nothing is known of the selective

pressures to which they are subjected? Are they even evolutionarily comparable, and if so, in what

way should we calculate a distance between them?

Thus, the apparently simple task of comparing genetic sequences is in reality a Herculean

feat: given no prior information about the sequences other than what can be inferred from the

sequences themselves, calculate a distance that accurately captures the evolutionary constraints

required to get from sequence A to sequence B. This is the task that we ask of genetic sequence

classifiers. These classifiers, which have their mathematical roots in well-studied geometries like

Euclidean space, have nearly zero chance of unraveling this problem without substantial help from

outside information. This is why it is critical to find a transformation or a way of using evolu-

tionary information that will help the algorithms map genetic tensors to a more familiar geometry

(Figure 1.1). Arguably, this is exactly what the PAM and BLOSUM matrices do for alignment

algorithms; alignment is perhaps still in wide use today primarily due to the information captured

by these underlying cost matrices and only secondarily due to the success of the algorithmic tech-

niques themselves.

It is clear that successful genetic sequence classifiers will achieve at least one of the following

objectives: 1) the algorithm will learn to capture the evolutionary information required to calculate

an accurate distance between the two sequences being compared, or 2) we will find a way to map

the sequences from genetic space into more familiar geometries where these algorithms have been
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Figure 1.1: Genetic distance does not necessarily correlate with edit distance; therefore genetic geome-

tries are unfamiliar to modern algorithms, which were developed to handle geometries with familiar

distance metrics, such as Euclidean distance. A) For genetic sequences, edit distance is the number of

nucleotide changes required to get from sequence A to sequence B. However, due to evolutionary systems

under selective pressure, not all edits cost the same. Therefore, edit distance does not often correlate well

with evolutionary distance or cost. Here, we show a hypothetical situation where an edit distance of 8

has an evolutionary cost of only -4 (left), while an edit distance of 1 has an evolutionary cost of -11 (right).

These costs were produced with the point accepted mutation (PAM70) matrix, which uses multiple sequence

alignments to produce an evolutionary cost metric for changes in protein sequences. B) For a given point in

genetic sequence space (dot), this diagram shows a hypothetical example of traveling a fixed distance away

from that point, holding evolutionary cost constant. Some paths are longer (edit distance) but cost the same

as shorter paths from an evolutionary standpoint. As selective pressure increases in a system, the number of

allowed mutations decreases, since evolutionary cost increases with every edit. C) If an accurate mapping

can be found from genetic space to a familiar geometry, it will enable classification algorithms to perform

much more accurately. The PAM and BLOSUM matrices are examples of putative mappings.
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shown to perform well. In hindsight, it is perhaps this second objective on which I should have

focused my studies, however I only reached this conclusion due to the substantial efforts contained

in this work. Instead, I chose to focus on the first objective: to find an algorithmic approach

that might be able to better capture evolutionary information and therefore better perform genetic

sequence classification.

I chose to revisit the naive Bayes classifier, since it had performed successfully in constrained

tasks like 16S gene classification for microbiome analysis [4]. In this more constrained setting,

the input sequences were known to be 16S genes due to selective molecular amplification, and

small differences between these genetic sequences separated them by sometimes great evolutionary

distances. If the naive Bayes approach was capable of matching small changes in genetic sequences

to their appropriate phylogenetic clade, it stood to reason that it might perform similarly well in

the general sense.

Chapter 2 presents a modern implementation of the naive Bayes classifier for general sequence

classification and compares it to well-known classification approaches that are in widespread use

in the bioinformatics field. The thesis of Chapter 2 is to make the following important point: algo-

rithms are only lenses through which we view genetic geometries; they cannot change the structure

of the data once it is created. Algorithms are critically important to genetic sequence classification,

however they are only data microscopes: various implementations can provide us with different

views of the data, but if the data are not amenable to easy viewing, then the algorithms cannot force

them to reveal their information. The only way to change the structure of the genetic geometry is

to change the input data (the query or training data) or to change how the data are described in

genetic space (feature encoding). Therefore, while algorithms serve an important role, they are not

magic bullets. Equally or more important to the success of genetic sequence classification are the

quality of the input data and the method in which the data are presented to the underlying math

that the classifiers use.

Chapter 3 describes the critical ideas that were required to implement the naive Bayes al-

gorithm into a general and modern framework. This chapter focuses on two key components:
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computational efficiency using hardware acceleration and parallel computing, and the method by

which the classifier determines if a sequence should be classified or not. Without the painstakingly-

implemented optimizations used in our implementation of naive Bayes, it would not have been fast

or accurate enough to handle the size and complexity of modern genetic sequence datasets. In the

years to come, I expect to see most classifiers take advantage of the same resources we leveraged in

the implementation of modern naive Bayes, since datasets continue to grow in size, and the classi-

fication tasks continue to become more complex. Additionally, Chapter 3 outlines one strategy for

determining whether a sequence should be labelled as "unclassified." This is a question that drives

at the deep evolutionary structures outlined above, and it should be an area of further study. Here,

we have presented one solution in a specific domain, however more general solutions to this prob-

lem may reveal deeper patterns about genetic geometries that could improve our understanding of

genetic sequences as a field.

Chapter 4 explores the underlying statistical distribution used by the naive Bayes classifier: the

multinomial distribution. The way in which the naive Bayes classifier "sees" the data is through

the lens of the multinomial distribution; so any errant assumptions made by this distribution would

affect classifier performance. Since some of these assumptions seem dubious in the context of

genetic sequence classification, we compared its performance to two other variants of the multino-

mial: the Dirichlet multinomial and the beta-Liouville multinomial in hopes that it would improve

classification accuracy in sequence-based problems. We performed evaluation of the beta-Liouville

multinomial using datasets from the field of text natural language processing, since this field has a

greater availability of gold standard datasets. Ultimately, we decided that any marginal gains from

the Dirichlet or beta-Liouville multinomial would incur too much of a performance cost for use

in the genetic sequence classification settings, since their use would require maximum likelihood

estimation over a much larger feature space.

Overall, this work presents a successful implementation of the naive Bayes algorithm into a

general framework for genetic sequence classification that performs at least as well as widely used

methods. It explores advantages and disadvantages of the naive Bayes approach, both for classi-
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fier behavior and computational resource utilization. It assesses flaws inherent in the multinomial

distribution that underlies naive Bayes and proposes alternatives that may be of future use. As a

whole, the work explores one potential solution to the problem of genetic sequence classification:

can an algorithm be developed that captures appropriate evolutionary information during sequence

comparison? While it seems that this particular implementation of naive Bayes has not fully ad-

dressed that question, this work has certainly proved instructive, at least to its author, and it will

lead to further, refined investigations in the pursuit of understanding genetic geometries.
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Chapter 2

Considerations for performing supervised

classification of high-throughput sequencing data:

why algorithms are not magic bullets

2.1 Summary

Classifying and annotating genetic sequences is a cornerstone of bioinformatics analysis of

high throughput sequencing data. This task, called genetic sequence classification, is composed

of five key components: the query sequence data, the reference sequence database, feature encod-

ing strategies, the classification algorithm, and the availability of computational resources. While

much attention is given to algorithms in the literature, the other four areas of genetic sequence

classification are equally, if not more important, to performing accurate analysis. In this work, we

discuss each of these areas and their effect on genetic sequence classification in a manner acces-

sible to non-experts. We present a novel naive Bayes machine learning approach, called WarpNL,

and compare it to several widely used classification strategies. We show how these classification

approaches behave in practice and discuss how they can be utilized in combination to improve the

sensitivity and accuracy of genetic sequence classification. Our discussion throughout the work is

supported by concrete examples using simulated, gold-standard, and real-world datasets. Overall,

we provide a clear and thorough picture of supervised classification for high throughput sequenc-

ing data that is instructive to beginners in bioinformatics but nuanced enough to provide additional

insights for experienced analysts.

2.2 Author Summary

Modern investigations into genomes and populations of organisms are often performed using

rapid sequencing technologies. These sequencing platforms produce a huge amount of sequence
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data that must be computationally analyzed to be properly understood. The task of identifying a

sequence is called genetic sequence classification and involves a combination of computer algo-

rithms, known genomic databases, and other mathematical methods. Much of modern scientific

literature and media reporting focuses on “artificial intelligence,” which is the algorithmic aspect

of this process. However, we show here that the other components of performing genetic sequence

classification are equally critical to its success, including: the quality of the input data, the way in

which the data are presented to the computer, and the computer resources available to the analyst.

We introduce a new machine learning implementation, called WarpNL, and compare its behavior

on various kinds of data to other widely used approaches. Throughout the work, we discuss the ba-

sics and nuances of how genetic sequence classification is performed and how it can be leveraged

to improve overall results. In particular, we focus on how different algorithms behave differently

and how their advantages can be leveraged together to better effect.

2.3 Introduction

High-throughput sequencing of nucleic acids is now a ubiquitous and crucial feature of many

biological fields spanning academia, regulation, private industry, and public health [5–8]. For ex-

ample, sequencing efforts during the SARS-CoV-2 global pandemic enabled detection and track-

ing of novel viral variants in real time, leading to multi-national implementation of public health

guidance and diversion of efforts into novel vaccine products [9, 10]; sequencing of microbial pop-

ulations increased our understanding of the pervasive and urgent threat of antimicrobial resistance

[11, 12]; and, genomic characterization of cancerous tumor variation resulted in targeted therapies

and early detection programs for at-risk populations [13, 14]. Given the enormous impact of se-

quencing on these diverse fields of study and its ubiquitous use, it is now more critical than ever

for a wide audience of researchers to understand how these data are analyzed in easily understood

terms.

Perhaps the most important aspect of analyzing high throughput sequence data is the step of

genetic sequence classification: identifying what sequences are actually present in the data. In
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this work, we present five key components of genetic sequence classification and show how they

affect the classification task: the encoding of sequences into a feature space, the use of genetic

sequence databases, the behavior of classification algorithms, the effect of different kinds of query

sequence data, and the importance of access to computational resources (Figure 2.1). We discuss

these areas in historical and modern contexts and provide real-world examples of their impact on

the classification process to make it readily available to the general audience. In presenting this

work, we demonstrate how different sequence classification strategies behave in practice so that the

analyst or researcher can better use these methods either individually or in combination to achieve

more accurate results from high-throughput sequencing data.

First, we discuss the topic of feature encoding to show how sequences are represented in ma-

chine language and how such features behave in practice. Next, we cover the crucial nature of

having a robust genetic sequence database for use as reference genomes or as a training dataset

for machine learning classifiers. We also provide guidelines for the creation of robust genetic se-

quence databases. We then cover three major categories of classification algorithms and introduce a

novel approach of our own creation, called WarpNL. The algorithms discussed include local align-

ment (Burrows-Wheeler Aligner), partial alignment/exact matching (Kraken2), and accelerated

naive Bayes machine learning (WarpNL) [15, 16]. We demonstrate the performance and practical

behavior of each of these algorithms on simulated and real datasets and use the MEGARes an-

timicrobial resistance sequence database as an example reference dataset [17]. Finally, we discuss

practical details for algorithmic implementation with currently available computational resources

and methods for improving the sensitivity of sequence detection in the face of increasing sequence

variation.

Our discussion emphasizes that the choice of feature encoding method and the robustness of the

genetic database greatly impact classification accuracy, which should be a focus of bioinformatics

research. Our results show that different categories of genetic sequence classification algorithms

behave differently on different kinds of data, highlighting the need for a combined approach to

achieve the most accurate and sensitive results. We also demonstrate that classification strate-

9



Figure 2.1: Genetic sequence classification is composed of five important areas. A) Query sequences

are the unknown data to be classified; these sequences can be short- or long-read data from the sequencer

or assembled/aligned sequences that require annotation and classification. B) Reference databases are used

as training or known datasets during the process of classifying the query sequence data. C) Nucleotides

must be converted into computer-readable information for analysis. The goal of feature encoding is to free

otherwise hidden information in the nucleic acid sequences such that the downstream algorithm can capture

that important information. D) The classification algorithm determines how the known labels from the

database are transferred to the unknown query sequences; algorithms perform the actual classification step.

E) Access to computational resources influences which methods are available to the analyst from areas A-D.
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gies must be chosen to fit the classification task and the computational resources available to the

analyst. Taken together, these results have implications for how genetic sequence classification is

performed, particularly for the task of surveillance of high-consequence pathogens or antimicrobial

resistance genes related to public health initiatives, since these classification tasks often involve the

sensitive detection of genetically variable sequences. This work also provides guidance regarding

the development of future classification strategies, including the creation of more robust genetic

sequence databases, feature encoding methods, and algorithmic approaches.

2.4 Results and Discussion

2.4.1 High quality and long query sequences provide the best information

for genetic sequence classification

Query sequences are the unidentified input data that the analyst desires to classify. These can

be short- or long-read data produced directly by sequencing platforms. They can also be assem-

bled sequences that require annotation or identification. The quality of these sequences is impor-

tant for accurate classification; the fewer errors introduced into the query sequence by molecular

preparation and the sequencing process, the easier it is for genetic classifiers to correctly match

them to known reference sequences. This is why high-fidelity sequencing platforms like Illumina

have historically been more commonly used than sequencing platforms with high error rates [18,

19]. However, the length of the query sequences also affects the classification accuracy, and in

some cases, longer query sequences may be more desirable than high quality, short sequences

[20]. Query sequence length is important because not all sequence regions are equally informa-

tive. Repetitive regions and regions that match to many target reference sequences contain less

discriminatory information than unique and long sequences that span repetitive regions. These

considerations are analogous to designing polymerase chain reaction (PCR) primers: the region

amplified by the PCR process is more discriminatory if that region is unique to a specific genome

or if that region is very long and can span repetitive genomic sequences [21, 22]. Therefore, the
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ideal query data for sequence classification are as long as possible, high quality (with low error

rate), and spanning informative genetic regions.

The characteristics stated above can be influenced by the choice of sequencing platform and

molecular preparations used, and we point the reader to other work for further discussion of these

points [23–25]. For the purpose of genetic sequence classification, it is critical to understand that

the quality of the query data is of the utmost importance: poor quality input data will produce poor

quality results, even if the best possible database and algorithm are used to perform the classifica-

tion task. Therefore, the method by which the query sequences are produced must be as carefully

considered as the choice of downstream methods used by the analyst.

2.4.2 Robust databases are the cornerstone of genetic sequence classification

The other input data required to perform genetic sequence classification are labelled reference

sequences, often packaged into a reference sequence database. It is our goal in this section to

emphasize just how critical the choice of a database is for genetic sequence classification and

to generate discussion on the importance of robust sequence databases going forward. Though

we recognize that some classification or clustering tasks may be unsupervised (not using labelled

data) [26, 27], the majority of analyses that seek to understand genetic data involve supervised

classification. We therefore focus on supervised classification in this work.

The task of assigning labels always relies on some known information, which commonly comes

from a curated genomic database like those hosted by the National Center for Biotechnology Infor-

mation (NCBI) or from a curated gene database like MEGARes, which we use in this work [17].

Because labeling is required for most analyses and affects all subsequent analyses, it is crucial that

the database used to perform this step is of the highest possible quality and relevance to the analy-

sis being performed. In this section, we discuss how databases are organized and used in genomic

classification and propose guidelines for the creation of robust genetic sequence databases.

Though not required, most databases have an organizational structure (annotation) imposed

over the genetic sequences contained within them. This structure is known as an ontology: the
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ontology typically includes metadata about the database sequences and defines relations between

sequences. For example, in the MEGARes database, there are four levels of ontology arranged in a

hierarchical structure: Type, Class, Mechanism, and Group. A sequence belongs to a Group, which

in turn belongs to a parent Mechanism, the Mechanism to a parent Class, and so on; for example,

the sequence entry with accession MEG_1786 belongs to CMY (Group), Class C beta-lactamases

(Mechanism), beta-lactams (Class), and Drugs (Type). Multiple sequence entries belong to each

ontological category, and these sequences are often biologically or genetically related. For the pur-

pose of genetic sequence classification, the sequences contained within each ontological category

must be genetically related to within a certain degree of nucleotide similarity for classification

algorithms to function appropriately. This is particularly true of classifiers that rely on k-mer se-

quence encoding to produce the feature space, as discussed below. Because performance of genetic

classifiers is sensitive to database organization and integrity, it is vital that databases be as robust

and representative as possible.

Here, we refer to a “robust” database used in genetic sequence classification as one that ad-

heres closely to the following standards: 1. the genetic variation contained in the database should

be representative of the genetic sequences being classified against it; 2. the database ontology

should group sequences into genetically similar categories while still preserving biologically rele-

vant metadata; 3. the database should be structured and developed to suit the chosen analytic task

and classification algorithm, where applicable; and 4. the database annotations should be manually

reviewed and linked to primary literature sources, where possible, such that the sequence labels

are accurate and verifiable. Below, we discuss each of these points and how they affect genetic

sequence classification, pulling in relevant results from this and other work where applicable.

First, consider standard 1 of database robustness introduced above: “the genetic variation con-

tained in the database should be representative of the genetic sequences being classified against it.”

Database ontological categories typically contain genetically similar sequences and some variation

therein: for example, the MEGARes database CMY Group contains a curated set of different CMY

beta-lactamase antimicrobial resistance genes, which are within 80% genetic similarity of one an-
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other as determined by the CD-HIT clustering algorithm [28]. Therefore, the sequences in this

ontological category form a representative genetic profile for the CMY beta-lactamases with some

amount of genetic variation around that core genetic profile. One can envision this as a “cloud” of

genetic variation centered around a point in genetic space.

When an unknown query sequence is being classified, the classifier determines whether the

query is genetically similar enough to the CMY genetic cloud to label it as belonging to the CMY

category. The query is only allowed to be so far away from the CMY genetic cloud before the algo-

rithm determines that it does not belong to the CMY category. This tolerance is dependent on the

analyst’s choice of classifier and the classifier’s parameters. If the query is allowed to be classified

at too far a genetic distance away from the CMY category sequences, it can result in misclassifica-

tions (false positives), since the analyst does not know a priori whether the query sequence is truly

a CMY sequence or not. Therefore, the ideal choice is to set strict (small) classification distance

thresholds, only allowing class assignment when the query sequence is genetically similar to the

database to improve accuracy. However, this also has a cost: if the database is not robust according

to standard 1 (and is therefore not representative), a phenotypically true CMY sequence could be

absent from the database, causing a strict genetic classifier to falsely reject the query sequence

from the CMY category. This would result in an increase in false negatives (either misclassifica-

tions or “unclassified” reads); and since false negatives are difficult to detect in benchmarking and

in practice [29], this problem highlights the need for genetically representative databases.

The issue of high false negative and “unclassified” rates in genetic sequence classification due

to non-robust databases is extremely common and not often discussed in current literature. Ev-

idence of this can be found in many -omics fields but is particularly noticeable in the metage-

nomic sequencing of non-human microbial niches [30]. In Stewart et al. 2019, a suite of classi-

fication algorithms was used to perform metagenomic microbiome classification on samples col-

lected from cattle and sheep rumen fluid [31]. Even utilizing a comprehensive suite of classifiers,

only 15% of the assembled contigs were classifiable against known reference genomes. How-

ever, the authors addressed this issue by using a combination of short-read (Illumina), long-read
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(Nanopore), and augmented (Hi-C) sequencing strategies to produce a set of high-quality, de novo

assembled genomes from the cattle rumen. They then augmented existing databases with these

novel genomes, which improved their classification rates from 15% to 70%. Some of these novel

genomes were identified as closely related variants of known microbial species, while the major-

ity were only remotely related to known organisms. Furthermore, when this genome-augmented

database was then applied to sheep rumen metagenomic analysis as opposed to cattle, the classifica-

tion rate again dropped from roughly 70% to 50%. These results, in spite of using a comprehensive

suite of state-of-the-art classifiers, highlight the critical nature of robust, representative databases

for genomic sequence classification.

It is easy to find examples of non-robust databases in microbial metagenomics since the classi-

fication objective is so broad; namely, to identify all possible microorganisms. However, this same

issue of database non-robustness can also be present in classification tasks of a narrower scope. In

this work, we explore this issue for targeted classification of antimicrobial resistance genes using

the MEGARes v2 database. As seen in the Stewart et al. 2019 study, unclassified genetic sequences

can be one of: 1) closely related to known sequences, 2) extremely distant from the database, or,

3) exist on a continuum between these extremes. It is impossible to know a priori which genetic

classes in the database will have phenotypically relevant (antimicrobial resistant) variants that are

closely related (highly conserved) or genetically distant (highly variable) to the query data. How-

ever, it is this problem – the identification of where our databases might be non-robust – that can

benefit from the use of a suite of different classification algorithms. We will showcase how the use

of multiple classifiers can help detect issues with database robustness in Section 2.4.4.

In addition to databases being representative, it is important for robust databases to be struc-

tured appropriately for genetic classification to succeed. Consider standard 2 of database robust-

ness as outlined above: “the database ontology should group sequences into genetically similar

categories while still preserving biologically relevant metadata.” In database construction, there is

a delicate tradeoff between biological information and genetic distance: the result of any classi-

fication or analysis must be biologically interpretable to be useful, however the genetic sequence
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groupings must be mathematically sensible for the classification algorithm to function accurately.

This issue is an extension of a similar problem that the biological field has had historically with

taxonomy: the way in which we understand and observe biological phenotypes does not have a

1:1 relationship with changes in the genetic code. For example, a single nucleotide polymorphism

(SNP) can have drastic effects on genetic translation, protein production, and ultimately, organism

behavior, but the genetic change is to only a single nucleotide. Since the algorithms can observe

only the genetic sequence encoding and not the phenotype, large phenotypic changes are not al-

ways reflected in changes to genetic classifier behavior. Similarly, organisms were historically

classified based on observable phenotypes, such as in the field of cladistics [32]. However, as se-

quencing and other -omics technologies have become more commonplace, our understanding of

organismal classification has shifted to accommodate new information about differences in geno-

type, but such shifts are not always easy to reconcile, particularly when the genotype differences

don’t correspond to differences in phenotype [33].

Therefore, like taxonomy, database creation involves a balance between grouping based on

biological metadata and the genetic makeup of each ontological group. The choices made in the

creation of a database ontology directly affect classifier performance, subsequent analysis, and the

inferences we are able to make as a result of the classification task. Ontological groupings that

favor biological interpretation over genetic distance can have drastic effects on classification per-

formance. For example, in this work, we utilized the MEGARes v2 database, whose ontology was

originally created to respect this phenotypic/genotypic balance [17]. However, while producing

results for this work, we noticed a roughly 5% error rate in classification performance across all

algorithms against simulated data identical to the sequences in the MEGARes v2 database. When

classifying query sequences that are identical to the database in supervised classification, the error

rate should be close to 0%, since the query sequences match exactly to the supervised dataset used

to inform the classification task. All misclassification error under these circumstances is due to

feature overlap in the database ontology, i.e. two different groups, like SHV beta-lactamases and

TEM beta-lactamases, share regions of genetic homology such that the classifier cannot decide
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to which class the query sequence belongs. This occurs either when the query sequence resides

entirely within a region of sequence homology shared between two or more ontological groups in

the database or when database sequences are incorrectly annotated, resulting in misclassification

(Figure 2.2).

Figure 2.2: Sequences are discriminatory if they span regions of difference between genomes. Se-

quence read 1 is contained entirely within a region of homology between genomes 1 and 2; it can therefore

discriminate genomes 1 and 2 from 3 and 4, but it cannot discriminate genome 1 from genome 2. Sequence

read 2 spans a region of high information content, where multiple mutations discriminate between all four

genomes. Sequence read 2 is therefore discriminatory and contains a high degree of information.

The first type of misclassification error – misclassification due to homology – is an issue inher-

ent to genetic classification that cannot necessarily be solved by changing the database ontological

structure. For example, if the classification task is to assign query sequences to either subspecies

Escherichia coli K12 or Escherichia coli O157:H7, there will be large spans of both genomes that

are 100% homologous, even if a number of mutations are present. In fact, only query sequences

that span regions that differ between these two organisms can be used to correctly classify them,

since query sequences that are contained within homologous regions will be identical for both

genomes (Figure 2.2). The sequence regions that differ between these genomes are the only valu-

able pieces of information for this classification task, a fact that is leveraged by an entire category

of genetic classifiers that use these areas of genomic differences, often called “marker genes” (e.g.
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Centrifuge, MetaPhlAn) [34, 35]. While misclassification errors due to homology between on-

tological categories of the database can be minimized by appropriate ontological structuring and

classifier algorithm design, the analyst will likely encounter some amount of homologous mis-

classification error if the database being used for classification is sufficiently large and database

classes contain some ontological overlap. This kind of error is also why, for example, many mi-

crobiome classification results can only be trusted when classified at the genus level or higher in

the taxonomic tree, unless the database and algorithm are specifically designed to differentiate at

the species level or lower.

The second type of misclassification error is due to database sequence misannotation or in-

appropriate ontological structuring. In this case, a sequence in the database that truly belongs in

one group is mislabeled as belonging to an inappropriate group. This causes artificial overlap of

sequences, and therefore overlap of features (see Section 2.4.3), between two groups. This kind

of misclassification error is particularly pronounced for classifiers that use a k-mer feature space,

since the confidence in a given classification using k-mers is typically tied to the number of k-mers

that match a given ontological group. When a group contains sequence members from its own

group as well as another unrelated group, it gains the features of both groups, which results in mis-

classification to that group at a higher rate than would occur without the database misannotation.

We determined that this scenario was causing the majority of the 5% classification error dis-

cussed above with regard to the MEGARes v2 database: several sequences had been misannotated

to incorrect ontological categories, therefore some ontological categories required merging due to

high amounts of genetic overlap. This kind of error is not surprising, since databases are frequently

updated, and some errors in annotation can be made at the time of new data inclusion. The misan-

notation errors we identified were reported to the database curators and have since been corrected;

we also provide for comparison the original MEGARes v2 database and annotation files alongside

the modified files used in this work, which are available in the publication GitHub repository (see

Methods). The second correction we made was to merge some ontological groups that were too

genetically similar for the classifiers examined in this work to separate them. This is an inten-
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tional design choice that database curators or sequence analysts must make, as there is no standard

practice for how to organize ontological categories over genetic databases. In fact, the database on-

tology can (and at times should) be modified to suit the analysis being performed, since different

algorithms and feature encodings require different genetic distances between groups to perform

well.

This leads to standard 3 of database robustness as outlined above: “the database should be

structured and developed to suit the chosen analytic task and classification algorithm, where ap-

plicable.” Ontologies have different structures that convey information about different kinds of

relationships between the ontological categories. One can think of ontological structures as mathe-

matical graphs: graphs contain nodes, which represent the ontological categories, and edges, which

represent the relationships between nodes (Figure 2.3a) [36]. If one node has a direct relationship

with another node, there exists an edge between them. Edges can be directed, which indicates

flow of information, or undirected, which simply indicates a nondirectional association between

the nodes. Ontological graphs can also be structured in a hierarchy with multiple levels, similar

to the taxonomic tree of life (Figure 2.3b). Graphs can be cyclical, such as in metabolic or gene

regulatory pathways (Figure 2.3c-d), or acyclical, such as in the taxonomic tree of life.

In the context of genetic sequence analysis, one might choose a particular ontological struc-

ture for population count data analysis and a different ontological structure for metabolic or gene

regulatory pathway analysis, since these ontologies convey different kinds of information about

the database sequences [37, 38]. The structure of an ontology graph has implications for both

genetic sequence classification and for subsequent statistical analyses. For sequence classification,

the ontology graph often guides the training of learned parameters for the classification algorithm

or is used during the process of classification, if the algorithm is heuristic instead of learned. An

example of this is Kraken2, which utilizes the ontology graph in a heuristic manner to determine

both classification assignment as well as the level of assignment in the ontology, if the ontology is

hierarchical [16].
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Figure 2.3: Different ontologies define different relationships between ontological categories. A) Onto-

logical graphs are composed of nodes (circles) and edges (lines). Nodes represent database categories, which

typically contain genetically related sequences. Edges indicate relationships between nodes, either indicat-

ing a flow of information or parent-child relationships. B) A hierarchical graph has levels and contains no

cycles. This generally indicates broad groupings at the highest-level nodes, with more specific groupings

contained at lower levels; an example is the taxonomic tree of life. C) Graphs can also contain cycles, such

as the cycle formed by the four left-most nodes in this graph. D) Cyclical graphs can be directed, indicating

a flow of information along the arrows. Directed ontology graphs include metabolic networks and gene

pathways.
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Database ontological structure can also affect subsequent statistical analyses, after classifica-

tion has been completed. An example would be an analysis that utilizes classification counts (i.e.

counting the number of query sequences that are classified to the database) [39, 40]. This is com-

mon in molecular ecology population analyses, where the ontology graph is usually hierarchical

(e.g. the taxonomic tree of life). The acyclical ontology graph is a deliberate choice for this anal-

ysis, since if there were cycles in the graph, the cycles would introduce conditional dependencies

over nodes that are members of a cycle. For example, for every parent node in an acyclical graph,

the total count of the parent node is equal to the sum of counts in its children nodes. If there were

cycles in the graph, this wouldn’t necessarily be true, since when propagating counts up through

levels of the graph, counts may be duplicated if they are propagated up through nodes that con-

tain multiple incoming edges (are part of a cycle) (Figure 2.3c). In this way, presence of cycles

breaks the hierarchical structure, rendering the graph less useful in count data analysis. Thus, the

acyclical ontology graph is used to simplify this process, since nodes on the same level can be

considered independent in the acyclical case. It is therefore best to structure the database ontology

to match the analysis being performed, when possible, since this will produce the best results for

both classification and downstream statistical inference.

Finally, according to standard 4 of robust databases as outlined above: “the database annota-

tions should be manually reviewed and linked to primary literature sources, where possible, such

that the sequence labels are accurate and verifiable.” With the large number of databases currently

in use, it is important to keep track of the origin of database entries and their ontological labels.

Early on in the bioinformatics field, computational annotation of sequences was more commonly

performed to reduce the workload of manual sequence curation. However, this introduced some

misannotation errors into well-known databases, which were subsequently propagated to other,

child databases over time [41, 42]. It is therefore important to maintain a record of the original

sources for genetic sequences, both to maintain accurate database information and to allow for

restructuring of the database ontology and metadata if required.
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We acknowledge that these standards for database robustness are not comprehensive and may

have limitations in specific circumstances. However, we hope the above discussion of databases

and ontologies has convinced the reader that databases are a critical component of genetic sequence

classification, perhaps more so than the choice of classification algorithm. Since much of the lit-

erature is focused on algorithmic design and performance, we hope that this section will create

discussion in the community regarding the need for database development, maintenance, and cu-

ration as the field continues to progress. As a final point, we note that fields like natural language

processing and computer vision in the broader context of machine learning have focused substan-

tial resources on database creation and maintenance [43, 44]. In some cases, since the databases

are now so large in these related fields, classification algorithms are being specifically designed to

handle large databases for use as supervised training sets, which has led to development of special-

ized techniques like transfer learning [45]. Though databases for genetic sequence classification

are not yet at this massive scale, there exist initiatives that may produce extremely large sequence

databases that require similar efforts in algorithmic efficiency in bioinformatics, and both database

curators and algorithmic designers should consider this when planning future research initiatives

[46].

2.4.3 Feature encoding determines the information that is available to ge-

netic sequence classifiers

Once query and database data have been provided as inputs, the first step of genetic sequence

classification involves encoding the sequence data into a feature space that can be understood by

downstream algorithms. The goal of feature encoding is to capture as much information as possible

from the genetic sequences, such that the classification algorithms can classify the query sequence

to the most appropriate database category. The choice of encoding strategy determines how much

of this information is presented to the classifiers. Sometimes, there is sufficient information present

in the sequence as is, such that no additional transformation is required to achieve accurate results.

Other times, the sequence must be engineered into a different feature space in order for the algo-
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rithms to perform well on the classification task. It is difficult to know in advance what kind of

feature encoding is required for a given problem, since the classification task depends on all of

the factors covered here as well as specifics related to the biological niche under study and the

experimental design.

Algorithms designed to operate on genetic sequences, such as alignment, require no transfor-

mation of the sequence to compute on them. These algorithms operate on the full-length genetic

sequences; however, they often represent sequence nucleotides in a compressed format to improve

computer memory efficiency. Though this default form of sequence representation doesn’t have a

commonly used name, we refer to it here as the “standard” sequence feature space. We introduce

the standard encoding here since it is referred to later in Section 2.4.4.

Alternatively, in the context of machine learning, sequences are frequently represented nu-

merically in categorical, vector format, where each element of a fixed-length vector is the integer

number of times a feature occurs in the sequence. The natural choice to represent sequences as

a fixed-length vector is to break the sequence into overlapping, contiguous subsequences of fixed

length k. These subsequences are commonly known as k-mers and are a widely used method for

mapping sequences into a fixed feature space [47]. With the standard nucleotide alphabet of A, C,

G, and T, k-mer encoding results in a combinatorial feature space of size 4k. The transformation

of a genetic sequence into such a feature space is a mathematical bijection, such that identical

sequences always map to the same, unique vector, and the unique mapping is reversible. While

nucleotide subsequences of fixed length are typically referred to as k-mers in the literature, protein

subsequences can be referred to as n-grams in some contexts [48].

Feature spaces defined over all possible k-mers behave in interesting and sometimes unintuitive

ways. Intuitively, as k increases, fewer k-mers are shared between non-identical sequences (i.e.

more k-mers are unique to a given sequence) (Figure 2.4a-b). This behavior is similar to increasing

the nucleotide length of a primer in the molecular method of polymerase chain reaction (PCR): as

the length of the primer increases, so too does its binding specificity. Likewise, as k increases, the

combinatorial feature space (state space) grows exponentially at the rate of 4k which distributes
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the counts of k-mers more evenly across the categorical feature vector. This can be seen by the

decreasing maximum and average count of an example feature vector as k increases (Figure 2.4c).

When the value of k is sufficiently large, k-mer features have an average count approaching 1, and

very few if any k-mers are shared between non-identical sequences (Figure 2.4b-c). Finally, as k

increases, less of the overall feature space contains non-zero counts, which produces sparse feature

vectors at high values of k (Figure 2.4a). The value of k at which the feature vector becomes sparse

and approaches an average count of 1 in each non-zero feature category depends on the length and

number of sequences being encoded into a given feature vector. Longer sequences and sequence

databases with higher nucleotide diversity will require higher values of k to reach feature sparsity;

we will further discuss how databases affect the feature space and classification objective in the

following sections.

Unintuitively, while feature sparsity and k-mer uniqueness might be beneficial in some con-

texts, it is not clear if feature sparsity always results in an easier classification task. In fact, the

performance of dense versus sparse feature vectors likely depends on the type of algorithm chosen

to perform the classification. Here, we demonstrated that with smaller values of k (approximately

less than 7), an algorithm like t-distributed stochastic neighbor embedding (t-SNE) is able to iden-

tify local neighborhoods of similar vectors (Figure 2.5) [49]. However, as the state space and

feature sparsity increase with increasing k, this algorithm has a more difficult task in identifying

related versus distant vectors, as evidenced by the increasing lack of structure in the resulting em-

bedding at k greater than 6. While the vectors of some classes of sequences are still clustered

together, the separation between classes of vectors (between colors in Figure 2.5) is less distinct

when k is 13 than when k is 3. This may result in classification tasks where large values of k per-

form well for one kind of algorithm, such as partial aligners, while small values of k perform better

for other kinds of algorithms, like machine learning classifiers. We will further discuss algorithmic

strategies for genomic classification in the following sections and relate them back to this idea of

feature sparsity.
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Figure 2.4: Feature spaces using k-mers have increasing sparsity and uniqueness between classes as

the value of k increases. A) The percent of the k-mer state space with non-zero counts (% k-mer space

used) and positive counts (% k-mers > 1 count) decreases as k increases. B) Of the total k-mer state space

used (total bar height %), the percent of k-mers shared between classes decreases, and the percent of k-mers

unique to one class increases, as the value of k increases. C) The maximum and average count in each

feature vector decreases as the value of k increases, eventually approaching a count of 1. For the data used

in this figure, 12 AMR mechanisms from the MEGARes2 database were used as classes, 10 sequences were

randomly selected from each of these classes, and each sequence was encoded separately into a fixed-length

feature vector of length 4k using standard nucleotide encoding.
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Figure 2.5: Two-dimensional embeddings produced using t-SNE demonstrate different local neigh-

borhoods of k-mer feature vectors as the value of k increases. When feature vectors are dense at low

values of k, relationships between classes (colors) are well-defined. Alternatively, when k is large, some

vectors within classes still cluster together, but the relationship between classes is not as well defined. For

the data used in this figure, 12 AMR mechanisms from the MEGARes2 database were used as classes, 10

sequences were randomly selected from each of these classes, and each sequence was encoded separately

into a fixed-length feature vector of length 4k using standard nucleotide encoding.
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Clearly, there are advantages and disadvantages to representing sequences in different ways.

Using the full-length, standard genomic encoding is still a useful choice for representing sequences,

since older sequence alignment algorithms are still commonly used. Unlike k-mer representation,

full sequence representation allows for the possible identification of mutations and structural vari-

ants such as insertions and deletions on the first pass through the data. As a result, full sequence

alignment is still used for variant analysis. However, while storing the full length of the query and

target sequences is a benefit, it is also a detriment in terms of computational efficiency. Storing and

calculating more information requires more computational time and space. Representations using

k-mers are often more computationally efficient as a result of computing less information, though

this depends on the value of k and whether the algorithm computes on the full or a subset of the

k-mer state space. In further sections, we will focus on how the standard, full sequence represen-

tation and the k-mer feature representation affect sequence classification, since these are the most

widely used methods to represent genetic sequences for the task of supervised classification.

2.4.4 Genetic sequence classification algorithms

Classifier algorithms behave differently depending on their algorithmic class

Once the sequence information has been encoded into an appropriate feature space, an algo-

rithm can be selected to perform the classification task. Our goal in this section is to focus on

how major categories of sequence classification algorithms behave in practice. While we provide

overviews of the algorithmic strategies for tools showcased in this work, we avoid detailed discus-

sion of algorithm implementations and refer to other sources for further reading. Instead, we tie

the choice of algorithm to the points we have already covered about feature spaces and databases,

showing how algorithm choice can be utilized by the analyst to ask various questions of genetic

sequence datasets. The three major algorithmic categories examined in this work are local align-

ment, partial alignment, and machine learning (an overview of general machine learning categories

with a focus on naive Bayes). Finally, we briefly cover sequential approaches as possible future

directions for algorithmic advancement.
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Local alignment algorithms have been popular genetic sequence classifiers since the advent of

the BLAST (Basic Local Alignment Search Tool) and BLAT (BLAST Like Alignment Tool) ap-

proaches [50, 51]. These algorithms are approximate solutions to the problem of global sequence

alignment, in which two sequences are compared to minimize the “edit distance” needed to reach

one sequence starting from the other, based on some scoring/substitution cost matrix. Global align-

ment algorithms like Needleman-Wunsch and Smith-Waterman are guaranteed to find an optimal

alignment between two sequences, however they are O(mn) in time complexity, where m is the

length of the query sequence and n the length of the subject/target sequence [52]. For modern se-

quence alignment problems, in which billions of sequences must be searched against databases of

large genomes, this time complexity is too costly and can result in days or more of compute time.

However, they can still be used as gold standard scoring algorithms against which to compare the

performance of local alignment algorithms [53].

To avoid the costly time complexity of global alignment, local alignment uses a seed-and-

extend strategy, where short k-mers (seeds) from the query sequence are matched exactly to the

subject sequence and then extended in either direction. If scores remain above a threshold during

the extension process, a sequence match is determined, otherwise the seed is rejected. The process

of searching for seed matches and extension can be further accelerated by encoding the database in

such a way that searching is efficient; this is often achieved by using hash indexing or the Burrows-

Wheeler Transform (BWT) followed by a Full-text index in Minute space approach (FM-index)

[54, 55]. Once a viable seed and alignment region are identified, a global alignment is performed

on the much smaller subregion of the database sequence; this last step is done so that gaps can

be inserted where necessary, otherwise the area where the seed first matched would never allow

for gaps or mutations, and alignment scores would be suboptimal compared to the gold standard

solution. These approaches often result in finding the best possible sequence alignment but are

not guaranteed to do so, however they perform much faster on average than global alignment ap-

proaches. Due to this compromise between computational efficiency and classification/alignment

accuracy, local alignment algorithms have remained a cornerstone of genetic sequence analysis for
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decades and are still in wide use. Here, we use the popular software Burrows-Wheeler Aligner

(BWA), based on the BWT and FM-index strategies, to showcase how local alignment techniques

perform in practice.

Another widely used genetic sequence classifier is Kraken and its variants, due to the extreme

speed and accuracy with which they are able to classify genetic sequences [16, 56, 57]. Kraken

utilizes exact matching of large, overlapping k-mers to perform sequence classification combined

with heuristics that consider the feature space and ontology graph. We refer to such large k-mer

matching strategies as “partial alignment” methods, since the combination of large k-mer features

and exact matching results in classifier behavior that is somewhere between local alignment and

machine learning approaches – a point that we will demonstrate on simulated and real data later

in this section. Generally, Kraken encodes both the database and the query sequence into large,

overlapping k-mers (by default with k greater than 30) then counts the number of k-mers from

the query that match to a given node in the database ontology. It then uses a heuristic algorithm

to determine if the sequence should be classified, to which node it should be classified, and how

far down in the ontology hierarchy it can confidently be placed (with ideal placement being as far

down as possible, e.g. species level).

Because Kraken does not keep track of where query k-mers match in the database sequences

and only considers exact matches, it can utilize a very efficient computational data structure called

a hash table to perform feature lookups. This data structure has O(1) lookup average time com-

plexity, which is the fastest possible. Additionally, since large k-mers are used as features, these

k-mers are extremely specific to the sequences in the database, making false positive classifications

unlikely to occur; this is similar to using a PCR primer of length 32 nucleotides. This results in

Kraken being a highly specific (low false positive rate) classifier, though it can result in loss of

sensitivity, which is an issue addressed in the more recent Kraken2 release [16]. However, a disad-

vantage of Kraken is that it only considers the k-mers encountered in the database and does not use

the entire k-mer feature space. With such a large k, it would be impossible to store all 4k combina-

torial features in computer memory. This means that if k-mers are encountered in the query dataset
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that aren’t present in the training dataset, they will not be considered for classification, which has

ramifications for detection of mutated sequences. However, in practice, Kraken performs very well

despite this drawback, as shown in the results below. Overall, the slightly different approach taken

by Kraken results in slightly different classifications than alignment, as seen below in the algorithm

comparison discussion.

The last type of algorithm featured in this work is the naive Bayes classifier using small k-mers

as features [4]. The naive Bayes classifier falls within the broad category of machine learning

classifiers, of which there are too many to explore in this work. Success in genetic sequence

classification has been had with many kinds of machine learning classifiers, including but not lim-

ited to neural networks and their variants, support vector machines, naive Bayes classifiers, and

decision trees [4, 58–60]. We chose to focus on the naive Bayes classifier for the following rea-

sons: 1. The algorithm uses the full k-mer feature space and therefore makes a good comparison

to Kraken, which uses only a subset of the k-mer space; 2. the naive Bayes algorithm is suffi-

ciently fast and easily parallelizable, which allows for efficient computation; and 3. naive Bayes

classifiers were successfully and broadly used in the past for natural language processing tasks

and genetic sequence classification, particularly for smaller problems like 16S gene microbiome

work [4, 61]. To explore how this older method compares against modern alignment and partial

alignment approaches, we updated this classifier into a modern computational framework called

WarpNL, which we make publicly available as a part of this work (see the WarpNL publication

code repository under the Supplementary code and data section). Details on the WarpNL design

and implementation can be found in the Supplementary Methods.

The combined use of a small k value, the entire k-mer feature space, and statistical theory

to form a decision boundary further differentiates naive Bayes from alignment and partial align-

ment. Though machine learning methods are diverse and can produce drastically different results

depending on the method, they all rely on statistical optimization and theory to form decision

boundaries and perform the classification task. This contrasts with alignment and partial align-

ment approaches, where the classification decision is ultimately heuristic, even if the heuristic
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decisions can be justified post-hoc using statistical confidence metrics. The analyst can leverage

this difference to explore an unknown dataset from different angles, since probabilistic methods

can provide results that heuristic approaches cannot.

To demonstrate how these algorithmic differences can be leveraged together to explore datasets,

we devised two experiments to compare and contrast the algorithms. In these experiments, the

MEGARes v2 modified database was used as the supervised/training dataset, and either simulated

or gold standard data for AMR sequence classification were used as the query dataset. The goal of

the first experiment was to showcase how each algorithmic class handles classification decisions

when faced with different kinds of mutational patterns away from the training database. In this first

experiment, simulated, single-end, short read (150 bp) data were produced using the MEGARes

v2 modified database sequences, and each simulated sequence was injected with a number of

mutations ranging from 0 to 15 (10% mutation rate) at either fixed (evenly spaced) or random

intervals along the 150 bp simulated reads. We refer to these mutational subsets as the “even”

and “random” mutation datasets, respectively. The simulated data were then classified against the

MEGARes v2 modified database using the BWA (alignment), Kraken2 (partial alignment), and

WarpNL (naive Bayes machine learning) algorithms. Since the goal of this experiment was to

demonstrate how these algorithms differ in classifying specific mutational patterns, no additional

sequencing error profile was used to generate the simulated data as might be done in a traditional

simulated benchmark aimed at determining algorithm performance metrics [62].

Overall, all three algorithms performed well in the face of high mutation rates (upwards of

10% on short read data), with correct classification rates over 95% up to around 5% mutation

rate. Beyond approximately 8 mutations per 150 bp (5% mutation rate), the algorithms behaved in

different ways and therefore captured different kinds of information about the query data. When

mutations were spaced evenly along the simulated read, the machine learning naive Bayes classifier

(WarpNL) with small k-mer feature encoding correctly identified more sequences than BWA or

Kraken2 as mutation rate increased (Figure 2.6). This is because with a higher number of evenly

spaced mutations, the regions of perfect homology to the database (regions between each mutation)

31



decreased in size. Therefore, use of a small k-mer encoding strategy allowed the algorithm to “see”

the regions of homology to the database, where the use of a larger k-mer size would not.

Figure 2.6: When simulated sequences from the MEGARes v2 database are increasingly mutated

evenly across the simulated sequence reads, WarpNL correctly classifies the most sequences, followed

by Kraken2 and BWA. However, BWA exhibits increased classified rates at very high mutation levels due

to recovery strategies implemented in its BWA-MEM re-seeding algorithm. Also, while WarpNL performs

best on evenly spaced mutations, it also has the highest misclassification rate at high mutation levels. The

rows in this figure are the ontological levels of the MEGARes v2 database from highest (top row) to lowest

(bottom row): Type, Class, Mechanism, and Group. The MEGARes ontology graph is a hierarchical tree

(acyclical), similar to the taxonomic tree of life. The columns of this figure are the Total Classified reads

(true positives and false positives), Correct classified reads (true positives), and Misclassified reads (false

positives) by algorithm. The x-axis is the number of mutations per simulated read, and the y-axis is the total

number of reads classified. Note the differences in y-axis values across the figure facets.

Additionally, the way in which we implemented WarpNL considers the entire read as a single

classifiable unit, i.e. it classifies the entire read in a single decision as opposed to classifying sub-

regions of the read independently. Since WarpNL could detect the small runs of homologous bases

due to the small k value, it had enough information aggregated across the entire read to correctly

classify reads with evenly spaced mutations. However, as the number of mutations increased, this

naive Bayes machine learning classifier had the largest increase in false positive classifications

(misclassified). One explanation for this is that the mutation rate across the read was high enough
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that the algorithm determined that it should classify the read to something in the database, but

the read was divergent enough from its true ontological group that the algorithm mistook it for

something else. In this particular case, WarpNL had a better sensitivity of detection compared to

heuristic methods; however, this gain in sensitivity came at the cost of reduced specificity, which

is a well-known tradeoff in classification [63].

On the other side of the algorithmic spectrum, the local alignment technique (BWA) had trouble

with the even mutation dataset: BWA demonstrated the steepest decline in correct classification

rate as the number of mutations increased (Figure 2.7). This was due to the way in which alignment

is performed via the seed-and-extend approach (described above). The small k-mer seed matches

to a region of perfect homology to the database and then attempts to extend in either direction,

however if it encounters too many mutations during the extension step, it will fail to align the read.

Since these evenly mutated reads had frequent mutations, the extension portion of the algorithm

considered those evenly spaced mutations to be too divergent from the database, causing it to be

unclassified.

While BWA had the steepest decline in correct classification rate on the even mutation dataset,

it appeared to recover at higher levels of mutation (greater than 9 per 150 bp), resulting in the most

correctly classified reads at very high mutation rates. This is an interesting result that showcases

how heuristic algorithms can adapt to various circumstances, for example, how the BWA-MEM

algorithm was implemented to accommodate increasing read lengths as early as 2013 [64]. In

the 2013 update, the developers introduced several logical recovery branches to the algorithm,

including a re-seeding strategy that searches for seeds using smaller-than-default k values and

additionally evaluates chains of seed matches in local alignment neighborhoods [64]. This was

intended to accommodate structural variations that were anticipated to become more common in

sequencing data as read length increased, however it evidently was also able to detect the evenly

spaced mutational pattern present in this dataset. This result demonstrates an advantage of heuristic

approaches over machine learning ones, since fewer stand-alone methods in the field of machine
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Figure 2.7: When simulated sequences from the MEGARes v2 database are increasingly mutated

randomly across the simulated sequence reads, BWA correctly classifies the most sequences, followed

by Kraken2 and WarpNL. All classifiers classify greater than 35% of the simulated reads, even at high

mutation levels. Note that Kraken2 has the lowest misclassification rate due to its use of large k-mers, while

WarpNL continues to have the highest misclassification rate. The rows in this figure are the ontological levels

of the MEGARes v2 database from highest (top row) to lowest (bottom row): Type, Class, Mechanism, and

Group. The MEGARes ontology graph is a hierarchical tree (acyclical), similar to the taxonomic tree of

life. The columns of this figure are the Total Classified reads (true positives and false positives), Correct

classified reads (true positives), and Misclassified reads (false positives) by algorithm. The x-axis is the

number of mutations per simulated read, and the y-axis is the total number of reads classified. Note the

differences in y-axis values across the figure facets.
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learning would be able to accommodate this kind of logical branching, perhaps with the exception

of decision trees.

Kraken2, which we consider here to be a “partial alignment” approach, fell in between the

results of local alignment (BWA) and naive Bayes (WarpNL). Kraken2 has advantages of both

alignment and machine learning methods: it uses a k-mer feature space, which allows it to find

smaller regions of homology in larger sequences, but it also has a high specificity in the face of

increasing mutations. This is interesting, since having a high specificity is more characteristic of

methods like alignment that utilize the full sequence space as opposed to k-mers. Additionally,

Kraken2 is orders of magnitude faster than BWA or WarpNL when used to classify large datasets,

which can compensate for its slight decrease in overall accuracy relative to alignment approaches.

An interesting point is that Kraken2 performs its classification in the context of the database

hierarchical ontology graph: note that in these experiments Kraken2 did not classify all reads down

to the lowest ontological level (MEGARes Group level) even at a mutation rate of 0 (Figure 2.6).

Instead, Kraken2 classifies query data to whichever ontological level its heuristic algorithm deter-

mines is discriminatory for that particular ontological branch. For instance, some of the simulated

reads generated in these datasets were contained entirely within regions of homology that are

shared between two ontological categories. This caused Kraken2 to find the next highest parent

node in the ontology graph where nodes within the same hierarchical level did not have too much

feature overlap. Since Kraken2 utilizes a large k size (greater than 30 by default), it often takes

only one such region of 30-35 bp to be discriminatory, so as long as one such discriminatory k-mer

is present in the query sequence, Kraken2 can classify it to a lower level. However, if no dis-

criminatory k-mer is present, Kraken2 defaults to classification at a higher ontological level. This

makes Kraken2 well-suited to classification tasks that involve hierarchical ontology graphs, such

as microbiome classification. Also note that Kraken2 is conservative (strict) with its classifications

without sacrificing too much sensitivity: it had by far the lowest misclassification rate on simulated

data of the classifiers examined here.
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Interestingly, the patterns of classification performance seen in the even mutation dataset were

reversed for the algorithms when mutations were instead randomly distributed across the simulated

reads (Figure 2.7). Random patterns of mutation are more likely to be encountered in real sequence

data, since the overall forward mutation rate is greater than the rate of structural variations like

insertion/deletion events or mutations in linkage disequilibrium in most organisms [65]. Here, we

see that local alignment was robust to random mutation patterns even at very high rates of mutation

(10%). The k-mer classifiers, however, were less accurate when faced with a random mutation

pattern: the naive Bayes machine learning method (WarpNL) classified fewer than 50% of reads as

the number of mutations approached 15 per 150 bp, while local alignment (BWA) classified greater

than 95% of reads, and partial alignment (Kraken2) again fell in between. The misclassification

rates showed the same pattern in the random mutation dataset as in the even mutation dataset,

with Kraken2 having the lowest misclassification rate at the lower hierarchical ontology levels and

WarpNL having the highest misclassification rates overall (Figure 2.7).

Taken together, these results demonstrate that different algorithms behave differently, even

when used in a classification task with the same query data and database. While this may seem

concerning, since there ought to be only one ground truth result for classification, the reality of

genetic sequence analysis is that the “ground truth” label for a given sequence depends on many

factors, e.g. the biological system in which the experiment is performed, the phenotypic differences

the analyst wishes to explore, and the overall goal of experimental inference that the analyst seeks

to achieve. It is therefore up to the analyst to use appropriate downstream statistical methodology

and subject matter expertise to make well-informed inferences using classification results for a

particular genetic sequence analysis. Since the goal is to be as well-informed as possible about

the dataset at hand, the different behavior of these genetic sequence classification algorithms can

be leveraged by the analyst to explore datasets from different angles and to gain a breadth of

information that may be relevant to downstream inference. In the field of machine learning, groups

of classifiers used together to make inferences are often called classifier ensembles and are an

established strategy for analysis [66].
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To illustrate the benefit of classifier ensembles, we performed a second experiment using two

datasets that we consider to be the closest to a real-world gold standard for antimicrobial resistance

sequence classification. The query data come from two functional metagenomic datasets produced

by the creators of the Resfams antimicrobial resistance protein hidden Markov models: here, we

refer to these datasets as Pediatric and Soil [67, 68]. Functional metagenomics provides a phe-

notypic label over traditionally metagenomic data: cleaved fragments of metagenomic DNA from

any sample type are cloned into a phenotypically antimicrobial susceptible bacterial vector like

Escherichia coli and are functionally overexpressed on a plasmid. The formerly susceptible clones

are then grown on agar infused with various kinds of antimicrobial drugs. Therefore, colonies

that grow on the antimicrobial-laden agar must contain a metagenomic fragment that confers resis-

tance to at least that particular antimicrobial. Since the metagenomic fragment is overexpressed,

it should be detectable via sequencing of the bacterial colony. This provides a target label against

which classification strategies can be evaluated: if the resulting genetic sequence data contains

an antimicrobial resistance gene that is also present in the reference database, then the classifiers

should be able to identify it in high copy number/coverage, provided there is sufficient sequencing

depth.

However, one should note that the classifiers may also identify off-target genes that might be

present; it is not uncommon for antimicrobial resistance genes to be found in close genomic or

plasmid proximity in nature, therefore there may be some samples that are resistant to multiple an-

tibiotic types but have only one phenotypic resistance label [69]. Additionally, the classifiers could

identify sequences belonging to housekeeping genes like DNA topoisomerases or ribosomes that

may or may not be phenotypically resistant, since these resistance mechanisms are often a result

of a few mutations to otherwise ubiquitous bacterial proteins. Because of this, we referred to clas-

sifier results as being “on-target” if the label assigned by the classifier matched the antimicrobial

drug class in the agar and “off-target” if it did not. However, not all off-target classifications were

necessarily incorrect due to the reasoning above.
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The metagenomic DNA for the Pediatric dataset was isolated from healthy infant and children

fecal samples [67], while the DNA source for the Soil dataset was obtained from agricultural and

grassland soil samples [68]. The authors of these studies hypothesized and subsequently showed

that known and novel antimicrobial resistance genes could be identified in both datasets, however

the human-associated Pediatric dataset likely contains more well-studied antimicrobial resistance

genes, and the Soil dataset contains antimicrobial resistance genes that are more divergent from

known databases. Though these studies were performed circa 2014, this pattern still holds true

even using modern antimicrobial resistance databases. Using these three classifiers spanning the

methods of local alignment, partial alignment, and machine learning, we hypothesized that each

of these algorithmic classes would identify a different aspect of genetic variation away from the

MEGARes database, with the Soil dataset results being more genetically distant than those from

the Pediatric dataset.

All three classifiers were able to find sequences matching the functional metagenomic antimi-

crobial resistance labels in both datasets with a high degree of accuracy (Figure 2.8a, Figure 2.9a).

Additionally, all three classifiers captured the same core group of sequences, as evidenced by the

high level of agreement on sequence classifications between pairs of classifiers and all three classi-

fiers used together. However, individually, the classifiers also captured sequences that didn’t match

the functional metagenomic labels and some sequences that the other classifiers did not classify.

In the Pediatric dataset, the k-mer classifiers (Kraken and WarpNL) identified more off-target

sequences than alignment, but when either k-mer classifier was combined with alignment, 100%

of reads identified were on-target. For the Pediatric dataset, alignment (BWA) outperformed the

k-mer classifiers in all categories for identification of on-target sequences, particularly in samples

exhibiting phenotypic resistance to the glycopeptide antimicrobial drug class (Figure 2.8b). We hy-

pothesize that this is due to metagenomes related to human subjects being more well-characterized

and represented in databases than samples not from human subjects [70]. In the case where the

cloud of genetic variation in the query data was well-represented in the training database, both
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alignment and large k-mer partial alignment strategies performed well, since exact-matching sub-

sequences were highly represented in the query data.

In the Soil dataset, while all classifiers identified mostly the same subset of sequences, align-

ment (BWA) and the small k-mer naive Bayes classifier (WarpNL) individually and together out-

performed large k-mer partial alignment (Kraken) to a small degree on overall and on-target se-

quence classification. This was most notable in samples exhibiting phenotypic resistance to the

glycopeptide and phenicol antimicrobial drug classes (Figure 2.9b). We again hypothesize that

this is due to query data in the Soil dataset being more genetically distant from the sequences rep-

resented in the MEGARes v2 database. To examine this hypothesis, we further explored off-target

classification patterns for each classifier combination and analyzed alignment metrics that might

provide an estimation of genetic distance in the query data relative to the MEGARes v2 database.

Off-target classifications in functional metagenomic data can be either false positive classifi-

cations (misclassification errors made by the classification algorithm) or correct classifications of

genetic sequences that do not confer resistance to the antimicrobial embedded in the agar during

the functional metagenomic experimental process. Given the high level of accuracy displayed by

all three classifiers examined here, the majority of the off-target classifications were likely the latter

and not due to errors made by the classifiers themselves. Typically, if real false positives/misclas-

sifications are produced, they tend to result in a small number of sequences being classified to a

wide variety of disparate database labels. This is why a large portion of misclassification error

can be eliminated by removing categories with few (less than 5th quantile) sequence counts as a

post-classification filtering strategy during statistical analysis [71, 72]. Here, we show the top 7

most abundant off-target classifications made by each classifier and classifier combination for the

Pediatric and Soil datasets (Figure 2.10, Figure 2.11).

In the Pediatric off-target classifications, the Class A beta-lactamase counts are nearly all from

a single sample in the Pediatric dataset (SRR961818) that contains a true cblA gene Class A beta-

lactamase precursor product (Figure 2.10). Phenotypically, this may or may not be a functional

AMR gene, however it was independently identified by all three classifiers with a large number
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Figure 2.8: In the Pediatric functional metagenomic dataset, individual classifiers identify largely

overlapping but unique subsets of sequences, most of which are on-target according to the functional

metagenomic phenotypic resistance label. A) The total number of reads classified (bar) and on-target

number of reads classified (crosshair) by algorithm (x-axis, color). BWA, Kraken2, and WarpNL identify an

overlapping but unique set of query sequences when used individually. In combination, a large percentage of

classified sequences are on-target, but fewer overall sequences are identified. The k-mer classifiers (Kraken2

+ WarpNL) both identify sequences beyond the on-target subset, suggesting that this dataset contains true

genetic sequences that match to the database but were not phenotypically labelled as resistant. B) The on-

target sequences were subset by functional metagenomic phenotypic resistance label and similarly colored

by algorithm. Alignment and partial alignment (BWA + Kraken2) identify the most on-target sequences

for the Pediatric dataset. BWA identifies many more on-target sequences belonging to the glycopeptide

phenotypic resistance label than do the other classifiers.

40



Figure 2.9: In the Soil functional metagenomic dataset, individual classifiers identify largely over-

lapping but unique subsets of sequences, most of which are on-target according to the functional

metagenomic phenotypic resistance label. A) The total number of reads classified (bar) and on-target

number of reads classified (crosshair) by algorithm (x-axis, color). BWA, Kraken2, and WarpNL identify

an overlapping but unique set of query sequences when used individually, more of which are on-target than

in the Pediatric dataset. In combination, a large percentage of classified sequences are on-target, but fewer

overall sequences are identified. BWA identifies the most and most on-target sequences in this dataset.

Within the k-mer classifiers, WarpNL identifies more sequences and on-target sequences than Kraken2 in

this dataset. B) The on-target sequences were subset by functional metagenomic phenotypic resistance label

and similarly colored by algorithm. Within the glycopeptide and phenicol functional metagenomic pheno-

typic resistance label, BWA and WarpNL identify some sequences that Kraken2 does not. Additionally,

within the glycopeptide and phenicol labels, BWA and WarpNL largely identify non-overlapping query se-

quences.
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(greater than 420,000) of sequences classified. Interestingly, alignment identified a largely dif-

ferent subset of sequence reads belonging to this product than did the k-mer classifiers (data not

shown). In the following discussion, we will elaborate on why this might be. The remaining off-

target categories were various housekeeping genes, including ribosomal subunits (16S and 23S),

ribosomal protection proteins, or multi-drug efflux pumps that can be found in many bacterial

clades. Again, these may or may not be phenotypically resistant to antimicrobial drugs, however

their genetic sequence was similar enough to the sequences present in the MEGARes database such

that they were classified. Such off-target classifications require further exploration to confirm the

presence of resistance-conferring mutations (usually through de novo assembly and protein transla-

tion), and many off-target classifications require subsequent wet-lab analyses to verify phenotypic

resistance.

In the Soil off-target classifications, nearly all ontological categories identified as off-target

belonged to housekeeping genes, similarly to the Pediatric dataset, with the addition of some DNA

topoisomerase categories (Figure 2.11). Again, all three classifiers identified a large number of

off-target sequences when used individually, however when considered together, the number of

off-target classified sequences dropped to below 200 sequence reads per category. This is because

the algorithms (in this instance) identified largely non-overlapping sequence subsets, with the k-

mer classifiers agreeing more with one another than with local alignment. This may suggest that

k-mer classifiers are, in general, better at detecting sequences that are genetically distant from the

database. Yet because k-mer classifiers typically don’t provide much information about how their

classification decisions are made, it can be difficult to identify why this is the case. However, the

required information is provided by alignment techniques like BWA, which allowed us to further

investigate behavior of the k-mer classifiers by comparing the k-mer classifiers to the results from

BWA’s alignments on a read-by-read basis.

Though Kraken2 does provide some information regarding matching k-mer location in the

query sequence, we chose to use the alignments produced by BWA as a point of comparison

for this next experiment. This is because BWA produces Smith-Waterman alignments on a local
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Figure 2.10: Off-target classifications for the Pediatric functional metagenomic dataset are largely

housekeeping genes that are genetically similar to the MEGARes v2 database sequences. These se-

quences may or may not be phenotypically resistant, requiring further bioinformatic or molecular experi-

mentation to verify resistance. All classifiers individually identify a large set of reads belonging to the Class

A beta-lactamase ontological group, which is a cblA beta-lactamase precursor from sample SRR961818.

However, BWA appears to identify a different subset of sequences than do Kraken + WarpNL, since all

three classifiers used in combination result in very few sequences (less than 200) being classified per onto-

logical category.

43



Figure 2.11: Off-target classifications for the Soil functional metagenomic dataset are largely house-

keeping genes that are genetically similar to the MEGARes v2 database sequences. These sequences

may or may not be phenotypically resistant, requiring further bioinformatic or molecular experimentation

to verify resistance. The ontological categories seen in the Soil off-target sequences are similar in context to

the Pediatric off-target sequences with the addition of some DNA topoisomerases.
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context, which provides detailed information regarding sequence gaps, mutations, and total aligned

base pairs from the query sequence against the database sequence. We first extracted the alignment

information for every read aligned by BWA in the Pediatric and Soil datasets; so, the following

data have all been identified via alignment (we therefore do not consider reads that BWA did not

classify). We then further denoted these classified reads as being identified by: BWA only and

not by Kraken2 or WarpNL; BWA and Kraken2 but not WarpNL; BWA and WarpNL but not

Kraken2; and by all three classifiers. Then, we parsed the alignment results, counted the number

of individual base pairs aligned by BWA for each read pair, and plotted the density of these results

for all classified sequences as well as on-target sequences (Figure 2.12, Figure 2.13).

The densities of aligned base pairs per sequence differed greatly in shape and location by

algorithm. In the Pediatric dataset (Figure 2.12), the classifiers, when used together, identified

query sequences where most of the base pairs in the read pair matched the database, which is

evidenced by the high density around 200 bp (each read was approximately 105 bp in length, for

a total of approximately 210 bp). The smaller density around 100 bp represents classifications of

a single read within the read pair, likely where either the forward or reverse read matched to the

database while its mate-pair did not. When all classifiers were used together, classifications favored

reads that matched more exactly to the database, since reads classified by all algorithms satisfied

a more stringent set of similarity criteria than reads classified by any classifier pair or any one

classifier. This is similar to using multiple molecular diagnostic methods in combination to identify

the presence of an organism, for example when testing in parallel with molecular diagnostic assays.

Any result that is positive by the entire battery of tests is much more likely to be a true positive,

if different methods are employed. Similarly, in a classifier ensemble, if reads are required to be

positively classified by all classifiers in the ensemble, the resulting positive classifications tend to

be very similar to the training database.

The densities for sequences that were classified by BWA and Kraken2 but not WarpNL show a

higher density around the 100 bp mark with a relatively flat distribution elsewhere. This suggests

that WarpNL does not as frequently classify read pairs where one read is similar to the database
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Figure 2.12: In the Pediatric functional metagenomic dataset, the density of the number of base pairs

aligned per sequence differs according to which algorithm or combination of algorithms classified it.

Sequences classified by all three algorithms had on average a higher number of aligned bases, with the peak

densities at approximately 200 bp (both read pairs) and 100 bp (one read per mate-pair). This suggests that

sequence read pairs classified by all algorithms are more similar to the MEGARes v2 database than those

classified by individual algorithms or pairs of algorithms. Sequence read pairs classified by BWA + Kraken

but not WarpNL show a peak density around 100 bp, suggesting that WarpNL is not good at classifying

read pairs where one pair is genetically similar to the training database but the mate-pair is not. Read

pairs classified by BWA and WarpNL both have high densities around small aligned base pair values (less

than 50), suggesting they are capable of identifying small subregions of sequences that match to the training

database where Kraken2 cannot. Note that the data used in this figure are produced by BWA (local alignment

algorithm), so those sequences that were only identified by Kraken2 and/or WarpNL are not included.
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while the other read is not. From an algorithmic perspective, this is not surprising, since WarpNL

weights all k-mers equally during classification and examines all k-mers present in the read pair.

In doing so, the sequence in the read pair that is not genetically similar to the database can of-

ten overwhelm its mate pair sequence that should match, causing a false negative classification.

In comparison, Kraken2 and BWA are able to consider localized context (unequal weighting of

k-mers or subsequences), since their algorithms are heuristic. Often, it only takes one exactly

matching k-mer for Kraken2 to classify a sequence correctly, and BWA can likewise exclude ex-

traneous information using local alignment strategies. This is an advantage of heuristic algorithms

over machine learning classifiers that require use and equal weighting of the entire feature space,

as is the case for the implementation of naive Bayes used in WarpNL.

Patterns in the reads classified by BWA and WarpNL but not Kraken2 demonstrate the point

made earlier: that small k-mer classifiers and alignment methods capable of considering small

sequence regions will identify sequences with fewer base pairs aligned than Kraken2 is capable

of identifying. This is because Kraken2 uses a very large k-mer size (> 30), so if no exactly

matching large k-mer is present in a read pair, it is invisible to Kraken2. Notice that the density

towards the lower end of the aligned base pair distribution is centered roughly at 30 bp, which is

roughly the k-mer encoding size of Kraken2. In this particular algorithm combination (BWA +

WarpNL – Kraken2), there was also an apparent difference between the on-target and all sequence

distributions, however this is likely due to the small number of reads present in this category

(3,508). We expect that the on-target distribution would approach the shape of the all sequence

distribution given enough reads classified in this category. However, this pattern could also be

caused by a true difference in the amount of mutation away from the database present in these

phenotypically resistant metagenomic products.

Finally, BWA without Kraken2 or WarpNL was clearly capable of identifying short subse-

quences that were missed by the k-mer classifiers. While it might be considered that these are

false positive classifications, the sheer number (776,456 total and 300,557 on-target) of sequences

classified and classified on-target suggest that at least a portion of them are real true positives. For
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such sequences to be identified only by BWA, they likely have unmapped mate pairs (as previ-

ously discussed) and a large number of mutations present in the sequence. As previously shown

in Figure 2.6 and Figure 2.7, BWA does have a region of sensitive detection at a high rate of mu-

tation where it outperforms Kraken2 and WarpNL, likely due to the strategies implemented in the

BWA-MEM re-seeding algorithm.

The alignment distributions show roughly the same patterns in the Soil dataset as in the Pedi-

atric dataset (Figure 2.13). Additionally, as we previously hypothesized, there is a larger density

of reads classified with a smaller number of base pairs aligned in the Soil dataset compared to

the Pediatric dataset. This result suggests that the cloud of genetic variation in the Soil dataset

less closely matches the genetic variation present in the MEGARes v2 database, causing fewer

base pairs to be aligned per classified sequence on average. In these scenarios, the k-mer classi-

fiers often have an advantage over alignment, since they are able to consider non-sequential and

complex classification boundaries using long-range k-mer information that traditional seed-and-

extend alignment strategies cannot replicate. We previously discussed that Kraken2 when used

with WarpNL identified a large subset of sequences in the Soil dataset where BWA did not. How-

ever, such results wouldn’t be reflected in Figure 2.12 and Figure 2.13, since the k-mer classifiers

do not produce base pair-level information during classification and therefore were not able to be

included in this analysis.

These results taken together emphasize that every algorithm has a different strategy and there-

fore a different behavior, even if they share the same training database. Instead of this being

concerning, it should be leveraged to the analyst’s advantage through the use of classifier ensem-

bles, as demonstrated here. Since each algorithm provides a somewhat overlapping but unique

view of the query dataset, they can be used in combination to achieve various tasks. For example,

if the analyst wants to identify sequences that match to a database with extremely high confidence,

they could require all algorithms to report positive classifications and exclude results that do not

meet this criterion. Alternatively, if the goal was to identify potentially novel mutations away from

known sequences, the analyst could require a positive classification by only one method and per-
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Figure 2.13: In the Soil functional metagenomic dataset, the density of the number of base pairs

aligned per sequence differs according to which algorithm or combination of algorithms classified it.

The density patterns shown here follow similar trends as in the Pediatric dataset. Additionally, there are

an increased number of classified sequences with fewer base pairs aligned, which suggests that there is an

increase in genetic distance away from the database overall in the Soil dataset as compared to the Pediatric

dataset.
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form further investigation using molecular approaches or other bioinformatics strategies like de

novo assembly to validate putative positive classifications. At times, a single classification strategy

may be suitable to a given task, however as computational resources continue to advance, it may be

advised for analysts performing genetic sequence classification to consider two or more algorithms

to improve accuracy.

Finally, we will briefly consider future directions of algorithmic development. The results pre-

sented here showcase classifiers for short-read sequence data, however modern sequencing strate-

gies have begun to produce long-read sequences that will become an increasingly large proportion

of query data for genetic sequence classification. It should be expected that the algorithms listed

here will not perform as well on long-read query data as they do on short-read data. Though the

problems may seem similar, many nuances are introduced into the classification problem as read

length increases, i.e. one must consider localized regions (envelopes) of genetic sequences that can

be different from neighboring localized regions. Therefore, the algorithms must be able to accom-

modate assignment of start and stop positions within a single query sequence, which none of the

algorithms presented here can do in a single pass. This has been acknowledged by the develop-

ers of these classifiers as far back as the BWA-MEM publication [64]. However, many classifiers

for long-read data have already been developed, including leveraging of old methods like hidden

Markov models (HMMs), which have been a cornerstone of sequence classification for decades

[73, 74].

Overall, the information present in the query sequence should increase drastically as read length

increases, making classification an easier task in terms of identification but a more difficult task

in terms of implementation. In the last several years, neural network machine learning strategies

have evolved substantially in the field of natural language processing, introducing techniques like

transformers and context approaches [75, 76]. We anticipate that such methods will be applicable

to long-read data, particularly as database size increases to provide these more complex models

with the information needed to identify deep contextual patterns in the training data. Hopefully,

as the amount of information increases with read length, these more advanced classifier methods
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that consider sequential context can help provide an increasingly robust picture of the structural

organization of genetic sequence data.

Error correcting strategies can improve classifier sensitivity

Much of the previous sections on classification algorithms and genetic sequence databases in-

volved discussion of methods to improve the sensitivity of sequence classification without sacrific-

ing accuracy through loss of specificity. We have previously discussed that the most advantageous

way to capture more genetic variation during the classification task is to improve the robustness

of the underlying training database, and, to a lesser extent, through the use of algorithm ensem-

bles and more representative feature encoding strategies. However, other methods for capturing

increased genetic variation have also been explored with variable success, largely borrowing ideas

from the field of signal processing [77]. An important aspect of the signal processing field is to

encode and sample information in an efficient but redundant manner, such that if pieces of infor-

mation are lost during transmission of a signal from a sender to a receiver, the message can be

reconstructed intact by the receiver despite the loss of information. An example of this is the en-

coding of data packets such that packet loss during internet or cellular data transmission does not

result in substantial information loss on the receiving end [78].

This concept can also be leveraged to some degree in genetic sequence classification by think-

ing of mutations with respect to the database as “errors” (i.e. as lost or corrupted information).

With k-mer classifiers in particular (or seeds for seed-and-extend aligners), misclassifications oc-

cur when the k-mer does not match the database, or if a mutated k-mer causes a mismatch to a

different database class. If such a mismatch is caused by only a few mutations in a single win-

dow of length k base pairs, the k-mer can be correctly matched if those mutations can be ignored.

This is analogous to correcting “errors” in the mutated sequence such that it matches correctly to

the database. However, if too many errors are “corrected,” it is also possible to increase the false

positive rate by being too permissive during classification. Therefore, methods that seek to gain

sensitivity through error correction during feature encoding must balance an increase in sensitiv-
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ity with a decrease in specificity of classification, typically through the careful selection of the

error-correcting strategy.

The Kraken family of classifiers introduced this idea into their algorithm by using “spaced

seeds”; this was originally introduced into Seed-Kraken but was also included in the implementa-

tion of Kraken2 [57]. Using a specifically chosen, fixed set of gaps during k-mer feature encoding

(determined through experimentation), Seed-Kraken and Kraken2 were able to improve the sen-

sitivity of classification by roughly 2-5%. The inspiration for this method was taken from early

experimentation of spaced seeds from seed-and-extend alignment methods [79], hence the use of

“seed” in the name. However, the approach of error correction goes back further into the fields of

information theory and signal processing.

A more dated error correction strategy comes from low-density parity-check (LDPC) codes,

first introduced by Robert Gallager in 1962 [80]. Instead of using a single gapped sequence to en-

code k-mers, LDPC codes (applied to k-mers) evenly subsample a k-mer into l-mer subsequences,

where l < k and l divides k without remainder. Gaps are introduced into the l-mers, creating

a kind of bootstrap-like subsampling pattern that evenly covers the k-mer space; this strategy is

traditionally represented in a parity check matrix (Figure 14). In recent work, the metagenomic

binning software Opal leveraged LDPC codes to some degree to improve the sensitivity of ge-

netic sequence clustering (aka metagenomic binning), an unsupervised clustering task with strong

parallels to supervised genetic sequence classification [81].

In the WarpNL classifier, we also implemented the Gallager LDPC strategy to see if it im-

proved the sensitivity of supervised classification using small k-mers and the naive Bayes machine

learning classification algorithm. We utilized k=30 and l=10 with a bootstrap row-weight of 2 (i.e.

every base pair in every k-mer is sampled exactly 2 times during feature encoding) (Figure 2.14b).

In Figure 2.15, we show via receiver operating characteristic (ROC) curves that this resulted in an

overall decrease in sensitivity and specificity on the previously introduced simulated MEGARes

v2 data through a total reduction in area under the curve (ROC-AUC), a method used to visually

evaluate classifier accuracy. Additionally, we evaluated the performance of the Gallager encoding
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Figure 2.14: Gallager LDPC error-correcting codes can be used over k-mer features to increase classi-

fication sensitivity. A) The parity check matrix identifies which positions are encoded for any given k-mer,

indicated by the non-zero bits. The column sums indicate the row weight of the LDPC design. B) The

LDPC matrix on the left is shown for an example k-mer sequence

strategy on the previously introduced Pediatric and Soil functional metagenomic datasets (Fig-

ure 2.16, Figure 2.17). The classification patterns resulting from WarpNL with Gallager encoding

(WarpNL-Gallager) consistently agreed with the WarpNL classification patterns using standard k-

mer encoding (WarpNL-Multinomial) across all samples from both the Pediatric and Soil datasets.

As seen in the Venn-diagrams, there were very few sequences for which WarpNL-Gallager and

WarpNL-Multinomial disagreed, and both k-mer encoding strategies matched results produced

by Kraken2 and BWA in a similar manner. If the WarpNL-Gallager method truly improved on

sensitivity of detection over WarpNL-Multinomial, we would expect the ROC-AUC to be greater

for WarpNL-Gallager (Figure 2.15) and the WarpNL-Gallager method to diverge more dramat-

ically from the classification patterns produced by WarpNL-Multinomial in the Venn-diagrams

(Figure 2.16, Figure 2.17). Therefore, while spaced seeds and LDPC codes can be used to some

effect, as shown by Kraken2 and Opal, they did not appear to increase sensitivity when used with

the WarpNL classifier. Regardless, we deemed it pertinent to include this discussion of spaced

seeds in this work, since they can help to improve the sensitivity k-mer classification in certain

contexts.
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Figure 2.15: Gallager LDPC encoding used in the WarpNL classifier (WarpNL-Gallager) showed an

overall decrease in ROC-AUC for both the simulated even mutations and random mutations datasets.

We therefore concluded that Gallager LDPC encoding did not improve sensitivity of sequence classification

in the face of either kind of mutation pattern, so far as it was implemented in the WarpNL software. Here,

traditional sensitivity is shown on the y-axis, and 1 – specificity is shown on the x-axis, which is typical of

receiver operating characteristic (ROC) curve diagrams. The area under the curve (AUC) can be calculated

by taking the area under this ROC curve.
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Figure 2.16: On the Pediatric functional metagenomic dataset, the standard k-mer encoding (WarpNL-

Multinomial) and Gallager LDPC encoding (WarpNL-Gallager) demonstrated largely overlapping classifi-

cation patterns when compared to the other classification algorithms.
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Figure 2.17: On the Soil functional metagenomic dataset, the standard k-mer encoding (WarpNL-

Multinomial) and Gallager LDPC encoding (WarpNL-Gallager) demonstrated largely the same classifica-

tion patterns when compared to the other classification algorithms.
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Strategies for determining which sequences are classified versus unclassified are critical to

classifier performance

Much attention is given in practice and in the literature to the task of assigning class labels

for supervised genetic sequence classification, i.e. the focus is often on differentiating Escherichia

coli from Salmonella enterica from Saccharomyces cerevisiae. However, genetic sequence classi-

fication also involves the step of determining whether or not a query sequence is genetically similar

enough to the database to be classified at all. Here, we refer to this as the “unclassified problem,”

and we argue that determining whether a sequence should be classified or not is often the more dif-

ficult of the classification tasks. Despite the importance of this step, it is not commonly discussed

in detail in classifier literature.

The unclassified problem is a difficult subject, because it either forces the developer of the

classifier to use an arbitrary threshold for determination of unclassified labels (for heuristic meth-

ods), or it requires statistical cross-validation to either tune this threshold or train an additional

learned model to identify unclassified decision boundaries. In the latter case, learned parameters

and cross-validation procedures must be tuned on a case-by-case basis that changes with the train-

ing set; thus, a decision boundary learned by a model using one database will not transfer to other

databases without retraining of the model on the new database. In many cases, cross-validation and

tuning also require the user to provide “outgroup” sequences that are sufficiently different but not

too different from the database, such that appropriate decision thresholds and boundaries can be

learned. This severely hampers end-user usability, particularly if the classifier is aimed at reaching

a wide audience of non-bioinformaticians or end-users that are not trained in machine learning

procedures. The ideal classifier, from an end-user perspective, would function equally well with

all databases and not require tuning to the specific classification task, as algorithms like BWA

and Kraken2 aim to achieve. However, this end-user ease of use is often impossible to achieve

when using more complex classification methods, such as most machine learning models. This

includes WarpNL, which requires the use of both an outgroup training set as well as statistical

cross-validation to train the outgroup classifier model.
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The unclassified problem is a theory-rich subject that drives at deep structural patterns in bi-

ological sequence data, which is why it is often difficult to get right in practice and often cir-

cumvented during the creation of classifier algorithms. We will expand on these assertions in this

section and then discuss the pros and cons of how WarpNL handles this problem. From a math-

ematical perspective, it is helpful to understand that biological sequence data are already highly

structured. This structure is a result of the multi-factorial, complex interactions that arise from a

biological system evolving under selective pressure. When we seek to classify genetic sequences

at the DNA level, we are performing a classification task that is several steps removed from the

physical organisms and proteins that are under forces of natural selection. While small changes

in DNA look like small differences to the sequence classifiers, they can actually result in drastic

phenotypic effects, including organism nonviability. For example, a SNP at the first nucleotide

position in a translational reading frame codon that encodes a highly conserved protein could have

large phenotypic impacts that the classifier cannot see at the DNA level.

However, the sequences in the training databases are a result of this complex evolutionary sys-

tem and are therefore highly organized. Thus, when we seek to choose sequences with which

to train an outgroup versus ingroup classifier (or to learn a threshold parameter for heuristic algo-

rithms), the outgroup sequences must be genetically close enough to the highly structured database

sequences to properly learn the parameter. These two datasets must be related to one another

enough for the decision boundary to be refined correctly but also distant enough that the algorithm

doesn’t develop a decision boundary that is too strict to capture genetic mutations in future query

data. If the distance between the ingroup data (training database) and the outgroup data is too large,

then the unclassified decision boundary can be chosen from a wide range of solutions/locations and

still separate these two distant datasets. However, when applied to real query data, this threshold is

nonsensical, because other biological data that is under selective pressure is non-random and will

be much more genetically similar to the database than the distant outgroup used to learn the deci-

sion boundary. Likewise, if the outgroup data are too similar to the ingroup data, the unclassified
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decision boundary may be optimized to be inappropriately close to the ingroup data, which will

increase false negative rates of downstream classification.

The ideal placement for the unclassified decision boundary is in a location that excludes se-

quences with a high enough mutation rate such that the unclassified sequences are not phenotyp-

ically related to the training database. Said differently, the sequences that are unclassified should

ideally be biologically interpretable as being unrelated to the database sequences by the analyst.

Based on the data classified in the simulated and functional metagenomic datasets presented here,

we determined that an upper bound for a reasonable decision boundary for the MEGARes database

was around a 10% mutation rate, which equates to roughly 15 mutated bases per 150 bp sequence

read (or a smaller number of mutations for subsequence regions classified by alignment). How-

ever, the desired mutation rate’s upper bound will vary depending on the biological system under

consideration, since mutation rates differ by organism class and biological niche [82].

For classifiers that use a heuristic threshold to make unclassified determinations, the algorithm

can simply use the genetic sequence and the number of mutations or gaps encountered to make this

determination (i.e. the percent identity of alignment). However, for k-mer classifiers, it is more

difficult, since a single mutation in a 150 bp sequence translates into k counts of non-matching

k-mers, assuming that one uses overlapping k-mers with a single base pair shift. The shorter the

read or the more mutations there are, the higher the frequency of mismatching k-mers. This is why

with short-read data, Kraken2 often considers a single matching k-mer as being a candidate for

ingroup classification, since a few well-spaced mutations and large k size means that the majority

of k-mers in a 150 bp sequence will mismatch against the database. Therefore, Kraken2 can simply

count k-mers and perform ingroup classification on sequences with any matching k-mers, which

performs well enough to sidestep the unclassified problem entirely.

However, for small k-mer classifiers, a higher frequency of query k-mers will match to the

training database up to the desired 10% mutation rate threshold if k is less than approximately 15,

depending on sequence read length. For WarpNL, we leveraged this fact to create a support vector

machine classifier (SVC) that performs outgroup versus ingroup classification prior to the naive
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Bayes classification step [83]. To keep the outgroup classification step computationally efficient,

we used a linear decision boundary and only two dimensions of data for each sequence: the percent

of forward read k-mers matching the database on the x-axis, and the percent of reverse read k-mers

matching the database on the y-axis (Figure 2.18). If single-end data (only forward reads) were

provided, then the mismatch percent calculated for the forward reads (x-axis) was also used as

the mismatch percent for the non-existent reverse read (y-axis). The data seen in Figure 2.18 was

used to learn the WarpNL SVC unclassified decision boundary. These data were produced by

calculating the k-mer mismatch percentages for a combination of “left out” sequences from K-fold

cross validation and a set of user-provided outgroup sequences (see methods for details).

Ideally, these data would separate into two well-defined and mostly non-overlapping clusters

such that a tightly constrained but accurate decision boundary could be learned between the in-

group and outgroup data. However, note that the data left out by K-fold cross validation (with

ingroup labels, colored in red, Figure 2.18a) occupy space in both the low k-mer mismatch area

of the graph (bottom left coordinates) and the high k-mer mismatch area (top right coordinates).

This is because when data are left out from the database ontological categories during the K-fold

cross validation process, sometimes the sequences that are left out no longer have a representative

sequence member remaining in the subsampled training set. This harkens back to the point made

earlier in Section 2.4.2: that sequences with the same ontological label can be more genetically

distant from each other than one might expect, either due to the way the database curator designed

the database ontology or due to natural variation between genetic sequence clusters that share the

same ontological category. For example, if we were classifying bacterial sequences at the Species

taxonomic level, there might be sequence regions that differ substantially between E. coli K12 and

E. coli O157:H7 strains; if we, by chance, left out all K12 strains during a cross-validation fold, the

sequence regions unique to K12 strains would no longer have a representative reference genome

in the training set, causing reads produced over such regions to have high k-mer mismatch values.

This is why we see that most of the ingroup (red) labels have a low percentage of k-mer mismatch

values but a smaller subset of left out sequences have higher mismatch values.
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Figure 2.18: WarpNL learns to classify outgroup (unclassified) versus ingroup (classified) sequences

through a two-step learning process using a Gaussian mixture model (GMM) followed by a linear

support vector machine classifier (SVM/SVC). In the rows, the steps of this process are displayed for k=12

(top) and k=15 (bottom). A) The red labels are the ingroup sequences that were “left out” during K-fold cross

validation; these sequences theoretically should be classified back to the database as ingroup sequences.

The blue labels are user-provided outgroup sequences (here, they occupy the off-diagonal because they are

single-end reads, thus the x-axis is the same as the y-axis for these sequences). B) A GMM re-labels the

distant sequences as outgroup sequences such that the SVC boundary can be learned properly. C) The linear

SVC boundary is then learned via optimization of the SVM dual problem. Note that the GMM and SVC

optimizations work well when k=12 but break down for higher values of k, such as k=15.
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Another way to think about these left out sequences with high mismatch values is that they

no longer truly belong to the ingroup label and should be re-labelled as outgroup (blue) for the

purpose of learning the unclassified SVC decision boundary. To perform the task of re-labelling in

the most unbiased way possible, we used a bivariate Gaussian mixture model (GMM) unsupervised

clustering algorithm, which produced the de novo labels and contours seen in Figure 2.18b. Then

the linear SVC decision boundary was learned using the entire dataset across all K-folds and the

user-provided outgroup sequences, the result of which is shown in Figure 2.18c. In general, this

method worked effectively for smaller values of k, including the optimal value of k=12 that was

used for all of the WarpNL outgroup classifications in this work (top row, Figure 2.18).

A disadvantage to the above approach is apparent when the value of k increases beyond this

point, for example when k=15 (bottom row, Figure 2.18). At larger values of k, having even a small

number of mutations away from the database results in high k-mer mismatch percentages, which

forces the outgroup cluster to occupy a small area of space in the top right corner of the graph.

This makes fitting the GMM and SVC difficult and can produce nonsensical decision boundaries,

as seen in the boundary equation displayed on the bottom right panel in Figure 2.18. Therefore,

while the above method for fitting the unclassified boundary worked well for WarpNL with k=12, it

would need to be adapted individually for every unique combination of training database, k value,

and user-provided outgroup sequence dataset.

The pattern shown in the bottom row of Figure 2.18, where a small number of mutations trans-

lates into large mismatch percentages as k increases, further illustrates the previous point that

Kraken2 can circumvent the unclassified problem entirely with large enough k. k=15 is less than

half of the value Kraken2 uses for its k-mer encoding, and k=15 already produces high mismatch

values with few mutations away from the training database. As k becomes even larger, the ana-

lyst can simply assume that any mutation away from the database belongs to an outgroup k-mer,

taking the pattern seen in Figure 2.18 toward its limit. Likewise, alignment simply finds regions

of local alignment and leaves the decision of whether such aligned subsequences truly belong to

the database up to the analyst, thereby also circumventing the unclassified problem. The strategies
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used by both BWA and Kraken2 are therefore arbitrary and founded only indirectly on confidence

metrics or statistical theory, which we consider a disadvantage to their approaches.

Hopefully, as the field continues to progress, there will be more focus on the integration of

statistical measures into computer science algorithms and heuristic techniques. This would lever-

age the advantages of the partial alignment and alignment approaches while providing the user

with a measure of confidence that they could use to make determinations against the unclassified

problem. At the time of this writing, we notice that such integrations of statistical methods (partic-

ularly Bayesian approaches) with computer science algorithms is already taking place in genetic

sequence classification, such as with the UNCALLED classifier for long-read Nanopore data [84].

We anticipate that such methods will become commonplace in the future, and we suspect new

approaches will reveal further information about the rich problem of mathematical structure in

biological sequence data, both for the unclassified problem and otherwise.

2.4.5 Classifiers are constrained by availability of computational resources

Genetic classification is constrained by the availability of computational resources in two ways:

1) the choice of classification algorithm, feature encoding strategy, and database may change de-

pending on the computer hardware available to the analyst, and 2) advances in computational

capabilities at the cutting-edge have enabled the use of methods that were previously not feasible,

as is the case here for WarpNL. The first point is important for the bioinformatics community to

keep in mind, since not all analysts and researchers have access to distributed supercomputer clus-

ters; many analysts are performing sequence analysis on modest hardware like laptops. As a result,

it is important to have a variety of genetic sequence classification strategies available in the field

that can meet the needs of both the laptop and supercomputer cluster compute niches. Tools like

BWA and Kraken2 help fill this role due to their low computational overhead and forgiving end-

user experience. The second point is also interesting: many of the mathematical techniques that

are now commonplace, like neural networks, were only widely adopted due to recent advances in

computer technology. As computer platforms continue to advance and applications like graphics
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processing units (GPUs) become more commonplace in bioinformatics, it may be worth revisiting

older but more costly techniques, as we have done here with naive Bayes. To emphasize how much

more costly the naive Bayes algorithm is, we provide a runtime comparison of WarpNL to BWA

and Kraken2 below.

We classified an increasing number of simulated sequences against the MEGARes v2 database

using BWA, Kraken2, and WarpNL to demonstrate their relative computational time complexities

(Figure 2.19). Wall clock time (the time experienced by the user, aka real time) was recorded for

each algorithm as the number of simulated reads scaled from several thousand to over 25 million.

Twenty CPU threads were used for BWA and Kraken2, and 4 GPUs were used for WarpNL. Given

the small size of the MEGARes database, BWA performed the fastest with a linearly-scaling trend

in time as read number increased. Kraken2 also scaled linearly with very fast compute times,

classifying all reads in under 40 seconds, since each k-mer lookup in the query data takes only

O(1) due to its efficient data structures. WarpNL demonstrated two roughly linear phases of time

scaling but took much longer to compute on the data than Kraken2 and BWA. This is due to its

time complexity being O(m4k), where m is the number of query sequences and k is the k-mer size.

While the scaling of m is linear (as shown in the graph), the coefficient against which it is multiplied

is very large, resulting in much longer compute times than the other two algorithms. These results

illustrate the differences in algorithm design and behavior between the different classifiers and

emphasize the need for the analyst to choose a tool that fits the classification task but also conforms

to the computational resources available.

2.5 Conclusion

The results presented in this work tell a comprehensive story of how supervised genetic se-

quence classification is performed in practice and how a selection of classifier algorithms behave

on concrete data. There are five major aspects to genetic sequence classification, all of which must

be considered as integral to the classification task: the nature of the query data, the robustness of

the reference database, the method of feature encoding, the choice of classifier algorithm, and the
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Figure 2.19: Kraken2 and BWA have a low time complexity, while WarpNL has a higher time com-

plexity, as evidenced by the trends wall clock time as the number of query sequences increases. While

all three algorithms scale roughly linearly in this graph, WarpNL has a higher coefficient of scaling ( 4k)

since it considers all possible k-mers during the classification process. While the WarpNL curve may appear

exponential, it is roughly linear in two segments, with the curvature being caused by additional CPU and

operating system operations for memory management of large data structures. A truly exponential algorithm

would scale to large values more rapidly than this.
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availability of computational resources. While much of the focus in the literature tends to be on

improvements to classification algorithms, these other four areas are also of critical importance to

the success of the classification task and deserve an equal amount of attention, particularly novel

methods of feature encoding and the development of robust databases.

We also acknowledge several limitations of the work presented here: each of the major sub-

jects addressed here could be their own focus of study, and it is therefore outside the scope of what

we can fit in this work to consider nuances in each of these areas. In particular, more could be

said about feature encoding strategies and the intricacies of different methods. Additionally, we

used only one reference database in this work (MEGARes v2), however additional databases could

be explored using similar simulated and gold standard data strategies. We chose the MEGARes

database due to its moderate size and well-organized ontological structure, which allowed us to

showcase the naive Bayes algorithm without resorting to advanced strategies for parallel comput-

ing, such as the use of distributed compute clusters. Further work could be done using a variety

of databases in different areas, including databases focusing on viral, eukaryotic, or microbiome

sequences. Finally, we did not consider more than three major algorithmic classes, since there are

so many available in the literature: we chose to focus on popular methods that have withstood the

test of time and are still in widespread use, since most readers would be familiar with these tools.

We also focused on short read data, however similar discussions and arguments could be made for

long read data [85].

Going forward, we anticipate that reference sequence databases will continue to advance in

robustness, size, and variety of ontological structure, since several efforts already exist toward this

aim [46, 86, 87]. We also anticipate that long read sequencing technologies will become more

popular, which will necessitate the creation of new strategies for long read sequence classification.

Such strategies will need to consider localized subsequences as separate classifiable units, similar

to how Markovian classifiers like HMMs already function [73]. Overall, we hope to have provided

a thorough introduction to genetic sequence classification for those new to the subject while pro-
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viding enough detail in this work to help experienced bioinformatics analysts gain insight into the

practical behavior of algorithms used in their daily work.

2.6 Methods

2.6.1 Condensed WarpNL Classifier Methods

The WarpNL classifier software takes data in FASTQ format as input (paired- or single-end)

and outputs classifications of each FASTQ read (or read pair) to the user-provided database of

FASTA-formatted sequences. The overall approach of WarpNL is to encode genomic data into

a binary string of fixed length and use these binary strings as features to perform naive Bayes

classification. In the subsections below, we provide a brief summary of methods for each step in

the WarpNL classifier. Extended methods related to the WarpNL software can be found in Chapter

3.

WarpNL sequence encoding methods

WarpNL encodes standard nucleotides (A, C, T, G) into two-bit binary representation. Am-

biguous nucleotides are randomly chosen to be one of the standard nucleotides, and the RNA

nucleotide uracil is translated into its DNA equivalent thymine. WarpNL concatenates these bi-

nary representations into a fixed-length binary string, which represents the “word size” or k-mer,

a genomic feature of length k nucleotides. Therefore, the resulting binary string is 2k bits long

and represents an integer in the range of [0, 4k). These features are then used as an index to incre-

ment an integer count vector of length 4k, effectively counting the number of times a unique k-mer

appears in a genetic sequence.

WarpNL uses two encoding schemes: multinomial and Gallager. In multinomial encoding,

the nucleotides forming each k-mer are contiguous, and each sequence of length L has exactly

L−k+1 overlapping k-mers. This encoding scheme is standard for k-mer classifiers and has been

commonly used for naive Bayes classifiers elsewhere [4]. The Gallager encoding scheme uses

both contiguous and gapped, non-contiguous k-mers according to the Gallager low-density parity
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check encoding method commonly used in error-correcting codes in other computer science fields

[80]. This method was introduced by the Opal sequence classifier [81] to increase classification

sensitivity in the face of sequence mutation away from the reference database. See S1 File for

mathematical details on these encoding schemes.

WarpNL reference database encoding

The user provides a database of reference sequences in FASTA format, which contains the

genetic targets for the classifier. WarpNL also requires an annotation structure for the reference

database that maps the reference sequences to annotation nodes occupying a directed graphical

tree (non-cyclic, diverging annotation graph, like the taxonomic tree of life). Using the annotation

tree, WarpNL builds a matrix of features represented in the reference database. Each column of

the database matrix represents a leaf (terminal, lowest-level) node on the annotation graph, while

each row represents a k-mer feature. The entries of the matrix are decimal probabilities, which are

constructed by counting the features for each column (node), adding a Lidstone pseudocount of 1 to

each k-mer feature, and dividing by the column sum, such that the columns sum to 1 according to a

multinomial distribution [88]. These probabilities are then log-transformed to facilitate subsequent

naive Bayes classification. WarpNL also stores which k-mers were observed across all sequences

in the database to assist in subsequent steps.

WarpNL query sequence encoding

The user provides one (single-) or two (paired-end) sequence files in FASTQ format that con-

tain the query sequences to be classified. If paired-end data are used, each read-pair is treated

as a single observation. Query sequences are encoded in the same manner as described for the

reference database, producing a query matrix where the rows represent each read or read-pair, and

each column represents a k-mer feature. The query matrix entries are left as non-negative integer

counts, as opposed to the reference database matrix, where they were normalized to sum to 1.
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WarpNL sequence classification

Using the query matrix (Q) and the database matrix (D), reads or read-pairs can be classified

by taking the inner product of QD, where Q is of dimension M rows by K columns, and D is

of dimension K rows by N columns. The result matrix (R) is then of dimension M rows by N

columns, where the rows represent each read or read pair, and the columns represent each leaf

node in the reference database. The entries of the result matrix are the maximum a posteriori

probability estimates of each read or read-pair against each leaf node in the reference database, on

the log-scale. A classification can then be determined for each row by finding which entry contains

the row maximum. This procedure arises from a standard derivation for naive Bayes classification,

which is provided in Chapter 3.

WarpNL outgroup determination algorithm

A difficult task for modern sequence classifiers is determining which query sequences are too

genetically distant to be classified against the reference database, resulting in an “unclassified”

call. To make this determination, WarpNL tracks the percent of k-mers in the query sequence that

are also present in the reference database for the sequence (single-end) or forward and reverse

read-pair (paired-end). These percentages of forward and reverse k-mer matches are used as input

to a two-dimensional, linear support vector classifier, which labels sequences as classifiable or

unclassified. Sequences that pass the support vector classifier threshold (i.e. are genetically similar

enough to the reference database to classify) continue to the WarpNL naive Bayes classification

step described above. The support vector classifier is trained using both the reference database

and a user-provided file of “outgroup” sequences that are genetically distant from the reference

database. Standard k-fold cross validation was used to optimize the support vector classifier bias

hyperparameter [83, 89].

WarpNL GPU acceleration and distributed processing

WarpNL requires CUDA-capable (NVIDIA architecture) graphical processing units (GPUs) to

accelerate the naive Bayes classification process described above. The WarpNL software includes
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an automated scheduler that determines capabilities of both CPU and GPU resources and schedules

jobs optimally according to available resources. Acceleration is available for classifier training as

well as parallel processing of query sequences.

2.6.2 MEGARes v2 antimicrobial resistance database modification

All classifiers examined in this work utilized the publicly available MEGARes antimicrobial

resistance database (v2.0.0, 14 October 2019) [17]. Modifications to this version of the database

were made to improve classifier performance. To determine which modifications were necessary,

the WarpNL classifier in multinomial mode was used to classify the database against itself, which

should result in perfect classification. Results that were misclassified to an inappropriate annotation

were examined, and their sequences were queried against the NCBI database using the nucleotide

and translated nucleotide BLAST algorithms (BLASTn and BLASTx) on the publicly available

BLAST website. These misclassified entries were corrected based on agreement from BLAST and

WarpNL classification results or were removed from the database if the BLAST classification did

not match the WarpNL classification. The modified MEGARes database used in this work was

included in the WarpNL source code repository (S1 Code).

2.6.3 Construction of the MEGARes v2 Kraken2 database

sing the modified MEGARes v2 database described above, the annotation structure was con-

verted into Kraken2 format using custom Python scripts. The MEGARes vs2 Kraken2 database

and scripts utilized in its construction were provided in the WarpNL publication code repository

(S2 Code).

2.6.4 Methods for classifier speed and memory performance benchmarking

Comparisons for classifier speed and memory consumption were made by varying the number

of query sequences using the entire modified MEGARes v2 database. Because of algorithmic dif-

ferences, it was not meaningful to vary the number of reference database sequences or annotation

graph composition across the classifiers: sequence alignment with BWA-MEM depends on the to-
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tal number of reference database sequences, whereas Kraken2 and WarpNL depend on total k-mer

content and number of annotation tree leaf nodes, respectively. Therefore, we focused on compar-

isons in classifier speed and simply provided average memory consumption across experiments as

an additional metric.

To compare classifier speed, 150 bp reads were simulated from the modified MEGARes v2

database without mutation to produce datasets that vary in the number of query sequences. Each

classifier (BWA-MEM, Kraken2, and WarpNL) were then run against these datasets in 5 replicates

to capture average runtime. For BWA-MEM and Kraken2, 20 CPU threads were used to parallelize

sequence processing, and results were reported for total runtime as well as runtime per thread. For

WarpNL, 4 GPUs were used in parallel, and results were reported for total runtime as well as

runtime per GPU. All benchmarks were performed on a workstation running an Ubuntu Linux

18.04 LTS operating system with an Intel Core i9-9980XE 18-core 3.0 GHz CPU, 128GB DDR4

2666MHz DRAM, and 1TB PCIe Gen 3.0 M.2 2280 solid state drive, including 2x NVIDIA RTX

2080Ti 11Gb GDDR6 and 2x NVIDIA GTX 1080Ti 11GB GDDR5 GPUs connected individually

via PCIe 3.0 x16 slots (without SLI or NVLink connections).

2.6.5 Methods for simulated read experiments

The data used in the simulated read experiments were generated using custom Python scripts.

Two datasets were generated using the modified MEGARes v2 database: even mutations and ran-

dom mutations. For both datasets, single-end short reads of 150 bp length were simulated for

the entire length of each reference sequence in the modified MEGARes v2 database using a slid-

ing window of size 150 bp with a 25bp shift. For the even mutations dataset, each simulated

read was artificially mutated at fixed intervals to a random alternative nucleotide (different from

the reference sequence), for a number of mutations ranging from 0 to 16 (0% to 10.6% mutation

rate). Likewise, for the random mutations dataset, each simulated read was artificially mutated

at random locations along the read to a random alternative nucleotide, for a number of mutations

ranging from 0 to 16. Each classifier (BWA-MEM, Kraken2, and WarpNL) was then run against
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this dataset using the modified MEGARes v2 database as reference. While these datasets were

too large to provide as supplementary data, the scripts and files used to generate these datasets are

provided in the WarpNL publication code repository (S2 Code).

2.6.6 Methods for Dantas functional metagenomic data analysis

Two functional metagenomic datasets from the Dantas group were used as gold standard data:

Soil and Pediatric [67, 68]. In short, functional metagenomics for antimicrobial resistance (AMR)

characterization involves cloning fragments of metagenomic DNA into antibiotic susceptible bac-

terial vectors, then growing these susceptible vectors on antibiotic laden agar. The colonies that

grow are hypothesized to have had a gain of AMR function from the cloned metagenomic DNA

fragment, which should be highly expressed in these bacteria by plasmid design. A colony from

the antibiotic-laden agar is then selected and sequenced, resulting in a sequence dataset that should

contain a high percentage of reads with an AMR gene providing resistance against the antibiotic

with which the agar was laden. However, some sequences may also belong to the bacterial vector

genome. Regardless, since the sequences are from phenotypically resistant bacterial colonies with

known antibiotic resistance profiles, these data represent the best gold standard benchmark against

which to test AMR sequence classifiers, despite some of the sequences coming from the bacterial

vector.

The Soil dataset (NCBI BioProject PRJNA215106) contains 219 samples of Illumina paired-

end sequencing data with an average sequence number of 1.98 million per sample. The Soil dataset

contains functional metagenomic fragments isolated from soil samples as previously described

[68]. The Pediatric dataset (NCBI BioProject PRJNA244044) contains 169 samples of Illumina

paired-end sequencing data with an average sequence number of 1.12 million per sample. The

Pediatric dataset contains functional metagenomic fragments isolated from pediatric fecal samples

as previously described [67]. All classifiers (BWA-MEM, Kraken2, and WarpNL) were run against

these datasets, and results were subsequently analyzed using custom R scripts. Each read pair in the

Soil and Pediatric datasets was considered to be a single observation (single count) for purposes of
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analysis. Observations were considered to be classified “on-target” if their Class-level MEGARes

annotation matched the phenotypic AMR label for the Dantas datasets. All scripts, metadata,

and NCBI sequence accessions for the Soil and Pediatric datasets are provided in the WarpNL

publication code repository (S2 Code).

2.7 Supporting information

2.7.1 Supplementary code and data

• WarpNL source code: https://github.com/lakinsm/nocturnal-llama

• WarpNL publication code: https://github.com/lakinsm/nocturnal-llama-publication

• Dantas Pediatric dataset: BioProject PRJNA244044

• Dantas Soil dataset: BioProject PRJNA215106

2.7.2 Software versions used in this work

• Burrows-Wheeler Aligner v0.7.17 [64]

• Kraken2 v2.0.8-beta [16]

• WarpNL v1.0.0
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Chapter 3

GPU-accelerated, distributed computing enables

sequence classification using a high-dimensional

naive Bayes approach

3.1 Introduction

The naive Bayes algorithm is one of the earlier successful uses of machine learning for the

purpose of mapping genetic sequences to taxonomic clades. Its use in the Ribosomal Database

Project (RDP) enabled supervised classification of 16S ribosomal gene sequences during micro-

biome bioinformatics analysis [4]. The problem of 16S gene classification is already constrained

by the molecular technique of polymerase chain reaction (PCR), which selectively amplifies a

genetic sequence target. This amplified target is then typically sequenced on a high throughput

sequencing platform, producing genetic sequences that usually span 150-300 nucleotides of the

16S gene but can span up to the full length of the gene (1,550 nucleotides) [22, 90]. Therefore, a

genetic sequence classifier in this context has the advantage of knowing that the genetic sequence

belongs to a 16S gene but must then classify the 16S gene sequence into one of many taxonomic

clades according to a reference sequence database.

While knowing the target ahead of time poses an easier problem than general sequence clas-

sification, the short length of the typical 16S amplicon makes this supervised classification task

difficult. Often, a difference of one or two nucleotides can change the membership of the genetic

sequence from one clade to a substantially different one, from a phylogenetic perspective [91].

The fact that naive Bayes has been successfully applied in this context suggests that it is capable

of discerning small nucleic acid differences for taxonomic profiling using short sequence inputs.

Because of this success on a constrained but difficult problem, we hypothesized that naive Bayes
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could be extended to accurately perform genetic sequence classification in the general case (not

constrained to 16S genes).

We anticipated that classification in the general case would require three critical extensions of

an RDP-esque classifier: use of a secondary classifier to perform ingroup versus outgroup classifi-

cation, expansion of the underlying feature space, and the use of accelerated computing techniques

like parallelism and graphics processing units (GPUs) to speed computation. Outgroup classi-

fication is a requirement for determining whether a sequence is related enough to the reference

sequence database to perform classification to begin with. For 16S classification, the target is

known, and outgroup classification is therefore not required; however for the general case, it is

necessary to prevent false positive classifications. We solved this problem by combining a de novo

clustering algorithm using a Gaussian mixture model with a supervised outgroup sequence classi-

fier using a support vector machine. Then, sequences that are classified as ingroup are encoded as

described below and classified using the generalized naive Bayes approach.

For our naive Bayes implementation, we utilized an extended feature space: the RDP classi-

fier based their sequence encoding on subsequences of length 8 nucleotides, while ours uses 10

nucleotides. This expands the feature space by 16 times the size of the RDP classifier, allowing

for less feature overlap between training classes; this is important since the general classification

problem involves many more target classes than just classifying the 16S ribosomal subunit, which

is only present in prokaryotic organisms. However, due to the increase in state space, our classifier

requires substantially more computational time to perform the naive Bayes calculation, since any

increase in the state space is multiplied by an exponential factor of 3 during the matrix multipli-

cation step used to perform the classification itself. Therefore, we additionally leveraged various

levels of computational parallelism to increase the naive Bayes algorithm performance, including

SIMD directives, multi-threading, work load scheduling and balancing, and hardware accelera-

tion using GPUs and distributed computing. Overall, this allowed for our generalized naive Bayes

classifier to perform with comparable resource utilization to state-of-the-art classifiers currently in

widespread use. Below, we outline the various critical implementation features of our approach
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and additionally make the source code publicly available (https://github.com/lakinsm/nocturnal-

llama).

3.2 Feature encoding and optimizations

3.2.1 Input sequence description

The data are assumed to be nucleotide sequences of length L consisting of UTF-8 encoded

standard IUPAC bases A, C, G, and T in capital letters. Data used for training WarpNL (the ref-

erence database) should be in standard FASTA format, while the data to be classified (query data)

should be in standard FASTQ format. Ambiguous nucleotides from the extended IUPAC alphabet

are converted at random to one of the standard bases encoded by the ambiguous nucleotide, and

the RNA nucleotide uracil is converted into its DNA equivalent thymine.

3.2.2 Multinomial k-mer encoding

For the WarpNL multinomial feature encoding, k-mers are encoded in the typical way: for

each input sequence of length L, contiguous subsequences of length k are considered as k-mers,

and each k-mer window is shifted by one nucleotide during encoding, resulting in a total of L−k+1

overlapping k-mers. k-mers are encoded using the bit shift algorithm described below (Algorithm

1), which leverages the fact that the UTF-8 encoded capital letters A, C, G, and T have two bits in

the second and third position that uniquely describe them. The second and third bits are extracted

using a bit mask and shifted into an unsigned integer, resulting in the mapping of each k-mer into

a unique integer in the range of [0, 4k). The first k-mer is encoded in O(k) steps, and each subse-

quent nucleotide is encoded by shifting the integer bit string over to make space for two new bits,

resulting in an algorithm that is both O(L) and that can take advantage of bit-related hardware

optimizations that are available to modern processors. Aside from the matrix multiplications en-

countered during naive Bayes classification, this algorithm is the runtime bottleneck of WarpNL,

as determined by function profiling. Therefore, it was deemed important to heavily optimize this

routine where possible.
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// For sequence s and feature vector v

unsigned int kmer_shift_template = 0;

for ( int i = 0; i < (k − 1) ; ++i) {

kmer_shift_template <<= 2;

kmer_shift_template |= 3;

}

unsigned int kmer = 0;

for ( int i = 0; i < k; ++i) {

kmer <<= 2;

kmer |= (s[ i ] >> 1) & 3;

}

v[kmer] += 1;

for ( int i = k; i < s . length () ; ++i) {

kmer &= kmer_shift_template;

kmer <<= 2;

kmer |= (s[ i ] >> 1) & 3;

v[kmer] += 1;

}

Listing 3.1: Algorithm 1. An efficient bit shift algorithm to encode the UTF-8 encoded nucleotides
A, C, G, and T into base two-bit k-mer representations. This algorithm leverages the fact that these
letters have bits that uniquely encode them in their second and third bit positions (A=1000001, C=1000011,
G=1000111, T=1010100). By shifting the bitstrings of these letters right by one position, the resulting first
two bits uniquely encode them into a two-bit representation (A=00, C=01, G=11, T=10). Using this, the first
k-mer in sequence s is encoded by the second for loop in Algorithm 1 by shifting the k-mer bitstring left by
two bits and encoding the two bits from the nucleotide into the newly cleared bit positions at the beginning
of the k-mer bit string. The feature vector v (of integers) is then incremented by one at the position specified

by the k-mer’s integer representation, in the range of [0, 4k). For every subsequent k-mer after the first one,
the k-mer bitstring is shifted left by two bits and encoded with the next nucleotide into the newly cleared
first and second bit positions, such that work is not repeated for every k-mer. The k-mer shift template is a
bit mask where the first 2(k − 1) bits are hot, resulting in removal of the last two bits of a k-mer bitstring
when used with a bitwise and operator. This template is used to clear the last two bits in a k-mer bitstring,
such that it can be shifted left to make room for a new nucleotide two-bit representation. This process is
repeated until the end of the sequence s is reached.
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3.2.3 Gallager l-mer encoding

The WarpNL Gallager feature encoding, as described in Chapter 2, uses the same bit shift

algorithm as outlined in Algorithm 1. However, l-mers are additionally extracted from each k-

mer in an inner loop. This extraction of bits is most efficiently performed using the Parallel Bits

Extract (PEXT) instruction available on certain Intel chipsets [92]. Given a bitmask where bits

to be extracted are set to one, the PEXT instruction extracts the value of those bits from another

bit string and right-aligns them, resulting in a unique integer in the range of [0, 4l). This setup is

analogous to the k-mer encoding described above, at the level of l-mers instead. We were only able

to take advantage of this optimization due to the use of the above algorithm for k-mer encoding,

further emphasizing its value in this encoding scheme. A complete example is available in the

WarpNL source code under the SequenceEncoder class object.

3.2.4 Lidstone smoothing and log-transform

The result of the feature encoding steps are vectors of non-negative integers of length equal to

the dimensionality of the features encoded, either 4k for multinomial encoding or 4l for Gallager

encoding. To transform a count vector into a probability distribution, it must be normalized to

sum to 1. For the exponentially high dimensional spaces used by WarpNL, simply dividing by

the sum of these vectors can result in floating point underflow. Therefore, a natural log transform

is applied to the vectors prior to normalizing them to the unit simplex, which utilizes the fmath.h

C++ header routines to accelerate the log transform. Additionally, Lidstone smoothing (adding

a constant pseudocount) is applied to each element in the vector during the log transform, such

that: all resulting vector elements are defined, all features have non-zero probability, and the rank

order of all feature probabilities is preserved. The primary benefit of Lidstone smoothing in a

naive Bayes context is that all features have non-zero probability [88]. This allows for features not

seen in the training dataset to still be effectively included in the classification decision process; we

discuss the importance of this point in the following section dedicated to naive Bayes classification.
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3.3 Naive Bayes classification

Naive Bayes has been successfully used for genetic sequence classification in the past, par-

ticularly for more constrained problems like 16S ribosomal gene classification in the context of

microbiome analysis [4]. However, these previous publications do not delve into details regarding

the nuances of implementing a naive Bayes classifier for genetic sequences. Here, we discuss the

components of performing naive Bayes classification in this context and cover a few behaviors of

this approach that are likely known to machine learning practitioners but which are rarely men-

tioned in the literature. We then cover how we implemented naive Bayes classification in WarpNL

in a way that was appropriate for high performance computing.

One such nuance is that naive Bayes classifiers ultimately rely on small differences between

classes to perform classification. This is a result of its use of the maximum a posteriori estimate,

which performs well in determining the most likely class of assignment but does not perform

well when comparing relative a posteriori estimates between classes. Said another way, the naive

Bayes MAP estimate is often the "correct" class of assignment, however the actual value of the

MAP estimate tells us little about how confident that assignment is relative to alternative class

options. This is particularly important when performing multi-way classification with many class

options available to the classifier. The more options there are, the less likely the classifier is to

be correct by chance, making multi-way classification much more difficult than a task like binary

classification.

In practice, the difference is often small between the assigned class (MAP estimate) and the

next highest a posteriori estimate. In some cases where classes have substantial feature overlap,

these small differences may result in the incorrect class having the MAP estimate, while the correct

class has the second highest estimate. Yet, because the MAP estimate is not a posterior probability,

it cannot be used directly to produce a confidence metric for when such a misclassification might

arise. Therefore, we present below a derivation of an information criterion that can be used to

produce a confidence metric for this scenario, which is implemented in WarpNL.
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This issue of the assigned class having the MAP estimate by only a small margin is particularly

pronounced in high dimensional, sparse feature spaces. In Chapter 2, we showed that feature

encoding strategies for genetic sequence classification produce high dimensional feature spaces

that are sparse in practice. Lidstone smoothing combined with the presence of low integer values

in a sparse, high-dimensional feature space means that features actually observed in the training

data often have only one additional count than "pseudo-features" that are only "observed" as a

result of the smoothing process. Therefore, the training distribution is very flat in practice, which

leads to these small differences between a posteriori estimates. However, if one attempts to use

naive Bayes in high dimensional feature spaces without additive smoothing, the resulting classifier

performs so poorly that it isn’t even worth discussing here. It is therefore clear that naive Bayes

performs well in genetic sequence classification by using the small differences in relatively flat

probability distributions to break ties between classes.

This behavior is somewhat surprising but interesting in that it has implications for how vari-

ous smoothing techniques are expected to perform in a genetic sequence classification problem.

Additive smoothing typically performs well for high dimensional, sparse distributions with small

feature counts, because the probability distribution is so flat that corrections need not be performed

for document frequency across the class corpus. For example, TF-IDF (term frequency inverse

document frequency) smoothing corrects feature counts according to how many documents (in

this case genomes) are observed for a given class, since the more documents that are observed, the

more confident we are that features are true for this particular class [93, 94] Likewise, classes with

few documents (observed genomes) should be considered as lower confidence choices during clas-

sification, because we have not sampled the feature space as well for that class. However, if one

does not correct across the corpus, normalization to the unit simplex results in the low confidence

class having the same weight as the high confidence class. Techniques like TF-IDF smoothing can

be used to discount or weight the classes according to how many observations were used to pro-

duce their probability distributions, usually resulting in better naive Bayes classifier performance.

But for genetic sequence classification, the distributions are so flat due to their high dimensionality
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that no such corpus-level corrections are typically needed. Therefore additive smoothing, which

does not account for corpus differences, works fine in practice. Term frequency corrections can,

however, still be useful.

Below, we provide derivations for naive Bayes classification using Lidstone smoothing and the

previously discussed information criterion for comparison of MAP estimates resulting from naive

Bayes classification. Both of these strategies are implemented in WarpNL and can be found in the

relevant class objects as listed in each section.

3.3.1 Derivations

Naive Bayes classification using the inner product

Let tr = {t1r, t2r, . . . , tDr} be a vector of non-negative integers associated with a query se-

quence read or read-pair r that we wish to classify using naive Bayes, such that N =
∑D

d=1 tdr.

tdr represents the count of k-mer d within sequence read r. Accordingly, we can construct a

query matrix of counts for each feature (k-mer), T
R×D

, where R is the number of query sequence

reads, and D is the dimensionality of the feature space. Moreover, and utilizing a training se-

quence data set or database, we can construct a matrix, X
D×C

, with columns on the unit simplex

(xc = {x1c, x2c, . . . , xDc} and
∑D

d=1 xdc = 1), where C is the set of classes to which a query

sequence read can be classified. Assuming that each tr ∈ R is independent, we consider a single

query sequence read at a time for classification. Our goal is to identify the most likely class C = c

where tr belongs. Applying Bayes theorem,

P (C = c|tr,X) =
P (tr|X, C = c)P (C = c|X)

P (tr|X)
(3.1)

The values of tr are fixed, and therefore the denominator is constant across classes. In addition,

assuming that the classes are also independent, the problem reduces to comparing likelihood of tr

between the different classes c ∈ C,

P (C = c|tr,xc) ∝ P (tr|xc, C = c)P (C = c|xc) (3.2)

81



Where P (tr|xc, C = c) ≡ P (tr|xc) is the likelihood of observing tc given the class C = c

that is characterized by the vector of proportions xc associated with that class, and P (C = c|xc

is the prior probability of belonging to class c. The likelihood P (tr|xc) can be modeled using a

variety of probability distributions, with the most common being the multinomial, which we use

here, or Dirichlet multinomial [95]. A prior over the classes can be used, however here we assume

that all classes have equal prior probability. Accordingly, utilizing the assumption that the counts

in tr are multinomially distributed and that P (C = c|xc) is equal for each class c, the above

reduces to,

P (C = c|tr,xc) ∝
D
∏

d=1

P (tdr|xc, C = c) (3.3)

Our goal then reduces to finding the class c with maximum a posteriori (MAP) estimate (gives

the maximum likelihood of the query data), also called the naive Bayes (NB) estimate, across the

classes c ∈ C given by:

cNB ∝ argmax
c∈C

D
∏

d=1

P (tdr|xc) = argmax
c∈C

D
∏

d=1

xtdr
dc (3.4)

Taking the natural log of both sides after adding a Lidstone pseudocount α [88] results in,

cNB ∝ argmax
c∈C

D
∑

d=1

tdr ln(α + xdc) ≡ argmax
c∈C

t′r · ln(xc +α) (3.5)

where t′r is the transpose of tr. Which we can apply to classify all observed reads r ∈ R in the

query matrix T , this is the definition of the matrix inner product,

cNB ∝ argmax
c∈C,r∈R

T · ln(X) (3.6)

Contained in the above derivation are several important points: 1) since the cNB estimate is

relative due to dropping the P (tr|X) term from the denominator of Bayes theorem, these a pos-

teriori estimates are not easy to compare in order to assess how much better the class producing
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the NB estimate is than the class producing the second or third highest a posteriori estimates; 2)

naive Bayes uses many assumptions that may not be true in practice, including independence of the

features (k-mers), independence of the data draws (t counts), and equal probability of observing

each class; and 3) the general structure of the above derivation reduces to a simple matrix multi-

plication, which can be leveraged for efficient computation. Below, we expand on several of these

points to show how naive Bayes can be adapted into an efficient, modern framework.

Information criterion for comparison of a posteriori estimates

As shown in the derivation of the naive Bayes MAP estimate, the a posteriori naive Bayes

estimates cannot be directly compared as posterior probabilities. Below, we provide a criterion

for comparison of a posteriori naive Bayes estimates that is analogous to the log odds ratio and

can be interpreted in the same way [96]. This criterion produces roughly normal distributions

that have clear discriminatory power between true positive and misclassifications up to around

10% mutation rates on simulated short read data (Figure 3.1). Negative values of the WarpNL

information criterion (WarpNL IC) are also clearly indicative of a misclassification and suggest

that the next highest a posteriori estimate is likely the more accurate choice. These data were

produced using the even and random mutation datasets that were introduced in Chapter 2.

Following the above notation, let cNB1 and cNB2 be the highest and second highest a poste-

riori naive Bayes estimates obtained by classification of t. Let x1 = {x11, x21, . . . , xD1} and

x2 = {x12, x22, . . . , xD2} be the training data probability vectors on the unit simplex that cor-

respond to cNB1 and cNB2. By the above proof of naive Bayes, cNB1 =
∑D

d=1 td ln(xd1), and

cNB2 =
∑D

d=1 td ln(xd2). A test vector t with data that perfectly align to training data prob-

ability vectors x1 and x2 would have the maximum expected values of a posteriori estimates

cNB1max
= N

∑D

d=1 xd1 ln(xd1) and cNB2max
= N

∑D

d=1 xd2 ln(xd2). The WarpNL log odds ratio test

(information criterion) would then be,

Wlod = (cNB1 − cNB1max
)− (cNB2 − cNB2max

) (3.7)
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Figure 3.1: The WarpNL log odds ratio information criterion produces roughly normal densities that

clearly discriminate between misclassifications and correctly-classified sequences. This criterion can be

used as a measure of confidence regarding the accuracy of the MAP estimate relative to its next highest a

posteriori estimate. Misclassified reads nearly always have a low value of the WarpNL IC (less than 8000).

Correctly classified reads that are a small number of mutations away from the database have much higher

values of the WarpNL IC, but the criterion decreases as the mutation rate increases. Above around 10%

mutation rate, correctly classified reads still have higher values than misclassified reads, but the difference

isn’t as distinguishable. Negative values of the WarpNL IC nearly always indicate a misclassification, where

the second highest a posteriori class is more likely to be the correct classification. These data were produced

using the even and random simulated mutation datasets introduced in Chapter 2.
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3.3.2 Data structures and matrix product

The implementation of naive Bayes in WarpNL consists of three matrix data structures and the

GPU-accelerated matrix multiplication. These data structures were implemented as C++ classes

in an object oriented programing framework. The three matrices are: 1) the left-hand matrix

(class EmpiricalMatrixNL) that holds the empirical, non-negative integer count data to be classified

(analogous to T in the derivation), 2) the right-hand matrix (class ProbabilityMatrixNL) that holds

the training data probability vectors on the unit simplex (analogous to X in the derivation), and

3) the result matrix (class ResultMatrixNL) that stores the a posteriori estimates. The empirical

and probability matrices are encoded in CUDA half precision (16-bit floating point) to reduce the

memory footprint and allow for CUDA optimization of the matrix multiplication routine. The

result matrix is encoded in full precision (32-bit floating point) to prevent numerical underflow

from occurring during the matrix multiplication routine. The multiplication itself is the GemmEx

cuBLAS library routine for mixed-precision matrix multiplication, which can take half precision

matrices as input and produce a full precision matrix as a result.

Use of the half precision data type reduces the memory footprint of the empirical and prob-

ability matrices by half. This is substantial, since these matrices have one dimension of size 4k,

making them the space complexity bottleneck for WarpNL. Additionally, Pascal and later NVIDIA

GPU architectures have hardware capabilities that accelerate the matrix multiplication when per-

formed with mixed or half precision, resulting in a further decrease in runtime. Since WarpNL

is constrained in both space and time complexity, it was deemed important to pursue such opti-

mizations. In fact, without these optimizations, WarpNL would not be efficient enough to compete

with other modern classifiers, which is historically why naive Bayes approaches fell out of favor in

bioinformatics over the last decade. However, with the optimizations present in WarpNL, it is only

100-fold slower than very efficient classifiers like Kraken2, when used with sufficiently advanced

NVIDIA GPU architectures and Intel CPU architectures. This level of efficiency makes it suitable

even for large datasets like the Soil functional metagenomic dataset introduced in Chapter 2, which

took only 48 hours for WarpNL to classify.
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3.4 Accelerated and distributed architectures

WarpNL achieves its runtime performance through the use of GPU-acceleration, efficient CPU

data structures and algorithms, and the ability to dynamically allocate resources using active work-

load monitoring. Having a dynamic load-balancer integrated into the software is critical to its per-

formance, since WarpNL performs a variety of tasks with varying input size and time complexities.

For example, the routine used to train the classifier performs K-fold statistical cross-validation,

which requires re-allocation and computation of the large probability matrix at every iteration.

However, the individual folds of the cross-validation process are independent and therefore able to

be parallelized across CPU cores. Since one of the parameters optimized by the cross-validation is

the choice of k, the feature size, these probability matrices vary from small to extremely large at the

rate of 4k, meaning WarpNL must determine dynamically how much memory the system is capable

of using at any given time. Active monitoring of the memory load must be performed for both the

system random access memory (RAM) and the GPU RAM for the naive Bayes cross-validation

process.

However, this naive Bayes cross-validation procedure is only one of the multiple tasks that

WarpNL must load-balance, depending on the pipeline being used. The full list of considerations

that WarpNL must account for are as follows. For the training pipeline: 1) grid cross-validation of

the naive Bayes feature encoding type (multinomial or Gallager), the feature size (k-mer and/or l-

mer size), the Gallager row weight, and the smoothing constant α; 2) optimization of the bivariate

Gaussian mixture model for de novo clustering of outgroup sequences during the naive Bayes

cross-validation pipeline; and 3) optimization of the decision boundary and grid cross-validation

of the bias λ hyperparameter for the outgroup support vector classifier. For the classification (test)

pipeline: 1) distributing input sequences to the the CPU cores for outgroup classification and to the

GPU devices for naive Bayes classification; and 2) aggregation of the final result files to complete

the classification process.

The tasks for the training pipeline involve work of varying size, while the tasks for the test

pipeline are relatively constant in size. This means that WarpNL must have strategies in place
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to load-balance for a variety of input tasks, which is most easily done via active monitoring of

the system resources. Below, we outline the structure of WarpNL’s distributed and accelerated

optimizations and describe a selection of the components that drive WarpNL’s active monitoring

and load balancing system.

The schematic for WarpNL’s load-balancer is outlined in Figure 3.2. This diagram includes the

WarpNL load balancing components, the input data structures, and the computational resources for

both workstation (single node) and distributed computing (multi-node). Since the limiting resource

is GPU memory, the GPU resources are the focus of this schematic, however CPU resources are

also utilized and monitored by WarpNL. In Figure 3.2, the process is launched on the the worksta-

tion or head node of a distributed cluster. This process simply starts the WarpNL pipeline, parses

the command line arguments and settings, and actively waits for the computation to complete. For

distributed systems, this process would be the master communication process and would commu-

nicate via message passing interface (MPI) with the distributed compute nodes. When run locally

on a single node or workstation, all parent and children processes run concurrently on the same

resource.

The master instance controls launching of node instances and job producer instances. These

processes are efficiently managed using a dispatch queue where process threads are spawned but

only utilized when the job queue has waiting work to be completed; otherwise the process worker

threads hibernate. This dispatch queue system is very efficient and is commonly used for battery-

powered devices like phones, where active threads may consume valuable resources, which is

undesirable behavior. The first action taken by the master instance is to query the distributed com-

pute nodes or local system to gather information about resource availability and current utilization.

Then, the master instance launches job producers. The job producers parse the input data into

working chunks according to the resources available on the compute nodes or processes and en-

queue these chunks into the master work queue. The master work queue then greedily distributes

them to nodes using a max priority queue, locally decrementing the node resources until they are
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Figure 3.2: The WarpNL distributed load-balancer uses an object oriented design, where each class

object manages a worker thread that performs a discrete task. The main thread launches the master in-

stance, which manages job creation and system-wide resource monitoring/scheduling. The master instance

in turn launches consumer instances that manage intra-node resources and scheduling, particularly with re-

gard to the GPUs. GPU jobs execute the assigned task and return to the consumer instance for additional

work or to finalize. Likewise, the consumer instances finalize back to the master instance when all work as-

signed by the master instance has been completed. All queue structures are managed using dispatch queues,

which cause threads to sleep instead of spin while idle, preventing unwanted consumption of resources. In

this way, WarpNL splits large datasets into highly parallel tasks, which results in efficient computation.
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consumed. The master queue then waits via MPI or mutex lock for the nodes to indicate that they

have completed computation and have free resources.

The node instances receive the jobs from the master instance and place them into another

priority queue for distribution to the GPU devices. Each node instance is only aware of its own local

resources and is in charge of actively managing jobs on those resources. A second dispatch queue

is used by the node instance to dispatch one worker thread per job; each job is assigned a specific

set of resources that it can utilize, and the job worker thread manages computation then returns to

the node instance dispatch queue when complete. The job worker threads fill the data structures

outlined above for the various pipelines and submit their jobs to the resources. The NVIDIA GPU

devices have their own onboard scheduler and load-balancer, which handles allocation of the job

arrays onto the device itself. WarpNL is capable of taking advantage of streaming computation

on the more modern NVIDIA architectures, so multiple jobs can be submitted to the same device.

This secondary aspect of parallelization allows data transfers across the PCIe bus to be completed

while compute is happening on the device, effectively overlapping data transfer and compute to

speed up computation on serially submitted jobs. Since WarpNL is largely memory constrained,

overlapping of data transfers is an important part of efficiency, since a large amount of data must

be transferred to the device for each job.

When jobs are completed, they report back to the node instance dispatch queue, which updates

the node watcher’s available resource count. This node resource data structure is an important

component that is checked periodically by the master instance watcher, so that the master instance

can distribute additional jobs if needed. During computation, the node instance does not initiate

communication with the master instance but does respond to requests to be updated by the master

instance. This allows resources on the node instance to be focused on managing local compute,

while the master instance is focused on distributing jobs to the nodes. Therefore, there is no local

wait time on the node instances other than the time it takes for the master instance to push new

jobs to the nodes.
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When all computation is complete, the node instances notify the master instance and shut down

their dispatch queues and watcher instances. In turn, when all node computation is complete, the

master instance shuts down its resource watcher and proceeds into aggregation of the distributed

result files. Serial CPU-based tasks are then completed on the master instance. This includes opti-

mization of the support vector machine classifier for the training pipeline and result file aggregation

and formatting for the test pipeline. Finally, results are output to the user.

In theory, this setup is capable of distributed computation on any number of nodes. The inter-

node (local) data structures were all successfully implemented into WarpNL and include logic for

splitting large data matrices across GPU resources. This splitting of large resources could be ex-

tended to MPI-based multi-GPU compute if desired. While this setup includes schema for MPI

implementation, we did not make use of MPI in WarpNL, since we found that most computa-

tion can be completed using single-node or workstation resources and parallelized using standard

schedulers on distributed clusters. However, if one had a dataset that demanded MPI distributed

computing, WarpNL’s source code could be a good starting point to implement such a program.

Additionally, WarpNL is staged such that it could take advantage of further data transfer and GPU

RAM optimizations like NVLink compute, however these optimizations were determined to have

minor impacts on efficiency and therefore were not implemented.

3.5 Statistical cross-validation

Cross-validation is the iterative procedure of excluding a portion of the training data from the

training set to use as a test or validation set for parameter optimization during the machine learning

process. Typically, the portion of the training set excluded is non-overlapping and is between 1%

and 25% of the data at a time. Each iteration is commonly called a "fold," and folds are typically

chosen to be equal in size, resulting in a procedure called "K-fold cross-validation" [89]. Inherent

in the choice of fold size is a bias-variance tradeoff: the smaller the fold size (fewer observations

per fold), the more biased the parameter estimates produced, and the larger the fold size (more

observations per fold), the more variance the parameter estimates will have. In typical machine
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learning tasks, for example in the domain of natural language processing, it is often realistic to

choose folds of equal size, which helps to ensure that the parameter estimates are within a certain

degree of the bias-variance tradeoff as determined by the analyst. If, however, the training set has

highly unequal numbers of observations per class (class imbalanace), then either a small fold size

must be used across all classes to maintain and equal fold size, or variable-sized folds must be

used.

In the case of genetic sequence classification, it is common for training datasets to have large

class imbalance, with many classes having few observations and few classes having many obser-

vations. This is true of the database used in Chapter 2: the MEGARes v2 antimicrobial resistance

database. For WarpNL, the time it takes to build the training matrix and compute on it for val-

ues of k > 9 is often more than several minutes, resulting in potential days of computing if the

analyst chooses the fold size to be too small with many parameters combinations that need to be

explored. This is true even with the high degree of parallelization that WarpNL allows for the

cross-validation process. Therefore, it is desirable for WarpNL to use as large a fold size as pos-

sible while still obtaining viable parameter estimates. However, the MEGARes genetic sequence

database contains many classes with only one or two observations and a good number of classes

with very few observations. Therefore, for the sake of efficiency and obtaining accurate parameter

estimates, we chose to use variable fold sizes, breaking from the traditional approach of K-fold

cross-validation.

WarpNL’s strategy for implementing cross-validation is to attempt to split class observations

into K folds, as specified by the user. However, if the number of observations in a given class

is fewer than K, WarpNL tries to perform leave-one-out cross-validation for that class (leaving a

single observation out per fold). If the class node has only one observation, then the class is ex-

cluded from the cross-validation procedure, since it is effectively useless for determining optimal

model parameter values. WarpNL therefore performs variable K-fold cross-validation to deter-

mine optimal naive Bayes parameters and to produce an outgroup test set for later training the
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outgroup support vector machine classifier. This latter process, for training the outgroup classifier,

is described in detail below.

3.6 Outgroup classification

Determining whether a sequence is "close enough" to the training dataset to classify it using

only information contained the sequence itself is perhaps one of the most challenging problems

in genetic sequence classification. We argue that this process is so complex and drives at such

deep problems in bioinformatics that producing a viable solution to this problem that isn’t a just an

arbitrary heuristic threshold should be considered a success, particularly in the context of machine

learning. As described in Chapter 2, WarpNL makes use of a Gaussian mixture model (GMM)

de novo clustering algorithm to re-label sequences as outgroup sequences if they are too distant

from the ingroup sequences after being left out during K-fold cross-validation. The data with de

novo labels after GMM optimization are then used to train a decision boundary for a support vector

machine classifier. Both the GMM and SVC optimization routines are described below as they are

implemented in WarpNL.

3.6.1 Feature encoding for outgroup classification

For both the multinomial and Gallager encoding methods, a separate value of k is chosen for

outgroup classification that is independent of the encoding strategy used for naive Bayes classifi-

cation. For the work in Chapter 2, we used k = 12 for outgroup classification, which would have

been prohibitively large for construction of the naive Bayes matrices. However, since we aren’t en-

coding all possible k-mers for outgroup classification, using a larger value of k is possible. During

construction of the probability matrix using the training data, all observed k-mers in the training

data are hashed into a set for both the forward and reverse sequences. Then, for all test or left-out

sequences, the percentage of k-mers that are not present in the training k-mer set is recorded for

the forward read and reverse read if present. If the reverse read is not present (as in single-end

sequencing data), then the forward read percent k-mer mismatch is used for both the x1 and x2
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dimensions as input for the GMM and SVC optimization routines. The result of this process is

a two-dimensional dataset of non-negative real numbers in the range of [0, 100], representing the

forward and reverse mismatch percentages, respectively.

3.6.2 Gaussian mixture model implementation

A bivariate Gaussian mixture model de novo clustering algorithm was chosen because the per-

cent mismatch data described above appeared to be normal in two dimensions. Prior to GMM

optimization, data xi ∈ R
2, i ∈ 1, 2, . . . , N were labelled as ingroup if they were both a sequence

left out as a part of K-fold cross-validation and if x1 < 80 and x2 < 80. Data were labelled as

outgroup if they were left out of K-fold cross-validation but either x1 ≥ 80 or x2 ≥ 80, and all user-

provided outgroup sequences were by default considered to be outgroup sequences prior to GMM

optimization. The sequences as labelled above served as an initial state for the GMM optimization

routine. The initial values for the ingroup mean were set to µ1 = 〈20, 20〉 and outgroup mean

µ2 = 〈80, 80〉. Initial values for both the ingroup (σ1) and outgroup (σ2) variance (diagonal) were

set to σ = 〈30, 30〉. The covariance parameters on the off-diagonal of the variance-covariance

matrix were fixed at 0 for the entire optimization procedure. This decision was made because if

the covariance was allowed to be optimized, the resulting outgroup bivariate Gaussian distribu-

tion fit tightly along the x = y line, which produced nonsensical de novo labels. Optimization

of the GMM class distribution parameters µ and σ was performed via expectation maximization

(EM) of the bivariate Gaussian distributions. The following outlines the basic principles of EM

optimization of two-distributional mixture of bivariate Gaussians [97].

In the E-step, the current values of µ1,σ1 and µ2,σ2 are used to update the weights ŵki, i ∈

1, 2, . . . , N, k ∈ 1, 2 for each observed data point. These weights describe the proportion that a

given data point "belongs" to each of the two Gaussian distributions and therefore determine how

heavily a data point is weighted during parameter updates to each distribution. So as is standard

for the EM algorithm, the distributional parameters are fixed in the E-step and used to update the

data point weights. The parameters φ1 and φ2 describe the weight of each distribution (average
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across the data point weights) are also updated in this step. The data point weights are updated as

follows,

wki =
φk

2π|Σk|
1
2

exp

(

−
1

2
(xi − µk)

TΣ−1
k (xi − µk)

)

(3.8)

The new weights are then normalized by their sum across the distributions, such that they sum

to 1 for each data point,

ŵki =
wki

∑k wki

(3.9)

Membership of each data point is then determined to be the larger of the two weights, so if

weight ŵ1i > ŵ2i, then data point xi would be labelled as belonging to distribution 1, and vice

versa. In the M-step, the weights are fixed and used to perform an update of the parameters φ,µ,σ

for both distributions.

φnew
k =

∑N

i=1 ŵki

N
(3.10)

µnew
k =

∑N

i=1 ŵki · xi
∑N

i=1 ŵki

(3.11)

Using the new means as calculated above,

Σnew
k =

∑N

i=1 ŵki · (xi − µnew
k )(xi − µnew

k )T
∑N

i=1 ŵki

(3.12)

However, as described above, the covariance terms in the variance-covariance matrix were

fixed at 0 during our implementation of the above EM routine. Loss was calculated using the

evidence lower bound of the bivariate Gaussian mixture to guarantee convergence from Bishop

2006 equation 9.74 [97]. At the end of the EM routine, the labels for each data point correspond to

which of the two distributions has the higher weight (is more likely to belong to that distribution).
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This produces de novo labels that are then used as input into the support vector machine described

below.

3.6.3 Support vector machine classifier implementation

A support vector machine classifier (SVC) was implemented using the same two-dimensional

input feature space described above in this section. A linear decision boundary was used for

both efficiency of optimization and efficiency of assigning labels to new data: the linear SVC

label assignment can be directly calculated from the equation for the linear decision boundary.

For non-linear SVC boundaries that make use of a kernel space, labels must be calculated by

comparing the new data point against all of the support vectors, which takes time when the number

of support vectors and the number of data points to be classified is large [83]. Since WarpNL

aims to classify billions of sequences as efficiently as possible, the SVC classification step must

be efficient enough to not slow down the encoding of sequences into the naive Bayes classification

process. This ultimately required the use of a linear SVC. The linear SVC did not result in a

degradation of classification accuracy, since the boundary between the two classes produced by

the bivariate GMM appeared to be roughly linear, making it an appropriate choice for the problem.

The standard derivation for the SVC optimization problem is as follows. Given training data

{(xi, yi)}1≤i≤n,xi ∈ R
d, yi ∈ {+1,−1}, the primal optimization problem is [83],

min
w,b

‖w‖2 + λ

n
∑

i=1

ξpi s.t. yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 (3.13)

Where w are the support vector weights, ξ are the slack variables, b is the intercept, and λ

(commonly notated as C, but we use λ to avoid confusion with previous derivations) is the bias

hyperparameter. Alternatively, the dual formulation arises from applying Lagrangian multipliers

to the primal,

L (w, b,α) =
1

2
‖w‖2 −

n
∑

i=1

αi

[

yi(w
Txi + b)− 1

]

s.t. αi > 0 ∀i ∈ 1, 2, . . . , n (3.14)
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max
α

n
∑

i=1

αi−
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(x
T
i xj) s.t. αi ≥ 0 ∀i ∈ 1, 2, . . . , n and

n
∑

i=1

αiyi = 0 (3.15)

Most SVC implementations optimize the Lagrangian dual formulation using hinge loss, since

most optimizations for modern datasets using SVMs involve data of high dimensionality. There-

fore, it is often more efficient to find sparse solutions to the Lagrangian dual formulation than it

is to optimize the primal. However, we chose to optimize the less commonly used primal formu-

lation using squared loss due to its numerical stability, which produced better decision boundaries

for this two-dimensional problem. Since our problem has low dimensionality, this approach did

not suffer from the usual efficiency issues involved with optimizing the primal using data in high

dimensional space.

Optimization of the primal formulation using squared loss was performed via Newton-Raphson

gradient descent with line search [98]. All code for this process was written specifically for

WarpNL to ensure maximum efficiency in performing small matrix-matrix products, matrix in-

versions, and parameter updates during optimization. The working example of the above process

is contained in the SupportVectorClassifier class object in the WarpNL source code.
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Chapter 4

Fast maximum likelihood estimation and supervised

classification for the beta-Liouville multinomial

4.1 Summary

The multinomial and related distributions have long been used to model categorical, count-

based data in fields ranging from bioinformatics to natural language processing. Commonly uti-

lized variants include the standard multinomial and the Dirichlet multinomial distributions due to

their computational efficiency and straightforward parameter estimation process. However, these

distributions make strict assumptions about the mean, variance, and covariance between the cate-

gorical features being modeled. If these assumptions are not met by the data, it may result in poor

parameter estimates and loss in accuracy for downstream applications like classification. Here,

we explore efficient parameter estimation and supervised classification methods using an alterna-

tive distribution, called the Beta-Liouville multinomial, which relaxes some of the multinomial

assumptions. We show that the Beta-Liouville multinomial is comparable in efficiency to the

Dirichlet multinomial for Newton-Raphson maximum likelihood estimation, and that its perfor-

mance on simulated data matches or exceeds that of the multinomial and Dirichlet multinomial

distributions. Finally, we demonstrate that the Beta-Liouville multinomial outperforms the multi-

nomial and Dirichlet multinomial on two out of four gold standard datasets, supporting its use in

modeling data with low to medium class overlap in a supervised classification context.

4.2 Introduction

Count data arise in many contexts, including in natural language processing, ecology, and

bioinformatics [99–101]. For example, data such as the words in an email could be features that

are counted and used to classify each email into a category (e.g. spam or ham). While many prob-
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ability distributions can be used to model categorical count data, the multinomial and Dirichlet

multinomial (DM) distributions have been shown to perform well and are widely used for this task

[102]. The simplicity of these distributions enables their integration with computationally efficient

classifiers like naive Bayes, making them popular for large-scale classification tasks. For exam-

ple, one can obtain estimates of multinomial parameters over any number of features by simple

division, circumventing the need for more complicated parameter estimation techniques. Addi-

tionally, the Dirichlet distribution is a convenient prior distribution for the multinomial, resulting

in "smoother" multinomial estimates that help to prevent overfitting of the training data [103].

However, the multinomial and DM distributions assume strict negative covariance between

features, making them ill-suited for modeling data that violate this assumption. Since features

often co-occur in practice, these distributions may not be optimal for capturing nuanced feature

relationships in categorical datasets, such as semantics in text processing [104]. These distributions

also have means and variances for each feature that are linked due to sharing the same parameters,

much like the Poisson distribution. As a result, features with truly different variances but the same

mean will be modeled identically, which can further confuse classifiers. To address these issues

with the multinomial and DM distributions without sacrificing computational efficiency, the Beta-

Liouville distribution can be used as a conjugate prior to the multinomial distribution. Utilizing

a Beta-Liouville prior gives rise to the Beta-Liouville multinomial (BLM) distribution [105]. The

BLM relaxes the previously mentioned assumptions by introducing an additional parameter over

the DM distribution, which may improve modeling results.

Recent applications of the BLM distribution have been explored by Bouguila and Fan [102,

106, 107], particularly in computer vision and natural language processing. Bouguila’s work

has focused on unsupervised clustering and semi-supervised classification using methods such

as expectation maximization, variational learning with finite mixture models, and online learning.

Bouguila’s group has shown that the BLM distribution improves upon the DM distribution for

certain datasets where class labels are determined by the learning process, such as in clustering

via expectation maximization [106]. However, their work has not applied the BLM distribution
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to strictly supervised problems, in which the true class labels are fixed and not determined by

the learning process. Additionally, their work does not thoroughly explore the computational ef-

ficiency and stability of learning BLM-based models from observed data. In this manuscript, we

extend Bouguila’s work by applying the BLM distribution to supervised classification, focusing on

efficient computation, stability of parameter optimization, and classification power.

Previous work by Sklar [108] provided an efficient implementation of Newton-Raphson maxi-

mum likelihood estimation (MLE) for the DM distribution. Building on the framework introduced

by Sklar, we present a fast MLE implementation for the BLM and show the necessary conditions

for its convergence during Newton-Raphson optimization. We then explore conditions under which

Sklar’s approach is computationally efficient compared to vectorized and approximate versions of

the Newton-Raphson algorithm. Next, we perform a power analysis for the BLM distribution

using simulated data. Finally, we evaluate the accuracy of the DM and BLM against gold stan-

dard datasets using a variety of classification techniques. Overall, we show that both the DM

and BLM can be computationally efficient during MLE, and the DM and BLM MLEs outperform

the multinomial for datasets with lower levels of class overlap, while the multinomial distribution

demonstrates comparable or better accuracy otherwise.

4.3 Methods

4.3.1 Definitions

We provide the following definitions to simplify derivations for the Dirichlet Multinomial (DM)

and Beta-Liouville Multinomial (BLM) distributions [108]. The gamma function of a strictly

positive integer a is,

Γ(a) = (a− 1)!

The dual-input gamma function for strictly positive integers a and b is,
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Γ(a, b) =
Γ(a+ b)

Γ(a)
=

b−1
∏

i=0

(a+ i)

The dual-input log-gamma function is the log of the dual-input gamma function,

ln Γ(a, b) =
b−1
∑

i=0

ln(a+ i)

We also define X
N×(D+1)

to be an observed data matrix of non-negative integers. X contains N

observations of a D+1 dimensional data vector x, where D+1 is the number of categories being

counted (Table 4.1).

Table 4.1: Example of the data matrix X with N observations and categories d = 1 . . . D + 1

Category

Observation d = 1 d = 2 . . . D + 1

n = 1 3 17 . . . 8

n = 2 0 23 . . . 11
...

...
...

. . .
...

N 20 0 . . . 9

4.3.2 Derivations for the beta-Liouville multinomial distribution and the as-

sociated likelihood function

Liouville distributions of the second kind have D parameters (α1, α2, . . . , αD) and additional

parameters ξ associated with a generating density function f(·) [106],

P (p|α1, . . . , αD, ξ) = f(u|ξ)
Γ(
∑D

d=1 αd)

u
∑D

d=1 αd−1

D
∏

d=1

pαd−1
d

Γ(αd)
(4.1)
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where u =
∑D

d=1 pd < 1, pd > 0, d = 1 . . . D, and D as defined above. The Beta-Liouville dis-

tribution is formed when using the beta distribution with parameters ξ = {α, β} as the generating

density function for u, resulting in,

P (p|θ) =
Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)
uα−

∑D
d=1 αd(1− u)β−1

D
∏

d=1

pαd−1
d

Γ(αd)
(4.2)

where θ = (α1, . . . , αD, α, β). Unlike the Dirichlet distribution, which has D + 1 parameters,

equal to the number of observed categories, the Beta-Liouville distribution has D + 2 parameters.

Similar to the Dirichlet, the Beta-Liouville distribution presented in equation (4.2) can be used as

a conjugate prior to the multinomial distribution resulting in the BLM distribution,

P (x,p|θ) =





Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)
∏D

d=1 Γ(αd)

(

D
∑

d=1

pd

)α′−
∑D

d=1 α
′

d





×





Γ((
∑D+1

d=1 xd) + 1)
∏D+1

d=1 Γ(xd + 1)

(

1−
D
∑

d=1

pd

)β′−1 D
∏

d=1

p
α′

d
−1

d





(4.3)

where α′
d = αd + xd, α

′ = α +
∑D

d=1 xd, and β′ = β + xD+1, following Bouguila’s notation

(Bouguila 2011). Marginalizing over p and assuming that the data vector x has been observed

results in the likelihood function,

P (x|θ) =

∫

p

P (x,p|θ)dp

=

Γ
(

1 +
∑D+1

d=1 xd

)

Γ
(

∑D

d=1 αd

)

Γ(α + β)Γ
(

α +
∑D

d=1 xd

)

Γ(β + xD+1)
D
∏

d=1

Γ(αd + xd)

(

D+1
∏

d=1

Γ(xd + 1)

)

Γ
(

∑D

d=1 (αd + xd)
)

Γ
(

α + β +
∑D+1

d=1 xd

)

Γ(α)Γ(β)
D
∏

d=1

Γ(αd)

(4.4)
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Utilizing (4.4) and the dual-input gamma function, introduced above, the log-likelihood func-

tion can be written as follows for the entire data matrix X ,

ℓ(θ) = ln(P (X|θ))

=
N
∑

n=1

[

ln Γ(1,
D+1
∑

d=1

xnd) + ln Γ

(

α,

D
∑

d=1

xnd

)

+ lnΓ(β, xn,D+1)− ln Γ

(

D
∑

d=1

αd,

D
∑

d=1

xnd

)]

+
N
∑

n=1

[(

D
∑

d=1

ln Γ(αd, xnd)

)

− ln Γ(α + β,
D+1
∑

d=1

xnd)−

(

D+1
∑

d=1

ln Γ(1, xnd)

)]

(4.5)

Utilizing the definition of the dual-input log-gamma function and rearranging equation (4.5),

removing constant terms that do not involve the parameters, we have,

ℓ(θ) ∼
N
∑

n=1







D
∑

d=1

xnd−1
∑

i=0

ln(αd + i)−

(
∑

D xnd)−1
∑

i=0

ln

(

D
∑

d=1

αd + i

)







+
N
∑

n=1







(
∑

D xnd)−1
∑

i=0

ln(α + i) +

(xn,D+1)−1
∑

i=0

ln(β + i)−

(
∑

D+1 xnd)−1
∑

i=0

ln(α + β + i)






(4.6)

We seek to find the maximum likelihood estimates (MLEs) of θ that optimize (4.6),

MLE(θ) = argmax
θ

ℓ(θ)

using the following optimization approaches.
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4.3.3 MLE of the Beta-Liouville Multinomial distribution

In what follows, we use the Newton-Raphson algorithm for optimization, with step as in the

following equation, utilizing the log-likelihood function (4.6) to find the MLEs.

θnew = θold −H−1g (4.7)

where g is the gradient vector and H is the Hessian matrix. The Hessian matrix is block

diagonal [109] and its inverse is represented as follows,

H(ℓ(θ))−1 = block-diag
{

H(ℓ(α1, . . . , αD))
−1,H(ℓ(α, β))−1

}

(4.8)

The gradient and Hessian of (4.6) are therefore,

gαd
=

N
∑

n=1





xnd−1
∑

i=0

(αd + i)−1 −

(
∑

D xnd)−1
∑

i=0

(

D
∑

d=1

αd + i

)−1


 , for d ∈ 1 . . . D

gα =
N
∑

n=1





(
∑

D xnd)−1
∑

i=0

(α + i)−1 −

(
∑

D+1 xnd)−1
∑

i=0

(α + β + i)−1



 (4.9)

gβ =
N
∑

n=1





xn(D+1)−1
∑

i=0

(β + i)−1 −

(
∑

D+1 xnd)−1
∑

i=0

(α + β + i)−1





H(ℓ(α1, . . . , αD)) =
N
∑

n=1



















cαd
−

xn1−1
∑

i=0

(α1 + i)−2 . . . cαd

...
. . .

...

cαd
. . . cαd

−

xnD−1
∑

i=0

(αD + i)−2



















(4.10)
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H(ℓ(α, β)) =
N
∑

n=1















cαβ −

(
∑

D xnd)−1
∑

i=0

(α + i)−2 cαβ

cαβ cαβ −

xn(D+1)−1
∑

i=0

(β + i)−2















(4.11)

where the constants cαd
=

(
∑

D xnd)−1
∑

i=0

(

D
∑

d=1

αd + i

)−2

and cαβ =

(
∑

D+1 xnd)−1
∑

i=0

(α + β + i)−2.

The following formulae were used to invert the Hessian efficiently [110].

H = diag(h) + 11⊤c

H−1 = diag(h−1)−
h−1(h−1)⊤

c−1 +
∑D

d=1 h
−1
d

(4.12)

where the diag(·) function places a given vector on the diagonal of a matrix of appropriate di-

mension, h is a column vector containing the non-constant terms from the diagonal of the Hessian,

1 is a column vector of ones of the appropriate dimension, and c is the constant term. The con-

ditions for which this optimization process maintains convexity required for convergence can be

found in Appendix 1. Using (4.7) to perform Newton-Raphson steps during parameter estimation,

we considered several computational methods for calculating the gradient and Hessian to compare

their accuracy and runtime performance.

Vectorized MLE

We first explored the standard approach of exactly calculating the above gradient and Hessian

equations using Python Numpy’s vectorized operations to improve computational efficiency. This

includes Single-Instruction Multiple Data (SIMD) operations using Streaming SIMD Extensions

2 (SSE2) and intrinsic optimizations of data structures for vector and matrix operations.
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Approximate MLE

Next, we examined finite limit approximations of the repetitive sums in (4.6) to avoid the

computational cost associated with an increasing number of parameters, observations, and data

draws. For this approach, we attempted to approximate the gradient and Hessian finite sums by

fitting functions to generalized formulae of this structure:

f(θ,N) =
N
∑

n=0

1

θ + n
=

1

θ
+

N
∑

n=1

1

θ + n
(4.13)

f(θ,N) =
N
∑

n=0

1

(θ + n)2
=

1

θ2
+

N
∑

n=1

1

(θ + n)2
(4.14)

for positive real θ and non-negative integer N . These formulae, ignoring the term where n = 0,

are extensions of the finite limits for the Harmonic and Geometric series, respectively. Finite ap-

proximations of the divergent Harmonic series and convergent Geometric series have been exten-

sively studied [111, 112]. However, approximations of these series that include a second parameter

in the denominator have, to our knowledge, not been published.

Starting with the known approximation of the trivial case where θ → 0, manual function fitting

was performed by trial and error using the R function "nls" for assistance. The resulting approx-

imations were then used to compute the finite sums in (4.6) for the Newton-Raphson procedure.

Detailed explanations of the limit approximations are available in Supplementary File 1.

Sklar’s MLE

Sklar (2014) outlines an approach to reduce the computational cost of the repetitive sums in

(4.6) by introducing new data structures. Here, we extend his approach to the BLM distribution

and compare it to the vectorized and approximate MLE approaches.

As noted above, to compute (4.6) naively would involve:

• For terms involving αd and β, which depend on the count at position n, d, repeating sums

for each category d less than that of the max value in row n of the data matrix.
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• For terms involving
∑

D αd, α, and α+β, which depend on the partial or complete row sum

of row n, repeating sums for each row less than that of the max row sum.

To circumvent this, Sklar creates two data structures to hold the multiplicative constants to

replace these repetitive sums. Here, due to the increased complexity of the BLM distribution, we

need three such data structures. First, we define ZD, ZD+1, and Zmax as follows,

ZD = max
n

D
∑

d=1

xnd

ZD+1 = max
n

D+1
∑

d=1

xnd

Zmax = max (ZD, ZD+1)

The first data structure is a matrix U
(D+1)×Zmax

, which, for each category d ∈ 1 . . . D + 1, counts

the number of rows where the count in column d of X exceeds the integer z, where z is the

zero-based column index of U , z = 0 . . . Zmax − 1.

The second data structure is a vector vD of length ZD, which, for each category d ∈ 1 . . . D,

counts the number of rows where the row sum exceeds z, where z is the zero-based index of v,

z = 0 . . . ZD − 1.

The third data structure is another vector vD+1 of length ZD+1, which, for each category d ∈

1 . . . D + 1, counts the number of rows where the row sum exceeds z, where z is the zero-based

index of vD+1, z = 0 . . . ZD+1 − 1.

Note that the dimensionality of the matrix U is such that many of its values on the right hand

side will be zero using this definition; this is for notational convenience in the derivations. In

practice, the data structure for U can be stored efficiently as a ragged array containing only non-

zero elements.

More formally:
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udz =
N
∑

n=1

I (xnd > z)

vDz =
N
∑

n=1

I

(

D
∑

d=1

xnd > z

)

vD+1
z =

N
∑

n=1

I

(

D+1
∑

d=1

xnd > z

)

Where I is the indicator function:

I(·) :=















1 if true

0 otherwise

This simplifies (4.6):

ℓ(θ) ∼

ZD−1
∑

z=0

[

D
∑

d=1

udz ln(αd + z) + vDz ln(α + z)− vDz ln(
D
∑

d=1

αd + z)

]

+

ZD+1−1
∑

z=0

[

u(D+1)z ln(β + z)− vD+1
z ln(α + β + z)

]

(4.15)

The gradient and Hessian of (16) are then,

gαd
=

ZD−1
∑

z=0

[

udz(αd + z)−1 − vDz (
D
∑

d=1

αd + z)−1

]

gα =

ZD−1
∑

z=0

vDz (α + z)−1 −

ZD+1−1
∑

z=0

vD+1
z (α + β + z)−1 (4.16)
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gβ =

ZD+1−1
∑

z=0

[

u(D+1)z(β + z)−1 − vD+1
z (α + β + z)−1

]

H(ℓ(α1, . . . , αD)) =

ZD−1
∑

z=0













cαd
− udz(αd + z)−2 . . . cαd

...
. . .

...

cαd
. . . cαd

− udz(αd + z)−2













(4.17)

H(ℓ(α, β)) =

ZD+1−1
∑

z=0









cαβ −

ZD−1
∑

z=0

vDz (α + z)−2 cαβ

cαβ cαβ − u(D+1)z(β + z)−2









(4.18)

where the constants cαd
= vDz (

∑D

d=1 αd + z)−2 and cαβ = vD+1
z (α + β + z)−2.

4.3.4 MLE runtime analysis

Theoretical and empirical runtimes for the MLE Newton-Raphson procedure were assessed for

the DM and BLM distributions using the three computational methods listed above: vectorized,

approximate, and Sklar. For empirical runtime assessment, the number of observations N , the

number of data draws from each observation vector M =
∑

D+1 xd, and the number of categories

D + 1, were each varied while holding the others constant. Wall-clock time for a single Newton-

Raphson MLE step was then computed for each of the above algorithms for the DM and BLM

distributions. Five independent bootstraps were performed for each experiment to account for

variance due to hardware performance. All runtime experiments were performed on Ubuntu Linux

18.04 using Python 3.7.3, Numpy 1.18.1, an 18-core Intel i9-9980XE Skylake 3.0 GHz processor,

64 GB DDR4 3600 SDRAM, and an M.2 2280 NVMe 1.3 V-NAND solid state drive.
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4.3.5 Classification performance benchmarking

We aimed to characterize the effectiveness of the BLM distribution for classifying labelled

data, commonly known as supervised classification. In the following sections, we compare the

BLM to the DM and multinomial distributions using both simulated data and real-life, gold stan-

dard datasets, all of which have known class labels. Simulated data allows for fine control over

the difficulty of the classification task and demonstrates for which datasets these distributions are

effective. Gold standard datasets offer additional value over simulated data, as they often con-

tain noise unrelated to the classification task and are therefore more representative of how each

distribution will perform in general.

In the following experiments, we compare standard multinomial naive Bayes and two MLE-

based strategies for performing the classification task. Each of these strategies uses different in-

formation from the training and test data, however all methods involve maximizing the likelihood

function in some way. For the standard multinomial and the first of the MLE-based classification

strategies, we construct a test matrix of counts for each feature T
N×(D+1)

and a training matrix with

columns representing each class, c ∈ C, on the unit simplex X
(D+1)×C

. Classification of multiple

test observations is then performed by computing the matrix inner product and taking the argmax

for each row in the resulting matrix, which corresponds to the assigned class for each test obser-

vation. A formal explanation of this process is available in Supplementary File 1. The second

MLE-based approach involves explicit calculation of the marginal likelihood for each class and

does not involve calculating the matrix inner product. Below, we provide additional details about

these methods, referred to here as multinomial naive Bayes, Dirichlet and Beta-Liouville multino-

mial naive Bayes, and marginal likelihood classification, respectively.

Multinomial naive Bayes

Parameters on the unit simplex are determined by simple division for multinomial naive Bayes.

In this approach, observations n ∈ N within the training data are summed to produce a single

count vector, and the counts are divided by the vector sum to produce the training parameters,
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equivalent to the MLEs of the multinomial, p̂. The resulting trained parameters are then used to

classify test observations by matrix inner product.

p̂d =

∑

N xnd
∑

N

∑

D+1 xnd

, for d = 1 . . . D + 1 (4.19)

Dirichlet and beta-Liouville multinomial naive Bayes

In this approach, the training data are used to perform Newton-Raphson MLE separately for

each class, and the resulting D + 1 and D + 2 MLEs are used to calculate the D + 1 training

parameters for the DM and BLM distributions, respectively. The resulting trained parameters are

then used to classify test observations by matrix inner product.

DM Distribution:

p̂d =
α̂d

∑

D+1 α̂d

, for d = 1 . . . D + 1 (4.20)

BLM Distribution:

p̂d =
α̂

α̂ + β̂

α̂d
∑

D+1 α̂d

, for d = 1 . . . D (4.21)

p̂D+1 =
β̂

α̂ + β̂

Where α̂d, α̂, and β̂ are the MLEs.

Marginal likelihood classification

Like the previous approach, the training data are used to calculate MLE parameter estimates

for D + 1 and D + 2 parameters for the DM and BLM distributions, separately for each class.

However, for classification, the marginal likelihood function P (x|θ) is evaluated separately for

each test observation vector x and class parameter MLE estimates θc, c ∈ C. The test observation

is then assigned to the class with the maximum likelihood.
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DM Distribution:

ln(P (x|θc)) =

(
∑

D+1 xd)−1
∑

i=0

ln(1 + i)−

xd−1
∑

i=0

ln(1 + i)

+
D+1
∑

d=1

xd−1
∑

i=0

ln(α̂d + i)−

(
∑

D+1 xd)−1
∑

i=0

ln(
D+1
∑

d=1

α̂d + i)

(4.22)

BLM Distribution:

ln(P (x|θc)) =

(
∑

D+1 xd)−1
∑

i=0

ln(1 + i)−
D+1
∑

d=1

xd−1
∑

i=0

ln(1 + i)

+
D
∑

d=1

xd−1
∑

i=0

ln(α̂d + i)−

(
∑

D xd)−1
∑

i=0

ln

(

D
∑

d=1

α̂d + i

)

+

(
∑

D xd)−1
∑

i=0

ln(α̂ + i) +

(xD+1)−1
∑

i=0

ln(β̂ + i)−

(
∑

D+1 xd)−1
∑

i=0

ln(α̂ + β̂ + i)

(4.23)

Finally, Laplace additive smoothing was applied to all of the above methods such that all cat-

egories had non-zero training parameter probability even if they were not observed in the training

data [88, 103, 113].

Classification power analysis on simulated data

A power analysis was performed for the DM and BLM distributions to assess and compare clas-

sification accuracy on simulated data. Data were simulated to achieve different levels of overlap

and sampling for 4 distinct classes. Benchmarking on these data involved assessing the accuracy

of classification back to the known class labels using standard performance measures, including

precision, recall, specificity, and F1 score. Data were generated as follows (Figure 4.1).

• We set the number of categories, D+1, within each class to be 100. These are categories of

a generating multinomial with parameters p = {p1, . . . , p100}.
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• We chose fixed, equidistant categories to center each class: category 1 for class 1, category

33 for class 2, category 66 for class 3, and category 100 for class 4. These centers represent

the probability density mode of the associated multinomial for each class (Figure 4.1a).

• The vector p was generated as follows for each class: 1) We used the central category of the

class as a mean of a normal distribution and varied the standard deviation to create more or

less overlap between class probability densities (Figure 4.1b). Five standard deviation values

were explored: 10, 22, 35, 48, and 60. 2) We randomly sampled 2000 draws from these

normal distributions associated with each class. For example, sampling from the normal

distribution with mean 33 and standard deviation 10 associated with class 2 results in data

points spread, for the most part, between category 16 and category 49 with a mode around

the 33 mean. We created an empirical distribution by rounding the sampled numbers to

integers and counting the integers with the same value. For example, we could count the

number of integers that were equal to 30 (category 30). 3) For each class we divided the

totals per category by the total number of draws to construct the probability vector p of the

generating multinomials. Large standard deviation values result in more overlap between

the generating multinomials per class, while small standard deviations result in more class

separation with concentrated probability density around the mean.

• The resulting multinomials with different degree of overlap were used to generate count data

for subsequent classification. To assess the impact of sampling on these results we varied

the total number, M , of samples (data draws) obtained from the generating multinomials.

Values of 15, 136, 258, 379, and 500 were explored for M . Small values of M result in

sparse simulated count vectors, while large values of M result in dense count vectors that

better inform the maximum likelihood estimation process.

• Utilizing the same generating multinomial distributions, we also varied the number of count

vectors N (data observations) generated for each class. Values of 2, 26, 51, 76, and 100 were
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explored for N . Larger values of N should result in better parameter estimates and therefore

more accurate classification.

These datasets were preprocessed as outlined in Supplementary File 1 and classified using the

methods introduced in previous sections.

Figure 4.1: Data were simulated for 4 discrete classes according to normal distributions evenly spaced

along a vector of 100 categories. A) Each class had normal probability density with mean equal to a

category varying equidistantly from p1 to p100. B) For each class, the standard deviation of the normal dis-

tribution was varied, σ = {10, 22, 35, 48, 60}, with higher values creating more overlap between classes. C)

Using the resulting multinomial parameters, M = {15, 136, 258, 379, 500} counts were randomly sampled

for N = {2, 26, 51, 76, 100} independent data vectors for each class. These counts were then classified

according to previously stated methods and used to calculate accuracy measures.
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Finally, we aimed to determine if the BLM distribution performed better on count data derived

from a BLM distribution as opposed to multinomial data. To achieve this, multinomial generating

parameters were simulated as above and were used in a Markov-chain Monte Carlo (MCMC)

process to produce BLM data with target distribution,

P (xc|θc) =
P (θc|xc)P (xc)

P (θc)
(4.24)

where xc is a count data vector, and θc are the fixed, generating parameters, for class c. A

formal description of the MCMC data simulation process can be found in Supplementary File 1.

MCMC simulation was performed separately for each class using a Metropolis-Hastings sampling

strategy with a multinomial proposal, P (x), and acceptance-rejection probability,

α = min

{

1,
P (xi+1|θc)/P (xi+1)

P (xi|θc)/P (xi)

}

(4.25)

where P (xi+1|θc) is the likelihood of xi+1 under the BLM and P (xi+1) is the likelihood of

the data under the proposal. The data generation process for both multinomial and BLM data was

independently replicated 5 times for each set of variables, and the resulting datasets were classified

using the same procedures introduced in the previous sections.

Classification on Gold Standard Datasets

Performance on real datasets was determined using four gold standard datasets from the text-

based natural language processing domain [114] described below:

• 20 Newsgroups: an English text collection of 18,821 newsgroup documents categorized into

20 classes with a relatively even class distribution. The dataset used in this experiment was

split within each class into 11,293 training and 7,528 testing documents.

• Reuters-21578 (R8): an English text collection of 7,674 newswire documents from the

Reuters Ltd. group in 1987. Only the 10 most frequent classes were used for this dataset,
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and only observations belonging to a single, unique class label were included. This resulted

in 8 classes with more than one document, hence the name R8. This dataset has a heavily

skewed class distribution and was split within each class into 5,485 training and 2,189 test

documents.

• Cade12: a Brazilian Portuguese text collection of 40,983 webpages from the CADE web

directory. Documents are categorized into 12 classes with a skewed class distribution. This

dataset was split within each class into 27,322 training and 13,661 test documents.

• WebKB: an English text collection of 4,199 university webpages from computer science

departments participating in the World Wide Knowledge Base project in 1997. Documents

are categorized into 4 classes with a moderately skewed class distribution. This dataset was

split within each class into 2,803 training and 1,396 test documents.

4.4 Results

MLE runtimes for the BLM distribution were comparable to the DM distribution but with a

small increase in runtime due to computation of additional terms in the likelihood function and its

derivatives (Figure 4.2). Performance of the BLM distribution on simulated data was nearly iden-

tical to the DM distribution’s performance. However, the BLM distribution was not as accurate

on very sparse data with few observations, N , and few data draws, M , suggesting that the BLM

distribution requires more data density than the DM to produce accurate MLEs. Finally, the multi-

nomial distribution performed most consistently on gold standard data and performed best on two

of the four datasets examined. However, the DM and BLM distributions were able to outperform

the multinomial in accuracy by a small margin on the other datasets. Additional details about the

results of each experiment are provided below.

4.4.1 MLE runtime results

Overall, the vectorized method was the most computationally efficient, particularly on data

with a large number of parameters and dense vectors (a large number of data draws). The ap-
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proximate method performed optimally for high values of data draws and low values of data ob-

servations. Sklar’s method performed optimally with a large number of data observations and

a small number of parameters and data draws; however, the runtime of Sklar’s approach scaled

poorly relative to the vectorized and approximate methods as the number of parameters increased.

Of particular note are the middle and right panels in Figure 4.2, highlighting impact of an in-

creased number of parameters and number of draws, respectively, on runtime. Figure 4.2 shows

that Sklar’s method scaled exponentially as parameter count increased, reaching almost 60 sec-

onds per Newton-Raphson step at a moderate parameter count of 5,000. In contrast, the vectorized

method scaled linearly, requiring only seconds per step, and the approximate method scaled nearly

log-linearly with the number of data draws. This suggests that the vectorized and approximate

approaches will perform most efficiently for a majority of real-world problems, for which a large

number of parameters must be estimated.

4.4.2 Classification results

Overall, the standard multinomial naive Bayes classifier performed well on both simulated and

gold standard data classification tasks. The DM and BLM MLEs resulted in marginally better

classification performance for the 20 Newsgroups and WebKB gold standard datasets but were not

as consistent as the multinomial classifier, likely due to the relative difficulty of parameter opti-

mization compared to the simple division used to produce the multinomial parameter estimates.

As expected, all distributions and methods improved in classification performance when more data

were available, including both the number of observations N and the number of data draws M

within each observation. The following sections explore more precisely how classification perfor-

mance changed with varying amounts of data and how well these power estimates generalized to

real-world data.

Simulated data power analysis results

The following variables affected classification power, ordered from most to least important:

1) difficulty of the classification task (i.e. class distribution overlap), 2) the density of the data
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Figure 4.2: Vectorized and approximate methods scale more efficiently than Sklar’s method with a

large number of parameters and data draws. Sklar’s approach scales more efficiently than the vectorized

and approximate methods when the number of observations is large and the number of parameters and data

draws are small. The approximate method is the most computationally efficient when the number of data

draws is large, as it is capable of scaling log-linearly. In the above figures, each data point is the mean of 5

independent bootstraps, and a locally estimated scatterplot smoothing (LOESS) line, as implemented in the

R ggplot2 package, is shown for each method [115]. Variance around the LOESS line is shown in gray.
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vector (data draws), and 3) the number of data observations (Figure 4.3). Even for heavily over-

lapping distributions, median F1 score exceeded 90% for the matrix multiplication methods using

the multinomial, DM, and BLM distributions at 26 observations and 136 data draws (Supplemen-

tary Figure 4.4 and Figure 4.5). The classification scores for classes 1 and 4 were typically higher

than those for classes 2 and 3; this was due to classes 1 and 4 having less overlap than classes 2

and 3, resulting in an easier classification task (Figure 4.1). However, these class differences were

resolved with additional training data, particularly for the datasets with less class overlap.

The marginal likelihood classification method required more data observations and data draws

to achieve a similar F1 score on the same data, with the BLM distribution requiring more data than

the DM distribution (Supplementary Figure 4.6 and Figure 4.7). Finally, data generated from the

multinomial distribution did not appear to affect the F1 score when compared to data generated

from the BLM distribution for all classification methods and distributions examined (Supplemen-

tary Figure 4.8 and Figure 4.9). This suggests that the major differences in classification power

were due to differences in the distributions and classification methods but not the statistical origin

of the data. Overall, these results demonstrate that the multinomial, DM, and BLM distributions are

capable of achieving nearly perfect classification results under ideal conditions, provided enough

training data are available.

Gold standard data results

Each of the DM, BLM, and multinomial distributions had the highest accuracy and F1 scores

on two of the four gold standard datasets (Table 4.2). For all datasets and distributions, the naive

Bayes classification methods using the matrix inner product produced the highest performance

metrics. For the DM and BLM MLEs, the approximate compute method resulted in marginally

better performance metrics than the exact methods (vectorized and Sklar) for the 20 Newsgroups

and R8 datasets. However, the approximate method was not consistent and resulted in markedly

lower accuracy and F1 scores for the Cade12 dataset. The lower accuracy of the approximate

method on the Cade12 dataset could be due to the MLEs converging on large parameter values, for

which the finite sum approximations diverge from exact values. This limitation of the approximate
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Figure 4.3: Use of the BLM distribution results in high F1 classification scores as data draws and

observations increase, even for difficult classification tasks. Parameter standard deviation is a measure of

classification difficulty: higher values result in more overlapping class distributions. Data draws (the density

of the count vectors) has a greater affect on F1 score than data observations, however higher values of both

result in higher F1 scores. A separate boxplot is shown for each simulated class distribution (classes 1-4).

The boxplots summarize the F1 score quartiles for 5 independent datasets for each combination of variables.
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method is discussed further in the following section. The multinomial distribution with a standard

naive Bayes classifier performed consistently well across all datasets, while the DM and BLM

MLEs were less consistent overall.

Of particular interest, the Cade12 dataset had markedly lower F1 scores (around 7% lower)

for the MLEs than the multinomial distribution across all classification and compute methods. In

contrast, the MLEs performed almost as well or better than the multinomial distribution for the

remaining datasets to within nearly 1% F1 score. This suggests that the Cade12 dataset poses

challenges for the accurate calculation of the MLEs, and it is well-known that the Cade12 data

are more complex and difficult to classify than the other datasets evaluated here [116]. Addi-

tionally, the Cade12 dataset was the only dataset for which the approximate compute method and

marginal likelihood classifiers produced extremely low F1 scores relative to the exact compute

methods (vectorized/Sklar) using the naive Bayes classifier. These results are suggestive of nu-

merical overflow during computation or that the Newton-Raphson method is traversing a difficult

optimization landscape. In the discussion of these results, we outline additional criteria for which

the approximate method breaks down that could have contributed to the low F1 scores.

Finally, we note that because classification results were calculated across all classes within

each dataset, the F1 score was identical to both precision and recall; therefore precision and recall

are not shown.

4.5 Discussion

Our results show that efficient methods exist for computation of MLEs for the Dirichlet Multi-

nomial (DM) and Beta-Liouville Multinomial (BLM) distributions. For datasets where the number

of categories (features D+1) to be estimated is small but the data matrix (observations N and count

density M ) is large, Sklar’s computational approach would be the most efficient. However, it is

common in natural language processing classification tasks to have many features (often more

than 1,000) and sparse data available for MLE computation. In this more common case, the vec-
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Table 4.2: The DM, BLM, and multinomial distributions each performed best on two of the four gold

standard datasets. The best-performing combination of distribution and method are shown in bold for each

dataset. In all datasets, the standard multinomial naive Bayes classifier performed consistently well, while

the MLE-based methods were less consistent across datasets. The approximate compute method appeared

to result in better MLEs for the 20 Newsgroups and R8 datasets, perhaps by preventing computational over-

flow. Percent accuracy and F1 score are presented for each combination of methods and datasets examined.

Abbreviations: Dirichlet multinomial (DM), beta-Liouville multinomial (BLM), multinomial (multinom.)

naive Bayes (NB), vectorized (vec), distribution (distr.), 20 Newsgroups (20 NG), accuracy (acc.).

Distr. Classifier Method
20 NG Reuters (R8) Cade12 WebKB

Acc. F1 Acc. F1 Acc. F1 Acc. F1

DM

NB
Vec/Sklar 98.2 82.2 98.7 94.8 91.7 50.3 93.0 86.0

Approx. 98.3 82.9 99.2 96.7 86.6 19.6 93.1 86.1

Marginal
Vec/Sklar 97.8 78.5 97.9 91.4 88.8 32.9 92.9 85.8

Approx. 98.2 81.6 98.8 95.2 86.1 16.8 92.9 85.8

BLM

NB
Vec/Sklar 98.2 82.2 98.7 94.8 91.7 50.3 93.0 86.0

Approx. 97.8 77.7 99.2 96.7 86.6 19.7 92.2 84.4

Marginal
Vec/Sklar 97.8 78.1 97.7 90.6 86.4 18.6 93.2 86.3

Approx. 97.7 76.6 98.8 95.2 85.8 15.0 90.4 80.7

Multinom. NB Multinom. 98.2 82.5 99.2 96.7 93.0 57.9 92.0 84.1

torized computation and the limit approximation approaches explored here would be far superior

for computational efficiency.

Our results also indicate that the BLM distribution seems to perform equally as well as the

DM distribution on both simulated and gold standard data, outperforming the DM distribution for

certain datasets like WebKB (Figure 4.3, Table 4.2). Particularly, the BLM distribution performs

well when sufficient data are present for optimization of the BLM parameters and when the class

densities are mildly to moderately non-overlapping. For datasets where the class distributions

are heavily overlapping and data are sparse, such as in the Cade12 dataset, the DM and BLM

MLEs performed worse than the naive estimates produced by the standard multinomial naive Bayes

procedure. This suggests that the optimization landscape for such datasets is not sufficiently easy to

navigate for the Newton-Raphson procedure, resulting in poor MLEs. However, we note that the

BLM and DM distributions may perform better under different circumstances like unsupervised

classification, where class labels are not fixed, as has been shown by Bouguila 2008. The results

observed here for the Cade12 dataset may be a limitation of the DM and BLM distributions in

strictly supervised classification tasks.
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An interesting result was the marginal gain in performance using the finite limit approxima-

tions, leading to a 0.7% F1 gain for the DM naive Bayes on the 20 Newsgroups dataset compared

to all other methods and a 1.9% F1 gain for the BLM and DM naive Bayes on the R8 dataset

compared to the MLE naive Bayes methods. This suggests that the approximated values produced

a more rapidly-converging Newton-Raphson optimization landscape than the exact methods (vec-

torized/Sklar). It is also possible that the approximations helped to avoid numerical overflow in

cases where θ → 0, which results in large values for the first iteration of the finite sums. Addi-

tionally, our approximations seemed to be accurate for small parameter values (θ); the parameter

MLEs tended toward smaller values for the BLM and DM distributions on the 20 Newsgroups, R8,

and WebKB datasets (data not shown). However, our approximations appeared to be inaccurate

as parameter MLEs reached large values (θ > 1000), as was reflected in the poor performance

metrics for the DM and BLM distributions on the Cade12 dataset. If more exact approximations

were found for these finite sums, they could result in increased computational efficiency and more

rapid convergence for Newton-Raphson MLEs. Therefore, while our approximations produced

an interesting result, further work must be done to derive more exact equations before they are

employed for general use.

Though the BLM MLEs were successful on two of the four gold standard datasets, it became

clear during our research that the BLM distribution has several limitations during Newton-Raphson

optimization that must be avoided for its successful use in this context. We observed two types of

pathological behavior during parameter optimization that hadn’t been previously described, to the

best of our knowledge. First, the Hessian matrix of the BLM requires that values for α1, α, β meet

certain conditions for the matrix to be negative definite (Appendix I). If the Hessian is not negative

definite, then convergence of the Newton-Raphson procedure is not guaranteed. We solved this

problem by checking these conditions before each Newton-Raphson step and adding small values

to pathological parameters, such that the Hessian matrix was guaranteed to be negative definite.

Second, even when convergence was guaranteed, we encountered certain datasets for which α, β

had rapidly increasing parameter values, resulting in eventual numerical overflow. In these cases,
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the ratio of β

α
remained constant while the parameter estimates increased, suggesting the existence

of local ridge optima in the landscape. This could be due to overparameterization of these particu-

lar datasets, suggesting that only D + 1 parameters are needed to model the data, while the BLM

has D + 2 parameters. In these cases, it is recommended that the DM distribution be used instead

of the BLM. The code accompanying this work contains examples of checking for these patho-

logical behaviors and potential solutions to ensure convergent and accurate MLEs for the BLM

distribution.

We acknowledge that the scope of this work is limited to naive Bayes classifiers, and that

the power and gold standard data analyses presented here are not comprehensive. There may be

other classifiers and datasets that demonstrate improved results for the DM and BLM distributions.

Likewise, there may be datasets for which the DM and BLM distributions produce poor results

regardless of the classification method used. Finally, while the DM and BLM distributions may

produce marginal increases in accuracy for certain datasets, the time cost for parameter optimiza-

tion may outweigh any increase in accuracy provided by their use. Given that the multinomial

naive Bayes classifier performed consistently well and required a fraction of the computational

cost, it may be the superior choice for supervised classification tasks.

Future work might explore additional optimization methods other than Newton-Raphson, ad-

ditional classifiers other than naive Bayes, and broader classification tasks like unsupervised or

streaming classification. Likewise, further exploration of finite sum approximations for the mod-

ified geometric and harmonic series presented here could be exciting, since the general structure

of these equations appear often in gradient and Hessian calculations for a variety of distributions.

Finally, application of the DM and BLM distributions could be explored in areas other than the

bag-of-words natural language processing classification task, such as problems in bioinformatics

and ecology.
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4.6 Data availability and extended derivations

4.6.1 Data availability

All code used to generate the data and figures presented here is available online at https:

//github.com/lakinsm/fast-mle-multinomials and is preserved in its current state under the Pub-

lication release.

4.6.2 Extended derivations

Convergence of the beta-Liouville Newton-Raphson procedure

It is sufficient to show that the Hessian matrix, associated with the likelihood function, is neg-

ative definite to guarantee a unique global optimum and attain the BLM MLEs. Here we show

the form of the Hessian matrix and provide conditions required for it to be negative definite. Con-

tinuing from the BLM Hessian described in equations (4.10) and (4.11), the components of the

Hessian are,

δ2F (θ)

δ2α
= −

(
∑D

d=1 xd)−1
∑

i=0

1

(α + i)2
+

(
∑D+1

d=1 xd)−1
∑

i=0

1

(α + β + i)2

δ2F (θ)

δ2β
= −

xD+1−1
∑

i=0

1

(β + i)2
+

(
∑D+1

d=1 xd)−1
∑

i=0

1

(α + β + i)2

δ2F (θ)

δαδβ
=

(
∑D+1

d=1 xd)−1
∑

i=0

1

(α + β + i)2

δ2F (θ)

δ2αd

= −

xd−1
∑

i=0

1

(αd + i)2
+

(
∑D

d=1 xd)
∑

i=0

1

(
∑D

d=1 αd + i)2

δ2F (θ)

δαdδαg

=

(
∑D

d=1 xd)
∑

i=0

1

(
∑D

d=1 αd + i)2
∀{d 6= g} (4.26)

Where,
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0 < aα =

(
∑D

d=1 xd)−1
∑

i=0

1

(α + i)2

0 < aβ =

xD+1−1
∑

i=0

1

(β + i)2
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(
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d=1 xd)−1
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1

(α + β + i)2

0 < aαd
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∑

i=0

1

(αd + i)2

0 < c2 =

(
∑D

d=1 xd)
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i=0

1

(
∑D

d=1 αd + i)2
(4.27)

Then,

H(θ) =
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(4.28)

This is a symmetric matrix and is negative definite if its pivots are negative. Using Gaussian

elimination, the above matrix can be reduced to,
































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(4.29)
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given that a, c > 0 for all a and c, all pivots are guaranteed to be negative except for,

−aα + c1

−aα1 + c2 (4.30)

Therefore to obtain a negative definite Hessian, it is sufficient to ascertain that these two terms

are negative. That is, the following conditions should be met,

(
∑D

d=1 xd)−1
∑

i=0

1

(α + i)2
>

(
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d=1 xd)−1
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i=0

1
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>
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d=1 xd)−1
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1

(
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(4.31)

which are equivalent to,
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d=1 xd)−1
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1
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(4.32)

For the practical application of the BLM in classification, for the purposes of the current paper,

we added a small positive number to ensure these conditions are met.

Finite limit approximations

We attempted to approximate the following finite sums of the general form. Though we recog-

nize this is entirely ad hoc and does not constitute a formal proof, we provide it for completeness,

since it seemed promising in an applied sense and could be used as a starting point for future work.
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f1(θ,N) =
N
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n=0

1
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=

1

θ
+

N
∑

n=1

1

θ + n
(4.33)

f2(θ,N) =
N
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1
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1
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1

(θ + n)2
(4.34)

for positive real θ and non-negative integer N . Approximation was performed by starting with

the known approximations for the harmonic and geometric series when θ → 0. The R "nls"

function was then used to model various functional forms by trial and error, continually increasing

in accuracy by modeling the residuals of each fit. The following are the approximations used in

the manuscript for equations 13 and 14, respectively,
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1
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(4.35)

where γ is the Euler-Mascheroni constant, A = 0.1068
(

ln(N)0.8224 + 4.986
ln(N)+6.408

)

− 0.7751,

and v = 3.764e(
−π
6 )(ln(N)+1)1.06 + 1.59,

f̂2(θ,N) =
1

θ2
+

π2

6

1 +
(

π
2
eθ
) , ∀N > 200 (4.36)

where f̂2 is only accurate for N > 200, and all computations that did not meet this criterion

were calculated exactly (not using this approximation). Readers familiar with the harmonic and

geometric series will recognize that ln(N) + γ + 1
2N

− 1
12N2 is the finite series approximation for

the harmonic series, and π2

6
is the limit of the geometric series [111, 112]. Examples of the above

approximations are implemented in the open source code included with this manuscript (see Data

Availability).
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Detailed methods for Markov chain Monte-Carlo data simulation

Given a vector of counts xc for class c ∈ C and a vector of fixed, generating parameters θc,

P (xc|θc) =
P (θc|xc)P (xc)

P (θc)
(4.37)

Using a Metropolis-Hastings sampling strategy [117], data were then generated according to

the following acceptance probability Pα:

α = min

{

1,
P (xi+1|θc)q(xi|xi+1)

P (xi|θc)q(xi+1|xi)

}

= min

{

1,
P (θc|xi+1)P (xi+1)q(xi|xi+1)

P (θc|xi)P (xi)q(xi+1|xi)

}

(4.38)

Taking q(xi+1|xi) = P (xi+1),

α = min

{

1,
P (θc|xi+1)

P (θc|xi)

}

= min

{

1,
P (xi+1|θc)/P (xi+1)

P (xi|θc)/P (xi)

}

(4.39)

We used a multinomial distribution for the proposal P (x). We then sampled from a distribution

U ∼ uniform(0, 1) and accept any new sample xi+1 if U ≤ α and we keep xi otherwise. MCMC

simulation was performed separately for each class using a Metropolis-Hastings sampling strategy

with a multinomial proposal, P (x), and acceptance-rejection probability,

α = min

{

1,
P (xi+1|θc)/P (xi+1)

P (xi|θc)/P (xi)

}

(4.40)

where P (xi+1|θc) is the likelihood of xi+1 under the BLM and P (xi+1) is the likelihood of the

data under the proposal.
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Proof for the use of BLM MLEs for classification on the multinomial simplex

Let there be a D + 1 dimensional vector with a single count at d, y = {0, 0, 0, . . . , 1, . . . , 0}.

We aim to assign this vector to a class c ∈ C. Assume that we have the data matrix X =

{x1,x2, . . . ,xC}. Such that xc = {xc1, . . . , xcd, . . . , xC(D+1)}. Let θ be the D + 2 parameters

of a BLM distribution and p be the D + 1 parameters of a multinomial distribution. Initially, we

assume θ are known. Additionally, we assume a 0/1 loss function that will assign y to class c if

P (c|y,X) is maximum. Accordingly, we want to find,

P (c|y,X,θ) =
P (y|c,X,θ)P (c|X,θ)

∑

C P (y|c,X,θ)P (c|X,θ)
(4.41)

Assuming that the classes have equal priors that do not depend on the data and that the classes

are independent,

P (c|y,X,θ) =
P (y|xc,θc)

∑

C P (y|xc,θc)
(4.42)

Given that the denominator of (4.42) is constant,

P (c|y,X,θ) ∝ P (y|xc,θc) (4.43)

Assuming that we have produced BLM MLEs, θ̂c, utilizing the data xc, and that they are

sufficient statistics then,

P (c|y,X,θ) ∝ P (y|θ̂c) (4.44)

Using (4.4) we find,
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P (y|θ̂c) =
Γ
(

∑D

d=1 α̂cd

)

Γ(α̂c + β̂c)

Γ(α̂c)Γ(β̂c)
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d=1 yd

)

+ 1
)
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×
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∑D

d=1 yd)Γ(β̂c + yD+1)

Γ(α̂c + β̂c +
∑D+1

d=1 yd)

∏D

d=1 Γ(α̂cd + yd)

Γ(
∑D

d=1 α̂cd + yd)

(4.45)

For the y = {0, 0, 0, . . . , 1, . . . , 0, 0, 0} with yd = 1 and by noting that Γ(n + 1) = nΓ(n) we

get, for d 6= D + 1,

P (yd|θ̂c) = p̂d =
α̂c

α̂c + β̂c

α̂cd
∑D

d=1 α̂cd

(4.46)

and for d = D + 1,

P (yd|θ̂c) = p̂D+1 =
β̂c

α̂c + β̂c

(4.47)

We can now use these as the parameters p in a multinomial, assuming independence of the

vectors y, which results in,

P (y|θ̂c) =

(

β̂c

α̂c + β̂c

)yD+1 D
∏

d=1

(

α̂c

α̂c + β̂c

α̂cd
∑D

d=1 α̂cd

)yd

(4.48)

where yd ≥ 0.

Gold Standard Data Preprocessing

All datasets were preprocessed by Cardoso-Cachopo 2007 as follows:

• Tab, newline, and return characters were replaced with a space.

• Only letters were kept; special characters and numbers were removed.

• All letters were modified to lowercase.

Additionally, all English datasets (excluding Cade12) were preprocessed as follows:
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• Words less than 3 characters in length were removed.

• All 524 English stopwords from the SMART Retrieval System were removed [118].

• The remaining words were processed using the Porter Stemming Algorithm [119].

The post-processed datasets are available in the open source GitHub repository associated with

this publication (see Data Availability).

4.6.3 Additional figures

131



Figure 4.4: Use of the DM distribution results in high F1 classification scores as data draws and ob-

servations increase, even for difficult classification tasks. A separate boxplot is shown for each simulated

class distribution (classes 1-4). The boxplots summarize the F1 score quartiles for 5 independent datasets

for each combination of variables.
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Figure 4.5: Use of the multinomial distribution and standard multinomial naive Bayes results in high

F1 classification scores as data draws and observations increase, even for difficult classification tasks.

A separate boxplot is shown for each simulated class distribution (classes 1-4). The boxplots summarize the

F1 score quartiles for 5 independent datasets for each combination of variables.
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Figure 4.6: Use of the DM distribution with marginal likelihood classification results in high F1 classi-

fication scores as data draws and observations increase, even for difficult classification tasks. However,

with the marginal likelihood classification methods, more data is required to produce classification results

with similar F1 scores to the naive Bayes approaches. A separate boxplot is shown for each simulated class

distribution (classes 1-4). The boxplots summarize the F1 score quartiles for 5 independent datasets for each

combination of variables.
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Figure 4.7: Use of the BLM distribution with marginal likelihood classification results in high F1

classification scores as data draws and observations increase, even for difficult classification tasks.

However, with the marginal likelihood classification methods, more data is required to produce classification

results with similar F1 scores to the naive Bayes approaches. A separate boxplot is shown for each simulated

class distribution (classes 1-4). The boxplots summarize the F1 score quartiles for 5 independent datasets

for each combination of variables.
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Figure 4.8: On data simulated from the BLM distribution, use of the BLM distribution results in

high F1 classification scores as data draws and observations increase, even for difficult classification

tasks. There doesn’t appear to be a difference between classification scores on multinomial data compared

to BLM-simulated data. A separate boxplot is shown for each simulated class distribution (classes 1-4). The

boxplots summarize the F1 score quartiles for 5 independent datasets for each combination of variables.
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Figure 4.9: On data simulated from the BLM distribution, use of the DM distribution results in high

F1 classification scores as data draws and observations increase, even for difficult classification tasks.

There doesn’t appear to be a difference between classification scores on multinomial data compared to

BLM-simulated data. A separate boxplot is shown for each simulated class distribution (classes 1-4). The

boxplots summarize the F1 score quartiles for 5 independent datasets for each combination of variables.
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Chapter 5

Conclusion

This work has successfully adapted the naive Bayes classification strategy to perform modern

genetic sequence classification in the general case. The novel contributions of this work include: a

comparison of generalized naive Bayes and outgroup sequence classification against cutting-edge

classification tools (Chapter 2); an adaptation of the naive Bayes algorithm into a heavily paral-

lelized framework with schema for extension into distributed computing architectures (Chapter 3);

and an exploration of the underlying statistical distributions used in the Bayesian likelihood formu-

lation of the naive Bayes classifier (Chapter 4). Overall, this work has shown that the naive Bayes

algorithm is capable of performing as well as modern classifiers for genetic sequence classification

in the average case, with marginally better or worse performance in various nuanced classification

tasks.

Perhaps the most interesting result of this work is that this implementation of naive Bayes

performed similarly to modern classifiers. The similar performance of the methods examined

here suggests that the structure of the underlying classification problem contributes more to the

outcome than does the choice of classifier itself. For genetic sequence classifiers, this suggests that

the methods used to encode information from raw genetic sequences into a feature space fail to

capture enough information for machine learning to improve over hash table algorithms and local

alignment. If true, this would mean that gains in classification performance via improvement of

algorithms alone would be marginal at best, since all available information in the current feature

space is already being used to nearly its fullest extent. Therefore, research into feature encoding

and feature spaces (or algorithms that transform the feature space) may prove more valuable in

increasing the performance of genetic sequence classifiers than focusing efforts exclusively on

algorithms, at this point in time.

Much of the current work in genetic sequence classification utilizes some variant of k-mer

feature spaces [47, 120, 121]. k-mers have the advantage of being simple to encode, easy to
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conceptualize, and computationally efficient to use. However, as shown in Chapter 2, they result

in feature spaces that are sparse (with many zero counts) and flat (with few counts greater than

1). Depending on the biological system under study, this may result in the unwanted encoding of

many features that are uninformative to the classification task. Classifiers are inundated with noise

in such a scenario, since the exponential expansion of the feature space greatly reduces the signal

to noise ratio as k increases.

Recent work has therefore focused on feature selection within k-mer encoding to improve the

signal to noise ratio, including the use of genomic masking of repetitive regions and the employ-

ment of so-called minimizers that capture k-mer information in a more compressed space [121,

122]. While these have the advantage of improving the signal to noise ratio, they do not improve

the total amount of signal present in the feature space (i.e. they remove noise but do not increase

signal). Thus, it may be worthwhile to explore enhancements to the k-mer feature space or an

alternative feature encoding strategy that increases the signal strength for classification. Enhance-

ments to k-mers could include making Markovian assumptions over k-mers, such that k-mers are

no longer considered to be independent of one another. This would incorporate elements of hidden

Markov models or recurrent neural networks that have proven effective in other fields like natural

language processing (NLP) [73, 123]. Alternatively, information from phylogenetics, such as the

PAM and BLOSUM matrices, could be layered over k-mer encoding such that we only use k-mers

that are informative to the evolutionary system under study [1]. In the field of NLP that deals

with human language, gibberish words are not encoded or considered during classification tasks;

so why should random or gibberish k-mers be used for genetic sequence classification?

This harkens back to the discussion of genetic tensors outlined in the Introduction. Clearly, not

all paths between two points in a genetic topology are weighted equally, since selective pressures

have a large impact on what genetic sequences are viable from an evolutionary standpoint. Thus,

it may be the case that to improve upon genetic sequence classification going forward, we must

find a way to incorporate genetic distance information into the feature space, such that classifiers

can utilize it appropriately. In closing, the work I have presented here seems to support this line
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of investigation into genetic feature spaces, and I hope that it will serve as a foundation for that

purpose.
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