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ABSTRACT 
 
 
 

RANDOM REGRESSION MODELS AND THEIR IMPACT IN THE GENETIC 

EVALUATION OF BINARY FERTILITY TRAITS IN BEEF CATTLE 

 
 
 

Female fertility is one of the most important economic drivers of cow-calf operations, 

however, the achievement of genetic improvement for female fertility traits is challenging due to 

the biological complexity of reproductive performance and the difficulties related to its statistical 

modeling. Among the traits relevant to beef cattle breeding practices, those related to key fertility 

events such as conception and calving are binary in nature. Traditional evaluations of binary traits 

involve the use of threshold models (TM) that convert categorical phenotypes to an underlying 

normally distributed range of genotypic values known as liabilities. Despite the successful 

influence that TM have had on genetic trends of categorically evaluated traits within livestock 

species, these models also have drawbacks. Among the most important weaknesses are their 

susceptibility to the extreme category problem (ECP) and their lack of flexibility to incorporate 

genomic information differently than using genomic relationship matrices whose inverse is 

difficult to obtain when the number of genotyped animals is high. These deficiencies of TM 

prevent them from comprehensively utilize all available phenotypic data and preclude their 

utilization in single-step genomic prediction methodologies based on marker effects models. 

Contrastingly, random regression models (RRM) have emerged as an attractive alternative 

for the evaluation of binary fertility traits in cattle due to their ability to overcome ECP problems 

and utilize all available information to produce more accurate results in comparison to TM. 

Furthermore, these models are flexible enough to accommodate any of the single-step genomic 
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evaluation procedures that have been developed. Consequently, their extension to genomic 

evaluation procedures that avoid the need of inverting dense genomic relationship matrices such 

as the recently developed super-hybrid marker effects models, represents a novel approach to 

evaluate binary fertility traits in beef cattle. Traits like heifer pregnancy (HPG), first-service 

conception rate (FSCR) and stayability (STAY) constitute important elements of the breeding 

objective of beef cattle producers, therefore, they were selected as the traits to evaluate in this 

study. All the reproductive data utilized in this investigation was produced by the Angus cattle 

population of the John E. Rouse Colorado State University Beef Improvement Center (CSU-BIC). 

In general, this dissertation was divided in three different studies according to the physiological 

status of the females producing the phenotypic record (e.g., heifer vs. multiparous cows) and the 

number of instances that such phenotype can be recorded on the life of the animals (non-

longitudinal vs. longitudinal). 

 The first study involved the comparison of expected progeny differences (EPD) and 

genetic parameters obtained with TM and RRM in genetic evaluations of singly-observed heifer 

dichotomous fertility traits such as HPG and FSCR. Breeding and pregnancy ultrasound records 

of 4,334 Angus heifers (progeny of 354 sires and 1,626 dams) collected between 1992 to 2019 at 

the CSU-BIC were utilized. Observations for HPG and FSCR (1, successful; 0, unsuccessful) were 

defined by fetal age at pregnancy diagnosis performed approximately 130 d post artificial 

insemination (AI). Traditional evaluations for both traits were performed using univariate TM, 

whereas alternative evaluations were performed by regressing HPG (or FSCR) on age at first 

exposure (AFE) using linear RRM with Legendre Polynomials as the base function.  Heritability 

(h2) estimates were 0.04 and 0.03 for HPG and FSCR using TM; whereas RRM derived h2 

estimates were 0.02 and 0.006 for the average AFE for HPG and FSCR, respectively. Pearson and 
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rank correlations between EPD obtained with each methodology were 0.97 and 0.96 for HPG, 

while for FSCR were 0.75 and 0.72, respectively. Regression coefficients from RRM predictions 

on those obtained with TM were 0.27 and 0.15 for HPG and FSCR, respectively. Differences in 

mean accuracies of prediction calculated at the average AFE were minimal between 

methodologies; however, RRM produced consistently higher accuracies than TM especially when 

considering young selection candidates. These results suggested that RRM genetic predictions for 

singly-observed fertility traits in beef heifers were feasible. More importantly, moderate to strong 

degrees of concordance were found between predictions obtained with both methodologies for 

both traits, implying that RRM could substitute for TM in genetic evaluations of heifer binary 

fertility traits.  

The second study focused on the comparison of EPD and genetic parameters yielded by 

TM and RRM in genetic evaluations for longitudinal binary fertility traits such as STAY and FSCR 

in multiparous Angus cows. Calving performance data, as well as, breeding and reproductive 

ultrasound records of Angus cows collected between 1990 to 2019 at the CSU-BIC were used for 

the study. Ten STAY endpoints defined as whether a cow calved at age 3, 4, and up to 12 yr given 

she calved as a 2-yr-old were assigned observations (1, successful; 0, unsuccessful). Similarly, ten 

FSCR age specific observations were assigned depending on the age of exposure of the females 

(ages ranged from 2 to 11 yr) and were defined by fetal age at pregnancy inspections performed 

approximately 130 d post-AI. Traditional evaluation for STAY was performed using a TM that 

only considered the success/failure of females reaching the age of 6 (STAY06), since this age is 

considered as the financial break-even point for cows within the beef industry. Conversely, given 

there is no specific age of interest for a multiparous cow to conceive in response to her first AI, 

the traditional evaluation for FSCR was performed using a repeatability TM. Alternative 
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evaluations for both traits were performed by regressing each trait on its corresponding age specific 

endpoints using univariate linear RRM with Legendre Polynomials as the base function. 

Heritability (h2) estimates obtained for STAY were 0.10 and 0.04 for the TM and the RRM, 

respectively. In the case of FSCR, age was not a significant longitudinal descriptor for the trait; 

however, only with documentation purposes, h2 estimates were reported. For the TM the h2 

estimate was 0.03 whereas for the RRM, heritabilities ranged between 0.02 to 0.05 for all the ages 

at exposure considered in the model. Pearson (rp) and Spearman’s (rs) correlations between EPD 

obtained with each method for STAY were 0.84 and 0.86. For FSCR, correlations were calculated 

between the EPD obtained with the repeatability TM and each one of the age-specific EPD 

obtained with the RRM; therefore, results for the rp ranged between 0.70 to 0.99; whereas results 

for rs ranged between 0.69 to 0.99, depending on the age of exposure considered in the RRM. 

Although mean accuracies of prediction were higher using RRM than using TM for both traits, 

increments were much more relevant for STAY than for FSCR. The strong degrees of concordance 

found between predictions obtained with both methodologies for STAY, suggests that RRM could 

effectively substitute TM in genetic evaluations of this trait. For FSCR, no improvements were 

achieved by evaluating the trait using RRM, mainly due to the lack of influence that age had on 

the ability of cows to conceive in response to their first AI at any age. 

Finally, the third study had as objectives 1) to explore the feasibility of implementing 

single-step random regression super-hybrid models (ssRR-SHM) for the genomic evaluation of 

HPG, FSCR and STAY; 2) to assess the impact of differing data structures in the resulting genomic 

predictions of ssRR-SHM for all traits; 3) to identify quantitative trait loci (QTL) associated with 

the binary fertility traits contemplated in this dissertation. Two types of genetic evaluations were 

implemented for each trait, the first type was a pedigree-based RRM that utilized Legendre 
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polynomials as the base function in where the phenotype of interest was regressed on an 

appropriate age covariate. The second evaluation type was a ssRR-SHM that also used Legendre 

polynomials as the base function and regressed observations of the trait of interest on its 

appropriate age covariate, but that included random effects of marker and extra polygenic effects. 

Within each trait, four different data structure scenarios were created depending on the phenotypic 

performance of the genotyped and non-genotyped subsets of animals. The behavior of the genomic 

predictions was assessed through the calculation of Pearson and Spearman’s correlations and the 

estimation of the regression coefficients of EPD obtained with the ssRR-SHM on those obtained 

with their corresponding pedigree-based RRM.  

Results of this study indicated that the implementation of ssRR-SHM for the genomic 

evaluation of singly-observed binary fertility traits like HPG and FSCR, as well as for the 

evaluation of a longitudinally recorded binary trait such as STAY was feasible. Nonetheless, an 

overestimation of genomic predictions occurred with these models when phenotypic records of 

pre-selected genotyped animals were included in the evaluation. Additionally, inaccurate 

imputation of genotypes for non-genotyped animals also impacted resulting genomic predictions, 

although this issue was restricted to this subgroup of animals only. In all cases, the removal of 

phenotypic records from preselected animals and the maintenance of closely related individuals in 

the pedigree ameliorated problems associated to overestimation of genomic predictions and 

improved correlations among genomically-enhanced and pedigree-based EPD for all traits. 

Regarding GWAS analyzes, the application of ssRR-SHM identified single nucleotide 

polymorphisms that resulted located either within or relatively close to genes that have been 

previously associated with important reproductive processes and fertility traits in cattle. 
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CHAPTER 1 - INTRODUCTION 
 
 
 

Genetic improvement of beef cattle fertility is challenging due to a special combination of 

factors associated to the biological complexity of reproductive performance and the difficulties 

related to its statistical modeling (Thaller, 1997; Weigel, 2004; González-Recio and Alenda, 

2005). Although fertility encompasses a great diversity of traits that can potentially serve as 

selection criteria, perhaps only those measuring the success or failure of key biological events like 

conception and calving are able to summarize the economically relevant outcomes of fertility 

(Cammack et al., 2009, Walmsley et al., 2018). Consequently, traits such as heifer pregnancy 

(HPG), first-service conception rate (FSCR) and stayability (STAY) have become important 

elements of the breeding objectives of many beef cattle enterprises (Golden et al., 2000).  

The binary nature of these key-fertility traits poses several challenges to apply best linear 

unbiased prediction (BLUP) procedures for their evaluation. For instance, categorical response 

variables are not normally distributed, and typically, heterogeneity of variances exist (Gianola, 

1982; Gianola and Foulley, 1983). Therefore, animal breeders have usually attributed the 

phenotypic expression of categorical traits to an underlying continuous unobservable and normally 

distributed trait, referred to as liability (Falconer and Mackay, 1996). Under this assumption, 

observed categorical responses (e.g., 1 = pregnant; 0 = nonpregnant) are the result of animals 

exceeding or not a particular threshold level of the underlying trait; which is why models used for 

genetic evaluations of binary traits are commonly referred to as threshold models. 

Within threshold models, it is important to recognize that since liability is not a direct 

observation, solutions for animal random effects could not be given by the usual linear mixed 

model equations. Conversely, solutions for animal random effects are provided by a non-linear 
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system of equations that requires to be solved in an iterative way (Gianola and Foulley, 1983). 

Despite their non-linear nature, the ability of threshold models to yield BLUP by assuming a 

Gaussian distribution of the liability, made of them the method of choice to perform genetic 

evaluations of lowly-heritable binary traits (Mrode, 2014; Gianola and Rosa, 2015).  

Even with their theoretical advantages, threshold models also have limitations worthy of 

discussion. Initially, due to the iterative nature of the procedure required to obtain solutions, the 

computational cost of solving these models was between three to five times higher than that of a 

linear model (Misztal et al., 1989). However, according to a recent report by Campos et al. (2019), 

although linear models still have faster convergence than threshold models, current computational 

advancements have overcomed computational demands and threshold models can still be routinely 

used. Either way, even with enough computational power, a major problem associated with 

threshold models is the one related to the Extreme Case Problem (ECP). In this situation, all 

observations in a given class or level of a fixed effect (typically contemporary group) fall in the 

same category (e.g., all females are pregnant or the opposite). When this happens, a slow or lack 

of convergence occurs for these fixed effects as solutions approach ± ∞ or 0 (Misztal et al., 1989).  

In order to overcome ECP-related issues, Harville and Mee (1984) recommended to treat 

these fixed effects as random variables or to delete observations experiencing ECP. Inherent 

problems of such suggestions involve the usage of different data for different models, since records 

to be deleted when treating a factor as fixed would not be disregarded when treating the same 

factor as random. Generally, the option of deleting records experiencing ECP has been more 

widely adopted for the evaluation of fertility traits (Golden et al., 2018). However, this can lead to 

distorted inferences because edited data would not be appropriate to perform population-wide 

genetic predictions (Misztal et al., 1989).  
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In addition, threshold models employed to analyze binary traits in cattle are often restricted 

to specific points in the life of the animal, which ignores that in some instances, binary responses 

can also be longitudinal (e.g., pregnancy status at different ages). As such, genetic predictions 

using these models often yield lower accuracies of prediction in comparison to statistical methods 

capable to incorporate all available observations of a longitudinal trait (Sánchez-Castro et al., 

2019). Furthermore, as reviewed by Speidel et al. (2018), threshold models are not readily 

adaptable to the incorporation of genomic information through single-step methods other than 

genomic relationship matrices (Legarra et al., 2009). The previous may result in difficulties for 

their implementation in populations with a large number of genotyped animals since genomic 

relationship matrices require inversion in order to obtain solutions. Lastly, these models have not 

yet been adapted into the framework of the recently developed single-step hybrid marker effects 

models that do not require the computation of a genomic relationship matrix or its inverse 

(Fernando et al., 2014, 2016). 

Random regression models (RRM) represent an alternative method to evaluate binary traits 

and can incorporate data from contemporary groups with no variation (Golden et al., 2018). As 

such, information from records experiencing ECP are not disregarded and distortions in resulting 

predictions created by artificially-edited data sets can significantly decrease. Furthermore, RRM 

are especially suitable for the analysis of longitudinal traits due to their greater flexibility to 

account for the covariance structure between serial observations of the same response variable on 

the same individual (Laird and Ware, 1982; Schaeffer, 2004). Interestingly, even when they were 

originally conceptualized to analyze longitudinal traits, the efficacy of RRM to evaluate traits with 

phenotypes observed only once has shown acceptable degrees of success using sire models 

(Englishby et al., 2016) and animal models (Speidel et al., 2018). Additionally, given their 



 
 

4 

similarities with the traditional linear mixed models, RRM can be relatively easily extended to 

accommodate genomic information not only in the form of genomic relationship matrices, but also 

in the form of marker effects super-hybrid models (Kang et al., 2017; Golden et al., 2018). 

Considering the special combination between documented weaknesses of traditional 

threshold models and the potential capabilities of RRM to overcome such weaknesses, we 

hypothesized that the application of RRM for the genetic predictions of binary fertility traits in 

beef cattle could yield more accurate results. As such, the general objective of this dissertation was 

to assess the impact of using random regression models in the genetic evaluation of binary fertility 

traits in beef cattle. 

Specific objectives are outlined below: 

1) Comparison between threshold models and random regression models in pedigree-based 

genetic predictions of dichotomous and singly-observed fertility traits of beef heifers such as heifer 

pregnancy and first-service conception rate.  

2) Comparison between threshold models and random regression models in pedigree-based 

genetic predictions of longitudinal but binary fertility traits of multiparous beef cows such as 

stayability and first-service conception rate.  

3) Application of single-step genomic evaluations of beef cattle binary fertility traits using 

random regression super-hybrid models.  

Within each study and each particular trait, genetic predictions were compared by means of 

Pearson’s correlations, Spearman Rank correlations and the regression of predictions obtained 

with the random regression models on those obtained with the base genetic predictions obtained 

either with threshold or pedigree-based random regression models. Mean accuracies obtained with 

each statistical model were also compared to each other. 
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CHAPTER 2 - LITERATURE REVIEW 
 
 
 

2.1 Economic relevance of fertility in cattle  

Economic sustainability of most beef cattle enterprises is largely dependent on their 

reproductive efficiency because the quantity of beef produced relies on the number of calves born 

and raised per breeding cycle (Grossi et al., 2008; Speidel et al., 2018a). Specifically, the most 

limiting factor for producing the greatest number of calves each year on a herd level is the 

reproductive ability of the cows (Boldt, 2017); therefore, it is imperative to focus effort in 

improving reproductive performance. Within a genetic improvement context and in relationship 

to the profitability of conventional cow-calf operations selling calves at weaning, improvements 

in fertility traits have been estimated to be up to 4-fold more important than improvements in end-

product traits (Melton, 1995; Formigoni et al., 2002). 

Heritability estimates of reproductive traits commonly used to describe fertility in beef 

cattle are typically low (Cammack et al., 2009). Nonetheless, it is widely recognized that measures 

of reproductive efficiency should be included in the breeding objective of beef cattle operations in 

order to assure profitability (Barth, 1993; Olesen et al., 2000; Ball and Peters, 2004). Within US 

beef production systems, rearing and maintenance costs of animals are high, so any delay beyond 

two years to first calving, as well as, any increase in calving interval beyond 365 days, can cause 

a significant reduction in herd profitability (Ball and Peters, 2004; Walmsley et al., 2018). 

Selecting for a reduction of unproductive periods in cows could help enhance the economic 

viability of beef enterprises (Burns et al., 2010). In this regard, traits like heifer pregnancy (HPG), 

stayability (STAY) and first-service conception rate (FSCR), have been identified as economically 

relevant traits (ERT) for beef cattle (Golden et al., 2000; Minick Bormann et al., 2006). 
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2.2 Fertility traits 

2.2.1 Heifer pregnancy (HPG) 

 Heifer pregnancy (HPG) has been defined as the probability of a female conceiving 

at the end of her first breeding season (Crews and Enns, 2008; Boldt et al., 2018). Within Bos 

taurus breeds, the previous definition involves a heifer’s ability to become pregnant in order to 

calve at two-years of age (Cammack et al., 2009). The large investments of time and resources 

associated with replacement heifer development represent some of the reasons why this trait is 

relevant to beef cattle producers (Doyle et al., 2000). MacNeil and Vukasinovic (2011), suggested 

that HPG also influences profitability by impacting the number calves for sale (e.g., the more 

pregnant heifers, the more saleable calves). Furthermore, females that become pregnant as 

yearlings will typically have more calves over their lifetime (Champman et al., 1978; Núñez-

Domínguez et al., 1985; Patterson et al., 1992). Phenotypes of HPG are recorded as binary, with a 

value of 1 for pregnant heifers and a value of 0 for nonpregnant heifers (Eler et al., 2002).  

Heritability (h2) estimates of HPG are typically low (<0.1) or moderate (0.1 to 0.3) and vary 

depending upon factors such as breed, scale in which the trait is analyzed (underlying vs linear) 

and statistical method employed for its variance component estimation (Buddenberg et al., 1989; 

Kadarmideen et al., 2000; Cammack et al., 2009). Evans et al. (1999) reported a h2 of 0.14 for this 

trait in Hereford heifers, Doyle et al. (2000) described a h2 of 0.21 for HPG in Angus cattle, 

whereas, the h2 estimate for HPG in Nellore was reported to be 0.57 (Eler et al., 2002). In all of 

these studies, observations of HPG were transformed to an underlying scale and method R 

procedures were used for variance component estimations. Differences in estimates were related 

then, to the varying levels of selection pressure applied to HPG between Bos taurus and Bos 

indicus breeds. Variations relative to the scale in which the trait was analyzed were reported by 
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Buddenberg et al. (1989), since authors indicated that HPG h2 estimates on the observed scale were 

consistently lower than estimates obtained on the underlying scale. For instance, in the case of 

Angus heifers, h2 estimates were 0.17 and 0.34 on the observed and underlying scales, respectively. 

Whereas the estimates for Hereford and Polled Hereford heifers were 0.04 and 0.05 on the 

observed scale and 0.08 and 0.10 on the underlying scale, respectively. 

2.2.2 First-service conception rate (FSCR) 

Bormann et al. (2006) defined first-service conception rate (FSCR) as the probability that a cow 

will conceive in response to her first artificial insemination (AI). This trait provides producers an 

opportunity to identify females that become pregnant on their first service, from those that require 

multiple inseminations or that conceive by natural service (Cammack et al., 2009). Economic 

implications of FSCR include its relationship with the cost of semen, as well as, the costs 

associated with synchronization protocols, estrus detection and AI services (Bormann et al., 2006). 

This trait is also related to differences in the quality and value between AI-produced calves (e.g., 

superior genetics) and natural service calves. Females conceiving on their first service, calve 

earlier within the calving season, have more chances to breed postpartum within a year, and have 

more time to nurse and wean heavier calves (Lesmeister et al., 1973; Marshall et al., 1990). 

Identifying cows with an improved ability to conceive with just one service, could trigger an 

increase in the use of AI within the beef industry. The low adoption of AI programs in beef cattle 

operations is likely to remain until a precise human control of conception becomes more feasible 

and cost effective. In the 1980’s, the adoption of the AI biotechnology by cattle industries was 

widely different. In dairy operations, about 60 to 70% of the cows were bred through AI, while in 

the beef industry, only 3 to 5% of the females were artificially inseminated and most of the AI-

derived calves were kept within the seedstock sector of the beef industry (Barber, 1983; Koch et 
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al., 1986). A more recent report by Colazo and Mapletoft (2014) explained that adoption of AI by 

the dairy industry has increased to 80% of all cows, whereas for beef cattle, the overall percentage 

of use of this biotechnology remained almost static at 4%. Later, Lamb and Mercadante (2016) 

reported that 7.6% of beef operations in the US use AI as a reproductive management tool. 

Phenotypes for FSCR are binary, values of 1 are assigned to females becoming pregnant with only 

one AI and, values of 0 are allocated to females failing to conceive in their first AI (Bormann et 

al., 2006). Heritability estimates for this trait have been reported to range between 0.03 and 0.22 

(Dearborn et al., 1973; Bormann et al., 2006; Cammack et al., 2009). Some factors associated with 

the variability of the estimates of FSCR are breed composition, age of the females, and the scale 

in which the trait is analyzed. 

2.2.3 Stayability (STAY) 

Stayability (STAY) was originally defined as the ability of a cow to remain in a herd until a 

specific age given the opportunity to reach that age (Hudson and Van Vleck, 1981). A refined 

definition states that STAY represents the probability that a cow will remain in the herd until 6 

years of age, given she first calved as a 2-year-old (Brigham et al., 2007). The age of 6 is considered 

as a financial breakeven point within the US beef industry, since cows that have produced 5 

consecutive calves by this age, already recouped their development and maintenance costs 

(Snelling et al., 1995; Brigham et al., 2006). Cows staying in production longer benefit profitability 

of herds by reducing the need of additional female replacements, decreasing the incidence of 

dystocia and increasing the average weaning weight of marketed calves (Garrick, 2006). From a 

genetic improvement perspective, it has been determined a 1 unit increase in overall herd STAY 

results in an increase in profit of $2500 for herds with 40% of cows remaining in the herd to the 

age of 6 (Enns et al., 2005). 



 
 

11 

Stayability represents a measure of sustained fertility through the lifetime of a beef cow; 

therefore, it is a key driver of beef production efficiency (MacNeil and Vukasinovic, 2011). 

Heritability estimates for STAY have been estimated to range from 0.02 to 0.36, depending on the 

age endpoint chosen, the statistical methodology implemented for its estimation, breed, and the 

scale in which the trait was analyzed (Snelling et al., 1995; Cammack et al., 2009; Jamrozik et al., 

2013). Martinez et al. (2005), reported h2 estimates for STAY to consecutive ages (1, 2, and up to 

6 years of age) ranging between 0.09 and 0.30 for threshold models and between 0.05 and 0.19 for 

linear models in Hereford cattle. In African Angus cattle, h2 estimates for STAY to consecutive 

ages (4, 5, and up to 8 years of age) were reported to range between 0.24 to 0.26 using a sire 

threshold model and between 0.18 to 0.20 when using an animal threshold model (Maiwashe et 

al., 2009). Breed differences in h2 estimates for this trait were reported by Brigham et al. (2007) 

when analyzing information from the American Gelbvieh Association (AGA), the American 

Simmental Association (ASA) and the Red Angus Association of America (RAAA). Authors 

reported that h2 to consecutive ages (from 3 to 6 years of age) ranged between 0.15 to 0.18, from 

0.17 to 0.21 and from 0.15 to 0.18, for Gelbvieh, Simmental and Red Angus cattle, respectively. 

Furthermore, Jamrozik et al. (2013) reported h2 estimates for STAY to consecutive ages (from 2 

to 8 years of age) that ranged between 0.36 to 0.12 in Canadian Simmental cattle, when data were 

analyzed in a longitudinal scale and using Bayesian methods with Gibbs sampling. 

2.3 Factors affecting reproductive efficiency in cattle 

Many of the factors influencing fertility of cattle populations have been recognized for more 

than four decades (Venter et al., 1973; De Kruif, 1978). Perhaps the simplest strategy to classify 

sources of variation in cattle fertility is by dividing them into environmental and genetic causes 

(Venter et al., 1973). Within the environmental causes, variations in climate conditions, nutritional 
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status, housing, management practices and any stimuli that demand a response from the animal to 

adapt to new circumstances could be included (Lee, 1993). Genetic sources of variation include 

the natural variability in performance according to the genetic make-up of animals, as well as, 

genetic correlations between reproductive and production traits such as milk yield (Berry et al., 

2014).   

2.3.1 Environmental causes 

2.3.1.1 Climate conditions 

Climate has historically been recognized as a major factor affecting fertility in cattle 

(Thatcher, 1974; Gwazdauskas et al., 1975). Specifically, Gwazdauskas (1985) suggested that an 

animal’s environment is dependent upon ambient temperature, humidity, radiation and wind, 

nonetheless, the first factor is typically the most influential on reproductive efficiency. Each 

species, breed or animal category, has an ambient temperature comfort zone in which the energy 

expenditure of the animal is minimal, constant, and independent of the environment (Nardone et 

al., 2006). However, extremely cold or hot temperatures increase or decrease the maintenance 

requirements because homeostasis is disrupted beyond the range of thermoneutrality, and 

reproductive efficiency results are compromised (Gwazdauskas, 1985). 

Much of the research describing the impact of weather on cattle fertility has been executed 

in hot rather than cold environments, therefore, little is known about the effects of cold stress over 

the physiology of reproductive processes (Gwazdauskas, 1985; Lee, 1993). Among the few reports 

about negative effects of cold weather on cattle fertility, a historic study performed in Eastern 

Canada revealed that lower conception rates were registered in the coldest months of the year 

(Mercier and Salisbury, 1947). Authors concluded that changes of fertility were possibly results 

of a disruption of the circadian cycle due to reduced day-length during the winter, as well as, the 
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very low environmental temperatures. Later, Westra and Christopherson (1976) suggested that 

serum triiodothyronine (T3) and thyroxine (T4) concentrations increased significantly when 

animals were below the temperature comfort zone. Along with the increments in the concentrations 

of the aforementioned hormones, there was an increase in dry matter intake associated with the 

need of cows to produce more energy for warmth (Aceves et al., 1987; Huszenicza et al., 2002). 

Due to the previous, pregnant beef cows managed under severe cold conditions on pastures without 

supplementation, were reported to lose substantial body weight and produced weaker calves 

(Jordan et al., 1968). Hemsworth et al. (1995) informed that calves are especially susceptible to 

cold at birth since they have a lack of metabolic heat production coming from rumen fermentation. 

Negative effects of heat stress over reproductive efficiency of cattle have been extensively 

reviewed (Wolfeson et al., 2000; Jordan, 2003, Takahashi, 2012). The way in which heat stress 

affects fertility in cattle is multifactorial and dependent upon the type of stress (e.g., acute or 

chronic) to which animals are subjected (Wolfeson et al., 1988; Correa-Calderón et al., 2014). Heat 

stress impairs reproductive processes such as oocyte competence, embryonic growth, 

gonadotropin secretion, ovarian follicular growth, steroidogenesis, development of corpus luteum, 

and uterine endometrial responses (Wolfeson and Roth, 2018). These deleterious effects are the 

result of either the hyperthermia associated with heat stress or the physiological adjustments made 

by heat-stressed animals to regulate body temperature (Hansen, 2009). In beef cows, exposure to 

high ambient temperatures has been shown to decrease the length and intensity of estrus, since 

pedometer measurements showed a reduction in the number of steps of cows grazing under these 

conditions (Takahashi, 2012). Moreover, high summer temperatures have been shown to decrease 

semen quality in bulls for up to 8 weeks after animals were stressed, which compromises fertility 

after AI or natural mating (Meyerhoeffer et al., 1985). Consequently, dramatic drops in pregnancy 
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rates have been commonly observed during warm seasons in places where high humidity was 

combined with high temperatures (Loyacano et al., 1972; Sprott, 1999; Sprott et al., 2001).  

2.3.1.2 Nutrition 

According to Short and Adams (1988), sub-standard nutritional management is the most 

limiting factor for reproduction in beef cattle. Most reproductive failures in beef females can be 

attributed to improper nutrition and/or thin body condition scores (BCS). The percentage of body 

fat at specific stages of a beef cow’s production cycle is an important determinant of its 

reproductive performance and overall productivity (Herd and Sprott, 1986). Energy intake has 

effects on a wide variety of endocrine, neural and metabolic physiological mechanisms. Effects 

include changes in gonadotropic hormone secretion, synthesis and secretion of progesterone 

during both the estrous cycle and pregnancy, differential sensitivity of the pituitary-hypothalamus 

to steroids and releasing hormones and changes in ovarian activity measured by hormone 

secretion, follicular development and ovulation (Short and Adams, 1988). Energy restrictions 

during late pregnancy results in thin BCS at calving and extends the interval to first postpartum 

estrus in beef cows (Richards et al., 1986). Short et al. (1990) explained that postpartum infertility 

is affected by several minor factors (season, breed, presence of a bull, among others); however, 

the two major factors affecting postpartum anestrus are calf suckling and cow nutrition level. These 

two factors have direct effects on the reproductive ability of beef cows after calving, but also 

interact with one or more of the other factors to control postpartum anestrus. Regarding the effects 

of nutrition in pregnancy rate, Selk et al. (1988) suggested that BCS precalving and at the start of 

the breeding season, along with body weight changes between 2 and 4 months before parturition, 

had profound effects in pregnancy rates of range beef cows. 
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One of the major determinants of lifetime reproductive efficiency of beef cows is age at puberty, 

and nutrition has an inverse relationship with it. Specifically, effects of nutrition on sexual 

maturation are related to the timing of the prepubertal increase in LH secretion and seems to 

involve the LH pulse generating system located in the hypothalamus (Schillo et al., 1992). It is 

economically important that heifers first calve at 2 years of age and 20 to 30 days ahead of the 

main cow herd. To accomplish these managements targets, heifers must reach puberty at 14 or 15 

months of age, and energy intake is the main factor influencing body weight gains by these ages. 

Commonly, a bench-mark used within the US beef industry establishes that heifers should reach 

about 66% of their mature weight before their first breeding season (Dziuk and Bellows., 1983; 

Mass, 1987; Patterson et al., 1992). As explained by Williams et al. (2002), a targeted body weight 

of about 66% represent a minimum level of adiposity and a threshold circulating level of the 

adipose-derived hormone leptin, which has a central role in the regulation of reproduction in cattle. 

Of the environmental elements influencing reproduction, nutrition commands the greatest 

attention because livestock producers can control nutritional inputs (Dunn and Moss, 1992). 

Appropriate nutritional strategies may afford beef cattle managers the opportunity to produce beef 

cattle more efficiently and become more sustainable (Hess et al., 2005). 

2.3.1.3 Management practices 

Management is the sum of decisions and actions made by a manager who then become the 

focal point for success or failure of any program. Reproductive management is desirable because 

of convenience, economics and disease control (Dziuk and Bellows, 1983). One of the most 

important decisions that beef cattle producers need to make is to define the appropriate length of 

a breeding season (Frasier and Pfeiffer, 1994). Limited breeding seasons generally result in 

increased calf production and greater efficiency of beef enterprises (Deutscher et al., 1991). 
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Usually, breeding seasons are restricted to the time of the year that optimize subsequent calf 

survival and growth under constraints imposed by feed costs. Timing of the breeding season is 

also influenced by marketing alternatives for the calves (Azzam et al., 1990). Although it has been 

reported that extending the breeding season up to 120 days may be beneficial due to the enhanced 

increment in the proportion of females becoming pregnant (Frasier and Pfeiffer, 1994); such 

practice can hide poor conception rates and prolonged periods of anestrus (Caldow et al., 2005). 

Breeding seasons of nine to ten weeks in length have been proposed as the most appropriate for 

beef cattle operations trying to keep calving intervals no longer than 365 days (Deutscher et al., 

1991; Caldow et al., 2005; Walmsley et al., 2018). Once a breeding season is established, it is 

possible to enhance the overall herd fertility by initiating reproductive management of replacement 

heifers 20 days earlier than the cow herd (Wiltbank, 1970). Young dams nursing their first calf 

have postpartum intervals to first estrus 15 to 25 days greater than older dams (Dziuk and Bellows, 

1983). Therefore, early breeding of heifers would allow them additional time to return to estrus 

and be rebred for the production of their second calf along with the older cows. 

Another important decision to make by beef cattle producers is the use of natural mating 

or AI. Recent surveys suggested that more than 90% of the US beef cattle operations utilize natural 

mating as their primary reproductive strategy (Lamb and Mercadante, 2016). Within this scenario, 

a key practice to ensure acceptable and profitable conception rates is performing a breeding 

soundness exam (BSE) of the natural service bulls (Menegassi et al., 2011). Breeding soundness 

refers to a bull’s ability to get cows pregnant and its importance relies on the fact that bulls account 

for over 90% of the genetics of herds, even though they represent only 5% of them. Normally, a 

bull can produce from 20 to 30 calves, depending on the bull-to-cow ratio and on pregnancy rates 

during the breeding period (Amaral et al., 2003). However, it has been reported that approximately 
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20 to 40% of bulls of unselected populations have some degree of subfertility (Kastelic and 

Thundathil, 2008). Caldow et al. (2005) explained that the minimum standard to define a fertile 

bull is that he should be able to get at least 45 out of 50 normal cycling females pregnant within 

nine weeks of the breeding season, and 60% of these should be pregnant within the first three 

weeks of breeding season. A BSE is based on a physical evaluation and acceptable thresholds for 

testicular development and functionality (Kastelic and Thundathil, 2008). According to the Society 

of Theriogenology BSE guidelines (Chenoweth et al., 1993), a set of minimum thresholds to 

evaluate yearling bulls are: scrotal circumference greater than 34 cm, more than 30% of 

progressively motile sperm and less of 30% of morphologically abnormal sperm. 

Advancements in reproductive biotechnologies and a better understanding of the dynamics 

of the bovine estrus cycle have made possible the development of estrus-synchronization and 

ovulation-synchronization protocols (Seidel, 1995; Lamb and Mercadante, 2016). Synchronization 

protocols have the potential to shorten breeding and calving seasons, increase calf uniformity and 

facilitate the use of AI (Larson et al., 2006). Implementation of synchronization protocols by beef 

producers, however, depends largely on two main factors: limiting the frequency of handling cattle 

and the elimination of detection of estrus (Lamb and Mercadante, 2016). Early estrus-

synchronization protocols focused on regressing the corpus luteum with an injection of 

prostaglandin F2α (PGF2α) followed by estrus detection (Lauderdale et al., 1974; Burfening et al., 

1978). However, estrus detection is a time-consuming repetitive task that is problematic to apply 

in commercial beef operations, since it needs to be carried out up to 5-times a day for the purpose 

of using AI (Stevenson et al., 1996; Diskin and Sreenan, 2000; Taponen, 2009). Later 

developments of protocols combined the use of PGF2α and exogenous progestins, improving 

synchronization and pregnancy rates (Lucy et al., 2001), but still had no complete control over the 
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ovulation process. The addition of gonadotropin-releasing hormone (GnRH) to synchronization 

protocols overcame the previous issue allowing external control of follicular waves and 

synchronize ovulations (Pursley et al., 1995).  

For a synchronization protocol to be useful in order to apply fixed-time artificial 

insemination (TAI) within the beef industry, it should be effective for inducing cyclicity, easy and 

inexpensive to administer, applied in a short period of time, and able to synchronize follicular 

development (Geary et al., 2001). Probably, the most widely used protocol to synchronize 

ovulation in both dairy and beef cattle is the Ovsynch (Pursley et al. 1995; Geary et al., 1998). As 

summarized by Taponen (2009), Ovsynch protocol consists of three hormonal treatments: the first 

one, GnRH, is intended to synchronize follicular waves, the second one, PGF2α, given 7 days later, 

induces luteolysis, and the third one, GnRH, given 36 to 48 hours after the PGF2α administration, 

induces ovulation at a predetermined time. Artificial insemination is performed 16 to 24 hours 

after the second GnRH administration (Figure 1). 

 
Figure 2.1. Description of the timing and physiological action of each hormonal injection 

applied in the Ovsynch protocol (Adapted from Pursley et al., 1995). 
 
 

Modifications to the Ovsynch protocol led to the development of another protocol called 

Co-synch, in which PGF2α is administered 7 days after GnRH followed by a second GnRH 

injection and TAI at 48 hours (Geary et al., 2001). This protocol has been proved to yield 

pregnancy rates of 52% compared with 54% obtained with the Ovsynch protocol. Furthermore, 
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the insertion of an intravaginal progesterone device (CIDR) during the 7 days interval between the 

initial GnRH and PGF2α injections have been reported to enhance pregnancy rates by 9 to 10% 

(Lamb et al., 2010). Therefore, both protocols (Ovsynch and Co-synch) are reliable ovulation-

synchronization protocols that eliminate the need of estrus detection and allow the performance of 

TAI in beef cattle (Larson et al., 2006). 

2.3.1.4 Herd health 

Herd health is another major factor that influences reproductive performance in beef cattle 

(Ball and Peters, 2004). Bovine reproductive diseases result in yearly economic losses that range 

between $441 to $502 million for US beef producers due to decreased production, delayed 

reproduction, and increased treatment and preventive measurement costs (Bellows et al., 2002). 

According to Sprott and Field (1998), the most common reproductive diseases in cattle are 

brucellosis, leptospirosis, vibriosis, trichomoniasis, infectious bovine rhinotracheitis (IBR) and 

bovine viral diarrhea (BVD). Givens (2006) provided a more complete list of infectious causes of 

infertility in cattle, noting that, most of the etiological agents of these diseases can be prevented 

and controlled with adequate surveillance, biosecurity and/or vaccination programs. 

Improvements in the reproductive performance of cow-calf systems that implemented vaccination 

protocols to prevent diseases such as bovine herpesvirus, BVD and leptospirosis have been 

documented (Aono et al., 2013). Furthermore, the instauration of eradication programs (especially 

in the case of zoonotic diseases such as brucellosis), have proved to be a successful avenue for 

eliminating those causes of infertility in cattle populations and preserve health in humans (Zhang 

et al., 2018). 



 
 

20 

2.3.2 Genetic variability and genetic correlations with other traits 

Regardless of the magnitude of the heritability of a trait, as long as the heritability does not 

equal zero, there will be genetic variation leading to the possibility of finding animals with high 

breeding values, average breeding values and low breeding values in a population (Bourdon, 

2000). As such, despite the low heritability estimates for female fertility traits, enough genetic 

variability exists within cattle populations to make genetic improvement of fertility a feasible 

practice (Mackinnon et al., 1990a; Meyer et al., 1991; Thaller, 1997). Direct selection for cow 

fertility is challenging since it can only be practiced in females, with a limited selection intensity 

and a significant delay in phenotype collection. However, it has been reported that a favorable 

genetic correlation exists between cow and bull fertility; therefore, cow fertility could be 

genetically improved by indirect selection for improved bull fertility (Land, 1973; Mackinnon et 

al., 1990a). The opportunity to apply higher selection intensities in males, allows breeders to 

generate a faster genetic improvement in their female progeny. This has been proven in 

Droughtmaster cattle, since selection programs that applied high selection intensities over sires 

with high Estimated Breeding Values (EBV) for pregnancy rate, improved the fertility of heifers 

and 4-year-old lactating cows (Mackinnon et al., 1990b; Davis et al., 1993). Furthermore, it has 

been recently suggested that that improving bull’s fertility is particularly critical to improve the 

overall reproductive efficiency in beef cattle, since with the advancements of reproductive 

biotechnologies, one bull can breed thousands of females through AI (Thundathil et al., 2016). 

Another method of improving female fertility in beef cattle could be to select on a more 

heritable but genetically correlated trait (Morris et al., 2000). In contrast with female reproductive 

traits, testicular measurements are highly heritable and show favorable correlations with sperm 

production traits (Coulter et al., 1976; Neely et al., 1982). Land (1973) suggested that since gonads 
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in both males and females are regulated by the same endocrinologic factors (e.g., follicle 

stimulating hormone and luteinizing hormone), it is physiologically expected that correlations 

among male and female fertility traits exist. In the US, Brinks et al. (1978) were the first to study 

genetic correlations across sexes in beef cattle and they reported a favorable genetic correlation 

between scrotal circumference (SC) and age at puberty (AP) in heifers. Subsequent studies 

explored further the previously mentioned relationship in different breeds of cattle and in general, 

all agreed in that selection for increased testicular size would lead to improvements in female 

reproduction, particularly an increase in calving rate and a decrease in age at first breeding (Toelle 

and Robison, 1985; Morris et al., 1992; Vargas et al., 1998). Even when Martínez-Velázquez et 

al. (2003) found a small but favorable genetic correlation between SC and AP (rg = -0.15) in nine 

beef cattle breeds, authors suggested that genetic response in female reproductive traits through 

sire selection on yearling SC may not be as effective as previous reports stated. Discrepancies 

among results were attributed to the different variance components estimation methods employed 

across studies. Earlier reports could have been biased since variance components were estimated 

via regression or ANOVA based on sib covariances, without accounting for the selection of the 

parents. Whereas in Martínez-Velázquez et al. (2003), the REML method was implemented, 

mitigating the bias of previous parents’ selection. Nonetheless, a recent report by Bonamy et al. 

(2018) in Angus cattle, supported the utility of SC as an indicator trait of female fertility, since 

favorable genetic correlations were found between SC and age at first calving (AFC) using REML 

procedures. Moreover, the same report suggested that early rather than late SC measurements (e.g., 

measurements taken at 300 days of age, as opposed to measurements taken at 400 or 630 days of 

age), better reflected female precocity in beef cattle. 



 
 

22 

Considering that growth rate remains the primary selection criterion for most beef cattle 

breeders, it is important to understand the consequences of selecting for growth traits in other 

economically relevant traits, including reproductive performance (Archer et al., 1998). Concerns 

about selecting for increased growth rate on the reduction of the reproductive efficiency stems 

from positive relationships with dystocia (Bellows et al., 1971; Smith et al., 1976). Specifically, 

growth traits such as weaning weight and yearling weight, hold positive and unfavorable genetic 

correlations with birth weight; therefore, selection for high mature weights was expected to 

increase birth weights (Bourdon and Brinks, 1982). In this regard, a strong and positive genetic 

correlation (e.g., rg = 0.9) between birth weight and dystocia (Meijering, 1984), complicated even 

more the accommodation of reproduction and growth performance into the breeding objective of 

beef enterprises.  

However, the application of the multiple-trait models (MTM) originally suggested by 

Henderson and Quaas (1976) in the genetic evaluations of beef cattle, allowed the finding of the 

so-called "curve benders". These are beef cattle that combine superior breeding values for birth 

weight (e.g., low or intermediate birth weights) and with acceptable or superior breeding values 

for weaning weight (Meyer et al., 1991; McNeil et al., 1998). Consequently, dystocia became a 

considerably less frequent problem and selection for high growth rate has not compromised 

reproductive performance of beef cattle (Archer, 1998; Bennet, 2008; Santana et al., 2012). With 

respect to the possible correlations among reproductive and carcass quality traits, a study 

performed in Wagyu cattle suggested that genetic relationships between these traits were generally 

low; therefore, selection for carcass traits would not compromise genetic progress of reproductive 

traits (Oyama et al., 2004).  
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2.4 Genetic evaluations for fertility traits 

The binary nature of phenotypes for pregnancy status in cattle (e.g., HPG, FSCR and 

STAY) pose several challenges to apply the best linear unbiased prediction (BLUP) methodology 

of Henderson (1975). Among these challenges, the fact that categorical response variables are not 

normally distributed and do not possess homogeneous variance was noted (Gianola, 1982; Gianola 

and Foulley, 1983). As such, animal breeders have usually attributed the phenotypic expression of 

categorical traits to an underlying continuous unobservable and normally distributed trait, referred 

to as the liability (Falconer and Mackay, 1996). The observed categorical responses (e.g., 1 = 

pregnant; 0 = nonpregnant) are therefore due to animals exceeding particular threshold levels of 

the underlying trait, consequently, models used for genetic evaluations of these types of traits are 

commonly referred to as threshold models (Figure 2.2). 

 

  

 

 

 

 

 

 
 

Figure 2.2. Schematic representation of the continuous distribution of the underlying liability, and 
the resulting discrete distribution of the observed phenotype (Adapted from Felsenstein, 2014). 
 

2.4.1 Threshold models (TM) 

Genetic evaluations using animal threshold models (TM) predict breeding values on the 

underlying scale. In practice, these predictions have been normally expressed as Expected Progeny 
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Differences (EPD) in the form of probabilities. For instance, EPD for probability of pregnancy can 

be used to select females with a higher probability of being fertile (Eler et al., 2002). A TM is often 

described in matrix form by the following equation: 

y* = Xb + Zu + e 

where y* corresponds to a vector of transformed observations of the trait in question (e.g., 

HPG, FSCR or STAY) on the underlying scale, b is a vector of unknown solutions for fixed effects, 

u corresponds to a vector of unknown solutions of animal random effects. X and Z are known 

incidence matrices relating observations in y* to both fixed and random effects, and e represents a 

vector of unknown residual errors. For this model, variances are assumed to be: 

Var [𝒖𝒆] = [𝑨𝝈𝒂𝟐 𝟎𝟎 𝑰𝝈𝒆𝟐] 
where A represents the Wright’s numerator relationship matrix, I is an identity matrix and 𝝈𝒂𝟐 and 𝝈𝒆𝟐 are the additive and residual variances, respectively. The additive direct genetic variance 

(𝝈𝒂𝟐)  is trait specific and its units are expressed on the underlying scale, while, as explained by 

Gianola and Foulley (1983), the residual variance (𝝈𝒆𝟐) is constrained to be equal to 1 in accordance 

to the specifications of the maximum a posteriori (MAP) probit threshold model. An important 

note within threshold models is that, since y* is not observed, it is not possible to solve for u using 

the usual mixed model equations. Nonetheless, as reviewed by Mrode (2014), Gianola and Foulley 

(1983) provided the following non-linear system of equations that requires to be solved in an 

iterative way, in order to obtain solutions for the specific number of thresholds being considered, 

as well as, for fixed and random effects: 

[ 𝑇[𝑖−1] 𝐿′[𝑖−1]𝑋 𝐿′[𝑖−1]𝑍𝑋′𝐿[𝑖−1] 𝑋′𝑊[𝑖−1]𝑋 𝑋′𝑊[𝑖−1]𝑍𝑍′𝐿[𝑖−1] 𝑍′𝑊[𝑖−1]𝑋 𝑍′𝑊[𝑖−1]𝑍 + 𝐴−1𝐺−1] [𝛥𝑡[𝑖]𝛥𝑏[𝑖]𝛥𝑢[𝑖]] = [ 𝑝[𝑖−1]                         𝑋′𝑣[𝑖−1]                      𝑍′𝑣[𝑖−1] − 𝐴−1𝐺−1𝑢] 
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where T, L, W, p and v involve normal distribution functions, G = I𝝈𝒂𝟐 and W is a diagonal 

matrix. The above equations follow the Newton-Raphson or Fisher’s scoring iterative algorithms, 

and i is the iterate number. These methods require solving a linear set of equations successively 

until solutions converge (when Δ are sufficiently small from one iteration to the next). This system 

resembles the mixed model equations; however, matrices and vectors due to threshold effects are 

created differentially, the right-hand sides are functions of A, G and u, and the equations are solved 

for differences between consecutive iterations (Misztal et al., 1989). 

Historically, threshold models have been the method of choice to perform genetic 

evaluations for categorical traits with low heritabilities (Mrode, 2014); however, they have 

limitations worthy of discussion. Initially, due to the iterative nature of the procedure required to 

obtain solutions, the computational cost of solving these models was between three to five times 

higher than that of a linear model (Misztal et al., 1989). However, according to a recent report by 

Campos et al. (2019), even when linear models still have faster convergence than threshold models, 

recent computational advancements overcome computational demands and threshold models can 

still be used. Either way, even with enough computational power, a major problem associated with 

threshold models is the one related to the Extreme Case Problem (ECP). In this situation, all 

observations in a given class or level of a fixed effect (typically contemporary group) fall in the 

same category (e.g., all females are pregnant or the opposite). When this happens, a slow or lack 

of convergence occurs for these fixed effects as solutions approach ± ∞ or 0 (Misztal et al., 1989). 

In order to overcome this issue, Harville and Mee (1984) recommended to treat these fixed effects 

as random variables or to delete observations experiencing ECP. The second option has been more 

widely adopted for the evaluation of fertility traits (Golden et al., 2018); however, this can lead to 
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distorted inferences because edited data would not be appropriate to perform a population-wide 

genetic prediction (Misztal et al., 1989; Speidel et al., 2018b).  

In addition, threshold models typically employed in beef cattle evaluations are often 

restricted to specific points in the life of the animal, ignoring that in some instances, binary 

responses can also be longitudinal (e.g., observations can be taken repeatedly during an 

individual’s lifetime like pregnancy status at different ages). Consequently, genetic predictions 

using these models often yield lower accuracies in comparison to statistical methods capable of 

incorporating all available observations of a longitudinal trait (Sánchez-Castro et al., 2019). 

Furthermore, as reviewed by Speidel et al. (2018b), threshold models are not readily adaptable to 

the incorporation of genomic information through single-step methods other than genomic 

relationship matrices (Legarra et al., 2009). The previous may result in difficulties for their 

implementation in populations with a large number of genotyped animals since genomic 

relationship matrices require inversion in order to obtain solutions. Lastly, these models have not 

yet been adapted into the framework of the currently developed single-step hybrid marker effects 

models that do not require the computation of a genomic relationship matrix or its inverse and 

provide richer inferences (Fernando et al., 2014, Fernando et al., 2016). 

2.4.2 Multiple-trait models (MTM) 

As it was briefly alluded in previous sections, multiple-trait models (MTM) have the ability 

to simultaneously predict the genetic merit of the animals for two or more traits (Henderson and 

Quaas, 1976). The key feature of these models is that they incorporate the genetic and residual 

variances among the traits under study (Mrode, 2014). The way to set up a MTM consists basically 

in stacking as many single-trait models, as many different traits we want to analyze, 

simultaneously. For simplicity, an example of how to set up a two-trait model will be described. 



 
 

27 

Considering the subscripts 1 and 2, as references to "trait 1" and "trait 2", respectively; two single-

trait models can be specified as follows: 

y1 = X1b1 + Z1u1 + e1 

y2 = X2b2 + Z2u2 + e2 

Now, within the MTM a key aspect is that animals need to be ordered within traits, leading 

to the opportunity to represent the model in matrix form as follows: 

[𝒚𝟏𝒚𝟐] = [𝒙𝟏 𝟎𝟎 𝒙𝟐] [𝒃𝟏𝒃𝟐] + [𝒛𝟏 𝟎𝟎 𝒛𝟐] [𝒖𝟏𝒖𝟐] + [𝒆𝟏𝒆𝟐] 
where yi represents a vector of observations for ith trait, bi corresponds to a vector for fixed 

effects for ith trait, ui is a vector containing the animal random genetic effects for the ith trait, ei is 

a vector of random residual effects for the ith trait. Xi and Zi are incidence matrices that relates 

observations in y to levels of fixed effects in b and random animal genetic effects in u, respectively. 

Regarding to the assumptions of this model (statistical moments), we have the following: 

E[y] = Xb 

E[u] = E[e] = 0 → the mean of the random effects is assumed to be zero 

Whereas the variances in general can be represented as follows: 

Var [𝒖𝒊𝒆𝒊] = [𝑮∗ 𝟎𝟎 𝑹∗]       =        Var [𝒖𝟏𝒖𝟐𝒆𝟏𝒆𝟐] = [  
  𝑨𝝈𝒖𝟏𝟐𝑨𝝈𝒖𝟐𝒖𝟏

𝑨𝝈𝒖𝟏𝒖𝟐𝑨𝝈𝒖𝟐𝟐 𝟎 𝟎𝟎 𝟎𝟎 𝟎 𝑰𝝈𝒆𝟏𝟐 𝑰𝝈𝒆𝟏𝒆𝟐𝟎 𝟎 𝑰𝝈𝒆𝟐𝒆𝟏 𝑰𝝈𝒆𝟐𝟐 ]  
  
    

Probably, a simpler way to represent the variances is separately, having the additive genetic 

variance and covariance matrix represented as: 

𝑮∗ = Var [𝒖𝟏𝒖𝟐] = [ 𝝈𝒖𝟏𝟐 𝝈𝒖𝟏𝒖𝟐𝝈𝒖𝟐𝒖𝟏 𝝈𝒖𝟐𝟐 ] ⊗ A 
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where 𝝈𝒖𝟏𝟐
 represents the additive genetic variance of trait 1, 𝝈𝒖𝟏𝒖𝟐 and 𝝈𝒖𝟐𝒖𝟏 corresponds 

to the additive covariances among the two traits and, 𝝈𝒖𝟐𝟐  is the additive genetic variance for trait 

2. In the above, A again represents the Wright’s numerator relationship matrix and ⊗ indicates 

the Kronecker product. The previous matrix, can be ultimately inverted as: 

G-1 = 𝑮∗-1 ⊗ A-1 = [𝑮𝟏𝟏 𝑮𝟏𝟐𝑮𝟐𝟏 𝑮𝟐𝟐] = [𝒈𝟏𝟏𝑨−𝟏 𝒈𝟏𝟐𝑨−𝟏𝒈𝟐𝟏𝑨−𝟏 𝒈𝟐𝟐𝑨−𝟏] 
The variance and covariance matrix for the residual effects can be represented individually 

as follows: 

𝑹∗ = Var [𝒆𝟏𝒆𝟐] = [ 𝝈𝒆𝟏𝟐 𝝈𝒆𝟏𝒆𝟐𝝈𝒆𝟐𝒆𝟏 𝝈𝒆𝟐𝟐 ] ⊗ I 

where 𝝈𝒆𝟏𝟐
 represents the residual variance of trait 1, 𝜎𝑒1𝑒2 and 𝜎𝑒2𝑒1 are the residual 

covariances between the two traits and, 𝝈𝒆𝟐𝟐  is the residual variance for trait 2. Within the previous, 

I is an identity matrix whose order is equal to the number of animals within each respective trait 

and again, ⊗ indicates the Kronecker product. The previous matrix can be inverted as: 

R-1 = 𝑹∗-1 ⊗ I-1 = [𝑹𝟏𝟏 𝑹𝟏𝟐𝑹𝟐𝟏 𝑹𝟐𝟐] = [𝑹𝟏𝟏𝑰 𝑹𝟏𝟐𝑰𝑹𝟐𝟏𝑰 𝑹𝟐𝟐𝑰] 
Finally, the mixed model equations (MME) for this example of a bivariate analysis can be 

presented as follows: 

[   
 𝑋′1𝑅11𝑋1𝑋′2𝑅21𝑋1 𝑋′1𝑅12𝑋2𝑋′2𝑅22𝑋2 𝑋′1𝑅11𝑍1 𝑋′1𝑅12𝑍2𝑋′2𝑅21𝑍1 𝑋′2𝑅22𝑍2𝑍′1𝑅11𝑋1 𝑍′1𝑅12𝑋2 𝑍′1𝑅11𝑍1 + 𝑔11𝐴−1 𝑍′1𝑅12𝑍2 + 𝑔12𝐴−1𝑍′2𝑅21𝑋1 𝑍′2𝑅22𝑋2 𝑍′2𝑅21𝑍1 + 𝑔21𝐴−1 𝑍′2𝑅22𝑍2 + 𝑔22𝐴−1]   

 [𝑏1𝑏2𝑢1𝑢2] = [   
 𝑋′1(𝑅11𝑦1 + 𝑅12𝑦2)𝑋′2(𝑅12𝑦1 + 𝑅22𝑦2)𝑍′1(𝑅11𝑦1 + 𝑅12𝑦2)𝑍′2(𝑅12𝑦1 + 𝑅22𝑦2)]   

 
 

And solving for 𝑏̂i and 𝑢̂i we have: 

[  
 𝑏̂1𝑏̂2𝑢̂1𝑢̂2]  

 
 = [   

 𝑋′1𝑅11𝑋1𝑋′2𝑅21𝑋1 𝑋′1𝑅12𝑋2𝑋′2𝑅22𝑋2 𝑋′1𝑅11𝑍1 𝑋′1𝑅12𝑍2𝑋′2𝑅21𝑍1 𝑋′2𝑅22𝑍2𝑍′1𝑅11𝑋1 𝑍′1𝑅12𝑋2 𝑍′1𝑅11𝑍1 + 𝑔11𝐴−1 𝑍′1𝑅12𝑍2 + 𝑔12𝐴−1𝑍′2𝑅21𝑋1 𝑍′2𝑅22𝑋2 𝑍′2𝑅21𝑍1 + 𝑔21𝐴−1 𝑍′2𝑅22𝑍2 + 𝑔22𝐴−1]   
    [   

 𝑋′1(𝑅11𝑦1 + 𝑅12𝑦2)𝑋′2(𝑅12𝑦1 + 𝑅22𝑦2)𝑍′1(𝑅11𝑦1 + 𝑅12𝑦2)𝑍′2(𝑅12𝑦1 + 𝑅22𝑦2)]   
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The first description of a bivariate analysis combining categorical and quantitative traits 

was provided by Foulley et al. (1983). In that study, authors included birth weight as a continuous 

variable while calving difficulty was included as a binary trait (e.g., easy vs difficult calving). The 

limitation of this methodology was that it was only applicable with equal design matrices, was to 

say, when there were no missing observations for any trait. A year later, Foulley and Gianola 

(1984) described a method to perform bivariate analyzes including only categorical response 

variables by studying calf viability and calving ease data. However, their method still required that 

the two binary responses were recorded on every animal. Subsequently, the same research team 

developed models that overcame the issue of missing observations on some traits, but relying on 

the assumption that the same fixed effects were influencing all the response variables (Foulley and 

Gianola, 1986). Later, Foulley (1987) reported a method that supported the existence of different 

fixed effects affecting the traits in the multivariate analysis, but incapable to deal with missing 

data. It was not until 1993, when a methodology capable of dealing with unequal design matrices 

was presented, finally allowing the presence of trait-specific fixed effects and missing observations 

on the traits under study (Janss and Foulley, 1993). A further extension of the previous 

methodology was presented a couple of years later by Hoeschele et al. (1995). Authors generalized 

the multiple-trait genetic evaluation for binary and continuous traits, to an evaluation in which a 

categorical trait having more than two expressions (e.g., a polychotomous trait) and several 

continuous traits were included, allowing for missing data and unequal models. Hoeschele’s 

methodology has been employed world-wide to perform multivariate genetic evaluations of 

several reproductive, productive and conformational traits in cattle (Lee et al., 2002; Matilainen et 

al., 2009; Jeyaruban et al., 2012). 
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Among the advantages of using MTM over single-trait models (STM) was that animals 

without observations for one of the traits considered in the multivariate analysis, could still have a 

prediction for that specific trait based on its genetic correlation with the rest of the traits considered 

in the evaluation (Schaeffer and Wilton, 1981). Furthermore, another good property of MTM was 

that they can remove the selection bias that may be present in single trait analysis (Pollak et al., 

1984). The previous capability has been very relevant to the beef industry since often, one trait is 

used to decide whether animals should remain in the herd and be recorded for other traits (e.g., 

weaning weight performance may determine if an animal will still be considered for traits 

measured later in life). Additionally, perhaps the main advantage of MTM was that they increased 

the accuracy of genetic evaluations. As discussed by (Mrode, 2014), the gain in accuracy depends 

on the absolute difference between the genetic and residual correlations existent among the traits 

included in the analysis. The greater the absolute difference in correlations, the greater was the 

reduction in the prediction error variance for the traits under analysis and the larger the accuracy 

gains (Schaeffer, 1984). However, it is important to mention that the accuracy gains in the 

predictions of the traits evaluated using a MTM were inversely related to the similarity of their 

heritability. For instance, when the heritabilities of the traits included in a multivariate analysis 

were equal or close to each other, the predictions yielded by this approach were practically 

equivalent to the evaluations performed using a univariate methodology. Conversely, when 

differences in the heritabilities of the traits included in a MTM exist, predictions for the lowly-

heritable trait result more benefited in terms of accuracy gains than those for the highly-heritable 

trait (Thompson and Meyer, 1986).  

Several studies have been performed utilizing MTM in order to explore the possible genetic 

correlations among different reproductive traits, as well as, the possible genetic relationships 
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between reproductive and performance traits (Mwansa et al., 2002; Forni and Albuquerque, 2005; 

Rasali et al., 2005). Such research efforts have tried to elucidate what traits could form part of an 

ideal multivariate evaluation intended to promote faster genetic improvement in reproductive 

traits. In this context, a recent report suggested the possibility of enhance the accuracy of 

predictions for fertility traits by evaluating them in a multivariate approach that incorporate traits 

more densely recorded that possess favorable genetic correlations with reproductive traits (Boldt 

et al., 2018). Specifically, authors suggested the inclusion of preweaning gain records in genetic 

evaluations for HPG and, incorporating ultrasound back fat observations in genetic evaluations for 

STAY. 

When molecular information became available in the form of single nucleotide 

polymorphisms (SNP), it was of special interest to identify genomic regions associated with 

particular quantitative traits of economic importance, the so-called "Quantitative Trait Loci" or 

simply "QTL" (Soller, 1990). In this regard, the superiority of MTM over STM in the mapping of 

QTL was demonstrated by Jiang and Zeng (1995), who explained that by taking into account the 

correlated structure of multiple traits, it was possible to increase the power of detection of QTL. 

In the same context, authors suggested that QTL mapping using MTM was an effective procedure 

to test a number of biologically interesting hypotheses concerning the nature of genetic correlations 

between different traits. More recently, several studies using field and simulated data, have 

demonstrated that the use of MTM for genomic selection based on single-step procedures, yielded 

higher prediction accuracies than their corresponding individual single-step STM procedures 

(Tsuruta et al., 2011, Calus and Verkaamp, 2011; Jia and Jannink, 2012; Guo et al., 2014). 

Despite all the advantages of MTM, they also possess limitations that require consideration 

when performing genetic evaluations. The main limitation of this methodology comes from the 
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fact that, the dimensions of the set of equations to solve increases in a quadratic way (Gutiérrez, 

2010). For instance, with a two-trait model, the blocks of equations to solve is equal to 4 (22 = 4), 

however, if a three-trait model is applied, the blocks of equations that will require solutions 

increases to 9 (32 = 9; assuming that only direct genetic effects are being estimated). Evidently, 

increments in the number of equations are followed by considerable increments in the 

computational cost required to solve them. Mrode (2014) explained that the cost of multiple 

analysis on n traits is always more than the cost of n single analysis. Furthermore, the susceptibility 

of MTM to become highly-dimensional rather quickly (over-parametrization), hampers their 

suitability to work in a feasible way with longitudinal traits (Speidel et al., 2010). 

2.4.3 Random regression models (RRM) 

As an alternative to overcome the problem of over-parametrization in multiple-trait 

analyses, random regression models (RRM) were introduced to the community of animal breeding 

by Henderson in September of 1982 (Henderson, 1982). About 3 months later, Laird and Ware 

(1982) reinforced the idea that the use of random effects models was the appropriate approach to 

study longitudinal data. Authors explained that statistical models intended to analyze longitudinal 

data must recognize the relationship (e.g., covariance structure) between serial observations of the 

same response variable on the same experimental unit. In this context, it was 1994 when RRM 

were employed to analyze field data in livestock. These models were applied to milk test-day 

records in dairy cattle, allowing the shape of the lactation curve to be different for individual cows 

by including random regression coefficients for each animal (Schaeffer and Dekkers, 1994).  

A straightforward explanation about the theory behind the application of RRM to livestock 

data was provided by Jamrozik and Scheaffer (1997a). In general, when the trait of interest in a 

genetic evaluation was longitudinal in nature, it was possible to take measurements on an 
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individual of the same underlying trait at many different time points. Now, applying the same 

concept to a group of animals (for instance, a contemporary group), there was an opportunity to 

estimate the overall phenotypic trajectory for the trait using information from all the animals within 

the group (fixed regression). However, in a more interesting way, there was also the opportunity 

to model the deviations around that phenotypic trajectory for each one of the animals that was part 

of the contemporary group (random regressions). The estimation of those individual deviations 

from the group trajectory was the particular purpose of RRM, and represented the main reason of 

why RRM have become the method of choice for the analysis of longitudinal traits (Schaeffer, 

2004). Even when the main application of these models was found in the analysis of milk test-day 

records in dairy cattle, other applications of RRM include growth traits in all species, genotype by 

environment interactions, as well as, the analysis of survival data and fertility data (Schaeffer, 

2004). In matrix form, RRM can be specified as: 

y = Xb + Z1u + Z2pe + e 

where y represents a vector of repeated observations of the trait of interest for each animal, 

b is a vector of fixed effects and fixed regressions, u corresponds to a vector of random regressions 

for animal additive genetic effects, pe is a vector of random permanent environmental regression 

coefficients for each animal. X is an incidence matrix relating observations in y to fixed effects 

and fixed regressions contained in b, Z1 represents an incidence matrix of covariates that relates 

observations in y to animal random additive genetic regression coefficients in u, Z2 corresponds 

to an incidence matrix of covariates relating observations in y to random permanent environmental 

regressions in pe and, e is a vector of random residual terms that include temporary environmental 

effects.  
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With respect to the assumptions of these models, as reviewed by Schaeffer (2004), when 

the response variable y is normally distributed and the variances and covariances are known, it is 

not necessary to make assumptions about the distributions of y and the other random variables in 

the model to derive best linear unbiased predictors (BLUP) or the MME (Goldberger, 1962; 

Henderson, 1984). However, the variance components required to solve the MME are not typically 

known in advance in practice, therefore, it is necessary to estimate them from the data set. Similar 

to other models, variance components of a RRM can be estimated using REML (Ghiasi and 

Carabaño, 2018) or Bayesian (Jamrozik and Schaeffer, 1997a) methods. Since historically, REML 

procedures have been adopted as the preferred method for estimating genetic parameters (Gianola 

and Rosa, 2015), the model assumptions to estimate the variance components for a RRM via the 

REML approach will be shown first. The model assumptions for a typical RRM can be described 

as: 

E[y] = Xb 

E[u] = E[pe] = E[e] = 0 → the mean of the random effects is assumed to be zero 

and  

V = Var [ 𝒖𝒑𝒆𝒆 ] = [𝑨 ⊗  𝐆 𝟎 𝟎𝟎 𝐈 ⊗  𝐏 𝟎𝟎 𝟎 𝑹] 
where A represents the Wright’s numerator relationship matrix, ⊗ indicates the Kronecker 

product, G corresponds a variance-covariance matrix of additive genetic random regression 

coefficients, I is an identity matrix with an order equal to the number of observations, P is a 

variance-covariance matrix of the permanent environmental random regression coefficients and 

finally, R can represent a diagonal matrix of temporary environmental variances that depending 

on the specifications of the model, they can vary or not depending on time (or the specific 
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continuous covariate implemented). When temporary environmental variances are allowed to vary, 

then a heterogeneous residual variance is assumed; therefore, the residual variance structure is 

var[e] = diag{𝝈𝒆𝒊𝟐 }, where i represents the total number of differing residual variances. Conversely, 

when a homogeneous random residual variance is assumed, then R = I𝝈𝒆𝟐 (Schaeffer, 2004; Speidel 

et al., 2010; Oliveira et al. 2019a). Nonetheless, it’s worth mentioning that when the assumption 

of a homogeneous residual variance does not hold across all the values of the specific continuous 

covariate implemented in the model, ignoring the necessity of modelling a heterogeneous residual 

variance could lead to over- or under-estimations of heritability values for the trait under study 

(Olori et al., 1999). Interestingly, the assumption of homogeneous residual variance has no effect 

on the estimation of the permanent environmental variance (López-Romero et al., 2003). 

If a Bayesian method is implemented to estimate the variance components of a RRM 

(considering a heterogeneous residual variance), then normality of the random variables must be 

assumed as follows: 

y | b, u, pe, 𝝈𝒆𝒊𝟐  ∼ N (Xb + Z1u + Z2pe, R), 

and  [ 𝒖𝒑𝒆𝒆 ] ~ N [0, V] 

where V = Var [ 𝒖𝒑𝒆𝒆 ], has the same aforementioned structure: 

V = Var [ 𝒖𝒑𝒆𝒆 ] = [𝑨 ⊗  𝐆 𝟎 𝟎𝟎 𝐈 ⊗  𝐏 𝟎𝟎 𝟎 𝑹] 
Regardless of the method implemented to estimate the variance components, once they are 

obtained, the MME for a typical RRM are: 
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[ 𝑋′𝑅−1𝑋 𝑋′𝑅−1𝑍1 𝑋′𝑅−1𝑍2𝑍1′𝑅−1𝑋 𝑍′1𝑅−1𝑍1 + 𝐴−1 ⊗ 𝐺−1 𝑍′1𝑅−1𝑍2𝑍2′𝑅−1𝑋 𝑍2′𝑅−1𝑍1 𝑍′2𝑅−1𝑍2 + 𝐼 ⊗ 𝑃−1] [ 𝑏𝑢𝑝𝑒] = [ 𝑋′𝑅−1𝑦𝑍1′𝑅−1𝑦𝑍2′𝑅−1𝑦] 
And solving for 𝒃̂, 𝒖̂ and 𝒑𝒆̂ we have: 

[ 𝑏̂𝑢̂𝑝𝑒̂] = [ 𝑋′𝑅−1𝑋 𝑋′𝑅−1𝑍1 𝑋′𝑅−1𝑍2𝑍1′𝑅−1𝑋 𝑍′1𝑅−1𝑍1 + 𝐴−1 ⊗ 𝐺−1 𝑍′1𝑅−1𝑍2𝑍2′𝑅−1𝑋 𝑍2′𝑅−1𝑍1 𝑍′2𝑅−1𝑍2 + 𝐼 ⊗ 𝑃−1]    [ 𝑋′𝑅−1𝑦𝑍1′𝑅−1𝑦𝑍2′𝑅−1𝑦] 
In the above set of equations, some elements that deserve more emphasis in their 

description are the covariates included in the incidence matrices Z1 and Z2. In order to explain 

their inclusion to RRM, first is important to explain that the aforementioned covariates have a 

phenotypic correlation with the observations in y. The origin of this relationship is given by the 

fact that longitudinal traits are recorded multiple times during an individual’s lifetime or 

physiological cycle; therefore, expressions of the phenotypes in these traits are linked to the 

specific time point (or age) in which they are recorded (Oliveira et al., 2019a). Alternatively, 

records in y can also be taken along some spatial scale, or any other continuous covariate capable 

of influence the phenotypic expression of our trait of interest (e.g., ambient temperature). In 

general, these covariates represent “control variables” (typically regarded as the x variables in 

regression analyzes) and our traits of interest (y) are complete curves or trajectories rather than 

individual data points (Meyer and Kirkpatrick, 2005). When applying RRM to analyze this type 

of information, we want to quantify genetic values and their dispersion structure among records of 

y for the complete range of values of the control variable (Shaeffer, 2004; Meyer and Kirkpatrick, 

2005). As such, these covariates are used to perform both the fixed regressions (phenotypic 

trajectories within contemporary groups) and the random regressions (individual animal deviations 

around the phenotypic trajectory of their contemporary group). 
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Longitudinal traits could also be referred as function-valued traits, where the expression 

“function-valued” emphasizes that the corresponding biological curves could be described by a 

mathematical function (Meyer and Kirkpatrick, 2005). Mathematical functions have been 

employed to provide a smooth trajectory of observations in y over the covariate utilized in the 

analysis (Schaeffer, 2004). The idea of implementing mathematical functions to link observations 

in y to the covariate x, comes from the fact that observations in y are dependent upon the specific 

value of x associated with its measurement. As such, phenotypes of individuals evaluated with 

RRM can be better described by mathematical functions rather that a finite set of measurements 

(Kirkpatrick and Heckman, 1989). Mathematically, the goal of the implemented function is to 

describe the covariance among records measured at different values of the covariate being used, 

therefore, they are referred as covariance functions (Kirkpatrick and Heckman, 1989). Covariance 

functions using Legendre polynomials have been commonly recommended to link observations 

between x and y within RRM, because they provide smooth curves similar to those observed in 

biological curves of interest (e.g., growth curves; Kirkpatrick et al., 1990). Since Legendre 

polynomials have been widely used in many studies, the procedure to calculate them will be 

presented as was summarized by Speidel et al. (2010): 

Given P0 (x) and P1(x) are defined to be: 

P0(x) = 1 and P1(x) = x 

Subsequent Legendre polynomials Pn+1(x) are of the form: 

Pn+1(x) = 
1𝑛+1 [(2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥)] 

Which then are normalized as: 

Ф𝑛(𝑥) = √2𝑛+12  𝑃𝑛(𝑥) 
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Table 2.1 displays how a fourth-order polynomial could be calculated using the 

aforementioned formulas for a normalized Legendre polynomial.  

Table 2.1. Normalized Legendre polynomials up to a fourth order polynomial 
Order Legendre Polynomial Normalized Legendre Polynomial 

n = 0 P1(x) = x Ф0(𝑥) = 0.7071 

n = 1 P2(x) = 
32 x2 - 

12  Ф1(𝑥) = 1.2247 x 

n = 2 P3(x) = 
52 x3 - 

96 x Ф2(𝑥) = 2.3717 x2 – 0.7906 

n = 3 P4(x) = 
358  x4 - 

4512 x2 
38 Ф3(𝑥) = 4.6771 x3 – 2.8062x 

n = 4 P5(x) = 
638  x5 - 

354  x3 
158  x Ф4(𝑥) = 9.2808 x4 – 7.9550x2 + 0.7955 

 

Then, the estimated normalized Legendre polynomials can be entered into a matrix called  

 

 

Λ’ 

 

 

 

Once the Legendre polynomials are normalized, they are combined with standardized 

values of the covariate being used. Legendre polynomials are defined within the range of -1 to 1 

(Kirkpatrick et al., 1990); therefore, the covariate needs to be standardized within the same range. 

Shaeffer (2004) presented the formula to standardize covariates as follows: 𝑡𝑖∗ = -1 + 2 [ 𝑡𝑖 – 𝑡𝑚𝑖𝑛𝑡𝑚𝑎𝑥 – 𝑡𝑚𝑖𝑛] 
where 𝒕𝒊∗ represents the standardized value of the covariate implemented (here the letter t 

was used in reference to “time”), ti represents the value of the covariate subjected to the 

0.7071 0 0 0 0 

0 1.2247 0 0 0 

-0.7906 0 2.3717 0 0 

0 -2.8062 0 4.6771 0 

0.7955 0 -7.9550 0 9.2808 

Λ

’ = 
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standardization and, tmin and tmax corresponds to the lowest and the highest value of the covariate 

contained the data, respectively. The standardized covariate values are placed into a matrix named 

M, whose order depends on the maximum number of values of the covariate within the dataset 

(rows) and the order of Legendre polynomial implemented (columns). There are several orders of 

Legendre polynomials that can be used (e.g., linear, quadratic, cubic, etc.), however, often simpler 

orders are preferred. As an example of how to form an M matrix, consider a linear RRM with 

Legendre polynomials as the base function, then, let an age vector of ten consecutive parities be: 𝑡𝑖 = [3    4    5    6    7    8    9    10    11    12]T 

The M matrix of standardized covariate values would be:  

M = 

[  
   
   
1 −1.00001 −0.777811111111

−0.5556−0.3333−0.1111   0.1111   0.3333   0.5556   0.7778   1.0000]  
   
   
 

The first column of the M matrix is a column of ones representing the intercept of the curve, 

whereas the second column corresponds to the standardized ages. The final combination between 

the standardized covariate values and a set of linear Legendre polynomials could be performed by 

forming the matrix Ф, since Ф = MΛ. For instance: 

Ф = 

[  
   
   
1 −1.00001 −0.777811111111

−0.5556−0.3333−0.1111   0.1111   0.3333   0.5556   0.7778   1.0000]  
   
   
 [0.7071 00 1.2247] = 

[  
   
   
0.7071 −1.22470.7071 −0.95260.70710.70710.70710.70710.70710.70710.70710.7071

−0.6804−0.4083−0.1361   0.1361   0.4083   0.6804   0.9526   1.2247]  
   
   
 



 
 

40 

The values contained in the Ф matrix would be the covariate values to implement in the 

incidence matrices relating observations in y to both fixed and random effects, within the MME 

of a RRM that uses the number of parities as the unit of time.  

An important characteristic of RRM is that regardless of whether or not phenotypes of each 

animal are recorded at all points within the range of values of the covariate implemented, these 

models can obtain EBV for all individuals included in the pedigree at any value inside of the range 

of the covariate (White, 1999; Speidel et al., 2010; Stinchcombe et al., 2012). For instance, as 

detailed by Oliveira et al. (2019a), the vector of estimated breeding values (EBVj) of animal j, 

including all possible values of the specific covariate used, can be obtained as follows: 𝐄𝐁𝐕𝐣 = Ф𝒂̂𝒋 
where Ф is a matrix of independent covariates for all time points (e.g., all ages) associated 

with the function used, and 𝒂̂𝒋 is the vector of EBV for the covariance function coefficients of 

animal j. 

Benefits of the previous feature of RRM relates to the possibility of performing selection 

decisions based on each animal’s entire trajectory over a relevant biological performance curve 

(Kirkpatrick et al., 1990; Meyer and Kirkpatrick, 2005; Stinchcombe et al., 2012). Moreover, 

possibilities exist to refine breeding programs by selecting over specific points within the 

performance curves in where more genetic variability exist in our trait of interest (De Haas et al., 

2007, Tsuruta et al., 2009; Yin et al., 2014). The previous imply that it could be feasible to modify 

the patterns of performance curves in order to create curves with a more desirable shape depending 

on the production system (Oliveira et al., 2019b). 

With respect to the application of RRM to analyze fertility data, Schaeffer (2004) provided 

a description of how these models may be used to analyze reproductive traits in cattle. The author 
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suggested that genetic merit for reproductive performance could change over time, so he 

recommended the use of parity number as the unit of time being observed. Then, he suggested to 

limit the number of parities to a maximum of ten and to standardize the parity numbers from -1 

(for first parity) to +1 (for tenth parity). Finally, after explaining the procedure to standardize the 

age covariate, he suggested a set of fixed and random effects that could be included in a RRM 

intended to analyze longitudinal fertility traits. A couple of years later, Averill et al. (2006) applied 

RRM for male and female fertility evaluations in dairy cattle using longitudinal binary data. 

Genetic correlations between BCS and fertility traits such as days to first service, days between 

first and last insemination, calving interval, number of services per conception and FSCR were 

analyzed in Holstein cattle using a series of bivariate RRM (De Haas et al., 2007). In 2009, again 

using dairy cattle records, Tsuruta et al. (2009) applied bivariate analysis of conception rates and 

test-day milk yields using a threshold-linear model with random regressions. Similarly, 

Brügemann et al. (2013) implemented a bivariate threshold-linear sire RRM to assess the impact 

of the temperature and humidity index over female fertility (e.g., conception rate) on the 

phenotypic as well as on the genetic scale. Conception rates of Thai dairy cows were analyzed 

with random regression threshold models as a function of the days in milk during the lactation 

period (Buaban et al., 2016).  

In the case of beef cattle, RRM have also been employed to perform genetic evaluations of 

fertility-related traits. Jamrozik et al. (2013) estimated genetic parameters for STAY to consecutive 

calvings in Canadian Simmentals using these models. Later, a series of bivariate RRM were 

employed to estimate the genetic association of SC with female reproductive traits such as first 

calving interval (FCI), AFC, HPG, and STAY in Nelore cattle (Santana et al., 2015a). Santana et 

al. (2015b) applied RRM to describe the pattern of phenotypic expression different economically 
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relevant traits in Nelore cattle reared under varying tropical conditions. Among the traits included 

in the previous study, the fertility-related trait was the one referred as “PRODAM”, which 

according to Santana et al. (2013), was defined as the weight (in kg) of weaned calves produced 

annually by a cow during the time she stayed in the herd (similar to STAY). In 2017, Sánchez-

Castro et al. (2017) estimated expected progeny differences for STAY in Angus cattle using RRM 

with Legendre polynomials as the base function. Genetic correlations dependent on environmental 

conditions between growth traits (hip height, body weight at 18 months of age and post weaning 

gain) and HPG, were explored by Santana et al. (2018) by applying a multiple-trait RRM in Nelore 

cattle. Silva et al. (2018) applied linear RRM to fit STAY to consecutive calvings of Guzerá, 

Nelore and Tabapuã cows in order to estimate genetic parameters for this trait. Speidel et al. 

(2018b) developed a prototype RRM genetic prediction for HPG utilizing Red Angus cattle data. 

Whereas Golden et al. (2018) extended the use of random regressions to the framework of single-

step hybrid marker effects models when analyzing STAY data of Hereford cattle. More recently, 

Sánchez-Castro et al. (2019) analyzed the stability of genetic predictions for STAY in Angus cattle 

using RRM that included endpoints beyond 6 years of age. Altogether, previous reports suggest 

that the application of RRM to the analysis of longitudinal traits in beef cattle is feasible and may 

help to improve the accuracy of genetic predictions for fertility-related traits (Speidel et al., 2010; 

Jamrozik et al., 2013; Sánchez-Castro et al., 2019).  

Several other advantages exist when using RRM as opposed to other statistical 

methodologies when analyzing longitudinal traits. Perhaps the most relevant advantage of RRM 

rely on the fact that they enable fitting random genetic and environmental effects over time, while 

accounting for different time-dependent nongenetic effects affecting the trait of interest over the 

course of the phenotypic curve (Meyer, 1998; Swalve, 2000; Mark, 2004). These capabilities 
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ultimately lead to higher accuracies of estimated breeding values compared with other statistical 

approaches (Oliveira et al., 2019a). In this regard, utilizing simulated data, Meyer (2004) reported 

that accuracies obtained with RRM were consistently higher than those estimated through MTM. 

Later, Boligon et al. (2011) reported that breeding value accuracy estimates for growth traits using 

RRM were more reliable than those obtained with MTM in Nelore cattle. More recently, Sánchez-

Castro et al. (2019) suggested that the mean accuracy for 6-year STAY EPD estimated with various 

RRM, was about 4.6 times higher than the accuracy obtained with a TM. 

Meyer (1998) suggested that since RRM more adequately use the covariance structure of 

traits that change gradually along some continuous scale, they overcome problems associated with 

oversimplifications incurred when using repeatability models or the typical overparameterizations 

faced by MTM. Wilson et al. (2005) gave a straightforward explanation of how RRM can reduce 

the number of parameters to estimate when posing a hypothetical evaluation considering a series 

of age-specific traits linked by a covariance structure. Specifically, the authors used “size” as the 

underlying trait subjected changes related to age (continuous covariate). They explained that for 

five age-specific size assessments, the additive genetic variance-covariance matrix will contain 15 

parameters to estimate (five variances and 10 covariances). However, if the additive genetic values 

can be adequately modeled as a first-order linear function of time using RRM, then this number of 

parameters can be reduced to three (corresponding to the variances in intercept and slope and the 

covariance between them). In this sense, Stinchcombe et al. (2012) explained that by using a 

function of a lower order than the number of observations per individual, fewer parameters were 

required to be estimated, resulting in enhanced power and accuracy. In addition, the RRM 

approach do not require records be measured at the same time in all individuals or a minimum 

number of observations per animal, which enables the use of all the phenotypic data available in 
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all individuals when performing genetic analyzes (Schaeffer, 2004; Boligon et al., 2011; Sánchez-

Castro et al., 2019). Additionally, another advantage of RRM is their flexibility to include censored 

data, a feature that has been proven to be beneficial in terms of accuracy gains when performing 

genetic evaluations for traits measured late in an animal's life as survival, longevity and STAY 

(Verkaamp et al. 2001; Jamrozik et al., 2013; van Pelt et al., 2015).  

Domínguez-Viveros et al. (2015) noted as a good property of RRM that they can analyze 

directly raw phenotypes of each animal, without transformations or arbitrary adjustments that 

reduce the natural time-dependent variability of longitudinal traits. In contrast, others consider 

attractive that RRM can also be employed using the threshold methodology. According to Averill 

et al. (2006) longitudinal threshold animal models offer the possibility of computing quantities of 

interest to animal breeders that could not be obtained using cross-sectional analyses, such as the 

probability of observing a success or failure within a specific period. Furthermore, in situations 

when a limited number of binary outcomes exist per animal, it is possible to adapt the additive 

genetic numerator relationship matrix typically included in RRM in such way that, sire relationship 

matrices are built in order to apply sire-threshold RRM to perform the genetic analyzes (Tsuruta 

et al., 2009; Yin et al., 2012; Brügemann et al., 2013). In addition, the easy extension of single-

trait RRM to multiple-trait RRM has been also recognized as good property of these models. 

Perhaps the most noted advantage that multiple-trait RRM have over single-trait RRM, is the 

possibility to estimate genetic correlations between different traits over time. The first application 

of a multiple-trait RRM involved Canadian Holstein cattle traits such as milk yield, milk fat yield, 

milk protein yield and somatic cell score (Jamrozik et al., 1997b). According to Oliveira et al. 

(2016), such types of estimates could allow the identification of the most feasible time periods to 

perform indirect selection and boost genetic gains thru correlated responses.  



 
 

45 

Some controversy exists with respect to how to utilize covariance functions in multiple-

trait RRM analyzes. Originally, Meyer and Hill (1997) suggested that on certain occasions, it could 

be desired to fit more than one covariance function when applying a multiple-trait RRM, since 

measurements taken were representative of different characters or physiological processes. 

However, as reviewed by Oliveira et al. (2019a), the majority of the genetic evaluations that have 

been made using multi-trait RRM have used the same functions (e.g., Legendre polynomials or 

splines) to model the random effects of all traits. The idea of using the same function to describe 

genetic and permanent environmental effects (PE) when employing RRM apparently was based in 

ensuring that both curves had equal flexibility (Pool and Meuwissen, 1999; Pool et al., 2000). 

Jamrozik et al. (2001) also suggested that the same mathematical function should be used to 

describe random effects of a trait and stated that its selection should be determined by its goodness 

of fit to the performance curve of interest at the phenotypic level. However, recent reports have 

suggested that the combination of different functions to describe different traits in multiple-trait 

RRM was feasible and might improve the breeding values and genetic parameter estimates 

(Oliveira et al., 2016, 2017). Furthermore, even when using the same function in the analysis, a 

more adequate fit to field data has been reported when using different orders of fit for the direct 

genetic and the PE effects, generally, a lower degree is needed for the direct genetic effects than 

for PE effects (Pool et al., 2000; López-Romero and Carabaño, 2003; Kheirabadi et al., 2014). 

Finally, with a constantly increasing availability of SNP panels capable of span the entire 

genome of the major livestock species (Eggen, 2012), an important feature of RRM is that they 

can accommodate the inclusion of genomic data. Unfortunately, incorporation of genomic 

information within the framework of RRM for the prediction of longitudinal traits had not received 

extensive attention until recently (Koivula et al., 2015; Kang et al., 2017). The feasibility and 
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advantages of including genomic information within the RRM framework have been proven in 

both simulated and real data of plants, animals and even humans (Kang et al., 2017, Sun et al., 

2017, Oliveira et al., 2019c). In general, the addition of genetic markers to the genetic evaluations 

performed using RRM have exhibited robust prediction ability in longitudinal trait analyses by 

achieving higher accuracies and unbiasedness (Koivula et al., 2015; Kang et al., 2018; Oliveira et 

al., 2019c). Flexibility to apply single-trait or multiple-trait genomic RRM either in a single-step 

or a two-steps approach (Jattawa et al., 2016, Baba et al., 2017; Oliveira et al., 2019b), represent a 

major advantage of these models and allows the selection of breeding animals based on the 

complete pattern of the performance curve using genomic information (Oliveira et al., 2019a). 

Moreover, it is also possible to identify QTL associated with time-dependent variations on 

economically important traits in livestock, which may help to better understand phenotypic 

variations in longitudinal traits over time and to have a better insight of the biological timeline of 

gene effects (Das et al., 2011; Strucken et al., 2011, Oliveira et al., 2019d). Additionally, as 

suggested by Speidel et al. (2018b) and demonstrated by Golden et al. (2018), given the similarity 

of RRM to the traditional linear mixed models, the incorporation of genomic information into an 

evaluation using the recently developed single-step hybrid marker effects models (Fernando et al., 

2014, 2016), was not a difficult task. 

Among the concerns and limitations related to the application of RRM in animal breeding, 

probably the most discussed issue was the selection of the appropriate mathematical function to fit 

the data of the performance curve of interest. For instance, Misztal et al. (2000) suggested that the 

choice of the mathematical function to describe the lactation curve of dairy cattle was a key 

element when fitting RRM. As it was previously mentioned, Legendre polynomials have been 

widely used in genetic evaluations because they provide smooth curves similar to those observed 
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in biological curves of interest (Kirkpatrick et al., 1990). However, Legendre polynomials have 

potential limitations worth of noting, for instance, that higher-order polynomials are “wiggly” and 

do not have asymptotes (Pletcher and Geyer, 1999). The problem associated with higher-order 

polynomials was mathematically known as "Runge's phenomenon" and suggested that the error of 

a polynomial approximation of a curve increases with the polynomial order of fit, with errors 

predominantly located at the extremes of the curve (de Boor, 2001; Meyer, 2005a). In the context 

of quantitative genetics, Shaeffer and Jamrozik (2008) reported that when using Legendre 

polynomials, the estimated covariance matrices used to calculate genetic variances over the range 

of data, tend to result in genetic variances that were much higher at the beginning and end of the 

data range than in the middle. As reviewed by Speidel et al. (2010), the previous could be due to 

the fact that polynomials place a large emphasis on observations at the extremes, aggravating the 

appearance of the Runge’s phenomenon. Besides the rapid changes of high-order terms at the 

extremes and poor modelling capability of asymmetrical functions, Misztal (2006) also mentioned 

that other problems of Legendre polynomials were their lack of information to estimate a very 

large number of parameters and their sensitivity to each of the many different (co)variance 

parameters. 

In order to overcome the issues related to the use of Legendre polynomials as the base 

function of RRM, several research efforts have been conducted in order to find better covariance 

functions to fit performance curves typical of livestock species (White et al., 1999; Torres and 

Quaas, 2001; Robert-Granié et al., 2002). Meyer (2005a) explained that an alternative to the use 

of high degree polynomials are to use “piece-wise polynomials”, which basically are curves 

constructed from pieces of lower degree polynomials commonly referred as “splines”, joined 

smoothly at selected points known as “knots”. Splines have demonstrated to be advantageous since 
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knots have the ability to connect the different segments of biological curves in a better way (White 

et al., 1999; de Boor, 2001). Meyer (2005b) investigated the use of a particular type of spline called 

“B-splines” (the “B” stands for basis) to model growth in Australian Angus cattle and reported 

that B-splines outperformed the results obtained using Legendre polynomials. Misztal (2006) 

explored the properties of RRM using linear splines as the base function by comparing their 

performance to the one obtained with Legendre polynomials. In summary, the author reported that 

linear splines had better convergence than Legendre polynomials when solving the MME. 

However, Misztal also explained that when using splines, potential drawbacks are the depression 

of variances and predictions in the middle of intervals between the knots, and inflation of 

predictions close to knots. According to the authors, the previous issues could be greatly reduced 

by adjusting the number and positions of knots, so he provided a useful guide to do it: 

1) The first two knots to choose must be those harboring all points on the trajectory 

occurring in the data 

2) The remainder knots should be added in such way that correlations between adjacent 

knots are in the range of 0.6–0.8 

Speidel et al. (2010) noted that the aforementioned suggestions will result in knots being 

placed close together around areas that have the largest data density, as well as, in areas where the 

data are changing more rapidly. Even when splines seem to have clear advantages over Legendre 

polynomials, only small differences in accuracies (about 2.5%) favored the use of splines as 

opposed to Legendre polynomials in a simulation study (Bohmanova et al., 2005). Furthermore, a 

study performed with real data of Brazilian Gyr cattle, suggested that, in practice, RRM using 

either splines or Legendre polynomials as base functions were able to rank animals almost exactly, 
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since Spearman's correlations between EBV obtained with both types of models were in the range 

of 0.946 to 0.998 (Pereira et al., 2013). 

2.5 Genomic selection 

In 2001, a revolutionary paper not only for animal but also for plant breeding was 

published. Even anticipating the technology constraints of that time, Meuwissen et al. (2001) 

proposed a novel approach in where the breeding values could be estimated from markers spanning 

the entire genome (Boichard et al., 2014; Van Eenennaam et al., 2014). As explained by Gianola 

and Rosa (2015), the mathematical rationale behind the proposal of Meuwissen et al. (2001) was 

relatively simple: given a battery of p SNP and a sample of n individuals genotyped for such 

markers, the fitting of a multiple linear regression on the number of copies of a reference allele at 

each one of the p loci could predict the total genetic value of an individual. Due to the fact that the 

breeding value predictions relied on the use of genome-wide dense marker platforms, this type of 

selection was subsequently termed “genomic selection” (Eggen, 2012; Van Eenennaam et al., 

2014). Goddard and Hayes (2007) explained that genomic selection was a form of marker-assisted 

selection (MAS) in which genetic markers covering the whole genome were used under the 

assumption that all QTL were in linkage disequilibrium (LD) with at least one marker. As opposed 

to MAS in where a prior knowledge of gene or marker associations with the traits of interest is 

required, the genomic selection approach infers that there will always be a SNP in close proximity 

to a particular gene or DNA fragment of interest. Therefore, by means of indirect associations 

based on LD assumptions, a significant fraction of the variation in a trait of interest could be 

explained (Eggen, 2012). Genomic Selection has a tremendous potential to accelerate the rate of 

genetic improvement within any specie and, in order to better understand how it does it, it is 

important to recall some basic principles of animal breeding. Considering that the purpose of any 
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selection program is to accelerate the rate of genetic change or selection response per unit of time 

(ΔG) toward a given breeding objective, the classic equation for explaining ΔG, as described by 

Falconer and Mackay (1996) is: 

ΔG = 𝑖 ∗ 𝑟 ∗  𝜎𝐴𝐿  

where i represents the selection intensity, r represents the accuracy of selection, σA 

represents the genetic variability of the trait of interest and L represents the generation interval. 

Within the previous formula, any technology capable of increasing accuracy, intensity, and/or 

genetic variation or decreasing the generation interval, has the potential to accelerate the rate of 

genetic gain (Van Eenennaam et al., 2014). Genomic Selection has been shown to improve the 

accuracy of traditional genetic evaluations based on pedigree and phenotypes alone in several 

livestock species (Wolc et al., 2011; Saatchi et al., 2015; Hidalgo et al., 2015). Within the case of 

dairy cattle, adoption of genomic selection has resulted in high intensities of selection and shorter 

generation intervals (Pryce and Daetwyler, 2012). In general, two main approaches have been 

developed in order to perform genomic selection in livestock: a multiple-step approach 

(VanRaden, 2008; Hayes et al., 2009) and the single-step approach (Legarra et al., 2009; Aguilar 

et al., 2010; Legarra et al., 2014). Brief descriptions of each procedure are provided below. 

2.5.1 Multiple-step genomic selection approach 

Within the multiple-step genomic selection procedure, the first step consists in the 

calculation of genomic breeding values (GEBV) as the sum of the effects of a multitude of genetic 

markers or QTL (quantitative trait loci = genes affecting a quantitative trait) across the entire 

genome (Hayes et al., 2009; Lourenco et al., 2017). Estimation of such GEBV require a large 

population for which phenotype and genotype (typically SNP) data must be available. This 

population if often referred as the “reference or training population”, since prediction equations 
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are trained and calibrated within this subset of animals (Van Eenennaam et al., 2014). Once the 

marker effects have been estimated, the previously mentioned prediction equations can be used to 

predict the genetic value of another population of individuals with genotypes but without 

phenotypes, the so-called “validation population” (Goddard et al., 2016; Koivula et al., 2016). 

Genetic values produced for members of the validation population were then based solely on their 

molecular make up and, therefore, referred to as Molecular Breeding Values (MBV). These MBV 

required to subsequently be blended with traditional EPD or used as correlated traits in multivariate 

analyses (Kachman et al., 2013). A general overview of the multiple-step genomic selection 

approach applied in livestock is shown in Figure 2.3 (Van Eenennaam et al., 2014). 

Possibilities of applying molecular-based predictions to estimate genetic values of animals 

virtually since the moment of their birth, represented an attractive feature of this method due to 

the opportunity of reducing the generation interval (Daetwyler, 2009). Furthermore, significant 

increments in accuracy of breeding value estimations of genotyped animals as well as a more 

optimal utilization of available genetic resources through genome-guided mate selection were also 

interesting benefits of genomic selection (Daetwyler et al., 2013).  
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Figure 2.3. Overview of the multiple-step genomic selection approach applied in livestock 
(Abbreviations: QTL, quantitative trait loci; SNP, single-nucleotide polymorphism) 

 

Moreover, the multiple-step genomic also contained drawbacks that were summarized by 

Koivula et al. (2015). Some of the problems of this method were that parent averages (PA) of 

progeny of genomically selected animals do not automatically include genomic information. 

Additionally, when animals were selected by their GEBV, the future estimation of unbiased EBV 
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was difficult because genomic information was not taken into account in the traditionally 

employed methods of genetic prediction (preselection bias; Misztal et al.,2009). Moreover, 

genomic selection using the multiple-step approach is prone to bias since includes several 

approximations (e.g., blending), all of which reduce the accuracy and can inflate the resultant 

GEBV. Another important drawback of the multiple-step procedure is that prediction equations 

require to be periodically updated or retrained as a consequence of using SNPs in LD with 

phenotypes, rather than causal mutations. The previous leads to a decay in the accuracy of genomic 

predictions as the number of generations separating the training population from the validation 

population increases (Taylor, 2014). Furthermore, MBV (or GEBV) could only be generated for 

simple models, for instance single-trait models with no maternal components (Lourenco et al., 

2017). Given all these deficiencies, it has been stated that the elimination of multiple-step methods 

and the migration to single-step genomic prediction procedures represent one of the largest 

evolutions of the utilization of genomic information within current genetic evaluation systems 

(Spangler, 2018). 

2.5.2 Single-step genomic selection approach 

With the goal of simplifying the multiple-step genomic selection procedure, a methodology 

capable of incorporating molecular information (e.g., marker data) into the traditional mixed model 

equations using phenotypes and pedigree data was proposed and termed single-step procedure. A 

couple of papers by Legarra et al. (2009) and Misztal et al. (2009) detailed that such procedure 

was based on the modification of the typical numerator relationship matrix A to include genomic 

information. Essentially, the main idea was to adjust the relationships between animals based on 

the similarities among their genotypes. By doing so, genomic information was incorporated into 
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the classical BLUP methodology originating what is known as single-step-GBLUP (Figure 2.4; 

Legarra et al., 2014; Lourenco et al., 2017).  

 
Figure 2.4. Simplistic overview of the single-step genomic selection approach 

(Abbreviations: ssGBLUP, single-step genomic best linear unbiased predictor; EBV, 
estimated breeding value. Lourenco et al., 2017). 

 

 Using selection index principles, Legarra et al. (2009) outlined the procedure to blend the 

complementary information of molecular markers to the historically recorded and available 

pedigree data. In parallel, Misztal et al. (2009) detailed the required computational methods to 

achieve such combination of information. For their part and practically at the same time, 

Christensen and Lund (2010) proposed the same idea (combination of pedigree and DNA 

markers), but departing from a different perspective based on the imputation of missing genotypes 

within non-genotyped individuals. Following Legarra’s derivations (Legarra et al., 2009, 2014), a 

brief summary of the methodology to combine the numerator relationship matrix A, with a marker-

derived genomic relationship matrix G in order to create a modified genetic relationships matrix 

H will be presented.  
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 Considering that 1 and 2 refer to non-genotyped and genotyped individuals, respectively; 

authors started from the situation that before markers are observed in a subset of a population, the 

joint distribution of breeding values of the future genotyped animals and non-genotyped 

individuals is multivariate normal: 𝑝 (𝑢1𝑢2) = 𝑁(0, 𝜎𝑢2𝐴)  

with a covariance matrix of the form:  

𝑉𝑎𝑟 (𝑢1𝑢2) = 𝜎𝑢2𝐴 =  𝜎𝑢2  (𝐴11 𝐴12𝐴21 𝐴22) 

where A11, A12/A21 and A22 are partitions of the numerator relationship matrix A (based 

only in pedigree) and 𝝈𝒖𝟐  representing the additive genetic variance. In a Bayesian context, the 

joint distribution presented before can be split into the product of a marginal and a conditional 

density as follows: 𝑝(𝑢1|𝑢2) =  𝑝(𝑢1|𝑢2) 𝑝(𝑢2) 

 

As such, this joint distribution is distributed as: 𝑝(𝑢1|𝑢2) =  𝑁(𝐴12𝐴22−1𝑢2, 𝜎𝑢2(𝐴11 − 𝐴12𝐴22−1𝐴21)) 

 

However, after observing the genotypes of the markers for the subset of genotyped 

individuals within the initial population, their relationships are no longer based on pedigree 

averages, but instead they are fully informative observed genomic relationships. Such relationships 

are then agglutinated into what is known as the genomic relationship matrix G. Therefore, after 

observing the genotypes we have that: 𝑝(𝑢2|𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠) =  𝑁(0, 𝜎𝑢2𝐺) 

marginal conditional 

mean variance 
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marginal conditional 

Interestingly, genotypes also influence the relationships among non-genotyped animals and 

between non-genotyped and genotyped individuals. In consequence, the joint distribution of both 

kinds of individuals conditional on the observed genotypes converts to: 𝑝(𝑢1, 𝑢2|𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠) =  𝑝(𝑢1|𝑢2) 𝑝(𝑢2|𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠) 

  

From here, elements of the final matrix H can be derived and the original covariance matrix 

can be appropriately modified as follows: 

𝑉𝑎𝑟 (𝑢1𝑢2) = 𝜎𝑢2𝐻 = 𝜎𝑢2  (𝐴11−𝐴12𝐴22−1𝐴21 + 𝐴12𝐴22−1𝐺𝐴22−1𝐴21 𝐴12𝐴22−1𝐺𝐺𝐴22−1𝐴21 𝐺 ) 

Finally, although matrix H looks complicated and is completely dense, the form of its 

inverse (𝐻−1) is much simpler (Aguilar et al., 2010): 

𝐻−1 = 𝐴−1 + [0 00 𝐺−1 − 𝐴22−1] 
At this point, the 𝑯−𝟏 matrix could easily replace the regular 𝑨−𝟏 matrix and all the 

framework within Henderson’s best linear unbiased prediction methodology holds. Consequently, 

any model utilizing relationships matrices can be fitted using the combined relationship matrix H. 

This means that evaluations using the single-step procedure would not be restricted to simple 

models (e.g., single-trait models with no maternal components), but rather, the method allows the 

application of more complex evaluations such as those performed using multivariate models with 

maternal components, threshold models and/or even random regression models (Misztal et al., 

2009; Legarra et al., 2014; Kang et al., 2017). Other advantages of the single-step over the 

multiple-step procedure include the ability of the single-step approach to automatically account 

for all relatives of genotyped individuals and their performance. Accordingly, increments in the 

accuracy of predictions are not limited only to genotyped individuals since their non-genotyped 
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relatives also result benefitted (Christensen et al., 2012). Additionally, elimination of the extra 

evaluation steps contributes to evade the loss of information (Legarra et al., 2009). 

Despite of the great benefits of the single-step procedure, potential challenges and 

drawbacks have been also acknowledged in the comprehensive review of Legarra et al. (2014). 

For instance, it is recognized that the method increases the programming complexity to fit 

complicated marker effects models such as those based on Bayesian regressions. Additionally, 

given that the nature and assumptions of the method rely on Fisher’s infinitesimal model, the 

single-step procedure does not have a way to handle appropriately QTL with major effects 

(although this is also a limitation within multiple-step procedures). Furthermore, and perhaps more 

importantly, since the method requires explicitly the inverse of a dense G matrix, the constantly 

increasing number of genotyped individuals could eventually reach a limit in where the 

computation of such inverse would become impossible (e.g., >100,000), threatening the feasibility 

of this methodology (Fernando et al., 2014, 2016). 

In order to overcome potential limitations of single-step procedures due to the increasing 

number of genotyped individuals, procedures such as the Algorithm for Proven and Young (APY) 

have been developed (Misztal et al., 2014). Based on the recursive algorithm of Henderson (1976b) 

implemented to obtain (A-1) without explicitly creating A, the APY methodology builds G-1 

directly for a subset of the most influential genotyped animals denominated “core animals”. To do 

so, APY assumes that the genomic recursions for young animals (non-core individuals) contain 

coefficients only for proven animals (core individuals); therefore, it is possible to ignore the 

relationships among non-core animals in the construction of G-1 at the cost of a negligible impact 

on the estimation of genomic breeding values (Fragomeni et al., 2015). From a different angle, an 

alternative strategy to avoid limitations imposed by the increasing number of genotyped animals 
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is the implementation of methods which do not require computing G or its inverse, deriving in the 

development of the single-step Bayesian regression marker effects models, also known as single-

step hybrid models (Fernando et al., 2014, 2016). 

2.5.3 Single-step hybrid models 

As acknowledged by creators of the ssGBLUP methodology, an alternative method to 

combine phenotype, pedigree and genotype data for populations with genotyped and non-

genotyped individuals, was to impute markers in ungenotyped animals via marker and pedigree 

information and estimate marker effects after imputation was completed (Legarra et al., 2009). In 

this regard, this avenue was explored by Fernando et al. (2013) who proposed a methodology in 

where after genotypes were imputed for the non-genotyped proportion of the population, all 

animals were subsequently treated as genotyped individuals. This methodology was termed marker 

effects hybrid model and as important notes, breeding values of animals were expressed as the sum 

of marker effects estimated within the analysis. However, an important consideration of an extra 

term in the model to account for imputation errors was made for the originally non-genotyped 

animals, for which their breeding values were expressed as the sum of the effects of their imputed 

marker genotypes plus their corresponding imputation residuals (Fernando et al., 2014). 

Although the uncertainty associated with the genotype imputation process received some 

criticism, it was the requirement of the method to store large intermediate data files corresponding 

to the imputed genotypes as well as the software restrictions to accomplish that task the factors 

considered as the crucial limitations for hybrid models (Misztal et al., 2014). Nonetheless, 

appropriate considerations of the model to account for imputation residuals and, more importantly, 

the development of computational strategies to avoid storing large and dense blocks of the mixed 

model equations involving imputed genotypes, allowed the consolidation of the single-step super 
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hybrid model (ss-SHM; Fernando et al., 2016). The key feature of the refinement of hybrid models 

consisted in utilizing a breeding value type model for animals with missing genotypes, rather than 

expressing their breeding values as the sum of the effects of their imputed marker genotypes plus 

their separate imputation residuals 𝝐 (reaffirming even more the hybrid nature of the method). 

As stated by its creators, the ss-SHM is computationally attractive for pedigree files 

containing millions of animals with a large proportion of genotyped individuals; essentially, 

because the method does not require computing the G matrix or its inverse (Fernando et al., 2016). 

Importantly, accompanying the establishment of the statistical theory behind the ss-SHM, the 

required software developments for its application were attained in parallel (Golden et al., 2016); 

allowing its rapid employment within genetic evaluation procedures (Garrick et al., 2018). 

According to Fernando et al. (2016), for a single-trait evaluation a ss-SHM as the following form: 

[𝑦𝑛𝑦𝑔] = [𝑋𝑛𝑋𝑔]b + [ 0 𝑍𝑛𝑍𝑔𝑀𝑔 0 ] [ 𝛼𝑢𝑛]+ e, 

 where the subscripts n and g refer to non-genotyped and genotyped individuals, 

respectively; 𝑿𝒏 and 𝑿𝒈 are appropriate incidence matrices relating fixed effects in b to 

observations in y (specifically sorted with n individuals first and g individuals after). Similarly, 𝒁𝒏 and 𝒁𝒈 correspond to incidence matrices relating random marker effects in α (e.g., breeding 

values) and 𝒖𝒏 (where 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐) to observations in y. M denote a matrix of centered marker 

values (typically coded as -1, 0 or 1); and e representing a vector of random errors. Then, after 

computing the inverse of the covariance matrix for random effects the MME are given by: 

[  
  𝑋′𝑋 𝑋′𝑍𝑔𝑀𝑔 𝑋𝑛′ 𝑍𝑛𝑀𝑔′𝑍𝑔′ 𝑋𝑔 𝑄 𝑀𝑔′𝐴𝑔𝑛 𝜎𝑒2𝜎𝑔2𝑍𝑛′ 𝑋𝑛 𝐴𝑛𝑔𝑀𝑔 𝜎𝑒2𝜎𝑔2 𝑍𝑛′ 𝑍𝑛 + 𝐴𝑛𝑛 𝜎𝑒2𝜎𝑔2]  

  
 [ 𝛽̂𝛼̂𝑢̂𝑛] = [ 𝑋′𝑦𝑀𝑔′ 𝑍𝑔′ 𝑦𝑔𝑍𝑛′ 𝑦𝑛 ] 
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where Q = 𝑀𝑔′ 𝑍𝑔′ 𝑍𝑔𝑀𝑔 + I 
𝜎𝑒2𝜎𝛼2 + 𝑀𝑛′ 𝐴𝑛𝑛𝑀𝑛 𝜎𝑒2𝜎𝑔2, a matrix with dimensions equal to the number 

of marker covariate (usually <50,000) that can be stored in memory during the iterative procedure 

implemented to solve the equation’s system (Fernando et al., 2016; Mäntysaari et al., 2019). 

Among the main advantages of the ss-SHM is their ability to allow for alternative prior 

distributions for marker effects (although only for genotyped animals). This means that within this 

particular approach, inabilities of ssGBLUP and multiple-step genomic selection procedures to 

appropriately account for the presence of QTL with major effects is partially overcomed. 

Interestingly, when considering the predecessor of the ss-SHM (e.g., regular hybrid model), since 

in that procedure all animals are treated as genotyped individuals after the imputing process is 

done; then it is possible to utilize different prior distributions for marker effects for all animals 

(not just genotyped), at the cost of dealing with the large and dense blocks of the MME pertaining 

to the imputed genotypes. Given this important feature, it has been indicated that if in the future it 

becomes useful to give different weights for different SNP effects, or to fit different SNP for 

different traits in multi-trait models, the marker effects hybrid models have a clear advantage over 

methods relying on the genomic relationship matrix G (Mäntysaari et al., 2019). 
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CHAPTER 3 – COMPARISON OF THRESHOLD MODELS AND RANDOM REGRESSION 

MODELS IN THE GENETIC EVALUATION OF DICHOTOMOUS FERTILITY TRAITS IN 

ANGUS HEIFERS 

 
 
 
Summary 

Traditional evaluations of binary traits in cattle involve the use of threshold models (TM) that 

convert categorical phenotypes to an underlying normally distributed range of genotypic values 

known as liabilities. Despite the successful influence that TM have had on genetic trends of 

categorically evaluated traits within livestock species, their susceptibility to the extreme category 

problem (ECP) limits the ability to use all available information for genetic evaluation and 

Expected Progeny Differences (EPD). Random regression models (RRM) represent an alternative 

method to evaluate binary traits—a method not affected by ECP. Nevertheless, RRM were 

originally developed to analyze longitudinal traits, so their usefulness to evaluate traits with singly 

observed phenotypes requires further exploration. Objectives of this study were then to evaluate 

the feasibility of RRM genetic predictions for heifer pregnancy (HPG) and first-service conception 

rate (FSCR) by comparing its resulting EPD and genetic parameters to those obtained with 

traditional TM. Breeding and reproductive ultrasound records of 4,334 Angus heifers (progeny of 

354 sires and 1,626 dams) collected between 1992 to 2019 at the John E. Rouse Colorado State 

University Beef Improvement Center were utilized. Observations for HPG and FSCR (1, 

successful; 0, unsuccessful) were defined by fetal age at pregnancy diagnosis performed 

approximately 130 d post-AI. Traditional evaluations for both traits were performed using 

univariate BLUP, threshold animal models, whereas alternative evaluations were performed by 

regressing HPG and FSCR on age at first exposure (AFE) using linear RRM with Legendre 
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Polynomials as the base function.  Heritability (h2) estimates on the underlying scale were 0.04 

and 0.03 for HPG and FSCR using TM; whereas RRM derived h2 estimates on the observed scale 

were 0.02 and 0.006 for the average AFE for HPG and FSCR, respectively. Pearson and rank 

correlations between EPD obtained with each methodology were 0.97 and 0.96 for HPG, while for 

FSCR were 0.75 and 0.72, respectively. Regression coefficients from RRM predictions on those 

obtained with TM were 0.27 and 0.15 for HPG and FSCR, respectively. Differences in mean 

accuracies of prediction calculated at the average AFE were minimal between methodologies; 

however, RRM produced consistently higher accuracies than TM. In conclusion, these results 

suggested that RRM genetic predictions for singly-observed fertility traits in beef heifers were 

feasible. More importantly, moderate to strong degrees of concordance were found between 

predictions obtained with both methodologies for both traits, implying that RRM could substitute 

for TM in genetic evaluations of binary fertility traits. Potential advantages of utilizing RRM in 

evaluations of categorical traits include the utilization of all available information to generate EPD 

and the ability to produce age-specific genetic predictions. 

3.1 Introduction 

Among the traits relevant to beef cattle breeding practices, those related to key fertility 

events such as conception are binary in nature. Genetic evaluations for these binary traits differ 

from those used for continuous traits since categorical variables violate many assumptions (e.g., 

normality and homogeneity of variances) of the linear mixed-models used to obtain best linear 

unbiased predictions (Henderson, 1975; Gianola, 1982; Abdel-Azim and Berger, 1999). 

Consequently, genetic evaluations of binary traits have been traditionally performed assuming 

their phenotypic expression is attributable to an underlying continuous unobservable and normally 

distributed range of genotypic values, referred to as liability (Gianola and Foulley, 1983; Falconer 
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and Mackay, 1996). Such assumption allows the application of non-linear systems of equations 

capable of predicting breeding values, and in turn, have made of threshold models (TM), the 

method of choice to perform routine genetic evaluations of categorical traits (Foulley, 1992; 

Gianola and Rosa, 2015). 

Threshold models are not completely free of limitations. Originally, the higher 

computational demands of TM associated with their iterative procedures to yield solutions 

impaired their widespread application to large data sets until appropriate software developments 

were accomplished (Misztal et al., 1989). Furthermore, even with increased technological and 

computing capabilities, one of the major problems associated with TM is their susceptibility to the 

Extreme Category Problem (ECP). With ECP all observations in a given class or particular level 

of a fixed effect (typically contemporary group), fall within the same extreme category (e.g., all 

females are pregnant or vice versa in this study). When this happens, convergence of the algorithms 

are slowed and often there is a lack of convergence for the fixed effects (Misztal et al., 1989). To 

overcome ECP-related issues, usually observation groups with this condition are omitted (Harvile 

and Mee, 1984; Golden et al., 2018); nonetheless, this can lead to distorted inferences because 

edited data would not be representative of the entire population (Misztal et al., 1989).  

Interestingly, only small differences have been reported between threshold and linear 

models when analyzing both field and simulated categorical data (Meijering and Gianola, 1985; 

Weller et al., 1988; Hagger and Hofer, 1989). Random regression models (RRM) represent an 

alternative method to evaluate binary traits and can incorporate data from systematic effects with 

no variation (Jamrozik et al., 2013; Golden et al., 2018); thereby overcoming the ECP. As such, 

information from class levels of fixed effects experiencing ECP are not required to be disregarded 

and distortions created by data editing processes previous to genetic evaluations can be avoided. 
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Consequently, potential increases in accuracy of prediction may occur by incorporating more 

information into genetic evaluation procedures. Even though RRM were originally conceptualized 

to analyze longitudinal traits, their efficacy to evaluate traits with phenotypes observed only once 

has shown acceptable degrees of success using sire models (Englishby et al., 2016) and animal 

models (Speidel et al., 2018a). Considering the special combination between documented 

weaknesses of traditional TM and the potential capabilities of RRM to overcome these 

weaknesses; we hypothesized that the application of RRM for the genetic predictions of binary 

fertility traits observed only once in beef heifers are feasible and could achieve higher accuracies 

of prediction than the TM using edited data. Therefore, the objective of this chapter was to perform 

a comparison of the two approaches using pedigree-based genetic predictions of heifer pregnancy 

and first-service conception rate.  

3.2 Materials and Methods 

Although data used in the present study were obtained from an existing database; animals 

within the experimental location were managed according to the Institutional Animal Care and 

Use Committee (IACUC) guidelines, covered in most recent years by IACUC number 18-8367A. 

3.2.1 Data collection and description 

Breeding and ultrasound records of 4,334 Angus heifers (progeny of 354 sires and 1,626 

dams) collected from 1992 to 2019 at the Colorado State University Beef Improvement Center 

(CSU-BIC) were used for the study. Within each breeding year, heifers were estrus synchronized 

and subjected to AI only once before they were exposed to natural service sires approximately 2-

wk after insemination. In the present study, heifer pregnancy (HPG) was defined as the ability of 

a heifer to produce a calf by 24 mo of age, given she conceived within a 60-d breeding season 

length. Considering every year's specific AI date as the beginning of its respective breeding season, 
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observations for HPG (1, successful; 0, unsuccessful) were defined by fetal age obtained from 

ultrasound pregnancy exams performed approximately 60 and 130 d post-AI. Although HPG is a 

once-in-life recorded phenotype, its expression is likely to be dependent on age of onset of puberty 

among other factors. Even though no direct measurements of age at puberty were available, the 

age-related pubertal status of heifers during their first breeding exposure was considered by 

including age at AI as explanatory variable. Age at first exposure (age at AI) was calculated as the 

difference between an individual’s birthdate and the date when they were subjected to AI. 

The same breeding and ultrasound records of all the CSU-BIC heifers previously described 

were used for heifer first-service conception rate (FSCR) analyses. Within this study, FSCR was 

defined as the probability of a heifer conceiving in response to her first artificial insemination (AI) 

and maintaining such pregnancy after the end of the breeding season. Observations for FSCR (1, 

successful; 0, unsuccessful) were defined by fetal age obtained from ultrasound or manual 

pregnancy exams performed 130 d post-AI. Although FSCR in 12- to 15-mo-old heifers is a singly 

observed phenotype, similar to HPG, its expression is likely also dependent on age of onset of 

puberty. Following the same rationale than for HPG analyzes, age at first exposure (age at AI) was 

also considered as explanatory variable. 

3.2.2 Testing fixed and random effects 

 Systematic effects influencing HPG genetic evaluations have been outlined within the Beef 

Improvement Federation’s guidelines (BIF, 2020); however, no official recommendations were 

found for genetic evaluations of heifer FSCR. Consequently, in order to identify the important 

factors influencing the traits of interest, incremental Wald F-tests were performed in the statistical 

software package ASREML 3.0 (Gilmour et al., 2009) according to equation 3.1 shown below: 

 W = [𝜃 −  𝜃]-T [𝑉𝑎𝑟 (𝜃)]-1[𝜃 −  𝜃] Eq. 3.1 
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 Where 𝜃 represented the maximizing argument of an unconstrained likelihood function 

(i.e., maximum likelihood estimate obtained when all the potential explanatory variables were 

included in the model), “Var” denoted the variance and 𝜃 corresponded to a hypothesized 

maximum likelihood estimate produced when assuming the null hypothesis true (H0 = 𝜃𝑘 = 0), 

meaning that the kth parameter does not help to explain variation in the response variable. 

Asymptotically, this test has a X2 distribution with (n – k) degrees of freedom that within ASREML 

are adjusted using the Kenward-Roger method (Kenward and Roger, 1997). Possible fixed effects 

examined for HPG were age of dam (AOD), breeding year, breeding pasture combined with 

service sire and age at first exposure (AFE). In the case of FSCR, potential fixed effects included 

AOD, breeding year, semen type (e.g., sexed vs conventional), AI technician (with at least 5 

insemination events recorded) and AFE. Results from the Wald F-tests performed for all the 

potential fixed effects of both traits are shown in Table 3.1. 

 
Table 3.1. Results of Wald F tests for fixed effects for heifer pregnancy (HPG) and First-Service 
Conception Rate in Angus heifers. 
Trait Effect NumDF† DenDF† F-inc† P-inc† 

HPG 

Age at first exposure   1     17.1     6.3   0.022 

Age of dam   8   179.3 916.2 <0.001 

Breeding pasture and service sire 52 2860.6     2.0 <0.001 

Breeding year 28 1149.1   34.9 <0.001 

FSCR 

Age at first exposure   1     24.0   5.2   0.032 

Age of dam   8 2189.0 17.2 <0.001 

AI technician 69 3867.9   2.1 <0.001 

Breeding year 28    154.6 26.7 <0.001 

Semen type 15 1473.6   6.0 <0.001 
†NumDF = Numerator degrees of freedom (number of non-singular equations involved in the term); DenDF = denominator degrees 
of freedom (estimated according to the adjustments recommended by Kenward and Roger, 1997); F-inc = additional variation 
explained by the term being tested when added lastly to the model. P-inc = probability value. 
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All systematic effects tested for each trait were identified as significant sources of variation; 

however, before their direct incorporation into the genetic evaluations, a grouping strategy was 

imposed to form contemporary groups (CG). According to Bourdon (2000), when CG are correctly 

formed, they can help to increase the heritability (and repeatability when repeated measures are 

available) of the traits under evaluation; whereas, when they are not formed appropriately, the 

opposite occurs. A CG is a group of animals that have been managed alike and, in this sense, 

breeding pasture and service sire designations were specific to each breeding year; therefore, all 

these effects were combined in order to create a more precise definition of contemporary group 

for HPG. Similarly, in the case of FSCR the effects of breeding year and semen type were also 

combined to better represent the management decisions particular to each year of data. Forming 

contemporary groups in this way resulted in a total of 75 and 43 unique contemporary groups for 

HPG and FSCR, respectively. Summary statistics of contemporary groups for each trait within this 

study are shown in Table 3.2. 

Table 3.2. Summary statistics outlining the number of animals  
represented per contemporary group definition in both heifer fertility traits 

 HPG1 FSCR2 

N   75.0   43.0 

Average    57.7 100.1 

SD   40.6   60.5 

Minimum     2.0     4.0 

Maximum 159.0 196.0 

Average pregnancy rate     0.84     0.45 

       1HPG = Heifer pregnancy 
       2FSCR = First-service conception rate 

 
There were two possible extra random effects to be considered in the genetic evaluation of 

FSCR (besides the animal random additive effects).  These variables were mating group (e.g., 

heifers being inseminated in heat or during a mass mate) and AI sire (sire that produced the semen 
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straw used during the specific AI event). As previously described by Beckman et al. (2007), the 

utility of the inclusion of these variables to the model was tested using a likelihood ratio test (LRT, 

equation 3.2).  

 LRT = 2|LogLF – LogLR| Eq. 3.2 

where LRT represented the absolute difference between a full model REML log-likelihood 

(LogLF) and the REML log-likelihood of a reduced model (LogLR). For this test, the null 

hypothesis established that full models (i.e., containing all possible random effects such as animal, 

AI sire and mating group) did not fit significantly better than simpler models (models that excluded 

a particular random effect being tested). The LRT test statistic was distributed approximately as a 

X2 with degrees of freedom equivalent to the difference in the number of parameters fit for the full 

and reduced models. These analyses were performed utilizing the package “ordinal” (Christensen, 

2015) within the statistical software R (R Development Core Team, 2013). Results of the LRT are 

presented in Table 3.3.  

Table 3.3. Results of log-likelihood ratio tests for random effects for first-service conception rate 
(FSCR) in Angus heifers of the CSU-BIC 
Effect* LogLF

† LogLR
† LRT† df P-value 

AI sire -2667.8 -2695.3 55.0 49   0.2005 

Mating group -2667.8 -2676.9 18.2   2 <0.0001 
*AI sire = sire that produced the semen straw used during the specific AI event; Mating group = heifers inseminated 
during heat or during a mass mate. 
†LogLf = log-likelihood value of the full model that included all effects; LogLr = log-likelihood value of the reduced 
model that included all effects except for the one being tested (indicated in the effect column); LRT = likelihood ratio 
test. 
 

Results from the LRT suggested that mating group accounted for a significant portion of 

the variation of heifer FSCR; notwithstanding, the AI sire effects did not show a significant 

influence in the conception rate of the heifers. Although, from a statistical point of view, the 

previous imply that AI sire could be excluded from the model, Averill et al. (2004) suggested that 
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it is preferred to perform a joint evaluation for males and females, since biologically, the outcome 

of an insemination depends on both male and female fertility. Consequently, both variables were 

kept for subsequent genetic evaluations and, in an attempt to visually depict the influences of AI 

sire and mating group, the conception rate associated with each particular level of each effect are 

shown in Figures 3.1 and 3.2, respectively. 

 
Figure 3.1. Average conception rate of AI sires utilized in heifers from the Colorado State 
University Beef Improvement Center (blue bars represent the number of semen straws used per 
sire and orange bars represent the conception rate). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Average conception rate per mating group in heifers from the Colorado State 
University Beef Improvement Center (2,934 were inseminated in heat while 1,400 were subjected 
to AI during a mass mate). 
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3.2.3 Genetic evaluations for Heifer Pregnancy 

Traditional EPD calculation for HPG was performed using a univariate BLUP animal TM 

using a probit link function to convert binary observations to an underlying normal distribution. 

The model Equation (3.3) was: 

 y* = Xb + Zu + e Eq. 3.3 

where y* corresponded to a vector of transformed HPG observations on the underlying scale, b 

was a vector of unknown solutions for fixed effects that included breeding contemporary group 

(defined as a combination between breeding year and breeding pasture), age of dam (expressed in 

the categories recommended by the Beef Improvement Federation); and the individual’s AFE 

included as a linear covariate, u corresponded to a vector of unknown random additive genetic 

solutions of animal random effects. X and Z were known incidence matrices relating observations 

in y* to both fixed (b) and random effects (u), whereas e was a vector of unknown residual errors. 

Random effects were assumed to have a mean of 0 and variances equal to: 

Var [𝒖𝒆] = [𝑨𝝈𝒂𝟐 𝟎𝟎 𝑰𝝈𝒆𝟐] 
where A corresponded to the Wright’s numerator relationship matrix and I was an identity matrix 

with an order equal to the number of observations, respectively. The 𝝈𝒂𝟐 and 𝝈𝒆𝟐 were the additive 

and residual variances, respectively. In agreement with the specifications of a maximum a 

posteriori (MAP) probit threshold model, the residual variance (𝝈𝒆𝟐) was constrained to be equal 

to 1. 

Additionally, HPG was regressed on AFE using a linear RRM with Legendre polynomials 

as the base function. The model equation in matrix form is presented below (Equation 3.4): 

 y = Xb + Zu + e Eq. 3.4 
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where y corresponded to a vector of binary observations of HPG, X was an incidence matrix 

relating HPG observations in y to unknown solutions for categorical fixed effects (breeding 

contemporary group and age of dam using BIF classes) and a linear fixed regression of HPG on 

AFE in b, Z was an incidence matrix consisting of intercept and linear age covariates relating HPG 

observations in y to the animal random additive genetic regression coefficients (intercept and 

linear) in u, and e was the vector of unknown residual errors. The mean of random effects was 

assumed to be 0 and variances were assumed to be: 

Var [𝒖𝒆] = [𝐀 ⊗ 𝐆 𝟎𝟎 𝑰𝝈𝒆𝟐] 
where A represented the Wright’s numerator relationship matrix, ⊗ was the Kronecker product, 

and G corresponds to a modified variance-covariance matrix of additive genetic random regression 

coefficients where the covariance between the intercept and the linear term was assumed to be 

zero, given no heifer had more than one observation for HPG (Speidel et al., 2018a). 𝑰 and 𝝈𝒆𝟐 

remained as described for the TM. A pedigree file from the CSU-BIC consisting of 14,140 

individual animals, with 971 and 3725 unique sires and dams, respectively, was used for the 

estimation of genetic parameters. The average inbreeding coefficient of the pedigree was 0.009.  

Within the TM methodology, heritability estimates on the underlying scale for both traits 

were obtained by calculating the ratio of the additive to the phenotypic variance. Conversely, 

variance estimates obtained using RRM are not directly comparable to those obtained with 

conventional models used in animal breeding evaluations (Speidel, 2011). Particularly, the 

estimation of (co)variances for genetic evaluations using RRM yield genetic and phenotypic 

variances for the shape of the polynomial implemented. For instance, in this particular study given 

a linear order was used for the RRM used to evaluate HPG, the resulting variance estimates 

corresponded to estimates for the intercept and linear term (slope) of the random polynomial. 
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Nonetheless, through a relatively straightforward conversion process, it is possible to use the RRM 

variance estimates to calculate observed variance estimates for each value of the covariate used. 

Therefore, it was possible to calculate heritabilities of HPG for every AFE. The formula utilized 

to perform such transformations is shown in equation 3.5: 

 𝑮̂ = Ф K Ф’ Eq. 3.5 

where 𝑮̂ represents a (co)variance matrix of HPG observations at t given AFE. K is a matrix of 

order k containing the variance components for the RRM coefficients contemplated in the model 

(e.g., intercept and linear) and, Ф is a matrix of order t x k containing orthogonal polynomial 

coefficients evaluated at t standardized AFE with elements Фij = Фj(xi), being the jth polynomial 

coefficient for the ith AFE (Fischer et al., 2004; Speidel, 2011). 

The predictions obtained with each method varied, where the TM predicted a single 

breeding value per animal on the underlying scale, and predictions obtained with RRM result in a 

vector equal to the order of the Legendre polynomials (e.g., each animal had a prediction for the 

intercept and the linear term of the random regression). Consequently, in order to compare 

predictions between the two methods, first it was necessary to condense the RRM predictions into 

single values per animal expressed on an observed scale for each AFE. Equation 3.6 shows the 

procedure to perform the conversions of the random regression coefficients obtained per each 

animal (e.g., intercept and linear term) back to specific AFE EPD:  

 𝑬𝑷𝑫̂𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅= 
𝒂𝒎 ∗ Ф𝒊 𝟐  Eq. 3.6 

where Фi corresponded to the coefficients of Legendre polynomials standardized to the ith AFE 

and am represented the random regression solutions (intercept and the linear terms) for the mth 

animal. Once the EPD for each particular age was obtained, the prediction corresponding to the 
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average AFE (422 d) was chosen as the reference age point to compare RRM predictions to those 

produced by the TM. 

Since TM predicted genetic merits on an underlying scale and RRM did it on an observed 

scale, both types of predictions were converted to a pseudo-probability scale as deviations from 

50% (random chance of conception) following the procedure outlined by Speidel et al. (2018a). 

Briefly, EPD obtained with each methodology were converted to a Z-score by dividing by the HPG 

phenotypic standard deviation; subsequently, each set of predictions were transformed utilizing a 

normal cumulative distribution function and then they were multiplied by 100 to express them as 

probabilities. The resulting predictions were compared through the calculation of Pearson (rp) and 

Spearman’s (rs) correlations and the estimation of the regression coefficient of EPD obtained with 

the RRM on those obtained with the TM. Analyses were performed using ASREML 3.0 (Gilmour 

et al., 2009), the Animal Breeder’s Tool Kit (Golden et al., 1992) and BOLT (Garrick et al., 2018). 

 Accuracy (ACC) calculations were performed according to the guidelines of the Beef 

Improvement Federation (2020) using Equation 3.7: 

 𝑨𝑪𝑪 = 𝟏 − √ 𝑷𝑬𝑽𝒊(𝟏 + 𝑭𝒊) ∗ 𝝈𝒂𝟐 Eq. 3.7 

where 𝝈𝒂𝟐 denoted the additive genetic variance for HPG, PEVi corresponded to the prediction 

error variance for the ith individual and 𝑭𝒊 represented the inbreeding coefficient of the ith animal. 

In the case of the TM, PEVi was obtained by squaring the standard error of prediction reported 

next to the BLUP for the ith animal on the ASREML output solutions file (Gilmour et al., 2009). 

Conversely, given the MME for the RRM were assembled manually using the BOLT software 

(Garrick et al., 2018) and the size of the equation systems were not prohibitive (e.g., 28365 for 

HPG and 28454 for FSCR, respectively), a direct inversion of the coefficient matrix was 
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performed. Then, the inverse elements of the diagonal block for each set of RR coefficients 

provided an estimate of the prediction error variance (PEVi) of breeding values at age i (e.g., 

average AFE of 422 d). Finally, once the PEV of each methodology was obtained, mean accuracies 

were calculated and were then compared to each other. 

3.2.4 Genetic evaluations for first-service conception rate in heifers 

Traditional EPD calculation for FSCR was performed using a univariate BLUP animal TM 

with a probit link function to convert binary observations to an underlying normal distribution. 

The model Equation (3.8) was: 

 y* = Xb + Zu + Qm + Ws + e Eq. 3.8 

where y* corresponded to a vector of transformed observations of FSCR on the underlying scale, 

b was a vector of unknown solutions for fixed effects that included breeding contemporary group 

defined as a combination between breeding year and semen type (e.g., conventional vs sexed), AI 

technician, age of dam (BIF classes), and the individual’s AFE as a linear covariate, u 

corresponded to a vector of unknown solutions of animal random effects, m was a vector of 

unknown solutions of mating group (e.g., inseminated in heat or during a mass mate) random 

effects and, s was a vector of unkwnown solutions for AI sire random effects. The matrices X, Z, 

Q and W were known incidence matrices relating observations in y* to fixed effects in b, as well 

as animal, mating group and service sire random effects in u, m and s, respectively. Finally, e was 

a vector of unknown residual errors. The mean of random effects was assumed to be 0 whereas 

variances were assumed to be equal to: 

Var [𝒖𝒎𝒔𝒆 ] = [   
 𝑨𝝈𝒂𝟐 𝟎 𝟎 𝟎𝟎 𝑰𝒎𝝈𝒎𝟐 𝟎 𝟎𝟎 𝟎 𝑰𝒘𝝈𝒔𝟐 𝟎𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  
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where A corresponded to the Wright’s numerator relationship matrix, 𝑰𝒎, 𝑰𝒘 and 𝑰𝒏 were identity 

matrices whose orders were equal to the number of mating groups, AI sires and observations, 

respectively. 𝝈𝒂𝟐, 𝝈𝒎𝟐 , 𝝈𝒔𝟐 and 𝝈𝒆𝟐 were the additive, mating group, AI sire and residual variances, 

respectively. Within this model, the residual variance (𝝈𝒆𝟐) was constrained to be equal to 1. 

Additionally, FSCR was regressed on AFE using a linear RRM with Legendre polynomials 

as the base function. The model in matrix form is presented in Equation 3.9 below: 

 y = Xb + Zu + Qm + Ws + e Eq. 3.9 

where y corresponded to a vector of binary observations of FSCR, b was a vector of unknown 

solutions for categorical fixed effects (breeding contemporary group, AI technician and BIF age 

of dam classes) and a linear fixed regression of FSCR on AFE, u corresponded to a vector of 

unknown solutions of animal random regression coefficients (intercept and linear) for additive 

genetic effects, m was a vector of unknown solutions for mating group random effects and, s was 

a vector of unknown solutions for AI sire random effects. X, Z, Q and W were known incidence 

matrices relating observations in y to fixed (b), animal (u) mating group (m) and AI sire (s) random 

effects, respectively. Lastly, e was the vector of unknown residual errors. Random effects were 

assumed to have a mean of 0 and variances equal to: 

Var [𝒖𝒎𝒔𝒆 ] = [  
 𝐀 ⊗ 𝐆 𝟎 𝟎 𝟎𝟎 𝑰𝒎𝝈𝒎𝟐 𝟎 𝟎𝟎 𝟎 𝑰𝒘𝝈𝒔𝟐 𝟎𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  

 
 

where A represented the Wright’s numerator relationship matrix, ⊗ was the Kronecker product, 

and G corresponded to a modified variance-covariance matrix of additive genetic random 

regression coefficients where the covariance between the intercept and the linear term was fitted 

to zero since no heifer had more than one observation for FSCR (Speidel et al., 2018a). The 𝑰𝒎, 
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𝑰𝒘, 𝑰𝒏, 𝝈𝒎𝟐 , 𝝈𝒔𝟐 and 𝝈𝒆𝟐 terms remained as described for the previous TM. For the estimation of the 

genetic parameters, the same pedigree file implemented in HPG analysis was utilized. Similarly, 

the same procedures described for HPG evaluations were followed for FSCR analyses in order to 

estimate heritabilities and obtain EPD within each statistical method (e.g., see equations 3.5 and 

3.6). The same comparative strategies previously mentioned for HPG predictions were followed 

to compare the outputs of each statistical model implemented to evaluate FSCR. Accuracy 

estimations were performed using Equation 3.7 and all analyses were performed using the same 

statistical packages previously described. 

3.3 Results and discussion 

3.3.1 Pregnancy percentages 

Percentages of pregnant heifers per breeding year and pregnancy type are shown in Figure 

3.3. Considering all years, the average heifer pregnancy was 89.2%, with the highest percentage 

of pregnant heifers occurring in 1997 with a 97.6% pregnancy rate and the lowest in 2002 with 

64% pregnancy rate. A similar average heifer pregnancy rate was reported by Doyle et al. (2000) 

when analyzing HPG in a slightly overlapping, although previous time window (1985 through 

1993), at the CSU-BIC. Authors of the previous study emphasized that fertility plays an important 

role within the breeding objective of the CSU-BIC, explaining that replacement heifers have been 

historically selected on the basis of their own performance as well as their dam’s record, retaining 

only fertile animals. Knowledge about the selection pressure placed on fertility within the herd 

was helpful to understand the high heifer pregnancy rates observed within the 28 yr span of data 

analyzed in the present study. Furthermore, considering that the Angus herd at the CSU-BIC 

corresponds to an experimental beef cattle population with short controlled breeding season 

lengths, results of this study agree with a previous report suggesting that high pregnancy rates are 
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fully achievable in well-managed, purebred cattle populations with breeding seasons of short 

duration (Brinks et al., 1990).  

 
Figure 3.3. Percentages of pregnant heifers per breeding year and pregnancy type. 
 

Among all heifer’s pregnancies recorded between 1992 and 2019, 46.2% were pregnancies 

obtained in response to a unique AI (e.g., first-service conception rate), while the remaining 53.8% 

were pregnancies obtained by natural service. The average FSCR in our study was slightly smaller 

than the 54.9% reported by Foxworthy (2019) when using information from the CSU-BIC research 

herd; nonetheless, important differences in age grouping strategies existed among the two studies. 

In Foxworthy (2019), females (heifers, primiparous and multiparous cows) up to 4 yr of age were 

lumped into a general group of "immature cows" following the BIF age of dam classification 

recommendations; whereas in the present study, only 12- to 15-mo-old heifers entering to their 

first breeding season were considered. In an additional study, Bormann et al. (2006) reported a 

FSCR of 60% when analyzing data of 3,144 Angus replacement heifers coming from 6 different 

herds spread across 5 states within the US; while the average FSCR reported for a Brangus cattle 
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population (n = 830) was of 53% (Peters et al., 2013). Differences among the aforementioned 

reports with the average FSCR obtained in the present study (46.2%) could be attributed to the 

heterogeneity of reproductive managements across herds (e.g., different estrus synchronization 

protocols), effectiveness of estrus detection programs and AI-technician’s expertise, since all these 

factors have a strong influence on this trait (Bormann et al., 2006).  

As expected within the present study, some classes within the categorical fixed effects 

included in the genetic models exhibited no variation (ECP problems); therefore, they were 

removed from the data for TM analyzes. Consequently, slightly smaller datasets were used with 

TM evaluations in comparison to those used with RRM. Summary statistics of the final number of 

observations available for each trait and each evaluation methodology are shown in Table 3.4. 

Specifically, a total of 21 observations (19 successful/2 unsuccessful) were removed for HPG 

threshold evaluations, while 144 observations (66 successful/78 unsuccessful) were deleted to 

implement the TM evaluation for FSCR. In this particular study, the possible bias introduced by 

pre-analytical editing processes within the TM methodology was minimal for both traits; however, 

the problem has been reported to have a more marked severity when working with larger datasets 

like those used in national genetic evaluations (Misztal et al., 1989; Phocas and Laloë, 2003). In 

this regard, the capability of RRM to incorporate all the available information has been reported 

as an attractive feature of that statistical methodology (Golden et al., 2018, Speidel et al., 2018a).  
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Table 3.4. Heifer pregnancy, first-service conception rate, age at first exposure and age of dam 
summary statistics per statistical methodology 

Methodology Trait N Average SD Min Max 

TM1 

Heifer pregnancy 4313     0.85   0.362     0     1 

Age at first exposure (d) 4313 422.10 21.100 347 479 

Age of dam (yr) 4115     4.90    2.800    2   13 

First-service conception rate 4190     0.47   0.499    0     1 

Age at first exposure (d) 4190 422.00 21.200 347 479 

 Age of dam (yr) 3996     4.90   2.800     2    13 

RRM2 

Heifer pregnancy 4334     0.85   0.362     0     1 

Age at first exposure (d) 4334 422.10 21.100 347 479 

Age of dam (yr) 4136     4.90   2.800     2    13 

First-service conception rate 4334     0.46   0.499     0     1 

Age at first exposure (d) 4334 422.10 21.100 347 479 

 Age of dam (yr) 4136     4.90   2.800     2    13 
1TM = threshold model, 2RRM = random regression model. 

3.3.2 Heritabilities 

Heritability estimates for HPG and FSCR obtained with each statistical methodology are 

presented in Table 3.5. The heritability (h2) estimate for HPG of 0.04 obtained with the TM was 

considerably smaller than the moderate heritabilities for Red Angus cattle reported by McAllister 

et al. (2011) and Boldt et al. (2018) of 0.17 and 0.12, respectively. Similarly, it was smaller than 

the one communicated by Doyle et al. (2000) for the CSU-BIC black Angus heifer population 

(0.21) and the h2 estimate of 0.14 reported for Hereford cattle (Evans et al., 1999). Nonetheless, 

the estimate obtained in the current study was in a smaller range of estimates (0.03 to 0.06) reported 

for Angus and Hereford cattle by other authors (Toelle and Robinson, 1985; Mathiews et al., 1995). 
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 Table 3.5. Heritability estimates (h2 ± SE) for heifer pregnancy (HPG) and first-service 
conception rate (FSCR) according to the statistical method employed (these are not transformed 
heritabilities). 

Methodology Trait  h2 ± SE 

TM1 

HPG 

 0.04 ± 0.03 

RRM2 
Intercept 0.02 ± 0.02 

Linear 0.11 ± 0.09 

TM1 

FSCR 

 0.03 ± 0.02 

RRM2 
Intercept 0.003 ± 0.012 

Linear 0.133 ± 0.079 
1TM = threshold model, 2RRM = random regression model. 
 

A possible explanation of the low h2 estimate for HPG obtained in this study could be the 

extreme phenotype incidences recorded for this trait across the time period analyzed (1992 to 

2019). Roughly, frequencies of 90% success and 10% failure in heifer pregnancy rates were 

observed at the CSU-BIC within the 28 yr period of data included, with 15 years having pregnancy 

rates even higher than 90%. Although Dempster and Lerner (1950) suggested that when 

heritability estimates are calculated on an underlying scale, they become independent of the 

frequency of the trait; Meijering and Gianola (1985) explained that h2 estimates obtained using the 

threshold theory are unstable when the frequencies of a binary response variable are extreme (e.g., 

when frequencies surpass a 80:20 ratio). In this regard, Lopes et al. (2000) graphically showed the 

influence of phenotypic incidences on the heritability estimates obtained using Dempster and 

Lerner’s method (1950) using simulation techniques. Briefly, when phenotype incidence was 

intermediate (between 20 to 80%), heritability estimates were closer to the simulated true 

heritability of a binary trait; however, when the incidences were extreme (below 20 or higher than 

80%), an underestimation of the heritability occurred. 
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Regarding the heritability estimates obtained for the random regression coefficients for 

HPG, similar results were reported for Red Angus cattle. Specifically, the estimate for the intercept 

term in the present study was lower (0.02 vs 0.10); but the estimate obtained for the linear term 

was higher (0.11 vs 0.10) than those reported by Speidel et al. (2018a). Transforming the RRM 

variance estimates obtained for HPG, it was possible to calculate h2 estimates for HPG across all 

the range of AFE included in the dataset (Figure 3.4). In general, all h2 estimates fell within 

previous reports indicating that up to 14% of the variation within this trait were attributable to 

differences in additive genetics (Mathiews et al., 1995; Evans et al., 1999; Boldt et al., 2018). A 

particular estimate of interest was the one obtained at the average AFE (422 d) of the Angus heifers 

population contemplated in this study, since it served as a reference point to compare it to the 

estimate produced by the TM.  

 
Figure 3.4. Changes in heritability estimates for heifer pregnancy and their relationship with the 
number of records of ages at first exposure in Angus heifers. 
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The observed h2 estimate at 422 d was 0.02, which was lower than the 0.04 obtained on the 

underlying scale with the TM. Variation relative to the scale in which the trait was analyzed has 

been reported by Buddenberg et al. (1989), for instance, HPG h2 estimates on the observed scale 

were consistently lower than estimates obtained on the underlying scale. Particularly, authors 

reported that in the case of Angus heifers, h2 estimates were 0.17 and 0.34 on the observed and 

underlying scales, respectively. Whereas the estimates for Hereford and Polled Hereford heifers 

were 0.04 and 0.05 on the observed scale and 0.08 and 0.10 on the underlying scale, respectively. 

Focusing exclusively on results obtained using random regression procedures, Speidel et al. 

(2018a) reported a similar outcome to the present study from an analysis of Red Angus data, since 

the h2 estimate obtained at 460 d of age was equal to 0.09, a value considerably lower than the 

0.24 used by the Red Angus American Association for HPG genetic evaluations using TM. 

Interestingly, the h2 estimate obtained in the present study at the age of 460 d of age was 0.08, 

similar to the previously discussed estimate obtained using RRM for Red Angus. 

In the case of FSCR, the h2 estimate obtained on the underlying scale using the TM was 

0.03, which agrees with a previous report in Angus heifers indicating the same value (0.03; 

Bormann et al., 2006). Other reports have indicated FSCR h2 estimates ranging between 0.06 to 

0.22, however, such estimates have been obtained mainly in crossbred populations in which a 

greater phenotypic variation may exist within the Bos indicus-influenced heifers relative to 

purebred animals (Dearborn et al., 1973; Fortes et al., 2012; Peters et al., 2013). Conversely, 

heritability estimates for the resulting intercept and linear term of the RRM were 0.003 and 0.133, 

respectively. After transforming these RRM variance estimates, a h2 of 0.006 for FSCR at the 

average AFE (422 d) was observed (just as an extra, the h2 at 460 was 0.075). Using a bivariate 

sire random regression model, De Haas et al. (2007) reported a h2 estimate for conception rate at 
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first insemination in Holstein heifers of 0.01 (using body condition score as the secondary trait), 

such result is considerably close to the one obtained in the present study. Similar to HPG results, 

the h2 estimate obtained with the RRM was lower than that obtained using the TM. This result 

agrees with a plethora of reports suggesting that heritabilities calculated on an observed scale are 

consistently lower than those obtained on the underlying scale (Meijering, 1984; Johnston et al., 

2014; Silvestre et al., 2019). Nonetheless, the pattern of changes in h2 estimates for FSCR across 

the range of AFE contemplated in this study agreed with previous reports for this trait (Figure 3.5). 

Furthermore, regardless of the age-associated variations, it was clear that environmental conditions 

greatly influence the ability of a heifer to become pregnant in response to her first service. 

 
Figure 3.5. Changes in heritability estimates for heifer first-service conception rate and their 
relationship with the number of records ages at first exposure in Angus heifers. 
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inflate the genetic variances at the beginning and the end of the data range (Shaeffer and Jamrozik, 

2008). This occurs because RRM are sensitive to changes in data distribution, particularly, to 

reductions in the number of records associated with the covariate implemented (Brügemann et al., 

2013). Figures 3.4 and 3.5 show the distribution of HPG and FSCR records associated with the 

ages at first exposure of the Angus heifers from the CSU-BIC. The significant reductions in the 

number of observations registered at the extremes of the data range could explain the substantial 

increases in h2 estimates for these ages. Similar data structures have led to comparable variations 

in h2 estimates for traits like days open and conception rate of dairy cattle when implementing 

random regression models (Yin et al., 2012; Brügemann et al., 2013). 

3.3.3 Comparison of genetic predictions 

With respect to the genetic predictions performed for both traits and with each 

methodology, EPD summary statistics are presented in Table 3.6. For both traits, results for the 

mean EPD were similar between models; however, a wider range in prediction values was 

observed with the TM. The lower spread in EPD observed within the RRM prediction could be 

explained by the smaller h2 estimates obtained with this methodology for the average AFE. Speidel 

et al. (2018a) reported a similar outcome when applying RRM in the genetic prediction of HPG in 

Red Angus cattle. 

Table 3.6. Heifer pregnancy and first-service conception rate expected progeny differences (at the 
average age at first exposure) summary statistics according to the statistical method implemented. 
Methodology Trait N Average SD Min Max 

TM1 
HPG 14,140   0.411 2.03 -8.88 9.61 
FSCR 14,140 -0.119 1.33 -7.88 5.85 

RRM2 
HPG 14,140 0.197 0.57 -2.59 2.95 
FSCR 14,140 0.019 0.27 -1.12 1.45 

1TM = threshold model, 2RRM = random regression model. 
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Pearson (rp) and Spearman’s (rs) correlations among EPD obtained with the TM and RRM 

for both traits are shown in Table 3.7. In general, results suggested that predictions were 

moderately to highly correlated and similar animal rankings were obtained with both methods. 

Despite the differences between TM and RRM, almost the exact same ranking of animals was 

obtained for HPG. The previous suggested that RRM could potentially substitute for TM in the 

genetic evaluations for HPG in beef cattle. Similar results (e.g., rp = 0.87 and rs = 0.89) were 

reported by Speidel et al. (2018a) in a study that compared genetic predictions for HPG obtained 

with TM and RRM. 

Table 3.7. Pearson correlation, rank correlation and regression coefficients of  
predictions obtained with each statistical method 

Trait Pearson correlation Rank correlation Regression coefficient 

HPG1 0.97 0.96 0.27 

FSCR2 0.75 0.72 0.15 
      1HPG = Heifer pregnancy 
    2FSCR = First-service conception rate 
 
Regarding FSCR, correlation results (rp and rs) were lower than for HPG, but were strong 

enough to consider a possible preference for RRM over TM in future genetic evaluations given 

the ability of RRM to utilize all available data. The previous could be especially useful when 

considering the larger list of categorical fixed effects influencing FSCR and the increased chances 

of occurrence of ECP potentially leading to greater information loses within the TM approach. 

Similar degrees of agreement between predictions obtained with TM and RRM have been reported 

for stayability (STAY) in Angus cattle. Specifically, Sánchez-Castro et al. (2017) reported Pearson 

correlations ranging from 0.59 to 0.83 for STAY genetic predictions at different ages (from 3 to 6 

yr of age), suggesting that predictions obtained with both methodologies were similar. The same 

authors reported Spearman’s correlations between 0.64 and 0.65 when analyzing STAY at the age 

of 6 using TM and RRM that included endpoints beyond 6 yr of age (Sánchez-Castro et al., 2019). 
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Such results indicated a significant reranking of animals between methodologies; however, 

considerable differences in the amount of data incorporated with each statistical method could 

explain the lower rank correlations reported in that study, when compared to those found in the 

present investigation. For their part, Lewis and Brotherstone (2002) reported Pearson correlations 

ranging from 0.81 to 0.91, and rank correlations from 0.77 to 0.78 when predicting breeding values 

for growth traits utilizing RRM and a univariate animal model. Authors of that study concluded 

that, depending on the age of interest, for genetic predictions, it was possible that the same 

individuals resulted in the best selection candidates with both methodologies. The regression of 

predictions obtained with the RRM on those obtained with TM for both traits of interest in the 

present study showed slight underestimations of the genetic merit using the RRM in comparison 

to TM (β1 for HPG = 0.27 and β1 for FSCR = 0.15). Recalling that both types of predictions (TM 

and RRM) were converted to a pseudo-probability scale as deviations from 50% (Speidel et al., 

2018a); these underestimations were not likely a result of different prediction scales, but were 

probably reflections of the lower h2 estimates obtained for both traits using RRM.  

3.3.4 Comparison of accuracies of prediction 

Lastly, mean accuracies for HPG and FSCR calculated at the average AFE within each 

methodology are shown in Figures 3.6 (A-D) and 3.7 (A-D), respectively. In general, mean 

accuracies for both traits and with both methodologies were low (<0.035). When considering all 

animals (Figure 3.6 A), the mean accuracy for HPG predictions obtained with the TM was 0.020 

with a minimum of 0.000 and a maximum of 0.151. Alternatively, the mean accuracy for the same 

trait when analyzed using a RRM was 0.024 with values that ranged between 0.001 and 0.179. As 

expected, mean accuracies estimated for sires were higher than those obtained for the general 

population in both methodologies; however, mean values were slightly higher within the RRM 
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methodology for sires that have produced progeny in the last 5 (Figure 3.6 B) and 3 years (Figure 

3.6 C), respectively. Similarly, when considering the youngest selection candidates (1-yr-old 

males), accuracies obtained with the RRM yielded higher values in comparison to those obtained 

with the TM (Figure 3.6 D). In the case of the accuracy values associated with the genetic 

predictions of FSCR, when taking into account the entire pedigree (Figure 3.7 A), the mean value 

obtained with the TM was 0.021 with a minimum of 0.000 and a maximum of 0.182. For the same 

trait but within the RRM methodology, the mean accuracy value was 0.029 with a range between 

0.013 and 0.151. 

 

 

 

 

 
 
 

 

 

 

 

 

 

Figure 3.6. Mean accuracies for heifer pregnancy genetic predictions at the average age of first 
exposure (422 d) obtained with each statistical methodology. A) Mean accuracy for all animals in 
the pedigree (n = 14,140), B) Mean accuracies for sires that have produced progeny in the last five 
yr (n = 85), C) Mean accuracies for sires that have produced progeny in the last three yr (n = 51), 
D) Mean accuracies of the 1-yr-old males potential selection candidates (n = 180). Different letters 
indicate a statistical difference at the P < 0.05 level among methodologies according to the Fisher’s 
least significant difference test. 
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Figure 3.7. Mean accuracies for heifer first-service conception rate predictions at the average age 
of first exposure (422 d) obtained with each statistical methodology. A) Mean accuracy for all 
animals in the pedigree (n = 14,140), B) Mean accuracies for sires that have produced progeny in 
the last five yr (n = 85), C) Mean accuracies for sires that have produced progeny in the last three 
yr (n = 51), D) Mean accuracies of the 1-yr-old males potential selection candidates (n = 180). 
Different letters indicate a statistical difference at the P <0.05 level among methodologies 
according to the Fisher’s least significant difference test. 

 
 
Essentially, the same superiorities described for the mean accuracy values obtained with 

RRM in HPG analyzes were found for FSCR evaluations. Sires that have produced progeny in the 

last 5 years (Figure 3.7 B), was well as sires producing progeny in the 3 last years (Figure 3.7 C) 

and the youngest selection candidates (1-yr-old males; Figure 3.7 D), ended up with higher 

accuracies of predictions within the RRM method than with the TM method. The low accuracy 

values attained with both methodologies represent a result somewhat expected when taking into 

account the main factors affecting accuracy of genetic predictions: number of records, heritability 

of the trait, as well as, pedigree relationships (Bourdon, 2000). Among the previous factors, the 
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low heritability estimates obtained for the traits under study, as well as the relatively limited 

number of records available for the predictions may represent the main reasons for such low 

accuracies. In this regard, it has been mentioned that heritability plays a central role in formulas 

applied for the calculations of accuracy of predictions (Korsgaard et al., 2002). Basically, if h2 is 

high, then accuracies of prediction are also high, whereas if h2 is low, accuracies of prediction are 

low until a considerable number of observations are recorded. The reason for the previous is simple 

and was explained by Bourdon (2000), h2 measures the strength of the relationship between 

breeding values and phenotypic values, as such, the stronger the relationship, each animal’s 

performance record is a better indicator of that animal’s breeding value.  

Speidel et al. (2018b) reported an average accuracy of 0.604 for a HPG genetic prediction 

in Red Angus cattle that used a total of 104,100 phenotypic observations and a heritability on the 

underlying scale equal to 0.10. As an important note, within that study, the authors included a 3-

generation pedigree of animals with valid phenotypes; therefore, no male half-sibs of heifers 

producing observations were considered within the evaluation. Conversely, in the current study, 

the vast majority of males within the pedigree were evaluated based solely in single observations 

of their female collateral relatives and not with progeny derived observations. Additionally, 

accuracy values reported in Speidel et al. (2018b) were presented as true accuracies (𝑟𝑇𝐼), whereas 

in the present study results were BIF accuracies (𝑟𝐵𝐼𝐹), whose rate of increase towards 1 is much 

less pronounced than the rates of true accuracies or reliabilities (Van Vleck, 2016).  Transforming 

the true accuracy for HPG reported by Speidel and coworkers to a BIF accuracy (𝑟𝐵𝐼𝐹  =  1 − √1 − 𝑟𝑇𝐼2 ), results in a 𝑟𝐵𝐼𝐹 of 0.203, which is still being greater than the mean 

ACC obtained in this study for the TM. However, evident differences in number of records, data 
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structures and genetic parameters utilized among studies, are helpful to understand the big 

differences between contrasting results. 

Regarding the mean accuracies for FSCR, no specific reports for accuracies of genetic 

predictions for this trait were found in literature. Perhaps the most comparable study was 

performed by Veerkamp et al. (2001), in which accuracies for the interval from first to second 

calving in Holsteins cows was reported including FSCR as a correlated trait using RRM. In that 

study, authors emphasized the benefits of using correlated traits to add accuracy in genetic 

predictions for dairy sires with relatively small number of daughters, nonetheless, no specific 

accuracies for FSCR were reported. Despite the previous, an interesting description of the variation 

in breeding value accuracy as a function of the number of daughters per sire was provided for 

calving interval. According to the authors, when more than 100 daughters of a particular sire had 

phenotypic observations of calving interval, minimal increments in accuracy of prediction were 

achieved when adding a secondary trait.  

Applying such conclusions to the present study, it is highly probable that analyzing FSCR 

(as well as HPG) in a multiple-trait approach represented a good strategy to increase accuracy of 

prediction, since that is one of the main benefits of multivariate analyses; however, that particular 

analytic scenario was beyond of the scope of the current investigation. Further investigation of 

such a strategy might be more difficult considering that within beef cattle, the achievement of high 

numbers of progeny records per sire represents a much more daunting task than for dairy cattle. 

For instance, in the data available in the present study, only 9 sires had more than 50 daughters 

with phenotypic records for HPG and FSCR (Table 3.8). A similar number of daughter records by 

sire was reported by Bormann et al. (2006) when evaluating HPG and FSCR in Angus heifers from 

6 different herds. 
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Table 3.8. Number of daughter records of  
heifer fertility traits per sire 

Number of daughters Sires 
<5 141 
5 to 9 93 
10 to 14 39 
15 to 19 27 
20 to 29 22 
30 to 39 14 
40 to 49 9 
>50  9 

 
Finally, is important to acknowledge that increments in accuracy of predictions obtained 

with RRM were minimal in comparison to the accuracies obtained using TM in both traits of 

interest. A plausible cause of the similarities found between the mean accuracies obtained with 

each methodology could be that no extreme differences within datasets used with each method 

were present. Furthermore, another possibility relies in the fact that the non-repeated nature of the 

traits might constrained one of the main capabilities of RRM, which is precisely to more 

appropriately model the covariance structure of longitudinal traits (Meyer, 2004; Schaeffer, 2004; 

Schaeffer and Jamrozik et al., 2008).  

Increments in mean accuracies of prediction ranged from 0.005 and 0.01 for HPG and 

FSCR, respectively. For both traits, the slight increases in accuracy of predictions were more 

evident in sires producing progeny within the last 5 or 3 yr and within the youngest selection 

candidates (1-yr-old males) of the CSU-BIC. Similar, but higher increments in accuracy of 

predictions of young selection candidates, were reported in a simulation study that compared the 

outcomes of RRM and multiple-trait models (MTM) in the genetic evaluation of weight traits 

(Meyer, 2004). Using field data, Boligon et al. (2011) reported that the highest gains in accuracy 

when using RRM as opposed to MTM were obtained at ages with a low number of weight records 
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(e.g., young animals). Although differences in accuracies found in the present study were minimal, 

and maybe from a practical perspective even insignificant, it was highly likely that distortions 

originated from the removal of observations suffering from ECP problems within the TM method 

were not actually severe. Nonetheless, even with such small differences among datasets, results of 

this study support the hypothesis that RRM could yield more accurate results than TM. Evidently, 

additional research including larger datasets and preferably utilizing information coming from 

different herds would be necessary to confirm or refute the current results. 

3.4 Conclusion 

This study compiled evidence regarding the feasibility of the application of random 

regression techniques in genetic evaluations of singly-observed binary traits like HPG and FSCR. 

Furthermore, the moderate to strong Pearson and Spearman’s correlations found between 

predictions obtained with RRM and TM, suggested that RRM represent a viable option to 

substitute traditional genetic evaluation procedures of heifer binary traits. Lastly, even when 

differences in accuracies of predictions for both traits were minimal, RRM demonstrated their 

ability to overcome ECP problems and utilize all available information to produce more accurate 

results in comparison to TM. 
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CHAPTER 4 – THRESHOLD AND RANDOM REGRESSION MODELS FOR THE 

GENETIC EVALUATION OF LONGITUDINAL BINARY FERTILITY TRAITS IN 

MULTIPAROUS BEEF COWS 

 
 
 
Summary 

Stayability (STAY) and first-service conception rate (FSCR) are two economically relevant traits 

in beef cows associated with longevity and superior fertility. Given the binary outcomes of their 

phenotypes, genetic evaluations for both traits rely on the use of threshold models (TM). 

Nonetheless, since their binary observations can be assigned to various discrete points in time 

during a cow’s lifetime, the implementation of random regression models (RRM) might be 

attractive because of their ability to include any range of age endpoints for which phenotypic data 

is available. Few formal comparisons have been reported between RRM and TM genetic 

evaluations for binary fertility longitudinal traits in beef cattle. Therefore, the objectives of this 

chapter were to compare genetic evaluations for STAY and FSCR using RRM by contrasting 

resulting EPD and genetic parameters to those obtained with TM. Additionally, differences in 

accuracies of prediction between methodologies were also evaluated. Calving data, as well as, 

breeding and reproductive ultrasound records of multiparous Angus cows from the John E. Rouse 

Colorado State University Beef Improvement Center collected between 1990 to 2019 were used 

for the study. Ten STAY endpoints defined as whether a cow calved at age 3, 4, and up to 12 yr 

given she calved as a 2-yr-old were assigned observations (1, successful; 0, unsuccessful). 

Similarly, ten FSCR age specific observations were assigned depending on the age of exposure of 

the females (ages ranged from 2 to 11 yr) and were defined by fetal age at pregnancy inspections 

performed approximately 130 d post artificial insemination. Traditional evaluation of STAY was 
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performed using a TM that only considered the success/failure of females reaching the age of 6 

(STAY06), since this age is considered as the financial break-even for cows within the beef 

industry. Conversely, given there is no specific age of interest for a multiparous cow to conceive 

in response to her first AI, the traditional evaluation for FSCR was performed using a repeatability 

TM. Alternative evaluations for both traits were performed by regressing each trait on its 

corresponding age specific endpoints using univariate linear RRM with Legendre Polynomials as 

the base function. Heritability (h2) estimates obtained for STAY06 were 0.10 and 0.04 for the TM 

and the RRM, respectively. In the case of FSCR, h2 estimates were 0.03 for the TM and ranged 

between 0.02 to 0.05 for all the ages at exposure considered in the RRM. Pearson (rp) and 

Spearman’s (rs) correlations between EPD obtained with each method for STAY06 were 0.84 and 

0.86. For FSCR, correlations were calculated between the EPD obtained with the repeatability TM 

and each one of the age-specific EPD obtained with the RRM; therefore, results for the rp ranged 

between 0.70 to 0.99; whereas results for rs ranged between 0.69 to 0.99, depending on the age of 

exposure considered in the RRM. Although mean accuracies of prediction were higher using RRM 

than using TM for both traits, increments were much more relevant for STAY than for FSCR. 

These results suggested that a RRM genetic prediction for STAY06 is more efficient than the 

traditional TM evaluation for this trait, since it yielded higher accuracy of prediction. More 

importantly, the strong degrees of concordance found between predictions obtained with both 

methodologies for STAY06, suggested that RRM could effectively substitute TM in genetic 

evaluations of this trait. For FSCR, no tangible improvements were achieved by evaluating the 

trait using random regression techniques, mainly due to the lack of influence that age had on the 

success or failure of cows to conceive in response to their first AI at consecutive ages. 
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4.1 Introduction 

Female reproductive efficiency represents a major profitability driver of beef cattle 

operations since the quantity of beef produced relies on the number of calves born and raised per 

breeding cycle (Grossi et al., 2008). Producing the greatest number of calves each year depends 

on the ability of the cows to achieve calving intervals of 365 d (Walmsley et al., 2018). Such 

successful female reproductive ability is a key element for an important beef cattle fertility trait 

like stayability (STAY), since the trait measures the probability of a cow to produce one calf per 

year up to a specific age endpoint, normally established at 6 yr of age (Snelling et al., 1995). 

Although a very low proportion (~7.6%) of beef operations in the US use artificial insemination 

(AI) as a reproductive management tool (Lamb and Mercadante, 2016); superior first-service 

conception rates (FSCR) may also contribute to accomplish calving intervals of less than a year. 

Females conceiving in response to their first AI will calve earlier in the following calving season, 

and consequently, will have a greater chance to re-breed within a year (Deutscher et al., 1991). 

The biology of traits like STAY and FSCR establishes that their phenotypes be recorded 

on a binary scale where values of 1 represent successful observations (i.e., pregnant) and values of 

0 represent the opposite (i.e., non-pregnant). Given the categorical nature of their phenotypes, 

genetic predictions for these fertility traits have been performed using threshold models (TM; 

Gianola and Foulley, 1983; Harville and Mee, 1984). Although no formal genetic evaluations have 

been implemented for FSCR within any US breed association; in the case of STAY, significant 

genetic improvements have been made through the use of TM in several beef breeds (Snelling et 

al., 1995; Van Melis et al., 2007; Crews and Enns, 2008). Nonetheless, the inability of TM to 

include information from subclasses of categorical fixed effects with no variation represents an 

important limitation of the utilization of all phenotypic records available (Golden et al., 2018). 
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Furthermore, restrictions related to the age-specific definition of traits like STAY have also been 

a motive of concern due to the considerable amount of time (e.g., 6 yr) needed to collect 

observations useful to accurately evaluate sires (Brigham et al., 2007; Speidel et al., 2018a). 

Even when the reproductive success or failure of a female is a binary observation within a 

year, depending on the number of years that a cow has an opportunity to express such performance 

within the herd, those events are also longitudinal. Consequently, the application of more robust 

analytical techniques like random regression models (RRM) represent an alternative for the 

evaluation of binary fertility traits to consecutive ages (Schaeffer, 2004; Jamrozik et al., 2013). 

Interesting features of such approach are the capabilities of RRM to include any range of age 

endpoints for which phenotypic data is available and their flexibility to incorporate information 

from class levels of categorical fixed effects with no variation (Golden et al., 2018). Furthermore, 

possibilities of generating age-specific genetic predictions and the easy modeling of time-

dependent environmental effects represents also attractive characteristics of this method (Jamrozik 

et al., 2013). Given RRM have a superior ability to utilize all available phenotypic information 

when compared to TM; we hypothesized that RRM genetic predictions for STAY and FSCR could 

yield more accurate predictions in comparison to those obtained using a TM. Hence, the objective 

of this chapter was to perform a comparison between pedigree-based genetic predictions of STAY 

and FSCR, obtained using both TM and RRM. 

4.2 Materials and Methods 

Data used in this study were obtained from an existing database; however, animals within 

the experimental location were managed according to the Institutional Animal Care and Use 

Committee (IACUC) guidelines, covered in most recent years by the IACUC number 18-8367A. 
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4.2.1 Data collection and description 

Calving performance data from 1,713 Angus females (progeny of 302 sires and 1,068 

dams) collected between 1993 and 2019 at the John E. Rouse Colorado State University Beef 

Improvement Center (CSU-BIC) were used for the STAY study. Stayability observations were 

assigned to dams according to their age in days at each calving. Given every female calved as a 2-

yr-old, starting from their third calving, the value of 1 (successful) or 0 (unsuccessful) was 

attributed to cows that either produced a calf or did not produce a calf within each particular age 

endpoint (ages ranging from 3 to 12 yr). A total of ten STAY endpoints were defined for the study, 

ranging from STAY03 through STAY12, forming a final data set of 8,907 observations. 

A slightly larger dataset was available for FSCR analyses, since observations were based 

on breeding and ultrasound records collected between 1990 to 2019 from a total of 2,179 dams 

(progeny of 353 sires and 1,342 dams). Within each breeding year, cows were estrous 

synchronized and subjected to a single AI event prior to their placement into single-sire breeding 

pastures approximately 2-wk after the insemination (Crawford et al., 2016). Considering each 

year's specific AI date as the beginning of its respective breeding season (usually around June 15), 

FSCR was defined as the probability of a cow conceiving in response to her first AI service and 

maintaining such pregnancy after the end of a 60-d breeding season. Observations for FSCR (1, 

successful; 0, unsuccessful) were defined by fetal age obtained from 2 ultrasound pregnancy exams 

performed approximately 65 ± 5 d and 105 ± 5 d post-AI. Age at exposure of every female were 

calculated as the difference between an individual’s birthdate and all its respective recorded 

breeding dates (ages ranged from 2 to 11 yr). Then, a total of ten FSCR age specific observations 

were assigned depending on the age of exposure of the females, ranging from FSCR02 through 

FSCR11. The final data set contained a total of 9,584 observations. 
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4.2.2 Testing fixed and random effects 

Recommendations regarding potential fixed effects influencing STAY in genetic 

evaluations have been outlined within the Beef Improvement Federation’s guidelines (BIF, 2020); 

however, no official recommendations were found for genetic evaluations of FSCR. Therefore, 

with the objective of the identification of important factors influencing these traits, incremental 

Wald F-tests were performed using the statistical software package ASREML 3.0 (Gilmour et al., 

2009) according to equation 3.1. Possible fixed effects investigated for STAY were age at first 

calving (AFC), calving ease score of the immediate previous calving (CE), post-partum interval, 

breeding weight, breeding year, breeding pasture (confounded with service sire) and age at calving. 

In the case of FSCR, potential fixed effects included AFC, CE, post-partum interval, breeding 

weight, breeding year, synchronization protocol, semen type (e.g., sexed vs conventional), AI 

technician and breeding age. Results from the Wald F-tests performed for all the potential fixed 

effects of both traits are shown in Table 4.1. 
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Table 4.1. Results of Wald F tests for fixed effects for stayability (STAY) and first-service 
conception rate (FSCR) in Angus cows. 
Trait Effect NumDF† DenDF† F-inc† P-inc† 

STAY 

Age at first calving (mo)   7     20.5 5061.75 <0.001 

Age at calving (yr)   1     58.1     15.38 <0.001 

Breeding pasture (and/or service sire) 72 6853.9       7.07 <0.001 

Breeding weight (lbs)   1   522.1       9.29   0.003 

Breeding year 26 3440.0   217.81 <0.001 

Post-partum interval (d)   1 3004.4       1.06   0.305 

Previous calving ease score   4 3518.4 1170.52 <0.001 

FSCR 

Age at first calving (mo)   1 1631.0 14.04 <0.001 

Age at exposure (yr)   1     42.0   0.01   0.928 

AI technician 96 5838.0   1.90 <0.001 

Breeding weight (lbs)   1 6157.9 25.25 <0.001 

Breeding year 27   439.2 31.42 <0.001 

Post-partum interval (d)   1 8177.1   4.38   0.038 

Previous calving ease score   6 3604.4   2.85   0.009 

Semen type 14 2126.7 10.07 <0.001 

Synchronization protocol 30 4112.6   2.00   0.001 
†NumDF = Numerator degrees of freedom (number of non-singular equations involved in the term); DenDF = denominator degrees 
of freedom (estimated according to the adjustments recommended by Kenward and Roger, 1997); F-inc = additional variation 
explained by the term being tested when added lastly to the model. P-inc = probability value. 

 

Among the systematic effects tested for STAY, all of them resulted as significant sources 

of variation with the exception of post-partum interval; therefore, this variable was not included 

as predictor in the genetic evaluations for STAY. Possibly the reason of why post-partum interval 

did not explained variations in STAY is that, phenotypes for this trait include females conceiving 

as a result of a natural service. As such, even if cows fail to conceive during their first exposure 

within a particular breeding season, they still have opportunities to conceive naturally. Regarding 

the effects examined for FSCR, the only one that did not account for a significant amount of 
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variability in the phenotype was age at exposure. Such result suggests that the application of a 

linear RRM for the evaluation of cow FSCR may not be appropriate, since no evidence of variation 

associated with age were identified in this particular data set. This finding is opposite to a report 

by Azzam et al. (1989) in where age did significantly influence FSCR in beef cows; however, 

important differences in the age range for which observations were considered could explain 

contrasting results between studies. For instance, in the present study observations spanned ages 

from 2 to 11 yr, whereas in Azzam’s and colleagues’ study, the age range considered was between 

1 and 3.5 yr. Acknowledging that according to the Wald F test, age could be excluded from the 

model to analyze FSCR, with the purpose of preserving the longitudinal nature of the trait it was 

decided to include this effect for further analysis; however, results of the RRM must be interpreted 

with caution. 

The next step taken before performing the genetic evaluations was the determination of 

contemporary groups (CG) for each trait. Since a CG is a group of animals that have experienced 

a similar environment with respect to the expression of a given trait (Bourdon, 2000); the effects 

of breeding year and breeding pasture (specific to each breeding year and confounded with natural 

service sire) were combined to form CG for STAY. In the case of FSCR, given synchronization 

protocols and semen types were specific to each breeding year, all these effects were combined to 

create CG for this trait. Forming contemporary groups in this manner resulted in a total of 139 and 

77 unique CG for STAY and FSCR, respectively. Summary statistics of the contemporary groups 

formed for each trait in this study are shown in Table 4.2. 
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Table 4.2. Summary statistics outlining the number of cows  
represented per contemporary group definition in both fertility traits. 

 STAY1 FSCR2 

N 139   77.0 

Average   52.7 124.4 

SD   30.4 122.1 

Minimum     6.0     4.0 

Maximum 217.0 438.0 

Average pregnancy rate     0.92     0.46 

             1STAY = Stayability. 
             2FSCR = First-service conception rate. 

 
Before performing the genetic evaluations for FSCR, two extra random effects were also 

tested. These variables were mating group (e.g., cows being inseminated 12 h after they were seen 

in heat or during a mass mate) and AI sire (sire that produced the semen straw used during the 

specific AI event). Following the procedure described by Beckman et al. (2007), the utility of the 

inclusion of these variables to the model was tested using a likelihood ratio test (LRT), 

implementing equation 3.2. Analyses were performed utilizing the package “ordinal” 

(Christensen, 2015) within the statistical software R (R Development Core Team, 2013). Results 

of the LRT are shown in Table 4.3.  

 
Table 4.3. Results of log-likelihood ratio tests for random effects for first-service conception rate 
(FSCR) in Angus heifers. 
Effect* LogLf

† LogLr
† -2(LogLr

†- LogLf
†) df P-value 

AI sire 1847.52 1845.64     3.76 306 <0.0001 

Mating group 1847.52 1763.57 167.90     2 <0.0001 
*AI sire = sire that produced the semen straw used during the specific AI event; Mating group = cows inseminated 
during heat or during a mass mate. 
†LogLf = log-likelihood value of the full model that included all effects; LogLr = log-likelihood value of the reduced 
model that included all effects except for the one being tested (indicated in the effect column). 
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4.2.3 Genetic evaluations for Stayability 

Traditional EPD calculation for STAY06 was performed using a univariate BLUP animal 

TM along with a probit link function to convert binary observations to an underlying normal 

distribution. The model Equation (4.1) was: 

 y* = Xb + Zu + Qcg + e Eq. 4.1 

where y* corresponded to a vector of transformed observations of STAY06 on the underlying 

scale; b was a vector of unknown solutions for fixed effects, which included AFC, CE and the 

individual’s breeding weight as a linear covariate; u corresponded to a vector of unknown solutions 

of animal random effects; cg represented a vector of unknown solutions of contemporary group 

random effects; X, Z and Q were known incidence matrices relating observations in y* to fixed 

(b), animal random (u) and contemporary group random (cg) effects; and e was the vector of 

unknown residual errors. The mean for random effects was assumed to be 0 while variances were 

assumed to be distributed as: 

Var [ 𝒖𝒄𝒈𝒆 ] = [𝑨𝝈𝒂𝟐 𝟎 𝟎𝟎 𝑰𝒄𝒈𝝈𝒄𝒈𝟐 𝟎𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐] 

where A represented the additive numerator relationship matrix amongst animals included in the 

pedigree; 𝑰𝒄𝒈 and 𝑰𝒏 were identity matrices with orders equal to the number of contemporary 

groups and observations, respectively. The 𝝈𝒂𝟐, 𝝈𝒄𝒈𝟐  and 𝝈𝒆𝟐 denoted the additive, contemporary 

group and residual variances, respectively. Importantly, the additive variance (𝝈𝒂𝟐) was specific for 

the evaluated age endpoint (STAY06) and the residual variance (𝝈𝒆𝟐) was constrained to be equal 

to 1. 



 
 

131 

Alternatively, all STAY endpoints (STAY03 through STAY12) were evaluated together 

using a linear RRM with Legendre polynomials as its base function. The model in matrix form is 

presented in Equation 4.2 below: 

 y = Xb + Z1u + Z2p + Qcg + e Eq. 4.2 

where y corresponded to a vector of binary STAY observations, X was an incidence matrix relating 

STAY observations in y to AFC, CE, breeding weight and fixed regression coefficients of STAY 

on age at calving to their solutions in b; Z1 represented an incidence matrix of age covariates 

relating the STAY observations in y to the random additive genetic regression coefficients 

(intercept and linear) in u; Z2 was an incidence matrix of age covariates relating STAY 

observations in y to the permanent environmental linear random regression coefficients for each 

animal in p; Q was a known incidence matrix relating STAY observations in y to their 

corresponding random contemporary group effects in cg; and e was the vector of unknown residual 

errors. Random effect means were assumed to be 0 whereas variances were assumed to be: 

Var [ 𝒖𝒑𝒄𝒈𝒆 ] = [  
 𝑨 ⊗ 𝐆 𝟎 𝟎 𝟎𝟎 𝑰𝒑 ⊗ 𝐏 𝟎 𝟎𝟎 𝟎 𝑰𝒄𝒈𝝈𝒄𝒈𝟐 𝟎𝟎 𝟎 𝟎 𝑹]  

 
 

where A represented the Wright’s numerator relationship matrix, ⊗ was the Kronecker product; 

G corresponded to a (co)variance matrix of additive genetic random regression coefficients; P was 

a (co)variance matrix of permanent environmental random regression coefficients and, R = 

diag{𝝈𝒆𝒌𝟐 } was a diagonal matrix of temporary environmental variances that themselves vary 

depending on the kth age endpoint. 𝑰𝒑 and 𝑰𝒄𝒈 represented identity matrices whose order were equal 

to the number of observations and contemporary groups, respectively. Lastly, the 𝝈𝒄𝒈𝟐  remained as 

described for the TM.  
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This RRM predicted the genetic merit of the presence of a calf at each particular age 

endpoint; therefore, EPD were summed to obtain the individual’s genetic merit for the presence of 

a calf at 3, 4, and up to 12 years of age. A pedigree file from the CSU-BIC consisting of 14,140 

individual animals, with 971 and 3,725 unique sires and dams, respectively, was used for the 

estimation of genetic parameters within both statistical methodologies (TM and RRM). The 

average inbreeding coefficient of the pedigree was 0.009, with a minimum of 0 and a maximum 

of 0.263. Within the TM methodology, the heritability estimate on the underlying scale was 

obtained by calculating the ratio of the additive to the phenotypic variance (𝜎𝐴2 𝜎𝑃2⁄ ). Conversely, 

variance estimates obtained using RRM were utilized to calculate observed variance estimates for 

each age endpoint utilizing equation 3.5. The previous transformation allowed the possibility to 

calculate heritabilities of STAY at every age endpoint considered within the study (from 3 to 12 

yr of age). 

Regarding predictions obtained with each method, the TM predicted a single breeding 

value per animal on the underlying scale whereas predictions obtained with RRM resulted in a 

vector equal to the order of the Legendre polynomials (e.g., each animal had a prediction for the 

intercept and the linear term). Therefore, for comparison purposes, the RRM predictions were 

condensed into single values per animal expressed on an observed scale for each age endpoint 

using equation 3.6. After such conversion, particularly the prediction on the observed scale at the 

age of 6 was chosen to be compared to the prediction obtained with the TM. Once that both sets 

of predictions were available, a homogenization of the prediction scales was performed for both 

methods following the procedure outlined by Speidel et al. (2018b). Briefly, predictions were 

converted to a pseudo-probability scale and expressed as deviations from 50% (random chance of 

conception). Resulting predictions were compared through the calculation of Pearson (rp) and 
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Spearman’s (rs) correlations, as well as the estimation of the regression coefficient of EPD obtained 

with the RRM on those obtained with the TM. Analyses were performed using ASREML 3.0 

(Gilmour et al., 2009), the Animal Breeder’s Tool Kit (Golden et al., 1992) and BOLT 

(http://www.thetasolutionsllc.com/bolt-software.html).  

In order to calculate the accuracy of the predictions obtained with both methodologies, it 

was necessary to obtain the prediction error variance (PEV). In the case of the TM, the prediction 

error variance of the ith animal (PEVi) was obtained by squaring the standard error reported next 

to the BLUP of each individual evaluated on the ASREML output solutions file (Gilmour et al., 

2009). These values represented approximations of the diagonal elements of the inverse of the 

coefficient matrix assembled in the final iteration round performed by the statistical software 

package. Conversely, given the mixed-model equations for the RRM evaluations were assembled 

and solved using the BOLT software (Garrick et al., 2018), the PEV of each animal was estimated 

via Markov Chain Monte Carlo procedures (MCMC) using Gibbs sampling. In summary, a total 

of 100,000 samples were obtained after disregarding the first 5,000 samples during the burn-in 

period in order to obtain the estimates of PEV. Finally, once the PEV of each methodology was 

obtained, mean accuracies (ACC) were calculated according to the guidelines of the Beef 

Improvement Federation (2020) using Equation 3.7 and then compared to each other. 

4.2.4 Genetic evaluations for cows first-service conception rate 

The EPD calculation for FSCR was performed using a univariate repeatability TM that 

included a probit link function to convert binary observations to an underlying normal distribution. 

The model Equation (4.3) was: 

 y* = Xb + Z1u + Z2p + Qm + Ws + e Eq. 4.3 

http://www.thetasolutionsllc.com/bolt-software.html
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where y* corresponded to a vector of transformed observations of FSCR on the underlying scale; 

b was a vector of unknown solutions for fixed effects that included AFC, CE, breeding 

contemporary group (defined as a combination between breeding year, synchronization protocol 

and semen type), AI technician, and the individual’s post-partum interval, breeding weight and 

age at exposure as a linear covariates; u corresponded to a vector of unknown solutions of animal 

random effects; p denoted a vector of unknown random permanent environmental effects; m was 

a vector of unknown solutions of mating group (e.g., inseminated in heat or during a mass mate) 

random effects and, s was a vector of unkwnown solutions for AI sire random effects. The matrices 

X, Z1, Z2, Q and W were known incidence matrices relating observations in y* to fixed effects in 

b, as well as animal, permanent environment, mating group and AI sire random effects in u, p, m 

and s, respectively. Finally, e was a vector of unknown residual errors. It was assumed that the 

mean of random effects was equivalent to 0 whereas variances were assumed to be equal to: 

Var [   
 𝒖𝒑𝒎𝒔𝒆 ]   

 
 = 

[  
   𝑨𝝈𝒂𝟐 𝟎 𝟎 𝟎 𝟎𝟎 𝑰𝒑𝝈𝒑𝟐 𝟎 𝟎 𝟎𝟎 𝟎 𝑰𝒎𝝈𝒎𝟐 𝟎 𝟎𝟎 𝟎 𝟎 𝑰𝒘𝝈𝒔𝟐 𝟎𝟎 𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  

    
where A denoted the Wright’s numerator relationship matrix, 𝑰𝒑, 𝑰𝒎, 𝑰𝒘 and 𝑰𝒏 were identity 

matrices whose orders were equal to the number of animals, mating groups, AI sires and 

observations, respectively. The 𝝈𝒂𝟐, 𝝈𝒑𝟐, 𝝈𝒎𝟐 , 𝝈𝒔𝟐 and 𝝈𝒆𝟐 were the additive, permanent environment, 

mating group, AI sire and residual variances, respectively. Within this model, the residual variance 

(𝝈𝒆𝟐) was constrained to be equal to 1. For this TM, heritability was calculated as the ratio of the 

additive to the phenotypic variance (𝜎𝐴2 𝜎𝑃2⁄ ), whereas repeatability was estimated as the ratio of 
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the variance in producing ability (𝜎𝑃𝐴2  = sum of the genetic and permanent environmental 

variances) to the phenotypic variance (𝜎𝑃𝐴2 𝜎𝑃2⁄ ), as described by Foxworthy (2019b). 

In addition, FSCR was regressed on age at exposure using a linear RRM with Legendre 

polynomials as the base function. The model in matrix form is presented in Equation 4.4 below: 

 y = Xb + Z1u + Z2p + Qm + Ws + e Eq. 4.4 

where y represented a vector of binary observations of FSCR, X was an incidence matrix relating 

FSCR observations in y to the vector of unknown solutions of AFC, CE, breeding contemporary 

group (combination between breeding year, synchronization protocol and semen type), AI 

technician, post-partum interval, breeding weight and a set of fixed regression coefficients of age 

at exposure contained in b; Z1 was an incidence matrix of age covariates relating FSCR 

observations in y to the unknown animal random additive genetic regression coefficients (intercept 

and linear) in u; Z2 was an incidence matrix of age covariates relating FSCR observations in y to 

the permanent environmental linear random regression coefficients for each animal in p; Q was an 

incidence matrix relating FSCR observations in y to random mating group effects in m; W was a 

known incidence matrix relating FSCR observations in y to random AI sire effects in s; and lastly, 

e was the vector of unknown residual errors. The mean of random effects was assumed to be 0 

while the variances were assumed to be: 

Var [   
 𝒖𝒑𝒎𝒔𝒆 ]   

 
 = [  

   𝐀 ⊗ 𝐆 𝟎 𝟎 𝟎 𝟎𝟎 𝑰𝒑 ⊗ 𝐏 𝟎 𝟎 𝟎𝟎 𝟎 𝑰𝒎𝝈𝒎𝟐 𝟎 𝟎𝟎 𝟎 𝟎 𝑰𝒘𝝈𝒔𝟐 𝟎𝟎 𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  
    

where A represented the Wright’s numerator relationship matrix, ⊗ was the Kronecker product, 

G corresponded to a variance-covariance matrix of additive genetic random regression coefficients 



 
 

136 

and P was a (co)variance matrix of permanent environmental random regression coefficients. 𝑰𝒑, 𝑰𝒎, 𝑰𝒘, 𝑰𝒏, 𝝈𝒎𝟐 , 𝝈𝒔𝟐 and 𝝈𝒆𝟐 remained as described for the previous TM. For the estimation of the 

genetic parameters, the same pedigree file implemented in the STAY analyzes was utilized. 

Similarly, the same procedures described for STAY evaluations were followed for the FSCR 

analyses in order to estimate heritabilities (as well as repeatabilities) and to obtain EPD within 

each statistical method (e.g., refer to equations 3.5 and 3.6). The same comparative strategies 

previously mentioned for STAY predictions were followed to compare the outputs of each 

statistical model implemented to evaluate FSCR. Prediction error variances and accuracy 

estimations were performed as described for STAY and all analyses were performed using the 

same statistical packages previously described. 

4.3 Results and discussion 

4.3.1 Phenotypic trends and data availability 

The percentages of dams receiving a successful observation at each of the STAY endpoints 

included in the study, as well as, the percentages of conception rate at each age of exposure are 

shown in Figures 4.3 A and 4.3 B, respectively. The tendency of the average percentage of STAY 

to consecutive calvings is clearly negative, which was consistent with previous reports and the 

biology of cow production in general (Van der Westhuizen et al., 2001; Jamrozik et al., 2013; Silva 

et al., 2018). In the case of FSCR, a relatively consistent average conception rate close to 50% was 

observed across all ages at exposure contemplated in this study. The trend observed for FSCR 

provides further evidence that age had no influence in the probability of multiparous cows to 

conceive in their first AI attempt at consecutive ages. As such, is important to reiterate that at least 

for the particular data set of this study, a RRM evaluation using age as the longitudinal descriptor 

does not seem to be appropriate; nonetheless, the evaluation was performed just for exploratory 
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purposes. Perhaps a better suitability of a RRM genetic prediction for cows’ FSCR could be 

achieved by substituting age for another biologically relevant continuous descriptor associated 

with AI outcomes, such as breeding weight (Snelling et al., 2019). However, no attempt to do that 

was done in this study given only 51% of the females had breeding weight records; furthermore,  

such records belonged mainly to earlier years of data (e.g., prior to 2000). 

Figure 4.3. A) Average stayability (%) to consecutive calvings in the Colorado State University 
Beef Improvement Center. B) Average conception rate (%) to consecutive ages at exposure. 

 
 

In general, the average FSCR rate of this study agreed with the 52% AI conception rate 

reported by Lamb et al. (2001) in a study that included multiparous suckled beef cows of different 

breeds (e.g., Angus, Angus crosses, Simmental and Hereford). Similarly, conception rates ranging 

from 50.6 to 59.7% in multiparous Angus and crossbred Angus cows (n = 901) were reported by 

Peel et al. (2012) in a study that tested the effects of intervals of 2, 4, or 6 h, between 2 

prostaglandin F2α injections administered in a 5-d CO-Synch + controlled internal drug-release 

device (CIDR) estrus synchronization protocol. Within such study, 414 multiparous cows from the 

CSU-BIC were part of the experimental population and their pregnancy percentages in response 

to the fixed-time AI (FTAI) were 38.1, 34.1 and 46.3% for animals allocated within the 2-h, 4-h 

and 6-h intervals, respectively. For their part, Whittier et al. (2013) reported AI pregnancy rates of 

58.1 and 55.1% for cows synchronized with the 5-day COSynch + CIDR protocol and cows 
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synchronized with 7-day CO-Synch + CIDR protocol, respectively. Together, these results 

demonstrated the evident connection between the final outcomes of a FTAI program (e.g., 

pregnancy rates) and the specific synchronization protocol implemented for its accomplishment.  

In relationship to the number of observations available to perform genetic evaluations for 

STAY06, after the removal of 2 (successful) observations that showed no variation within a 

specific class level of the fixed factor AFC (all other classes of categorical fixed effects showed 

variation), a total of 1542 records remained useful for the TM evaluation. Particularly for the 

STAY06 analysis, it is important to clarify that CG effects were decided to be treated as random 

instead of fixed, precisely due to the severity of the reduction in data size when attempting to 

remove subclasses with no variation. Specifically, 32% of reduction in the available data set (490 

observations) required to be disregarded if trying to model CG as a categorical fixed effect. A 

similar decision was made by González-Recio and Alenda (2005) based on the recommendations 

of Moreno et al. (1997) when performing threshold evaluations for binary fertility traits in Holstein 

cattle. Such decisions become even more relevant when recalling that the traditional TM 

evaluation only considered the success/failure of females reaching the age of 6, explicitly ignoring 

the information from females younger than 6 yr and cows that were still producing beyond that 

age endpoint. Conversely, the totality of the 8,907 observations spanning all age endpoints 

included in the study were included for the RRM since there was no need for record removal.  

After the data editing process for STAY observations, it is possible that the removal of just 

a couple of records for the TM evaluation had not represented a significant pre-analytical distortion 

for STAY06 traditional evaluation. However, even when almost all information available for the 

STAY06 endpoint was kept, a considerable increase of information (~5.8 times more data) was 

achieved by the RRM approach when considering STAY endpoints from 3 to 12 yr old.  The 
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previous is a reflection of the significant loss of data related to the restrictive age-specific definition 

of STAY to the particular endpoint of 6 yr. Problems associated with the age-related trait definition 

have been recognized for a long time (Hudson and Van Vleck, 1981); especially when considering 

that waiting 6 yr until a female receives an observation represents a considerable delay to gather 

information useful to evaluate the sire of such female (Brigham et al., 2007). This delay in 

collection of phenotypes reduces the accuracy of sire's genetic predictions at early ages and 

therefore slows genetic progress for STAY. In this context, the inclusion of both earlier and later 

ages by RRM represents a feasible avenue to improve the accuracy of sire evaluations (Jamrozik 

et al., 2013; Silva et al., 2018). 

Regarding FSCR, a total of 9448 observations were kept for the TM analyzes after 

removing 136 records (28 successful/108 unsuccessful) coming from specific classes of 

categorical fixed effects (e.g., AFC, CE, CG and AI technician) with no variation. For RRM 

analyzes, the 9,584 FSCR observations originally available were included in the evaluation. The 

small difference in the total number of observations available within each methodology suggested 

that the possible bias introduced by pre-analytical editing processes within the TM methodology 

was small for this particular analysis. Nonetheless, González-Recio and Alenda (2005) illustrated 

the severity of extreme category problems (subclasses of fixed effects without variation) when 

analyzing the same trait in Holstein cattle. Particularly, the authors explained that they opted to 

consider their CG definition as random variable within their analyzes in order to minimize the 

disadvantages of losing a significant proportion of data. Interestingly, even when considering CG 

as a random effect, authors acknowledged the necessity of removing observations of other 

categorical fixed effects within their data set, something experienced in the present study as well. 
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In this regard, the flexibility of RRM to incorporate all available information has been reported as 

an attractive feature of this statistical methodology (Golden et al., 2018). 

4.3.2 Heritabilities and correlations  

Heritability (h2) estimates for STAY06 obtained with each statistical method are presented 

in Table 4.4. The h2 estimate obtained on the underlying scale with the TM was 0.10, which is 

smaller than the h2 estimates previously reported for this trait within the CSU-BIC Angus 

population. For instance, in 1995 Snelling and coworkers reported an h2 of 0.14 for STAY06; 

while 5 years later, Doyle reported an h2 estimate of 0.15 for this trait (Snelling et al., 1995; Doyle 

et al., 2000). Nonetheless, the STAY06 h2 estimate found in this study agrees with an estimate of 

0.10 recently reported for Red Angus cattle (Boldt et al., 2018). In such study, authors 

acknowledged that their estimate was lower than expected, but also emphasized how h2 normally 

varies between breeds, as well as, with the model used for its estimation and the trait definition. 

For instance, when defining STAY06 as the ability of a female to produce 5 consecutive calves 

(equivalent to the trait definition in the present study) and using a marginal maximum likelihood 

animal model, Snelling et al. (1995) reported heritabilities of 0.11 and 0.14 for a Red Angus and a 

Black Angus population, respectively. However, using the same trait definition but implementing 

Method R, h2 estimates reported in the same study were 0.12 and 0.23 for Red Angus and Black 

Angus, respectively. Martinez et al. (2005) defined the trait equivalently and reported a h2 estimate 

on the underlying scale of 0.30 in Hereford cattle when estimating variance components using an 

animal TM; conversely, in the same study, an h2 estimate of 0.19 was reported for STAY06 when 

using a linear model. For its part, Maiwashe et al. (2009) used a TM to estimate h2 for STAY06 

but defined the trait as the probability of a cow to remain in the herd until the age of 6, given she 
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had an opportunity to reach that age and was a dam producing at least one calf; with such 

definition, authors reported an h2 estimate of 0.20 for STAY06 in Angus cattle. 

 
Table 4.4. Heritability estimates (h2 ± SE) for stayability 

according to the statistical method employed. 
Methodology  h2 ± SE 

TM1  0.10 ± 0.03 

RRM2 
Intercept 0.048 ± 0.009 

Linear 0.013 ± 0.008 
                                    1TM = threshold model, 2RRM = random regression model. 

 
The h2 estimates obtained for the intercept and linear random regression coefficients 

included in the analysis (specific for the age endpoint of 6 yr) were 0.048 and 0.013, respectively. 

These estimates were smaller than the 0.24 and 0.16 reported for the intercept and linear terms of 

a third order degree Legendre polynomial RRM that estimated genetic parameters for STAY in 

Simmental cattle (Jamrozik et al., 2013). Discrepancies among reports may be related to the 

differences of the order of Legendre polynomials implemented and the considerable disparities in 

data availability among studies. The interconnection among these factors was explained by Meyer 

et al. (2005), whose work suggested that RRM using high order polynomials (e.g., ≥ cubic orders) 

can produce erratic estimates of variance components and genetic parameters when data sets 

contain many more records at earlier than later ages (as typically occurs with STAY). In this sense, 

the data in our study included 8,907 observations generated within a single herd, while the final 

STAY data file of Jamrozik et al. (2013) contained 1,164,319 records of cows from different herds. 

The greater availability of records in Jamrozik’s and colleagues research justified their 

implementation of higher Legendre polynomial orders with a minimum risk of producing 

implausible h2 estimates; nonetheless, the risk of producing erratic values was higher in our study 

and therefore a lower order was utilized (e.g., linear order).  
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Additionally, the distinct CG definitions between studies may also be influencing the way 

the variance is being partitioned for the trait. In the present study, all females belonged to the CSU-

BIC and within the herd there are pre-established breeding and calving seasons. Consequently, all 

females within a year were born approximately within the same time window (between February 

and April), as such, not an appropriate adjustment of variability was being made by defining CG 

as a combination between birth year and birth season as indicated by Jamrozik et al. (2013). 

Conversely, it was opted to define CG as a combination of breeding year and breeding pasture (an 

effect that was confounded with natural service sire) in order to better capture the variations in 

fertility associated with each respective year of data. Another possible reason for the differences 

in results between studies could be that genetic variation for STAY differs among breeds (e.g., 

Simmental vs Angus), since differences in h2 estimates have been reported in literature when 

evaluating STAY data coming from different breeds using random regression techniques (Silva et 

al., 2018). Once the h2 estimates of the intercept and linear term of the RRM were transformed to 

an observed scale associated to each age endpoint, changes in h2 estimates for STAY across all the 

age endpoints were plotted and are shown in Figure 4.4. 
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Figure 4.4. Changes in heritability estimates for Stayability and their relationship with the number 
of records at each endpoint in Angus cows. 
 

The observed h2 estimate at the age of 6 yr was 0.04, which was lower than the 0.10 

obtained with the TM. In this regard, several studies have noted that heritabilities calculated on 

the observed scale are typically lower than heritabilities on the underlying scale (Kadarmideen et 

al., 2000; Johnston et al., 2014; Silvestre et al., 2019). Nonetheless, restricting our comparisons 

only to h2 calculated in the observed scale and by RRM; our results were smaller in comparison to 

those reported by Jamrozik et al. (2013) in Simmental cattle. In such study, it was reported that h2 

for STAY decreased from the age of 2 (0.36) to the age of 8 (0.12). Discrepancies in results 

between studies may be related to previously discussed differences among both investigations. 

Conversely, results obtained in this study were similar to the h2 estimates to consecutive ages (from 

2 to 8 yr of age) reported by Silva et al. (2018) for three different Bos indicus cattle breeds 

(Tabapuã, Nellore and Guzerá). In that study, h2 estimates for STAY in Tabapuã and Nellore 

breeds tended to increase with calving number and ranged from 0.03 to 0.07 and from 0.03 to 0.08, 

respectively. In the case of the Guzerá breed, h2 estimates ranged from 0.05 to 0.08 showing a 
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quadratic trend with a peak between the fourth and sixth calving. In the present study, h2 estimates 

for STAY ranged from 0.03 to 0.14 and also tended to increase with the number of calvings. 

Focusing on h2 from age of 3 up to the age of 8 (the final endpoint reported by Silva et al., 2018), 

h2 estimates found in the present study ranged from 0.03 to 0.06, resembling to those reported for 

Tabapuã and Nellore cows.  

An interesting aspect worthy of discussion is that increments in h2 estimates of STAY in 

the present investigation corresponded with reductions in the availability of records of the later 

age endpoints considered. This is a commonly reported mathematical artifact of RRM fitting 

polynomial regressions originated for reductions in the number of observations associated to the 

covariate (Meyer et al., 2005). Speidel et al. (2010) explained that Legendre polynomials place a 

large amount of emphasis on observations at the extremes of the covariate; therefore, when severe 

reductions in data availability occurs at these points, it’s common to observe inflations of h2 

estimates. Therefore, it is possible that the h2 estimates at later ages in this study were inflated due 

to the decreased availability of STAY records (especially at 11 and 12 yr of age). 

Estimates of phenotypic and genetic correlations of STAY to consecutive calvings are 

shown in Table 4.5. In general, all correlations were positive with values ranging between 0.16 to 

0.68 in the case of phenotypes and between 0.77 to 0.99 for genetic effects. Correlations increased 

when the calving events were close to each other, whereas the opposite occurred when the calvings 

were more distant on the longitudinal scale. These results compile more evidence that STAY 

defined at consecutive ages does not represent phenotypically nor genetically the same trait. 

However, STAY endpoints are correlated and the magnitude of such correlations depends on the 

proximity of the calving events within the time scale. The genetic correlation of 0.77 between 

STAY03 and STAY12; suggested that STAY03 could be a good indicator of STAY to later ages. 
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Table 4.5. Genetic (above diagonal) and phenotypic (below diagonal) correlations for stayabilities 
to consecutive calvings. 
Calving 

No 
3 4 5 6 7 8 9 10 11 12 

3  0.99 0.96 0.93 0.90 0.87 0.84 0.81 0.79 0.77 
4 0.66  0.99 0.98 0.95 0.93 0.91 0.89 0.87 0.85 
5 0.51 0.65  0.99 0.98 0.97 0.95 0.94 0.93 0.91 
6 0.42 0.50 0.65  0.99 0.99 0.98 0.97 0.96 0.95 
7 0.35 0.40 0.48 0.59  0.99 0.99 0.99 0.98 0.97 
8 0.31 0.34 0.40 0.47 0.68  0.99 0.99 0.99 0.98 
9 0.28 0.31 0.35 0.40 0.55 0.65  0.99 0.99 0.99 
10 0.24 0.26 0.29 0.32 0.42 0.44 0.52  0.99 0.99 
11 0.20 0.21 0.23 0.26 0.32 0.32 0.36 0.59  0.99 
12 0.16 0.17 0.19 0.20 0.25 0.24 0.25 0.40 0.57  

 
Similar phenotypic and genetic correlations for STAY at consecutive ages (from 2 to 8 yr 

of age) have been reported by Jamrozik et al. (2013) in Simmental cattle and by Silva et al. (2018) 

in three Zebu cattle breeds. For the most part, Martinez et al. (2005) did not report genetic 

correlations but informed correlations among sire predictions for STAY at different endpoints 

(from the age of 3 to the age of 8) in Hereford cattle. In such study, correlations among EPD also 

declined as the calving events were more distant apart. In the case of the permanent environmental 

correlations obtained in this study, they followed the same pattern than genetic and phenotypic 

correlations, decreasing as calvings became more distant (Table 4.6).  

Table 4.6. Permanent environmental correlations for stayabilities to consecutive calvings. 
Calving No 3 4 5 6 7 8 9 10 11 

4 0.99         
5 0.98 0.99        
6 0.93 0.96 0.99       
7 0.83 0.88 0.93 0.98      
8 0.65 0.72 0.80 0.89 0.97     
9 0.41 0.49 0.59 0.72 0.85 0.96    
10 0.15 0.24 0.36 0.51 0.68 0.85 0.96   
11 -0.07 0.02 0.15 0.31 0.50 0.71 0.88 0.98  
12 -0.23 -0.14 -0.02 0.14 0.35 0.59 0.79 0.93 0.99 
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Perhaps the most intriguing result related to the correlations of permanent environmental 

effects are the negative correlations detected between the most distant calving events (e.g., 

STAY03 and STAY11 or STAY03 and STAY12; among others). Interpretation of these results is 

challenging since a negative permanent environmental correlation implies that a better than 

average environmental effect at earlier ages would be associated with a lower than average 

environmental effect at later ages. From a practical point of view, the previous means that animals 

receiving a "preferential treatment" at younger ages, will likely experience adverse environments 

at later ages. This does not seem to be realistic so the explanation of such results should probably 

be approached from a statistical point of view. It is highly probable that the results of these negative 

correlations are the product of the considerable reduction of observations available at later ages 

and the mathematical issues of Legendre Polynomials at the extreme of the data range. In order to 

test this explanation, an alternative RRM model was executed lumping observations of 11 and 12-

yr-old cows into one single age category named "≥11". Results of such study are shown in 

appendix A in Figures A-1 and Tables A-1 and A-2. Briefly, we were able to confirm that 

increasing the number of observations at later ages, the apparent unrealistic permanent 

environmental correlation estimates between the more distant calving effects were mitigated. Also, 

it was possible to notice that a less inflated h2 estimate (0.12) was obtained for the ≥11 age 

category. 

In the case of FSCR, h2 and repeatability (r) estimates obtained with each statistical 

methodology are shown in Table 4.7. The h2 estimate obtained on the underlying scale using the 

TM (0.03) agrees with the report of Bormann et al. (2006) whose informed a h2 of 0.03 in Angus 

heifers. Our result is also in line with the h2 estimate of 0.029 reported by Ghiasi et al. (2011) when 

analyzing FSCR of multiparous Holstein cows. A slightly smaller h2 estimate for this trait (0.015) 
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was reported by Rahbar et al. (2016) in Holstein dairy cows exposed to heat stress; however, the 

influence of warm environmental conditions in such study may explain the smaller h2 estimate. 

Averill et al. (2004) reported a h2 estimate of 0.028 for a trait defined as “the outcome of an 

artificial insemination”; however, within such study, the trait definition was not analogous to 

FSCR since a maximum of 3 AI events were allowed per cow if she failed to conceive within the 

first two services. With respect to the repeatability estimate obtained with the TM, the same 

estimate obtained for the h2 of FSCR was obtained for this parameter (r = 0.03). This result agrees 

with a previous report suggesting that the permanent environmental effects that a female has 

experienced seem to not have an effect on her ability to conceive on the first insemination during 

the consecutive breeding seasons (Foxworthy et al., 2019a). 

Table 4.7. Heritability (h2 ± SE) and repeatability (r) estimates for cow first-service  
conception rate according to the statistical method employed. 

Methodology Age h2 ± SE r ± SE 

TM1 All ages 0.03 ± 0.01 0.03 ± 0.01 

RRM2 

2 0.037 ± 0.017 - 

3 0.031 ± 0.013 - 

4 0.025 ± 0.009 - 

5 0.022 ± 0.008 - 

6 0.020 ± 0.008 - 

7 0.024 ± 0.010 - 

8 0.026 ± 0.013 - 

9 0.031 ± 0.017 - 

10 0.038 ± 0.023 - 

11 0.049 ± 0.032 - 
         1TM = threshold model, 2RRM = random regression model. 

 

In the case of the h2 estimates obtained for the random regression coefficients for the 

additive genetic effects, results were 0.0202 ± 0.0081 and 0.0213 ± 0.0151 for the intercept and 
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the linear terms, respectively. Random regression coefficients for permanent environmental effects 

were 0.0213 ± 0.0072 and 0.0260 ± 0.0164 for the intercept and the linear terms, respectively. 

Given the absence of a similar study where random regression techniques have been applied to 

evaluate FSCR to consecutive ages in beef cattle, direct comparisons of these random regression 

coefficients to other results were not possible. Perhaps the lack of reports of RRM applied to 

consecutive age FSCR observations in beef cattle derives from the combination of a limited use of 

AI in the industry and the apparent null influence of age in insemination outcomes. The fact that a 

RRM genetic evaluation for FSCR utilizing age as the longitudinal descriptor resulted in an 

inappropriate modeling of this trait, was verified by testing the amount of variation accounted by 

the linear order of the RRM of FSCR in age by using a LRT as reported by Speidel et al. (2016). 

Briefly, the REML log-likelihood estimates for a zero order (just the intercept) and a linear RRM 

were 1844.94 and 1847.52, respectively, resulting in a test statistic of 5.16 (P > 0.05); suggesting 

that the linear term of the RRM did not account for any additional variation in FSCR. 

Table 4.7 shows the heritabilities and repeatabilities of FSCR obtained with each statistical 

methodology contemplated in this study. In general, h2 estimates for FSCR obtained for all ages 

were low (< 0.05), which is consistent with the reports made for this trait in beef and dairy cattle 

populations (Azzam et al., 1989; Cammack et al., 2009; Hossein-Zadeh and Ardalan, 2011). 

However, is important to acknowledge that the overparameterization that occurred in the RRM 

evaluation of FSCR apparently artificially added noise to the estimates of h2 in the observed scale 

for this trait. Although the h2 estimates obtained at the extremes of the data range (ages at exposure) 

do not seem to be unrealistic for a trait like FSCR (e.g., 0.037 for FSCR02 and 0.049 for FSCR11), 

the small fluctuations of the estimates across the age range are likely the result of forcing a 

regression with a slope not statistically different from zero (Figure 4.3 – B).  
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A graphical representation of the changes in h2 estimates of FSCR and their associations 

with the number of records per age at exposure is shown in Figure 4.5. In general, h2 estimates for 

FSCR obtained with the RRM decreased from 0.037 at the age of 2 to 0.020 at the age of 6 and 

then increased gradually with the age at exposure reaching a maximum value of 0.049 at the age 

of 11. Using a similar time descriptor (e.g., parity number) but a different trait (services per 

conception, SPC), Nishida et al. (2005) reported a similar trend in changes of h2 estimates when 

applying random regression techniques. Authors of that study reported that h2 estimates of SPC 

declined from 0.15 in parity 1 to 0.04 in parity 6 and then the estimates increased continuously 

with the parity number until ending at 0.22 in parity 10. Even when such reported trend had 

resemblance to the one obtained in the present study, is important to clarify that within Nishida's 

investigation, parity number was an important model component that significantly accounted for 

variation of SPC. 

 
Figure 4.5. Changes in heritability estimates for first-service conception rate and their relationship 
with the number of records at each age of exposure in Angus cows. 
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Although RRM have been applied to analyses of insemination outcomes and conception 

rate in dairy cattle (Averill et al., 2006; Tsuruta et al., 2009; Buaban et al., 2016), direct 

comparisons of those reports with our results are difficult because generally the time descriptor 

used for dairy cows is days in milk (DIM), which are normally limited to only one specific age 

endpoint (e.g., 2-yr-old primiparous cows). Furthermore, differences in the reproductive 

management between beef and dairy cattle creates a challenge to have the same trait definition in 

both cattle types, since within dairy cattle it is normal that a cow be allowed ≥2 AI services. Within 

beef cattle, RRM have been successfully applied to examine genetic relationships among cow 

weight and productivity (Snelling et al., 2019). Therefore, depending upon on data availability, it 

is possible that a RRM using cow weight at each breeding event as a longitudinal descriptor may 

work better for a genetic evaluation for FSCR than the current model that uses age. 

Given the trait definition, it is biologically impossible that a female could generate repeated 

records for the outcome of an insemination event within the same age; therefore, no repeatabilities 

were estimated with the random regression methodology for FSCR.  Furthermore, previous 

research efforts involving the usage of a threshold repeatability model to analyze FSCR in mature 

cows without regressing such observations on an age covariate, have suggested that temporary 

environmental effects associated to each specific AI event have a greater degree of influence on 

FSCR than variations attributable to genetics or permanent environmental effects (Foxworthy et 

al., 2019a). In dairy cattle-based studies, the estimation of repeatabilities for the conception rate in 

response to insemination events using RRM is viable mainly due to two fundamental differences 

with beef cattle: dairy cows are typically allowed to have more than 1 AI and, usually, the age 

covariate implemented in the analysis is the number of DIM (normally restricted to one parity). 

For instance, Buaban et al. (2016) reported repeatabilities for conception rate in first-lactation 
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crossbred dairy cows when regressing it on DIM using RRM; specifically, repeatabilities ranged 

from 0.060 to 0.259, from 0.073 to 0.407 and from 0.078 to 0.579 when using RRM with 2-, 3- 

and 4-order Legendre polynomials as the base function. Perhaps further investigations in beef 

cattle could determine if a RRM can be applied using beef cattle data based on postpartum intervals 

or some similar measure. 

Phenotypic and genetic correlations for all the age-specific FSCR observations considered 

in the RRM are shown in Table 4.8. At the phenotypic level, correlations were close to zero with 

values ranging between -0.04 to 0.08. In the case of the genetic correlations, they decreased 

considerably as the AI events were more distant within the range of ages at exposure. Specifically, 

genetic correlations were as high as 0.99 for immediate consecutive ages and as low as -0.03 for 

the more distant ages (e.g., 2 and 11 yr). The lack of concordance between phenotypic and genetic 

correlations is perhaps a product of the overfitting of the RRM evaluating FSCR. Nonetheless, at 

least at the genetic level, it has been reported that fertility traits are not necessarily the same traits 

within younger and older cows, since energy requirements are considerably higher in older females 

due to their higher milking ability (Roxström et al., 2001; Jamrozik et al., 2005).  

Table 4.8. Genetic (above diagonal) and phenotypic (below diagonal) correlations for first service 
conception at consecutive ages at exposure. 
Calving 

No 
2 3 4 5 6 7 8 0 10 11 

2  0.99 0.95 0.87 0.73 0.56 0.38 0.22 0.08 -0.03 
3  0.04  0.99 0.93 0.82 0.67 0.51 0.34 0.22 0.12 
4  0.04  0.01  0.98 0.91 0.79 0.65 0.51 0.39 0.29 
5  0.01  0.07  0.03  0.97 0.90 0.79 0.68 0.57 0.48 
6 -0.04 -0.03 -0.03  0.04  0.98 0.91 0.83 0.74 0.66 
7  0.00 -0.03 -0.03  0.02 0.00  0.98 0.93 0.87 0.81 
8  0.02  0.03  0.04 -0.02 0.04  0.06  0.99 0.95 0.91 
9  0.02  0.02 -0.03  0.00 0.01  0.01 0.06  0.99 0.97 
10  0.04 -0.01  0.02  0.04 0.02 -0.02 0.08 -0.04  0.99 
11 -0.03 -0.02  0.00 -0.02 0.02  0.02 0.04  0.06 0.07  
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In the case of the permanent environmental correlations obtained for FSCR in this study, 

results are shown in Table 4.9. Generally, they changed from positive to negative mainly when 

comparing immature cows (≤5-yr-old) to mature cows (>5-yr-old); however, they remained 

positive when comparing only mature cows. Results of these correlations could be also biased due 

to the overfitting of the RRM as well as by fact that only females with an acceptable sustained 

fertility are maintained within the herd. For instance, if an environmental event that negatively 

impacts the fertility of a female (e.g., dystocia) occurs early in her life, it is highly probable that 

such female will fail to conceive in her subsequent exposure and therefore be culled from the herd. 

Furthermore, variations attributed to major deleterious fertility events, like dystocia were already 

accounted by including CE in the RRM (e.g., more evidence of overfitting). 

Table 4.9. Permanent environmental correlations for first-service conception to consecutive ages 
at exposure. 

Calving 
No 

2 3 4 5 6 7 8 9 10 

3   0.98         
4   0.84   0.93        
5   0.31   0.49   0.78       
6 -0.26 -0.07   0.32 0.84      
7 -0.53 -0.36   0.02 0.64 0.96     
8 -0.65 -0.50 -0.13 0.52 0.90 0.99    
9 -0.72 -0.57 -0.22 0.44 0.86 0.98 0.99   
10 -0.76 -0.62 -0.28 0.39 0.83 0.96 0.99 0.99  
11 -0.78 -0.65 -0.31 0.35 0.80 0.94 0.98 0.99 0.99 

 

4.3.3 Comparison of genetic predictions 

Genetic predictions for STAY at the age of 6 obtained with each methodology are 

summarized in Table 4.10. The average EPD was close to zero and similar between methodologies; 

however, a wider range in prediction values was clearly observed with the TM. The lower range 

of EPD observed within the RRM prediction could be related to the smaller h2 estimate obtained 

with this methodology for the age endpoint of 6 yr of age. Speidel et al. (2018b) also reported a 
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smaller range in random regression genetic predictions for HPG in comparison to those obtained 

with a TM in Red Angus cattle, discussing that the h2 estimate of the RRM was about 3 times 

smaller than the one in the TM.  

 
Table 4.10. Stayability at the age of 6 expected progeny differences (EPD) summary statistics 
according to the statistical method implemented in Angus cows. 

Methodology N Average SD Min Max 

TM1 14,140 -0.865 6.44 -27.40 34.07 

RRM2 14,140 -0.266 5.03 -17.88 13.86 
1TM = threshold model; 2RRM = random regression model. 
 

Summary statistics for FSCR genetic predictions resulting from each statistical approach 

are shown in Table 4.11. For this trait in particular, since there is no specific age of interest within 

the beef industry for a multiparous cow to conceive in response to her first AI, it was opted to 

show all the predictions obtained using the RRM (i.e., predictions for each age at exposure) in 

order to compare them with the prediction obtained with the TM. In general, EPD averages were 

close between methodologies; but again, the range of prediction values was greater for the TM 

methodology. Explanation for these results had resemblance to the already discussed results for 

STAY genetic predictions (e.g., differences in h2 estimates among methodologies).  
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Table 4.11. First-service conception rate expected progeny differences (EPD) summary statistics 
according to the statistical method implemented in Angus cows. 
Methodology N Age Average SD Min Max 

TM1 14,140 All ages 2.24 2.53 -8.04 15.84 

RRM2 14,140 

2 1.29 1.28 -4.06 6.91 

3 1.20 1.18 -3.66 6.40 

4 1.12 1.10 -3.29 6.35 

5 1.03 1.03 -3.02 6.29 

6 0.95 0.99 -3.09 6.23 

7 0.86 0.96 -3.44 6.17 

8 0.78 0.96 -3.79 6.11 

9 0.69 0.99 -4.14 6.20 

10 0.61 1.04 -4.50 6.42 

11 0.52 1.11 -4.85 6.64 
1TM = threshold model; 2RRM = random regression model. 
 

Although no EPD summary statistics for FSCR in beef cattle were found in literature in 

order to perform direct comparisons to those obtained in the present study, a similar average and 

range in estimated breeding values (EBV) were presented for a trait defined as the percent of calves 

born to AI (CAI) in a New Zealand national dairy cattle evaluation (Harris et al., 2005). Within 

such report, authors informed that the average CAI EBV across different cattle breeds (e.g., 

Holstein, Jersey, Ayrshire, Shorthorn, Guernsey and Brown Swiss) was -1.04, with a σ = 3.61 and 

minimum and maximum values of -24.9 and 14.6, respectively. Considering that such genetic 

predictions were presented as EBV, if those values are halved, they become closer to the 

predictions obtained in the present study for FSCR. Evidently, it must be acknowledged that 

predictions are not performed exactly for the same trait and that important differences in fertility 

may exist between beef and dairy cattle breeds. Additionally, Olori et al. (2002) performed genetic 

predictions for calving interval using a linear model within a Holstein population, reporting an 
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average predicted transmitting ability of 1.93, with a σ = 1.61 and minimum and maximum values 

of -3.36 and 8.10, respectively. Such predictions are close to those obtained in the present study 

for FSCR and, even when they belong to a different trait, it is interesting that Olori and colleagues 

reported a h2 for calving interval of 0.04, which is very similar estimate to those obtained for FSCR 

in this investigation. 

Similarities among predictions (EPD) and rankings of animals obtained with the TM and 

RRM for STAY06 were high. Specifically, the Pearson correlation (rp) among predictions was 

0.84, suggesting that both statistical methodologies predicted similar genetic merits for STAY06. 

The Spearman’s rank correlation (rs) was 0.86, suggesting a high degree of concordance between 

the ranking of animals for this trait. Similar results (e.g., rp = 0.77 and rs = 0.79) were reported by 

Sánchez-Castro et al. (2017) when comparing TM and RRM genetic predictions for STAY06 using 

a reduced data set from the CSU-BIC that contained observations collected between 1993 to 2012. 

Heringstad et al. (2003) reported a rank correlation larger than 0.99 for genetic predictions of 

clinical mastitis (binary trait) in Holstein dairy cattle obtained using sire TM and sire linear models 

that ignored the binary nature of the trait. Within such study, authors explained that the great 

similitude in the ranking of animals between methodologies could be attributed to the large 

progeny groups in their data set (664 daughters per sire), since larger progeny groups made 

averages of binary records more normally distributed. Essentially, the previous results imply that 

differences in inferences between TM and linear models can be more marked for estimating genetic 

parameters (e.g., h2) than for ranking sires, at least for those with large progeny groups (Heringstad 

et al., 2003). This is relevant to the findings of the present study because even when the correlations 

(rp and rs) were not as high as for dairy cattle-based studies, they were strong and were produced 

from a data set representative of the beef industry, where at least within a single herd, typically 
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few observations per sire exist. Nonetheless, perhaps with larger data sets as those used in national 

cattle evaluations where prominent AI sires with daughters in different herds may be included, 

larger progeny groups may exist and correlations among predictions could improve. 

Regarding the regression of predictions obtained with the RRM on those obtained with TM 

for STAY06, an underestimation of the genetic merit occurred in the RRM in comparison to TM 

(β1 = 0.65). An opposite result was reported by Sánchez-Castro et al. (2019) when comparing 

seven different linear RRM to a TM genetic prediction for STAY06 for the CSU-BIC Angus 

population. In that study, authors mentioned that an underestimation of the genetic merit for 

STAY06 occurred with the traditional TM when compared to the RRM evaluations. The key 

difference between such report and the results presented in this study is that no homogenization of 

prediction scales was performed in Sánchez-Castro et al. (2019) as was done in the current study. 

Recalling that both types of predictions (TM and RRM) were converted to a pseudo-probability 

scale as deviations from 50% (Speidel et al., 2018b); the underestimation of EPD that occurred 

with the RRM was not the result of different prediction scales, but more likely was caused by the 

fact that TM captures more genetic variance than linear models (Heringstad et al., 2003). However, 

it has been noted that although the h2 is greater when defined on the underlying scale, selection 

based on predictions of TM may not yield higher genetic progress on the observed scale than 

selection on predictions derived from linear models (Boettcher et al., 1999).  

Although predictions from the TM showed a high degree of concordance with RRM 

predictions specific to the age of 6 (STAY06), there is an alternative comparison between 

predictions that is also worth of discussing. Specifically, it has been suggested that predictions 

obtained specifically for the intercept (β0) of a RRM could serve as the sole criteria of selection 

capable of modifying the entire STAY curve (Jamrozik et al., 2013). The mathematical rationale 
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behind such argument is that the intercept of a RRM has the same weight for STAY in all calvings 

(regardless of how many endpoints are included in the model) and normally exhibit the highest h2 

among all the regression coefficients (Silva et al., 2018). Interestingly, to our knowledge, 

comparisons of predictions specific to the intercept of a RRM for STAY at consecutive ages has 

not been directly compared to the predictions obtained with a traditional TM. Therefore, a 

complementary analysis was performed in an attempt to explore the possibility of using predictions 

for the intercept as the single selection criteria for STAY. Specifically, predictions obtained on the 

linear scale were transformed to a pseudo-probability scale as outlined by Speidel et al. (2018b) 

and then, comparisons were made among predicted progeny differences for β0 and EPD obtained 

with the TM. Additionally, comparisons between predictions for β0 and EPD for all the age-

specific STAY endpoints evaluated in the RRM were also performed (Table 4.12). 

Table 4.12. Pearson (rp) and rank (rs) correlations of predictions for the intercept of the random 
regression model with all the age specific predictions for STAY produced by both methodologies. 
   Age specific stayability endpoint within the RRM2 
  TM1 3 4 5 6 7 8 9 10 11 12 

β0
† rp 0.83 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 

rs 0.86 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 
1TM = threshold model; 2RRM = random regression model; †β0 = intercept of the RRM.  
 

Correlations among predictions for the intercept of the RRM and predictions from the TM 

(e.g., rp = 0.83 and rs = 0.86) were almost identical to those obtained when comparing the TM and 

the RRM prediction specific to the age of 6 (e.g., rp = 0.84 and rs = 0.86). In the case of the 

comparisons made for the predictions for β0 and the rest of the age-specific predictions obtained 

with the RRM (e.g., from STAY03 to STAY12), correlation coefficients indicated that predictions 

and ranking of animals were essentially the same (≥0.98). In this regard, Jamrozik et al. (2013) 

reported that intercept predictions correlated quite well with all the age specific-predictions of 

STAY at consecutive ages in Simmental cattle (correlations ranged between 0.86 to 0.99). Silva 
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et al. (2018) also reported high correlations (ranging from 0.75 to 0.95) for intercept predictions 

and age-specific STAY predictions produced using random regression techniques. These results 

support the idea of considering the intercept of a RRM evaluating STAY at consecutive ages as 

the single most important selection criteria capable of improving all STAY endpoints. 

Furthermore, the correlations obtained between the intercept predictions and the EPD obtained 

with the TM, provide more evidence that the RRM methodology produces similar predictions and 

rankings of animals to those of the traditional method. 

Pearson and Spearman’s correlations, as well as the regression coefficient of EPD obtained 

with the TM on those yielded by the RRM for FSCR are shown in Table 4.13. Again, since there 

is no specific age of interest for a multiparous cow to conceive in response to her first AI, it was 

opted to compare all the predictions obtained with the RRM (i.e., predictions for each age at 

exposure) with the prediction obtained with the TM. Results suggested that predictions were highly 

correlated and almost the same animal rankings were obtained with both methodologies. 

Nonetheless, even when such results were obtained, they should not be considered totally reliable 

due to the noise introduced by using age as the longitudinal descriptor of FSCR.  

Table 4.13. Pearson correlation (rp), rank correlation (rs) and regression coefficient (β1) of 
predictions for first-service conception rate obtained with each statistical method. 
 Ages at exposure 
 2 3 4 5 6 7 8 9 10 11 

rp 0.89 0.93 0.97 0.99 0.99 0.98 0.93 0.87 0.79 0.70 
rs 0.89 0.93 0.96 0.99 0.99 0.97 0.93 0.86 0.78 0.69 
β1 0.45 0.44 0.42 0.40 0.39 0.37 0.36 0.34 0.32 0.31 

 
The utility of using exclusively the predictions for the intercept term of the RRM as the 

unique selection criterion was also explored for this trait (Table 4.14). Correlations among 

predictions for the intercept of the RRM and predictions from the TM (e.g., rp = 0.99 and rs = 0.99) 

indicated a high degree of concordance between the predictions from both methods and that 
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animals were ranked in the same way; consequently, the result for the regression coefficient seems 

irrelevant. Although predictions for β0 also correlated quite well (values ranging from 0.78 to 0.99) 

with the rest of the age-specific predictions obtained with the RRM, the null influence that age had 

on FSCR at consecutive ages negates the utility of applying a RRM using age as longitudinal 

descriptor on the first place. Consequently, results from this analysis should be considered just as 

a documentation of an unsuccessful attempt to model FSCR using age as a covariate.  

Table 4.14. Pearson (rp) and rank (rs) correlations of predictions for the intercept of the random 
regression model with all the age specific predictions for first-service conception rate produced by 
both methodologies. 
   Range of ages at exposure considered in the RRM2 prediction 
  TM1 2 3 4 5 6 7 8 9 10 11 

β0
† 

rp 0.99 0.84 0.89 0.94 0.97 0.99 0.99 0.97 0.92 0.85 0.78 
rs 0.99 0.84 0.89 0.93 0.97 0.99 0.99 0.97 0.92 0.85 0.77 

1TM = threshold model; 2RRM = random regression model; †β0 = intercept of the RRM.  
 
4.3.4 Comparison of accuracies of prediction 

The last set of results to discuss are those related to the comparisons between mean 

accuracies of prediction between TM and RRM for both traits. In the case of the accuracy of 

predictions for STAY06 obtained with each method, results are shown in Figure 4.6 (A-D). 

Considering all animals in the pedigree (Figure 4.6 A), the mean accuracy for STAY06 predictions 

obtained with the TM was 0.045 with a minimum of 0.002 and a maximum of 0.340. Alternatively, 

the mean accuracy for the same trait when analyzed using the RRM was 0.108 with values that 

ranged between 0.000 and 0.520. Similar increments were evident for accuracies of predictions for 

all the sires in pedigree (Figure 4.6 B), where the mean, minimum and maximum accuracy values 

were 0.030, 0.002 and 0.340 for the TM, and 0.073, 0.020 and 0.520 for the RRM.  
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Figure 4.6. Mean accuracies for stayability predictions at the age of 6 yr obtained with each 
statistical methodology. A) Mean accuracy for all animals in the pedigree (n = 14,140), B) Mean 
accuracies for all sires in pedigree (n = 971), C) Mean accuracies for sires that have produced 
progeny in the last five yr (n = 85), D) Mean accuracies for sires that have produced progeny in 
the last three yr (n = 51). Different letters indicate a statistical difference at the P <0.05 level among 
methodologies according to the least significant difference test. 

 
 
In the case of sires that have produced progeny in the last 5 yr within the CSU-BIC (Figure 

4.6 C), the average accuracy was 0.022 for the TM and 0.085 for the RRM, with values that ranged 

between 0.002 to 0.340 and 0.001 to 0.520 for the TM and RRM, respectively. The last group 

animals whose mean accuracy values obtained by each method were compared was the sires that 

have produced progeny within the last 3 yr within the CSU-BIC (Figure 4.6 D). For this group of 

animals, the mean, minimum and maximum accuracy values were 0.020, 0.002 and 0.340 for the 

TM, and 0.072, 0.001 and 0.520 for the RRM. Such differences among average accuracies of 

prediction could be explained by two potentially important factors: the difference in the amount of 
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information included with each methodology and the better capability of RRM to model the time-

dependent variations in fertility of cows (Meyer, 2004; Schaeffer, 2004). 

The considerable increase in the amount of information incorporated to the evaluation by 

the RRM (~ 5.8 times more records in comparison to the TM) was one of the main motivations to 

explore this statistical methodology. The gains in prediction accuracy were originally glimpsed by 

Jamrozik et al. (2013), since authors mentioned that analyzing STAY through RRM had the 

advantage that a larger number of phenotypic records per cow could be included, which could lead 

to increments in the accuracy of predicted breeding values. Furthermore, the improved ability of 

RRM to more appropriately model the covariance structure of longitudinal traits, allowed this 

methodology to better account for the time-dependent fertility variations of cows, and therefore, 

yielded more accurate predictions. In order to prove that gains in accuracy were not only originated 

by the inclusion of more data, a complementary comparison between models was performed 

executing a repeatability TM for STAY (REP; Appendix A, equation A.1). Briefly, such model 

considered each STAY endpoint as a repeated measure of fertility over time and included a total 

of 8,890 STAY observations (~5.77 times more records than the traditional TM for STAY06). 

Comparisons between mean accuracies of prediction between all models (TM, REP and RRM) 

revealed that the RRM yielded a mean accuracy of prediction 2.4 times higher than the TM and 

1.9 times higher than the REP when considering all animals (Appendix A, Figure A-2). 

Comparable increments in accuracy of predictions for STAY06 were reported by Sánchez-

Castro et al. (2019) when comparing TM and various RRM genetic predictions using a reduced 

data set from the CSU-BIC that contained observations collected between 1993 to 2016. Within 

that study, authors reported mean accuracies of prediction higher than those obtained in the present 

study (e.g., TM mean accuracy of 0.088 and RRM mean accuracies ≥0.386). Nonetheless, in that 
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particular study, the population of females with STAY phenotypes plus a 3-generations pedigree 

for those animals was used; whereas in the current study the entire pedigree of the CSU-BIC was 

utilized. This is relevant because a larger number of animals with more distant genetic relationships 

with the animals producing phenotypes received a genetic prediction in the present study and 

consequently, the overall mean accuracy for both methods was found to be smaller. Nonetheless, 

accuracy gains achieved by the RRM in the genetic evaluation for STAY06 undoubtedly remain 

and totally support our hypothesis that RRM could yield more accurate predictions than TM.  

In the case of the accuracy values associated to the genetic predictions of FSCR, results of 

the comparisons between statistical methods are shown in Figure 4.7 (A-D). For this trait, it is 

important to clarify that the comparison of the mean accuracy of the TM was performed relative 

to the accuracy obtained for predictions at average age at exposure of the cows, which was 5 yr of 

age. This decision was made with the objective of avoiding the need to performing 10 different 

accuracy comparisons (e.g., one per each age at exposure). Nonetheless, theoretically, accuracy of 

prediction could be obtained for any particular age of interest within the data range. When taking 

into account the entire pedigree (Figure 4.7 A), the mean value obtained with the TM was 0.056 

with a minimum of 0.002 and a maximum of 0.392. For the same trait but within the RRM 

methodology, the mean accuracy value was 0.079 with a range between 0.033 and 0.359. In the 

case of accuracy comparisons for all the sires in the pedigree (Figure 4.7 B), the mean, minimum 

and maximum accuracy values were 0.035, 0.0002 and 0.392 for the TM, and 0.062, 0.033 and 

0.359 for the RRM. For sires that produced progeny in the last 5 yr within the CSU-BIC (Figure 

4.7 C), a mean accuracy of 0.024 was achieved by the TM (with values ranging between 0.0002 

and 0.241), whereas the RRM yielded a mean accuracy of 0.054 (with a range between 0.033 and 

0.213). Lastly, for the group of sires that have produced progeny within the last 3 yr at the herd 
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(Figure 4.7 D), the TM had an average accuracy of 0.025 (range between 0.002 and 0.241) and the 

RRM had a mean accuracy of 0.052 (range between 0.033 and 0.213). 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7. Mean accuracies for cow first-service conception rate predictions obtained at the 
average age of exposure (5 yr of age) with each statistical methodology. A) Mean accuracy for all 
animals in the pedigree (n = 14,140), B) Mean accuracies for all sires in pedigree (n = 971), C) 
Mean accuracies for sires that have produced progeny in the last five yr (n = 85), D) Mean 
accuracies for sires that have produced progeny in the last three yr (n = 51). Different letters 
indicate a statistical difference at the P <0.05 level among methodologies according to the least 
significant difference test. 
 

Although the average increment of 2.6% in accuracy of prediction in favor of the RRM for 

all the comparisons performed could be explained by the slightly higher number of records utilized 

by this method (e.g., 9,448 records for the TM and 9,584 records for RRM); the inappropriateness 

of using age as the time descriptor in the RRM for FSCR prevented us from concluding that this 

increment was valid. The low accuracy values obtained with both methodologies was considered 

normal considering the low h2 and repeatability estimates obtained for FSCR. First, there is a 

positive correlation between accuracy of predictions and the h2 of the trait evaluated; therefore, if 
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h2 is high, accuracies of prediction are high, whereas if h2 is low, accuracies of prediction are low. 

Furthermore, even when considering all the AI events to which a cow was subjected during her 

life as repeated records, the practically null repeatability estimate of FSCR in this study implied 

that the expected accuracy gains due to the incorporation of more records to the analysis were still 

low (Bourdon, 2000). Additionally, the large number of bulls with small groups of daughters could 

also be an influencing factor in both methodologies to achieve low accuracies of prediction. For 

instance, about 62% of sires with female progeny had less than 5 daughters with FSCR 

observations (Table 4.15). Similar numbers of daughter records by sire were reported by Bormann 

et al. (2006) when evaluating HPG and FSCR in Angus heifers from 6 different herds; however, 

no accuracies for breeding value predictions were reported within such study. 

Table 4.15. Number of daughters producing records  
of first-service conception rate by sire 

Number of daughters Sires 
<5 220 
5 to 9 73 
10 to 14 31 
15 to 19 10 
20 to 29 12 
30 to 39 6 
>40  1 

 

4.4 Conclusion 

This study confirmed the capabilities of RRM to include any range of age endpoints for 

which phenotypic data was available and their flexibility to incorporate information from class 

levels of fixed effects with no variation in genetic evaluations of longitudinal binary fertility traits 

of multiparous beef cows. Particularly in the case of STAY, the strong Pearson and Spearman’s 

correlations found between predictions obtained with RRM and TM, suggested that RRM could 
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effectively substitute to traditional TM genetic evaluations for this in beef cattle. In this case, even 

when some degree of re-ranking could be expected if RRM substitute traditional TM evaluation 

procedures, the important gains accuracies of prediction yielded by RRM may offset the possible 

inconvenience of such re-ranking. Furthermore, this study also compiled evidence about the 

possibilities of using predictions of the intercept of a RRM as the sole criterion in selection for 

STAY to any age of interest.  

Conversely, in the case of FSCR evaluations, results of this study suggested that the age of 

the cows was not an appropriate longitudinal descriptor to model this trait using an RRM. As such, 

the predictions obtained via the execution of a repeatability TM remain as a base point from which 

improvements should be sought. The flexibility of RRM to accommodate any biologically relevant 

covariate associated to the trait of interest as the longitudinal descriptor, allows for future research 

where perhaps breeding weight or body condition scores could be used as a continuous descriptor 

of variations in FSCR. Evidently, such type of investigations would be dependent upon data 

availability and it may take some time before substantial information could be collected. Therefore, 

in the case of FSCR, it is imperative to keep altering the environment of cows thru reproductive 

managements focused to maximize reproductive success of females subjected to AI events. 
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CHAPTER 5 – SINGLE-STEP GENOMIC EVALUATIONS OF BEEF CATTLE BINARY 

FERTILITY TRAITS USING RANDOM REGRESSION SUPER HYBRID MODELS 

 
 
 
Summary 

Female fertility is a key economic driver of cow-calf operations; however, the achievement of 

genetic improvement of female fertility traits is challenging due to the biological complexity of 

reproduction and the difficulties related to statistical modeling of categorical and binary traits. 

Traits like heifer pregnancy (HPG), first-service conception rate (FSCR) and stayability (STAY) 

are important elements of the breeding objective for beef cattle producers. Nonetheless, their 

categorical nature has dictated that these traits be evaluated under a threshold theory that currently 

has not been adapted to incorporate genomic information in the form of single-step super-hybrid 

marker effects models. In contrast, random regression models (RRM) have emerged as an feasible 

alternative to evaluate binary fertility traits and they are flexible enough to accommodate any of 

the single-step genomic evaluation procedures that have been developed. There is a paucity of 

studies applying single-step random regression super-hybrid models (ssRR-SHM) for the genomic 

evaluation of beef cattle fertility traits, and given their recent development, a scarcity of reports 

prevail relative to the behavior of these models under different data structure scenarios. Moreover, 

the benefits related to the parallel detection of influential chromosomal regions while obtaining 

genomic predictions offered by marker effects models are limited. Therefore, objectives of this 

chapter were 1) to explore the feasibility of implementing ssRR-SHM for the genomic evaluation 

of HPG, FSCR and STAY; 2) to assess the impact of differing data structures in the resulting 

genomic predictions of ssRR-SHM for the traits; 3) identify quantitative trait loci (QTL) associated 

with the binary fertility traits contemplated in this study. Two types of genetic evaluations were 



 
 

174 

implemented for each trait. The first type of evaluation that was implemented was a pedigree-

based RRM that utilized Legendre polynomials as the base function in where the phenotype of 

interest was regressed on an appropriate age covariate. The second evaluation type was a ssRR-

SHM that also used Legendre polynomials as the base function and regressed observations of the 

trait of interest on its appropriated age covariate, but that included random effects of marker and 

extra polygenic effects. Within each trait, four different data structure scenarios were created 

depending on the phenotypic performance of the genotyped and non-genotyped subsets of animals. 

The behavior of the genomic predictions was assessed through the calculation of Pearson and 

Spearman’s correlations and the estimation of the regression coefficients of EPD obtained with the 

ssRR-SHM on those obtained with their corresponding pedigree-based RRM. Results of this study 

suggested that the implementation of ssRR-SHM for the genomic evaluation of singly-observed 

binary fertility traits like HPG and FSCR, as well as for the evaluation of a longitudinally recorded 

binary trait such as STAY was feasible. Nonetheless, an overestimation of genomic predictions 

occurred with these models when phenotypic records of pre-selected genotyped animals were 

included in the evaluation. Additionally, inaccurate classify of genotypes for non-genotyped 

animals also impacted resulting genomic predictions, although this issue was restricted to this 

subgroup of animals only. In all cases, the removal of phenotypic records from preselected animals 

and the maintenance of closely related individuals in the pedigree ameliorated problems associated 

with the overestimation of genomic predictions and improved correlations among genomically-

enhanced and pedigree-based EPD for all traits. Regarding GWAS analyses, the application of 

ssRR-SHM identified single nucleotide polymorphisms that resulted located either within or 

relatively close to genes that have been previously associated with important reproductive 

processes and fertility traits in cattle. 
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5.1 Introduction 

Female reproductive performance represents one of the most relevant factors associated 

with the economic viability of beef cattle operations (Toghiani et al., 2017; Speidel et al., 2018a; 

Chudleigh et al., 2019). In fact, the enhancement of fertility-related traits has been estimated to be 

up to 4 times more important than improvements in end-product characteristics (Melton, 1995). 

Although fertility encompasses a variety of traits, only those measuring the success or failure of 

key biological events like conception and calving summarize the economically relevant outcomes 

of reproduction (Cammack et al., 2009, Walmsley et al., 2018). Consequently, traits such as heifer 

pregnancy (HPG), first-service conception rate (FSCR) and stayability (STAY) represent 

important elements of the breeding objectives of cow-calf enterprises (Golden et al., 2000). 

Nonetheless, factors hindering a rapid genetic progress of livestock populations for these 

characteristics include their sex-limited and discrete phenotypic expression, as well as their low 

heritability and the considerable amount of time required to collect phenotypes for their evaluation 

(Dekkers, 2010; Kluska et al., 2018; Hayes et al., 2019). 

Several US beef cattle breed associations calculate expected progeny differences (EPD) for 

traits like HPG and STAY based on genetic evaluations performed using threshold models (Boldt, 

2017). However, even when threshold models are theoretically superior for the evaluation of 

discrete response variables, these models do not consistently yield better results than linear models 

and some authors have suggested that it is not strictly necessary to use them in univariate genetic 

evaluations involving categorical traits (Ramírez-Valverde et al., 2001; Vostrý et al., 2014). 

Furthermore, among other limitations, threshold models have received criticism due to their lack 

of flexibility to incorporate genomic information differently than using genomic relationship 

matrices whose inverse is difficult to obtain when the number of genotyped animals is high 
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(Speidel et al., 2018b). Random regression models (RRM) represent an alternative method to 

evaluate binary fertility traits and their extension to genomic evaluation procedures that avoid the 

need of inverting dense relationship matrices has been already demonstrated (Jamrozik et al., 2013; 

Golden et al., 2018a, 2018b). Such procedures have been referred to as super-hybrid models and 

basically, they are Bayesian regression models capable of combining all available data from 

genotyped and non-genotyped animals in a single-step evaluation (Fernando et al., 2014, 2016). 

Super-hybrid models permit any a priori assumption for marker effects and allow a parallel 

Quantitative Trait Loci (QTL) detection while resolving for genomic enhanced breeding values 

using a single-step methodology (Golden and Garrick, 2016; Misztal and Lourenco, 2018).  

The feasibility of a single-step random regression super-hybrid model (ssRR-SHM) genetic 

evaluation for a longitudinal binary reproductive trait like STAY has been documented in a large 

population of Hereford cattle (Golden et al., 2018a). However, no reports of the application of 

such statistical approach for the same trait exist in Angus cattle and neither for phenotypes 

observed once in the life of an animal (e.g., HPG and/or FSCR). Furthermore, although pedigree-

based RRM have been successfully applied to evaluate binary reproductive traits in populations of 

any size (Averill et al., 2006; Speidel et al., 2018b); challenges associated with single-herd data 

structures have not been documented when extending this methodology for the inclusion of 

genomic information in the form of marker effects models. Therefore, objectives of this chapter 

were 1) to explore the feasibility of implementing ssRR-SHM for the genomic evaluation of HPG, 

FSCR and STAY in a purebred seedstock population of Angus cattle; 2) to assess the impact of 

differing data structures in the resulting genomic predictions of ssRR-SHM for all traits; 3) to 

identify QTL associated with the binary fertility traits contemplated in this study. 
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5.2 Materials and Methods 

Data used in this study were obtained from an existing database; however, animals within 

the experimental location were managed according to the Colorado State University Institutional 

Animal Care and Use Committee (IACUC) guidelines, covered in most recent years by the IACUC 

number 18-8367A. 

5.2.1 Heifer phenotypic data collection and description 

A full description of the original dataset containing the heifer fertility phenotypes of HPG 

and FSCR was provided in the Materials and Methods section of Chapter 3. Briefly, phenotypic 

information for both traits was extracted from breeding and ultrasound records of 4,334 Angus 

heifers (progeny of 354 sires and 1,626 dams) collected between 1992 to 2019 at the Colorado 

State University Beef Improvement Center (CSU-BIC). Heifer pregnancy was defined as the 

ability of a heifer to produce a calf by 24 mo of age, given she conceived within a 60-d breeding 

season length. First-service conception rate was defined as the probability of a heifer conceiving 

in response to her first artificial insemination (AI) and maintaining such pregnancy until the end 

of the breeding season. For both traits, successful observations were coded as 1 and unsuccessful 

observations were coded as 0. Within each particular trait, different filtering processes of 

phenotypes were performed in order to identify the most suitable data for the application of a ssRR-

SHM genomic evaluation. After such filtering processes, a pedigree containing 3 generations of 

ancestors was built for the animals with phenotypes that remained in each one of the data subsets 

by extracting information from the historical pedigree of the CSU-BIC (the full pedigree contained 

14,140 individuals in total). 
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5.2.2 Cow phenotypic data collection and description 

Similar to the original heifer phenotypic files, a complete description of the data containing 

the calving performance of multiparous cows of the John E. Rouse CSU-BIC between 1993 and 

2019 was provided in the Materials and Methods section of Chapter 4. In summary, the original 

phenotypic information included 8,907 calving records of 1,713 Angus cows (progeny of 302 sires 

and 1,068 dams). Stayability observations were assigned to dams according to their age in days at 

each calving. Given every female calved as a 2-yr-old, starting from their third calving, the value 

of 1 (successful) or 0 (unsuccessful) was assigned to cows that either produced a calf or did not 

produced a calf within each particular age endpoint (ages ranging from 3 to 12 yr). Again, distinct 

filtering processes of STAY phenotypes were conducted with the objective of identifying the most 

appropriate data structure for the application of a ssRR-SHM genomic evaluation for this trait. 

Afterwards, a 3-generation pedigree was constructed for the females with STAY phenotypes that 

remained in each one of subsets of data retrieving such information from the historical pedigree 

records of the CSU-BIC. 

5.2.3 Genotypic data collection and description 

In 2011, a whole-herd genotyping process was begun at the CSU-BIC. Initially, all animals 

were genotyped using a 50k SNP panel (Illumina Bovine SNP50 v2.0, Illumina Inc., San Diego, 

CA); whereas 65 steers were genotyped with the Illumina High-Density Bovine SNP chip for a 

total of 777,962 markers (Illumina Bovine high density (HD); Illumina Inc., San Diego, CA). Since 

that time, a continuous effort has been made to genotype every year's calf crops (~400 calves per 

year) using SNP arrays of varying densities and from different genotyping laboratories (e.g., 50k 

or i50k from Zoetis; GGP from GeneSeek). Until 2017, the total number of genotyped animals at 

the CSU-BIC was 3,621 (Appendix B, Table B-1). 
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Given the heterogeneity of the SNP panels used across different years at the CSU-BIC, an 

imputation process using the findhap software (VanRaden, 2011) was implemented to homogenize 

the number of available markers to those contained in the Illumina's Bovine SNP50 v2.0 array 

(~54,000 SNP per animal). As part of the marker quality control analyses, genetic markers with 

an average call rate lower than 0.85, minor allele frequency less than 0.01, deviated from Hardy–

Weinberg equilibrium (P<0.0001) and in extreme linkage disequilibrium (r2 > 0.99) were removed 

from the data using the PLINK 1.9 software (Chang et al., 2015). After this filtration process, a 

total of 33,862 SNP genotypes remained available for subsequent analyzes. 

5.2.4 Data structure exploration of HPG phenotypes 

Considering that phenotypic information for HPG dates back to 1992 and that the overall 

genotyping process of the Rouse Angus herd did not begin until 2011, heifers born in the early 

years within the data did not possessed genotypes. Figure 5.1 shows the number of heifers with 

fertility phenotypic records, as well as their genotyping status according to their year of birth. 

 
Figure 5.1. Summary of the genotyping status per year of birth of all heifers with fertility 
phenotypic information at the Colorado State University Beef Improvement Center (red arrow 
indicates the first genotyping year). 
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The first dataset implemented to test the viability of a ssRR-SHM genomic evaluation for 

HPG (DS-1_HPG) contained phenotypic records of all 4,334 heifers. The final pedigree in DS-

1_HPG consisted in a total of 6,773 individuals, with 832 unique sires and 2,904 dams. The 

average inbreeding coefficient of the final pedigree was 0.008. Among the animals included in the 

final pedigree file, a total of 2,037 individuals had genotypes available, while the remaining 4,736 

animals were non-genotyped (a graphical description of DS-1_HPG is shown in Figure 5.2). 

 

 

 

 

 

 

 

 

 

Figure 5.2. Data structure within the first dataset (DS-1_HPG) used in the random regression super-hybrid 
model genomic evaluation for heifer pregnancy. 

 
According to each year's specific culling rate within the CSU-BIC, a variable number of 

heifers were kept as replacements annually, and consequently, they appeared in the pedigree as 

dams of some other heifers that produced phenotypes for HPG in later years. A detailed graphical 

description of the number of heifers according to their genotyping status and their fate within the 

herd is provided in Figure 5.3. In general, 1,297 out of the 4,334 heifers with HPG phenotypes 

were kept as replacements at the CSU-BIC; from which, 620 had genotypes and phenotypes and 

677 only possessed phenotypes. 
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Figure 5.3. Number of heifers according to their genotyping status and their fate within the Colorado State 
University Beef Improvement Center. 
 

Given the strong selection pressure that the CSU-BIC places on fertility, replacement 

heifers have been historically selected on the basis of their genetic merit and proved performance, 

retaining only fertile animals (e.g., pregnant heifers). Figure 5.4 illustrates such selection policy 

by showing the pregnancy rates of each year's selected group of replacements (n = 1,297). 

 
Figure 5.4. Pregnancy rate of selected replacement heifers at the Colorado State University Beef 
Improvement Center. 
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The fact that only heifers with successful HPG observations became replacements and only 

this subset of females appeared as dams of other heifers in the pedigree could affect resulting 

genomic predictions due to preselection bias.  Therefore, a second dataset was created to evaluate 

the feasibility of a ssRR-SHM genomic evaluation for HPG (DS-2_HPG). This data set consisted 

of the removal of phenotypic records from the 1,297 heifers that eventually became replacements 

in the herd (620 genotyped and 677 non-genotyped). Such filtering processes resulted in a file 

containing phenotypic records of 3,037 heifers. The final pedigree in DS-2_HPG consisted in a 

total of 6,738 individuals, with 827 unique sires and 2,874 dams. The average inbreeding 

coefficient of this pedigree was 0.008. Among the animals included in the final pedigree file, 2,037 

individuals had genotypes available, while the remaining 4,701 animals were non-genotyped (a 

graphical description of the DS-2_HPG is shown in Figure 5.5). 

 

 

 

 

 

 

 

 

 

Figure 5.5. Data structure within the second dataset (DS-2_HPG) used in the random regression super-
hybrid model genomic evaluation for heifer pregnancy. 
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genotyped heifers ranged between 0.64 to 1; however, the majority of the average pregnancy rates 

that were ≥0.9 belonged to heifers that were born before 2007 and such values were highly 

influenced by the reduced numbers of animals of born in those years of data (e.g., <40). 

 
Figure 5.6. Pregnancy rate of genotyped heifers grouped by year of birth at the Colorado State University 
Beef Improvement Center. 
 

The third dataset generated to evaluate the feasibility of a ssRR-SHM genomic evaluation 

for HPG (DS-3_HPG) was created by removing phenotypic records of the genotyped heifers born 

before 2007 (n = 213). The previous resulted in a file containing phenotypic records of 4,121 

heifers and a pedigree file formed for a total of 6,764 individuals, with 832 unique sires and 2,902 

dams. The average inbreeding coefficient of this pedigree was 0.008. Among the animals included 

in this particular pedigree, a total of 2,029 individuals had genotypes, while the remaining 4,735 

animals were non-genotyped (a graphical description of the DS-3_HPG is shown in Figure 5.7). 
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Figure 5.7. Data structure within the third dataset (DS-3_HPG) used in the random regression super-hybrid 
model genomic evaluation for heifer pregnancy. 
 

The last dataset created to evaluate the feasibility of a ssRR-SHM evaluation for HPG (DS-

4_HPG) included only the phenotypes belonging to the 1,884 genotyped heifers with phenotypic 

records. For DS-4_HPG the final pedigree had an average inbreeding coefficient of 0.007 and 

included 3,934 individuals, as well as 695 unique sires and 1,944 dams. Within this pedigree, 2,032 

animals had genotypes available and 1,902 were ungenotyped animals (Figure 5.8). 

 

 

 

 

 

 

 

 

 

Figure 5.8. Data structure within the third dataset (DS-4_HPG) used in the random regression super-hybrid 
model genomic evaluation for heifer pregnancy. 
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5.2.5 Data structure exploration of heifer FSCR phenotypes 

The same cohort of heifers with phenotypic information for HPG also possessed FSCR 

records, therefore, the same information and data structure relative to the genotyping status of 

these heifers existed for FSCR analyses (e.g., Figure 5.1). In this context, all the previously 

described datasets created to test the feasibility of a ssRR-SHM genomic evaluations for HPG were 

also used to test the viability of this statistical approach for FSCR. Such datasets were just renamed 

and handled appropriately to include the systematic and random effects biologically associated to 

FSCR. 

 Specifically, the first dataset was DS-1_FSCR (contained phenotypic information of the 

original 4,334 heifers with FSCR phenotypes along with its respective 3-generations pedigree file, 

e.g., Figure 5.2). The second dataset was DS-2_FCSR and contained phenotypic records of 3,037 

heifers along with its corresponding 3-generation pedigree file (e.g., Figure 5.5). The third dataset 

(DS-3_FSCR) included phenotypic records of the 4,121 heifers born after 2007 and its 3-

generation pedigree file (Figure 5.5). The last dataset (DS-4_FSCR) was formed with the 

information of only genotyped heifers (n = 1,884) along with their respective 3-generation 

pedigree file (e.g., Figure 5.8). As an important clarification, the same rationale followed to remove 

phenotypic records of heifers born before 2007 in HPG was followed for the FSCR evaluations 

given the same group animals showed considerably inflated averages for FSCR due to the reduced 

number of females represented in the data (e.g., <40). Figure 5.9 shows the average FSCR of 

genotyped heifers grouped according to their corresponding year of birth. 
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Figure 5.9. First-service conception rate (FSCR) of genotyped heifers grouped by year of birth at the 
Colorado State University Beef Improvement Center. 
 
5.2.6 Data structure exploration of STAY phenotypes 

Calving records for this study were available since 1990, therefore, not all females within 

the early years of data survived up to 2011 in order to be genotyped (Figure 5.10). 

 
Figure 5.10. Summary of the genotyping status per year of birth of all dams with stayability 
records at the Colorado State University Beef Improvement Center (red arrow indicates the first 
genotyping year). 
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The first dataset implemented to test the viability of a ssRR-SHM genomic evaluation for 

STAY (DS-1_STAY) contained 8,907 records of all 1,713 multiparous cows. The final pedigree 

in DS-1_STAY consisted of a total of 3,569 individuals, with 660 unique sires and 2,026 dams. 

The average inbreeding coefficient of the final pedigree was 0.006. Among the animals included 

in the final pedigree file, a total of 882 individuals had genotypes available, while the remaining 

2,687 animals were non-genotyped (Figure 5.11). 

 

 

 

 

 

 

 

 

 

Figure 5.11. Data structure within the first dataset (DS-1_STAY) used in the random regression super-
hybrid model genomic evaluation for stayability. 
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pedigree was 0.006. Among the animals included in the final pedigree file, 843 of them were 

genotyped and the remaining 2,685 were non-genotyped individuals (Figure 5.13). 

 
Figure 5.12. Success percentage of stayability at the age of 6 in genotyped dams grouped by year of birth 
at the Colorado State University Beef Improvement Center (red arrow indicates the first genotyping 
year). 
 

 

 

 

 

 

 

 

 

 

Figure 5.13. Data structure within the second dataset (DS-2_STAY) used in the random regression super-
hybrid model genomic evaluation for stayability. 
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The third dataset generated to evaluate the feasibility of a ssRR-SHM genomic evaluation 

for STAY (DS-3_STAY) was generated by including only phenotypic information pertaining to 

all genotyped cows (e.g., 4,334 observations from 750 cows). For DS-3_STAY the final pedigree 

had an average inbreeding coefficient of 0.005 and included 2,450 individuals, as well as 595 

unique sires and 1,422 dams. Within this pedigree, 881 animals had genotypes available and 1,569 

were ungenotyped animals (Figure 5.14). 

 

 

 

 

 

 

 

 

 

Figure 5.14. Data structure within the third dataset (DS-3_STAY) used in the random regression super-
hybrid model genomic evaluation for stayability. 
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Figure 5.15. Data structure within the fourth dataset (DS-4_STAY) used in the random regression super-
hybrid model genomic evaluation for stayability. 
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function. The general model equation (5.1) for all ssRR-SHM is presented below: 

 [𝒚𝒏𝒚𝒈] = [𝑿𝒏𝑿𝒈]b + [𝑫𝟎 𝟎𝟎 𝑫𝟏] [𝒅𝟎𝒅𝟏] +[𝒁𝒏𝟎 𝟎𝟎 𝒁𝒈𝟎𝑴𝒈] [𝒖𝒏𝟎𝜶𝟎]+ [𝒁𝒏𝟏 𝟎𝟎 𝒁𝒈𝟏𝑴𝒈] [𝒖𝒏𝟏𝜶𝟏] + e Eq. 5.1 

where 𝒚𝒏 and 𝒚𝒈 corresponded to binary HPG observations on non-genotyped (n) and genotyped 

(g) individuals; 𝑿𝒏 and 𝑿𝒈 were appropriate incidence matrices that related fixed effects of 

breeding contemporary group (defined as a combination between breeding year and breeding 
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pasture),  age of dam (according to the BIF recommendations; BIF, 2020) and a linear fixed 

regression of HPG on AFE contained in b to HPG observations in y (specifically sorted with n 

individuals first and g individuals after); D0 and D1 were appropriate age covariates (intercept and 

linear term) relating HPG observations in y to the additive random extra polygenic effects in d0 

and d1; 𝒁𝒏𝟎  and 𝒁𝒏𝟏  corresponded to intercept and linear age covariates relating HPG observations 

in y to animal additive direct genetic effects accounted by imputed marker values in 𝒖𝒏𝟎  and 𝒖𝒏𝟏 , 

respectively [with 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐 (where 𝝐 = imputation residual)]; 𝒁𝒈𝟎  and 𝒁𝒈𝟏  represented intercept 

and linear age covariates relating HPG observations in y to marker effects contained in α0 and α1, 

respectively; M denoted a matrix of centered marker values (coded as -1, 0 or 1, representing 

homozygous, heterozygous and opposite homozygous genotypes, respectively); and e represented 

a vector of random errors. 

The extra polygenic additive genetic effects terms (d) were fit assuming ½ of the additive 

genetic variance was not captured by markers and these effects were considered to be uncorrelated 

to other random effects (Golden et al., 2018a). For these models, variances of random effects we 

assumed to be equal to: 

Var [ 𝒅𝒖𝒏𝜶𝒆 ] = [   
 𝑮𝒅−𝟏 𝟎 𝟎 𝟎𝟎 𝑮𝒖−𝟏 𝟎 𝟎𝟎 𝟎 𝑮𝜶−𝟏 𝟎𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  

  
 

With: 𝑮𝒅−𝟏 = [𝑮𝟎(𝟏 − 𝒄)]−𝟏   𝑮𝒖−𝟏 = [𝑮𝟎𝒄]−𝟏 

𝑮𝜶−𝟏 = [𝑮𝟎 𝒄𝟐𝒌𝒑𝒒̅̅ ̅̅ (𝟏− 𝝅)]−𝟏
  𝑮𝟎= Var [𝜷𝟎𝜷𝟏] = [𝑨𝝈𝜷𝟎𝟐 𝟎𝟎 𝑨𝝈𝜷𝟏𝟐 ] 
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where 𝑮𝒅−𝟏 denoted the variance of the extra polygenic effects, 𝑮𝒖−𝟏 corresponded to the variance 

of the residual polygenic effects and 𝑮𝜶−𝟏 represented the variance of marker effects; 𝑮𝟎 was a 

modified variance-covariance matrix of additive genetic random regression coefficients where the 

covariance between the intercept (𝜷𝟎) and the linear term (𝜷𝟏) was assumed to be zero, given no 

heifer had more than one observation for HPG (Speidel et al., 2018b); A corresponded to the 

additive numerator relationship matrix; c represented the proportion of genetic variance accounted 

for by the marker effects; k was the number of loci in the genotype matrix, 𝒑𝒒̅̅ ̅̅  represented the 

average of the product of the p and q loci frequencies and; 𝝅 represented the prior probability of a 

marker not affecting the trait being studied (𝜋 = 0.99).  

The mixed model equations (MME) of all these Bayes C𝜋 ssRR-SHM were assembled 

using the BOLT software package (Release 1.2.7; http://www.thetasolutionsllc.com/bolt-

software.html). These MME were solved in the first instance using a preconditioned conjugate 

gradient (PCG) method (Garrick et al., 2018). Afterwards, three parallel BayesC Gibb’s single site 

samplers were seeded with the PCG solutions and a total of 300,000 effective samples were 

obtained using Markov chain Monte Carlo (MCMC) methods (each chain consisted in 115,000 

iterations with the first 15,000 of them considered as burn-in). Linear functions of sampled model 

effects such as β (fixed effects), α (marker effects), 𝝐 (imputation residual effects for non-

genotyped animals) and d (extra polygenic effects common to genotyped and non-genotyped 

animals) were computed to obtain estimated breeding values (EBV) specific to the average AFE 

on non-genotyped and genotyped animals, using equations 5.2 and 5.3, respectively: 𝑬𝑩𝑽𝒏 = [(𝑴𝒏𝜶𝒎𝟎 + 𝛜) ∗ Ф𝒊𝟎] + [(𝑴𝒏𝜶𝒎𝟏 + 𝛜) ∗ Ф𝒊𝟏] + (𝒅𝒎𝟎  ∗ Ф𝒊𝟎) + (𝒅𝒎𝟏  ∗ Ф𝒊𝟏) + (𝑱𝟏* β) + (𝑲𝟏* β) Eq. 5.2 

 
 𝑬𝑩𝑽𝒈 = (𝑴𝒈𝜶𝒎𝟎 ∗ Ф𝒊𝟎) + (𝑴𝒈𝜶𝒎𝟏 ∗ Ф𝒊𝟏) + (𝒅𝒎𝟎  ∗ Ф𝒊𝟎) + (𝒅𝒎𝟏  ∗ Ф𝒊𝟏) + (𝑱𝟐* β) + (𝑲𝟐* β) Eq. 5.3 

http://www.thetasolutionsllc.com/bolt-software.html
http://www.thetasolutionsllc.com/bolt-software.html
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where 𝑬𝑩𝑽𝒏 (𝑬𝑩𝑽𝒈) corresponded to the estimated breeding value for non-genotyped and 

genotyped animals, respectively; Ф𝒊𝟎 (Ф𝒊𝟏) corresponded to intercept (linear) coefficients of 

Legendre polynomials standardized to the ith age of interest (e.g., AFE = 422 d); 𝜶𝒎𝟎  (𝜶𝒎𝟏 ) 

represented the intercept (linear term) marker effects random regression solutions for the mth 

animal; 𝒅𝒎𝟎  (𝒅𝒎𝟏 ) were the intercept (linear term) random regression solutions for the extra 

polygenic additive genetic effects of the mth animal; 𝑴𝒏 (𝑴𝒈) corresponded matrices of centered 

marker values for non-genotyped (genotyped) individuals; 𝑱𝟏 and 𝑱𝟐 were partitions of a fixed (𝜷) 

covariate effect that accounted for the difference in expected value of genetic merit between non-

genotyped animals and genotyped animals, respectively; whereas  𝑲𝟏 (𝑲𝟐) were partitions for non-

genotyped (and genotyped) animals of an extra fixed (𝜷) covariate that accounted for the fact that 

the expectation of the α (marker effects) was not zero (Fernando et al., 2014, 2016; Golden and 

Garrick, 2016). Posterior means and variances of breeding values for HPG at the average AFE 

were then averaged across the three chains and transformed to EPD expressed on a pseudo-

probability scale as deviations from 50% as described by Speidel et al. (2018b). 

Additionally, the number of times that each marker entered to the model during the 

sampling process was summed across the three chains in order to calculate its posterior probability 

of inclusion (PPI). The PPI was calculated through the division of the total number of times a 

marker was included in the model by the overall number of effective samples. Finally, according 

to the information contained in the manifest files of the original SNP arrays used to genotype the 

animals (UMD3.1.1 bovine assembly, Zimin et al., 2009), marker specific locations and their 

corresponding PPI were merged in order to conduct a genome-wide association analysis intended 

to identify relevant chromosomic regions related to HPG. Following the procedures reported by 

Pierce (2019), the five SNP with the highest PPI were considered as quantitative trait loci (QTL) 
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for which further exploration was performed. Specifically, once that the top five SNP were 

identified, their information was used to explore within the cattle QTL database (Cattle QTLdb; 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index) if similar QTL had been previously 

associated with beef cattle fertility traits. Furthermore, Ensembl genome database (Release 94, 

Zerbino et al., 2018) was utilized to search genes within one megabase of the QTL and the 

annotated gene located nearest to SNP was considered as a potential candidate gene. 

5.2.8 Genetic and genomic evaluations for heifer first-service conception rate 

The EPD estimations for heifer FSCR were performed using the same approach described 

for HPG. Two RRM evaluations were executed for each heifer FSCR dataset (DS-1_FSCR 

through DS-4_ FSCR). The first evaluation was a pedigree-based RRM like the one described in 

equation 3.9 of the materials and methods section of chapter 3. This evaluation was intended to 

obtain base genetic predictions for FSCR without including genomic information. Later, such base 

predictions were compared with the genomic predictions generated by the ssRR-SHM (second 

evaluation). In all models, FSCR was regressed on AFE applying a linear RRM that used Legendre 

polynomials as the base function. The model used in all the hybrid genomic evaluations is 

presented in matrix form in Equation 5.4 below: 

[𝒚𝒏𝒚𝒈] = [𝑿𝒏𝑿𝒈]b + [𝑫𝟎 𝟎𝟎 𝑫𝟏] [𝒅𝟎𝒅𝟏] +[𝒁𝒏𝟎 𝟎𝟎 𝒁𝒈𝟎𝑴𝒈] [𝒖𝒏𝟎𝜶𝟎]+ [𝒁𝒏𝟏 𝟎𝟎 𝒁𝒈𝟏𝑴𝒈] [𝒖𝒏𝟏𝜶𝟏] + 𝑸𝒎+ 𝑾𝒔 + e Eq. 5.4 

where 𝒚𝒏 and 𝒚𝒈 corresponded to binary FSCR observations on non-genotyped (n) and genotyped 

(g) individuals; 𝑿𝒏 and 𝑿𝒈 were appropriate incidence matrices that related fixed effects of 

breeding contemporary group (defined as a combination between breeding year and semen type),  

AI technician, age of dam (BIF classes) and a linear fixed regression of FSCR on AFE contained 

in b to FSCR observations in y (specifically sorted with n individuals first and g individuals after); 

D0 and D1 were appropriate age covariates relating FSCR observations in y to the additive random 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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extra polygenic effects in d0 and d1; 𝒁𝒏𝟎  and 𝒁𝒏𝟏  corresponded to intercept and linear age covariates 

relating FSCR observations in y to animal additive direct genetic effects accounted by imputed 

marker values in 𝒖𝒏𝟎  and 𝒖𝒏𝟏 , respectively [with 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐 (where 𝝐 = imputation residual)]; 𝒁𝒈𝟎  and 𝒁𝒈𝟏  represented intercept and linear age covariates relating FSCR observations in y to 

marker effects contained in α0 and α1, respectively; Q was an incidence matrix relating FSCR 

observations in y to a vector of unknown solutions of mating group (e.g., inseminated in heat or 

during a mass mate) random effects contained in m; W was an incidence matrix relating FSCR 

observations in y to the vector of unknown solutions of service sire random effects contained in s; 

M corresponded to a matrix of centered marker values (coded as -1, 0 or 1) and e represented a 

vector of random errors. 

For these models, again the extra polygenic additive genetic effects terms (d) were fit 

assuming ½ of the additive genetic variance was not captured by markers and it was assumed that 

these effects were uncorrelated to other random effects. Variances of random effects included in 

the ssRR-SHM for FSCR were assumed to be: 

Var 

[  
   𝒅𝒖𝒏𝜶𝒎𝒔𝒆 ]  

    = 

[  
   
 𝑮𝒅−𝟏 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝑮𝒖−𝟏 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝑮𝜶−𝟏 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝑰𝒎𝝈𝒎𝟐 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝑰𝒘𝝈𝒔𝟐 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  

   
 
 

where 𝑮𝜶−𝟏, 𝑮𝒖−𝟏 and 𝑮𝒅−𝟏 remained as described for the ssRR-SHM for HPG, while  𝑰𝒎, 𝑰𝒘 and 𝑰𝒏 were identity matrices whose orders were equal to the number of mating groups, AI sires and 

observations, respectively. The 𝝈𝒎𝟐 , 𝝈𝒔𝟐 and 𝝈𝒆𝟐 were the mating group, AI sire and residual 

variances, respectively. Variance components used to feed all these parameters were the ones 

obtained with the heifer FSCR random regression analysis in chapter 3 (e.g., refer to Table 3.5). 
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Similar to the HPG evaluation, BOLT software was used to assemble the MME of this ssRR-SHM 

and the same strategy of first obtaining solutions with the PCG method and then execute an 

exhaustive MCMC-based sampling process (e.g., 315,000 iterations with 15,000 disregarded as a 

bun-in) was implemented to estimate EPD for FSCR at the average AFE (e.g., refer to equations 

5.2 and 5.3). Correspondingly, the same approach taken to determine and explore QTL for HPG 

was applied to identify and investigate QTL for FSCR. 

5.2.9 Genetic and genomic evaluations for stayability 

In the case of STAY evaluations, base predictions for all datasets (DS-1_STAY through 

DS-4_STAY) were obtained by evaluating all STAY endpoints (STAY03 through STAY12) 

jointly using linear and pedigree-based RRM with Legendre polynomials as their base function. A 

detailed description of such models could be found in equation 4.2 of the Materials and Methods 

section of Chapter 4. In contrast, genomic predictions to which the base predictions were compared 

were obtained by implementing a ssRR-SHM similar to the one described by Golden et al. (2018a). 

The general model equation (Equation 5.5) used in all the hybrid genomic evaluations for STAY 

is shown in matrix form below: 

[𝒚𝒏𝒚𝒈] = [𝑿𝒏𝑿𝒈]b + [𝑫𝟎 𝟎𝟎 𝑫𝟏] [𝒅𝟎𝒅𝟏] +[𝒁𝒏𝟎 𝟎𝟎 𝒁𝒈𝟎𝑴𝒈] [𝒖𝒏𝟎𝜶𝟎]+ [𝒁𝒏𝟏 𝟎𝟎 𝒁𝒈𝟏𝑴𝒈] [𝒖𝒏𝟏𝜶𝟏] + 

[𝑾𝟎 𝟎𝟎 𝑾𝟏] [𝒑𝟎𝒑𝟏] + 𝑰𝒄𝒈 + e 

Eq. 5.5 

where 𝒚𝒏 and 𝒚𝒈 corresponded to binary STAY observations on non-genotyped (n) and genotyped 

(g) individuals; 𝑿𝒏 and 𝑿𝒈 were incidence matrices relating STAY observations in y (explicitly 

sorted with n individuals first and g individuals after) to the fixed effects of age at first calving 

(defined in months and having 7 levels, e.g.; 21 to 27 mo),  calving ease score of the immediate 

previous calving (4 levels), as well as a couple of fixed regression coefficients for breeding weight 
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and STAY observations on age at calving contained in b; D0 (intercept) and D1 (linear term) were 

age covariates relating STAY observations in y to the additive random extra polygenic effects 

contained in d0 and d1, respectively; 𝒁𝒏𝟎  and 𝒁𝒏𝟏  corresponded to intercept and linear age covariates 

relating STAY observations in y to animal additive direct genetic effects accounted by imputed 

marker values in 𝒖𝒏𝟎  and 𝒖𝒏𝟏 , respectively [with 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐 (where 𝝐 = imputation residual)]; 𝒁𝒈𝟎  and 𝒁𝒈𝟏  represented intercept and linear age covariates relating STAY observations in y to 

marker effects contained in α0 and α1, respectively; W0 and W1 were intercept and linear age 

covariates relating STAY observations in y to the random permanent environmental effects 

contained in p0 and p1; I was a known incidence matrix relating STAY observations in y to their 

corresponding random contemporary group effects in cg (contemporary group was defined as a 

combination between breeding year and breeding pasture); M corresponded to a matrix of centered 

marker values (coded as -1, 0 or 1) and e represented a vector of random errors. 

As described by Golden et al. (2018a), the extra polygenic additive genetic effects terms 

(d) were fit assuming ½ of the additive genetic variance was not captured by markers and these 

effects were assumed to be uncorrelated to other random effects. Variances of the random effects 

included in all ssRR-SHM implemented for STAY evaluations were assumed to be: 

Var 

[  
   𝒅𝒖𝒏𝜶𝒑𝒄𝒈𝒆 ]  

    = 

[  
   
 𝑮𝒅−𝟏 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝑮𝒖−𝟏 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝑮𝜶−𝟏 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝑰𝒑 ⊗ 𝑷𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝑰𝒄𝒈𝝈𝒄𝒈𝟐 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝑹]  

   
 
 

where 𝑮𝒅−𝟏, 𝑮𝒖−𝟏 and 𝑮𝜶−𝟏 remained as described for the previous ssRR-SHM applied for HPG and 

FSCR, however it is important to clarify that within STAY analyses, G0 corresponded to a 

(co)variance matrix of additive genetic random regression coefficients that did not required any 
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modification given the longitudinal nature of the trait under study; P0 was a (co)variance matrix 

of permanent environmental random regression coefficients; ⊗ was the Kronecker product; 𝑰𝒑 

and 𝑰𝒄𝒈 represented identity matrices whose order were equal to the number of observations and 

contemporary groups, respectively; 𝝈𝒄𝒈𝟐  represented the variance associated to contemporary 

groups and, lastly, R = diag{𝝈𝒆𝒌𝟐 } was a diagonal matrix of temporary environmental variances 

that themselves vary depending on the kth age endpoint. The same statistical software, solution and 

sampling methods as well as procedures to estimate EPD described for heifer fertility traits were 

implemented to obtain predictions for STAY at the age of 6 in all the STAY hybrid genomic 

evaluations. Concordantly, the same steps taken to determine and explore QTL for heifer fertility 

traits were adopted to identify and investigate QTL for STAY. 

5.3 Results and discussion 

5.3.1 Comparison of heifer fertility traits genetic and genomic evaluations 

Phenotypic summary statistics for the final number of observations for each trait (e.g., HPG 

and/or FSCR) within each dataset tested in the heifer fertility analyses are shown in Table 5.1. In 

general, genotyped individuals showed slightly higher phenotypic averages for HPG and FSCR 

than their non-genotyped counterparts. This result was expected given the fact that the subset of 

genotyped animals represented the most recent generations of a population that has been subjected 

to selection pressure to improve female fertility for at least three decades (Doyle et al., 2000). 

Averages of raw phenotypes considering all the animals included in each dataset oscillated 

between 0.78 to 0.87 for HPG and between 0.28 to 0.49 for FSCR. 

 

 



 
 

199 

Table 5.1. Summary statistics per dataset and genotyping status of individuals within dataset for 
heifer pregnancy, first-service conception rate, age at first exposure and age of dam. 

Dataset Subset Item N Average SD Min Max 

DS-1_Trait1 

Genotyped 

HPG5 1,884      0.87   0.3     0    1 
FSCR6 1,884       0.49   0.5     0    1 
Age at first exposure (d) 1,884 418.3 21.9 347 467 
Age of dam (yr) 1,879    5.2   3.1    2   13 

Non-
genotyped 

HPG5 2,450      0.82   0.4    0    1 
FSCR6 2,450       0.44   0.5    0    1 
Age at first exposure (d) 2,450 425.0 20.0 349 479 
Age of dam (yr) 2,257     4.6   2.5    2   13 

All 
together 

HPG5 4,334       0.85   0.4    0    1 
FSCR6 4,334       0.46   0.5    0    1 
Age at first exposure (d) 4,334 422.1 21.1 347 479 
Age of dam (yr) 4,136     4.9   2.8    2   13 

DS-2_Trait2 

Genotyped 

HPG5 1,264       0.82   0.4    0    1 
FSCR6 1,264       0.31   0.5    0    1 
Age at first exposure (d) 1,264 417.8 22.6 347 466 
Age of dam (yr) 1,259     5.3   3.1    2   13 

Non-
genotyped 

HPG5 1,773       0.76   0.4    0    1 
FSCR6 1,773       0.26   0.4    0    1 
Age at first exposure (d) 1,773 423.7 20.5 349 479 
Age of dam (yr) 1,588     4.7   2.5    2   13 

All 
together 

HPG5 3,037       0.78   0.4    0    1 
FSCR6 3,037       0.28   0.4    0    1 
Age at first exposure (d) 3,037 421.2 21.6 247 479 
Age of dam (yr) 2,847     4.9   2.8    2   13 

DS-3_Trait3 

Genotyped 

HPG5 1,671       0.86   0.3    0    1 
FSCR6 1,671       0.44   0.5    0    1 
Age at first exposure (d) 1,671 417.8 22.2 347 466 
Age of dam (yr) 1,666     5.2   3.0    2   13 

Non-
genotyped 

HPG5 2,450       0.82   0.4    0    1 
FSCR6 2,450       0.44   0.5    0    1 
Age at first exposure (d) 2,450 425.0 20.0 349 479 
Age of dam (yr) 2,257     4.6   2.5    2   13 

All 
together 

HPG5 4,121       0.84   0.4    0    1 
FSCR6 4,121       0.44   0.5    0    1 
Age at first exposure (d) 4,121 422.1 21.2 347 479 
Age of dam (yr) 3,923     4.8   2.8     2   13 

DS-4_Trait4 
 

Genotyped 

HPG5 1,884       0.87   0.3     0    1 
FSCR6 1,884       0.49   0.5     0    1 
Age at first exposure (d) 1,884 418.3 21.9 347 467 
Age of dam (yr) 1,879     5.2   3.1     2    13 

1DS-1_Trait = dataset 1 for HPG or FSCR; 2DS-2_Trait = dataset 2 for HPG or FSCR; 3DS-3_Trait = dataset 3 for 
HPG or FSCR; 4DS-4_Trait = dataset 4 for HPG or FSCR; 5HPG = Heifer pregnancy; 6FSCR = First-service 
conception rate. 
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Smaller averages were found in the dataset where all phenotypic records belonging to 

replacement heifers were removed (DS-2_Trait). Naturally, since replacement heifers were 

selected because of their superior performance, the removal of their records caused a general 

decline in phenotypic averages for both HPG and FSCR. Conversely, the highest averages for both 

traits were found in the dataset that only included genotyped heifers (e.g., DS-4_Trait). 

Considering that genotyped heifers belong to the most recent generations within the CSU-BIC, the 

previous could be a reflection of the selection procedures applied in the Rouse Angus herd for 

several years.  

Despite the differences observed in the average performance for HPG and FSCR among 

all datasets and between different subsets of animals within datasets (e.g., genotyped vs non-

genotyped), mean performance of both traits studied were within the respective range of values 

reported in literature. For instance, Doyle et al. (2000) reported a range of HPG percentage 

averages between 76.6 to 95.7% within the same experimental Angus cattle population at the CSU-

BIC when analyzing data collected between 1985 to 1993. More recently, average HPG rates of 

0.76 and 0.77 were reported for Red Angus cattle by Speidel et al. (2018b) and Boldt et al. (2018), 

respectively. Also, Azzam et al. (1989) reported a range between 0.26 and 0.81 in FSCR for 

Simmental influenced heifers exposed to their first artificial insemination event at 1 or 1.5 yr of 

age. A more recent report in Angus heifers documented a 60% FSCR average when analyzing 

information from 6 different herds distributed across 5 states within the US (Bormann et al., 2006). 

No substantial differences were found among datasets or animal subsets with respect to relevant 

systematic effects such as age of dam and age at first exposure. The EPD summary statistics of the 

pedigree-based and the genomic evaluations for HPG are shown in Tables 5.2 and 5.3, 

respectively. 
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Table 5.2. Heifer pregnancy expected progeny differences (EPD; at 422 d of age) summary 
statistics obtained with pedigree-based random regression models. 

Dataset Subset N Average SD Min Max 

DS-1_HPG1 
Genotyped 2,037  0.594 1.042 -2.849 4.048 
Non-genotyped 4,736  0.153 0.944 -4.301 4.361 
All animals 6,773  0.286 0.995 -4.301 4.361 

DS-2_HPG2 
Genotyped 2,037  0.112 0.901 -2.972 2.699 
Non-genotyped 4,701 -0.040 0.827 -3.519 3.217 
All animals 6,738  0.006 0.853 -3.519 3.217 

DS-3_HPG3 
Genotyped 2,029  0.417 1.016 -2.951 3.811 
Non-genotyped 4,735  0.167 0.927 -4.257 4.167 
All animals 6,764  0.242 0.961 -4.257 4.167 

DS-4_HPG4 
Genotyped 2,032  0.038 1.000 -3.297 3.160 
Non-genotyped 1,902 -0.037 0.435 -3.011 1.842 
All animals 3,934  0.002 0.781 -3.297 3.160 

1DS-1_HPG = dataset 1 (4,334 heifers); 2DS-2_HPG = dataset 2 (3,037 heifers); 3DS-3_HPG = dataset 3 
(4,121 heifers); 4DS-4_HPG = dataset 4 (1,884 heifers). 
 
Table 5.3. Heifer pregnancy expected progeny differences (EPD; at 422 d of age) summary 
statistics obtained with single-step random regression super-hybrid models. 

Dataset Subset N Average SD Min Max 

DS-1_HPG1 
Genotyped 2,037 9.977   1.114   -1.951 14.765 
Non-genotyped 4,736 5.683   3.666   -7.126 15.770 
All animals 6,773 6.974   3.694   -7.126 15.770 

DS-2_HPG2 
Genotyped 2,037 0.828   0.921 -11.390   5.165 
Non-genotyped 4,701 0.436   1.160   -4.896   5.095 
All animals 6,738 0.554   1.108 -11.390   5.165 

DS-3_HPG3 
Genotyped 2,029 6.504   1.135   -6.729 11.658 
Non-genotyped 4,735 3.804   2.676   -7.136 11.255 
All animals 6,764 4.614   2.632   -7.136 11.658 

DS-4_HPG4 
Genotyped 2,032 47.151   0.172 45.659 47.704 
Non-genotyped 1,902 28.718 17.646  -0.496 49.894 
All animals 3,934 38.239 15.343  -0.496 49.894 

1DS-1_HPG = dataset 1 (4,334 heifers); 2DS-2_HPG = dataset 2 (3,037 heifers); 3DS-3_HPG = dataset 3 
(4,121 heifers); 4DS-4_HPG = dataset 4 (1,884 heifers). 

 
Genetic predictions of HPG obtained with the pedigree-based RRM showed a stable and 

consistent behavior in all datasets. Specifically, the average EPD was in the middle of the 

respective range of EPD values and all ranges were similar regardless of the dataset or the subset 
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of animals being analyzed (Table 5.2). In every data structure scenario (DS-1_HPG through DS-

4_HPG), EPD averages of genotyped animals were higher than the EPD of non-genotyped 

individuals; although such superiority was more marked in DS-1_HPG and DS-3_HPG due to the 

inclusion of phenotypic records of genotyped and non-genotyped heifer replacements in these two 

datasets. A slightly higher EPD average (e.g., 2.139) and spread in EPD values (e.g., -7.06 to 9.74) 

was reported by Speidel et al. (2018b) when analyzing HPG in Red Angus cattle through the 

application of random regression techniques. Differences among studies could be explained by 

differences in population size, since in Speidel et al. (2018b) a total of 2,625,287 animals were 

included in the analysis, whereas in the current study pedigrees sizes ranged between 3,934 to 

6,773 individuals depending on the dataset used for the evaluation. 

Genomic predictions for HPG obtained with the ssRR-SHM showed considerable higher 

means and larger ranges in EPD values (Table 5.3) in comparison to the corresponding base genetic 

predictions that did not included genomic information (Table 5.2). For all datasets and regardless 

of the genotyping status of the animals, average EPD were always positive, which suggested a 

general tendency of overprediction within the single-step hybrid genomic evaluations. In this 

regard, single-step genomic evaluations have been previously reported to over-predict differences 

in breeding values (Koivula et al., 2015; Mäntysaari et al., 2020). According to Tsuruta et al. 

(2019), possible reasons for inflations in genomic predictions of young genotyped animals are 

preselection and incompatibilities between pedigree-based (A) and genomic relationship matrices 

(G). Although the ssRR-SHM used in the present study completely avoided issues associated to 

the usage of a G matrix, the bias introduced by preselection of genotyped animals still inflated 

resulting genomic predictions. 
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Nordbø et al. (2019) described two types of bias arising in single-step genomic best linear 

unbiased prediction methods: (1) a general inflation of genomic breeding values that consequently 

yields a wider spread of the breeding value estimates; and (2) level-bias of breeding values, which 

influences the predicted genetic levels for groups of animals (e.g., overprediction of genotyped 

animals vs. non-genotyped animals). Both phenomena manifested in the current investigation; 

however, the magnitude in which they affected the resulting genomic predictions varied depending 

on the data structure of the phenotypic file. The most severe upward distortion in EPD occurred in 

DS-4_HPG which was the dataset that included phenotypic information of only the subset of 

genotyped heifers at the CSU-BIC. Within this dataset, the average HPG of the 1,884 heifers 

contributing phenotypes to the evaluation was considerably high (0.87). Furthermore, 589 heifers 

with successful observations for HPG were selected as replacements within the herd and they 

represented 30% of all dams in the pedigree (1,944 total dams). In this context, it has been reported 

that after selection it is expected to find a reduction in the genetic variance of the selected pool of 

animals, which could potentially lead to important overestimations of their genomic estimated 

breeding values (Schaeffer, 2014; Dehnavi et al., 2018). Although less marked, overestimations of 

the genetic merit of individuals for HPG also occurred in DS-1_HPG and DS-3_HPG, presumably 

due to the same reasons that in DS-1_HPG. 

A much more reasonable and expected result was obtained for the genomic predictions 

yielded with the evaluation that used as phenotypic input the second dataset (DS-2_HPG). The 

removal of the phenotypes belonging to all heifers (genotyped and non-genotyped) that eventually 

became replacements in the herd, also removed the issues associated with the pre-selection bias. 

A similar result was reported by Koivula et al. (2016) in a study that evaluated the effects of 

including different sets of phenotypes and genotypes of elite females (e.g., dams previously 
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selected due to superior genetic merit) into the reference population in single-step evaluations. In 

this work, authors reported that the exclusion of information from elite dams was enough to 

overcome bias. For DS-2_HPG, results for the average and range in EPD were comparable to 

values reported in the literature. For instance, the mean genomic merit for conception rate in a 

group of Holstein heifers classified as highly fertile was 2.75 (ranging between 1.5 and 5.5), 

conversely, the average genomic merit for the same trait in another group of Holstein heifers 

classified as lowly fertile was 0.06, with values that oscillated between -2.1 and 1.2 (Veronese et 

al., 2019a, 2019b). 

Pearson correlations, rank correlations and regression coefficients of HPG genomic 

predictions on HPG pedigree-based predictions are shown in Table 5.4. In all data structure 

scenarios, predictions of the subset of genotyped animals were highly correlated; however, 

similarities in predictions for non-genotyped animals were highly variable depending on the 

dataset studied. The most severe disparity among predictions for non-genotyped individuals was 

evident for DS-4_HPG, which could be attributed to the previously discussed problems associated 

to the pre-selection bias. Conversely, correlations among predictions for the genotyped animals 

within the same dataset resulted in the highest from all analyses. In this regard, it has been reported 

that although level-bias affects the average level of EBV between groups of animals, even when 

average level between groups could be wrong, the average ranking within groups might be correct 

(Nordbø et al., 2019). 

Examining the results of all subsets of animals comprehensively, it became evident that 

genomic predictions obtained with DS-2_HPG were the most stable, since their level of 

concordance with its corresponding pedigree-based prediction excelled any other comparison from 

another dataset. Pearson correlations between base and genomic predictions obtained with DS-
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2_HPG were even higher than those reported by Forni et al. (2011) when comparing pedigree-

based EBV to genomic EBV for the total number of piglets born per litter using different genomic 

relationship matrices (such correlations ranged 0.791 to 0.891). Saatchi et al. (2018) also reported 

high correlations (e.g., 0.95) and close to 1 regression coefficients between single-step Bayesian 

regression EPD and conventional pedigree-based EPD for birth weight in a multi-breed beef cattle 

population. Such result agreed with the correlations and regression coefficients obtained for all 

subset of animals within DS-2_HPG in the current study and represented the only published work 

comparing pedigree-based predictions to genomic predictions using a hybrid Bayesian marker 

effects models. Given the notable superiority of the results obtained with the second dataset, the 

genome-wide association study for HPG was performed using results of this particular evaluation 

only. Additionally, the heifers that contributed with phenotypes in DS-2_HPG were ranked in 

quartiles according their genomic EPD and it was explored if such classification effectively 

translated into expressed differences in HPG phenotypic performance (Appendix B, Table B-2 and 

Figure B-1). 

Table 5.4. Pearson correlation, rank correlation and regression coefficients of genomic predictions 
on pedigree-based predictions for heifer pregnancy. 

Dataset Subset 
Pearson 

correlation 
Rank 

Correlation 
Regression 
coefficient 

DS-1_HPG1 
Genotyped  0.867  0.892  0.926 
Non-genotyped  0.490  0.527  1.905 
All animals  0.513  0.626  1.905 

DS-2_HPG2 
Genotyped  0.827  0.910  0.845 
Non-genotyped  0.927  0.893  1.300 
All animals  0.889  0.892  1.155 

DS-3_HPG3 
Genotyped  0.861  0.908  0.961 
Non-genotyped  0.611  0.615  1.763 
All animals  0.593  0.673  1.623 

DS-4_HPG4 
Genotyped  0.944  0.959  0.162 
Non-genotyped -0.103 -0.101 -4.205 
All animals  0.004  0.319  0.081 

1DS-1_HPG = dataset 1 (4,334 heifers); 2DS-2_HPG = dataset 2 (3,037 heifers); 3DS-3_HPG = dataset 3 
(4,121 heifers); 4DS-4_HPG = dataset 4 (1,884 heifers). 
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With respect to the results of FSCR analyses, EPD summary statistics of the pedigree-based 

and the genomic evaluations for this trait are shown in Tables 5.5 and 5.6, respectively. Similar to 

HPG results, base genetic predictions for FSCR yielded by the pedigree-based RRM showed a 

consistent behavior regardless of the dataset implemented. Means EPD for all datasets were close 

to zero and all ranges were considerable small in amplitude, which could be considered normal 

and expected due to the low genetic variability of FSCR (Mu et al., 2016). Although no mean EPD 

for FSCR was found in literature, Bormann et al. (2006) reported a range of breeding values (in an 

observed scale) between -0.01 to 0.02 for this trait for Angus sires, a result that resembles to the 

results of the present study even when they are expressed in a pseudo-probability scale.  

 
 
Table 5.5. First-service conception rate expected progeny differences (EPD; at 422 d of age) 
summary statistics obtained with pedigree-based random regression models. 

Dataset Subset N Average SD Min Max 

DS-1_FSCR1 
Genotyped 2,037  0.044 0.321 -0.982 1.071 
Non-genotyped 4,736 -0.008 0.253 -1.108 1.442 
All animals 6,773  0.007 0.276 -1.108 1.442 

DS-2_FSCR2 
Genotyped 2,037 -0.151 0.260 -1.002 0.876 
Non-genotyped 4,701 -0.116 0.210 -0.975 0.979 
All animals 6,738 -0.126 0.227 -1.002 0.979 

DS-3_FSCR3 
Genotyped 2,029 -0.011 0.390 -1.154 0.959 
Non-genotyped 4,735 -0.006 0.242 -1.078 1.424 
All animals 6,764 -0.008 0.268 -1.154 1.424 

DS-4_FSCR4 
Genotyped 2,032  0.020 0.322 -0.770 1.310 
Non-genotyped 1,902 -0.018 0.119 -0.793 0.750 
All animals 3,934  0.002 0.246 -0.793 1.310 

1DS-1_FSCR = dataset 1 (4,334 heifers); 2DS-2_FSCR = dataset 2 (3,037 heifers); 3DS-3_FSCR = dataset 
3 (4,121 heifers); 4DS-4_FSCR = dataset 4 (1,884 heifers). 
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Table 5.6. First-service conception rate expected progeny differences (EPD; at 422 d of age) 
summary statistics obtained with single-step random regression super-hybrid models. 

Dataset Subset N Average SD Min Max 

DS-1_FSCR1 
Genotyped 2,037    6.727 0.395   -0.536    8.750 
Non-genotyped 4,736    4.124 2.505   -0.908  10.397 
All animals 6,773     4.907 2.421   -0.908  10.397 

DS-2_FSCR2 
Genotyped 2,037    -4.155 0.322   -9.742    2.519 
Non-genotyped 4,701    -2.593 1.571   -6.569    0.933 
All animals 6,738    -3.065 1.506   -9.742    2.519 

DS-3_FSCR3 
Genotyped 2,029      2.259 0.301   -1.659    3.515 
Non-genotyped 4,735      1.387 0.871   -0.860    3.479 
All animals 6,764      1.648 0.847   -1.659    3.515 

DS-4_FSCR4 
Genotyped 2,032 -24.47 0.443 -32.895 -21.734 
Non-genotyped 1,902 -13.16 9.229 -35.760    0.164 
All animals 3,934 -19.00 8.558 -35.760    0.164 

1DS-1_FSCR = dataset 1 (4,334 heifers); 2DS-2_FSCR = dataset 2 (3,037 heifers); 3DS-3_FSCR = dataset 
3 (4,121 heifers); 4DS-4_FSCR = dataset 4 (1,884 heifers). 

 
Predictions obtained with the random regression hybrid marker effects models (Table 5.6) 

were much more variable than their counterparts yielded with pedigree-based RRM (Table 5.5). 

Apparently, an overvaluation of genomic information also occurred with the ssRR-SHM 

implemented to analyze FSCR, a phenomenon that seems to be a challenge of all single-step 

genomic evaluation procedures (Mäntysaari et al., 2020). Some reports have suggested that 

genomic breeding values of juvenile dairy bulls were inflated when compared to their actual 

daughter performance once phenotypic information was generated (Mäntysaari et al., 2010). The 

vast majority of genomic evaluations that have been published have been based on the usage of 

single-step procedures relying on the blending between pedigree (A) and genomic relationship (G) 

matrices (Legarra et al., 2009; Aguilar et al., 2010). Within this procedure, it has been 

acknowledged that incompatibilities between A and G matrices represented a critical source of 

inflation of resulting predictions (Misztal et al., 2017; 2020). Consequently, important research 

efforts have been undertaken in order to identify the most adequate scaling factors contributing to 



 
 

208 

improve the matching between both types of relationship matrices (Misztal et al., 2010; Harris et 

al., 2011; Tsuruta et al., 2011; Martini et al., 2018). 

The genomic evaluation procedure implemented in the current study was not dependent 

upon the utilization of a genomic relationship matrix. In our single-step Bayesian regression 

model, the congruity between genomic and pedigree information was partially reached by fitting 

an additional fixed covariate (e.g., J equation) that accounted the possible difference in expected 

value of genetic merit between non-genotyped animals and genotyped animals (Fernando et al., 

2014; Hsu et al., 2017; Misztal et al., 2020). Furthermore, an extra fixed covariate (e.g., K 

equation) was also included into all the hybrid marker effects models in order to prevent the 

Markov chain Monte Carlo procedure from diverging away from realistic values during the 

sampling process (BOLT software package, Release 1.2.7; http://www.thetasolutionsllc.com/bolt-

software.html). Additionally, two extra random effects were also included in all Bayesian 

regression models to avoid the occurrence of biased results. First, given the imperfect nature of 

the SNP imputation process performed with non-genotyped animals, an imputation error term was 

explicitly fitted to the model. Also, recognizing that incomplete linkage disequilibrium exists 

between SNP markers and causal mutations responsible for variations in quantitative traits, an 

extra polygenic effect was included in the model to account for the variation not captured by 

markers (Liu et al., 2016; Golden et al., 2018a). Inclusion of all these effects into single-step 

genomic evaluations models have proved to reduce the inflation of genomic predictions (Liu et al., 

2011; Gao et al., 2012; Su et al., 2014). 

In spite of the inclusion of all the appropriated effects into the Bayesian regression models 

implemented in the present study to control the inflation of genomic predictions, such a problem 

still arose for FSCR (Table 5.7). Particularly for the subsets of non-genotyped animals and for all 

http://www.thetasolutionsllc.com/bolt-software.html
http://www.thetasolutionsllc.com/bolt-software.html
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animals considered together, the majority of the regression coefficients of genomic predictions on 

pedigree-based predictions were above 1. A similar situation was reported by Gao et al. (2018) 

whose application of single-step Bayesian regression models (ssBR) overestimated the genomic 

breeding value of three milk traits in dairy cattle; regardless of the fact that the ssBR did included 

the extra polygenic effect to account for the variance not explained by markers. Misztal et al. 

(2020) explained that a common problem leading to overestimation of genomic breeding values in 

all single-step methodologies, was an incomplete accounting of inbreeding due to missing pedigree 

connections or pedigree errors. Vitezica et al. (2011) suggested that the reason of the previous was 

that the knowledge of the genetic merit of some animals (e.g., parents) decreased the uncertainty 

(variance) of the genetic merit of their relatives (e.g., progeny). However, when such relationships 

exist but they are not correctly captured in the pedigree, the opposite occurs and an inflation of 

breeding values occurs in young animals. Although worth considering this source of 

overestimation, is unlikely that this problem originated the results of our study given the constant 

and cautious monitoring of the pedigree recording within the CSU-BIC (Crawford et al., 2016).  

Table 5.7. Pearson correlation, rank correlation and regression coefficients of genomic predictions 
on pedigree-based predictions for heifer first-service conception rate. 

Dataset Subset 
Pearson 

correlation 
Rank 

Correlation 
Regression 
coefficient 

DS-1_FSCR1 
Genotyped 0.570 0.699   0.701 
Non-genotyped 0.076 0.086   0.749 
All animals 0.125 0.250   1.099 

DS-2_FSCR2 
Genotyped 0.570 0.680   0.706 
Non-genotyped 0.452 0.517   3.380 
All animals 0.381 0.490   2.526 

DS-3_FSCR3 
Genotyped 0.733 0.782   0.691 
Non-genotyped 0.229 0.246   0.823 
All animals 0.238 0.360   0.755 

DS-4_FSCR4 
Genotyped 0.408 0.578   0.561 
Non-genotyped 0.186 0.266 14.445 
All animals 0.011 0.242   0.337 

1DS-1_FSCR = dataset 1 (4,334 heifers); 2DS-2_FSCR = dataset 2 (3,037 heifers); 3DS-3_FSCR = dataset 
3 (4,121 heifers); 4DS-4_FSCR = dataset 4 (1,884 heifers). 
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Similar to the previously discussed for HPG, the most plausible reason for the 

overestimation of the genetic merit for FSCR seems to be the preselection bias of some of the 

genotyped females with phenotypic records. This became apparent when considering that the most 

reasonable correlations and regression coefficients were obtained for DS-3_FSCR; the dataset in 

where phenotypic records of heifers born before 2007 were removed due to the artificial inflation 

of FSCR averages caused by the reduced number of females represented in the data (e.g., <40 per 

year; Figure 5.9). Within this dataset, Pearson and rank correlations between pedigree-based RRM 

and ssRR-SHM genomic predictions were positive and strong (e.g., > 0.7) for the subpopulation 

of genotyped animals. This result agrees with a report by Wei et al. (2020) about correlations 

between regular breeding values and genomic breeding values ranging between 0.525 and 0.769 

for wool traits in a subset of genotyped Merino sheep. In the case of the regression coefficients, 

the results for genotyped animals suggested that genomic predictions slightly underestimated EPD 

for FSCR in comparison to the pedigree-based predictions. Nonetheless, the strong correlations 

obtained for this group of animals allows to consider that even when the models produced 

numerically different predictions, the ranking of animals remained similar.  

Pearson and rank correlations among predictions for non-genotyped animals obtained with 

the DS-3_FSCR were also positive, but they were considerably weak (e.g., <0.25). This result is 

perhaps a reflection of inaccuracies during the imputation process since the linear regression 

method used to calculate the number of copies of a particular allele in non-genotyped individuals, 

depends only on observed genotypes of close relatives (parents, offspring, siblings) and mates; but 

it is independent from the rest of the pedigree (Gengler et al., 2007). This implies that for the vast 

majority of non-genotyped heifers with phenotypic records (n = 2,450), their imputed genotypes 

were calculated using a limited amount of genotypic information from the small proportion of 
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genotyped animals born between 1997 and 2006. Additionally, heifers within the early years of 

data (1991 to 1996) may not had a close genotyped relative from which to obtain genotypic 

information for the imputation. Regression coefficients obtained with DS-3_FSCR suggested that 

the removal of phenotypic records from the 213 heifers with genotypes and phenotypes born 

between 1997 and 2006 contributed to preventing an overestimation of genomic breeding values 

for all subset of animals (only dataset with regression coefficients <1 for all groups). Consequently, 

the genome-wide association study for FSCR was performed using results of this particular 

evaluation only. Additionally, heifers contributing phenotypes within DS-3_FSCR dataset were 

ranked in quartiles according their genomic EPD to explore if such classification translated into 

expressed differences in FSCR phenotypic performance (Appendix B, Table B-3 and Figure B-2). 

5.3.2 Genome-wide association study for heifer pregnancy 

The location information of all the genetic markers utilized in this investigation was based 

on the UMD3.1.1 bovine assembly. Such bovine genome assembly has been criticized for having 

a variety of assembly errors, genome segmental inversions and not accurate chromosomal 

placements (Medrano, 2017). Therefore, it was opted to perform all GWAS analyzes using single 

SNP instead of marker windows. According to Speidel et al. (2018a), results for single SNP 

associations obtained from GWAS procedures should not change even with the advent of a new 

assembly, other than a possible refinement of the location of associated SNP within its respective 

chromosome. The five SNP that resulted with the highest PPI in the GWAS for HPG are shown in 

Table 5.8. Two of the five SNP were located intronic regions of the same gene (TMEM117) in 

chromosome 5, whereas the remaining three SNP were located on intergenic regions of 

chromosomes 3, 7 and 13. The corresponding Manhattan plot of the genome-wide screening for 

HPG is depicted in Figure 5.16.  
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Table 5.8. Single nucleotide polymorphisms (SNP) associated to heifer pregnancy in Angus cattle.  
SNP IDa Chrb Locationc PPId Gene Gene locatione 

rs41585874   3 107,542,688 0.0156 NDUFS5   21.51 kb 

rs43119961   5   36,553,084 0.0165 TMEM117 Intron 

rs43435407   5   36,578,127 0.0168 TMEM117 Intron 

rs110232154   7   85,619,989 0.0161 XRCC4   63.05 kb 

rs109797421 13   24,860,333 0.0168 OTUD1 203.67 kb 
aReference SNP cluster identification assigned by the National Center for Biotechnology Information 
(NCBI). 
bChromosome in which the SNP was located within the Bos taurus UMD3.1.1 assembly. 
cChromosome position in Bos taurus UMD3.1.1.  
dPosterior probability of inclusion in the model. 
eLocation of the SNP within a gene or distance to the closest annotated gene (in kilobases). 
 

 
Figure 5.16. Manhattan plot identifying SNP associated with heifer pregnancy in Angus cattle 
(red horizontal line denotes a 1.51% posterior probability of inclusion). 
 

In general, the PPI for all markers within the GWAS for HPG was low (e.g., <0.02). Similar 

results were found in a GWAS for the same trait performed in Red Angus cattle by Speidel et al. 

(2018a). Specifically, authors reported markers PPI ranging between 0.03 to 0.06 and suggested 

that the scarcity of HPG phenotypic records on genotyped heifers (e.g., 567 animals), as well as 

the low heritability assumed for the trait (h2 = 0.12), were the main drivers of the results. In 
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accordance with these arguments, it has been suggested that the ability of Bayesian multiple-SNP 

regression models to detect strong associations between individual markers and the trait of interest 

depend on several factors, among which imperfect linkage disequilibrium between the marker and 

the causal mutation as well as the proportion of the variance in the trait explained by the real QTL 

stand out (Wolc et al., 2012, Garrick and Fernando, 2013; Pierce et al., 2020). 

The SNP rs41585874 located in chromosome 3 was located within a distance of 24.51 kb 

from NDUFS5, a gene that codes for the subunit S5 of a proton-pumping enzyme named NADH-

ubiquinone oxidoreductase that plays an important role within the mitochondrial respiratory chain 

(Murai et al., 2009). The gene NDUFS5 has been previously reported to be a member of a network 

generated through an Ingenuity Pathway Analysis (IPA) associated to endometrial-related 

conception rate of beef heifers (Killen et al., 2016). Interestingly, using the same molecular 

approach (IPA), this gene was found to be differentially expressed between days 7 and 13 of the 

estrous cycle in the endometrium of cross-bred beef heifers with normal circulating progesterone 

concentrations in comparison to heifers with low concentrations of progesterone (Forde et al., 

2012). Additionally, it has been reported that NDUFS5 forms part of a group of genes that 

participate in biological processes related to energy pathways and mitochondrion organization that 

decreased their abundance during an in vitro oocyte maturation process (Reyes et al., 2015). 

The two genetic markers that were located within intronic regions of the TMEM117 gene 

were rs43119961 and rs43435407. This gene is located at BTA5 and encodes for a multi-pass 

transmembrane protein (transmembrane protein 117) that has recently been identified as a 

mediator of an endoplasmic reticulum stress-induced cell death pathway (Tamaki et al., 2017). 

Previous research efforts have reported associations between TMEM117 and important traits in 

cattle; for instance, Veerkamp et al. (2012) reported that a SNP within this gene had a large effect 
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on the body condition scores of Holstein cows. Waters et al. (2014) also informed that TMEM117 

was a differentially expressed gene involved in biological processes influenced by n-3-

polyunsaturated fatty acids supplementation in the bovine endometrium. Furthermore, a GWAS 

identified that polymorphisms within this gene were associated to the muscle fatty acid 

composition in Simmental cattle (Zhu et al., 2017). More recently, TMEM117 was identified as a 

gene that has responded to the selection pressure applied in Gir cattle to improve its milk 

production ability (Maiorano et al., 2018) and in Nelore cattle to increase its reproductive 

performance (Montes et al., 2019). Considering all these reports, it is possible to hypothesize that 

the relationship between TMEM117 and HPG may be given by an involvement of this gene in the 

correct growth and development of beef heifers that allow them to reach an appropriate level of 

adiposity crucial for a reproductive success.  

Furthermore, possibilities of indirect associations via linkage disequilibrium of TMEM117 

with other genes also exist since this gene is located within a large QTL (between 5 and 80 Mb) 

on BTA5 that has been extensively studied and linked to various fertility traits in cattle. For 

instance, genes located between 1 to 11 Mb downstream from TMEM117 in BTA5 have been 

reported to be associated with twinning and ovulation rate (Kappes et al., 2000; Allan et al., 2009; 

Kim et al., 2009). Luna-Nevárez et al. (2011) reported that a SNP in the STAT2 gene (located 

~20.4 Mb upstream from TMEM117) was associated to rebreeding traits such as calving interval 

and days to calving in beef heifers. Leyva-Corona et al. (2018) informed about the association of 

polymorphisms within the IGF1 and PMCH genes (located between 29.4 and 29.6 Mb upstream 

from TMEM117) with the number of services per conception in heat-stressed Holstein cows. 

Additionally, it has been recently suggested that genes within this genomic region in BTA5 possess 

pleiotropic effects on several traits affecting reproduction in cattle (Fernández et al., 2019).    
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Although positioned in a non-coding region of BTA7, the SNP rs110232154 was located 

within a distance of 63.05 kb from the gene XRCC4 that codes a DNA repair protein (Li et al., 

1995). According to Barreta et al. (2012), DNA damage during early phases of embryo 

development represent one of the most powerful blockers of the cellular division process that 

culminates triggering the conceptus apoptosis. In this regard, XRCC4 has been reported to be 

within the main genes responsible for controlling the DNA repairing actions in human oocytes and 

blastocysts (Jaroudi et al., 2009). In cattle, variants within this gene have been linked with an 

increased resistance to paratuberculosis, a disease characterized by an overall reduction in 

productive and reproductive performance of infected animals (Pant et al., 2010; Brito et al., 2017). 

Additionally, a whole-genome association study implemented with a single-step methodology 

performed in Nelore cattle, identified XRCC4 as a putative candidate gene related to the fatty acid 

profile of the longissimus thoracis muscle (Lemos et al., 2016). 

The last SNP associated with HPG in the current study was rs109797421 and was located 

at BTA13 at approximately 203.67 kb of distance from the gene OTUD1. The enzyme coded by 

this gene belongs to the ovarian tumor subfamily of deubiquitinases whose primary job is to 

remove posttranslational modifications (mostly lysine residues), that regulate cellular processes 

like transcription, translation and DNA damage response (Komander and Rape, 2012; Mevissen 

et al., 2013). From a reproductive standpoint, Sbardella (2020) reported that the chromosomic 

region in which the gene OTUD1 lies was associated with the ability of Nelore heifers to have 

early calvings (≤ 30 mo). In addition, this gene has been found to be differentially expressed in 

Nelore steers with divergent residual feed intakes (Tizioto et al., 2016) and also in muscle samples 

collected from Nelore animals with dissimilar marbling scores (Fonseca et al., 2020). 
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5.3.3 Genome-wide association study for heifer first-service conception rate 

The five SNP with the highest PPI in the GWAS for heifer FSCR are shown in Table 5.9. 

For this trait, all SNP were located on non-coding regions of BTA6, 7, 12 and 13. The 

corresponding Manhattan plot of the whole-genome study for FSCR is in Figure 5.17.  

Table 5.9. Single nucleotide polymorphisms (SNP) associated to Heifer first-service conception 
rate in Angus cattle. 

SNP IDa Chrb Locationc PPId Gene Gene locatione 

rs41615514   6 12,412,107 0.0123 UGT8 210.63 kb 

rs109154069   6 17,282,916 0.0122 SEC24B 224.10 kb 

rs110596313   7 49,715,020 0.0117 SPOCK1 246.39 kb 

rs110013823 12      860,453 0.0118 TDRD3 666.55 kb 

rs110788468 18 65,604,707 0.0119 A1BG 221.91 kb 
aReference SNP cluster identification assigned by the National Center for Biotechnology Information 
(NCBI). 
bChromosome in which the SNP was located within the Bos taurus UMD3.1.1 assembly. 
cChromosome position in Bos taurus UMD3.1.1.  
dPosterior probability of inclusion in the model. 
eLocation of the SNP within a gene or distance to the closest annotated gene (in kilobases). 
 

 
Figure 5.17. Manhattan plot identifying SNP associated with heifer first-service conception rate 
in Angus cattle (red horizontal line denotes a 1.16% posterior probability of inclusion). 
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In BTA6 there were two SNP representing the maximum peaks within the genome-wide 

inspection of markers associated to FSCR, such markers were rs41615514 and rs109154069. The 

first marker was located in an intergenic position at approximately 210.63 kb from the gene UGT8 

that encodes for an enzyme known as UDP glycosyltransferase 8. The UGT family of enzymes 

has been proposed as an important modulator of the levels and the actions steroid hormones like 

estrogens, androgens, and progesterone (Hum et al., 1999; Meech et al., 2019). The previous could 

help to understand the relationship between variants within UGT8 and differences in phenotypic 

performance in FSCR, since this trait is heavily dependent on the action of steroid hormones. 

Interestingly, a study that investigated the transcriptomic profiles of peripheral white blood cells 

at the time of artificial insemination in beef heifers, found that UGT8 was a differentially expressed 

gene associated to pregnancies originated from AI or natural mating. Particularly, this gene was 

overexpressed in pregnancies originated thru natural service in comparison to AI-originated 

pregnancies (Dickinson et al., 2018). 

The second SNP within BTA6 was rs109154069 and it was positioned 224.10 kb upstream 

from the gene SEC24B (SEC24 homolog B, COPII coat complex component). According to 

Zapaterra (2017), this gene was involved in the regulation of cholesterol biosynthesis and with the 

metabolism of lipids and lipoproteins; therefore, similar to UGT8, its relationship with phenotypic 

variations in FSCR may be given through its connection with steroid hormones. Furthermore, 

Reyes et al. (2015) reported that SEC24B was part of a conglomerate of genes involved in 

intracellular protein transport activities whose transcripts decreased in abundance during an in 

vitro maturation process of bovine oocytes. Additionally, a GWAS executed to identify genetic 

variants associated to the sperm membrane integrity in frozen-thawed semen of dairy bulls, 
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showed that SEC24B was one of the most promising candidate genes associated to variations 

sperm quality (Kamiński et al., 2016). 

The SNP rs110596313 was located at approximately 246.39 kb from the gene SPOCK1 in 

BTA7. This gene codes for a proteoglycan protein isolated from testes tissue samples; however, 

GWAS in human-based investigations have linked SPOCK1 as a key gene underlying age at 

menarche (Liu et al., 2009). This is biologically relevant since FSCR is a trait that greatly depends 

on age at puberty and the initiation of estrous cycles of heifers by the moment when they are 

subjected to their first AI event. In support of the previous, Fortes and colleagues identified 

SPOCK1 as an important candidate gene related to age at puberty in beef cattle using a systems 

biology approach known as association weight matrix (Fortes et al., 2010). Additionally, this gene 

has also been contemplated as possibly related to an increased resistance to paratuberculosis, 

which as was previously discussed, is a disease that cause a severe reproductive underperformance 

(Brito et al., 2017). 

The genetic marker found in the non-coding region of BTA12 (rs110013823) was placed 

at 666.55 kb from the gene TDRD3 (tudor domain containing 3). Tudor domain-containing 

proteins are believed to function as RNA binding proteins required for embryonic development. 

In mature animals, these proteins seem to function in only a restricted range of secretory exocrine 

and endocrine organs as the mammary gland, anterior pituitary, corpus luteum, ovaries and 

placenta (Broadhurst et al., 2005). Valour et al. (2014) reported that TDRD3 was a differentially 

expressed gene related to lipid metabolism activities of 18-d-old bovine embryos. Interestingly, 

authors of such study identified that transcripts of this gene were higher in embryos produced by 

growing heifers than in embryos produced by cows. Mahdipour (2015) also reported that this gene 

was constantly expressed at various maturation stages of bovine oocytes and that its expression 
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even increased in 4- and 8-cell embryos. Moreover, in humans it has been reported that genetic 

variants within TDRD3 were associated with the number of punctured ovarian follicles and the 

oocytes retrieved from women undergoing in vitro fertilization treatments (Laisk-Podar et al., 

2015). 

The last polymorphism identified in this study as potentially associated with heifer FSCR 

was rs110788468. This SNP was positioned at 221.91 kb of distance from the gen A1BG (alpha-

1B glycoprotein) in BTA18. Although the function of the alpha-1B-glycoprotein has not been fully 

described, it is known that it belongs to an immunoglobulin family that commonly circulates in 

the blood plasma (Chalupnik et al., 2016). Recently and thru a multi-OMICS approach, the A1GB 

protein was described as an endocrine biomarker associated to the response to high-altitude 

hypoxia in cattle, since it was found to be differentially expressed Holstein cows managed at 3,000 

m above the sea level (Kong et al., 2019). This is relevant to our study, since all heifers of this 

investigation were born and raised at a research herd located at an elevation ranging from 2,150 to 

2,411 m that has a breeding program focused on fertility, maternal ability, early growth and 

adaptability of high altitudes (Doyle et al., 2000; Crawford et al., 2016; Pierce et al., 2020). 

Possibly, the combined selection pressures for fertility and high-altitude adaptability applied to 

this Angus population have led to the development of heifers with a better adaptability to hypoxic 

environments in which their fertility excel. Further support to such hypothesis was based on studies 

reporting that the A1BG protein is commonly expressed in bovine conceptus fluids since the 

A1GB gene is a major regulator of the gene networks existent between the oocyte and the 

surrounding cumulus cells (Riding et al., 2008; Biase and Kimble et al., 2018). 
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5.3.4 Comparison of genetic and genomic evaluations for stayability 

Considering that only females that calve at the age of 2 years are retained at the CSU-BIC, 

all cows kept in the breeding herd were grouped by their year of birth and then according to their 

calving records, it was determined how many of them received a successful observation at each of 

the age endpoints contemplated in this study (Table 5.10). The same procedure was followed for 

genotyped (Table 5.11) and non-genotyped (Table 5.12) cows. Naturally, the number of cows that 

was able to remain in the herd decreased as the specific age endpoint increased. Considering all 

females (regardless of their genotyping status), 13.89% of the cows within the data were able to 

reach 12 yr of age. Nonetheless, splitting the animals according to their genotyping status, the 

percentage of females reaching the maximum age in the study was higher for genotyped (16.53%) 

than for non-genotyped (11.84%) cows. Given the age of 6 has been considered as a financial 

breakeven cow age within the US beef industry (Snelling et al., 1995; Brigham et al., 2006), a 

special emphasis was placed in this age endpoint (STAY06). Phenotypic summary statistics 

specific for STAY06 and according to the final number of observations available within each 

dataset tested in the stayability analyses (DS-1_STAY through DS-4_STAY) are shown in Table 

5.13. 
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Table 5.10. Number of cows from the Colorado State University Beef Improvement Center that received a successful observation at 
each of the age endpoints contemplated in the study.   

Age endpoint 
Year of birth Number of cows (2-yr-old) 3 4 5 6 7 8 9 10 11 12 

1990     79 79 76 67 59 47 41 40 32 20 16 
1991     71 63 54 46 39 34 30 27 22 16   7 
1992     93 75 66 46 43 31 29 28 23 21 18 
1993     65 57 38 33 30 30 25 21 19 17 14 
1994     70 47 43 39 35 30 27 26 23 19 14 
1995     64 56 48 38 33 30 27 23 18 15 10 
1996     61 55 44 38 33 31 29 26 21 15    9 
1997     73 61 56 49 42 36 31 28 24 18 13 
1998     80 67 61 56 52 43 41 33 29 23 18 
1999     53 47 43 38 31 26 22 22 19 14   9 
2000     49 44 43 39 36 33 30 28 22 16 11 
2001     63 59 53 50 49 45 42 41 37 33 24 
2002     50 41 33 32 29 23 20 18 15 14 10 
2003     49 40 38 36 33 29 28 25 21 18 13 
2004     44 42 38 38 34 27 25 22 18 15 13 
2005     81 67 58 51 45 40 39 30 26 19 13 
2006     61 54 50 43 36 32 23 22 17 16 14 
2007     59 56 48 42 40 30 29 29 23 18 12 
2008     61 49 40 37 30 30 28 26 22 14 . 
2009     70 59 58 41 38 35 30 27 20 . . 
2010     61 57 41 39 31 29 26 22 . . . 
2011     40 31 26 25 23 21 18 . . . . 
2012     80 74 67 58 51 37 . . . . . 
2013     67 64 53 52 40 . . . . . . 
2014     58 48 41 33 . . . . . . . 
2015     60 47 39 . . . . . . . . 
2016     51 41 . . . . . . . . . 
Total 1713 1480 1255 1066 912 749 640 564 451 341 238 
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Table 5.11. Number of genotyped cows from the Colorado State University Beef Improvement Center that received a successful 
observation at each of the age endpoints contemplated in the study.   

Age endpoint 
Year of birth Number of cows (2-yr-old) 3 4 5 6 7 8 9 10 11 12 

1990     0 . . . . . . . . . . 
1991     0 . . . . . . . . . . 
1992     0 . . . . . . . . . . 
1993     0 . . . . . . . . . . 
1994     0 . . . . . . . . . . 
1995     0 . . . . . . . . . . 
1996     0 . . . . . . . . . . 
1997     6   6   6   6   6   6   6   6   6   6   6 
1998   10 10 10 10 10 10 10 10 10 10 10 
1999   10 10 10 10 10 10 10 10 10 10   9 
2000   15 15 15 15 15 15 15 15 15 15 11 
2001   33 33 33 33 33 33 33 33 33 30 24 
2002   17 17 17 17 17 17 17 16 14 13   9 
2003   24 24 24 24 24 24 24 21 19 17 12 
2004   26 26 26 26 26 25 24 21 17 14 12 
2005   39 39 39 39 39 35 34 27 25 18 12 
2006   33 33 33 33 28 26 17 16 12 12 10 
2007   37 36 36 31 31 23 22 22 18 14   9 
2008   43 42 34 31 24 24 22 20 16 10 . 
2009   67 57 56 40 37 34 29 26 19 . . 
2010   61 57 41 39 31 29 26 22 . . . 
2011   37 30 25 24 22 20 17 . . . . 
2012   72 66 59 50 43 32 . . . . . 
2013   66 63 52 51 40 . . . . . . 
2014   43 35 31 24 . . . . . . . 
2015   60 47 39 . . . . . . . . 
2016   51 41 . . . . . . . . . 
Total 750 687 586 503 436 363 306 265 214 169 124 
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Table 5.12. Number of non-genotyped cows from the Colorado State University Beef Improvement Center that received a successful 
observation at each of the age endpoints contemplated in the study.   

Age endpoint 
Year of birth Number of cows (2-yr-old) 3 4 5 6 7 8 9 10 11 12 

1990   79 79 76 67 59 47 41 40 32 20 16 
1991   71 63 54 46 39 34 30 27 22 16 7 
1992   93 75 66 46 43 31 29 28 23 21 18 
1993   65 57 38 33 30 30 25 21 19 17 14 
1994   70 47 43 39 35 30 27 26 23 19 14 
1995   64 56 48 38 33 30 27 23 18 15 10 
1996   61 55 44 38 33 31 29 26 21 15   9 
1997   67 55 50 43 36 30 25 22 18 12   7 
1998   70 57 51 46 42 33 31 23 19 13   8 
1999   43 37 33 28 21 16 12 12   9   4   0 
2000   34 29 28 24 21 18 15 13   7   1   0 
2001   30 26 20 17 16 12   9   8   4   3   0 
2002   33 24 16 15 12   6   3   2   1   1   1 
2003   25 16 14 12   9   5   4   4   2   1   1 
2004   18 16 12 12   8   2   1   1   1   1   1 
2005   42 28 19 12   6   5   5   3   1   1   1 
2006   28 21 17 10   8   6   6   6   5   4   4 
2007   22 20 12 11   9   7   7   7   5   4   3 
2008   18   7   6   6   6   6   6   6   6   4  . 
2009     3   2   2   1   1   1   1   1   1  .  . 
2010     0   0   0   0   0   0   0   0  .  .  . 
2011     3   1   1   1   1   1   1  .  .  .  . 
2012     8   8   8   8   8   5  .  .  .  .  . 
2013     1   1   1   1   0  .  .  .  .  .  . 
2014   15 13 10   9  .  .  .  .  .  .  . 
2015     0 .  .  .  .  .  .  .  .  .  . 
2016     0 .  .  .  .  .  .  .  .  .  . 
Total 963 793 669 563 476 386 334 299 237 172 114 
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Table 5.13. Summary statistics per dataset and genotyping status of individuals within dataset that 
reached the stayability at the age of 6 endpoint. 

Dataset Subset Item N Average SD Min Max 

DS-1_STAY 

Genotyped 
STAY06 (%)    479      91.02     0.3      0        1 
Age at first calving (mo)    479    23.7     0.9     21      27 
Breeding weight (lbs)      38 1,244.82 132.9 1,050 1,630 

Non-
genotyped 

STAY06 (%)    554      85.92     0.3       0        1 
Age at first calving (mo)    554    23.9     0.7     22      26 
Breeding weight (lbs)    335 1,248.6 127.1   851 1,677 

All 
together 

STAY06 (%) 1,033      88.29     0.3      0        1 
Age at first calving (mo) 1,033    23.8     0.8     21      27 
Breeding weight (lbs)    373 1,248.2 127.5   851 1,677 

DS-2_STAY 

Genotyped 
STAY06 (%)    299      85.62     0.4       0        1 
Age at first calving (mo)    299    23.7     0.9      21      27 
Breeding weight (lbs)      23 1,216.5 115.2 1,050 1,488 

Non-
genotyped 

STAY06 (%)    554      85.92     0.3        0        1 
Age at first calving (mo)    554    23.9     0.7      22      26 
Breeding weight (lbs)    335 1,248.6 127.1    851 1,677 

All 
together 

STAY06 (%)    853       85.81     0.3        0        1 
Age at first calving (mo)    853    23.8     0.8      21      27 
Breeding weight (lbs)    358 1,246.5 126.4    851 1,677 

DS-3_STAY Genotyped 
STAY06 (%)    479      91.02     0.3        0        1 
Age at first calving (mo)    479    23.7     0.9      21      27 
Breeding weight (lbs)      38 1,244.8 132.9 1,050 1,630 

DS-4_STAY 

Genotyped 
STAY06 (%)    299      85.62     0.4        0        1 
Age at first calving (mo)    299    23.7     0.9      21      27 
Breeding weight (lbs)      23 1,216.5 115.2 1,050 1,488 

Non-
genotyped 

STAY06 (%)     38    86.84     0.3        0        1 
Age at first calving (mo)     38  23.9     0.9      22      26 
Breeding weight (lbs)       1 1,172.0    -       -      - 

All 
together 

STAY06 (%)    337      85.76     0.4        0        1 
Age at first calving (mo)    337    23.7     0.9      21      27 
Breeding weight (lbs)      24 1,214.6 113.0 1,050 1,488 

1DS-1_STAY = dataset 1 (1,713 cows); 2DS-2_STAY = dataset 2 (1,533 cows); 3DS-3_STAY = dataset 3 
(750 cows); 4DS-4_STAY = dataset 4 (668 cows). 
 

Depending on the dataset used for the analysis, the number of females that produced 4 

consecutive calves (successful observations from STAY02 through STAY05) and therefore had 

an opportunity to manifest a fifth calving record associated to STAY06 varied considerably. For 
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instance, in DS-1_STAY a total of 1,033 cows (479 genotyped and 554 non-genotyped) were still 

present at the herd at the age of 6, whereas, the number of animals reaching the STAY06 endpoint 

decreased to 853, 479 and 337 for DS-2_STAY, DS-3_STAY and DS-4_STAY, respectively. 

Although the averages for STAY06 shown in Table 5.13 seem high (>85%) for all datasets and 

subsets of animals, it should be noted that these values were calculated with the phenotypic 

information of females that were still present in the herd at the age of 6. In other words, these 

averages do not reflect the percentage of females that were culled before this age endpoint. When 

considering females that failed to produce a calf before the age of 6, the overall percentage of 

females that remained in the herd up to the STAY06 endpoint was 53.2%. Interestingly, when 

cows were classified according to their genotyping status, the percentage of cows remaining in the 

herd until the age of 6 was higher for genotyped (58.1%) than for non-genotyped (49.4%) cows 

(Figure 5.18). All these values, fall within the range of 38 to 60% success for STAY06 reported in 

literature for various beef cattle breeds (Snelling et al., 1995; Brigham et al., 2007; Engle et al., 

2018).  

 
Figure 5.18. Average stayability (%) to consecutive calvings for genotyped, non-genotyped and 
overall cows from the Colorado State University Beef Improvement Center. 
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Comparing the phenotypic trends for STAY at consecutive calvings for genotyped and non-

genotyped animals, the subset of cows with genotypic information had greater percentages of 

individuals remaining in the herd in all age endpoints (Figure 5.18). Given the subpopulation of 

genotyped cows was formed by females from the last generations within the herd, these results 

could be considered as further evidence of a successful selection pressure imposed to the Angus 

population of the CSU-BIC intended to increase female fertility (Snelling et al., 1995; Doyle et 

al., 2000). The EPD summary statistics of the pedigree-based genetic evaluations for STAY06 are 

shown in Table 5.14. 

Table 5.14. Stayability at the age of 6 expected progeny differences (EPD) summary statistics 
obtained with pedigree-based random regression models. 

Dataset Subset N Average SD Min Max 

DS-1_STAY1 
Genotyped    882   3.389 3.841   -8.077 12.116 
Non-genotyped 2,687 -2.528 4.764 -18.104 13.435 
All animals 3,569 -1.066 5.219 -18.104 13.435 

DS-2_STAY2 
Genotyped    843   3.303 4.630 -12.070 12.187 
Non-genotyped 2,685 -2.949 5.079 -18.262 14.466 
All animals 3,528 -1.455 5.644 -18.262 14.466 

DS-3_STAY3 
Genotyped    881 -0.762 3.472 -10.421   6.607 
Non-genotyped 1,569   0.323 1.248   -8.440   5.642 
All animals 2,450 -0.067 2.366 -10.421   6.607 

DS-4_STAY4 
Genotyped    837 -0.392 3.120   -7.928   7.046 
Non-genotyped 1,503 -0.313 1.821   -9.095   6.591 
All animals 2,340 -0.341 2.369   -9.095   7.046 

1DS-1_STAY = dataset 1 (1,713 cows); 2DS-2_STAY = dataset 2 (1,533 cows); 3DS-3_STAY = dataset 3 
(750 cows); 4DS-4_STAY = dataset 4 (668 cows). 
 

The RRM pedigree-based genetic predictions for STAY06 behaved slightly different 

between datasets. For DS-1_STAY and DS-2_STAY, average EPD appeared similar for all subsets 

of animals, although a slightly higher variability in predictions was noted for the DS-2_STAY 

(higher standard deviations and wider ranges for all groups of animals). In the same datasets, EPD 

averages of genotyped cows were higher than those obtained for non-genotyped individuals. This 
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could be explained by the inflated averages of success for STAY06 within the genotyped groups 

of cows contained in these data structures (180 cows with a 100% success for STAY06 in DS-

1_STAY and 70 cows with >85% success for STAY06 in DS-2_STAY; Figure 5.12). In the case 

of DS-3_STAY and DS-4_STAY, average EPD for STAY06 were closer to zero and their 

respective ranges were narrower in comparison with the first two data files. Such changes in 

predictions could have resulted from the restriction of the usage of phenotypic records coming 

only from genotyped animals, in which the genetic variability for the trait may have decreased 

over time due to artificial selection (Bulmer, 1971). Resulting predictions using DS-4_STAY 

showed a greater stability than when using any other data file, since EPD averages, standard 

deviations and ranges were more concordant between subsets of animals within this particular data 

structure. Regarding genomic predictions for STAY06, their summary statistics are presented in 

Table 5.15. 

 
Table 5.15. Stayability at the age of 6 expected progeny differences (EPD) summary statistics 
obtained with the single-step random regression super-hybrid models. 

Dataset Subset N Average SD Min Max 

DS-1_STAY1 
Genotyped    882 32.886   1.754 27.398 44.062 
Non-genotyped 2,687 15.966 10.223  -4.236 41.726 
All animals 3,569 20.146 11.519  -4.236 44.062 

DS-2_STAY2 
Genotyped    843 16.471   1.612 11.137 36.527 
Non-genotyped 2,685   7.021   4.806  -2.248 23.883 
All animals 3,528   9.279   5.869  -2.248 36.527 

DS-3_STAY3 
Genotyped    881 25.937   1.626 20.879 38.063 
Non-genotyped 1,569 13.814   9.831  -0.377 37.558 
All animals 2,450 18.173   9.833  -0.377 38.063 

DS-4_STAY4 
Genotyped    837   6.113   2.096  -1.509 32.722 
Non-genotyped 1,503   2.794   2.305  -1.207 15.699 
All animals 2,340   3.981   2.741  -1.509 32.722 

1DS-1_STAY = dataset 1 (1,713 cows); 2DS-2_STAY = dataset 2 (1,533 cows); 3DS-3_STAY = dataset 3 
(750 cows); 4DS-4_STAY = dataset 4 (668 cows). 
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Genomic predictions for STAY06 obtained with the ssRR-SHM were much more variable 

than the pedigree-based predictions for the same trait. Due to the longitudinal nature of this trait, 

fewer animals, but with multiple observations, were present in the evaluation. This situation may 

have caused an exacerbation of the issues associated with preselection bias since 14.6% of animals 

(all cows born before 2007) contributing phenotypes to the evaluation possessed clearly inflated 

phenotypic records for STAY06 (Figure 5.12). In every data structure scenario, the EPD averages 

of genotyped animals were higher than the EPD of non-genotyped individuals. This type of result 

was more evident in DS-1_STAY and DS-3_STAY due to the inclusion of observations from the 

180 cows with a 100% success for STAY06. For DS-2_STAY, the removal of observations from 

cows with only successful records for STAY06 reduced the overdispersion of EPD for this trait 

(narrower ranges of EPD values). Although in this dataset, the 70 cows with an unusually high 

STAY06 percentage of success (>85%) may have also caused an overestimation of breeding values 

(e.g., average EPD of 16.471). The most reasonable set of results were obtained when using DS-

4_STAY since averages, standard deviations and ranges were more similar between all subsets of 

animals. Furthermore, the vast majority of the prediction values fell within the range of values (-

21.1 to 25.3) that has been reported for this trait in various beef breeds (Snelling et al., 1994; 

Brigham et al., 2006). 

Pearson correlations, rank correlations and regression coefficients of STAY06 genomic 

predictions on STAY06 pedigree-based predictions are shown in Table 5.16. In all data files, 

predictions for genotyped animals were highly correlated, nonetheless, similarities in predictions 

for non-genotyped animals were considerably lower or almost non-existent depending on the 

dataset studied. Greater degrees of discrepancies for non-genotyped individuals were found in the 

first couple of data files analyzed, in both cases, Pearson and Spearman’s correlations were close 
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to zero, which suggested that the introduction of imputed genomic information on these animals 

created a distortion in their predictions. It is probable that the imputation process performed on 

non-genotyped animals was inaccurate since it depended only on observed genotypes from first 

degree relatives such as parents, offspring or siblings, being independent from the rest of the 

pedigree (Gengler et al., 2007). In this sense, the majority of the genotyped animals belonged to 

the latest generations within the CSU-BIC; however, more than half of the females contributing 

with phenotypes belonged to previous generations (e.g., 1900's decade). Consequently, even when 

females of the early years of data were present at the pedigree of the genotyped animals, such 

pedigree relationship was not close enough to ensure an accurate imputation of their genotypes. 

 
Table 5.16. Pearson correlation, rank correlation and regression coefficients of genomic 
predictions on pedigree-based predictions for stayability at the age of 6. 

Dataset Subset 
Pearson 

correlation 
Rank 

correlation 
Regression 
coefficient 

DS-1_STAY1 
Genotyped 0.863  0.857 0.394 
Non-genotyped 0.013  0.011 0.028 
All animals 0.341  0.450 0.754 

DS-2_STAY2 
Genotyped 0.797  0.860 0.278 
Non-genotyped 0.060 -0.006 0.056 
All animals 0.401  0.420 0.417 

DS-3_STAY3 
Genotyped 0.944  0.962 0.442 
Non-genotyped 0.282  0.349 2.221 
All animals 0.047  0.323 0.196 

DS-4_STAY4 
Genotyped 0.844  0.925 0.567 
Non-genotyped 0.349  0.215 0.441 
All animals 0.439  0.372 0.508 

1DS-1_STAY = dataset 1 (1,713 cows); 2DS-2_STAY = dataset 2 (1,533 cows); 3DS-3_STAY = dataset 3 
(750 cows); 4DS-4_STAY = dataset 4 (668 cows). 
 
 

For DS-3_STAY and DS-4_STAY, the similarities between pedigree-based and genomic 

predictions for STAY06 were higher for all subsets of animals (Table 5.16). Since the last couple 

of data files analyzed contained information predominantly from genotyped animals, correlations 

for this subgroup of animals were expected to increase. Conversely, what was more interesting 
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was to explore the changes in the concordance degree between predictions for non-genotyped 

individuals. In DS-3_STAY, the only source of phenotypic information was the genotyped 

subgroup of cows, this may explain why for this subset of animals it was reached the highest degree 

of congruence among predictions. Albeit, within the same data file, a third of the females (250 out 

of the 750) contributing phenotypes for the evaluation had atypical high success percentages for 

STAY06 (females born before 2007), which apparently originated an overestimation of the genetic 

merit for non-genotyped individuals (e.g., regression coefficient >1). In DS-4_STAY, the removal 

of phenotypes from the 180 genotyped cows with a 100% success for STAY06, prevented the 

overestimation of genomic breeding values for non-genotyped animals. Considering all results 

together, it was concluded that genomic predictions obtained with DS-4_STAY were the most 

reliable; therefore, the GWAS for STAY06 was based on the results of this specific evaluation. 

Cows with phenotypes within DS-4_STAY were ranked in quartiles based on their genomic EPD 

and it was explored if such classification effectively translated into expressed differences in 

STAY06 phenotypic performance (Appendix B, Table B-4 and Figure B-3). 

5.3.5 Genome-wide association study for stayability 

Among the five SNP associated to STAY06 (Table 5.17), one was located within a coding 

region and the four remaining were located at non-coding chromosomic segments. The 

corresponding Manhattan plot of the whole-genome study for STAY06 is in Figure 5.19. 
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Table 5.17. Single nucleotide polymorphisms (SNP) associated stayability in Angus cattle.  
SNP IDa Chrb Locationc PPId Gene Gene locatione 

rs41256934 2 125,653,839 0.0086 MED18 Intron 

rs41607880 4   89,380,482 0.0082 GPR37 219.11 kb 

rs43426517 5   11,176,710 0.0089 ACSS3 271.22 kb 

rs41636773 18   53,970,861 0.0082 IGFL1     6.30 kb 

rs110175546 20   17,240,999 0.0084 KIF2A 231.45 kb 
aReference SNP cluster identification assigned by the National Center for Biotechnology Information 
(NCBI). 
bChromosome in which the SNP was located within the Bos taurus UMD3.1.1 assembly. 
cChromosome position in Bos taurus UMD3.1.1.  
dPosterior probability of inclusion in the model. 
eLocation of the SNP within a gene or distance to the closest annotated gene (in kilobases). 
 
 

 
Figure 5.19. Manhattan plot identifying SNP associated with stayability in Angus cattle (red 
horizontal line denotes a 0.82% posterior probability of inclusion). 
 
 

According to the UMD3.1.1 bovine genome assembly, SNP rs41256934 was a 

synonymous variant positioned at exon 3 of gene MED18 (mediator complex subunit 18) located 

in BTA2 (Zimin et al., 2009). The mediator complex is formed by multiple proteins whose role is 

to regulate the gene transcription process through the modulation of the activity of the RNA 
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polymerase II enzyme (Malik and Roeder, 2005). Particularly, the protein corresponding to subunit 

18 of this mediator complex (specific product of MED18 gene) has been suggested to promote the 

repression of the transcriptional process (Kamafuji et al., 2014). A study focused on elucidating 

the transcriptome dynamics and molecular cross-talking between bovine oocyte and its companion 

cumulus cells revealed that MED18 was exclusively expressed in the germinal vesicle of oocytes 

subjected to an in vitro maturation procedure (Regassa et al., 2011). Interestingly, the 

transcriptomic profile of oocytes that were directly aspired from ovarian follicles of synchronized 

cows was also investigated and, results from such investigation, indicated that transcripts of 

MED18 were higher in oocytes collected from cows showing estrus signs (Dickinson, 2016). 

These reports suggest that this gene was involved in controlling the transcriptional processes that 

need to occur during the development of competent oocytes, which may explain its relationship 

with a trait related to the sustained fertility of beef cows. 

In BTA4, the SNP associated with STAY06 was rs41607880. This polymorphism was 

located in an intergenic region that was 219.11 kb downstream from the gene GPR37 which 

encodes for the G protein-coupled receptor 37. The G protein-coupled receptors are important 

membrane proteins that detect signaling molecules such as hormones and neurotransmitters 

(Venkatakrishnan et al., 2013). A report in humans suggested that this gene (along with other five 

members of the G protein-coupled receptors family) was overexpressed in mature oocytes when 

compared to immature oocytes (Assou et al., 2006). In cattle, the GPR37 was found to be 

differentially expressed in artificially maturated oocytes (Regassa et al., 2011); as well as on the 

endometrium of beef heifers supplemented with a rumen protected source of n-3-polyunsaturated 

fatty acid that were slaughtered on day 17 of their estrus cycle (Waters et al., 2014). Oliveira Júnior 

et al. (2017) informed about a genomic window on BTA16 that that contained the gene GPR37L1 
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(G protein-coupled receptor 37 like-1) that explained more than 1% of the additive genetic variance 

for number of antral follicles in Nelore heifers. Even though such investigation informed of a 

different gene in a different chromosome, it is interesting to note that both, GPR37 and GPR37L1 

have been related to fertility traits and that the protein products encoded by these two genes share 

more than 60% amino acid similarity (Hertz et al., 2019). 

The genetic marker found on BTA5 (rs43426517) was positioned at 271.22 kb upstream 

from the gene ACSS3 which encodes for one of the three acyl-CoA synthetase short chain family 

members that exist (specifically, member 3). This family of enzymes is responsible for ligate the 

acetate produced in the ruminal fermentation to the coenzyme A in order to form acetyl-coA, a 

molecule needed for lipogenesis and histone acetylation (Xu et al., 2017). Lipids are known 

regulators of conceptus development in cattle since they are required for its elongation, a critical 

phase that leads maternal recognition of pregnancy, implantation, and onset of placentation 

(Ribeiro, 2018). A higher expression level of ACSS3 have been reported in bovine embryos of 18 

d of age collected from growing dairy heifers when compared to embryos of the same age obtained 

from multiparous dairy cows at different lactation stages (Valour et al., 2014). Recently, Mota et 

al. (2020) identified through a GWAS that the ACSS3 gene was potentially associated to the age 

at first calving in Nelore heifers. Vineeth et al. (2020) reported that SNP within this gene resulted 

associated to productive traits in Sahiwal cattle. 

Among the SNP located at intergenic regions, the SNP rs41636773 was the more closely 

positioned to a coding sequence since it was located 6.30 kb downstream from the gene IGFL1 

(IGF like family member 1). A study performed in bovines intended to characterize the 

transcriptome of the conceptus-endometrium interactions during maternal recognition of 

pregnancy, indicated that IGFL1 gene was a highly expressed growth factor in embryos retrieved 
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from pregnant heifers slaughtered 16 d post insemination (Mamo et al., 2012). Moreover, Cole et 

al. (2011) identified that the chromosomic region (15 Mb long) where the IGF1L gene is located 

was associated with a variety of traits in dairy cattle among which productive life, daughter 

pregnancy rate and calving ease may be the more related to STAY in beef cattle. Speidel et al. 

(2018a) reported that a SNP within the same chromosomic region was precisely associated with 

STAY in Red Angus cattle. Furthermore, research in humans and mice suggested that the IGF-like 

(IGFL) family of genes share structural homology to the IGF family (e.g., IGF-1 and IGF-2) and 

that both genes encode short-length proteins (around 100 amino acids) that seem to be involved in 

biological processes like regulation of metabolism, growth and reproduction (Emtage et al., 2006). 

A plethora of studies have been conducted to investigate the implications of the insulin-like growth 

factor 1 (IGF1) gene with reproductive performance in cattle. In general, it has been documented 

that the protein product of the IGF1 gene influences ovarian activity by regulating the action of 

gonadotropins on follicular growth, steroidogenesis and the establishment of follicular dominance 

(Werner and Le Roith, 2000; Rivera et al., 2001; Monget et al., 2002; Grossi et al., 2015). At a 

genetic level, polymorphisms within the IGF1 gene have been associated with various fertility-

related traits in cattle such as body condition score at calving (Mullen et al., 2011), postpartum 

resumption of ovarian cyclicity (Nicolini et al., 2013), calving to conception interval (Silveira et 

al., 2015), and number of services per conception (Leyva-Corona et al., 2018). 

The last of the five polymorphisms that showed the highest PPI for STAY06 in this study 

was rs41636773, this SNP was located at 231.45 kb of distance from the kinesin family member 

2A gene (KIF2A). This member of the kinesin family of proteins has been identified as key 

regulator of microtubule dynamics during mitosis due to its participation in processes like 

intracellular transport, cell division, and bipolar spindle assembly (Manning et al., 2007; Wang et 
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al., 2019). From a reproductive standpoint, it has been reported that kinesins are involved in a 

crucial fertilization event such as the acrosome reaction of bovine spermatozoa (Oikonomopoulou 

et al., 2009). Furthermore, an increased expression of KIF2A gene was found in the endometrium 

of crossbred beef heifers that were supplemented with n-3-polyunsaturated fatty acids and 

slaughtered at day 17 of their estrus cycle (Waters et al., 2012; Waters et al., 2014). 

5.4 Conclusion 

The implementation of random regression super-hybrid models for the genomic evaluation 

of singly-observed binary fertility traits like HPG and FSCR, as well as for the evaluation of a 

longitudinally recorded binary trait such as STAY was feasible in a single-herd purebred Angus 

population. Nonetheless, genomic predictions yielded by ssRR-SHM were highly dependent on 

the specific data structures relative to each one of the traits analyzed. In all cases, the presence of 

preselection bias on the subset of genotyped individuals that contributed with phenotypes for the 

evaluation was the main reason of overestimations of genomic predictions for all animals 

(including non-genotyped individuals). Furthermore, inaccurate imputation of genotypes for the 

non-genotyped subset of animals also impacted resulting genomic predictions, although this issue 

was restricted to this subgroup of animals only. Removal of phenotypic records from preselected 

animals ameliorated problems associated with overestimation of genomic predictions and 

improved correlations among genomically-enhanced and pedigree-based EPD for all traits.  

Regarding GWAS analyses, although the PPI obtained for all traits were considerably low, 

all SNP identified as QTL after the application of ssRR-SHM resulted located either within or 

relatively close to genes that have been previously associated with important reproductive 

processes and fertility traits in cattle. The previous imply that in spite of yielding small signals for 

QTL detection, the models implemented in this investigation identified important chromosomal 
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regions influencing the traits under study. Furthermore, considering the low heritability and the 

high biological complexity of all traits studied, the obtention of low PPI should not be seen as a 

statistical modelling problem but rather as a reflection of the reality about the genetic component 

of fertility in cattle. 
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APPENDIX A 
 

Below are the results of an alternative RRM genetic evaluation for STAY at consecutive 

ages where the only change performed in relationship to the RRM used to evaluate STAY in 

chapter 4 is the grouping of observations of 11 and 12-yr-old cows. In summary, changes in the h2 

estimates obtained with this alternative RRM are depicted in Figure A-1. Estimations of 

phenotypic and genetic correlations are shown in Table A-1. Finally, estimations of permanent 

environmental correlations between consecutive STAY endpoints are shown in Table A-2. 

 

 
Figure A-1. Changes in heritability estimates for stayability and their relationship with the number 
of records at each endpoint in Angus cows when lumping ages of 11 and 12 yr together. 
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Table A-1. Genetic (above diagonal) and phenotypic (below diagonal) correlations for 
stayabilities to consecutive calvings (lumping ages of 11 and 12 yr together). 

Calving 
No 3 4 5 6 7 8 9 10 ≥11 

3  0.99 0.96 0.93 0.90 0.87 0.84 0.82 0.79 
4 0.66  0.99 0.98 0.96 0.93 0.91 0.89 0.87 
5 0.51 0.65  0.99 0.98 0.97 0.96 0.94 0.93 
6 0.42 0.50 0.65  0.99 0.99 0.98 0.97 0.96 
7 0.35 0.40 0.48 0.59  0.99 0.99 0.99 0.98 
8 0.31 0.34 0.40 0.47 0.68  0.99 0.99 0.99 
9 0.28 0.31 0.35 0.40 0.55 0.65  0.99 0.99 
10 0.24 0.26 0.29 0.32 0.42 0.44 0.52  0.99 

≥11 0.23 0.24 0.25 0.27 0.33 0.30 0.32 0.48  
 
 
 

Table A-2. Permanent environmental correlations for stayabilities to consecutive calvings 
(lumping ages of 11 and 12 yr together). 

Calving 
No 3 4 5 6 7 8 9 10 

4 0.99        
5 0.97 0.99       
6 0.92 0.96 0.99      
7 0.83 0.88 0.94 0.98     
8 0.69 0.77 0.85 0.92 0.98    
9 0.53 0.63 0.73 0.83 0.92 0.98   
10 0.37 0.47 0.59 0.71 0.83 0.93 0.98  

≥11 0.21 0.32 0.48 0.59 0.73 0.85 0.94 0.99 
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Below is described an alternative EPD calculation for STAY performed using a univariate 

repeatability threshold model (REP) along with a probit link function that transformed binary 

observations to an underlying normal distribution. The model Equation (A-1) was: 

 y* = Xb + Z1u + Z2p + Qcg + e Eq. A-1 

where y* corresponded to a vector of transformed observations of STAY on the underlying scale; 

b  was a vector of unknown solutions for fixed effects, which included AFC, CE and the 

individual’s breeding weight as a linear covariate; u corresponded to a vector of unknown solutions 

of animal random effects; p corresponded to a vector of unknown solutions of permanent 

environmental random effects; cg represented a vector of unknown solutions of contemporary 

group random effects; X, Z1, Z2 and Q were known incidence matrices relating observations in 

*y  to fixed (b), animal random (u), permanent environment (p) and contemporary group random 

(cg) effects; and e  was the vector of unknown residual errors. The mean for random effects was 

assumed to be 0 while variances were assumed to be distributed as: 

Var [ 𝒖𝒑𝒄𝒈𝒆 ] = [  
  𝑨𝝈𝒂𝟐 𝟎 𝟎 𝟎𝟎 𝑰𝒑𝝈𝒑𝟐 𝟎 𝟎𝟎 𝟎 𝑰𝒄𝒈𝝈𝒄𝒈𝟐 𝟎𝟎 𝟎 𝟎 𝑰𝒏𝝈𝒆𝟐]  

  
 

where A represented the additive numerator relationship matrix amongst animals included 

in the pedigree; 𝑰𝒑, 𝑰𝒄𝒈 and 𝑰𝒏 were identity matrices with orders equal to the number of 

individuals, contemporary groups and observations, respectively. The 𝝈𝒂𝟐, 𝝈𝒑𝟐, 𝝈𝒄𝒈𝟐  and 𝝈𝒆𝟐 denoted 

the additive, permanent environmental, contemporary group and residual variances, respectively. 

In this model, the residual variance (𝝈𝒆𝟐) was constrained to be equal to 1. The prediction error 

variance of the ith animal (PEVi) was obtained by squaring the standard error reported next to the 

BLUP of each individual evaluated on the ASREML output solutions file (Gilmour et al., 2009). 
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These values represented approximations of the diagonal elements of the inverse of the coefficient 

matrix assembled in the final iteration round performed by the statistical software package. 

Calculation of the accuracy (ACC) of prediction was performed following the guidelines of the 

Beef Improvement Federation (2020) using Equation 3.7 and then, the resulting mean ACC of this 

model was compared to the mean accuracies of the evaluations presented in chapter 4. Mean 

accuracies of prediction obtained with the traditional threshold model (TM), the repeatability 

threshold model (REP) and the random regression model (RRM) are presented in Figure A-2 (A-

D). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure A-2. Mean accuracies for stayability predictions at the age of 6 yr obtained with each 
statistical methodology. A) Mean accuracy for all animals in the pedigree (n = 14,140), B) Mean 
accuracies for all sires in pedigree (n = 971), C) Mean accuracies for sires that have produced 
progeny in the last five yr (n = 85), D) Mean accuracies for sires that have produced progeny in 
the last three yr (n = 51). Different letters indicate a statistical difference at the P <0.05 level among 
methodologies according to the least significant difference test. 
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Considering all animals in the pedigree (Figure A-2 A), the mean accuracy for STAY 

predictions obtained with the REP model was 0.056 with a minimum of 0.00004 and a maximum 

of 0.316. Similar increments in accuracies of predictions for all the sires in pedigree (Figure A-2 

B) were obtained with REP, where the mean, minimum and maximum accuracy values were 0.036, 

0.008 and 0.316. In the case of sires that have produced progeny in the last 5 yr within the CSU-

BIC (Figure A-2 C), the average accuracy was 0.036, with values that ranged between 0.008 to 

0.303. The last group animals whose mean accuracy values obtained by each method were 

compared was the sires that have produced progeny within the last 3 yr within the CSU-BIC 

(Figure A-2 D). For this group of animals, the mean, minimum and maximum accuracy values 

were 0.032, 0.008 and 0.303. 
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APPENDIX B 
 
Table B-1. Number of genotyped animals per birth year at the Colorado State University – Beef 
Improvement Center. 

Year of birth Genotyped animals Year of genotyping 
1997     6 2011 
1998   10 2011 
1999   10 2011 
2000   16 2011 
2001   33 2011 
2002   17 2011 
2003   27 2011 
2004   38 2011 
2005   43 2011 
2006   34 2011 
2007 130 2011 
2008 125 2011 
2009 148 2011 
2010 311 2011 
2011 372 2011 
2012 362 2012 
2013 367 2013 
2014 297 2014 
2015 390 2015 
2016 400 2016 
2017 380 2017 

External sires 105 - 
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Genomic EPD quartile classification of heifers contributing phenotypes to DS-2_HPG 

After the genomic expected progeny differences (GEPD) were obtained for all animals 

contained in the final pedigree file of DS-2_HPG (n = 6,738) using the single-step random 

regression super-hybrid model (ssRR-SHM), a special emphasis was placed on the subset of 3,037 

heifers that had phenotypes for HPG. Predictions for this group of animals were extracted with the 

purpose of matching them with their registered observation for HPG. Afterwards, heifers were 

ranked in quartiles according to their GEPD (Q1: ≥75%, Q2: ≥50% <75%, Q3: ≥25 to <50% and 

Q4: 0 to <25%) with the ultimate goal of exploring if the quartile classification effectively 

translated into expressed differences in phenotypic performance. A general linear model was 

executed to compare the adjusted success rate for HPG within each quartile-genetic group (SAS 

9.3; SAS Inst.Inc., Cary, NC). The equation of such model (Eq. B-1) was the following: 

 yijklm = QGi + CGj + AODk + AFEl + eijklm Eq. B-1 

where yijkl corresponded to the mth HPG phenotypic value associated to the lth age at first 

exposure, the kth age of dam category, the jth contemporary group and the ith quartile group; QGj 

represented the ith quartile group (e.g., 4 classes: Q1 through Q4), CGj denoted the jth 

contemporary group (e.g., 19 groups); AODk corresponded to the kth age of dam (e.g., 8 

categories) and AFEl was the lth covariate value of age at first exposure (ages ranging from 350 

to 465 d); eijklm represented the residual term. Comparisons of the adjusted success rate for HPG 

were performed using the Tukey test. Average values for HPG genomic predictions, adjusted 

phenotypic success rate for HPG, age at first exposure and age of dam according to the quartile 

classification generated by the ssRR-SHM evaluation are shown in Table B-2. The adjusted 

average phenotypic performance for HPG of each quartile subgroup generated from this genomic 

evaluation is shown in Figure B-1. 
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Table B-2. Summary statistics according to the quartile classification derived from the single-step 
random regression super-hybrid model for heifer pregnancy (HPG). 
 Quartile classification for the 3,037 heifers that contributed 

phenotypic information for DS-2_HPG* 
Variable Q1ψ Q2ψ Q3ψ Q4ψ 
N 760 759 759 759 
Average GEPD for HPG          2.10          1.11         0.44         -1.00 
Average success rate for HPG          0.98          0.97         0.83          0.35 
Averages AFE‡, d      424.64      420.59     418.41      421.25 
Average AOD§, (yr)          4.42          5.30         5.07          4.93 

*Second dataset used in the random regression super-hybrid model genomic evaluation for heifer pregnancy, ψQ1: >75%, Q2: 

>50% to 75%, Q3: >25 to 50% and Q4: 0 to 25%, ‡AFE = age at first exposure, §AOD = age of dam. 
 

 

 
Figure B-1. Heifer pregnancy rate adjusted for non-genetic effects according to the quartile 
classification derived from the single-step random regression super-hybrid model for the 3,037 
heifers that had genotypes and phenotypes within DS-2_HPG. Different letters indicate a statistical 
difference at the P < 0.05 level among quartiles according to the Tukey test. 
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Genomic EPD quartile classification of heifers contributing phenotypes to DS-3_FSCR 

After the GEPD for heifer first-service conception rate (FSCR) were obtained for all 

animals contained in the final pedigree file of DS-3_FSCR (n = 6,764), a special emphasis was 

placed on the subset of 4,121 heifers that had phenotypic records for FSCR. Genomic predictions 

for this group of animals were extracted with the purpose of matching them with their registered 

phenotype for FSCR. Subsequently, heifers were ranked in quartiles according to their GEPD (Q1: 

≥75%, Q2: ≥50% <75%, Q3: ≥25 to <50% and Q4: 0 to <25%) with the objective of exploring if 

the quartile classification effectively translated into expressed differences in phenotypic 

performance. Using SAS software, a general linear model was executed to compare the adjusted 

success rate for FSCR among quartile-genetic groups. The model equation (Eq. B-2) was as 

follows: 

 yijklmnop = QGi + CGj + AODk + MGl + AITm + SSn + AFEo + eijklmnop Eq. B-2 

where yijklmnop corresponded to the pth FSCR phenotypic value associated to the oth age at first 

exposure, the nth service sire, the mth artificial insemination technician, the lth mating group, the 

kth age of dam category, the jth contemporary group and the ith quartile group; QGj represented 

the ith quartile group (e.g., 4 classes: Q1 through Q4), CGj denoted the jth contemporary group 

(e.g., 26 groups); AODk corresponded to the kth age of dam (e.g., 8 categories), MGl was the lth 

mating group (e.g., 2 classes), AITm corresponded to the mth AI technician (e.g., 51 technicians), 

SSn represented the nth service sire (e.g., 44 sires) and AFEo was the oth covariate value of age at 

first exposure (ages ranging from 350 to 465 d); eijklmnop represented the residual term. 

Comparisons of the adjusted mean phenotypic performance for FSCR were performed using the 

Tukey test. The average values for FSCR genomic predictions, adjusted FSCR phenotypic 

performance, age at first exposure and age of dam according to the quartile classification generated 
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by the ssRR-SHM evaluation are shown in Table B-3. The adjusted average phenotypic 

performance for FSCR of each quartile subgroup generated from this genomic evaluation is shown 

in Figure B-2. 

 
Table B-3. Summary statistics according to the quartile classification derived from the single-step 
random regression super-hybrid model for heifer first-service conception rate (FSCR). 
 Quartile classification for the 4,121 heifers that contributed 

phenotypic information for DS-3_FSCR* 
Variable Q1ψ Q2ψ Q3ψ Q4ψ 
N 1031 1030 1030 1030 
Average GEPD for FSCR           2.55           2.24           1.99           1.33 
Average FSCR rate           0.66           0.46           0.33           0.22 
Averages AFE‡, d       419.66       420.25       421.79       426.64 
Average AOD§, (yr)           4.69           4.93           4.85           4.86 

*Third dataset used in the random regression super-hybrid model genomic evaluation for heifer firs-service conception rate, ψQ1: 

>75%, Q2: >50% to 75%, Q3: >25 to 50% and Q4: 0 to 25%, ‡AFE = age at first exposure, §AOD = age of dam. 
  

 
Figure B-2. Heifer first-service conception rate adjusted for non-genetic effects according to the 
quartile classification derived from the single-step random regression super-hybrid model for the 
4,121 heifers that had genotypes and phenotypes within DS-3_FSCR. Different letters indicate a 
statistical difference at the P < 0.05 level among quartiles according to the Tukey test. 
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Genomic EPD quartile classification of heifers contributing phenotypes to DS-4_STAY 

After the GEPD were obtained for all animals contained in the final pedigree file of DS-

4_STAY (n = 2,340), a special emphasis was placed on a subset of 497 cows that had phenotypic 

records for stayability at the age of 6 (STAY06). Importantly, even when in this dataset there was 

a total of 668 cows with phenotypic records, only the subset of 497 cows selected for this analysis 

were old enough to express STAY06 phenotypes. Predictions for this group of animals were 

extracted and matched with their registered observation of the age endpoint of interest (e.g., 6 yr). 

Subsequently, cows were ranked in quartiles according to their GEPD for STAY06 (Q1: ≥75%, 

Q2: ≥50% <75%, Q3: ≥25 to <50% and Q4: 0 to <25%) to investigate if such quartile classification 

actually translated into expressed differences in phenotypic performance. A general linear model 

was executed to compare the proportion of cows that actually remained productive in the herd until 

the age of 6. The model equation (Eq. B-3) was the following: 

 yijkl = QGi + CGj + AFCk + eijkl Eq. B-3 

where yijkl corresponded to the lth STAY phenotypic value associated to the kth age at first calving 

registered, the jth contemporary group and the ith quartile genetic group; QGi represented the ith 

quartile genetic group (e.g., 4 classes: Q1 through Q4), CGj corresponded to the jth contemporary 

group (e.g., 8 groups) and AFCk denoted the kth age at first calving (e.g., 6 categories); eijkl 

represented the residual term. Comparisons of the adjusted mean phenotypic performance for 

STAY06 were performed using the Tukey test. As important notes, breeding weight values were 

not included as explanatory variable in this model because only 25 animals had observations 

associated to the age endpoint of interest (e.g., 6 yr of age). In the case of calving ease scores, they 

were not included in the model because there was no variability in the observations of this variable 

related to STAY06 (e.g., all scores were 1).  
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The average values for STAY06 genomic predictions, the adjusted phenotypic success rate 

for STAY06 and the average age at first calving according to the quartile classification generated 

by the ssRR-SHM evaluation are shown in Table B-4 and Figure B-3. 

 
Table B-4. Summary statistics according to the quartile classification derived the single-step 
random regression super-hybrid model for stayability at the age of 6 (STAY06). 
 Quartile classification for the 497 cows that 

contributed phenotypic information for DS-4_STAY* 
Variable Q1ψ Q2ψ Q3ψ Q4ψ 
N 125 124 124 124 
Average GEPD for STAY06          8.10          6.24            4.80          2.22 
Phenotypic success rate for STAY06           0.91          0.82          0.47          0.10 
Averages AFC‡, mo        23.81        23.72        23.70        23.63 

*Fourth dataset used in the random regression super-hybrid model genomic evaluation for stayability, ψQ1: >75%, Q2: >50% to 

75%, Q3: >25 to 50% and Q4: 0 to 25%, ‡AFC = age at first calving. 
  

 
Figure B-3. Proportion of cows remaining productive in the herd until the age of 6 (stayability at 
the age of 6) adjusted for non-genetic effects according to the quartile classification derived from 
the single-step random regression super-hybrid model for the 497 cows that had genotypes and 
phenotypes within DS-4_STAY. Different letters indicate a statistical difference at the P < 0.05 
level among quartiles according to the Tukey test. 
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