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ABSTRACT

QUANTUM MAGNETISM IN THE RARE-EARTH PYROSILICATES

In recent years, both physicists and non-physicists have shown immense interest in the bur-

geoning field of quantum computing and the possible applications a quantum computer could be

used for [1]. However, current quantum computers suffer from issues of decoherence: where

the quantum state used for computation is broken by external noise. A new possible avenue for

quantum computation would be to use systems that are intrinsically protected from some level

of noise, such as topologically protected states. Topological states are inherently protected from

small perturbations due to their topological nature. However, to exploit this feature of topologically

protected systems more experimental realizations are needed to better understand the underlying

mechanisms. This has motivated a surge in interest of condensed matter systems with topologically

protected states, such as the quantum spin liquid or fractional quantum Hall systems. A current

focus in the subfield of quantum magnetism has focused on using the anisotropic exchange prop-

erties of the rare-earth (La - Lu) ions to find quantum spin liquid states, such as the Kitaev spin

liquid that is predicted for systems exhibiting a honeycomb lattice. The Kitaev model is an exactly

solvable model with a quantum spin liquid ground state, allowing for precise comparison between

experiment and theory. Currently, no system has been rigorously proven to be a Kitaev spin liquid

but developing our understanding of the underlying physical mechanisms in these systems may

allow for the "engineering" of systems that are likely to be Kitaev spin liquids.

The desire to understand the underlying mechanisms for quantum spin liquids and other quan-

tum ground states led to the study of the three-honeycomb rare-earth pyrosilicate compounds dis-

cussed in this dissertation. The first compound, Yb2Si2O7, is a quantum dimer magnet system

with the first evidence for a rare-earth based triplon Bose-Einstein condensate. Inelastic neutron

scattering, specific heat, and ultrasound velocity measurements showed a characteristic (for triplon
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Bose-Einstein condensates) dome in the field-temperature phase diagram and provided evidence

for predominantly isotropic exchange, something that is not typically expected for rare-earth sys-

tems. Following this work on Yb2Si2O7, our focused turned to two of the Er3+ rare-earth pyrosil-

icates. The first of these Er3+-based pyrosilicates measured was D-Er2Si2O7. Previous work on

D-Er2Si2O7 discovered a highly anisotropic g-tensor, an antiferromagnetic ground state, and mod-

eled a selection of the magnetic field induced transitions via Monte-Carlo simulations [2]. Our

work followed up on this with AC susceptibility, powder inelastic neutron scattering, and powder

neutron diffraction measurements to further investigate the ground state of this quantum magnet.

Through this we discovered that the system enters an antiferromagnetic state with the spins al-

most aligned along the previously determined local Ising-axis [2]. The inelastic neutron scattering

spectrum show a gapped excitation at zero field - consistent with Ising-like exchange. Transverse

field AC susceptibility shows a change in the susceptibility at 2.65 T. These signatures indicate

that D-Er2Si2O7 exhibits predominantly Ising-like exchange and that a transition can be induced

by a field applied transverse to the Ising axis. This allows for the possibility of D-Er2Si2O7 bein g

a new experimental realization of the Transverse Field Ising Model (TFIM). The TFIM is a sim-

ple, anisotropic exchange, theoretically tractable model exhibiting quantum criticality with few

experimental examples, making new experimental examples of this model highly desired. These

intriguing results on D-Er2Si2O7 and Yb2Si2O7 led to an interest in the polymorph formed at

lower synthesis temperatures, C-Er2Si2O7, which happens to be isostructural to Yb2Si2O7. Mea-

surements of the neutron diffraction, specific heat, and magnetization/susceptibility in this system

allowed for us to determine that C-Er2Si2O7 magnetically orders at 2.3 K into an antiferromagnetic

Néel state. While this is the expected ground state for an isotropically exchange coupled honey-

comb system, C-Er2Si2O7 does not form a "perfect" honeycomb lattice and it is interesting that

C-Er2Si2O7 magnetically orders while Yb2Si2O7 does not. Understanding the ground state for C-

Er2Si2O7 will allow for bettering our understanding of Yb2Si2O7 and rare-earth quantum magnet

ground states by comparing the properties of the two systems. Overall, the work on these three

compounds required numerous experimental techniques, models, and theoretical understanding.
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It is my hope that the preliminary understanding for these three pyrosilicates will motivate future

work within the rare-earth pyrosilicate family and provide a family of rare-earth quantum magnets

that can be studied to improve our understanding of novel quantum states.
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Chapter 1

Introduction

The twentieth century brought us the revolutionary understanding of quantum mechanics and

relativity, and it seems that the twenty-first century will be defined by our ability to harness these

basic physical mechanisms for the betterment of humanity. One of the most promising develop-

ments in this direction is the search for new methods for quantum computation. Quantum comput-

ing is particularly powerful due to the property of superposition. In a classical computer, data is

stored in binary ones and zeroes, called "bits", but in a quantum computer the bit can be in both

the one and the zero state at the same time. When a collection of these qubits (quantum bits) is

entangled, they can be utilized for factoring large numbers [3], modeling quantum systems [4],

and numerous other powerful applications. Current quantum computation generally utilizes ul-

tracold gasses or entanglement of superconducting loops, however decoherence 1 is common in

these systems, thus making practical use more difficult [5, 6]. A possible platform for future devel-

opments of quantum computing is performing computations using topologically protected states

such as topological insulators or quantum spin liquids. The topological nature of these systems

provides robustness against decoherence, as topological systems are not affected by local pertur-

bations. These platforms share the commonality that they are based on condensed matter systems.

Therefore, to properly harness these platforms, we must understand the underlying mechanisms

controlling the quantum states. Particularly in the realm of quantum spin liquids, this understand-

ing is in the process of being developed, but the prospect of "engineering" a quantum spin liquid is

on the horizon. To move towards this reality of "engineering" quantum spin liquids - and quantum

states in general - new systems must be synthesized, characterized, and understood. In this disser-

tation I have focused on elucidating the quantum ground states of three members of the rare-earth

pyrosilicate family of compounds: Yb2Si2O7, D-Er2Si2O7, and C-Er2Si2O7. While none of these

1Decoherence is the loss of information from a system to its environment. Particularly for quantum computers
decoherence is an issue as the carefully prepared quantum state for a computation could be destroyed by interacting
with the environment.
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systems exhibit a quantum spin liquid ground state, they serve as a stepping stone towards under-

standing the ground states of quantum magnets which in the future may be leveraged to engineer

quantum states.

This dissertation consists of five chapters in addition to this introductory chapter. Chapter

2 focuses on explaining the necessary background knowledge needed to understand the results

presented in Chapter 3-5. I begin Chapter 2 by outlining the basics of magnetic solids and the

process of superexchange. I then specifically focus on the Hamiltonians relevant to this work: the

quantum dimer magnet and the transverse field Ising model Hamiltonian. All the work performed

for this dissertation included rare-earth ions in oxygen crystal fields, so a brief discussion of the

underlying physics for crystal electric fields is also given in Chapter 2. Chapter 2 also contains

an overview of the experimental techniques used, including neutron scattering, heat capacity, and

magnetometry. I thoroughly discuss neutron scattering theory and experiment, as this technique

provided the base for the three sets of results presented and I am truly passionate about neutron

scattering.

Following the background of Chapter 2, Chapters 3-5 consists of academic papers written for

research journals. Each chapter focuses on a different rare-earth pyrosilicate compound, with

Chapter 3 consisting of my paper on Yb2Si2O7, published under reference [7]. This paper out-

lines our discovery of a quantum dimer magnet ground state with evidence for a field-induced

Bose-Einstein condensate (BEC); the first of its kind based on a pseudo spin-1
2

ion. This pa-

per also furthers an emerging narrative that - contrary to conventional wisdom - rare-earth based

ions often exhibit isotropic - or nearly isotropic - exchange interactions [8, 9]. This work also

motivated the study of the two compounds in Chapter 4 and Chapter 5. Chapter 4 consists of

my in-progress paper on D-Er2Si2O7. This preliminary paper outlines our experimental work on

the Ising-like compound D-Er2Si2O7 where a transition can be induced via a transverse applied

magnetic field, indicating that D-Er2Si2O7 exhibit properties of the transverse field Ising model

(TFIM), a model that currently only has a few experimental realizations. Chapter 5 includes my

paper on C-Er2Si2O7, published under reference [10]. The compound, C-Er2Si2O7, is isostruc-
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tural to the quantum dimer magnet compound Yb2Si2O7, but C-Er2Si2O7 magnetically orders at

2.3 K while Yb2Si2O7 does not magnetically order. This difference between these isostructural

compounds provides the opportunity to study how the ground states of quantum magnets change

when the rare-earth ion is substituted. Finally, in Chapter 6 I will summarize the major results and

motivate future work for these three rare-earth pyrosilicate systems.
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Chapter 2

Background

2.1 Magnetism

From early human discovering strange rocks that attract other rocks - called lodestones - to

children baffled by the repulsion of two rare-earth magnets, humans have always been entranced

by the mysterious forces of magnetism. In this work we will be focusing on magnetic materials,

which come in a few different varieties; the ferromagnet, the antiferromagnet, the paramagnet, and

the diamagnet. Ferromagnetic systems are the canonical magnets most people are familiar with,

they have a spontaneous magnetization in zero magnetic field, and have all their magnetic spins

aligned along the same direction. Antiferromagnets are magnets with no spontaneous magnetiza-

tion due to their neighboring spins ordering in opposite directions, thus cancelling each other out.

In analogy to the "traditional" states of matter (e.g. liquids, gasses, solids) the antiferromagnet and

ferromagnet states can be thought of as magnetic solids. The paramagnet can then be thought of as

a magnetic gas, where all the spins point randomly in space, yielding no net magnetic moment and

no correlation between spins 2. The paramagnet state generally exists for all magnetic materials at

high enough temperatures. Finally, there is the diamagnet, which exhibits a spontaneous magne-

tization antiparallel to an applied field causing them to repel magnetic fields. All materials have

some level of diamagnetism present, but it is generally significantly weaker than the other forms

of magnetism.

One thing that is left out of this description is the underlying mechanisms describing how this

magnetism operates at a fundamental level. If we consider a ferromagnetic or antiferromagnetic

system at very high temperatures, the system likely acts paramagnetic with no preferred spin direc-

tion. As the system is cooled down from high temperatures, the system searches for the state that

2The liquid in this analogy would be the quantum spin liquid state. This is a state where the spins are correlated
and dynamic, however, there is no magnetic ordering.
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will most minimize its free energy. This could be with the spins parallel to one another, antiparal-

lel, some combination of parallel or antiparallel, or in the case of strong magnetic frustration, no

magnetic ordering may happen. The main governing mechanisms for the magnetic ordering are

the exchange interaction and the dipole interaction. A magnetic system will (generally) magneti-

cally order when the thermal energy (kBT ) becomes equal in magnitude to the interaction energy

(J) between the magnetic atoms. In the case of the dipole interaction, one can think of this in-

teraction energy as being the "classical" magnetic coupling between two magnetic dipoles, which

can result in the dipoles align antiferromagnetically or ferromagnetically, depending upon their

relative location (see Fig. 2.1). Importantly, the dipole interaction is proportional to the size of the

magnetic moment, so when considering systems with small magnetic moments, where the dipolar

interaction potential is much smaller then the other types of exchange in the system, one can often

ignore the dipole interaction. Another common magnetic interaction in the systems studied for

this work is that of exchange interactions, which are purely quantum mechanical in nature. The

exchange interaction arises due to the electrostatic Coulomb interactions between the electrons and

the Pauli exclusion principle. Physically, the exchange interaction represents the energy cost for

an electron to switch locations with its neighbor. There is a finite energy cost to this process due to

the electrons repelling one another electrostatically (Coulomb interaction) and due to the electrons

inability to occupy the same state (Pauli exclusion principle).

There are many flavors of exchange interactions that share this underlying mechanism, with a

few being: direct exchange, Dzyaloshinskii–Moriya interaction, and superexchange. The predom-

inant exchange interaction type for materials studied in this work is superexchange. This is - in part

- due to the highly localized nature of the unpaired electrons in the systems studied and their insu-

lating nature. The process of superexchange starts by two magnetic atoms sharing a non-magnetic

neighbor (e.g. O2−) between them. This non-magnetic neighbor’s orbitals overlap with the orbitals

of both magnetic atoms, creating a mainfold of electronic states where the sign of the exchange is

determined by the lowest energy electronic state. Depending on the nature of the lowest energy

electronic state (which is influenced by the bond angles, bond symmetry, and the magnetic species,
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phases due to the large total angular momentum, as (generally) the higher the number of accessible

states, the more classical a system is. This can be understood by thinking about the classical limit

of any system. In quantum mechanics, the states exist at discrete energy levels. As the limit to

classical physics is taken, the discrete energy levels turn into a continuum, which is essentially

a system with an infinite number of accessible states. If we now consider placing a Yb3+ ion in

an ionic solid, the Yb3+ ion can be in a cage of highly electronegative atoms, such as O2−. This

cage of O2− ions influence the energy landscape of the total angular momentum states through the

Stark effect, breaking the degeneracy of the eight Jz angular momentum eigenstates. This alludes

to a benefit of the rare-earth ions; the incredibly high spin-orbit coupling and the highly localized

nature of the 4f electrons allow for the crystal electric field (CEF) to be treated as a perturbation,

due to the spin-orbit coupling in these systems being much stronger then the CEF. The pertubative

nature of the CEF allows for all of Hund’s rules to apply, simplifying analysis of the ground state

magnetism of the rare-earth ion. In the case of Yb3+, there are an odd number of electrons in

the outer shell meaning that the system is subject to Kramer’s degeneracy theorem. Kramer’s

degeneracy theorem states that any time-reversal symmetric system made of an odd number of

fermionic particles must have at least doubly degenerate energy eigenstates. This means that in the

case of a magnetic ion, like Yb3+, at low temperatures (compared to the CEF gap) the system can

be treated as an effective spin-1
2

system. This general process of angular momentum degeneracy

breaking, and Kramer’s theorem is demonstrated in Fig. 2.2.

An important property of the rare-earth series of elements is their similar chemical properties.

All the elements from Lanthanum to Lutetium often form trivalent compounds. This similarity

is due to the highly localized nature of the 4f orbitals. When one of the lanthanides form an

ionic compound, they generally donate the two electrons in the 6s shell and one electron from the

4f shell. Only one 4f electron is generally donated due to the remaining 4f electrons seeing an

effectively larger charge from the nucleus and thus the electrons generally residing even closer to

the nucleus, increasing the speed the electrons have to orbit to relativistic speeds, making their

participation in bonding energetically unlikely. The similarity in bonding is one of the features
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Figure 2.2: Schematic showing the process of determining the ground state properties for the Yb3+ rare-
earth ion. First, Hund’s rules are applied to put the 13f electrons into angular momentum states. Crystal
electric field splitting is then introduced to break the degeneracy of the 8 total angular momentum states,
leading to multiple sets of doublets. If the temperature of the system is much smaller than the gap to the first
excited state, then the ground state can be mapped to a spin-12 .

that makes the rare-earth series of atoms ideal for studying in quantum magnets, as one magnetic

atom in the series can often easily be exchanged for a different atom (magnetic or non-magnetic)

from the series. The main limitation upon this substitution is the contraction of the ionic radius

from La (2.5 Å) to Lu (2.27 Å), but this also results in different structures forming for different

rare-earth ions and allows for the possibility of polymorphic phase diagrams, like in the rare-earth

pyrosilicates [17, 18].

2.1.2 Quantum Dimer Magnets and Bose-Einstein Condensation

Perhaps one of the simplest quantum magnet states is that of the quantum dimer magnet and

could be considered the textbook example of quantum magnetism. In describing the quantum

dimer magnet, let us consider a magnetic system made up of atoms with a spin of 1
2

(this could be a

"bare" spin-1
2

or an effective spin-1
2
) and where each magnetic atom has only one nearest-neighbor
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magnetic atom. If we assume that these nearest-neighbor magnetic atoms have antiferromagnetic

Heisenberg exchange and only interact with their nearest-neighbor, it is possible that the spin’s

wavefunctions become entangled,

Ψ(r1, r2) = ψ1(r1)⊗ ψ2(r2) (2.1)

If we focus purely on the spin component of the wavefunction, we obtain an antisymmetric wave-

function for the combined spins - a dimer - of the form,

ΨSz=0(r1, r2) =
1√
2
(|↑↓〉 − |↓↑〉) (2.2)

This wavefunction has no total spin (Stot = 0) and therefore no z-component to the spin (Sz = 0),

which importantly means that the state has no net magnetization. If we then examine the triplet of

(Stot = 1) excited states from this singlet ground state, we obtain,

ΨSz=0(r1, r2) =
1√
2
(|↑↓〉+ |↓↑〉) (2.3)

ΨSz=1(r1, r2) = |↑↑〉 (2.4)

ΨSz=−1(r1, r2) = |↓↓〉 (2.5)

This triplet state consists of a non-magnetic state (Eq. 2.3), a state that would align parallel to

an applied field (Eq. 2.4), and a state that would align antiparallel to an applied field (Eq. 2.5).

Practically, it is difficult to directly prove the entanglement of dimers in solid state systems, and

therefore the wavefunction shown above, so generally the system is compared to the quantum

dimer magnet Hamiltonian,

H =
∑

<i,j>

SiJ intraSj +
∑

<<i,j>>

SiJ interSj +
∑

i

BgSi (2.6)
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where the first term represents the exchange interaction within the dimers (i.e. between nearest

neighbor spins), the second term represents the exchange interaction between the dimers (e.g. be-

tween next-nearest neighbor spins), and the final term is the Zeeman interaction with the magnetic

field. It is not a requirement that the system have a finite J inter exchange, but in condensed matter

systems it is highly unlikely that only the nearest neighbor exchange has a finite strength. How-

ever, it is a requirement that the intradimer (J intra) exchange tensor be antiferromagnetic. Systems

matching these properties of the quantum dimer magnet system are numerous and can often be

identified by measurement of the specific heat at low temperatures [19]. Upon cooling from high

temperature, a quantum dimer magnet system should exhibit a Schottky anomaly in the specific

heat at a temperature related to the strength of the exchange within the dimers. This Schottky

anomaly arises from the thermal depopulation of the Stot = 1 states. The quantum dimer magnet

system (with S = 1
2
) should release kBln 4 per dimer (where kB is the ideal gas constant) of entropy

upon passing through this Schottky anomaly. The value of this entropy arises from the number of

accessible microstates to the system, which in the case of the above wavefunctions, is four. No

transitions related to the magnetism would be expected to occur below this temperature, indicating

that the quantum dimer magnet state is the true ground state of the system.

An important special case of the Hamiltonian in Eq. 2.6 is the one in which the exchange

tensors, Jintra and Jinter, are U(1) symmetric (i.e. circularly symmetric). This could be Heisenberg

exchange - where the diagonals of the exchange tensor are equal and no-off diagonal elements

exist - or XXZ type exchange - where two of the diagonals are equal and no off-diagonal elements

exist. If the system exhibits this type of exchange, the Hamiltonian can be usefully mapped - via the

Matsubara-Matsuda transformation [20] - to one of hard-core bosons where the bosons can undergo

BEC. This mapping allows for spin variables of the system to be written in terms of the variables,

such as boson number, that are used in describing more traditional BEC systems in ultracold gasses.

This allows for the incredible breadth of theory work performed on ultracold gas BEC systems to

be leveraged on quantum dimer magnet BEC systems. A few of these mappings are: (i) The

component of the spin along the applied field direction (z) maps to the boson population of the

10
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Figure 2.3: a) Example phase diagram for a weakly-coupled quantum dimer magnet system with a field-
induced BEC. In the low field region, the system acts as a quantum dimer magnet (QDM). As the field passes
Hc1 the system exhibits a dome of XY antiferromagnetism, where the state can be mapped to a BEC. At
fields greater than Hc2 the system is in a field polarized paramagnet (FPP) state. b) Schematic showing the
Zeeman splitting of the triplet states. The gap at zero field is determined by the magnitude of the exchange
interaction, Jinter. The bandwidth is shown for the Sz = 1 state, as the bottom of the band reaching zero
energy determines Hc1 and the top of the band reaching zero energy determines Hc2. The first critical field,
Hc1 correspond to the Sz = 1 state becoming degenerate with the nonmagnetic, Stot = 0, thus making the
ground state doubly degenerate and therefore making it mappable to an effective spin-12 Ṫhe second critical
field, Hc2 corresponds to the Sz = 1 state becoming the only accessible ground state in the system.

condensate. (ii) The magnetic field strength maps to the chemical potential of the BEC. (iii) An

XY -like ordered state 4 maps to the BEC state. The aforementioned U(1) symmetry is required

for mapping to BEC, as BEC spontaneously break U(1) symmetry. In the case of ultracold gasses,

this results in the system choosing a single phase of the wavefunction, even though the physical

properties of the system are not related to the phase chosen. As a result of the system spontaneously

breaking the continuous U(1) symmetry, a Goldstone mode arises in the system. Goldstone modes

are massless excitations that correspond to a long-wavelength fluctuation of the order parameter.

In the case of quantum magnets, the choosing of a single phase corresponds to the spins ordering in

one direction in the plane perpendicular to the magnetic field and the Goldstone mode corresponds

to a global rotation of the spins around the magnetic field direction within the XY -ordered state.

4The XY state is a planar magnetic state, where the spins order in the plane perpendicular to the magnetic field
and preserve their U(1) symmetry.
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As the excitation is massless, it presents as a linearly dispersive excitation originating at zero

momentum and energy. For the Hamiltonian shown, this BEC manifests as a dome in the magnetic

field vs. temperature phase diagram, as shown in Fig. 2.3a. At low magnetic fields, the system is in

the quantum dimer magnet state, so no magnetic ordering is observed, but coherent excitations to

the triplet states (called triplons) can be measured via inelastic neutron scattering. As the strength

of the magnetic field increases, the triplet of excited states Zeeman split in energy, with the Sz = 1

state being driven down towards zero energy, shown in Fig. 2.3b. In the presence of a finite Jinter

exchange the triplet of states are not at discrete energies, but instead have a dispersion (bandwidth)

with the width of Jinter. It is this bandwidth that determines the critical fields (Hc1 and Hc2) where

the system undergoes a quantum phase transition into and out of anXY ordered state, respectively.

When the bottom of the Sz = 1 band reaches zero energy the ground state of the system is now

a degenerate state with the Stot = 0, Sz = 0 and Stot = 1, Sz = 1 states. This degenerate ground

state allows for the Hamiltonian in Eq. 2.6 to be rewritten in terms of an effective spin-1
2
system,

with the Stot = 0, Sz = 0 corresponding to "spin" down and the Stot = 1, Sz = 1 corresponding to

"spin" up. In bosonic language these states correspond to the absence of a boson (spin down) on a

dimer or the presence of a boson (spin up) on a dimer. As the magnetic field (chemical potential)

is increased bosons begin to populate the dimers until at Hc2 all dimers are in the spin up state

and the system is then a field-polarized paramagnet. The usefulness of this bosonic description

for a quantum magnet may not be apparent at first, but due to the mapping to language used for

traditional BEC’s a large amount of theoretical work can be leveraged towards understanding these

systems. The quantum magnet BEC acts as a playground for understanding BEC physics that

cannot be easily replicated in ultracold gasses, such as easily modifying the chemical potential.

Additionally, due to the underlying symmetries of the lattice (amongst others) the description of

quantum magnets as BEC’s is only approximate since the U(1) symmetry is always broken at some

temperature scale. This allows for the bounds of the theory of BEC to be probed and can give rise

to novel physics, such as the Bose glass state [21] or boson crystallization [22], amongst others.
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Overall, BEC in quantum magnets provides a useful theoretical jumping off point for discovering

and understanding new phases of quantum matter, like the elusive quantum spin liquid state.

2.1.3 Transverse Field Ising Model

Perhaps one of the most ubiquitous models combining statistical mechanics and magnetism

is that of the Ising model. The Ising model consists of spins arranged on a lattice with the spins

coupled via an Ising exchange, therefore they can only align parallel or antiparallel (i.e. along

a preferred quantization axis, generally referred to as the Ising or easy axis). The physics of this

model vary depending upon the dimensionality, for example the one-dimensional Ising model does

not magnetically order at any temperature whereas the two-dimensional Ising model does magneti-

cally order [23]. This model is theoretically tractable, making it an excellent system for comparison

to experimental systems. If an external magnetic field perpendicular to the Ising direction is in-

troduced to the simple Ising model, the model can remain theoretically tractable, but can only be

exactly solved in one dimension and ultimately gives rise to a quantum phase transition. In the

case of a spin-1
2

Ising chain, the Transverse Field Ising Model (TFIM) Hamiltonian has the form,

H = −
∑

<i,j>

Jσz
i σ

z
j − h

∑

i

σx
i (2.7)

where J is the exchange between nearest neighbor spins, σi,j is the Pauli spin matrix for the spin

at site i or j, and h is the magnetic field. This model gives rise to a quantum phase transition due

to the Pauli spin matrices, σz and σx, not commuting with one another. Thus, whereas the classical

Ising model phase transition is driven by entropy, the quantum phase transition in the TFIM is

driven by the uncertainty principle. The magnetic field vs. temperature phase diagram for the one-

dimensional ferromagnetic TFIM (shown in Fig. 2.4) has a low field regime where the first term

of the Hamiltonian dominates and the system exhibits a ferromagnetic state (when J is positive)

with the spins parallel to the z direction. At zero temperature and as the magnetic field strength

is increased, the two terms of the Hamiltonian become comparable in magnitude and there will

be a quantum phase transition when their energies are equal. Past this quantum phase transition,
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Figure 2.4: Phase diagram for the ferromagnetic one-dimensional TFIM. At low fields the system is in
a ferromagnetic state with the spins aligned along the Ising direction. At T = 0 and a critical field (Hc)
the system undergoes a quantum phase transition to a field polarized paramagnet (FPP) state. At finite
temperatures, this quantum phase transition manifests as a quantum critical regime with the edges of the
regime dictated by the critical exponents of the TFIM.

the second term in the Hamiltonian is dominant and therefore the spins are polarized along the

magnetic field direction, x. While this Hamiltonian is relatively simple, very few experimental

examples exist to date. This lack of experimental examples may seem surprising at first due to the

relative simplicity of the model, but in the known experimental examples there are complicating

processes that allow the system to deviate from strict TFIM behavior. One such case is in the

quasi-one dimensional TFIM compound CoNb2O6, where interchain couplings allow for three-

dimensional long-range order that can mask the effects of the one-dimensional TFIM quantum

critical point [24]. In light of the theoretical tractability of this model, new systems exhibiting

these properties are highly desired and motivate our study of D-Er2Si2O7 in Chapter 4.
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2.2 Experimental Techniques

2.2.1 Neutron Scattering

In 1932, James Chadwick published a short letter in Nature describing experiments on the

recoil of different atoms from beryllium radiation [25]. Based on arguments of conservation of

momentum and energy, Chadwick was able to deduce that this radiation could only come from a

charge 0, mass 1 particle; in direct contradiction to separate findings by Bothe and Becker [26]

and the Joliot-Curie’s [27] who believed the beryllium radiation consisted of gamma rays. This

particle Chadwick discovered was the neutron. The discovery of the neutron directly led to the

discovery of artificial radioactivity and later the development of the first nuclear bomb. A less

well-known product of Chadwick’s discovery is the development of neutron scattering. Neutron

scattering is a wide encompassing term, which generally describes experiments where low energy

(meV-keV) neutrons are directed at a sample - which they interact with - and then the neutrons

resulting energy and momentum are analyzed. The development of neutron scattering was started

at Oak Ridge National Laboratory (at the time Clinton Laboratories) where Ernest Wollan and

Lyle Borst performed the first measurements on a powder sample of calcite using a modified X-ray

diffractometer [28]. This experiment quickly led to the first neutron Laue photographs, evidence

of antiferromagnetism, and numerous other developments. As Ernest Wollan quickly learned,

neutrons are the ideal probe for condensed matter systems due to their wavelength and energy

relation serendipitously matching the spacings of atomic lattices and the energy scale of condensed

matter excitations (e.g. phonons). This wavelength and energy can also be tuned to allow for

application to systems of different sizes, such as biological systems or large polymer chains. In

addition to the beneficial wavelength and energy relation of neutrons, the neutron’s absence of a

net charge allows them to probe the bulk of a sample and their spin (a result of their up-down-

down quark structure) allows them to probe magnetic properties of materials. In the 74 years

since Wollan’s experiments, neutron scattering has advanced significantly in terms of theoretical

understanding, instrumentation, and data analysis.
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Before discussing neutron scattering theory, it is worthwhile to mention how neutrons are gen-

erated. Two types of sources are currently in use: spallation sources and nuclear reactor sources.

Nuclear reactor sources generate neutrons by the fissioning of uranium and provide a steady source

of neutrons. The neutrons released by the uranium are generally at very high energies (MeV) and

energies of meV are needed for neutron scattering, so the neutrons need to pass through a moder-

ator (sometimes multiple moderators) before reaching a sample. The moderator is typically water

or heavy water 5 which slows the neutrons down via inelastic collisions. The neutrons leave the

moderator at the same temperature as the moderator, where the effective temperature of the neu-

trons is described by a Boltzmann distribution. This moderation of neutrons reduces their energies

- and therefore wavelengths - to those that are applicable to measuring materials. The neutrons are

generally classified into three different effective temperature ranges; cold, thermal, and hot. Cold

neutrons have an energy of 0.1 - 10 meV, thermal neutrons have an energy of 5 - 100 meV, and hot

neutrons have energy of 100 - 500 meV. Many instruments are specialized for one of these temper-

ature ranges to maximize flux of a specific energy. Contrary to nuclear reactor sources, spallation

sources (generally) emit pulsed beams of neutrons. The neutrons in spallation sources are created

by colliding relativistic protons with a target 6. The neutrons exiting the target must be moderated

via similar methods as the reactor source due to their high energies. A pulsed spallation source

- like those used for this work - leads to a lower time averaged flux of neutrons, but also makes

analyzing the time-of-flight of the neutrons much simpler. Spallation sources also have the soci-

etal benefit of limiting nuclear proliferation as they do not require uranium to generate neutrons.

Overall, spallation and nuclear reactor sources have their own benefits and downfalls, but both are

vital tools in the neutron scatterer’s toolbox.

5Heavy water is water where the natural abundance hydrogen with no neutrons in the nucleus is replaced with
deuterium atoms with one neutron in the nucleus.

6In the case of the venerable Spallation Neutron Source at Oak Ridge National Laboratory, the target is liquid
mercury
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Neutron Scattering Theory

As seen in the previous section, neutron scattering has proven to be a reliable tool for inves-

tigating condensed matter systems. This is primarily due to the non-relativistic energies used and

the weak or short-range interactions the neutron experiences when scattering off a condensed mat-

ter system. These properties of the scattering allow for the use of Fermi’s Golden Rule, the Born

approximation, and ignoring relativistic properties 7. Numerous textbooks have been written on

neutron scattering theory and experiment. My description of neutron scattering theory is guided

by two books, Neutron Scattering from Magnetic Materials edited by Tapan Chatterji [29] and

Introduction to the Theory of Thermal Neutron Scattering by G. L. Squires [30]. The theoretical

treatment I will show in this section is primarily based off the latter. I will not attempt to repeat all

the derivations performed by G. L. Squires, but I will quote results and explain why those results

make sense and what approximations are needed to reach them.

The first step to understanding neutron scattering theory is to consider how neutrons are mea-

sured, as that is what the theory will be compared to. The neutrons impinging upon the sample

have a probability of interacting with the sample that can be expressed as a cross section, σ. To

detect neutrons, we can imagine placing a detector somewhere around the sample that the neutrons

will be scattering off. However, we will only be measuring a portion of this cross section, dσ, as

the detector is of finite size so it takes up a solid angle, dΩ, of the sphere that the neutrons could be

scattered into. We can additionally design the experiment to have the detector select for a single

energy of neutrons, dE ′. Our detector will then measure the number of neutrons per unit time,

Φ, in that solid angle dΩ with energy dE ′. This value the detector measures is called the double

differential cross section,

d2σ

dΩdE ′
(2.8)

7In most cases of neutron scattering Fermi’s Golden Rule and the Born approximation are equivalent due to
only s-wave scattering being considered. Only s-wave scattering is allowed because the object being scattered off of
(electrons or a nucleus) are significantly smaller than the wavelength of the neutrons and therefore the scattering must
be spherically symmetric. A common place where this does not apply is in neutron reflectometry, as reflectometry
utilizes refraction instead of diffraction.
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this double differential cross section is fundamental to the neutron scattering theory and virtually

every theoretical result can be traced back to this. The double differential cross section tells us what

our detector is measuring, but to garner useful information we must know what this is equivalent

to. More precisely, we must have some prediction for how the physics of our scattering system

will scatter neutrons into this detector. To understand this, we can think about the cross section as

a sum of all the processes in which the total scattering system (the neutron plus the sample) where

the system changes from wavelength λ to λ′ and consequently momentum k to k’ 8. We can write

this cross section (called just the differential cross section) as,

dσ

dΩ
=

1

Φ

1

dΩ

∑

k′ in dΩ

Wk,λ→k’λ′ (2.9)

where Φ is the flux of incident neutrons and Wk,λ→k’λ′ is a generic term for the number of transi-

tions per second from the state k, λ to the state k’, λ’. This is where Fermi’s Golden Rule becomes

applicable. As a reminder, Fermi’s Golden Rule describes the probability of a transition per second

from one energy eigenstate to a group of energy eigenstates, as a result of a weak pertubation. Due

to nuclear forces being very strong forces; one may think that Fermi’s Golden Rule does not ap-

ply. However, due to the nuclear potential being incredibly short range and only s-wave scattering

being possible, Fermi’s Golden Rule is still valid for neutron scattering. Applying Fermi’s Golden

Rule to Eq. 2.9 yields,

∑

k′ in dΩ

Wk,λ→k’λ′ =
2π

~
ρk′ | 〈k′λ′|V |kλ〉 |2 (2.10)

upon substitution of this in Eq. 2.9, application of box normalisation, and enforcement of conser-

vation of energy we can arrive at the master equation in neutron scattering,

(

d2σ

dΩdE ′

)

λ→λ′

=
k′

k

( m

2π~

)2

| 〈k′λ′|V |kλ〉 |2δ(Eλ − Eλ′ + E − E ′) (2.11)

8We will consider the process of scattering from E to E′ shortly
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the primary assumption made to reach this master equation is simply that Fermi’s Golden Rule

applies, i.e. no assumptions otherwise have been made about the potential, V . We can then limit

ourselves to a short-range potential, such as,

V (r) =
2π~2

m
b δ(r) (2.12)

where b is the scattering length, which describes the nature of the scattering. This potential is

known as the Fermi pseudopotential and has proven to be a good potential for describing nuclear

scattering. If b is positive the potential is considered repulsive and if b is negative the potential is

considered attractive, although this is not indicative of the attractive/repulsive nature of the actual

potential of the system. If we consider how this potential would look for a system of identical

nuclei, we obtain a potential of the form,

Vj(Q) =
2π~2

m
bj (2.13)

by plugging this potential into Eq. 2.11, converting the delta function to an integral, summing over

λ’, and averaging over λ we arrive at the basic expression for the differential cross section for

neutron scattering off a system of identical nuclei,

(

d2σ

dΩdE ′

)

λ→λ′

=
k′

k

1

2π~

∑

jj′

bjbj′

∫

∞

−∞

〈exp{−iQ · Rj(0)}exp{−iQ · Rj(t)}〉 × exp(−iωt) dt

(2.14)

where bj is the scattering length of the jth atom, Q is the scattering vector (i.e. k - k’, shown in

Fig. 2.5), and Rj(t) is the position vector of the jth nucleus. If we then consider the scattering as

being from an ensemble of nuclei where the scattering length varies - due to isotope and/or nuclear

spin - and there is no correlation between scattering lengths we can rewrite the bjbj′ term as an

average over all the scattering lengths: bjbj′ . For values in the sum where j 6= j′ this average is

equal to (b)2 and for values where j = j′ this average is equal to b2. This allows the differential
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Q

Figure 2.5: Diagram showing how the scattering vector Q relates to the neutron’s incoming (k) and outgoing
(k’) momentum. The red cube indicates the sample position.

cross section to be split into two different terms, one where the sum is over j and j′ and one where

the sum is just over j. The former depends on the correlation between the position of the same

nucleus at different times and the correlation between the positions of different nuclei at different

times, generally referred to as the coherent cross section due to this term being responsible for in-

terference effects. The latter depends only on the correlation between the same nucleus at different

times, generally referred to as the incoherent cross section. Some examples of coherent scatter-

ing processes are magnons, phonons, and diffraction. Some examples of incoherent scattering

processes are atomic diffusion or crystal field excitations, essentially any single particle process.

With a basic understanding of neutrons scattering off nuclei, we now concern ourselves with

how the neutron interacts with unpaired electrons in a system, i.e. magnetic neutron scattering. In

comparison to nuclear neutron scattering, magnetic neutron scattering is interesting as the interac-

tion potential is known to be,

V(r) = −γµN2µBσ ·
[

∇×
(

s × R̂

R2

)

+
1

~

p × R̂

R2

]

(2.15)

where γ is the neutron gyromagnetic ratio, µN is the nuclear magneton, µB is the Bohr magneton,

σ is the Paul spin operator, s is the spin angular momentum operator of the electron, R is the

distance from the electron to the neutron, and p is the momentum of the electron. The first term

in this equation is due to the spin of the electron - i.e. the magnetic field of the electron at the
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position of the neutron - and the second term is due to the orbital motion of the electron. In order

to calculate the double differential cross section (Eq. 2.11) for magnetic scattering, this potential

must be used to evaluate the matrix elements of 〈k′λ′|V |kλ〉. The evaluation of these elements

consists of utilizing box normalization again, assuming the neutron is a plane wave, and Fourier

transforming to reciprocal space. In the case of my work, we have only utilized unpolarized neutron

scattering so I will be quoting the differential cross section with the sum over the final polarization

(σ’) and wavelength (λ’) and the average over the intial polarization (σ) and wavelength (λ) states

already performed, similar to what was needed to get to Eq. 2.11. Thus, the double differential

cross section for magnetic neutron scattering is,

d2σ

dΩdE ′
= r20

k′

k
|g
2
F (Q)|2

∑

αβ

(δαβ − Q̂αQ̂β)×
1

2π~

∫

dt eiωt
1

N

∑

RR’

〈Sα
R(t)S

β
R’(0)〉 e−iQ·(R−R’)

(2.16)

where α and β refers to the Cartesian coordinates x, y, z, g is the g-factor for the spin being

measured, r0 is the classical radius of the electron, F (Q) is the magnetic form factor for the

magnetic species being probed, Q̂α,β is the x, y, z components of Q, and 〈Sα
R(t)S

β
R’(0)〉is the

spin-spin correlation function, which will be elaborated on shortly. There are two important notes

regarding this equation: 1) The term within the integral and the sum corresponds to the Fourier

transform of the spin-spin correlation function. 2) The scattering is directionally dependent, as the

neutron only probes the components of the magnetization perpendicular to the momentum transfer

(Q). These properties allow for the determination of complex magnetic structures in single crystal

materials (along with "normal" magnetic structures).

This naturally leads to the discussion of correlation functions. The power of correlation func-

tions in neutron scattering come from the difficulty in precisely knowing the interaction potential.

If we return to Eq. 2.14, but focus purely on the coherent part we can introduce the intermediate

scattering function,
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I(Q, t) =
1

N

∑

jj′

〈exp{−iQ · Rj′(0)}exp{iQ · Rj(t)}〉 (2.17)

where N is the number of nuclei in the scattering systems. From this definition we can then

introduce the time-dependent pair correlation function,

G(r, t) =
1

(2π)3

∫

I(Q, t)exp(−iQ · r)dQ (2.18)

While this equation may seem ambiguous, it is quite powerful. A pair correlation function de-

scribes how two nuclei are correlated in space and time. This is something that is conceptually

tractable and in many cases, this can be calculated to compare with experiment. In addition, we

can introduce the scattering function, often known as the dynamic structure factor,

S(Q, ω) =
1

2π~

∫

I(Q, t)exp(−iωt)dt (2.19)

which is simply the Fourier transform of G(r, t) in space and time. The variables of S(Q, ω) relate

to what is measured in actual neutron scattering experiments much better, as neutron scatterers

generally work in momentum space and energy (or frequency ω) space, rather than position and

time. In the case that one cannot derive an exact expression for these functions, the analytic

properties of these functions need to be known. There are numerous analytic properties that I will

not discuss, but perhaps the most important one for a neutron scatterer to know is,

S(Q, ω) = exp(~ωβ)S(−Q,−ω) (2.20)

where β is the thermodynamic β = 1
kBT

. This is called the principle of detailed balance and relates

the signal from the positive energy transfer (where the neutron gives energy to the scattering sys-

tem) to the negative energy transfer (where the neutron takes energy from the scattering system).

In practice this allows for the determination of the temperature of the system (or possibly subsys-

tem) to compare with measurements by a thermocouple placed near the sample. This also puts a

constraint on analytic expressions for the correlation function. Correlation functions are incredibly
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useful for modeling magnetic structures, spin waves, and understanding novel magnetic states -

such as the elusive quantum spin liquid - due to the neutron directly probing the magnetization

density of the system.

In summary, neutron scattering theory is incredibly deep set of calculations, of which I have

only given the major points. The major points to remember from this are: (i) Most of neutron scat-

tering lies within the Born approximation/Fermi’s Golden rule. This makes the theory of neutron

scattering approachable to the average physicist. (ii) Scattering processes can be separated into

two different kinds: coherent and incoherent. These two different processes have different cross

sections and therefore can allow for analyzing the properties of a specific element in a system

(such as hydrogen which has a large incoherent cross section). It is also important to keep these

cross sections in mind when planning an experiment, as some isotopes have large incoherent cross

sections that will mask the coherent signals one may be looking for. (iii) It is difficult to know

the precise potential and/or Hamiltonian of the scattering system, so the concept of correlation

functions is quite powerful, as it is often easier to understand how particles are correlated instead

of knowing every eigenstate and the probability of transition between them.

Neutron Scattering Experiment

Now that we have developed a basic understanding of the theory behind neutron scattering,

we concern ourselves with experimental aspects of neutron scattering. In neutron scattering, data

can generally be thought of as four-dimensional; where one dimension is energy transfer and the

other three are the components of the scattering vector, Q. Note, the basis for Q is (generally)

related to the reciprocal axes of the crystal system and therefore need not be an orthogonal basis 9.

One of the simplest, and still useful, neutron experiments one could perform is one in which a

monochromatic neutron beam is scattered from a powder sample and the neutron’s final energy

is not analyzed. This limits the dimensions of the dataset to just the magnitude of the scattering

vector (|Q|). Though this is an energy-integrated measurement (e.g. the final neutron energy is not

9This is the case for all the systems I have presented in this work.
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a) b)

Figure 2.6: a) Diagram of the HB-2A powder diffractometer at Oak Ridge National Laboratory. b) Powder
diffraction pattern for Al2O3 measured on HB-2A. Both panels were obtained from reference [31].

selected for) the measurements are generally thought of as elastic, as elastic scattering is generally

orders of magnitude more intense than the inelastic scattering. This is exactly the method used

in powder diffractometers for solving the simple magnetic structures and nuclear structures of

powdered materials.

A diagram for a typical powder diffractometer (HB-2A at Oak Ridge National Laboratory) is

shown in Fig. 2.6a. Following the beam from the reactor, the beam first encounters a fast-neutron

filter. In this instrument the fast-neutron filter is made of a liquid nitrogen cooled sapphire filter.

This filter works by having a very low scattering cross section for thermal neutrons (< 0.1 eV) and

a very high cross section for neutrons of higher energies. This allows for the thermal neutrons to go

through the sapphire filter with a small chance of interacting, whereas, high energy neutrons will

likely interact with the sapphire filter and be scattered randomly out of the beam. The neutron beam

then encounters a collimator (labeled α1) whose purpose is to limit the divergence of the beam.

Limiting the beam divergence is important as this directly translates to the resolution in momentum

(|Q|) space. These collimators are generally Söller collimators which consist of parallel blades

often made of Cd or Gd painted mylar with a carefully measured separation between the blades

that determines the angular divergence the exiting neutron beam can have 10. The neutron beam

10Cd or Gd are used because they are incredibly strong neutron absorbers.

24



then encounters a monochromator crystal, often made of single crystals of silicon, germanium, or

pyrolytic graphite. These crystals are cut very precisely along a particular lattice direction and

placed in the neutron beam. Since the crystal has been carefully aligned, only one crystallographic

reflection will redirect the neutrons to the sample, so only one wavelength is reflected towards

the sample as described by Bragg’s law. In the case of HB-2A, the beam goes through another

collimator to further improve resolution before impinging upon the sample. Most neutrons will

not interact with the sample, but those that do can be scattered off the crystallographic and/or

magnetic planes and into one of the detectors of the instrument. A bank of detectors made of 3He

gas-filled tubes is used for fast data acquisition and the whole set of detectors is moved through the

necessary angular range. An experiment on this instrument gives a data set like the one shown in

Fig. 2.6b. The pattern shown is for Al2O3 and shows very sharp peaks corresponding to the Bragg

reflections of the system. This pattern can then be used to solve the structure of the system via

Rietveld refinement. If the system is magnetic, two patterns must be taken to accurately solve the

magnetic structure, one above the ordering temperature and one below the ordering temperature.

This will allow for the isolation of the magnetic scattering and then a Rietveld refinement of the

symmetry allowed magnetic structures can be performed. In the case that one needs to measure the

diffraction off a single crystal, the same instrument could be used when combined with a rotating

sample stage. This allows for the rotation of the sample to find different Bragg peaks within the

angular range of the instrument. In practice, powder diffractometers are not generally used for

this as the bank of detectors is no longer as useful. For this reason, a triple axis spectrometer or a

special made diffractometer are used for measurements of elastic scattering from single crystals.

Adding the dimension of energy to our desired experimental variables adds significant com-

plexity to neutron scattering measurements. If we do not select for energy, then we only must

concern ourselves with putting detectors where neutrons are scattered to. In the case that we want

to know the energy that the neutrons transmitted/received from our scattering system we must de-

termine a way to select for a single energy of the neutron before detecting it. There are generally

two ways to select for final energy: the analyzer crystal method and time-of-flight method. The
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analyzer crystal method is essentially the same as how the monochromator works for selecting the

incident energy, however, the analyzer crystal can easily be adjusted to different angles to allow for

different energy transfers. These types of analyzers are generally used on triple-axis spectrometers.

The other method for selecting final energy is via the time-of-flight method. In the time-of-flight

method a set of choppers (rotating, neutron absorbing discs with a slot cut into them) are put in

the path of the beam. These choppers are then rotated at a frequency that only neutrons of a single

energy can make it through all the slits and make it to the sample. This essentially does the same

thing as the monochromator crystal but can also be used to pulsate the beam for a steady-state re-

actor source, allowing reactor sources to leverage the benefits of time of flight neutron techniques

that spallation sources often utilize. In order to get the final energy, a low efficiency monitor is put

in the path of the beam to monitor measure "t0" (the time at which we start our theoretical stop

watch) and then we simply time stamp events when the detector detects a neutron. If pulses do not

overlap - known as frame overlap - we then know how long it took the neutrons to make it from

the monitor to the detector. As we know the neutron’s energy from the monitor to our sample, we

know how long they take to reach the sample. This allows us to deduce the time it takes for the

neutron to travel from our sample to the detector and since we know the distance from the sample

to the detector, we can get the neutron’s speed. This speed is related to the energy of the neutron

and thus we can know the energy of the neutron after it interacted with our sample.

A diagram of the Cold Neutron Chopper Spectrometer (CNCS) is shown in Fig. 2.7a and I

will go through the purpose of all the parts shown, as it is useful to understand the instrumentation

when analyzing the data. Starting from the bottom left of Fig. 2.7a, the neutron encounters a

curved neutron guide on its way to the sample. This curved neutron guide is used to reduce the

amount of high-energy and thermal neutrons that make it to the sample (this instrument utilizes

cold neutrons). This guide is coated in a neutron "supermirror" material which keeps the neutrons

traveling towards the sample. The first chopper that the neutron encounters in this guide is the

Fermi chopper. The Fermi chopper consists of many curved blades and spins with its angular

momentum perpendicular to the beam. The purpose of this chopper is to shape the neutron beam
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a) b)

Figure 2.7: a) Diagram of the Cold Neutron Chopper Spectrometer at Oak Ridge National Laboratory
(Figure from reference [32]). b) A typical inelastic neutron scattering spectra measured on CNCS. The
color corresponds to the number of neutrons counted with blue being no neutrons and yellow being a lot of
neutrons. The x-axis is in reciprocal lattice units corresponding to the system measured, Yb2Si2O7 this can
be thought of as momentum transfer along a certain lattice direction. The y-axis corresponds to the energy
the neutron lost to the scattering system. Data reproduced from [7].

pulse, essentially shortening the pulse from the spallation source, as the length of the initial pulse

is generally too long for most of the desired applications. The neutron then encounters two 60

Hz bandwidth choppers. These choppers are responsible for preventing the aforementioned frame

overlap. The neutron then encounters a double-disk chopper which determines the average neutron

energy and resolution bandwidth by the relative phase between the openings in the chopper and the

size of the openings, respectively. The neutron then encounters the sample and, in the case that it

interacts with the sample it is (possibly) scattered off towards the semi-circular array of detectors.

The detectors are tubes of 3He with position discrimination, which allows for an approximate +/-

16◦ out of plane coverage and a coverage of -50◦ to 135◦ in the scattering plane. This instrument

generates a massive amount of data (∼terabytes) through the course of an experiment that later

must be analyzed. When the four-dimensional data set is reduced and formatted it is generally

displayed in slices (2D) and cuts (1D), an example of the former is shown in Fig. 2.7b. This data

shows a triplon excitation from the quantum dimer magnet system, Yb2Si2O7. A similar signal

would be expected for a magnon from a simple antiferromagnetic system. Numerous spectra

similar to this will be shown later in this work, so it is useful to provide some tips for looking at the
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data: (i) The plain blue sections of data around the edges can be ignored, as that is simply where

no detectors exist to measure neutrons. (ii) The yellow (high intensity) signature at 0 meV is the

elastic scattering. It is very high intensity due to the much higher cross section for elastic scattering

compared to inelastic scattering. The elastic scattering measured on a spectrometer like this can

be important, but for plots like this can be ignored. (iii) The important features are generally the

bright excitations at finite energy (although the excitations can reach zero energy depending upon

the nature of the excitation), how the dispersion changes with momentum transfer, and how these

excitations evolve with temperature, field, etc. Overall, neutron scattering has proven to be integral

to this work - showing up in the three papers presented in Chapters 3-5 - and will continue to be

useful for tackling the most cutting-edge problems in condensed matter physics.

2.2.2 Heat Capacity

Measurements of a sample’s heat capacity is a one of the best methods for analyzing the phase

transitions predicted by Landau’s theory of phase transitions, likely due to the relative simplicity of

heat capacity and its measurement. Landau’s theory of phase transitions is powerful for analyzing

phase transitions as it starts with two simple conditions: (1) The free energy is an analytic function

of an order parameter, ν. An order parameter is zero in the disordered state and one in the ordered

state, in a ferromagnetic system this would be the magnetization. (2) The free energy obeys the

symmetry of the Hamiltonian. From these assumptions, one can expand the free energy through a

Taylor expansion in terms of the order parameter. The order parameter is a measure of the order

of the system, so it is zero in the disordered phase and non-zero in the ordered phase. In the

case of magnetism, this could be the total magnetization of a ferromagnetic system as the system

is cooled, as the magnetization is zero in the paramagnet phase and non-zero in the ordered state.

While this analysis may sound simple, it is incredibly powerful in analyzing first- and second-order

phase transitions, particularly through the concept of universality. Universality is the phenomena

of - seemingly disparate - systems obeying the same critical scaling laws in the vicinity of a phase

transition. This phenomenon arises due to the properties of a system in the vicinity of a phase
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transition only relying upon a few physical observables, such as the symmetry and dimensionality

of the system. This concept of universality is prevalent throughout this work, as this concept of

universality is vital to the BEC physics discussed both in Chapter 2.1.2 and Chapter 3.

Mathematically, heat capacity (at constant pressure) is defined by,

CP =

(

dQ

dT

)

P

= −T
(

∂2F

∂T 2

)

P

(2.21)

where dQ is an infinitesimal heat change, dT is an infinitesimal temperature change, F is the

Helmholtz free energy of the system, and Cp is the constant pressure heat capacity. To measure

this heat capacity, a sample is loaded onto a sensitive calorimeter that is weakly thermally coupled

to a thermal bath. A heat pulse of a defined power - generally small enough to remain in the

quasi-adiabatic regime - is then applied to the sample and the sample’s temperature is measured

as a function of time, as shown in Fig. 2.8a. The heat pulse is a step function, where a constant

power is supplied to the heater until the sample reaches the desired temperature rise (often 2% of

the sample’s starting temperature) and the heater is then turned off, allowing the sample to return

to thermal equilibrium with the bath. In the case of the Quantum Design Heat Capacity option

used in this work [33], this temperature curve can then be fit by solving the differential equation 11,

Ctotal
dT

dt
= −Kw(T − Tb) + P (t) (2.22)

where Ctotal is the heat capacity of the sample platform and the sample, Kw is the thermal conduc-

tance of the wires connecting the platform to the thermal bath, Tb is the temperature of the thermal

bath, P (t) is the power supplied by the heater to the sample. The heat capacity of the sample can

then be extracted by subtracting a background measurement (also known as an addenda measure-

ment) of the platform and thermal grease used to hold the sample. The heat pulses are generally

performed at numerous starting temperatures in order to measure the heat capacity as a function

of temperature, as shown in Fig. 2.8b. It is possible for the fit to deviate significantly from the

11In the case that a sample’s thermal coupling to the stage is weak, a different expression using two time constants
can be used.
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Figure 2.8: a) Characteristic heating and cooling curve for a measurement of the specific heat. The data
measured after the heating is fit to extract the specific heat. b) Specific heat data showing a lambda-like peak
at 1.9 K due to a magnetic ordering transition in the compound measured, D-Er2Si2O7. Data reproduced
from [34].

data, typically due to inadequate thermal conductivity between the sample platform and the sam-

ple. This is something that (generally) only happens at the lowest temperatures (> 100 mK) and

will be addressed more in regards to specific heat data presented in Chapter 3. As can be seen from

Fig. 2.8, the critical temperature for the magnetic ordering of the system can be measured. Addi-

tionally, if enough points are garnered in the vicinity of the critical temperature, the system can be

fit to a critical exponent of the form |T − Tc|β . The critical exponent, β, can then be compared

to other systems or theoretical predictions to better understand the nature of the phase transition.

This process is relatively straightforward and accessible, demonstrating the incredible power of

heat capacity measurements.

In this work, only systems utilizing rare-earth ions were studied. Due to the highly localized

nature of the 4f electrons, the exchange interactions are relatively small, often leading to transi-

tions at very low temperatures (< 1.8 K) that traditional evaporative He cooling cannot access. To

reach these ultracold temperatures, dilution cooling is utilized as it can reach temperatures down

to roughly 0.07 K. Dilution cooling primarily works on the concept of the enthalpy of mixing.

When a mixture of 3He and 4He is cooled to temperatures below approximately 0.9 K, phase sep-

aration occurs between a pure 3He phase and a phase with 6.6% 3He and 93.4% 4He. The former

is referred to as the concentrated phase and the latter is referred to as the dilute phase. In order to
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a) b) c)

Figure 2.9: a) Diagramattic view of the Quantum Design PPMS Dilution Refrigerator insert showing the
turbo pump, the still, the heat exchanger, and the mixing chamber. Diagram from [35]. b) Actual layout
of the end of the dilution refrigerator, where the mixing and cooling takes place. The sample would be
mounted at the stage at the bottom and cooled by the connection to the mixing chamber. Image from [35].
c) Scandalous photo of Gavin loading the dilution refrigerator probe at Colorado State University.

cool, 3He needs to be removed from the dilute phase so the endothermic process of 3He crossing

from the concentrated phase to the dilute phase can occur. This is generally done by connecting

a pumping tube from a still to the bottom of the mixing chamber (where the denser dilute phase

resides). Osmotic pressure drives the 3He atoms up the pumping tube into the still, which is kept at

low pressure by use of a turbo pump and at a temperature of 0.7 K by a heater. This low pressure

and temperature causes the 3He to evaporate in the still, removing it from the dilute phase. The 3He

is then recondensed and put back into the concentrated phase of the mixing chamber, thus com-

pleting the cooling cycle. This method, as implemented by the Quantum Design PPMS Dilution

Refrigerator insert is shown in Fig. 2.9.

2.2.3 Magnetometry

Magnetometry is an essential tool in the condensed matter physicist’s toolbox. Magnetometry

is used to measure the magnetic moment of a sample, generally measuring the moment with respect

to a varied parameter, like temperature or magnetic field. In this work, a magnetometer with
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Figure 2.10: a) A diagram of basic parts of a SQUID magnetometer. Figure is from reference [36]. b)
Diagram of a SQUID, showing the two Josephson junctions in parallel in a superconducting loop. Image
credit: Miraceti - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13302041

a Superconducting Quantum Interference Device (SQUID) was used. A SQUID magnetometer

works by moving a sample through a set of detection coils that are inductively coupled to two

Josephson junctions in parallel with one another 12. When the sample is moved through the coil,

a change in magnetic flux occurs in the coil and generates a current via Lenz’s law. This current

is then inductively transferred to the one of the Josephson junctions. This causes a change in

flux in the Josephson junction and the Josephson junction then generates a current to maintain

integer flux throughout the loop. The change in flux is incredibly sensitive to the magnetic field,

allowing for measurement of magnetic moments on the order of 10−7 emu. A diagram of a SQUID

magnetometer and the SQUID itself is shown in Fig. 2.10.

In this work, primarily direct current (DC) magnetometry measurements were utilized. Two

different types of measurements were performed using DC magnetometry: magnetization and sus-

ceptibility measurements. The magnetization measurements measure the moment of the sample at

various magnetic field strengths. This measurement allows for the identification of field-induced

phase transitions and the saturated moment of the sample at high field. As primarily rare-earth sys-

tems were measured in this work, high field data must be considered carefully due to the possibility

12A Josephson junction is a device made up of two or more superconductors with a weak link between them, the
link is typically made of an insulator or non-superconducting metal. These superconducting loops must have integer
values of flux enclosed by the loop and therefore will create a current to increase/decrease the flux to maintain an
integer value.
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of populating higher crystal field levels at high magnetic field strengths. Susceptibility measure-

ments are like magnetization measurements, but instead of varying magnetic field, the temperature

is varied. Susceptibility data is analyzed as the ratio of the magnetization to the magnetic field

strength, as it is a measure of how the material will become magnetized in an applied magnetic

field. Susceptibility measurements are generally only performed at very low field strengths due to

susceptibility only being defined in the limit of zero magnetic field, mathematically represented as,

χ =
∂M

∂H

∣

∣

∣

∣

H=0

(2.23)

where χ is the susceptibility, M is the magnetization of the sample, and H is the magnetic field.

Susceptibility measurements are generally used to search for and characterize magnetic phase tran-

sitions. While specific heat measurements could determine the critical temperature of these phase

transitions, specific heat measurements are not ideal for determining if a transition is magnetic and

specific heat cannot determine if the transition is antiferromagnetic, ferromagnetic, etc. Addition-

ally, information such as the magnetic moment per site or the strength of the magnetic interactions

via Curie-Weiss fits can be extracted. This makes susceptibility and magnetization measurements

excellent compliments to specific heat measurements and enable quick characterization of new

magnetic materials. The susceptibility, magnetization, and specific heat measurements are vital for

the neutron scattering experiments performed, as these measurements are often used to determine

the experimental parameters and justification for a neutron scattering experiment.
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Chapter 3

A Novel Strongly Spin-Orbit Coupled Quantum

Dimer Magnet: Yb2Si2O7

3.1 Context

This chapter consists of the paper A Novel Strongly Spin-Orbit Coupled Quantum Dimer Mag-

net: Yb2Si2O7 which was published in Physical Review Letters in 2019* [7]. The supplemental in-

formation for the paper and an unpublished erratum are shown in Appendix A and Appendix A.11,

respectively. Additional data that has not appeared in press is shown in Section A.12. This work

utilized elastic and inelastic neutron scattering, heat capacity, magnetometry, and ultrasound ve-

locity measurements to determine that Yb2Si2O7 has a quantum dimer magnet ground state with

field-induced features reminiscent of those observed in traditional 3d transition metal BEC sys-

tems. In the erratum, I outline an issue our research group recently discovered that affects the heat

capacity data presented in the paper. This erratum does not affect the fundamental conclusions of

the paper and will be published when new data is available. Overall, the possible field induced

BEC state in Yb2Si2O7 opens many avenues for studying the effects of inherent anisotropy on well

understood bosonic theories and serves as a centerpiece of this dissertation.

3.1.1 Contributions

H. S. Nair, T. Reeder, G. Sala, and K. A. Ross performed the inelastic neutron scattering mea-

surements. G. Hester and K. A. Ross performed the subsequent analysis of the inelastic neutron

scattering. G. Hester, D. R. Yahne, A. A. Aczel, and K. A. Ross performed and analyzed the elas-

tic neutron scattering measurements. J. A. Quilliam, D. Ziat, L. Berges performed the ultrasound

velocity and zero-field heat capacity measurements. Heat capacity measurements in a magnetic

*© 2019 American Physical Society
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field were primarily performed by G. Hester with assistance from D. R. Yahne, H. S. Nair, and K.

A. Ross. The synthesis of Yb2Si2O7 was primarily performed by H. S. Nair, T. Reeder, G. Hester,

T. N. DeLazzer, J. R. Neilson, and K. A. Ross. The first draft of the paper was written by G. Hester

and detailed editing was performed by G. Hester, J. A. Quilliam, and K. A. Ross.

3.2 Research Article

3.2.1 Overview

The quantum dimer magnet (QDM) is the canonical example of quantum magnetism. The

QDM state consists of entangled nearest-neighbor spin dimers and often exhibits a field-induced

triplon Bose-Einstein condensate (BEC) phase. We report on a new QDM in the strongly spin-orbit

coupled, distorted honeycomb-lattice material Yb2Si2O7. Our single crystal neutron scattering,

specific heat, and ultrasound velocity measurements reveal a gapped singlet ground state at zero

field with sharp, dispersive excitations. We find a field-induced magnetically ordered phase rem-

iniscent of a BEC phase, with exceptionally low critical fields of Hc1 ∼ 0.4 T and Hc2 ∼ 1.4 T.

Using inelastic neutron scattering in an applied magnetic field we observe a Goldstone mode (gap-

less to within δE = 0.037 meV) that persists throughout the entire field-induced magnetically

ordered phase, suggestive of the spontaneous breaking of U(1) symmetry expected for a triplon

BEC. However, in contrast to other well-known cases of this phase, the high-field (µ0H ≥ 1.2T)

part of the phase diagram in Yb2Si2O7 is interrupted by an unusual regime signaled by a change in

the field dependence of the ultrasound velocity and magnetization, as well as the disappearance of

a sharp anomaly in the specific heat. These measurements raise the question of how anisotropy in

strongly spin-orbit coupled materials modifies the field induced phases of QDMs.

3.2.2 Introduction

Quantum dimer magnets (QDMs) represent the simplest cases of quantum magnetism, where

entanglement is a required ingredient for even a qualitative understanding of the phase. In a QDM,

entangled pairs of spins form Stot = 0 dimers and result in a non-magnetic ground state. The
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excited states of these entangled spins can be treated as bosons, called triplons, which can undergo

Bose-Einstein condensation (BEC) as their density is tuned by an applied magnetic field. This BEC

state is a magnetic field-induced long range ordered phase, which occupies a symmetric “dome” in

the field vs. temperature phase diagram with two temperature-dependent critical fields,Hc1(T ) and

Hc2(T ). The vast majority of the previously studied QDMs are based on 3d transition metal ions

with “bare” (spin-only) S = 1/2 or S = 1 angular momentum, resulting in simple Heisenberg or

XXZ spin interaction Hamiltonians, and high critical fields set by the relatively high energy scale

of exchange interactions [19, 37, 38, 39, 40, 41].

Lanthanide-based magnetic materials with spin-orbit coupled pseudo-spin 1/2 (Seff = 1/2) an-

gular momenta can also exhibit quantum phases, and these are often directly analogous to their

traditional 3d transition metal ion counterparts. However, entirely new phases are possible due to

the anisotropic exchange in these materials [15, 16, 42, 43, 44, 45]. In the lanthanide series, Yb3+

has been of particular interest as it can generically host interactions leading to quantum fluctuations

irrespective of the Crystal Electric Field (CEF) ground state doublet composition [8]. Indeed, var-

ious quantum phases have been discovered in Yb-based systems [9, 46, 47, 48, 49, 50]. Recently,

a random valence bond state in YbMgGaO4 was proposed [51]. However, a notable absence in

the growing lineup of Yb quantum materials is a material exhibiting a QDM with a field induced

BEC state. The opportunity to study such a material could lead to the observation of new phases

describable by theories of interacting bosons, as well as new types of quantum phase transitions.

As a previously studied example, the metallic material YbAl3C3 was shown to host Yb dimer-

ization and triplet excitations [52, 53]. However, an unusual field-induced ordered state was ob-

served whose onset temperature far exceeds the spin gap energy [54], suggesting that it is not

directly related to the singlet-triplet excitation (unlike a field-induced BEC phase). Additionally,

YbAl3C3 shows field-induced disordered regimes that have yet to be fully understood, particularly

in the context of the additional Kondo and RKKY interactions involving the conduction electrons

in this material [55, 56, 57]. This material demonstrates that quantum dimerization is possible

in lanthanide-based magnetic materials but does not always lead to a field-induced BEC phase.

36



c

a

c

a

a)

4.703Å

b)

0.635 cm

c)

b

aa

b

3.548Å

3.428Å
Jintra

Jinter

Yb

Si

O

Figure 3.1: a) Crystal structure of Yb2Si2O7 viewed along the c-axis, where Yb atoms are light green and
form a distorted honeycomb lattice, Si atoms are blue, and O atoms are red [58]. Intradimer and interdimer
bond lengths are shown (3% anisotropy), and Jintra and Jinter exchange tensors are labeled. The blue ovals
indicate the probable location of the dimers. b) Crystal structure viewed along the b-axis, showing the
separation of the layers of Yb honeycombs. c) Characteristic crystals obtained from breaking the crystal
boule. The crystals are clear and colorless.

Naively, one might not expect a highly spin-orbit coupled material to exhibit BEC, which requires

the exchange Hamiltonian to be at least U(1) symmetric (i.e., XXZ type interactions). Although

recent work has demonstrated that for ideal, edge-sharing octahedral environments, Heisenberg

exchange is indeed expected to dominate in Yb materials [8], such high exchange symmetry is not

a priori expected for non-ideal local environments. However, a recent example of high exchange

symmetry for Yb3+ in a non-ideal crystal field environment has been discovered in the Tomonaga-

Luttinger liquid YbAlO3 [9], suggesting that it may be more common than expected. Yet even with

dominant Heisenberg interactions, smaller anisotropic terms should still be relevant which, in the

case of a QDM, would be expected to modify the field-induced phases. Furthermore, Yb-based

QDMs should provide a convenient testing ground for field-induced BEC physics due to reduced

exchange energy compared to materials based on 3d transition metals. This leads to lower critical

fields, which can be accessed by continuous field magnets, thus enabling experimental techniques

such as inelastic neutron scattering (INS) to be brought to bear on the full phase diagram. This is

the case for Yb2Si2O7, as we show here.
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3.2.3 Experimental Methods

Yb2Si2O7 (monoclinic space group C2/m, room temperature lattice parameters of

a = 6.7714(9) Å, b = 8.8394(2) Å, c =4.6896(5) Å, β = 101.984(9)◦ [59]) was previously studied

in the context of polymorphism in the RE2Si2O7 (rare earth pyrosilicate) series [17, 18], but its

magnetic properties have not been reported. Yb2Si2O7 has only one reported polymorph, known

as the C-type pyrosilicate (Fig. 3.1). The single crystal samples of Yb2Si2O7 used in this study

were grown via the optical floating zone method [34, 59]. Our growths have resulted in clear,

colorless multi-crystal boules which are then broken into smaller single crystal pieces as shown in

Fig. 3.1c.

Magnetization was measured using a MPMS XL Quantum Design SQUID magnetometer at

T = 1.8 K along the a∗, b, and c directions. Field and temperature-dependent specific heat was

measured down to 50 mK using the quasi-adiabatic heat pulse method in a Quantum Design Dyna-

cool PPMS with a dilution refrigerator insert at Colorado State University, as well as a home-built

dilution refrigerator at Université de Sherbrooke. Lu2Si2O7 was also measured as a non-magnetic

analog. Ultrasound velocity experiments were performed down to 50 mK using a pulsed, time-

of-flight interferometer. 30 MHz transducers were glued to parallel surfaces to propagate longitu-

dinally polarized sound waves along the c∗-axis. The absolute velocity of the quasi-longitudinal

mode studied here was approximately 3000 m/s and relative changes in velocity (∆v/v) were mea-

sured with high precision using a phase-lock loop. Powder neutron diffraction data was collected

on BT1 at the NIST Center for Neutron Research with incident wavelength λ = 2.0787 Å and 60

arcminute collimation. Synchrotron x-ray diffraction (SXRD) data were recorded at T = 295 K

at beamline 11 BM (λ = 0.41418 Å) at the Advanced Photon Source, Argonne National Labora-

tory. Time-of-flight INS experiments were performed at the Cold Neutron Chopper Spectrometer

(CNCS) at the Spallation Neutron Source, Oak Ridge National Laboratory (ORNL). These INS

data were collected using Ei = 1.55 meV neutrons in the “high flux” chopper setting mode, pro-

ducing an energy resolution of δE = 0.037 meV at the elastic line [32], and were analyzed using the

DAVE software package [60]. A neutron diffraction measurement using Ei = 14.7 meV neutrons
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Figure 3.2: a) Zero-field specific heat and fit to a dispersive 4-level Schottky anomaly, using Heisenberg
exchange for inter- and intra-dimer interactions (Jintra = 0.236(4) meV, Jinter = 0.06(2) meV). b) Specific heat
of Yb2Si2O7 at increasing fields with H||c. A sharp anomaly is visible at 0.5 T (>Hc1), which corresponds
to a field-induced magnetically ordered state. The transition temperature maps out a dome as a function of
field, but the sharp anomaly is replaced by a broad anomaly above ∼ 1.2 T (Hm), which moves to lower
temperatures with increasing field. Above Hc2(1.4 T), the broad anomaly shifts to higher temperatures with
increasing field, consistent with field polarized paramagnetism.

was performed using the Fixed-Incident Energy Triple-Axis Spectrometer (FIE-TAX) on the HB-

1A beamline at the High Flux Isotope Reactor at Oak Ridge National Laboratory, using collimator

settings of 40’ - 40’ - 40’ - 80’.

Rietveld analysis of the SXRD data [59] confirms the previously reported crystal structure.

Analysis of the zero field, high-temperature, magnetic specific heat of Yb2Si2O7 confirms that a

low energy Seff=1/2 picture applies at temperatures well below ∼ 100 K [59]. The saturation mag-

netization at T = 1.8 K along three crystal directions gives the approximate g-values of ga∗ = 3.2,

gb = 2.0, and gc = 4.8.

3.2.4 Results

The zero-field specific heat shown in Fig. 3.2a displays a broad feature peaked at ∼ 1 K, which

can be fit to a dispersive four level Schottky anomaly form, consistent with an interacting spin

dimer ground state. We used an approximation of an interacting triplon model to fit the zero-

field specific heat [59], enforcing Heisenberg interactions. The fit yielded the parameters Jintra =

0.236(4) meV and Jinter = 0.06(2) meV. These parameters are similar to those extracted from fit-
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a) b) c)

Figure 3.3: a) Ultrasound velocity with longitudinally polarized sound waves along the c∗-axis. b) H vs. T
phase diagram for Yb2Si2O7 with the points on the phase boundary determined by ultrasound velocity (pink
circles and blue crosses) and specific heat (yellow squares). The field was applied along the c-axis (specific
heat) and c∗-axis (ultrasound). c) Evolution of the (2,0,0) magnetic Bragg peak intensity (blue) versus field,
I(H), which is proportional to the square of the net magnetization. Additionally the derivative of the (2,0,0)
magnetic Bragg peak intensity (square symbols) and the inverse of the ultrasound velocity data (solid line)
are overlaid, showing agreement between these two measurements.

ting the field polarized spin wave spectrum; Jintra = 0.217(3) meV and Jinter = 0.089(1) meV [59].

The adequacy of Heisenberg interactions for reproducing both the zero field Cp and field-polarized

INS data measurements suggests that Yb2Si2O7 is another case in which Yb3+ interactions are

unexpectedly predominantly isotropic. The entropy change through this low temperature Schottky

anomaly (0.05 to 2 K), reaches the expected Rln2 per Yb [59], indicating that Yb2Si2O7 does not

undergo a magnetic ordering transition at lower temperatures, and thus remains quantum disor-

dered down to T = 0 K. This is further confirmed by the lack of magnetic Bragg peaks at 50 mK,

as determined by both single crystal (Fig. 3.3c) and powder neutron diffraction measurements [59].

The field-dependence (H||c) of the specific heat is shown in Fig. 3.2b. At H = 0.5 T, a sharp

anomaly appears at T = 0.13 K, which we have confirmed by neutron scattering to coincide

with a transition to long range magnetic order via the appearance of magnetic Bragg peaks. With

increasing field, the transition temperature maps out a “dome” in the H vs. T phase diagram as

expected for a BEC phase. As the field is increased further (0.8T), a broad feature emerges, which

eventually becomes the dominant feature above Hm = 1.2 T. The maximum of this broad feature

then continues to trace out the high field region of the dome, with the temperature of the maximum
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decreasing with increasing field. At 1.6 T, the maximum of the broad feature is again increasing in

temperature with increasing field as expected for a field-polarized paramagnetic regime.

Isothermal field scans of variations in sound velocity are shown in Fig. 3.3a for various temper-

atures. At the lowest temperatures (T = 50 mK) the sound velocity is largely field independent

until Hc1 ≃ 0.4 T, where ∆v/v begins decreasing with field. At Hc2 ≃ 1.4 T, ∆v(H) reaches a

minimum, before returning sharply to roughly the zero-field value in the field polarized limit. In ad-

dition to the two expected critical fields, Hc1 and Hc2, the sound velocity also exhibits a significant

change in slope at roughly Hm = 1.2 T, suggesting the presence of an additional phase, as indi-

cated in Fig. 3.3b. Aside from the sharp change of slope at Hm, our sound velocity measurements

resemble those performed on another quantum dimer magnet, Sr3Cr2O8 [61]. In contrast, sound

velocity measurements on NiCl2-4SC(NH2)2 [62] show sharper dips at both Hc1 and Hc2, which

are attributed to coupling between the ultrasound velocity and antiferromagnetic fluctuations.

As the temperature is raised, the overall variations in sound velocity become much smaller in

magnitude and the sharp features are smoothed out, hence we use temperature scans of sound ve-

locity (see Supplemental Information [59]), which show small but fairly sharp anomalies, to estab-

lish the phase boundaries of the antiferromagnetic dome at higher temperatures. These boundaries

are entirely consistent with the specific heat measurements.

The dome of field-induced order mapped out by the specific heat and ultrasound velocity data

(Fig. 3.3b) is similar to the BEC phase of traditional QDMs, but there is an important difference:

the dome in Yb2Si2O7 is highly asymmetric, with an unusual regime in the high field part of the

phase (H > Hm). Asymmetry of the dome can sometimes be attributed to quantum fluctuations

in the proximity of Hc1 which is expected when Hc1/(Hc2-Hc1) is small. However, in Yb2Si2O7

this number is 0.4, which is twice as large as the well-known case of dome asymmetry in DTN

[63]. Further, this effect does not explain the high field phase above Hm. This unusual regime

may be due to non-U(1) symmetric terms in the Seff=1/2 low energy effective Hamiltonian for

Yb2Si2O7. However, the strength of any anisotropic exchange is limited by our observation of a

Goldstone-like mode (gapless to within δE = 0.037 meV) via INS, discussed below.
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Fig. 3.3c shows the field dependence of neutron diffraction (measured on FIE-TAX) at the

(2,0,0) zone center. This reflection is only sensitive to the square of the net magnetization (m2
z)

that arises due to canting towards the field direction rather than any AFM components of the

magnetic structure. The onset of magnetic order and growth of the net magnetization is confirmed

above Hc1 through the observation of increasing magnetic Bragg peak intensity. The intensity of

the (2,0,0) peak shows an approximately quadratic increase, with a sudden change in the second

derivative occurring at approximately Hm. Additionally, Fig. 3.3c shows a comparison of the first

derivative of the (2,0,0) Bragg peak intensity at 50 mK and the negative of the relative ultrasound

velocity at 100 mK, which are consistent (though this level of agreement is somewhat unexpected

following a standard theoretical treatment, see [59]).

INS data provides evidence of the spontaneous breaking of an approximately continuous sym-

metry for fields between Hc1 and Hc2. Fig. 3.4 shows the INS spectra of Yb2Si2O7 at T = 50 mK

for representative applied fields along the c-axis. In a QDM with Heisenberg exchange, the three

excited dimer states are triply degenerate (forming a triplet with Stot = 1, and Sz = −1, 0, and

1), and are then Zeeman split by the applied magnetic field. With finite interdimer exchange the

resulting triplons are mobile, and the excited states become dispersive. For Yb2Si2O7 below Hc1

a resolution-limited single excited dispersive branch (bandwidth of 0.167(1) meV, and a gap of

0.1162(4) meV) is visible. The apparent secondary branch observed around (0.1, 1, 0) and (1̄,1̄,0)

is due to a minority crystal grain. The energy of the observed excitation does not change for

H <Hc1 as shown in the supplemental information [59], signifying that the angular momentum

projection along the magnetic field is zero (i.e., Stot = 1, Sz = 0, which we call ψ1,0). The absence

of apparent Stot = 1, Sz ± 1 modes (hereafter labeled as ψ1,±1) at most field strengths below Hc1

indicates that the neutron scattering transition matrix elements from the ground state to ψ1,±1 are

small compared to that for ψ1,0. However, ψ1,±1 are discernible with very weak intensity at fields

nearHc1 indicating the transition matrix elements are non-zero [59]. AboveHc1, a new low energy

excitation appears, which is gapless at the magnetic zone centers to within the energy resolution of

the instrument (δE = 0.037 meV). This Goldstone mode implies spontaneous breaking of an ap-
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Figure 3.4: INS data at T = 50 mK for four representative field strengths (H||c). The path shown includes
the reciprocal lattice directions [-0.1K0], [H10], and [-1K0] as shown schematically to the right of the figure.
All slices shown are integrated ± 0.1 r.l.u. in the perpendicular direction. At zero field (panel a), two bands
are visible near (-1,1,0) and (-0.1, -1, 0) due to a misaligned grain in the sample [59]. These are actually
due to the same excitation which is identified as the ψ1,0 state. Between Hc1 and Hc2 (panels b and c), a
Goldstone mode appears which is gapless at zone centers to within the energy resolution of the instrument,
δE = 0.037 meV. Above Hc2 (panel d) the intensity of the excitation drops dramatically due to the system
entering a field-polarized paramagnet state.

proximate U(1) symmetry in the plane perpendicular to the applied magnetic field (the a∗-b plane),

suggestive of the BEC transition observed in traditional QDMs [19, 64]. Additionally we note
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that the energy resolution is ∼16% of our estimated Jintra, thus this measurement of the Goldstone

mode actually allows for a potentially sizable anisotropic exchange contribution. Furthermore, the

presence of a distinguishable region of the field-induced phase (between Hm and Hc2) is not ex-

pected for simple Heisenberg or XXZ exchange. We find that in this field region the Goldstone

mode persists, despite the lack of evidence for spontaneous symmetry breaking in Cp(T ) (i.e. a

sharp anomaly is absent). However, the broad Cp(T ) feature does move to lower temperature as

the field is further increased in this field region, tracing out the high-field side of the dome phase

boundary. Above Hc2 all the excitations become fully gapped and the broad feature in Cp moves

to higher temperature with increasing field, consistent with a field-polarized paramagnet. In the

field polarized regime, the inelastic intensity is greatly reduced due to the development of strong

magnetic Bragg peaks at the elastic line, as expected based on the sum rule for magnetic neutron

scattering.

3.2.5 Discussion

Recently, rare-earth materials have been identified as potential hosts of Kitaev exchange in hon-

eycomb materials [65]. In light of this, it is important to note that Yb2Si2O7 is structurally similar

to the famous Kitaev material Na2IrO3 [66], as they share the same space group and Wyckoff posi-

tion of the magnetic species. Therefore, Kitaev exchange is allowed by symmetry in Yb2Si2O7. If

Kitaev exchange were dominant in Yb2Si2O7 it could lead to a quantum spin liquid ground state

[15]. Interestingly, the presence of a Goldstone mode does not rule out such anisotropic Kitaev

exchange due to the “hidden” SU(2) symmetries found within the extended Kitaev-Heisenberg

model [67, 68]. However, our fits to field polarized INS data are well-approximated by Heisenberg

interactions, so Kitaev interactions are unlikely to be dominant in this material.

In summary, the strongly spin-orbit coupled material Yb2Si2O7 realizes a QDM ground state

with magnetic field-induced order reminiscent of a BEC phase. However, this ordered phase ex-

hibits unusual characteristics at the high field part of the dome, including an abrupt change in the

field dependence of the magnetization and sound velocity, and the loss of a sharp anomaly in the
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specific heat. The presence of a Goldstone mode throughout the full field-induced ordered state

suggests dominant Heisenberg or XXZ exchange interactions, and the former is confirmed by fits

to field polarized INS data and the zero-field specific heat. However, the observation of the unusual

regime between Hm and Hc2 may imply that additional anisotropic interactions are necessary to

fully describe the field induced phases of this novel quantum magnet. Yb2Si2O7 provides the first

example of a Yb3+-based QDM with a possible field-induced BEC phase, adding this canonical

example of quantum magnetism to the roster of quantum phases exhibited by materials based on

this versatile ion.
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Chapter 4

Magnetic properties of the Ising-like rare-earth

pyrosilicate: D-Er2Si2O7

4.1 Context

This chapter consists of my unpublished work, which is being prepared as a manuscript with

the working title Magnetic properties of the Ising-like rare-earth pyrosilicate: D-Er2Si2O7, where

we studied magnetic ground state and field-induced properties of D-Er2Si2O7. A preprint version

of the paper is available on arXiv under reference [69].

This paper originally appeared on arXiv under the title Evidence for a field-induced quantum

phase transition in Ising-like D-Er2Si2O7, however, it was later realized that the crystal used for

some of the AC susceptibility data included was not aligned as intended which invalidated our

initial comparision to the TFIM. This discrepancy is mentioned in the main text and outlined

further in the supplemental information (Appendix B). In this work, we utilized powder inelastic

neutron scattering, powder neutron diffraction, single crystal AC susceptibility, and heat capacity

measurements to study the Ising-like nature of D-Er2Si2O7. While this is currently a work in

progress, our work shows that D-Er2Si2O7 exhibits a gapped zero-field spectra - consistent with

predominantly Ising-like exchange - and our transverse field AC susceptibility measurements hint

at the possibility of D-Er2Si2O7 being a new candidate for the TFIM.

4.1.1 Contributions

C. L. Sarkis, D. R. Yahne, J. A. R. Rivera, and K. A. Ross performed the powder inelastic

neutron scattering and the data was primarily analyzed by G. Hester, T. N. DeLazzer, and K. A.

Ross. G. Hester, S. Calder, and K. A. Ross performed the neutron diffraction measurements and

the neutron diffraction data was primarily analyzed by G. Hester with the assistance of D. R.

Yahne and K. A. Ross. G. Hester, H. D. Zhao, T. N. DeLazzer, and K. A. Ross performed the
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AC susceptibility measurements and they were primarily analyzed by G. Hester and K. A. Ross.

Heat capacity measurements were performed by G. Hester with the assistance of D. R. Yahne, T.

N. DeLazzer, and K. A. Ross. The first draft of the paper was written by G. Hester and detailed

editing was performed by G. Hester and K. A. Ross.

4.2 Research Article

4.2.1 Overview

Ising-like spin-1/2 magnetic materials are of interest for their ready connection to theory, par-

ticularly in the context of quantum critical behavior. In this work we report detailed studies of the

magnetic properties of a member of the rare-earth pyrosilicate family, D-Er2Si2O7, which is known

to display a highly anisotropic Ising-like g-tensor and effective spin 1/2 magnetic moments. We

used powder neutron diffraction, powder inelastic neutron spectroscopy (INS), and single crys-

tal AC susceptibility to characterize its magnetic properties. Neutron diffraction enabled us to

determine the magnetic structure below the known transition temperature (TN = 1.9 K) in zero

field, confirming that magnetic state is a four-sublattice antiferromagnetic structure with two non-

collinear Ising axes, as was previously hypothesized. Our powder INS data revealed a gapped ex-

citation at zero field, consistent with anisotropic (possibly Ising) exchange. An applied field of 1 T

produces a mode softening, which is consistent with a field-induced 2nd order phase transition. To

assess the relevance of D-Er2Si2O7 to the transverse field Ising model, we performed AC suscepti-

bility measurements on a single crystal with the magnetic field oriented in the direction transverse

to the Ising axes. This revealed a transition at 2.65 T at 0.1 K, a field significantly higher than the

mode-softening field observed by powder INS, showing that the field-induced phase transitions are

highly field-direction dependent as expected. These measurements suggest that D-Er2Si2O7 may

be a candidate for further exploration related to the transverse field Ising model.l.
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4.2.2 Introduction

The identification of Ising-like magnetic materials has been historically important for verifying

the many intriguing features of the classical Ising model [70, 71]. In the context of quantum mag-

netism, examples of Ising materials which can be tuned to a quantum phase transition (QPT) via a

transverse magnetic field are in even higher demand. The Transverse Field Ising Model (TFIM) is

one of the most tractable models with a QPT, and thus has been studied extensively theoretically,

including in the burgeoning field of non-equilibrium quantum dynamics [72]. However, despite

the seemingly straightforward ingredients, there are only a few currently known magnetic materi-

als which approximate the TFIM; CoNb2O6 (quasi-1D) [24], (Ba/Sr)Co2V2O8 (quasi-1D) [73, 74],

and LiHoF4 (dipolar coupled 3D) [75, 76]. With each of these materials, many detailed compar-

isons to theoretical expectations have been pursued, and even their non-equilibrium behavior are

now being explored [77]. Yet, each material has its own deviations from the ideal models, and the

identification of additional TFIM materials, particularly those representing the higher dimensional

2D or 3D (non-dipolar) models, which cannot be solved exactly, are of great interest. The first

step in finding new TFIM materials is to find materials with predominantly Ising-like exchange.

This type of anisotropic exchange is expected to be more prevalent in 4f rare-earth based magnetic

systems, as the high spin-orbit coupling provides inherent anisotropy to the system.

Indeed, rare-earth based materials have become the subject of increased study in the realm of

quantum magnetism in general. Due to the chemical similarity of the rare earths, the same structure

can often be stabilized with a variety of rare-earth ions. However, the magnetic interactions and

anisotropies can be dramatically different between each instance; such is the case for the rare-

earth pyrochlores [78, 79] and the rare-earth delafossites [80, 81, 82, 83]. In this work we have

investigated a member of the rare-earth pyrosilicate (RE2Si2O7) family of compounds which have

become the subject of renewed interested due to the discovery of a dimer magnet with evidence

for a field-induced Bose-Einstein condensate in Yb2Si2O7 [7, 84]. The present work focusses on

the magnetic properties of one polymorph of Er2Si2O7. It is worth noting that all of the lanthanide

series can be synthesized in this stoichiometry (albeit with many possible structures) making this
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series an interesting playground for understanding the interplay of magnetic species and crystal

structure on the ground state of quantum magnets.

a)

b

-Erbium -Silicon -Oxygen

b)

c

a

c

Figure 4.1: a) The crystal and magnetic structure (obtained from the refinement in Fig. 4.3a) of D-Er2Si2O7

viewed along the a-axis. Bonds in orange dictate the equivalent "intrachain" interactions that form chains
and bonds in blue dictate the interchain interactions that form a tessellated, distorted honeycomb lattice.
Here Er atoms are green, Si are blue, and O are red. b) View of the crystal and magnetic structure along
the b-axis showing the layered nature of the magnetic ions. All panels of this figure were created using the
Vesta software [58].

The pyrosilicate compound Er2Si2O7 can crystallize in three different structures based on the

synthesis temperature: the low-temperature phase P1 (Type B), the intermediate-temperature phase

C2/m (Type C) and the high-temperature phase P21/a (Type D) [17, 18]. The focus of this work

is the high temperature phase (shown in Fig. 4.1), hereby referred to as D-Er2Si2O7. Since Er3+

is a Kramer’s ion the ground state of the CEF is protected by time-reversal symmetry and thus

must be at least doubly degenerate. In the 1970’s the structure of the rare-earth pyrosilicates was

determined due to interest in the magnetic, electrical, and optical properties of rare-earth materials.
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In particular, the rare-earth pyrosilicates were of interest due to the 180◦ Si-O-Si bond in the

[Si2O7]6− groups [17, 18]. After some time the magnetic properties of D-Er2Si2O7 were explored

via Zeeman spectroscopy and magnetometry [2, 85]. The Zeeman spectroscopy measurements

revealed crystal field levels at 27 cm−1 (39 K) and 52 cm−1 (74 K), the former of which we

have confirmed via specific heat in Appendix B.1. Further, Leask et al. determined an Ising-

like g-tensor anisotropy, with gx = 2.6, gy = 3.4, and gz = 13.4 [2]. The crystal symmetry

results in two orientations of these local axes, with the x axis shared by both. The z axis was

found to be 28◦ (clockwise) from the a axis and ± 15◦ from the a-b plane, while x is in the

a-b plane (see Fig. 4.2c). However, there is a discrepancy in the g-tensor values identified by

Leask, et al. [2] and those identified earlier by Maqsood [85]. This discrepancy could be due

to Maqsood using Curie-Weiss fits to determine the values of the g-tensor. Curie-Weiss fits can

prove unreliable for rare-earth ions due to crystal field effects; typically, they are performed at

high temperatures to ensure the system is no longer strongly correlated, but for rare-earth ions this

causes thermal population of higher crystal field levels and means the fit is not truly indicative

of the low temperature angular momentum degrees of freedom. Previous temperature-dependent

susceptibility measurements on single crystals of D-Er2Si2O7 were performed along the c axis, a

axis, and the m axis, where m refers to a vector in the a-b plane that lies 28◦ (clockwise) from

the a axis, which we will refer to as the “average Ising direction” (the projection of Leask’s z

axis onto the a-b plane). The susceptibility along all three directions showed a sharp downturn

indicative of antiferromagnetic ordering at 1.9 K, with the maximum susceptibility observed for

measurements along m. This magnetic ordering temperature was corroborated by our group using

zero-field specific heat measurements [34]. Magnetization versus magnetic field measurements

along a and m showed evidence of a spin-flip transition at 1
3

the saturation magnetization. This

occurs at ∼ 0.5 T for the a axis and slightly lower for the m axis. The observation of a spin-flip

transition is consistent with the Ising-like moment found from the g-tensor. After these seminal

studies of D-Er2Si2O7, no magnetic measurements were performed until the present study.
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4.2.3 Experimental Methods

Details of the D-Er2Si2O7 sample synthesis have been outlined elsewhere [34], but broadly

the synthesis was performed by mixing stoichiometric amounts of Er2O3 and SiO2, pressing the

powder into dense rods, and heating the rods between 1400◦C and 1500◦C four times with in-

termediate re-grinding. Two types of samples were used in the present study. For susceptibility

measurements, a small single crystal of pure D-Er2Si2O7 - grown via the optical floating zone

technique - was used. The second sample was a powder, which was used for neutron scattering

and heat capacity. Rietveld refinement of room-temperature powder x-ray diffraction data indi-

cated that Er2SiO5, a common (and stubborn) impurity in the synthesis of D-Er2Si2O7, made up

approximately 9% of the sample. The powder x-ray diffraction data for D-Er2Si2O7 yielded the

lattice parameters: a = 4.68878(8) Å, b = 5.56029(7) Å, c = 10.79659(10) Å, α = 90◦, β = 90◦, γ =

96.043(1)◦. These parameters are consistent with previously published values [18]. Heat capacity

measurements were performed using a Quantum Design PPMS with the heat capacity option on a

sintered powder sample of D-Er2Si2O7. AC susceptibility measurements were performed on a sin-

gle crystal of D-Er2Si2O7 (as confirmed by Laue x-ray diffraction) using a Quantum Design PPMS

with the dilution refrigerator and AC susceptometer. These measurements were performed at nu-

merous temperatures with f = 1000 Hz, HAC = 0.2 mT, and with the DC magnetic field applied

transverse to the "average Ising direction" (x in Fig. 4.2.

Inelastic neutron scattering (INS) measurements were performed on approximately 5 grams of

powder loaded in a Cu canister at the NIST Center for Neutron Research in Gaithersburg, MD,

USA using the Multi-Axis Crystal Spectrometer (MACS) [86] with a fixed final energy (Ef ) of

2.5 meV, the double focusing monochromator, and Be filters on the incident and scattered beams.

Neutron diffraction measurements were performed on the same sample at the High Flux Isotope

Reactor at Oak Ridge National Laboratory using the HB-2A (POWDER) diffractometer [87]. The

HB-2A data was collected at 10 K, 2 K, and 0.280 K with the Ge(113) monochromator (λ = 2.41

Å) and a collimation of open-21’-12’. All errorbars shown in this work indicate ± one standard

deviation.
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Figure 4.2: a) Schematic diagram showing the average Ising direction “m” and the two local Ising axes.
The x-axis is transverse to both Ising axes. Only one of the two y-axes is shown for clarity. Here θ is the
angle from the crystallographic a-axis and φ is the angle from the a-b plane. Leask et al. [2] previously
found the single-ion g-tensor to be oriented towards θ = 28◦ and φ = 15◦. In contrast, we found based on
neutron diffraction data that the ordered the moments lie at θ = 21.3◦ and φ = 12.8◦. For our transverse-field
measurements, we chose to align the crystal perpendicular to the ordered moment. b-c) The real (χ′) and
imaginary (χ′′) components of the AC susceptibility at T = 0.1 K, f = 1000 Hz, and hac = 2mT for a
field ramp from 2.25 T to 3.25 T (blue circle) and a field ramp from 3.25 T to 2.25 T (orange square). A
transition is observed at ∼2.65 T, which shows "hysteresis" in both the real and imaginary components of
the susceptibility. It is unclear if this hysteresis is an experimental artifact and this is discussed further in the
main text.

4.2.4 Results and Discussion

AC Susceptibility

AC susceptibility measurement results (at T = 0.1 K) with a field in the transverse direction

(i.e. with AC and DC fields applied along x) are shown in Fig. 4.2b-c). The directions of the Ising

axes (z) and transverse direction (x) in relation to the crystallographic axes is shown in Fig. 4.2a.

We note that the magnetization along this transverse field direction of D-Er2Si2O7 has not been

previously studied. For the AC susceptibility measurements, we aligned the sample so that the

field was applied along x, defined by the angles θ = 21.3◦ (the angle from the a-axis) and φ = 12.8◦

(the angle from the a-b plane) as determined by our neutron diffraction measurements discussed in

section 4.2.4. The decision to use the moment direction found via neutron diffraction for the Ising

direction - as opposed to the direction found by Leask et. al [2] - was based on the expectation

that the ordered moment direction being determined in part by the exchange tensor, rather than

solely the single-ion g-tensor. A common misconception about the TFIM is that it requires Ising-
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like single ion anisotropy (e.g. gzz » gxx, gyy), but in reality it is only required that the exchange

anisotropy be Ising-like. In a low symmetry local environment like the Er3+ site in D-Er2Si2O7,

the two Ising axes do not have to be in the same direction. Hence, we feel that the ordered moment

direction is a more appropriate representation of the relevant Ising axis.

The real (χ′) and imaginary (χ′′) components of the transverse-field susceptibility both show

a transition at 2.65 T. A comparison of the measurements for increasing and decreasing field

shows something similar to hysteresis, which would indicate a first order transition. However,

the hysteresis does not behave as expected for first-order phase transitions - namely, the transition

appears to occur at a lower field when the field is increased compared to when it is decreased, which

is not expected for first order transitions, which are based on a nucleation and growth mechanism.

Thus, it is currently unclear as to if this hysteresis is an experimental artifact or if it is intrinsic to

the sample. Additional measurements at different temperatures and for wider magnetic field ranges

are shown in Section B.3.1.

In a previous preprint version of this manuscript [69], a different set of AC susceptibility mea-

surements was presented, which we later determined were obtained with the field not correctly

oriented to the transverse (x) axis. This was shown via a subsequent set of DC magnetization

measurements on the same crystal which showed a higher saturation magnetization than expected

for that direction. This misorientation was confirmed by Laue x-ray diffraction to be 37◦ away

from the transverse axis, approximately lying along the (491) direction. In the event that these

measurements may still be useful to others, we have provided these DC magnetometry and AC

susceptibility measurements in the Appendix (Section B.3.1).

Neutron Powder Diffraction

Neutron powder diffraction (NPD) data obtained at HB-2A was refined using the FullProf

software [88] and the SARAh suite (using the Kovalev tables) [89, 90]. Peaks corresponding

to D-Er2Si2O7 and Cu (from the sample can) were observed at 10 K and 2 K (both are above

TN ), but no sign of the impurity (Er2SiO5) was observed at these temperatures. This is likely

due to the strongest nuclear peaks of Er2SiO5 occurring at positions obscured by nuclear peaks
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Figure 4.3: a) A Rietveld refinement of the magnetic structure of D-Er2Si2O7. The observed intensities
shown are after subtraction of 10 K data from 0.280 K data, and therefore are only due to magnetic order.
Two impurity peaks are observed at 1.074 Å−1 and at 1.819 Å−1 - denoted by black stars - that correspond to
the (110) and (310) reflections of Er2SiO5 (space group C2/c). These peaks are the only peaks not accounted
for by the magnetic structure of D-Er2Si2O7. b) Field versus momentum transfer (Q) elastic scattering (E ∈
[-0.05,0.05] meV) data obtained on MACS (Tavg = 0.16 K) showing the evolution of Bragg peak intensities.
White rectangles are shown to denote the Bragg reflections used for cuts in panel c. The white dashed line
shows the location of the fourth cut in panel c. c) Evolution of the elastic intensity with field for (002), (011),
(012), and Q = [0,45, 0.55] Å−1. The Q = [0.45, 0.55] Å−1 data is scaled by a factor of 10 for clarity. Data
at 0 T, 3 T, and 5 T were obtained on the initial increase of the field after cooling from high temperature. All
other field points were collected after the field had been increased to 8 T and returned to 0 T.

of D-Er2Si2O7. A Rietveld analysis (Appendix B.2) of powder neutron diffraction data obtained

at 10 K was also performed. The powder diffraction data at 2 K (Appendix B.2) shows diffuse

scattering, as expected for a system approaching a continuous phase transition. Data at 0.280

K (below TN ) show an increase in intensity on peaks corresponding to the D-Er2Si2O7 nuclear

structure, aside from two peaks at 1.074 Å−1 and 1.819 Å−1 which can be indexed to the (110) and

(310) positions of the impurity phase, Er2SiO5 (space group C2/c, a = 14.366(2) Å, b = 6.6976(6)

Å, c = 10.3633(16) Å, α = 90◦, β = 122.219(10)◦, γ = 90◦)[91]. The magnetism of Er2SiO5 has

not previously been reported. Thus, we note in passing that since no magnetic impurity peaks were

observed at 10 K or 2 K, the magnetic transition in Er2SiO5 is likely between 0.280 K and 2 K,

to a |k| = 0 ordered state. Fig. 4.3a shows the results of a Rietveld refinement on the magnetic

structure of D-Er2Si2O7. The data used for the refinement was a subtraction of the 10 K data from

the 0.280 K data. A symmetry analysis of the allowed |k| = 0 magnetic structures provides four

irreducible representations. An attempt to fit each irreducible representation was made, with the
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Γ4 representation providing the best fit. The Γ4 irreducible representation consists of three basis

vectors; ψ10, ψ11, and ψ12 (see Section B.2 for the basis vector compositions). The coefficients

for each basis vector are; C10 = 5.72(3), C11 = -2.34(6), and C12 = -1.45(6). These coefficients

yield the magnetic structure shown in Fig. 4.1. This structure has the magnetic space group of

P21’/c. Leask et. al. found the g-tensor axes to lie along θ = 28◦ (the angle from the a-axis) and

φ = 15◦ (the angle from the a-b plane), whereas, we have found the moments to lie at θ = 21.3◦

and φ = 12.8◦. This indicates that the ordered moments deduced from our refinement lie 6.9(5)◦

away from the single-ion Ising direction determined by Leask et. al. However, the overall ordered

moment is similar. We measured an ordered moment of 6.56(3) µB at 250 mK and the moment

found by Leask was 6.7 µB at 4.2 K. The discrepancy in the Ising axis direction is potentially

due to the presence of the (unaccounted for, but small) Er2SiO5 impurity in our magnetic NPD

data. Alternatively, it could be due to a difference in the exchange anisotropy directions compared

to the single-ion anisotropy directions. The direction of the ordered moment direction would be

influenced by both types of anisotropies. The details of the interactions in D-Er2Si2O7 require

further study, ideally by INS on single crystal samples.

Field-dependent Elastic Neutron Scattering

Elastic neutron scattering data measured using MACS, using the same powder sample as used

at HB-2A, is shown in Fig. 4.3b and Fig. 4.3c. An “empty can” background was subtracted.

Fig. 4.3b shows the field evolution of the elastic scattering at at an average temperature (Tavg) =

0.16 K. Magnetic Bragg peaks from the impurity (Er2SiO5) are not resolved, due to the coarser

Q-resolution of MACS compared to HB-2A. Intensity versus field cuts for the (002), (011), and

(012) reflections are shown in Fig. 4.3c. The intensity of the peaks does not change significantly

between 0 T and 0.25 T, even though the 0.25 T data was measured after going to high field (see

caption to Fig. 4.3 for more detail). Dramatic changes in magnetic peak intensities are observed

between 0.25 T and 2 T. Since the experiment was performed on a powder sample, all field di-

rections are averaged here, including the field perpendicular to the Ising direction, which we have

shown induces a transition at 2.65 T (Fig. 4.2). Other field directions are already known to induce
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transitions in the field range of about 0.5 T [2]. Overall, the dramatic changes in Bragg intensity

all occur below about 1 T. Above 1 T, the intensity of the peaks gradually changes, likely due the

Er3+ moments approaching saturation along the field direction, as much as would be allowed by

the Ising axes. An interesting effect is observed away from the Bragg peaks, shown in Fig. 4.3c

as a cut at Q = 0.5 Å−1(integrated from 0.45 to 0.55 Å−1). The incoherent background appears to

increase in intensity at 0.5 T and beyond. The exact nature of this signal is not currently known,

but it is not due to an irreversible change in sample environment such as water condensation on

the cryostat (we have confirmed this by comparing to scans at similar field ranges taken before and

after the dataset shown in Fig. 4.3c). It is possible that this background is indicative of short-range

spin correlations. Near a second order transition, one does expect the critical behavior to manifest

as a sharp increase of diffuse scattering. However, this diffuse scattering should diminish rapidly

away from the transition, which we do not observe on the high-field side (the intensity seems to

plateau after 2 T). We do not see any signatures of the transverse field transition at ∼2.65 T in

our elastic neutron scattering data. It is likely that the transition field strongly depends on the

field direction, thus very few grains in the powder would be in the correct orientation to probe this

transition, leading to a small signal in the neutron scattering measurements.

Inelastic Neutron Scattering

Finally we turn to the INS data from MACS, shown in Fig. 4.4a-f. In zero field, two branches

of excitations are observed at 0.2 meV and 0.6 meV, which we refer to as Branch 1 and Branch 2,

respectively. The branches are gapped and appear to be dispersionless within the resolution of the

measurement (the energy step size was chosen to be 0.1 meV, which is similar to the instrument

resolution for our settings, ∼0.075 meV [86]). The gapped nature of the excitations is consistent

with anisotropic interactions, such as Ising exchange, and the presence of two branches implies at

least two non-equivalent sites in the magnetic unit cell. This can be easily understood based on

the two local Ising axes. As discussed above, we have found a |k| = 0 antiferromagnetic structure

that consists of AFM moments which are collinear when considering sites with the same Ising

axis orientation. Thus, each branch is expected to be two-fold degenerate. Something that is more
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Figure 4.4: (a-e) Energy vs |Q| slices at µ0H = 0 T (a), 0.25 T (b), 1 T (c), 2 T (d), and 3 T (e) showing the
evolution of two excitations. The average temperature for these slices are Tavg = 0.22 K, 0.18 K, 0.16 K,
0.17 K, and 0.18 K, respectively. Note: the scale factor for panel a) is higher than the other panels in order
to make Branch 1 visible. Branch 1 is only visible in our 0 T data, while Branch 2 is observed to broaden
and soften as the field increases to 1 T. f) Intensity vs energy cuts at Q = [1.45,1.55] Å−1 at various field
strengths.

difficult to understand is that as the field increases, we observe only one branch clearly, despite

there still being two distinct Ising axes. At 0.25 T (Fig. 4.4b), only Branch 2 remains, and is

significantly broadened. The disappearance of Branch 1 might indicate a very low field transition

for some field directions, but Leask et. al did not report any magnetic transitions below 0.5 T at

500 mK. However, Leask et. al did predict that the transition near 0.5 T was first order in nature

for some field directions (significant hysteresis was observed in the simulated magnetization). The

absence of Branch 1 in our 0.25 T data may be related to this predicted first order transition; the

0.25 T data was collected after the sample was subjected to a very high field (8 T), thus the data

at 0.25 T represents the decreasing field part of the hysteresis curve, which is likely to be in a

different state than the 0 T data. However, to understand all the details of the field evolution of

excitations would require further study on single crystal samples.
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We concern ourselves now with the behavior of Branch 2 at higher fields, which exhibits clearer

signatures. As the field is increased to 1 T, Branch 2 broadens (likely due to the anisotropic

g-tensor) and softens dramatically. The excitation becomes gapless near 1 T as expected for a

field-induced second order phase transition. Beyond ∼ 1 T, the branch energy increases again,

consistent with entering the field-polarized paramagnetic regime. No signature of the transverse

field transition is observed in the inelastic spectrum. It is worth noting that we have not attributed

any signatures in the INS spectrum to the impurity (Er2SiO5), even though it is also magnetic. Due

to the relatively low concentration in the sample (9%), we expect the impurity will not contribute

appreciably to the INS signal.

We also obtained INS data at fields up to 8 T (see Appendix B.4), where the excitations could in

principle be modelled by linear spin wave theory. Additionally, Leask et. al. obtained exchange in-

teractions based on a mean field approach to describing features in the magnetization curves (these

parameters, when used in a Monte Carlo simulation, did reproduce many of the observed features

of the magnetization curves in several directions [2]). Unfortunately, the exchange interactions

as reported in that work are not uniquely assignable to specific pairs of ions in the unit cell, so a

useful comparison to our data is greatly complicated. We would like to note that at least the inter-

layer interaction (along a) seems to be clearly defined 13, and this interaction is small compared to

the other exchange interactions. This suggests that the magnetic interactions in D-Er2Si2O7 could

be quasi-2D. Indeed, the layered structure of Er3+ in D-Er2Si2O7 also suggests that the magnetic

interactions may be quasi-2D.

4.2.5 Conclusions

In this work we have used AC susceptibility, neutron diffraction, and inelastic neutron scat-

tering to study the Ising-like antiferromagnetic order and field-induced behavior of the rare-earth

pyrosilicate, D-Er2Si2O7. AC susceptibility measurements with a field transverse to the Ising di-

rection show a transition at a magnetic field strength of 2.65 T. Using neutron diffraction we have

13Referring to the notation in Ref. [2], this is the interaction between the atom on “sublattice 1” with itself in the
next unit cell
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determined the magnetic structure of D-Er2Si2O7, which consists of moments pointing along a lo-

cal direction which is close to the Ising direction determined by Leask et. al [2]. Our powder INS

measurements reveal gapped excitations, one of which softens under an applied field and become

gapless near 1 T. Due to both neutron scattering experiments being performed on powder samples,

it is difficult to directly connect the transition observed in AC susceptibility on a single crystal to

any signature in the neutron scattering data. However, we can state that there is a transition for a

field applied perpendicular to the Ising axes, the zero-field INS spectra is consistent with Ising-like

exchange, and the magnetic structure has been determined via neutron diffraction. This work sets

the stage for future studies confirming the Ising-like nature of interactions in D-Er2Si2O7 and for

further study of the transverse field transition. Future work should include INS measurements on

single crystals [34] in order to further elucidate the nature of the transverse-field-induced transi-

tions in this material.
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Chapter 5

Néel Ordering in the Distorted Honeycomb

Pyrosilicate: C-Er2Si2O7

5.1 Context

This chapter consists of my paper Néel Ordering in the Distorted Honeycomb Pyrosilicate:

C-Er2Si2O7 which was published in the Journal of Physics: Condensed Matter in 2021* [? ]. This

work includes neutron diffraction, specific heat, and magnetometry measurements to characterize

the ground state of C-Er2Si2O7 , which is isostructural to the quantum dimer magnet compound

discussed in Chap. 3. We have found the C-Er2Si2O7 magnetically orders into a collinear Néel

state at 2.3 K, in stark contrast to Yb2Si2O7 which does not magnetically order in the absence of

a magnetic field. The discovery of this difference between the two compounds has set the stage

for future work in understanding how the rare-earth ion affects the ground state nature of quantum

magnets.

During the writing of this dissertation, a typo was found in the published version of the paper. In

the section titled "Comparison to Yb2Si2O7", the maximum free ion moment of Yb3+ and Er3+ was

given, but labeled incorrectly and with one of the values being correct. This does not change the

argument being presented. The maximum free ion moment of Yb3+ is 4.54 µB and the maximum

free ion moment of Er3+ is 9.59 µB.

5.1.1 Contributions

G. Hester and C. M. Brown performed the neutron diffraction measurements. G. Hester an-

alyzed the neutron diffraction data with assistance from S. S. Lim. T. N. DeLazzer, S. S. Lim,

*This is the Accepted Manuscript version of an article accepted for publication in the Journal of Physics: Con-
densed Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The Version of Record is available online at DOI:10.1088/1361-648X/abd5f8.
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and G. Hester performed the synthesis of C-Er2Si2O7. G. Hester performed the magnetometry and

specific heat measurements. The paper was primarily written by G. Hester with detailed comments

from K. A. Ross.

5.2 Research Article

5.2.1 Overview

The rare-earth pyrosilicate family of compounds (RE2Si2O7) hosts a variety of polymorphs,

some with honeycomb-like geometries of the rare-earth sublattices, and the magnetism has yet to

be deeply explored in many of the cases. Here we report on the ground state properties of C-

Er2Si2O7. C-Er2Si2O7 crystallizes in the C 2/m space group and the Er3+ atoms form a distorted

honeycomb lattice in the a-b plane. We have utilized specific heat, DC susceptibility, and neutron

diffraction measurements to characterize C-Er2Si2O7. Our specific heat and DC susceptibility

measurements show signatures of antiferromagnetic ordering at 2.3 K. Neutron powder diffraction

confirms this transition temperature and the relative intensities of the magnetic Bragg peaks are

consistent with a collinear Néel state in the magnetic space group C 2’/m, with ordered moment of

6.61 µB canted 13◦ away from the c-axis toward the a-axis. These results are discussed in relation

to the isostructural quantum dimer magnet compound Yb2Si2O7.

5.2.2 Introduction

Recent efforts in the study of quantum magnetism and novel magnetic ground states have fo-

cused on the use of 4f magnetic atoms in different frustrated geometries (i.e. triangular [92, 93, 94],

kagome [95], and pyrochlore lattices [96]) instead of the traditional 3d magnetic atoms, such as

Cu2+ or Ni2+. This is due to numerous advantages to 4f magnetic atoms over traditional 3d mag-

netic atoms. One of these advantages is 4f ions can often be interchanged for each other within

the same structure, which tends to produce a wide variety magnetic behavior. Additionally - at the

single-ion level - the effect of strong spin-orbit coupling of the 4f ions and the surrounding crystal

electric field (CEF) is often to produce an energetically well-isolated doublet that can be mapped
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Figure 5.1: a) The crystal and magnetic structure (obtained from the refinement in Fig. 5.4a) of C-Er2Si2O7.
The Er3+ atoms form a distorted honeycomb lattice in the a-b plane. Here Er atoms are green, Si are
blue, and O are red. b) View of the crystal and magnetic structure along the b-axis showing the separation
between the layers. The interlayer distance is 4.722 Å, which is slightly larger then the nearest-neighbor
bond distance of 3.477 Å. All panels of this figure were created using the Vesta software [58].

to an effective spin 1
2

(Seff = 1/2). These Seff = 1/2 systems have been shown to exhibit many

of the same quantum ground states expected for “bare” spin 1
2

systems [7, 8, 9]. The highly local-

ized 4f electrons are also advantageous as they lead to weak orbital overlap, and therefore weak

superexchange (typically on the order of 1 K). This weak superexchange drives magnetic ordering

transitions down in temperature, but also allows for field-induced transitions to generally be acces-

sible with conventional, widely available superconducting magnets. Finally, the orbitally-active

effective spins allow for bond-dependent exchange interactions, which can yield novel quantum

phases such as the Kitaev quantum spin liquid [15, 97] or Quantum Spin Ice [16, 42]. The Kitaev

model was originally derived for the honeycomb lattice and is therefore of particular relevance to

this work, as C-Er2Si2O7 forms a distorted honeycomb lattice of Er3+ ions in the a-b plane. Nu-

merous magnetic honeycomb systems have been investigated in the context of the Kitaev model

[67, 98, 99, 100], but the quantum spin liquid state of the pure Kitaev model has yet to be dis-

covered in a real material. This provides impetus to study new honeycomb materials with strong

spin-orbit coupling, which will aid theoretical and materials design efforts towards a Kitaev quan-

tum spin liquid.
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The rare-earth pyrosilicate family (RE2Si2O7) of compounds was synthesized in the 1980’s by

Felsche [17]. Structures were determined for all the lanthanide atoms in this series, with many of

the lanthanides exhibiting a dimorphic or polymorphic phase diagram. The interest in these com-

pounds was primarily due to the Si-O-Si bonds in the [Si2O7]6− groups. Therefore, little work was

done on the low temperature magnetic properties of the series at the time. The Er-based pyrosilicate

compound Er2Si2O7 can crystallize in three different structures depending on the synthesis tem-

perature: the low-temperature phase P1 (Type B), the intermediate-temperature phase C2/m (Type

C) and the high-temperature phase P21/a (Type D) [17, 18]. We have recently begun exploring the

low-temperature properties of some members of the rare-earth pyrosilicate series. In particular, we

have studied D-Er2Si2O7, which shows evidence of being a new experimental platform for study-

ing the transverse-field Ising model [69]. Of more relevance to the current work, we have also

studied the magnetic properties of Yb2Si2O7[7], which forms the same C-type "thortveitite" struc-

ture as the title compound, C-Er2Si2O7. We also note that Lu2Si2O7, Y2Si2O7 [101] and Tm2Si2O7

[102] form the same structure. Lu2Si2O7 and Y2Si2O7 are non-magnetic, so they may provide a

useful non-magnetic analog to C-Er2Si2O7. Meanwhile, the magnetism of Tm2Si2O7 has not been

thoroughly investigated, though it does show a low-temperature Schottky-like anomaly in the spe-

cific heat [103], similar to Yb2Si2O7. Yb2Si2O7 does not magnetically order down to 50 mK in

zero field and exhibits a field-induced phase like the triplon Bose-Einstein condensates observed

in 3d transition metal-based dimer magnets. This brings us to the compound of current interest,

C-Er2Si2O7. C-Er2Si2O7 is isostructural to Yb2Si2O7, thus providing an opportunity to study how

rare-earth substitution influences the magnetic ground state properties of quantum magnets with

the same structures. In this thortveitite structure, the Er3+ ion resides in a distorted octahedral site

at the 4g Wyckoff position, resulting in a CEF with C2 point group symmetry. The Er-O bond

lengths in this structure range from 2.234 - 2.279 Å. The [ErO6] groups share three of their edges

with adjacent groups, forming the honeycomb layers in the a-b plane. The magnetic transition

temperature of C-Er2Si2O7 has been reported to be 2.50(5) K previously [85, 104] - although the

data was not shown - and magnetization measurements performed above room temperature have
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been reported [105]. No further studies of the magnetic properties have been undertaken until this

work.

5.2.3 Experimental Methods

Powder samples of C-Er2Si2O7 were synthesized by grinding stoichiometric amounts of SiO2

and Er2O3, pressing the reactants into a rod, and heating 8 times at 1300◦C for 48 hours with

thorough grinding between heatings. Phase purity was confirmed using powder x-ray diffraction.

Refinement of 4 K neutron diffraction data yielded the lattice parameters: a = 6.8529(4) Å, b =

8.9446(5) Å, c = 4.7219(3) Å, α = 90◦, β = 101.763(4)◦, γ = 90◦. These parameters are consistent

with previously published values [17]. The crystal structure and magnetic structure of C-Er2Si2O7

are shown in Fig. 5.1.

Specific heat measurements were performed on a 1.1 mg piece of sintered powder C-Er2Si2O7

using a Quantum Design PPMS with a dilution insert. Temperature dependent susceptibility

measurements were performed on a powder sample of C-Er2Si2O7 from the same batch, immo-

bilized in eicosane wax, in a Quantum Design MPMS-XL system with a 100 Oe DC magnetic

field. Field dependent magnetization measurements were performed on the same sample at a tem-

perature of 1.8 K. Powder neutron diffraction measurements were performed on the BT-1 high

resolution powder diffractometer at the NIST Center for Neutron Research with 60’ collimation

and the Ge(311) monochromator (λ = 2.079 Å). The neutron diffraction sample consisted of 3.5

grams of C-Er2Si2O7 powder loaded in an aluminum sample canister, with 1 bar of helium ex-

change gas loaded at room temperature. The sample was cooled using a 3He refrigerator, and

measurements were performed between 0.3 and 4 K. All error bars shown in this work indicate

one standard deviation.

Certain commercial equipment, instruments, or materials are identified in this document. Such identification
does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it
imply that the products identified are necessarily the best available for the purpose.
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TN = 2.3 K

Rln2

a) b)

Figure 5.2: a) Heat capacity vs. temperature, Cp(T ), of a powder sample of C-Er2Si2O7 using a Quantum
Design PPMS with dilution insert. A lambda anomaly is observed at TN = 2.3 K, indicative of a transition
to long range magnetic order. b) Entropy calculated from the Cp vs. T shown in panel a. The entropy
approaches Rln2 through the transition, consistent with what one would expect for an Seff = 1/2 system.

5.2.4 Results and Discussion

Specific Heat and Magnetization

Specific heat data obtained between 150 mK and 4 K (Fig. B.1a) show a lambda anomaly at

TN = 2.3 K, indicating a transition to long range magnetic order. This transition temperature is

close to the previously reported 2.50(5) K [85, 104], though the previous reports do not mention

the type of measurement used to determine this or show any data. The entropy calculated from

the specific heat is shown in Fig. B.1b. The entropy approaches Rln2 - the expected value for an

Seff = 1/2 system - but falls short of it, likely indicating that some short range correlations persist

to temperatures higher than 4 K. The transition temperature is corroborated by the observation of

a peak in the susceptibility, shown in Fig. A.13a-b. The sharp downturn in the susceptibility after

the transition indicates the system enters an antiferromagnetic ground state. A Curie-Weiss fit to

the inverse susceptibility is shown in Fig. A.13b. The fit was performed only for temperatures

between 5 and 10 K, avoiding lower temperatures due to the onset of significant correlations, and

higher temperatures due to the (likely) mixing of higher CEF levels. This fit yielded a Curie
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T = 1.8 K

c)

Figure 5.3: a) Susceptibility vs. temperature, χ(T ), of a powder sample of C-Er2Si2O7 in an applied field
of 0.01 T. A sharp drop-off of the susceptibility occurs at 2.3 K, consistent with antiferromagnetic order.
Susceptibility values are shown in SI units (m3/mol-Er), the value in Gaussian units (emu/mol-Er) can be
obtained by multiplying by 4π x 10−6. (inset) Zoom-in of the low temperature region of χ(T ). b) χ−1(T )
and fit of the Curie-Weiss law. The fit was limited to the temperature range of 5 - 10 K, yielding an effective
moment of µeff = 9.1(5) µB , and a Curie-Weiss temperature of θCW = −7.3(2) K. (inset) Zoom in on the
region where the Curie-Weiss fit was performed. c) Field dependent magnetization measurements performed
at 1.8 K on a powder of C-Er2Si2O7. At 5 T the magnetization appears to be approaching the saturated limit,
and powder-averaged moment of 4.8 µB is observed.

constant of 10.4(1) mol-Er·K/emu (8.30(12) × 105 mol-Er·K/m3), corresponding to an effective

moment of µeff =9.1(5) µB, which is below the free-ion value µfree
eff = gJ

√

J(J + 1) = 9.58µB,

where J = 15/2 is the total angular momentum and gJ = 6/5 is the Lande g-factor for Er3+.

The Curie-Weiss temperature was θCW=-7.3(2) K. This yields a frustration index (f = θCW/TN )

of 3.2, indicating the system is only lightly frustrated. However, we note that Curie-Weiss fits

can prove unreliable for rare-earth ions, with significant non-linearity in the inverse susceptibility

arising from CEF effects. As the first crystal field level energy is not known for C-Er2Si2O7, it is

uncertain how accurate this fit is, even within this low temperature regime.

The field dependence of the magnetization at T=1.8 K is shown in Fig. A.13c. The magne-

tization is approximately linear up to 1 T, where it then begins to saturate near 5 T, though we

note that a fully saturated state is not expected due to mixing with higher CEF levels as the field

is increased. The powder averaged “saturated” moment at 5 T is nearly 4.8 µB, which falls well

below the maximum allowed value of µfree
eff = 9.58µB. This is not surprising, as the Kramer’s dou-

blet CEF ground state likely carries a strongly anisotropic g-factor, which will appear as a reduced
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saturated moment on powder averaged data. Further, the ground state CEF wavefunctions likely

do not solely consist of the maximum Jz eigenstates, which will also reduce the observed magnetic

moment compared to the maximum possible value.

Neutron Diffraction

Powder neutron diffraction measurements obtained using BT-1 were refined using the FullProf

software [88] and the SARAh suite (using the Kovalev tables) [89, 90]. The resulting Rietveld

refinement for the magnetic structure of C-Er2Si2O7 on the data obtained at 320 mK with 4 K data

subtracted is shown in Fig. 5.4a. A symmetry analysis of the allowed |k| = 0 magnetic structures

for C-Er2Si2O7 provided four possible irreducible representations. The Rietveld refinement of C-

Er2Si2O7 yielded a |k| = 0 magnetic structure in the Γ4 irreducible representation with the space

group C2′/m. The Γ4 irreducible representation contained two basis vectors for atom 1: ψ5 =

(2,0,0) and ψ6 = (0, 0, 2). The basis vectors for atom 2 are the negative of the basis vectors for

atom 1, guaranteeing colinear antiferromagnetism. The coefficients for these basis vectors are C5

= -0.84(3) and C6 = 3.03(1). These coefficients yield the magnetic structure shown in Fig. 5.1.

The structure is a simple Néel structure with the moments canted 13◦ away from the c-axis toward

the a-axis. Multiplying the coefficients by their respective basis vectors and considering the non-

orthogonal axes, the ordered moment extracted from the fit is 6.61 µB.

The thermal evolution of the (110) magnetic Bragg peak intensity is shown in Fig. 5.4b-c. The

data shown in Fig. 5.4c is a sum of the intensity over the full detector sweep used (i.e. the range of

|Q| values shown for the example peaks in panel b). The magnetic intensity shows the typical shape

for a second order antiferromagnetic transition with a Néel temperature of 2.3 K. An attempt was

made to fit the intensity in the proximity of the Néel temperature to extract the order parameter’s

critical exponent, β. However, the point density in the proximity of TN was too low to accurately

determine the critical exponent. Additionally, there is critical scattering that persists above TN that

further complicates the fitting of the critical exponent. The dashed line on this figure is a guide to

the eye.

67



b)

a)
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Figure 5.4: a) Rietveld refinement of neutron diffraction data measured at 320 mK with the 4 K data (nuclear
Bragg peaks) subtracted, which is well fit by the |k| = 0 structure shown in Fig. 5.1. b) A selection of peaks
from parametric scans over the (110) Bragg peak, used for the order-parameter curve in panel c. c) Evolution
of the (110) Bragg peak intensity with temperature. The black dashed line is a guide to the eye showing
the extrapolation to the Néel temperature of 2.3 K, as expected based on the thermodynamic measurements
above. The right-side axis shows the corresponding ordered moment, determined based on the refinement
of the 320 mK data. Error bars are smaller than the points shown. Note: each intensity point shown is the
sum of the intensity over the whole peak between Q = [1.11, 1.21] Å−1.
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Comparison to Yb2Si2O7

As C-Er2Si2O7 is isostructural to Yb2Si2O7 , it is worthwhile to consider why C-Er2Si2O7

magnetically orders and Yb2Si2O7 does not (in the absence of a magnetic field). The difference

in ground states may be due to slight differences in bond lengths. The nearest-neighbor and next-

nearest-neighbor bond lengths differ by 3.5% in Yb2Si2O7 , while the difference is only 2.5% for

C-Er2Si2O7. This indicates that C-Er2Si2O7 is closer, at least in the sense of the bond lengths,

to being a “perfect” honeycomb lattice. It is well-known that the ground-state of a structurally

isotropic honeycomb lattice with nearest-neighbor antiferromagnetic XXZ exchange is the Néel

state [106], due to the bipartite nature of the lattice. Likewise, the presence of more pronounced

structural dimers in Yb2Si2O7 compared to C-Er2Si2O7 would naturally seem to lead to a dimerized

quantum (singlet) state. However, the details of the exchange interactions in rare earth insulators

is not only a matter of bond lengths — it also depends on the bond angles and the nature of the

angular momentum states involved in the exchange [107]. We therefore expect some differences

between C-Er2Si2O7 and Yb2Si2O7 to arise due to the presence of different strengths of anisotropic

exchange. It would be reasonable to expect dipolar interactions to be stronger in C-Er2Si2O7 due

to the higher overall moment Er3+ (µeff = 9.1 µB) in comparison to that of Yb3+ (µeff = 3.0 µB)

in this structure. Ideally, the exchange interactions of C-Er2Si2O7 could be extracted via high-field

inelastic neutron scattering, but this requires single crystal samples. We have not been successful

in growing single crystals of C-Er2Si2O7 via the optical floating zone technique because the high-

temperature polymorph, D-Er2Si2O7, is stabilized from the melt instead [34].

5.2.5 Conclusions

We have used specific heat, magnetic susceptibility, and neutron diffraction measurements to

explore the low-temperature properties and magnetic structure of C-Er2Si2O7. Our specific heat

measurements show a sharp lambda-like anomaly at TN = 2.3 K indicating a transition to long

range magnetic order. This is corroborated by magnetic susceptibility measurements and neutron

powder diffraction, which both reveal an antiferromagnetic transition at 2.3 K. Furthermore, the
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neutron diffraction measurements allowed for the determination of the magnetic structure below

2.3 K. The ordered magnetic structure consists of a |k| = 0 antiferromagnetic Néel state, with 6.8

µB moments pointing in the a-c plane (13◦ from c). The different ground states of C-Er2Si2O7

and the isostructural quantum dimer magnet system Yb2Si2O7 are interesting from the perspective

of understanding how the relevant rare-earth species affects the nature of exchange interactions

in quantum magnets of fixed geometry. One possible avenue for future work, which would not

require single crystals, is the measurement of the crystal field parameters for Er3+ in C-Er2Si2O7.

The C2 point group symmetry results in eight independent Steven’s parameters. These can likely

be determined via inelastic neutron scattering, since there are also eight Kramer’s doublets for

the Er3+ ion (J = 15
2

), thus their energies and relative intensities provide enough constraints

to determine the crystal field Hamiltonian. This would also allow some insight into the crystal

field Hamiltonian for Yb2Si2O7, an important open question that cannot be easily addressed using

inelastic neutron scattering directly due to there being fewer Kramer’s doublets available (only

four in that case), which can result in an under-constrained fit [108]. An additional avenue for

future work would be the determination of the exchange interactions for C-Er2Si2O7 using inelastic

neutron scattering on single crystal samples, if they become available. This would be of great

benefit to further enable the understanding of how different rare-earth species affect the nature of

the exchange interactions in quantum magnets.
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Chapter 6

Summary and Future Work

6.1 Summary

In this dissertation, I have outlined our experiments and results on three members of the rare-

earth pyrosilicate family of compounds: Yb2Si2O7, D-Er2Si2O7, and C-Er2Si2O7. In Chapter 3,

I presented our paper, Novel Strongly Spin-Orbit Coupled Quantum Dimer Magnet: Yb2Si2O7.

In this paper we utilized heat capacity, ultrasound velocity, and neutron scattering measurements

to characterize the quantum dimer magnet ground state and field-induced phase of Yb2Si2O7. At

zero field, we observed no signatures of magnetic ordering down to 50 mK, but a Schottky anomaly

which released R ln 2 of entropy per mole, consistent with an effective spin-1
2

picture, was mea-

sured via heat capacity. This lack of magnetic ordering in conjunction with our observation of a

coherent triplon excitation at zero-field confirms that Yb2Si2O7 is a new, rare-earth example of a

quantum dimer magnet ground state. When a magnetic field is applied along the c-axis of this

system, a transition is observed in ultrasound velocity and heat capacity measurements into a
−→|k|

= 0 antiferromagnetic structure. This is corroborated by the emergence of a Goldstone mode in

the inelastic neutron spectrum, consistent with the system spontaneously breaking a continuous

symmetry. The Goldstone mode is expected for a field-induced triplon BEC, indicating Yb2Si2O7

may be the first field-induced triplon BEC crafted with rare-earth ions. As the magnetic field

strength is increased, an unexpected change in the ultrasound velocity is observed at Hm = 1.2

T, but the Goldstone mode persists, indicating this state still spontaneously breaks a continuous

symmetry. The exact cause for this transition is not currently understood, but recent theoretical

works by Flynn, et. al. [84] indicated that this signature may arise due to competing forms of weak

anisotropy. As the field is increased to 1.4 T, the system exits the antiferromagnetic phase and is

now a field-polarized paramagnet. In the field-polarized paramagnet regime, we were able to fit the

inelastic neutron scattering spectrum using linear spin-wave theory, yielding exchange interactions
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that are U(1) symmetric, as required for a field-induced triplon BEC. These measurements provide

strong evidence that Yb2Si2O7 is the first rare-earth based triplon BEC. The naturally lower energy

exchange interactions of the rare-earth atoms - due to the highly localized 4f electrons - result

in very low critical fields that are accessible by virtually all laboratory based magnets, something

that is not true for many of the 3d transition metal based BEC systems. Additionally, the inherent

anisotropy expected from a rare-earth ion allows for the possibility of probing how the BEC theory

breaks down in the regime of weak anisotropy. Overall, Yb2Si2O7 provides an exciting playground

for probing BEC physics and adds another "simple" quantum state to the roster of states that have

been observed both in bare spin-1
2

systems and pseudo spin-1
2

systems.

Our paper, Magnetic properties of the Ising-like rare-earth pyrosilicate: D-Er2Si2O7, is pre-

sented in Chapter 4. In this work, we used AC susceptibility, neutron diffraction, and powder

inelastic neutron scattering to characterize the ground state and field-induced behavior of the quan-

tum magnet, D-Er2Si2O7. D-Er2Si2O7 magnetically orders at 1.9 K and a Rietveld refinement of

our neutron diffraction measurements confirms the system magnetically orders in a
−→|k| = 0 mag-

netic structure. This structure is consistent with the previously predicted structure derived from

magnetometry measurements and Monte-Carlo simulations [2]. Our zero-field powder inelastic

neutron scattering spectrum show two excitations, one at 0.2 meV and one at 0.6 meV. The latter

excitation softens in an applied magnetic field, reaching zero energy near 1 T, consistent with the

system undergoing a quantum phase transition. The inelastic neutron scattering was performed on

a powder which means the field is applied in all directions. It was not possible to see signatures

of TFIM if they are present. However, this work does give a hint that D-Er2Si2O7 may be a TFIM

system. Only a few experimental realizations of the TFIM are currently known, yet this model is

highly relevant regarding non-equilibrium quantum dynamics [77] and quantum computing [109].

If D-Er2Si2O7 can be confirmed to be a new transverse field Ising model system, it will allow for

the advancement of theoretical understanding of the TFIM and anisotropic exchange in rare-earth

based compounds.
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Chapter 5 consists of our paper, Néel Ordering in the Distorted Honeycomb Pyrosilicate: C-

Er2Si2O7. In this work, we used powder neutron diffraction, heat capacity, and magnetometry to

characterize the magnetic order in C-Er2Si2O7. Our heat capacity and magnetometry data found the

Néel temperature for the magnetic ordering to be 2.3 K. We then performed a Rietveld refinement

on the powder neutron diffraction data to find a structure consistent with a collinear Néel state in

the magnetic space group C2’/m, with ordered moment of 6.61 µB canted 13◦ away from the c-axis

toward the a-axis. C-Er2Si2O7 is isostructural to the quantum dimer magnet compound, Yb2Si2O7,

yet C-Er2Si2O7 magnetically orders while Yb2Si2O7 does not magnetically order in zero field. The

understanding for this difference is not currently clear, but it is not surprising given the sensitivity

of magnetic states to the exchange and single ion anisotropy.

6.2 Future Work

There are numerous possible avenues for research in the pyrosilicate family of compounds

I have discussed in this work. Regarding Yb2Si2O7, there are a few outstanding questions: (1)

How isotropic is this system? We are able to state that the anisotropy must be less than 16%

of the J intra exchange interaction strength, but this only sets the upper bound for the anisotropy.

(2) How does the system act for different field directions? (3) Does the transition lie within the

BEC universality class? The first two of these questions can be addressed by performing inelastic

neutron scattering measurements along a different field direction, allowing for more robust fitting

of the spin waves with linear spin wave theory. The third question may be addressed by performing

numerous low temperature magnetic field sweeps that probe the magnetization of the system, such

as magnetometry. One other extremely promising avenue that expands upon the unique features

of Yb2Si2O7 is in the realm of Bose-glass physics. The Bose-glass state in a magnetic system can

be realized by doping a BEC compound with non-magnetic impurities. These impurities affect the

field induced phases of the system and exhibit a form of Anderson localization. A rare-earth based

system is ideal for this type of study due to the interchangeability of the lanthanide atoms.
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In the Ising-like material, D-Er2Si2O7, the most pressing question is what is the nature of the

exchange interactions and how are (might) these be connected to quantum criticality. This question

can likely be resolved by performing single crystal inelastic neutron scattering measurements with

the field applied transverse to the Ising direction. These measurements would allow for a tracking

of the mode softening and high-field data can be fit with linear spin wave theory to extract the

exchange parameters. With the exchange interactions and tracking of the mode softening we will

be able to further study of the phase transition at 2.65 T in a transverse field, thus shedding light

on any quantum criticality in the system.

Finally, the compound C-Er2Si2O7 provides a unique opportunity to better understand ex-

change interactions in rare earth oxides. Measurement of the exchange interactions of C-Er2Si2O7,

if single crystals become available, may show why C-Er2Si2O7 magnetically orders. Additionally,

if single crystals do not become available, powder inelastic neutron scattering can be used to mea-

sure the crystal electric field levels. Since C-Er2Si2O7 has the same structure as Yb2Si2O7 these

parameters can be scaled to garner an understanding of Yb2Si2O7’s crystal electric field [110].

Overall, the rare-earth pyrosilicate family of compounds shows promise for being a new system of

compounds that can advance our understanding of the ground states of rare-earth based quantum

magnets.
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Appendix A

Supplemental Information on Yb2Si2O7

A.1 Sample Preparation

Polycrystalline Yb2Si2O7 was synthesized by combining stoichiometric amounts of Yb2O3 and

SiO2, pressing under hydrostatic pressure of ∼480 kPa, and heating 4-5 times at 1350◦C for 48

hours, with regrinding between heatings to promote reaction, until phase purity was achieved (as

confirmed by powder x-ray diffraction in air). Sintered cylindrical rods with diameter of 8 mm

were prepared from these powders for optical floating zone crystal growth. A Crystal Systems

furnace (FZ-T-10000-H-VIII-VPO-PC) was used for the crystal growth. Multiple growths were

performed to optimize the parameters. The most successful growths were performed with 1.5 kW

lamps (70-73% power), with a growth rate of 3-5 mm/hr, under an atmosphere of flowing oxygen

(1-2L / min), with a counterrotation of the upper and lower rods of 20 rpm. Every growth resulted

in cracked boules, which upon further study by Laue x-ray diffraction, were found to be multi-

crystalline. The boules were broken into separate single crystals (typical size approximately 3 × 3

× 2 mm3) which were clear and colorless (see Fig. 1c of main text).

A.2 Crystal Electric Field Considerations

The low point group symmetry of Yb3+ in Yb2Si2O7 (C2) leads to nine independent Steven’s

parameters in a crystal field Hamiltonian [111]. Determining these experimentally, for example by

an inelastic neutron scattering measurement of the single ion energy levels, is an underdetermined

problem, since such an experiment only gives access to three transitions (between the four Kramers

doublets). Thus, the CEF ground state for Yb2Si2O7 is experimentally unknown. However, our

observations do restrict some of the properties of the CEF ground state. Perhaps most significantly,

we find that the ψ1,±1 modes are not easily visible via inelastic neutron scattering atEi = 1.55 meV.

This can be explained if the CEF ground state doublet for Yb3+ does not have a significant matrix
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element for transitions induced by J+ or J−. For example, a CEF ground state doublet that is

composed primarily of a single |Jz〉 eigenstate (except |Jz〉 = ±1/2), will have vanishingly small

matrix elements to the excited ψ1,±1 states, as discussed below.

Assuming XXZ symmetry for the intradimer interactions, the dimer eigenstates are given by:

|ψ0,0〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

|ψ1,+1〉 = | ↑↑〉

|ψ1,−1〉 = | ↓↓〉

|ψ1,0〉 =
1√
2
(| ↑↓〉+ | ↓↑〉)

where the pseudo-spins can be identified as the CEF Kramer’s doublet ground states |±〉, i.e.,

| ↑〉 = |+〉 and | ↓〉 = |−〉. These Kramer’s doublet wavefunctions can be expressed as linear

combinations of Jz eigenstates, |J,MJ〉, within a constant J manifold [112]:

|+〉 =
J
∑

MJ=−J

CMJ
|J,MJ〉,

|−〉 =
J
∑

MJ=−J

C∗

MJ
(−1)J−MJ |J,−MJ〉

The neutron scattering intensity for transitions from the ground state to the excited states of an

isolated dimer are proportional to:

I ∝〈ψ0,0|Jz1|ψ1,±1〉2 + 〈ψ0,0|J+1|ψ1,±1〉2 + 〈ψ0,0|J−1|ψ1,±1〉2 + . . .

〈ψ0,0|Jz2|ψ1,±1〉2 + 〈ψ0,0|J+2|ψ1,±1〉2 + 〈ψ0,0|J−2|ψ1,±1〉2,

where, for example, Jz1 indicates the operator acts on site 1.

As a concrete example, for |±〉 = |7/2,±7/2〉 (which we abbreviate as |± 7/2〉), the first term

gives,
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1

2

(

〈7/2|Jz1| ± 7/2〉〈−7/2| ± 7/2〉 − 〈−7/2|Jz1| ± 7/2〉〈7/2| ± 7/2〉
)2

= 0,

since whenever the left inner product of each term (corresponding to site 1) is non-zero (for in-

stance, in the first term, when working with the upper sign), the right inner product (corresponding

to site 2) is zero. Meanwhile the second term gives,

1

2

(

〈7/2|J+1| ± 7/2〉〈−7/2| ± 7/2〉 − 〈−7/2|J+1| ± 7/2〉〈7/2| ± 7/2〉
)2

= 0,

since the raising operator does not connect | − 7/2〉 to |7/2〉. All other terms behave similarly.

Meanwhile, by similar arguments, one can see that the intensity for the transition from ψ0,0 to ψ1,0

is non-zero so long as there is a non-zero overlap of 〈±|Jz|±〉, which is generally expected to be

true except in some “accidental” cases where
∑

MJ
MJ |CMJ

|2 sums to zero.

The Kramer’s doublet composition for Yb2Si2O7 is currently unknown. Based on the reasoning

presented here and our observation of INS intensity only in the ψ1,0 mode, we anticipate that the

doublet has relatively weak matrix elements for the raising and lowering operators (e.g. 〈−|J+|+〉)

compared to 〈±|Jz|±〉. However, the g-values inferred based on (nearly) saturated magnetization

at H = 5T (ga∗ = 3.2, gb = 2.0, gc = 4.8) are not strictly Ising-like, implying there are non-zero

matrix elements 〈−|J±| +〉.

A.3 Specific Heat Fitting

Modelling the specific heat arising from the excitation of triplons with dispersion relation ǫ(k)

is a fairly non-trivial problem. In the very low-temperature limit, this can be accomplished [113]

simply by considering a model of non-interaction Bosons, giving

Cm(T ) = kBβ
2
∑

k,α

[ǫα(k)]
2 eβǫα(k)

[eβǫ(k) − 1]2
. (A.1)
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As this expression neglects the fact that triplons are hard-core Bosons and interactions must be

taken into account, it is not applicable at temperatures approaching the gap energy and higher. To

fit the specific heat from low temperature to above the triplon band, one can instead estimate the

appropriate specific heat with the following expression,

Cm(T ) =
β2

2





∑

α,k[ǫα(k)]
2e−βǫα(k)/Ω

1 +
∑

α,k e
−βǫαk/Ω

−
(

∑

α,k ǫα(k)e
−βǫα(k)/Ω

1 +
∑

α,k e
−βǫα(k)/Ω

)2


 (A.2)

which is taken from Refs. [114, 115]. The index α labels the three possible triplon bands and Ω

is the volume of the Brillouin zone. In the case of Heisenberg interactions, the three triplon bands

become degenerate in zero field, hence the expression can be simplified to

Cm(T ) =
β2

2

[

3
∑

k[ǫ(k)]
2e−βǫ(k)/Ω

1 + 3
∑

k e
−βǫk/Ω

−
(

3
∑

k ǫ(k)e
−βǫ(k)/Ω

1 + 3
∑

k e
−βǫ(k)/Ω

)2
]

(A.3)

In order to fit the data in Fig. 2a of the main document, we use the above expression and the

following dispersion relation:

ǫ(k) = Jintra + 2Jinter cos(kx/2) cos(ky/2) (A.4)

which fairly effectively reproduces the form of the triplon dispersion measured with inelastic neu-

tron scattering in zero field. The fit of the data is very successful, indicating that fairly isotropic

interactions can adequately describe the physics of this system. While slightly anisotropic inter-

actions (which would lift the degeneracy of the triplon bands) could also fit the data, they are not

necessary. The resulting exchange constants Jintra = 0.236 meV and Jinter = 0.063 meV are fairly

close to the values obtained from the spin-wave analysis (Jintra = 0.217(3) meV and Jinter = 0.089(1)

meV, see section on fitting the field polarized spinwaves below). In any case, we should not expect

perfect agreement as this form of the specific heat is an approximation and assumes that the triplon

dispersion is independent of temperature, which is unlikely to be true. Whereas the fitting of the

specific heat data will primarily be affected by the shape of the dispersion at around 1 K (at the
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specific heat maximum), the inelastic neutron scattering measurements were performed at much

lower temperatures (50 mK).

A.4 Ultrasound Velocity Measurements

Sound velocity measurements were performed as a function of field applied along c∗ at fixed

temperature (as presented in the main text) and as a function of temperature at fixed field (as

presented in Fig. SA.1). The ultrasound velocity experiments were performed down to 50 mK

using a pulsed, time-of-flight interferometer. 30 MHz transducers were glued to parallel surfaces so

as to propagate longitudinally polarized sound waves along the c∗-axis. The absolute velocity of the

quasi-longitudinal mode studied here was approximately 3000 m/s and relative changes in velocity

(∆v/v) were measured with high precision using a phase-lock loop. Antiferromagnetic phase

boundaries could be determined at low temperatures (below 150 mK) from the field sweeps by

selecting a sharp change in slope (Hc1) and a minimum in sound velocity (Hc2). As the temperature

is raised, these anomalies are significantly broadened and it becomes impossible to determine phase

boundaries from the field sweeps. The top of the antiferromagnetic “dome” was thus determined

from small anomalies (abrupt changes in slope) in the temperature sweeps shown in Fig. SA.1.

These anomalies are entirely consistent with the peaks found in low-temperature specific heat

measurements.

The inset of Fig. 4c in the main text shows a comparison of the sound velocity field sweep with

the field-derivative of the neutron Bragg intensity, dI/dB, which is proportional to d(m2
z)/dB =

2mzχ. The agreement is excellent and this suggests that the sound velocity is well coupled to

the uniform longitudinal magnetization. However, a standard theoretical treatment gives a some-

what different relationship between magnetization and sound velocity. Assuming a linear-quadratic

magnetoelastic coupling term in the free energy

Fme =
1

2
κǫnm

2
z
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where κ is a magnetoelastic coupling constant related to a particular element of the strain tensor,

ǫn. Following the work of Quirion et al. [116], amongst others, the elastic constant is renormalized

as

Cmn =
∂2F

∂ǫm∂ǫn
− ∂2F

∂mz∂ǫm

(

∂2F

∂m2
z

)−1
∂2F

∂mz∂ǫn

For the particular mode studied here,

C33 = C0
33 −

(

∂2F

∂mz∂ǫ3

)2(
∂2F

∂m2
z

)−1

C33 = C0
33 − (2κmz)

2a−1 = C0
33 − κ2m2

zχz

Relative changes in sound velocity can then be related to relative changes in elastic constant

through
∆v

v
=

∆C33

2C0
33

= −κ
2m2

zχ

2C0
33

There are thus two striking differences between this simple theory and the results. 1. As men-

tioned above, experimentally ∆v/v ∝ |m|χ whereas the theory predicts ∆v/v ∝ m2χ. As such,

the dip at Hc2 is less pronounced experimentally than theoretically. 2. The area under the curve
∫ Bsat.

0
(∆v/v)dB, which according to theory should simply givem3

sat., is in reality strongly temper-

ature dependent. Hence, in the future, a more elaborate theoretical treatment of sound velocity for

such a system, including coupling to the antiferromagnetic order parameter and spin fluctuations,

would be valuable and might provide a more quantitative understanding of these results.

A.5 Single Crystal Neutron Scattering

Five single crystals were co-aligned using Laue X-ray scattering to achieve an overall mass of

1.1 g and a mosaic spread of less than 3◦ of the dominant grain. The crystal mount is shown in Fig.

SA.2. One of the crystals was later discovered to contain a misaligned grain, which is visible in the

neutron scattering data. The elastic scattering (-0.1 meV to 0.1 meV) shows Bragg peaks from the

misaligned grain, highlighted by red circles in Fig. SA.3. Figure SA.4 shows inelastic slices for
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Figure A.1: Ultrasound velocity measurements as a function of temperature at constant magnetic field.
Arrows indicate anomalies associated with antiferromagnetic ordering.

every applied magnetic field setting (H||c). The path through reciprocal space shown in these plots

is illustrated to the right of the figure. At low fields, the presence of the misaligned grain is clearly

observed, manifesting as what looks like an additional excitation branch in portions of the HK0

plane. It is particularly prevalent at (0.1,1,0) and (1,1,0). The excitations of this misaligned grain

are not visible for fields greater than 1.25 T. This may be due to the overall decrease in inelastic

intensity which occurs due to the development of strong magnetic Bragg peaks. Additionally, for

field values near Hc1 the Sz = ±1 modes (which we have called ψ1,±1 above) are (barely) visible

near the (1,1,0) reciprocal lattice point (also shown in Fig. S6 as line cuts). This indicates that the

aforementioned transition matrix elements from the ground state to the ψ1,±1 states are small but

non-zero.
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Figure A.2: The coalignment of five crystals used for the inelastic neutron scattering measurement.
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Figure A.3: Slices taken at the elastic line (integrated from E = −0.1 to 0.1 meV) with Ei = 1.55 meV.
Bragg peaks (both nuclear and magnetic in origin) arising from the main grain are labeled in white. Bragg
peaks from the misaligned grain are circled in red. The HKL values for reflections from the misaligned
grain were determined based on their 2θ values.
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Figure A.4: INS data at 50mK shown for an "open-rectangular" path of reciprocal space (shown in the
bottom right of the figure), for all the magnetic field strengths measured.
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Fig. SA.5 shows line cuts taken at |Q| = 0.2362 Å−1 for all the measured field strengths. The

primary excitation (ψ1,0) does not change in energy below Hc1 indicating its angular momentum

projection along the magnetic field is 0. Thus we conclude that this excitation is the excitation to

the Stot = 0, Sz = 0 mode. Additionally, the development of the branch connected to the Goldstone

mode is visible at ∼ 0.08 meV and is only observed for fields between Hc1 and Hc2.

ψ(1,0)

Goldstone mode

Figure A.5: Intensity vs. energy cuts of the inelastic neutron spectrum at |Q| = 0.2362 Å−1. The excitation
branch leading to the Goldstone mode is visible as a low energy peak between Hc1 ( 0.4 T) and Hc2 ( 1.4
T). Below Hc1, the peak near 0.19 meV remains at constant energy, identifying it as a Sz = 0 excitation (ψ0)

Fig. SA.6 shows line cuts on a logarithmic intensity scale, taken at (1, 1, 0) for three different

magnetic field strengths: 0.3 T, 0.5 T, and 3 T. The 3 T data is shown as a reference to what the

expected background would be for this energy range. At 0.3 T and 0.5 T the main ψ1,0 excitation is

observed at ∼ 0.12 meV and ∼ 0.14 meV, respectively. At H = 0.3T and 0.5T, two weak excitations

are seen to split off of the main line, which can likely be identified as the ψ1,±1 states. The weak

intensity of these modes is likely due to the effect of the crystal electric field on the matrix elements

for the transitions, as discussed above.
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Figure A.6: Cuts of the inelastic neutron spectrum at (-1, 1, 0), integrating over H = [-1.1,-0.9] and K =
[0.75,1.25] r.l.u. for three different magnetic field strengths. The sharp large peaks in 0.3 T and 0.5 T are
the Sz = 0 mode observed at all field values. On the lower and higher energy sides of this peak additional
features from the Sz = ±1 modes are observed.

A.6 Fits to Field-Polarized Spin Waves

The spin wave dispersions measured in the field-polarized limit (H = 3T) were fit using lin-

ear spin wave theory (LSWT) as implemented by the SpinW package [117], which evaluates the

goodness of fit based on agreement between the measured and calculated dispersions (and does

not include comparisons of intensities). Several types of fits were attempted, as described further

below. Each fit was performed using the "particle swarm optimizer" algorithm for 10 runs with

100 iterations per run, and a maximum number of function evaluations of 1×105. The outputs for

each fit are shown in Table A.1.

The magnetic structure was optimized for each new set of trial parameters (our addition to the

pre-existing SpinW fitting routine). The reference frame chosen by SpinW is x = a, y = b, and z =

c∗, so for our fits involving an XXZ form of the interaction Hamiltonian (where we have assume
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Table A.1: Parameters from the various types of fits (and comparing to the result of fitting the zero field
Cp). The quoted error for the parameters extracted from spin wave fits is from the standard deviation of the
respective parameters in the 10 runs.

Unconstrained Heisenberg Constrained Heisenberg XXZ/Heisenberg Specific Heat

Jintra (meV) 0.18(2) 0.217(3) Jintra, XX = 0.190(3), Jintra, Z = 0.180(4) 0.236(4)

Jinter (meV) 0.12(1) 0.089(1) 0.121(1) 0.06(2)

gzz 4.82(5) 4.68(1) 4.8 (fixed) N/A

z = c, i.e. the field direction, which we call the “experimental coordinate frame”), we performed

a coordinate transformation on the XXZ exchange matrix and constrained the variation of the

resulting (non-diagonal) matrix elements to ensure XXZ symmetry in the experimental frame. All

of our exchange parameters and symmetries mentioned below and in the main text are with

respect to the a∗, b, c basis, i.e., the experimental frame. Fits were performed with data taken

from the following slices: (-1K0), (H00), (H10), (-HH0), (H-2H0), and (-0.1K0). The spin waves

were fit to the Hamiltonian below:

H =
∑

<i,j>

Si J̄intraSj +
∑

<<i,j>>

Si J̄interSj +
∑

i

B ḡ Si

where J̄intra and J̄inter are the intra- and interdimer exchange interaction tensors as labeled in

Fig. 1a of the main text, and ḡ denotes the g-tensor. For the two exchange tensors, the lowest

possible symmetry is (based on the space group symmetries):

J̄intra =













A1 0 D1

0 B1 0

D1 0 C1













J̄inter =













A2 E D2

E B2 F

D2 F C2












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Using these full symmetry-allowed forms would constitute fitting 10 independent parameters,

which for our data set is infeasible. Therefore, we started with the lowest possible symmetry that

one would expect given the observation of a Goldstone mode with the field applied along the c-axis,

which is an XXZ type interaction. However, we did not fit J̄inter as XXZ due to a direct correlation

between Jintra, Z and Jinter, Z. With this in consideration, we fit the exchange interactions as XXZ

for Jintra and Heisenberg for Jinter shown in Fig. SA.7. The extracted parameters are: Jintra, XX

= 0.190(3) meV, Jintra, Z = 0.180(4) meV, and Jinter = 0.121(1) meV. Additionally, we would like

to remind the reader that we are using the convention of positive J meaning antiferromagnetic

exchange. This fit shows good qualitative agreement, however, along certain directions (such as

(H00), (H10), and (-0.1K0)) it fails to reproduce some intensity features. Additionally, the shape

of the dispersions do not exactly match, which is particularly evident along (H00) and (-0.1,K,0).

The reason for this disagreement is uncertain, but suggests that weaker in-plane anisotropies are

responsible.
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Figure A.7: (top row) Overlays of dispersion on the inelastic neutron scattering data using the Jintra XXZ
and Jinter Heisenberg fit parameters. The extracted parameters from this fit are: Jintra, XX = 0.190(3) meV,
Jintra, Z = 0.180(4) meV, and Jinter = 0.121(1) meV. There are four bands due to having 4 magnetic atoms in
the unit cell of Yb2Si2O7. (bottom row) Calculated neutron spectra for the same set of parameters.

We also include fits for Heisenberg symmetry on both Jintra and Jinter. In these fits we also

let the z component of the g-tensor gc vary ±0.5 from the value we infer from magnetization

measurements (4.8). The extracted parameters from the fit shown in Fig. SA.8 are: Jintra = 0.18(2)

96



meV, Jinter = 0.12(1) meV, and gc = 4.82(5). Visually, the Heisenberg fit produces similar results

to the XXZ fit, which is as expected since the intensities and dispersions of the in-plane (HK0)

spin waves should be determined by the in-plane interactions only (the z exchange acts like gc and

serves only to shift the bands up and down).
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Figure A.8: (top row) Overlays of dispersion on the inelastic neutron scattering data using the Jintra Heisen-
berg and Jinter Heisenberg fit parameters. The extracted parameters from this fit are: Jintra = 0.18(2) meV,
Jinter = 0.12(1) meV, and gc = 4.82(5). There are four bands due to having 4 magnetic atoms in the unit cell
of Yb2Si2O7. (bottom row) Calculated neutron spectra for the same set of parameters.

Considering qualitative agreement with the measured intensities (rather than just the dispersion

relations), we found that Heisenberg parameters constrained in the following way could provide

a better agreement: Jintra constrained between 0.18 and 0.3 while Jinter was constrained between 0

and 0.1. This range was roughly determined by manually adjusting the parameters and observing

how the intensities of the spectra changed. The parameters from this constrained fit are: Jintra =

0.217(3) meV, Jinter = 0.089(1) meV, and gc = 4.68(1). This was the most consistent fit we obtained

considering both dispersions and intensities. These constrained fits are shown in Fig. SA.9 below.

While the same issues exist regarding the agreement of dispersion relations for (H,0,0) and (-

0.1,K,0) directions, the intensity of trade-off between the upper and lower branches along (-1,K,0)

is captured better. In the main text we have adopted these parameters obtained from this version of

the fit.
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Figure A.9: (top row) Overlays of dispersion on the inelastic neutron scattering data using the Jintra Heisen-
berg and Jinter Heisenberg fit parameters that were constrained in fitting. The parameters from this fit are:
Jintra = 0.217(3) meV, Jinter = 0.089(1) meV, and gc = 4.68(1). There are four bands due to having 4
magnetic atoms in the unit cell of Yb2Si2O7. (bottom row) Calculated neutron spectra for the same set of
parameters.

In addition to the aforementioned improvements, the fit from Fig. SA.9 also provides a more

realistic Hc1 value if an isolated dimer model is considered. The calculation of the isolated dimer

model triplet splitting is shown in Fig. SA.10, where the lower band and upper band lines are

determined from the measured dispersion of the H = 0 T spin wave excitation (see main text).

A.7 Powder Neutron Diffraction

Neutron powder diffraction data (taken on the instrument BT1 at the NIST Center for Neutron

Research) confirms a lack of long range magnetic order in zero applied field. No magnetic Bragg

peaks are observed at 300 mK (see the high vs. low temperature difference plot in Fig. SA.11).

A.8 Powder Synchotron X-Ray Diffraction

Synchrotron X-ray powder diffraction was performed using the Advanced Photon Source at

Argonne National Laboratory using the 11-BM beamline with λ = 0.4122Å. Rietveld refinement

of the data agrees well with the previously published structure of Yb2Si2O7 [17]. Refined structural

parameters at 295 K are listed in Table A.2.
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Sz = -1

Sz = 0

Sz = 1

Figure A.10: Calculation of the eigenvalues of the triplet modes with an isolated dimer model using the
parameters from the constrained Heisenberg fit (Fig. SA.9). The upper and lower bound of the SZ = 1 mode
are shown using the bandwidth determined experimentally, as in this model they determine Hc1 and Hc2.

Table A.2: Structural parameters at 295 K. Space group C2/m, a = 6.7714(9), b = 8.8394(2), c = 4.6896(5),
β = 101.984(9).

Atom Site x y z

Yb 4g 0.5 0.8066(8) 0
Si 4i 0.7184(4) 0.5 0.4137(6)
O 2c 0.5 0.5 0.5
O 4i 0.8804(7) 0.5 0.7215(9)
O 8j 0.7362(8) 0.6510(8) 0.2160(4)

A.9 Magnetization

Magnetization was measured at 1.8 K using a Quantum Design SQUID magnetometer, shown

in Fig. SA.13. Proper orientation of the crystal was confirmed before and after measurements

using Laue x-ray diffraction.
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Figure A.11: Powder neutron diffraction data taken at 300 mK and 3 K. No additional Bragg peaks are
observed at 300 mK confirming the non-magnetic singlet ground state.
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Figure A.12: Synchrotron X-ray diffraction data measured on polycrystalline Yb2Si2O7 at 295 K (red data
points), with structural refinement (black line) and difference curve (purple line) shown.

A.10 High-Temperature Specific Heat

The magnetic specific heat of a polycrystalline sample of Yb2Si2O7 was found by subtracting

the specific heat of Lu2Si2O7 (the non-magnetic lattice analog), and is shown in Fig. SA.14. The
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T = 1.8 K

Figure A.13: Magnetization performed at 1.8 K along a∗, b∗, and c yields the g-tensor values shown in the
main text, ga∗ = 3.2, gb∗ = 2.0, and gc = 4.8.

data shows the field dependence of the low-temperature Schottky anomaly, and also show the

beginnings of a separate Schottky anomaly (upturn after 10 K) signaling the presence of a crystal

field level at approximately 120 K. The 0T data was reproduced at both Colorado State University

(using a Quantum Design Physical Properties Measurement System) and Université de Sherbrooke.
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Figure A.14: Field-dependent magnetic specific heat (lattice subtracted) from a polycrystalline sample.

Figure A.15: Magnetic entropy extracted from the 0T specific heat measurement. The entropy reaches Rln2
per Yb between 50 mK and 5 K, indicating a low temperature effective spin-1/2.
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A.11 Erratum

In the original version of this paper, we presented heat capacity data for numerous magnetic

field strengths (Fig. 3.2), however, inconsistencies encountered with measurements on different

compounds warranted checking the data presented for Yb2Si2O7. It was found that some of the

heat pulse fits for the low temperature measurements at 0.5 T, 0.8 T, and 1.2 T were incorrect,

likely due to not enough grease being used when mounting the crystal. A lack of grease can limit

the thermal conductivity from the platform to the sample, causing heat pulses that do not represent

the heat capacity of the sample. This is corroborated by a comparison of the original 0.5 T data and

the 0.5 T data with the pulses checked in Fig. A.16a, as the heat capacity matches well at higher

temperatures (above ∼0.3 K), but at low temperature - where the heat capacity is naturally lower

and the thermal conductivity becomes more important - the heat capacity values are quite different.

Subsequently, we have examined every pulse presented in the main text - except at 0 T - to look

for bad fits, similar to the one shown in Fig. A.16a. The 0 T data was measured by collaborators

at the Université de Sherbrooke on a different system, therefore the raw pulses were not available

to analyze. Removing the data with bad fits and adding 0.5 T data that was not included when

the paper was published yields an updated version of the figure shown in Fig. A.17 . Experiments

to remeasure the rest of the missing data are currently planned, but the measurements are not

available at the time of writing. The missing data does not significantly affect our conclusions on

the quantum dimer magnet ground state of Yb2Si2O7. The value forHc1 presented in the paper was

obtained from an ultrasound velocity measurement at 0.05 K, so it is unlikely that Hc1 will change,

but it is possible that the shape of the dome in the field-temperature phase diagram will change

slightly. The unknown phase in the field-temperature phase diagram should persist, as there are

still no sharp peaks in the 1.3 T data, indicating that the field polarized paramagnetic state is still

continuously connected to the unknown state in the high field regime of the BEC dome. Overall,

this error may change the shape of the dome in the field-temperature phase diagram, but it does

not significantly affect our main conclusions that Yb2Si2O7 exhibits a ground-state quantum dimer

The pulses for the added 0.5 T data were checked as well.
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a) b)

Figure A.16: a) A comparison of the 0.5 T specific heat data with verified good pulses (black) and the
original data (red) presented in the manuscript. The specific heat peak at 0.130 K for the 0.5 T data no
longer appears when the bad pulses are removed, indicating it was an artifact of the lack of thermal grease.
b) An example of a bad fit to the heating-cooling curve measured by the Quantum Design Dilution Insert
system. This fit is utilized to extract the specific heat values shown in panel b.

magnet state with field-induced signatures similar to that of traditional 3d transition metal BEC

compounds.
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0.5 T

0 T

0.6 T

0.8 T

1.2 T

1.0 T

1.3 T

1.6 T

Figure A.17: Reproduction of the specific heat figure shown in Fig. 3.2, but only showing data where the
pulses have been verified, aside from the 0 T data which was measured on a different experimental setup.
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A.12 Additional Data

A.12.1 Yb2Si2O7: Preliminary b-axis Heat Capacity Measurements

Measurements of the field-dependent specific heat for Yb2Si2O7 with the magnetic field ap-

plied along the crystallographic b-axis were performed using the quasi-adiabatic and the "long

pulse" measurement method. The former technique is outlined in Chapter 2.2.2. The latter method

- the "long pulse" method - applies a large heat pulse (a temperature rise of 200% is not uncommon)

to the sample and the temperature is measured as the sample cools back to the platform temperature

(shown in the inset of Fig. A.18a). The derivative of this temperature versus time graph can then be

computed to determine the heat capacity [118], resulting in a specific heat curve that looks similar

to the one shown in Fig. A.18a. To analyze the long pulse data, short pulse data is also needed,

but only a few measurements. This technique greatly improves the efficiency for measuring very

sharp transitions, i.e. transitions with significant latent heat - enabling the measurement of more

variations of an experimental parameter, such as magnetic field. Using this technique, prelimi-

nary specific heat data were obtained with the field along the b-axis of Yb2Si2O7 and is shown in

Fig. A.18b. The lower critical field, Hc1, for a field along the b-axis is approximately 1 T based

on this data. This is larger than the first critical field for the field along the c-axis (0.4 T) due to

the smaller g-tensor value along the b-axis. This data is not clear as to if the dome is asymmetric,

but it may be that the field being applied along the b-axis realizes a dome closer to those of the

traditional 3d BEC compounds.
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a)

CoolingHeating

b)

Figure A.18: a) Characteristic long pulse curve (blue) measured on Yb2Si2O7 with a 1.6 T field applied
along the b axis. The short pulse data needed to calibrate the long pulse data is also shown in orange. (inset)
A plot of the heat pulse used to extract the spcific heat in panel a. b) Preliminary data (blue) showing the
evolution of the specific heat peak in temperature and magnetic field for a magnetic field applied along the
b-axis of Yb2Si2O7. The data for the phase diagram for a field along the c-axis is shown in orange.
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Appendix B

Supplemental Information on D-Er2Si2O7

B.1 Heat Capacity Measurements

The heat capacity for 1.8 K to 100 K is shown in Fig. B.1. A broad feature on top of the

phonon contribution is observed. The peak of this feature occurs at ∼ 16 K and can be attributed

to a crystal field Schottky anomaly around 39 K, consistent with the lowest crystal electric field

level measured by Leask et. al. at 27 cm−1 (39 K) [2].

Schottky Anomaly

Figure B.1: Specific heat measured on a powder sample of D-Er2Si2O7.

B.2 Magnetic Structure Refinement

Additional neutron diffraction data obtained on a powder sample of D-Er2Si2O7 is shown in

Fig. B.2. The data at 10 K (Fig. B.2a) was used to perform a Rietveld refinement on the nuclear

structure of D-Er2Si2O7 with the Cu peaks masked. This yielded the following lattice parameters
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a)

b)

Figure B.2: a) Neutron diffraction data obtained using HB-2A at 10 K. The fit was performed after removing
peaks from the Cu canister. b) Neutron diffraction data obtained using HB-2A with the 10 K data subtracted
from the 2 K data showing the diffuse scattering expected in the vicinity of a second order phase transition,
with a peak centered at 1.2 Å.
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at 10K for D-Er2Si2O7 : a = 4.6808(8) Å, b = 5.5566(2) Å, c = 10.7864(4) Å, α = 90◦, β =

90◦, γ = 96.064(2)◦. These values found for the nuclear structure of D-Er2Si2O7 were used in the

refinement of the magnetic structure in Fig. 4.3a. The neutron diffraction data shown in Fig. B.2b is

a subtraction of the 10 K data from the 2 K data. This shows the development of diffuse scattering

expected in the vicinity of a second order phase transition. This is consistent with the magnetic

ordering transition observed in D-Er2Si2O7 at 1.9 K.
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Table B.1: A table showing the positions (x, y, z) of the four Er3+ sublattices in the unit cell, the representation for each basis vector in terms of the
(non-orthogonal) crystallographic a,b, c axes, the refined contributions (C10, C11, C12) of each basis vector, and the resulting refined moment vectors
for each Er3+ site.

Atom Info ψ10 ψ11 ψ12 Moment Direction
Atom x y z ma mb mc ma mb mc ma mb mc (a, b, c basis)

1 0.88829 0.09318 0.34934 1 0 0 0 1 0 0 0 1 (5.72(3), -2.34(6), -1.45(6))
2 0.11171 0.40682 0.84934 1 0 0 0 1 0 0 0 -1 (5.72(3), -2.34(6), 1.45(6))
3 0.11171 0.90682 0.65066 -1 0 0 0 -1 0 0 0 -1 (-5.72(3), 2.34(6), 1.45(6))
4 0.88829 0.59318 0.15066 -1 0 0 0 -1 0 0 0 1 (-5.72(3), 2.34(6), -1.45(6))

C10 = 5.72(3) C11 = -2.34(6) C12 = -1.45(6)
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b) c)

2.0 K

AFM

Order

1.5 K
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Figure B.3: a)-e) AC susceptibility data measured at several temperatures with f = 1000 Hz, HAC = 2
mT up to a DC field of 10 T (panel a) or 3.5 T (panels b through e) with the field applied perpendicular
to the Ising direction (i.e. applied along the x direction). The field-induced transitions are observable as
a kink in the real component of the susceptibility (χ′). f) Phase diagram for D-Er2Si2O7based on the AC
susceptibility measurements shown in panels a-e. The transition points represent the points where the real
part of the susceptibility (χ′) abruptly changes due to the transition. The shaded region indicates AFM order.

The basis vector composition of the three basis vectors (ψ10, ψ11, ψ12) in the Γ4 irreducible rep-

resentation are shown in Table B.1. These basis vectors are part of the Γ4 irreducible representation

which relates to the "m" point group symmetry and magnetic space group P21’/c.

B.3 AC Susceptibility and Magnetometry

B.3.1 Measurements along the transverse direction

Additional AC susceptibility measurements for a field applied perpendicular to the Ising direc-

tion are shown in and Fig. B.3. All data in this shown in this section is measured with f = 1000

Hz and HAC = 2 mT. The data shown in Fig. B.3a demonstrates the susceptibility up to a DC field

of 10 T. The transition observed in Fig. 4.2 at 2.65 T is also observed here. At high fields the signal
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becomes diamagnetic, partly from the sample, partly from the mount and glue, and is likely due to

the small moment along the transverse field direction which becomes saturated, leading to a small

paramagnetic response. The data shown in Fig. B.3b-e consists of four constant-temperature field

sweeps (increasing field) and demonstrates how the 2.65 T transverse field transition evolves with

temperature. There is little change in the imaginary component of the susceptibility (χ′′) as the

temperature increases, but the real component of the susceptibility (χ′) changes, with the transition

moving down in field as the temperature is increased. Measurements with the field decreasing were

not performed for these temperatures and therefore no statement regarding the hysteresis observed

in Fig. 4.2 can be made.

B.3.2 Measurements along (491)

As mentioned in the main text, a previous version of this manuscript showed AC susceptibility

data that was presented as a field applied transverse to the Ising direction, but it was later discov-

ered that the measurements were actually for a field applied 37◦ from the average Ising direction,

approximately along the (491) direction. We have included these data here (Fig. B.4). A compar-

ison of data with f = 100 Hz at T = 0.075 K (originally shown in the main text) and 0.5 K is

shown in Fig. B.4a. The data at 0.075 K shows a sharp peak in both the real (χ’) and imaginary

(χ′′) components at 0.9 T, with a small shoulder near 0.65 T. This shoulder has no significant imag-

inary component. This changes at 0.5 K, where the shoulder increase significantly in magnitude

in the real part of the susceptibility. We also see that the peak in the imaginary component shifts

to coincide with the shoulder at 0.65 T. Similar changes are observed for a comparison of data

with f = 1000 Hz and T = 0.05 K and 0.5 K, shown in Fig. B.4b. Overall, there is not a large

difference between data measured at f = 100 Hz and f = 1000 Hz. One notable signature is

that the transition at 0.65 T changes in magnitude with higher frequencies, indicating there may be

some frequency dependence to this transition. The cause for these changes is not currently known,

but may indicate a more complex field-induced phase diagram.
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f = 100 Hz

f = 1000 Hz

Figure B.4: a) AC susceptibility at 0.075 K and 0.5 K performed with a frequency of 100 Hz in an DC
magnetic field applied 37◦ from the average Ising direction, approximately along the [491] direction. and a
2 Oe AC magnetic field. b) AC susceptibility at 0.05 K and 0.5 K performed with a frequency of 1000 Hz in
an DC magnetic field applied 37◦ from the average Ising direction, approximately along the [491] direction.
and a 2 mT AC magnetic field.

The DC magnetometry measurements that enabled us to identify the issue with the alignment

are shown in Fig. B.5. These measurements were performed with a 3He insert for the Quantum

Design MPMS3. Measurements were performed for a field applied 37◦ from the average Ising

direction, approximately along the [491] direction. The fact that the measured moment is so large
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Figure B.5: a) A grayscale view of numerous constant-temperature field sweeps for the field-derivative of
the DC magnetic susceptibility, showing a transition at 0.65 T that decreases in field as the temperature is
increased. b-e) Characteristic field sweeps from the data shown in panel a).

along this field direction (6 µB) led to the discovery that the sample was misaligned, as the trans-

verse field direction would be expected to have a maximum moment of 1.3 µB (based off Leask

et. al’s g-tensor value of 2.6 for the transverse field direction).
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B.4 MACS Data

Additional inelastic slices from the MACS data at 5 T (panel a) and 7 T (panel b) are shown in

Fig. B.6. Both sets of data show Branch 2 increasing in energy relative to the 3 T data shown in

Fig. 4.4e. Note, in Fig. B.6 the energy window was increased from 1 meV to 2 meV to allow all of

Branch 2 to be visible.

a)

b)

5 T

7 T

Figure B.6: a) Energy vs. |Q| slices (Tavg = 0.16 K) at µ0H = 5 T. Branch 2 has increased relative to 3 T
(Fig. 4.4e) due to Zeeman splitting. b) Energy vs. |Q| slices (Tavg = 0.16 K) at µ0H = 7 T. Branch 2 has
increased relative to 5 T, causing the energy window displayed to be increased from 1 meV to 2 meV.
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