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ABSTRACT

A MULTI-TASK LEARNING METHOD USING GRADIENT DESCENT WITH

APPLICATIONS

There is a critical need to develop classification methods that can robustly and accu-

rately classify different objects in varying environments. Each environment in a classification

problem can contain its own unique challenges which prevent traditional classifiers from per-

forming well. To solve classification problems in different environments, multi-task learning

(MTL) models have been applied that define each environment as a separate task. We discuss

two existing MTL algorithms and explain how they are inefficient for situations involving

high-dimensional data. A gradient descent-based MTL algorithm is proposed which allows

for high-dimensional data while providing accurate classification results. Additionally, we

introduce a kernelized MTL algorithm which may allow us to generate nonlinear classifiers.

We compared our proposed MTL method with an existing method, Efficient Lifelong

Learning Algorithm (ELLA), by using them to train classifiers on the underwater unexploded

ordnance (UXO) and extended modified National Institute of Standards and Technology

(EMNIST) datasets. The UXO dataset contained acoustic color features of low-frequency

sonar data. Both real data collected from physical experiments as well as synthetic data were

used forming separate environments. The EMNIST digits dataset contains grayscale images

of handwritten digits. We used this dataset to show how our proposed MTL algorithm

performs when used with more tasks than are in the UXO dataset.

Our classification experiments showed that our gradient descent-based algorithm resulted

in improved performance over those of the traditional methods. The UXO dataset had a

small improvement while the EMNIST dataset had a much larger improvement when using

our MTL algorithm compared to ELLA and the single task learning method.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Many classification problems include multiple related tasks that cannot use the same

classifier. If a task does not contain a sufficient amount of training data by itself, training

tasks individually will not provide accurate classification results. For these problems, it is

critical to develop a multi-task learning (MTL) method [1,2] to train all tasks together using

all of their training data. This thesis uses two problems to test the effectiveness of different

MTL methods including the one developed in this work.

The main problem we focused on in this thesis was the classification of underwater targets.

The problem of classifying underwater objects such as mines or UXOs or other objects must

be performed in many different environments which may have significant variations between

each other such as water density, sediment material, and various types of interference. These

variations can cause differences in the received sonar signals of the same objects when ob-

served in different environments. Thus, a classifier trained for one environment may perform

poorly when used in others. This problem creates the need to develop a classification model

that works across environments. Training models for each environment individually does not

take advantage of the fact that observations of similar objects in different environments still

share many features.

The second problem we used to test our MTL algorithm was the EMNIST [3] digits

dataset containing images of handwritten digits. Instead of being different environments,

the tasks in this dataset were the 10 different digits. This dataset showed us how our

MTL algorithm performed against others when used to classify different classes in a single

environment.
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We also introduce kernel MTL (KMTL) to solve nonlinear classification problems. We

suggest a way to modify our gradient descent-based MTL algorithm so that it can be applied

to this KMTL problem. The implementation and testing of this method will be accomplished

in future work.

In this thesis, we describe existing algorithms for the training of multi-task learning

models and introduce an alternative method to train based on the gradient descent algorithm.

To show the effectiveness of this algorithm, we use it to train classifiers with the datasets

described above. The goal of this thesis is to determine if MTL is a good method to use for

the problem of underwater object classification as well as any similar problem.

1.2 Literature Review

Multi-task learning has been the topic of many recent works [1, 2, 4, 5]. Grouping and

Overlap in Multi-Task Learning (GO-MTL) [1] is a popular method that represents task

parameters as sparse combinations of atoms, or columns, in a single shared dictionary. The

proposed algorithm finds a dictionary and determines the sparse coefficients which atoms,

or columns, should be used by each task. The idea behind this method is to automati-

cally group similar tasks together during training by making them share dictionary atoms.

The optimization problem in GO-MTL is not convex, so there may be many local min-

ima. Additionally, solving this problem can become very computationally expensive for

high-dimensional datasets or with a large number of tasks. The Efficient Lifelong Learn-

ing Algorithm (ELLA) [2] is an MTL algorithm designed to be used for lifelong learning

which requires the ability for the MTL model to be updated after initial training by adding

training data to the existing tasks or adding new tasks. ELLA uses the second-order Taylor

approximation of the optimization problem in GO-MTL to update the dictionary every time

a task is updated or added. The updates to the dictionary affect all tasks and can improve

their performances. However, there is no guarantee that other tasks will improve and instead

may result in reduced performance. More detailed summaries of GO-MTL and ELLA are
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in Chapter 3. The authors of [4] introduce Collective Lifelong Learning Algorithm (CoLLA)

as an extension of ELLA to allow multiple agents each performing MTL. Each agent has its

own set of unique tasks with a shared dictionary and communicates with connected agents

by making their dictionaries equal when it receives an update. This method has the same

dimensionality problems as ELLA. In [5], the authors introduce a convex MTL model using

the hinge loss used in many support vector machines [6]. Because it is convex, there is no

risk of finding a local minimum. As with the previously explained MTL models, the task

parameters are described using a dictionary matrix. However, this model clusters tasks to-

gether by assigning each task to a single column of the dictionary without allowing overlap

between groups.

The authors of [7] define three different categories of transfer learning: inductive trans-

fer learning, transductive transfer learning, and unsupervised transfer learning. Multi-task

learning is described an example of inductive transfer learning which is the setting where

the source task and target task of knowledge transfer are different but related tasks, and the

target task contains labeled data. Unlike other transfer learning methods, MTL does not

have designated source and target tasks but instead allows all tasks to transfer knowledge

to all other tasks. In [8], the authors contrast transfer learning and MTL by explaining that

transfer learning provides larger benefits to target tasks than to source tasks while MTL

treats all tasks equally. These learning strategies both provide knowledge transfer between

tasks. However, they differ in terms of the direction of this transfer.

1.3 Contribution of this Work

Current MTL algorithms provide effective transfer learning between tasks. However,

they are very inefficient while dealing with high-dimensional data. This thesis introduces

a new method of training MTL model based on the gradient descent algorithm which has

iterations with linear time complexity with respect to the dimension of the data. Our
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algorithm is generally slower when using low-dimensional data but much faster with high-

dimensional data. This thesis also introduces a differentiable approximation of the ℓ1-norm

for the purpose of enforcing sparsity while having a defined gradient.

We tested our gradient descent-based algorithm for classification of the UXO targets as

well as digits in the EMNIST datasets and compared the results to those found by using

ELLA and a single task learner (STL). The proposed method resulted in the better perfor-

mance on both datasets. Although the gained improvement over the other two methods was

small on the UXO dataset, it led to a larger improvement on the EMNIST dataset.

For nonlinear classification problems, we introduce a kernelized version of the gradient

descent-based MTL algorithm. This kernel MTL algorithm is used for non-linear classifiers

and can be used on data that is not linearly separable. We do not present any testing results

of this kernel algorithm. Improvement and testing of the kernel MTL is included in future

works.

1.4 Organization of the Thesis

Organization of the thesis is as follows. Chapter 2 explains how the fast ray model (FRM)

is used to simulate the propagation of acoustic waves underwater and generate synthetic

acoustic color features. The physical setup of the target and reverberation experiment 2013

(TREX13) dataset and acoustic color extraction were also covered in this chapter. The

chapter finishes by describing the EMNIST dataset of handwritten characters. In Chapter 3,

we review two existing MTL methods, namely GO-MTL [1] and ELLA [2], and discuss both

their strengths and weaknesses. Chapter 4 introduces our gradient descent-based approach

to the MTL problem. We then discuss the strengths and weaknesses of this method and

compare them to those of GO-MTL and ELLA. Chapter 5 explains how the MTL objective

function can be kernelized and presents an algorithm to solve this kernel MTL problem.

Chapter 6 gives the setups of the experiments for classification of UXOs and handwritten

digits and presents classification results with an analysis. The thesis ends with Chapter 7

4



by reviewing the covered materials and suggesting potential future work.
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CHAPTER 2

DATASETS AND DESCRIPTION

2.1 Introduction

In this chapter, we introduce the two different datasets that are used to demonstrate the

effectiveness of the proposed method and conduct comparisons with other methods. The

first dataset consists of feature vectors extracted from underwater sonar data collected for

the purpose of classifying UXO vs. non-UXO objects. More specifically, we deal with the

target and reverberation experiment 2013 (TREX13) [9] dataset which contains acoustic

color [9] data collected from an experiment performed by placing different objects in the

Gulf of Mexico to generate our in-situ and testing datasets. This experiment used different

UXO and non-UXO targets but was conducted in a single environment. Collecting enough

real data from different environments requires more experiments which can be difficult and

costly. To get data needed to train classifiers, rather than performing many expansive data

collection experiments, we can instead use a model that can generate realistic synthetic sonar

data. The fast ray model (FRM) described in [9, 10] is used to generate large amounts of

acoustic color training data for objects of different materials and shapes while simulating the

responses in different environments. For a classification problem with more than two classes,

our second dataset is the EMNIST [3] digits dataset. The full EMNIST dataset contains a

large number of uppercase and lowercase letters along with digits. However, we only used

the subset consisting of handwritten digits in this work. This dataset contains more samples

of handwritten digits than the original MNIST dataset.

The chapter begins with Section 2.2 by reviewing the FRM and showing how it can

be used to generate the target-in-the-environment response (TIER) [9] of each target. Sec-

tion 2.2.1 shows how the responses are used to generate the acoustic color images. Section 2.3
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Figure 2.1: Four Ray Paths.

describes the physical setup of TREX13 test set and how the data was collected, and Sec-

tion 2.3.1 describes the process of generating the acoustic color images of the targets using

the collected data. Section 2.4 describes how the EMNIST dataset was generated and used

in this work. Finally, Section 2.5 gives concluding remarks on this chapter.

2.2 Fast Ray Model - Generated Data - Training Set

The fast ray model (FRM) [9, 11] is used to simulate the propagation and scattering

of underwater acoustic waves as they interact with underwater targets and the seafloor.

This method uses a finite element (FE) model [12] of each target to generate lookup tables

of scattering coefficients which can then be used to quickly perform these simulations in

different environments. Each target has a FE model which is used to simulate the scattering

of acoustic waves. The interaction of waves with the surface of the water can be ignored,

and the direct path from source to receiver is short, so the signal travelling this path can be

removed. The four propagation paths used are shown in Figure 2.1.

The source (S), receiver (R), and target (T) are located at rS, rR, and rT with the image

source (S1) and image receiver (R1) located at rS1, and rR1, respectively. The relevant

distances are d1 = ‖rS − rT‖, d2 = ‖rT − rR‖, d3 = ‖rS1 − rT‖, and d4 = ‖rT − rR1‖. The

time delays for the four paths are t1 = (d1 + d2)/c1, t2 = (d3 + d2)/c1, t3 = (d1 + d4)/c1, and

t4 = (d3 + d4)/c1 where c1 is the speed of sound in water.

The far field scattered pressure can be written [9] as

ps = p0A(ks,ki, ω)
exp(ikr)

r
(2.1)
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Figure 2.2: Sonar Wave Scattering

where p0 is the incident pressure and r is the distance from a field point to the target. The

scattering amplitude A(ks,ki, ω) is defined by the direction of the incident ki, the direction

of scattered field ks, and the angular frequency ω, and k = ω/c1 is the angular wavenumber.

The scattering amplitude contains information about the target’s shape and material.

This model assumes there are no waves that interact with the target multiple times such as

the path that hits the target, seafloor, and target again. It also assumes there is no scattering

caused by reflection off the sediment. The authors in [13] ran a simulation without these two

assumptions and compared the results to a physical experiment that included these paths.

It was shown that the differences in the results caused by the extra scattering is negligible.

The spectrum of the scattered pressure is

P (ω) =

(

A1(ω)

d1d2
eiωt1 +

V (θg)A2(ω)

d2d3
eiωt2+ (2.2)

V (θg)A3(ω)

d1d4
eiωt3 +

V 2(θg)A4(ω)

d3d4
eiωt4

)

r0Psrc(ω)

where θg is the grazing angle, Psrc(ω) is the spectrum of the transmitted pressure wave,

r0 = 1m is the reference distance, and Ak(ω) is the scattering amplitude in path k that

depends on the locations of the source, receiver, and target. The scattering amplitudes are

generate from the results of simulations using FE models and are therefore not written as a

8



mathematical expression. The reflection coefficient V (θ) is given by

V (θ) =
ρ sin(θ)−

√

κ2 − cos2(θ)

ρ sin(θ) +
√

κ2 − cos2(θ)
(2.3)

where ρ = ρ2/ρ1 and κ = (1 + jδ)/ν with ν = c2/c1. ρ1 is the density of water, and ρ2,

c2, and δ are the density, speed of sound, and loss parameter for the sediment, respectively.

The pressure model in (2.2) contains the received spectrum from all four paths. Taking the

inverse Fourier transform of (2.2) gives the received time domain signal.

2.2.1 Acoustic Color Features of Synthetic Data

The acoustic color features of a given target contain the returned spectral power at all

interrogated azimuthal angles (aspects) around the target. The features at each aspect

are used to classify the target using the methods to be explained in Chapters 3 and 4.

Generation of the acoustic color image of any given target starts by calculating the four

scattering amplitudes Ai(ω) in (2.2) by using a FE model to simulate the scattering of low-

frequency acoustic waves (1-30 kHz) for the target. Next, (2.2) generates the spectrum of

the sonar return signals along a circular path or a linear path around the target. Taking the

inverse Fourier Transform of these spectra gives the return signals. The received signals are

then pulse-compressed using the transmitted signal. Finally, the magnitudes of the Fourier

Transform of the pulse-compressed received signals were windowed to 1-30 kHz to get the

acoustic color features at each aspect.

Table 2.1 shows the type and location of the objects used in the FRM simulation. The

transmitted signal was a linear frequency modulated (LFM) chirp across the desired frequen-

cies. Model parameters such as sonar interface elevation and water conditions were set to

match those in the TREX13 dataset, and a linear path was used to match the TREX13’s

linear rail. These targets are all symmetric, so only the acoustic color features for half of the

aspects needed to be calculated. The objects simulated using FRM are identical to some of

those objects used in the TREX13 dataset, and most of the ranges of these targets are also

9



Figure 2.3: Comparison of acoustic color images from FRM (left) and TREX13 (right) for
an air-filled howitzer cap at a range of 25m from the rail.

equal. A comparison of an acoustic color image generated using FRM to that of the experi-

mental TREX13 is shown in Figure 2.3. As can be seen, the acoustic color image generated

using the FRM accurately contains many of the spectral features seen in the acoustic color

image of the same objects in the TREX13 dataset.

Table 2.1: Object Types and Ranges in FRM dataset.

Target Class Ranges(m)
3ft. Aluminum Cylinder non-UXO 10,30,35,40
2ft. Aluminum Pipe non-UXO 10,15,25,30

100mm. Aluminum Rocket Round UXO 10,15,30
100mm. Solid Steel Rocket Round UXO 10,15,25,30

105mm. Bullet (Air filled) UXO 15,20,25
105mm. Bullet (H2O filled) UXO 15,20,35

155mm. Howitzer w/ Cap (H2O filled) UXO 15,25,30
155mm. Howitzer w/o Cap UXO 25,30,40

2.3 TREX13 Dataset - Testing Set

TREX13 [9] was an experiment designed to detect and classify underwater targets using

low-frequency sonar. The experiment placed a sonar tower on a straight 40m long rail with

30 targets each placed about 10m to 40m away from the rail on the seafloor. The sonar

tower consisted of six hydrophones. However, only data collected from the third hydrophone

10



was used to create the acoustic color features. As the tower traveled along the rail, a 6ms

LFM chirp was transmitted every 0.025m, and the reflected signals were received by the

hydrophones. The 30 targets were first placed with their tails pointed at −80◦ to the rail,

and the tower was run along the rail. The measurements were captured with the targets

placed from −80◦ to 80◦ in 20◦ increments orientation angles in 10 separate runs. Each

run consisted of approximately 1600 pings sampled at 100kHz. These runs allowed for the

construction of acoustic color images of all targets. A list of some of the targets along with

their positions in the experiment is shown in Table 2.2. These correspond to the same objects

in Table 2.1 for which we have the model-generated data.

Table 2.2: Object Types and Ranges in TREX13 dataset.

Target Class Ranges(m)
3ft. Aluminum Cylinder non-UXO 30,35,40
2ft. Aluminum Pipe non-UXO 15,25,30

100mm. Aluminum Rocket Round UXO 10,15,30
100mm. Solid Steel Rocket Round UXO 10,15,25,30

105mm. Bullet (Air filled) UXO 15,20,25
105mm. Bullet (H2O filled) UXO 15,20,35

155mm. Howitzer w/ Cap (H2O filled) UXO 15,25,30
155mm. Howitzer w/o Cap UXO 25,30,40

2.3.1 Acoustic Color Features of TREX13 Data

The data collected during the experiment is the received stave data, so the generation of

acoustic color features of this data is similar to the process in Section 2.2.1 after calculating

the received signal. That is, the generation of these features begins by pulse compressing

the signal and isolating the object with a spatial filter [14]. The magnitudes of the Fourier

Transform of the filtered signal were windowed to 1-30 kHz to get the acoustic color image.

These features for each aspect contain 301 frequency bins with a frequency resolution of

100Hz. The aspect separation from of the acoustic color images is 0.5◦ with a total of 721

aspects per object. The dimensions of the acoustic color images of the TREX13 sonar data

match those of the synthetic sonar data generated using the FRM model [9].
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2.4 EMNIST Digits

The National Institute of Standards and Technology (NIST) maintains many datasets

including ones containing handwritten digits and letters. In 1995, NIST created their Special

Database 19 (SD-19) [15] which is a dataset of over 810,000 handwritten characters from

3600 writers. This dataset contains previously collected Special Databases 1 (SD-1), 3 (SD-

3), and 7 (SD-7). SD-19 is organized in 5 separate data hierarchies: By Page, By Author,

By Field, By Class, and By Merge. The By Page hierarchy contains the binary scans of

all 3699 completed forms. The By Author hierarchy contains the images of the individual

characters separated by their authors. The By Field hierarchy contains the individual char-

acters separated by the field in which they appear on the forms. The By Class hierarchy

organizes the characters into 62 classes consisting of 10 digits, 26 lower-case letters, and 26

upper-case letters. Finally, the By Merge hierarchy organizes the characters in the same

way as in By Class and merges the classes of letters that are similar when in lower-case and

upper-case. These letters are C, I, J, K, L, M, O, P, S, U, V, W, X, Y, and Z.

The modified NIST (MNIST) [16] dataset is derived from SD-1 and SD-3. SD-1 contains

58,527 digits written by 500 writers. The digits from 250 of the writers were placed in the

training set, and the digits from the other 250 writers were placed in the testing set. Images

from SD-3 were added to both the training and testing sets to increase them each to 60,000

examples. The final training set contains all 60,000 examples. However, the final testing set

contains only 10,000 samples with 5,000 from SD-1 and 5,000 from SD-3. The original images

in the NIST dataset are 128 × 128 binary images. The images were first down-sampled to

20× 20 and became 8-bit grayscale because of the anti-aliasing effect of their normalization

algorithm. Finally, each image was centered in a 28× 28 image using the image’s center of

mass.

EMNIST [3] is an extension of the MNIST dataset of handwritten digits and is derived

from the By Class and By Merge hierarchies of SD-19. SD-19 contains 128 × 128 binary

images which were converted to 28 × 28 8-bit grayscale images by applying the following
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Figure 2.4: Examples of EMNIST digits.

process to each image. First, a Gaussian filter with standard deviation σ = 1 was used to

soften the edges of the image. Next, the image was cropped to remove extra white space

and contain only the region of interest. The extracted image was then centered in a square

image and padded with a 2 pixel border. Finally, the image was resampled to 28× 28 using

bi-cubic interpolation and scaled to an 8-bit grayscale image.

EMNIST is organized into 6 different datasets. The first two datasets are By Class and

By Merge with the processing described above. The EMNIST Balanced dataset is a subset

of the By Merge dataset which is balanced to contain an equal number of all 47 classes with

131,600 total images. The EMNIST Letters dataset is a subset of the By Merge dataset which

merges all upper-case and lower-case classes together into 26 balanced classes consisting of

103,600 letters. The EMNIST digits dataset is another subset which contains 10 balanced

classes of 280,000 digits. Finally, the EMNIST MNIST dataset was created to match the

size of the MNIST dataset with 70,000 total images. In this work, we used a subset of the

EMNIST digits dataset containing 5000 samples for training and 4000 samples for testing.

2.5 Conclusion

The FRM explained in Section 2.2 is an effective tool to simulate the propagation of sonar

signal and generate synthetic data used for training of the MTL algorithms. We showed the

scattering amplitude generated from the target’s FE model can be used to generate the

spectrum of the scattered pressure of all four ray paths. We also covered the process to

generate the acoustic color features of the synthetic data in Section 2.2.1 which can then

be used to train classifiers along with a small portion of the TREX13 dataset for in-situ
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training. A summary of the physical setup and collection of data in TREX13 was also

described together with the generation of the corresponding acoustic color features. The

final UXO datasets used in this work included 4000 feature vectors from the FRM dataset

and 400 feature vectors from the TREX13 dataset as the training dataset and 4000 feature

vectors from the TREX13 dataset as the testing dataset.

The next dataset covered was the EMNIST dataset containing handwritten digits and

letters. The EMNIST dataset was used since it allows us to test the developed methods

for M-ary classification (i,e, for M-class problems). The final EMNIST datasets used in this

work are the training dataset with 5000 images containing the digits only and the testing

dataset with 4000 separate images also consisting only of digits. The following two chapters

describe the algorithms used to perform classification on these datasets.
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CHAPTER 3

A REVIEW OF MULTI-TASK LEARNING

ALGORITHMS

3.1 Introduction

Multi-task learning (MTL) is a form of transfer learning that involves the training of

multiple related classification or regression systems. In this context, a task is a supervised

problem defined by a set of training data with corresponding labels and a function that maps

the input data to their labels. The idea behind MTL methods is to learn similarities between

tasks during training so that they can be used to improve the performance and generalization

on all tasks. In this chapter, we explain two popular MTL methods that are used in this

work. These methods are Grouping and Overlap in Multi-Task Learning (GO-MTL) [1] and

the Efficient Lifelong Learning Algorithm (ELLA) [2]. Although these algorithms can be

used for many different problems, here we are focusing on logistic regression for the purpose

of classification. In either classification or regression problems, a set of parameters is found

to fit some given training data. Normally, different tasks are trained independent of each

other. However, in MTL all tasks are trained together by allowing them to have shared

features. Doing this increases the number of samples used for each task by allowing them to

use training data from similar tasks.

GO-MTL [1] works by assuming the task parameters lie in a low-dimensional subspace

and are separated into overlapping groups. The GO-MTL algorithm learns the subspace by

finding its bases and determines which bases are used for each task. ELLA [2], on the other

hand, is an extension of GO-MTL that allows for tasks and training data to be added after

the initial training. This algorithm was developed to be used in an online environment and
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can be much faster than GO-MTL.

Organization of this chapter is as follows. Section 3.2 is a review of the GO-MTL algo-

rithm and describes the process of two-class classification. Section 3.3 reviews ELLA and

explains the strengths of this algorithm when compared to GO-MTL. Finally, Section 3.4

gives the conclusion of this chapter.

3.2 GO-MTL Method

A common way to define the problem of MTL is to assume that the tasks’ parameter

vectors lie in a shared low-dimensional subspace. This restriction forces the different tasks’

parameters to share features while still being allowed to have some more task specific features.

GO-MTL [1] uses this assumption to define the problem.

Suppose we have T tasks with each task t ∈ [1, T ] having Nt existing training samples

xi ∈ R
d with corresponding outputs, or labels, yi ∈ R. The parameter vectors θ(t) ∈ R

d all

lie in a p-dimensional subspace defined by the dictionary matrix L ∈ R
d×p whose columns,

or atoms, are the latent (unobservable) task parameters. These latent task parameters form

a basis of the subspace that contains the parameters for each task t. Task t’s parameter

vector can be written as θ(t) = Ls(t) where s(t) ∈ R
p is the vector of sparse coefficients that

determines which latent tasks are part of task t, and S = [s(1), . . . , s(T )] is the matrix of the

sparse coefficients of all tasks. The sparsity of this vector s(t) is needed to make sure that

only a small number of latent atoms are used in each of the main tasks. This way, similar

tasks will share many of the same latent atoms in L, while unrelated tasks will have little

to no overlap. To enforce sparsity, GO-MTL adds the ℓ1-norm of s(t) as a penalty to the

objective function.

The problem in GO-MTL is then to minimize the objective function,

eT (L,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖L‖2F , (3.1)

where L(ŷ
(t)
i , y

(t)
i ) is the loss function evaluated at the true output y

(t)
i and estimated output

ŷ
(t)
i = x

(t)⊤
i Ls(t), ‖s(t)‖1 is the ℓ1-norm of s(t), ‖L‖F is the Frobenius norm of L, and µ and
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λ are the regularization parameters that are preselected. This optimization problem is not

jointly convex over S and L, but it is convex over each one when the other is held fixed.

GO-MTL applies an alternating optimization method by repeatedly minimizing over S while

keeping L constant and minimizing over L while keeping S constant. Minimizing over S is

done for each column, s(t), by solving the optimization problem,

s(t)∗ = argmin
s(t)

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ) + µ‖s(t)‖1, (3.2)

with a fixed L. Minimization over L with a fixed S is performed by solving the optimization

problem,

L∗ = argmin
L

1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ) + λ‖L‖2F . (3.3)

These two optimization problems are iteratively solved until convergence.

Classification (two-class) with GO-MTL uses a logistic regression with labels y ∈ {0, 1}.

This is performed by using the logistic function,

σ(ŷ) =
1

1 + e−ŷ
, (3.4)

with the corresponding loss,

L(ŷ, y) = −y ln(σ(ŷ))− (1− y) ln(1− σ(ŷ)). (3.5)

Minimization over S with a fixed L is done with a Lasso [17] method such as the two-metric

projection method [18].

The two-metric projection method uses the loss function,

s(t)∗ = argmin
s(t)

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ) s.t. ‖s(t)‖1 ≤ ν. (3.6)

which is equivalent to (3.2). The gradient and Hessian of this loss function are

f(s(t)) =
1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ), (3.7)

g(s(t)) =
∂f(s(t))

∂s(t)
=
−1

Nt

Nt
∑

i=1

(y
(t)
i − σ(x

(t)⊤
i Ls(t)))L⊤x

(t)
i , (3.8)

H(s(t)) =
∂2f(s(t))

∂s(t)∂s(t)⊤
=

1

Nt

Nt
∑

i=1

σ(x
(t)⊤
i Ls(t))(1− σ(x

(t)⊤
i Ls(t)))L⊤x

(t)
i x

(t)⊤

i L. (3.9)
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The two-metric projection method is an iterative optimization algorithm used to solve con-

strained optimization problems of the form

Minimize
s(t)∈X

f(s(t)) (3.10)

X ⊂ R
p is a closed convex subset of Rp. In this problem, X =

{

s(t) ∈ R
p; ‖s(t)‖1 ≤ ν

}

.

GO-MTL must solve the optimization problem,

Minimize
‖s(t)‖1≤ν

f(s(t)). (3.11)

The update equation used in [18] at each iteration n is

s
(t)
n+1 = P

(

s(t)n − αnH
−1
n gn

)

, (3.12)

where P is the projection onto X , αn is the step size,

Hn =
∂2f(s(t))

∂s(t)∂s(t)⊤

∣

∣

∣

∣

s(t)=s
(t)
n

,

and

gn =
∂f(s(t))

∂s(t)

∣

∣

∣

∣

s(t)=s
(t)
n

.

The projection P (x) gives the vector s(t) in X nearest to x and is defined as

P (x) = argmin
s(t)∈X

‖s(t) − x‖22, (3.13)

which can be solved exactly using the algorithm explained in [19]. This step ensures that

s(t) always satisfies the constraint. If x is already a feasible solution, then P (x) = x.

Minimization over L with a fixed S can be done with gradient descent or the Newton-

Raphson method [20]. Gradient descent updates use the first partial derivative of (3.3) with

respect to L

∂eT (L,S)

∂L
= −

1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

(y
(t)
i − σ(x

(t)⊤
i Ls(t)))x

(t)
i s(t)⊤

]

+ λ2L. (3.14)
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Then, the update equation for L becomes

Ln+1 = Ln − α
∂eT
∂L

∣

∣

∣

∣

L=Ln

, (3.15)

where α is the chosen step size. When using the Newton-Raphson method instead of gradient

descent, GO-MTL uses the first two partial derivatives of the vectorized L matrix, vec(L),

to find the direction Mn ∈ R
d×p in iteration n. In each iteration, Mn is calculated as the

solution to the system of equations generated by the Newton-Raphson method,
[

1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

δ
(t)
i vec(x

(t)
i s(t)⊤) vec(x

(t)
i s(t)⊤)⊤ + 2λI

]

vec(Mn) (3.16)

= vec

(

1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

(y
(t)
i − σ(x

(t)⊤
i Ls(t)))x

(t)
i s(t)⊤

]

− 2λL

)

,

where δ
(t)
i = σ(x

(t)⊤
i Ls(t))(1− σ(x

(t)⊤
i Ls(t))) and vec(·) vectorizes matrices via column stack-

ing. Instead of using Mn as the update to Ln, GO-MTL uses Armijo rule [21] to find a step

size α that allows the process to converge. Armijo rule tests step sizes α = 1, β, β2, . . . until

a step size is found that satisfies

eT (Ln + αMn,S)− eT (Ln,S) ≤ cα vec(Mn)
⊤ ∂eT (L,S)

∂ vec(L)

∣

∣

∣

∣

L=Ln

, (3.17)

where β, c ∈ (0, 1) are chosen to be constants. Then, L is updated using

Ln+1 = Ln + αnMn. (3.18)

The organization of the algorithm is shown in Algorithm 1. It starts by solving each task

individually with a single task learner which minimizes the loss function for a single task.

Singular Value Decomposition (SVD) [6] is performed on the single task parameters to ini-

tialize the dictionary L. Each iteration of the loop at line 6 solves the minimization problems

(3.2) and (3.3).

Each iteration of gradient descent while solving (3.15) has a time complexity of O(Ndp)

while each iteration of the Newton-Raphson method has a time complexity of O(Nd2p2 +

d3p3).
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Algorithm 1 GO-MTL

1: for t = 1 to T do

2: θ
(t) ← singleTaskLearner(X(t),y(t))

3: end for

4: Perform SVD: [θ(1), . . . ,θ(k)] = UΣV⊤

5: L← first p columns of U
6: repeat

7: for t = 1 to T do

8: repeat

9: s(t) ← (3.12)
10: until convergence of s(t)

11: end for

12: repeat

13: M← (3.16)
14: L← (3.18)
15: until convergence of L
16: until convergence of S and L

While GO-MTL can provide good results when training many related tasks, it can also be

very computationally expensive for high-dimensional datasets. Even with gradient descent,

many iterations are needed to solve for L, and this is repeated until the process converges.

Additionally, no tasks or even new data can be added without retraining the entire system.

3.3 ELLA Method

ELLA is an MTL algorithm designed to extend GO-MTL to be used in lifelong learning

by allowing tasks to be added and updated over time. The goal of lifelong learning is to

create a system which can be updated after initial training by either adding new tasks or

adding new training data to the existing tasks. Previous MTL algorithms [1,22] such as GO-

MTL require all data and tasks to exist before training starts. If a task needs to be added

to the model after training, the entire system must be retrained. This optimization method

is performed over all previous and new data for all tasks, and every s(t) is recalculated. The

goal of ELLA is to allow lifelong learning by overcoming these two problems.

The formulation of ELLA starts with the same problem setup as GO-MTL with small
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modifications to the objective function. The objective function for ELLA is

ẽT (L,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(g(x
(t)
i ;Ls(t)), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖L‖2F , (3.19)

where g(·) is any activation function, e.g., g(x;θ) = x⊤
θ or g(x;θ) = 1/(1 + e−x⊤θ). The

problem of optimizing over all data is reduced by approximating the inner sum of the objec-

tive function with the second-order Taylor expansion around Ls(t) = θ
(t) where

θ
(t) = argmin

θ

1

Nt

Nt
∑

i=1

L
(

g(x
(t)
i ;θ), y

(t)
i

)

(3.20)

is the the single-task parameter vector. The constant term of the Taylor expansion is ig-

nored because it doesn’t affect the minimizer, and there is no linear term in the expansion

because θ
(t) is defined as the minimizer for task t. This leaves the second order term of the

approximation which is 1
Nt
‖θ(t) − Ls(t)‖2

D
(t) , where

D(t) =
∂2

∂θ(t)∂θ(t)⊤

1

2Nt

Nt
∑

i=1

L
(

g(x
(t)
i ;θ), y

(t)
i

)

(3.21)

is the Hessian matrix evaluated at θ
(t). This Taylor approximation is substituted into the

objective function (3.19) to arrive at the new objective function

εT (L,S) =
1

T

T
∑

t=1

[

1

Nt

‖θ(t) − Ls(t)‖2
D

(t) + µ‖s(t)‖1

]

+ λ‖L‖2F . (3.22)

By using this Taylor series approximation of (3.19), the Nt data points are only used to

calculate the single-task parameters and the Hessian matrices. The rest of the algorithm

relies on using these parameters and the calculated Hessians.

The second problem ELLA aims to solve is the need to retrain all tasks after all updates.

This problem is solved by developing a method to update the MTL model by only updating

s(t) and L when task t is updated. This is done by solving the optimization problems,

s
(t)
m+1 = argmin

s(t)

1

Nt

‖θ − Lms
(t)‖2

D
(t) + µ‖s(t)m ‖1 (3.23)

Lm+1 = argmin
L

1

T

T
∑

t=1

[

1

Nt

‖θ − Ls(t)m ‖
2
D

(t)

]

+ λ‖L‖2F , (3.24)
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Algorithm 2 ELLA

1: T ← 0
2: L← 0d×p

3: A← 0dp×dp

4: b← 0dp×1

5: for (Xnew,ynew, t) in NewUpdate do

6: if NewTask then

7: T ← T + 1
8: X(t) ← Xnew, y(t) ← ynew
9: else

10: A← A− 1
Nt
(s(t)s(t)⊤)⊗D(t)

11: b← b− 1
Nt

vec
(

D(t)
θ
(t)s(t)⊤

)

12: X(t) ← [X(t) Xnew], y(t) ← [y(t); ynew]
13: end if

14: θ
(t) ← singleTaskLearner(X(t).y(t))

15: D(t) ← (3.21)
16: L← reinitialize(L)
17: s(t) ← (3.23)
18: A← A+ 1

Nt
(s(t)s(t)⊤)⊗D(t)

19: b← b+ 1
Nt

vec
(

D(t)
θ
(t)s(t)⊤

)

20: L← mat
(

( 1
T
A+ λIdk×dk)

−1 1
T
b
)

21: end for

for the mth addition or update of a task. The process starts by calculating θ
(t) and D(t) for

the updated task and solving for s
(t)
m+1 using some numeric optimization method e.g., alter-

nating direction method of multipliers (ADMM) [23] or regression shrinkage and selection

(RSS) [17]. After solving for s
(t)
m+1, (3.24) can now be solved by setting its partial derivative

with respect to L equal to 0.

∂

∂L

{

1

T

T
∑

t=1

[

1

Nt

‖θ − Ls(t)m ‖
2
D

(t)

]

+ λ‖L‖2F

}

(3.25)

=
1

T

T
∑

t=1

2

Nt

[

D(t)Ls(t)s(t)⊤ −D(t)
θ
(t)s(t)⊤

]

+ 2λL.

By vectorizing this partial derivative and using the property,

vec(ABC) = (C⊤ ⊗A) vec(B), (3.26)
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where ⊗ is the Kronecker product, this process results in the system of equations
[

1

T

T
∑

t=1

1

Nt

(s(t)s(t)⊤)⊗D(t) + λIdk×dk

]

vec(L) (3.27)

=
1

T

T
∑

t=1

1

Nt

vec
(

D(t)
θ
(t)s(t)⊤

)

,

where Idk×dk is the identity matrix of size dk × dk. Solving this system of equations for L

gives the update equation as

Lm+1 = mat(A−1b), (3.28)

where

A =
1

T

T
∑

t=1

1

Nt

[

(s(t)s(t)⊤)⊗D(t)
]

+ λIdk×dk, (3.29)

b =
1

T

T
∑

t=1

1

Nt

vec
(

D(t)
θ
(t)s(t)⊤

)

, (3.30)

and mat(·) is the function that reshapes the input vector to a matrix and is the inverse of

the vectorization function vec(·). A and b are updated incrementally to avoid summing over

all tasks after each update. The entire process of ELLA is shown in Algorithm 2. The main

loop is executed every time some task t is added or received new training data, (Xnew,ynew).

On line 16 of this algorithm, all zero columns of L are reinitialized either randomly or to the

single task parameter vector θ(t) calculated on line 14 of Algorithm 2.

In each update of ELLA, the algorithm solves for θ(t) and D(t) with a single task learner

and updates s(t) and L. The single task learned has some time complexity O(ξ(d,Nt)) which

depends on the loss function and single task learner used to solve (3.20). The update of s(t)

involves the eigen-decomposition of D(t) which requires O(d3), multiplication of the square

root of D(t) with L which is of O(d2p) and solving a lasso problem which needs O(dk2).

It has a total time complexity O(d3 + d2p + dp2). The update of L involves inverting the

dp×dp matrix A. Because of the low-rank updates of A, its inverse can be calculated with a

complexity of O(dpk2) by recursively updating the eigen-decomposition [24]. The total time

complexity of an update in ELLA as O(d3p2 + ξ(d,Nt)).
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3.4 Conclusion

In this chapter, we reviewed two MTL methods, namely GO-MTL and ELLA. Both of

these methods rely on the assumption that the parameters for related tasks lie on a low-

dimensional subspace. The algorithms find the latent parameters that represent this subspace

along with individual task parameters represented as sparse combinations of these latent

parameters. GO-MTL introduced the use of sparse coefficients to determine which basis

vectors are used by each task. This method can be slow to converge, especially with large

numbers of tasks and high-dimensional datasets. ELLA enables lifelong learning capability

by adding new tasks and updating existing ones while also increasing the speed of training

by using the Taylor expansion of GO-MTL’s objective function and only updating a task

when it is added or receives new data. However, the use of very high-dimensional matrices

can make this method unusable particularly for high-dimensional problems or learning on

resource-constrained platforms.
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CHAPTER 4

A GRADIENT DESCENT-BASED MTL

ALGORITHM

4.1 Introduction

The two MTL algorithms reviewed in Chapter 3, GO-MTL [1] and ELLA [2], are effective

algorithms though they are sensitive to the dimension of the data being used. That it, they

cannot be used for problems with high-dimensional data. Another approach to solve the

MTL problem defined by ELLA is to use gradient descent to minimize the objective function

in (3.19). This method finds a local minimum without the need to calculate any Hessian

matrices. In particular, when using high-dimensional data, computing Hessian matrices

becomes very costly. Additionally, the Kronecker products used in ELLA in the calculation

of the dictionary of latent tasks produce even larger matrices that must be inverted. This

operation can be very time-consuming or even impossible to calculate when working with

high-dimensional data. Gradient descent algorithm [20] avoids any of these time-consuming

operations. Nevertheless, some drawbacks of this approach are the number of iterations

required to converge and the choice of the step size. While each iteration of gradient descent

is faster, it requires many more iterations to converge. In general, this approach is slower

for low-dimensional problems and faster for high-dimensional problems.

Organization of the chapter is as follows. Section 4.2 explains the application of gradient

descent to ELLA’s general MTL problem. This is followed by the application of two loss

functions for the purpose of classification. The loss functions used are log loss from logistic

regression and hinge loss used in many SVMs. Section 4.4 gives concluding remarks on the

method developed in this chapter.
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4.2 Gradient Descent

Let us reconsider the cost function in (3.19).

eT (L,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(g(x
(t)
i ;Ls(t)), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖L‖2F (4.1)

To allow for the use of high-dimensional data, we minimize the cost function with the use

of the gradient descent algorithm [20]. This algorithm uses the gradient to make small

updates to the parameters to decrease the values of the objective function toward a local

minimum. Taking the partial derivatives of this cost function with respect to L and S yields

the following update equations.

Sn+1 = Sn − αn

∂eT
∂S

∣

∣

∣

∣

S=Sn

(4.2)

Ln+1 = Ln − βn

∂eT
∂L

∣

∣

∣

∣

L=Ln

,

where αn and βn are the step sizes for the descent over S and L, respectively. Optimization

is performed by applying the updates iteratively in an alternating pattern until convergence.

A simple option to choose αn and βn is to set them to constants. This method requires small

step sizes to guarantee convergence and hence may be slow. Instead, we choose the step

sizes that minimize the objective function the most for each iteration using the following

one-dimensional optimization problems,

αn = argmin
α

eT

(

Ln,Sn − α
∂eT
∂S

∣

∣

∣

∣

S=Sn

)

(4.3)

βn = argmin
β

eT

(

Ln − β
∂eT
∂L

∣

∣

∣

∣

L=Ln

,Sn

)

.

These step sizes can be calculated using any search method such as the golden search method

[20]. This option increases the computation time for each iteration but decreases the number

of iterations needed to converge.

Alternatively, we can use batch learning to estimate the derivatives of (4.1) along with a

momentum term [6]. Batch learning uses a small subset of training data in each iteration of
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(4.2). By separating the training set into batches of size M with Mt samples for task t, the

objective function (4.1) can be estimated in each iteration by taking the inner summation

only over samples in the iteration’s batch.

The momentum term is added to reduce training time and avoid getting stuck in local

minima. Momentum adds a fraction of the previous update of the variables to each update.

With momentum coefficients 0 ≤ η, ν < 1 for S and L, respectively, the update equations

become

Sn+1 = Sn − αn

∂eT
∂S

∣

∣

∣

∣

S=Sn

+ η∆Sn (4.4)

Ln+1 = Ln − βn

∂eT
∂L

∣

∣

∣

∣

L=Ln

+ ν∆Ln,

where ∆Sn = Sn − Sn−1 and ∆Ln = Ln − Ln−1 are the previous updates.

Note that the objective function contains the non-differentiable ℓ1-norm. Thus, to guar-

antee convergence, we use the differentiable approximation to the ℓ1-norm i.e.

‖s‖1 =
∑

i

|si| ≈
∑

i

√

s2i + γ, (4.5)

where γ > 0 and si is the ith element of the vector s. This approximation approaches the

true ℓ1-norm as γ approaches 0. This approximation is differentiable with the derivative

∂‖s‖1
∂si

≈
2si

√

s2i + γ
(4.6)

This derivative can be used in the updates of s(t) in (4.2).

As mentioned in the previous chapter, for classification problems, a logistic regression

model is typically used in both GO-MTL and ELLA. For class labels y ∈ {0, 1}, the unipolar

logistic function,

ŷ = g(x;θ) =
1

1 + e−x⊤θ
(4.7)

and the log-loss function [25]

L(ŷ, y) = −y ln(ŷ)− (1− y) ln(1− ŷ) (4.8)
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are generally used. When using these functions, a single-task MTL problem is equivalent to

a regularized logistic regression problem. Taking the partial derivatives of (4.1) using the

logistic function along with the log-loss gives

∂eT
∂L

=
−1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

(y
(t)
i − ŷ

(t)
i )x

(t)
i s(t)⊤

]

+ λ2L (4.9)

∂eT
∂s(t)

=
−L⊤

T Nt

Nt
∑

i=1

[

(y
(t)
i − ŷ

(t)
i )x

(t)
i + µ

∂‖s‖1
∂s

∣

∣

∣

∣

s=s(t)

]

(4.10)

where ŷ
(t)
i = g(x

(t)
i ;Ls(t)). The iterations of (4.2) can now be performed with (4.6).

Another popular loss function in the hinge loss which is used in support vector machines

(SVM) to find the hyperplane with the greatest separation margin between two classes.

Using classification labels y ∈ {−1, 1}, the hinge loss is

L(ŷ, y) = max(0, 1− ŷy) (4.11)

This loss function is not differentiable at ŷy = 1. We can instead use the quadratically

smoothed hinge loss described in [26],

L(ŷ, y) =











1
2γ

max(0, 1− ŷy)2 ŷy ≥ 1− γ

1− γ

2
− ŷy ŷy < 1− γ

(4.12)

where γ > 0. This approximation approaches the hinge loss as γ → 0. The derivative of

this loss function is

∂L(ŷ, y)

∂ŷ
=























0 ŷy ≥ 1

y

γ
(ŷ − 1) 1 > ŷy ≥ 1− γ

−y 1− γ > ŷy

(4.13)

If we use the derivative of this smoothed hinge loss along with ŷ = g(x,θ) = x⊤
θ instead of

the logistic function in (4.9) and (4.10), we obtain

∂eT
∂L

=
1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

∂L(ŷ, y
(t)
i )

∂ŷ

∣

∣

∣

∣

ŷ=ŷ
(t)
i

x
(t)
i s(t)⊤

]

+ λ2L (4.14)

∂eT
∂s(t)

=
L⊤

T Nt

Nt
∑

i=1

[

∂L(ŷ, y
(t)
i )

∂ŷ

∣

∣

∣

∣

ŷ=ŷ
(t)
i

x
(t)
i + µ

∂‖s‖1
∂s

∣

∣

∣

∣

s=s(t)

]

(4.15)
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where ŷ
(t)
i = g(x

(t)
i ;Ls(t)) = x

(t)⊤
i Ls(t). These equations are solved iteratively until conver-

gence.

4.3 Computational Complexity

Each iteration of our algorithm with either log loss or hinge loss calculates the gradient

of (4.1) with respect to L and S. Calculation of ∂eT
∂L

has time complexity O(Ndp). The

calculations of each ∂eT
∂s(t)

has time complexity O(Ntdp) for a total of O(Ndp) for all gradients.

Evaluation of (4.1) using the golden search method has time complexity O(Ndp). The

update equations for S and L in (4.2) have time complexity O(pT ) and O(dp), respectively.

This makes each iteration of the gradient descent algorithm O(Ndp). When using batch

learning, each iteration uses a single batch with M < N training samples leading to an

overall complexity of O(Mdp).

Both GO-MTL and this gradient descent-based algorithm are iterative algorithms, so

comparing their computational complexities to each other and to ELLA is difficult. Each

iteration of GO-MTL contains two other iterative algorithms. The iterations of these al-

gorithms have complexities of O(Nd2p2 + d3p3) and O(Ndp + Np2). Each iteration of the

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Data Dimension, p

100

105

1010

GO-MTL

ELLA

Gradient Descent

Figure 4.1: Computational complexity of different MTL algorithms as a function of data
dimension
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gradient descent-based algorithm has a complexity of O(Ndp). Each update of ELLA has

a complexity of O(d3p2). A single iteration of GO-MTL has a higher computational com-

plexity than an update in ELLA and an iteration of our MTL algorithm. When using

high-dimensional data, a single iteration of GO-MTL can take a very long time making the

algorithm unusable. High-dimensional data with a large number of dictionary atoms makes

ELLA unusable with its high complexity. Our gradient descent-based algorithm has itera-

tions with low complexity making them easy to calculate especially with high-dimensional

data. To compare the computational complexity of our gradient descent-based algorithm

with those covered in Chapter 3, Figure 4.1 is generated which shows how the complexities

of each algorithm grows as the dimension of the data increases. While this figure does not

include the number of iterations each algorithm needs to converge, it still demonstrates how

a single iteration or update of GO-MTL or ELLA may become too impractical to solve.

4.4 Conclusion

ELLA and GO-MTL cannot be used with high-dimensional data due to extremely high

computational costs. This calls for a new method specifically for high dimensional data. This

chapter introduced a new gradient descent-based algorithm for training MTL models that

use ELLA’s objective function. This algorithm can be applied to high-dimensional problems

without calculating any Hessian matrices or performing any matrix inversion operations.

The chapter also explained how to set up an MTL model for the purpose of classification

by using the logistic loss from logistic regression or the hinge loss used in many SVMs. The

computational complexity of our algorithm is O(Ndp) per iteration compared to O(Nd2p2+

d3p3) and O(Ndp+Np2) for iterations of GO-MTL and O(d3p2) for updates in ELLA.
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CHAPTER 5

KERNEL MULTI-TASK LEARNING

5.1 Introduction

The classification methods explained in Chapters 3 and 4 are all examples of linear

classifiers. Linear classifiers work best when classifying data that is linearly separable. Non-

linearly separable data is guaranteed to have some classification error. In many cases, data

cannot be classified with a linear classifier while achieving acceptable error rates. This

problem may be solved by mapping the data to a high-dimensional feature space where the

mapped data becomes linearly separable.

Kernel methods map data to a higher dimensional space using a non-linear kernel-

producing map Φ : R
d −→ R

m where m ≫ d. The m-dimensional mapped data may

be too large to use directly, so we instead use kernel tricks which rely only on the inner

products between mapped data points. The inner products of mapped data points in the

kernel method can be calculated from the original points with a kernel function.

In this chapter, we introduce kernel multi-task learning (KMTL) as a kernelized version

of MTL [1, 2] using the gradient descent-based algorithm found in Chapter 4. Organization

of this chapter is as follows. Section 5.2 explains how the objective function in Chapter 4

for the linear gradient descent-based method can be rewritten in terms of the inner products

of data vectors. This is followed by the addition of a kernel function and the use of both

logistic and hinge loss functions. In Section 5.3, we compare the computational complexity

of this algorithm to those of previous methods. Section 5.4 gives a conclusion of the changes

made to the algorithm to kernelize it.
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5.2 Kernel Multi-Task Learning

The kernel method maps the data to a very high, or possibly infinite, dimensional space

with a kernel-producing [6] mapping Φ : X −→ F where X is the input space, and F is

the high-dimensional feature space. Because the mapped data vectors Φ(x
(t)
i ) may have too

high of a dimension, we rewrite the objective function (5.1) in terms of the inner products

of the data vectors which does not increase the dimensionality. We begin by writing the

objective function of the linear MTL (4.1) with the linear transfer function, g(x,θ) = x⊤
θ.

This allows for the objective function to be rewritten in terms of the inner products of the

data vectors. Recall that the objective function for GO-MTL in (3.1) was

eT (L,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i Ls(t), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖L‖2F . (5.1)

The columns in L lie in the span of X and hence we can write L = XA where A ∈ R
N×p.

Substituting this in (5.1) yields

ẽT (A,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(k
(t)⊤
i As(t), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖A‖2
K
, (5.2)

where k
(t)
i = X⊤x

(t)
i and ‖A‖2

K
= tr(A⊤KA) with K = X⊤X being the Gram matrix [6].

This is very similar in form to the objective function in (5.1) with the linear transfer function.

The only differences are the uses of k
(t)
i instead of x

(t)
i , A instead of L, and ‖ · ‖2

K
instead of

the Frobenius norm.

To show that the columns of L lie in the span of X , we start by letting PX be the

orthogonal projection onto subspace X and P⊥
X

= I − PX be its orthogonal complement

subspace X⊥. Now, if we plug in L = PXL + P⊥
X
L into our linear objective function (5.1),
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it should not change anything. Doing so yields

eT (L,S) =
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i (PXL+P⊥

X
L)s(t), y

(t)
i ) + µ‖s(t)‖1

}

+ λ‖PXL+P⊥
X
L‖2F (5.3)

=
1

T

T
∑

t=1

{

1

Nt

Nt
∑

i=1

L(x
(t)⊤
i PXLs

(t), y
(t)
i ) + µ‖s(t)‖1

}

+ λ‖PXL‖
2
F + λ‖P⊥

X
L‖2F ,

since P⊥
X
x
(t)
i = 0. Also, it is clear that L = PXL, in which case λ‖P⊥

X
L‖2F is reduced to 0

and the rest of the objective function is left unchanged. This implies that the optimal L is

in the span of X . Note instead of using all N training vectors, we can use a subset of M

vectors as the basis for L in the matrix X̃ ∈ R
d×M .

Now that the objective function in (5.1) depends only on the inner product of data

points, we can apply this method to the nonlinearly mapped data {Φ(x
(t)
i )} where the

objective function in (5.2) will be represented with kernel vector k
(t)
i = Φ(X)⊤Φ(x

(t)
i ) and

kernel Gram matrix K = Φ(X)⊤Φ(X). Each element is calculated with a kernel function

k : Rd×R
d −→ R e.g., the Gaussian kernel function k(xi,xj) = e−

‖xi−xj‖
2

2σ2 with parameter σ

or the polynomial kernel k(xi,xj) = (x⊤
i xj + c)d with parameters c, d. As mentioned before,

we can lower the dimension of these matrices and reduce the computational complexity by

using the subset X̃ of the training data instead of the full dataset X to generate the kernel

matrix.

Minimization of this objective function is performed similar to that in Chapter 4. How-

ever, instead of minimizing over L, we minimize over A with the update equations

Sn+1 = Sn − αn

∂ẽT
∂S

∣

∣

∣

∣

S=Sn

(5.4)

An+1 = An − βn

∂ẽT
∂A

∣

∣

∣

∣

A=An

where αn and βn are chosen to be the step sizes. As in Chapter 4, these values can be

chosen to be constants, or we can calculate the best step sizes at each iteration by solving
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the one-dimensional optimization problems

αn = argmin
α

ẽT

(

An,Sn − α
∂ẽT
∂S

∣

∣

∣

∣

S=Sn

)

(5.5)

βn = argmin
β

ẽT

(

An − β
∂ẽT
∂A

∣

∣

∣

∣

A=An

,Sn

)

using a search algorithm [20]. The ℓ1 norm is unaffected by the process of kernelizing MTL,

so we use the same approximation (4.5) and its derivative (4.6). Next, we show how to use

KMTL for logistic regression and SVMs. To apply logistic regression to KMTL, we use the

loss function

L(ŷ, y) = y ln(1 + e−ŷ) + (1− y) ln(1 + eŷ) (5.6)

where ŷ is the predicted output, and y is the true label. We use this logistic loss because

KMTL uses g(x,θ) = x⊤
θ. The partial derivatives of (5.2) using this loss function are

∂ẽT
∂A

=
−1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

(y
(t)
i − ŷ

(t)
i )k

(t)
i s(t)⊤

]

+ λ2KA (5.7)

∂ẽT
∂s(t)

=
−A⊤

T Nt

Nt
∑

i=1

[

(y
(t)
i − ŷ

(t)
i )k

(t)
i + µ

∂‖s‖1
∂s

∣

∣

∣

∣

s=s(t)

]

(5.8)

where ŷ
(t)
i = 1/(1 + e−k

(t)⊤
i

As(t)). These derivatives are used in the update equations (5.4).

Using the hinge loss approximation in (4.12) and its derivative in (4.13), the KMTL

update equations use the following partial derivatives

∂ẽT
∂A

=
1

T

T
∑

t=1

1

Nt

Nt
∑

i=1

[

∂L(ŷ, y
(t)
i )

∂ŷ

∣

∣

∣

∣

ŷ=ŷ
(t)
i
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(t)
i s(t)⊤

]

+ λ2KA (5.9)

∂ẽT
∂s(t)
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A⊤

T Nt

Nt
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i=1

[

∂L(ŷ, y
(t)
i )

∂ŷ

∣

∣

∣

∣

ŷ=ŷ
(t)
i

k
(t)
i + µ

∂‖s‖1
∂s

∣

∣

∣

∣

s=s(t)

]

, (5.10)

where ŷ
(t)
i = k

(t)⊤
i As(t)

5.3 Computation Complexity

The kernel matrix K and set of kernel vectors {k
(t)
i } are calculated once at the beginning

with time complexities O(M2d) and O(NMd), respectively. Each iteration of KMTL cal-

culates the inner products ∂ẽT
∂A

and ∂ẽT
∂s(t)

. Calculation of ∂ẽT
∂A

has time complexity O(NMp)
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while calculation of ∂ẽT
∂s(t)

for each task has time complexity O(NtMp) with a total of O(NMp)

for all tasks. The total time complexity of this algorithm is O(NMd) at the beginning and

O(NMp) for each iteration compared to the linear version with time complexity O(Ndp) for

each iteration.

Unlike the previous MTL algorithms, each iteration of KMTL does not depend on the

dimension of the data. They instead depend on the number of training samples used to

generate the kernel matrix K. As with the linear gradient descent-based algorithm, KTML

has a lower complexity than ELLA with complexity O(d3p2) and GO-MTL with complexities

O(Nd2p2 + d3p3) and O(Ndp + Np2) allowing it to be more effective with high-dimension

datasets.

5.4 Conclusion

The linear MTL models explained in the previous chapters do not perform well when

used with datasets that are not linearly separable. A kernelized version of the gradient

descent-based MTL algorithm can be used with many different datasets other than linearly

separable ones while still having a low enough computational complexity to be practical.

This chapter showed how the MTL algorithm in Chapter 4 can be kernelized to produce

non-linear classifiers that only use the inner products between mapped data vectors. The

computational complexity of this kernel algorithm is O(NMd) along with O(NMp) for each

iteration compared to the linear algorithm with complexity O(Ndp) for each iteration.
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CHAPTER 6

TEST RESULTS AND PERFORMANCE

COMPARISON

6.1 Introduction

To show the effectiveness of the proposed gradient descent-based MTL algorithm in

Chapter 4, we compare this algorithm to ELLA [2] and single-task learners (STL) by training

the classifiers in two experiments. The first experiment deals with classifying UXO vs. non-

UXO targets from the FRM and TREX13 sonar datasets explained in chapter 2. This MTL

model is constructed with two tasks from the FRM dataset and one task from a portion

of the TREX13 dataset. The results of this experiment are presented as receiver operating

characteristic (ROC) curves generated from testing data pulled from the rest of the TREX13

dataset. Performance of the classifiers in this experiment are shown by comparing the ROC

curves and knee-point performance. The second experiment is classifying hand-written digits

from the EMNIST [3] dataset. The MTL model in this experiment contains one task for each

digit. Each task is a binary classification problem whose goal is to discriminate between its

digit and the other nine digits. The results of this experiment are given as confusion matrices

generated from a set of testing data.

We begin this chapter with Section 6.2 by explaining the setup of the UXO experiment

on the TIER and TREX13 datasets and continue by presenting and analyzing the results.

This is followed by Section 6.3 which contains the setup and results of the experiment on

classification of EMNIST digits. Section 6.4 gives concluding remarks on the results presented

in this chapter.

36



Table 6.1: AUC (left) and knee-point PCC (right) for the three UXO classifiers using two
loss functions.

Log Loss Hinge Loss
STL 0.817 0.813
MTL 0.840 0.804
ELLA 0.839

PCC Log Loss Hinge Loss
STL 0.7685 0.7596
MTL 0.7796 0.7370
ELLA 0.7718
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Figure 6.1: ROC curves from the gradient descent-based MTL (left), STL (middle), and
ELLA (right) with log loss.

6.2 UXO vs. Non-UXO Classification

The purpose of this experiment is to show how MTL can be used to train a classification

model when real data is limited while synthetic data is readily available. In this experi-

ment, we used T = 3 tasks represented with u = 2 atoms in the dictionary matrix L. To

demonstrate this scenario with limited real data we used training set consisting of two tasks

containing 2000 synthetic samples each from the FRM dataset and one task containing 400

real samples from the rest of the TREX13 dataset. Testing was performed on 4000 samples

from the TREX13 dataset. Each data sample is a 272-dimensional vector containing acoustic

color features at a single aspect angle. The MTL classifiers were trained using the gradient

descent described in Chapter 4. The STL classifier with the log loss was trained using a

logistic regression solver while the STL classifier with the hinge loss was trained using an

SVM solver.

The results of the tests were generated by evaluating the output prediction ŷ = x⊤
θ
(t)

37



0 0.2 0.4 0.6 0.8 1

P
FA

0

0.2

0.4

0.6

0.8

1

P
C

C

MTL ROC Curve (AUC = 0.804)

0 0.2 0.4 0.6 0.8 1

P
FA

0

0.2

0.4

0.6

0.8

1

P
C

C

STL ROC Curve (AUC = 0.813)

P
FA

 0.263

P
CC

 0.737

P
FA

 0.2407

P
CC

 0.7596

Figure 6.2: ROC curves from gradient descent-based MTL (left) and STL (right) with hinge
loss.

at each task t, where x is the testing sample and θ
(t) is the parameter vector for task t. For

ELLA and the gradient descent MTL, the parameter vectors were θ(t) = Ls(t). The prediction

and true label were used to generate the ROC curves shown in Figure 6.1 and Figure 6.2 when

using the log loss and hinge loss, respectively. These figures also show the area under the

curve (AUC) and knee-point (where PCC+PFA = 1) of each ROC curve. Table 6.1 shows the

AUC and knee-point of each of the classifier’s ROC curves. ELLA cannot be used with the

hinge loss because the Hessian matrix D(t) is not generally invertible. In this experiment,

multi-task learning does not give a large improvement in classification performance when

compared to the STL classification results. MTL provided a small improvement over STL

when using log loss and performed worse than STL when using the hinge loss. The reason

for this is unclear. However, the STL classifier’s lower performance implies that the cause is

not simply a problem with our MTL algorithm’s ability to work with the hinge loss. With

only a small number of tasks, MTL does not provide a significant benefit in classification

performance.

Figure 6.3 shows the ROC curve from the orthogonal matching pursuit matched subspace

classifier (OMP-MSC) used in [10]. This method performed better than the other classifiers

with a correct classification rate of PCC = 0.787 and an AUC of 0.866. For this two-class
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Figure 6.3: ROC curve from OMP-MSC with in-situ.

problem, OMP-MSC gives better results than either of the two MTL methods tested here.

The main reason why MTL did not provide a significant improvement in performance over

STL is likely the lack of overlap between TREX13 and the FRM tasks. Of the three tasks,

the two from the FRM dataset were very similar, so the training of the MTL model grouped

them together by making them use the same atom in matrix L while providing minimal

overlap with the TREX13 task. In the next section, we show a classification problem with

more tasks.

6.3 EMNIST Digits

In this section, we used MTL on the EMNIST [3] digits dataset described in Chapter 2.

The MTL model in this experiment had u = 6 atoms in the dictionary matrix L to represent

the parameters for T = 10 tasks. Each task had the goal of determining if any given image

contains that digit. The training set consisted of 500 different images for each task. The

testing set contained 4000 randomly selected images. We began by using principal component

analysis [6] to reduce the dimension of the samples from 784 to 64. To make a decision on

an image, the classifier evaluates the response of each task using the same method as in

Section 6.2 and chooses the task that gives the highest output. This is performed on each

image in the testing set in order to create the confusion matrices. Figure 6.5 shows the
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Table 6.2: PCC for the three EMNIST classifiers using two loss functions.

Log Loss Hinge Loss
STL 0.8033 0.8017
MTL 0.8442 0.8125
ELLA 0.7508
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Figure 6.4: Confusion matrices for our gradient descent-based MTL (left) and STL (right)
with hinge loss

confusion matrices using the gradient descent-based MTL, STL, and ELLA when trained

with the log loss. Figure 6.4 shows the confusion matrices from MTL and STL when using

the hinge loss. The overall probability of correct classification for the classifiers are shown in

Table 6.2. When using the hinge loss, the gradient descent-based MTL increased the accuracy

on some digits and provided a slight improvement in the total classification accuracy. A

similar behavior is observable when using the log loss function as shown in confusion matrix

in 6.5. ELLA performed the worst on this dataset.

6.4 Conclusion

In this chapter, we compared ELLA and the gradient descent-based MTL algorithms

described in Chapters 3 and 4 with single-task learners by using them to train classifiers

for the datasets described in Chapter 2. The tests run on the sonar datasets showed little

difference in performance between the three algorithms for both log loss and hinge loss.
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Figure 6.5: Confusion matrices for gradient descent-based MTL (left), STL (right), and
ELLA (bottom) with log loss.

While the gradient descent-based MTL allows tasks to learn from each other to increase

performance of all tasks, it does not provide a large benefit if the number of tasks is too

small. Classification with T = 10 tasks on the EMNIST digits dataset showed a slight

improvement over STL when using MTL and decreased performance with ELLA when using

log loss.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The main topic addressed in this thesis is the multi-task learning for the purpose of

pattern classification. Two existing MTL algorithms, namely GO-MTL and ELLA, were

reviewed, and their strengths and drawbacks were compared. The problem with these al-

gorithms is that they are impractical while working with high-dimensional datasets. To

solve this problem, a gradient descent-based algorithm was introduced as an alternative to

GO-MTL and ELLA which can be used on high-dimensional datasets. This algorithm has a

lower computational complexity per iteration than the previous algorithms. However, it may

require many more iterations to converge owing to the nature of the gradient-based methods.

A KMTL algorithm was introduced to train nonlinear classification models for datasets that

are not linearly separable. By mapping the data vectors to very high-dimensional spaces,

they may become linearly separable. The gradient descent-based algorithm was tested on the

underwater UXO and EMNIST datasets and compared to ELLA and an STL. When used to

classify UXO vs. non-UXO based on their acoustic color features, our gradient descent-based

algorithm achieved a correct classification rate of approximately PCC = 0.78 with the log

loss while ELLA and an STL achieved rates of approximately PCC = 0.77 and PCC = 0.77,

respectively. When used to classify digits in the EMNIST dataset, our algorithm achieved a

rate of approximately PCC = 0.84 with the log loss while ELLA and an STL achieved rates

of approximately PCC = 0.75 and PCC = 0.80, respectively.

7.1 Future Work

The work done in this thesis has revealed new topics that need to be researched including

improvements to the proposed gradient descent-based algorithm and methods to test the
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algorithm. A few possible ways to continue the research are listed below.

1 – Lifelong Learning: While our gradient descent-based algorithm has been shown to be

effective on the datasets used during testing, it is not suitable for lifelong learning situations.

As with GO-MTL, this algorithm requires all tasks to be present along with all training

data. Any changes in the tasks requires the MTL model to be retrained from the beginning

or with the previous parameters as the initial condition for training. A modified version of

our gradient descent-based algorithm is needed to allow for updated tasks while maintaining

a low computational complexity. ELLA [2] and CoLLA [4] allow for lifelong learning by only

updating the dictionary matrix and the updated task’s coefficient vector. A method similar

to this may allow our algorithm to allow tasks to be updated without retraining all tasks.

2 – Improvement and Testing of KMTL: The KMTL algorithm introduced in this

work was created to allow for nonlinear classifiers which can provide improved performance

on many datasets. However, without proper testing, this method’s effectiveness cannot be

shown. Preliminary tests performed during the development showed the current algorithm’s

results to be inconsistent. That is, different tests with the same training and testing data

had significantly different performance. It is possible that the algorithm is converging to

local minima with high error. Ideas to consider researching include better ways to choose

the initial conditions and regularization parameters. Improved initial values may allow the

algorithm to converge to a more optimal solution, and varying the values of the regularization

parameters may improve the performance achieved in these local minima.

3 – Testing UXO Dataset with Additional Tasks: The UXO dataset described in

Chapter 2 contains just three tasks with only one of them containing real data. Data from

new environments could be added to the MTL model as new tasks. Increasing the number

of tasks allows for more transfer learning to occur and may more effectively demonstrate

the benefit of using MTL for UXO vs. non-UXO classification. The UXO dataset can

be expanded using real data collected during physical experiments at more locations and

synthetic data generated using the FRM with different parameters.
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